
Technische Universität München
TUM School of Computation, Information and Technology

Leveraging Dynamic Resource Management for
Power Management and Fault Tolerance in

High Performance Computing

Jophin John

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Darius Burschka

Prüfende der Dissertation:
1. Prof. Dr. Hans Michael Gerndt
2. Prof. Dr. Michael Georg Bader

Die Dissertation wurde am 16.04.2024 bei der Technischen Universität München eingereicht und
durch die TUM School of Computation, Information and Technology am 02.09.2024
angenommen.

Zusammenfassung

Im High Performance Computing (HPC) werden Rechner der höchsten Leistungsklasse verwendet, die Bil-
liarden oder sogar Trillionen von Berechnungen pro Sekunde ausführen können. Allerdings gibt es mehrere
Herausforderungen bei der Entwicklung und dem Einsatz dieser Supercomputer. Die Packungsdichte von
Transistoren nähert sich den physikalischen Grenzen, was das Ende des Mooreschen Gesetzes bedeutet
und eine Steigerung der Rechenleistung nur durch die Kombination von immer mehr Rechnern ermöglicht,
der Energieverbrauch pro Supercomputer erreicht heutzutage schon bis zu 30 MW und die Häufigkeit von
Fehlern in diesen Systemen nimmt mit der Zahl der Komponenten drastisch zu. Daher werden innova-
tive Lösungen benötigt, um diese Herausforderungen im High Performance Computing zu bewältigen. Die
dynamische Ressourcenverwaltung ist eine solche Lösung, die einen flexiblen und einheitlichen Ansatz
bietet. Diese Arbeit verbessert die Systemauslastung und somit die effiziente Nutzung von Supercom-
putern, reduziert den Stromverbrauch und erhöht die Fehlertoleranz. Hierzu wurde ein adaptiven Batch-
Scheduler, ein Management des Power Corridors des HPC Rechners und ein adaptives Checkpointing-
System entwickelt. Diese Systeme unterstützen sowohl klassische statische HPC-Anwendungen als auch
adaptive Anwendungen, die in der Erweiterung iMPI des Message Passing Interfaces (MPI) programmiert
sind. Der adaptive Batch-Scheduler verwendet Planungsstrategien, die die Rechenleistung und Effizienz
der Anwendungen berücksichtigen und die laufenden Anwendungen rekonfigurieren und neue Anwendun-
gen starten, um die Gesamtauslastung des Systems zu optimieren. Der energiegewahre Scheduler nutzt
dynamische Techniken, um den Betrieb des Systems in einem festgelegten Stromkorridor zu gewährleis-
ten. Das adaptive Checkpointing-System nutzt Kommunikation über entfernte Speicherzugriffe und das dy-
namische Management von Ressourcen, um schnellere und effizientere Checkpointing-Dienste für statische
und adaptive MPI-Anwendungen bereitzustellen. Es automatisiert auch die Datenumverteilung für adaptive
MPI-Anwendungen nach einer Anpassung der Ressourcen.

iii

Abstract

In high-performance computing (HPC), supercomputers are the epitome of power and performance, process-
ing billions and trillions of calculations per second. However, there are several obstacles that supercomputers
must overcome as the demand for computational power continues to increase. For example, the physical
limits of transistors are approaching (signalling the end of Moore’s law), the energy consumption per su-
percomputer is exploding (the power consumption of an exascale supercomputer is sufficient to power a
small city), and the inevitability of failures in systems with billions of components is increasing. As a result,
innovative solutions are needed to overcome such challenges in supercomputing, ranging from scalability
to power management and fault tolerance. Dynamic resource management is one such solution that offers
a flexible and unified approach. This work improves system utilisation, optimises power consumption, and
enhances fault tolerance by leveraging dynamic resource management techniques. Towards that, an adaptive
batch scheduler, a power-aware scheduler and a fully adaptive checkpointing system are developed as part
of this work to aid HPC applications that were created using standard and malleable (dynamic) Message
Passing Interface (MPI) applications. The adaptive batch scheduler uses performance-aware scheduling
strategies and improves the overall system utilisation by reconfiguring the running applications and launch-
ing new applications. The power-aware scheduler employs dynamic resource reconfiguration techniques
and job scheduling to ensure the system’s operation in specified power corridors. The adaptive check-
pointing system, which is a major contribution of this work, leverages remote direct memory accesses and
dynamic resources to provide faster and more efficient checkpointing services for standard and malleable
MPI applications. In addition, this work also demonstrates that a checkpointing system can be used for data
redistribution in malleable applications.

v

Acknowledgments

First and foremost, I extend my deepest gratitude to God for endowing me with the strength and capabil-
ity to undertake and complete this endeavour. My heartfelt appreciation goes out to my supervisor, Prof.
Michael Gerndt, who has been a source of inspiration and wisdom throughout my academic journey, from
my master’s degree to the present. I am immensely grateful for the opportunity to conduct my research
under his guidance. His relentless curiosity and pursuit of knowledge have inspired me to evolve as a re-
searcher. I owe a profound debt of gratitude to my parents (Amma and Chachan) for their relentless hard
work and sacrifices, which have paved the path to where I stand today. Their love and blessings have been
the cornerstone of my achievements. I am also thankful to my brother (Joby), who encouraged me to delve
into research and continually motivated me to improve myself. My girlfriend, Jeeta, deserves special thanks
for her unwavering presence, encouragement, and support throughout my research and personal challenges;
her contribution has been invaluable. My journey was made more meaningful thanks to the company and
support of my wonderful colleagues (especially Mohak, Eishi and Isaac) at the Chair of Computer Archi-
tecture and Parallel Systems. I am grateful to the InvasIC project for providing me with such a fascinating
area of research. A special thanks goes to all my educators who have enriched me with their knowledge
throughout my educational journey. Lastly, I am thankful for the prayers and positive energy from countless
well-wishers and kind-hearted individuals in my life.

vii

Contents

Zusammenfassung iii

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions . 5

1.2.1 Resource and Job Management . 5
1.2.2 Power Management . 7
1.2.3 Fault Tolerance . 8

1.3 Outline . 10

2 Invasive Computing 12
2.1 Research Groups . 12
2.2 Dynamic Resource Management Infrastructure . 13

2.2.1 Invasive Resource Manager . 14
2.2.1.1 Overview of Slurm . 14
2.2.1.2 Extensions to Slurm . 16
2.2.1.3 Expansion and Reduction for Malleable Batch Jobs 17

2.2.2 Invasive Message Passing Interface . 18
2.2.2.1 iMPI Concepts . 19
2.2.2.2 Writing a Simple Malleable MPI Program 20
2.2.2.3 Elastic Phase Oriented Programming Model 23

2.3 Building Upon and Leveraging Invasive Infrastructure . 24

3 Related Work 26
3.1 Adaptive Batch Scheduling . 26
3.2 Power Corridor Management . 28
3.3 Checkpointing . 30

4 Adaptive Batch Scheduling 34
4.1 The Adaptive Batch Scheduler . 34
4.2 Adaptive Scheduling Strategies . 37

4.2.1 Job Management Policies . 38
4.2.2 Malleability Management Policies . 38

4.2.2.1 Favor Previously Started Malleable Applications First (FPSMA) 39
4.2.2.2 Equi-Grow Shrink (EGS) . 40

ix

Contents

4.2.3 Performance-aware Scheduling of Malleable Jobs 42

5 Power Corridor Management 43
5.1 Power-aware Batch Scheduler Concepts . 44

5.1.1 Linear Programming Model for Resource Reconfiguration 44
5.1.2 Guarantees . 46
5.1.3 Power Measurement . 47
5.1.4 Forecasting . 47

5.2 Power-Aware Batch Scheduler Implementation . 48
5.2.1 Dynamic Power Corridor Management . 50
5.2.2 Limitations . 51

6 iCheck – Invasive Checkpointing System 52
6.1 Architecture . 52

6.1.1 iCheck Core . 53
6.1.1.1 Agent . 53
6.1.1.2 Manager . 54
6.1.1.3 Controller . 54

6.1.2 iCheck Workflow . 54
6.1.3 iCheck library . 55

6.1.3.1 API for Checkpoint Transfer . 56
6.1.3.2 API for Malleability Support . 58
6.1.3.3 API for Faster Data Transfer . 58

6.2 Data Transfer in iCheck . 58
6.2.1 MR Approach . 59
6.2.2 SHMR Approach . 60
6.2.3 Buffer Management in iCheck . 60

6.2.3.1 Pipelining . 61
6.2.3.2 Versioning . 63

6.2.4 Asynchronous Checkpointing . 63
6.2.5 Multilevel Checkpointing in iCheck . 64

6.3 Monitoring . 64
6.3.1 Memory . 64
6.3.2 Checkpoint Operations . 65
6.3.3 Bandwidth . 65
6.3.4 Agent Count . 66
6.3.5 Power Usage . 66
6.3.6 iCheck Configuration File . 66

6.4 Dynamism in iCheck . 67
6.4.1 System Level . 67
6.4.2 Application Level . 68

6.5 Failures in iCheck . 70
6.5.1 Application Perspectives to Failure . 70
6.5.2 System Perspectives to Failure . 71
6.5.3 Node Failure . 72

7 Resource Management in iCheck 73
7.1 Agent Management in iCheck . 73

x

Contents

7.1.1 Agent Count Selection . 74
7.1.2 Agent Placement . 75

7.1.2.1 Node Selection . 76
7.1.2.2 Distribution Scheme Selection . 77
7.1.2.3 Count Selection . 77

7.2 Malleable Application and Agents . 78
7.2.1 MA-RA Strategy . 78

7.2.1.1 Resource Expansion . 79
7.2.1.2 Resource Reduction . 79

7.2.2 MA-MA Strategy . 80
7.2.2.1 Resource Expansion . 80
7.2.2.2 Resource Reduction . 81

7.2.3 Agent Count Selection Algorithm . 81
7.2.4 Pseudocode for Malleable Applications . 83

7.3 iCheck and Invasive Resource Manager . 85
7.3.1 Messages and Policy in the Controller . 85

7.3.1.1 Communication Extensions . 85
7.3.1.2 Policy for Resource Extensions . 86

7.3.2 iCheck Aware Scheduler . 91
7.3.2.1 Communication Extensions . 91
7.3.2.2 Scheduler Plugin . 91

7.3.3 Controller-iRM-Application Interaction . 94
7.4 Data Distribution in iCheck . 96

7.4.1 API for Data Redistribution . 96
7.4.1.1 Replicated Data . 96
7.4.1.2 Distributed Data . 98

7.4.2 Pseudocode for Data Distribution . 99
7.4.3 State Diagram . 101
7.4.4 Resource Malleability Using Checkpointing . 101

8 Evaluation Setup 102
8.1 System Setup . 102

8.1.1 SuperMUC Phase 2 . 102
8.1.2 SuperMUC NG . 103
8.1.3 Running RJMS inside RJMS . 103

8.2 Application Setup . 104
8.2.1 Adaptive Batch Scheduling . 104
8.2.2 Power Corridor Management . 104
8.2.3 iCheck – Performance and Resource Adaptivity Analysis 105

8.2.3.1 Synthetic Application . 106
8.2.3.2 Synthetic Malleable Application . 107

9 Results 108
9.1 Adaptive Batch Scheduling . 108
9.2 Power Corridor Management . 111

9.2.1 Forecasting . 112
9.2.2 Upper and Lower Power Corridor Enforcement . 112
9.2.3 Dynamic Power Corridor Enforcement . 113

xi

Contents

9.2.4 Power-aware Scheduling Strategy . 113
9.3 iCheck – Performance Analysis . 115

9.3.1 iCheck vs MPI-IO . 115
9.3.2 Blocking vs Non-Blocking Checkpointing . 116
9.3.3 Push vs Pull Strategies . 116
9.3.4 iCheck Overhead Analysis . 117
9.3.5 Comparing iCheck, SCR and MPI-IO . 118

9.4 Resource Management in iCheck . 120
9.4.1 Adaptive Resource Management in iCheck . 120

9.4.1.1 Impact of Dynamic Agents . 120
9.4.1.2 Effect of Agent Placement Strategies . 121
9.4.1.3 Adding Nodes to iCheck . 122
9.4.1.4 Fault Tolerance in iCheck . 124
9.4.1.5 Checkpoint Compression in iCheck . 125

9.4.2 Malleable Application and Agents . 125
9.4.2.1 Malleable Application with Increasing Checkpoint Size 127
9.4.2.2 Malleable Application with Fixed Checkpoint Size 129
9.4.2.3 Impact of Pipelining . 131

9.4.3 Data Distribution in iCheck . 135
9.4.3.1 Performance Analysis . 136
9.4.3.2 iCheck vs MPI-IO . 136

10 Discussion 138
10.1 Adaptive Batch Scheduling . 138
10.2 Power Corridor Management . 139
10.3 iCheck - Invasive Checkpointing System . 140

11 Conclusion 141
11.1 Into the Future . 142

Index 145

List of Figures 145

List of Tables 147

List of Algorithms 148

List of Listings 149

Bibliography 150

Webliography 165

xii

1
Introduction

Supercomputing, or high-performance computing (HPC), is an advanced technology that orchestrates pow-
erful machines to handle computationally intensive tasks and process massive amounts of data efficiently.
Use cases of these powerful machines span multiple domains ranging from particle physics to molecular bi-
ology, quantum chemistry to chip design, data analysis to deep learning, and vaccine development to digital
twins. Because of their high-speed parallel processing capability and enormous computational capacity that
surpasses cloud computing, these robust machines are primarily used to perform complex simulations such
as weather predictions, nuclear reactions simulations, biochemical interactions modelling, and large dataset
processing in the domain of genomics and particle physics [1–14].

A supercomputer typically consists of tens of thousands or even millions of cores (the fastest supercomputer
currently has 8.73 million cores [15]) working in parallel for problem-solving. These cores can be distributed
across multiple machines using high-performance networks in a computing cluster or within a large machine.
Complex tasks are broken down into smaller, independent parts that can be processed simultaneously across
multiple cores, allowing tackling problems beyond the computational reach of independent components.

Supercomputing performs various roles across different industries, with each application generally necessi-
tating considerable computational capabilities or the management of extensive data volumes. The two most
common use cases of supercomputers and their domains are briefly listed below [1–6, 9–11]:

• Simulations: Supercomputers are indispensable in scientific research to simulate intricate phenomena
that would be too costly and impractical to study via direct experimentation. They are instrumental
in predicting weather and climate patterns, comprehending particle physics, analysing the formation
of galaxies, and modelling biological systems such as the human brain or the protein folding process.
Supercomputers are used across various industries, including automotive, aerospace, and electron-
ics, to simulate and test the performance of designs in a virtual environment before the beginning of
expensive and time-consuming physical manufacturing. Supercomputers advance drug discovery by
simulating drug interactions with biological organisms. During the COVID-19 pandemic, supercom-
puters were used to simulate the virus’s structure and develop vaccines [2].

• Data Analysis and Artificial Intelligence (AI): Supercomputers are crucial for analysing and pro-
cessing the vast amounts of data generated globally. For example, supercomputers can be efficiently
used to process data for genome sequencing. Training complex AI models requires immense compu-
tational resources. Supercomputers can dramatically reduce the time required to train these models,

1

1 Introduction

thereby accelerating the development and deployment of AI technologies (ChatGPT was trained on a
specialised supercomputer [16]).

The impact of supercomputers is not limited to the above fields, and is spread across national security,
energy exploration, cryptoanalysis and a plethora of other sectors. As seen above, HPC has numerous ap-
plications in scientific research, industry, and government and is crucial in climate modelling, biomedical
research, data analytics, and national security. National governments or research institutions spend hundreds
of millions of dollars to build the world’s most powerful supercomputers [17–20]. By providing exceptional
computational capability, these state-of-the-art machines aid in tackling complex problems and making sci-
entific advancements that would not otherwise be feasible.

In high-performance computing, supercomputers are the epitome of power and performance, processing bil-
lions and trillions of calculations per second. However, there are several obstacles that supercomputing must
overcome as the demand for computational power continues to increase [21]. Some of the key challenges in
HPC are the following:

• Power Consumption and Heat Dissipation: Supercomputers are power-hungry machines. For in-
stance, the Frontier supercomputer at Oak Ridge National Laboratory in the United States consumes
about 21 megawatts of power – enough to power a small city [22]. As supercomputers continue to
evolve and their power requirements grow, managing this power consumption becomes a critical issue.
The immense power consumption of supercomputers along with millions of components generates lot
of heat, facilitating the need for efficient cooling techniques. Failure to cool down the system can lead
to hardware damage and results in system downtime. In addition, the cost of cooling the system costs
around 25 - 40% of the total energy cost of a supercomputing facility [23, 24].

• Fault Tolerance: Millions to billions of individual components in a supercomputer indicates the
failure is inevitable in some of the components. In addition, the Mean Time Between Failures (MTBF)
for exascale machines is predicted to be in minutes [25]. Hence, developing supercomputers that
can handle component failures is a significant challenge and fault tolerance must be delegated to
applications to effectively handle the multitude of failures.

• End of Moore’s Law: The development of supercomputing faces a new challenge as the physical
limits of transistor size are approaching. Moore’s Law has been relied upon for years to double
the system performance by densely packaging the transistors every two years, but this growth rate
is stalling [26–29]. As a result, the trend of performance improvements seen over the decades by
employing intricate hardware design might cease to exist.

• Software Optimisation: As the end of Moore’s Law is on the horizon, it is necessary to employ
software optimization techniques to exhaustively utilize these powerful machines’ resource capabili-
ties. Inefficient software (both system and application) can cause the system not to scale well, leading
to reduced performance. As systems continue to grow in size and complexity, efficient software de-
velopment becomes paramount to ensure the full potential of a supercomputer and deliver optimal
performance [30].

The HPC community extensively researches the above challenges, and novel solutions are proposed to tackle
many of these challenges. Various techniques are employed to tackle different pieces of the challenges. For
example, DVFS and power capping are used for power management and reducing heat dissipation [31,
32], fault tolerance techniques spanning application to system levels are used to bring resilience to the
system [33], application optimisation and parallelisation techniques [34] are used to utilise the system ef-
fectively and to scale the application. This multitude of solutions are spread across different layers of the
system.

2

1.1 Motivation

System Architecture Cores Perf. (Pflop/s) Power. (kW)
Frontier AMD EPYC 64C, AMD Instinct 8,699,904 1,194.00 22,703
Aurora Xeon CPU Max 9470, Intel GPU 4,742,808 585.34 24,687
Eagle Xeon Platinum 8480C, Nvidia H100 1,123,200 561.20 �

Fugaku A64FX 48C 7,630,848 442.01 29,899
LUMI AMD EPYC 64C, AMD Instinct 2,752,704 379.70 7,107

Table 1.1: Name, architecture, number of cores, performance and power usage of the top five HPC systems
in the Top500 list on November 2023 [15].

One of the software-level techniques that can apply to all the above challenges is dynamic resource manage-
ment [35], which has been gaining traction recently in the HPC community. In essence, dynamic resource
management refers to a system’s ability to dynamically adjust the usage of the computational resources,
such as processing power and memory, based on the current system and application requirements. This
became the motivation for this research work, where the challenges associated with system performance,
power management and fault tolerance were tackled using dynamic resource management.

1.1 Motivation

Moore’s Law has been a driving force behind the growth of supercomputing for decades [29]. However,
as the physical limits of transistor miniaturisation are approached, relying on Moore’s Law to provide reg-
ular performance increases is not feasible. As a result, the practice of stacking up resources to improve
performance will be challenging. Instead, new ways must be found to improve the system’s performance
with existing resources. By optimising the use of existing resources, more performance can be obtained out
of a supercomputer without requiring more hardware components. Hence, the traditional notion of static
resources, where a subset of the machine’s resources are given exclusively to an application until the appli-
cation ends in HPC (static resource management), is getting challenged. More and more research activities
are going on to develop dynamic applications and dynamic resource management techniques [35–39]. The
applications can be programmed to adapt to resource allocation changes and enhance performance. The
resource manager can be modified to reconfigure the resources of the running applications. It has opened up
avenues of opportunity for improving the application as well as the system’s performance by enhancing the
overall system utilisation, application waiting time, and applications’ makespan.

The application execution pipeline of a supercomputer is as follows. The application information, along
with the requirements (number of resources, total execution time) for the application, is submitted to the
batch system. This process is typically known as job submission. Upon job submission, the batch system
adds the application (job) to a queue (job queue), assigns a priority (job priority), and runs the application
based on the availability of resources and site-level policies for job management in the supercomputing
centre. Different policy factors come into play between a user and an HPC system, unlike in a cloud
scenario where users can run the applications if they can pay for the resources [40, 41]. These policy factors
are inculcated into the supercomputing centre’s resource and job management systems and are unique to
each centre. The state-of-the-art techniques for job management in these centres are static and can lead to
inadvertent delays in launching new jobs. For example, static resource management hinders the possibility
of rearranging the running jobs to make space for new jobs in the queue, thereby increasing the job response
time. This research work catalyses the growing trends in resource dynamism (malleability) by proposing
adaptive resource management strategies that improve system performance by dynamically redistributing
workloads across the supercomputer’s resources and launching new jobs in the queue.

3

1 Introduction

Dynamic resource management can cater to usefulness beyond the system and application performance.
Towards that extent, in this research work, the dynamism of resources was also leveraged to provide power
corridor management and fault tolerance. As governments and institutes compete to bring more performance
into their latest supercomputers [18–20], the issue of power management and fault tolerance becomes more
relevant than ever in the HPC community. Table 1.1 demonstrate that supercomputers’ power consumption
and component complexity change dramatically with each new supercomputer. It can be inferred from the
table that the average power usage and number of components of the top five supercomputers are humongous
and are 20MW and 4 million, respectively. As a result, power consumption and resilience to failures became
the central focus of this work.

Typically supercomputing centres have an energy budget that is negotiated with the energy suppliers [42].
The supercomputing centres are obliged to operate within the so-called power corridor, and penalties are
incurred for the power corridor violations. To maintain the power budget, these centres employ various
techniques spanning shutting down the system, power capping and dynamic voltage and frequency scal-
ing [32]. These strategies often kill the applications if the upper and lower budget cannot be maintained.
Dynamic resource management can be leveraged to tackle this by ensuring the system operates at the power
budget by adjusting resource usage in real-time. For example, parts of the supercomputer can be powered
down by redistributing the applications running on those resources. This dynamic approach to power man-
agement can ensure that the applications can be run without interruption and that the system’s power usage
can be managed simultaneously. Dynamic resource management can intelligently allocate computational
jobs and balance power consumption by continuously assessing the system workload and identifying un-
derutilised resources. Additionally, power usage can be proactively managed, promoting sustainability and
reducing operational costs. For example, a supercomputing centre can make a policy so that the system
can work at its full potential when energy is obtained from renewable sources while reducing energy usage
with non-renewable energy sources. This thesis demonstrates that the resources of a running application can
be reconfigured proactively to adhere to the system-level power budget and maintain overall system-level
power usage.

With the continuous addition of computational power to achieve exascale performance, maintaining re-
silience against failures becomes a critical aspect in developing HPC applications [43]. The significant leap
in performance from petascale to exascale is expected to increase the rate of failures [44]. Currently, the
mean time between failures (MTBF) in petascale systems averages around hours, but it is anticipated to
decrease to minutes in the exascale era [25]. Consequently, application developers need to prepare for more
frequent failures and implement adequate fault tolerance and recovery mechanisms. Dynamic resource man-
agement has yet to be fully utilised in fault tolerance techniques. Dynamic resource management systems
can continuously monitor the system state and adjust its use of resources to compensate for the failure, for
example, by rescheduling tasks to other components or bringing spare components online. This ensures
that the application can continue even in case of failure. One of the most famous fault tolerance tech-
niques employed in simulation codes is checkpointing [33], where an application frequently stores its state
(checkpoint) such that whenever a failure happens, the application can restore itself from the most recent
checkpoint. However, the application’s rigid characteristics (non-dynamic) hinder the state-of-the-art check-
pointing designs from attaining peak performance. Additionally, checkpointing systems are rigid due to the
predominantly static view of resources in the HPC community. This work proposes a new checkpointing
system that dynamically changes its resources and properties based on the system state, ensuring better
performance for rigid and dynamic applications. Furthermore, leveraging dynamism enables the optimisa-
tion of checkpointing strategies by intelligently choosing checkpoint intervals and improving the checkpoint
transfer rate dynamically by allocating more resources to minimise the loss of work in case of failure. It can
also lead to improvement in application performance. This requires dynamic resource management capabil-
ity on the system side and a dynamic checkpointing system. In this work, the checkpointing performance of

4

1.2 Contributions

applications is improved significantly by using techniques of adaptive resource management.

Dynamic resource management offers many optimisation and performance enhancement opportunities that
are otherwise impossible with a rigid view of resources [36]. However, a dynamic system will only be
benefitted if there are dynamic applications that can adapt to the resource changes. One of the most popular
libraries used to write distributed memory applications is Message Passing Interface (MPI) [45], which
is inherently static. In short, it is not possible to write pure malleable applications, i.e., applications that
can change their resources during the execution. There are proposals in the MPI community for bringing
malleability, and different research groups have their own custom MPI that supports malleability [36, 37,
46]. Nevertheless, writing malleable applications is not trivial, and one key challenge in doing so is the data
redistribution during the resource change. In this work, it is demonstrated that the checkpointing system can
also act as a data redistribution framework for a malleable application.

In contrast to the dynamic ecosystem of the cloud technology where portability mattered more than per-
formance, HPC remained static to adhere to the performance objectives of the compute intense applica-
tions [47]. The scientific applications are fine-tuned for particular machines to obtain maximum perfor-
mance [48]; hence, the static view of resources was sufficient. The demand for accelerator support and the
prevalence of GPUs and FPGAs is driving the HPC’s model of homogeneous architecture into oblivion,
thereby transforming the field into a heterogeneous environment (or more cloud-like) [49]. As a result, to
support the varying workloads and rapidly evolving field of artificial intelligence, HPC will eventually transi-
tion into dynamic resource management to assist different workloads and use cases; for example, AI focuses
on faster execution and lower precision calculations, while scientific simulations focus on high accuracy
and performance [47]. Hence it becomes imperative that priority be given to dynamic resource management
and investigate how it can improve high-performance computing. This research demonstrates that dynamic
resource management can address some of HPC’s prevalent challenges by improving the job management
system, maintaining the system-level power budget, and enhancing the checkpointing performance. The
following section provides a synopsis of the contributions written in this thesis.

1.2 Contributions

The contributions from this work span three distinct areas, and the primary focus was leveraging the dy-
namism in resource management to demonstrate its impact in a multidimensional space. The contributions
were made in the following three areas, with significant contribution in the area of fault tolerance:

• Resource and Job Management

• Power Management

• Fault tolerance

Combining these areas cover the entirety of the field of HPC, and the niche for dynamic resource man-
agement in each area was found. The contributions in each area are explained in each of the subsections
below.

1.2.1 Resource and Job Management

Resource and Job Management is one of the core tasks of any high-performance computing centre. These
systems are known as Resource and Job Management Systems (RJMS), Resource Management Systems
(RMS) or Batch Systems. Slurm [50], Flux [51], Load Leveler [52], and PBS/Torque [53] are some of

5

1 Introduction

the popular RJMS systems used in top supercomputing centres worldwide. These systems typically have a
resource management component as well as a job scheduler component. The resource management aspect
of the component deals with the job requests, execution of the job, managing the communication between
compute nodes and creation and termination of application processes. The job scheduler finds resources for
a given job. It iterates through the job queue and resource list to find the job-to-resource mapping. For this,
many different sets of policies (for example, the priority level of users) and site-level factors (for example,
maximum allocatable resources for an individual user) are considered. Once the mapping is found, the
resource manager continues with the job launch and execution.

The problem with current state-of-the-art RJMS systems in HPC is the rigidity of the resource allocation;
that is, the resource managers expect that the application will need the same number of resources from
start to end. This assumption does not hold for dynamic applications like adaptive mesh refinement or
embarrassingly parallel applications where scalability is proportional to the number of resources. In the
former case, different phases of the application ideally require different numbers of resources. For example,
for a tsunami simulation, in an ideal scenario, the number of resources needed in the beginning is less
compared to the end of the simulation. This can be attributed to the fact that the beginning of the simulation
contains fewer grid points than the middle, where the wave propagates to wider areas. The state-of-the-
art resource managers do not consider these kinds of application-specific characteristics. Research has
focused on these aspects [36], and runtime managers were proposed to reconfigure the applications during
the execution based on the policy.

However, it is essential to note that such runtime managers can only perceive the jobs currently being ex-
ecuted. As a result, it may overlook several optimization opportunities that could potentially improve the
system throughput while making resource reconfiguration decisions. To overcome this limitation and enable
optimal resource allocation, a batch system that integrates both the runtime system and the job scheduler is
crucial. For example, consider a scenario where a runtime system is reallocating the resources of applica-
tions based on their performance. It decides to take away resources from the low-performing application to
better-performing ones even though a better-performing one does not need more resources. In such cases,
resource reconfiguration can be performed by taking the resource requirement of jobs waiting in the queue
into account to improve the overall system throughput. This gap between the dynamic runtime system and
the job scheduler is bridged in this work. Since creating a whole RJMS system is impractical, the dynamic
runtime system created as part of the InvasiC project [54] is used in this work. It is an extension of Slurm,
one of the world’s most popular RJMS systems used in top supercomputers worldwide.

The contributions from this work spread across both job scheduler and resource management. As part of
this work, the job scheduler of Slurm is extended to support the malleable applications and created a new
malleable job scheduling plugin. The resource management component of Slurm is modified to accom-
pany the new job scheduling plugin to improve the system throughput. The dynamism aspect of the work
comes into play as follows. Typically, when a job is submitted, the job scheduler looks for the resource
requirements and, if matched, maps the job to the resources. This work extends this job requirement to
support job moldability along with job-specific constraints (For example, square number of nodes). Mold-
ability refers to the ability of the batch system to change the number of resources for the job before its start.
The constraint support is provided such that the job scheduler can select a valid start resource requirement
within a minimum and maximum resource requirement that satisfies the job constraint. For example, in the
proposed work, the job request can contain a minimum resource requirement of 16 and a maximum of 36
with a constraint square number of resources. It means the job scheduler can map the job with a resource
count of 16, 25 or 36. The proposed work also supports dynamic resource management by analysing and
reconfiguring the resources of the running applications on-the-fly and scheduling new jobs. For that, the
application performance is analysed, the resource requirement of jobs in the queue is taken into account,

6

1.2 Contributions

and then applications with poor performance are penalised by taking away the resources and given to new
jobs.

Multiple job scheduling strategies were implemented to demonstrate the effectiveness of the proposed sys-
tem. The contributions in this area [55] can be summarised as follows:

• A performance-aware job scheduling plugin where the running application’s performance is consid-
ered for job scheduling.

• The system is evaluated on a job allocation on SuperMUC-NG [56] and demonstrated an improve-
ment in job response time up to 29%, job waiting time by up to 26%, and makespan by up to 19%
compared to a backfill scheduler [57].

• Demonstrates running an RJMS system inside another RJMS system in SuperMUC-NG. Techniques
were developed to launch a custom Slurm software within a job executed by another Slurm scheduler.

1.2.2 Power Management

As seen in the motivation section, power management is one of the HPC challenges in the exascale era.
The current state-of-the-art techniques to address these challenges were geared towards the solutions from
the system perspective. For example, power capping can be used to limit the power usage of a node. In
contrast, Dynamic Voltage and Frequency Scaling (DVFS) can be used to limit the processor frequency and
voltage to reduce the overall power used in the node. In addition, idle nodes are shut down to maintain the
power usage of a supercomputing centre. In some scenarios, the running applications are killed, and the
nodes are shut down to bring the system-level power usage into the desired corridor. These solutions are
practical and used across different supercomputing centres worldwide; however, solutions that also consider
the application perspective can improve the existing solutions. Consider a scenario where shutting down a
system’s nodes and killing applications to maintain the system-level power budget. Here, the abrupt killing
of the application results in the cessation of the application’s progress, and as a result, it needs to recompute
everything from the start during the restart (or restart from the checkpoint). In such scenarios, dynamic
resource management can be beneficial.

This proposed work shows the usage of dynamic resource management for power management by manip-
ulating the power usage characteristics of the applications. The proposed works focus on power corridor
management, which aims to maintain the system power usage within a lower and upper bound. A power-
aware scheduler plugin, along with a power-aware runtime management system, is proposed in this work.
The core idea is to take away resources from power-hungry applications and give them to low-power running
applications whenever there is a need to reduce power usage and vice versa to increase power usage. The
application’s power usage characteristics are modelled using a linear programming model.

RJMS used for this work is the adaptation of the RJMS proposed in the above section. The resource man-
agement and job scheduler components of the Slurm are extensively modified to enable this work. A rudi-
mentary power model from Narvaez [58] is extended to support multiple applications. Two approaches,
1 proactive and 2 reactive, were considered in this work. In the proactive approach, multiple models

were used on-the-fly to predict the systems’ power usage and applications are reconfigured to maintain the
system-level power boundary if a power corridor violation is anticipated. In the reactive approach, the re-
source manager will only react when there is a power corridor violation. In addition, new jobs are scheduled
to maintain the system-level power budget. Similar to the contribution in section 1.2.1, the moldability
aspect is also considered for the scheduling. The new resource requirement for a job in the queue is consid-
ered in relation to the application’s power consumption. Hence, it is ensured that the new application will

7

1 Introduction

not violate the power corridor. The advantage of the proposed work is that the system’s power usage can be
maintained without shutting down the nodes or killing the power-hungry applications. Hence the application
progress can be maintained.

In the proposed work, the power corridor can also be altered dynamically. The resource manager obtains
the power corridor values from the external source and uses them for making scheduling decisions. Such a
technique can act as a trigger for high utilisation of the machine. For example, suppose the upper and lower
power corridors are high. In that case, the power-aware resource manager will provide additional resources
to power-hungry applications and ensure the system remains in the specified corridor. High-performance
computing centres can use these techniques to use clean energy (renewable energy sources) ideally. The
centres can set high power corridor values while using clean energy and low power corridor values while
using coal energy. However, the fundamental requirement for such a work is the availability of sufficient
malleable applications.

The contributions from this work [55, 59] can be summarised as follows:

• A power-aware job scheduling plugin – The running application’s power usage is considered for job
scheduling along with applications in the queue. New jobs are scheduled by maintaining the system-
level power constraints.

• Supports dynamic power corridors – The power corridors can be changed on the fly, and the power-
aware runtime will reconfigure the applications to bring the system back into the power corridor.

• The experiments were run on SuperMUC-NG and demonstrated that power-aware scheduling strate-
gies can prevent power corridor violations if certain guarantees are met.

1.2.3 Fault Tolerance

The concept of resilience to failures in computing is a research domain active since the advent of the field
of computing itself. Tolerance to failure is one of the critical challenges in the HPC ecosystem due to the
complexity of components in creating a supercomputer. An increase in complexity increases the chances of
failure. The failure of components impacts the application’s performance, and most high-performance com-
puting applications are not resilient to failures. When it comes to addressing failures in HPC applications,
it’s important to approach the issue from a software engineering perspective. In particular, since many HPC
applications use the Single Program Multiple Data programming model with the Message Passing Interface
(MPI), it’s especially important to provide fault tolerance for MPI applications [45]. MPI is one of the most
popular programming models for writing distributed memory applications, so it’s critical to ensure that these
applications can continue running even in the face of failures.

The MPI [45] lacks a built-in fault tolerance mechanism, and failure in one process affects the entire appli-
cation.. This means that if even one process fails, the entire job could be at risk of failure. While attempts
are being made to develop a fault-tolerant version of MPI [60–63], it has yet to be standardized. In the
meantime, many HPC applications, including multiphysics and multiscale codes, still rely on checkpointing
[64] to manage fail-stop errors. This method entails regularly saving the current state of the application so
that, in the event of a failure, the application can be restarted from the most recently saved state.

There are two main approaches to implementing a system for saving and restoring data in case of failures:
application-level checkpointing and system-level checkpointing [65]. In application-level checkpointing,
the user decides what specific data must be stored and recovered, while in system-level checkpointing, the
entire checkpoint process is hidden from the user. In the event of a failure, the application is restarted by
restoring the saved data and continuing where it left off. The proposed work focuses on application-level

8

1.2 Contributions

checkpointing because it is more efficient, has less size per checkpoint, low overhead, and quicker restart
capability than system-level checkpointing.

Parallel file system contention is a significant issue in such approaches. When numerous applications attempt
to write checkpoints simultaneously, it causes resource contention and negatively impacts performance [66].
To address this problem, we propose iCheck, a dedicated compute node software system that utilises remote
memory accesses to save checkpoints from application into the compute nodes of the software instead of
writing the checkpoint data directly into the Parallel File System (PFS) [66]. iCheck offers asynchronous
multilevel checkpointing support to both MPI and non-MPI applications using dynamically reconfigurable
remote direct memory access (RDMA). Resource and data management decisions are made while consider-
ing factors such as available memory, bandwidth, and checkpoint frequency.

As seen in the above sections, there are limitations to static resource management techniques prominent
in HPC that can hinder many optimisation opportunities provided by dynamic resource reconfiguration.
This static behaviour is prevalent from system services to applications [51, 67]. However, the potential for
dynamic applications using dynamic resources extends far beyond better system utilization [38, 59, 68, 69].
Checkpointing is one area where this is particularly evident [70–72], as dynamic checkpointing can lead to
faster transfer times and more efficient utilisation of resources such as memory and file system bandwidth.
With the trend towards malleability in MPI and resource management infrastructure [36, 37, 73–76], it
becomes even more critical for checkpointing systems to be adaptable to changing system requirements.
None of the state-of-the-art checkpointing systems can adapt to the change in the number of resources of
the application. By redistributing data during resource change, checkpointing systems can help address one
of the significant challenges in writing malleable applications.

The proposed works address these challenges by positing checkpointing systems as a resource and data
management system that manages the checkpointing provisions of multiple applications and interacts with
resource managers to deliver seamless checkpointing capabilities. iCheck can dynamically reconfigure its
resources (changes the number of checkpoint retrieval processes) and offers application-level checkpoint-
ing and data redistribution services to malleable (dynamic) MPI applications. This technique of utilising
application-level checkpointing as a dynamic resource and data management service offers novel contribu-
tions to the checkpointing field w.r.t. to the state-of-the-art checkpointing systems.

Using dynamic resource management, iCheck brings two critical benefits to application-level checkpoint-
ing in HPC. Firstly, iCheck has the ability to horizontally scale its resources (For example, checkpointing
nodes). As a result (in Subsection 9.4.1.3), the necessity to assign a dedicated group of resources for check-
pointing becomes obsolete. A supported resource manager can dynamically alter the number and types of
nodes allocated to checkpointing services. To provide horizontal scaling into iCheck, the above-described
RJMS system is extended with iCheck-aware plugins to support iCheck. As a result, iCheck can obtain
more resources from the RJMS system and can utilise them to improve the checkpointing services provided
to the application. Secondly, iCheck can also dynamically modify the checkpointing processes assigned to
an application based on metrics like available memory and checkpoint frequency. It is demonstrated in Sub-
section 9.4.1.1 that reconfiguring checkpointing resources (agents) dynamically improves the checkpointing
performance, and distributing it across separate compute nodes can have a significant effect on the overall
checkpointing bandwidth utilisation (Subsection 9.4.1.2). Furthermore, the resource dynamism in iCheck
also addresses the rising trends in malleable MPI [55, 59, 75]. For example, a resource change happening
in a malleable MPI application can initiate a corresponding change in checkpointing resources to maintain
current checkpoint performance.

The contributions from this work [77, 78] can be summarised as follows:

• Adaptive application-level Checkpoint/Restart library iCheck leveraging RDMA and supports stan-
dard MPI, malleable MPI and non-MPI applications.

9

1 Introduction

Figure 1.1: Overview of the contributions from this work

• A fault tolerance system that scales its resources horizontally and vertically based on the checkpoint-
ing requirements of the system and application.

• Checkpointing system that supports malleable applications and offers a prototype data distribution
library to assist the development of malleable MPI applications.

1.3 Outline
The overall contributions from this work are depicted in Figure 1.1. The figure shows the complete system
design performed as part of this work. The RJMS system in the figure has a resource-aware scheduler, a
power-aware scheduler and an iCheck-aware scheduler. Based on the Resource Management (RM) policy, a
corresponding scheduler is picked for job management. The applications are connected to the RJMS system,
and the resource redistribution is performed based on the current RM policy. The RJMS also communicates
to the iCheck system when the policy is iCheck-aware. iCheck works as independent software, and the
interaction with RJMS occurs only during iCheck-aware policy. The applications running on compute nodes
contacts iCheck for checkpointing and based on current checkpointing policy, iCheck performs the optimal
checkpointing of the application. Furthermore, applications can also use iCheck for data distribution.

In a nutshell, the work of the thesis regarding the chapters can be described as follows:

This work ([55, 59, 77, 78]) takes an available dynamic resource management system (7.4.4) and then

1. Added adaptive batch scheduling with a performance-aware algorithm that improves makespan over
the state-of-the-art backfill scheduler (Chapter 4) [55].

2. Created a new batch scheduler to demonstrate that dynamic resource management can be used for
power corridor management (Chapter 5) [55, 59].

3. Created a self-adaptive checkpoint system that dynamically performs resource management and sup-
ports dynamic applications (Chapter 6) [77].

10

1.3 Outline

4. Extended adaptive batch scheduler to create an invasive checkpoint system that dynamically grows or
shrinks based on the resource manager (Chapter 7) [78].

5. Demonstrated that a checkpoint system can be used to perform data redistribution in a malleable
application (Chapter 7).

The outline of the chapters in this thesis is as follows. Chapter 2 describes the concept of Invasive Comput-
ing, which lead to the development of the existing dynamic resource management. Related works associated
with the contributions in this work is described in detail in Chapter 3. The adaptive batch scheduler part
of this work is described in Chapter 4. Chapter 5 covers the power-aware resource management in detail.
Chapters 6 and 7 describe the checkpointing aspect of this work. Chapter 6 introduces iCheck and its de-
sign principles. Chapter 7 explores the dynamism in iCheck and covers the data distribution feature of the
iCheck. Chapter 8 introduces the system setup used in the experiments and the applications used for the
evaluation. Chapter 9 summarises the results in each of the three areas covered in this thesis. Chapter 10
discusses the results and open questions, and Chapter 11 provides the key takeaways from this work and an
outlook into the future.

11

2
Invasive Computing

This work was conducted as part of the Transregional Collaborative Research Center Invasive Computing
(TCRC 89) [54], funded by the Deutsche Forschungsgemeinschaft [79], to explore resource-aware program-
ming of future parallel computing systems.

Invasive Computing [80] aims to create a hardware and software stack that supports dynamic applications
that can utilize the compute resources efficiently in terms of energy and performance. The invasive paradigm
employs the concept of invade, infect, and retreat, as shown in Figure 2.1. The application can first invade
(choose a core) a compute resource, then infects (executes a part of the code in the selected core) it, and then
retreats (give back the core).

The project spans various technical disciplines, from embedded systems to high-performance computing,
compilers to simulations, and modeling to machine learning. The Invasive Computing project had three
research and funding phases, and this work is part of the last funding phase of the project. The project
has different research groups investigating different domains surrounding the resource-aware programming
paradigm.

2.1 Research Groups
The research groups contained researchers from three participating universities in Germany (Friedrich-
Alexander-Universität Erlangen-Nürnberg [82], Karlsruher Institut für Technologie [83], Technische Uni-
versität München [84]). The research groups [81] were divided into five groups based on the research area,
with the group name being letters from A, B, C, D, and Z. Within each group, there are subgroups with
the number followed by the group identifier letter (e.g., A1, D3) as its name. The figure 2.2 provides an
overview of the research domains of each group and its subgroups. The horizontal axis depicts the hard-
ware abstraction covered in the project, while the vertical axis visualizes the abstract layers concerning the
subproject.

Project area A focuses on invasive computing fundamentals, language, and algorithm design. Subproject
A1 investigates the fundamentals of invasion, which includes the core concepts, key features, and extensive
analysis of invasive programs and their management strategies in invasive systems. A4 explores and char-
acterizes existing algorithms and develops novel algorithmic patterns for invasive computing to obtain the

12

2.2 Dynamic Resource Management Infrastructure

Figure 2.1: Invasive computing fundamental concepts [81]

application’s desired objectives (For example, performance and energy usage). A5 explores the techniques
for scheduling invasive applications under uncertain input to ensure performance guarantees regarding pre-
dictability.

Project area B focuses on the area of architectural research. Subproject B1 investigates the mechanisms for
application-specific adaptivity using a runtime reconfigurable fabric in the micro-architecture. B2 focuses
on employing invasive computing on tightly coupled processor arrays (TCPAs) to provide energy efficiency
and performance improvement to computational-intensive applications that use nested loops. Subproject B3
focuses on developing novel methods for hardware and software building blocks to devise a power-efficient
multiprocessor system on a chip (MPSoCs) using the invasive computing paradigm. B4 explores tech-
niques for runtime verification and distributed monitoring of invasive applications. B5 designs and develops
hardware and protocols for invasive Networks-on-a-Chip (NoC), bringing dynamism to the interconnect
architecture.

Project area C explores the system software aspect of the invasive computing project. C1 develops a highly
scalable operating system (iRTSS - Invasive Run-Time Support System) to enable and support resource-
aware applications. C3 creates the compilers for invasive applications and program transformation and
optimization techniques. Subproject C5 focuses on bringing security into the invasive computing domain to
ensure confidentiality, integrity, and availability in invasive systems.

Project area D investigates the use of invasive computing concepts on the application side. D1 subproject
explores the advantages and disadvantages of using invasive computing in humanoid robotics. D3 investi-
gates the benefits and limitations of invasive computing concepts in High-Performance Computing.

Subproject Z2 span across all of the above project areas and assists in validating and demonstrating the
results from the invasive computing project.

2.2 Dynamic Resource Management Infrastructure

This research work was done in the context of subproject D3, where Invasive Computing meets HPC. As part
of the effort to bring dynamism (synonymous with the concept of invade, infect, and retreat) into HPC, D3
developed software infrastructure to support dynamic resource management and application development.

A holistic and layered approach is essential to bring resource dynamism into the HPC software stack.
Changes must be made in the existing software stack at the system and application levels. At the sys-
tem level, the resource and job management system need to be adapted, and at the application level, the
programming interfaces should be modified, and the programming style needs to be updated. In Subproject
D3, as part of the holistic approach, the Invasive Resource Manager (iRM), the Invasive MPI (iMPI), and
the Elastic Phase Oriented Programming model (EPOP) were designed and developed. These three different
parts together constitute the invasive infrastructure.

13

2 Invasive Computing

Figure 2.2: Research groups in Invasive Computing [81]

2.2.1 Invasive Resource Manager

Resource and Job Management System (RJMS) is crucial to modern HPC systems. It is responsible for
decision-making and allocation of resources for application execution, pinning of processes on the hardware,
accounting, and analysis of the system resources. It is a comprehensive middleware component that consists
of subsystems for resource management, job management, and scheduling of resources. There are many
such systems, and Slurm is one of the world’s most widely used RJMS systems and an integral part of some
of the world’s fastest supercomputers.

Invasive Resource Manager (iRM) [46] is an extension of Slurm to support running malleable jobs, i.e.,
jobs that can change their compute resources during the execution. Traditional RJMS systems in HPC are
designed to accommodate only rigid jobs, i.e., jobs that use a fixed number of compute resources.

2.2.1.1 Overview of Slurm

Slurm [85], formerly Simple Linux Utility for Resource Management, is an open-source, scalable, fault-
tolerant, and popular RJMS software from SchedMD. About 60% of the TOP500 supercomputers use it as
the workload manager [86]. In a nutshell, Slurm provides the core functionalities of 1 allocating resources
to users for a certain amount of time, 2 managing the queue of pending jobs and performing resource
arbitration, 3 providing frameworks to start, execute, and monitoring nonparallel as well as parallel jobs
(For example, Message Passing Interface support).

Slurm is designed to be a highly scalable RJMS system with a general-purpose plugin mechanism to sup-
port a wide variety of infrastructures [87]. Though multiple plugins cater to different use cases, such as
accounting to scheduling, node selection to network topology in different infrastructures, the system design
and components remain the same across different architectures. Some of the critical components (binaries)
in Slurm with regard to job management and execution are slurmctld, slurmd, slurmstepd, srun, and
sbatch. These components run on different compute resources (nodes) in a typical HPC system. Figure 2.3
shows that each component is placed among compute nodes based on its functionality.

14

2.2 Dynamic Resource Management Infrastructure

Figure 2.3: Slurm Architecture

slurmctld (Slurm controller) is the centralized resource manager monitoring system resources and job
executions. slurmd is a worker daemon running on every compute node of the system. slurmd waits
for the work, executes it, and then returns its status to the Slurm controller. Upon getting the work, the
slurmd daemon launches the slurmstepd daemon, which is in charge of launching the job inside a compute
node and manages the communication among node-local processes. srun is an interactive blocking tool to
initiate the jobs and uses the command line to pass the job metadata to the Slurm controller. sbatch is used
to submit batch jobs (using a job script that contains the job metadata) and is non-blocking. These binaries
communicate with each other using Remote Procedure Calls (RPCs).

A simple control flow of job execution in Slurm can be defined as follows:

1. Users submit a job script using the sbatch command. The job script (as seen in Listing 2.1) contains
the essential information for that job, such as the node count, wall clock time, partition requirements,
user information, application information (application binary and input), and other relevant informa-
tion required by the HPC admin for accounting and bookkeeping. Job script can also contain multiple
srun commands to launch multiple applications. Each instance of such an srun call is called a job
step, and the order of execution of a job step follows the order defined in the batch script.

2. Slurm places the submitted job in a job queue (if resources are not immediately available or some
constraints are not met). A job is executed immediately when the resources are available, and the
job constraints can be satisfied. The starting time of a job cannot be guaranteed and depends on
multiple factors, including user constraints (job duration, partition), priority, and scheduling strategy.
The system administrator of the cluster sets the scheduling policy and job priorities based on their
site-level policy [40].

3. When the resources become available, and sufficient priority is attained, the slurmctld allocates the
compute nodes for the job. It informs the slurmd daemon inside the first allocated compute node to
launch the job using the RPC request message (This message contains the job metadata). The slurmd
daemon goes through the job script, creates job steps (using srun), and initiates the slurmstepd to
launch the job step based on the job script parameters. After the execution, corresponding RPC calls

15

2 Invasive Computing

1 #SBATCH --job-name sample_test_job
2 #SBATCH --time=00:30:00
3 #SBATCH --output=sample_test_output.txt
4 #SBATCH --account=testuser
5 #SBATCH --nodes=4
6 #SBATCH --ntasks-per-node=96
7 srun sample_app #first job step
8 srun sample_app #second job step

Listing 2.1: Example batch script with additional parameters for sbatch.

are sent to notify the end of job steps. Once all the job steps are finished, slurmctld notifies the
slurmd node daemons to terminate jobs and slurmd notifies the slurmctld immediately after the
node cleanup. After the cleanup, the allocated nodes are available, and slurmctld can use them for
scheduling other jobs.

A design flaw in such an approach was that it takes away many optimization opportunities provided by the
dynamic characteristics of various applications. For example, an application can have multiple phases where
a compute-intensive phase might need n nodes while other phases (IO, finalization) only need m (m < n)
nodes. In such cases, n�m nodes can be efficiently utilized for applications that benefit from additional
nodes. Slurm cannot perform such dynamic resource management and needs to be extended rigorously to
support it.

2.2.1.2 Extensions to Slurm

The components slurmctld, slurmd, slurmstepd, srun, and sbatch were extended to bring the resource
dynamism into Slurm. As seen from the above section, slurmctld is in charge of job selection and execution,
node selection and allocation, while the other components submit and execute the job. Hence to support
dynamism in resource management, the slurmctld needs to be extended to two levels. In the first level,
the job scheduler is modified to manipulate the resource allocation (expand/shrink the nodes) of running
jobs, while in the second level batch system is modified to select the jobs to schedule (pick jobs from the
queue based on the node availability). As a result, the slurmctld was replaced by two components an
Invasive Runtime Scheduler (iRS) and an Adaptive Batch Scheduler (ABS). iRS was designed and developed
by Ureña [46] while ABS was designed and developed as part of this work and is explained in detail in
Chapter 4.

iRS is in charge of performing the runtime resource reconfiguration of the running applications. It is also
extended with the capability to measure the performance of running applications. Based on the application
performance, iRS picks the ideal applications to expand and shrink the nodes. The granularity of the resource
reconfiguration is node-level, i.e., as part of an expansion or reduction operation, a complete compute node
is given or taken back.

ABS is involved in job submission and selecting the next job to schedule. This is not trivial since a submitted
job can be rigid or malleable. ABS provides configuration parameters to users to mark a job as rigid or
malleable. ABS has two priority-ordered queues to accommodate rigid and malleable jobs, which is not
the case with the traditional batch scheduler. ABS employs different heuristics to select the next job to be
launched from the queue. ABS has a global view of the system and can ask the iRS to adjust the compute
resources of running malleable jobs to make sufficient resources for the job in the queue to be launched.
Different strategies that favor rigid jobs, malleable jobs, or equally favoring both were provided in ABS (see
section 4.2). ABS interaction with iRS is event-triggered and occurs 1 after every scheduler tick seconds
(configured during Slurm setup), 2 during a new job submission, or 3 on job completion.

