
Exponent Relaxation of Polynomial Zonotopes and Its Applications in Formal
Neural Network Verification

Tobias Ladner, Matthias Althoff
Technical University of Munich, Germany
{tobias.ladner,althoff}@tum.de

Abstract

Formal verification of neural networks is a challenging prob-
lem due to the complexity and nonlinearity of neural net-
works. It has been shown that polynomial zonotopes can
tightly enclose the output set of a neural network. Unfortu-
nately, the tight enclosure comes with additional complex-
ity in the set representation, thus, rendering subsequent op-
erations expensive to compute, such as computing interval
bounds and intersection checking. To address this issue, we
present a novel approach to restructure a polynomial zono-
tope to tightly enclose the original polynomial zonotope
while drastically reducing its complexity. The restructuring
is achieved by relaxing the exponents of the dependent fac-
tors of polynomial zonotopes and finding an appropriate ap-
proximation error. We demonstrate the applicability of our
approach on output sets of neural networks, where we obtain
tighter results in various subsequent operations, such as order
reduction, zonotope enclosure, and range bounding.

1 Introduction
While neural networks demonstrate impressive results in
various fields (Kiran et al. 2021), their applicability to
safety-critical environments still needs to be improved due
to their vulnerabilities to adversarial attacks (Goodfellow,
Shlens, and Szegedy 2015). Adversarial attacks show that
slight perturbations to the input of a neural network can re-
sult in unexpected outputs. Therefore, in recent years there
has been a growing interest in the formal verification of
neural networks (Bak, Liu, and Johnson 2021; Lopez et al.
2022). While it is shown that this problem is NP-hard for
ReLU networks (Katz et al. 2017), many sound approaches
verify neural networks by formulating the problem as an op-
timization problem (Xu et al. 2020; Ferrari et al. 2022; Katz
et al. 2019; Botoeva et al. 2020) or use reachability analy-
sis (Henriksen and Lomuscio 2020; Kochdumper et al. 2023;
Bogomolov et al. 2019; Schilling, Forets, and Guadalupe
2022). Abstraction refinement strategies like branch-and-
bound can improve the verification results (Wang et al.
2021).

In this work, we focus on reachability analysis using
polynomial zonotopes (Kochdumper and Althoff 2020) and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

consider an abstraction refinement strategy, which outer-
approximates nonlinear layers using higher-order polyno-
mials (Ladner and Althoff 2023a). The main advantage of
this refinement strategy over branch-and-bound approaches
is that we maintain a single set. A single set is especially
attractive for closed-loop verification (Lopez et al. 2022),
where splitting is particularly expensive due to repeated neu-
ral network evaluations. While we can enclose the nonlinear
layers tightly using higher-order polynomials, subsequent
operations on the output set might be more expensive due
to the complexity of the resulting polynomial zonotope, in-
cluding intersection checking with an unsafe set. An alterna-
tive is to outer-approximate activation functions using linear
functions to keep the set representation simple at the cost of
losing accuracy. Better accuracy can then only be obtained
by splitting sets at the input or the neuron level, causing the
aforementioned problems.

While challenges arising from polynomial zonotopes have
been addressed (Huang et al. 2023), common strategies
to simplify them remain splitting and the enclosure by a
zonotope (see Sec. 2). However, the zonotope enclosure
can be very outer-approximative as dependencies between
the monomials of a polynomial zonotope are lost. Unfor-
tunately, these dependencies naturally occur when using
higher-order polynomials to outer-approximate nonlinear
functions. We address this dependency issue in this work.

To summarize our contributions, we present a novel ap-
proach to restructure polynomial zonotopes such that we
have fewer dependencies between the monomials without
inducing large outer-approximations by preserving the un-
derlying structure. The restructuring is done by a) finding
monomials with similar exponents, b) relaxing the expo-
nents from one monomial to match the other, and c) finding
an appropriate approximation error. Further, we present an
approach to efficiently apply our novel exponent relaxation
on the entire polynomial zonotope using graph theory. To the
best of our knowledge, our approach is the first to consider
the dependencies of monomials during restructuring.

2 Preliminaries
Notation
We denote scalars and vectors by lower-case letters, matri-
ces by upper-case letters, and sets by calligraphic letters.

The i-th element of a vector v ∈ Rn is written as v(i).
The element in the i-th row and j-th column of a matrix
A ∈ Rn×m is written as A(i,j), the entire i-th row and j-
th column are written as A(i,·) and A(·,j), respectively. The
concatenation of A with a matrix B ∈ Rn×o is denoted by
[A B] ∈ Rn×(m+o). We denote with In the identity matrix
of dimension n ∈ N. The symbols 0 and 1 refer to matri-
ces with all zeros and ones of proper dimensions, respec-
tively. Given a ≤ b ∈ N0, then [b]a = {a, a+ 1, . . . , b} and
[b] = [b]1. The cardinality of a discrete set D is denoted by
|D|. Let D ⊆ [n], then A(D,·) denotes all rows i ∈ D; this
is used analogously for columns. Let S ⊂ Rn be a set and
f : Rn → Rm be a function, then f(S) = {f(x) | x ∈ S}.
An interval with bounds a, b ∈ Rn is denoted by [a, b].

