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Abstract

Currently, Point Clouds (PCs) are widely used especially in the Architecture, Engineering
and Construction (AEC) industry for various use cases, such as planning equipment relo-
cation in a factory; layout, and assembly line planning; global manufacturing operations;
5S and Gemba Walks; best practice sharing; visual interfaces, and in general Scan-to-BIM.
Therefore, an accurate PC is very useful for getting the best information out of it and will
be more helpful in processing the use cases more efficiently.

This Master Thesis aims to improve PCs especially in Mechanical, Electrical and Plumbing
(MEP) environments with the use of Machine Learning (ML) algorithms such as Voxel-Deep
Convolutional Generative Adversarial Networks (Voxel-DCGAN) and Point Completion Net-
works (PCNs). For this procedure, synthetic data is firstly generated as training datasets
before completing the real truncated PC clusters. An evaluation is performed afterwards
for the applied methods. For the procedure without pre-voxelization, the assignments of
different materials were modified for each instance to later be able to segment each PC
instances in the output of the simulations. Afterwards, a PCN was applied to complete
those components.

For applying the Voxel-DCGAN method, the voxelization step on the PC is needed. This
can be done by the given code from MIN (2004);(NOORUDDIN & TURK, 2003). The given
Voxel-DCGAN method which contains a 3D shape generative model can be used for
completion.
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Zusammenfassung

Heutzutage werden Punktwolken vor allem in der Architektur-, Ingenieur- und Bauwesen
(AEC) für verschiedene Anwendungsfälle eingesetzt. Dazu gehören z.B. die Planung der
Verlagerung von Anlagen in Fabriken, die Planung von Layouts und Montagelinien, globale
Fertigungsabläufe, 5S- und Gemba-Rundgänge, der Austausch bewährter Verfahren,
visuelle Schnittstellen oder allgemein Scan-to-BIM. Daher ist eine genaue Punktwolke
sehr nützlich, um die besten Informationen aus ihr herauszuholen und den Anwendungsfall
effizienter zu bearbeiten.

Diese Masterarbeit zielt auf die Verbesserung von Punktwolken ab, insbesondere in
den Bereichen Mechanik, Elektrik und Sanitär mit Hilfe von maschinellen Lernalgorith-
men wie Voxel-Deep Convolutional Generative Adversarial Networks (Voxel-DCGAN) und
Point Completion Networks (PCNs). Für dieses Verfahren werden zunächst synthetische
Daten als Trainingsdatensätze generiert, bevor die realen, abgeschnittenen Punktwolken-
Cluster vervollständigt werden. Anschließend erfolgt eine Auswertung der angewandten
Methoden. Bei dem Verfahren ohne Vorvoxelierung wurde für jede Instanz eine andere
Materialzuweisung verwendet, um jede Punktwolken-Instanz in der Ausgabe der Sim-
ulationen zu segmentieren. Anschließend wird ein PCN zur Vervollständigung dieser
Komponenten eingesetzt.

Für die Anwendung der Voxel-DCGAN Methode ist der Schritt der Voxelisierung der Punk-
twolke erforderlich. Dies kann mit dem gegebenen Code von MIN (2004);(NOORUDDIN

& TURK, 2003) durchgeführt werden. Die angegebene Voxel-DCGAN Methode, die ein
generatives 3D-Formmodell enthält, kann zur Vervollständigung verwendet werden.
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Chapter 1

Introduction

1.1 Building Information Modeling (BIM)

Building Information Modeling (BIM) is a digital representation of the physical and functional
characteristics of a building or infrastructure, encompassing geometry, spatial relationships,
geographic information, and various attributes of the components within the structure (see
Figure 1.1).

Figure 1.1: A BIM model comprises both the 3D geometry of each building element as well
as a rich set of semantic information provided by attributes and relationships (BORRMANN

et al., 2018)

Furthermore, as shown in Figure 1.2, BIM serves as a collaborative and interoperable plat-
form that integrates multidisciplinary data throughout the entire lifecycle of a construction
project, from conceptualization and design to construction, operation, and maintenance.
It facilitates the efficient exchange and management of information among stakeholders,
enabling enhanced decision-making, improved coordination, and increased overall project
performance. Additionally, BIM promotes a holistic approach to building processes by
providing a comprehensive and dynamic database that supports the creation, analysis,
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and visualization of 3D models, fostering greater accuracy, transparency, and sustainability
in the construction industry (BORRMANN et al., 2018).

Figure 1.2: The fundamentals of BIM relies on the continuous use and low-loss handover
of digital information across the entire lifecycle of a built facility (BORRMANN et al., 2018)

1.2 Point Cloud (PC)

A Point Cloud (PC) is a collection of data points in space, typically obtained through
laser scanning or photogrammetry techniques, representing the geometric and possibly
radiometric characteristics of physical objects within the scanned environment (SEAN

HIGGINS, 2021). PCs are extensively used in various fields, including computer graphics,
computer vision, remote sensing, geomatics, and robotics. The data points in a PC
collectively form a digital model of the surface or structure they represent, see an example
of a PC in Figure 1.3.
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Figure 1.3: Example of a PC captured with the NavVis VLX3 device visualized in Cloud-
Compare (CC)

In the context of BIM, the integration of PC data involves extracting geometric information
and attributes from the PC to construct a detailed and accurate digital model of the
existing structure. This model encompasses the spatial relationships, dimensions, and
visual characteristics of the scanned elements. By incorporating PC data into the BIM
framework, stakeholders can gain a more precise and comprehensive understanding of
the as-built conditions of a facility, enabling improved decision-making, precise analysis,
and effective collaboration throughout the various stages of a construction project or facility
management.

1.3 Generative Models

Generative models are a class of Machine Learning (ML) models designed to generate
new data samples that resemble a given dataset. These models learn the underlying
patterns and structures of the training data and can subsequently generate new, realistic
instances that share similar characteristics. Generative models are particularly prominent
in fields such as Artificial Intelligence, Computer Vision, Natural Language Processing,
and Generative Art. There are various types of generative models, each with its own
approach to capturing and reproducing the distribution of the training data (see Figure
1.4). Inputs and outputs to these models can include text, images, sounds, animation, 3D
models, or other types of data.
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Figure 1.4: Venn Diagram by Jeff Winter; url:https://gf.linkedin.com/posts/karenkilroy_
thank-you-jeff-winter-for-this-fascinating-activity-7050432311791669248-_nkT

In KARPATHY et al. (2016) the intuition of the approach, to firstly collect a big amount of
data and then training it for generating similar data with a generative model, follows the
given famous quote from Richard Feynman:

"What I cannot create, I do not understand."
- Richard Feynman

Applied on generative models it means, that when creating similar data out of the initial
data, the model is continuously improving to understand its initial data. The reason for
this is that neural networks, used as generative models, have a number of parameters
significantly smaller than the amount of data they are trained on, so the models are forced
to discover and efficiently internalize the essence of the data to generate it. Therefore, for
long term-applications they hold the potential to automatically learn the natural features of
a dataset, whether categories or dimensions or entirely something else.

One recent generative model is the Deep Convolutional Generative Adversarial Network
(DCGAN) of RADFORD et al. (2016). It is made up of standard convolutional neural
network components, such as deconvolutional layers (reverse of convolutional layers),
fully connected layers, etc. The network has millions of parameters that can be optimized,
and the goal is to find a setting of these parameters that makes samples generated from
random codes look like the training data. It is basically a back and forth learning process
between a generator network and a second discriminative network that tries to classify
samples as either coming from the true distribution or the model distribution. Every time
the discriminator notices a difference between the two distributions the generator slightly
adjusts its parameters to make it go away, until at the end (in theory) the generator exactly
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reproduces the true data distribution and the discriminator random guesses, unable to find
a difference.

1.4 Unsupervised Learning vs. Supervised Learning

JULIANNA DELUA (2021) establishes that Supervised and Unsupervised Learning are
two fundamental approaches in the field of Artificial Intelligence and Machine Learning
(ML). In Figure 1.4, their relation in the Artificial Intelligence context is displayed as well.
Supervised Learning relies on labeled datasets to train algorithms to predict outcomes
accurately, while Unsupervised Learning analyzes unlabeled datasets to discover hidden
patterns autonomously.

Supervised Learning encompasses classification and regression tasks. Classification
involves categorizing data into specific groups, such as spam filtering or image recognition,
while regression predicts numerical values based on input variables, like sales forecasts.
On the other hand, Unsupervised Learning focuses on clustering similar data points, finding
associations between variables, and reducing the dimensionality of complex datasets.

The primary difference between the two lies in the use of labeled data. Supervised
Learning requires human intervention to label input and output data, making it more
accurate but also more labor-intensive. In contrast, Unsupervised Learning operates
independently, identifying patterns without predefined labels, though human validation
may still be necessary. A simple example of both learning techniques is shown below in
Figure 1.5.
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Figure 1.5: Simple example of Unsupervised Learning and Supervised Learning (KASSIANI

NIKOLOPOULOU, 2023)

Supervised Learning is suitable for tasks like spam detection and weather forecasting,
where outcomes are known and well-defined. Unsupervised Learning excels in anomaly
detection and recommendation systems, where insights are derived from large datasets.

While Supervised Learning is simpler and more straightforward, Unsupervised Learning is
computationally complex and requires robust tools to handle unstructured data. However,
Semi-Supervised Learning offers a compromise by utilizing both labeled and unlabeled
data, making it ideal for scenarios where feature extraction is challenging and data volume
is high, such as medical imaging analysis (JULIANNA DELUA, 2021).

1.5 Motivation

Point Cloud (PC) completion for Mechanical, Electrical and Plumbing (MEP) components
is helpful for various reasons. The main downstream method that it facilitates is the
improved model reconstruction. Which in turn is more efficient for companies and helps
them saving costs, as an accurate representation, including geometric information, for
every MEP is given. Thus improving the process, as an expert would not have to manually
complete such geometric information, which is needed for the modeling process. This
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would result in a more effective way of applying clash detection and coordination in complex
environments/ MEP systems as well as in the planning, maintaining and execution of MEP
installations.

Although, model reconstruction is described as a manual process in the previous para-
graph, it can also be done automatically (see next paragraph). E.g., by using Hough
Transform to fit cylindrical elements to the Point Cloud (PC). Still, such automatic methods
can fail in case of drastic occlusions. PC completion can help for this step.

WANG et al. (2021) explain how automatic modeling is done for MEP components given by
terrestrial laser scanning data (PC). Currently, modeling is often done by using a PC as a
reference which is more time consuming and takes a lot of labor effort. For this automatic
purpose, geometric information is extracted to refine geometric information which is then
usable for modeling. The extracted information and connection relationships are imported
into Dynamo to automatically generate the parametric Building Information Modeling (BIM)
model. However, this automatic modeling process would not be in the scope of this Master
Thesis, but Figure 1.6 shows the result of this mentioned procedure in WANG et al. (2021).

Figure 1.6: (a) Detected types of MEP components (b) Generated models via Dynamo in
Revit (WANG et al., 2021)

Due to incomplete or occluded PCs the following bullet points lead to various costs-
intensive challenges for companies:

- Rework or Redoing.
- Delays in Project Timelines.
- Increased Iterations and Design.
- Operational Inefficiencies.
- Safety Risks and Accidents.
- Loss of Competitive Advantage.

Considering the aforementioned, PC completion should be done directly or automized
while scanning as it is happening already e.g., for autonomous driving where cars are
completed over far distances (YUAN et al., 2019) to avoid the previously mentioned cost
implications.
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1.6 Outline

The Thesis document is divided into the following chapters:

- In Chapter 2, the theoretical background and the state-of-the-art necessary to
understand the entire research work is detailed.

- In Chapter 3, the process of setting up artificial and real-world scan data gen-
eration for this thesis is explained. The application of the two Point Cloud (PC)
completion methods Voxel-Deep Convolutional Generative Adversarial Networks
(Voxel-DCGAN) and Point Completion Network (PCN) on self-created datasets from
Chapter 3.2 are described. At the end of this chapter, examples of reconstructed
completed PC instances are provided.

- In Chapter 4, the research questions are reviewed and the results of both methods
are compared regarding their usability in the Scan-to-BIM workflow. Additionally,
both methods are tested on a pre-segmented real-world PC.

- Finally, in Chapter 5, a summary of the research work is presented, and concluding
statements are provided. Furthermore, the future scope of extension of this work is
also discussed.
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Chapter 2

Theoretical Background

This chapter delves into the theoretical foundations and concepts to foster a better com-
prehension of this thesis’s terminologies, techniques, and procedures. PointNet and Point
Completion Networks (PCNs) address different challenges in Point Cloud (PC) processing
and serve different purposes within the broader field of 3D data analysis and manipulation.

2.1 Voxel-Deep Convolutional Generative Adversarial Nets
(Voxel-DCGAN)

In this Voxel-Deep Convolutional Generative Adversarial Networks (Voxel-DCGAN) reposi-
tory (Source Code) a 3D shape generative model is developed leveraging Deep Convo-
lutional Generative Adversarial Networks (DCGANs) (RADFORD et al., 2016) enhanced
with advanced techniques from improved-Generative Adversarial Network (GAN) (Source
Code) (SALIMANS et al., 2016). In recent years, the widespread adoption of Supervised
Learning using Convolutional Networks (CNNs) has significantly impacted computer vision
applications. However, Unsupervised Learning with CNNs has not received commensurate
attention.

RADFORD et al. (2016) aim to address this disparity by introducing a class of CNNs termed
DCGANs. These networks are distinguished by specific architectural constraints and
demonstrate considerable promise for Unsupervised Learning tasks. Through extensive
training on diverse image datasets, their study provides compelling evidence of the
DCGANs’ ability to learn hierarchical representations, ranging from instance parts to entire
scenes, within both the generator and discriminator components.

Furthermore, RADFORD et al. (2016) explore the transferability of these learned features
to novel tasks, showcasing their potential as versatile image representations. This in-
vestigation serves to enhance our understanding of Unsupervised Learning methods in
the realm of computer vision, providing valuable insights to the broader field of Machine
Learning (ML) research. Figure 2.1 illustrates the DCGAN generator architecture used for
Large-scale Scene Understanding (LSUN) scene modeling, emphasizing the absence of
fully connected or pooling layers.
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Figure 2.1: DCGAN generator used for LSUN scene modeling. A 100 dimensional
uniform distribution Z is projected to a small spatial extent convolutional representation
with many feature maps. A series of four fractionally-strided convolutions then convert this
high level representation into a 64 × 64 pixel image. (RADFORD et al., 2016)

The study applies Deep Convolutional Generative Adversarial Networks (DCGANs) to the
Large-scale Scene Understanding (LSUN) bedrooms dataset, demonstrating scalability
and generalization performance. Additionally, a deduplication technique is employed using
autoencoders and semantic hashing to prevent memorization of training examples. This
process effectively removes near-duplicate images from the training set. The study also
evaluates DCGANs on a dataset of human faces scraped from the web, demonstrat-
ing competitive performance in classifying faces without data augmentation. The paper
concludes by highlighting the stability and effectiveness of DCGANs in learning represen-
tations for supervised and generative tasks, suggesting future directions for extending the
framework to other domains like video and audio.

By applying Figure 2.1 on 3D Voxel data, the following similar full architecture of the 3D
Improved Wasserstein Generative Adversarial Network (3D-IWGAN) in Figure 2.2 can be
taken used for the in the beginning mentioned Voxel-DCGAN method. The noise vector
size e.g., is set to 500 instead of the displayed 100 in Figure 2.2.
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Figure 2.2: The diagram shows the generator and discriminator networks that make-up
the 3D-IWGAN. (INTELLIGENCE & LAB, n.d.)

SALIMANS et al. (2016) discuss advancements in training Generative Adversarial Networks
(GANs) with a focus on improving stability and generating high-quality sample which were
used as well for developing the Voxel-DCGAN. It introduces techniques such as feature
matching, minibatch discrimination, historical averaging, label smoothing, and virtual
batch normalization to encourage convergence in GAN training. SALIMANS et al. (2016)
emphasizes the application of these techniques to Semi-Supervised Learning, achieving
state-of-the-art results on various datasets like MNIST, CIFAR-10, SVHN, and ImageNet.

