

Technical University of Munich

TUM School of Engineering and Design

Chair of Computational Modelling and Simulation

A Bottom-Up Approach for the Automatic Creation of

a Digital Staircase Model Using Point Cloud Data

and Parametric Prototype Models.

Masterthesis

for the Master of Science Program Resource-efficient and Sustainable

Building

Author: Alexandra Bulla

Matriculation No.: 03698137

1. Supervisor: Prof. Dr.-Ing. André Borrmann

2. Supervisor: M.Sc. Mansour Mehranfar

Date of issue: 01. October 2023

Date of submission: 01. April 2024

ge45tud
Highlight

Preface II

In the master thesis, I am thankful for the persons who supported its realization. I con-

vey my appreciation to M.Sc. Mansour Mehranfar for his expertise, guidance, feed-

back, support, and supervision.

Acknowledgment is also due to the School of Engineering and Design at the Technical

University of Munich, particularly the Chair of Computational Modeling and Simulation,

where the thesis was created and defended.

Lastly, I express gratitude to my parents and friends. Their encouragement has been

a crucial foundation for the completion of the master’s thesis.

Preface

Abstract III

In the last decade, there has been a growing interest in the development of DT models

for existing structures and infrastructures in the built environment. In this context, laser

scanner technology emerges as a technology due to its ability to capture dense point

clouds of the built environment with precise geometry and semantics. The creation of

a digital model from PCD involves two main steps: firstly, semantic labeling of point

cloud to separate objects, followed by the creation of the digital model. The conven-

tional process of creating digital models is associated with challenges in processing

point clouds and inferring the topological relation between elements. To address the

challenges, the capabilities of Artificial Intelligence (AI) and Machine Learning (ML)

capabilities in scene understanding are leveraged. The main objective is to develop an

automated method for creating a digital model of staircase objects using PCD. To

achieve this, a data-driven bottom-up approach is used to identify points corresponding

to each instance of a staircase within the point cloud. Furthermore, an automated

method is implemented to extract values of parameters required for creating the digital

model. To create the digital model of the staircase, a library of parametric staircase

models is collected. These models are defined by key parameters such as height,

width, and length of each run within the staircase. Additionally, these models are made

adaptable by defining the direction of the staircase and the number of landing treads.

The extracted parameters from the point cloud data are used for the creation of the

digital model based on the predefined staircase library. The result of testing the pro-

posed approach on the dataset highlights its effectiveness with a mean error value of

about 3.5cm in the estimation of the elements parameters.

Abstract

Zusammenfassung IV

In den letzten Jahren ist das Interesse an der Entwicklung von DT Modellen für beste-

hende Strukturen und Infrastrukturen in der gebauten Umgebung gestiegen. In diesem

Kontext erweist sich die Laserscanner Technologie als entscheidende Technologie

aufgrund ihrer Fähigkeit, dichte Punktwolken der gebauten Umgebung mit präziser

Geometrie und Semantik zu erfassen. Die Erstellung eines digitalen Modells aus der

Punktwolke umfasst zwei Hauptschritte: erstens die semantische Beschriftung der

Punktwolke zur Trennung von Objekten, gefolgt von der Unterscheidung der Objekte

in der Punktwolke. Der herkömmliche Prozess der Erstellung digitaler Modelle ist mit

Herausforderungen bei der Verarbeitung von Punktwolken und dem Ableiten der topo-

logischen Beziehung zwischen den Objekten verbunden. Um dieser Herausforderung

zu entsprechen, werden die Fähigkeiten künstlicher Intelligenz (KI) und maschinelles

Lernen (ML) in der Szenenverarbeitung genutzt. Das Hauptziel besteht darin, eine au-

tomatisierte Methode zur Erstellung eines digitalen Modells von Treppenstrukturen un-

ter der Verwendung dichter Punktwolken zu erstellen. Ein datengesteuerter Bottom-

up-Ansatz wird verwendet, um Punkte zu identifizieren, die einer Treppe in der Punkt-

wolke entsprechen. Darüber hinaus wird eine automatisierte Methode implementiert,

um Werte für die erforderlichen Parameter des digitalen Modells zu extrahieren. Zur

Erstellung des digitalen Modells der Treppenstrukturen wird eine Bibliothek parametri-

scher Treppenmodelle erstellt. Diese Modelle werden durch Schlüsselparameter wie

Höhe, Breite und Länge jeder Stufe definiert. Zusätzlich werden diese Modelle ange-

passt, indem die Richtung der Treppe und die Anzahl der Treppenstufen definiert wer-

den. Die extrahierten Parameter aus den Punktwolken werden für die Erstellung des

digitalen Modells auf Grundlage der vordefinierten Treppenbibliothek verwendet. Das

Ergebnis der Testung des vorgeschlagenen Ansatzes anhand des Datensatzes der

Technischen Universität München zeigt dessen Effektivität mit einem mittleren Fehler-

wert von etwa 3.5cm bei der Schätzung der Parameter.

Zusammenfassung

Contents V

List of Figures VII

List of Tables IX

List of Abbreviations X

1 Introduction 11

 1.1 Motivation ... 11

 1.2 Objective ... 11

 1.3 Structure ... 12

2 State of the Art 13

 2.1 Digital Twinning of the Real World .. 13

 2.2 Scan-to-BIM .. 14

 2.3 Point Cloud Data ... 15

 2.4 Point Cloud Semantic Enrichment .. 17

 2.4.1 Bottom-up and Top-down approach ... 17

 2.4.2 Supervised Machine Learning .. 20

 2.4.3 Unsupervised Machine Learning .. 22

 2.5 Geometric Model Reconstruction .. 23

 2.5.1 Implicit Representation .. 24

 2.5.2 Explicit Representation .. 25

 2.5.3 Parametric Modeling .. 26

 2.6 Research Gap ... 27

3 Methodology 29

 3.1 Proposed Workflow ... 30

 3.2 Semantic Enrichment .. 30

 3.2.1 Feature Extraction .. 31

 3.2.2 Training the Random Forest Model .. 35

 3.3 3D Model Reconstruction .. 37

 3.3.1 Bottom-upParameter Extraction ... 37

 3.3.2 Model Reconstruction .. 42

Contents

Contents VI

4 Implementation and Results 49

 4.1 Experimental Result on the semantic enrichment 50

 4.2 Experimental Result on the Staircase Parameter Extraction 52

 4.3 Experimental Result on the Creation of Staircase Models 53

 4.4 Evaluation ... 60

5 Discussion 62

 5.1 Comparison between classification and clustering methods 63

 5.2 Contributions and Limitations .. 66

6 Conclusion 67

References 68

List of Figures 7

Figure 1: Result of the region growing algorithm for the separation of planar surfaces

within the ... 18

Figure 2: The result of the implementation of the RANSAC algorithm for the detection

of planar .. 19

Figure 3: Clustering of the points using DBSCAN method: Core, Border, and Noise 22

Figure 4: Constructive Solid Geometry. Construction tree and result (Borrmann et. al,

2015). .. 24

Figure 5: Boundary Representation by dividing a solid into its faces and lines defined

by start and end vertex (Shah & Martti, 1995). 25

Figure 6: The proposed workflow for the creation of a digital staircase model using

PCD. .. 29

Figure 7: Training Datasets .. 30

Figure 8: Normal Vectors according to the barycenter. .. 33

Figure 9: Left: Staircase Instance. Middle: DBSCAN Clustering result 38

Figure 10: Histogram of the most frequent z-coordinates. .. 38

Figure 11: From left to right: the components of the staircase instance are organized

as follows: Part a, Part b, and Part c. .. 39

Figure 12: Result of the quantification of planar surfaces by grouping points with similar

 .. 39

Figure 13: Staircase Parameters Tread Width, Tread Height, Handrail Heigth, Run

Height, Run Length, Run Width and Landing Length. 40

Figure 14: Different parametric staircase design. ... 42

Figure 15: Comparison between point cloud data and parametric model. 44

Figure 16: Left: TUM-F1, Right: Parametric Model. .. 45

Figure 17: Left: TUM-F2, Right: Parametric Model. .. 46

Figure 18: Geometric constraint representing the distance between two levels. 47

Figure 19: Instance properties of the built-in family stair on the left and type properties

on the right. ... 48

Figure 20: Point Cloud Data to be labeled by the classification model. 49

List of Figures

List of Figures 8

Figure 21: Classification of dataset TUM-F2. .. 51

Figure 22: Dimensional Constraints within three parts in the entire staircase. 54

Figure 23: Dataset TUM-F0 represented with Point Cloud and Parametric Model in

Autodesk Revit. ... 55

Figure 24: Dataset TUM-F1 represented with Point Cloud and Parametric Model in

Autodesk Revit. ... 55

Figure 25: Dataset TUM-F2 represented with Point Cloud and Parametric Model in

Autodesk Revit. ... 55

Figure 26: Dynamo Script for the automatic adjustment of the staircase parameters.