Set-based Computing
Next, we briefly introduce all required set operations to show
our novel approach, starting with polynomial zonotopes:
Definition 1 (Polynomial Zonotope (Kochdumper and Al-
thoff 2020)1). Given an offset c ∈ Rn, a generator matrix
of dependent generators G ∈ Rn×h, an exponent matrix
E ∈ Np×h

0 with an identifier vector id ∈ Np, and a gener-
ator matrix of independent generators GI ∈ Rn×q , a poly-
nomial zonotope PZ = ⟨c,G,GI , E⟩PZ is defined as

PZ :=

c+

h∑
i=1

(
p∏

k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣∣∣
αk, βj ∈ [−1, 1]

}
.

If not otherwise stated, the variables n, h, p, q are
as in Def. 1. In addition, we use the shorthand
PZ = {c+ΣΠG+ΣGI |α, β} to make proofs more
concise. Given two polynomial zonotopes PZ1 =
⟨c1, G1, GI,1, E1⟩PZ ,PZ2 = ⟨c2, G2, GI,2, E2⟩PZ ⊂ Rn,
and A ∈ Rm×n, b ∈ Rm, then the affine map and the
Minkowski sum can be computed as

APZ1 + b = ⟨Ac1 + b, AG1, AGI,1, E1⟩PZ , (1)

PZ1 ⊕ PZ2 = {x1 + x2 | x1 ∈ PZ1, x2 ∈ PZ2} =〈
c1 + c2, [G1 G2] , [GI,1 GI,2] ,

[
E1 0
0 E2

]〉
PZ

.
(2)

If PZ1,PZ2 share the same identifier vector id, we can
compute an exact addition (Kochdumper and Althoff 2020,
Prop. 10) using

PZ1 ⊞ PZ2 =

⟨c1 + c2, [G1 G2] , [GI,1 GI,2] , [E1 E2]⟩PZ
.

(3)

An interval I = [l, u] ⊂ Rn can be equivalently represented
by a polynomial zonotope using

I = ⟨0.5(u+ l), 0.5 diag (u− l) , [], In⟩PZ . (4)

1As in (Kochdumper 2022), we adapt the definition
from (Kochdumper and Althoff 2020) and do not integrate
the offset c into the generator matrix G and omit the identifier
vector almost always for simplicity.

The main advantage of using polynomial zonotopes is
that we can tightly approximate nonlinear functions (Althoff
2013; Ladner and Althoff 2023a) using the quadratic map
operation as it can be computed exactly in favorable compu-
tation time.

Proposition 1 (Quadratic Map (Kochdumper 2022,
Prop. 3.1.30)). Given a PZ = ⟨c,G, [], E⟩PZ ⊂ Rn, the
result of the element-wise quadratic map is

quadMap (PZ) =〈
c,
[
2Gc G1 . . . Gh

]
, [] ,

[
E E1 . . . Eh

]〉
PZ

,

where

c =

c
2
(1)

...
c2(n)

 , Gc =

c(1)G(1,·)
...

c(n)G(n,·)

 , Gj =

G(1,j)G(1,·)
...

G(n,j)G(n,·)

 ,

and the exponent matrix Ej = E + E(·,j) · 1, j ∈ [h].

For example, an element-wise evaluation of a polynomial
zonotope PZ ⊂ Rn on the quadratic polynomials pi(x) =
a0(i) + a1(i)x(i) + a2(i)x

2
(i), i ∈ [n], is given by

p(PZ) = a0 +A1PZ ⊞A2quadMap (PZ) , (5)

where a0, A1 = diag (a1), and A2 = diag (a2) con-
tain the polynomial coefficients for each dimension. Higher-
order polynomials use multiple quadratic map operations.
Unfortunately, some other operations are harder to com-
pute using polynomial zonotopes. For example, previous or-
der reduction in (Kochdumper 2022, Prop. 3.1.39) needs a
zonotope enclosure that induces outer-approximations. We
briefly introduce the zonotope enclosure to show that the
outer-approximation is drastically reduced using our ap-
proach.

Definition 2 (Zonotope (Girard 2005, Def. 1)). Given a cen-
ter vector c ∈ Rn and a generator matrix G ∈ Rn×q , a
zonotope is defined as

Z = ⟨c,G⟩Z :=

c+

q∑
j=1

βjG(·,j)

∣∣∣∣∣∣ βj ∈ [−1, 1]

 .

Proposition 2 (Zonotope Enclosure (Kochdumper 2022,
Prop. 3.1.14)). Given a PZ = ⟨c,G,GI , E⟩PZ , then
PZ ⊆ Z = zonotope (PZ) with

Z =

〈
c+

∑
i∈H

0.5G(·,i),
[
0.5G(·,H) G(·,K) GI

]〉
Z

,

whereH contains the indices of the generators with all even
exponents and K = [h]\H.