16

2.2 Dynamic Resource Management Infrastructure

Figure 2.4: Invasive Resource Manager [88]

To realise iRS and ABS, new functionalities were added to different Slurm components. Towards that, sbatch
is modified to recognize and support malleable job scheduling and submission (see Chapter 4). srun,
slurmd, and slurmstepd were extended to support the expansion and reduction of compute resources in
a running application.

2.2.1.3 Expansion and Reduction for Malleable Batch Jobs

Upon receiving resource reconfiguration information from ABS, iRS is responsible for performing the re-
source change while ensuring the consistency of the system state. As seen in the above section, the ap-
plication launch is performed as a result of continuous interaction between srun and slurmd. A resource
reallocation handler was added to srun, which is in charge of creating new processes during a resource
expansion, terminating the processes during a resource reduction, and changing the context of a running
job. iRS interacts with the resource allocation handler inside srun to trigger the resource adaptation. Dur-
ing the application launch, iRS is notified with the reallocation handler address of that application by srun.
The communication is done via the modified RPC messages. iRS must constantly contact the reallocation
handler to ensure resource adaptation since iRS can trigger the resource change for multiple applications si-
multaneously. All of the corresponding reallocation handlers will notify iRS about the adaptation progress.
This is essential since ABS support the simultaneous expansion and reduction of multiple applications. To

17

2 Invasive Computing

efficiently utilize the resources, iRS first triggers resource reduction among selected jobs. Then the released
resources are considered for the expansion of the selected jobs.

To support such a resource adaptation technique, the communication between iRS, reallocation handler, and
srun is vital. It is done in a six-step process, as seen in the Figure 2.4. Following steps are performed for a
resource expansion in iRM.

1. A reallocation message is sent from iRS to the reallocation handler in srun. This contains information
about the type of operation, whether it is an expansion or reduction of resources.

2. For an expansion operation, srun informs the slurmd daemons in the node, which is to be used for
resource expansion to start the new set of processes.

3. slurmd daemons prepare for the resource change by updating the metadata that applications will use
to query the adaptation type, resource change, and other application-specific information like MPI
ranks, communicator, and size. slurmd notifies the srun that the new processes are launched and
ready for adaptation.

4. Upon receiving the message from slurmd, srun informs the slurmd of preexisting nodes about the
resource change. slurmd updates the metadata of the application about the change in resources. As
a result, the application in the preexisting nodes is aware of the newly launched processes of that
application in the new nodes. The application can then perform tasks like data redistribution and load
balancing.

5. slurmd informs srun about the completion of adaptation once it receives the adaptation finish infor-
mation from the application.

6. srun informs iRS about the end of the resource change operation, and iRS updates the job’s metadata
to reflect the current job state.

Meanwhile, in the case of resource reduction using iRS, steps two and three can be avoided. In the fourth
step, slurmd daemons, while updating the metadata of an application, also specify whether the current node
will be removed from the application.

Using the dynamic resource management technique provided by iRS and ABS can significantly improve the
job-level and system-level performance metrics like average waiting time, response time, makespan, and
system utilization compared to the backfill scheduler [57] from the Slurm. The more malleable applications
are present, the better the impact of iRS and ABS on performance. However, developing distributed malleable
applications using the currently available programming models in HPC is not trivial. As a result, the D3
subproject [81] created an Invasive version of Message Passing Interface (MPI) called iMPI.

2.2.2 Invasive Message Passing Interface

MPI is the most commonly used distributed memory programming model in HPC systems [89]. There
are different implementations of MPI from the academic and private sectors, like MPICH [684], OpenMPI
[685], Intel MPI [90], IBM Spectrum MPI [91], and MVAPICH [686]. iMPI is an extension of the MPICH
implementation of the MPI standard with custom features and functionalities to support dynamic process
management.

18

2.2 Dynamic Resource Management Infrastructure

2.2.2.1 iMPI Concepts

The two fundamental design objectives behind iMPI were to create a user-friendly paradigm for resource-
aware programming and to reduce the latency of dynamic process creation in the standard MPI. Four new
operations were added to the MPICH implementation towards realizing that objective. They are:

1. int MPI_Init_adapt(int *argc, char **args, int *local_status);

MPI_Init_adapt notifies the invasive resource manager that the application is malleable. This func-
tion has similar signature to the standard MPI_Init() with the presence of an additional local_status
parameter later used to identify the origin of the process, i.e., whether it was launched by the reallo-
cation handler in iRS as part of resource reconfiguration or was by srun during an application launch.
The value MPI_ADAPT_STATUS_NEW in the local_status parameter signals that the process was cre-
ated during the application launch while MPI_ADAPT_STATUS_JOINING indicates that it was launched
during a resource adaptation. Identifying the types of processes is essential because the newly joined
process (with value MPI_ADAPT_STATUS_JOINING) should call the MPI_Comm_adapt_begin routine im-
mediately to participate in the adaptation operation. In addition, preexisting processes should also
trigger the MPI_Comm_adapt_begin function to take part in the resource adaptation.

2. int MPI_Probe_adapt(int *pending_adaptation, int *local_status, MPI_info *info);

MPI_Probe_adapt function checks whether any resources are available for expansion or to be returned
to the resource manager. After the probe function call, the argument pending_adaptation can either
have the value MPI_ADAPT_TRUE indicating a pending adaptation or MPI_ADAPT_FALSE conveying no re-
source change. The parameter local_status specifies whether a process is staying, leaving, or joining
by returning the values MPI_STATUS_STAYING, MPI_ADAPT_STATUS_LEAVING or MPI_STATUS_JOINING.
For newly joining processes, these information can be obtained from the MPI_Init_adapt call.

3. int MPI_Comm_adapt_begin(MPI_Comm *intercomm, MPI_Comm *intracomm,
int *stayingcount, int *leavingcount, int *joiningcount);

This method call marks the beginning of an adaptation window. Newly joining processes must im-
mediately call the MPI_Comm_adapt_begin function after the initialisation. It is a blocking collective
function and waits for all the application processes to call this operation. Preexisting processes should
call the MPI_Comm_adapt_begin function to begin an adaptation window if the local_status from
the MPI_Probe_adapt call is leaving or staying. Preexisting processes are informed about the adapta-
tion once all of the newly joined processes have executed the MPI_Comm_adapt_begin function. This
operation creates two new communicators intercomm and intracomm. A communicator is an MPI ob-
ject that represent a set of processes inside an MPI application. The communicator MPI_COMM_WORLD
includes all MPI processes. The intercomm communicator returned by the MPI_Comm_adapt_begin
call comprises all processes created as part of a resource expansion or reduction in an application.
The intracomm contains all processes in an application and is different based on the type of adapta-
tion operation. It includes joining and preexisting processes during an expansion operation and only
staying processes during a reduction operation.

4. int MPI_Comm_adapt_commit();

This routine marks the end of an adaptation operation inside iMPI. After all application processes com-
plete this function call, the intracomm communicator will be the new MPI_COMM_WORLD. All processes

19

2 Invasive Computing

having local status value of MPI_ADAPT_STATUS_JOINING or MPI_STATUS_STAYING will remain after
the resource adaptation, and processes with MPI_ADAPT_STATUS_LEAVING status will be terminated at
the end of the adaptation window.

The adaptation window (created by the functions MPI_Comm_adapt_begin and MPI_Comm_adapt_commit) can
also be used for data redistribution and load balancing inside an application. The communicators created by
the MPI_Comm_adapt_begin routine give insights into the new process configuration and can be leveraged
for load balancing and data redistribution.

2.2.2.2 Writing a Simple Malleable MPI Program

MPI programs typically follow a Single Program Multiple Data (SPMD) model where multiple instances of
the same program are launched in parallel, working on the same or different data to reach a solution. From
a technical perspective, the resource manager (or an MPI launcher) launches the same application binary
(MPI program) multiple times simultaneously across different cores in same or different nodes (as part of a
job allocation). Once a launcher launches multiple instances of these programs, they can use MPI APIs to
communicate with each other. MPI_Init is the first MPI call by a standard MPI program (MPI sessions do
not need MPI Init call [92]), and it initialises the library (for example, prepares modules for communication,
assigns a unique ID to each process and is referred to as rank). MPI programs are typically C, C++, Fortran,
or Python programs using the message passing API to communicate with each other.

Consider parallelizing a sample sequential application that uses a Jacobi Kernel to calculate the 2D heat
transfer process on a metal plate. For simplicity, the sequential application can be broken down into three
parts. 1 There is an initialisation part where the 2D grid (abstraction of a metal plate) is defined, and data
for computation is initialised (populate the 2D grids) based on some initial settings. 2 Then there is a
compute part where the Jacobi iterative solver resides and solves the equation iteratively until it converges.
3 In the last part (or finalization part), the results from the computation are displayed.

Each part of the sequential application must be extensively modified to parallelize such an application in
MPI. 1 In the initialisation part, the 2D grid should be defined across multiple processes and a virtual
topology of processes must be created to distribute the 2D grid. Following that, the grid initialisation should
be performed locally among each process. 2 In the compute part, each process performs the stencil compu-
tation iteratively on its local data. Since it is a 2D grid and data is distributed locally among all the processes,
after each iteration, the local data along the border of each process in the grid should be exchanged (ghost
cell exchange) with neighbor processes to ensure correctness. The data exchange and iterative computation
are performed until the application converges. 3 In the finalization part, the primary process will aggregate
the results from the participating processes and displays them.

Converting the above rigid MPI application into a malleable application can be more demanding than con-
verting the sequential version of the same application into a parallel one. The concept of newly joined pro-
cesses (created during an expansion operation) and the data required by them, outgoing processes (leaves
during a reduction operation) and the data required from them, the transfer of data among new and preexist-
ing processes, and the creation of a new topology with the new process configuration make the application
transformation challenging. The first task in a malleable iMPI application is determining the entry point for
new processes, followed by the data redistribution. For that, the application should probe periodically for a
resource change. If a resource change is observed and new processes are launched, the corresponding iMPI
routines should be called to start the adaptation window. Data redistribution can be performed during this
window.

This is not trivial since multiple control statements are necessary to differentiate new and old processes
during a resource change. A program can have two different control flows, one intended for joining processes

20

2.2 Dynamic Resource Management Infrastructure

Figure 2.5: Control flow of a sample iMPI application [88]

(during a resource expansion) and the other for preexisting processes, and these control flows will be merged
typically at the end of an adaptation. Additionally, newly joined processes should avoid the execution of
certain parts of the program to avoid logical errors. The execution of corresponding iMPI routine completes
a resource adaptation, and newly joined processes, using the entry point, reaches the common control flow
and resumes the normal execution of the program. Figure 2.5 visualises the merging of new processes to
a pre-existing control flow. Similarly, during a reduction operation, it is essential to find out the exit point
from which the processes can be removed gracefully, and the data from the leaving processes should be
redistributed.

As a result, the initialisation part of malleable MPI needs to identify the process types and perform the grid
creation based on it. Newly joining processes should not create a 2D grid in the initialisation part since the
new MPI topology will be calculated later. In the compute part of the application, during an adaptation,
the new process topology should be created with the new resource configuration, and the newly added
processes must wait for the entry point information (iteration number) from preexisting processes to start
their execution from the proper iteration. In addition, the local data required for the stencil computation
must also be sent to newly joined processes. The finalization part is similar to a rigid MPI implementation.

21

2 Invasive Computing

1 #include<mpi.h>
2 int main() {
3 /* Initialisation part of the application */
4 MPI_Init_adapt(..., type) /* iMPI is intialised */
5 if (type == joining) {
6 /* Start of adaptation window in joining processes */
7 MPI_Comm_adapt_begin(...);
8 /* Get metadata from preexisting processes, perform data distribution */
9 MPI_Comm_adapt_commit();

10 }
11 /* Iterate over compute intensive phase of the application */
12 while (true){
13 /* iMPI processes must call probe periodically */
14 MPI_Probe_adapt(resource_change,...);
15 if (resource_change) {
16 /* Start of adaptation window in preexisting processes */
17 MPI_Comm_adapt_begin(...);
18 /* Pass metadata to joining processes, perform data distribution. */
19 MPI_Comm_adapt_commit();
20 }
21 /* Compute part of the application */
22 }
23 /* Finalisation part of the application */
24 MPI_Finalize();
25 }
26

Listing 2.2: Pseudocode of a sample iMPI application.

The pseudocode of such a simple malleable iMPI application is shown in Listing 2.2. The four iMPI specific
routines act as follows. MPI_Init_adapt() (in line 4) will notify the malleable nature of the application with
the resource manager and returns the type of the calling iMPI process. A process can be initial (started during
the application launch) or joining (launched during the expansion operation). Initial processes continue the
application execution (skipping lines 5-10) and regularly call MPI_Probe_adapt() (line 14) to check for any
resource change. However, joining processes immediately triggers the collective MPI_Comm_adapt_begin()
(line 7) function and waits for the initial group of processes (preexisting processes) to join. Meanwhile, the
MPI_Probe_adapt() (in line 14) call informs initial processes about the resource change triggered by the
malleable resource manager. As a result, they call the MPI_Comm_adapt_begin() (line 17). Once all the
application processes (initial and joining) completes MPI_Comm_adapt_begin() (in lines 7 and 17), they can
begin redistribution of data, share process-specific data (for example, data only needed by a lead rank) and
additional control information among them. Then, they execute MPI_Comm_adapt_commit() (lines 9 and 19)
method to finalise the resource adaptation and together continue the execution of the application.

In short, even for a simple malleable application, the complex control flow of the joining and preexisting
processes, data redistribution needed during the resource change, and synchronisation among processes will
become necessary. These challenges encountered during the invasive application development led to the
creation of the Elastic Phase Oriented Programming model.

22

2.2 Dynamic Resource Management Infrastructure

2.2.2.3 Elastic Phase Oriented Programming Model

The Elastic Phase Oriented Programming Model (EPOP) considers an application program as a collection of
multiple phases with different characteristics. Intuitively, a typical application has a phase where initialisa-
tion and data distribution occur, a phase where computations happen, and a phase where writing results are
performed. Typically, in a parallel program, the performance of the application is inhibited by the sequen-
tial part of the program (Amdahl’s law [93]) that cannot be parallelised (or parallelisation does not have
any impact). In the EPOP model, such parallelism-inhibiting parts are referred as rigid phases, and highly
parallelisable parts are considered as elastic phases.
EPOP model has a simple syntax that enables the application to be split into different phases and the control
flow can be defined. The Init, Rigid, Elastic, and Branch phases are the four available phases in EPOP. These
phases can be used to label the computational parts of an application as rigid or malleable. An application
can be written as a collection of phases using the EPOP API (Listing 2.3), and a vector of these phases (phase
vector) is created during the compilation. During the application execution, the driver component of the
EPOP cycles through the phase vector and invokes the phases according to the phase type and declaration
order (Lines 18-19).
The init phase marks the beginning of every EPOP program, and the code for the application initialisation
must be defined in this phase. The init phase will only be called once by the EPOP driver. Elastic phases
represents the computationally intensive part of the application that benefits from resource change. There
can be multiple elastic phases in an application, and each of them should contain 1 a computational code
block, 2 an iterator logic that determines the number of code block execution, and 3 a resource change
(adapt) block. The resource change block is called only during a resource adaptation. The rigid phase
defines the block of code that doesn’t yield any benefit with a resource change. An ideal candidate is the
code associated with application finalisation. The main purpose of the branch phase in an application is
to alter its control flow. Typically, an EPOP driver iterates through different phases in the order of phase
creation, and a branch phase can be leveraged to jump from one phase to another (see Figure 2.6).

1 void init_block(...){
2 /* Initialisation part of the application */
3 }
4 void elastic_block(...){
5 /* Compute part of the application */
6 }
7 bool iterator (...){
8 /* Iterate over compute part of the application */
9 }

10 void adapt(...){
11 /* Start of adaptation window */
12 /* Data redistribution*/
13 }
14 void finalise_block(...){
15 /* Finalisation part of the application */
16 }
17 extern "C" phase_vector epop_program(){
18 setInit(init_block);
19 setElastic(elastic_block, iterator, adapt);
20 setRigid(finalise_block,...);
21 }
22

Listing 2.3: Pseudocode of a sample EPOP application [59].

23

2 Invasive Computing

Figure 2.6: Control flow of a sample EPOP application [88]

The EPOP driver starts by loading the supplied EPOP program, then it begins iterating through various
phases, executing each based on the specified phase conditions, and facilitates the transfer of applica-
tion data between these phases. The driver will call iMPI routines (MPI_Init_adapt, MPI_Probe_adapt,
MPI_Comm_adapt_begin or MPI_Comm_adapt_commit) internally for resource adaptation during the execu-
tion of the program and also calls the adaptation block at appropriate points.

Following steps can be used to convert the sample heat transfer application defined in Subsection 2.2.2.2 into
the EPOP model. First, an init phase can be used to mark the initialisation part of the application. Followed
by an elastic phase to mark the compute intensive part. Lastly, a rigid phase to mark the finalization part.
Listing 2.3 shows the EPOP equivalent of the iMPI application (in Listing 2.2). As can be seen in Listing 2.3,
the initialisation, compute, and finalization parts are written as init_block (Line 1), elastic_block (Line
4), and finalize_block (Line 14), respectively. The EPOP helper functions setInit(), setElastic(), and
setRigid() (Lines 18-20 in Listing 2.3) record the function blocks as phases. A phase vector created during
the compilation contains metadata about all declared phases in an application. This information will be used
by EPOP driver for application execution.

2.3 Building Upon and Leveraging Invasive Infrastructure

The dynamic resource management infrastructure introduced in Section 2.2 with its tools for resource dy-
namism (iRM) and application malleability (iMPI, EPOP) were utilised as a foundation for this thesis work.
The contributions from this work were defined coarsely in Section 1.3. A more fine-grained description of
the contribution is as follows:

24

2.3 Building Upon and Leveraging Invasive Infrastructure

1. Extended iRS and srun to add support for sbatch. Created a new adaptive batch scheduler (ABS with
sbatch support) with a performance-aware algorithm that improves system utilisation compared to
the backfill scheduler from Slurm (Chapter 4).

2. Extended ABS for power corridor management (Chapter 5) by creating a new power-aware scheduler.
Leverages EPOP driver for power measurements.

3. Created a self-adaptive checkpoint system (iCheck) that dynamically performs resource management
and supports dynamic applications written using iMPI (Chapter 6).

4. Extended ABS to enable iCheck to dynamically grow or shrink its resources (Chapter 7).

5. Demonstrated that iCheck can be used to perform data redistribution during resource adaptation in
iMPI application (Chapter 7).

25

3
Related Work

This chapter gives an overview of related work in the order of contributions defined in this thesis. The first
section provides information about related research in the area of RJMS compared to the contribution of this
work. The second section discusses research works associated with power corridor management. The last
section presents insights into related works performed in the field of checkpointing.

3.1 Adaptive Batch Scheduling

To effectively schedule and manage adaptive applications, three crucial components must be taken into ac-
count: 1 an adaptive parallel runtime system, 2 an adaptive job scheduler, and 3 an adaptive runtime
scheduler. Extensive research has been carried out in all of the above three areas, with various researches
developing systems that have adaptive runtime capabilities, scheduling strategies for resource-aware applica-
tions, and even enhancing existing batch systems for dynamic management of resources. Below paragraphs
will delve into the relevant work in each of these areas.

One approach for supporting malleability in MPI applications is through the use of Adaptive MPI (AMPI) [94–
96] and Charm++ [75, 97, 98]. To provide malleability, these systems utilize virtual MPI processes and
automatic load balancing [99] features. The applications running on the system receive periodic updates
regarding the availability of resources from the scheduler. Based on this information, the applications are
reconfigured using object migration from Charm++ to a different count of virtual MPI processes. This vir-
tual MPI process migration is leveraged for automatic load balancing in Charm++ [99]. Additionally, for
fault tolerance, the AMPI runtime provides automated checkpoint and restart mechanisms [100]. However,
these systems do not support newer features introduced in MPI-3.1 [687]. Another system, Invasive MPI
(iMPI), follows the current MPI execution model and does not utilize virtual MPI processes [101, 102]. It
achieves resource elasticity through its adaptive runtime system. In this work, iMPI is utilized for bringing
malleability.

Flex-MPI [103] and ReSHAPE [104] are other examples of adaptive runtime frameworks. These frame-
works focus on dynamic resource reconfiguration for iterative Single Program Multiple Data (SPMD) MPI
applications by considering their performance characteristics. Flex-MPI is built on top of MPICH [684]
and uses application-specific performance data to make decisions about application reconfiguration. It uses

26

3.1 Adaptive Batch Scheduling

a computational forecast model developed with the aid of Performance Monitoring Counters (PMCs) and
network data. Additionally, support for various communication patterns (irregular and regular patterns) in
parallel applications is provided in Flex-MPI. In ReSHAPE, identical iterations are assumed in computa-
tion and communication aspects of all applications. Unlike Flex-MPI, it uses expensive and comprehensive
approach to decide about resource reconfiguration.

The efficient resource utilisation and parallel application scheduling is an indispensable research domain
in HPC and computer science for many years [105, 106]. Its significance in HPC arises from the fact that
the throughput of a system directly depends on the type of jobs it schedules and executes. Feitelson and
Rudolph [107] classify jobs into four categories based on the flexibility of the jobs. Rigid jobs need the
same amount of resources throughout their execution and are the most common type. Moldable jobs allow
for resource requirements to be altered by a batch system before execution but remain fixed during runtime.
Evolving jobs request resource allocation changes during execution, while malleable jobs allow the batch
system to trigger resource changes. Applications like Adaptive Mesh Refinement [108] showcases load
imbalances as a result of varying characteristics of it’s computational phases and can be considered in both
evolving and malleable job categories. This work primarily focuses on scheduling malleable and rigid jobs.
Additionally, the moldability of the jobs is also considered in this work.

When it comes to improving system utilization and reducing response and makespan times, executing mal-
leable jobs on modern HPC systems can be highly effective. Gupta et al. [109] and Hungershofer [110]
demonstrated this in their research. To make scheduling malleable applications more efficient, several
strategies have been proposed. Carroll et al. [111] recommend an incentive-compatible online schedul-
ing technique that aims to reduce response time by assigning resources to jobs in a way that meets hard
deadlines. During job submission, users provide additional information such as arrival time and deadline
and are given incentives if their jobs are completed by the specified hard deadline. Sun et al. [112] propose
a fair and efficient scheduling approach for malleable applications. They use the equipartitioning algorithm
to achieve fairness, which divides the available processors equally among running applications. In addition,
they also employ a feedback-driven adaptive scheduler that considers the executing jobs’ history for effi-
ciency. These approaches results in better response times and system utilisation in comparison to a rigid
scheduler. However, it is essential to mention that the strategies in references [111] and [112] focus on the
theoretical facets of scheduling, and their evaluation has been confined to simulations.

In contrast to these theoretical approaches, there are practical implementations that integrate an adaptive
batch system with a dynamic job scheduler. For example, Utrera et al. [113] introduced a job scheduling
strategy that employs virtual malleability (VM). VM preserves the initial process count while enabling the
job to adapt to variations in CPU availability during runtime. MPI and the interposition mechanism are
used to implement the VM concept. They offer a malleable job scheduling policy based on First Come
First Serve (FCFS). An event-driven algorithm is triggered upon a job arrival and job exit, and the resources
are assigned to jobs in the order of earliest-started-job-first. TCP/IP socket communication is used to com-
municate between the job scheduler and the VM library. The authors proved that FCFS’s malleable job
scheduling attains a remarkable 31% improvement in average response time in comparison to the popular
EASY backfilling strategy when a cluster consists solely of malleable jobs.

The Torque/Maui batch system was extended by Prabhakaran et al. [114] to improve resource manage-
ment and allocation for evolving jobs. Their approach promotes fairness between evolving and rigid jobs,
resulting in reduced turnaround and waiting times, increased system utilization, and improved throughput.
Additionally, they expanded the Torque/Maui batch system to support resource expansion and reduction per-
formed by malleable jobs [115]. A communication protocol with the Charm++ runtime has been proposed
to support the malleability of applications. They have also proposed a Dependency-based Expand Shrink
(DBES) scheduling algorithm that combines the scheduling of rigid, evolving and malleable jobs. It uses

27

3 Related Work

backfilling strategy and dependency analysis for scheduling efficiently across changing workload dynamics.
It also employs the equipartitioning strategy to ensure fairness in providing idle resources to different jobs
after the scheduling stages. The approach was evaluated and demonstrated for the modified Effective System
Performance Benchmark (ESP) [116] using the metrics average response time and system utilisation. The
DBES scheduling strategy performs better than other strategies for varying numbers of malleable jobs in
the workload. However, DBES does not account for the performance of ongoing applications when making
resource reallocation decisions. Apart from the proposed work, it represents the sole comprehensive batch
system detailed in the literature that integrates a dynamic batch system with an adaptive parallel runtime.

In the context of scheduling malleable applications within GRID systems, Buisson et al. [117] proposed
an adapted equipartition strategy alongside a Favour Previously Started Malleable Applications (FPSMA)
scheduling policy, which was assessed using the KOALA [118] multicluster grid scheduler. In the proposed
work, these scheduling policies for malleable jobs were extended with additional constraints based on the
number of nodes and the application characteristics. Additionally, these policies were extended to take
performance-aware dynamic resource reconfiguration decisions for running malleable applications. The
proposed system in this work was evaluated on a Supercomputer.

3.2 Power Corridor Management

The enormous energy requirements of powerful supercomputers have forced the HPC community to con-
sider the power usage along with the performance aspect for consideration while building new HPC sys-
tems [119]. In addition, the rising energy costs [120] lead to research on power usage as a metric for
optimising the applications and systems. Typically the energy contract negotiated by the supercomputing
centres with the energy providers requires these centres to maintain the power usage within the stipulated
bounds specified in the corresponding contracts. Failure to adhere to the stipulated bounds might incur fi-
nancial penalties to the centres. Furthermore, it is necessary for these centres to maintain the power usage
of the machines to prevent issues like overheating and causing damage to the systems. As a result, these su-
percomputing centres employ various techniques to keep the power usage in check [121]. These employed
strategies primarily rely on the techniques such as dynamic power management (DPM), dynamic voltage
and frequency scaling (DVFS), and power capping [122].

DPM is used to turn off the idle nodes or lower the processor frequency [123]. DVFS, as the name suggests,
can be used to control power usage by regulating the voltage and frequency of the device [124]. Power
models of the systems are utilised to ensure the accuracy of the DVFS [125]. Power capping is introduced
to overcome the limitations in the DVFS approach [122, 126]. A power threshold is assigned for a particular
device in the technique of powercapping [127] using the tools provided by the device manufacturers [128].
For example, Intel provides Running Average Power Limit (RAPL) [129], NVIDIA provides NVIDIA Sys-
tem Management Interface (nvidia-smi) [130] and IBM provides Energyscale [131]. These techniques are
combined to manage the power consumption in a device and can be applied statically or dynamically.

From the engineering perspective, different centres combine different approaches for resolving their power
consumption problem. One frequently used technique is dynamically stopping the jobs whenever a power
budget is reached [121]. In another approach, the energy-aware scheduler considers the energy efficiency
of past runs of the job for potential resource allocation. There is also a technique where intelligent energy-
aware backfilling algorithm and adaptive powering down of nodes [132] are used to control the total power
usage [133]. In some techniques, the idle nodes are powered down to satisfy the power usage requirements
of the centres[134]. In addition, these centres utilise the power capping tools from the hardware vendors
to force the system to operate at certain selected frequencies. Plenty of works combine the power capping

28

3.2 Power Corridor Management

and DVFS to reduce the power consumption of the system [135–137]. Furthermore, Bodas [134] proposed
a power-aware scheduling approach that applies a uniform frequency mechanism where a power budget is
distributed to the job, and the scheduler ensures the operation of system in the power corridor.

A critical difference between the work proposed in this thesis and the above techniques is that this work
leverages dynamic resource management for power corridor management. The applications’ power usage
characteristics are modelled and utilised for resource redistribution to maintain the system level power cor-
ridor requirements. Also, most of these systems only use a reactive approach where they perform various
techniques to bring the system back into the corridor only if it is out of the power corridor. In contrast, we
also use a proactive approach where resource adaptations are performed based on the power usage predic-
tions. In addition, the power-aware scheduler proposed in this work also employs application moldability
to schedule the jobs. For example, the scheduler launches the job with fewer resources than requested if
it sees that the application will violate the system’s power corridor if it is launched with the requested re-
sources. Furthermore, our system is capable of adjusting to fluctuating power budget demands, ensuring it
can adaptively respond to dynamic power corridor changes.

From the algorithmic side, there are plethora of energy-aware scheduling algorithms that focus on power
usage on CPUs and GPUs [138–140]. Specialised techniques using randomized algorithms [141], fuzzy
logic [142], integer programming [143], dynamic programming [138], evolutionary algorithms [144–146],
constraint programming [147] and machine learning [147] were developed to model and control the power
usage. The primary objective of these algorithms is to balance the application performance while main-
taining power efficiency. However, this work’s core focus is enforcing the system-level power usage, and
as a result application’s performance is not considered. In addition, the proposed work can also be used
to balance the power usage of applications during peak hours. For example, by dynamically changing the
power corridor in the proposed system, the applications are reconfigured by the runtime system to bring
the overall power usage into the new limit. To bring down the power usage, the power-aware scheduler
will only schedule low-power jobs and queue the high-power jobs, ensuring the system remains within the
specified limit. A similar work [42] proposed by Yang manipulates the job queue so that the power usage
can be adjusted by queuing the jobs to reduce the energy price in peak hours. However, it only employs job
queuing to achieve the objective and does not consider application malleability. Mammela et al. [148] used
DPM mechanisms in addition to turning off compute nodes in the popular scheduling algorithms like First
In First Out (FIFO), backfill first (BFF) and backfill best fit (BBF) to make it energy aware. E-FIFO, E-BFF,
and E-BBF were the corresponding energy-aware versions of the algorithms. In contrast to the proposed
work, these algorithms cannot react to the dynamic energy requirements of the system since their primary
objective is to reduce energy usage. In the proposed work, the power-aware scheduler can hold the jobs and
bring power usage to the desired limit.

Furthermore, algorithms like energy-aware task scheduling algorithm (EAMM) [149], Min-Min [150], min-
energy-max-execution (MEME) [151], energy-aware scheduling by minimising duplication (EAMD) [152],
energy-aware forward list scheduling (eFLS) [153], EDL [154], EMRSA [155], energy-aware service level
agreement (EASLA) [156], energy dynamic level scheduling (EDLS) [157], and power-aware algorithm for
scheduling (PAAS) [158] focus on maximizing energy savings. These algorithms are explicitly tuned for
maximizing energy efficiency and reducing power usage, considering various metrics like execution time,
energy consumption, and max and min execution time of the jobs. The power models are created, and the
jobs are scheduled to minimise energy usage. The similarity with the proposed works is that the proposed
work also uses energy information for job scheduling. However, the energy information is used along with
the job moldability to make scheduling decisions which are not covered in these works. In addition, the
scheduler dynamically reconfigures the jobs to maintain, reduce or increase the power usage; meanwhile,
the above-listed works are used primarily to reduce the power usage. Nevertheless, job malleability is not
covered in any of the works mentioned above, and is unique to this work.

29

3 Related Work

3.3 Checkpointing

The race for exascale machines is in full force [18–20], and the road to zettascale is already getting paved [159]
in the HPC community. The component complexity associated with the exascale is massive and is expected
to only increase along the road. However, the component’s reliability is not increasing at the same rate as
the complexity of the components [160]. As a result, resilience to failure has become a multidimensional
problem, and the solution spans domains like hardware and software, applications and system software.
The field of fault tolerance approaches is extensively studied and discussed heavily in the literature [160–
164]. There are numerous fault tolerance techniques based on the concepts of redundancy (hardware and
software), migration methods, failure semantics, failure masking and recovery. Each of these techniques is
described below:

• Redundancy: In this technique, the redundant components or processes are added to tolerate the
failures [165, 166]. In hardware redundancy, the critical components are replicated, while in software
redundancy, multiple instances/versions of the software are executed [164].

• Migration: The advancement in virtualization technologies is exploited for process-level migra-
tion [167] and virtual machine migration [168] to address the failures. This technique’s fundamental
premise is to avoid failure by taking preventive action by migrating the application to a safe node.

• Failure Semantics: This technique [169] is about how a system designer anticipates failure and
provides the failure handling strategies to thwart the anticipated failures. This strategy is tailored to
the system, and predefined recovery action is taken when the anticipated failure occurs.

• Failure Masking: It ensures the resilience of a system by providing services to the clients using
redundant services without the client recognising that a failure has occurred [170].

• Recovery: As the name suggests, the application is recovered from the failures in the recovery tech-
nique. Here the erroneous state of the application is replaced by a valid state. There are two categories
of error recovery techniques based on their characteristics. They are ForwardError Recovery and Roll-
back Recovery.

1. ForwardError Recovery: The system is brought to a valid state without repeating the previous
computations executed in this technique. This strategy is used in mission-critical environments
where high levels of accuracy can be sacrificed for immediate recovery. This technique is not
useful with a highly complex software system with many valid states [171].

2. Rollback Recovery: Rollback recovery comprises of three parts 1 checkpoint, 2 failure de-
tection and 3 recovery/restart. A checkpoint contains the snapshot necessary to restart the
application in a valid state when a failure occurs. Rollback recovery is one of the widely used
fault tolerance mechanisms in HPC Systems and can be attributed to the use of distributed mem-
ory programming models in creating applications [171]. Most applications are written using
MPI, and MPI implementations do not have inherent fault tolerance capability. As a result, the
failure in a single process can cascade to the entire application. In such instances, rollback re-
covery can be used to recover the application from the previously saved state. There are two
techniques to implement the rollback recovery mechanism. They are log-based rollback recov-
ery and checkpoint-based rollback recovery.

– log-based: In the log-based recovery technique, the messages transferred across processes
are logged and used in case of failure to recover the application. The messages are replayed
to construct a valid state.

30

3.3 Checkpointing

– checkpoint-based: The application is reverted to the most recent stable state by leveraging
the checkpointed data in the checkpoint-based recovery technique. The checkpoint-based
rollback recovery is one of the widely popular techniques used in HPC and the proposed
work also utilises the checkpoint-based rollback recovery technique.

The checkpoint-based rollback recovery mechanism is called the checkpoint restart or C/R technique, or
simply checkpointing. There are different techniques and types in the checkpoint restart strategy. Based on
the implementation technique, the checkpointing systems can be classified as 1 application-level, 2 user-
level, or 3 system-level [162, 172]. In application-level checkpointing, the programmer or pre-processor
injects the checkpointing blocks into the relevant parts of the application. In user-level checkpointing,
user-level libraries are used to checkpoint the application. It is semi-transparent compared to application-
level checkpointing because the call to the user-level library will save the application’s state. However, in
application-level checkpointing, the programmer is in charge of checkpointing every relevant data needed
in the event of restart from failure. Nevertheless, user-level checkpointing can be considered conceptually
synonymous with the application checkpointing technique since the application programmer needs to play
a role in employing the checkpointing technique. On the contrary, the system-level checkpointing is fully
transparent to the user, and the OS or resource manager will checkpoint the entire process state that can be
used in the event of a failure.

Checkpointing can be further classified as single-level or multilevel, coordinated or uncoordinated, blocking
or non-blocking and process recovery or data recovery[162, 172]. They are summarized below:

• single-level vs multilevel: The primary difference between single-level and multilevel is the number
of memory hierarchies used to store the checkpoint. In a single level, the checkpoint is stored in only
one place (for example, HDD). In multilevel, the checkpoints are stored in multiple storage hierarchies
(for example, RAM and HDD).

• coordinated vs uncoordinated: In coordinated checkpointing, all the processes store the checkpoint
in a synchronized manner, while in uncoordinated checkpointing, the processes checkpoint the data
independently. Different processes have different versions of the data in uncoordinated checkpointing.

• blocking vs non-blocking: In the blocking technique, the process waits until the data is completely
checkpointed. In contrast, the process resumes the execution immediately after calling the checkpoint
library in the non-blocking technique. The checkpointing happens in the background.

• process recovery vs data recovery: In process recovery, a new process is started immediately to
replace the process and resumes the application execution, while in data recovery, a single process
failure kills the entire application. As a result, new set of processes are launched, and the data is
restored from the checkpoint to continue the operation. To support the process recovery, special fault
tolerant MPI needs to be used [60].

Considering various use cases and programming models, the classification extends beyond the above men-
tioned categories, including additional classes such as fault-tolerant MPI implementations. Given the diver-
sity of use cases and programming models, the checkpointing classification encompasses additional types
beyond the above-mentioned categories, such as fault-tolerant MPI implementations. There is an extensive
array of checkpointing research that covers these various categories. [60–63, 66, 160–163, 173–188]. Here
we only consider works most closely related to iCheck.

iCheck is a multilevel asynchronous adaptive application-level checkpointing system with remote direct
memory access capability that provides fault tolerance together with the data distribution service. Com-
pared with iCheck, the existing application-level checkpointing libraries (for example, [186–188]) cannot
readjust their resources across different applications to optimise and improve their checkpointing activity.

31

3 Related Work

iCheck can globally control checkpoint transfers and enhance the overall checkpoint performance by scal-
ing the checkpointing resources associated with the application. The following three paragraphs compare
the most relevant related work to iCheck based on the features mentioned above (multilevel asynchronous
adaptive application-level). The first paragraph covers the related work closest to multilevel asynchronous
checkpointing capability. The second paragraph compares the adaptive aspect of the application level check-
pointing. Lastly, the latest application-level checkpointing systems are compared.
The closest work to our system in the area of multilevel asynchronous checkpointing capability is by Sato
et al. [66]. This work proposes an RDMA-based, non-blocking, multilevel checkpointing system that incor-
porates staging nodes (remote nodes). Within the staging nodes, a staging server acquires the checkpoint
from a staging client, which operates within the compute nodes of the workload. There are fundamental
differences between iCheck and [66]. Firstly, iCheck is an adaptive system that dynamically increases or
decreases the iCheck nodes (equivalent to staging nodes). Moreover, iCheck offers the flexibility to dynam-
ically adjust its agents (analogous to staging servers) based on the needs at hand. Secondly, In contrast to
the system described by Sato et al., a single iCheck node can provide checkpointing services to multiple
applications concurrently, a feature not demonstrated in the referenced work. Lastly, iCheck eliminates the
necessity for a separate staging client, as applications directly register their memory regions with iCheck
agents on remote nodes for RDMA operations. This allows an application to notify the agents through a
straightforward library call when a checkpoint is ready, preventing the need for an additional thread on the
compute node dedicated to staging.
The checkpointing system VeloC [185] has similarities to iCheck with respect to its adaptive qualities in
application-level checkpointing.VeloC functions as an asynchronous checkpointing system and selects the
storage locations for local checkpoints dynamically by utilizing various underlying heterogeneous storage
options. This approach is designed to circumvent potential bottlenecks in local I/O, enhancing efficiency
and performance. In contrast, iCheck’s adaptivity pertains to the system’s resource dynamism employed
by horizontal (dynamically adding more checkpoint nodes) and vertical scaling (dynamically adding more
agents for checkpointing). VeloC, on the other hand, utilises IO threads within nodes to write checkpoint
data into the desired storage solution.
Lastly, two latest application-level checkpointing libraries (FENIX [187] and CRAFT [186]) and a state-of-
the-art application-level checkpointing library Scalable Checkpoint Restart (SCR [188]) are compared with
iCheck. FENIX and CRAFT differ fundamentally from iCheck in their checkpointing approaches: FENIX
performs checkpointing on neighbouring application nodes, whereas CRAFT is oriented towards storing
checkpoints directly into the parallel file system. SCR stores checkpoints in both in-memory (or neighbour-
ing nodes) for faster restores and writes to the parallel file system (PFS) based on the user’s configuration.
Like SCR, iCheck also writes the checkpoint into PFS, making it a multilevel checkpointing system. Never-
theless, the iCheck system differentiates itself by being adaptive and conducting RDMA-based in-memory
checkpointing, utilising reconfigurable threads (agents) on remote dedicated compute nodes. This is a devi-
ation from the methodologies employed in the above-mentioned related works. Additionally, iCheck agents
perform second-level checkpointing to parallel file systems from these remote nodes instead of utilsing the
application nodes (as done in SCR). This significantly reduces the overhead linked with file system transfers
from the application.
Another unique aspect of iCheck is the integration with an adaptive resource manager (mentioned in the
chapter 7.4.4). As a result, iCheck can get more resources (compute nodes) from the resource manager
and scale its resources as per the application’s need. This resource scaling ability makes iCheck unique
compared to other checkpointing systems integrated with resource manager [173, 174, 188]. These systems
use the resource manager to coordinate the checkpointing activities. For example, Berkeley Lab Checkpoint
Restart (BLCR [174]) is integrated with Slurm for providing transparent system-level checkpointing activi-
ties, while SCR [188] uses the resource manager to relaunch the application whenever the application fails.

32

3.3 Checkpointing

In addition, iCheck also provides a data redistribution library for malleable applications. iCheck posits that
the checkpointing system can also act as a data redistribution service for malleable MPI applications during
the resource change. Though there are many data distribution libraries like LAIK [189], ESPRESO [190],
and Hitmap [191], iCheck demonstrates the proof-of-concept that the already available checkpointing sys-
tem can be used for data redistribution. Since checkpointing systems store relevant data needed to restart
the application in case of failure, it can be extended to support the data redistribution for a malleable appli-
cation.

33

4
Adaptive Batch Scheduling

This chapter describes in detail the first contribution of this work, an adaptive batch scheduling system.
At first, an overview of the functioning of the proposed batch scheduler is provided, followed by different
strategies employed to perform the resource adaptation. Lastly, the chapter describes the performance-aware
batch scheduler produced as part of this work.

As seen in Section 2.2.1.1, the Slurm workload manager was designed only to support the execution of
rigid applications. Ureña [101] et al. brought malleability support into Slurm by creating a runtime system
that can expand and shrink the running iMPI applications based on their resource management policy. The
default Slurm Controller slurmctld was modified to create a new Invasive Runtime Scheduler (iRS). This
also required the modification of other Slurm binaries that were relevant to support the dynamic resource
reconfiguration. However, the system from Ureña [101] only supported using interactive srun instances to
bring the resource elasticity. As a result, the system was not equipped to handle and differentiate the incom-
ing jobs based on their resource elastic characteristics (see Section 2.2.1). The system could only recognise
the application’s malleability during its execution. The malleability was primarily utilised for improving
the application performance. As a result, it hindered the system-level optimisations otherwise possible with
a malleable infrastructure, such as launching moldable jobs to utilise the idle nodes and reconfiguring the
resources in running applications by considering the pending jobs. With the adaptive batch scheduling im-
plemented in this work, the full potential of application malleability along with the system benefits can be
considered. Towards that, an Adaptive Batch Scheduler (ABS) is proposed that considers the applications in
the queue along with running malleable applications. This opens up lot of benefits to the overall system-level
metrics.

4.1 The Adaptive Batch Scheduler

To implement ABS, the default Slurm scheduler was added with two queues to differentiate rigid and mal-
leable jobs. This is visible in the architecture diagram of ABS in Figure 4.1. ABS is a scheduling plugin (see
Section 2.2.1.1) that is built on top of the default Slurm scheduler, and the algorithm of the ABS scheduling
is shown in Algorithm 1. ABS gathers information about the current resources in the system (Line 2). This
includes but is not limited to the total number of compute nodes, idle nodes, and the total number of nodes

34

4.1 The Adaptive Batch Scheduler

1 #SBATCH --job-name adaptive_job_script
2 #SBATCH --time=00:30:00
3 #SBATCH --nodes=4
4 #SBATCH --ntasks-per-node=96
5 #SBATCH --min-nodes-invasic=2
6 #SBATCH --max-nodes-invasic=8
7 #SBATCH --node-constraints="odd"
8 #potential values are even, odd, ncube, pof2, #none
9

10 srun sample_app

Listing 4.1: Simple batch script for adaptive batch scheduling [55].

in the completing state. This information is collected using Slurm global variables called bitmaps. The
bitmaps are changed by Slurm plugins during the job allocation to keep track of the available resources.
In addition, the bitmaps are also modified based on the expand or shrink operation decisions made by ABS
(Lines 21 - 24). ABS also gets information about the jobs submitted from users using the batch submission,
like the total number of jobs and the requested resources. The jobs are differentiated based on the entries
provided in the batch script.

As part of this work, special parameters are added to the batch script to define the malleable aspects of the
application. A sample batch script is shown in Listing 4.1. The jobs are added to the elastic queue whenever
entries are associated with the fields min-nodes-invasic and max-nodes-invasic (Lines 5-6). Addition-
ally, users can leverage the -node-constraints (Line 7) option to pass hints regarding the application to
ABS. Currently, ABS supports options like power-of-two, even, odd and cubic number of nodes (Line 9). This
is relevant for applications like Lulesh [192], which require a cubic number of processes for execution. ABS
can consider these constraints while making resource adaptation decisions. The absence of such hints can
result in ABS allocating an incompatible number of nodes to an application during the resource reconfigu-
ration, resulting in an application failure. Furthermore, the user can also specify the application’s power
consumption characteristics (Lines 6-7 in Listing 5.1) in the job script for making power-aware reconfig-
uration decisions described in Section 5.1. Upon receiving the submitted jobs, a First Come, First Serve
(FCFS) policy is used by ABS to prioritise the jobs (Line 4 in Algorithm 1).

ABS attempts to schedule and run as many rigid and malleable (or resource-elastic) applications as possible
based on their resource requests and job priorities (Line 4). Based on resources specified in the --nodes
field in the batch script (see Listing 4.1), the user-submitted jobs are executed. During application execution,
ABS expands or reduces the resources of an application based on the constraints set in the job script, like the
minimum and maximum number of nodes indicated in the min-nodes-invasic and max-nodes-invasic
fields as well as -node-constraints. After this, the scheduler updates its performance metrics (Line 5)
based on the system’s current state, such as system utilisation, job waiting and response times.

The scheduling loop in ABS (Line 6) is responsible for making dynamic resource reconfiguration decisions
for the running malleable applications. Three different events trigger this loop.

• It is triggered on each scheduler tick seconds, which ABS reads from the Slurm configuration file
slurm.conf.

• It is triggered when a new job (application) is added to the job queue (both rigid and malleable).

• It is triggered whenever an application finishes execution.

Whenever one of these events occurs, ABS receives new resource information regarding the system (Line 7),
which may have altered due to previously scheduled jobs.

35

4 Adaptive Batch Scheduling

By iterating through every job in the system, ABS constructs four distinct lists of jobs (as indicated in Lines
9-10) categorised into running and waiting jobs, with each being further divided into malleable (or elastic)
and rigid jobs. These lists play a crucial role in facilitating dynamic reconfiguration decisions, which are
informed by the malleability and job management policies outlined in Section 4.2. Once the lists are created,
ABS checks all the currently running malleable jobs to see if they have performance data. To do this, ABS
checks a flag variable associated with the job in the job_record structure. If required performance data is
missing, ABS requests it (Line 11-13). This technique obtains the performance data from malleable appli-
cations built using the Elastic Phase Oriented Programming Model (EPOP). For other malleable applications
written using pure iMPI, the node-local performance data is obtained internally from iMPI by SLURMD dae-
mons. A performance measurement handler was developed to aggregate and reduce values obtained from
all daemons.

Algorithm 1. The Adaptive Batch Scheduler (ABS) Iteration [55].
1 while TRUE do
2 Get resource info from Slurm
3 Get workload info from Slurm
4 Schedule jobs (malleable and rigid) in priority order if required resources are present
5 Update the scheduler metrics
6 if a scheduling event occurs then
7 Update resource info
8 for each job in job list do
9 Update waiting malleable and rigid job list

10 Update running malleable and rigid job list
11 if no performance data available for running malleable job then
12 request_perf_data(job);
13 end
14 Check if any running malleable job is adapting
15 end
16 if no malleable job is adapting and running elastic jobs > 0 then
17 Generate resource vectors (RSV) to expand or shrink running malleable jobs based on the

emplyoed job scheduling strategy
18 Update reduction job list
19 Update expansion job list
20 for each job in reduction job list do
21 shrink_job(job);
22 end
23 for each job in expansion job list do
24 expand_job(job);
25 end
26 end
27 end
28 end

The performance data used by ABS is called the MPI Time to Compute Time (MTCT) ratio. It is an intuitive
heuristic criterion measuring the time spent in MPI calls versus the time doing relevant computation. It
gives an outlook into the efficiency of an MPI application. The higher the ratio, the more time is spent on
communication than computation for a particular application. This value can be successfully used to decide
whether an application benefits from resource expansion or reduction. In performance-aware scheduling,

36

4.2 Adaptive Scheduling Strategies

this metric can decide the application for shrinking (resource reduction) out of a pool of running malleable
applications to launch a waiting job with highest priority from the queue (see Section 4.2.3). In addition,
ABS also checks whether there are any pending job adaptations, i.e., expanding or shrinking (Line 14). It
ensures consistency among compute resources and guarantees no new resource reconfiguration decisions are
performed before all pending resource reconfigurations are completed. IS_ADAPTING flag is used to achieve
the above objective.

Suppose no jobs are currently adapting, and malleable jobs are running in the system. In that case, ABS makes
expand or shrink decisions based on current job management and adaptive scheduling strategy (Line 16).
Multiple adaptive scheduling strategies for ABS are implemented and are described in detail in Section 4.2.
The application reconfiguration decision from ABS is decided by examining the resource vector (RSV) data
structure. RSV is an array sized to match the number of running malleable jobs and ordered based on the
application arrival time. Each index of the RSV contains the node count associated with currently running
applications. The change in RSV results in resource reconfiguration.

ABS iterates the RSV array and chooses to expand or reduce a job based on the ensuing criteria:

• expansion: If the corresponding entry in RSV array for the current job is greater than the currently
allocated number of nodes.

• reduction/shrink: If the corresponding entry in RSV array for the current job is less than the currently
allocated number of nodes.

For instance, if a malleable job executes on four compute nodes and the scheduling strategy determines that
the job should be scaled down to two nodes, the updated RSV for that particular job in the index will be
adjusted to two.

ABS makes two separate lists for jobs that are considered to be expanded and reduced. The expansion and
reduction is performed as a two-step process. Firstly, ABS iterates through the reduction job list and performs
resource reduction (Lines 20-22). Once all reductions are performed, ABS iterates through the expansion list
(Lines 23-25) and triggers the expansion. To achieve that, for every job in these lists, ABS devises an RPC
message request of type slurm_reallocation_message and is sent to the invasive runtime scheduler iRS.
Essential information, like the number of preexisting processes to kill and nodes to retreat from, is contained
in the message transferred for performing resource reduction. Meanwhile, for a resource expansion, the
message includes information such as number of tasks to create and the compute nodes on which to launch
them. Upon receiving this message, iRS performs the dynamic reconfiguration of batch jobs as described in
Section 2.2.1.3. This can be seen in Figure 4.1.

iRS is responsible for maintaining a consistent system state while performing the resource expansion and
reduction decided by ABS. To aid that, a reallocation handler was developed as part of this work. The
new reallocation handler is accountable for modifying the context of a running job step, creating processes
during a resource expansion, and terminating corresponding processes during a resource reduction. Using
the existing reallocation handler is insufficient since the control flow of a batch job is different from an
interactive job launch in Slurm. ABS iteration continues until the iRS is terminated.

4.2 Adaptive Scheduling Strategies
This section describes different scheduling strategies implemented in this work for executing and scheduling
malleable applications. An adaptive scheduling strategy can be considered a combination of two policies
1 a job management policy, and 2 a malleability management policy. The former is mainly in charge of

deciding whether to increase or reduce the resources of a running application. The latter decides on how to
increase or reduce the resources.

37

4 Adaptive Batch Scheduling

Figure 4.1: Adaptive Batch Scheduler Architecture [88]

4.2.1 Job Management Policies

The following job management policies are analysed in this work:

• Priority to running malleable applications (PRMA): In this strategy, a malleability management policy
is employed to increase (expand) the resources of an already running malleable application whenever
a compute resource becomes available. However, the highest priority job waiting in the queue is
executed if the job’s resource requirements become available.

• Priority to waiting malleable applications (PWMA): In this approach, a malleability management
policy is used to reduce the resources of running applications to cater to the needs of a high-priority
malleable application waiting in the queue. Shrink operations are the norm in this strategy. However,
if sufficient resources cannot be gathered to start the waiting application, a malleability management
policy performs expansion on running jobs.

4.2.2 Malleability Management Policies

This work extended the malleability management policies proposed by Buisson et al. [117] for multicluster
grid systems to support HPC applications. Favor Previously Started Malleable Applications First (FPSMA)

38

4.2 Adaptive Scheduling Strategies

and Equi-Grow Shrink (EGS) policies are adapted and extended in ABS. The procedures to expand and shrink
the resources were added to both policies. The algorithm for FPSMA (Algorithm 2) provides an overview
of the procedures.