Instead of solely optimizing likelihood or avoiding reliance on labels, SALIMANS et al.
(2016) aim to produce visually realistic images and improve Semi-Supervised Learning
performance. Notably, they introduce feature matching to stabilize GANs by aligning
generated data statistics with real data. Additionally, they propose minibatch discrimination
to prevent mode collapse and improve diversity in generated samples.

Experimental results demonstrate the effectiveness of these techniques, particularly in
semi-supervised learning tasks, where their approach outperforms previous methods.
They also present evaluation metrics such as the Inception score to assess sample quality,
which correlates well with human judgment.

In conclusion, SALIMANS et al. (2016) highlight practical advancements in stabilizing GAN
training and improving sample generation quality, with promising applications in Semi-
Supervised Learning. Further research is suggested to deepen theoretical understanding
and expand the scope of these techniques.
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2.2 "BIM-to-Scan" for Scan-to-BIM

NOICHL et al. (2021) propose a method utilizing a laser scan simulation tool to generate
realistic synthetic Ground Truth Point Cloud (PC) data for Scan-to-BIM processes. This
approach aims to address the scarcity of publicly available Ground Truth datasets, crucial
for training artificial intelligence models in semantic segmentation of PC data. By employing
the open-source laser scanning simulation tool HELIOS++ (WINIWARTER et al., 2022) from
the domain of Geo-sciences, they simulate laser scans based on 3D models, providing
fully labeled data for training deep learning networks. Comparison with real laser scan
data reveals that the synthetic PCs exhibit realistic characteristics but may overestimate
precision. In spite of remaining manual effort for model preparation, the approach offers
scalability and flexibility, showing promise for advancing Scan-to-BIM processes. Further
testing is needed to evaluate the performance of artificial intelligence models trained on
synthetic data when applied to real-world datasets. Figure 2.3 illustrates the domains of
Scan-to-BIM and Scan-vs-BIM by using the Digital Twin framework.

Figure 2.3: Digital Twin framework to illustrate the domains of Scan-to-BIM and Scan-vs-
BIM (NOICHL et al., 2021)

In Figure 2.3, I.b stands for the simulation tool HELIOS++. The "Digital Twin" can be a 3D
model of e.g., a building in the OBJ format. The "Real asset" is the building in the real
environment and the "Laser scan point cloud" represents a scan taken by e.g., the NavVis
VLX3, a Mobile Laser Scanning (MLS) device.
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2.3 Point Cloud Segmentation and Model Retrieval via PointNet

QI et al. (2017) explain Point Cloud (PC) segmentation via PointNet. The three different
classification or segmentation options are shown in Figure 2.4. Voxelization or rendering
is not needed, PointNet learns both global and local point features and is an excellent
approach for 3D recognition tasks.

Figure 2.4: PointNet applications (QI et al., 2017)

The main part of this approach is the single symmetric function, denominated Max Pooling,
which allows the network to learn a set of optimization functions and criteria that filter
interesting or informative points of the PC and encode the reason for their selection. The
final fully connected layers of the network summarize these learnt optimal values into the
global descriptor, for the entire shape, as shown in Figure 2.4 (shape classification) or
uses them to predict a label per point (shape segmentation). Figure 2.5 describes the
whole PointNet architecture, including the segmentation network as an extension of the
classification network and the Max Pooling.

Figure 2.5: PointNet architecture (QI et al., 2017)

The bullet points underneath further explain Figure 2.5.

- The classification network takes n points as input (the 3 in "nx3" means 3 three
coordinates of a point), applies input and feature transformations. Then summarizes
point features by Max Pooling.
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- The output is classification scores for k classes.
- The segmentation network concatenates global and local features, along with outputs

per point scores.
- “mlp” = multi-layer perceptron.
- Numbers in brackets refer to layer sizes.
- Batchnorm is used for all layers with Rectified Linear Unit (ReLU).
- Dropout layers are used for the last mlp in the classification net.

Additionally, PointNet was used for model retrieval. Figure 2.6 shows, the top-5 retrieved
Computer-Aided Design (CAD) models from ModelNet test split in the categories chair,
plant, nightstand, and bathtub (top to bottom). The figures in a red box are the retrieved
models in wrong categories. For each given query shape from ModelNet test split, its global
signature (output of the layer before the score prediction layer) given by the classification
PointNet, was computed. In addition, similar shapes in the training split were retrieved by
the nearest neighbor search.

Figure 2.6: Model retrieval from PC with using PointNet (QI et al., 2017)

2.4 Group Contextual Encoding via PointNet++

XU et al. (2020) (Source Code) present a novel approach to enhancing 3D Point Cloud
(PC) scene understanding tasks by leveraging global contextual information efficiently. It
extend a contextual encoding layer originally designed for 2D tasks to 3D PC scenarios.
This layer learns a set of code words in the feature space of the 3D PC to characterize
global semantic context and subsequently learns a global contextual descriptor to reweight
feature maps accordingly. However, they find that data sparsity becomes a significant
issue in 3D PC scenarios, leading to saturation in performance when the number of code

14



words increases. To address this, they propose a Group Contextual Encoding (GCE)
method, dividing channels into groups and performing encoding on group-divided feature
vectors to facilitate learning global context in grouped subspaces for 3D PCs.

The effectiveness and generalizability of the proposed method are evaluated on three
widely-studied 3D PC tasks. Experimental results demonstrate significant improvements
over existing methods, including outperforming VoteNet - a state-of-the-art method for
3D instance detection in PCs - by 3 mean average precision (mAP) on the SUN-RGBD -
a benchmark dataset commonly used for evaluating algorithms related to scene under-
standing, particularly in indoor environments - benchmark and by 6.57 mAP on ScanNet -
another widely used benchmark dataset for 3D scene understanding, focusing on indoor
environments. Additionally, compared to the baseline of PointNet++, the proposed method
achieves an accuracy of 86%, surpassing the baseline by 1.5%.

The paper contributes by extending the contextual encoding layer to 3D PC scenarios,
proposing the GCE method for effective learning of global context, and demonstrating
superior performance on multiple 3D benchmarks. The code for the proposed method has
been released to facilitate result reproduction.

The method is integrated into PointNet++ as GCE-PointNet++, with improvements ob-
served across various experiments. Ablation studies investigate the effects of code word
number, channel number, and grouping methods, leading to the selection of optimal
parameters for subsequent experiments.

Main results show that the proposed method surpasses previous state-of-the-art methods
on benchmarks such as SUN-RGBD and ScanNet, achieving mAP values of 60.7 and
60.8, respectively, demonstrating its efficacy in enhancing 3D instance detection in PCs.

2.5 Point Cloud Completion via Point Completion Network
(PCN)

In YUAN et al. (2019) the shape completion network Point Completion Network (PCN)
is described. In comparison to PointNet++, which which focuses on Point Cloud (PC)
classification, segmentation and feature extraction, the PCN is specifically used for the
PC completion process. The difference of the PCN to other shape completion methods
lies in that it operates on raw PCs without any structural assumption (e.g., symmetry) or
annotation (e.g., semantic class) about the underlying shape. This prevents high memory
costs and the loss of geometric information caused by voxelization, while allowing the
network to generate more fine-grained completions.

The PCN, as a learning-based approach completes shapes with a parameterized model
(a deep neural network) that directly maps the partial input to a complete shape, which
offers fast inference and better generalization. Consider a scenario where X represents
a collection of 3D points situated on the visible surfaces of an instance, derived from
either a singular scan or a series of scans via a 3D sensor. Meanwhile, Y constitutes
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a comprehensive array of 3D points uniformly selected from both the observed and
unobserved surfaces of said instance. The objective revolves around the shape completion
predicament, which entails forecasting Y based on the knowledge of X. It is worth noting
that in this context, X might not necessarily constitute a subset of Y, and there exists no
explicit correspondence between the points in X and those in Y, given their independent
sampling from the inherent surfaces of the object.

To address this challenge, Supervised Learning techniques are employed. By harnessing
a sizable synthetic dataset where instances of X and Y can be readily obtained, a neural
network is trained to directly anticipate Y from X. This network exhibits versatility across
various instance categories and operates without presumptions regarding the structural
attributes of the underlying instances, such as symmetry or planarity.

Figure 2.7: PCN Architecture. Here, the encoder condenses the input point cloud X into
a feature vector denoted as v. Subsequently, the decoder utilizes v to initially generate a
coarse rendition of the output Y, denoted as Ycoarse, followed by a more detailed output
denoted as Ydetail. Each colored rectangle signifies a matrix row, with matching colors
indicating identical content.

As depicted in Figure 2.7, the Point Completion Network (PCN) functions as an encoder-
decoder network. The encoder receives the input Point Cloud (PC) X and produces a
k-dimensional feature vector. Subsequently, the decoder utilizes this feature vector to
generate both a coarse output PC, denoted as Ycoarse, and a detailed output PC, termed
Ydetail. The loss function L is computed by comparing the Ground Truth PC, Ygt, with the
decoder’s outputs, facilitating the training of the entire network via backpropagation.

It is important to note that, unlike an autoencoder, the network is not explicitly mandated
to replicate the input points in its output. Instead, it learns a mapping from the domain of
partial observations to that of complete shapes. Following this, YUAN et al. (2019) delve
into the specific design aspects of the encoder, decoder, and the employed loss function.
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Experiments on synthetic ShapeNet data - a large-scale dataset and taxonomy for 3D
shape understanding in computer vision and graphics research - demonstrate the supe-
riority of the proposed method over strong baselines, with significant improvements in
completion results. Additionally, the model’s robustness to occlusion and noise is tested,
showing consistent performance even with highly occluded and noisy inputs.

Furthermore, the method is evaluated on real-world LiDAR scans from the KITTI dataset,
achieving consistent completions despite the sparsity of the input PCs. The completed
PCs are shown to improve the results of PC registration algorithms, enhancing rotational
and translational accuracy.

Despite its effectiveness, the proposed model exhibits some failure modes, particularly
with instances consisting of disconnected parts or containing thin structures such as wires.
However, overall, the approach offers a promising solution for shape completion tasks,
demonstrating strong performance across various scenarios and datasets.

The partial PCs in YUAN et al. (2019) were generated by back-projecting 2.5D depth
images into 3D instead, by using subsets of the complete PC to bring the input distribution
closer to real-world sensor data. The segmented completed cars in Figure 2.8 generated
by the PCN show the effectiveness of the method when working with incomplete PC
instances (Source Code).
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Figure 2.8: Results of applying PCN on raw LiDAR Scan (YUAN et al., 2019)

2.6 Comparison of different Point Cloud Completion Methods

In FEI et al. (2022), different Point Cloud (PC) completion methods regarding various
approaches (point-based, view-based, convolution-based, graph-based, generative model-
based, and transformer-based) are compared. As it was already mentioned the segmenta-
tion of such sparse PC (in e.g., distance) is crucial for the 3D detection and PC completion
step afterwards. In the past, the application of 2D methods was transferred to 3D tasks, but
the use of the voxelization or 3D convolution lead to high computational effort. Nowadays,
PointNet and PointNet++ are quite successful in avoiding this with directly processing 3D
coordinates (FEI et al., 2022).
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Chamfer Distance (CD) and Earth Mover’s Distance (EMD) are the most frequently used
performance criteria for 3D Point Cloud (PC) completion (See Equation 2.1 and Equation
2.2). In general, CD finds the minimum distance between two sets of points, and EMD
evaluates the reconstruction quality of the PC. S1 is the output PC and S2 the Ground
Truth PC.

CD(S1,S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥2 +
1

|S2|
∑
y∈S2

min
x∈S1

∥y − x∥2 (2.1)

EMD(S1,S2) = min
ϕ:S1→S2

1

|S1|
∑
x∈S1

∥x− ϕ(x)∥2 (2.2)

The aforementioned paper mentions other performance criteria, but considering that those
are less frequently used for 3D PC completion, they are not going to be further explained.
On the other hand, regarding the methods compared FEI et al. (2022) conclude that the
Generative Adversarial Networks (GANs) and graph-based methods lead to excellent
results in the PC completion task. Thus, the focus should be on using the combination of
both in the future.

Additionally, the F1-Score is an evaluation parameter as well. The F1-Score, a fundamental
metric for classification models, balances precision and recall, representing their harmonic
mean. The F-Score can be modified into F0.5, F1, and F2 based on the measure of
weightage given to precision over recall depending on the use case. It is calculated using
the formula (NIKOLAJ BUHL, 2023):

F1 = 2× precision× recall

precision+ recall
(2.3)

Where:

• Precision is the ratio of true positive predictions to the total number of positive predictions,
calculated as:

Precision =
TruePositives

TruePositives+ FalsePositives
(2.4)

• Recall is the ratio of true positive predictions to the total number of actual positive
instances, calculated as:

Recall =
TruePositives

TruePositives+ FalseNegatives
(2.5)

This formula ensures a balanced assessment of a model’s performance, particularly
beneficial in scenarios with varied precision and recall values. The F1-Score ranges
between 0 and 1, with higher values indicating better model performance.
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A high F1-Score signifies a well-balanced model that achieves both high precision and
recall. It implies that the model correctly identifies positive instances while minimizing false
positives and false negatives. Conversely, a low F1-Score suggests a trade-off between
precision and recall or poor performance in one or both aspects. As a general rule of
thumb, the F1 score value can be interpreted as follows:

Figure 2.9: Interpretation of different F-Scores (NIKOLAJ BUHL, 2023)

The threshold for the F-score refers to the cutoff value used to determine whether a
predicted value should be classified as positive or negative. By adjusting the threshold, it is
possible to control the trade-off between precision and recall. A higher threshold tends to
increase precision (fewer false positives) but may decrease recall (more false negatives),
while a lower threshold typically increases recall (fewer false negatives) but may decrease
precision (more false positives). Choosing an appropriate threshold depends on the
specific requirements and priorities of the task at hand.

However, the F1-Score has limitations, notably with imbalanced datasets where one class
dominates. Variants like the F2 and F-beta scores offer alternatives to address these
challenges. The F2-Score prioritizes recall, while the F-beta score allows flexibility in
balancing precision and recall based on task requirements.

2.7 Objectives

The main focus of this Thesis is to achieve a basic framework for completing Mechanical,
Electrical and Plumbing (MEP) components captured by a laser scanner in the real world.
The Voxel-Deep Convolutional Generative Adversarial Networks (Voxel-DCGAN) and the
Point Completion Network (PCN) will be applied on a self-generated dataset by Heidelberg
Light Detection and Ranging (LiDAR) Operations Simulator (HELIOS++) (WINIWARTER

et al., 2022), a general-purpose software package for simulation of terrestrial, mobile and
airborne laser scanning survey. The core objectives of this research are:

- To create a virtual simulation framework in HELIOS++ using Building Information
Modeling (BIM) models for the data generation part. This requires creating an

20



accurate HELIOS++ compliant description and a step-by-step guideline to receive
the expected results.

- To perform virtual laser scanning simulations with HELIOS++, include the respective
BIM models, make laser scanning settings as realistic as possible and create way-
points. The simulations output would focus on segmented realistic partial instance
Point Clouds (PCs) which can be used for further Machine Learning (ML) purposes.

- To prepare the segmented partial instance PCs for applying the Voxel-DCGAN and
the PCN successfully. For this, PC post-processing and data format converting are
performed.

- When the dataset is set up correctly, the Voxel-DCGAN and PCN codes will get
adapted for receiving good results regarding my dataset. Both methods should be
able to complete the different components.

- At the end, conclusions shall be drawn from the simulations and the PC completion
methods done in this research work. Furthermore, some possible extensions for this
research work shall be discussed.
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Chapter 3

Methodology and Implementation

3.1 Method Overview

On the next page in Figure 3.1, a graphical high-level overview of my workflow is provided.
First of all, the initial data was merged and edited in SimpleBIM (JIRI HIETANEN, SAKARI

LEHTINEN, 2019) for creating a good foundation for further steps.