Neural Network Verification
In this work, we focus on verifying feed-forward neural net-
works (Bishop and Nasrabadi 2006, Sec. 5.1), consisting of
alternating linear and nonlinear layers.

Definition 3. (Neural Networks (Bishop and Nasrabadi
2006, Sec. 5.1)) Let x ∈ Rn0 be the input of a neural net-
work Φ, its output y = Φ(x) ∈ Rnκ is obtained as follows:

h0 = x,

hk = Lk(hk−1), k ∈ [κ],

y = hκ,

where

Lk(hk−1) =

{
Wkhk−1 + bk if layer k is linear,
σk(hk−1) otherwise,

with Wk ∈ Rnk×nk−1 , bk ∈ Rnk , and σk(·) is the respective
continuous activation function (e.g., sigmoid or ReLU).

Neural network verification reasons about input sets
X ⊂ Rn0 instead of points. State-of-the-art verifiers com-
pute an outer-approximation of the exact output set Y∗ =
Φ(X) ⊂ Rnκ , including the ones using polynomial zono-
topes (Kochdumper et al. 2023; Ladner and Althoff 2023a).
On a high level, the verification procedure is shown in
Alg. 1. Linear layers can be computed exactly using poly-
nomial zonotopes (line 3). Nonlinear layers are enclosed by
approximating them with a polynomial and finding an ap-
proximation error (line 4-5).

Algorithm 1: Simplified Neural Network Verification

Require: Input X , neural network Φ
1: H0 ← X
2: for k = 1, 3, . . . , κ− 1 do ▷ κ layers of Φ
3: Hk ←Wk Hk−1 + bk ▷ Affine map (1)
4: H̃k+1 ← pk+1(Hk) ▷ Polynomial map (Prop. 1)
5: Hk+1 ← H̃k+1 ⊕ Ik ▷ Approx. error (4), (2)
6: end for
7: Y ← Hκ

8: return Y ⊇ Y∗

Problem Statement
Given a polynomial zonotope PZ , e.g., obtained from
Alg. 1, we want to restructure PZ to obtain a new, simpler
polynomial zonotope PZ ⊇ PZ with fewer dependencies
between the monomials and minor outer-approximations.
The restructuring should benefit subsequent operations, e.g.,
interval bounds, intersection checking, and order reduction.

3 Exponent Relaxation
Polynomial zonotopes can be hard to deal with as they are
defined over polynomials with multiple variables (Def. 1).
Thus, many operations are computed via a zonotope en-
closure (Prop. 2) in practice, e.g., computing interval
bounds, order reduction, intersection checking, and plot-
ting (Kochdumper 2022). However, we observe that the
zonotope enclosure can be very outer-approximative, es-
pecially if there are many dependencies between the
monomials. As the next example demonstrates, the outer-
approximation can be quite significant even in simple cases:

0 1 2 3 4

0

5

Polynomial Zonotope
Zonotope Enclosure
Exponent Relaxation

Figure 1: Outer-approximation of the zonotope enclosure.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α

α1

α3

α5

α7

α11

α19

α35

Figure 2: Dependent factors α ∈ [−1, 1] in Def. 1.

Example 1. Given a polynomial zonotope

PZ =

〈[
2
2

]
,

[
1 −1
2 3

]
,

[]
,

[
1 1
4 2

]〉
PZ

,

we obtain

Z = zonotope (PZ) =
〈[

2
2

]
,

[
1 −1
2 3

]〉
Z

using Prop. 2, which is also depicted in Fig. 1. The zono-
tope enclosure makes the generators independent, thus, we
lose the information that they cancel each other in the first
dimension – resulting in a large outer-approximation.

Given a polynomial zonotope PZ , we present a novel ap-
proach to construct a polynomial zonotope PZ ⊇ PZ with
fewer dependencies between the monomials without induc-
ing large outer-approximations by relaxing the exponents of
the dependent factors. Fig. 2 shows that the maximum differ-
ence between two dependent factors with odd exponents is
minor within [−1, 1], especially for higher exponents. Anal-
ogously, this also holds for even exponents. We define the
following operator to compute the maximum difference be-
tween two exponents for convenience.
Proposition 3 (Exponent Difference). Given two exponents
ei, ej ∈ N0, then the maximum difference between the re-
spective polynomials within [−1, 1] is given by

eDiff (ei, ej) = max
x∈[−1,1]

|xei − xej | .

Our novel approach merges generators whose monomials
have similar exponents, which we define as follows:

Definition 4 (Similar Exponents). Given a polynomial
zonotope PZ = ⟨c,G,GI , E⟩PZ with h dependent gen-
erators, then we say that the monomials of two generators
i, j ∈ [h] have similar exponents if and only if they differ at
most in one index:∣∣{k ∣∣E(k,i) ̸= E(k,j), k ∈ [p]

}∣∣ = 1.