4.2.2.1 Favor Previously Started Malleable Applications First (FPSMA)

As seen in Algorithm 2, the FPSMA_GROW procedure takes the elastic (malleable) job list and the current
number of jobs as arguments and returns the filled resource vector (RSV). After that, ABS uses the RSV to
expand resources on the running malleable jobs (see Section 4.1). Initially, the procedure arranges the
malleable jobs based on their start time (Line 2) and records the current idle node count (Line 3) using the
idle node bitmap (see Section 4.1). As seen in lines 6-7, the procedure iterates through the sorted job list to
calculate the current node distribution and the remaining execution time of each job.

A job is deemed for resource expansion if the following conditions (Line 9) are satisfied :

1. If the current number of nodes is less than the value provided for the --max-nodes-invasic parameter
in the job script (see Section 4.1).

2. The system has idle nodes.

3. The remaining execution time of the job is more than 60.0 seconds.

If the above conditions are unmet, the job is not considered for resource expansion (Line 8). If a job is
selected for resource expansion, the constraints specified in the --node-constraints parameter (see Listing
4.1) are analysed (Line 10). For example, if the parameter’s value is --node-constraints=’even’, the
current node count is two, and the remaining idle nodes are 8. Then, the procedure computes the appropriate
growValue (Line 11), which is four in this case. The job is then marked for resource expansion by updating
RSV with growValue (Line 12), and the new idle node count is calculated (Line 13). FPSMA_GROW performs
the above steps iteratively until all jobs in the list have been considered.

Algorithm 2 for the FPSMA_SHRINK procedure takes an extra waitingJob parameter along with the arguments
of the FPSMA_GROW procedure . The waitingJob parameter points to the queue’s next highest-priority waiting
job, which can be both rigid and malleable. This argument is necessary for the implementation of PWMA
job management policy. FPSMA_SHRINK procedure sorts the malleable job list in the decreasing order of the
job start times (Line 20). The procedure calculates the remaining idle nodes in the system and compute nodes
needed by the waiting job (Lines 21-22). Similar to the FPSMA_GROW, the FPSMA_SHRINK iterates through the
job list and calculates the current node count and the remaining job time of all the jobs. A running job is
deemed for a resource reduction (shrink) operation if the following conditions are satisfied:

1. If the value provided in the job script for the parameter --min-nodes-invasic does not equal the
current number of nodes.

2. The waiting job still requires some nodes.

3. The remaining execution time of the job is more than 60.0 seconds.

If all the above conditions are met, an appropriate shrinkValue is calculated for the job by considering the
--node-constraints provided in the job script. It is similar to the FPSMA_GROW procedure. For example, if
the parameter’s value is --node-constraints=’odd’ and the node count of the job is nine. FPSMA_SHRINK
calculates the next ideal shrinkValue, which is seven in this scenario (Line 29). The job is marked for re-
source reduction by updating RSV with new shrinkValue (Line 30). In addition, the number of the remaining
nodes needed to launch the waiting job is updated (Line 31). FPSMA_SHRINK perform the above steps itera-
tively till all the jobs in the list are considered. Nevertheless, if the number of nodes needed to launch the
high-priority jobs cannot be obtained, then no resource reductions are performed in this scheduler pass.

39

4 Adaptive Batch Scheduling

Algorithm 2. Adapted Favor Previously Started Malleable Applications First (FPSMA) job
scheduling strategy [117].

1 Function FPSMA_GROW(RSV , malleableJobList, jobCount):
2 malleableJobList � jobs sorted in ascending order of their start time
3 remainingIdleNodes � number of idle nodes
4 Set RSV Index to 0
5 for each job in malleableJobList do
6 jobRemainingTime � time remaining for the job to finish
7 currentNodeCount � current number of nodes allocated for the job
8 RSV [RSV Index] � currentNodeCount
9 if currentNodeCount 6= jobMaxNodes & remainingIdleNodes > 0 & jobRemainingTime > 60.0

then
10 Analyse constraints of job wrt remainingIdleNodes
11 Calculate new growValue
12 Update RSV [RSV Index] as growValue
13 remainingIdleNodes � remainingIdleNodes�growValue
14 end
15 RSV Index++
16 end
17 return
18 Function FPSMA_SHRINK(RSV , malleableJobList, waitingJob, jobCount):
19 malleableJobList � jobs sorted in descending order of their start time
20 remainingIdleNodes � number of idle nodes
21 nodesRequired � waitingJobNodes� remainingIdleNodes
22 Set RSV Index to 0
23 for each job in malleableJobList do
24 jobRemainingTime � time remaining for the job to finish
25 currentNodeCount � current number of nodes allocated for the job
26 RSV [RSV Index] � currentNodeCount
27 if currentNodeCount 6= jobMinNodes & nodesRequired > 0 & jobRemainingTime > 60.0 then
28 Analyse constraints of the job and find new shrinkValue
29 Update RSV [RSV Index] as shrinkValue
30 nodesRequired � nodesRequired� shrinkValue
31 end
32 RSV Index++
33 end
34 if nodesRequired > 0 then
35 Do not reduce any job.
36 end
37 return

4.2.2.2 Equi-Grow Shrink (EGS)

The second malleability management policy, Equi-Grow Shrink (EGS), also has two procedures associated
with dynamic resource reconfiguration. Similar to FPSMA_GROW and FPSMA_SHRINK procedures, they are
EQUI_GROW and EQUI_SHRINK procedures. Currently, the --node-constraints parameter is not considered
in EGS. In the case of EQUI_GROW, the idle nodes are distributed equally amongst all the running applications
by computing a suitable growValue. If the idle nodes cannot be divided equally among running applications,
the remainder is distributed among applications based on their job start time. In the EQUI_SHRINK procedure,
the number of compute nodes needed by the waiting application with highest priority are equally reclaimed

40

4.2 Adaptive Scheduling Strategies

Algorithm 3. The ABS Performance-aware Scheduling function [55].
1 Function Perf_Aware_Schedule:
2 Get resource info from slurm
3 Get workload info from slurm
4 while requested resources available do
5 Launch rigid and malleable jobs using the employed priority scheme
6 end
7 if highest priority waiting job cannot be started then
8 for each running malleable job do
9 if job is adapting then

10 set any_ job_adapting
11 end
12 else if no performance data available for job then
13 request_perf_data(job);
14 end
15 end
16 if no malleable job is adapting and number of active malleable jobs > 0 then
17 Check if active malleable jobs can be reduced wrt decreasing MTCT ratios to start

highest priority waiting job
18 if enough nodes were found then
19 Reduce nodes from the selected malleable jobs.
20 Start the highest priority waiting job.
21 end
22 if insufficient resources found or idle nodes available then
23 Check active malleable jobs for expansion wrt increasing MTCT ratios.
24 Increase nodes in selected jobs.
25 end
26 end
27 end
28 return

from running applications by computing suitable shrinkValue for all running applications. Nevertheless, no
reduction operations are performed if sufficient nodes cannot be obtained to launch the application, similar
to FPSMA_SHRINK procedure.

In addition to the above expansion and shrink procedures, a heuristic-based resource reconfiguration proce-
dure was also implemented in ABS. The metric MTCT ratio is used as a criterion to choose an application for
dynamic resource reconfiguration. A resource expansion is performed on the running application only if the
application has an MTCT value below a predetermined threshold. On the contrary, if the MTCT value is above
the threshold, the application is marked for resource reduction. The MTCT threshold is set using the slurm
configuration file (slurm.conf file) and are read by ABS during startup. The heuristic-based procedure is
explained in Section 4.2.3.

41

4 Adaptive Batch Scheduling

4.2.3 Performance-aware Scheduling of Malleable Jobs

The methodology for performance-aware scheduling of rigid and malleable jobs is described in Algorithm 3.
The Perf_Aware_Schedule function is in charge of starting jobs and making dynamic resource reconfigu-
ration decisions for running (or active) malleable applications. It is event-triggered and executes on three
distinct events as detailed in Section 2.2.1.2. At first, ABS acquire details about the current state of the avail-
able resources in the system and the information about the jobs submitted by users in the malleable and
rigid job queues (In lines 2-3). Then, it attempts to schedule and launch as many malleable and rigids jobs
as possible, based on priority of jobs and resource constraints and requirements (Lines 4-6). For every job,
priorities are determined based on their arrival time. Malleable jobs are started with nodes requested in the
--nodes parameter of the job script. They are later reduced or increased depending on the minimum and
maximum number of nodes requested in the provided batch script. It is worth noting that the --nodes pa-
rameter can differ from the minimum nodes requested in the job script, giving more flexibility to the batch
system regarding expand/shrink operations. This is different from previous strategies [113, 117] where
already expanded jobs were only considered for resource reduction.
If resource unavailability leads to the holding of a high-priority job in the queue, then no lower-priority
application is selected for scheduling (Line 7). As a result, the algorithm iterates through the list of active
malleable jobs in the system and queries whether any resource adaptations are ongoing (Lines 8-9). The
job_state variable provides information about current adaptations of the system. Ongoing adaptations in
the system are marked using a flag any_ job_adapting (Line 10). In the event of no ongoing adaptations,
the algorithm looks for the performance data of active applications. If no performance data is available, the
algorithm requests the data for the iMPI application (Line 13). The adaptation check in Line 16 guarantees
the system’s consistency by ensuring that new resource change decisions are only made after finishing
pending adaptations.
The expansion/reduction decision phase is started in the algorithm if there are no ongoing adaptations and
at least one malleable job is actively running in the system (Line 16). The priority is given to waiting jobs
in this scheduling policy. The job with the highest priority in the waiting queue is chosen, and the scheduler
attempts to launch it by taking away resources from active malleable applications. This is a variation from
previous strategies where expansion/reduction operations were only performed to consider the efficiency of
running applications.
The algorithm attempts to reduce resources of running applications based on their MTCT ratios so that the
higher-priority job will be launched. The algorithm reduces running jobs in the decreasing order of their
MTCT ratios to obtain resources to launch a higher-priority waiting job (Line 17). These reduction operations
consider the node requirements (minimum and maximum values) and constraints (odd, even) on the number
of nodes provided in the job script. For an entry in the --node-constraints parameter, the reduction
operation attempts to decrease the number of nodes to the following lower constraint based upon the number
of nodes needed to launch the waiting job. For example, if the node constraint is even, the number of nodes
allocated to a job is ten, and remaining nodes required to start the waiting job are eight, then the reduction
operation will attempt to reduce the node count to two. Nevertheless, selected jobs only encounter a resource
reduction operation if all essential resources are readily available for the top priority waiting job (Lines 18-
19). The waiting job is started immediately after the resource reduction operation is completed (Line 20).
If idle nodes are available in the system after the resource reduction, the algorithm moves into the expansion
phase for running malleable jobs. Running malleable jobs are prioritised for expansion based on their
MTCT ratios (Line 23). This increases system throughput, as demonstrated in Chapter 9. Like the resource
reduction, the expansion algorithms consider the --node-constraints parameter while making the resource
change decision. Finally, the jobs are expanded after distributing all idle nodes between chosen running jobs
(Line 24).

42

5
Power Corridor Management

This chapter explains the second contribution of this work, a power-aware batch scheduler. At first, the
core concepts regarding power-aware batch scheduling are presented and disclose how dynamic resource
management can be leveraged for power management. Later, an explanation of the implementation aspects
of the work is provided, where the power-aware scheduler algorithm is introduced. Finally, this chapter is
concluded by describing the dynamic power management feature provided in the work.

Electricity contracts between energy companies and computing centres are often structured around a power
corridor, setting specific upper and lower power consumption limits that the centres must adhere to [193].
Non-compliance could lead to penalties imposed by the energy providers. In some cases, computing centres
also serve as stabilizers for the grid load [194], where dynamic adjustments to the power corridor could be
a contractual element, potentially triggered by requests from the electricity company. Such arrangements
benefit the computing centre economically by reducing electricity costs. While techniques like power cap-
ping are commonly employed to enforce upper power limits [121], they are not applicable to maintaining
the lower limit, i.e., increasing power consumption when necessary. In these instances, dynamic resource
management emerges as a viable strategy for managing the system’s power consumption within the defined
corridor.

The effectiveness of this strategy hinges on understanding the power usage characteristics of various ap-
plications, which can differ significantly [195]. Applications can generally be classified as high-power or
low-power consumers. By reallocating resources between these types of applications during runtime, it’s
possible to adjust the total power usage of the computing system to align with the corridor constraints. This
approach necessitates a power-aware resource and job management system (RJMS) and malleable applica-
tions that can dynamically adapt their resource usage.

The power-aware RJMS should be able to 1 identify the power usage of the compute resources, 2 find
out the power profile of running applications (scaling and non-scaling), 3 compute new node configuration
according to the power profile of running applications, 4 reconfigure the resource distribution of running
applications, 5 schedule new jobs that do not violate the power requirements, and 6 adapt to the varying
power corridors. Towards this, a power-aware runtime system and a power-aware batch scheduler were
developed on top of iRM (See section 2.2.1). This work utilise and extend the components iRS (See section
2.2.1) and ABS (See section 4.1).

43

5 Power Corridor Management

5.1 Power-aware Batch Scheduler Concepts

When a user submits a job to an HPC system, it is immediately added to the job queue if not enough
resources are available to schedule the job. When the resources become available, the scheduler schedules
the job with the highest priority. Priority is often assigned based on the site-level policy employed in the
center. This is the typical behavior of a batch scheduler in an HPC system. The proposed power-aware batch
scheduler changes this behavior of iRM to adhere to the power bound set by the site-level policy.

During a job submission, the power-aware scheduler must have a different operating procedure than the
performance-aware scheduler. This can be attributed to the power usage characteristics of different applica-
tions. If the system is ideally in the power corridor, scheduling a new job upon arrival might lead to a power
corridor violation if necessary steps are not taken. The power-aware scheduler must consider the following
when a job is submitted:

• A submitted job must be able to be held by the scheduler even if the resources are available.

• The power usage characteristics of the job should be analysed before scheduling the job.

• Analyse the job queue and set priority according to the system-level energy requirements.

During the end of a job, the scheduler must consider the following:

• Try to schedule a new job that satisfies the power corridor.

• Find a resource reconfiguration that can maintain the power corridor and schedule the new job.

Listing 4 showcases the algorithm of the power-aware scheduling function. Before analyzing the power-
aware scheduling algorithm, it is imperative that the core concepts behind the resource reconfiguration for
power corridor management be understood. A linear programming model is proposed (See section 5.1.1) to
calculate the new system configuration. The new resource configuration is calculated using the model, and
iRS will take the necessary steps to enforce the new configuration.

The architecture of the power-aware scheduler (Figure 5.1) is similar to the adaptive batch scheduler. Instead
of an adaptive batch scheduling plugin, the power-aware scheduling plugin is utilised for power corridor
management. The changes performed in this work only touched the scheduling element, not the runtime
configuration. Nevertheless, the messages sent and operations performed to perform the adaptation are the
same as the ABS defined in Section 4.1.

5.1.1 Linear Programming Model for Resource Reconfiguration

When a power corridor violation is encountered, the Linear Programming (LP) model provided in Equa-
tion 5.3 is utilised to enforce the power corridor. The core objective of the proposed model is to enhance
system utilisation by reducing the idle nodes in the system. The LP model is designed to use both active (cur-
rently running in the system) and pending jobs (waiting in the queue) to form a new resource configuration
that fulfills power corridor requirements of the system.

The following assumptions are made in the model to simplify the analysis:

• the power consumption per node is uniform (i.e., the same amount of power is consumed by all nodes
for a particular application).

• the system is homogeneous (i.e., all idle nodes use the same amount of power).

44

5.1 Power-aware Batch Scheduler Concepts

Figure 5.1: Adaptive Power-aware Batch Scheduler Architecture [88]

A power corridor is said to be broken when the total power usage of the system is above or below the
boundary. The lower corridor violation can be expressed formally as:

l �
K

Â
i=1

ki ⇤P(i)
min + kidle ⇤ pidle (5.1)

The upper corridor violation can be expressed formally as:

u
K

Â
i=1

ki ⇤P(i)
max + kidle ⇤ pidle (5.2)

Where, l and u denote the lower and upper power boundaries, P(i)
max and P(i)

min represent the total power used
by Job i, and kidle and pidle represent the number of idle nodes and the power used per idle node. In such
a case, a new node distribution Dnew = [k1,k2, ..,kK ,m j] should be found, where ki represents the new node
distribution of the ith Job, K represents the total number of jobs running in the system and m j represents the
jth job in the waiting queue.

By assuming that power consumption per node is uniform, an application’s minimum and maximum power

45

5 Power Corridor Management

usage per node can be calculated as p(i)min,max = P(i)
min,max/kold , where kold is the old number of nodes. This

information can be used to generate arrays of minimum and maximum power consumption of running appli-
cations per node which can then be solved as an LP optimization problem to determine the node distribution
that satisfies the power corridor.
Considering that the potential maximum and minimum power consumption for an application per node can
be derived by merely calculating p(i)min,max = P(i)

min,max/kold , we can then construct two arrays of maximum and

minimum power consumption per node, pidle, p(1)min,max, p(2)min,max, . . . , p(N)
min,max, each of size N. This creates a

Linear Programming Optimization problem (LP) which is shown in our model. The following restrictions
are added to the LP model:

• The total power consumption in all nodes must be within a lower value l (lower corridor) and upper
value u (upper corridor).

• Every job needs to be allocated a minimum of one node. (ki � 0).
• Largest job can have up to N�K nodes, where N is the total number of available nodes in the system,

and K is the number of jobs.
• Number of idle nodes (kidle) can range from 0 to N�K.
• Use as few idle nodes as possible.

The LP model with the above restrictions will generate a new node distribution, which the power-aware
scheduler can use to enforce the power bound.

Minimize :
f (kidle) = kidle ⇤ pidle

Sub ject To :

l
K

Â
i=1

ki ⇤ p(i)min + kidle ⇤ pidle +m j ⇤ p(j)
min

u�
K

Â
i=1

ki ⇤ p(i)max + kidle ⇤ pidle +m j ⇤ p(j)
max

k_mini ki k_maxi, ki 2 N\{0}, i = 1, · · · ,K
0 kidle < N�K, kidle 2 N

(5.3)

5.1.2 Guarantees

In some cases, there might be no solution for the above-defined linear programming optimization problem.
The LP problem, as defined, might be infeasible to solve. The power-aware scheduler can only guarantee a
solution if particular criteria are met.
If the total number of nodes is N and K applications are running in a system,

• the power-aware scheduler will ensure compliance with the upper power corridor limit, u, only if the
total system power consumption, when each application operates on a single node, remains below the
upper bound u. This condition is formalised in Equation 5.4.

u�
K

Â
i=1

p(i)max +(N�K)⇤ pidle (5.4)

46

5.1 Power-aware Batch Scheduler Concepts

• lower power corridor l enforcement from the power-aware scheduler is only guaranteed if the sys-
tem’s power consumption exceeds the lower power corridor boundary when the most power-hungry
application A is running on N� (K�1) nodes. This is shown in Equation 5.5.

l
K�1

Â
i=1

p(i)max +(N� (K�1))⇤ kA ⇤ pA (5.5)

As seen in the above LP model, one of the vital inputs to the LP model is the power consumption per node.
iRS is extended to obtain this information directly from the application.

5.1.3 Power Measurement

Accurate power values of applications at regular intervals are essential for the power-aware scheduler to
make proper scheduling decisions. The proposed system has two kinds of jobs, as seen in the above LP
model. The former category is the jobs waiting in the queue to be scheduled, and the latter is the currently
running jobs in the system.

The application developer can pass the approximate power usage for the waiting jobs by leveraging the
special configuration parameters during the job submission. The proposed batch system provides two pa-
rameters --min-power and --max-power to developers (See lines 6-7 in Listing 5.1). If no values are given,
the scheduler searches for the historical data. The job name and the number of resources requested are
compared with historical data to find a match.

For the actively running jobs, the power values are obtained directly from the application. They are obtained
regularly, and the power-aware iRS can also dynamically change the frequency and number of power mea-
surements from applications written in EPOP model. On Intel systems, estimations of energy consumption
are facilitated through Running Average Power Limit (RAPL) sensors, as detailed by Khan et al. [196].
These sensors provide a mechanism to monitor energy usage, with the data accessible through Model Spe-
cific Registers (MSR). To determine power consumption, the energy consumed is divided by the interval
between successive measurements. There are various libraries available to interact with these registers, such
as LIKWID [197], which enable the extraction of these energy readings. The obtained power values are
preserved for future job submissions and later used to predict power usage.

5.1.4 Forecasting

There are two approaches to dynamic power management. The first approach is a proactive approach where
the potential power usage is predicted and takes necessary steps to manage the power. In the second, a
reactive approach is used where the necessary steps are taken to increase or decrease the power usage once a
threshold is crossed. The proposed power-aware runtime system follows both proactive and reactive power
management approaches. In the proactive approach, power measurements are passed to the forecast module
to predict the maximum and minimum power consumption. If the predicted consumption exceeds the power
corridor, Equation 5.3 is solved using the prediction. However, in the reactive approach, the forecast module
is not utilised; rather, actual power measurements are used whenever there is a violation.

The forecasting module predicts whether the system will deviate from the predefined power corridor using
the time series analysis technique. Time series analysis can unveil the inherent patterns within data sets,
such as power consumption values given,

47

5 Power Corridor Management

1 #SBATCH --job-name test_job_script
2 #SBATCH --time=00:30:00
3 #SBATCH --nodes=4
4 #SBATCH --min-nodes-invasic=2
5 #SBATCH --max-nodes-invasic=8
6 #SBATCH --min-power=50 # Watts
7 #SBATCH --max-power=100 # Watts
8 srun sample_app

Listing 5.1: Example batch script with additional options for power-aware scheduling [55].

• A valid time series: A valid time series is constructed in this work using the techniques mentioned in
Subsection 5.1.3.

• A specific method to examine the data: For this, three techniques are used to model the power con-
sumption data. They are,

– ARIMA [198]: The AutoRegressive Integrated Moving Average (ARIMA) model combines
an Integrated component, responsible for transforming data into a stationary series, with an
ARMA component, which models this stationary data. The ARMA component is further split
into an AutoRegressive (AR) part, illustrating the relationship between a time series value and
its predecessors, and a Moving Average (MA) part, reflecting the impact of random shocks.
The integration of these components forms the ARIMA model, which is apt for analysing and
forecasting data points in time series.

– SARIMAX [199]: Seasonal ARIMA with Exogenous Regressors (SARIMAX) expands upon
the ARIMA model by accommodating time series data with a seasonal pattern and integrating
the effects of exogenous variables, which are external influences outside the time series.

– Holt-Winters [200]: This method, also known as Third Exponential Smoothing, applies expo-
nentially decreasing weights to past observations, making it suitable for data with trends and
seasonality. It can handle both additive and multiplicative seasonal effects.

Figure 5.2 shows the power prediction of a time series using the above three different techniques. Even
though the model is not accurately predicting the exact power usage at a time, it is still sufficient for power
corridor management since the LP model deals with maximum and minimum power usage. As can be
seen in the figure, the maximum and minimum power usage during the predicted interval is similar to the
maximum and minimum of the actual time series for the same interval.

5.2 Power-Aware Batch Scheduler Implementation

Initially, power-aware ABS acquires information regarding the status of jobs and resource availability in the
system. The jobs are then started based on the power values per node (min and max provided in the job
script) given by the user. After the application launch, ABS periodically updates the power values corre-
sponding to the application and watches for potential violation of power corridors of the system. Algo-
rithm 4 details the power-aware job scheduling strategy for dynamic power corridor management. Like
the performance-aware strategy, the Power_Aware_Schedule function is triggered on the events detailed in
Section 2.2.1.2. It is responsible for scheduling jobs that adhere to the power bounds set in the system and
making resource reconfiguration decisions to control the system power and maintain it within the power
budget.

48

5.2 Power-Aware Batch Scheduler Implementation

Figure 5.2: Forecasting using different techniques

The implemented power-aware scheduler works as follows. At first (Line 2 in Algorithm 4), the monitoring
infrastructure analyses the existing power budget, the user-submitted approximate minimum and maximum
power usage (see lines 6-7 in Listing 5.1), and any historical power data associated with the submitted job.
A job is launched if the requested number of nodes is available and it satisfies the power corridor constraints
(Line 4). Otherwise, it is added to the waiting queue. After launching jobs, ABS periodically updates the
information regarding the amount of power consumed by corresponding jobs (Line 3). For every job, the
average power consumed during the execution is stored along with its name in an array to facilitate reruns.
Then the ABS watches for a power corridor violation (Line 4, 5) if there is availability of active malleable
jobs in the system and there are no pending adaptations. If a power corridor violation is recognised, the LP
model provided in Equation 5.3 is utilised to calculate new resource redistribution for enforcing the power
corridor.

The LP model utilises information about both running and waiting jobs within the system to determine
a new resource allocation that aligns with the system’s power budget. The model selects the first viable
resource configuration that incorporates the waiting job. Then, it adjusts the resources allocated to currently
running jobs through either expansion or reduction to meet the specified power constraints. The solution to
the system is found using the Coin-or Branch and Cut (CBC) solver via Pulp, a Python Integer Programming
Solver module [201]. The solving time of Pulp for a system with applications K = 2,4,8, and 16 was always
under 0.5 seconds and is fast enough since a decision has only to be made from one schedule pass to the
next. Finally, a resource change is triggered by Power_Aware_Schedule with a valid node distribution found
by Pulp. Additionally, the selected waiting job is launched. If no valid distribution is found, the current
distribution is maintained. iRS monitor the available power budget and launch the jobs (jobs with estimated
power usage that can adhere to the power corridor) in priority order if power usage is in the valid bounds.

The new valid configuration can contain resource reduction and expansion for a set of applications and no
resource change for another set of applications. Power_Aware_Schedule will utilise the iRS to grow and
shrink the resources of the applications based on the configuration provided by PuLP. To do that, the valid
configuration is copied into the corresponding application indices of RSV array. RSV is not modified for ap-
plication with no resource change. For application with resource change, RSV is modified as described in
Section 4.1. Following that, all the resource reduction operations are performed simultaneously. Following
the reduction, expansion operations are performed for the applications. Once both expansions and reduc-
tions are performed, the application from the waiting queue is launched. This expansion and reduction is
performed similarly to the ABS mentioned in Section 4.1. iRS is utilised for the runtime reconfiguration of
the running application.

49

5 Power Corridor Management

Algorithm 4. The ABS power-aware scheduling function [55].
1 Function Power_Aware_Schedule:
2 Get resource and workload info
3 Update the power usage information for each running job
4 if no malleable job is adapting and number of running malleable jobs > 0 then
5 if power corridor is broken then
6 Hold the scheduling of jobs.
7 if strategy = favour elastic jobs then
8 Pick malleable jobs from waiting queue
9 end

10 for each waiting job j in priority order do
11 Calculate new resource distribution using LP with running jobs and waiting

job j.
12 if feasible configuration found then
13 Redistribute resources.
14 Start the job j.
15 break;
16 end
17 end
18 Pick new job from the waiting Queue that satisfies the power requirements.
19 end
20 if power corridor is not broken then
21 If possible, pick a new job from the waiting Queue.
22 Equally distribute available idle nodes among selected jobs.
23 Find the highest priority job(s) that satisfies the power constraints
24 Start the selected jobs.
25 end
26 end
27 return

5.2.1 Dynamic Power Corridor Management

One of the necessities of power corridor management is to adapt to the varying power supply from the
electricity providers or utilise different energy sources. For example, an HPC center can increase the power
budget while using electricity from renewable energy sources. To faciliate such scenarios, the system should
support and react to the modification in power corridors.
To enable dynamic power corridor management, the site-level administrators can provide lower and up-
per corridor values to the power-aware scheduler. Initial values can be given via the configuration file
slurm.conf. Since the configuration file is read only once by Slurm, the power-aware scheduler provides
another special configuration file power-slurm.conf that can be leveraged to input the dynamic power cor-
ridor values. The value provided is read by Power_Aware_Schedule during every scheduler tick seconds.
The proposed power-aware scheduler allows the change of lower and upper power corridors externally and
dynamically. During each scheduler pass, the scheduler will check for the power corridor change. If a change
is detected, the scheduler immediately calls the LP model with the new corridor values and calculates a new
resource distribution. As a result, the system can cater to the dynamic power corridor situations.

50

5.2 Power-Aware Batch Scheduler Implementation

5.2.2 Limitations

The critical limitation of this approach is the availability of malleable applications. The power-aware sched-
uler can only keep the system in the power corridor if there are sufficient malleable applications, and resource
changes in the available malleable applications significantly impact the overall power usage of the system.
The LP model only uses the malleable application for calculating the new resource redistribution. As a
result, Power_Aware_Schedule will fail to calculate valid resource distribution if there are not enough mal-
leable applications. Hence, the system will continue in the same state with no change in power consumption,
which might result in the power corridor violation.

51

6
iCheck – Invasive Checkpointing System

This chapter presents the major contribution of this work, an invasive (adaptive) checkpointing system. It
begins by introducing the core concepts underlying the proposed checkpointing system. Next, the complete
workflow of checkpointing using this system is explained. Following that, the library developed as part of
this work is introduced. The various features supported by the checkpointing system are then discussed in
detail. Finally, the chapter concludes with an exploration of potential failures in the checkpointing system
and the techniques employed to mitigate them.

The state-of-the-art works on application-level checkpointing view checkpointing as a function of data trans-
fer between an application and a memory hierarchy and provides efficient libraries for it. Multiple optimiza-
tions and improvements are added to these libraries to improve the individual performance of the applica-
tions. The proposed checkpointing system changes the perspective on application-level checkpointing from
a library to a holistic data and resource management system. Applying invasive computing concepts (intro-
duced in chapter 2) introduces the dynamic resource management capability to the checkpointing system.
Towards that, an Invasive Checkpointing System (iCheck) is proposed. This system is specifically de-
signed to offer invasive (malleable) checkpointing services to applications. Its primary design goal centers
on

• Allocating resources (such as memory and endpoints) in accordance with the checkpointing needs of
applications.

• Adjusting its checkpointing resources (compute nodes) by scaling them up or down based on require-
ments.

To support the former, iCheck should have malleable library support that the application can use. The iCheck
system should be scalable and have flexible components for the latter. iCheck is designed to accommodate
these design objectives.

6.1 Architecture
iCheck consists of a core system and a library, as depicted in Figure 6.1. The iCheck core system operates
on a set of dynamically configurable dedicated nodes (iCheck nodes) within the HPC system. Using the pro-
vided library, the application communicates with the iCheck core system. The application contacts iCheck

52

6.1 Architecture

Figure 6.1: iCheck system architecture [77]

for checkpointing as well as configuration needs. iCheck leverages the high-performance high-bandwidth
network of HPC systems for checkpoint transfer. iCheck core has different checkpoint transfer mechanisms
to utilise the network resources optimally. The subsequent subsections delve into a detailed examination of
the various components within iCheck and their functionalities.

6.1.1 iCheck Core

The iCheck core system is a modular system with three components: Controller, Manager, and Agent.
They are decoupled to improve scalability, and they communicate with each other via message passing and
shared memory. Components communicate asynchronously and are not blocked waiting for messages from
each other. As seen from Figure 6.5, iCheck has a hierarchical structure even though the components are
decoupled functionally. Each component has well-defined objectives and is defined in the following sections
in the increasing order of component functionality.

6.1.1.1 Agent

Figure 6.2: iCheck Agent

The agent performs the read/write operation of checkpoint data
from/to a connected application. The interaction between agents and
an application is facilitated through Remote Direct Memory Access
(RDMA) [202] operations and TCP/IP[203]. Agents use RDMA
for low latency, high bandwidth checkpoint transfers, and TCP/IP
for configuration messages. The agent can transfer checkpoints syn-
chronously (blocking) and asynchronously (non-blocking). An agent
can also perform other services like data compression and IO opera-
tions to the Parallel File System (PFS) [204] (See Figure 6.2). There
can be multiple agents of multiple applications in an iCheck node.
The mapping of agents to applications and to iCheck nodes can be
defined as p : q, i.e., p agents can be used to perform checkpointing on q applications, and p agents can be
mapped to q iCheck nodes in any format. The number of agents are not fixed and can be scaled as per the
requirements. Checkpoints of applications are stored in the memory of iCheck nodes.

53

6 iCheck – Invasive Checkpointing System

6.1.1.2 Manager

Figure 6.3: iCheck Manager

Every iCheck node is equipped with a manager component
that is responsible for overseeing the node-specific activi-
ties of the software. This includes launching agents, track-
ing and forecasting node usage metrics (like memory and
bandwidth utilisation) within iCheck nodes, and facilitating
communication with the controller. The manager regularly
conveys the status of the node, derived from the monitor-
ing infrastructure, to the controller. Additionally, the man-
ager does not engage in direct interaction with the applica-
tions.

6.1.1.3 Controller

Figure 6.4: iCheck Controller

The controller has a global view of the system and its resources. There
is only one controller per iCheck system, and its primary responsi-
bilities include selecting iCheck nodes and scheduling agents. By
analysing various metrics such as bandwidth, available memory, and
checkpoint frequency, the monitoring framework within the controller
assists in determining the optimal number of agents and the specific
iCheck nodes to deploy them. Additionally, the controller plays a vi-
tal role in liaising with a malleable resource manager. iCheck can
operate independently or integrate closely with ABS, as discussed in
Chapter 7. In an integrated setup with a malleable resource manager,
the controller has the capability to request extra nodes or release cur-
rent ones based on the state of the system. To ensure reliability, a sec-
ondary controller is activated in the event of the primary controller’s
failure.

6.1.2 iCheck Workflow

The components of the iCheck core and an application interact during different phases of the application
execution and a broad overview of these interactions is provided below:

During the application start:

1. The application engages with iCheck by registering itself with the controller.

2. The controller determines the initial number of agents and the iCheck nodes to launch these agents.

3. The controller communicates the agent information (identifiers and number of agents to launch) with
the managers in selected iCheck nodes.

4. The managers launch the specified number of agents and inform the controller.

5. The agents are now ready (and waiting) to connect with the application processes.

54

6.1 Architecture

Figure 6.5: iCheck architecture hierarchical view

6. The controller transfers the agent list to the application.

7. The application then registers with the agent.

8. The application and the agents prepare for RDMA operations by registering the memory regions.

9. The application and the agents engages in checkpoint transfer.

10. Application exits after completion (or exit with an error).

During the restart:

1. The application connects with the controller to obtain checkpoint information.

2. The controller transfers the information regarding agents.

3. Application can either retrieve the latest checkpoint from the agents or start fresh.

Applications interact with the iCheck core system using the API provided by the iCheck library.

6.1.3 iCheck library

The design principle behind the iCheck library focuses primarily on three objectives.

• API function calls must be simple

• Support malleability

• Provide fast data transfer with less overhead

The subsections below give an in-depth overview of how these design objectives are attained via the pro-
posed iCheck API and library.

55

6 iCheck – Invasive Checkpointing System

6.1.3.1 API for Checkpoint Transfer

iCheck offers a simple API, explicitly designed for application-level coordinated checkpointing, necessitat-
ing only six iCheck API functions to effectively perform checkpoint writing and reading. These include two
functions each dedicated to configuration, checkpointing, and restarting processes.

The following two API function calls are used for the configuration of the library:

1. icheck_init(argv[1], "App Name", Communicator, status);

It initializes the library with initial configuration parameters. This call contacts the iCheck controller
to get the agent’s information. Upon getting the information, the application is connected to the agent.
This call must be the first iCheck API function call in an application.

2. icheck_finalize(IC_PERSIST);

It is used to finalize the checkpointing activities in an application. The application informs the con-
troller that the application is finished. Using this information, the controller can update the metadata
of the application. Finally, the application will clear the data associated with iCheck. This function
call must be the last iCheck API function call in an application.

After the initial configuration, the application uses the two API functions for checkpoint management:

3. icheck_add("LABEL", data, SIZE, TYPE);

It marks data that needs to be checkpointed. The application should specify the pointer to data, size,
and type and add a label for the data. The application can add multiple data types to be checkpointed
simultaneously. It is only required to call this function once per data (arrays, variable) in an application
since it only labels the data, which the commit function will then use for checkpoint transfer. The type
of data structure can be ICHECK_FLOAT, ICHECK_INT, ICHECK_CHAR, or ICHECK_BINARY.

4. icheck_commit();

This API function call transfers the checkpoint from an application to the agent. The agent will
transfer the data associated with data structures marked and labelled using the icheck_add() API
function call to the iCheck node. In the case of multiple agents, the data is transferred in parallel to
the iCheck node. This function should be called regularly to update the checkpoint in the agent.

In the event of an application failure or restart, the application can restore its checkpoint by using the
following two API function calls:

5. icheck_restart();

This call will transfer checkpoints from agents to the iCheck library in the application during the
restart. It restores the checkpoint from the most recent icheck_commit() call. This call should only
be called once in the application.

6. icheck_restore("LABEL", data, SIZE);

This call will copy the checkpoint that matches labels (added via the icheck_add() call) to the ap-
plication data structure from the iCheck library. A special API call icheck_restart_all() can com-
bine the above two API calls into a single call. It will transfer all the data checkpointed using the
icheck_add() call at once to the application. The prerequisite for this API call is the icheck_add()
call.

56

6.1 Architecture

The above-detailed API calls are utilised to integrate iCheck into a simple application, as illustrated in
the pseudocode of a basic iCheck-enabled application in Listing 6.1. Initially, the application includes
the icheck.h header file. The function call icheck_init() (shown on line 5) is crucial as it registers the
application with the iCheck controller and conveys any available hints about it. The icheck_init function
requires the MPI_COMM_WORLD communicator, the application’s name, and its status as arguments. In cases
where the application is not MPI-based, NULL can be substituted for the communicator. Subsequently, the
application is provided with a list of agents from the controller, enabling it to register with these agents to
use it for future RDMA operations.

icheck_add (in line 7) registers the array data to the iCheck library, its size, and assigns a label for this data.
In line 17, the icheck_commit() function signals the library to transfer all data previously specified using
icheck_add into a designated buffer for remote data transmission and informs the agents that the check-
point data is ready. Following this, the agents remotely access and retrieve the checkpoint data. Later, in
line 22, the icheck_finalize() function is called to notify the controller that the application’s execution
has concluded. The argument provided in the finalise call specifies whether the checkpoint data should be
preserved in the agent’s memory post-application termination. Utilising IC_PERSIST as an argument directs
iCheck to maintain the checkpoint data within the agent’s memory. Otherwise, the agents are killed during
the application finish, and the checkpoint is transferred to the file system. icheck_restart (in line 10) will
transfer the checkpoint from the agent to the library. The icheck_restore() (in line 11) will transfer the
data associated with the label from the library to the data structure reference passed in the call.

1 #include<icheck.h>
2 int main() {
3 MPI_Init(NULL, NULL);
4 float data[size];
5 icheck_init(argv[1], "testApp", MPI_COMM_WORLD, status); // Initialising iCheck
6 /* Registering the data to be checkpointed */
7 icheck_add("mydata", data, size, ICHECK_FLOAT);
8 if(checkpoint_available) {
9 /* In the event of application restart */

10 icheck_restart();
11 icheck_restore("mydata", data, size);
12 }
13 /* Perform computatio n*/
14 for(i = 0; i<N; i++) {
15 /* Modify the values in data[] */
16 if(i%10)
17 icheck_commit(); // Performing checkpoint transfer
18 /* Perform computation */
19 if(i%2000)
20 icheck_probe_agents(hints); // Looking for resource change
21 }
22 icheck_finalize(IC_PERSIST); // End of iCheck
23 MPI_Finalize();
24 }

Listing 6.1: Pseudocode of a simple iCheck enabled MPI application [77].

57

6 iCheck – Invasive Checkpointing System

6.1.3.2 API for Malleability Support

One of the design objectives of the iCheck library is to support the malleability or dynamism of resources.
As seen from Subsection 6.1.1.1, agents are scalable and in charge of checkpoint transfer. As a result, this
dynamism in agents can be utilised to improve the application performance. For the application to benefit
from such a malleable design and to evoke dynamism in the iCheck system, icheck offers the following
special API function that allows applications to adapt to changes in iCheck’s allocation of resources.

• icheck_probe_agents(hints);

This call will contact the iCheck controller to enquire about any agent change. If the controller
triggers agent change, this call will reinitialize the library to use the new number of agents. Hints
about application characteristics can be passed to the controller using the hints section. As a hint, an
application can pass the time taken for the most recent checkpointing operation.

In line 20 of the Listing 6.1, the usage of this API call can be seen. When the application invokes the
probe function, it obtains updates regarding any changes to the agents. If agent changes occur, the next
icheck_commit() call will transfer the checkpoint using the new number of agents.

6.1.3.3 API for Faster Data Transfer

The last design objective is to provide fast data transfer with less overhead. To reduce the impact of check-
pointing calls on the application execution, iCheck supports asynchronous checkpoint transfer. This can be
turned on and off dynamically at any point in application execution using a single API call.

• icheck_enable_asynchronous(FLAG);

icheck_enable_asynchronous(true) call will notify the iCheck library to perform the checkpoint
transfer in a non-blocking manner till icheck_enable_asynchronous(false) is encountered. A
caveat is that the application developer must ensure that the application does not overwrite the data
until the checkpoint transfer is complete.

If enabled, the icheck_commit() call will return immediately, and the iCheck library will perform the data
transfer in the background. This makes sure that the overhead is minimal with iCheck.

To support faster data transfer, iCheck uses Remote Direct Memory Access in icheck_commit(), thus lever-
aging the underlying high bandwidth hardware of the HPC system to get the maximum performance during
the checkpoint transfer. The following subsection gives an overview of how RDMA is used in iCheck.

6.2 Data Transfer in iCheck

RDMA enables a remote process to access data in pre-registered memory regions without CPU involvement,
thereby enhancing throughput and minimising roundtrip latency. To integrate RDMA support into iCheck,
we utilise the libfabric library [205]. The OpenFabrics Interfaces (OFI) [206] offer programming interfaces
designed for crafting high-performance and scalable remote memory access operations. Libfabric provides
access to the user-space API of OFI services, facilitating direct access to these advanced networking capa-
bilities. fi_mr routines are used for memory region registration, and fi_read and fi_write remote memory
access operations are utilised by the iCheck agents and the library for the checkpoint transfer. Libfabric

58

6.2 Data Transfer in iCheck

Figure 6.6: RDMA in iCheck

supports a wide variety of networking hardware and high-performance fabrics, including Omni-Path [207],
used in SuperMUC-NG [56], where the iCheck system is evaluated.

In iCheck, the execution of Checkpoint and Restart operations can be conducted in two different forms,
which are based on the RDMA operations that libfabric supports: read and write (as illustrated in Figure
6.6). iCheck employs a blend of these operations to facilitate the storage and retrieval of checkpoint data.
Specifically, iCheck supports two techniques for data transfer during the checkpoint/restart processes: Push
and Pull. These techniques dictate how data is moved between the application and the checkpoint storage
during the checkpointing and restarting phases. Though read and write operations are used in both tech-
niques, the core difference between these two techniques is around the initiator of the checkpoint transfer.

• Push Technique: In this technique, the application writes the checkpoint data in to the memory of
agents during the icheck_commit() call. During the application restart, inside the icheck_restart()
call, the application reads the checkpoint directly from the agent’s memory.

• Pull Technique: In this technique, the agents read the checkpoint from the application’s memory
during the icheck_commit() call and write the checkpoint into the application’s memory during the
icheck_restart() call.

Furthermore, agents can leverage multithreading to parallelise the checkpoint operations. These strategies
are configurable in iCheck and can be used interchangeably during the application execution. The Pull
Technique presents many optimization opportunities that are discussed in Section 7.1.

For both techniques, the concept of memory regions in libfabric is employed. The agents register memory
regions in iCheck nodes to store the checkpoints and provide permission to the iCheck library to access the
corresponding memory regions. Similarly, from the application side, the iCheck library must register the
memory regions and give access to the agents. It can be accomplished in two ways and is configurable per
app. The first technique is the Memory Region approach (MR approach), which uses memory regions in the
individual processes, and the second is Shared Memory Region approach (SHMR approach), where shared
memory is used for the memory regions.

6.2.1 MR Approach

This technique registers the memory regions of all the participating processes so that agents can directly
read the checkpoints. For example, consider an application with P processes, N nodes, and iCheck with M
agents. There will be P : M mapping, where P memory regions will be registered across M agents, and P
RDMA operations are performed across M agents during every checkpoint transfer. If ti is the time taken for

59

6 iCheck – Invasive Checkpointing System

Figure 6.7: Buffer Management in MR based checkpointing

data transfer from the ith process to an agent, the overall time taken for synchronous checkpointing (tsync) is

ttransfer = max{t1, . . . , tP}
tsync = tmsg+copy + ttransfer

(6.1)

where, tmsg+copy is the time taken for sending the checkpoint ready message to agents (tmsg) and copying the
message from the application data structure to the iCheck allocated memory in the library (tcopy).

6.2.2 SHMR Approach

In this technique, one process per node will create a shared memory region and provide the agents access
to the shared memory to retrieve the checkpoints. For example, consider an application with P processes,
N nodes, and iCheck with M agents. There will be an N : M mapping, where N memory regions will be
registered across M agents, and N RDMA operations are performed across M agents during every checkpoint
transfer. If ti is the time taken for data transfer from the ith node to an agent, the overall time taken for
synchronous checkpointing is

ttransfer = max{t1, . . . , tN}
tsync = tmsg+shmcopy + ttransfer

(6.2)

where, tmsg+shmcopy is the time taken for sending the checkpoint ready message to agents (tmsg) and copying
the message from the application data structure to the iCheck allocated shared memory in the compute node
(tshmcopy).

6.2.3 Buffer Management in iCheck

The buffer management for both the MR approach and the SHMR approach are visualised in Figures 6.7
and 6.8, respectively. The fundamental concept behind both approaches is described in the above sections.
As seen in both figures, there is a libfabric endpoint in the agents for both strategies in an iCheck node.
Meanwhile, on the library side, there is a single libfabric endpoint per compute node in the SHMR approach
and an endpoint per process in the MR approach. The libfabric library manages data transfer between these
endpoints, and iCheck initiates (read/write) data transfers using remote memory access calls and tracks the
progress using the libfabric counters. In libfabric, endpoints are communication portals that function at the
transport level [208]. There are two types of endpoints in libfabric, namely passive and active. The former
is used for listening to connection requests, while the latter is used for performing data transfers.

60

6.2 Data Transfer in iCheck

Figure 6.8: Buffer Management in SHMR based checkpointing

iCheck creates and utilises the active endpoints for checkpoint transfers. In both the SHMR and MR ap-
proaches, the iCheck library allocates a buffer in the user space of the compute node, and the iCheck agents
allocate memory with the corresponding size in the agent. These allocated buffers are then registered as
memory regions in the fabric domain and bound to the endpoints. Hence, performing a read/write from the
agent will result in remotely accessing these memory regions inside the application to send and receive the
data. However, this induces an issue where sufficient memory is unavailable in the allocated buffer (or mem-
ory region) to accommodate all the checkpoint data. Towards that, a pipelining technique is employed by
iCheck, where iCheck creates a limited buffer size, and the checkpoints are transferred in chunks iteratively
between the application and agents. A brief description of the pipelining technique in iCheck is provided in
the section below.

6.2.3.1 Pipelining

The iCheck library creates a buffer of limited size (the buffer size will be a factor of the checkpoint size) in
the application process and is registered as a memory region in the libfabric during the initialisation. Upon
preparing for a checkpoint transfer, the library communicates with the iCheck agent out-of-band, detailing
the total size of the checkpoint, the size of each chunk to be read, and the total number of reads required
to transfer the checkpoint data fully. iCheck agent reads the remote memory iteratively till all the data is
transferred to the agent. The iCheck agent iteratively retrieves the data from remote memory, continuing the
process until the complete dataset is transferred. Depending on the availability of memory on the agent side,
the data can either be stored entirely in memory or written incrementally to the file system as each chunk is
read. This process is illustrated in Figure 6.9.

For scenarios where the initial iCheck buffer cannot accommodate the entire checkpoint, the Checkpoint
Manager (CP Manager) and a Coordinator are employed to orchestrate the segmented transfer of the check-
point data. The CP Manager on the application side segments the data and feeds it into the iCheck RDMA
buffer, while the Coordinator signals the agent to retrieve the data and informs the CP Manager when to
load new data chunks into the buffer. On the agent side, the coordinator oversees the iterative data retrieval,
guided by the total chunk size and updates from the application’s coordinator. If the agent lacks sufficient
memory, the CP Manager is equipped to write the data chunks directly into PFS. This pipeline technique fa-
cilitates a structured and efficient checkpoint commit operation across both the application and agent sides,
as detailed in the subsequent workflow description.

Application side: The pipelining technique in iCheck for SHMR strategy can be abstracted in the following
seven steps:

1. Application process calls the checkpoint (icheck_commit) operation.

61

6 iCheck – Invasive Checkpointing System

Figure 6.9: iCheck Buffer Management in SHMR based checkpointing using the CP Manager and
Coordinator

2. iCheck library inside the application process passes the checkpoint metadata (checkpoint size, pointers
to the data structures) to the Checkpoint Manager (CP Manager).

3. CP Manager, based on the total iCheck buffer size, copies the chunk of data from the data structures
and notifies this information to the iCheck coordinator.

4. iCheck coordinator will signal the agent that the checkpoint is ready to be copied.

5. The agent receives the signal, copies the checkpoint data and signals the coordinator data is read.

6. Coordinator informs the CP Manager that the buffer can be reused.

7. CP Manager copies the next chunk into the RDMA buffer.

8. Steps 4 - 7 will continue until all the checkpoint data is transferred to the agents.

Agent side: The pipelining technique can be abstracted in the following six steps:

1. Agent receives checkpoint metadata such as total size, chunk size, and number of reads to perform.

2. The coordinator in the agent reads the initial chunk of data, copy into the agent’s memory.

3. The coordinator notifies the application coordinator and waits for the next signal to read.

4. CP Manager, based on the agent’s available memory, copies the chunk into the PFS or remain idle.

5. Steps 2 - 4 will continue until all the checkpoint data is transferred from the application.

6. CP Manager will update the version metadata (For example, version number, time, size) of the check-
point.

7. CP Manager will duplicate checkpoint into the PFS (frequency of this operation can be configured) if
the checkpoint was stored entirely in the agent memory in Step 4.

The pipelining process during the checkpoint restore operation mirrors the commit operation’s conceptual
framework, with a key difference in the direction of data flow. In this phase, agents write the checkpointed
data back into the application in segmented chunks rather than reading it from the application. The Check-
point Manager (CP Manager) merges these chunks into the application’s data structures. Following each
successful chunk transfer, the coordinator in the application signals the coordinator in agents to initiate
the subsequent chunk transfer until all the checkpoints are restored. This ensures a systematic applica-
tion checkpoint restoration, leveraging a reverse workflow that complements the initial data checkpointing
process.

62

6.2 Data Transfer in iCheck

6.2.3.2 Versioning

Checkpoint versioning is essential for ensuring the validity and consistency of transferred checkpoints. It
guarantees that agents have accurately transferred the necessary checkpoints from the application, allowing
them to be utilised for recovery purposes if required. This aspect becomes crucial in scenarios where the
application experiences a failure during the checkpoint transfer process. Within the agents, the Checkpoint
Manager (CP Manager, as depicted in Figure 6.9) oversees the versioning of iCheck checkpoints. Following
every successful checkpoint operation, the CP Manager updates the checkpoint’s metadata, which encom-
passes the checkpoint’s version, size, label and timestamp. The CP Manager increments the version count
of the checkpoint with each successful operation. Additionally, the CP Manager is configured to save the
entire checkpoint and metadata to PFS periodically. It overwrites the existing checkpoint in PFS only if all
CP Managers align on the same version number and the previous version number is exactly one less than
the current version. This systematic approach ensures checkpoint data integrity and reliability, facilitating
smooth recovery.

6.2.4 Asynchronous Checkpointing

iCheck seamlessly incorporates asynchronous checkpoint retrieval into its library through its agent-based
model. Utilising RDMA, the agents enable applications to offload data transfer tasks, allowing them to
resume execution right after signalling the agents about the checkpoint availability. This mechanism ensures
that the agents can fetch the data remotely without affecting the performance of the application.

Suppose the total time taken in an application to inform an agent about the new checkpoint and to copy the
checkpoint to the registered memory region is tmsg+copy, the time taken by the agent to transfer data from
the application is ttrans f er, and the checkpoint interval inside the application is CPinterval . In that case, the
checkpoint time tasync associated with non-blocking checkpoint restart can be defined as in Equation 6.3.

tasync =

(
tmsg+copy, if ttrans f er CPinterval ,
tmsg+copy + ttrans f er�CPinterval, if ttrans f er >CPinterval

(6.3)

If the CPinterval is less than the time taken for transferring the data from application to agent (ttrans f er), then
the benefit associated with asynchronous checkpointing is proportional to the CPinterval . As smaller the
value of CPinterval becomes, the tasync value will reach near the value of tsync. The overall time taken for
synchronous checkpointing (tsync) is instead

tsync = tmsg+copy + ttrans f er (6.4)

However, the performance advantage of asynchronous checkpointing may not be fully leveraged when the
pipelining technique is utilised for checkpoint transfer in iCheck. Coordination needs to be done between
application processes and the agents to ensure a valid checkpoint transfer, and the application should only
modify the checkpoint data once the agents have copied the chunks associated with a particular process.
Hence, the processes need to wait (or be synchronous) until the agents transfer the chunks associated with
it. If the pipeline is unutilised, the application can fully leverage the benefit of asynchronous checkpointing.