Afterwards, the resulted Industry Foundation Classes (IFC) files were converted into
Wavefront Object Format (OBJ) files which were used for two different steps. On one hand,
the Ground Truth creation and on the other hand as a scene input in Heidelberg Light
Detection and Ranging (LiDAR) Operations Simulator (HELIOS++).

For the simulations in HELIOS++ additional Extensible Markup Language (XML) files were
configured to set up the simulations as realistic as possible for the Mobile Laser Scanning
(MLS) device NavVis VLX3 with its Light Detection and Ranging (LiDAR) specifications
and positions. As a next step, two different types of partial Point Clouds (PCs) were
created by changing the accuracy_m parameter in the Scanner XML respectively. Idealistic
(noise-free) occluded partial PCs by avoiding all errors of a LiDAR scan by applying the
accuracy_m parameter to 0.0 and noisy occluded partial PCs by setting the accuracy_m

parameter to 0.01.

The Ground Truths were generated by importing the OBJ files of the storeys in Cloud-
Compare (CC) and sampling the automatically Globally Unique Identifier (GUID) based
segmented mesh instances. As a final step, the geometries were reconstructed via poisson
reconstruction, sampled with the same amount of points for each instances and convert
into Polygon File Formats (PLYs) files.

Both types of files (OBJ and PLY Ground Truth files) were then used as an input in the
Training process for the Voxel-DCGAN and the PCN. Additionally, for the PCN, the
mentioned simulated idealistic (noise-free) occluded partial PCs were used as an input for
the PCN training.

In the Inference process of both methods, completed instances were generated. Impor-
tant to note is that the results are highly influenced by non-matching point cloud instances
due to different orientations and additional for the PCN, the offset between partial PCs
and their Ground Truths PCs.
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Figure 3.1: Graphical high-level method overview
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3.2 Data Generation

To be able to apply the Point Cloud (PC) completion methods training data is firstly needed.
The two procedures explored in this Thesis for generating such data are explained in the
following sections. The first one uses the artificial possibility with using the Virtual Laser
Scanning (VLS) software HELIOS++ (WINIWARTER et al., 2022). The second one includes
real scan data provided by NavVis GmbH; a company founded 2013 in Munich as a Start-
up out of the Technical University of Munich (TUM) which specializes on constructing
Mobile Laser Scanning (MLS) devices and software for using the scanned data.

3.2.1 Virtual Laser Scanning (VLS) - Heidelberg Light Detection and Rang-
ing (LiDAR) Operations Simulator (HELIOS++)

Industry Foundation Classes (IFC) Merging and Converting

As a first step the provided IFC files across disciplines (see below) were merged for
building storeys in the SimpleBIM software (JIRI HIETANEN, SAKARI LEHTINEN, 2019):

- Submodel_different_discipline_example1_IFC4.ifc
- Submodel_architecture_example.ifc (not merged)
- Submodel_different_discipline_example1.ifc
- Submodel_different_discipline_example2.ifc
- Submodel_different_discipline_example3.ifc
- Submodel_different_discipline_example2_IFC4.ifc
- Submodel_different_discipline_example4.ifc
- Submodel_different_discipline_example5.ifc
- Submodel_different_discipline_example6.ifc
- Submodel_different_discipline_example7.ifc
- Submodel_different_discipline_example8.ifc
- Submodel_different_discipline_example9.ifc
- Submodel_different_discipline_example10.ifc

To be able to merge Submodel_different_discipline_example1_IFC4.ifc and Submodel_-
different_discipline_example2_IFC4.ifc with all the other files above related, both files
must be transferred from an IFC2x3 format to an IFC4 format, as it is the only possibility
when using SimpleBIM. The transferring of the files from one format to the other was
done with the help of Revit software (AUTODESK, 2000). The IFC files were imported
and then exported with the chosen IFC4 Design Transfer View as the output format. The
Submodel_different_discipline_example1_IFC4.ifc file was finally placed at the correct
location with the help of the Placement Editor in SimpleBIM.

The provided IFC models for each storey come from different disciplines, such as Archi-
tecture, Engineering, etc., and contain various definitions of each storey per discipline. In
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consideration, all storeys were created and merged by the help of the Containment Editor,
Select all visible instances and the area selection function in SimpleBIM. The
Submodel_different_discipline_example2_IFC4.ifc file was divided into each storey by
running the tool Add Min and Max Elevation and Center Point. All the elements of this
file were selected, dragged and dropped into the property window and sorted regarding
the respective storey height. Furthermore, the Location Editor was used for instances
that are multiple building storeys high. First, the instances were cutted using the Location

Prisms (see Figure fig. 3.2). Then they were created out of the given Spaces for each
storey in the provided IFC files, and afterwards, they were added to the correct storeys.
Nonetheless, it was not possible to move some of the multiple building storeys high cut
instances, so for the export they were excluded for each storey. Finally, each storey was
exported into an IFC file again.

Figure 3.2: Created Location Prisms in SimpleBIM (JIRI HIETANEN, SAKARI LEHTINEN,
2019)

Afterwards the command-line application IfcConvert (IFCOPENSHELL CONTRIBUTORS,
2022) was applied to the respective Industry Foundation Classes (IFC) files to get Wave-
front Object Format (OBJ) files which are needed for future simulations in HELIOS++
(WINIWARTER et al., 2022). This, as it is only supporting Geographic Tagged Image File
Format (GeoTIFF), OBJ, XYZ Point Cloud Format (XYZ) and Voxel Format (VOX) files
as scene inputs (see Figure 3.3). The geometry option -j 8 and the serialization option
–use-element-guids of the IfcConvert options were used. The first one was used for
faster processing and the second one for future ML purposes. The element GUID - also
called GlobalID (IfcGloballyUniqueID) - is an attribute of the common supertype Ifc.Root
of all IFC entities (BUILDINGSMART CONTRIBUTORS, 2019a).
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Figure 3.3: HELIOS++ software parts and simulation workflow (WINIWARTER et al., 2022)

Material Referencing

The resulting OBJ file, which comes together with a Material Library File (MTL), was
manipulated for correctly referencing regarding individual purposes. In line 2 of Algo-
rithm 3.1 the structure of the code which needs to be added is provided. For referencing
the MTL, the keyword "mtllib" and the corresponding MTL name have to be written in the
OBJ file in the second line. Additionally, the existing not manipulated code lines "usemtl
surface-style..." which reference multiple times to the same material have to be replaced by
a newly created and non-used material in the OBJ file. This was done by firstly executing
Algorithm A.3 (added new material) and then Algorithm A.5 (replaced identical lines with
references to new material).

Algorithm 3.1: Example of correct OBJ file beginning - added MTL referencing code line
1 # File generated by IfcOpenShell v0.7.0-476ab506d
2 mtllib Submodel_different_discipline_example1.mtl
3 g product-47b0ad3c-f62e-4e91-9239-b7543e4f15b4-body
4 s 1
5 v 2697483.60863716 5349159.6815045 470.909999999997
6 ...

To be able to do the preferred filtering of each different component in the PC later e.g., in
CloudCompare (CC), a new different material with the code lines "helios_classification..."
(see line 6, line 9, line 12 in Algorithm 3.2) and "newmtl..." (see line 8, line 11 in Algo-
rithm 3.2) has to be added in the MTL (done by Algorithm A.1). The amount of additional
new material depends on the total components existing in the OBJ file, i.e., the amount
of new material is determined by the number of components of the OBJ file (done by
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Algorithm A.2). This should be the case since when various components refer to the same
material this could lead to problems when segmenting them e.g., in CC later.

Algorithm 3.2: Example of correct Material Library File (MTL) file snippet - added "he-
lios_classification" and "newmtl..." lines

1 ...
2 newmtl surface-style-191565-bim-referenzpunkt
3 Kd 0.313725490196078 0.313725490196078 0.313725490196078
4 Ks 0.5 0.5 0.5
5 Ns 64
6 helios_classification 18
7

8 newmtl surface-style-89575
9 helios_classification 19

10

11 newmtl surface-style-35831
12 helios_classification 20
13 ...

Additionally, a group of components with multiple materials has to be changed to one
component containing just one material to allow a better automatic filtering in CC (done
by Algorithm A.6). To get a better understanding about it, the example of Valves from a
provided Submodel_different_discipline_example2.ifc in Figure 3.5 should help.

Figure 3.4 shows the classification of IfcValve in the general Industry Foundation Classes
(IFC) scheme.

Figure 3.4: Entity inheritance of IfcValve in an IFC data model (BUILDINGSMART CON-
TRIBUTORS, 2019b)

The black-, red- and brass-colored surfaces of the Valve and the table next to it in Figure 3.5
represents the different materials. As material properties are being used for segmenting
the components, the whole Valve must have only one material after converting it into the
OBJ file and manipulating it.
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Figure 3.5: IfcValve visualization and entities in BIMvision (DATACOMP, n.d.)

For applying the correct material referencing to any OBJ and MTL file, the provided Python
Files (PY) in the appendix must be executed as provided. In each script the input OBJ
and MTL file have to be changed for the ones that want to be newly referenced, along
with the value of the beginning of helios_classification of the new added material (see
comment in Algorithm A.3).

1.Materialclasses_Assignments_mtl.py (Algorithm A.1)
2.Calculation_objmaterials_amount.py (Algorithm A.2)
3.Adding_material_mtl.py (Algorithm A.3)
4.Check_identical_or_multiple_used_Materials.py (Algorithm A.4)
5.Check_replace_newref.py (Algorithm A.5)
6.Check_identical_or_multiple_used_Materials.py (Algorithm A.4)
7.Reducing_materials_to_one.py (Algorithm A.6)

Setup XML files

In this section, the settings of each used Extensible Markup Language (XML) files for
the Virtual Laser Scanning (VLS) regarding the preferred purposes are explained. Figure
3.6 shows the input options for each file in more detail. In general, to all XML files,
state-of-the-art data information is applied for creating the realest environment conditions.
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Figure 3.6: Main HELIOS++ XML files, their content, and their connection (WINIWARTER

et al., 2022)

Survey XML Algorithm 3.3 describes the parameters and settings of an example Survey
used for setting up a simulation. One Survey XML file was created for each storey,
including many different waypoints. The waypoints were defined as realest as possible,
e.g., going into each room and keeping the distances to walls or other instances high
enough. In line 3 and line 4 the settings for the Scanner and the Platform are predefined
for using certain waypoints or overall and can be seen as templates (see line 7 to line 10)
for a distance from one waypoint to the next one. The waypoints were created by importing
firstly the OBJ file of the respective storey in CC. Then each selected point was copied
and pasted in a separate Text File (TXT).

Afterwards, a Python Script (see Algorithm B.1) was applied to transform the structure of
the chosen waypoints into the structure needed for the Survey XML and copied into it. The
movePerSec_m in line 3 has to be changed to a lower value for the final simulation to get
a denser PC. E.g., the realistic scanning speed with the NavVis VLX 3 would be around
1 m

s as this is the average walking speed. The headRotatePerSec_deg is set to 10 rps as
the spin rate was given in 600 rpm in HESAI, 2023 on page 13 and the scanFreq_hz was
set to 10. All these implementations can be found in line 4 of Algorithm 3.3.

The beam divergence was provided from HESAI after requesting with 0.136 deg*0.156
deg (H*V). For getting the final total beamDivergence_rad, both values needed to be firstly
transferred into Radian (see Equation 3.1 and 3.2) and afterwards combined with the help
of the Pythagoras Theorem (see Equation 3.3).

∆θhorizontal = 0.136Grad ·
( π

180

)
(3.1)

∆θvertical = 0.156Grad ·
( π

180

)
(3.2)
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∆θtotal =
√
∆θ2horizontal +∆θ2vertical (3.3)

As this is only for the half-angle, the values need to be doubled (see Equation 3.4). This
leads to a final value of 0.007224229598 rad, which can be found in line 4 of Algorithm 3.3.

∆θtotal,full = 2 ·∆θtotal (3.4)

Algorithm 3.3: Example of one Survey XML file snippet

1 <?xml version="1.0"?>

2 <document>

3 <platformSettings id="platform1" movePerSec_m="1" />

4 <scannerSettings id="scanner1" active="true" pulseFreq_hz="20000"

scanFreq_hz="10" beamDivergence_rad="0.007224229598"

headRotatePerSec_deg="3600" headRotateStart_deg="0" scanAngle_deg="

20.15" trajectoryTimeInterval_s="0.01"/>

5 <survey name="tum_data_mls" platform="data/platforms.xml#navvis-vlx-3-

on-person" scanner="data/scanners_als.xml#hesai_XT32M2X" scene="data

/scenes/owndata/storeys/-1/storey_-1_scene.xml#tum_scene_-1">

6 <!-- platform: person, deflector: rotating -->

7 <leg>

8 <platformSettings template="platform1" x="

2697480.750000" y="5349162.000000" z="470.910004"

/> <!-- with 1 m/s, we make it to the next point

in 3.640055 seconds -->

9 <scannerSettings template="scanner1"

headRotateStop_deg="13104.197801"/> <!-- the

rotation will also take 3.640055 seconds -->

10 </leg>

11 <leg>

12 <platformSettings template="platform1" x="

2697484.250000" y="5349163.000000" z="470.910004"

/> <!-- with 1 m/s, we make it to the next point

in 2.305838 seconds -->

13 <scannerSettings template="scanner1"

headRotateStop_deg="8301.016736"/> <!-- the

rotation will also take 2.305838 seconds -->

14 </leg>

15 ...

16 </survey>

17 </document>
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Scenes XML As the coordinate systems in HELIOS++ are defined as shown in Figure
3.7 below, the waypoints in Algorithm 3.3 of the trajectory line were set up referring to the
coordinates of the OBJ coordinate system.

Figure 3.7: HELIOS++ scene, OBJ coordinate systems definitions and transformation
filters (WINIWARTER et al., 2022)

For getting the OBJ file as the environment for the simulations, the OBJ loader from
HELIOS++ was applied in the scene XML (see line 6 in Algorithm 3.4). As for OBJ files
the Material Library File (MTL) is automatically referenced, there was no need to further
add the MTL.

Algorithm 3.4: Example of one Scene XML file snippet

1 <?xml version="1.0" encoding="UTF-8"?>

2 <document>

3 <scene id="tum_scene_-1" name="TUM_-1_Scene">

4 ...

5 <part>

6 <filter type="objloader">

7 <param type="string" key="filepath" value="data/sceneparts/

owndata/storeys/-1/SCG_mergedall(except_AR)_IFC4_(EDITED)

_-1_final_sim.obj" />

8 </filter>

9 <filter type="rotate">

10 <param key="rotation" type="rotation">

11 <rot angle_deg="0" axis="z"/>

12 </param>

13 </filter>

14 <filter type="scale">

15 <param type="double" key="scale" value="1" />

16 </filter>

17 <filter type="translate">
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18 <param type="integer" key="onGround" value="-1" />

19 <param type="vec3" key="offset" value="0;0;0" />

20 </filter>

21 </part>

22 </scene>

23 </document>

Platforms XML In Algorithm 3.5 the used platforms settings are provided. In line 1 the
type of the scanning path is defined as a linearpath, i.e., the path from each waypoint to
the next waypoint will be a straight line.

Algorithm 3.5: Example of one Platforms XML file snippet
1 <platform id="navvis-vlx-3-on-person" name="NavVis VLX 3 on person" type="

linearpath">
2 <!-- <scannerMount x="0" y="0" z="0">
3 <rot axis="x" angle_deg="0" />
4 </scannerMount> -->
5 ...
6 </platform>

The NavVis VLX 3 scanner is worn by a person (see Figure 3.8), so there are no further
adjustments regarding the platform. Configurations for the two LiDAR scanners will be
applied in the following paragraph 3.2.1.