With that, we can present the first main theorem of our
novel restructuring approach:
Theorem 1 (Exponent Relaxation). Given a polynomial
zonotope PZ = ⟨c,G,GI , E⟩PZ with h dependent genera-
tors and the indices of two generators i, j ∈ [h] with similar
exponents, then we can relax the exponents of the monomials
of these generators to obtain a new polynomial zonotope

PZ =
〈
c,G,GI , E

〉
PZ

= relax (PZ, i, j) ⊇ PZ
with

c = c+ ξcG(·,i), G =
[
G(·,[h]\{i,j}) G(·,j)+G(·,i)

]
,

GI =
[
GI ξGG(·,i)

]
, E =

[
E(·,[h]\{i,j}) E(·,j)

]
,

where

ξc = ξE − ξG, ξG =

{
ξE/2 if E(·,i) are all even,
ξE otherwise,

ξE = eDiff
(
E(k0,i), E(k0,j)

)
,

and k0 ∈ [p] is the index where E(·,i) and E(·,j) dif-
fer. The computational complexity to construct PZ is in
O((h+ q)n+ hp).

Proof. We only show the case where E(·,i) does not have all
even exponents, thus ξc = 0, ξG = d. In the case of all even
exponents, the approximation error can be halved with the
same argument as in Prop. 2. Without loss of generality, we
assume i = 1, j = 2, and k0 = 1. Thus,

PZ = {c+ΣΠG+ΣGI |α, β}

=

{
c+ΣΠG(·,[h]2)+ΣGI+

(
p∏

k=1

α
E(k,1)

k

)
G(·,1)

∣∣∣∣∣α, β
}

=
{
c+ΣΠG(·,[h]2) +ΣGI

+

(
α
E(1,1)

1

p∏
k=2

α
E(k,1)

k

)
G(·,1)

∣∣∣∣∣ α, β
}
.

Next, we relax the exponents of the monomial of the gener-
ator i = 1 to match the exponents from j = 2 and enclose
the relaxation by introducing a new factor α∗ ∈ [−1, 1]:
PZ ⊆

{
c+ΣΠG(·,[h]2) +ΣGI

+

((
α
E(1,2)

1 + α∗ξE

) p∏
k=2

α
E(k,2)

k

)
G(·,1)

∣∣∣∣∣α∗, α, β

}

=

{
c+ΣΠG(·,[h]2)+ΣGI+

(
α
E(1,2)

1

p∏
k=2

α
E(k,2)

k

)
G(·,1)

+

(
α∗

p∏
k=2

α
E(k,2)

k

)
︸ ︷︷ ︸

∈[−1,1]

ξEG(·,1)

∣∣∣∣∣α∗, α, β

}
= P̂Z.

As all dependent factors of ξEG(·,1) are within [−1, 1], we
can replace them by a single independent factor βq+1 ∈
[−1, 1]:

P̂Z ⊆

{
c+ΣΠG(·,[h]2) +ΣGI +

(
p∏

k=1

α
E(k,2)

k

)
G(·,1)

+ βq+1ξEG(·,1)
∣∣α, β} = P̃Z.

As the monomials of the generators G(·,1), G(·,2) now have
the same exponents, we can add the respective generators:

P̃Z =
{
c+ΣΠ

[
G(·,[h]3) G(·,2)+G(·,1)

]
+Σ

[
GI ξEG(·,1)

] ∣∣α, β}
=
{
c+ΣΠG+ΣGI

∣∣α, β} = PZ.
Please note that α∗ is only temporary and does not appear
in PZ . The computational complexity follows directly from
the construction of G,GI , and E.

Example 2. We revisit Example 1 and apply Thm. 1 to ob-
tain

PZ = relax (PZ, 1, 2) =
〈[

2
2

]
,

[
0
5

]
,

[
0.25
0.5

]
,

[
1
2

]〉
PZ

,

which represents the green zonotope in Fig. 1.
We want to stress that Thm. 1 is also applicable on gen-

erators i, j with more than one different exponent: This is
achieved by implicitly adding a chain of zero-length gener-
ators to the polynomial zonotope, each changing one expo-
nent such that we can iteratively apply Thm. 1:
Proposition 4 (Multi-Exponent Relaxation). Given a poly-
nomial zonotope PZ = ⟨c,G,GI , E⟩PZ with h dependent
generators and the indices of two generators i, j ∈ [h], i ̸=
j, then we can relax all exponents of the monomials of these
generators to obtain a new polynomial zonotope

PZ =
〈
c,G,GI , E

〉
PZ

= relax (PZ, i, j) ⊇ PZ
with identical construction as in Thm. 1, except that

ξE =
∑
k∈K

eDiff
(
E(k,i), E(k,j)

)
and K ⊆ [p] are the indices where E(·,i) and E(·,j) differ.