63

6 iCheck – Invasive Checkpointing System

6.2.5 Multilevel Checkpointing in iCheck

iCheck is a two-level checkpointing system. In the first level, iCheck keeps the checkpoints in the main
memory of iCheck nodes. iCheck uses the underlying IO file system of the machine as the second level to
store the checkpoint. Typically, there will be Parallel File Systems (PFS) to support quick IO transfer in
HPC centers. For the first level checkpoint transfer, both iCheck and application are involved, while in the
second level, only iCheck agents are involved in writing into PFS. Hence the second level is transparent to
the application, and the performance of the application is not affected (See Figure 6.6).

During the application restart, iCheck agents will utilise the data stored in PFS. The controller can deploy
these agents on any iCheck node, allowing them to load checkpoints from PFS and provide checkpoint ser-
vices. This data acts as a backup, protecting the application against agent failure or checkpoint corruption.
Moreover, iCheck can simulate agent migration using this layer. Agents can store data in PFS before ter-
mination, and new agents on a different iCheck node can then access this data, effectively mimicking a full
agent migration.

Compression of checkpoint data is an efficient way to reduce memory usage[209]. iCheck can compress
checkpoint data before writing it into the parallel file system. Compression and writing to PFS can be
dynamically turned on and off inside the iCheck per-app basis and is configurable based on the application
characteristics. For example, icheck can be configured to compress checkpoints before writing into PFS
when the checkpoint size is greater than 1GB.

6.3 Monitoring

iCheck has a monitoring framework to obtain the performance data of a compute node. Plenty of perfor-
mance data can be obtained from a compute node using various system tools in an HPC system, and most of
them are not relevant in the context of a checkpointing system. A set of relevant metrics that can identify the
appropriate characteristics of a node must be first defined. It is essential for fine-tuning the checkpointing
system. Metrics associated with memory, data transfer, checkpoint operations, and power are relevant in
iCheck optimization. Hence the monitoring framework in iCheck obtains data associated with these metrics
and passes it to the controller. The metrics used in iCheck are defined in the below subsections.

6.3.1 Memory

Memory usage is one of the critical information needed by a checkpoint system. The iCheck controller must
be aware of the memory usage in iCheck nodes to make the agent scheduling decision. Lack of memory
during checkpointing can lead to an undefined behavior in iCheck. Hence the monitoring framework in
iCheck will periodically keep track of the available memory (avail_mem) in each iCheck node.

The controller calculates the memory depletion rate with the available memory usage information avail_mem
from managers. Suppose the available memory in a controller node at time t is avail_memt , then the memory
depletion rate after i seconds will be

MemoryDepletionRate =
avail_memt �avail_memt+i

i
(6.5)

Using this information controller can perform horizontal scaling of iCheck nodes to replenish the memory
pool. In addition to the monitoring, iCheck estimates the maximum and minimum memory usage for a time

64

6.3 Monitoring

interval using time series analysis. This forecast and the memory depletion rate can be used to identify the
system’s memory usage trend.
In total, the following four memory-related metrics are tracked for iCheck nodes.

• Available Memory
• Memory depletion rate
• Estimated minimum and maximum memory usage

6.3.2 Checkpoint Operations

After memory usage, another critical metric is the number of checkpoint operations happening inside an
iCheck node. Since multiple agents belonging to multiple applications can perform checkpoint transfer in
a single iCheck node, it is essential to comprehend and record the checkpointing events. Using this metric,
the controller can find the most active iCheck nodes and use them for agent placement decisions.
The first metric it records is the total number of Checkpoint Operations (ncops) performed in an iCheck
node. For N agents in a node with x number of checkpoints at a time t, ncops can be defined as

ncops =
N

Â
n=1

xn +ncops (6.6)

In addition, the framework also calculates the interval between subsequent checkpoint operations (let copi
denote the checkpoint operation at the ith interval) in an iCheck node, which is defined as

Dcop = copi+1� copi (6.7)

As the last metric, the number of checkpoint operations per minute (ncops/min) on an iCheck node is also
calculated.
Analyzing these events will provide an overview of the nodes’ activities and can be used later for agent
configuration. These metrics are consequential alongside the memory usage because frequent checkpointing
within a particular node can affect the performance of all applications checkpointing into that node. Even
though available memory in that particular iCheck node might be high, adding more applications exacerbates
the performance issues. As a result, it is necessary to maintain a careful balance between memory usage and
checkpointing frequency during agent placement.

6.3.3 Bandwidth

Another crucial metric for checkpointing is the data rate or bandwidth. Bandwidth can be defined as the
ratio of the amount of data transferred to the time taken. In the iCheck node, two categories of bandwidth
come into play. 1 The data transfer rate from an application to the agent and 2 the rate of overall data
transfer by all the agents in an iCheck node. The first information can be used to decide the number of
agents, and the second information can be used to place the agents.
The monitoring module tracks the rate at which the agents read or write the checkpoint data. It will aggregate
the agents’ data and summarize the overall IO bandwidth usage in the node. If the time taken by an agent to
transfer a checkpoint cp with the size size(cp) is t, then the bandwidth (bw) can be defined as

bwagent =
size(cp)

t
(6.8)

65

6 iCheck – Invasive Checkpointing System

The aggregate bandwidth of the manager with N agents can be defined as

bw =
N

Â
n=1

size(cp)
t

(6.9)

6.3.4 Agent Count

The controller creates agents for an application and places them in different iCheck nodes based on the
above performance indicators. There might be a scenario where multiple iCheck nodes have similar values,
and the controller needs to find ideal candidates to place the agents. In such a scenario, the metric agent
filling rate can be used.

If the number of agents that are launched at a time point t is #agents(t) and the new number of agents
launched at time point t +Dt is #agents(t +Dt), then the agent filling rate in an iCheck node (agent_ f ill)
can be defined as

agent_ f ill =
#agents(t +Dt)�#agents(t)

Dt
(6.10)

The controller keeps track of the number of agents across different iCheck nodes and calculates the agent
filling rate periodically. The controller also sets a variable (max_agent_count) for every iCheck node. Ide-
ally, this is set to prevent further allocation of agents again in a specific iCheck node. Values for maximum
agent count max_agent_count can be provided in the configuration file provided by iCheck (See Listing 6.2
in Subsection 6.3.6).

6.3.5 Power Usage

The monitoring framework periodically tracks the iCheck node’s power usage along with memory, band-
width, and checkpoint operations. This information can be used for the power-aware scheduling of iCheck
agents. The power value is obtained using the linux profiling tool perf [210].

6.3.6 iCheck Configuration File

iCheck utilises two kinds of configuration files, 1 static and 2 dynamic. They have different use cases in
the iCheck ecosystem and are explained in detail below:

• Static configuration file: This configuration file handles the configuration data associated with com-
munication in iCheck. Listing 6.3 provides a sample configuration file. Using this configuration file,
information like the controller’s address and port, the managers’ address, and network information of
the malleable resource manager can be provided to the iCheck system and applications. In addition,
the library in the application reads this configuration file to get the information about the iCheck con-
troller. Furthermore, the interval in which the heartbeat messages need to be sent between controller
and manager nodes is also defined in this file (See HeartBeatInterval in Line 5 of Listing 6.3. Heart-
Beat messages are used to ensure whether an iCheck node is alive or not. The static configuration file
is only read once by the iCheck system.

66

6.4 Dynamism in iCheck

1 readInterval = 30 #in seconds
2 max_agents_node = 80
3 max_agents_app = 80
4 max_mem_node = 90 #in GB
5 init_agent_count = num_nodes #default strategy
6 candidate_count = 5 #candidates to pick from for agent distribution
7 manager_count = 10
8 agent_selection = BW #BW for Bandwidth, CP for checkpoint frequency
9 node_selection = RR #RR for roundrobin, EQ for equal, BLK for block

10 is_dynamic_as = true #allows agent scaling
11 is_dynamic_hs = true #allows horizontal scaling
12 enable_multi_level = true
13 force_config = false #always take this configuration

Listing 6.2: iCheck dynamic configuration file.

1 ControllerAddress = hostname1
2 iCheckManagerNode = hostname1
3 iCheckManagerNode = hostname2
4 iCheckManagerNode = hostname3
5 HeartBeatInterval = 5
6 StatusMessageInterval = 5
7 iRMNodeName = hostname5
8 iRMiCheckPort = 9999
9 ControllerPort = 7777

Listing 6.3: iCheck static configuration file.

• Dynamic configuration file: This file is used to pass/update the configuration information to iCheck.
This file is read periodically (every readInterval seconds) by iCheck. The interval in which this file
must be read is passed via the dynamic configuration file itself. Initially, this file is read along with the
static configuration file during the application launch. After that, based on the readInterval defined
in the file (See Line 1 in Listing 6.2), it is read periodically. With this file, the administrator can
pass the agent_count, node_selection_strategy and other relevant metrics that can affect the overall
performance of the checkpointing services. Listing 6.2 shows some parameters that can be changed
periodically.

6.4 Dynamism in iCheck

One of the key features of iCheck is that it is a fully malleable (adaptive) checkpointing system. iCheck is
dynamic both at the system level and application level. iCheck offers system-level malleability by scaling
iCheck nodes, tuning agent behavior, and application-level malleability by scaling agents and supporting
malleable applications.

6.4.1 System Level

At the system level, iCheck can 1 horizontally scale its resources and 2 change the agent’s behavior
(turn features on/off) based on the system/application characteristics or requirements. An overview of these
system level features is provided below:

67

6 iCheck – Invasive Checkpointing System

• Horizontal Scaling: iCheck controller periodically tracks the metric avail_mem of all iCheck nodes.
Whenever it observes that a node reaches its maximum memory capacity, the controller can add
additional iCheck nodes dynamically to support new applications. iCheck also supports the removal
of nodes on the fly if a node remains unused for a long time. In short, horizontal scaling requires
a malleable resource manager to dynamically add/remove nodes from iCheck. iCheck uses iRM for
malleability and it is discussed extensively in Chapter 7.

• Agent Behaviour: Multiple applications can be connected simultaneously to iCheck, and their agents
are deployed across iCheck nodes. Agents offer various services like data compression, encryption,
data distribution, and PFS write/read. These services are pluggable and are visualized in Figure
6.10. For example, agents of all applications do not need to call compression service, only the agents
that checkpoint data above a limit (MAX_CP_SIZE). The initial value of MAX_CP_SIZE can be
configured dynamically in iCheck (See Listing 6.2 in Subsection 6.3.6). Similarly, data distribution
service is only relevant to malleable applications. These services are pluggable in iCheck and can be
enabled/disabled using the iCheck configuration file (See Subsection 6.3.6).

Multiple services can also be combined for one application but not for another. Consider two appli-
cations, App A and App B. App A can use a combination of compression and PFS, while App B can
use data encryption and PFS. This information can be passed as hints to the agents during application
initialization.

In addition, the controller can decide to leverage services, such as enabling compression and writing
data to PFS, based on the current system status. Nevertheless, these services are explicitly added to the
agents if provided via application hints. Furthermore, new services can be easily added and extended
due to the pluggable architecture of iCheck.

6.4.2 Application Level

At the application level, iCheck can 1 dynamically change the agents of malleable and non-malleable
applications and 2 support malleable applications. Each of these attributes of iCheck are described in
detail below:

• Agent Dynamism: iCheck can dynamically reconfigure the number of agents associated with a con-
nected application by increasing or decreasing the number of agents (Figure 6.11). An application
does not need to be malleable to utilise the dynamism offered by iCheck. As described in Subsection
6.1.3.2, the applications can utilise the icheck_probe_agents() function to check for any changes in
their agent configuration. There are the following three possible outcomes to a probe call:

– Change in agent count: An agent change can result in more or fewer number of agents. The
controller decides this based on the agent count selection algorithm defined in Section 7.1.1.
The objective of agent change is to improve the checkpoint performance.

– No change in agent count: If there were no performance improvements due to the previous
agent change, the controller decides not to change the agents further for this particular appli-
cation unless it is a malleable application. Malleable applications can change their computing
resources in the meantime, hence, change in agent count can be beneficial for their checkpoint
performance.

– Change in agent location: The controller can ask an application to connect to a different set of
agents on different nodes if the controller needs to free up iCheck nodes. A potential scenario
could be a malleable resource manager requesting the controller to give back some iCheck nodes.

68

6.4 Dynamism in iCheck

Figure 6.10: Pluggable services in an iCheck agent

Dynamic agents in iCheck will be beneficial under certain conditions, particularly in the context of
performance during checkpoint operations. Consider the following scenario where tprobe represents
the time required for dynamic agent reconfiguration, told_trans f er denotes the time to transfer a check-
point with the current number of agents and tnew_trans f er is the time needed to transfer a checkpoint
with the newly configured number of agents. The potential number of checkpoint operations (ncops)
that could occur with the old set of agents while the new agents are being configured is calculated as
follows:

ncops =
tprobe + tnew_trans f er

told_trans f er
�1 (6.11)

This formula helps to determine the threshold beyond which the new configuration starts to provide
a performance benefit. The performance improvement from the dynamic agents will commence from
the nth checkpoint operation, where n is defined as:

n =
ncops⇥ told_trans f er

tnew_trans f er
+1 (6.12)

If the number of remaining checkpoint operations is fewer than n, then employing dynamic agents
will not enhance the application’s performance; instead, it could potentially worsen the application’s
performance. This analysis is crucial for determining when the adjustment of agent numbers will
actually translate to a net gain in efficiency.

• Malleable Applications: iCheck supports malleable applications in the following ways:

– Support checkpoints of varying size.

69

6 iCheck – Invasive Checkpointing System

Figure 6.11: Agent reconfiguration

– Performs agent change during resource adaptation.

– Supports data redistribution during resource change.

– Performs agent change based on the application performance.

The malleability aspect of iCheck system is covered extensively in Chapter 7.

6.5 Failures in iCheck

The above sections offered a glimpse into iChecks checkpointing activities that provide fault tolerance to
applications connected to the iCheck system. This section discusses the aspect of failures in iCheck and the
techniques employed to overcome those failures. Following two subsections discuss in detail the scenarios
where the failure of different iCheck components affects the execution of the application. The first section
outlines the failure of iCheck from an application perspective, and the second section explores the failures
from the component side of iCheck.

6.5.1 Application Perspectives to Failure

The iCheck library in an application connects to the controller using TCP/IP and RDMA. From the appli-
cation perspective, a failure can be a communication issue. The communication issues can be manifested as
an unresponsive controller or agent or incomplete data transfer.

Various communication issues can happen during the different parts of the application execution and are
summarized below.

• Failure during initialization: The application must connect to the controller to get the essential
information to avail checkpointing services from iCheck. However, the application might detect an
unresponsive controller. It can be attributed to controller failure or networking issues. In such a
scenario, the application can utilise the secondary controller. If the primary controller is unresponsive,
the library will retry to connect to the secondary controller. If the series of attempts fails to connect to

70

6.5 Failures in iCheck

the secondary controller, the iCheck library will write the checkpoint directly to the parallel file system
without the agent intervention. iCheck on the library side is also equipped to perform checkpointing
directly to the parallel file system and will be used in exceptional scenarios. It will not be as efficient
as using RDMA, but it ensures that if the iCheck core system is unreachable, the application can
continue its execution without failing.

• Failure during agent connect: If the agents are unresponsive to an application, the library will notify
the controller, and the controller will provide new agent information. The application will revert to
the fail-safe PFS technique if the agents are unreachable. It is an unlikely scenario since the controller
will only hand over the agent information if the agents are launched successfully.

If the application finds an agent unresponsive during the RDMA configuration after connecting to the
agent, the library will try to contact the controller for new agent information. If the issue persists, the
library will revert to the PFS technique.

• Failure during agent checkpoint transfer: This case can have two potential failure scenarios. First,
the agent is unresponsive while connecting to the application to initiate RDMA transfer. After multiple
retries, the library will decide to use the PFS technique and immediately notify all the application
processes about this decision. Second, the agent fails while performing RDMA. In such a scenario,
the library will inform all the processes to revert to the PFS technique even though only a single agent
is failed.

• Failure during restart: Similar to the first scenario, if the communication with the controller is
unresponsive, the library will connect to the secondary controller and continues the normal execution.
If it fails, the library will read the checkpoint from PFS directly to resume the application execution.

6.5.2 System Perspectives to Failure

Different component failures in iCheck can induce communication failures in applications, as seen in the
above section. iCheck takes necessary steps to counter such component failures to provide a fair check-
pointing service to the connected applications. The steps taken to thwart various component failures are
discussed below.

• Agent Failure: The manager detects an agent failure if no activities are happening inside the agent.
Agents should periodically inform the manager about its status. Since the application will use the
PFS technique if agent failure is detected, managers only need to communicate the agent failure to the
controller. During the probe call, the controller can launch a new set of agents for the application.

• Manager Failure: Managers periodically send heartbeat messages to the controller to inform about
the availability. The controller detects a missing heartbeat message from an active iCheck node (Node
where the agents are loaded), the controller will mark the application for agent change, and new agents
are given for the application during the next probe call. The controller tries to relaunch the manager,
and if it fails, it indicates that the node is down.

• Controller Failure: In the event of the controller failure, the secondary controller will take control.
The secondary controller is ideally placed in a different node and is functional to receive messages
from the primary controller. Once the message from the primary controller fails, the secondary con-
troller takes control and loads the application and agent information from the file system to its mem-
ory. The primary controller’s resource management module updates application and agent metadata
periodically to the file system.

71

6 iCheck – Invasive Checkpointing System

To summarize, whenever the controller detects a component failure, the controller allocates new agents for
the applications affected in a new node. The library will call the probe internally after a preconfigured (twait)
time is elapsed after every communication issue and will be transparent to the application. So the application
does not get impacted by the component failures in iCheck. If the time taken for a probe call is tprobe and
to connect to new agents is tnew_agent , the overhead toverhead induced in the application with checkpoint
frequency cp_ f requency, when a component failure occurs and the library can reconnect successfully after
n tries can be estimated as:

toverhead = tprobe + tnew_agent +
n⇥ twait ⇥ (tp f s_technique� trdma_trans f er)

cp_ f requency
(6.13)

where n⇥ twait is the time elapsed before reconnecting, n⇥twait
cp_ f requency is the number of checkpoint operations

performed directly into the PFS while waiting for iCheck to reconnect, tp f s_technique is the time taken for
the fallback checkpoint mechanism in the library, and trdma_trans f er is the time taken for checkpoint transfer
using RDMA.

Overhead induced if the application cannot reconnect till the end of the application can be estimated as:

toverhead = tprobe + tnew_agent +
telapsed⇥ (tp f s_technique� trdma_trans f er)

cp_ f requency
(6.14)

where telapsed is the time taken to finish application execution from the point of initial communication error.

6.5.3 Node Failure

From the perspective of iCheck, both software and hardware failures will have the same impact. For exam-
ple, when a controller encounters a manager unreachable scenario or does not receive heartbeat messages,
the controller will follow the same procedure irrespective of the issue that caused it. The manager might be
down because the entire iCheck node was down or because there might be some undetected software bugs
that crashed the manager. In both cases, the controller will try to reconnect and launches a new manager.
The controller will take steps defined in the above section to mitigate the issue associated with node failures.

To summarise, from an application perspective, whichever failure occurs under the hood (either a commu-
nication failure or node failure) is handled by the iCheck library and the checkpointing operation works.
The whole internal failure recovery activities remain transparent to iCheck. However, the application per-
formance will be affected since the fallback mechanism is to write into the parallel file system (This can be
seen in Chapter 9. Nevertheless, iCheck ensures that the application is always resilient to failures.

72

7
Resource Management in iCheck

This chapter explores the resource management aspect of iCheck and discusses it in four sections. . The first
section describes the agent management aspect of iCheck in detail. The second section outlines how iCheck
leverages the agents to provide checkpointing services to malleable applications. The third section discusses
how iCheck utilises the invasive resource manager to achieve horizontal scaling capability. Finally, the last
section concludes the chapter with a discussion on how iCheck incorporates data distribution capabilities
into the checkpointing system.

Chapter 6 briefly described the design of the iCheck system and introduced the core components of iCheck
and its interaction. The following chapter provides deep insight into the most dynamic component of the
iCheck – namely, the iCheck agent, how it is selected and where it is placed. Further, this chapter explores
the invasive aspect of iCheck (invasive checkpointing system) and gives an overview of how the iCheck is

• providing checkpoint support for malleable applications developed using the invasive infrastructure.

• interacting with iRM to expand and shrink its resources.

• providing a data distribution library for malleable resource management.

7.1 Agent Management in iCheck

iCheck’s performance is largely contingent upon its configuration setup. The interaction between agents
and application processes for checkpoint transfer represents the core and most frequent task within iCheck.
Hence, strategic placement of agents across iCheck nodes is essential for maximising application perfor-
mance, offering significant opportunities for optimisation. To optimise and adjust iCheck effectively, three
main parameters can be manipulated: the number of agents, the selection of iCheck nodes for agent deploy-
ment, and the arrangement of agents within these iCheck nodes. To fine-tune these parameters, the iCheck
controller needs to have an overview of the current system status (For example, the available memory in an
iCheck node and the total number of agents). The controller gets this information from managers in iCheck
nodes.

As seen in Section 6.1.3, the icheck_init() will register an application with the controller and obtains the
agent information. This agent information contains the number of agents and the iCheck nodes in which

73

7 Resource Management in iCheck

the agents are launched. The application will later use this information to connect to the agents. From the
controller side, deciding the number of agents and where to place the agents is not trivial since this decision
can impact the application’s performance. The following two subsections cover these decision-making
mechanisms inside the controller triggered during the application’s icheck_init() call.

7.1.1 Agent Count Selection

An application requires agent information from the controller to leverage iCheck’s RDMA-based check-
pointing capability, and the controller gives this information to the application in the following three in-
stances.

1. During the application registration : icheck_init()

2. During the application restart : icheck_restart()

3. During the agent change query performed by the application : icheck_probe_agents()

The agent count selection is trivial for the controller in the first two instances. The controller determines the
number of agents based on the agent selection algorithm shown in Listing 5. As described in the algorithm,
the controller first obtains details such as the application ID (app ID), the number of nodes in the applica-
tion, the characteristics of the application, and the RDMA strategy used (see subsection 6.2.1). When an
application connects, the controller will check whether the app ID already exists. The absence of an app
ID indicates that the app connects to the controller for the first time, and the controller has to find the initial
agent count. The initial agent value was set as the number of nodes in an application based on the empirical
results from the experiments (see Line 16 in algorithm 5). Values for initial agent init_agent_count can be
provided in the configuration file provided by iCheck (See Listing 6.2 in Subsection 6.3.6).

In the event of an application restart, the app id will be present in the controller. Hence, the controller can
immediately return the number of agents based on the previously stored value (see Line 18 of algorithm
5). Since iCheck also allows that agents change dynamically with icheck_probe_adapt, it is essential to
differentiate between a restarting application and an agent change request. is_active flag can be used to
differentiate between the two (see lines 21 - 23), and a restarting application will not have this flag set.

Selecting agent count is non-trivial in case of an agent change. The controller requires additional information
about the current checkpointing process of the application to determine the agent count. The controller
must know whether the strategy used is mr or shmr since the maximum number of agents allotted for an
application can be num_nodes for the strategy shmr and num_process for the strategy mr. These limits
should bind the new agent number. Furthermore, the checkpoint transfer time should be compared for an
application if it has already undergone a previous agent change (Lines 3 - 9). For example, if an increase in
agents has increased the checkpoint time, it is crucial that during the next agent change, the number of agents
should be decreased but not increased (Line 4). In case of the first agent change, the controller will increase
the agent by a f actor which can be configured (Line 6). The initial value of f actor is set as 2 and can
be configured dynamically (See Listing 6.2 in Subsection 6.3.6). The controller will increase or decrease
the number of agents during further changes based on the checkpoint performance variation. As per the
iCheck design, an application is guaranteed to have at least one agent allocated to it (Line 4). Moreover,
the maximum number of agents that can be assigned to an application is bounded by the total number of
processes of the application (Line 6).

74

7.1 Agent Management in iCheck

Algorithm 5. The agent count selection algorithm
1 Function get_num_agents:
2 Read value of f actor
3 if tsync > old_tsync then
4 num_agents = max(num_agents/ f actor, 1)
5 if tsync < old_tsync then
6 num_agents = min(num_agents⇤ f actor, #num_processes)
7 if shmr == true and num_agents > num_nodes then
8 Set num_agents = num_nodes
9 return num_agents

10 return
11 Function agent_selection:
12 Obtain app specific information app_id, number of nodes num_nodes, number of processes

num_processes, application type is_active
13 Get the strategy mr or shmr
14 Get the total agents in managers total_agents
15 if app_id not exists then
16 Set initial number of agents for application num_agents as num_nodes
17 if app_id exists and is_active == f alse then
18 Retrieve previous old_num_agents
19 num_agents = old_num_agents
20 Obtain the current tsync and previous old_tsync values
21 if app_id exists and is_active == true then
22 Retrieve current num_agents
23 Get new num_agents by calling get_num_agents()
24 Update total_agents
25 Update the previous old_tsync value with the current tsync value
26 return num_agents
27 return

7.1.2 Agent Placement

Once the number of agents has been determined, the controller’s next responsibility is to identify appropri-
ate iCheck nodes where these agents can be deployed. The empirical analysis showed that agent placement
significantly impacts the application’s performance. Various metrics collected from the monitoring infras-
tructure will be used for making the agent placement decision. As seen in Section 6.3, the metrics collected
were related to categories of bandwidth, memory, checkpoint operations, and power. The agent placement
algorithm facilitates different strategies to pick the ideal iCheck nodes to place an agent.

The agent placement can be divided into three independent tasks and is detailed in below subsections. The
first and foremost task is determining how to choose iCheck nodes (candidate_list) from the available
node list (candidate_pool). The second task is deciding how to distribute the agent_num agents across the
iCheck nodes. The final task is deciding the number of iCheck nodes (candidate_num) to place these agents.
The default numbers for these tasks (candidate_num and agent_num) can be configured dynamically with
iCheck configuration file (See Listing 6.2 in Subsection 6.3.6).

75

7 Resource Management in iCheck

Algorithm 6. The agent placement algorithm
1 Function candidate_count:
2 read candidate_num from config file
3 return candidate_num
4 return
5 Function candidate_selection:
6 read selection_strategy from config file
7 Create candidate_list to select the iCheck nodes
8 if selection_strategy == MEMORY then
9 Select iCheck nodes with maximum available memory

10 else if selection_strategy == BANDWIDT H then
11 Select iCheck nodes with least network traffic
12 else if selection_strategy == FREQUENCY then
13 Select iCheck nodes with least checkpoint operations/s
14 else if selection_strategy == POWER then
15 Select iCheck nodes with low power usage
16 return candidate_list
17 return
18 Function agent_placement:
19 Obtain the application information
20 Get the agent count from agent_selection() function
21 Select the agent distribution strategy distribution_strategy
22 Choose the agent placement strategy selection_strategy()
23 Get the candidate_list from candidate_selection() function
24 read distribution_strategy from config file
25 Get the candidate count from candidate_count() function
26 if distribution_strategy == block then
27 Distribute agents in block across the candidate_list
28 else if distribution_strategy == roundrobin then
29 for each agent j in agent_list do
30 Select next iCheck node i in the candidate_list in the round-robin method
31 launch agent j in iCheck node i
32 end
33 else if distribution_strategy == f illtocompletion then
34 for each iCheck node i in candidate_list do
35 Launch maximum agents in iCheck node i
36 end
37 return

7.1.2.1 Node Selection

iCheck provides four distinct strategies to determine the nodes for agent deployment (as seen in lines 5 - 16
in Algorithm 6) and they are based on:

1. Bandwidth: In this strategy, the controller will create a sorted list of iCheck nodes with their band-
width availability. The metric bwagent (defined in subsection 6.3) is used for the list creation. The
controller then selects the iCheck nodes that transfer a low amount of data (or have higher bandwidth

76

7.1 Agent Management in iCheck

available for checkpoint transfers) to place the agents. This strategy is beneficial for application that
frequently checkpoints a huge size of data. As can be seen from the results (see section 9), it improves
the application performance.

2. Available Memory: This strategy focuses on the available memory on an iCheck node. The controller
creates a sorted list of iCheck nodes based on memory availability using the metric avail_mem. The
controller can then choose the iCheck nodes with the maximum available memory to place the agents.
This strategy becomes beneficial for applications that typically checkpoints a huge amount of data.
This makes sure that the checkpointing process doesn’t lead to out of memory issues in iCheck nodes.
It can be seen in lines 8 - 9 of Algorithm 6.

3. Checkpoint Frequency: In this strategy, the controller will assemble a sorted list of iCheck nodes
based on their checkpointing frequency. The metric Dcops (defined in subsection 6.3) is used for
the list creation. Then the controller selects nodes with the least activity. This strategy can benefit
applications that checkpoints frequently.

4. Power Budget: This strategy focuses on the power consumption on an iCheck node. The controller
constructs a sorted list of iCheck nodes with power usage using the metric ic_power and picks the
iCheck nodes with the lowest power consumption for deploying agents. This approach is particularly
useful when iCheck is required to operate within a defined power budget..

7.1.2.2 Distribution Scheme Selection

After identifying the appropriate iCheck nodes for agent deployment, the controller must decide how to
distribute the agents across these nodes. iCheck offers following three different strategies for this purpose,
detailed in lines 26 - 35 of algorithm 6:

1. Block Distribution: Agents are allocated in blocks across the iCheck nodes. If the block size is not
specified, the distribution is even across all candidates. The block size can be adjusted using the
iCheck dynamic configuration file, as illustrated in Listing 6.2 in Subsection 6.3.6.

2. Round Robin: This method distributes agents across the candidates in a round-robin fashion. The
controller cycles through the selected iCheck nodes, assigning one agent at a time to each node until
all agents have been allocated.

3. Fill to completion: Here, agents are assigned to nodes until reaching the node’s maximum capacity.
The goal is to cluster the agents as closely as possible within the nodes, ensuring a dense and efficient
distribution.

7.1.2.3 Count Selection

Candidate count can be configured externally in iCheck. Selecting the candidate count based on the applied
selection strategy is recommended. For example, the bandwidth-based selection strategy will not improve
performance when the agents are distributed across all iCheck nodes. The agents should be distributed only
across the limited number of candidates candidate_list.

The complete agent placement algorithm can be seen in Algorithm 6. Initially, the controller obtains the
application information and gets the agent count from the agent_selection() function (as seen in Algorithm
5). The controller proceeds to pick a candidate selection strategy (Line 22 in Algorithm 6). Using the
provided strategy, it creates a sorted candidate list by calling the selection_strategy() function (Line 23).

77

7 Resource Management in iCheck

selection_strategy() will obtain the strategy from the iCheck configuration file (See subsection 6.3.6)) .
Once the ideal candidates are obtained, the controller performs the necessary steps to distribute the agents.
As a first step, the controller reads the distribution strategy distribution_strategy() provided in iCheck
(Line 24). Similar to selection_strategy(), distribution_strategy() information is also obtained from the
dynamic configuration file of iCheck. Then the controller decides the number of iCheck nodes by calling the
candidate_count() function. The controller then gives agents unique ids and maps these agents to different
iCheck nodes. As a next step, the controller launches these agents in different candidates chosen based on
the distribution strategy. Finally, the controller stores information about the application (For example, agent
count and candidate hostname) for bookkeeping.

The effect of various strategies on checkpoint performance is observable in Section 9. Different values can
be provided for the number of iCheck nodes, how to pick the nodes, and how to place the agents across
these nodes. They are dynamically configurable using a special configuration file (See Subsection 6.3.6).
The number of agents can also be configurable via the same file. iCheck controller has dedicated threads to
read and record the configuration parameters periodically.

7.2 Malleable Application and Agents

Malleable applications, as defined in Section 2.2.2, change their resources based on the resource manager’s
instruction. Malleable applications running without resource change are equivalent to rigid or non-malleable
applications. Therefore, no additional support is needed from the checkpoint systems in such a scenario. The
issue arises when the application changes its resources. Typically the checkpointing systems are mapped
to the MPI world communicator (MPI_COMM_WORLD) and cannot change their mapping (size/process count)
on the fly to adapt to the resource change. However, iCheck is designed to support resource changes in
malleable applications out of the box.

The core idea of iCheck is agents retrieving checkpoints from applications (as seen in Chapter 6), and they
have an N : M mapping where N can be the number of processes or nodes (See the subsection 6.2.1) of
the application and M is the number of agents. For a non-malleable application, the agent-to-resources
mapping will always be N : M. For a malleable application with K resources changed during the application
execution, the total number of resources N, will be changed to N ±K resources. Hence the new application
to agents mapping can be N ±K : M or N ±K : M ± L, where L is the change in agents proposed by the
controller. The strategy enabling the mapping N ±K : M is called Malleable Application with Rigid Agents
(MA-RA) strategy and the mapping strategy N ±K : M±L is called Malleable Application with Malleable
Agents (MA-MA) strategy.

In the below section, the resource granularity of nodes is used to explain the agent to application mapping
for a malleable application. Agents are mapped based on the number of nodes for the SHMR strategy (see
section 6.2.2), and for the MR strategy (see section 6.2.1), the agents are mapped based on the number of
processes in the application. For the explanations in the below sections, a resource granularity of nodes
are used for the sake of simplicity. Replacing the term nodes with processes also holds true for the below
discussions.

7.2.1 MA-RA Strategy

In this strategy, iCheck has a rigid approach where N±K nodes are mapped with the same number of agents
as before (M agents). The existing agents are reconfigured to connect to the new node configuration of the

78

7.2 Malleable Application and Agents

application. N ±K nodes are rearranged so that each agent is responsible for the checkpoint transfer of
(N ±K)/M nodes. The precondition for this to work is that M should always be less than or equal to N
and N ±K. In other words, division by M should always give a number equal to or greater than one. This
guarantees that an agent will be in charge of one or more nodes for checkpointing. Otherwise, in scenarios
(M > N ±K) where the agents count is greater than the number of nodes, M� (N ±K) agents will remain
idle. Such a scenario is considered illegal in iCheck, and the controller always guarantees an initial mapping
where N is fully divisible by M. As a result, during the initialization of iCheck for N application with M
agents, the following two combinations of application-to-agent mapping are possible. The first is M = N,
and the second is M < N. In both combinations, resource expansion and reductions have different effects on
application and checkpointing.

7.2.1.1 Resource Expansion

Consider the scenario of resource expansion in a malleable application where K new nodes are added dy-
namically. In the case of N = M, the initial mapping 1 : 1 is changed during the addition of the new nodes.
The new mapping becomes N +K : M. Hence the ratio 1 : 1 is changed to N +K/M : 1 or (1+K/M) : 1.
As a result, every agent needs to checkpoint an additional K/M number of nodes. If K is not divisible by M,
then the (N +K)/M nodes are assigned per agent and remaining (N +K)%M nodes are distributed among
M agents in a round-robin fashion starting with agent ID 1.

For the second case of N > M, the initial ratio for application to agents will be X : 1, where X is N/M.
During an expansion, the M agents should be redistributed across N+K nodes. So the new mapping will be
N +K : M, and the ratio will be (N +K)/M : 1. If N +K is divisible by M, then each agent gets (N +K)/M
nodes to the checkpoint; otherwise, the agents get additional (N +K)% M nodes in round-robin manner
similar to the first scenario.

There is an apparent performance penalty in such cases, which can be categorized into two types. In the
first case, the application does not change its overall checkpoint size (CPMEM), and in the second case, the
checkpoint size will also change (CPMEMnew). The performance penalty is less in the first case because M
agents read the checkpoint of size CPMEM in the case of N nodes and N+K nodes. The overall bandwidth
for checkpoint transfer remains the same (CPMEM/M). Hence, the performance penalty will not be due
to the transfer rate since the same number of agents transfer the same amount of data before and after the
resource expansion. As seen from the above checkpoint of (N+K)%M additional nodes should be retrieved
by the agents. When a commit call happens, agents must use (N+K)/M extra RDMA operations to transfer
the checkpoint instead of N/M. The primary overhead will be associated with the iCheck agent configuration
and is a one-time overhead. For the second strategy, the change in checkpoint size to CPMEMnew will affect
the performance since the iCheck agents need to transfer the checkpoint of size CPMEMnew/M instead
of CPMEM/M where CPMEMnew >CPMEM thereby potentially increasing the checkpoint transfer time.
However, there will be a performance improvement in the case of CPMEMnew <CPMEM since agents only
need to transfer less data.

7.2.1.2 Resource Reduction

Consider the scenario of resource reduction in a malleable application where K nodes are removed dynami-
cally. In the case of N = M, the initial mapping 1 : 1 is changed during the removal of the new nodes. The
new mapping becomes N�K : M. Hence the ratio 1 : 1 is changed to (N�K/M) : 1 or (1�K/M) : 1. As a
result, every agent needs to checkpoint K/M less number of nodes. Suppose K is not divisible by M. In that

79

7 Resource Management in iCheck

case, the (N�K)/M nodes are assigned per agent to be checkpointed in addition to (N�K)%M nodes are
distributed among M agents in a round-robin fashion starting with agent 1.

For the second case of N > M, the initial ratio for application to agents will be X : 1, where X is N/M.
The M agents should be redistributed across N�K nodes during a reduction. So the new mapping will be
N�K : M, and the ratio will be (N�K)/M : 1. If N�K is divisible by M, then each agent gets (N�K)/M
nodes to the checkpoint; otherwise, the agents get additional (N�K)% M nodes in a round-robin manner
similar to the first scenario.

There is no noticeable performance penalty in such cases, which can be categorized into two types based on
the checkpoint sizes. In the first case, the application does not change its overall checkpoint size (CPMEM),
and in the second case, the checkpoint size will also change (CPMEMnew). The performance might be
improved in the first case because M agents read the checkpoint of size CPMEM in the case of N nodes
and N �K nodes. The overall bandwidth for checkpoint transfer remains the same (CPMEM/M), and
performance improvement comes from fewer RDMA operations. When a commit call happens, agents must
use (N�K)/M less RDMA operations to transfer the checkpoint instead of N/M. The potential overhead
will only be associated with the iCheck agent configuration and is a one-time overhead. In the second case
where CPMEMnew > CPMEM, the change in checkpoint size to CPMEMnew will affect the performance
since the iCheck agents need to transfer the checkpoint of size CPMEMnew/M instead of CPMEM/M.
However, there will be a performance improvement in the case of CPMEMnew < CPMEM since agents
need to transfer only less data.

7.2.2 MA-MA Strategy

In this strategy, the agents are malleable. For a malleable application with N nodes and M agents with a
resource change of K nodes, the initial agent to application mapping N : M will change to N ±K : M ±L
during the resource change, where L is the change in the agent count. This change in agents ensures that the
aggregate bandwidth for checkpoint transfer remains the same (unlike in the MA-RA strategy). The initial
agent to the application mapping ratio can be 1 : 1 where N = M and (N/M) : 1 where N is completely
divisible by M. These two initial mappings can impact both resource expansion and reduction differently.

7.2.2.1 Resource Expansion

In the event of a resource expansion with K nodes for an application with N nodes and initial agents M,
the new application to agent mapping will be N +K : M +L . In the case of N = M agent distribution (the
mapping ratio is 1 : 1), the new mapping will be N +K : M +K such that the ratio remains 1 : 1. Here
iCheck adds the same number of agents as the nodes K, thereby making L equals K for the application agent
mapping.

In the case of N > M, the L needs to be calculated by the controller. iCheck ensures that N is fully divisible
by M during the initialisation. As a result, the initial mapping for the ratio will be (N/M) : 1. The change
in the node number to N +K can cause similar scenarios explained in the above section. If N +K is fully
divisible by M, then the new number of agents will be (N +K)/(N/M) (or M + (MK/N)) and the new
mapping will be (N +K) : (M +(MK/N)) which has the ratio of (N +K)/(M +(MK/N)) : 1 and can be
simplified as (N/M) : 1. Since the new number of nodes K decided by the resource manager will give a new
node configuration N+K, which might not be fully divisible by M. In such cases, the extra (N+K)%(N/M)
nodes will be given to the agents in a round-robin manner, or iCheck can add extra L agents to M (where
L = N +K�M) that makes the new ratio 1 : 1 from (N/M) : 1.

80

7.2 Malleable Application and Agents

As discussed in the above section, the checkpoint size can remain the same CPMEM or change to the new
size CPMEMnew. In the case of 1 : 1 mapping with CPMEM remaining the same for N+K nodes, there will
be a performance improvement since there are M +K agents to transfer CPMEM of data. Similarly, in the
case of (N/M) : 1 mapping, M+(MK/N) agents will transfer the checkpoint instead of M agents, thereby
improving the checkpoint performance. If the checkpoint size increases CPMEMnew for N +K nodes with
1 : 1 mapping, with the addition of M+K agents, the aggregate checkpoint bandwidth previously available
for the nodes will be available for the current distribution. In effect, the agents will provide a similar
bandwidth as in the case of N nodes. The performance will improve compared to the MA-RA strategy with
1 : 1 mapping. In addition, there will also be performance improvement for smaller CPMEMnew. In the case
of N/M : 1 mapping, iCheck ensures that node to agent ratio remains the same and gets a similar bandwidth
as before with N nodes for the size CPMEMnew.

7.2.2.2 Resource Reduction

In the event of a resource reduction with K nodes for an application with N nodes and initial agents M, the
new application to agent mapping will be N �K : M� L . In the case of N = M agent distribution (the
mapping ratio is 1 : 1), the new mapping will be N�K : M�K such that the ratio remains 1 : 1. Here iCheck
removes the same number of agents as the nodes K, thereby making L equals K for the application agent
mapping.

In the case of N > M, the L needs to be calculated by the controller. iCheck ensures that N is fully divisible
by M during the initialisation. As a result, the initial mapping for the ratio will be (N/M) : 1. The change
in the node number to N�K can cause similar scenarios explained in the above section. If N�K is fully
divisible by M, then the new number of agents will be (N �K)/(N/M) (or M� (MK/N)) and the new
mapping will be (N�K) : (M� (MK/N)) which has the ratio of (N�K)/(M� (MK/N)) : 1 and can be
simplified as (N/M) : 1. Since the number of nodes K to remove decided by the resource manager will
give a new node configuration N �K, which might be partially divisible by M. In such cases, the extra
(N�K)%(N/M) nodes will be given to the agents in a round-robin manner, or iCheck can remove extra
agents and makes the new ratio 1 : 1 from (N/M) : 1.

The performance will remain the same if the checkpoint size CPMEM remains the same for the new node
configuration. This can be attributed to the strategy of adjusting the agent number to maintain the previous
application-to-agents ratio. However, the increase in checkpoint size to CPMEMnew can lead to a drop in
checkpoint performance since the agent number is also reduced with the number of nodes. Nevertheless, the
performance will still be better than the MA-RA strategy. For a smaller CPMEMnew size, the checkpointing
performance of the application will be improved.

7.2.3 Agent Count Selection Algorithm

For the MA-MA strategy described above, iCheck must calculate a new agent count M±L for every resource
change in a malleable application. It is calculated using the agent count selection algorithm proposed in
Listing 7. The agent count selection algorithm works as follows. When iCheck calls MPI_Probe_adapt()
after a resource change, the information, like the new number of nodes and the current checkpoint size, is
passed to the controller. The controller analyses the strategy employed by iCheck. If it is an MR strategy,
the controller will map application processes to agents, while for an SHMR strategy, the controller will use
application nodes for agent mapping. For the agent count selection, the controller sets the initial value of
current resources as processes or nodes based on the strategy used.

81

7 Resource Management in iCheck

Algorithm 7. The agent count selection algorithm
1 Function get_agent_count:
2 read the agent change strategy
3 if strategy is MA�RA then
4 return current_num_agents
5 if strategy is MA�MA then
6 if current_num_agents == current_num_resources then
7 set num_agents = new_num_resources
8 else
9 set num_agents = (current_num_agents/current_num_resources) ⇥

new_num_resources
10 end
11 return num_agents
12 return
13 Function dynamic_agent_selection:
14 Obtain app specific information app_id, number of nodes num_nodes, number of processes

num_process, application type is_active application characteristic is_malleable; Get the
strategy mr or shmr

15 if strategy is mr then
16 set current_num_resources = old_num_processes
17 set new_num_resources = num_processes
18 else
19 set current_num_resources = old_num_nodes
20 set new_num_resources = num_nodes
21 end
22 Get the total agents in managers total_agents
23 if app_id exists and is_active == f alse and is_malleable_app == true then
24 set current_num_agents = num_agents
25 call get_agent_count() to calculate new num_agents
26 Update total_agents
27 return num_agents
28 return

After that, the controller will call the get_agent_count() function with new resource information to get the
agent count. In the get_agent_count() function, the controller will return the current number of agents for
the MA-RA strategy (Lines 3 - 4). If the strategy is MA-MA, the controller will compare the previous agent
count and the resources (process count for MR strategy and node count for SHMR strategy) count (Lines
6 - 10). The controller will set the new agent count as the new node count if the previous agent and node
counts are the same to ensure a 1 : 1 ratio. Suppose the agent count and the previous number of nodes are
not equal. In that case, the controller calculates the new agent count that satisfies the application’s current
node-to-agent ratio N/M : 1 (Line 9).

82

7.2 Malleable Application and Agents

7.2.4 Pseudocode for Malleable Applications

The pseudocode of a simple iCheck-supported malleable MPI application is available in Listing 7.1. The
malleability is provided by the iMPI library explained in Section 2.2.2.1. The pseudocode described in List-
ing 2.2 at Section 2.2.2.2 is extended with the iCheck malleability API call to demonstrate the functioning
of iCheck in the context of a malleable MPI (iMPI). The control flow of an iMPI application is described in
detail in Section 2.5.

As explained in Section 2.2.2.1, MPI_Init_adapt() (line 4 of Listing 7.1) will notify the malleability ca-
pability of the application with the invasive resource manager and returns the type of the iMPI process.
A process can be initial (started during the application launch) or joining (launched during the expansion
operation). Initial processes continue the application execution (skipping lines 11-19) and regularly call
MPI_Probe_adapt() (line 22) to check for any resource change. However, joining processes immediately
triggers the collective MPI_Comm_adapt_begin() (line 13) function and waits for initial processes (preex-
isting processes) to join. Meanwhile, the MPI_Probe_adapt() (in line 22) call informs initial processes
about the resource change triggered by the malleable resource manager. Initial processes then call the col-
lective MPI_Comm_adapt_begin() function (line 25).Once all the application processes (initial and joining)
completes MPI_Comm_adapt_begin() routine (in lines 13 and 25), they can begin redistribution of data,
share application-specific data and additional control information among them. After that, they execute
MPI_Comm_adapt_commit() (in lines 15 and 27) method to finalise the resource adaptation and together con-
tinue the execution of the application. Regarding the checkpointing, icheck_probe_agents() (Line 17 and
29) is called immediately after the resource change by all processes. This probe call triggers the agent count
selection algorithm (See Algorithm 7) in the controller. The controller will return new agent information to
the application. Three possible outcomes, as mentioned in Section 6.4.2, can ensue here.

• iCheck gets a new agent number. The new agents list may reuse the existing agents or be completely
new agents in different iCheck nodes.

• iCheck gets no change in agents. The agent number and mapping remain the same.

• iCheck gets agent change. The agent number remains the same, but the agent mapping (iCheck nodes)
will be new.

The programmer is responsible for not calling the icheck_restart() for the newly joined processes (Lines
8 -10). As seen in line 8, the application developer can use the type obtained from the MPI_Init_adapt()
calls to differentiate between new and joining processes.

83

7 Resource Management in iCheck

1 #include<icheck.h>
2 int main() {
3 /* Initialisation part of the application */
4 MPI_Init_adapt(..., type) /* iMPI is intialised */
5 float data[SIZE];
6 icheck_init(..., type);
7 icheck_add("data",...);
8 if(checkpoint_available && type != joining){
9 icheck_restart();

10 }
11 if (type == joining) {
12 /* Start of adaptation window in joining processes */
13 MPI_Comm_adapt_begin(...);
14 /* Get metadata from preexisting processes, perform data redistribution */
15 MPI_Comm_adapt_commit();
16 /* Informs the iCheck controller about the resource change */
17 icheck_probe_agents();
18 }
19 /* iterate over compute intensive phase of the application */
20 while (true){
21 /* iMPI processes must call probe periodically */
22 MPI_Probe_adapt(resource_change,...);
23 if (resource_change) {
24 /* Start of adaptation window in preexisting processes */
25 MPI_Comm_adapt_begin(...);
26 /* Pass metadata to joining processes, Perform Data distribution. */
27 MPI_Comm_adapt_commit();
28 /* Informs the iCheck controller about the resource change */
29 icheck_probe_agents();
30 }
31 /* Compute part of the application */
32 /* Read/Write data[]*/
33 if(iteration%100) {
34 /* Checkpoint transfer happens here with new agent configuration */
35 icheck_commit();
36 }
37 /* Check for agent change*/
38 if(iteration%1000) {
39 /* Passes new timing information to controller */
40 icheck_probe_agents(hints);
41 }
42 /* End of compute loop*/
43 }
44 /* Finalisation part of the iCheck API */
45 icheck_finalize(...);
46 /* Finalisation part of the application */
47 MPI_Finalize();
48 }
49

Listing 7.1: Psuedocode of a malleable application with iCheck [78].

84

7.3 iCheck and Invasive Resource Manager

7.3 iCheck and Invasive Resource Manager

In the previous subsection, the adaptive nature of iCheck concerning the application was discussed. The
primary focus was on how the iCheck components provide checkpoint support to a malleable application. As
seen in Section 6.4.1, iCheck also supports system-level dynamism through the ability to scale its resources
horizontally, and this subsection explores how the system-level dynamism is performed in iCheck in detail.
Nodes can be added and removed dynamically from the iCheck environment. It is possible due to the ability
of the controller to support nodes on the fly. The real benefit of such an approach can only be used in HPC
with a malleable resource manager. iCheck’s ability to scale nodes is complemented by a resource manager
that can provide the nodes based on the checkpointing system requirement.

The invasive resource manager (iRM) introduced in Section 2.2.1 has been used to provide nodes to iCheck.
iCheck and iRM needed to be extensively modified to enable adaptive checkpointing. Towards that extent,
the following changes were made:

• Extended the iCheck controller to support iCheck-aware iRS.

• Created a new iCheck aware resource management plugin in iRM.

The following subsections cover in detail how these changes support system-level dynamism in iCheck.

7.3.1 Messages and Policy in the Controller

The default iCheck controller is extended heavily to support the iCheck-aware iRS. The extensions were
done on two levels. In the first level, a communication backend is established with iRM to send the messages.
In the second level, the policies were developed in the controller that dictates the necessity for resource
scaling.

7.3.1.1 Communication Extensions

The iCheck controller reads the port information of iRM from the configuration file and establishes a con-
nection during the launch. The controller sends the following different messages to iRM during the course of
its execution.

• Status Message: Status messages are sent to iRM periodically in (HB_IRM_INTERVAL) heartbeat mes-
sage interval provided in the configuration file (See Listing 6.2). Ideally, this interval should be less
than the scheduler tick interval such that iRM knows the status of the iCheck before making decisions
regarding the running applications. The status message contains information about iCheck nodes (For
example, iCheck node status and available memory). A scenario where a status message might be
relevant is iRM taking back the unused iCheck node to schedule a new application from the waiting
queue.

• Query Message: The controller uses a query message to know about the current idle nodes inside the
resource manager. Based on the response from iRM, the iCheck controller can make policies regarding
checkpointing. For example, if iCheck nodes have insufficient memory to support a new application,
the controller can request a new node based on the query message’s response.

• Resource Request Message: The controller can proactively request iRM for new iCheck nodes using
this message. The urgency of the resource requirement can be specified in this message to iRM.

85

7 Resource Management in iCheck

• Response Message: This message is sent by the controller as a response to a message from iRM. iRM
can request a resource change, and the controller provides the status with this response message. For
example, iRM can retrieve an iCheck node from the controller. The controller gets adequate time to
perform the agent migration and other bookkeeping activities. After that, the controller can send the
response message to iRM that the resources can be taken back.

The controller receives the following different messages from iRM during its execution.

• Query Message: iRM sends this message to get information from the iCheck controller. There are
different types of query messages iRM can send to the controller. The status message with info
parameter can be used to elicit a response from the controller with the latest iCheck system metrics.
A status message with resource_change parameter is used to get a response from the controller
regarding the state of the previously triggered resource change.

• Resource Change Message: This message informs the controller about the resource change. iRM can
send this message as a response for the Resource Request Message message from the controller. Ad-
ditionally, iRM will initiate this message if it needs to take back the resources from iCheck proactively.
In the event of a resource addition, this message contains information about the iCheck node. In case
of a resource reduction, it contains the number of nodes iCheck should return to iRM.

• Response Message: This message is sent by iRM as a response to the Query Message from the con-
troller. In this message, iRM will provide the count of current idle nodes in the system.