 .. 58

Figure 27: Random Forest Classification Model Performance Metric TUM-F1. 64

Figure 28: Decision Tree Classification Model Performance Metric TUM-F1. 64

List of Tables 9

Table 1: Geometric Features formulas with the eigenvalues λ1, λ2, λ3 (Hackel et al.,

2016). .. 32

Table 2: Definition of TP, FP, FN and TN. ... 35

Table 3: Basic formulas for each part within the staircase. 41

Table 4: Parameters defining the staircase. .. 45

Table 5: Classification of dataset TUM-F0 and the performance metric of its

classification model with and accuracy of 0.95. 50

Table 6: Classification of dataset TUM-F1 and the performance metric of its

classification model with an overall accuracy of 0.95. 51

Table 7: Classification of dataset TUM-F2 and the performance metric of its

classification model with an overall accuracy of 0.96. 51

Table 8: Parametric values for datasets TUM-F1 and TUM-F2. 53

Table 9: Excel file containing parametric values within dataset TUM-F0. 57

Table 10: Excel file containing parametric values within dataset TUM-F1. 57

Table 11: Excel file containing parametric values within dataset TUM-F2. 57

Table 12: Deviation between actual and extracted parameter values. 60

List of Tables

List of Abbreviations 10

AI Artifical Intelligence

AEC/FM Architecture, Engineering and Construction/ Facility Management

ALS Aerial Laser Scanner

BIM Building Information Modeling

Brep Boundary Representation

CSG Constructive Solid Geometry

DBSCAN Density-Based Spatial Clustering of Application with Noise

DT Digital Twin

eps Epsilon

FN False Negative

FP False Positive

IoU Intersection over Union

IoT Internet of Things

KI Künstliche Intelligenz

LiDAR Light Detection and Ranging

LOD Level of Detail

MLS Mobile Laser Scanning

ML Machine Learning

minPts Minimum Points

PCD Point Cloud Data

RADAR Radio Detection and Ranging

RANSAC Random Sample Consensus

RGB Red Green Blue

SONAR Sound Navigation and Ranging

TLS Terrestrial Laser Scanning

TN True Negatives

TP True Positives

List of Abbreviations

Introduction 11

1.1 Motivation

The digital twin DT, initially arising in the manufacturing and automotive sectors, has

found its way into Architecture Engineering and Construction (AEC) domain as a tool

within the operation and maintenance phase. Ensuring the synchronization between

the DT and its physical counterpart is a main challenge in the implementation of DT

technology. The key lies in maintaining the system’s capacity to update the digital

model to mirror real-time changes in the physical entity. Therefore, monitoring, control

and simulation will be necessary during the object’s lifecycle, because its prediction of

the future construction state allows to simulate and test preventive measures. How-

ever, the adoption of the DT concept in the construction industry remains in its begin-

ning. The upward trend in research underscores a rising interest in exploring DT within

the construction domain (Opoku et. al, 2021).

1.2 Objective

The main objective of the thesis is to propose an automated method for the creation of

digital staircase models using PCD. An approach including the methodology, namely

the bottom-up approach is utilized. To illustrate the proposed methodologies, a para-

metric model of a staircase is created, allowing for adjustments of various parametric

values. In the final stage, the extracted parametric values within a geometric model of

a staircase are verified by setting the created parametric model in comparison with the

point cloud. Through this exploration, the effectiveness and accuracy of the proposed

methodology in automating the recreation process is evaluated.

1 Introduction

Introduction 12

1.3 Structure

The thesis is organized as follows: In Section 2, a review of current literature associ-

ated with the topic related to the recreation of a digital model from PCD is represented,

which serves as a foundation, providing background information for subsequent sec-

tions. Section 3 presents the developed methodology, which is described in detail from

a theoretical standpoint. Section 4 showcases several case studies to demonstrate the

feasibility of the proposed approach. Section 5 offers a discussion of the main findings

of the study, along with future directions for research in the field. Finally, Section 6

provides a conclusion.

State of the Art 13

2.1 Digital Twinning of the Real World

Although various definitions of a DT in the built environment define each different com-

ponents such as geometric or semantic information, objects or processes, the common

essence in the definition of a DT lies in its ability to mirror a real-world asset in a virtual

space, maintaining a continuous connection through real-time data exchange between

the physical entity and its digital counterpart (Kritzinger et al., 2018).

In current academic discussions, there is an ongoing debate about whether the con-

cept DT can be equated with the definition of a BIM. This debate arises from the parallel

representation of an asset’s functional and physical characteristics within both DT and

BIM frameworks. While some scholars may find concordance in the assertion, dissent-

ing viewpoints are also evident. Daskalova (2021) contributes to this discourse by

providing a distinction between DT and BIM predicated on their purposes. A disparity

articulated by Daskalova (2021) resides in the integration of real-time data within the

DT. This difference serves as a factor for distinguishing DT from BIM. While BIM con-

centrates predominantly on the static representation of the designed and constructed

state, it refrains from integrating real-time data (Daskalova, 2021).

Similarly, as stated by Pan (2023), a BIM primarily focuses on geometric and semantic

information related to the design and construction phases of a facility. It functions as a

digital representation of the physical and functional characteristics of the built environ-

ment’s assets. On the other hand, a DT extends beyond the BIM concept by integrating

real-time data from various sources, such as sensors and Internet of Things (loT) de-

vices throughout the entire lifecycle of a facility. This broader scope allows a DT to

provide an up-to-date representation of the physical asset, enabling better monitoring,

analysis, and decision-making across multiple sectors, including water or waste sys-

tems (Pan, 2023).

2 State of the Art

State of the Art 14

Lu and Brilakis (2019) introduce a conceptual framework that defines three forms of

DT, namely the as-designed, as-built, and as-is DT. The as- designed DT is character-

ized by its utilization of data provided by designers prior to construction, serving as a

tool during the design phase to simulate, visualize and optimize the planned design

before its construction. In contrast, the as-built DT captures the physical realization of

the constructed asset, emphasizing variations from the original design that may have

occurred during the construction phase. This variant is crucial in capturing real-world

conditions and deviations that occurred during and after the construction phase. The

final variant of a DT is the as-is DT, which represents the state of the asset throughout

its operational lifespan. This iteration of the DT is relevant during the asset’s mainte-

nance and operational phase, facilitating real-time monitoring, analysis, and manage-

ment. The integration of real-time data provides insights into the current condition and

performance of the asset (Lu & Brilakis, 2019). Lu posits that the central benefit of a

DT resides in the automation of inspection processes. Through the incorporation of

real-time data, the DT facilitates evaluations of the asset’s condition, thereby effecting

cost reductions in the oversight and maintenance of the built environment’s assets (Lu

& Brilakis, 2019).

2.2 Scan-to-BIM

A PCD captures precise and detailed as-built information, particularly valuable in the

creation of as-built digital building model. The procedure involved in transforming PCD

into an accurate representation of the existing structure or environment in the form of

a BIM is commonly known as Scan-to-BIM. In other words, Scan-to-BIM is the process

of utilizing PCD to reconstruct a BIM that reflects the real-world conditions of the built

environment (Son et al. , 2015). At present, the manual processing of the scan-to-BIM

procedure is both labor-intensive and error-prone. While LiDAR devices increase the

scene capture process in surveys compared to traditional manual techniques, the time

required for generating the corresponding BIM model tends to increase. The increased

duration depends on factors such as the complexity and size of the structure, as well

as the presence of building elements like windows, doors, and construction details

(Rocha & Mateus, 2021). For instance, the time spent capturing through laser scanners

is 2.82 hours, whereas the subsequent modeling demands 28 hours. Consequently,

contemporary research focuses on automating the modeling process to reduce hu-

man-related labor and enhance efficiency (Pan, 2023).