Proof. Again, we only consider the case where E(·,i) does
not have all even exponents and without loss of general-
ity, we assume i = 1, j = 2, and K = [p0] ⊆ [p].
Then, without inducing any outer-approximation, we have
that PZ = P̂Z =

〈
c, Ĝ, GI , Ê

〉
PZ

with

Ĝ=
[
G(·,1) 0 . . . 0 G(·,2) G(·,[h]3)

]
,

Ê=

[
E(·,1)

[
E([p0−1],1)

E([p]p0 ,2)

]
. . .

[
E([1],1)

E([p]2,2)

]
E(·,2) E(·,[h]3)

]
.

We apply Thm. 1 iteratively on the first p0 +1 generators of
P̂Z as the monomials of subsequent generators have sim-
ilar exponents. As the resulting independent generators are
scaled generators of G(·,1), they can be combined and we
obtain ξE and GI .

Figure 3: Resulting graph GPZ2,0 from applying a single
quadratic map operation on a polynomial zonotope PZ:
Each generator has at least one other generator where the
respective monomials have similar exponents.

Please note that Thm. 1 and Prop. 4 do not increase the
number of generators. However, we removed one depen-
dent generator and added one independent generator. Thus,
the restructured polynomial zonotope is simpler in the sense
that it is closer to a zonotope without inducing much outer-
approximation due to Prop. 3 with reasonable exponents.
The dimension of the polynomial zonotope does not affect
the exponent relaxation directly, as the error due to the relax-
ation can always be enclosed by one independent generator;
however, higher dimensional polynomial zonotopes usually
have more dependent factors. Also, it is not apparent which
generators we should merge by relaxing their exponents if
one has multiple other generators with similar exponents.
We discuss all three points in more detail in the next section.

4 Graph-Based Restructuring
For the exponent relaxation approach (Thm. 1) to be appli-
cable, we need the polynomial zonotopes to have similar ex-
ponents (Def. 4). We show in this section that similar ex-
ponents are not uncommon when applying quadratic maps
(Prop. 1) on polynomial zonotopes, where we view polyno-
mial zonotopes as graphs to determine which exponents to
relax. Each node in the graph represents a dependent gener-
ator of a polynomial zonotope, and each edge represents a
choice to relax the exponents as follows: We want a) mono-
mials of generators with connecting edges to have similar
exponents (Def. 4), b) the dissimilar exponents to be both
even, both odd, or E(k,j) = 0, and c) do not relax exponents
underneath a threshold η.
Definition 5 (Graph of Polynomial Zonotope). Let PZ =
⟨c,G,GI , E⟩PZ be a polynomial zonotope with h depen-
dent generators and an exponent threshold η ∈ N0, then we
define the directed graph GPZ,η = (V, E) with nodes V and
edges E from PZ , where

V = [h],

E = {(i, j) |Def. 4 holds for i, j ∈ [h]

∧
(
mod

(
E(k,i), 2

)
= mod

(
E(k,j), 2

)
∨ E(k,j) = 0

)
∧ E(k,i) > E(k,j) ≥ η, k s.t. E(k,i) ̸= E(k,j)

}
,

with an edge weight eDiff
(
E(k,i), E(k,j)

)
for an edge

(i, j) ∈ E .

The computational complexity of constructing GPZ,η is
inO(h2p). With a higher value of the threshold η, the result-
ing polynomial zonotope remains closer to the original set,
while a smaller value simplifies it more at the cost of larger
outer-approximation. This tradeoff is favorable for our ap-
proach as the outer-approximation induced by the exponent
relaxation is minor (Fig. 2).
Lemma 1. The graph GPZ,η does not contain cycles.

Proof. The graph GPZ,η does not contain cycles as we only
add edges between the generators i, j if E(k,i) > E(k,j)

holds and all other exponents are equal (Def. 4). Thus, we
cannot construct a path from generator j back to genera-
tor i as the k-th exponent cannot increase along a path in
GPZ,η .

We say that a node i is a leaf node of a directed graph
if there are no incoming edges to node i but at least one
outgoing edge. Monomials with similar exponents already
appear after applying a single quadratic map by construction
(Prop. 1), as shown in the following example.
Example 3. Let PZ = ⟨c,G, [], In⟩PZ ⊂ Rn be a polyno-
mial zonotope representing an interval (4) without any de-
pendencies between the monomials of the generators. Then,
all generators of PZ2 = quadMap (PZ) have at least two
other generators, where the respective monomials have sim-
ilar exponents as visible in the graph GPZ2,0 in Fig. 3 for
n = 10.

If a generator in GPZ,η has multiple outgoing edges, we
have to decide which generators are merged and in which
order. We apply a greedy approach to merge the generators
(Alg. 2):
Theorem 2 (Greedy Relaxation). Given a polynomial zono-
tope PZ and an exponent threshold η ∈ N0, then we denote
the application of Alg. 2 by

relax (PZ, η) ⊇ PZ,

where greedy (GPZ,η) only keeps the outgoing edge with
the smallest edge weight for each node. The computational
complexity of Alg. 2 is O((h+ q)hn+ h2p).