• App info Message: This message is sent by iRM proactively to inform the controller about the potential
resource change in an application. Based on this information, the controller can pre perform opera-
tions to improve the overall checkpoint performance. For example, iCheck can prepare new agent
distribution.

The communication backend is developed in the controller to support these various messages. The iCheck
controller gets the information about iRM communication ports from the iCheck configuration file (As seen
in Section 6.3.6). iRM will get the iCheck controller information from the initial status message.

7.3.1.2 Policy for Resource Extensions

The controller’s actions can be categorized as proactive or reactive based on the current status of the iCheck
system. Proactive actions are taken to request more resources if there is not sufficient memory in iCheck.
The reactive actions are taken based on the instructions from iRM.

• Proactive: As described in Section 6.3, the controller has monitoring infrastructure that has a global
view of the system. When the controller sees that an iCheck node is filling fast with checkpoints,
the controller can request additional iCheck nodes. The controller sends a Resource Request Message
to iRM. The controller can also set the urgency level in the message to HIGH to denote that the extra
iCheck node is critical for the working of the iCheck system. The controller can also send a Resource
Request Message in non-critical scenarios to ensure that the iCheck agents can provide better check-
point services with more resources (For example, redistributing agents across multiple iCheck nodes
to improve the overall bandwidth of the currently running applications). In such cases, the controller
will initially send a Query Message. If the response contains idle node information, it will send a
Resource Request Message message with the urgency level LOW to get new iCheck nodes.

• Reactive: Reactive approach is activated due to the Resource Change Message from iRM. iRM has the
highest priority, and the controller is obliged to implement the instructions from the resource manager.

86

7.3 iCheck and Invasive Resource Manager

Algorithm 8. The controller horizontal scaling proactive algorithm
1 Function icheck_scaler_proactive:
2 for avail_memory,total_memory in each icheck_node do
3 get node id in node_id
4 if total_memory�avail_memory > LOWER_T HRESHOLD then
5 add node_id to flagged node f lagged_node list
6 else
7 combined_avail_memory = combined_avail_memory+avail_memory
8 end
9 end

10 for avail_memory in each f lagged_node do
11 if total_memory�avail_memory > UPPER_T HRESHOLD and MemoryDepletionRate >

threshold then
12 if combined_avail_memory < total_memory then
13 send ResourceRequestMessage with HIGHPriority
14 else
15 send ResourceRequestMessage with LOWPriority
16 end
17 return
18 combined_avail_memory = combined_avail_memory� total_memory
19 end
20 clear f lagged_node
21 for bandwidth, cp_ f requency in each icheck_node do
22 get node id in node_id
23 if bandwidth < BW_T HRESHOLD and cp_ f requency > CP_T HRESHOLD then
24 add node_id to flagged node f lagged_node list
25 end
26 if pending_query_request == true and f lagged_node contains nodes then
27 read the irm_idle_node_count flag from the controller
28 if irm_idle_node_count >= 1 then
29 update pending_query_request value to f alse
30 send ResourceRequestMessage with LOW Priority
31 return
32 if f lagged_node contains nodes then
33 send a QueryMessage
34 update pending_query_request value to true
35 return
36 return

If iRM sends the Resource Change Message in response to the Resource Request Message in the con-
troller, the controller can immediately claim the resources by launching the manager in the provided
node and sending back a Response Message. In the event of a Resource Change Message triggered by
iRM, the controller frees up the agent from the iCheck nodes and sends back the information of iCheck
nodes that iRM can reclaim. Response Message from the controller has the information of the released
iCheck nodes.

87

7 Resource Management in iCheck

Algorithm 9. The controller horizontal scaling reactive algorithm
1 Function node_removal:
2 for icheck_node in each removal_candidates do
3 for application in each icheck_node do
4 get agent_in f o of application
5 get manager_in f o of application
6 notify agents in agent_in f o to write checkpoint into PFS
7 notify managers from manager_in f o to kill all agents in agent_in f o
8 recalculate new agent distribution for application
9 call agent_placement function for application

10 end
11 inform manager in icheck_node to destroy iCheck related data
12 instruct manager in icheck_node to self destruct
13 mark icheck_node as DOWN
14 end
15 return success
16 return
17 Function launch_manager:
18 for node in each new_candidates do
19 launch manager in node node
20 mark node as UP and available for checkpointing
21 end
22 return success
23 return
24 Function icheck_scaler_reactive:
25 read the message type msg_type and msg from iRM
26 if msg_type is NEW_NODES then
27 read the node_hostname, node_ip, node_properties
28 add the node information to the new_candidates data structure
29 call the launch_manager function with new_candidates information
30 else if msg_type is REMOV E_NODES then
31 read the number of nodes to remove node_remove_count from the message
32 Sort icheck_nodes with available memory in candidate_pool in increasing order
33 Sort candidates with similar available memory based on agent_count
34 Update candidate_pool
35 while counter < node_remove_count do
36 flag node_id of the icheck_node to removal_candidates
37 increment the counter counter
38 end
39 call the node_removal function with removal_candidates
40 else if msg_type is APP_INFO then
41 call the adapt_prepare_module
42 send ResponseMessage to the controller
43 return
44 return

88

7.3 iCheck and Invasive Resource Manager

The controller has algorithms that dictate the policy for proactive and reactive actions. The algorithm takes
input from the monitoring infrastructure and considers the metrics defined in Section 6.3 for making man-
agement decisions. The key metrics the controller uses are available memory (avail_mem) and memory
depletion rate (MemoryDepletionRate) for proactive actions, and the metrics available memory and agent
counts (agent_count) are used for the reactive actions of the controller. Based on these actions resource
scaling module in iCheck can be categorized as a proactive scaler or a reactive scaler. The algorithm for
both scalers is shown in the Listing 8 and 9 and is explained below:

• Proactive Scaler: The proactive scaler algorithm is shown in Listing 8. The proactive scaler in iCheck
is called periodically every SCALER_INT ERVAL seconds by the controller. The scaler reads the per-
formance metrics from the monitoring framework. In the first loop, it iterates through the metrics
of every iCheck node and checks for memory usage characteristics (Line 2). The scaler flags all the
iCheck nodes where the current memory usage is above a threshold (LOWER_THRESHOLD) (For exam-
ple, 80%) of the total available memory (Lines 4-5). The scaler also calculates the overall available
memory among the unflagged nodes (Line 7). Suppose the scaler sees sufficient memory available
(combined_avail_memory) among all iCheck nodes to transfer the flagged nodes’ checkpoint con-
tents. In that case, the scaler will not send an urgent Resource Request Message with HIGH priority
(Line 15).

If any of the iCheck nodes have used above an UPPER_THRESHOLD (For example, 90%) of the memory
and the MemoryDepletionRate rate is high (Line 11), and the combined available iCheck memory
combined_avail_memory is not sufficient to maintain the checkpoint operations, it requests a Re-
source Request Message with HIGH priority (Lines 10 - 18). Scaler has a conservative estimation of
avail_memory of a flagged node. Scaler uses total_memory instead of total_memory�avail_memory
of the flagged iCheck node to compare with combined_avail_memory from all of the iCheck nodes
(Line 18). That means the scaler can send a HIGH priority message even though there might be suf-
ficient memory combined_avail_memory among other nodes to store the checkpoints. The scaler
calculates the total available memory and flags the nodes with the available memory reaching the
specified threshold (Line 18). Scaler performs the comparison and requests an extra node if the
UPPER_THRESHOLD is reached that cannot be satisfied by combined_avail_memory (Lines 12 - 13).

The scaler can also ask for the Resource Request Message with LOW priority if the aggregate band-
width available for an iCheck node is very low. For example, if the cp_ f requency is very high for all
the iCheck nodes, the scaler can request extra iCheck nodes. For the low-priority resource change,
the scaler looks for the metrics bandwidth and cp_ f requency (Lines 21 - 35). The scaler will flag
iCheck nodes if the bandwidth exceeds the threshold BW_THRESHOLD and the checkpoint frequency
exceeds the threshold CP_THRESHOLD (Lines 23 - 24). These thresholds are calculated based on em-
pirical analysis and differ based on the system. Line 33 shows that the controller sends a Query
Message and checks for the response in the next scaler pass (Line 26) to check the idle nodes. Since
it is not a critical resource requirement, the scaler will wait till the next pass to issue the Resource
Request Message for LOW priority messages (Lines 26 - 31). Meanwhile, the controller decodes the
messages from iRM, and if the message is a reply to the Query Message, the controller then sets the
flag irm_idle_node_available and adds the value in the message to the flag irm_idle_node_count
(Line 27). The scaler uses this flag later, as seen in Algorithm 9.

• Reactive Scaler: The iCheck iRM communication module calls the reactive scaler after receiving a
Resource Change Message message from iRM. The reactive scaler decodes the message and identifies
the type of the message. If the Resource Change Message informs about the new nodes, the reactive
scaler calls the launch function inside the controller to start the manager instance. In the case of
resource removal, the scaler needs to perform the following set of operations. First, it must get the

89

7 Resource Management in iCheck

number of iCheck nodes that must be returned to iRM. Secondly, the reactive scaler must flag the
appropriate iCheck nodes for removal. After marking the iCheck nodes, the reactive scaler calls
the node removal function in the controller before exiting. Lastly, when the nodes are removed, the
controller informs iRM about the status of the resource change operation.

The reactive scaler algorithm is shown in Listing 9. The scaler has different control flows based on
the type of message received. For the NEW_NODES in Resource Change Message, the scaler will
read hostname, IP address, and node characteristics (number of cores, total memory) (Lines 26 -
27). Add the node information into a new_candidates data structure (Line 28). After getting all new
node information, the launch_manager function is called (Line 29). In the launch_manager function
(Lines 17 - 22), the controller launches managers in every node in new_candidates data structure,
adds the manager information into the controller database, and updates the manager’s status as UP
and is available for agent placement (Line 20).

For the REMOV E_NODES message from iRM (Line 30), the control flow is complicated. Firstly, the
reactive scaler will read the number of nodes node_remove_count that need to be removed (Line 31).
Now the scaler must decide which iCheck nodes (removal_candidates) to be removed. iCheck creates
a removal_candidates list based on the heuristic derived from empirical analysis. Firstly, iCheck
creates a sorted list of currently available iCheck nodes based on the available memory (Line 32). The
larger the available memory, the less the checkpointing action taking place in the node. Secondly,
iCheck creates another sorted list of currently available iCheck nodes based on the agent count. The
smaller the agents, the faster the agent removal process. The scaler will pick node_remove_count
nodes from both lists and perform the intersection. The remaining candidates will be chosen from
the list of available memory. This approach ensures that the iCheck removes the manager nodes
with fewer agents and maximum available memory to avoid the overhead in agent redistribution and
writing data into the parallel file system. These candidates are flagged for removal and are added to
the removal_candidates list (Lines 35 - 37).

The node_removal function is called with removal_candidates list as input (Lines 1 - 15). The
controller will iterate through each node in the list and obtain information about the applications
using these nodes for checkpointing (Lines 3 - 9). For each application, the controller will peruse the
agent information and inform the agent to write its most recently saved checkpoint into the parallel
file system. Once the agents write the data into the parallel file system, the controller will ask the
manager to kill the agents associated with the application (Line 7). The controller will then calculate
new agent distribution for the application. Once all the applications in a node are informed about the
agent change, the controller instructs the manager to remove iCheck-related data and kill the process
(Lines 11 - 13). The controller then marks the manager as unavailable. After killing all of the manager
processes, the scaler informs iRM that the nodes can be removed.

For the APP_INFO message from iRM, the controller will call the adaptation preparation module
adapt_prepare_module (Lines 40 - 42). This module is responsible for calculating new agent dis-
tribution and data redistribution for an application that uses the data distribution service provided by
iCheck.

Both scalers use the common API provided in the communication module to send messages to iRM. The
following section explores the changes made in the Slurm scheduler plugin to support malleability in iCheck.

90

7.3 iCheck and Invasive Resource Manager

7.3.2 iCheck Aware Scheduler

An iCheck-aware job scheduling plugin in iRM was created to enable system-level malleability in iCheck.
The new scheduling plugin supports the following interactions with iCheck:

• iRM can provide additional iCheck nodes as per the resource request from iCheck and availability of
compute resources in iRM. For example, when iCheck runs out of memory in an iCheck node, the
controller can request additional iCheck nodes (compute node) from iRM.

• iRM can reclaim nodes from iCheck. For example, to cater to the resource demands of a high priority
job or to satisfy power requirements.

• iRM can communicate application-specific information to the controller. For example, it can notify the
controller about an impending resource change of an application so that agents can make preparations
for data distribution.

Towards this, a communication module and a scheduler plugin were added to iRM and are explained in detail
below.

7.3.2.1 Communication Extensions

The communication module was added to send and receive control information from the iCheck controller.
The communication module provides an API for iRM to send the Query Message, Resource Change Message,
Response Message, and App Info Message to iCheck. The scheduler plugin sends these messages using the
API sendiCheckInfo(Message Type, Parameter 1, Parameter 2,...). The communication module provides
a backend to receive and process the Status Message, Query Message, Resource Request Message, and
Response Message from the controller. A dedicated communication thread waits to receive messages from
iCheck. Once a message is received, the module will decode the message and, based on the message
type, update the data in iCheck-specific data structures inside the scheduler plugin. For example, Response
Message from the controller about releasing an iCheck node is added to the iCheck data structure. During
the next scheduler pass, the scheduler will iterate through the stored iCheck data and utilize the received
information to make resource management decisions. The different type of messages used by iRM and the
iCheck controller is explained in detail in Section 7.3.1.1.

7.3.2.2 Scheduler Plugin

The iCheck aware scheduler plugin is an extension of ABS and iRS that aids iCheck and schedules malleable
applications using two different scheduling strategies. In the first strategy, the priority is given to the iCheck
system and is defined as iCheck_Aware_Schedule strategy. However, in the second scheduling strategy
iCheck_Aware_Schedule_Favor_App, priority is given to running malleable applications.

91

7 Resource Management in iCheck

Algorithm 10. The iCheck aware scheduling function with priority for iCheck system.
1 Function get_ic_node_info:
2 if Message from iCheck == ResourceRequestMessage and Priority == HIGH then
3 read ic_num_nodes requested
4 while ic_num_nodes > 0 and idle nodes are available do
5 get idle_node_name, idle_node_in f o
6 call function sendiCheckIn f o(ResourceChangeMessage, idle_node_in f o, ...)
7 decrement ic_num_nodes and mark idle_node_name as busy
8 end
9 if ic_num_nodes > 0 then

10 set flag get_ic_node to HIGH
11 end
12 end
13 else if Message from iCheck == ResourceRequestMessage and Priority == LOW then
14 set flag get_ic_node to LOW
15 return
16 Function iCheck_Aware_Schedule:
17 Get workload and resource information
18 if no malleable job is adapting and number of running malleable jobs > 0 then
19 call the function get_ic_node_in f o
20 if strategy == f avor_iCheck and get_ic_node == HIGH then
21 for each running malleable job j in the job queue do
22 calculate the MTCT metric
23 end
24 Pick ic_num_nodes jobs with lowest MTCT metric and not in final phase end in

candidates
25 for each running malleable job j in candidates and ic_num_nodes ! = 0 do
26 Read the constraints of job j.
27 Calculate new resource distribution as num_nodes� ic_num_nodes
28 redistribute the job j.
29 get the new idle_node_name, idle_node_in f o
30 call function sendiCheckIn f o(ResourceChangeMessage, idle_node_in f o, ...)
31 mark idle_node_name as busy
32 decrement ic_num_nodes
33 end
34 end
35 if get_ic_node == LOW and idle nodes available then
36 while ic_num_nodes > 0 and idle nodes are available do
37 get idle_node_name, idle_node_in f o
38 call function sendiCheckIn f o(ResourceChangeMessage, idle_node_in f o, ...)
39 mark idle_node_name as busy
40 decrement ic_num_nodes
41 end
42 end
43 end
44 return

92

7.3 iCheck and Invasive Resource Manager

• iCheck_Aware_Schedule: In this strategy, the priority is given to the iCheck system where the Re-
source Request Message requests from the controller are handled immediately and catered to during
every scheduler pass. The scheduler reconfigures the running application to free up resources to give
nodes to iCheck. The potential candidate is selected based on the application performance, and re-
sources are removed from the worst-performing application. The MTCT metric defined in Section 4.1 is
utilized for analyzing application performance. The advantage of this strategy is based on the assump-
tion that the time taken to write into PFS has a considerable impact on an application’s performance
which can be reduced using RDMA-based checkpointing by delivering additional nodes to iCheck
when necessary.

This strategy’s algorithm can be seen in Listing 10 and works as follows. Initially, the scheduler will
obtain workload information and analyze the current system state (Line 17). When malleable applica-
tions are running and no current adaptations are happening, the scheduler will check for any messages
from iCheck in iCheck-related data structures (Line 19). Whenever a new message arrives, the com-
munication module processes it and updates the information in iCheck-related data structures so the
scheduler can utilize it. Since iCheck has higher priority in this strategy, the scheduler will immedi-
ately analyze the messages, and if there is a resource request from the controller and the request prior-
ity is high, the scheduler will read the number of nodes requested by iCheck (Line 3). The scheduler
will check for available idle nodes immediately (Line 5). In case of availability, the scheduler will send
this information to iCheck using the sendiCheckIn f o(ResourceChangeMessage, idle_node_in f o, ...)
message (Line 6). The scheduler then marks the idle nodes as busy (Line 7). If enough idle nodes are
absent, the scheduler will calculate the nodes needed (ic_num_nodes) and set the flag get_ic_node to
HIGH (Line 10). For a resource request with LOW priority, the scheduler marks the nodes needed and
sets the flag get_ic_node to LOW (Lines 13 -14).

Then, the scheduler will iterate through the malleable applications and pick the candidates from which
to take nodes to satisfy the iCheck’s requirement of new ic_num_nodes nodes. These candidates are
selected based on the MTCT metric (Line 22) and the time remaining in the job execution (Line 24). For
example, if a worst-performing malleable job is ending, there is no benefit in taking resources away
from that job. The runtime system takes the ic_num_nodes resources from malleable applications by
reconfiguring the running applications (Lines 25 - 32). Then the newly obtained node information
is passed to iCheck using the communication API (Line 30). The nodes are marked as busy by
the scheduler. The scheduler does not rearrange the running malleable applications for LOW priority
resource requests. Instead, if idle nodes are available at the scheduler pass’s end, the requested nodes
are provided to iCheck (Lines 35 - 40).

• iCheck_Aware_Schedule_Favor_App: In this strategy, the priority is given to the running malleable
applications where the Resource Request Message requests from the controller are handled at the
end of a scheduler pass and catered only if there are free resources. The scheduler reconfigures the
running application and asks iCheck to free up resources for running applications or cater to the
applications in the job queue. The potential candidate is picked by iCheck selected based on the
available memory and agents, as discussed in Section 7.3.1.2. This strategy always prioritizes running
malleable applications, and the only guarantee from iRM is that iCheck will always have at least one
active node.

This strategy can be seen in Algorithm 11 and works as follows. Initially, the scheduler will obtain
workload information and analyze the current system state. When malleable applications are running
and no current adaptations are happening, the scheduler will check for any messages from iCheck in
iCheck-related data structures (Line 23). As explained in Algorithm 10, iCheck-related data structures
will be filled with information for the scheduler to utilize during the beginning of the scheduler pass.

93

7 Resource Management in iCheck

Since applications have a higher priority in this strategy, the scheduler will only set the get_ic_node
flag with HIGH for the resource request from the iCheck controller with priority HIGH instead of
assigning new nodes immediately (Lines 3 - 6 in Algorithm 11). Additionally, the scheduler will
discard the lower-priority resource requests in the get_ic_node_in f o function.

After that, the runtime system can perform the runtime reconfiguration of malleable applications
based on the performance-aware strategy (in Section 4.2.3) or power-aware strategy(in Section 5.2)
(Line 26). Before calculating the new resource configuration, the scheduler will call the get_ic_node
function (Lines 8 - 17) to get the iCheck node count that can be freed. As seen in the get_ic_node(),
the potential candidate count is calculated based on the available memory in the iCheck nodes (Lines
12 - 15). For this, iRM uses the information about the iCheck system obtained from the StatusMessage
(See Section 7.3.1.1). The potential candidate count from iCheck is also analyzed for calculating the
new resource distribution (Line 29). Additionally, the scheduler parse through the waiting job queue
and matches a job with a node count similar to the potential icheck node count. The exact match of
node count is unnecessary since iRM supports job moldability.

Additionally, the scheduler will check for available idle nodes at the end of the scheduler pass (Line
34). If the get_ic_node flag with HIGH priority is set and idle nodes are available, the scheduler will
send the idle node information to iCheck using the sendiCheckIn f o(...) call (Line 36). The scheduler
then marks the idle nodes as busy (Line 37). If enough idle nodes are absent, the scheduler will only
provide the available ones and discard the remaining request (Line 38). This means only the available
idle nodes are sent to iCheck and iRM will not keep track of the requests in the later scheduler pass.

There are benefits associated with malleable applications and jobs waiting associated with this strat-
egy. Favoring malleable applications provides additional nodes to reward higher MTCT applications.
iRM can also use the ic_candidate_count to launch new applications, thereby improving the average
job waiting time.

7.3.3 Controller-iRM-Application Interaction

A bird’s eye view of interactions happening between components of iCheck, iRM and an application is de-
picted in Figure 7.1. The application contacts iRM with performance metrics using iMPI and Slurm daemons.
In addition, the application also contacts iCheck for availing checkpointing services. Meanwhile, iRM con-
tacts iCheck with resource information (messages, redistribution requests) and iRM contacts application with
resource redistribution information. Similarly, iCheck contacts iRM for resource requests and applications
for passing checkpointing information.

As seen in Figure 7.1, communication between two components is independent of the other. iCheck does
not need to account for the interactions between iRM and the application. Similarly, iRM can remain ag-
nostic to the communication between the application and iCheck. Each interaction is independent among
these components. iCheck and iRM interact with each other regarding the malleability part. Even though
the interactions between iCheck and iRM are transparent to the third component application, the result of
communication will be visible across different components. For example, the application’s resources get
redistributed upon a successful interaction between iRM and iCheck.

94

7.3 iCheck and Invasive Resource Manager

Algorithm 11. The iCheck aware scheduling function with priority for malleable application.
1 Function get_ic_node_info:
2 Read the iCheck related information
3 if Message from iCheck == ResourceRequestMessage and Priority == HIGH then
4 read ic_num_nodes requested
5 set flag get_ic_node to HIGH
6 end
7 return
8 Function get_ic_node:
9 set ic_candidate_count as 0

10 if get_ic_node ! = HIGH then
11 Read the iCheck node related information in ic_node_list
12 for each iCheck node k in ic_node_list do
13 add to ic_candidate with nodes above 90% available memory
14 increment ic_candidate_count
15 end
16 end
17 return ic_candidate_count
18 return
19 Function iCheck_Aware_Schedule_Favor_App:
20 Get workload and resource information
21 Read the iCheck related information
22 if no malleable job is adapting and number of running malleable jobs > 0 then
23 call the function get_ic_node_in f o
24 if strategy == f avor_app then
25 call function get_ic_node and get potential ic_candidate_count
26 Find new resource distribution based on per f _aware or power_aware strategies
27 perform new resource redistribution
28 for each waiting job j in priority order do
29 Compute job requirements of j and compare with remaining ic_candidate_count
30 end
31 Call sendiCheckIn f o(ResourceChangeMessage, ic_candidate_count)
32 Pick new job from the waiting Queue when resources are available
33 end
34 if get_ic_node == HIGH and idle nodes available then
35 get idle_node_name, idle_node_in f o
36 call function sendiCheckIn f o(ResourceChangeMessage, idle_node_in f o, ...)
37 mark idle_node_name as busy
38 reset get_ic_node
39 end
40 end
41 return

95

7 Resource Management in iCheck

Figure 7.1: High level interaction overview of iCheck, iRM, and application from an iCheck Perspective.

7.4 Data Distribution in iCheck

The previous sections provided information about the application-level and system-level dynamism for
checkpointing in iCheck using malleable applications. In addition to providing checkpointing services, a
checkpointing system can also be regarded as a data distribution service for malleable applications. iCheck
demonstrates this by providing data redistribution services to applications developed using iMPI. Below
subsections cover different aspects of the data distribution framework provided by iCheck.

7.4.1 API for Data Redistribution

A proper API is needed for the application to benefit from the data distribution service. Towards that, iCheck
proposes a set of special API calls based on the characteristics of the available data objects for defining and
utilizing the dynamic data distribution feature in iCheck. A data object can be a variable, constant, data
structure, structure object, or graph in iCheck. When an application is restarted or reconfigured with a
different number of processes, the data object in an application can be 1 local to a process (For example,
the size of a communicator in MPI application), 2 replicated among the processes (For example, the loop
iterator variable), or 3 distributed among the processes (For example, a 2D array distributed among N
processes). These data objects should be restored or redistributed without violating the correctness of the
application, and special APIs are needed to define data objects and label their characteristics. In a nutshell,
the data objects in a distributed memory application can be categorized as replicated or distributed based on
the characteristics of the data.

7.4.1.1 Replicated Data

Replicated data objects are local to each process, and their properties will be the same among all the partic-
ipating processes. However, the data values may be different. For example, a loop control variable i of type
integer is replicated in all the processes but with different values. Meanwhile, distributed data objects are
scattered across all processes. For example, an array A of size M can be distributed among N processes with
different sizes (For example, when M is not completely divisible by N) in every process. Combining all the
processes’ elements will constitute the complete data object A. In contrast, each instance is a complete data
object for a replicated variable.

96

7.4 Data Distribution in iCheck

Replicated objects can be volatile or constant. The values of variables can be different in different processes
for volatile objects. For example, a variable for storing the value of an MPI rank is volatile. However,
values remain the same for constant objects and can hence be copied to the new processes without any
modification during resource changes. icheck_add_adapt() is the new API provided by iCheck to simplify
the checkpointing in dynamic processes. It is an extension of icheck_add with special features.

• icheck_add_adapt("LABEL",..., attribute) – The attribute parameter describe the data objects
characteristics. The attributes provided by iCheck are CONSTANT, SIZE, RANK, DEFAULT, VOLATILE.

CONSTANT can be used if the value is the same among all the processes and can be copied to new processes
whenever there is a restart with a different number of processes. However, a constant value in a standard
checkpointing system can be volatile in a malleable checkpointing system. For example, the process size is
used to divide the grid for efficient load balancing in a typical scientific application scenario. It is trivial for
a standard checkpointing system to restore these variables since it is expected to remain the same during the
entire execution time for a rigid application. However, in case of restart with a new number of processes or
resource change during the application execution, they should be recalculated if these variables cannot be
restored as it is. In such a scenario, attribute VOLATILE can be used.

It is trivial to identify some of the most commonly used volatile variables in a malleable application. A
simple example is the number of processes in a distributed memory application. If an application was
started with process count N (saved in a variable called num_procs) and is saved in the checkpoint using
icheck_add. If the application is restarted/reconfigured with a new process count M, then it must be de-
sirable that the value of the variable num_procs becomes M. In such a scenario, the attribute provided by
iCheck can be used to label the variable as volatile. SIZE, RANK, DEFAULT, VOLATILE, RECALC are some
of the attributes in iCheck.

• icheck_add_adapt("label",..., num_procs, SIZE) – If called with SIZE attribute, iCheck will
restore the variable with the new application size.

• icheck_add_adapt("label",..., rank, RANK) – If called with RANK attribute, iCheck will restore
the variable with the current rank.

• icheck_add_adapt("label",..., rank, DEFAULT, default_value) – If the relation between the
process and data object is not a simple mapping, DEFAULT attribute along with de f ault_value values
can be provided to use it during the restore operation.

• icheck_add_adapt("label",..., rank, DEFAULT, default_value, JOINING) – Here, the param-
eter de f ault_value value will only be used for the newly joining processes. All the existing processes
use the most recently stored values.

A data object can be dependent on other data objects in complex scenarios. For example, a variable
array_length will be associated with a particular array. The attribute VOLATILE can be used in such a
scenario. During the reconfiguration, iCheck needs to recalculate the new value for this data object. Since
these values are application dependent, the application should provide the new mapping needed to calculate
the value. In that case, iCheck can ask the user to provide a Recalculate Function. As a result, whenever
a particular data object is restored, this function will be called immediately before restoring the value from
the checkpoint.

For example,

• icheck_add_adapt("label",...,variable,VOLATILE,recalc_func,args recalc_func) – During
the resource reconfiguration/restart the recalc_ f unc(args) will be called with the provided arguments.

97

7 Resource Management in iCheck

7.4.1.2 Distributed Data

Data distribution plays a vital role in distributed memory applications. Data is often distributed accord-
ing to the topology (virtual or physical) and application type. Restoring such distributed data is a trivial
process for the existing checkpointing system. Data associated with the process can be restored, and the
non-malleable application can be restarted successfully. However, restarting with a different number of
processes is complicated with distributed data. Tackling such an issue is critical for a resource-aware check-
pointing system. Consider a simple 2D array where the application distributes the data along a grid with
dimension NxN, where N is the number of processes. If N_new is the new number of processes during the
reconfiguration/restart of the application, the saved NxN data should be gathered and redistributed across
the new N_new processes. This adds an extra layer of complexity in the checkpointing system. Distributed
data in an application can either be structured or unstructured. The below paragraphs provide an overview
of the different characteristics of distributed data.

Structured data: The data is distributed based on some predefined mapping for the structured data. For
example, suppose the data is distributed as CYLIC or BLOCK across the processes. In that case, the restart
with a new number of processes can be handled with less complexity. iCheck should only follow the same
data distribution scheme and spread the data among all the processes accordingly. In other words, it should
use the same data partitioning scheme. Hence, iCheck must know the partitioning scheme for a successful
application restart. Towards that, iCheck provides two special functions icheck_add_processor_mapping
and icheck_add_adapt_global. The former can be used by application developers to provide partitioning
schemes needed for a successful restart. The latter can be used to pass the partitioning schemes created as
part of icheck_add_processor_mapping to the iCheck system.

Multiple partitioning schemes can be predefined by programmers for the potential resource configurations
that might be encountered during an application restart/reconfiguration, and iCheck will pick the suitable
scheme during the restart based on the new resource configuration.

• icheck_add_processor_mapping(num_procs,dim,...,partitioning_array) – In this case, if the
application is restarted with a process number num_procs, then the data should be distributed as
dim[0]⇤dim[1]. This information is added to an iCheck structure called partitioning_array. Partition-
ing array is a two dimensional array specific to iCheck where it stores information regarding the num-
ber of processes, dimensions of the topology in which the data should be distributed. This array is pop-
ulated automatically by iCheck based on the values given in the icheck_add_processor_mapping()
call. Multiple processor mapping can be added similarly to the same partitioning_array by repeatedly
calling icheck_add_processor_mapping() with different parameters. This partitioning array will be
passed as an argument to the function icheck_add_adapt_global.

• icheck_add_adapt_global(label,array,...,PREDEFINED,partitioning_array) – This call will
add array along with metadata mentioned in partitioning_array to the iCheck system. During
restart, the provided partitioning scheme will be used to redistribute the data. PREDEFINED attributes
specify that the partitioning array contains the processor mapping for redistribution.

The following example can be used to specify multiple partitioning schemes for a data object in an applica-
tion that can be redistributed with process sizes 8 and 16 for a grid with 1600 elements across dimensions
2X4 (where dim[0] is 2 and dim[1] is 4 for the first call) and 4X4 (where dim[0] is 4 and dim[1] is 4 for the
second call):

• icheck_add_processor_mapping(8,dim,1600,pmap_array)

• icheck_add_processor_mapping(16,dim,1600,pmap_array)

After adding the partitioning scheme to pmap_array, use it in the special add API Call:

98

7.4 Data Distribution in iCheck

• icheck_add_adapt_global("array",local_array,type,size,PREDEFINED, pmap_ array)

To simplify the data redistribution for cyclic and block distribution in 1D arrays, keywords CYCLIC and
BLOCK provided by iCheck can be availed.

• icheck_add_adapt_global("array", array, size, CYCLIC, width) – width specifies the distri-
bution size. For a width of 1 with CYCLIC distribution, the data is distributed across participating
processes cyclically with a size of 1.

• icheck_add_adapt_global("array", array, size, BLOCK, width) – For a width of width using
BLOCK distribution, the data is distributed across participating processes in a block with a block size of
width.

Unstructured data: If the data distribution cannot be defined using simple partitioning schemes, the appli-
cation must redistribute the data after a restart. For example, in a master worker model application, iCheck
can provide the complete data of the data object (e.g., an unstructured distributed array) checkpointed in the
system to a specified process. MANUAL attribute can be used inside icheck_add_adapt_global() to inform
iCheck about the unstructured data, which is explained below.

• icheck_add_adapt_global(label,array, size, MANUAL, ALL, restart_function, args, src)
– The iCheck library will transfer the complete data into an array and pass it to the restart_function
in the process number specified using the parameter src. All of the participating processes in the ap-
plication will call restart_function, and only the process with rank src has the checkpointed data
inside array. Using that, the application can manually redistribute the data using restart_function.

Using the above special variants of icheck_add routines, the metadata regarding the checkpointed data can
be passed to the iCheck system. During the restart, iCheck will utilise this metadata to restore the correct
values into the provided data structures when the function icheck_restore is called. Even though this is
sufficient for redistributing the data during resource adaptation in malleable applications, another API call
icheck_redistribute is provided to avoid confusion. This API call is analogous to restore and can be used
after the MPI_Comm_adapt_commit function call.

• icheck_redistribute("label",data,...,size) – In this function call, iCheck will use the meta-
data associated with label to redistribute and restore the checkpointed data into the data structure
data.

7.4.2 Pseudocode for Data Distribution

Listing 7.2 presents the pseudocode of a malleable application using iMPI that employs the special APIs
from iCheck for data distribution. The control flow of the iMPI application in the context of iCheck is
described in Listing 7.1. Here, the explanation is only provided in the context of data distribution. The
newly introduced API calls can be seen in lines 7, 17 and 29 of Listing 7.2. icheck_add_adapt (Line 7)
adds the metadata for data object data into iCheck using the label dis_data. To finalise a resource change in
iMPI application, the joining and preexisting processes call the MPI_Comm_adapt_commit function (Lines 16
and 28). Immediately following the resource change, the new data redistribution API icheck_redistribute
is called (Line 17 and Line 29). It is a collective operation, and all processes should call this operation to
perform the data distribution. During this call,

• the iCheck library calls icheck_probe_agents internally to obtain the new agent reconfiguration
based on the agent selection strategy explained in Algorithm 7.

• the iCheck library will transfer the data from the agents into the preexisting processes. After complete
data is available inside the library, iCheck redistributes it among the new set of processes.

99

7 Resource Management in iCheck

Nevertheless, the process of agent change and data redistribution remains transparent to the application.
After this call, the data contains the checkpointed data associated with each process, and the application
can resume the execution. Nevertheless, if no resource redistribution happens and application is restarted
with a different number of processes, the icheck_restore in Line 10 will redistribute the data based on the
provided metadata. At present, iCheck only supports 1D arrays and simple data redistribution techniques
like block (Line 7) or cyclic during a resource change in an application.

1 #include<icheck.h>
2 int main() {
3 /* Initialisation part of the application */
4 MPI_Init_adapt(..., type) /* iMPI is intialised */
5 float data[SIZE];
6 icheck_init(..., type);
7 icheck_add_adapt("dis_data",data,...,width, BLOCK);
8 if(checkpoint_available && no_adapt){
9 icheck_restart();

10 icheck_restore("dis_data",data,..,new_size);
11 }
12 if (type == joining) {
13 /* Start of adaptation window in joining processes */
14 MPI_Comm_adapt_begin(...);
15 /* Get metadata from preexisting processes, perform data redistribution */
16 MPI_Comm_adapt_commit();
17 icheck_redistribute("dis_data",data,...,new_size);
18 }
19 /* Iterate over compute intensive phase of the application */
20

21 while (true){
22 /* iMPI processes must call probe periodically */
23 MPI_Probe_adapt(resource_change,...);
24 if (resource_change) {
25 /* Start of adaptation window in preexisting processes */
26 MPI_Comm_adapt_begin(...);
27 /* Pass metadata to joining processes, Perform Data distribution. */
28 MPI_Comm_adapt_commit();
29 icheck_redistribute("dis_data",data,...,new_size);
30 }
31 /* Compute part of the application */
32 /* Read/Write data[]*/
33 if(iteration%100)
34 icheck_commit();
35 /* Check for agent change*/
36 if(iteration%1000)
37 icheck_probe_agents();
38 }
39 icheck_finalize(...);
40 /* Finalisation part of the application */
41 MPI_Finalize();
42 }
43

Listing 7.2: Psuedocode of a malleable application using iCheck data distribution API [77].

100

7.4 Data Distribution in iCheck

Figure 7.2: State transition diagram of iCheck library (High level overview).

7.4.3 State Diagram

The state transition diagram of iCheck library can be seen in Figure 7.2. If no checkpointing operation is
performed, the iCheck library will be in an IDLE state. When an application starts, the library will contact the
iCheck core and initialize the checkpointing services for the application, transitioning into a CONF state from
IDLE. Whenever an application writes checkpoints, iCheck will go from IDLE to CP state (or store checkpoint
state) and transfer the checkpoints to a remote node in the iCheck system. After the checkpoint operation,
iCheck will return to the IDLE state. During a resource change, iCheck will go into data redistribution
REDIS state and performs the redistribution based on the application requirements (It is necessary that the
application should checkpoint its data immediately before the resource adaptation to ensure that the most
recent value of the data will be redistributed after a resource change). After that, the state of the iCheck
library will change from REDIS to IDLE. During an application restart, iCheck must re-enter the CONF state,
later transitioning into the checkpoint RESTORE state (restore checkpoint operation happens). Based on the
provided mapping, iCheck library redistributes the data (go into REDIS state) or transfers the checkpoint
data to individual process. Following that, iCheck will be in the IDLE state. The application will continue
execution whenever iCheck library is in IDLE state. During the application end, iCheck will go into the CONF
state for finalization.

7.4.4 Resource Malleability Using Checkpointing

By using the data distribution API from iCheck, it can be demonstrated that the checkpointing system can
bring Malleability to Non-Malleable Applications. Any resource manager paired with an adaptive check-
pointing system that supports data redistribution can be considered a malleable infrastructure. For example,
the application can specify the data distribution scheme for the restart with a new number of resources. The
checkpointing system can use this information to inform the resource manager about the flexibility of the
application to be restarted with a different number of resources. Using this information, the resource man-
ager can kill the application and relaunch the application with different resources. This gives flexibility to
the resource manager to reorganise the application to improve the system metrics.

101

8
Evaluation Setup

This chapter gives an overview of the evaluation setup used for validating and verifying the contributions
mentioned in Chapters 4 - 7. This chapter is divided into two sections. The first section describes the
system setup used to evaluate the contributions. It also explains how it was made possible to run a complete
Slurm resource manager inside a Slurm job. The second section discusses the applications used to assess
the contributions of this work and the setup used to evaluate the work. The applications used for adaptive
batch scheduling (Chapter 4), power corridor management (Chapter (5)), and iCheck (Chapters 6 and 7) are
described in the order in which it is introduced in this work.

8.1 System Setup

The software and plugins developed as part of this work were tested on the supercomputing infrastructure
(SuperMUC) hosted at Leibniz-Rechenzentrum (LRZ), Germany. During the proposed work, two differ-
ent models of SuperMUC were hosted at LRZ. The first model, SuperMUC Phase 2 [211], was replaced
by an advanced model named SuperMUC Next Generation (SuperMUC-NG [56]). The evaluations were
performed on SuperMUC Phase 2 and SuperMUC-NG based on the chronology of the work.

8.1.1 SuperMUC Phase 2

The SuperMUC Phase 2 was a powerful PetaScale System composed of six islands of Lenovo’s NeXtScale
nx360M5 WCT systems [212], with each island hosting 512 nodes. Each node in this system was equipped
with two Intel Haswell Xeon E5-2697v3 processors (28 cores per processor) [213], equipped with 64 GB
of RAM. The nodes were interconnected using an Infiniband FDR14 network, featuring a non-blocking
intra-island topology and a pruned 4 : 1 inter-island tree topology. Altogether, the system had 86,016 cores
and 194 TB of RAM, delivering a performance of 2.81 PetaFlop/s. Storage was supported by a parallel
filesystem based on IBM’s GPFS [214], providing 15 PB of space. The system operated on SUSE Linux
Enterprise Edition 11 and used IBM’s LoadLeveler [52] for job scheduling and batch processing.

102

8.1 System Setup

8.1.2 SuperMUC NG

SuperMUC-NG [215] is a PetaScale System featuring 6,480 compute nodes distributed across eight islands,
amounting to 311,040 compute cores, all based on the Intel Skylake-SP architecture [216]. This setup en-
ables a peak performance of 26.9 PetaFlop/s. Each compute node in the system includes two sockets, each
equipped with an Intel Xeon Platinum 8174 processor [217], totalling 24 cores per processor and 96 GB of
RAM per node. The network connectivity among compute nodes is facilitated by a high-bandwidth Intel
OmniPath [207] Interconnect with a fat-tree topology, ensuring efficient data transfers. The core frequency
for each processor is maintained at a nominal 3.10 GHz. For workload management, SuperMUC-NG em-
ploys Slurm [50]. Additionally, features like Hyper-Threading and Turbo Boost are deactivated to maintain
consistent performance metrics across the system.

8.1.3 Running RJMS inside RJMS

To evaluate the performance and power-aware batch scheduling strategies proposed in this work, a virtual
cluster is created inside the job allocation of the SuperMUC system with the modified SLURM as RJMS on
the compute nodes (virtual cluster). Adaptive job management system is bootstrapped on the virtual cluster
and the jobs submitted inside the virtual cluster are managed by the adaptive job management system.
However, it is not a trivial use case and is not easy to achieve.

As mentioned in Chapter 7.4.4, supercomputing centres employ RJMS software for efficiently managing the
resources and job submissions. Users will provide their job requirements (For example, number of nodes,
job duration) and the application information (For example, application path, input arguments) to run. When
resources are available, and the job requirements can be met, the RJMS system allocates the resources for
the job and launches the application specified in the job script. Even though this is a standard operating
procedure in every supercomputing centre, it is unsuitable for evaluating resource managers (instead of
applications). There are no infrastructure deployment tools (For example, Ansible [218], Terraform [219],
Kubernetes [220]) available in these centres to deploy and test the resource management infrastructure with
ease for normal users. Nevertheless, these centres only provide user-level access, so users cannot install
these tools. Hence, it is not trivial, and the resource managers are tested using simulators [221].

However, [102] provides techniques to test the infrastructure by deploying Slurm (iRM specified in Chapter 2)
inside a load leveler. This technique can be employed to test the infrastructure on SuperMUC Phase 2 since
iRM is an extension of Slurm, and SuperMUC Phase 2 uses the load leveler as RJMS. However, applying
this technique to SuperMUC-NG is impossible since both the SuperMUC-NG and the proposed work (ABS)
use Slurm as RJMS. As a result, evaluation becomes challenging because the initial job script should be
submitted to the default Slurm in SuperMUC-NG. When the job allocations are granted, the private version
of the slurm should be booted up using the job script. The unavailability of infrastructure deployment tools
(For example, Ansible [218], Terraform [219], Kubernetes [220]) means the standard bash scripts should be
used to boot up the virtual Slurm cluster. Once the test Slurm is up and running, a new job script should
be used to submit the job to the test Slurm. It is particularly challenging because the binary names (For
example, sbatch, srun) are the same for both Slurms, and both Slurms use the same set of environmental
variables (For example, SLURM_JOB_ID, SLURM_TASKS_PER_NODE).

Additionally, Slurm uses an authentication service called MUNGE (MUNGE Uid ’N’ Gid Emporium) [222]
for authenticating the nodes. It authenticates the UID and GID of processes (remote or local) within a group
of hosts having common users and groups. A security realm is formed using these hosts and is characterized
by a common cryptographic key. Hence, a new MUNGE should be explicitly used for the test Slurm.

103

8 Evaluation Setup

Furthermore, the new dedicated MUNGE must be patched to support the test Slurm. Similarly, Slurm
configuration and defaults must be modified to avoid conflict with the MUNGE used in the default Slurm.
In addition, all of these changes should be made in the context of a user space (no super-user privileges).

Nevertheless, the proposed work developed a strategy to run one slurm cluster inside another slurm within
the constraints of a job script. Towards that, a set of scripts was developed to automate the process and
guidelines for installing and deploying Slurm and MUNGE were identified. It is a cost-effective way of
testing resource managers on production-level systems without affecting their working and functionality.
As a result, dedicating a separate smaller cluster to test the resource managers is unnecessary. After the end
of the job execution, default Slurm can reclaim the resources as it does for any other jobs.

8.2 Application Setup

Eight different applications were used to evaluate the performance and functional aspects of the proposed
work. Each contribution used a subset of these eight applications to analyse the system’s performance.
The applications used for analysing the adaptive batch scheduling and power corridor management systems
were not developed as part of this work. However, the applications used for the checkpointing analysis were
extensively modified (or were entirely developed from scratch) as part of this work to utilise iCheck. More
details about the applications can be seen in the following subsections.

8.2.1 Adaptive Batch Scheduling

The proposed scheduling strategy was evaluated on SuperMUC-NG [215]. The performance and effective-
ness of the strategy were analysed using the modified Effective System Performance (ESP) benchmark [223].
This benchmark is used to evaluate the performance of RJMS software and is an effective tool for compara-
tive analysis of various scheduling strategies [115, 224]. This technique consists of 230 jobs of 14 different
types, each running the same synthetic application with a unique execution time. Table 9.1 shows the job
types, instance counts, fraction of total system size, and target runtimes. In the evaluation scheme employed
in this work, the synthetic application is replaced with a malleable tsunami simulation [225] application.
This simulation was modelled using the 2-D shallow water wave equation and uses iMPI for parallelism.
The Tsunami simulation is a representative case of a real-world scientific application developed using the
sam(oa)2 framework for dynamically adaptive meshes. At every simulation time step, the framework en-
sures that grid refinement and load are balancing taking place.

8.2.2 Power Corridor Management

SuperMUC Phase 2 [211] was leveraged to evaluate the proposed power corridor management (pcm) in-
frastructure and was executed as a standard Load Leveler job. The tests for forecasting and upper power
corridor enforcement on pcm infrastructure was evaluated on 32 nodes (896 processes) while the remaining
analysis were performed on 16 nodes (448 processes). Three iMPI applications were used to evaluate the
infrastructure. They are

1. Heat Simulation: This application simulates the heat transfer in a metal plate. The material in this
code is divided into a grid of cells, and heat is applied to the borders of the 2D plane. Through the
Laplace equation [226], the transfer of heat from one grid point to another over time is determined.
To solve this equation for heat transfer, the Jacobi iterative [227] method is utilised. This method

104

8.2 Application Setup

1 cp_size = 100000
2 cp_type = float
3 cp_interval = 10 # in seconds
4 cp_count = 1000
5 cp_mpiio = true
6 enable_icheck = false
7 fault_inject = 10 # in seconds
8 probe_interval = 5 # in seconds
9 is_invasive = true

Listing 8.1: The configuration file for synthetic benchmark application.

involves continuously refining the solution until a stable solution is obtained or a fixed number of
steps have been completed.

2. LU decomposition: LU decomposition is a widely used technique for solving linear systems and
finding inverse matrices [228]. It is deemed a more efficient approach for solving linear systems with
the repeated left-hand side, such as when solving the equation Ax = b with different values of b for
the same A. In this technique, matrix A is decomposed into two separate matrices, L and U , where L
is a lower triangular matrix, and U is an upper triangular matrix. This decomposition allows for the
efficient solution of linear systems, as it reduces the problem’s computational complexity.

3. Pi calculation: This distributed application calculates the value of Pi using the Leibniz formula [229].
The Leibniz formula is a popular method for calculating the value of Pi using an infinite series. While
the formula is straightforward, it requires a large number of iterations to produce a low-precision value
of Pi.

The power-aware scheduler was evaluated on SuperMUC-NG [215] using the applications Heat Simulation
and Pi calculation.

8.2.3 iCheck – Performance and Resource Adaptivity Analysis

The analysis of the iCheck system is performed on the SuperMUC-NG [56]. It is tested using the below
four standard MPI applications:

1. ls1 mardyn [230]: The ls1 mardyn is a highly scalable molecular dynamics simulation code optimised
for massively parallel execution on high-performance computing systems and allows application of
pair potentials to length and time scales. In addition to dynamic load balancing schemes, it supports
multicenter rigid potential models based on Lennard-Jones sites, point charges, and higher-order po-
larities.

2. LULESH [231]: Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics, or LULESH, is
a proxy application representing a hydrocode. The application finds the solution to the hydrodynamics
equations by the approximation technique. The spatial problem domain is partitioned into a collection
of volumetric elements using the concept of unstructured hex mesh.

3. Synthetic Benchmark: It is a synthetic application that can checkpoint the data of a prescribed size
(checkpoint size) in the provided intervals (checkpoint interval). The values for size and interval can
be provided before the application launch via the configuration file (Listing 8.1). In addition, faults
can be injected into the application by specifying the duration after which the application should be
killed in the configuration file.

105

8 Evaluation Setup

4. Heat Simulation: A non iMPI version of the heat simulation code introduced in the above section is
used (See section 8.2.2).

iCheck support is added to ls1 mardyn, LULESH, and heat simulation codes. The synthetic benchmark
application with iCheck and MPI-IO support was also created as part of the evaluation process. The ls1
mardyn has an in-house MPI-IO-based application-level checkpointing implementation and is used as a
basis for comparing with iCheck. Furthermore, extensive iCheck library overhead analysis, dynamic agent
evaluations, and comparison with MPI-IO in the ls1 mardyn and synthetic benchmark application were also
performed. LULESH and the heat simulation application were used along with ls1 mardyn and synthetic
application to demonstrate the adaptive nature of iCheck.

1 #include<icheck.h>
2 int main() {
3 MPI_Init(NULL, NULL);
4 void *data;
5 /* Read checkpoint size, intervals etc from config file */
6 read_config();
7 icheck_init(argv[1], "testApp", MPI_COMM_WORLD, status);
8 /* Declare datastructure with size and type from the configuration file */
9 data = (config_file_type*)malloc(config_file_size);

10 icheck_add("Array", data, config_file_size, config_file_type);
11 if(is_checkpoint_available) {
12 icheck_restart();
13 icheck_restore("Array",data,config_file_size);
14 }
15 for(i = 0; i<config_file_count; i++) {
16 /* Modify the array data[]*/
17 /* Perform checkpointing on the provided intervals */
18 if(time_elapsed_last_cp > config_file_interval) {
19 icheck_commit();
20 /* Perform MPI-IO based checkpointing if enabled in config file */
21 if (config_mpiio_true)
22 checkpoint_mpiio();
23 }
24 /* Kill the application after the specified time period */
25 if(time_elapsed_app_begin > config_file_fault)
26 exit();
27 /* Check for agent change in specified intervals */
28 if(config_file_probe_interval)
29 icheck_probe_agents(hints);
30 }
31 icheck_finalize(IC_PERSIST);
32 MPI_Finalize();
33 }

Listing 8.2: Pseudocode of a synthetic benchmark using iCheck.

8.2.3.1 Synthetic Application

The pseudocode of the synthetic benchmark can be seen in Listing 8.2. The application will read the con-
figuration parameters (See line 6 in Listing 8.2) from the synthetic benchmark configuration file. Listing
8.1 shows the sample configuration file. The checkpoint configuration file can provide information like

106

8.2 Application Setup

checkpoint type, size, and frequency (See Lines 1-3 in Listing 8.1). In addition, information like whether
to inject fault or enable MPI-IO-based checkpointing for timing analysis can also be provided (See Lines 5-
6 in Listing 8.1). The benchmark supports more options, which are not detailed here due to the brevity.

Based on the type and size provided in the configuration file, the synthetic benchmark allocates memory. It
creates the data structure for storing the checkpoint (See Lines 9 - 10 in Listing 8.2). The checkpoint transfer
(See lines 18 - 19) will be based on the cp_interval specified in the configuration file. The fault injection
(Lines 25 - 26) and check for agent change (Lines 28 - 29) will also be based on the values provided in the
configuration file. Furthermore, the configuration file can turn the MPI-IO-based checkpointing (Lines 32
-22) on or off. In addition, iCheck can be turned off or on using the variable enable_icheck mentioned in
the configuration file. It is not shown in the pseudocode to avoid the complexity of the control flow.

8.2.3.2 Synthetic Malleable Application

The invasive nature of the iCheck system is assessed with a synthetic iMPI application. It is an extension of
the synthetic benchmark described in the above section (Section 8.2.3.1). The configuration parameters re-
main the same for both MPI and iMPI synthetic benchmarks with an additional variable called is_invasive
(See Line 9 in Listing 8.1). The variable is_invasive is exclusive for the iMPI synthetic application, and
if true, the application follows the control flow for the iMPI application; otherwise, it runs as the synthetic
benchmark application defined in section 8.2.3.1.