Figure 3.8: NavVis VLX 3 worn by a person (GOGEOMATICS NEWSMAKERS, 2023)

Scanners XML For configuring the scanner settings as realistic as possible, the NavVis
VLX 3 scanning device as a Multi-Scanner and Multi-Channel is taken (see Figure 3.8). It
consists of two XT32M2X 32-Channel Medium-Range Mechanical LiDAR scanner from
HESAI (HESAI, 2023). One on top of the device (scanning horizontally) and one in front
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of the person’s body (scanning vertically). To set up the different locations of the two
scanners correctly, it is important to understand how the coordinate system in HELIOS++
is defined by default (see Figure 3.9).

Figure 3.9: Default orientation and coordinate system of the laser beam in HELIOS++
(WINIWARTER et al., 2022)

As the adjustment of the differentiation of the laser emitter and laser receiver in HELIOS++
is not yet possible, both were placed with the offset (yellow dot in Figure 3.10) in the
y+-axis and not in the x-axis for both scanners. The heights of the beamorigin were
determined at 1.9m for the horizontal scanner on top and 1.3m for the one in front. The
offset of 0.0305m in the direction of y+-axis was added for the scanner in front of the
body as well. Due to the rotated location of the vertical scanner in front it leads to a total
z-coordinate of 1.3305m.

Figure 3.10: HESAI XT32M2X 32-Channel Medium-Range Mechanical LiDAR scanner
(HESAI, 2023)

The angles of each channel are distributed in Figure 3.11. All the channels were transferred
to the Scanners XML.
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Figure 3.11: Detailed Channel Distribution of HESAI XT32M2X 32-Channel Medium-
Range Mechanical LiDAR scanner (HESAI, 2023)

For the vertical scanner the positive and negative signs are changed due to the rotated
position. More concrete specifications were taken from the table (see Figure 3.12) and
transferred as well. The pulseFreqs_hz is set to 20.000 points per second (Single Return).

Figure 3.12: HESAI XT32M2X 32-Channel Medium-Range Mechanical LiDAR scanner
specifications (HESAI, 2023)

The specifications and a snippet of a few channels implemented can be found in Algo-
rithm 3.6. it is important to mention here line 3 in Algorithm 3.6, as because the accuracy_m

has to get set to 0.0 instead of the actual specification of the LiDAR sensors of 0.01 to
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avoid noisy instance PC which should be further used for the training purposes in the ML
methods.

Algorithm 3.6: Scanners XML file snippet

1 <!-- ##### BEGIN Hesai XT32M2X ##### -->

2 <scanner id = "hesai_XT32M2X"

3 accuracy_m = "0.0"

4 name = "Hesai XT32M2X 32-Channel Medium-Range Mechanical

Lidar"

5 optics = "rotating"

6 pulseLength_ns = "30"

7 rangeMin_m = "0.05"

8 rangeMax_m = "300"

9 pulseFreqs_Hz = "20000"

10 scanAngleMax_deg = "1"

11 scanAngleEffectiveMax_deg = "1"

12 scanFreqMin_Hz = "0"

13 scanFreqMax_Hz = "0"

14 wavelength_nm = "905"

15 maxNOR = "1"

16 headRotatePerSecMax_deg = "7200"> <!-- added

values from NavVis’ colleagues information and

Hesai Lidar Sensor data sheet -->

17

18 <FWFSettings beamSampleQuality="1"/> <!-- set to one for fast

simulations -->

19 <channels>

20 <!-- BEGIN channels on scanner on top -->

21 <channel id="0">

22 <beamOrigin x="0" y="0.0305" z="1.9">

23 <rot axis="y" angle_deg="90" />

24 <rot axis="x" angle_deg="19.5" />

25 </beamOrigin>

26 <headRotateAxis x="0" y="0" z="1"/>

27 </channel>

28 <channel id="1">

29 <beamOrigin x="0" y="0.0305" z="1.9">

30 <rot axis="y" angle_deg="90" />

31 <rot axis="x" angle_deg="18.2" />

32 </beamOrigin>

33 <headRotateAxis x="0" y="0" z="1"/>

34 </channel>

35 ...

36 </channels>
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37 </scanner>

Below a test simulation of the NavVis VLX configuration can be seen in a small box in
HELIOS++ after one full rotation of both LiDAR sensors (See Figure 3.13).

Figure 3.13: Example virtual Scan of the NavVis VLX in a box via HELIOS++

Point Cloud Instances Creation

After setting up all the previously mentioned steps and running the simulation successfully,
HELIOS++ will output separated XYZ files for each leg of the simulation. The following
python scripts were executed to get the segmented and meshed incomplete PC instance
as PLY files (PAUL BOURKE, 2024) in the local coordinate system:
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1.Example_merging_xyz_files.py (Algorithm C.1)

Figure 3.14: Different XYZ files for each leg with merged and created "Total.xyz" file

2.Segmentation_reg_HeliosID.py (Algorithm C.2)

Figure 3.15: Different XYZ files segmented based on their HeliosID (HeliosID is included
and every filename

3.Origin_to_Local_COS.py (Algorithm C.6)

This step was done to reduce the size of the coordinates from each file to its local
coordinates again. Without this step, it would have not been possible to open the files in
e.g., the software MeshLab. The values used for globally shifting back the instances to its
local coordinates are the values suggested from CloudCompare (CC) when the OBJ files
were initially imported.
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4.Convert_to_PLY.py

For this step Open3D (ZHOU et al., 2018) was used (Algorithm C.7).
After this step was done, the resulted PLY files contained only their respective X, Y and
Z coordinates. The created PLY files with their content were ready to use for the Point
Completion Network (PCN).

5.Surface_reconstruction_ball_pivoting_obj.py

For this step BERNARDINI et al. (1999) was used (Algorithm C.3)

Figure 3.16: Example OBJ file of a partial DuctSilencer instance after ball pivoting surface
reconstruction

Finally, mapping tables for each storey were created by a PY Script (see Algorithm C.4)
to allow, if necessary, to add all previous information to each meshed instance again
(see Algorithm C.5). The information was not added, as it is not needed for the further
application of the ML methods. Nonetheless, it is important to point out that it can be
added in the first line of all OBJ instances by using the possibility of an OBJ file to have
multiple group names (see sections "Grouping" and "Syntax" in PAUL BOURKE, 2023). A
code snippet of a new mapped OBJ file can be seen in Algorithm 3.7 and the respective
new added code in line 1.

Algorithm 3.7: Example of a meshed and new mapped OBJ file beginning of an incomplete
PC instance - added grouping code line

1 g 13657.0 02n_cFnRX8bfT2cgeHGzGH surface-style-13597 711277 IfcPipeSegment

Rohrtypen:Geberit PE-HD (DN Größe):4237303 Rohrtypen:Geberit PE-HD (DN

Größe)

2 v 2697484.9413 5349163.4302 474.4699 6845059.9565 0.0000 1 1 225 0 13657

414863.000350000

3 v 2697484.9129 5349163.4279 474.4749 35120985.7638 0.0000 1 1 233 0 13657

414863.000362500

4 v 2697484.9155 5349163.427 474.4718 35006388.7353 0.0000 1 1 231 0 13657

414863.000359375
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5 v 2697484.8967 5349163.4251 474.4745 45815367.3070 0.0000 1 1 236 0 13657

414863.000367187

6 ...

3.2.2 Using Real-World Data

The public available Point Cloud (PC) dataset captured by the NavVis VLX3 on this website
(Source) was received after filling out and sending the request formular. Afterwards, the
PC was segmented with Aurivus (STEFAN HÖRMANN, MARTIN BACH, 2019) with regards to
Mechanical, Electrical and Plumbing (MEP) instances. As an output an .aurivus complete
segmented PC file and separated LiDAR Point Cloud Data Format (E57) PCs including
e.g., all Pipes/ Pipe_Fittings were obtained to be imported to CloudCompare (CC). CC,
has a function named "Label Connected Components" that allows the segmentation of all
different PCs single instances. It was identified that such option is not working properly as it
cannot fully separate the multiple single instances, e.g., instead of individually segmenting,
it combines different instances - with different characteristics - as if they were the same.
The reason for this is that this function is used to assign labels to groups of connected
points based on their spatial proximity, which results in labeling clusters of points from
different overlapping single instances.

Additionally, it is important to note that, in general, the .aurivus files do not provide more
semantic information to all single instances (except the category "Pipes") in comparison to
the IFC model used for the virtual simulation. Furthermore, there are not corresponding
Ground Truths for the real-world partial PC instances. That means that the assigning of
every instance to a specific instance category and the usage of this real-world data for
either, the PC or Voxel-DCGAN, was not possible. Still, it is probable that the segmentation
step for the single instances is more feasible to perform using the programming language
PY than in CC as it was already done with the output data in human readable formats
from the virtual simulations. Nonetheless, the fact that the real-world data is in non-human
readable formats such as E57 or .aurivus can still present problems. Therefor, the data
generation was focused on mainly using simulated data.
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(a) (b)

Figure 3.17: Real-World PC and Mesh captured by NavVis VLX3. (a) Real-World PC
captured by NavVis VLX3 and segmented by Aurivus. (b) Real-World meshed (Surface
Reconstruction VCG) PC captured by NavVis VLX3

3.2.3 Ground Truth Creation

The Ground Truths used for the Voxel-DCGAN and the PCN were created by doing the
following steps (refer to Figure 3.1 for more detailed graphical explanations regarding each
step):

1.Importing the total OBJ file for one storey into CloudCompare (CC).
2.Marking all submeshes named by their GUID and sampling them with 16384 points.
3.Marking all created instances PCs from Top-to-Bottom and exporting them as XYZ/ ascii
files.
4.Transforming them to local coordinates (Algorithm C.6).
5.Converting them to PLY files (Algorithm C.7).
6.Performing screened poisson surface reconstruction and saving as OBJ files (Algo-
rithm B.4).
7.Sampling with 16384 points and converting them to PLY files (Algorithm B.3).
8.Zero-centering and normalizing the files (Algorithm B.2).
(9.Renaming the new files in relation to the new storey to e.g. "output_2nd_234")

The used Ground Truths for the Voxel-DCGAN were created after step six (6) as the OBJ
format was needed for this method. On the other hand, they were created for the PCN
after all steps as the PLY format is needed. Examples of one instance Ground Truth for
the PCN and Voxel-DCGAN can be seen in Figure 3.18.
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(a) (b)

Figure 3.18: Examples of instance Ground Truth used for the PCN and Voxel-DCGAN.
(a) Example of instance Ground Truth used for PCN. (b) Example of instance Ground
Truth used for Voxel-DCGAN

3.3 Point Cloud completion Methods

This chapter contains the application of the PCN (YUAN et al., 2019) (Source Code) and
the Voxel-DCGAN (Source Code) on my own dataset. Both methods are applied on
certain categories (e.g., SpaceHeater and DuctSilencer) from the dataset of storey -1. The
dataset for storey -1 contains in total 16345 complete PCs and 10676 partial PCs. The
total amount of complete Mechanical, Electrical and Plumbing (MEP) point clouds is 15735
and the amount of partial MEP point clouds is 10112. For each category the amount
of usable data differs due to the limited size of the dataset. Therefore, a few example
categories were chosen (SpaceHeater and DuctSilencer) to showcase the application
of both methods on my own data in a simplified way. Notebooks in Google Colab Pro+,
Google Drive, Github and GitLab were used to set up the code settings and to collaborate.
Additionally, PyCharm was used on my local machine for code debugging.

3.3.1 Voxel-Deep Convolutional Generative Adversarial Networks (Voxel-
DCGAN)

The segmented Ground Truth OBJ files mentioned in subsubsection 3.2.3 for the
categories SpaceHeater and DuctSilencer were firstly voxelized with Binvox (MIN,
2004);(NOORUDDIN & TURK, 2003). An example of one Ground Truth OBJ file and
the corresponding .binvox file of the DuctSilencer category is shown in the following Figure
3.19.
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(a) (b)

Figure 3.19: Example of one Ground Truth OBJ file and the corresponding .binvox
file of the DuctSilencer category. (a) OBJ file and (b) .binvox file.

The output files of this method were .binvox files and no solid voxelization was used as
many instances like pipes have to be hollow in the interior.

3.3.2 Point Completion Network (PCN)

The preparation of the dataset to apply the PCN correctly is important. On the one hand,
the folder structure was set up as it is arranged in the initial example data and the data
was segmented (i.e., containing single instance), zero-centered and normalized in the
unit cube. For sorting the data to each category, Algorithm B.5 in combination with the
storey mapping table were used. The MEP folders were already created, so that files
related to non-MEP components were skipped and not copied. The respective .list files,
including the sorting of the files were generated in an automized way. The data splitting
into Training, Validating and Testing data was done for each category with a ratio of approx.
80%, 10% and 10% respectively. The amount of partial PCs, for each complete PC and
individual category, differs as the amount of data in my used dataset is limited. But in
general, a minimum two partial PCs for each complete PC was taken for the training. The
segmentation was already explained in the previous chapter and the zero-centering and
normalizing of all PLY files were done by using Algorithm C.7. For applying the PCN
no voxelization is needed and its design allows it to be applied on raw/ incomplete PCs
which saves memory costs, as fewer geometric information is lost to produce high-grained
completed PCs.
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Chapter 4

Experimental Evaluation

4.1 Voxel-Deep Convolutional Generative Adversarial Net-
works (Voxel-DCGAN) Simulation Set-up

In a Machine Learning (ML) context, the parameters listed below offer insights into my
used training regimen. The learning rate of 2e-4 signifies the step size taken during
the optimization process, dictating how much model parameters are adjusted with each
iteration to minimize error. With 50 epochs, the model undergoes 50 complete passes
over the training dataset. The batch size, reduced from 64 to 5, determines the number of
samples processed before updating the model’s weights, affecting training efficiency and
memory usage. A noise vector size (nz) of 500 implies the dimensionality of random noise
added to the input, crucial for generating diverse outputs in generative models. Additionally,
a scale factor of 4 (nsf) indicates the degree of downscaling applied to the encoded voxel
size, potentially influencing the granularity and detail of the model’s representations.

The following configuration was used:

- Learning rate = 2e-4
- Epochs = 50
- Batch size = 5 (was initially set to 64)
- nz = 500 (noise vector size)
- nsf = 4 (encoded voxel size, scale factor)
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4.1.1 Training, Validating and Testing

(a)

(b)

Figure 4.1: Point cloud completion - Voxel-DCGAN Method Overview. (a) Training and
Validating process. (b) Testing process.

To train the Voxel-DCGAN, the actual complete real 3D .binvox files (Ground Truths) of
one category were taken to create most similar and indistinguishable similar instances
of this category (see Figure 4.1 (a)). This implies that for applying the Voxel-DCGAN the
generated partial PCs were not used. All of the complete .binvox files of the respective
category were used, employing the whole entirety of the complete data that is available in
my dataset.
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In the repository (Source Code) used, no specific validation process is documented or
used in the code. Normally, validation should be performed after each epoch, as it is
done for the PCN with an unseen dataset to monitor the performance of the model on the
unseen dataset. The validation step was here implemented in the "train.py" with unseen
data. The implemented validating loop is similar to the training loop, but operates on the
validation dataset. It computes the average loss over all batches of the validation dataset.
This helps monitor how well the model is generalizing to unseen data.

As well as for the validation step, no specific testing process is documented or used in
the code. Usually, the testing is done on an additional unseen dataset during training
and validation. This step was here implemented in the "train.py" after the completing the
training. For the testing, on one hand partial real-world PCs captured by the NavVis VLX3
and other partial PCs from the HELIOS++ simulations were used (see Figure 4.1 (b)).
But, for correctly applying this testing step, usually their Ground Truths should be used.
Ideally, the completion of partial real-world PC instances should be done with semantic
instance-matching when the Voxel-DCGAN is sufficiently trained for every partial specific
instance by the use of their Ground Truths.