State of the Art 15

As noted by Tang et al. (2010), the landscape of commercial software supporting the

scan-to-BIM process is in the state of rapid progress. Despite the availability of various

software solutions, no single program can comprehensively remodel an entire point

cloud dataset. Consequently, there is a need to transfer information multiple times be-

tween different software tools to attain the desired outcome. This iterative process of-

ten results in the loss of information during data exchanges. Automating the process

not only reduces labor costs but also accelerates project timelines by streamlining the

generation of BIM models (Tang et al., 2010).

2.3 Point Cloud Data

The acquisition of environmental geometry is facilitated using laser scanning devices,

leveraging the technology of LiDAR. This technology enables the generation of PCD,

which serves as a detailed representation of the scanned environment. Gathering data

using measuring tapes or conventional cameras is both time-consuming and prone to

inaccuracies when implemented on a large scale. Consequently, laser scanning has

emerged as the method for acquiring precise information about the built environment

(Tang et al., 2010).

Depending on the intended application, distinct LiDAR devices, namely aerial laser

scanners (ALS), terrestrial laser scanners (TLS), or mobile laser scanners (MLS), are

employed. While these devices share the LiDAR technology, they diverge in their ap-

plication. Aerial laser scanners ALS, for instance, are affixed to flying objects such as

drones to capture terrain information from above. Mobile laser scanners MLS are

mounted on platforms like cars and trucks, mapping urban environments. In contrast,

terrestrial laser scanners TLS are mounted on fixed structures like tripods to capture

detailed information surrounding the scanner’s position (Olsen et al., 2010). In the field

of AEC, TLS emerges as a method for surveying, monitoring, and inspecting the quality

within the built environment. This technique is favored for its accuracy for capturing

structural measurements, because they offer accurate and detailed as-built information

(Abreu et al., 2023).

State of the Art 16

PCD is a collection of three-dimensional points that describe the surfaces of objects

within a scanned environment. This dataset comprises XYZ coordinates, capturing the

spatial positions of each point. Additionally, it includes information regarding RGB val-

ues, conveying color attributes, and surface normals, providing insight into the orien-

tation of the points with references to the surfaces they represent (Bello et al., 2020).

Unlike, RADAR, which used radio waves and SONAR, which relies on sound waves,

LiDAR employs light waves to capture information about the environment. The devices

consist of an emitter, a rotator, and a photodetector. The emitter emits a pulse of laser

light, traveling until it encounters an object. Upon reaching the object’s surface, the

laser beam reflects to the emitter in its original direction. To send beams in all direc-

tions, the emitter is placed on a continuously rotating device. The reflected light is then

captured by the photodetector (Liu et al., 2021).

To calculate the distance between the device and the object, the LiDAR records the

time the laser beam is emitted and the time until the reflected beam returns to the

device. The difference between these times corresponds to the total travel time of the

laser beam, which, due to reflection at the object’s surface, is twice the distance trav-

eled. Using the constant speed of light and the measured time, the distance is calcu-

lated with the equation:

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑐

2
· ∆𝑡

 Eq.1

Here c is the speed of light, ∆t equals the time the light signal has travelled. Following

this, trigonometric calculations, combined with the orientation information of the LiDAR

sensor, transform the distance for each point into XYZ coordinates in the device’s local

coordinate system (Liu et al., 2021).

State of the Art 17

2.4 Point Cloud Semantic Enrichment

The semantic enrichment is described by the processing of PCD, particularly the as-

signment of a label to points using semantic segmentation and classification through

traditional methods or AI techniques. The semantic segmentation of point clouds in-

volves various approaches, primarily categorized as shape-based or region-based

methods. These approaches, however, rely on predefined primitive shapes character-

ized by specific parameters and thresholds (Pan, 2023). To semantically segment a

point cloud, machine learning algorithms are employed. Machine learning algorithms

do not depend on parameters but are capable of learning existing patterns within a

data structure. Machine learning algorithms are categorized into supervised and unsu-

pervised machine learning algorithms. The subsequent section explores the segmen-

tation of point cloud data, examining both traditional bottom-up and top-down ap-

proaches, characterized by shape or region-based methods, and machine learning al-

gorithms. Within the realm of supervised machine learning, the section explores the

use of classification trees as a tool for predictive modeling. Moreover, it provides in-

sights into unsupervised machine learning, specifically emphasizing the clustering

method known as Density-Based Spatial Clustering of Applications with Noise

DBSCAN. The effectiveness of DBSCAN is clarified as a technique for grouping similar

data points based on patterns, thereby contributing to the exploration of groups within

the dataset.

2.4.1 Bottom-up and Top-down approach

According to Abreu et al. (2023), PCD analysis involves identifying features that rep-

resent characteristic geometric shapes. In the bottom-up approach, the process begins

by selecting individual data points, collecting, and clustering them to form a geometric

structure. For instance, Awwad et al., (2010) represented a workflow for detecting

planar surfaces within unstructured point clouds using algorithms within the bottom-up

approach (Awwad et al., 2010). On the other hand, the top-down approach reconstruc-

tion algorithms address uncertainty or missing data by incorporating knowledge about

the structure's appearance and arrangement. This acquired knowledge is subse-

quently employed to synthesize information in regions where data is uncertain or ab-

sent (Abreu et al., 2023). Mehranfar et al., (2022) developed a workflow which uses

networks to establish connections between spaces and objects (Mehranfar et al.,

2022).

State of the Art 18

Region-based techniques leverage local features obtained from a surrounding neigh-

borhood of each point to combine neighboring points sharing similar characteristics

(Khaloo & Lattanzi, 2017). The process initiates by selecting a seed point, and a region

is gradually expanded around this seed point by incorporating points with similar fea-

tures. Figure 1 shows the algorithm applied to a point cloud to identify planar surfaces

with similar z coordinates. The algorithm starts by choosing the point with the lowest z

coordinate as the initial seed point. A specified threshold determines the acceptable

difference in z coordinates for points to be included in the growing region. The algo-

rithm iteratively grows the region until z coordinate differences exceed the defined

threshold. After completing one iteration for a specific seed point, the algorithm selects

a new seed point to initiate the new region growing process. This iterative procedure

continues until the entire point cloud is segmented into regions with similar z coordi-

nates (Khaloo & Lattanzi, 2017).

Figure 1: Result of the region growing algorithm for the separation of planar surfaces within the

staircase.

State of the Art 19

Shape-based methods, such as the Random Sample Consensus RANSAC algorithm,

are employed to identify groups of points conforming to specific primitive structures

within a larger dataset. RANSAC detects parametrically defined primitives, including

planes, cylinders, lines, ellipses, or circles, within PCD. For instance, when fitting a

planar surface using RANSAC, the following parametric equation of a plane is utilized:

 Ax + By + Cz + D = 0
 Eq. 2

Where A, B and C represent the normal vector of the plane, D is represented by a

constant term on a plane and x y and z are coordinates of a point on the plane. The

RANSAC algorithm starts with randomly selecting three points from the data and de-

fining a planar surface equation based on the chosen points. By measuring the dis-

tance between the remaining points and the calculated plane, the algorithm aims to

find the planar surface equation that results in most of the points lying in the same

plane. According to Fayez et. al (2007) the algorithm requires specific input data,

namely the corresponding point cloud and numeric parameters. These parameters

serve two primary purposes: firstly, they determine the threshold for the number of

points required to be considered part of the same plane, and secondly, they specify

the maximum acceptable distance between a plane and the point to be categorized as

an inlier. One of the algorithm's main function is to isolate points associated with walls,

ceilings, or floors, as depicted in the accompanying Figure 2 (Fayez et al., 2007).

Figure 2: The result of the implementation of the RANSAC algorithm for the detection of planar

surfaces.

State of the Art 20

2.4.2 Supervised Machine Learning

Machine Learning involves the development of algorithms designed for computer

learning, focusing on identifying regularities or patterns within data. In the realm of

supervised machine learning, algorithms are designed to create functions that estab-

lish connections between input data and the desired output data. One specific applica-

tion of supervised machine learning is classification. In classification tasks, algorithms

such as decision tree classifiers or random forest classifiers are used to understand

and learn the relationships between input and output data (Nasteski, 2017).