107

9
Results

This chapter analyses and evaluates the contributions made in this work. The contributions are analysed
using the system setup and applications described in Chapter 8. The four following sections describe the
results of the contributions in the order of the definition of their corresponding chapters (Chapters 4 - 7). The
first section describes the results associated with adaptive batch scheduling, the second section describes the
results of power corridor management contribution, and the third and fourth sections provide the results
regarding the contributions associated with iCheck.

9.1 Adaptive Batch Scheduling

As described in Section 8.2.1, the Effective System Performance (ESP) [223] benchmark was adapted and
extended to evaluate the performance of the proposed adaptive batch scheduling system. The modified
ESP consists of 230 jobs derived from 14 job types running the same Tsunami simulation1 [225] (iMPI)
application with a fixed unique execution time per job. Table 9.1 showcases the workload characteristics of
the modified ESP Benchmark suite. It displays information regarding type of Job, fraction of total system
size, job instance counts, and target runtimes. Furthermore, constraints on the node count for dynamic
resource reconfiguration decisions on each job type (see Section 2.2.1.2) are added to the ESP benchmark to
evaluate the system. The varied target runtimes for each job type (see Table 9.1) are achieved by modifying
the resolution of grid and total simulation time. For the performance evaluation on SuperMUC-NG, 34
compute nodes were utilised to adhere to the ESP benchmark requirements.

The performance of the proposed performance aware scheduling strategy (described in 4.1) is compared with
static backfilling [41] and Favour Previously Started Malleable Applications (FPSMA) first [117] strategies
(See section 4.2.2.1). Backfill scheduling [41] is a technique that allows lower-priority jobs to start if their
expected start time does not delay any higher-priority jobs. The expected start time of pending jobs is
determined based on the expected completion time of running jobs in backfill scheduling. As seen in Section
(4.2.2.1), based on the start times (increasing/decreasing order), jobs are targeted for expansion/reduction in
the FPSMA strategy. Four metrics are used to quantify the performance,

1https://github.com/mohellen/eSamoa

108

9.1 Adaptive Batch Scheduling

Table 9.1: Workload characteristics for the modified ESP Benchmark [223] used in ABS analysis [55].

Job Type Fraction of
System Size Count

Static
Execution

Time [secs]
Constraints

A 0.03125 75 267 -
B 0.06250 9 322 pof2
C 0.50000 3 534 -
D 0.25000 3 616 even
E 0.50000 3 315 -
F 0.06250 9 1846 pof2
G 0.12500 6 1334 even
H 0.15625 6 1067 odd
I 0.03125 24 1432 -
J 0.06250 24 725 pof2
K 0.09375 15 487 -
L 0.12500 36 366 even
M 0.25000 15 187 -
Z 1 2 100 -

1. Makespan: It is the duration between the completion of the last job and the arrival time of the first
one.

2. Average system utilisation: It is a metric representing the proportion of the total system utilised during
the execution of entire workload.

3. Average waiting time: It is the interval between the start time and submission time of all jobs and is
averaged across all of them.

4. Average response time: It is computed as the sum of the waiting time and runtime for all jobs and is
averaged across all of them.

The analysis results for the three strategies with varying mixes of rigid and malleable jobs are illustrated in
Figure 9.1. This figure shows the outcomes for the four metrics discussed earlier across the implemented
strategies. The sequence in which jobs are submitted to ABS in the ESP benchmark is determined using a
pseudo-random generator, with a consistent inter-arrival time of 30 seconds between jobs. This submission
sequence is kept constant across all strategies and scenarios to ensure comparability. For malleable job se-
lection in both the FPSMA and performance-aware strategies, a pseudo-random generator with a fixed seed
is employed, ensuring consistency in job selection across these strategies. The number of nodes allocated
to each malleable job is specified using the --nodes parameter, aligning with the system size. The mini-
mum and maximum number of nodes for each job adhere to the lowest and highest values within the node
constraints provided. For malleable jobs without specific constraints, the node range is set from one to 32.
The metric outcomes for the static backfilling strategy are obtained by running Slurm’s standard backfill
scheduling plugin, which operates with default parameters and does not engage in any job expansion or
reduction operations.

As depicted in Figures 9.1a - 9.1d, the performance-aware scheduling strategy demonstrates improved effi-
ciency with 19.3%, 29.0%, and 26.8% reductions in makespan, average response, and waiting times, respec-
tively, compared to the static backfilling strategy in scenarios with 100% malleable jobs. Compared to the
malleable FPSMA strategy, the metric values obtained for makespan, average response and waiting time are
4.0%, 6.1%, and 2.0% lower for the performance-aware scheduling strategy. Regardless, the performance-
aware strategy outshines the backfilling method in every scenario except when dealing with 10% malleable
jobs. In this particular case, both the FPSMA and performance-aware strategies exhibit higher metric values,

109

9 Results

(a) Makespan (Lower is better). (b) Average system utilization (Higher is better).

(c) Average response time (Lower is better). (d) Average waiting time (Lower is better).

Figure 9.1: Evaluation of the adaptive batch scheduling system [55]

which can be attributed to two key factors: 1 The specific node constraints for malleable jobs as defined in
the ESP benchmark influence the scheduling outcomes. 2 The malleable scheduling strategies, including
both FPSMA and performance-aware, adhere to a First Come, First Served (FCFS) policy, unlike the static
backfilling strategy, which is not bound by FCFS. Consequently, static backfilling can optimize job execu-
tion by choosing jobs that are ready to run immediately, thus efficiently utilizing available resources without
disrupting the queued higher-priority jobs’ resource reservations.

Figure 9.1b showcases a comparison of average system utilisation across the three scheduling strategies. The
data illustrates that the malleable scheduling strategies, both FPSMA and performance-aware, generally sur-
pass the backfilling approach in efficiency across all scenarios, with the exception of the one featuring 10%
malleable jobs. This trend mirrors the observations made for the other three metrics previously discussed.
The figure also reveals that the FPSMA and performance-aware strategies achieve similar levels of aver-
age system utilisation across various scenarios. However, the performance-aware strategy achieves greater
throughput because it makes more efficient decisions for job expansion/reduction based on the current MTCT
ratio, unlike the FPSMA strategy, which bases its decisions on job start times (refer to section 4.2.2.1 for
FPSMA and section 4.2.3 for performance-aware scheduling). Furthermore, it can also be described based
on the characteristics of the tsunami simulation application used in the analysis, which employs AMR [108].
The communication and computational requirements of the application are changed as the simulation under-
goes a periodic grid refinement process. Therefore, a scheduling strategy that employs a heuristic criterion
that takes into account the application specific characteristics results in better performance.

110

9.2 Power Corridor Management

(a) Forecasting the power usage (b) Upper power corridor enforcement

(c) Lower power corridor enforcement (d) Dynamic power corridor enforcement

Figure 9.2: Power Corridor enforcement using the resource reconfiguration among the running malleable
applications [59].

9.2 Power Corridor Management

The initial power corridor management framework was evaluated as a standard Load Leveler job on Super-
MUC Phase 2 [215] and assessed using three iMPI applications: 2D Jacobi heat simulation, LU decompo-
sition, and Pi calculation. On the other hand, the power-aware adaptive batch scheduler’s evaluation was
conducted on SuperMUC-NG using two iMPI applications: 2D Jacobi heat simulation and Pi calculation.
For the initial assessment, the power corridor management infrastructure operated on 32 nodes, equivalent
to 896 processes, to conduct tests on forecasting and enforcement of the upper power corridor. The tests for
dynamic power corridor management were carried out on 16 nodes with a total of 448 processes. This eval-
uation illustrates that managing resources dynamically for running malleable applications can effectively
enforce power corridors in systems subjected to changing power constraints. The initial evaluation results
are detailed in Subsections 9.2.1 - 9.2.3. Meanwhile, the power-aware scheduler was evaluated on 16 nodes
(768 processes) and is described in Subsection 9.2.4.

111

9 Results

9.2.1 Forecasting

As detailed in Section 5.1.4, three different methods (ARIMA, SARIMAX, Holt-Winters) were employed
to forecast the power usage prediction of applications in the power aware analysis. The forecasts gener-
ated by these three models are presented in Figure 9.2a. These models were trained in real-time, and iRM
selected the most accurate one for its forecasting needs. The model’s performance was assessed using the
Mean Absolute Percentage Error (MAPE) [232], a standard metric for quantifying the average error mag-
nitude produced by a model. MAPE is instrumental in understanding the typical deviation of the model’s
predictions. As demonstrated in Figure 9.2a, among the various models, the SARIMA model exhibited the
highest accuracy, making it the preferred choice for iRM in its scheduling and decision-making processes.
Even though the model does not accurately predict the exact power usage at a time, it is adequate for power
corridor management infrastructure since the LP model (as seen in Section 5.1.1) deals with the power usage
bounds. Further, as depicted in Figure 9.2a, the maximum and minimum of the actual time series for the
same interval are identical to the upper and lower power usage during the predicted interval. The power-
aware resource management system utilises the predicted maximum and minimum power values defined in
Section 5.1.4.

9.2.2 Upper and Lower Power Corridor Enforcement

Figure 9.2b and 9.2c demonstrate the effect of dynamic resource reconfiguration of applications on the
system-level power consumption. For the analysis, two applications (App 1 and App 2) were started with
different initial node configurations. App 1 was launched with 12 nodes, and App 2 was launched with
two nodes. The power corridor limit was set as 3000 for the lower limit and 4000 for the upper limit. As
seen from Figure 9.2b, the upper power bound violation occurred with the applications’ start. As a result,
the runtime system decides to perform the resource reconfiguration of the running applications. During the
first scheduler pass, the node allocation of App 1 was reduced to 3 nodes and the node allocation of App
2 was increased to 24 nodes. This change reduced the system level power usage and brought the system
back in the power corridor, as seen in the graph at 300 seconds. The change in individual power usage of
the application is also visible in the figure. The power consumption of App 1 is decreased, and App 2 is
increased as an effect of the resource redistribution. As seen from Figure 9.2b, there were no further resource
reconfigurations during the execution of applications since the forecast module predicted the power usage
in the acceptable boundary during each scheduler pass.

Figure 9.2c demonstrates the lower power corridor enforcement using the power corridor management in-
frastructure. The same applications, App 1 and App 2, were used for the evaluation. Both applications were
launched with four nodes, and the initial power corridor was set in the interval of 1500 and 2500 watts. Like
the above scenario, the initial power corridor was violated during the application launch. As a result, the
power corridor management runtime performs resource reconfiguration by performing a resource reduction
on App 1 (four nodes to two nodes) and a resource expansion on App 2 (four nodes to 16 nodes). This trans-
formation is observed at 500 seconds in Figure 9.2c and led to the increase in total power usage. The change
in individual power usage of the application is also visible in the figure. The power consumption of App 1 is
decreased, and App 2 is increased as an effect of the resource redistribution. As a result, the system is back
in the required provided power corridor. As seen from Figure 9.2c, further resource reconfigurations were
not needed since the system remained in the power corridor during the course of the application execution.

112

9.2 Power Corridor Management

9.2.3 Dynamic Power Corridor Enforcement

The flexibility of the system to adapt to the change in power limits of the power corridors is demonstrated
in Figure 9.2d. It used the dynamic power corridor enforcement techniques described in Section 5.1. To
showcase the dynamism, the initial power corridor was set in the range of 100 and 600 watts. Then, a single
malleable application (Invasive Pi calculation application in Subsection ref) is launched with a single node
allocation. The figure shows that the system already adheres to the power corridor limit, and no violation
is recorded. However, after 240 seconds, the power corridor limit was changed (increased to 700 and 1200
watts) to evaluate the capability of the system to adapt to changes in power corridors. As seen in 250
seconds, the total power usage of the system was increased to adhere to the power usage limits by the power
corridor enforcement infrastructure. For that, the node allocation of the application was increased to nine
nodes. Again, the power corridors were modified (increased to 1300 and 1900 watts), and the total power
usage was brought back to the power corridor after resource redistribution. At around 700 seconds, the
power corridor limit was reduced to the initial budget of 100 and 600 watts. As seen in Figure 9.2d, the
total power usage of the system is again back in the accepted budget. However, the interesting aspect is
the change in the total power usage value of the system for the same power corridor limits (100 and 600)
during the application’s beginning and end. It can be attributed to the node allocation performed as part
of the system reconfiguration in the last scheduler pass. For the last power corridor change, the power
corridor infrastructure has given four nodes to the system instead of a single node, which was the initial
node configuration.

9.2.4 Power-aware Scheduling Strategy

Two iMPI applications were utilised to evaluate the power-aware scheduling strategy proposed in this work.
The first application (App 1) is the PI calculation, and the second (App 2) solves the 2D heat equation using
the Jacobi iteration. The applications are submitted as a total of 20 jobs with equal distribution among both
applications. The node configuration (--nodes) for the applications was in the range of one to four. The
average power usage per node of App 1 is 170 watts, and App 2 is 250 watts. The 20 jobs are submitted to the
power-aware ABS with a fixed inter-arrival time of two seconds. The minimum (--min-node-invasic) and
maximum node counts (--max-node-invasic) for all submitted jobs were given one and 14, respectively.

Three strategies were considered to compare and evaluate the effectiveness of the proposed power-aware
scheduler. In the first strategy (scenario 1), the static backfill scheduler in Slurm with no redistribution
of resources is considered. In the second strategy (scenario 2), the power corridor management runtime
demonstrated in the above sections (9.2.1 - 9.2.3) are considered. As seen in the above sections, only
running malleable applications were considered to bring back the system in the power corridor. However, in
strategy three (scenario 3), the power-aware scheduler is considered where the applications in the job queue
are also considered during the resource reconfiguration phase (See 4). In scenario 2, no jobs are held in the
queue and launched if the requested resources are found, unlike scenario 3.

Nevertheless, the job submission order is identical in the above three scenarios. However, for scenarios 2
and 3, all jobs are considered malleable. Additionally, the power corridor values are changed dynamically
in fixed intervals to evaluate the adaptive capability of the system. The initial upper and lower bound is
set as 1700 and 2500 Watts, respectively. Later, the lower and upper power boundaries are brought down
to 1000 and 1700 watts. After that, it is increased to 2500 and 3500 watts for lower and upper corridors.
This dynamic change in corridors can be observed in Figure 9.3. To determine the lowest possible value
for the system’s lower power bound, the power consumption of idle nodes is calculated. On average, an
idle compute node consumes 71 Watts. To establish the maximum value for the upper power bound, it’s

113

9 Results

Table 9.2: Comparison of metric values for different scheduling scenarios [55].
Scenario Power corridor

violations Makespan (mins)

1 6 13.75
2 2 14.25
3 0 14.00

Figure 9.3: Average system power usage and power corridor violations for different scheduling scenarios
[55].

assumed that the heat simulation is running across all 14 nodes. The heat simulation (App 2) was the most
power-hungry application (250 watts per node) in the evaluation.

The results of the experiments using the three scenarios mentioned earlier are depicted in Table 9.2 and figure
9.3. Table 9.2 summarises the power corridor violations that happened in the three scenarios, along with
the makespan for the 20 jobs. The number of power corridor violations denotes whether the system could
return to the desired power corridor using dynamic resource management. As expected, the static backfill
scheduler strategy wasn’t able to recover from the power corridor violations due to the lack of flexibility to
change the resources. However, scenarios 2 and 3, with their malleability support, were able to finish the
execution of jobs with fewer power corridor violations than the backfill strategy. As seen in the makespan
column of the table, scenario 1 has a better makespan because no resource reconfiguration was performed
to adjust for the power corridor violations. This gave the scheduler the flexibility to schedule the jobs from
the queue as efficiently as possible. The comparison between the power corridor violations in scenarios 2
and 3 can be better understood from Figure 9.3.

For the initial power corridor limits, the applications in scenarios 2 and 3 adhered to the power corridor
through the resource reconfigurations performed by the power corridor management infrastructure. As
described above, when the power corridor was decreased dynamically to 1000 and 1700 watts, only scenario
3 was able to maintain the power corridor. This was possible due to the flexibility to pick the desired
job from the queue that satisfies the power requirements (or by employing the moldability to enforce the
power requirements). As a result, the power-aware scheduler in scenario 3 generated a new viable resource
configuration using the LP model by considering the running and waiting jobs. However, the LP model
could not find a feasible resource configuration that brings the system back into the power corridor only
using the running applications. This can be observed at the 550 seconds in figure 9.3.

Similarly, scenario 3 was able to adjust to the change in power corridor (the lower limit was increased to
watts 2500 and the upper limit was increased to 3500 watts), triggered around 800 seconds (See figure 9.3).
A feasible resource configuration was not obtained for scenario 2 to bring the system back into the power
corridor. In the power-aware scheduler implementation, the LP model takes the job in the waiting queue as

114

9.3 iCheck – Performance Analysis

an argument in contrast to scenario 2. In the analysis, the total number of jobs picked from the queue and
given to the LP model as input was either one or two. Nevertheless, the feasible solution was found with
a single waiting job in all the experiments performed as part of the evaluation. The average overhead for
obtaining resource configuration from the LP model was 20 milliseconds for the proposed implementation.
The proposed LP model also supports more number of waiting jobs as input, which can lead to higher
overhead.

9.3 iCheck – Performance Analysis

The experimental evaluation of the iCheck system was performed on 16 compute nodes in SuperMUC-NG.
The iCheck system was launched on four compute nodes, giving the applications up to twelve nodes. The
node count associated with each application changed based on the experiment types. As seen in Section
8.2.3, four applications were used to analyse the performance and various design aspects of iCheck. To
evaluate iCheck, the ls1 mardyn application was initially deployed on a scale ranging from one node (48
processes) to twelve nodes (576 processes). The initial step in the evaluation involved analysing iCheck’s
performance in comparison to the internal MPI-IO based checkpointing mechanism within ls1 mardyn, as
detailed in Subsection 9.3.1.Then, the performance variations in blocking and non-blocking implementation
of iCheck, as well as push and pull techniques employed inside agents, are analysed (Subsection 9.3.2 and
Subsection 9.3.3) using ls1 mardyn. For these data transfer tests, the ls1 mardyn application was run for 100
time steps with a checkpoint interval of 10 time steps. This was performed to stress test the system. Finally,
the overhead associated with iCheck is analysed using ls1 mardyn (Subsection 9.3.4). For overhead analysis,
checkpointing (using iCheck and MPI-IO) was performed in every 1000 timesteps of the ls1 mardyn run.
The application was run for a total of 10,000 time steps, and the simulation system was initialised with
65536 molecules for all the tests performed. During every checkpoint operation, a checkpoint of size eight
megabytes was created by the application. The checkpoint contained information regarding the molecules
(For example, molecule id, position, momentum, and velocity). iCheck was evaluated against MPI-IO and
the state-of-the-art Scalable Checkpoint/Restart (SCR) library using a synthetic application, as detailed in
Subsection 9.3.5. The application was executed on a range of one to twelve nodes, producing a checkpoint
of up to 2.3 GB for each checkpoint operation.

9.3.1 iCheck vs MPI-IO

In this subsection, the efficiency of iCheck’s blocking checkpointing approach is analysed with the native
MPI-IO-based checkpointing utilised in ls1 mardyn. Figure 9.4a presents the average time required for
checkpoint transfers in iCheck and MPI-IO across various agent counts displayed on a logarithmic scale.
The agent count varied from one to twelve. Throughout these tests, the application consistently ran on
twelve nodes. Additionally, Figure 9.4b illustrates the average duration of checkpoint operations for both
iCheck and MPI-IO when the application is executed on different node configurations—specifically, one,
four, eight, and twelve nodes. In this part of the analysis, iCheck operates with a single agent to maintain
consistency across the different node setups.

As seen in Figure 9.4a and Figure 9.4b, iCheck performs better than the in-house checkpointing system in
ls1 mardyn for all the agent/node configurations used in the analysis. Figure 9.4a illustrates that in iCheck,
the checkpoint transfer process accelerates as the number of agents increases, demonstrating the system’s
scalability and efficiency in handling parallel operations. The worst-performing combination of a single
agent performs checkpoint operations 400 times faster than the MPI-IO based checkpointing. The best

115

9 Results

performance results were obtained while using twelve iCheck agents. The figure shows that the twelve-
agent configuration performed checkpointing 5,000 times faster than MPI-IO based checkpointing.

Figure 9.4b also depicts a similar trend. iCheck outperforms the in-house checkpointing system with a single
agent for different node configurations. iCheck only took .8 to 1 milliseconds for transferring checkpoints,
while the MPI-IO took around 100 to 700 milliseconds for transferring the same amount of checkpoints. As
the figure shows, iCheck demonstrated a performance improvement of over 125 to 700 times. Additionally,
it can be observed that when there are no agent changes, checkpoint transfer time in iCheck increases as the
number of nodes of the application increases. It can be attributed to the fact that the same number of agents
need to perform more checkpoint transfers as the number of nodes increases. The agent change in these
experiments was performed statically (i.e., the application had the same number of agents from beginning
to end). The agent count was manually set during the application launch using the configuration file for
experimental purposes.

9.3.2 Blocking vs Non-Blocking Checkpointing

Figure 9.4c depicts the contrast in checkpoint performance of ls1mardyn while using the blocking and non-
blocking checkpointing techniques provided by iCheck. It displays the time taken to write the checkpoint
for different agent configurations in both checkpointing techniques. As seen in the figure, the non-blocking
checkpointing technique of iCheck provides a better checkpoint transfer rate than the blocking version. This
trend is visible in all the agent configurations evaluated. The non-blocking mode provides up to 50% im-
provement over the blocking mode. An interesting observation from the figure is that the non-blocking
version of iCheck offers performance comparable to that of the blocking version but with the added effi-
ciency as if an extra agent was involved in the operation. Another insight from the graph, similar to the
previous analysis, is that the checkpoint transfer becomes faster as the agent number increases. This trend
holds for both blocking and non-blocking techniques. Section 6.2.4 provides information about the imple-
mentation aspects of blocking and non-blocking techniques. The agent count change in this experiment was
performed manually during the application launch using the configuration file.

9.3.3 Push vs Pull Strategies

Figure 9.5 compares the average time taken for checkpoint transfer using push and pull strategies in ls1
mardyn. Different agent configurations were also used in this analysis. The implementational aspects of
push and pull techniques are described in detail in Section 6.2. It can be observed from the graph that the
push strategy performs better than the pull strategy for all agent configurations. In ls1 mardyn, each process
has a different number of molecules, which changes during the application execution. Hence, the agents
must read the new checkpoint size before transferring the checkpoint, which induces an additional overhead
in the pull strategy. With a single agent, the push strategy is 40% faster than the pull strategy, and this can be
attributed to the fact that a single agent needs to read the checkpoint size before transferring the checkpoint
from all the application nodes. However, as the number of agents increases, the advantage provided by the
push strategy is barely visible. As the agent number increases, the checkpoint size information to be read
from application nodes is reduced in the pull strategy (agents can read the checkpoint size information from
application nodes in parallel). Hence, it can be concluded that the push strategy is ideal for single-agent
applications. The agent count change in this experiment was performed manually during the application
launch using the configuration file. Since iCheck supports non-MPI applications, this strategy can also be
set as the default option for non-MPI applications.

116

9.3 iCheck – Performance Analysis

(a) Comparing iCheck and MPI-IO with different agents (b) Comparing iCheck and MPI-IO with different nodes

(c) Comparing blocking vs non-blocking strategies in
iCheck

(d) Breakdown of iCheck induced overhead using a sin-
gle agent

Figure 9.4: Checkpointing analysis on ls1 mardyn using iCheck and MPI-IO [77].

Table 9.3: Effect of checkpointing on execution time in ls1 mardyn [77].
Time MPI-IO iCheck

1775.5s 104.383s 0.567538s

9.3.4 iCheck Overhead Analysis

This subsection delves into the overhead that the iCheck library introduces to the ls1 mardyn application.
As mentioned earlier, ls1 mardyn performs a checkpoint of application data at every 1000th time step and
is executed for a total of 10,000 time steps. The induced overhead by iCheck is represented in Table 9.3
and Figure 9.4d. While Table 9.3 compares the overall impact of iCheck and MPI-IO on the ls1 mardyn
application, Figure 9.4d breaks down the overhead for each specific API call made by iCheck in the ls1
mardyn context.

For a comprehensive analysis of the overall checkpointing impact on ls1 mardyn, the application was exe-
cuted on 12 nodes, comparing the performance of iCheck and MPI-IO. This analysis was conducted using a
single agent in the iCheck setup. As seen in the above sections, a single iCheck agent takes maximum time
for checkpoint transfer and is used for comparison with the MPI-IO to ensure the fairness of the overhead
analysis. It can be inferred from Table 9.3 that iCheck only takes .03% of the overall execution time of the
application while MPI-IO takes around 5.6% of the overall application time. A major portion of the over-
head associated with the iCheck system can be attributed to the overhead associated with the initialisation

117

9 Results

Figure 9.5: Comparing checkpoint performance in Push and Pull Techniques.

of the agents. This is clearly visualised in Figure 9.4d. Nevertheless, it can be seen that the performance of
the iCheck library increases as the application progresses due to the RDMA-based checkpoint transfer hap-
pening inside the icheck commit operation. Using iCheck resulted in 6% faster execution of the application
than the MPI-IO based checkpointing. Additionally, the .03% of overhead on the application can be further
reduced by using more agents.

To assess the overhead introduced by iCheck during its initial setup, the ls1 mardyn application underwent
testing on one, four, eight, and twelve nodes. Figure 9.4d, which is displayed on a logarithmic scale, scru-
tinizes the overhead for each iCheck operation in relation to the checkpoint transfer time observed with
MPI-IO. For this comparison, iCheck was configured to use a single agent, which, according to Figure 9.4a,
represents the least optimal performance scenario within iCheck, thereby providing a fair basis for com-
parison against MPI-IO. The trend depicted in the graph indicates that as the number of nodes increases,
there is a corresponding increase in the time required for both checkpoint transfer and the initial setup pro-
cesses. This is also true for MPI-IO and is observable in the figure. There is no initialisation and finalisation
overhead associated with MPI-IO since it only uses a single API call to perform the checkpoint transfer
operation. Hence, there is only one entry associated with MPI-IO in the graph. However, as defined in
Section 6.1.3.3, iCheck has API calls for configuration and checkpoint transfer, and Figure 9.4d shows the
overhead associated with these operations. One interesting observation is the transfer time associated with
the first checkpoint transfer operation and the remaining operations. The first checkpoint transfer takes up
to five to ten times more time than the remaining one. This is attributed to the memory registration overhead
associated with libfabric. Nevertheless, this happens only once (or after agent change triggered by probe
operation), and as the application progresses, the overhead associated with this becomes negligible.

Another significant insight from the figure is that the overall time for initialisation and first checkpoint
transfer in iCheck is comparable to that of a single checkpoint transfer using MPI-IO. As seen in the figure,
iCheck outperforms MPI-IO from the second checkpoint transfer. However, it is noteworthy that deploying
additional agents can significantly decrease the configuration time in iCheck.

9.3.5 Comparing iCheck, SCR and MPI-IO

Porting a large application, such as ls1 mardyn, to state-of-the-art Scalable Checkpoint/Restart [188] can be
a challenging task. The quality of the porting process can significantly affect the application’s performance.
To ensure a fair comparison, a synthetic benchmark application is created and ported with SCR. Using
a synthetic application, with its ability to configure checkpoint sizes, enables the comparison of various

118

9.3 iCheck – Performance Analysis

checkpoint sizes, a feature not feasible with ls1 mardyn. Consequently, a performance analysis of iCheck
compared to MPI-IO and SCR is conducted using this synthetic application. Furthermore, this setup allows
for examining the overhead iCheck introduces during large data transfers. In this analysis, the application
processes a 2.3 GB data checkpoint across 12 compute nodes.

(a) Comparing iCheck, MPI-IO and SCR on check-
pointing large data size (b) Overhead analysis of various iCheck operations

Figure 9.6: Checkpointing analysis on synthetic application using iCheck and MPIIO [77].

Figure 9.6a shows the average time taken for checkpoint transfers in iCheck, MPI-IO, and SCR. The fig-
ure reveals that iCheck, even with just a single agent, conducts checkpoint transfers 3.9 times faster than
SCR and 7.6 times faster than MPI-IO. Additionally, iCheck’s performance improves progressively as more
agents are introduced to facilitate the checkpoint transfer, a trend that is consistent across all experiments
discussed in the preceding sections. For the 12-agent configuration, iCheck exhibits a performance improve-
ment of 57 times over SCR and 100 times over MPI-IO. The plotted checkpoint transfer times of iCheck,
MPI-IO and SCR are averaged over five runs. The performance improvement with iCheck is attributed to
the usage of RDMA operations to transfer the checkpoint into the in-memory of a remote compute node.
Meanwhile, SCR and MPI-IO write the checkpoint data directly into the parallel file system.

Figure 9.6b shows the iCheck library overhead associated with iCheck operations for large checkpoint trans-
fers in a synthetic application. It shows the time taken for iCheck initialisation, checkpoint data transfer,
finalisation, and the time to restore the checkpointed data into the application after restart. Measurements
were taken using iCheck with varying agent configurations (one to twelve). This analysis is similar to 9.3.4,
and the overheads graph exhibit a similar trend (See Figure 9.4d). The figure shows that an increase in agents
can reduce overhead induced by the library on the application. A particular point of interest in the figure is
the time taken to perform the restart operation. Restart operation refers to application processes connecting
to the agents, registering the RDMA memory, transferring the checkpointed data from the iCheck system
back to the application and copying it into the relevant data structures. The depicted performance varia-
tion between the commit and restart operations is noteworthy since both operations employ remote memory
access (RDMA read and write) to transfer the checkpoint. In the commit operation, iCheck performs an
intra-node synchronisation among the processes before performing the checkpoint transfer to ensure the
consistency of the checkpoint. However, in the restart operation, inter-node synchronisation is performed
by the iCheck after receiving the data from the agents. This synchronisation is needed for providing data
distribution services to malleable applications. Although the time taken for the actual data transfer is sim-
ilar to the commit operation, this explicit synchronisation among all participating processes considerably
increases the checkpoint restart time in iCheck. Nevertheless, unlike the commit operation, the restart oper-
ation is only performed once during the application’s lifecycle. However, increasing the number of agents
can significantly improve the performance of the restart operation. As seen in Figure 9.6b, the time taken

119

9 Results

for restart improved up to ten times as the number of agents increased from one to twelve.

9.4 Resource Management in iCheck

This section demonstrates the resource management capability of iCheck. First, the iCheck system’s adap-
tive nature is analysed concerning a non-malleable application (Subsection 9.4.1.1). Second, the ability of
iCheck to support checkpointing in malleable applications is discussed (Subsection 9.4.2). Finally, a simple
use case of data distribution API from iCheck is demonstrated (Subsection 9.4.3).

9.4.1 Adaptive Resource Management in iCheck

The heat simulation and LULESH were used to demonstrate the malleability aspect of iCheck. Heat sim-
ulation application was used to analyse the impact of dynamic agents on running applications (Subsection
9.4.1.1). It was also used along with LULESH to demonstrate the horizontal scaling characteristics of the
iCheck system (Subsection 9.4.1.3). Both applications were run on two to twelve nodes for evaluation. The
synthetic application was used to perform the effect of agent placement on running applications (Subsection
9.4.1.2). In addition, the synthetic application was also used to analyse the performance and overhead as-
sociated with the alternative checkpoint mechanism enabled when the iCheck library fails to connect to the
iCheck core system (Subsection 9.4.1.4).

9.4.1.1 Impact of Dynamic Agents

It can be concluded from the results of the above analysis that the checkpointing performance of iCheck is
proportional to the number of agents employed. Significant performance improvement occurs if the number
of agents is changed from single to the number of nodes in an application. For example, in synthetic appli-
cation analysis, a performance improvement of 50 times was observed, while in ls1 mardyn, a performance
improvement of 400 times was observed when agents were changed from one to twelve (number of nodes).

The above experimental analyses restarted the applications to utilise the new agent configuration. However,
in this section, the agent change is performed dynamically to analyse the performance of the iCheck library
on an application. The icheck_probe_agents() call made by the application will trigger the dynamic agent
reconfiguration based on the agent change decision made by the controller. As described earlier, a 2D
heat simulation application that checkpoints the data of size 1.4 GB is used to perform the experiments.
The application was run on twelve nodes, and agents were changed on the fly by the controller based on a
predefined order.

Figure 9.7a demonstrates the impact of dynamic agents on the heat simulation application. Initially, the
application was allocated two iCheck agents, and it took around 0.7 seconds to transfer the checkpoint from
the application to the agents. After forty seconds, a dip in the checkpoint transfer time can be observed
in the graph. This dip (or faster checkpoint transfer) can be attributed to the agent change (from two to
three agents) triggered by the iCheck controller. At around 80 seconds, the data transfer rate was almost
doubled compared to the initial rate. This performance improvement is also the consequence of the agent
change (from three to four agents) performed by the controller. However, the controller again performed an
agent change at around 120 seconds, and there was no improvement in performance because the network
bandwidth was utilised effectively by the iCheck agents and the overhead associated with checkpoint transfer
masks the benefits provided by the new agents.

120

9.4 Resource Management in iCheck

(a) Impact of dynamic agent adaptation on a 2D heat
simulation

(b) Effect of agent placement strategies on synthetic ap-
plication

Figure 9.7: Effect of dynamic agents and agent placement strategies [77].

As described in Section 6.4.2, icheck_probe_agents() call inside the application contacts the controller
to obtain the information about the new agent configuration (if available). The overhead associated with a
successful probe call in the experiment was around 2.5 seconds. It can be translated as the time for per-
forming four iCheck commit operations (as depicted in the figure). A successful probe call denotes that the
new agent information is obtained, and the application has successfully connected to the new agents and is
ready for checkpoint transfer. An unsuccessful probe (or no agent change) costs the time needed for two
commit operations (or 0.002 seconds). This overhead is minuscule compared to the performance improve-
ment provided by the new agents for every checkpoint transfer. As more and more commits are performed
with the new agents, the overhead associated with the agent change is nullified. However, modelling and
application-based heuristics are needed to determine the ideal agent change that can immediately give the
maximum performance to the application instead of a step-by-step agent increase, as observed in the figure.

9.4.1.2 Effect of Agent Placement Strategies

The previous subsections primarily examined how different numbers of agents impact various applications.
This subsection shifts focus to investigate the effects of positioning agents on iCheck nodes, utilising the
different strategies outlined in Section 7.1.2. In this experimental analysis, a synthetic application (App
A) is run on two nodes (96 cores) in an infinite loop. A single agent was allocated to the application for
checkpoint transfer operation. After that, five synthetic applications were run on ten compute nodes (two
nodes per application). Each of the applications was given a single iCheck agent for checkpoint transfer.
As described in Algorithm 6, agents can be placed on the iCheck nodes based on different strategies. In
the experiments, the agents corresponding to these five applications were placed on iCheck nodes based on
the ensuing three strategies and their effect on App A’s checkpoint transfer rate is studied. A total of four
iCheck nodes were utilised in this analysis.

The three strategies used for placing the agents are:

1. Stacking: In this strategy, all the agents were allocated in the same iCheck node as App A. All agents
are stacked together on the same iCheck node.

2. Bandwidth: In this strategy, the iCheck nodes with the least activity are identified, and the agents are
placed there (This ensures higher bandwidth for data transfer).

3. CP interval: In this strategy, the iCheck nodes where the checkpoint interval is higher are identified,
and the agents are placed there.

121

9 Results

(a) Number of active iCheck nodes in the system (b) Distribution of agents across iCheck nodes

Figure 9.8: Demonstrating the horizontal scaling in iCheck during a time interval [77].

It is evident from Figure 9.7b that these agent placement strategies significantly impact the application’s
performance. The fluctuation between the checkpoint transfer bandwidth for App A is higher in the stacking
strategy. The figure shows that the checkpoint transfer rate fluctuated between 3GB/s to 11.5GB/s when all
the agents were allocated on the single iCheck node. This is in contrast to the other two strategies considered
for analysis. In these strategies, the agents are placed among two different iCheck nodes. As depicted in the
figure, the bandwidth strategy has the least fluctuations because the agents are placed across iCheck nodes
with less activity, and the agent can avail the total bandwidth to perform the checkpoint transfer. Hence,
there is less inference with App A’s checkpoint transfer process. As a result, the fluctuation was minimal in
this strategy (App A obtained an aggregate bandwidth of 9.5GB/s to 11.5 GB/s).

9.4.1.3 Adding Nodes to iCheck

iCheck is entirely malleable and can expand or reduce its iCheck nodes based on the availability of compute
resources. This system-level malleability aspect of the iCheck system is demonstrated with the use of
predefined resource expansion. That is, the nodes are given to iCheck dynamically during the course of
the evaluation. Four iCheck nodes were used for this experiment. Initially, the iCheck system is started
with a single node, and the remaining iCheck nodes are given individually to the iCheck system during
predetermined intervals. After the nodes were given to iCheck, an iCheck-aware application was launched
in a pre-defined manner to verify whether the iCheck controller had allocated the agents in the newly issued
iCheck nodes. The event log information from the controller and nodes was analysed to confirm the addition
of new nodes and agent launch in those nodes. The best agent placement strategy in the above section 9.4.1.2
was employed for this analysis.

This analysis utilised ls1 mardyn, LULESH, the heat simulation and the synthetic application. Initially, the
ls1 mardyn application was launched on two compute nodes, followed by LULESH on two nodes after a
predetermined interval. Later, the heat simulation application is launched on four nodes, and the synthetic
application is launched on the remaining four nodes at the end. The number of agents for each application
was predetermined. The ls1 mardyn got one agent, LULESH got two agents, and heat distribution and
synthetic applications got four agents each. The node number and agent number were chosen randomly.

The results of this experiment are depicted in Figure 9.8a and Figure 9.8b. Figure 9.8a plots the number of
active nodes during the course of the application execution. The second figure provides information about
the number of agents placed in an iCheck node during the period of the experiment. Four iCheck nodes
are used for this analysis, and each iCheck node is labelled based on the order in which it is added to the

122

9.4 Resource Management in iCheck

system. iCheck node 1 is the first node added to the system, and iCheck node 4 is the last node added
to the system. The change in the iCheck nodes, as shown in Figure 9.8a, highlights the iCheck system’s
ability to dynamically adjust its resources (nodes) in real time. Furthermore, from Figure 9.8b, it is evident
that iCheck can leverage these additional iCheck nodes to allocate agents for new incoming applications.
Initially, the ls1 mardyn application was started with a single agent. The iCheck controller then allocated
this agent to the sole available node at the time (refer to iCheck node 1 in Figure 9.8b). Subsequently, at
approximately the 40-second mark, an additional node (iCheck node 2) was introduced to the system, as
depicted in Figure 9.8a. After the successful node addition, when LULESH was connected, the iCheck
controller distributed the two agents associated with it equally among the iCheck node one and two. It can
be observed in Figure 9.8b (See 150th second). Similarly, after all of the iCheck nodes were added and all
of the applications were launched, the agents were placed across all the iCheck nodes in a balanced manner
(See 270 seconds and 400 seconds in Figure 9.8b) based on the employed bandwidth based agent placement
strategy.

(a) Checkpoint performance without utilising iCheck core system

(b) Overhead analysis of iCheck probe functionality in the event of an agent
change

Figure 9.9: Analysis of fallback mechanism for checkpoint transfer in iCheck

123

9 Results

9.4.1.4 Fault Tolerance in iCheck

As mentioned in Section 6.5, upon detecting a failure to reach iCheck components, the iCheck library will
start writing the checkpoints directly into the parallel file system instead of leveraging the RDMA-based
checkpointing offered by agents. This incurs significant overhead since the lead rank inside each node will
be writing the checkpoints to make a consistent format for storing the checkpoints. One of the advantages
of such an approach is utilising the agents to read the checkpoints into the system in case of a restart. This
makes it portable, but it comes with a significant overhead and is visualised in Figure 9.9a.

Figure 9.9a compares the time taken for the icheck_commit operation performed directly by the icheck-
library on the compute node of the application (labelled as Direct Write in the plot) and RDMA-based
checkpointing (depicted for both Maximum Agent and Single Agent configurations) where remote agents
transfer the checkpoints from the compute nodes to the iCheck nodes. Direct Write in the plot refers to
the checkpoint transfer performed directly by the library into PFS using POSIX [233] file write operation.
For the RDMA-based checkpointing (i.e, normal iCheck operational mode), the time taken using the best
agent configuration (labelled as Maximum Agents where agent count is equal to the number of nodes) and
worst agent configuration (labelled as Single Agent) is plotted. The figure depicts the time for running the
synthetic application on one, four, eight and sixteen nodes. As seen in the figure, there is a considerable
performance difference between library-based and RDMA-based checkpointing. This difference increases
as the number of nodes and checkpoint sizes increase. Checkpoint size is increased by 4x, 8x and 16x for
nodes four, eight, and sixteen compared to a single node (Single node application checkpointed a size of
approximately half GB). However, the increase in transfer time was not linear. It was expected that since
much of the time was taken for configuration (file open, file close, data preparation) and in addition, the
file write does happen in parallel (with one process per node writes the checkpoint), there would be similar
write time for applications with different node counts.

As explained in Section 6.5, the iCheck library will try contacting the controller based on the predefined
frequency upon a failure. The controller is contacted via the probe operation to get information about new
agents. As defined in section 6.4.2, the probe operation has the following three outcomes.

• no agent change (referred as outcome 1)

• agent count change (referred as outcome 2) and,

• agent shift (iCheck node change or new agent in the same iCheck node - referred as outcome 3).

These outcomes might happen while the iCheck library continuously probes for agents while checkpointing
is performed on library-based mode. The overhead for such probes can accumulate and needs to be analysed
carefully in association with failure recovery. This is visualised in Figure 9.9b. It depicts the time taken for
the above three scenarios and compares it with the time taken for RDMA-based checkpointing (labelled as
Single Agent Write in the plot) and Library Based checkpointing (labelled as Direct Write in the plot). Some
interesting insights can be derived from this plot. Firstly, the time taken for a simple probe in outcome 1
(labelled as Probe in the plot) is negligible in comparison with probe calls made in outcome 2 (labelled as
Probe Dynamic Agents in the plot) and outcome 3 (labelled as Probe Single Agent in the plot). The time
taken for outcome 3 is increasing steadily since the application nodes need to connect to a single agent, and
the overhead is increased as the number of nodes is increased. Hence, the maximum time is taken when the
application runs on 16 nodes since all nodes need information about their agent. In addition, an interesting
observation can be made about outcome 2; even though the time taken for the probe remains steady, it is
much higher than the direct write mode and outcome 3. In this scenario, when an application probes the
controller, the controller assigns a new set of agents (here, the number of agents is equal to the number of
nodes). This new set of agents must be launched in the iCheck nodes before passing the agent data to the

124

9.4 Resource Management in iCheck

application, resulting in an additional overhead compared to outcome 3, where a single agent only needs
to be launched. By analysing this plot, it can be concluded that after an agent failure, an application going
back to RDMA-based checkpointing is beneficial only if sufficient commit/checkpoint operations remain to
gain performance improvement from the overhead incurred by associated probe operations.

Figure 9.10: Data compression inside iCheck

9.4.1.5 Checkpoint Compression in iCheck

This subsection demonstrates the checkpoint compression feature of iCheck introduced in section 6.2.5.
The compression can be activated either inside the agent (while writing to PFS) or in the application library
(while writing the checkpoint directly due to the iCheck system failure). Figure 9.10 gives an overview of
the effect of compression on checkpoint size and transfer time while the application is running on different
numbers of nodes. The synthetic application was checkpointing one million floats per process and was run
on one, four, eight and sixteen nodes for the evaluation. In the plot, the compression and original sizes are
represented in Gigabytes, and the time for Compress and Write and Direct Write are defined in seconds.
As observed in the figure, the compression inside iCheck significantly reduced the checkpoint size to the
original size; however, the time taken to write directly into the PFS increased heavily since the checkpoint
compression took a significant amount of time. The magnitude of compression overhead can easily be
understood by analysing the time difference between Direct Write and Compress and Write in the plot.
Hence, it can be derived that the compression is only relevant on the agent side while writing into the PFS
since the agent can effectively utilise its idle time to compress the checkpoint. As a result, the overhead
won’t be reflected in the application. Hence, iCheck will only utilise the checkpoint compression on the
agent side.

9.4.2 Malleable Application and Agents

The experimental evaluation of the malleable characteristic of the iCheck system was performed on up to
16 compute nodes in SuperMUC-NG. A synthetic malleable benchmark application (Section 8.2.3.2) was

125

9 Results

used to analyse the performance of the system. The application resources were expanded and reduced
dynamically using iRM, and the adaptivity of iCheck with regard to the resource changes was analysed.
The application was run on up to 16 nodes, and the iCheck system was run on two nodes. Additionally, the
performance evaluation and overhead analysis of pipelining support in iCheck was also studied using the
benchmark.

In this section, the performance evaluation associated with malleable applications is depicted. The effect of
different iCheck strategies (MA-RA and MA-MA in Section 8.2.3.2) on malleable applications was analysed
in detail. For this analysis, the synthetic application was initially run on a single node, and then iRM was
leveraged to expand the resources to 16 nodes. Later, the number of resources was halved using iRM.
In addition, the checkpoint size was also considered for the analyses. In the first set of experiments, the
checkpoint size increased as the number of nodes increased and reduced as the number of nodes were
reduced. In the second set of experiments, the checkpoint size remained constant for malleable applications.
In the synthetic benchmark, each process was tasked to checkpoint 100,000 floats every five seconds.

(a) Impact of iCheck on a malleable MPI application with no agent change

(b) Impact of iCheck on a malleable MPI application with agent change

Figure 9.11: Effect of dynamic agents on a malleable MPI application with dynamic checkpoint size

126

9.4 Resource Management in iCheck

9.4.2.1 Malleable Application with Increasing Checkpoint Size

Using Malleable Application Rigid Agent (MA - RA) Strategy: Figure 9.6a shows that iCheck with a
single agent performs considerably slower than multiple agents. Hence, a single agent was used for this
evaluation. Figure 9.11a depicts the results of the MA-RA strategy on a malleable application. The time for
transfer (in seconds) is mapped into the left vertical axis, and the checkpoint size (GB) and the agent count
are mapped to the right vertical axis (This also holds for Figure 9.11b). The figure shows that the application
was initially started with a single node and expanded to 16 nodes. During the following resource change,
the number of nodes was brought down to eight and eventually to four. It can also seen from the figure
that the number of agents remains the same throughout the application execution. The initial checkpoint
size is 0.48 GB for the application. As the number of nodes increased, the checkpoint size was increased
to 7.68 GB and then later reduced to 3.48 and 1.92 GB, respectively. Similarly, it can be observed that the
checkpoint time was doubled as the number of nodes was increased. This can be attributed to the change in
checkpoint size. However, it is noteworthy that there was not a considerable reduction in checkpoint time
as the number of nodes was reduced to eight from sixteen. Even though the checkpoint size was halved, the
performance of iCheck almost remained the same. Nevertheless, there was performance improvement as
nodes were reduced again. The performance improvement was around 36%.

Using Malleable Application Malleable Agent (MA - MA) Strategy: In this strategy, the number of
agents was chosen as the number of nodes in the application. It can be observed from Figure 9.11b that the
initial number of agents is one. As the node count is expanded to 16, the number of agents is also increased
to 16. Similarly, during the following resource reduction, the number of agents was brought down to eight
and eventually four. The initial total checkpoint size is .48GB for the application, and as the number of
nodes increased, the checkpoint size was increased to 7.68 GB and then later reduced to 3.48 and 1.92 GB,
respectively, as the nodes were taken away. The figure shows that the checkpoint transfer time for the iCheck
remains almost the same even as the checkpoint size was increased sixteen times. This is due to the change
in the number of agents triggered by iCheck as it detects a change in resource in the malleable application.
Similarly, when the number of nodes was reduced to eight, the agent count was changed to match the node
count. Nevertheless, the checkpoint transfer time remained the same. The performance improvement can be
attributed to the parallel RDMA-based checkpoint transfer performed by multiple agents in iCheck.

Overhead Analysis: Figure 9.12a shows the checkpoint transfer time in MA-MA and MA-RA strategies as
well as provides a comparison with the IOR benchmark [234] for writing the same amount of data into the
parallel file system. IOR is a popular benchmarking application for I/O performance analysis in HPC. In this
analyis, IOR is run using MPI-IO under the hood and ensures that iCheck is compared with state-of-the-art
I/O benchmarking application. Nevertheless, overhead analysis in iCheck also considers the checkpoint data
preparation overhead which is not present in the IOR benchmark since it only measures the overhead for file
operations (open and close) and data transfer. Figure 9.12b shows the overhead associated with agent change
while analysing the MA-RA and MA-MA strategies. In addition, the time taken for the initial commit is also
analysed. The difference between the initial commit and the other commits is the extra steps iCheck takes
during the initial (or first) commit operation. During the initial commit operation, the iCheck library will
perform the key exchange with iCheck agents to configure the remote memory and the data transfer. Hence,
the initial commit takes more time than the proceeding commits. As observed in the figure, this holds for
both MA-RA and MA-MA strategies.

Figure 9.12a demonstrates the performance variation of commit operation using both strategies. It is clear
that the MA-MA strategy performs better than the MA-RA strategy as the number of nodes of the applica-
tions was changed. In all the resource change instances, the MA-MA strategy showed at least an improve-
ment of 58% to 110%. This is due to the parallel checkpoint transfer provided by multiple agents in the

127

9 Results

MA-MA strategy; meanwhile, a single agent has to perform the checkpoint transfer from the MA-RA strat-
egy. In contrast to the IOR benchmark, both iCheck strategies outperform with a minimum improvement
of over 90%. This performance improvement can be attributed to the RDMA-based checkpoint transfer in
iCheck.

(a) Performance comparison with IOR Benchmark

(b) Overhead analysis for different strategies

Figure 9.12: Overhead analysis of different strategies in comparison to IOR Benchmark (using MPI-IO)

Figure 9.12b showcases the resource change overhead for both the MA-RA and MA-MA strategies. As
the graph shows, the resource change overhead is increased for MA-MA strategies as the agent number
changes. This overhead arises due to the creation of new agents (or removal of existing agents) as well as
connecting the application processes to the new agents. In MA-MA strategies, as the agent count increases,
the overhead also increases. However, this is not the case for the MA-RA strategy, where the agent count is
always one. As the number of nodes increases, the overhead increases and as the number of nodes decreases,
the overhead decreases. The overhead is much lesser than the MA-MA strategy. This can be attributed to
the need for connecting only a single agent to the application. As a result, the reconfiguration overhead is
minimal in MA-RA strategy. However, the benefits of MA-MA strategies are associated with the agents’
parallel checkpoint retrieval. As the agent number increases, more data can be retrieved in parallel, resulting

128

9.4 Resource Management in iCheck

in performance improvement. This is visible in the time taken for checkpoint transfer in Figure 9.12a. This
also holds true for the initial commit operation, where all application nodes can perform a key exchange with
a single agent (this has to be done sequentially) in MA-RA strategy. Meanwhile, in the MA-MA strategy,
there is a dedicated agent for each application node; hence, parallel key exchange is possible. Hence, there
is a performance improvement for the initial commit in the MA-MA strategy, as seen in Figure 9.12b.

9.4.2.2 Malleable Application with Fixed Checkpoint Size

Section 9.4.2.1 showcased the overall performance impact of agent number on the checkpoint performance
for a malleable application. Hence, the average time per commit operation is considered based on the number
of commits that happened over the complete application execution. However, the following subsection dives
deep into the time taken for individual commits during the application execution and resource change. It
analyses the nuances which are not possible with the overall performance analysis. This reveals iCheck-
specific insight into the RDMA-based checkpointing.

(a) Impact of iCheck on a malleable MPI application with fixed check-
point size

(b) Impact of iCheck on a malleable MPI application with dynamic
checkpoint size

Figure 9.13: Effect of agents on a malleable MPI application with fixed and dynamic checkpoint size

129

9 Results

Impact of checkpoint transfer on MA-RA and MA-MA strategies: Figure 9.13a compares the time
taken for each commit on malleable application with no agent change (MA-RA) and malleable applica-
tion with agent change (MA-MA) strategies for the following scenario. The initial checkpoint size (size)
for a single node was chosen as 0.48 GB for easier comparison with the evaluation of the dynamic size
technique with MA-RA and MA-MA strategies explained in the above subsection. Initially, each process
gets a chunk of size (size/(num_nodes⇤num_proc_per_node), where num_nodes can be 1, 4, 8 or 16, and
num_proc_per_node is 48) for checkpointing. As the application expands to 16 nodes, the checkpoint size
per process is further reduced since it is distributed among all the nodes (size/(16⇤num_proc_per_node)).
The initial number of agents remained same (single agent) for both MA-RA and MA-MA strategies and as
application is expanded to 16, the number of agents were also increased to 16 for the MA-MA strategy.