4.2 Point Completion Network (PCN) Simulation Set-up

4.2.1 Hyperparameter selection, training and validation

The training was done separately for each category as the number of partial Point Clouds
(PCs) for each complete PC differs. Training with regards to the loss functions Chamfer
Distance (CD) and Earth Mover’s Distance (EMD) was done as well. The following
parameters were used:

- Learning rate (lr) = 0.001
- Epochs (epochs) = 400
- Batch size for data loader (batch_size) = 64
- Number of workers for data loader (num_workers) = 8
- Logger frequency in every epoch (log_frequency) = 1

Validating was done after each epoch. After all epochs were finished, the model gave the
best L1 CD values which was further used as pre-trained model. Subsequently, the testing
was done separately for all categories. Testing with regards to the loss functions CD and
EMD was done as well. One tag experiment was chosen to store all the results of the
testing. The model path of the best pre-trained model was taken. Testing was also done
by using noisy partial PCs as input of my simulation results. The following parameters
were used:

- Batch size for data loader (batch_size) = 64
- Number of workers for data loader (num_workers) = 8
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4.3 Comparison of Method’s Results

In this chapter, the Point Completion Network (PCN) and the Voxel-Deep Convolutional
Generative Adversarial Networks (Voxel-DCGAN) were quantitatively and qualitatively
evaluated. For both methods, the main reasons causing the erroneous values in the
parameters are on one hand, the limitation of amount of data used and on the other, the
different initial positions of the instances.

4.3.1 Quantative Metrics

Losses & F1-Score

Point Completion Network (PCN):
Chamfer Distance (CD), Earth Mover’s Distance (EMD) losses and F1-Score:

DuctSilencer category:
Training: The best L1 CD model is in epoch 380, the minimum L1 CD is 27.59388089179.
The best EMD model is in epoch 366, the minimum EMD is 26.620883494615555.

Testing on accurate Point Clouds (PCs):
L1_CD(1e-3) L2_CD(1e-4) EMD(1e-3) FScore-0.01(%)
24.0351 17.0883 39.1814 22.0874

In SpaceHeater category:
Training: The best L1 CD model is in epoch 261, the minimum L1 CD is 41.3503855466842.
The best EMD model is in epoch 63, the minimum EMD is 60.65165996551514.

Testing with accurate PCs:
L1_CD(1e-3) L2_CD(1e-4) EMD(1e-3) FScore-0.01(%)
89.9538 365.3143 594.6836 4.2386

The L1_CD and L2_CD metrics have different values, because they serve distinct purposes
in evaluating the dissimilarity between two PCs. L1_CD, also referred to as Manhattan
distance, calculates the absolute differences between corresponding points’ coordinates
and sums them up. This metric is resilient to outliers and disparities in scales among
coordinates. It provides equal weight to discrepancies across all dimensions, making it
suitable for scenarios where uniform sensitivity to differences is desired. Conversely,
L2_CD, or Euclidean distance, computes the square root of the sum of squares of
coordinate differences. It is more sensitive to outliers and discrepancies in scales, thus
emphasizing larger differences in distances.

The smaller L1_CD, L2_CD and EMD values for the DuctSilencer category in comparison
to the SpaceHeater ones probably appeared, because firstly more partial PCs were
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available for each orientated instance. Additionally, the F1-Score indicates a better
balance between precision and recall for the DuctSilencer category. The F1-score ranges
from 0 to 1, where 1 is the best possible score. It is a measure of a model’s ability to
provide a good trade-off between precision (the ability to avoid false positives) and recall
(the ability to find all true positives). A higher F1-score indicates a better balance between
precision and recall. Still, with more data those values can be further improved.

Voxel-Deep Convolutional Generative Adversarial Networks (Voxel-DCGAN):
Discriminator and Generator losses:

DuctSilencer category:
In epoch 30 the lowest discriminator loss takes 0.51365489 and the generator loss takes
7.58635521. The generator loss is mainly varying between 5-10. The discriminator loss
decreased from 25 to almost 0.

SpaceHeater category:
In epoch 50 the lowest discriminator loss takes 4.23658419 and the generator loss takes
6.10359430. The generator loss is mainly varying between 5-8. The discriminator loss
decreased linearly from 25 to 5. No new output files were generated for this category.

The varying of the generator loss on a more or less constant value indicates a saturated
learning. That means, it is possible that the generator has reached a point where further
improvement is challenging. This could happen when the model has learned to generate
samples that are realistic but might not capture additional nuances or details. In such cases,
the generator loss may stabilize around a certain value. The generator loss fluctuated
initially as the generator learns to produce samples that can fool the discriminator. However,
over time, it should decrease as the generator improves its ability to generate realistic
samples. The fact that the generator loss for both categories remains too high suggests that
the generator is struggling to generate realistic samples, indicating a need for adjustments
in the training process or architecture. The lower values of the discriminator loss, especially
for the DuctSilencer category, indicate that the discriminator is becoming more effective at
distinguishing real from generated data.

Robustness

Point Completion Network (PCN):

DuctSilencer category :
Tested on noisy-partial PCs:
The confusion did not change by testing with noisy partial input PCs.

Testing on unseen data (e.g., skateboard category from initial repository data):
L1_CD(1e-3) L2_CD(1e-4) FScore-0.01(%)
81.3201 237.3259 5.6614

49



SpaceHeater category :
Testing on noisy PCs:
The confusion did not change by testing with noisy partial input PCs.

Testing on unseen data (e.g., skateboard category from initial repository data):
L1_CD(1e-3) L2_CD(1e-4) FScore-0.01(%)
1477.5923 89091.5868 0.0052

The robustness of both models regarding unseen categories is still low, especially for
the SpaceHeater category. Better values for the DuctSilencer category were achieved,
probably due to a more similar orientation of the DuctSilencer instances with the skateboard
category instances. Comparing the quantitative results of both methods, better values can
be achieved with a larger amount of data and same orientations for identical instances.

4.3.2 Visual Inspection

Point Completion Network (PCN):

In Figure 4.2 and Figure 4.3 results of the PCN completion applied on my datasets for the
categories SpaceHeater and DuctSilencer are displayed. For the SpaceHeater category, 4
testing examples were chosen and for the DuctSilencer category, 2 testing examples were
taken.
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Figure 4.2: Completion results for SpaceHeater category

In row 3 of the SpaceHeater results, the wrongly orientated output can be identified.
This is due to the lack of availability of training data of such an positioned instance of a
SpaceHeater. The visible ratio of the input data is quite good for the SpaceHeater category,
that is why the output already represents a good shape, even though it is still worse than
the input.

The pre-trained model of the SpaceHeater category was also tested with the partial noisy
input data and the results look fairly the same as for the partial accurate ones. This means,
even for real-world scanned instances, that the PCN is robust enough to remove such
outlier point due to the strong shape prior in the training. Probably a minimum of accurate
points, which describes the shape, has to be given as a partial real-world scan input.

51



Figure 4.3: Completion results for DuctSilencer category

Figure 4.4: Overlaying Input (green) and Output (white) of DuctSilencer Testing instance
(front and side)

In Figure 4.4, the generated output PC (white) and the partial input PC (green) of a
DuctSilencer testing instance is shown. Occluded points were successful generated, even
if the dimensions differs to the Input PC due to lack of training data.

The pre-trained model of the DuctSilencer category was also tested with the partial noisy
data and the results looks similar as the partial accurate ones.

In general, the PCN could not perfectly complete the instances due to the lack of a larger
dataset, but it has a huge potential to receive the same accuracy as the initial example
data of the given repository (Source Code).

Voxel-Deep Convolutional Generative Adversarial Networks (Voxel-DCGAN):

The sampled voxels next to the actual instance of the results regarding the DuctSilencer
category were created due to the different positions (rotations, translations) of each
instance. This results in training instances with a combination of those differently rotated
instances (see Figure 4.5).
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(a) (b)

(c)

(d) (e)

Figure 4.5: Completion results of Voxel-DCGAN for DuctSilencer category

In general the Voxel-DCGAN creates more random and not so accurate PCN results. The
testing of the Voxel-DCGAN on noisy partial data can not be done due to the bad triangu-
lation step of the the initial simulated partial PCs which is required for the voxelization. In
Voxel-DCGAN more investigation should be made on how to use the implemented valida-
tion and testing steps results on the Machine Learning (ML) model. Further explanations
and guidelines for using the Voxel-DCGAN would be helpful as well. Additionally, there
was limited support for the Voxel-DCGAN repository on Github in comparison to PCN
repository.

4.4 Reconstruction of completed Point Cloud Instances

The Aurivus (STEFAN HÖRMANN, MARTIN BACH, 2019) and Cloud2Model (BIM FACILITY,
DIGITAL TWINS, 2017) plugins in Revit (AUTODESK, 2000) were firstly considered for the
reconstruction process, but the required import Point Clouds (PCs) formats for those
plugins have prevented their use. Aurivus is e.g., only supporting .aurivus and PLY file
formats generated from their neural network.
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The reconstruction step was finally done by using MeshLab (CIGNONI et al., 2008). It is an
open source system for processing and editing 3D triangular meshes. It provides a set of
tools and features for processing raw data produced by 3D digitization tools or devices
and for preparing models for 3D printing.

The output PCs results of the PCN are in the PLY format and were directly imported in
MeshLab. As a first step, a PC Simplification in the Sampling filter with 1000 points
was done for receiving a better mesh. For the SpacehHeater the PC Simplification was
done with 300 points due to worse results in a mesh with a higher amount of sampled
points. Afterwards, the Surface reconstruction: Ball Pivoting was applied with its
initial settings. The completed PCs and their reconstructed meshes of the PCN in the
category DuctSilencer and SpaceHeater are shown in Figure 4.6.

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Examples of reconstructed meshes of the PCs results through PCN.
(a) and (d): Completion results of the PCN. (b) and (e): Simplified PCs. (c) and (f):
Reconstructed meshes.

In the images c) and f) in Figure 4.6 the approach for the shape completion is visible.
Despite of, the reconstructed meshes can still haver a better quality. The lack of input data
in the PCN step is the reason that no more accurate meshes were obtained.
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The results of the Voxel-DCGAN were in the .binvox format and it was not possible to
directly import in MeshLab. Therefore, a .binvox to PC or STL conversion was done for
further reconstruction steps in MeshLab. The conversions can be done by using (Source
Code) on a Linux system or with (Source Code), which converts a PC directly to a mesh
file (STL). The reconstructed mesh files of the Voxel-DCGAN results are shown in Figure
4.7.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.7: Examples of reconstructed meshes of the .binvox results through
Voxel-DCGAN. (a), (c), (e), (g) and (i): Completion results of the Voxel-DCGAN. (b),
(d),(f), (h) and (j): Reconstructed meshes

The floating points e.g., in (b) and (h) were created due to the fact that the Voxel-DCGAN
was trained on DuctSilencer instances with different positions (rotated and translated).
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4.5 Testing Results on Pre-segmented Real-World Point Cloud
Data

Aurivus provided two segmented real-world Point Clouds (PCs) which includes Mechanical,
Electrical and Plumbing (MEP) components; those files were only provided in their .aurivus
format. No further investigation was made regarding those examples. On the other hand,
Aurivus unlocked five MEP projects to be able to segment five PCs by their software.
Therfore, the available open-source post-processed NavVis PC was segmented with
Aurivus, in which still some points are occluded and missing. It was split into different
groups e.g., "Pipes" and "Pipe_Fittings" etc. and stored in the E57 format. To extract
certain partial PC instances out of the segmented NavVis "Pipes" PC in CC the Label

Connected Components segmentation function was used. The following instance examples
were exported in the PLY format, zero-centered, normalized:

(a) (b)

Figure 4.8: (a) and (b) shows two different pre-segmented real-world partial pipe PCs
captured by the NavVis VLX3

Surface reconstruction ball pivoting was applied for both PLY to receive needed OBJ files
for applying the Voxel-DCGAN. Afterwards, both instances were used to test the results
obtained with the pre-trained model of the DuctSilencer as the PipeSegment category was
quite challenging to create.
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Point Completion Network (PCN):

Figure 4.9: Completion results for real-world occlued PCs captured by the NavVis VLX3

Figure 4.9 clearly shows that the model is not trained on those types of instances. No
Ground Truth for each of those instances was available which makes it difficult or im-
possible to quantitatively evaluate the network’s performance. This makes the training
and evaluation process more difficult. Without a Ground Truth Point Cloud (PC), the
assessment of the PCN is more subjective. But based on virtual inspection, the completed
PCs are not reflecting the same input PC due to the lack of training data which would
make the model more stable in its variety of instances in this category. Additionally, the
pre-trained model of the DuctSilencer was chosen due to the limited appropriate dataset,
even though those real-world instances are usually tested with the pre-trained model of
the PipeSegment category.

Voxel-Deep Convolutional Generative Adversarial Networks (Voxel-DCGAN):

The following results derived from the used partial NavVis data: The average loss of the
Discriminator was 16.29866219 and the average loss of the Generator was 5.06487799,
which means it is not converging to a useful solution. No further results were created, only
the created instances during the Training step were produced. To get better results out of
this method, the Ground Truths of those NavVis input instances have to be obtained to
train Voxel-DCGAN on this data.
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4.6 Discussion

First of all, instance segmentation with the help of my Python File (PY) scripts was
successfully achieved. Usually, the path planning for real-world scans is a whole area by
itself. Due to the computational and time efforts of planning the best paths for the virtual
scans, the paths used for doing the virtual scanning in each storey were simplified. All the
paths were chosen to cover all areas of each storey for the most part.

Moreover, comments to the steps for preparing the instances to apply the PCN and
the Voxel-DCGAN are as follows:

Initially, the naming of each instance file was planned with the GUID as filenames. But as
the differentiation of capital and small letters in different files in the same folder cannot be
handled from the computer, the numbering of the HeliosID was taken. For each different
storey an additional numbering was added to be able to differentiate between the files
from each of them.

Additionally, in most cases a slight offset was created after executing the zero-centering
and normalizing on the partial PCs (see Figure 4.10). This is likely to occur in the zero-
centering step as the calculation of the mean (average) of the x, y, and z coordinates
separately for all points, in the partial PCs, differs from the Ground Truth calculation. A
different centroid is subtracted of each point in the partial PC. This offset is influencing the
training process in the PCN by training on wrongly positioned partial PCs.

Figure 4.10: Offset from Ground Truth and partial PCs due to zero-centering (Instance
HeliosID:10217)

Another challenge was to handle the initial positions of each Point Cloud (PC) instance. In
consideration, every different positioned instance, even when it was the same instance as
another same positioned instance, was handled as a completely independent instance
with its partial PCs in its position. This made it quite challenging to be able to get the
necessary amount of partial PCs of each complete PC in the training step for my dataset.
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The partial instances of each instance are rarely available in my dataset in comparison
to the amount of data used in the PCN dataset given in the repository. This lead to
only partly or wrongly completed instances. In consideration, all Ground Truths and their
corresponding partial PCs should be re-positioned to the Ground Truth position of one
instance to get better results. Another suggested approach is to get a substantial amount
of complete and incomplete PCs with its different instances positions in the future, but it
seems to be quite challenging, thus investigation should be made on the first one. For
the mentioned offset of Ground Truth and partial PC as well as on the multiple different
orientations of Ground Truths and their corresponding partial PC, using (Open3D:Point
Cloud Transformation) and (Open3D:ICP Registration) could be the first approaches to
solve it. For different positioned instances (PCs) regarding one Ground Truth the Iterative
Closest Point (ICP) algorithm is already repositioning them. But for the partial observed
PCs it was quite challenging and not solvable in this Thesis.

Additionally, it was observed that the sampling option in CloudCompare (CC) does not
always create exactly 16384 points for each instance even if it is set to do so. For this
reason, first the surface reconstruction and afterwards the sampling was made by using
Open3D in a PY script (Algorithm B.3) for the Ground Truths.

The reason that the PC file for the storey 00 is much larger than the others is that it has
many more components. Additionally, the files for all storeys are larger than the NavVis
raw PC data with similar scanning conditions, as HELIOS++ gives more output information
for each point.

The created mapping tables for each storey proved to be a strong tool and useful for steps
for e.g., checking the correctness of each instance’s HeliosID in the filenames and for
sorting the files in into the same folder structure for the PCN as provided.