The algorithm identifies patterns within the data and generates models, which are then

tested on new data to extract and predict information. This section delves into the prin-

ciples underlying the decision tree classifier and the random forest classifier. Subse-

quently, it introduces the performance metric designed to evaluate these two algo-

rithms in the classification process.

The decision tree classifier is an algorithm, comprising nodes, branches, and leaves.

According to Sharma and Kumar (2016) in a decision tree each node represents a test

on a selected feature, and the node’s outputs are determined by branches defining

specific conditions, that decide how the input of the node is tested. The output results

in a leaf node representing a class label or in a further node where further tests are

conducted on the remaining data. The primary objective of a decision tree is to predict

the value of a target based on given inputs. To determine the first node and its corre-

sponding split condition the decision tree classifier utilizes feature selection measure-

ments, including entropy and information gain. Entropy, in this context, quantifies the

impurity of a given dataset. The calculation involves the use of proportions (pi) repre-

senting the occurrence of a certain class within the dataset divided by the total count

of classes within the dataset. The sum indicates the occurrence of the other classes

within the dataset, for which the same formula is applied.

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = ∑ − 𝑝𝑖 𝑙𝑜𝑔2(𝑝𝑖)
 Eq. 3

State of the Art 21

The information gain is the expected reduction in the entropy caused by the splitting of

a node by a feature.

𝐺𝑎𝑖𝑛(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑

𝐷𝑗

𝐷
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑗)

 Eq. 4

This formular represents D to be the entire dataset, A refers to the selected feature

and Dj corresponds to the instances count in the features dataset. In the thesis, the

dataset undergoes a process where it is divided into subsets based on specific ranges

of values associated with the selected feature. Within each of these subsets, the count

of instances, denoted as Dj in the formula, is determined. Dj signifies how many data

points fall within the specified range of values for the chosen feature within a subset.

Following this, the entropy for each subset is computed using the standard entropy

formula, considering the proportions of different classes within that subset. The infor-

mation gain for the selected feature is computed using the formula. This entire process

is repeated for each feature, and the feature that results in the highest information gain

is chosen to be the root node for the first split in the decision tree (Sharma & Kumar,

2016). According to Hegelich (2016), decision trees are susceptible to overfitting. An

overfitted model tends to memorize the training data rather than learning the underlying

patterns. As a result, the overfitted models may exhibit high performance on the train-

ing data set, but not on unseen data (Hegelich, 2016). The Random Forest algorithm

is an improved version of the decision tree method, addressing the limitations of deci-

sion trees by taking advantage of an ensemble of trees. Unlike a decision tree, which

builds up and predicts based on a single tree, the Random Forest Classifier builds up

and predicts on multiple trees. The algorithm creates a group of decision trees, built

up from a random selection of subsets of the training data. Here, an instance is se-

lected multiple times, meaning that an instance appears more than once in the ensem-

ble of decision trees, contributing to the diversity among the trees (Breimann, 2001).

Furthermore, the features describing the data are selected randomly for each split in

one decision tree within the entire tree ensemble. The size of the random sample, as

mentioned by Hegelich (2016), is set to the square root of the total number of features.

At each split, the decision tree considers a subset of features rather than all of them.

The rationale behind this is to reduce the correlation between the trees in the ensem-

ble. By using a random subset of features, each tree in the Random Forest is exposed

to different aspects of the data, leading to a more diverse ensemble. A high number of

State of the Art 22

features guarantees that all data points are evaluated by enough decision trees. After

the algorithm has been trained on the training data and hence has built various decision

trees, the entire model is constructed by combining the predictions of the individual

trees. The prediction, that receives most of the votes, is chosen to be the final predic-

tion of a given instance (Hegelich, 2016).

2.4.3 Unsupervised Machine Learning

Clustering refers to the problem of finding regions within a dataset where the objects

exhibit higher similarity compared to clusters in different regions. Gan et al. (2020)

differentiate between hierarchical, fuzzy, center-based, search-based, graph-based,

grid-based, density-based, model-based, subspace, and miscellaneous clustering al-

gorithms (Gan et al., 2020). The clustering process using the clustering algorithm den-

sity-based spatial clustering of applications with noise DBSCAN is employed to elimi-

nate data points associated with a specific instance of interest.

According to Hahsler et. al (2019), the concept behind DBSCAN is the principle, that

points are grouped into the same cluster based on their density-reachability to one

another. The algorithm defines two parameters minimum Points minPts and epsilon

eps. Minimum Points corresponds to the minimum number of data points within the

neighborhood, whose size is defined by the radius eps. Leveraging these parameters,

the algorithm identifies dense regions and categorizes data points within the region

into core, border and noise points based on the following conditions (Hahsler et al.,

2019).

Figure 3: Clustering of the points using DBSCAN method: Core, Border, and Noise

(Hahsler, Piekenbrock, & Doran, 2019).

State of the Art 23

A core point is identified when the number of datapoints within the defined distances

meets or exceeds the minimum specified by minPts. A point situated within the dis-

tance, defined by eps, of a core point, yet lacking sufficient neighbors to be classified

a core point itself, is designated a border point. Both core and border points contribute

to the cluster, whereas points failing to meet the minimum criteria are labeled as noise

or outliers. Applying the DBSCAN assumes estimating the parameters minPts and eps

(Hahsler et al., 2019) Hahsler et al. (2019) state an approach for determining minPts

by recommending a minimum value equal to the number of dimensions in the dataset

plus one. In the context of the provided dataset, with xyz coordinates, indicating three

dimensions of the dataset, the parameter minPts is set equal to four. To determine a

value for eps, the manual modification of the parameters is required to eliminate data-

points associated with an instance of interest (Hahsler et al., 2019).

2.5 Geometric Model Reconstruction

Borrmann et al. (2015) describe two distinct techniques for the reconstruction of solid

models: implicit representation and explicit representation. Implicit approaches involve

Constructive Solid Representation (CSG), while explicit approaches use Boundary

Representation (B-Rep). Each method has its own set of advantages and disad-

vantages. The implicit approach, utilizing CSG, allows for the traceability of modeling

operations, facilitating the modification of geometric results by altering construction

steps. CSG stores the parameters defining the shape of the solid and the operations

to combine them together. On the other hand, geometric models constructed through

explicit approaches (B-Rep) are challenging to modify due to an undocumented gen-

eration process. The B-Rep modeling method only stores the result of the operations

that define the geometric shape. In summary, the implicit approach offers advantages

in terms of simplicity, traceability, and modification. On the other hand, the explicit ap-

proach involves specifying geometric elements, providing a more detailed but less flex-

ible representation. Eastman et al. (2011) state that these two methods, CSG and B-

Rep, were in competition until they were integrated. Consequently, parametric model-

ing tools now accommodate both approaches. Through this integration, CSG is em-

ployed for geometry editing, while the B-Rep methodology is utilized for visualization,

measurement, and clash detection purposes (Eastman, 2011). The subsequent sec-

tion aims to explore techniques of solid modeling, examining both implicit and explicit

approaches and parametric modeling.

State of the Art 24

2.5.1 Implicit Representation

Constructive Solid Geometry (CSG) relies on the representation of regular primitives

and set operations such as union, intersection, and difference. However, its application

is constrained by the availability of solid primitives (Shapiro, 2002). Voelcker and Re-

quicha (1977) emphasize that primitive half-spaces form the lowest-level entities, com-

bining to create instances of solid primitives. For instance, a system incorporating only

cylindrical and planar half-spaces would return two solid primitives: a block defined by

six planar half-spaces and a cylinder defined by a cylindrical and two planar half-

spaces (Voelcker & Requicha, 1977). These primitives are combined using boolean

operations to construct user-defined geometries. The implicit representation in CSG

captures the entire modeling process within a construction tree, enabling the modifica-

tion of construction steps. Voelcker and Requicha (1977) elaborate on the character-

istics of the construction tree. Each node in the tree signifies a primitive or an operation,

and the leaves denote instantiated primitive solids (Voelcker & Requicha, 1977). The

accompanying Figure 4 illustrates the hierarchical structure in the geometric model

representation using CSG.

Figure 4: Constructive Solid Geometry. Construction tree and result (Borrmann et. al, 2015).

State of the Art 25

2.5.2 Explicit Representation

Boundary Representation (B-Rep) models represent solid objects by decomposing

them into surfaces. These surfaces, in turn, are further divided by a set of faces. Each

face is characterized by a collection of edges, which are represented as curves defined

by pairs of vertices. This hierarchical structure provides a detailed way to represent

complex solid geometries in B-Rep models. (Shah & Martti, 1995).