(a) Impact of iCheck using MA-RA strategy with fixed and variable
checkpoint size

(b) Impact of iCheck using MA-MA strategy with with fixed and vari-
able checkpoint size

Figure 9.14: Effect of agents on a malleable MPI application with fixed and dynamic checkpoint Size

It can be seen that the checkpoint time is similar for both MA-MA and MA-RA strategies till commit number
26. This is expected since the number of agents was the same for both strategies. However, a spike in the
checkpointing time can be seen for the commit number 27 and afterwards the checkpoint time is reduced for
both strategies. This spike can be attributed to the initial commit happening after a resource adaptation which

130

9.4 Resource Management in iCheck

incurs additional overhead as explained in the above overhead analysis section 9.4.2.1. The checkpoint time
reduction is attributed to the reduction in overall checkpoint size since, after the resource expansion, each
process now only has 1/768th of the total size to checkpoint, while previously, each process had 1/48th of
the total size (size) to checkpoint. This leads to faster checkpointing in both MA-RA and MA-MA strategies.
Nevertheless, if we look into the time taken for individual commit, MA-MA has up to 20% performance
improvement over MA-RA because of the additional agents in parallel retrieving the checkpoints.

In addition, Figures 9.14a and 9.14b compare the time taken for both MA-RA and MA-MA strategies for
fixed and dynamic size. It can be seen from Figure 9.14a that as the number of nodes are increased (after
the 26th commit), the commit time was reduced for the fixed size evaluation and commit time was increased
in dynamic size evaluation. This can be explained based on the change in checkpoint size. In the fixed
size evaluation, as the application was expanded to 16 nodes, the total size to checkpoint per process was
reduced by a factor of 768 while for the dynamic size evaluation it was increased by a factor of 768. For MA-
MA strategy (see Figure 9.14b), the faster commit is associated with the fixed size of checkpoint through
out the application execution even after the resource adaptation. Similar to Figure 9.14a, the dynamic size
evaluation takes more time to checkpoint due to the increase in checkpoint size as the number of nodes were
increased. It is also worth noting that, the fluctuations in commit time are not present in MA-MA strategy
when compared with MA-RA strategy. The fluctuations in MA-RA strategy can be attributed to the effect
of single agent retrieving the data from the nodes of the application sequentially.

Overhead analysis of the iCheck library is not provided for this section to avoid redundancy in discussion
with Section 9.4.2.1 since the only difference is regarding the checkpoint size (data transfer size), whose im-
pact is visible by plotting the time taken for the checkpoint transfer operation. The library-specific overhead
associated with agent reconfiguration and commit call is detailed in Section 9.4.2.1.

9.4.2.3 Impact of Pipelining

This section evaluates the performance of the agent-side pipelining feature described in Section 6.2.3.1.
For this analysis, the synthetic application was initially run on a single node, and then iRM was leveraged
to expand the resources to 16 nodes. Later, the number of resources was halved using iRM. The overall
checkpoint size was increased from .48 GB to 7.68 GB after expansion and reduced from 7.68 GB to 3.84
GB during reduction. The pipeline performance is analysed for MA-MA and MA-RA strategies. Figures
9.15a and 9.15b depicts the time taken with regards to the checkpoint size and RDMA calls made for
MA-MA and MA-RA strategies while Figure 9.16a compares in detail the performance variation in both
strategies. Figure 9.16b compares the impact of pipelining on individual commits. In MA-MA strategy, the
number of agents were the same as number of nodes while in MA-RA strategy the agent count was one.

Impact of Pipelining on MA-RA and MA-MA strategies: Figures 9.15a and 9.15b plots the relation
between the checkpoint size (Size/RDMA call), the number of RDMA calls made and the time taken for the
RDMA calls. Both the x and y axis are on log scale with base 10 and base 2 respectively for both the figures.
The x axis depicts the number of RDMA calls per node while the y axis give insights into the time taken for
checkpoint transfer as the pipeline size is varied. Size/RDMA call depicts the pipeline size. Each RDMA
call retrieves the chunks of checkpoint with chunk size equal to the pipeline size. As seen in both figures,
number of RDMA calls increase from 20 to 218 initially, then from 20 to 216 for MA-MA strategy and 20

to 212 for MA-RA strategy after the resource change. This is due to the automatic change in pipeline size
triggered after each commit in this analysis. In addition, the number of RDMA Calls/Node and Size/RDMA
call (both are inversely propotional to each other) was also reset after every resource adaptation so that
the nuances in checkpointing performance (behaviour of individual commit operation and resource change

131

9 Results

(a) Performance of data transfer for various pipeline sizes for MA-MA Strategy

(b) Performance of data transfer for various pipeline sizes for MA-RA Strategy

Figure 9.15: Performance comparison of pipelining in MA-MA and MA-RA strategies

132

9.4 Resource Management in iCheck

as the pipeline size varies) associated with pipelining can be compared with ease. This gives interesting
insights into the checkpoint performance.

For example, in the MA-MA strategy in Figure 9.15a, the RDMA calls/Node performed increased to 216

after an expansion while only upto 212 for the MA-RA strategy in the same expansion with both application
having the same checkpoint frequency. That means, with the MA-RA strategy with a single agent lags
by 24 commits in comparison with the MA-MA strategy, implying that MA-MA strategy is faster which is
consistent with the results in the above subsections. Initially, each node checkpoints a size of 0.48 GB, as the
number of RDMA calls increases, the checkpoint size transferred per RDMA call decreases. For example,
for 20 RDMA call, the checkpoint transferred per RDMA call will be the entire checkpoint which basically
means there is no need for pipelining, while 21 RDMA calls per node, the transferred size will be 0.24 GB
per call and the agent after copying the 0.24 GB, will write it into PFS and in the second RDMA call, reuses
the previously allocated memory, hence pipelining is performed. Similarly for 218 RDMA calls per node,
each RDMA transfer checkpoints 1830 bytes. This can be visible in both the figures 9.15a and 9.15b. As
seen in the figures, the size/RDMA call decreases as the number of RDMA call increases. However after a
resource adaptation, the pipeline is reset for benchmarking and hence it restarts from complete checkpoint
transfer per RDMA call. Resetting the counter means a resource adaptation has happened. So, it can be
observed from 9.15a, two resource adaptations were performed, while Figure 9.15b shows that it had four
resource adaptations. Another observable pattern in consistent with previous section is as agents are lesser
than number of nodes, there is significant fluctuation in checkpoint transfer time even in case with pipelining.
This is explained in below subsection.

Comparing the Pipeline performance on MA-RA and MA-MA strategies: To simplify the comparison
for MA-MA and MA-RA strategies, Figure 9.16a plots the time taken for checkpoint transfer with pipelining
for sixteen nodes and a resource reduction to 8 nodes. The pipeline sizes from 0.48 GB (20 RDMA calls
per node) to 0.23 MB (212 RDMA calls per node) per node are analysed in the figure. As can be seen,
the size per transfer is reduced as the number of RDMA Calls increases, and the time to transfer data
follows a similar trend for both strategies. As expected, MA-MA performs better than MA-RA due to
the parallelism in checkpoint transfer, and the performance difference between both strategies is consistent
since the checkpoint transfer size per node remains the same for 16 and 8 nodes. Sixteen agents were used
for 16 nodes, and the agent count was reduced to eight as the application was reduced to 8 nodes. Another
observation, consistent with MA-MA and MA-RA (See the subsection 9.4.2.1) results, also persists here that
the fluctuations are more predominant in MA-RA than MA-MA strategy due to the sequential checkpoint
retrieval performed by a single agent. However, the intensity of the fluctuations is reduced due to the
pipelining. This is because the stragglers can keep up with the faster processes due to the delay introduced
by the pipelining technique.

Impact of Pipelining on individual commits: Figure 9.16b showcases the overhead of pipelining in com-
parison to no pipelining. In this analysis, the time taken for transferring checkpoint during each commit
operation is studied while the application was expanded to 16 nodes from a single node and then reduced
to 8 nodes, followed by another reduction to 4 nodes. MA-RA strategy with a single agent was employed
in this analysis and each node contained 0.48 GB of checkpoint. This resource change can be seen around
commit numbers 23, 43 and 53 with a spike in checkpoint transfer time. The pipeline buffer size is 0.48
GB, which means that the agent can store the complete checkpoint in its memory. This is intentionally
done to analyse the overhead associated with pipelining. Since the checkpoint transfer size is the same
with and without pipelining, additional time taken for pipeline mode gives insight into the overhead, which
includes writing the data into a parallel file system after each checkpoint transfer. As expected, there is no
performance difference for a single node with a single agent with and without pipelining since the agent can
store 0.48 GB in its memory. However, the performance difference can be observed once the application is
expanded to 16 nodes, where the agent needs to write the data into PFS after reading the checkpoint from

133

9 Results

the first node and then transfer the data from the next nodes till all of the data is retrieved from all of the
nodes. As a result, the agent incurs an overhead of 15 PFS writes with the pipelining technqiue (overhead for
writing 0.48 GB to PFS during each write) when the application is running on 16 nodes. This behaviour is
also consistent when the application was reduced to eight nodes and later to four nodes (As seen in commit
numbers 40 and 53 in Figure 9.16b). Hence, there is a consistent performance difference for checkpoint
transfer with and without pipelining.

(a) Performance of data transfer for various pipeline sizes after expansion and reduction

(b) Performance of data transfer for a single size with pipeline

Figure 9.16: Performance comparison with and without pipelining

134

9.4 Resource Management in iCheck

9.4.3 Data Distribution in iCheck

This section showcases the experimental evaluation of the simple BLOCK data distribution capability of the
iCheck system. A synthetic malleable benchmark application (Section 8.2.3.2) was used to analyse the
data redistribution feature. The application resources were expanded and reduced dynamically using iRM,
and the data distribution functionality of iCheck with regard to the resource changes was analysed. The
application was run on up to 16 nodes, and the iCheck system was run on two nodes. In the synthetic
benchmark, the application checkpointed data of size 1.5 GB every five seconds. This section analyses the
following aspects of the iCheck data redistribution feature. Firstly, the effect of different numbers of agents
(MA-RA and MA-MA in Section 8.2.3.2) on data distribution was analysed in detail in this section. For
this analysis, the synthetic application was initially run on a single node, and then iRM was leveraged to
expand the resources to 16 nodes. The checkpoint size (or size of the global array) remained the same for
resource expansion. Later, the number of resources was halved using iRM. Secondly, the redistribution time
of iCheck is compared with that of a naive MPI-based data redistribution technique.

(a) Impact of agent count on data transfer time

(b) Impact of agent count on configuration (log scale)

Figure 9.17: Analysis of data redistribution in iCheck

135

9 Results

Table 9.4: Lines of Code for data distribution on Malleable Application
Type iCheck MPI-Based
block 1 > 3

9.4.3.1 Performance Analysis

Figure 9.17a indicates the time taken for data redistribution for different agent configurations as the applica-
tion is expanded from a single node to sixteen nodes. The application was expanded from a single node to 16
nodes, using the MA-RA and MA-MA strategies for the agent change. In the MA-MA strategies, the factors
of the node size were used as the agent count, resulting in a distribution of two, four, eight and sixteen agents
for the expansion to 16 nodes. As shown in the plot, the time taken for data redistribution is greatly reduced
as the number of agents increases. This can be attributed to the data transfer parallelism made possible by
the number of agents and is consistent with the observations made in Section 9.3. When there are sixteen
agents, every agent can simultaneously transfer the data from corresponding nodes (a 1:1 mapping, which
leads to less waiting time inside the application to transfer the checkpoints), giving maximum performance.
On the other hand, with a single agent, the data transfer has to happen sequentially from each of the 16
nodes, which leads to a longer redistribution time (17 times slower than 16 agents), as observed in Figure
9.17a. Similarly, using agent sizes of two, four and eight results in performance improvements of 2x, 4x and
8x, respectively.

Analysing the time taken for each agent’s data transfer and configuration offers exciting insights into the data
redistribution process occurring within iCheck. Figure 9.17b shows the total time for libfabric configuration
and data transfer with node-level granularity represented in a logarithmic scale when the application was
expanded from a single node to sixteen nodes. When the number of agents is the same as the number of
nodes (16 Agents), the data transfer time is steady across all nodes. However, some interesting insights can
be derived by looking into the time taken for two agents in the figure. With a two-agent configuration, each
agent is responsible for eight application nodes, with the first agent (say Agent 1) responsible for nodes zero
to seven and the second agent (say Agent 2) for nodes eight to fifteen. This can be attributed to the variation
in performance seen across Node IDs 0-7 and 8-15 in Figure 9.17b. As seen in the figure, there is a steady
increase in transfer time across Node IDs 0-7 and Node IDs 8-15 since agents first send data to nodes 0
(Agent 1) and 8 (Agent 2) and then move on to nodes 1 (Agent 1) and 9 (Agent 2), which continues until
the data is transferred to all nodes. As a result, the processes in the other nodes will wait for the data to
be received, increasing the overall transfer time. For example, while Agent 1 transfers data to the 1st Node
(Node ID 0), the processes in the remaining nodes (Node ID 1 - 7) will be waiting. Likewise, this pattern can
also be observed in other agent configurations. For instance, for a single agent scenario, the transfer time
is steadily increasing up to node 15, while for four agents, the time is increasing steadily from nodes zero
to four, four to seven, eight to eleven, and twelve to fifteen since four agents are retrieving data in parallel.
This leads to an interesting graph shape from which the agent count can be derived simply by looking into
number of peaks in the corresponding line in the graph. The order of retrieval of checkpoint can also be
derived by traversing the peaks and valleys in the graph.

9.4.3.2 iCheck vs MPI-IO

Figure 9.18 compares the time taken for data redistribution when the application was expanded from one to
sixteen nodes, and then the application was later reduced to eight nodes from sixteen nodes. iCheck with the
best agent configuration yields 7x faster data distribution during expansion and 9x faster data distribution

136

9.4 Resource Management in iCheck

Figure 9.18: Data distribution overhead comparison

during reduction. This performance improvement is attributed to the RDMA-based data transfer from the
iCheck system to the application. In the MPI-based data redistribution, a naive approach was implemented,
wherein the expansion from a single node to sixteen nodes, the lead process first gathered the data before the
expansion process, and later, after the expansion, the lead rank scatters the data into all the nodes using the
collective MPI operations (MPI_Gather and MPI_Scatter). This is a naive implementation; hence, iCheck
outperforms it due to the optimised RDMA-based approach. In addition, Table 9.4 shows the ease of use
comparison for data distribution based on iCheck and MPI. In iCheck, icheck_redistribute() API needs
to be called once by processes, while in MPI-based implementation, the application developer needs to
add the code for gather and scatter (or Write and Read to PFS if MPI-IO is utilised), then based on the
resource change type (expansion or reduction), the data distribution logic needs to be calculated (additional
lines of code). For example, in the case of reduction (from 16 nodes to 8 nodes), the developer needs to
calculate the processes in 8 nodes to which the data from the original 16 nodes to be transferred. This can
complicate the application development process and can be avoided using the data redistribution capability
offered by iCheck. In addition, the developer does not need to worry about sending the entry point of the
newly joined application processes (See Section 2.2.2.2) since these variables can be restored directly using
iCheck (Section 7.4.1), further reducing the number of lines of code.

137

10
Discussion

This chapter provides an overview of the key takeaways from the results section and how they align with
the objective of the undertaken work. The discussion is presented in the order of the contributions of the
work performed as part of this research work. The three following sections describe the results of the
contributions in the order of the definition of their corresponding chapters (Chapters 4 - 7). Initially, a
discussion associated with adaptive batch scheduling is provided, followed by a discussion about the results
of power corridor management contribution, and finally, key takeaways from the adaptive checkpointing
work are presented.

The primary motivation of this work is to demonstrate that dynamic resource management can be leveraged
not only to improve system utilisation but also to utilise it for power management and fault tolerance.
By analysing the experimental results provided in Section 9, it can be concluded that dynamic resource
management is a potential candidate for tackling the major concerns in HPC like efficient system utilisation,
power management and resilience to failure. An overview of the findings from this work and its relevance
is discussed below:

10.1 Adaptive Batch Scheduling
The adaptive batch scheduler introduced in Chapter 4 performs runtime reconfiguration of resources of the
running applications based on some predefined policy (For example, application performance is considered
for decision-making) to improve the overall system utilisation. As a result, more jobs can be scheduled
faster, leading to a better system makespan, which is demonstrated in Section 9.1. Although this assumption
is obvious (changing resources of running applications to make space for the new applications and thereby
improving the system utilisation), the nuances of the concepts were not discussed in the current literature.
In addition, a working prototype on a real machine needed to be demonstrated to portray such nuances
present in adaptive batch scheduling. From the performance metrics aspect, it can be concluded that using
the performance-aware batch scheduler, an improvement of up to 30% can be obtained in overall system
utilisation compared to a static backfill scheduler.

Nevertheless, the key takeaway is the percentage of malleable jobs considered for the evaluation. As seen
in figure 9.1b, even with only half of the malleable jobs in the queue, the overall system utilisation can al-
most be doubled with a malleable resource management technique. The trend is similar also for makespan,

138

10.2 Power Corridor Management

average response time and waiting time of the jobs. In addition, it is also visible from the makespan re-
sults (Figure 9.1a) that a performance-aware system that considers the application-specific characteristics
(compute intensive/memory intensive) can trigger the resource change in such a way that it rewards the high-
performing applications. As seen from the experimental results portrayed in figure 9.1, the performance-
aware scheduler gives the best results for all metrics compared to the static backfill scheduler and FPSMA
technique from the literature. It is due to the consideration of application characteristics that improved the
overall metrics. This insight laid the foundation for the power-aware scheduling techniques developed as
part of this work. The application’s performance characteristics can also translate to the power usage char-
acteristics. For example, a compute-intensive application can be a power-hungry application. Hence, the
power-aware scheduler can be used to manipulate the system’s power consumption by leveraging dynamic
resource management concepts.

Another critical takeaway is that even with 100% malleable jobs, the system was not able to achieve above
85% of system utilisation. It is the indirect consequence of the constraints put forward by the application
and is adhering to real-life application scenarios. For example, some applications require a specific number
of resources (LULESH requires a cubic number of nodes for the execution). As a result, not all applications
can be scaled as the resources become available; hence, there will always be idle nodes in the system. This
notion is used as a building block for resource-aware checkpointing, where the dynamic resource manager
can indirectly use the idle nodes to improve the application performance by giving more resources to the
checkpointing system based on the checkpointing requirements.

10.2 Power Corridor Management

The proposed power-aware scheduler demonstrated that given there are malleable applications that have the
power usage characteristics defined in Section 5.1.2, dynamic resource management, along with launching
new applications, can ensure that a system can operate in the specified corridor. The key concept is taking
into account the power usage characteristics of the application. The power-aware scheduler can reconfigure
the applications in such a way that the overall power consumption of the system can either be increased
or decreased. The fundamental limitation of this approach is the dependence on malleable applications.
This approach requires the presence of sufficient malleable applications with varying power usage charac-
teristics. If all the applications have similar power usage characteristics and the system is fully occupied,
reconfiguring the resources will not bring the system back into the power corridor.

The experimental results from Figure 9.2 show that the runtime system can reconfigure the running ap-
plications to increase or decrease the power usage as per the demand. Additionally, the figure shows that
the power-aware scheduler can launch new jobs as well as maintain the system-level power budget even
when the power corridors are dynamically altered. Also, the makespan table (Table 9.2) demonstrates that
the power-aware scheduler can get better makespan than the power-aware runtime system. It can be seen
from figure 9.2.4 that leveraging the dynamism can be significant in maintaining the power budget. At
the same time, the static backfill scheduler fails to adhere to the power budget. However, analysing the
makespan of the power-aware and static scheduler demonstrates that the power-aware scheduler might have
a slightly worse makespan than the static one. It is the cost of adhering to the system-level power corridor
requirements. However, optimising for application performance might be counterproductive to achieve the
system-level power budget. Nevertheless, it can be derived from the results that the system-level power bud-
get can be maintained without heavily penalising the applications, like killing the applications as described
in the literature.

139

10 Discussion

10.3 iCheck - Invasive Checkpointing System

iCheck was designed to be adaptive and flexible to the changes in application characteristics. These design
aspects can be used to:

• leverage the dynamism of resources (self-adaptivity) to improve the application’s performance.

• satisfy the checkpointing needs of malleable applications.

• perform as a data distribution framework for malleable applications.

These three aspects were successfully demonstrated in the evaluation part of iCheck in Chapter 9.

The performance of iCheck compared to MPI-IO and SCR is demonstrated in Section 9.3.5. It is evident
that iCheck performs faster checkpointing due to the use of RDMA technology and hence results in faster
execution of the application. As depicted in table 9.3, utilisation of iCheck in the ls1 mardyn application
resulted in 6% faster execution of the application compared to the in-house MPI-IO-based implementation.
In addition, iCheck offers different checkpoint transfer techniques (See figures 9.3.2 and 9.5) that improve
the overall checkpointing performance in an application.

iCheck also demonstrates that scaling its resources can significantly improve the checkpointing performance
of the application (See Figures 9.4a and 9.6a). Furthermore, it can also be seen (from Figure 9.7a) that
dynamically adding the agents improves the checkpointing time. It is observed that the overhead of dynam-
ically adding the agents is negligible compared to the attained performance advantage. Figure 9.7a shows
that there was a performance improvement of up to 80% while using dynamic agents. In addition, iCheck
also demonstrated that different agent placement techniques that react to the nuances of the system can
improve the checkpoint transfer in applications (Figure 9.7b). The malleability offered by iCheck enables
combining these two functionalities (dynamic agent change and agent placement) and creates a faster and
more efficient checkpoint transfer mechanism even for a non-malleable application. Further, Subsection
9.4.1.4 discusses the performance of the fallback checkpoint transfer mechanism employed by iCheck in
case of a failure in the iCheck core system.

In addition, the horizontal scaling ability of iCheck depicted in Figure 9.8b presents opportunities to utilise
the idle nodes of the system efficiently. Leveraging the horizontal scaling capabilities discussed in Sec-
tion 9.4.1.3, iCheck introduces two significant advantages to checkpointing in high-performance computing
environments. The first advantage is eliminating the necessity to allocate a fixed set of nodes exclusively
for checkpointing purposes. Instead, a resource manager can dynamically adjust the number of nodes des-
ignated for checkpointing services, tailoring this allocation to the current resource availability within the
system. Secondly, as HPC is moving towards the cloud [235], a dynamically scaling fault-tolerant system
will benefit from a cost-based cloud model where it can expand or shrink its checkpointing nodes and agents
based on the application demands and objectives.

Figure 9.11 demonstrates the ability of iCheck to support malleable applications and showcases the perfor-
mance improvement brought by malleability-aware agent change techniques in iCheck. Figure 9.12 show-
cases the improvement of upto 110% among different iCheck strategies for malleable applications and an
improvement upto 90% in comparison with IOR benchmark. In addition Figure 9.15 depicts the capability
of pipelining in iCheck. Further, Section 9.4.3 paints the effect of data distribution using the iCheck pro-
vided APIs. The ease of using iCheck API is visible in the table 9.4, describing the necessity of fewer lines
of code compared to the standard techniques for data distribution after a resource change. In addition, the
overhead associated with data distribution is negligible compared to the benefits provided by the easiness of
data redistribution.

140

11
Conclusion

Innovative solutions are needed to overcome supercomputing’s numerous challenges, ranging from power
management to fault tolerance and scalability. Dynamic resource management is one such solution that
offers a flexible and intelligent approach. Using dynamic resource management, this work improved system
utilisation, optimised power consumption and enhanced fault tolerance. As supercomputing continues to
push the boundaries of scientific discovery and technological innovation, dynamic resource management
enables supercomputers to utilise technological advancements efficiently while maintaining power efficiency
and system reliability.

This work successfully showed that dynamic resource management can tackle diverse challenges in three
different domains of supercomputing. The short summary of contributions and domains associated with
each contribution is listed below:

• Resource and Job Management System: This work demonstrated that creating a performance-aware
batch system can improve the system’s overall performance (Section 9.1). The system utilisation was
improved by 30%; the average job waiting time was improved by 25%; the makespan was improved
by 20%. The improvement was demonstrated on SuperMUC-NG using a tsunami simulation applica-
tion. In addition to a performance-aware batch system, different scheduling strategies were developed
to showcase the usefulness of malleable job management. It is also demonstrated that significant im-
provement can be obtained for system metrics even with less than half of the applications in the queue
are malleable.

• Power Management: In the area of power management, the contribution from this work is a power-
aware runtime system and batch scheduler (Section 9.2). It showcased that redistribution of resources
and power-aware job scheduling can keep the system in a specified power budget without using com-
monly used techniques like DVFS and power capping. It is also demonstrated that the system can
successfully adapt to varying power budgets (dynamic power corridor management). The experi-
ments were run on SuperMUC and SuperMUC-NG using heat simulation, Pi Calculation and LU
decomposition applications.

• Fault Tolerance: This work brought novelty in four aspects of checkpointing in HPC. Firstly, a new
RDMA-based application-level checkpointing system that can dynamically reconfigure its resources
to improve the overall application performance is demonstrated (Section 9.3). The results were taken

141

11 Conclusion

on SuperMUC-NG using applications like ls1mardyn, lulesh, heat simulation and synthetic appli-
cation. Secondly, the checkpointing system is extended to support malleable MPI applications that
can dynamically change its resources. It is also demonstrated that iCheck can improve a malleable
and standard MPI application’s performance by reconfiguring the checkpointing resources to provide
faster checkpointing services. A synthetic application is used to illustrate the impact of iCheck on
malleable applications. In the third case, the iCheck-aware resource manager plugin is created to
cater to the horizontal scaling capability of iCheck, which is beneficial whenever iCheck runs out of
memory for the application. Lastly, the proof-of-concept checkpointing system as a data distribution
framework is demonstrated successfully (Section 9.4). The data redistribution easiness using iCheck
compared to the manual data distribution scheme was also portrayed.

These contributions demonstrate that dynamic resource management is suitable for approaching multiple
supercomputing challenges. Further, it is also evident that the success of dynamic resource management
depends upon the availability of malleable applications. A supercomputer’s impact lies in its use case,
specifically the applications that leverage high-performance hardware to create breakthrough inventions.
Similarly, if there are not enough malleable applications to utilise the dynamism in HPC, the benefits of
dynamic resource management cannot be fully reaped. Towards that, the research community’s growing
interest in malleability gives a promising outlook into the future of HPC. The contributions from this work
can be leveraged to create a better malleable ecosystem for HPC.

11.1 Into the Future

The evolution of high-performance computing is invariably characterised by rising complexity and require-
ments, pushed by applications that become ever more ambitious. Three pivotal domains that can contribute
immensely to addressing the next generation of high-performance computing systems performance, sustain-
ability and reliability are dynamic resource management, power management and fault tolerance. As seen
in this work, this approach can improve efficiency and performance. However, it also introduces several
challenges and limitations that must be addressed. These challenges include ensuring that resources are
allocated fairly and efficiently, managing the system’s complexity, and ensuring the system is reliable and
safe. As part of this work, some areas that require further investigation are identified and introduced below.

• Resource and Job Management System: This work’s contributions to adaptive batch scheduling
only consider the current application performance. The resource management system should ideally
have astute knowledge about the effect of resource change on an application’s performance. The
MTCT metrics (see section 4.2.3) considered for triggering the resource change decision do not reveal
information about the peculiar characteristics inside different phases of an application. For example,
a resource change might turn a compute-bound application into a memory-bound one and might not
benefit from the resource change. In this arena, there is much potential for improvements. Machine
learning and AI-driven algorithms can be leveraged to model the application characteristics and make
scheduling decisions based on this information. This could potentially improve the overall makespan
of the system and increase the system utilisation.

As seen in the above sections, the availability of malleable applications gives flexibility to the RJMS
system to improve the overall system performance. However, writing malleable applications is a
cumbersome process. Towards that, incentive-based approaches can be devised where the creators of
malleable applications can be rewarded with more resources (CPU hours) or higher priority (during
job submissions) if the creators provide malleable applications that the resource manager can manip-
ulate. However, this is indeed challenging since the change of resources in the malleable applications

142

11.1 Into the Future

can impact the classical application performance analysis techniques and skew the benchmark results.
For example, the application can switch between memory-bound and compute-bound based on the
resource change. Performance analysis and optimisation will be tricky (For example, performing
roofline analysis [236]), making it difficult to fine-tune the application. In that regard, another area to
look into is the tool support for such change in resources. Most tools are designed with static MPI in
mind, and considerable effort will be needed to port existing tools to support malleable applications.
Lastly, the granularity of the resources in this work can be extended to cores. Currently, the resource
manager takes the resource change decision based on the granularity of a node (consistent with the
exclusivity of compute nodes in a typical supercomputing job submission scenario). As a result, a
resource change is performed in the number of nodes and the MPI processes matching the number
of cores are launched in the allocated node. A granularity of cores can be utilised to make more in-
telligent resource change decisions. In addition, the granularity of cores can also be utilised for the
co-scheduling [237] scenarios.

• Power Management: This work’s proposed power management strategy leverages the dynamic re-
source management techniques and guarantees that the system can maintain/change its power usage
in/to the specific corridor if some predefined constraints are met (see section 5.1.2). Notably, the
presence of malleable applications is crucial for materialising such a concept. However, the proposed
approach is ideal only if sufficient malleable applications are present with ideal power profiles to
bring the system back into the power corridor. The current state-of-the-art approaches (Power cap-
ping and DVFS) are alternatives in such scenarios. Suppose the applications cannot meet the criteria
to change the power consumption using dynamic resource management. In that case, the power-aware
scheduler can switch to the conventional techniques to maintain the power budget. However, the ideal
approach is to merge the existing method of DVFS and power capping along with dynamic resource
management to create a hybrid power management system that benefits from both conventional power
management techniques and the flexibility offered by the dynamic resource management technique.

Combining these techniques opens up opportunities for efficient power management. As a result,
the power-aware resource manager’s decision-making domain is expanded, and multiple techniques
(power models) can be employed to tackle power management. For example, the power-aware re-
source manager can change the resources of a set of applications and manipulate the voltage and
frequency to reach a power range that is not reachable only with dynamic resource management or
DVFS. Furthermore, predictive models can be used to forecast the power usage of the applications
with new resources. The information about the power usage characteristics of the application with
regard to its scaling characteristics will be beneficial for decision-making. This enables the power-
aware scheduler to make intelligent decisions regarding the resource change. For example, the re-
source manager can selectively perform resource change and frequency scaling on applications based
on their power profiles. Another aspect is to utilise the dynamic power corridor management infras-
tructure and link it with information about the energy source. As a result, the power-aware scheduler
can operate in high power mode (higher power corridors) whenever the energy is supplied from green
energy sources (for example, the wind and the solar energy) and low power mode when the energy is
supplied from conventional energy sources (For example, Coal) thereby creating a green power-aware
batch scheduler.

Another addition to this work can be about changing the granularity of the resources. In this work, the
resources have the granularity of nodes, and all of the cores of a compute node are utilised whenever a
resource expansion is triggered. This hinders the opportunities for fine-tuning the power usage inside
the node by manipulating the processes inside a compute node. As a result, a change in the granu-
larity of resources from compute nodes to compute cores can improve the power-aware scheduler’s
performance.

143

11 Conclusion

• Fault tolerance: This work’s proposed checkpointing system targets classical and malleable HPC
applications running on CPUs. In addition, iCheck design also supports both homogeneous and het-
erogeneous CPU systems. However, HPC is going beyond homogeneous CPU systems as more GPUs
and accelerators are becoming a standard addition to top HPC systems [238]. Even though the iCheck
core can run out-of-the-box MPI applications on the heterogeneous nodes of a cluster, one of the sig-
nificant limitations of the iCheck system is the need for more support for accelerators. In principle,
the iCheck system can checkpoint the data from the compute node of the application (even though the
node is connected to GPUs) that also utilises the GPU for its computation. However, iCheck cannot
read checkpoints directly from the GPUs; instead, it can be performed via RDMA/TCP from the pri-
mary memory of the compute node. Hence, iCheck must be further extended to support GPUDirect
RDMA [239] to transfer data directly from GPUs to the iCheck core to provide faster checkpointing
services to GPU-based applications.

In the current implementation, iCheck does not leverage the benefits offered by machine learning tech-
niques for checkpointing [240, 241]. iCheck decides on the resources for checkpointing and where
to store the checkpoints based on the empirical data and the data provided via the configuration file.
In this regard, improvement is possible by leveraging reinforcement learning [242] techniques to pre-
dict the number of resources to be allocated for an application and which strategy to use to place
the checkpoints in the compute nodes. Based on the feedback, the checkpointing resources can be
changed dynamically due to the adaptive design of iCheck. As a result, combining machine learning
with the dynamism offered by iCheck could improve the checkpointing performance of the applica-
tion. In the end, a fully automated self-adaptive checkpointing system can be created by applying
machine learning techniques. Furthermore, the same learning techniques can be leveraged to decide
when to transfer checkpoints to PFS. Currently, iCheck only supports PFS as the second level in its
design and could also be extended to support NVMs and SSDs as second level and can be trained to
use the storage hierarchy based on the system and application performance characteristics [185].

Further, the data distribution API provided by iCheck only supports simple data distribution use cases
(Block and Cyclic) and custom user-level functions. iCheck could be extended to support already
available load balancing and data distribution libraries to cater for a wide array of HPC applications.
Another potential for improvement is to utilise the predictive failure analysis to anticipate and isolate
the hardware that can fail. This technique could be leveraged by iCheck and iCheck-aware schedulers
to improve the application’s resilience. Resource managers can proactively remove the compute nodes
(that are predicted to fail) from the application, and iCheck can restore (redistribute) the data faster to
improve the overall resiliency of the application.

As discussed, the proposed work can be improved by leveraging the machine learning techniques in the
three domains. The resource manager can proactively avoid failures, perform resource redistribution based
on the application’s scalability, and efficiently manage the system’s power usage. Towards that, a unified
scheduler plugin must be devised. With the proposed work, three different scheduler plugins along with
an application-level checkpointing system were developed to tackle the three aspects of HPC. These could
be clubbed to create a one-for-all resource manager plugin aware of dynamism, power and failures in the
system. Such a resource manager can further delve into the interdependencies between these three domains.
The journey towards exascale computing and beyond is undoubtedly challenging, but it also presents many
opportunities for innovative solutions. The HPC community should leverage dynamic resource management
to achieve revolutionary breakthroughs in system utilisation, power efficiency and resilience. As the need
for computational power continues to increase, and sustainability initiatives continue to gain momentum,
the procedures and technologies developed by leveraging dynamic resource management in these areas will
undoubtedly shape the next era of supercomputing.

144

List of Figures

1.1 Overview of the contributions from this work . 10

2.1 Invasive computing fundamental concepts [81] . 13
2.2 Research groups in Invasive Computing [81] . 14
2.3 Slurm Architecture . 15
2.4 Invasive Resource Manager [88] . 17
2.5 Control flow of a sample iMPI application [88] . 21
2.6 Control flow of a sample EPOP application [88] . 24

4.1 Adaptive Batch Scheduler Architecture [88] . 38

5.1 Adaptive Power-aware Batch Scheduler Architecture [88] 45
5.2 Forecasting using different techniques . 49

6.1 iCheck system architecture [77] . 53
6.2 iCheck Agent . 53
6.3 iCheck Manager . 54
6.4 iCheck Controller . 54
6.5 iCheck architecture hierarchical view . 55
6.6 RDMA in iCheck . 59
6.7 Buffer Management in MR based checkpointing . 60
6.8 Buffer Management in SHMR based checkpointing . 61
6.9 iCheck Buffer Management in SHMR based checkpointing using the CP Manager and Co-

ordinator . 62
6.10 Pluggable services in an iCheck agent . 69
6.11 Agent reconfiguration . 70

7.1 High level interaction overview of iCheck, iRM, and application from an iCheck Perspective. 96
7.2 State transition diagram of iCheck library (High level overview). 101

9.1 Evaluation of the adaptive batch scheduling system [55] . 110
9.2 Power Corridor enforcement using the resource reconfiguration among the running mal-

leable applications [59]. 111
9.3 Average system power usage and power corridor violations for different scheduling scenar-

ios [55]. 114
9.4 Checkpointing analysis on ls1 mardyn using iCheck and MPI-IO [77]. 117
9.5 Comparing checkpoint performance in Push and Pull Techniques. 118
9.6 Checkpointing analysis on synthetic application using iCheck and MPIIO [77]. 119
9.7 Effect of dynamic agents and agent placement strategies [77]. 121
9.8 Demonstrating the horizontal scaling in iCheck during a time interval [77]. 122

145

List of Figures

9.9 Analysis of fallback mechanism for checkpoint transfer in iCheck 123
9.10 Data compression inside iCheck . 125
9.11 Effect of dynamic agents on a malleable MPI application with dynamic checkpoint size . . . 126
9.12 Overhead analysis of different strategies in comparison to IOR Benchmark (using MPI-IO) . 128
9.13 Effect of agents on a malleable MPI application with fixed and dynamic checkpoint size . . 129
9.14 Effect of agents on a malleable MPI application with fixed and dynamic checkpoint Size . . 130
9.15 Performance comparison of pipelining in MA-MA and MA-RA strategies 132
9.16 Performance comparison with and without pipelining . 134
9.17 Analysis of data redistribution in iCheck . 135
9.18 Data distribution overhead comparison . 137

146

List of Tables

1.1 Name, architecture, number of cores, performance and power usage of the top five HPC
systems in the Top500 list on November 2023 [15]. 3

9.1 Workload characteristics for the modified ESP Benchmark [223] used in ABS analysis [55]. 109
9.2 Comparison of metric values for different scheduling scenarios [55]. 114
9.3 Effect of checkpointing on execution time in ls1 mardyn [77]. 117
9.4 Lines of Code for data distribution on Malleable Application 136

147

List of Algorithms

1 The Adaptive Batch Scheduler (ABS) Iteration [55]. 36

2 Adapted Favor Previously Started Malleable Applications First (FPSMA) job scheduling
strategy [117]. 40

3 The ABS Performance-aware Scheduling function [55]. 41

4 The ABS power-aware scheduling function [55]. 50

5 The agent count selection algorithm . 75

6 The agent placement algorithm . 76

7 The agent count selection algorithm . 82

8 The controller horizontal scaling proactive algorithm . 87

9 The controller horizontal scaling reactive algorithm . 88

10 The iCheck aware scheduling function with priority for iCheck system. 92

11 The iCheck aware scheduling function with priority for malleable application. 95

148

List of Listings

2.1 Example batch script with additional parameters for sbatch. 16
2.2 Pseudocode of a sample iMPI application. 22
2.3 Pseudocode of a sample EPOP application [59]. 23

4.1 Simple batch script for adaptive batch scheduling [55]. 35

5.1 Example batch script with additional options for power-aware scheduling [55]. 48

6.1 Pseudocode of a simple iCheck enabled MPI application [77]. 57
6.2 iCheck dynamic configuration file. 67
6.3 iCheck static configuration file. 67

7.1 Psuedocode of a malleable application with iCheck [78]. 84
7.2 Psuedocode of a malleable application using iCheck data distribution API [77]. 100

8.1 The configuration file for synthetic benchmark application. 105
8.2 Pseudocode of a synthetic benchmark using iCheck. 106

149

Bibliography

[1] National Weather Service. About Supercomputers. URL: https : / / www . weather . gov / about /
supercomputers.

[2] Zameer Shervani et al. “World’s Fastest Supercomputer Picks COVID-19 Drug”. In: Advances in
Infectious Diseases 10 (Jan. 2020), pp. 211–225. DOI: 10.4236/aid.2020.103021.

[3] Gerard Dumancas. “Applications of Supercomputers in Sequence Analysis and Genome Annota-
tion”. In: Jan. 2015, pp. 149–175. ISBN: 9781466674622. DOI: 10.4018/978- 1- 4666- 7461-
5.ch006.

[4] International Nuclear Information System. Supercomputer applications in nuclear research. URL:
https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=
23076643.

[5] V. Daniel Elvira et al. The Future of High Energy Physics Software and Computing. 2022. arXiv:
2210.05822 [hep-ex].

[6] C.S. Chang et al. “Simulations in the era of exascale computing”. In: Nature Reviews Materials 8
(Mar. 2023). DOI: 10.1038/s41578-023-00540-6.

[7] US DOE. Supercomputing and Exascale. URL: https://www.energy.gov/supercomputing-and-
exascale.

[8] top500. Supercomputers – Prestige Objects or Crucial Tools for Science and Industry? URL: https:
//www.top500.org/files/Supercomputers-Paper-London-Final.pdf.

[9] Juelich Forschungszentrum. Supercomputer for Highly Complex Calculations and AI. URL: https:
//www.fz-juelich.de/en/news/archive/feature-stories/supercomputer-for-highly-
complex-calculations-and-ai.

[10] EuroHPC. The European High Performance Computing Joint Undertaking (EuroHPC JU). URL:
https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en.

[11] J.V. Maizel. “Supercomputing in molecular biology: applications to sequence analysis”. In: IEEE
Engineering in Medicine and Biology Magazine 7.4 (1988), pp. 27–30. DOI: 10.1109/51.20377.

[12] National Research Council. Getting Up to Speed: The Future of Supercomputing. Ed. by Susan L.
Graham, Marc Snir, and Cynthia A. Patterson. Washington, DC: The National Academies Press,
2005. ISBN: 978-0-309-09502-0. DOI: 10.17226/11148. URL: https://nap.nationalacademies.
org/catalog/11148/getting-up-to-speed-the-future-of-supercomputing.

[13] ACM. The decline of computers as a general purpose technology. URL: https://dl.acm.org/doi/
fullHtml/10.1145/3430936.

[14] European Investment Bank. Financing the future of supercomputing: How to increase the invest-
ments in high performance computing in Europe. URL: https://www.eib.org/en/publications/
financing-the-future-of-supercomputing.

150

https://www.weather.gov/about/supercomputers
https://www.weather.gov/about/supercomputers
https://doi.org/10.4236/aid.2020.103021
https://doi.org/10.4018/978-1-4666-7461-5.ch006
https://doi.org/10.4018/978-1-4666-7461-5.ch006
https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=23076643
https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=23076643
https://arxiv.org/abs/2210.05822
https://doi.org/10.1038/s41578-023-00540-6
https://www.energy.gov/supercomputing-and-exascale
https://www.energy.gov/supercomputing-and-exascale
https://www.top500.org/files/Supercomputers-Paper-London-Final.pdf
https://www.top500.org/files/Supercomputers-Paper-London-Final.pdf
https://www.fz-juelich.de/en/news/archive/feature-stories/supercomputer-for-highly-complex-calculations-and-ai
https://www.fz-juelich.de/en/news/archive/feature-stories/supercomputer-for-highly-complex-calculations-and-ai
https://www.fz-juelich.de/en/news/archive/feature-stories/supercomputer-for-highly-complex-calculations-and-ai
https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en
https://doi.org/10.1109/51.20377
https://doi.org/10.17226/11148
https://nap.nationalacademies.org/catalog/11148/getting-up-to-speed-the-future-of-supercomputing
https://nap.nationalacademies.org/catalog/11148/getting-up-to-speed-the-future-of-supercomputing
https://dl.acm.org/doi/fullHtml/10.1145/3430936
https://dl.acm.org/doi/fullHtml/10.1145/3430936
https://www.eib.org/en/publications/financing-the-future-of-supercomputing
https://www.eib.org/en/publications/financing-the-future-of-supercomputing

[15] top500. top500 The List. URL: https://www.top500.org/lists/top500/2023/06/.

[16] Microsoft. What runs ChatGPT? Inside Microsoft’s AI supercomputer. URL: https://techcommunity.
microsoft.com/t5/microsoft-mechanics-blog/what-runs-chatgpt-inside-microsoft-s-
ai-supercomputer-featuring/ba-p/3830281.

[17] HPC wire. US Plans 1.8BillionSpendonDOEExascaleSupercomputing. URL: https://www.hpcwire.
com/2018/04/11/us-plans-1-8-billion-spend-on-doe-exascale-supercomputing/.

[18] European Commission. The EU enters the exascale era with the announcement of new supercom-
puting hosting sites. URL: https://digital-strategy.ec.europa.eu/en/news/eu-enters-
exascale-era-announcement-new-supercomputing-hosting-sites.

[19] HPC Wire. Three Chinese Exascale Systems Detailed at SC21. URL: https://www.hpcwire.com/
2021/11/24/three-chinese-exascale-systems-detailed-at-sc21-two-operational-and-
one-delayed/.

[20] DOE. Launching a New Class of U.S. Supercomputing. URL: https://www.energy.gov/science/
articles/launching-new-class-us-supercomputing.

[21] US DOE. The Opportunities and Challenges of Exascale Computing. URL: https://science.
osti.gov/-/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf.

[22] IEEE Spectrum. FRONTIER SUPERCOMPUTER TO USHER IN EXASCALE COMPUTING. URL:
https://spectrum.ieee.org/exascale-supercomputing.

[23] Neha Gholkar, Frank Mueller, and Barry Rountree. “A Power-Aware Cost Model for HPC Pro-
curement”. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 2016, pp. 1110–1113. DOI: 10.1109/IPDPSW.2016.35.

[24] Alexandros Nikolaos Ziogas et al. “A Data-Centric Approach to Extreme-Scale Ab Initio Dissi-
pative Quantum Transport Simulations”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’19. Denver, Colorado: Association
for Computing Machinery, 2019. ISBN: 9781450362290. DOI: 10.1145/3295500.3357156. URL:
https://doi.org/10.1145/3295500.3357156.

[25] Daniel Dauwe et al. “An Analysis of Resilience Techniques for Exascale Computing Platforms”. In:
2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
2017, pp. 914–923. DOI: 10.1109/IPDPSW.2017.41.

[26] Hassan Khan, David Hounshell, and Erica Fuchs. “Science and research policy at the end of Moore’s
law”. In: Nature Electronics 1 (Jan. 2018). DOI: 10.1038/s41928-017-0005-9.

[27] Dell Technologies. SAVING THE FUTURE OF MOORE’S LAW. URL: https://education.dell.
com/content/dam/dell- emc/documents/en- us/2019KS_Yellin- Saving_The_Future_of_
Moores_Law.pdf.

[28] R.R. Schaller. “Moore’s law: past, present and future”. In: IEEE Spectrum 34.6 (1997), pp. 52–59.
DOI: 10.1109/6.591665.

[29] Intel. Moore’s Law. URL: https://www.intel.com/content/www/us/en/newsroom/resources/
moores-law.html.

[30] Manish Parashar et al. “A Study of Software Development for High Performance Computing”. In:
(Mar. 1997). DOI: 10.1007/978-3-0348-8534-8_11.

[31] V Pallipadi and A Starikovskiy. “The ondemand governor: Past, present and future”. In: Proceedings
of Linux Symposium 2 (Jan. 2006), pp. 223–238.

151

https://www.top500.org/lists/top500/2023/06/
https://techcommunity.microsoft.com/t5/microsoft-mechanics-blog/what-runs-chatgpt-inside-microsoft-s-ai-supercomputer-featuring/ba-p/3830281
https://techcommunity.microsoft.com/t5/microsoft-mechanics-blog/what-runs-chatgpt-inside-microsoft-s-ai-supercomputer-featuring/ba-p/3830281
https://techcommunity.microsoft.com/t5/microsoft-mechanics-blog/what-runs-chatgpt-inside-microsoft-s-ai-supercomputer-featuring/ba-p/3830281
https://www.hpcwire.com/2018/04/11/us-plans-1-8-billion-spend-on-doe-exascale-supercomputing/
https://www.hpcwire.com/2018/04/11/us-plans-1-8-billion-spend-on-doe-exascale-supercomputing/
https://digital-strategy.ec.europa.eu/en/news/eu-enters-exascale-era-announcement-new-supercomputing-hosting-sites
https://digital-strategy.ec.europa.eu/en/news/eu-enters-exascale-era-announcement-new-supercomputing-hosting-sites
https://www.hpcwire.com/2021/11/24/three-chinese-exascale-systems-detailed-at-sc21-two-operational-and-one-delayed/
https://www.hpcwire.com/2021/11/24/three-chinese-exascale-systems-detailed-at-sc21-two-operational-and-one-delayed/
https://www.hpcwire.com/2021/11/24/three-chinese-exascale-systems-detailed-at-sc21-two-operational-and-one-delayed/
https://www.energy.gov/science/articles/launching-new-class-us-supercomputing
https://www.energy.gov/science/articles/launching-new-class-us-supercomputing
https://science.osti.gov/-/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://spectrum.ieee.org/exascale-supercomputing
https://doi.org/10.1109/IPDPSW.2016.35
https://doi.org/10.1145/3295500.3357156
https://doi.org/10.1145/3295500.3357156
https://doi.org/10.1109/IPDPSW.2017.41
https://doi.org/10.1038/s41928-017-0005-9
https://education.dell.com/content/dam/dell-emc/documents/en-us/2019KS_Yellin-Saving_The_Future_of_Moores_Law.pdf
https://education.dell.com/content/dam/dell-emc/documents/en-us/2019KS_Yellin-Saving_The_Future_of_Moores_Law.pdf
https://education.dell.com/content/dam/dell-emc/documents/en-us/2019KS_Yellin-Saving_The_Future_of_Moores_Law.pdf
https://doi.org/10.1109/6.591665
https://www.intel.com/content/www/us/en/newsroom/resources/moores-law.html
https://www.intel.com/content/www/us/en/newsroom/resources/moores-law.html
https://doi.org/10.1007/978-3-0348-8534-8_11

Bibliography

[32] Milan Yadav. “A Brief Survey of Current Power Limiting Strategies”. In: (Mar. 2018).

[33] S. Kalaiselvi and Vaidy Rajaraman. “Survey of checkpointing algorithms for parallel and distributed
computers”. In: Sadhana 25 (Apr. 2012), pp. 489–510. DOI: 10.1007/BF02703630.

[34] Dheya Mustafa. “A Survey of Performance Tuning Techniques and Tools for Parallel Applications”.
In: IEEE Access 10 (2022), pp. 15036–15055. DOI: 10.1109/ACCESS.2022.3147846.

[35] Michael Gerndt et al. “Adaptive Resource Management for HPC Systems (Dagstuhl Seminar 21441)”.
In: Dagstuhl Reports 11.10 (2022). Ed. by Michael Gerndt et al., pp. 1–19. ISSN: 2192-5283. DOI:
10.4230/DagRep.11.10.1. URL: https://drops.dagstuhl.de/opus/volltexte/2022/15925.

[36] Jose I. Aliaga et al. “A Survey on Malleability Solutions for High-Performance Distributed Com-
puting”. In: Applied Sciences 12.10 (2022). ISSN: 2076-3417. DOI: 10.3390/app12105231. URL:
https://www.mdpi.com/2076-3417/12/10/5231.

[37] Deep Projects. Programming Environment for European Exascale Systems. https://www.deep-
projects.eu/.

[38] Mohak Chadha. “Adaptive Resource-Aware Batch Scheduling for HPC systems”. In: ().

[39] Joseph Schuchart et al. “The READEX formalism for automatic tuning for energy efficiency”. In:
Computing 99.8 (2017), pp. 727–745. ISSN: 1436-5057. DOI: 10.1007/s00607-016-0532-7. URL:
https://doi.org/10.1007/s00607-016-0532-7.

[40] SchedMD. Multifactor Priority Plugin. URL: https://slurm.schedmd.com/priority_multifactor.
html.

[41] Slurm Workload Manager. URL: https://slurm.schedmd.com/sched_config.html.

[42] Xu Yang et al. “Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC
Systems”. In: SC ’13. Denver, Colorado: Association for Computing Machinery, 2013. ISBN: 9781450323789.
DOI: 10.1145/2503210.2503264. URL: https://doi.org/10.1145/2503210.2503264.

[43] Bianca Schroeder and Garth Gibson. “Understanding failures in petascale computers”. In: Journal
of Physics: Conference Series 78 (Sept. 2007). DOI: 10.1088/1742-6596/78/1/012022.

[44] Michael A. Heroux. “Software Challenges for Extreme Scale Computing: Going From Petascale
to Exascale Systems”. In: The International Journal of High Performance Computing Applications
23.4 (2009), pp. 437–439. DOI: 10.1177/1094342009347711. eprint: https://doi.org/10.1177/
1094342009347711. URL: https://doi.org/10.1177/1094342009347711.

[45] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. “The MPI Message Passing Interface Stan-
dard”. In: Programming Environments for Massively Parallel Distributed Systems. Ed. by Karsten
M. Decker and René M. Rehmann. Basel: Birkhäuser Basel, 1994, pp. 213–218. ISBN: 978-3-0348-
8534-8.

[46] M. Gerndt I. Compres Urena. “Towards Elastic Resource Management”. In: Proceedings of the 11th
Parallel Tools Workshop, September 11-12, 2017. to appear. 2017.

[47] Miao Chen, Fang Dong, and Junzhou Luo. “Dynamic Resource Management in a HPC and Cloud
Hybrid Environment”. In: Dec. 2013, pp. 206–215. ISBN: 978-3-319-03858-2. DOI: 10.1007/978-
3-319-03859-9_17.

[48] David Bailey, Robert Lucas, and Samuel Williams. Performance Tuning of Scientific Applications.
Nov. 2010. ISBN: 9780429149900. DOI: 10.1201/b10509.

[49] Intel. Our Future with Hierarchical Heterogeneous Computing. URL: https://community.intel.
com/t5/Blogs/Products-and-Solutions/HPC/Our-Future-with-Hierarchical-Heterogeneous-
Computing/post/1495073.