In general, HELIOS++ supports different sources of error to mimic real laser scanning
systems. Noise can result from multiple returns, caused by the virtual beams hitting
the surface at steep incidence angles or by partial hits, i.e., only part of the laser beam
footprint is hitting a surface. Additionally, the reason for the noisy partial PC obtained from
the simulations in HELIOS++ is the accuracy_m parameter set in the scanner XML. When
this value is set from 0.01 to 0.0 it avoids this range error, but changes the initial setting
given for the Hesai LiDAR sensor. Furthermore, noisy PC could be also the reason of
coordinate precision problems. Such errors were avoided in the simulations performed for
the purposes of this Thesis by setting the maxNOR (maximum number of returns) to 1 in the
scanner XML and the beamSampleQuality to 1 which controls how the beam footprint is
approximated using subrays.

Despite of the fact that the PCN can handle noisy input PCs for training, it was trained
using the partial PCs that excluded this noise error. Therefore, PCN model focused on
learning strong shape prior and can remove noisy points, as well as predict reasonable
outputs even if the input data is noisy. This, to further strengthen the aforementioned
PC capacities. When executing the EMD Testing with the initial settings a CUDA errors
occurred. This is a current PyTorch problem, but some workarounds are a) lower batch
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sizes and b) setting specific gpu torch.cuda.set_device(1). Here the batch size was
lowered to 8 for the EMD.

4.7 Review of Research Questions

This section focuses on the reflection of the Thesis. Every scientific works aims to provide
a benefit to its research topic and so did this work. Looking back to the objectives of this
Thesis described in section 2.7 the following results can be stated:

- A virtual simulation framework that uses a given Building Information Modeling (BIM)
model for the data generation part, was derived. This includes data from partial and
Ground Truth instances in needed data formats in an automatized process to handle
a larger amount of data.

- Multiple virtual laser scanning simulations were performed in Heidelberg Light De-
tection and Ranging (LiDAR) Operations Simulator (HELIOS++) to gather realistic
segmented partial Point Cloud (PC) instances captured by the Mobile Laser Scanning
(MLS) device NavVis VLX3. For setting this up, all specifications and needed set-
tings were collected either from Hesai Technology or with the help of the HELIOS++
support.

- The dataset preparation of the segmented partial PCs instances and the segmented
Ground Truths PCs instances was done successfully. For the Point Completion
Network (PCN) the respective partial and complete Polygon File Format (PLY) files
were created and sorted in an appropriate folder structure. For the Voxel-Deep
Convolutional Generative Adversarial Networks (Voxel-DCGAN), related partial and
complete Wavefront Object Format (OBJ) files were created which are possible to
voxelize and therefore are usable for the Voxel-DCGAN.

- Both methods’ codes were adapted to my dataset and set up to mainly work with
them in combination with Jupyter Notebooks and a respective Google Drive folder
which contains all the data.

- Conclusions and recommendations were made for all the steps, from the data
generation part until the output of the completion methods.

For applying the results of this Thesis on real world laser scanning data, the scanning
data needs to be pre-segmented, in the supported data format. Additionally, the instances
need to for e.g., be firstly change to zero-centered coordinates and then back to its original
coordinates or with an advanced approach to directly complete the single instances in
their original position in the total PC.
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4.8 Method’s Usability in Scan-to-BIM

The PCN has a huge potential for using it to complete Mechanical, Electrical and Plumbing
(MEP) Point Cloud (PC) instances in the real world environment. It takes directly PC as
inputs and gives PC as outputs. As this method is already working in the application of e.g.,
autonomous cars, the completion of MEP components can be well integrated in the Mobile
Laser Scanning (MLS) process. Additionally, after a discussion with a NavVis colleague,
the completion step could be integrated e.g., either in the real-time laser scanning step in
which it would get noisy PC instances as an input or even in the post-processing step in
which it would get non-noisy PC instances. In both stages the occluded areas are almost
the same. It would better for the PCN to implement the efficiency of bounding boxes to be
able to complete each incomplete PC instance "on-the-run" as it is e.g., already applied in
the mentioned autonomous driving. This Thesis, through the virtual simulation workflow
contributes to get better real-world sensor data than the input of incomplete data used
in YUAN et al. (2019). In general, the output of the PCN can improve the results of PC
registration.

It became evident that the Voxel-Deep Convolutional Generative Adversarial Networks
(Voxel-DCGAN) has less potential in this whole workflow, considering that for voxelizing
as a first step, the following file formats are only possible: OBJ, Geomview OFF, Autocad
DXF, PLY and Standard Triangle Language (STL), only when they contain polygons. In
comparison to the PCN input, which does not require the voxelization step and can be
directly applied on raw or post-processed partial PC instances. It is probable that this
conversion step can already lead to slight changes to the input which makes the method
more inaccurate. The output format of the completed instances is .binvox, which means
that for directly modeling the instances, some steps in between are necessary to get an
appropriate format for modeling. Therefore, the same inaccuracy can occur for the output
.binvox files to PC files. Furthermore, it is suggested that the validating and testing steps
are further implemented in this method, as it is probable that they lead to an improved
model and better results.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work tried to contribute to the enhancement of the workflow initial receiving raw
occluded Mechanical, Electrical and Plumbing (MEP) Point Cloud (PC) instances until the
completion of those components. A synthetic approach was investigated and validated to
its extend. Therefore the given Building Information Modeling (BIM) model was used to
generate realistic segmented PC instances which were further used for PC completion
purposes. Two different approaches were performed and evaluated based on their work-
flows and their results. Moreover, simple solid geometries of completed instances were
manually generated as examples. Additionally, the Machine Learning (ML) model results
were tested on pre-segmented already post-processed real-world PC data captured by
the NavVis VLX3. NavVis has a quite powerful PC post-processing tool which reduces the
noise in the partial PC instances to low percentage (see Figure 4.8).

Moreover it is important to point out that to train large datasets, massive compute power is
needed, and ML practitioners must be able to procure and leverage hundreds of GPUs
to train their models. Here it was identified that Google Colab is a good browser based
ML tool to get access to strong GPUs and advanced RAM. Furthermore, to improve the
ML methods, high-quality data needs to get used. Oftentimes, generative ML models are
used to produce synthetic data for different use cases. However, while troves of data are
being generated globally every day, not all data can be used to train ML models. In the
case here exposed, the occlusions of the training data can be synthetically generated,
but the real-world scanning occlusions are not considered then. Therefore, the training is
done for wrong data.

Furthermore, compounding the issue of a lack of high-quality data, the need to get
commercial license to use existing datasets or to build bespoke datasets to train generative
models is challenging. Additionally, many datasets do not exist for certain domains.
Nonetheless, many companies such as NVIDIA, Cohere, and Microsoft have a goal to
support the continued growth and development of generative ML models with services
and tools to help solve these issues. These products and platforms abstract away the
complexities of setting up the models and running them at scale.

As a conclusion, the Point Completion Network (PCN) and Voxel-Deep Convolutional
Generative Adversarial Networks (Voxel-DCGAN) algorithms can be used to complete PC
instances, that are indistinguishable from their Ground Truth. They both need a larger
amount of dataset for each category which was challenging for each instance due to the
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different positioning of instances for the same object type. Manual PCs inspections are
needed to create such small dataset for one category.

Overall, generative ML algorithms can help automate and accelerate a variety of tasks
and processes, saving time and resources for businesses and organizations. It has the
potential to significantly impact a wide range of industries and applications and is an
important area of ML research and development.

5.2 Outlook

After completing all Polygon File Format (PLY) files they need to get unnormalized and
assigned, with their original local coordinates, to be able to place them back in their original
position in the total Point Cloud (PC).

More data has to be created, especially more Ground Truths and partial PCs, which
are different types of instances and different positioned (rotated and translated) in one
category, which will result in an increase of the data available for the validation and testing
steps. This is also particularly true for the training data, which requires a minimum of two
different partial PCs for each complete PC, resulting in more data needed to train the ML
model for different rotated instances captured from various positions.

A further enhancement of the process described in this Thesis would be if the PLY output
files including surface normals are possible in HELIOS++ in the future as they would
contain PC and mesh information directly from the input scene. That would simplify the
process using the partial PC instances, allowing the PCN and the Voxel-DCGAN methods
to be directly applied. Additionally, as adjusting the differentiation of the laser emitter and
laser receiver in HELIOS++ is not possible yet, it is considered that implementing this in
HELIOS++ would improve the output data making it even more realistic. Moreover, as the
syntax of varying scanFreq_hz can not be yet done in HELIOS++ yet, the settings for the
highest scanFreq_hz should be taken, as well as its dependent settings to get the best
results.

In the future, it would be desirable to check if glass structures and other elements can be
or are included in the used BIM model for the virtual scanning. Such, considering that
those instances can lead to erroneous realistic results in HELIOS++. If such instances
are included in the BIM model then they should e.g., be changed to a wall type in the BIM
model or OBJ file, so that those instances are taken into account in the virtual scanning
with HELIOS++.

One additional point that needs to be considered is that not all ObjectTypes that are equal
in the rows of the mapping tables are actual exactly the same object. They differ in various
categories e.g., with regards to the diameter of the pipe which is not directly representing
it in the mapping tables; manual inspection was needed to keep them separated.
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For gathering more data, Ground Truths, partial data, and simulation results of the other
storeys can be used. Additionally, for collecting the non-noisy partial data, the simulations
for the other storeys need to be done with setting the accuracy_m parameter in the scanner
XML to 0.

For the upcoming ZHU et al. (2023), which is relocating and reconstructing multi-instances
in changing 3D environments, the results of this Thesis can be used for further focus
on Mechanical, Electrical and Plumbing (MEP) components. ZHU et al. (2023) already
considered the mentioned different positioning (rotated, translated) of instances in com-
parison to the training data. As my approach mainly focused on the completion and
reconstruction goals, ZHU et al. (2023) will add the relocation step which can be combined
with the reconstruction one, here exposed. Furthermore, it shows that their method is
accumulating on a instance level while doing more scans on different time stamps. The
completeness of the instance PCs and reconstruction of the instances are increasing. For
re-scans in different time stamps in which instances were moved or just different positioned
(rotated an translated) e.g., in a factory this upcoming repository plays a crucial role.

Finally, including Vertex coloring in the completion step could be an interesting approach
in the future. PLY files are also able to take colors by vertex which means that the training,
validating and testing steps could focus as well on the coloring in the completion step.
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Appendix A

Material Referencing - Python Scripts

Algorithm A.1: Materialclasses_Assignments_mtl.py

1 # -*- coding: utf-8 -*-

2 """

3 Spyder Editor

4

5 This is a temporary script file.

6 """

7 import random

8

9 def insert_classification_numbers(file_path):

10 # Read the file and save its content

11 with open(file_path, ’r’) as file:

12 lines = file.readlines()

13

14 # Tracking the numbers used

15 used_numbers = set()

16

17 # Scrolling through the lines and inserting the classification numbers

18 new_lines = []

19 for line in lines:

20 line = line.strip()

21 new_lines.append(line)

22

23 if line.startswith(’newmtl’):

24 # Check if the previous line meets the requirements

25 if len(new_lines) > 1:

26 prev_line = new_lines[-2].strip()

27 if prev_line.startswith(’Ka’) or prev_line.startswith(’Kd’)

↪→ or prev_line.startswith(’Ks’) or prev_line.startswith(

↪→ ’Ns’) or prev_line.startswith(’d’) or prev_line.

↪→ startswith(’newmtl’):

28 # Generation of a unique random number

29 classification_number = 1 # Change for other .mtl files

30 while classification_number in used_numbers:

31 classification_number += 1

32

67



33 # Adding the classification number to the list of used

↪→ numbers

34 used_numbers.add(classification_number)

35

36 # Inserting the line with classification number

37 new_lines.insert(-1, f’helios_classification {

↪→ classification_number}’)

38

39 # Generation of a unique random number for the last line

40 classification_number += 1

41 while classification_number in used_numbers:

42 classification_number = random.randint(1, 100000)

43

44 # Adding the classification number to the list of used numbers

45 used_numbers.add(classification_number)

46

47 # Adding the last line with classification number

48 new_lines.append(f’helios_classification {classification_number}’)

49

50 # Writing the updated content back to the file

51 with open(file_path, ’w’) as file:

52 file.write(’\n’.join(new_lines))

53

54 # Example call with a .mtl file named ’Example.mtl’ - Change for other .mtl

↪→ files

55 insert_classification_numbers(’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.

↪→ mtl’)
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Algorithm A.2: Calculation_objmaterials_amount.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Mon Jul 3 23:05:04 2023

4

5 @author: Hannes

6 """

7

8 def count_word_occurrences(filename, word):

9 count = 0

10 with open(filename, ’r’) as file:

11 for line in file:

12 count += line.count(word)

13 return count

14

15 filename = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj’ # Change for

↪→ other .obj files

16 word = ’usemtl’

17

18 frequency1 = count_word_occurrences(filename, word)

19 print(f’The frequency of "{word}" in the file "{filename}" is: {frequency1}

↪→ ’)

20

21 def count_word_occurrences(filename, word):

22 count = 0

23 with open(filename, ’r’) as file:

24 for line in file:

25 count += line.count(word)

26 return count

27

28 filename = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.mtl’ # Change for

↪→ other .mtl files

29 word = ’newmtl’

30

31 frequency2 = count_word_occurrences(filename, word)

32 print(f’The frequency of "{word}" in the file "{filename}" is: {frequency2}

↪→ ’)
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Algorithm A.3: Adding_material_mtl.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Mon Jun 26 16:51:55 2023

4

5 @author: Hannes

6 """

7 # Adds the number of new materials to have the same number of objects and

↪→ materials

8 def count_word_occurrences(filename, word):

9 count = 0

10 with open(filename, ’r’) as file:

11 for line in file:

12 count += line.count(word)

13 return count

14

15 filename = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj’ # Change for

↪→ other .obj files

16 word = ’usemtl’

17

18 frequency1 = count_word_occurrences(filename, word)

19 print(f’The frequency of "{word}" in the file "{filename}" is: {frequency1}

↪→ ’)

20

21 def count_word_occurrences(filename, word):

22 count = 0

23 with open(filename, ’r’) as file:

24 for line in file:

25 count += line.count(word)

26 return count

27

28 filename = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.mtl’ # Change for

↪→ other .mtl files

29 word = ’newmtl’

30

31 frequency2 = count_word_occurrences(filename, word)

32 print(f’The frequency of "{word}" in the file "{filename}" is: {frequency2}

↪→ ’)

33

34 diff=frequency1-frequency2

35 print(f’The difference is: {diff}’)

36

37 import random
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38

39 def generate_random_number(existing_numbers, start, end):

40 random_number = random.randint(start, end)

41 while random_number in existing_numbers:

42 random_number = random.randint(start, end)

43 return random_number

44

45 def add_surface_styles(filename, num_blocks):

46 existing_surface_styles = set()

47 existing_classification_numbers = set()

48

49 # Reading the existing data in the .mtl file

50 with open(filename, ’r’) as file:

51 lines = file.readlines()

52

53 # Search for existing row blocks

54 for line in lines:

55 if line.startswith(’newmtl ’):

56 existing_surface_styles.add(line.strip().split(’-’)[-1])

57 elif line.startswith(’helios_classification’):

58 existing_classification_numbers.add(line.strip().split()[-1])

59

60 # Generate the new row blocks

61 new_lines = []

62 classification_number = 60 # !! MUST BE CHANGED FOR EACH NEW MTL FILE

↪→ !!! -> number must be the number of the last "

↪→ helios_classification number" in the file.

63 surface_style_number = 0

64 for i in range(num_blocks):

65 surface_style_number += 1

66 classification_number += 1

67

68 new_surface_style = f’newmtl surface-style-{surface_style_number}\n’

69 new_classification = f’helios_classification {classification_number

↪→ }\n’

70

71 lines = ’\n’

72

73 new_lines.append(lines)

74 new_lines.append(new_surface_style)

75 new_lines.append(new_classification)

76

77 # Adding the new row blocks to the end of the file
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78 with open(filename, ’a’) as file:

79 file.writelines(new_lines)

80

81 print(f’{diff} materials have been added.’)