In the realm of geometry representation, Shah and Martti (1995) propose the following

data structures: the polygon-based boundary data structure and the vertex-based

boundary data structure. Oriented towards geometries characterized by planar sur-

faces with straight edges, the polygon-based boundary data structure represents each

face as a polygon computed from its corresponding vertex coordinates (Shah & Martti,

1995). According to Borrmann et al. (2015) the vertex-based boundary data structure

focuses on specifying the geometry through individual vertices in space. The shape of

the solid is determined by the connection and position of these vertices. The data struc-

ture is utilized to represent simple solids without any voids. To achieve a geometric

model with voids, the data structure must be expanded (Borrmann et al., 2015).

Figure 5: Boundary Representation by dividing a solid into its faces and lines defined by start and end
vertex (Shah & Martti, 1995).

State of the Art 26

2.5.3 Parametric Modeling

Borrmann et al. (2015) define that the parametric modeling refers to the modeling of a

geometric object with geometric and dimensional constraints. By changing parameters

referring to measurements, the entire model is updated (Borrmann et. al., 2015). East-

man et al. (2011) distinguishes between three parametric relations, defining constraints

between the parameters, that are described by geometric constraints like distances

and angles, dimensional or descriptive relations like parallelism and verticality and

equational relations between parameters (Eastman, 2011). Geometry-based paramet-

ric modeling involves creating geometries based on parametric rules. For instance, a

sketch is generated with specific dimensional, equational, and geometric constraints.

This sketch is then combined with a procedural geometric description, such as extru-

sion, to form a three-dimensional geometry. This method is considered implicit repre-

sentation, because the entire construction history is stored, allowing for modifications

at each construction step by adjusting parameters. In contrast, parametric BIM model-

ing puts constraints on the flexibility of parametric modeling due to predefined object

types and constraints within the BIM application. The parametric approach in BIM is

integrated on two levels: Once to establish the geometric construction objects like walls

and stairs, and secondly, to define their positions within the overall building complex.

As the object's position within the building complex must be defined, this approach

typically includes predefined constraints between object types. These parameters en-

compass considerations like parallelism, orthogonality, alignment, distance, and iden-

tical measurements between objects (Borrmann et al., 2015).

The objective of the thesis is to generate a parametric staircase using PCD. The meth-

odology involves using the parametric modeling capabilities of Autodesk Revit, a BIM

application software. Revit facilitates parametric BIM modeling through the integration

of built-in families that contain predefined parameters and constraints. The predefined

staircase structure serves as a foundation for achieving parametric modeling. Revit

facilitates parametric BIM modeling through the integration of built-in families that con-

tain predefined parameters and constraints.

State of the Art 27

2.6 Research Gap

It is commonly agreed that a DT goes beyond a static model by incorporating real-time

data for monitoring and operation. Scan-to-BIM involves using PCD to recreate a BIM

that accurately represents real-world conditions in the built environment. This process

is known for its labor-intensive and error-prone nature since the reconstruction process

depends on the structure’s size and complexity as well as the presence of building

elements and construction details. To address the challenges within scan-to-BIM, AI is

leveraged in automating the scan-to-BIM process. PCD is favored for its accuracy in

capturing structural measurements, providing detailed as-built information. Geometric

features describe the geometry of PCD by utilizing the eigenvalues of the covariance

matrix. The information represents the staircase’s geometry. The primary goal is to

establish a classification model that identifies patterns within the data structure con-

taining coordinate values and geometric feature values. This classification model

groups points sharing similar values in coordinates and geometric features, classifying

points within a point cloud corresponding to the staircase instance. Specifically for

staircase structures, mainly defined by the number of steps and landings within its

structure it becomes crucial to identify those and their dimensions. To achieve this

several already established works are taken as a reference. Awwad et al., (2010)

utilized the RANSAC algorithm in their study, applying it to PCD to identify planar

surfaces within staircase structures. Their research aimed to enhance segmentation

outcomes by refining the RANSAC algorithm (Awwad et al., 2010). Although the

improved algorithm demonstrated better results, it was reduced to staircase structures

without an emphasis on their geometric information. Tovari and Pfeifer (2005)

proposed a segmentation method for ALS data based on region growing. Their

approach involved estimating normal vectors at each point through k-nearest

neighbors, and during the growing phase, neighboring points were incorporated into

the segment based on criteria such as similarity in normal vectors, distance to the

growing plane and distance to the current point (Tóvári & Pfeifer, 2005). Mehranfar et

al., (2022) introduced a methodology aimed at extracting both geometric and semantic

information form objects to improve the creation of a DT. The focus has been on

enhancing algorithms for specific building objects (Mehranfar et al., 2022).

State of the Art 28

However, the previous mentioned works only consider improved algorithms that are

applicable for certain building objects. In order to develop a workflow for the DT

representation of a staircase structure, the ideas within the literature review are taken

as a reference, representing central areas the thesis aims to resolve. These include:

-Interpretation of Classification Results: The section reveals an ongoing question con-

cerning the accurate interpretation of results derived from supervised machine learning

algorithms when applied to staircase classification.

-Selection of algorithms and parameters: The thesis aims to choose the most promis-

ing algorithm and its corresponding parameters, representing the need to determine

the optimal approach for staircase modification.

-Geometric and Dimensional Constraints for Parametric Modeling: The literature high-

lights a particular research gap regarding the identification of appropriate geometric

and dimensional constraints for remodeling the parameters of a staircase geometry

within the context of scan-to-BIM processes.

Methodology 29

The current section outlines the method developed for the automatic creation of a dig-

ital staircase model from PCD. The process initiates with the utilization of CloudCom-

pare and the programming language Python for the processing of point clouds. The

initial objective involves the identification of staircases within the point cloud dataset.

To achieve this, machine learning algorithms, particularly the Random Forest Classi-

fier, are utilized for staircase identification.

Following the identification of staircases, adjustments are applied to streamline the

representation of point clouds and prepare them for analysis. Planar surface detection

within the point cloud is a major part to facilitate the subsequent analysis. The point

cloud is divided into different parts based on the positions of planar surfaces.

The ongoing analysis of the point cloud's values involves the derivation of the coordi-

nate’s maximum and minimum information. Basic calculations are applied to extract

width, length, and height values for each stair run. To achieve the number of steps, the

current approach involves grouping points with similar z-coordinates. Calculated val-

ues for each stair run are presently being utilized to create the DT of the point cloud,

specifically within the BIM authoring tool Autodesk Revit, which provides predefined

parametric models for staircase components.

3 Methodology

Figure 6: The proposed workflow for the creation of a digital staircase model using PCD.

Methodology 30

3.1 Proposed Workflow

For evaluation the data-driven bottom-up approach is centered on staircase instances

captured by a TLS at the Technical University of Munich. It presents three different

point clouds with staircases, each characterized by a similar geometry involving land-

ings and runs perpendicular to each other. Consequently, the introduced bottom-up

approach is adaptable and is applied to staircases from various environments, pro-

vided they adhere to the conditions of perpendicularity and planar surface interruption.

3.2 Semantic Enrichment

The initial phase revolves around identifying staircases within indoor point clouds. To

achieve this, machine learning algorithms are utilized to establish a tool capable of

assigning labels to individual points within the dataset. This entails the utilization of a

Random Forest Classification Model. In essence, the model undergoes training on ex-

isting datasets that have already been labeled. After training the model, it is then ap-

plied to unclassified datasets, assigning labels to points associated with staircase ge-

ometries. For training purposes, a diverse set of point clouds from various sources is

used. These datasets are labeled using domain knowledge within the open-source

software CloudCompare. The labeling process encompasses distinct categories,

namely Wall, Ceiling, Floor, Furniture, Stair, and Column.

Figure 7: Training Datasets

Methodology 31

3.2.1 Feature Extraction

Each point cloud undergoes an analysis to compute geometric features that character-

ize the overall geometric shape within the dataset. These geometric features include

verticality, planarity, surface variation, omnivariance, anisotropy, as well as the calcu-

lation of normals with reference to the point cloud's barycenter and their relative height.