Proof. The construction of GPZ,η is inO(h2p) (Def. 5), and
the greedily selected subgraph can be constructed in O(h2)
by checking the weight of the outgoing edges for each node.
The subgraph consists of multiple trees as there are no cycles
in GPZ,η (Lemma 1). We loop at most h-times as each node
is only processed at most once. Updating the subgraph can
be done in O(h) due to the tree structure. Then, Thm. 1 is
applied in O((h + q)n + hp). Thus, the overall complexity
is in O((h + q)hn + h2p). The greedy relaxation is sound
and outer-approximative due to Thm. 1.

We note that more advanced strategies can also be ap-
plied here, e.g., preferring generators facing in opposite di-
rections. Fig. 4 shows how different choices for η can influ-
ence the result of relax (PZ, η) and a subsequent zonotope
enclosure (Prop. 2). Notably, the first plot seems to show
relax (PZ, η) ⊂ PZ , which is the opposite of what we
claim in Thm. 2. However, plotting polynomial zonotopes

−5 0 5

−0.5

0

0.5

η = 10

−5 0 5

−0.5

0

0.5

η = 5

−5 0 5

−0.5

0

0.5

η = 1 greedy (GPZ,1)

PZ zonotope (PZ) relax (PZ, η) zonotope (relax (PZ, η))

Figure 4: Resulting sets after applying Thm. 2 on a polynomial zonotope PZ with different values for η: The outer-
approximation of the relaxed PZ grows barely while a subsequent zonotope enclosure shrinks drastically. The fourth plot
shows the greedily selected subgraph of GPZ,1.

Algorithm 2: Greedy Relaxation relax (PZ, η)
Require: Polynomial zonotope PZ , threshold η ∈ N0

1: Construct GPZ,η ▷ Def. 5
2: GPZ,η ← greedy (GPZ,η)
3: while |GPZ,η.E| > 0 do
4: i← leaf node of GPZ,η

5: j ← j ∈ [h] s.t. (i, j) ∈ GPZ,η.E
6: PZ ← relax (PZ, i, j) ▷ Thm. 1
7: Update GPZ,η ▷ Remove (i, j), update indices
8: end while
9: return PZ

is outer-approximative and the plot for relax (PZ, η) is
tighter as an order reduction and zonotope enclosures are
involved. Any point sampled from PZ is, of course, also
contained in relax (PZ, η). Finally, for η = 1 we obtain
a tight zonotope enclosure using our novel approach. Note
that the plotted polynomial zonotopes (blue and yellow) are
obtained via recursive splitting (Kochdumper 2022, Propo-
sition 3.1.44), while the zonotope enclosure of the relaxed
set (green) is obtained without splitting.

5 Experiments
Finally, we show the results of our experiments using the
MATLAB toolbox CORA (Althoff 2015) for the neural net-
work verification and for all subsequent operations. All com-
putations were performed on an Intel® Core™ Gen. 11 i7-
11800H CPU @2.30GHz with 64GB memory. Our goal is
to verify the networks without splitting the set, as splitting
usually does not scale well with the dimension and is espe-
cially expensive in closed-loop settings (Lopez et al. 2022)
due to the repeated evaluations of the neural network.

In our first experiment, we want to show the time im-
provement using our novel approach using an image (28×28
pixels) from the MNISTFC benchmark (Bak, Liu, and John-
son 2021). The neural network has 5 layers, 256 neurons in
each hidden layer with ReLU activations and 10 output neu-
rons. We increase the perturbation radius from 0.05 to 0.075

Approach Split Time Result

Zonotope ✗ 0.05s UNKNOWN
Polynomial zonotope ✗ 0.16s UNKNOWN
Polynomial zonotope ✓ 23.22s VERIFIED
Our approach ✗ 0.27s VERIFIED

Table 1: Comparison of verification results using an image
from the MNISTFC benchmark. The second column indi-
cates whether the output set was recursively split.

such that it can no longer be verified using zonotopes. We
use a neural network reduction technique (Ladner and Al-
thoff 2023b) to construct a much smaller network with for-
mal error bounds, where the verification of the reduced net-
work entails the verification of the original network. Then,
we apply the abstraction refinement approach using polyno-
mial zonotopes (Ladner and Althoff 2023a, Alg. 3) on the
reduced network. The specification is verified with three re-
finement steps, thus, resulting in three applications of the
quadMap (·) operation (Prop. 1) creating dependencies be-
tween the monomials. Our novel exponent relaxation ap-
proach (Thm. 2) is applied using η = 1 before the final
order reduction and checking against the specification. A
comparison is shown in Tab. 1: The zonotope approach is
as in (Singh et al. 2018) and the polynomial zonotope ap-
proach as in (Kochdumper et al. 2023). Our novel approach
significantly speeds up the polynomial zonotope approach
due to its polynomial time complexity and minor outer-
approximations. The stated verification time of our approach
also includes the time to restructure the polynomial zono-
tope.