82

83 # Example call: Adding appropriate row blocks in ’example.mtl’. - Change

↪→ for other .mtl files

84 add_surface_styles(’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.mtl’, diff)
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Algorithm A.4: Check_identical_or_multiple_used_Materials.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Mon Jul 3 23:52:38 2023

4

5 @author: Hannes

6 """

7

8 def find_duplicate_usemtl_lines(file_path):

9 lines_seen = set()

10 duplicate_lines = []

11

12 with open(file_path, ’r’) as file:

13 lines = file.readlines()

14

15 for line in lines:

16 if line.startswith("usemtl"):

17 if line in lines_seen:

18 duplicate_lines.append(line.strip())

19 else:

20 lines_seen.add(line)

21

22 return duplicate_lines

23

24

25 # Example call

26 obj_file_path = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj’ # Change

↪→ for other .obj files

27 duplicate_usemtl_lines = find_duplicate_usemtl_lines(obj_file_path)

28

29 if duplicate_usemtl_lines:

30 print("The file contains the following identical usemtl lines:")

31 for line in duplicate_usemtl_lines:

32 print(line)

33 else:

34 print("The file does not contain identical usemtl lines.")

35

36 def find_duplicate_newmtl_lines(file_path):

37 lines_seen = set()

38 duplicate_lines = []

39

40 with open(file_path, ’r’) as file:

41 lines = file.readlines()
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42

43 for line in lines:

44 if line.startswith("newmtl"):

45 if line in lines_seen:

46 duplicate_lines.append(line.strip())

47 else:

48 lines_seen.add(line)

49

50 return duplicate_lines

51

52

53 # Example call

54 obj_file_path = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.mtl’ # Change

↪→ for other .mtl files

55 duplicate_newmtl_lines = find_duplicate_newmtl_lines(obj_file_path)

56

57 if duplicate_newmtl_lines:

58 print("The file contains the following identical newmtl lines:")

59 for line in duplicate_newmtl_lines:

60 print(line)

61 else:

62 print("The file does not contain identical newmtl lines.")
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Algorithm A.5: Check_replace_newref.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Mon Jul 3 23:21:45 2023

4

5 @author: Hannes

6 """

7

8 # Replacing duplicated lines & replacing "newmtl" with "usemtl" in .obj

↪→ file

9

10 def replace_usemtl_with_mtl_lines(obj_file_path, mtl_file_path):

11 obj_lines = []

12 mtl_surface_styles = []

13

14 # Reading the .mtl file and collecting the available surface-style

↪→ lines

15 with open(mtl_file_path, ’r’) as mtl_file:

16 mtl_lines = mtl_file.readlines()

17 current_surface_style_index = 1

18

19 for line in mtl_lines:

20 if line.startswith("newmtl "):

21 mtl_surface_styles.append(line.strip())

22 current_surface_style_index += 1

23

24 # Replacing the lines in the .obj file

25 current_surface_style_index = 0

26

27 with open(obj_file_path, ’r’) as obj_file:

28 obj_lines = obj_file.readlines()

29

30 with open(obj_file_path, ’w’) as obj_file:

31 for line in obj_lines:

32 if line.startswith("usemtl "):

33 if current_surface_style_index < len(mtl_surface_styles):

34 surface_style_line = mtl_surface_styles[

↪→ current_surface_style_index]

35 obj_file.write(surface_style_line + ’\n’)

36 current_surface_style_index += 1

37 else:

38 print("Not enough newmtl lines in the .mtl file.")

39 else:
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40 obj_file.write(line)

41

42 # Example call

43 obj_file_path = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj’ # Change

↪→ for other .obj files

44 mtl_file_path = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.mtl’ # Change

↪→ for other .mtl files

45 replace_usemtl_with_mtl_lines(obj_file_path, mtl_file_path)

46

47 # Replace "newmtl" with "usemtl

48 def replace_newmtl_with_usemtl(obj_file_path):

49 # Lesen des Inhalts der .obj-Datei

50 with open(obj_file_path, ’r’) as obj_file:

51 obj_lines = obj_file.readlines()

52

53 # Replace "newmtl" with "usemtl

54 for i, line in enumerate(obj_lines):

55 obj_lines[i] = line.replace(’newmtl’, ’usemtl’)

56

57 # Writing the updated content to the .obj file

58 with open(obj_file_path, ’w’) as obj_file:

59 obj_file.writelines(obj_lines)

60

61 print(’Replacement completed.’)

62

63 # Example call of the function

64 replace_newmtl_with_usemtl(’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj’)

↪→ # Change for other .obj files
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Algorithm A.6: Reducing_materials_to_one.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Fri Aug 11 16:03:44 2023

4

5 @author: Hannes

6 """

7

8 def process_obj_file(input_file, output_file):

9 with open(input_file, ’r’) as f:

10 lines = f.readlines()

11

12 new_lines = []

13 current_usemtl = None

14 in_product_section = False

15

16 for line in lines:

17 if line.startswith("g "):

18 in_product_section = True

19 current_usemtl = None

20 new_lines.append(line)

21 elif line.startswith("g "):

22 in_product_section = False

23 new_lines.append(line)

24 elif in_product_section and line.startswith("usemtl"):

25 if current_usemtl is None:

26 current_usemtl = line

27 new_lines.append(line)

28 elif in_product_section:

29 new_lines.append(line)

30 else:

31 new_lines.append(line)

32

33 with open(output_file, ’w’) as f:

34 f.writelines(new_lines)

35

36 if __name__ == "__main__":

37 input_file_path = "SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj" #

↪→ Change for other .obj files

38 output_file_path = "SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj" #

↪→ Change for other .mtl files

39 process_obj_file(input_file_path, output_file_path)

40 print("Processing complete.")
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Appendix B

Other helpful Python Scripts

Algorithm B.1: Transform_waypoints.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Tue Sep 26 23:55:28 2023

4

5 @author: Hannes

6 """

7 import re

8

9 # Function for extracting the values from the round brackets with semicolon

↪→ separation

10 def extract_values(text):

11 pattern = r’\((.*?)\)’

12 match = re.search(pattern, text)

13 if match:

14 values = match.group(1).split(’;’) # Separation with semicolon

15 if len(values) == 3:

16 return tuple(values)

17 return None

18

19 # File names for the input and output files

20 eingabe_datei = ’Waypoints(picked_unmanipulated).txt’

21 ausgabe_datei = ’Waypoints(manipulated).txt’

22

23 # Open the input file and output file

24 with open(eingabe_datei, ’r’) as input_file, open(ausgabe_datei, ’w’) as

↪→ output_file:

25 for line in input_file:

26 values = extract_values(line)

27 if values:

28 output_line = f’<leg>\n\t<platformSettings template="platform1"

↪→ x="{values[0]}" y="{values[1]}" z="{values[2]}" />\n\t<

↪→ scannerSettings template="scanner1"/>\n</leg>\n’

29 output_file.write(output_line)

30
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31 print(f’The values were extracted from {eingabe_datei} and written to {

↪→ ausgabe_datei}.’)
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Algorithm B.2: zero-center_normalized.py

1

2

3 import os

4 import numpy as np

5 import open3d as o3d

6

7 def zero_center_normalize(vertices):

8 # Zero-centering

9 center = np.mean(vertices, axis=0)

10 vertices -= center

11

12 # Normalizing to the unit cube

13 max_coord = np.max(np.abs(vertices))

14 vertices /= max_coord

15

16 return vertices

17

18 def process_ply_file(input_path, output_path):

19 # Read PLY file using open3d

20 mesh = o3d.io.read_triangle_mesh(input_path)

21

22 # Extract vertices and faces

23 vertices = np.asarray(mesh.vertices)

24 faces = np.asarray(mesh.triangles)

25

26 # Zero-center and normalize vertices

27 vertices = zero_center_normalize(vertices)

28

29 # Create a new mesh

30 processed_mesh = o3d.geometry.TriangleMesh()

31 processed_mesh.vertices = o3d.utility.Vector3dVector(vertices)

32 processed_mesh.triangles = o3d.utility.Vector3iVector(faces)

33

34 # Write the processed PLY file using open3d

35 o3d.io.write_triangle_mesh(output_path, processed_mesh, write_ascii=

↪→ True)

36

37 def main(input_folder, output_folder):

38 # Create output folder if it doesn’t exist

39 if not os.path.exists(output_folder):

40 os.makedirs(output_folder)

41
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42 # Process each PLY file in the input folder

43 for filename in os.listdir(input_folder):

44 if filename.endswith(".ply"):

45 input_path = os.path.join(input_folder, filename)

46 output_path = os.path.join(output_folder, filename)

47 process_ply_file(input_path, output_path)

48 print(f"Processed: {filename}")

49

50 if __name__ == "__main__":

51 input_folder = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11-47-41(

↪→ accuracy_0_0)/output_xyz_files/PLY_files"

52 output_folder = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11

↪→ -47-41(accuracy_0_0)/output_xyz_files/PLY_files/Zero-

↪→ centered_normalized_ascii"

53 main(input_folder, output_folder)
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Algorithm B.3: Sample_and_convert_to_ply.py

1

2

3 import os

4 import open3d as o3d

5 import numpy as np

6

7 def sample_obj_to_ply(obj_filename, ply_filename, num_points=16384):

8 # Load the .obj file using open3d

9 mesh = o3d.io.read_triangle_mesh(obj_filename)

10

11 # Convert the mesh to a point cloud

12 point_cloud = mesh.sample_points_uniformly(number_of_points=num_points)

13

14 # Get the points as a numpy array

15 points = np.asarray(point_cloud.points)

16

17 # Create a new PointCloud object with the sampled points

18 sampled_point_cloud = o3d.geometry.PointCloud()

19 sampled_point_cloud.points = o3d.utility.Vector3dVector(points)

20

21 # Write the sampled points to a .ply file in ASCII format

22 o3d.io.write_point_cloud(ply_filename, sampled_point_cloud, write_ascii

↪→ =True)

23

24 # Create a folder for the output .ply files

25 output_folder = "PLY_files_sampled_correctly"

26 os.makedirs(output_folder, exist_ok=True)

27

28 # List of input .obj files in the current directory

29 input_obj_files = [file for file in os.listdir() if file.endswith(".obj")]

30

31 # Sample and save each .obj file

32 for obj_file in input_obj_files:

33 obj_path = os.path.join(os.getcwd(), obj_file)

34 ply_filename = os.path.join(output_folder, f"{os.path.splitext(obj_file)

↪→ [0]}.ply")

35 sample_obj_to_ply(obj_path, ply_filename, num_points=16384)
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Algorithm B.4: Surface_reconstruction_obj.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sun Jan 21 13:42:40 2024

4

5 @author: Hannes

6 """

7

8 import os

9 import pymeshlab as ml

10

11 def screened_poisson_reconstruction(input_ply_path, output_obj_path):

12 # Initialize MeshLab server

13 ms = ml.MeshSet()

14

15 # Load the input point cloud

16 ms.load_new_mesh(input_ply_path)

17

18 # Apply Screened Poisson reconstruction

19 ms.apply_filter("generate_surface_reconstruction_screened_poisson")

20

21 # Save the reconstructed surface as OBJ

22 ms.save_current_mesh(output_obj_path)

23

24 def process_ply_files(input_folder, output_folder):

25 # Create output folder if it doesn’t exist

26 if not os.path.exists(output_folder):

27 os.makedirs(output_folder)

28

29 # List all PLY files in the input folder

30 ply_files = [f for f in os.listdir(input_folder) if f.endswith(’.ply’)]

31

32 for ply_file in ply_files:

33 input_ply_path = os.path.join(input_folder, ply_file)

34 output_obj_path = os.path.join(output_folder, os.path.splitext(

↪→ ply_file)[0] + ’.obj’)

35

36 # Apply Screened Poisson reconstruction

37 screened_poisson_reconstruction(input_ply_path, output_obj_path)

38

39 if __name__ == "__main__":

40 input_folder = "E:/Groundtruths/-1/PLY_export_CC_after_sampling/

↪→ renamed_GT_xyz/XYZ_files_local_COS/PLY_files"
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41 output_folder = "E:/Groundtruths/-1/PLY_export_CC_after_sampling/

↪→ renamed_GT_xyz/XYZ_files_local_COS/PLY_files/OBJ"

42

43 process_ply_files(input_folder, output_folder)
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Algorithm B.5: Sorting_to_categories.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Thu Jan 25 22:39:11 2024

4

5 @author: Hannes

6 """

7

8 import os

9 import csv

10 import shutil

11

12 def extract_ply_numbers(folder_path):

13 ply_numbers = []

14 for filename in os.listdir(folder_path):

15 if filename.startswith("output_") and filename.endswith(".ply"):

16 # Extracting numbers from the .ply file names

17 number = ’’.join(filter(str.isdigit, filename))

18 ply_numbers.append(number)

19 return ply_numbers

20

21 def search_csv_for_names(csv_path, ply_numbers):

22 names_dict = {}

23 with open(csv_path, ’r’, newline=’’) as csv_file:

24 csv_reader = csv.reader(csv_file, delimiter=’;’)

25 next(csv_reader) # Skip header row

26 for row in csv_reader:

27 if len(row) >= 5:

28 name = row[4] # Assuming column 5 (0-indexed) contains the

↪→ names

29 number = row[2] # Assuming column 3 (0-indexed) contains the

↪→ numbers

30 if number in ply_numbers:

31 names_dict[number] = name

32 return names_dict

33

34 def copy_files_to_directory(source_folder, destination_folder, names_dict):

35 for ply_number, name in names_dict.items():

36 source_path = os.path.join(source_folder, f"output_{ply_number}.ply"

↪→ )

37 destination_subfolder = os.path.join(destination_folder, name)

38 destination_path = os.path.join(destination_subfolder, f"output_{

↪→ ply_number}.ply")
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39

40 if os.path.exists(destination_subfolder):

41 shutil.copy(source_path, destination_path)

42 print(f"Copied {name} to {destination_subfolder}")

43 else:

44 print(f"Skipped {name} as folder not found in {

↪→ destination_folder}")

45

46 # Replace these paths with your actual directory paths

47 ply_folder_path = ’E:/Finale_Daten/partial_accurate/Zero-

↪→ centered_normalized_ascii’

48 csv_file_path = ’E:/Finale_Daten/Mapping_Table_HeliosID_GUID_Typ_-1.csv’

49 destination_folder_path = ’E:/Finale_Daten/

↪→ Partial_accurate_in_all_categories’

50

51 # Step 1: Extract numbers from .ply files

52 ply_numbers = extract_ply_numbers(ply_folder_path)

53

54 # Step 2: Search for names in the CSV file using the extracted numbers

55 names_dict = search_csv_for_names(csv_file_path, ply_numbers)

56

57 # Step 3: Copy files to the destination folder

58 copy_files_to_directory(ply_folder_path, destination_folder_path,

↪→ names_dict)
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Appendix C

Instance Creation - Python Scripts

Algorithm C.1: Example_merging_xyz_files.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sat Oct 28 18:53:51 2023

4

5 @author: Hannes

6 """

7

8 import os

9

10 # Directory in which the .xyz files are located

11 input_dir = r’E:\Simulations\-1\tum_data__-1_mls\2024-01-25_11-47-41(

↪→ accuracy_0_0)’ # !!!Change for different point cloud

12

13 # Name of the output file

14 output_file = ’Total.xyz’

15

16 # List to save the contents of the .xyz files

17 xyz_data = []

18

19 # Search the directory for .xyz files and add them to the list

20 for filename in os.listdir(input_dir):

21 if filename.endswith(".xyz"):

22 with open(os.path.join(input_dir, filename), ’r’) as file:

23 xyz_data.extend(file.readlines())

24

25 # Write the collected .xyz data to the output file

26 with open(output_file, ’w’) as output:

27 output.writelines(xyz_data)

28

29 print(f’The .xyz files have been combined into {output_file}.’)
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Algorithm C.2: Segmentation_reg_HeliosID.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sat Oct 28 19:27:30 2023

4

5 @author: Hannes

6 """

7

8 # Function for splitting the .xyz file into separate files

9 def split_xyz_by_value(input_xyz, output_directory):