The neighboring distance represented by the radius contains the necessary points that

are included for feature calculation. The larger the radius, the more points are included

within the search area. The size is necessary to consider relevant geometries within

the same neighborhood. For instance, larger search areas capture more complex ge-

ometric structures like furniture. Geometric features describe the point clouds geomet-

ric characteristics. Most of the geometric features are calculated by using the eigen-

values of eigenvectors derived from the covariance matrix of points located within the

predefined neighborhood of the point within the PCD. The covariance matrix includes

the calculation of the data’s variance, which indicates how much the data points are

concentrated around the mean of each axis. Based on the covariance matrix of the

PCD, the eigenvectors and their corresponding eigenvalues are calculated. Depending

on the size of the covariance, which is in the case of point clouds a 3x3 matrix, 3

eigenvalues are calculated. The eigenvectors represent the direction of the computed

coordinate system at the given neighborhood and the eigenvalues indicate the magni-

tude of the variance in the direction of the eigenvectors (Lu & Yang, 2019). The eigen-

values are necessary to compute most of the geometric features like planarity, omni-

variance, surface variation of each point in a point cloud. According to He, et al. (2022),

omnivariance relates to the surface’s degree of fluctuation. A higher omnivariance

value represents a more complex surface within the neighborhood. This measure is

useful for distinguishing different types of surfaces. Points with higher omnivariance

may correspond to areas with more irregular surfaces, while lower omnivariance may

indicate regular surfaces like planar surfaces. The formula for surface variance repre-

sented in Table 1. Surface Variance is established by the ratio between the lowest

eigenvalue λ3 and the sum of all eigenvalues. A high value indicates more variation

within the neighborhood. A low value refers to a planar surface within the neighbor-

hood. Surface variation focuses on local variability within a neighborhood, while omni-

variance focuses on the overall variation across the entire surface (He, et al., 2022).

Methodology 32

Eigenentropy is based on the concept of entropy, which measures the disorder in a

dataset. In this context, eigenentropy is calculated using eigenvalues. The calculation

results in a measure of diversity of the eigenvalues. The more the eigenvalues differ,

the more diverse they are, resulting in a higher value for eigenentropy. The more equal

the eigenvalues are, the lower the eigenentropy. Anisotropy calculates how features

or measurements change to different directions in space. A high anisotropy value indi-

cates a greater elongation along the axis determined by the eigenvector associated

with the largest eigenvalue λ1 (Hackel et al., 2016). Planarity describes how flat a sur-

face is by defining a plane within the neighborhood area. A high value indicates a flat

surface. Depending on the computation, the verticality feature is calculated using dif-

ferent formulas. The feature is useful for distinguishing between horizontal and vertical

planar surfaces. A higher value indicates that the point is associated with a vertical

surface. To calculate points that belong to certain planar surfaces of the coordinate

system, which are rather parallel to the z-y-plane or to the z-x plane, the y and x-coor-

dinate of the normal vector is extracted. In conclusion, by extracting the geometric

features of Nz, which is set in reference to the geometric feature of verticality, Ny and

Nx, planar surfaces that are parallel to the planar surfaces of the coordinate system

are recognized. The verticality formula described in the previous section refers to the

normal vector of the point. The absolute value of the z component of the normal vector

is subtracted from one (He, et al., 2022).

Omnivariance (λ1 · λ2 · λ3)
1
3

Surface Variation
λ3

(λ1 + λ2 + λ3)

Eigenentropy
− ∑ 𝜆𝑖 · 𝑙𝑛(𝜆𝑖)

3

𝑖=1

Anisotropy (λ1 − λ3)

λ1

Planarity (λ2 − λ3)

λ1

Verticality 1 − |Nz|

Table 1: Geometric Features formulas with the eigenvalues λ1, λ2, λ3 (Hackel et al., 2016).

Methodology 33

The verticality feature considers the absolute value of the normal vectors, thus equal-

izing negative and positive values. To separate negative and positive normals to relate

them to certain classes, the computation of the normals is processed differently. The

average location of the points in the point cloud is described by the barycenter. The

normal vectors orientation of the points of the point cloud can be oriented either posi-

tively or negatively with reference to the barycenter. A negative barycenter indicates

that the normal vector points towards the direction of the center. A positive barycenter

indicates that the normal vectors point away from the barycenter. In the case of the

commonly used positive barycenter, ceiling points are represented positive, because

its computed positive z component corresponds to the direction of the positive vector

from the cloud barycenter. Points belonging to the floor are described by a negative

normal vector, because its normal vector directs towards the barycenter and thus its

negative z component does not correspond to the direction of the positive vector from

the cloud barycenter.

Figure 8: Normal Vectors according to the barycenter.

Left: Normal Vector Orientation according to positive barycenter

Right: Normal Vector Orientation according to negative barycenter

Methodology 34

Using normal vectors with reference to an orientation creates specific information

about vertical and horizontal surfaces. In the previous example, surfaces with normal

vectors that are aligned to the z-axis have been separated. The same method is used

to distinguish between surfaces with normal vectors that are aligned to the y-axis or x-

axis. The normal vector is an additional feature in the classification model, which in-

creases the prediction accuracy of the classes floor and ceiling. To enhance the dis-

crimination between floors and ceiling, an additional feature is introduced. For each

point, within a neighborhood defined by a specified radius, the maximum and minimum

z-coordinates are computed. The algorithm distinguishes flat surfaces associated with

ceiling or floors by evaluating whether the difference between a point’s z-coordinate

and the minimum or maximum z-coordinate within the neighborhood is smaller than a

given tolerance. A true condition yields a value. In the case of a ceiling, the algorithm

detects flat surfaces by comparing a point’s z-coordinate with the maximum z-coordi-

nate within its neighborhood. This condition is fulfilled, because the maximum z-coor-

dinate of points within the neighborhood is similar to that of the given point. Conversely,

for floors, the algorithm distinguishes flat surfaces by evaluating the difference between

a point’s z-coordinate and the minimum z-coordinate within its neighborhood. Here,

the condition is fulfilled, because the z-coordinate of points within the neighborhood is

similar to that of the given point. In summary, the geometric features derived from the

PCD encloses its geometry. The computation of these features considers elements

such as normal vectors, coordinates, eigenvalues, and eigenvectors. The selection of

geometric features is central in distinguishing between elements.

Following the calculation process, the PCD, initially represented by seven columns of

information, is transformed into a dataset enriched with 14 information columns. The

identical procedure for feature calculation is implemented on the unlabeled dataset,

resulting in the generation of 13 information columns. The missing column refers to the

point cloud’s label, which will be determined by the trained random forest classifier.

Methodology 35

3.2.2 Training the Random Forest Model

To identify points associated with the label stair within the three introduced point

clouds, the classification model is trained by four to five datasets out of the datasets

represented in Figure 7. Every training dataset is composed of 14 information columns.

In contrast, the target point cloud, for which the label is to be determined, comprises

13 information columns. In total, four to five different point cloud datasets are used for

building up the random forest classification model. By configuring the test size to be

0.2, the complete dataset undergoes a division into 80% training dataset and 20%

testing dataset. The random forest classification model is based on 80% of the entire

dataset, and its performance in assigning the correct label to each instance is evalu-

ated using the remaining 20%. Once the machine has constructed the classification

model, the evaluation of the model includes publishing performance metrics including

accuracy, precision, recall, and F1-score.

Precision and recall are measures to evaluate the model’s performance. A dataset with

instances that rather belong to the class or not is represented. The algorithm calculates

and predicts results, represented by the following Table 2.

Table 2: Definition of TP, FP, FN and TN.

True Positive TP signifies the count of instances correctly predicted as a particular

class, accurately belonging to that class. False Positive FP represents the count of

instances predicted as the class, but do not belong to it. False Negatives FN denote

instances predicted not to belong to the class but, in fact, do belong. True Negatives

TN reflect instances predicted not to belong to the class, and indeed, do not. Precision

serves as a metric quantifying the accuracy of positive predictions generated by the

model. It is computed as the ratio of True Positive predictions to the sum of True Pos-

itives and False Positives. A high precision value indicates that the model has a high

performance at predicting positive instances correctly (Jesse & Goadrich, 2006).

 Predicted

Actual

 Class Not Class

Class TP FN

Not Class FP TN

Methodology 36

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ⁄ (𝑇𝑃 + 𝐹𝑃)
 Eq. 5

Recall, on the contrary, is calculated as the ratio of true positive predictions to the sum

of true positives and false negatives. A high recall value indicates that the model is

effective at reducing mispredictions and capturing most per positive instances.