In our second experiment, we analyze our approach more
broadly regarding order reduction and subsequent enclo-
sure operations, such as the zonotope enclosure, the inter-
val bounds, and computing the support function in random
directions. The neural networks Φ are generated randomly
with varying sizes (number of layers κ, number of in-/output
neurons n0 = nκ, number of hidden neurons), and we

Neural Network OR ZE IB SF
Split Denominator ✓ ✓ ✗ ✓ ✗ ✓ ✗

– sigmoid –

[2, 10, 2] 1.5905 3.1410 0.6977 2.0211 0.7311 1.5623 0.8325
[2, 10, 10, 2] 1.5421 3.1354 0.6181 2.0869 0.6600 1.4715 0.7821
[5, 10, 10, 5] 1.3258 3.9993 0.5253 36.3789 0.2400 1.9442 0.7145

[10, 20, 20, 10] 0.8578 1.0039 0.8066 1.6527 0.3827 0.9705 0.8953
[10, 20, 20, 20, 10] 0.8942 1.0308 0.8525 2.1742 0.5009 1.0063 0.9210
[10, 50, 50, 50, 10] 0.2909 0.2909 0.2568 0.0030 0.0009 0.5608 0.5056

– ReLU –

[2, 10, 2] 2.5025 4.9590 0.3143 4.1043 0.3264 1.9836 0.5652
[2, 10, 10, 2] 1.3043 2.7052 0.5107 2.3776 0.5119 1.5761 0.7207
[5, 10, 10, 5] 0.9831 2.0318 0.7367 11.0079 0.5095 1.4071 0.8493

[10, 20, 20, 10] 1.4685 2.4273 0.2903 441.3038 0.0032 1.0696 0.5427
[10, 20, 20, 20, 10] 1.5591 2.4381 0.2934 263.2050 0.0026 1.0632 0.5276
[10, 50, 50, 50, 10] 2.0113 2.8469 0.1937 802.3418 0.0004 0.9019 0.4155

Table 2: Ratios of order reduction (OR), zonotope enclosure (ZE), interval bounds (IB), and support function (SF) using (6) on
the output set Y of the respective neural network and η = 1. The second row indicates whether the value in the denominator
of (6) is obtained via recursive splitting.

use intervals as input sets X . We refine the abstraction five
times, which creates the dependencies between the mono-
mials. The output Y = Φ(X) is used for our experiments.
Each experiment is repeated 50 times, and we present the
averaged results.

We want to stress that many operations on polynomial
zonotopes are outer-approximative, thus, experiments need
to be carefully crafted for valuable comparison. Addi-
tionally, the restructuring via exponent relaxation induces
outer-approximation, however, we show the reduced outer-
approximation of subsequently applied operations. To show
that our novel approach produces tight outer-approximations
with a subsequent operation ϕ on a polynomial zonotope Y ,
we compute the ratio

ϕ (reduce (relax (Y, η)))
ϕ (reduce (Y))

, (6)

where reduce (·) computes an order reduction. For exam-
ple, we compute ϕ(·) = vol (zonotope (·)) to measure the
volume of the zonotope enclosure. Unfortunately, the vol-
ume is hard to compute for high-dimensional zonotopes and
polynomial zonotopes. Thus, we project them to the two
most dominant directions using singular value decomposi-
tion of the generator matrices prior to the volume compu-
tation. The volume of the interval bounds is computed con-
sidering all dimensions. Tab. 2 shows the averaged ratios in
columns marked with a cross (✗). As all ratios are below 1,
we obtain tighter results across all networks on average.

For comparison, in columns marked with a tick (✓), we
show the ratio if the respective value in the denomina-
tor of (6) is obtained with recursive splitting. While it is
expected that splitting obtains tighter results (ratio larger
than 1), we can report that our approach often obtains very
similar and, in some cases, even tighter results – with the
main differences that our approach maintains a single set
and runs in polynomial time complexity (Thm. 2).

−60 −40 −20 0 20 40 60

−40

−20

0

20

40

Samples from Y reduce (relax (Y, 3))

reduce (Y) reduce (relax (Y, 2))

reduce (relax (Y, 5)) reduce (relax (Y, 1))

Figure 5: Improvements on the order reduction for different
η using an output set Y of a neural network. Samples are
taken from the unreduced output set Y .

6 Conclusion
Polynomial zonotopes are used to verify neural networks
due to their favorable computation time of the quadratic map
operation. Unfortunately, the introduced dependencies be-
tween monomials of the generators make further processing
challenging, such as intersection checking with an unsafe
set. We present the first approach to consider these depen-
dencies while restructuring the polynomial zonotope. As the
resulting polynomial zonotope is simpler, subsequent oper-
ations such as order reduction and enclosure operations can
be computed much tighter than without our novel approach.
The restructuring has polynomial time complexity and thus
can significantly decrease the verification time. While we fo-
cused on the verification of neural networks in this work, our
approach is also applicable in other settings where polyno-
mial zonotopes are used such as the verification of dynamic
systems.

Acknowledgments
The authors gratefully acknowledge financial support from
the project FAI funded by the German Research Foundation
(DFG) under project number 286525601.