10 data_dict = {} ## A dictionary to group the data by values in the

↪→ penultimate column

11

12 # Open the input file

13 with open(input_xyz, ’r’) as input_file:

14 for line in input_file:

15 parts = line.strip().split()

16 if len(parts) < 3:

17 continue

18 value = parts[-2] # Value in the penultimate column

19

20 # Create a separate file for this value if it does not already

↪→ exist

21 if value not in data_dict:

22 data_dict[value] = []

23

24 data_dict[value].append(line)

25

26 # Write data to separate .xyz files

27 for value, data in data_dict.items():

28 output_file = os.path.join(output_directory, f’output_{value}.xyz’)

29 with open(output_file, ’w’) as output:

30 output.writelines(data)

31

32 if __name__ == "__main__":

33 import os

34

35 # Paths to the input file and the output directory

36 input_xyz_file = r’E:\Simulations\-1\tum_data__-1_mls\2024-01-25_11

↪→ -47-41(accuracy_0_0)\Total.xyz’ # !!!Change for different point

↪→ cloud

37 output_directory = ’output_xyz_files’

38
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39 # Create the output directory if it does not exist

40 os.makedirs(output_directory, exist_ok=True)

41

42 # Call function to split .xyz file

43 split_xyz_by_value(input_xyz_file, output_directory)

44

45 print(f’The Total.xyz file was segmented in {output_directory}.’)
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Algorithm C.3: Surface_reconstruction_ball_pivoting_obj.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sun Jan 21 13:42:40 2024

4

5 @author: Hannes

6 """

7 import os

8 import pymeshlab as ml

9

10 def get_file_size(file_path):

11 return os.path.getsize(file_path) / 1024 # Convert bytes to kilobytes

12

13 def ball_pivoting_reconstruction(input_ply_path, output_obj_path):

14 # Initialize MeshLab server

15 ms = ml.MeshSet()

16

17 # Load the input point cloud

18 ms.load_new_mesh(input_ply_path)

19

20 # Apply Screened Poisson reconstruction

21 ms.apply_filter("generate_surface_reconstruction_ball_pivoting")

22

23 # Save the reconstructed surface as OBJ

24 ms.save_current_mesh(output_obj_path)

25

26 def process_ply_files(input_folder, output_folder, max_file_size_kb=5000):

27 # Create output folder if it doesn’t exist

28 if not os.path.exists(output_folder):

29 os.makedirs(output_folder)

30

31 # List all PLY files in the input folder

32 ply_files = [f for f in os.listdir(input_folder) if f.endswith(’.ply’)]

33

34 for ply_file in ply_files:

35 input_ply_path = os.path.join(input_folder, ply_file)

36 output_obj_path = os.path.join(output_folder, os.path.splitext(

↪→ ply_file)[0] + ’.obj’)

37

38 # Check file size before processing

39 file_size_kb = get_file_size(input_ply_path)

40 if file_size_kb > max_file_size_kb:
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41 print(f"Skipping {ply_file} due to size ({file_size_kb} KB > {

↪→ max_file_size_kb} KB)")

42 continue

43

44 # Apply Screened Poisson reconstruction

45 ball_pivoting_reconstruction(input_ply_path, output_obj_path)

46

47 if __name__ == "__main__":

48 input_folder = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11-47-41(

↪→ accuracy_0_0)/output_xyz_files/PLY_files"

49 output_folder = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11

↪→ -47-41(accuracy_0_0)/output_xyz_files/PLY_files/Ball_pivoting_obj

↪→ "

50

51 process_ply_files(input_folder, output_folder, max_file_size_kb=5000)
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Algorithm C.4: Panda_Data_Frame_GUID_Typ_Material_HeliosID.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Mon Oct 9 17:25:42 2023

4

5 @author: Hannes

6 """

7 import os

8 import pandas as pd

9

10 file_name = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.obj’

11 file_path = os.path.join(r’C:\Users\Hannes\Desktop\Masterarbeit\helios-

↪→ plusplus-win\data\sceneparts\owndata\storeys\-1’, file_name)

12

13 # Open the .obj file for reading

14 with open(file_path, ’r’) as obj_file: # Change for each storey (.obj file)

15 lines = obj_file.readlines()

16

17 # Initialize empty lists to store the data

18 guids = []

19 materials = []

20

21 current_guid = None

22 current_material = None

23

24 # Go through the lines of the .obj file

25 for line in lines:

26 if line.startswith(’g ’):

27 if current_guid is not None:

28 guids.append(current_guid)

29 materials.append(current_material)

30 current_guid = line.strip().split(’ ’, 1)[1]

31 current_material = None

32 elif line.startswith(’usemtl ’):

33 if current_guid is not None:

34 current_material = line.strip().split(’ ’, 1)[1]

35

36 # Add the last "g" block

37 if current_guid is not None:

38 guids.append(current_guid)

39 materials.append(current_material)

40

41 # Create a Pandas DataFrame
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42 data = {’GUIDs’: guids, ’Material’: materials}

43 df = pd.DataFrame(data)

44

45 # Print the DataFrame

46 print(df.head)

47

48 # Save the DataFrame in an Excel file

49 df.to_excel(’GUIDS_Materials_-1.xlsx’, index=False)

50

51

52 # !!!Adding Helios IDs to Materials & GUIDs!!!

53 # Open and read the .mtl file

54 file_name = ’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1.mtl’

55 file_path = os.path.join(r’C:\Users\Hannes\Desktop\Masterarbeit\helios-

↪→ plusplus-win\data\sceneparts\owndata\storeys\-1’, file_name)

56

57 with open(file_path, ’r’) as mtl_file: # Change for each storey (.mtl file)

58 mtl_lines = mtl_file.readlines()

59

60 # Initialize an empty list to store the Helios IDs

61 helios_ids = []

62

63 current_material = None

64

65 # Go through the lines of the .mtl file

66 for line in mtl_lines:

67 if line.startswith(’newmtl ’):

68 current_material = line.strip().split(’ ’, 1)[1]

69 elif line.startswith(’helios_classification ’):

70 if current_material is not None:

71 helios_id = int(line.strip().split(’ ’, 1)[1])

72 helios_ids.append((current_material, helios_id))

73

74 # Create a DataFrame from the list of Helios IDs

75 helios_df = pd.DataFrame(helios_ids, columns=[’Material’, ’HELIOS IDs’])

76

77 # Perform a left join between "df" and "helios_df".

78 result_df = df.merge(helios_df, on=’Material’, how=’left’)

79

80 # Save the resulting DataFrame in an Excel file

81 result_df.to_excel(’DF_with_helios_ids_GUIDS_Materials_-1.xlsx’, index=

↪→ False)

82
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83 # Print the resulting DataFrame

84 print(result_df.head)

85

86

87 #!!!merge with .ifc IfcProduct data regarding GUIDs!!!

88 import ifcopenshell

89 import ifcopenshell.util

90 from ifcopenshell.util.selector import Selector

91 schema = ifcopenshell.ifcopenshell_wrapper.schema_by_name("IFC4")

92

93 ifc = ifcopenshell.open(’SCG_mergedall(except_AR)_IFC4_(EDITED)_-1(products

↪→ ).ifc’) # change for each storey (.ifc file) -> add ...(products).

↪→ ifc

94

95 ifc_product = schema.declaration_by_name("IfcProduct")

96 variable=ifc_product.all_attributes()

97 print(variable)

98

99 selector = Selector()

100

101 products = selector.parse(ifc, ’.IfcProduct’)

102 for product in products:

103 global_id = product.GlobalId if hasattr(product, "GlobalId") else "No

↪→ GUID available"

104 name = product.Name if hasattr(product, "Name") else "No Name available

↪→ "

105 object_type = product.ObjectType if hasattr(product, "ObjectType") else

↪→ "No ObjectType available"

106 # Here you can further process or output the attributes

107 print(f"Produkt ID: {product.id()}, GlobalId: {global_id}, Typ: {

↪→ product.is_a()}, Name: {name}, ObjectType: {object_type}")

108

109 # Create an empty DataFrame

110 data = []

111

112 # Iterate through the products and collect data

113 for product in products:

114 data.append({

115 "Produkt ID": product.id(),

116 "GlobalId": product.GlobalId if hasattr(product, "GlobalId") else "No

↪→ GUID available",

117 "Typ": product.is_a(),
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118 "Name": product.Name if hasattr(product, "Name") else "No Name

↪→ available",

119 "ObjectType": product.ObjectType if hasattr(product, "ObjectType")

↪→ else "No ObjectType available"

120 })

121

122 # Convert products to a DataFrame

123 ifcproduct_df = pd.DataFrame(data)

124

125 # Perform a merge based on the GUIDs in result_df and the GlobalIds in

↪→ ifcproduct_df

126 merged_df = result_df.merge(ifcproduct_df[[’Produkt ID’, ’GlobalId’, ’Typ’,

↪→ ’Name’, ’ObjectType’]], how=’left’, left_on=’GUIDs’, right_on=’

↪→ GlobalId’)

127

128 # Remove the column ’GlobalId’ which is no longer needed

129 merged_df.drop(columns=[’GlobalId’], inplace=True)

130

131 # Save the updated DataFrame in an Excel file

132 merged_df.to_excel(’Mapping_Table_HeliosID_GUID_Typ_-1.xlsx’, index=False)

133

134 # Print the updated DataFrame

135 print(merged_df.head)
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Algorithm C.5: Mapping_table_to_traingobj.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Tue Nov 7 13:04:52 2023

4

5 @author: Hannes

6 """

7

8 import os

9 import pandas as pd

10

11 # Specify the directory containing .obj files

12 obj_directory = r’E:\Simulations\-1\tum_data__-1_mls\2023-12-21_14-35-56\

↪→ output_xyz_files’

13 output_directory = r’C:\Users\Hannes\Desktop\Masterarbeit\Kirn_MA_models\

↪→ SecuFEx_2023-01-30_15-18-07_16965734554749689882\SimpleBIM\

↪→ IFC_export_storeys\-1\Obj_and_mtl_files\After_manupulating\

↪→ New_mapped_obj_files’

14

15 # List all .xyz files in the directory and sort them numerically

16 obj_files = sorted([file for file in os.listdir(obj_directory) if file.

↪→ endswith(’.obj’)], key=lambda x: int(x.split(’_’)[1].split(’.’)[0]))

17

18 # Specify the path to the .xlsx table

19 xlsx_path = ’Mapping_Table_HeliosID_GUID_Typ_-1.xlsx’

20

21 # Loop through each .obj file

22 for obj_file_name in obj_files:

23 # Construct the full path to the current .obj file

24 obj_file_path = os.path.join(obj_directory, obj_file_name)

25

26 # Load the .obj file into a DataFrame

27 with open(obj_file_path, ’r’) as obj_file:

28 obj_lines = obj_file.readlines()

29

30 # Create a DataFrame from the .obj data

31 obj_data = []

32 for line in obj_lines:

33 if line.startswith(’v ’):

34 parts = line.split()

35 if len(parts) > 10:

36 obj_data.append({

37 ’ObjValue’: float(parts[10])
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38 })

39 obj_df = pd.DataFrame(obj_data)

40

41 # Load the .xlsx table into a DataFrame

42 xlsx_df = pd.read_excel(xlsx_path)

43

44 # Join the two DataFrames based on matching values

45 result_df = obj_df.merge(xlsx_df, left_on=’ObjValue’, right_on=xlsx_df.

↪→ columns[2], how=’left’)

46

47 # Create a new row starting with "g" and adding values from the .xlsx

↪→ table

48 new_row = f’g {" ".join(map(str, result_df.iloc[0].drop(xlsx_df.columns

↪→ [2]).tolist()))}\n’

49

50 # Create a new .obj file with the added row

51 new_obj_lines = [new_row] + obj_lines

52

53 # Save the updated .obj file with a new name

54 new_obj_file_path = os.path.join(output_directory, f’New_mapped_{

↪→ obj_file_name}’)

55 with open(new_obj_file_path, ’w’) as new_obj_file:

56 new_obj_file.writelines(new_obj_lines)

57

58 print(f"The new .obj file {new_obj_file_path} has been created and

↪→ saved.")
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Algorithm C.6: Origin_to_Local_COS.py

1 # -*- coding: utf-8 -*-

2 """

3 Spyder Editor

4

5 This is a temporary script file.

6 """

7

8 import os

9

10 def move_coordinates(input_path, output_path):

11 with open(input_path, ’r’) as input_file:

12 lines = input_file.readlines()

13

14 # Move x and y coordinates and keep other columns

15 shifted_lines = []

16 for line in lines:

17 columns = line.split()

18 new_line = ""

19 if len(columns) >= 3:

20 x = round(float(columns[0]) - 2697000, 6)

21 y = round(float(columns[1]) - 5349000, 6)

22 z = round(float(columns[2]), 6)

23 new_line = f"{x} {y} {z} {’ ’.join(columns[3:])}\n"

24 else:

25 new_line = line

26 shifted_lines.append(new_line)

27

28 # Create the output path

29 if not os.path.exists(output_path):

30 os.makedirs(output_path)

31

32 # Write the moved coordinates to the new file

33 output_filepath = os.path.join(output_path, os.path.basename(input_path)

↪→ )

34 with open(output_filepath, ’w’) as output_file:

35 output_file.writelines(shifted_lines)

36

37 if __name__ == "__main__":

38 # Specify the path to the folder containing the .xyz files

39 input_folder = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11-47-41(

↪→ accuracy_0_0)/output_xyz_files"

40
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41 # Specify the path to the new folder where the shifted files should be

↪→ saved

42 output_folder = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11

↪→ -47-41(accuracy_0_0)/output_xyz_files/XYZ_files_local_COS"

43

44 # Iterate through all .xyz files in the input folder

45 for filename in os.listdir(input_folder):

46 if filename.endswith(".xyz"):

47 input_path = os.path.join(input_folder, filename)

48 move_coordinates(input_path, output_folder)

49

50 print("Shift completed.")
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Algorithm C.7: Convert_to_PLY.py

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sun Jan 14 13:20:18 2024

4

5 @author: Hannes

6 """

7

8 import open3d as o3d

9 import os

10

11

12 def xyz_to_ply(input_xyz, output_ply):

13 # Read the .xyz file

14 points = []

15 with open(input_xyz, ’r’) as file:

16 for line in file:

17 values = line.split()

18 if len(values) >= 3:

19 x, y, z = map(float, values[:3])

20 points.append([x, y, z])

21

22 # Create an Open3D PointCloud object

23 point_cloud = o3d.geometry.PointCloud()

24 point_cloud.points = o3d.utility.Vector3dVector(points)

25

26 # Save the PointCloud object in .ply format

27 o3d.io.write_point_cloud(output_ply, point_cloud, write_ascii=True)

28

29

30 # Directory where the .xyz files are stored

31 xyz_directory = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11-47-41(

↪→ accuracy_0_0)/output_xyz_files/XYZ_files_local_COS"

32

33 # Directory where the .ply files will be saved

34 ply_directory = "E:/Simulations/-1/tum_data__-1_mls/2024-01-25_11-47-41(

↪→ accuracy_0_0)/output_xyz_files/PLY_files"

35

36 # Iterate through all .xyz files in the directory

37 for filename in os.listdir(xyz_directory):

38 if filename.endswith(".xyz"):

39 input_xyz_path = os.path.join(xyz_directory, filename)

40
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41 # Generate the output path for the .ply file

42 output_ply_filename = os.path.splitext(filename)[0] + ".ply"

43 output_ply_path = os.path.join(ply_directory, output_ply_filename)

44

45 # Convert .xyz to .ply

46 xyz_to_ply(input_xyz_path, output_ply_path)
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Appendix D

Submission Content

The enclosed ZIP file contains the following content:

- The final version of this thesis [.pdf]

- HELIOS++ data and files

- Links to the respective Gitlab LRZ repositories and Jupyter notebooks

- BIM models files of storeys and simpleBIM file

- Mapping Tables for each storey

- Ground Truths and partial (Point clouds and .obj files) of storey -1

- Noisy Point Clouds of all other storeys

- Completed Point Clouds and .binvox files
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