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 ⁄ (𝑇𝑃 + 𝐹𝑁)
 Eq. 6

The metric Intersection over Union (IoU) indicates how the model is performing in seg-

menting each class. It is commonly associated with object detection and segmentation

tasks where bounding boxes or segmented regions are involved. In the context of the

code, IoU is calculated based on the confusion matrix, by using the ratio of true posi-

tives and the sum of true positives, false positives, and false negatives for the class. In

the context of the code, the metric IoU is used to assess the model’s performance in

predicting instances of different classes, considering the information available in the

confusion matrix. It does not traditionally refer to object detection, but rather extends

the concept to evaluate the spatial agreement between predicted and true instances

based on class labels (Jesse & Goadrich, 2006).

 𝐼𝑜𝑈 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)⁄
 Eq. 7

After training the Random Forest Classifier on a labeled dataset, the model is applied

to predict the class labels of points within the unlabeled point cloud. The process entails

calling the Random Forest Classifier's predict function, which then assigns a predicted

class label to each instance in the point cloud based on the model's understanding of

the input features. Upon applying the trained Random Forest Classifier to the PCD, a

new file is generated, augmenting the dataset with an additional information column.

This newly appended column represents the segmentation of the PCD.

Methodology 37

3.3 3D Model Reconstruction

The subsequent process requires adjusting the configuration of the staircase to sim-

plify its shape and prepare it for the forthcoming process. The detailed modification

entails the elimination of points linked to the railing, shifting the staircase structure up-

wards, and the partitioning of the staircase into distinct sections based on the place-

ment of landings within the staircase.

3.3.1 Bottom-up Parameter Extraction

An interest lies in isolating specific points associated with staircase geometries. Sub-

sequently, a two-dimensional grid with a parametrically adjustable cell size is overlaid

onto the XY plane, which has been previously projected. This grid partitions the dataset

into cells, each containing a different number of point instances with XYZ data. The

grid's objective is to ascertain the maximum z coordinate within each cell and assign

this value to all points within the grid cell. This procedural adjustment is aimed at sim-

plifying the point cloud's structure.

Additionally, the DBSCAN algorithm is applied on the point cloud. In this application,

the epsilon parameter is manually set to 0.134, and the minimum samples are set to

four. This choice aligns with the recommendation by Hahsler et al. (2019). Upon closer

examination of the clustering results, specific clusters representing points correspond-

ing to the railing are eliminated to achieve the intended outcome for further processing.

Methodology 38

The subsequent step involves inspecting the z coordinates within the modified point

cloud. Points associated with horizontal surfaces exhibit nearly identical z coordinates.

Yet, it's crucial to note that these horizontal surfaces may also encompass steps within

the PCD. To pinpoint the z coordinate values corresponding to landings within the

PCD, the approach involves identifying the most frequently occurring z coordinates.

This is accomplished by utilizing a histogram analysis and extracting the peak values

discerned within the specified histogram. Points related to the initial landing all have a

consistent z coordinate of around -14.62, while points associated with the second land-

ing share a z coordinate value of -12.15. Following this, the PCD is divided into three

segments. The first segment, denoted as part a, encompasses all points with a z co-

ordinate equal to or less than -14.62. Part b consists of points characterized by z co-

ordinates falling between -14.62 and -12.15. Lastly, part c comprises points with z co-

ordinates greater than -12.15.

Figure 9: Left: Staircase Instance. Middle: DBSCAN Clustering result
Right: Result emerged from the combined application of the grid and the DBSCAN

algorithm.

Figure 10: Histogram of the most frequent z-coordinates.

Methodology 39

The previous procedure ensures the extraction of parameters defining the geometric

structure of the staircase. This section is dedicated to retrieving specific values such

as height, width, length, and the count of steps for individual segments of the staircase.

To obtain the parameters for height, width, and length, the process involves calculating

the differences between the maximum and minimum coordinates within the according

part of the staircase. Simultaneously, determining the number of steps entails grouping

points with similar z coordinates and then quantifying the groups, as illustrated in Fig-

ure 12. The grouping of z coordinates is based on a threshold, that defines how much

the z coordinates may differ in between to each other. In the according example, this

threshold is set equal to 0.1625.

The determination of width and length parameters involves coordinate calculations for

each part, given that the alignment requires the use of different y or x coordinates. In

contrast, while the height parameter remains consistent for every part of the staircase

due to its definition by the z-coordinate, a discrepancy arises as the points are shifted

Figure 11: From left to right: the components of the staircase instance are organized as follows: Part a,
Part b, and Part c.

Figure 12: Result of the quantification of planar surfaces by grouping points with similar

z-coordinates.

Methodology 40

upwards through grid application. This shift distorts the height value, no longer accu-

rately representing the true height of the staircase. Applying a grid to the point cloud

data results in retaining only the top surfaces of the staircase. The calculation of height

involves identifying the minimum z-coordinate, which is found at the lowest surface of

the first step. However, the actual minimum z-coordinate of the staircase begins with

the riser height. To determine the correct height value, the calculation requires sub-

tracting the maximum z-coordinate from the minimum z-coordinate while adding the

average tread height for each part of the staircase.

Figure 13: Staircase Parameters Tread Width, Tread Height, Handrail Heigth, Run Height, Run
Length, Run Width and Landing Length.

Methodology 41

 Run Width Run Length Run Height Tread

Heigth

Tread

Depth

Part a Max(y)-min(y) Max(x)-min(x)-

Width

Max(z)-

min(z)+

tread height

Height/

Number

of Steps

(Length

-Width)/

Number

of Steps

Part b Max(x)-min(x) Max(y)-min(y)-

Width

Max(z)-

min(z)+

tread height

Height/

Number

of Steps

(Length

-Width)/

Number

of Steps

Part c Max(y)-min(y) Max(x)-min(x) Max(z)-

min(z)+

tread height

Height/

Number

of Steps

Length/

Number

of Steps

Table 3: Basic formulas for each part within the staircase.

Methodology 42

3.3.2 Model Reconstruction

The values acquired previously are incorporated into the parametric model. While cer-

tain software offerings come with pre-existing parametric models, it is feasible to define

one using the Python programming language. The next stage involves creating the

staircase. First within the parametric models embedded within the staircase library and

then within the pre-established parametric model in the BIM authoring software Auto-

desk Revit. The parametric modeling of staircase structures using the Python program-

ming language encompasses 16 different designs, each varying in the number of land-

ing treads and the directional alignment of the staircase. The structure is constructed

by stacking cuboids, with the number of cuboids, defined as the "number of boxes"

parameter, influencing the length of the runs - either extending or reducing it. The di-

mensions of the cuboids determine the tread depth, tread height, and total width of the

staircase. Additionally, a parameter is introduced to specify the landing length of the

last box in the structure, serving as the width value for the corresponding run.

Figure 14: Different parametric staircase design.

Methodology 43

In cases where two landings are present in the geometry, the landing length is incor-

porated twice in the parameter definition. Similarly, with three runs, three different val-

ues indicate the number of steps in the parametric model. This partitions the staircase

into three sections. The values established earlier are incorporated into the chosen

staircase. This is facilitated by the parametric model, which features two landings and

aligns the runs in a manner consistent with the orientation observed in the point cloud

data. The parametric model is generated by defining a series of cuboids. The starting

center coordinates establish the position of the initial cuboid within the coordinate sys-

tem, serving as the foundation for constructing the staircase's geometry. Modifying the

coordinates of the initial center subsequently relocates the entire staircase, given that

its shape is dependent on the first cuboid. The first staircase is composed of cuboids

with uniform dimensions depth, width, and height, stacked atop one another. To deter-

mine the alignment of the cuboids in the coordinate system, the center point of each

box must be adjusted as new cuboids are created. This adjustment involves updating

the coordinates based on the previous cuboid; specifically, the x-coordinate is updated

by adding the depth of the cuboid’s dimension to the initial center’s x- coordinate, while

the y-coordinate remains constant. The z-coordinate is determined by adding the z-

coordinate of the initial location to the height of the cuboids' dimensions. The termina-

tion of the staircase is marked by a landing, which is also constructed as a cuboid but

with distinct dimensions. While the width and height remain consistent, a new param-

eter, landing_length, is introduced to specify the depth of the landing. Consequently,

the landing's dimensions are determined by landing_length, width, and height. To es-

tablish the location center of the landing, a two-step process is employed. Firstly, the

location center point of the last box within the run is extracted. Subsequently, a new

location center is defined based on this extracted point. This definition ensures that the

landing maintains the same height and width as the last cuboid's center point, with only

the x-coordinate being adjusted based on the newly introduced parameter, land-

ing_length. Based on the center location of the landing box, the initial cuboid of the

second staircase run is determined. This location center is established by taking the

original coordinates of the landing's center. The dimensions of the cuboids in the sec-

ond staircase do not equal the cuboid’s dimensions in the first staircase.