References
Althoff, M. 2013. Reachability analysis of nonlinear sys-
tems using conservative polynomialization and non-convex
sets. In Proceedings of the 16th international conference on
Hybrid systems: computation and control, 173–182.
Althoff, M. 2015. An introduction to CORA 2015. In Pro-
ceedings of the Workshop on Applied Verification for Con-
tinuous and Hybrid Systems, 120–151.
Bak, S.; Liu, C.; and Johnson, T. 2021. The second
international verification of neural networks competition
(VNN-COMP 2021): Summary and results. arXiv preprint
arXiv:2109.00498.
Bishop, C. M.; and Nasrabadi, N. M. 2006. Pattern recogni-
tion and machine learning, volume 4. Springer.
Bogomolov, S.; Forets, M.; Frehse, G.; Potomkin, K.; and
Schilling, C. 2019. JuliaReach: A toolbox for set-based
reachability. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control,
39–44.
Botoeva, E.; Kouvaros, P.; Kronqvist, J.; Lomuscio, A.; and
Misener, R. 2020. Efficient verification of relu-based neu-
ral networks via dependency analysis. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
3291–3299.
Ferrari, C.; Muller, M. N.; Jovanovic, N.; and Vechev,
M. 2022. Complete verification via multi-neuron re-
laxation guided branch-and-bound. arXiv preprint
arXiv:2205.00263.
Girard, A. 2005. Reachability of uncertain linear systems
using zonotopes. In International Workshop on Hybrid Sys-
tems: Computation and Control, 291–305. Springer.
Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and harnessing adversarial examples. In International
Conference on Learning Representations.
Henriksen, P.; and Lomuscio, A. 2020. Efficient neural net-
work verification via adaptive refinement and adversarial
search. In European Conference on Artificial Intelligence,
2513–2520. IOS Press.
Huang, Y.; Luo, E.; Bak, S.; and Sun, Y. 2023. On the dif-
ficulty of intersection checking with polynomial zonotopes.
arXiv preprint arXiv:2305.09901.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochender-
fer, M. J. 2017. Reluplex: An efficient SMT solver for veri-
fying deep neural networks. In International Conference on
Computer Aided Verification, 97–117. Springer.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus, C.;
Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljić, A.; et al.
2019. The Marabou framework for verification and anal-
ysis of deep neural networks. In International Conference
on Computer Aided Verification, 443–452. Springer.

Kiran, B. R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab,
A. A.; Yogamani, S.; and Pérez, P. 2021. Deep reinforcement
learning for autonomous driving: A survey. IEEE Transac-
tions on Intelligent Transportation Systems, 23: 4909–4926.
Kochdumper, N. 2022. Extensions of polynomial zonotopes
and their application to verification of cyber-physical sys-
tems. Ph.D. thesis, Technische Universität München.
Kochdumper, N.; and Althoff, M. 2020. Sparse polynomial
zonotopes: A novel set representation for reachability anal-
ysis. IEEE Transactions on Automatic Control, 4043–4058.
Kochdumper, N.; Schilling, C.; Althoff, M.; and Bak, S.
2023. Open-and closed-loop neural network verification us-
ing polynomial zonotopes. In NASA Formal Methods Sym-
posium, 16–36. Springer.
Ladner, T.; and Althoff, M. 2023a. Automatic abstraction
refinement in neural network verification using sensitivity
analysis. In Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Control,
18, 1–13.
Ladner, T.; and Althoff, M. 2023b. Specification-driven neu-
ral network reduction for scalable formal verification. arXiv
preprint arXiv:2305.01932.
Lopez, D. M.; Althoff, M.; Benet, L.; Chen, X.; Fan, J.;
Forets, M.; Huang, C.; Johnson, T. T.; Ladner, T.; Li, W.;
et al. 2022. ARCH-COMP22 category report: Artificial in-
telligence and neural network control systems (AINNCS)
for continuous and hybrid systems plants. In Proceedings
of 9th International Workshop on Applied, volume 90, 142–
184.
Schilling, C.; Forets, M.; and Guadalupe, S. 2022. Verifica-
tion of neural-network control systems by integrating Taylor
models and zonotopes. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, 8169–8177.
Singh, G.; Gehr, T.; Mirman, M.; Püschel, M.; and Vechev,
M. 2018. Fast and effective robustness certification. Ad-
vances in Neural Information Processing Systems, 31.
Wang, S.; Zhang, H.; Xu, K.; Lin, X.; Jana, S.; Hsieh, C.-
J.; and Kolter, J. Z. 2021. Beta-CROWN: Efficient bound
propagation with per-neuron split constraints for neural net-
work robustness verification. Advances in Neural Informa-
tion Processing Systems, 34: 29909–29921.
Xu, K.; Zhang, H.; Wang, S.; Wang, Y.; Jana, S.; Lin, X.; and
Hsieh, C.-J. 2020. Fast and complete: Enabling complete
neural network verification with rapid and massively parallel
incomplete verifiers. arXiv preprint arXiv:2011.13824.