152

https://doi.org/10.1007/BF02703630
https://doi.org/10.1109/ACCESS.2022.3147846
https://doi.org/10.4230/DagRep.11.10.1
https://drops.dagstuhl.de/opus/volltexte/2022/15925
https://doi.org/10.3390/app12105231
https://www.mdpi.com/2076-3417/12/10/5231
https://www.deep-projects.eu/
https://www.deep-projects.eu/
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1007/s00607-016-0532-7
https://slurm.schedmd.com/priority_multifactor.html
https://slurm.schedmd.com/priority_multifactor.html
https://slurm.schedmd.com/sched_config.html
https://doi.org/10.1145/2503210.2503264
https://doi.org/10.1145/2503210.2503264
https://doi.org/10.1088/1742-6596/78/1/012022
https://doi.org/10.1177/1094342009347711
https://doi.org/10.1177/1094342009347711
https://doi.org/10.1177/1094342009347711
https://doi.org/10.1177/1094342009347711
https://doi.org/10.1007/978-3-319-03859-9_17
https://doi.org/10.1007/978-3-319-03859-9_17
https://doi.org/10.1201/b10509
https://community.intel.com/t5/Blogs/Products-and-Solutions/HPC/Our-Future-with-Hierarchical-Heterogeneous-Computing/post/1495073
https://community.intel.com/t5/Blogs/Products-and-Solutions/HPC/Our-Future-with-Hierarchical-Heterogeneous-Computing/post/1495073
https://community.intel.com/t5/Blogs/Products-and-Solutions/HPC/Our-Future-with-Hierarchical-Heterogeneous-Computing/post/1495073

[50] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Simple linux utility for resource manage-
ment”. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 2003, pp. 44–
60.

[51] Dong H Ahn et al. “Flux: a next-generation resource management framework for large HPC cen-
ters”. In: 2014 43rd International Conference on Parallel Processing Workshops. IEEE. 2014, pp. 9–
17.

[52] S. Kannan et al. “Workload Management with LoadLeveler”. In: IBM Redbooks 2 (Jan. 2001).

[53] Adaptive Computing. TORQUE Resource Manager. URL: https : / / adaptivecomputing . com /
cherry-services/torque-resource-manager/.

[54] Invasive Computing. Welcome to the pages of the TCRC 89 "Invasive Computing" (InvasIC). URL:
https://invasic.informatik.uni-erlangen.de/en/index.php.

[55] Mohak Chadha, Jophin John, and Michael Gerndt. “Extending SLURM for Dynamic Resource-
Aware Adaptive Batch Scheduling”. In: 2020 IEEE 27th International Conference on High Perfor-
mance Computing, Data, and Analytics (HiPC). 2020, pp. 223–232. DOI: 10.1109/HiPC50609.
2020.00036.

[56] SuperMUC-NG. URL: https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

[57] SchedMD. Backfill Scheduling. URL: https : / / slurm . schedmd . com / sched _ config . html #
backfill.

[58] Santiago Narvaez. “Power model for resource-elastic applications”. Master Thesis. Munich: TU
Munich, 2018. URL: http://mediatum.ub.tum.de?id=1475095.

[59] Jophin John, Santiago Narváez, and Michael Gerndt. “Invasive computing for power corridor man-
agement”. In: Parallel Computing: Technology Trends 36 (2020), p. 386.

[60] Wesley Bland et al. “Post-failure recovery of MPI communication capability: Design and rationale”.
In: The International Journal of High Performance Computing Applications 27.3 (2013), pp. 244–
254. DOI: 10.1177/1094342013488238. eprint: https://doi.org/10.1177/1094342013488238.
URL: https://doi.org/10.1177/1094342013488238.

[61] Jon Stearley et al. “rMPI : increasing fault resiliency in a message-passing environment.” In: (Apr.
2011). DOI: 10.2172/1012733.

[62] Gengbin Zheng, Lixia Shi, and L. V. Kale. “FTC-Charm++: An in-Memory Checkpoint-Based Fault
Tolerant Runtime for Charm++ and MPI”. In: Proceedings of the 2004 IEEE International Confer-
ence on Cluster Computing. CLUSTER ’04. USA: IEEE Computer Society, 2004, 93–103. ISBN:
0780386949.

[63] Graham E. Fagg and Jack Dongarra. “FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applica-
tions in a Dynamic World”. In: Proceedings of the 7th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface. Berlin, Heidelberg:
Springer-Verlag, 2000, 346–353. ISBN: 3540410104.

[64] Manoj Kumar, Abhishek Choudhary, and Vikas Kumar. “A Comparison between Different Check-
point Schemes with Advantages and Disadvantages”. In: 2014.

[65] Andrew Lumsdaine and Joshua Hursey. “Coordinated checkpoint/restart process fault tolerance for
mpi applications on hpc systems”. In: 2010.

[66] Kento Sato et al. “Design and modeling of a non-blocking checkpointing system”. In: Nov. 2012,
pp. 1–10. ISBN: 978-1-4673-0805-2. DOI: 10.1109/SC.2012.46.

153

https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://invasic.informatik.uni-erlangen.de/en/index.php
https://doi.org/10.1109/HiPC50609.2020.00036
https://doi.org/10.1109/HiPC50609.2020.00036
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://slurm.schedmd.com/sched_config.html#backfill
https://slurm.schedmd.com/sched_config.html#backfill
http://mediatum.ub.tum.de?id=1475095
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.2172/1012733
https://doi.org/10.1109/SC.2012.46

Bibliography

[67] JSC. URL: https://hbp-hpc-platform.fz-juelich.de/?page_id=1836.

[68] Travis Desell, Kaoutar Maghraoui, and Carlos Varela. “Malleable applications for scalable high
performance computing”. In: Cluster Computing 10 (Sept. 2007), pp. 323–337. DOI: 10.1007/
s10586-007-0032-9.

[69] Manish Abhishek. “Dynamic Allocation of High Performance Computing Resources”. In: Interna-
tional Journal of Advanced Trends in Computer Science and Engineering 9 (June 2020), pp. 3538–
3543. DOI: 10.30534/ijatcse/2020/159932020.

[70] Cijo George and Sathish S. Vadhiyar. “ADFT: An Adaptive Framework for Fault Tolerance on
Large Scale Systems using Application Malleability”. In: Procedia Computer Science 9 (2012).
Proceedings of the International Conference on Computational Science, ICCS 2012, pp. 166–175.
ISSN: 1877-0509. DOI: https : / / doi . org / 10 . 1016 / j . procs . 2012 . 04 . 018. URL: https :
//www.sciencedirect.com/science/article/pii/S1877050912001391.

[71] Kaoutar El Maghraoui, Boleslaw K. Szymanski, and Carlos Varela. “An Architecture for Reconfig-
urable Iterative MPI Applications in Dynamic Environments”. In: Parallel Processing and Applied
Mathematics. Ed. by Roman Wyrzykowski et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 258–271. ISBN: 978-3-540-34142-0.

[72] Jonas Posner. “Load Balancing, Fault Tolerance, and Resource Elasticity for Asynchronous Many-
Task Systems”. PhD thesis. Kassel, Universität Kassel, Fachbereich Elektrotechnik / Informatiik,
Dec. 2021.

[73] Isaías A. Comprés Ureña and Michael Gerndt. “Towards Elastic Resource Management”. In: Tools
for High Performance Computing 2017. Ed. by Christoph Niethammer et al. Cham: Springer Inter-
national Publishing, 2019, pp. 105–127. ISBN: 978-3-030-11987-4.

[74] Isaías Alberto Comprés Ureña. “Resource-Elasticity Support for Distributed Memory HPC Applica-
tions”. Dissertation. Munich: TU Munich, 2017. URL: http://mediatum.ub.tum.de?id=1362721.

[75] Laxmikant V Kalé, Sameer Kumar, and Jayant DeSouza. “A malleable-job system for timeshared
parallel machines”. In: 2nd IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGRID’02). IEEE. 2002, pp. 230–230.

[76] admire. Adaptive Multi-Tier Intelligent Data Manager for Exascale. https://research.zdv.uni-
mainz.de/research/admire/.

[77] Jophin John, Isaac David Núñez Araya, and Michael Gerndt. “iCheck: Leveraging RDMA and Mal-
leability for Application-Level Checkpointing in HPC Systems”. In: 2022 IEEE 28th International
Conference on Parallel and Distributed Systems (ICPADS). 2023, pp. 467–474. DOI: 10.1109/
ICPADS56603.2022.00067.

[78] Jophin John and Michael Gerndt. Designing an Adaptive Application-Level Checkpoint Manage-
ment System for Malleable MPI Applications. 2022. arXiv: 2211.04305 [cs.DC].

[79] DFG. DFG Official website. URL: https://www.dfg.de/en/research_funding/index.html.

[80] Jürgen Teich. “Invasive Algorithms and Architectures Invasive Algorithmen und Architekturen”. In:
it-Information Technology 50.5 (2008), pp. 300–310.

[81] Invasive Computing. Projects of the TCRC 89 "Invasive Computing" (InvasIC). URL: https://
invasic.informatik.uni-erlangen.de/en/projects_PhIII.php.

[82] FAU Erlangen. FAU Erlangen Webpage. URL: https://www.fau.eu/.

[83] Karlsruhe Institute of Technology. Karlsruhe Institute of Technology Webpage. URL: https://www.
kit.edu/.

154

https://hbp-hpc-platform.fz-juelich.de/?page_id=1836
https://doi.org/10.1007/s10586-007-0032-9
https://doi.org/10.1007/s10586-007-0032-9
https://doi.org/10.30534/ijatcse/2020/159932020
https://doi.org/https://doi.org/10.1016/j.procs.2012.04.018
https://www.sciencedirect.com/science/article/pii/S1877050912001391
https://www.sciencedirect.com/science/article/pii/S1877050912001391
http://mediatum.ub.tum.de?id=1362721
https://research.zdv.uni-mainz.de/research/admire/
https://research.zdv.uni-mainz.de/research/admire/
https://doi.org/10.1109/ICPADS56603.2022.00067
https://doi.org/10.1109/ICPADS56603.2022.00067
https://arxiv.org/abs/2211.04305
https://www.dfg.de/en/research_funding/index.html
https://invasic.informatik.uni-erlangen.de/en/projects_PhIII.php
https://invasic.informatik.uni-erlangen.de/en/projects_PhIII.php
https://www.fau.eu/
https://www.kit.edu/
https://www.kit.edu/

[84] Technical University of Munich. Technical University of Munich Webpage. URL: https://www.
tum.de/en/.

[85] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Simple linux utility for resource manage-
ment”. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 2003, pp. 44–
60.

[86] ODU Research Cloud Computing. Slurm Job Scheduler. URL: https://wiki.hpc.odu.edu/en/
slurm.

[87] SchedMD. Quick Start User Guide. URL: https://slurm.schedmd.com/quickstart.html.

[88] Jophin John. “The Elastic Phase Oriented Programming Model for Elastic HPC Applications”. In:
2018.

[89] HPC Wiki. MPI. URL: https://hpc-wiki.info/hpc/MPI.

[90] Intel. Intel MPI Library. URL: https://www.intel.com/content/www/us/en/developer/tools/
oneapi/mpi-library.html.

[91] IBM. IBM Spectrum MPI. URL: https://www.ibm.com/products/spectrum-mpi.

[92] MPI Forum. MPI Sessions. URL: https://www.mpi-forum.org/bofs/2022-05-mpi-bof.pdf.

[93] Rajesh K. Karmani et al. “Amdahl’s Law”. In: Encyclopedia of Parallel Computing. Springer US,
2011, pp. 53–60. DOI: 10.1007/978-0-387-09766-4_77. URL: https://doi.org/10.1007%2F978-
0-387-09766-4_77.

[94] Chao Huang, Orion Lawlor, and Laxmikant V Kale. “Adaptive mpi”. In: International workshop on
languages and compilers for parallel computing. Springer. 2003, pp. 306–322.

[95] Chao Huang, Gengbin Zheng, and Laxmikant V Kalé. “Supporting adaptivity in MPI for dynamic
parallel applications”. In: Rapport technique, Parallel Programming Laboratory, Department of
Computer Science, University of Illinois at Urbana-Champaign 14 (2007).

[96] Chao Huang et al. “Performance evaluation of adaptive MPI”. In: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming. 2006, pp. 12–21.

[97] Laxmikant V Kale and Sanjeev Krishnan. “Charm++ A portable concurrent object oriented system
based on C++”. In: Proceedings of the eighth annual conference on Object-oriented programming
systems, languages, and applications. 1993, pp. 91–108.

[98] Bilge Acun et al. “Parallel programming with migratable objects: Charm++ in practice”. In: SC’14:
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE. 2014, pp. 647–658.

[99] Gengbin Zheng et al. “Hierarchical load balancing for charm++ applications on large supercom-
puters”. In: 2010 39th International Conference on Parallel Processing Workshops. IEEE. 2010,
pp. 436–444.

[100] Sayantan Chakravorty, Celso L Mendes, and Laxmikant V Kalé. “Proactive fault tolerance in MPI
applications via task migration”. In: International Conference on High-Performance Computing.
Springer. 2006, pp. 485–496.

[101] Comprés Ureña and Isaías Alberto. “Resource-Elasticity Support for Distributed Memory HPC Ap-
plications”. PhD thesis. Technische Universität München, 2017.

[102] Isaías Comprés et al. “Infrastructure and api extensions for elastic execution of mpi applications”.
In: Proceedings of the 23rd European MPI Users’ Group Meeting. 2016, pp. 82–97.

155

https://www.tum.de/en/
https://www.tum.de/en/
https://wiki.hpc.odu.edu/en/slurm
https://wiki.hpc.odu.edu/en/slurm
https://slurm.schedmd.com/quickstart.html
https://hpc-wiki.info/hpc/MPI
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.ibm.com/products/spectrum-mpi
https://www.mpi-forum.org/bofs/2022-05-mpi-bof.pdf
https://doi.org/10.1007/978-0-387-09766-4_77
https://doi.org/10.1007%2F978-0-387-09766-4_77
https://doi.org/10.1007%2F978-0-387-09766-4_77

Bibliography

[103] Gonzalo Martín et al. “Enhancing the performance of malleable MPI applications by using performance-
aware dynamic reconfiguration”. In: Parallel Computing 46 (2015), pp. 60–77.

[104] R. Sudarsan and C. J. Ribbens. “ReSHAPE: A Framework for Dynamic Resizing and Scheduling
of Homogeneous Applications in a Parallel Environment”. In: 2007 International Conference on
Parallel Processing (ICPP 2007). 2007, pp. 44–44. DOI: 10.1109/ICPP.2007.73.

[105] Yu-Kwong Kwok and Ishfaq Ahmad. “Static scheduling algorithms for allocating directed task
graphs to multiprocessors”. In: ACM Computing Surveys (CSUR) 31.4 (1999), pp. 406–471.

[106] Kirk Pruhs. “Competitive online scheduling for server systems”. In: ACM SIGMETRICS Perfor-
mance Evaluation Review 34.4 (2007), pp. 52–58.

[107] Dror G Feitelson and Larry Rudolph. “Toward convergence in job schedulers for parallel supercom-
puters”. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 1996, pp. 1–
26.

[108] Tomasz Plewa, Timur Linde, and V Gregory Weirs. “Adaptive mesh refinement-theory and applica-
tions”. In: ().

[109] Abhishek Gupta et al. “Towards realizing the potential of malleable jobs”. In: 2014 21st Interna-
tional Conference on High Performance Computing (HiPC). IEEE. 2014, pp. 1–10.

[110] Jan Hungershofer. “On the combined scheduling of malleable and rigid jobs”. In: 16th Symposium
on Computer Architecture and High Performance Computing. IEEE. 2004, pp. 206–213.

[111] T. E. Carroll and D. Grosu. “Incentive Compatible Online Scheduling of Malleable Parallel Jobs
with Individual Deadlines”. In: 2010 39th International Conference on Parallel Processing. 2010,
pp. 516–524. DOI: 10.1109/ICPP.2010.60.

[112] Hongyang Sun, Yangjie Cao, and Wen-Jing Hsu. “Fair and efficient online adaptive scheduling for
multiple sets of parallel applications”. In: 2011 IEEE 17th International Conference on Parallel and
Distributed Systems. IEEE. 2011, pp. 64–71.

[113] Gladys Utrera et al. “A job scheduling approach for multi-core clusters based on virtual malleabil-
ity”. In: European Conference on Parallel Processing. Springer. 2012, pp. 191–203.

[114] Suraj Prabhakaran et al. “A batch system with fair scheduling for evolving applications”. In: 2014
43rd International Conference on Parallel Processing. IEEE. 2014, pp. 351–360.

[115] Suraj Prabhakaran et al. “A batch system with efficient adaptive scheduling for malleable and
evolving applications”. In: 2015 IEEE international parallel and distributed processing symposium.
IEEE. 2015, pp. 429–438.

[116] Adrian T Wong et al. “ESP: A system utilization benchmark”. In: SC’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing. IEEE. 2000, pp. 15–15.

[117] Ozan Sonmez et al. “Scheduling malleable applications in multicluster systems”. In: 2007 IEEE
International Conference on Cluster Computing. IEEE. 2007, pp. 372–381.

[118] H. H. Mohamed and D. H. J. Epema. “The Design and Implementation of the KOALA Co-allocating
Grid Scheduler”. In: Advances in Grid Computing - EGC 2005. Springer Berlin Heidelberg, 2005,
pp. 640–650. DOI: 10.1007/11508380_65. URL: https://doi.org/10.1007%2F11508380_65.

[119] Jack Dongarra. “HPC: Where we are today and a look into the future”. In: Parallel Processing and
Applied Mathematics, PPAM: Gdansk, Poland (2022).

[120] Pawel Czarnul, Jerzy Proficz, Adam Krzywaniak, et al. “Energy-aware high-performance comput-
ing: survey of state-of-the-art tools, techniques, and environments”. In: Scientific Programming 2019
(2019).

156

https://doi.org/10.1109/ICPP.2007.73
https://doi.org/10.1109/ICPP.2010.60
https://doi.org/10.1007/11508380_65
https://doi.org/10.1007%2F11508380_65

[121] Matthias Maiterth et al. “Energy and Power Aware Job Scheduling and Resource Management:
Global Survey — Initial Analysis”. In: May 2018, pp. 685–693.

[122] Bartłomiej Kocot, Paweł Czarnul, and Jerzy Proficz. “Energy-Aware Scheduling for High-Performance
Computing Systems: A Survey”. In: Energies 16.2 (2023). ISSN: 1996-1073. DOI: 10.3390/en16020890.
URL: https://www.mdpi.com/1996-1073/16/2/890.

[123] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. “A survey of design techniques for
system-level dynamic power management”. In: IEEE transactions on very large scale integration
(VLSI) systems 8.3 (2000), pp. 299–316.

[124] Monire Safari and Reihaneh Khorsand. “Energy-aware scheduling algorithm for time-constrained
workflow tasks in DVFS-enabled cloud environment”. In: Simulation Modelling Practice and The-
ory 87 (2018), pp. 311–326.

[125] Kazuki Tsuzuku and Toshio Endo. “Power capping of cpu-gpu heterogeneous systems using power
and performance models”. In: 2015 International Conference on Smart Cities and Green ICT Sys-
tems (SMARTGREENS). IEEE. 2015, pp. 1–8.

[126] Pavlos Petoumenos et al. “Power capping: What works, what does not”. In: 2015 IEEE 21st Inter-
national Conference on Parallel and Distributed Systems (ICPADS). IEEE. 2015, pp. 525–534.

[127] Andrea Borghesi et al. “Power capping in high performance computing systems”. In: Principles
and Practice of Constraint Programming: 21st International Conference, CP 2015, Cork, Ireland,
August 31–September 4, 2015, Proceedings 21. Springer. 2015, pp. 524–540.

[128] Adam Krzywaniak and Paweł Czarnul. “Performance/energy aware optimization of parallel appli-
cations on gpus under power capping”. In: Parallel Processing and Applied Mathematics: 13th In-
ternational Conference, PPAM 2019, Bialystok, Poland, September 8–11, 2019, Revised Selected
Papers, Part II 13. Springer. 2020, pp. 123–133.

[129] Howard David et al. “RAPL: Memory Power Estimation and Capping”. In: Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and Design. ISLPED ’10. Austin,
Texas, USA: Association for Computing Machinery, 2010, 189–194. ISBN: 9781450301466. DOI:
10.1145/1840845.1840883. URL: https://doi.org/10.1145/1840845.1840883.

[130] NVIDIA. System Management Interface SMI. URL: https://developer.nvidia.com/nvidia-
system-management-interface.

[131] H.-Y McCreary et al. “Energyscale for IBM POWER6 microprocessor-based systems”. In: IBM
Journal of Research and Development 51 (Dec. 2007), pp. 775 –786. DOI: 10.1147/rd.516.0775.

[132] J. Sun, C. Huang, and J. Dong. “Research on Power-Aware Scheduling for High-Performance Com-
puting System”. In: 2011 IEEE/ACM International Conference on Green Computing and Commu-
nications. 2011, pp. 75–78.

[133] P. Dutot et al. “Towards Energy Budget Control in HPC”. In: 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2017, pp. 381–390.

[134] D. Bodas et al. “Simple Power-Aware Scheduler to Limit Power Consumption by HPC System
within a Budget”. In: 2014 Energy Efficient Supercomputing Workshop. 2014, pp. 21–30.

[135] Y. Liu et al. “FastCap: An efficient and fair algorithm for power capping in many-core systems”. In:
2016 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
2016, pp. 57–68.

[136] M. Chadha et al. “A Statistical Approach to Power Estimation for x86 Processors”. In: 2017 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW). 2017, pp. 1012–
1019. DOI: 10.1109/IPDPSW.2017.98.

157

https://doi.org/10.3390/en16020890
https://www.mdpi.com/1996-1073/16/2/890
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1840845.1840883
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://doi.org/10.1147/rd.516.0775
https://doi.org/10.1109/IPDPSW.2017.98

Bibliography

[137] M. Chadha and M. Gerndt. “Modelling DVFS and UFS for Region-Based Energy Aware Tuning of
HPC Applications”. In: 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 2019, pp. 805–814.

[138] Ying Li et al. “Energy-aware scheduling on heterogeneous multi-core systems with guaranteed prob-
ability”. In: Journal of Parallel and Distributed Computing 103 (2017), pp. 64–76.

[139] Chunrong Yao et al. “EAIS: Energy-aware adaptive scheduling for CNN inference on high-performance
GPUs”. In: Future Generation Computer Systems 130 (2022), pp. 253–268.

[140] Marco D’Amico and Julita Corbalan Gonzalez. “Energy hardware and workload aware job schedul-
ing towards interconnected HPC environments”. In: IEEE Transactions on Parallel and Distributed
Systems (2021).

[141] Xiaoyong Tang and Zhuojun Fu. “CPU–GPU Utilization Aware Energy-Efficient Scheduling Algo-
rithm on Heterogeneous Computing Systems”. In: IEEE Access 8 (2020), pp. 58948–58958. DOI:
10.1109/ACCESS.2020.2982956.

[142] Jian Chen and Lizy K John. “Energy-aware application scheduling on a heterogeneous multi-core
system”. In: 2008 IEEE International Symposium on Workload Characterization. IEEE. 2008, pp. 5–
13.

[143] Isabel Méndez-Díaz et al. “Energy-aware scheduling mandatory/optional tasks in multicore real-
time systems”. In: International Transactions in Operational Research 24.1-2 (2017), pp. 173–198.

[144] Ayham Kassab et al. “Assessing the use of genetic algorithms to schedule independent tasks under
power constraints”. In: 2018 International conference on high performance computing & simulation
(HPCS). IEEE. 2018, pp. 252–259.

[145] Mateusz Guzek et al. “Multi-objective evolutionary algorithms for energy-aware scheduling on dis-
tributed computing systems”. In: Applied Soft Computing 24 (2014), pp. 432–446.

[146] Pragati Agrawal and Shrisha Rao. “Energy-aware scheduling of distributed systems”. In: IEEE
Transactions on Automation Science and Engineering 11.4 (2014), pp. 1163–1175.

[147] Andrea Borghesi et al. “Scheduling-based power capping in high performance computing systems”.
In: Sustainable Computing: Informatics and Systems 19 (2018), pp. 1–13.

[148] Olli Mämmelä et al. “Energy-aware job scheduler for high-performance computing”. In: Computer
Science-Research and Development 27 (2012), pp. 265–275.

[149] Yu Li, Yi Liu, and Depei Qian. “A heuristic energy-aware scheduling algorithm for heterogeneous
clusters”. In: 2009 15th International Conference on Parallel and Distributed Systems. IEEE. 2009,
pp. 407–413.

[150] Muthucumaru Maheswaran et al. “Dynamic mapping of a class of independent tasks onto heteroge-
neous computing systems”. In: Journal of parallel and distributed computing 59.2 (1999), pp. 107–
131.

[151] Tarun Biswas, Pratyay Kuila, and Anjan Kumar Ray. “A novel energy efficient scheduling for high
performance computing systems”. In: 2018 9th international conference on computing, communi-
cation and networking technologies (ICCCNT). IEEE. 2018, pp. 1–6.

[152] Jing Mei and Kenli Li. “Energy-Aware Scheduling Algorithm with Duplication on Heterogeneous
Computing Systems”. In: 2012 ACM/IEEE 13th International Conference on Grid Computing. 2012,
pp. 122–129. DOI: 10.1109/Grid.2012.32.

158

https://doi.org/10.1109/ACCESS.2020.2982956
https://doi.org/10.1109/Grid.2012.32

[153] Julius Roeder et al. “Energy-aware scheduling of multi-version tasks on heterogeneous real-time
systems”. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. 2021, pp. 501–
510.

[154] Xinxin Mei et al. “Energy-aware task scheduling with deadline constraint in dvfs-enabled heteroge-
neous clusters”. In: arXiv preprint arXiv:2104.00486 (2021).

[155] Lena Mashayekhy et al. “Energy-aware scheduling of mapreduce jobs”. In: 2014 IEEE International
Congress on Big Data. IEEE. 2014, pp. 32–39.

[156] Yikun Hu et al. “Slack allocation algorithm for energy minimization in cluster systems”. In: Future
Generation Computer Systems 74 (2017), pp. 119–131.

[157] Venkateswaran Shekar and Baback Izadi. “Energy aware scheduling for DAG structured applications
on heterogeneous and DVS enabled processors”. In: International Conference on Green Computing.
IEEE. 2010, pp. 495–502.

[158] HV Raghu, Sumit Kumar Saurav, and Bindhumadhava S Bapu. “PAAS: Power aware algorithm for
scheduling in high performance computing”. In: 2013 IEEE/ACM 6th International Conference on
Utility and Cloud Computing. IEEE. 2013, pp. 327–332.

[159] Intel. Building for Zettascale with Intel and the Cambridge Open Zettascale Lab. URL: https :
//www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-09/intel-
cambridge-zettascale-lab.pdf.

[160] Faisal Shahzad et al. “A Survey of Checkpoint/Restart Techniques on Distributed Memory Sys-
tems”. In: Parallel Process. Lett. 23 (2013). URL: https://api.semanticscholar.org/CorpusID:
44999017.

[161] Franck Cappello. “Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge, Challenges
and Research Opportunities”. In: Int. J. High Perform. Comput. Appl. 23.3 (2009), 212–226. ISSN:
1094-3420. DOI: 10.1177/1094342009106189. URL: https://doi.org/10.1177/1094342009106189.

[162] Ifeanyi P. Egwutuoha et al. “A Survey of Fault Tolerance Mechanisms and Checkpoint/Restart
Implementations for High Performance Computing Systems”. In: J. Supercomput. 65.3 (2013),
1302–1326. ISSN: 0920-8542. DOI: 10.1007/s11227- 013- 0884- 0. URL: https://doi.org/
10.1007/s11227-013-0884-0.

[163] Mirza Mohammed Akram Baig. “An Evaluation of Major Fault Tolerance Techniques Used on High
Performance Computing (HPC) Applications”. In: International Journal of Intelligent Systems and
Applications in Engineering 11 (2023), 320–328. URL: https://ijisae.org/index.php/IJISAE/
article/view/2696.

[164] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann, 2020.

[165] Wendy Bartlett and Lisa Spainhower. “Commercial fault tolerance: A tale of two systems”. In: IEEE
Transactions on dependable and secure computing 1.1 (2004), pp. 87–96.

[166] Jean-Claude Laprie et al. “Definition and analysis of hardware-and-software fault-tolerant architec-
tures”. In: Predictably Dependable Computing Systems. Springer. 1995, pp. 103–122.

[167] D Milojicic et al. “Process Migration, Technical Report”. In: TOG Research Institute (1996).

[168] Christopher Clark et al. “Live migration of virtual machines”. In: Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation-Volume 2. 2005, pp. 273–286.

[169] Flavin Cristian. “Understanding Fault-Tolerant Distributed Systems”. In: Commun. ACM 34.2 (1991),
56–78. ISSN: 0001-0782. DOI: 10.1145/102792.102801. URL: https://doi.org/10.1145/
102792.102801.

159

https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-09/intel-cambridge-zettascale-lab.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-09/intel-cambridge-zettascale-lab.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-09/intel-cambridge-zettascale-lab.pdf
https://api.semanticscholar.org/CorpusID:44999017
https://api.semanticscholar.org/CorpusID:44999017
https://doi.org/10.1177/1094342009106189
https://doi.org/10.1177/1094342009106189
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1007/s11227-013-0884-0
https://ijisae.org/index.php/IJISAE/article/view/2696
https://ijisae.org/index.php/IJISAE/article/view/2696
https://doi.org/10.1145/102792.102801
https://doi.org/10.1145/102792.102801
https://doi.org/10.1145/102792.102801

Bibliography

[170] Flavin Cristian. “Understanding fault-tolerant distributed systems”. In: Communications of the ACM
34.2 (1991), pp. 56–78.

[171] Jasim A Ghaeb, Mahmoud A Smadi, and Jalel Chebil. “A high performance data integrity assur-
ance based on the determinant technique”. In: Future Generation Computer Systems 27.5 (2011),
pp. 614–619.

[172] J.C. Sancho et al. “Current practice and a direction forward in checkpoint/restart implementations
for fault tolerance”. In: 19th IEEE International Parallel and Distributed Processing Symposium.
2005, 8 pp.–. DOI: 10.1109/IPDPS.2005.157.

[173] Jason Ansel, Kapil Arya, and Gene Cooperman. “DMTCP: Transparent checkpointing for cluster
computations and the desktop”. In: 2009 IEEE international symposium on parallel & distributed
processing. IEEE. 2009, pp. 1–12.

[174] J. Duell, Paul Hargrove, and Eric Roman. “The Design and Implementation of Berkeley Lab”s Linux
Checkpoint/Restart”. In: (Jan. 2003).

[175] Gabriel Rodríguez et al. “CPPC: A Compiler-assisted tool for portable checkpointing of message-
passing applications”. In: Concurrency and Computation: Practice and Experience 22 (Apr. 2010),
pp. 749–766. DOI: 10.1002/cpe.1541.

[176] Sourav Chakraborty et al. “EReinit: Scalable and efficient fault-tolerance for bulk-synchronous
MPI applications”. In: Concurrency and Computation: Practice and Experience 32.3 (2020). e4863
cpe.4863, e4863. DOI: https://doi.org/10.1002/cpe.4863. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/cpe.4863. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/cpe.4863.

[177] Nawrin Sultana et al. “MPI Stages: Checkpointing MPI State for Bulk Synchronous Applications”.
In: Sept. 2018, pp. 1–11. DOI: 10.1145/3236367.3236385.

[178] Balkrishna Ramkumar and Volker Strumpen. “Portable Checkpointing for Heterogeneous Architec-
tures”. In: July 1997, pp. 58 –67. ISBN: 0-8186-7831-3. DOI: 10.1109/FTCS.1997.614078.

[179] Ritu Arora, Purushotham Bangalore, and Marjan Mernik. “A technique for non-invasive application-
level checkpointing”. In: The Journal of Supercomputing 57 (Sept. 2010), pp. 227–255. DOI: 10.
1007/s11227-010-0383-5.

[180] Ritu Arora and Trung Nguyen Ba. “ITALC: Interactive Tool for Application-Level Checkpointing”.
In: Proceedings of the Fourth International Workshop on HPC User Support Tools. HUST’17. Den-
ver, CO, USA: Association for Computing Machinery, 2017. ISBN: 9781450351300. DOI: 10.1145/
3152493.3152558. URL: https://doi.org/10.1145/3152493.3152558.

[181] James Plank et al. “Libckpt: Transparent checkpointing under UNIX”. In: TCON (Dec. 1995).

[182] Tanzima Islam et al. “McrEngine: A Scalable Checkpointing System Using Data-Aware Aggrega-
tion and Compression”. In: Scientific Programming 21 (Jan. 2013). DOI: 10.3233/SPR-130371.

[183] Kento Sato et al. “A User-Level InfiniBand-Based File System and Checkpoint Strategy for Burst
Buffers”. In: May 2014, pp. 21–30. ISBN: 978-1-4799-2784-5. DOI: 10.1109/CCGrid.2014.24.

[184] Dries Kimpe et al. “Integrated in-system storage architecture for high performance computing”. In:
ROSS ’12. 2012.

[185] Bogdan Nicolae et al. “VeloC: Towards High Performance Adaptive Asynchronous Checkpointing
at Large Scale”. In: May 2019, pp. 911–920. DOI: 10.1109/IPDPS.2019.00099.

160

https://doi.org/10.1109/IPDPS.2005.157
https://doi.org/10.1002/cpe.1541
https://doi.org/https://doi.org/10.1002/cpe.4863
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4863
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4863
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863
https://doi.org/10.1145/3236367.3236385
https://doi.org/10.1109/FTCS.1997.614078
https://doi.org/10.1007/s11227-010-0383-5
https://doi.org/10.1007/s11227-010-0383-5
https://doi.org/10.1145/3152493.3152558
https://doi.org/10.1145/3152493.3152558
https://doi.org/10.1145/3152493.3152558
https://doi.org/10.3233/SPR-130371
https://doi.org/10.1109/CCGrid.2014.24
https://doi.org/10.1109/IPDPS.2019.00099

[186] Faisal Shahzad et al. “CRAFT: A Library for Easier Application-Level Checkpoint/Restart and Au-
tomatic Fault Tolerance”. In: IEEE Transactions on Parallel and Distributed Systems PP (Aug.
2017). DOI: 10.1109/tpds.2018.2866794.

[187] Marc Gamell et al. “Exploring Automatic, Online Failure Recovery for Scientific Applications at
Extreme Scales”. In: International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC 2015 (Jan. 2015), pp. 895–906. DOI: 10.1109/SC.2014.78.

[188] Adam Moody et al. “Design, Modeling, and Evaluation of a Scalable Multi-Level Checkpointing
System”. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’10. USA: IEEE Computer Society, 2010, 1–11.
ISBN: 9781424475599. DOI: 10.1109/SC.2010.18. URL: https://doi.org/10.1109/SC.2010.18.

[189] Josef Weidendorfer, Dai Yang, and Carsten Trinitis. “Laik: A library for fault tolerant distribution
of global data for parallel applications”. In: PARS-Mitteilungen: Vol. 34, Nr. 1 (2017).

[190] Lubomír Říha, Tomáš Brzobohatỳ, and Alexandros Markopoulos. “Hybrid parallelization of the
total FETI solver”. In: Advances in Engineering Software 103 (2017), pp. 29–37.

[191] Arturo Gonzalez-Escribano et al. “An Extensible System for Multilevel Automatic Data Partition
and Mapping”. In: IEEE Transactions on Parallel and Distributed Systems 25.5 (2014), pp. 1145–
1154. DOI: 10.1109/TPDS.2013.83.

[192] Ian Karlin. Lulesh programming model and performance ports overview. Tech. rep. Lawrence Liv-
ermore National Lab.(LLNL), Livermore, CA (United States), 2012.

[193] Anders Clausen et al. “An Analysis of Contracts and Relationships between Supercomputing Cen-
ters and Electricity Service Providers”. In: Workshop Proceedings of the 48th International Con-
ference on Parallel Processing. ICPP Workshops ’19. Kyoto, Japan: Association for Computing
Machinery, 2019. ISBN: 9781450371964. DOI: 10.1145/3339186.3339209. URL: https://doi.
org/10.1145/3339186.3339209.

[194] Natalie Bates et al. “Electrical Grid and Supercomputing Centers: An Investigative Analysis of
Emerging Opportunities and Challenges”. In: Informatik-Spektrum 38.2 (Apr. 2015), pp. 111–127.
ISSN: 1432-122X. DOI: 10.1007/s00287-014-0850-0. URL: https://doi.org/10.1007/s00287-
014-0850-0.

[195] Jonathan Muraña et al. “Characterization, Modeling and Scheduling of Power Consumption of Sci-
entific Computing Applications in Multicores”. In: Cluster Computing 22.3 (2019), 839–859. ISSN:
1386-7857. DOI: 10.1007/s10586-018-2882-8. URL: https://doi.org/10.1007/s10586-018-
2882-8.

[196] Kashif Nizam Khan et al. “Rapl in action: Experiences in using rapl for power measurements”. In:
ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS)
3.2 (2018), p. 9.

[197] Jan Treibig, Georg Hager, and Gerhard Wellein. “Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments”. In: 2010 39th International Conference on Parallel Process-
ing Workshops. IEEE. 2010, pp. 207–216.

[198] A. C. Harvey. “ARIMA Models”. In: Time Series and Statistics. Ed. by John Eatwell, Murray Mil-
gate, and Peter Newman. London: Palgrave Macmillan UK, 1990, pp. 22–24. ISBN: 978-1-349-
20865-4. DOI: 10.1007/978-1-349-20865-4_2. URL: https://doi.org/10.1007/978-1-349-
20865-4_2.

161

https://doi.org/10.1109/tpds.2018.2866794
https://doi.org/10.1109/SC.2014.78
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/TPDS.2013.83
https://doi.org/10.1145/3339186.3339209
https://doi.org/10.1145/3339186.3339209
https://doi.org/10.1145/3339186.3339209
https://doi.org/10.1007/s00287-014-0850-0
https://doi.org/10.1007/s00287-014-0850-0
https://doi.org/10.1007/s00287-014-0850-0
https://doi.org/10.1007/s10586-018-2882-8
https://doi.org/10.1007/s10586-018-2882-8
https://doi.org/10.1007/s10586-018-2882-8
https://doi.org/10.1007/978-1-349-20865-4_2
https://doi.org/10.1007/978-1-349-20865-4_2
https://doi.org/10.1007/978-1-349-20865-4_2

Bibliography

[199] Joos Korstanje. “The SARIMAX Model”. In: Advanced Forecasting with Python: With State-of-the-
Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR. Berkeley, CA: Apress,
2021, pp. 125–131. ISBN: 978-1-4842-7150-6. DOI: 10 . 1007 / 978 - 1 - 4842 - 7150 - 6 _ 8. URL:
https://doi.org/10.1007/978-1-4842-7150-6_8.

[200] Prajakta S. Kalekar. “Time series Forecasting using Holt-Winters Exponential Smoothing”. In: 2004.

[201] Stuart Mitchell, Michael OSullivan, and Iain Dunning. “PuLP: a linear programming toolkit for
python”. In: The University of Auckland, Auckland, New Zealand (2011).

[202] H. Shah et al. RFC 7306: Remote Direct Memory Access (RDMA) Protocol Extensions. USA, 2014.

[203] IETF. TRANSMISSION CONTROL PROTOCOL. URL: https://www.ietf.org/rfc/rfc793.txt.

[204] Apratim Purakayastha and Carla Schlatter Ellis. “Characterizing and Optimizing Parallel File Sys-
tems”. AAI9701265. PhD thesis. USA, 1996. ISBN: 0591075210.

[205] Libfabric library. URL: https://github.com/ofiwg/libfabric.

[206] OpenFabrics Alliance. OpenFabrics Interfaces. URL: https://www.openfabrics.org/openfabrics-
interfaces/.

[207] Intel. High Performance Fabrics by Intel. URL: https://www.intel.com/content/www/us/en/
products/network-io/high-performance-fabrics.html.

[208] ofiwg. fiend point�Fabricend pointoperations. URL: https://ofiwg.github.io/libfabric/v1.
1.1/man/fi_endpoint.3.html.

[209] Dewan Ibtesham, Kurt B Ferreira, and Dorian Arnold. “A checkpoint compression study for high-
performance computing systems”. In: The International Journal of High Performance Computing
Applications 29.4 (2015), pp. 387–402. DOI: 10.1177/1094342015570921. eprint: https://doi.
org/10.1177/1094342015570921. URL: https://doi.org/10.1177/1094342015570921.

[210] perf wiki. perf: Linux profiling with performance counters. URL: https://perf.wiki.kernel.org/
index.php/Main_Page.

[211] SuperMUC. URL: https://www.lrz.de/services/compute/museum/supermuc/systemdescription/.

[212] Lenovo. NeXtScale System M5 with Water Cool Technology. URL: https://lenovopress.lenovo.
com/lp0544-nextscale-water-cool-e5-2600-v4.

[213] Intel. Intel Xeon Prozessor E5-2697 v3. URL: https://ark.intel.com/content/www/de/de/ark/
products/81059/intel-xeon-processor-e52697-v3-35m-cache-2-60-ghz.html.

[214] IBM. Introducing General Parallel File System. URL: https://www.ibm.com/docs/en/gpfs/4.1.
0.4?topic=guide-introducing-general-parallel-file-system.

[215] Leibniz-Rechenzentrum. SuperMUC Petascale System. https://www.lrz.de/services/compute/
supermuc/.

[216] wikichip. Skylake SP - Cores - Intel. URL: https://en.wikichip.org/wiki/intel/cores/
skylake_sp.

[217] Intel. Intel Xeon Platinum 8174 Processor. URL: https://www.intel.com/content/www/us/
en / products / sku / 136874 / intel - xeon - platinum - 8174 - processor - 33m - cache - 3 - 10 -
ghz/specifications.html.

[218] Ansible. Automation for everyone. URL: https://www.ansible.com/.

[219] Terraform. Automate infrastructure on any cloud with Terraform. URL: https://www.terraform.
io/.

162

https://doi.org/10.1007/978-1-4842-7150-6_8
https://doi.org/10.1007/978-1-4842-7150-6_8
https://www.ietf.org/rfc/rfc793.txt
https://github.com/ofiwg/libfabric
https://www.openfabrics.org/openfabrics-interfaces/
https://www.openfabrics.org/openfabrics-interfaces/
https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics.html
https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics.html
https://ofiwg.github.io/libfabric/v1.1.1/man/fi_endpoint.3.html
https://ofiwg.github.io/libfabric/v1.1.1/man/fi_endpoint.3.html
https://doi.org/10.1177/1094342015570921
https://doi.org/10.1177/1094342015570921
https://doi.org/10.1177/1094342015570921
https://doi.org/10.1177/1094342015570921
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.lrz.de/services/compute/museum/supermuc/systemdescription/
https://lenovopress.lenovo.com/lp0544-nextscale-water-cool-e5-2600-v4
https://lenovopress.lenovo.com/lp0544-nextscale-water-cool-e5-2600-v4
https://ark.intel.com/content/www/de/de/ark/products/81059/intel-xeon-processor-e52697-v3-35m-cache-2-60-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/81059/intel-xeon-processor-e52697-v3-35m-cache-2-60-ghz.html
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://www.lrz.de/services/compute/supermuc/
https://www.lrz.de/services/compute/supermuc/
https://en.wikichip.org/wiki/intel/cores/skylake_sp
https://en.wikichip.org/wiki/intel/cores/skylake_sp
https://www.intel.com/content/www/us/en/products/sku/136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/136874/intel-xeon-platinum-8174-processor-33m-cache-3-10-ghz/specifications.html
https://www.ansible.com/
https://www.terraform.io/
https://www.terraform.io/

[220] Kubernetes. Kubernetes. URL: https://kubernetes.io/.

[221] Suraj Prabhakaran. “Dynamic Resource Management and Job Scheduling for High Performance
Computing”. en. PhD thesis. Darmstadt: Technische Universität Darmstadt, 2016. URL: http://
tuprints.ulb.tu-darmstadt.de/5720/.

[222] Linux man page. munge(7) - Linux man page. URL: https://linux.die.net/man/7/munge.

[223] William TC Kramer. “Percu: A holistic method for evaluating high performance computing sys-
tems”. PhD thesis. University of California, Berkeley, 2008.

[224] Yiannis Georgiou. “Contributions for Resource and Job Management in High Performance Com-
puting”. PhD thesis. Nov. 2010.

[225] Ao Mo-Hellenbrand et al. “A large-scale malleable tsunami simulation realized on an elastic MPI
infrastructure”. In: Proceedings of the Computing Frontiers Conference. 2017, pp. 271–274.

[226] Wikipedia. Laplace’s equation. URL: https://en.wikipedia.org/wiki/Laplace%27s_equation.

[227] Wikipedia. Jacobi method. URL: https://en.wikipedia.org/wiki/Jacobi_method.

[228] Wikipedia. LU decomposition. URL: https://en.wikipedia.org/wiki/LU_decomposition.

[229] Wikipedia. Leibniz formula for. URL: https://en.wikipedia.org/wiki/Leibniz_formula_for_
%CF%80.

[230] Christoph Niethammer et al. “ls1 mardyn: The Massively Parallel Molecular Dynamics Code for
Large Systems”. In: Journal of Chemical Theory and Computation 10.10 (2014). PMID: 26588142,
pp. 4455–4464. DOI: 10.1021/ct500169q.

[231] Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 Updates and Changes. Tech. rep. LLNL-TR-
641973. Livermore, CA, 2013, pp. 1–9.

[232] Spyros Makridakis et al. “The accuracy of extrapolation (time series) methods: Results of a fore-
casting competition”. In: Journal of forecasting 1.2 (1982), pp. 111–153.

[233] American National Standards Institute. IEEE standard for information technology: Portable Oper-
ating System Interface (POSIX) : part 2, shell and utilities. 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA: IEEE Computer Society Press, 1993, pp. xvii + 1195. ISBN: 1-55937-
255-9.

[234] Hongzhang Shan, Katie Antypas, and John Shalf. “Characterizing and predicting the I/O perfor-
mance of HPC applications using a parameterized synthetic benchmark”. In: Proceedings of the
2008 ACM/IEEE Conference on Supercomputing. SC ’08. Austin, Texas: IEEE Press, 2008. ISBN:
9781424428359.

[235] Marco A. S. Netto et al. “HPC Cloud for Scientific and Business Applications: Taxonomy, Vision,
and Research Challenges”. In: ACM Comput. Surv. 51.1 (2018). ISSN: 0360-0300. DOI: 10.1145/
3150224. URL: https://doi.org/10.1145/3150224.

[236] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures”. In: Commun. ACM 52.4 (2009), 65–76. ISSN: 0001-
0782. DOI: 10.1145/1498765.1498785. URL: https://doi.org/10.1145/1498765.1498785.

[237] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. “Case Study on Co-scheduling for HPC
Applications”. In: 2015 44th International Conference on Parallel Processing Workshops. 2015,
pp. 277–285. DOI: 10.1109/ICPPW.2015.38.

[238] Bin Liu et al. “Accelerating High Performance Computing Applications: Using CPUs, GPUs, Hy-
brid CPU/GPU, and FPGAs”. In: 2012 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies. 2012, pp. 337–342. DOI: 10.1109/PDCAT.2012.34.

163

https://kubernetes.io/
http://tuprints.ulb.tu-darmstadt.de/5720/
http://tuprints.ulb.tu-darmstadt.de/5720/
https://linux.die.net/man/7/munge
https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Jacobi_method
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
https://doi.org/10.1021/ct500169q
https://doi.org/10.1145/3150224
https://doi.org/10.1145/3150224
https://doi.org/10.1145/3150224
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/ICPPW.2015.38
https://doi.org/10.1109/PDCAT.2012.34

Bibliography

[239] Nvidia. Developing a Linux Kernel Module using GPUDirect RDMA. URL: https://docs.nvidia.
com/cuda/gpudirect-rdma/index.html.

[240] Tonmoy Dey et al. “Optimizing Asynchronous Multi-Level Checkpoint/Restart Configurations with
Machine Learning”. In: 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 2020, pp. 1036–1043. DOI: 10.1109/IPDPSW50202.2020.00174.

[241] Zhengzhang Chen et al. “NUMARCK: Machine Learning Algorithm for Resiliency and Checkpoint-
ing”. In: SC ’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 2014, pp. 733–744. DOI: 10.1109/SC.2014.65.

[242] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Cambridge, MA,
USA: A Bradford Book, 2018. ISBN: 0262039249.

164

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://doi.org/10.1109/IPDPSW50202.2020.00174
https://doi.org/10.1109/SC.2014.65

Webliography

[684] MPICH: High-Performance portable MPI. URL: https://www.mpich.org/.

[685] OpenMPI: Open-Source High-Performance computing. URL: https://www.open-mpi.org/.

[686] MVAPICH:MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE. URL: http://mvapich.
cse.ohio-state.edu/.

[687] MPI: A Message-Passing Interface Standard. URL: https://www.mpi- forum.org/docs/mpi-
3.1/mpi31-report.pdf.

165

https://www.mpich.org/
https://www.open-mpi.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Contributions
	Resource and Job Management
	Power Management
	Fault Tolerance

	Outline

	Invasive Computing
	Research Groups
	Dynamic Resource Management Infrastructure
	Invasive Resource Manager
	Overview of Slurm
	Extensions to Slurm
	Expansion and Reduction for Malleable Batch Jobs

	Invasive Message Passing Interface
	iMPI Concepts
	Writing a Simple Malleable MPI Program
	Elastic Phase Oriented Programming Model

	Building Upon and Leveraging Invasive Infrastructure

	Related Work
	Adaptive Batch Scheduling
	Power Corridor Management
	Checkpointing

	Adaptive Batch Scheduling
	The Adaptive Batch Scheduler
	Adaptive Scheduling Strategies
	Job Management Policies
	Malleability Management Policies
	Favor Previously Started Malleable Applications First (FPSMA)
	Equi-Grow Shrink (EGS)

	Performance-aware Scheduling of Malleable Jobs

	Power Corridor Management
	Power-aware Batch Scheduler Concepts
	Linear Programming Model for Resource Reconfiguration
	Guarantees
	Power Measurement
	Forecasting

	Power-Aware Batch Scheduler Implementation
	Dynamic Power Corridor Management
	Limitations

	iCheck – Invasive Checkpointing System
	Architecture
	iCheck Core
	Agent
	Manager
	Controller

	iCheck Workflow
	iCheck library
	API for Checkpoint Transfer
	API for Malleability Support
	API for Faster Data Transfer

	Data Transfer in iCheck
	MR Approach
	SHMR Approach
	Buffer Management in iCheck
	Pipelining
	Versioning

	Asynchronous Checkpointing
	Multilevel Checkpointing in iCheck

	Monitoring
	Memory
	Checkpoint Operations
	Bandwidth
	Agent Count
	Power Usage
	iCheck Configuration File

	Dynamism in iCheck
	System Level
	Application Level

	Failures in iCheck
	Application Perspectives to Failure
	System Perspectives to Failure
	Node Failure

	Resource Management in iCheck
	Agent Management in iCheck
	Agent Count Selection
	Agent Placement
	Node Selection
	Distribution Scheme Selection
	Count Selection

	Malleable Application and Agents
	MA-RA Strategy
	Resource Expansion
	Resource Reduction

	MA-MA Strategy
	Resource Expansion
	Resource Reduction

	Agent Count Selection Algorithm
	Pseudocode for Malleable Applications

	iCheck and Invasive Resource Manager
	Messages and Policy in the Controller
	Communication Extensions
	Policy for Resource Extensions

	iCheck Aware Scheduler
	Communication Extensions
	Scheduler Plugin

	Controller-iRM-Application Interaction

	Data Distribution in iCheck
	API for Data Redistribution
	Replicated Data
	Distributed Data

	Pseudocode for Data Distribution
	State Diagram
	Resource Malleability Using Checkpointing

	Evaluation Setup
	System Setup
	SuperMUC Phase 2
	SuperMUC NG
	Running RJMS inside RJMS

	Application Setup
	Adaptive Batch Scheduling
	Power Corridor Management
	iCheck – Performance and Resource Adaptivity Analysis
	Synthetic Application
	Synthetic Malleable Application

	Results
	Adaptive Batch Scheduling
	Power Corridor Management
	Forecasting
	Upper and Lower Power Corridor Enforcement
	Dynamic Power Corridor Enforcement
	Power-aware Scheduling Strategy

	iCheck – Performance Analysis
	iCheck vs MPI-IO
	Blocking vs Non-Blocking Checkpointing
	Push vs Pull Strategies
	iCheck Overhead Analysis
	Comparing iCheck, SCR and MPI-IO

	Resource Management in iCheck
	Adaptive Resource Management in iCheck
	Impact of Dynamic Agents
	Effect of Agent Placement Strategies
	Adding Nodes to iCheck
	Fault Tolerance in iCheck
	Checkpoint Compression in iCheck

	Malleable Application and Agents
	Malleable Application with Increasing Checkpoint Size
	Malleable Application with Fixed Checkpoint Size
	Impact of Pipelining

	Data Distribution in iCheck
	Performance Analysis
	iCheck vs MPI-IO

	Discussion
	Adaptive Batch Scheduling
	Power Corridor Management
	iCheck - Invasive Checkpointing System

	Conclusion
	Into the Future

	Index
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Bibliography
	Webliography