Methodology 44

This difference arises because the orientation aligns with the y-axis, and the width of

the boxes corresponds to the landing_length of the landing. Consequently, the dimen-

sions of the cuboids in the second staircase are defined by landing_length, depth, and

height. The definition of the staircase run is like that established in the first staircase

run. The loop continues iterating until it has generated all the cuboids, and after each

iteration, the location center of the cuboid is redefined.

Once again, the staircase concludes with a landing, marking the second landing in the

entire structure. The location center of this landing is derived from the location center

of the last cuboid within the second staircase run, and its dimensions closely align with

those of the cuboids in the second stair run. The dimensions of the second landing are

specified by landing_length, landing_length2, and height. Notably, landing_length2 is

a newly introduced parameter, determining the y-coordinate of the landing box and

serving as the only dimension that deviates from the dimensions of the cuboids in the

previously defined stair run. The third run of stairs is constructed based on the location

center of the second landing. Thus, the dimensions of the cuboids in this run are de-

termined by depth, landing_length2, and height. The resulting staircase is illustrated in

Figure 15, which is set in comparison with the initial point cloud data.

Figure 15: Comparison between point cloud data and parametric model.

Methodology 45

num_boxes 9 height 0.14

num_boxes2 16 depth 0.30

num_boxes3 5 dimensions (depth, landing_length, height)

landing_length 1.91 dimensions2 (landing_length1, depth, height)

landing_length1 1.86 dimensions3 (depth, landing_length2, height)

landing_length2 1.90 Initial_center (0,0,0)

Table 4: Parameters defining the staircase.

The parametric definition of the staircase structure relies on specifying cuboids and

their relative positions to each other. This approach enables the parametric determi-

nation of various staircase dimensions, including the number of steps, tread width,

tread height, run width, run length, and overall run height.

Figure 16: Left: TUM-F1, Right: Parametric Model.

Methodology 46

Considering the established constraints, the staircase is modeled parametrically using

Autodesk Revit. The subsequent content outlines the parametric modeling process ap-

plied to the extracted staircase. In Revit, there is a differentiation between two types of

families: system families, which encompass construction elements like stairs, and

loadable families, which typically include purchased items such as furniture. To derive

a parametric model from PCD, the system family stair is utilized. In the context of a

staircase structure, constraints are embedded within the system families of run, land-

ing, and railing. Each of these system families contain constraints and parameters. The

positioning of the staircase within the larger building complex is determined by estab-

lishing the height, which, in turn, depends on the vertical distance between two levels.

This distance parameter is defined by a geometric constraint, as illustrated in Figure

18.

Figure 17: Left: TUM-F2, Right: Parametric Model.

Methodology 47

Figure 18: Geometric constraint representing the distance between two levels.

The constraint is embedded within the instance parameters of the staircase object,

preventing its direct modification. This constraint depends on the predefined levels

through a geometric constraint, making the modification of its value difficult. To specify

the width of the staircase, it is necessary to access the parameters of the embedded

system family "run" since the width is geometrically constrained between parallel

boundary lines of the run. The length of the run is fixed and cannot be altered, as it

depends on the distance between two levels and the number of risers. The number of

risers is a significant parameter, as it determines the tread height through an equational

constraint. The equational constraint arises from dividing the parameter obtained from

the distance between two levels by the number of risers, resulting in the tread height.

This establishes a relationship between the parameters, forming an equational con-

straint. The tread length, in turn, dictates the length of the runs. By adjusting the tread

length, the total length of the staircase run is rather increased or decreased. Additional

specifications are defined within the type properties of the staircase, as depicted in

Figure 19. These properties set maximum and minimum values for riser height and

tread depth. These values do not directly impact the constraints established in the

instance properties. Despite the presence of an equational constraint suggested by

Neufert’s guidelines, linking maximum and minimum values for riser height and tread

depth, this formula is primarily utilized for slope calculation. Neufert's guidelines pro-

pose a formula for calculating tread height and tread width (Neufert & Neufert, 2012):

Methodology 48

 2 ∗ 𝑡𝑟𝑒𝑎𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑡𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎ = 59 − 65 𝑐𝑚 Eq. 8

While this formula is embedded within the type properties, modifying its parameters

only changes the numeric result without affecting the geometry of the staircase. How-

ever, once the minimum tread depth is established in the type properties, it serves as

a threshold for the "Actual Tread Depth" parameter within the instance properties.

Figure 19: Instance properties of the built-in family stair on the left and type properties on the right.

In summary, the system family, comprising runs and landings, incorporates geometric

and equational constraints within both instance and type properties. These constraints

generate outcomes for various parameters that are not directly altered due to their

interdependence with other parametric values (Duell et al., 2013).

Implementation and Results 49

To generate a parametric DT from the staircases represented within three datasets,

the steps outlined in the methodology described in section 3 are applied.

Once the PCD is classified and the staircase has been defined, their coordinates un-

dergo analysis to simplify the shape and isolate specific clustering groups. Following

this simplification, parameters are extracted from the staircase, serving as the founda-

tion for integration into the parametric model. The parameter extraction process may

require code modification, as the staircases consist of a different number of runs and

landings with a directional alignment that differs within the datasets. The section will

present the results obtained through this methodology applied to various datasets. De-

spite variations in datasets, the staircases share similar characteristics, such as the

perpendicularity between runs.

4 Implementation and Results

Figure 20: Point Cloud Data to be labeled by the classification model.

Acquired at the Technical University of Munich. From left to right: TUM-F0, TUM-F1 and TUM-F2.

Implementation and Results 50

4.1 Experimental Result on the semantic enrichment

To classify the dataset TUM-F0, the classification model includes the datasets TUM-

F1, TUM-F2 and two additional datasets, one representing a room and the second

representing offices. These datasets provide information whether a certain geometry

belongs to a specific class instance. To classify points that belong to staircase geom-

etries, the classification model is trained on datasets including geometries representing

staircases. Once the random forest classifier has established the model, its process is

evaluated by publishing performance metrics. In the context of instances classified as

wall instances, the precision, as illustrated in the accompanying Table 5 is returned as

0.94, while the recall is calculated as 0.97. Recall values reach their highest value for

planar surfaces present in walls, ceilings, and floors, yet exhibit a decrease for in-

stances categorized as furniture. This refers to the complexity within the designated

neighboring radius used for computing geometric features. Specifically, points as-

signed to furniture instances show a dissimilarity in their geometric features due to the

complexity of the surfaces containing furniture points within the specified radius. The

increased complexity represents a challenge for the model, as points associated with

these structures may share geometric characteristics with other labels rather than with

the same label. For instance, the model might classify furniture points as Wall in-

stances, particularly when they are situated in close proximity to points corresponding

to walls. In contrast, planar surfaces exhibit more uniform geometric structures within

the points neighborhood associated with the instance. However, an overall accuracy

value of 0.95 indicates that the random forest classification model has precisely iden-

tified patterns and relationships in the data.

 Preci-

sion

Recall f1-

score

Sup-

port

11.0 0.94 0.97 0.95 79372

22.0 0.99 0.99 0.99 30456

33.0 0.98 0.99 0.99 22283

44.0 0.90 0.82 0.86 25605

55.0 0.97 0.88 0.92 7652

Table 5: Classification of dataset TUM-F0 and the performance metric of its classification model with
an accuracy of 0.95.

Implementation and Results 51

The process is repeated for classifying both datasets, TUM-F1 and TUM-F2. For clas-

sifying TUM-F1, the model is trained on TUM-F0, TUM-F2, and two further datasets.

For classifying TUM-F2, the model is trained on TUM-F0, TUM-F1, and three additional

datasets. The third dataset that is used for training represents a hall with columns,

because dataset TUM-F2 includes columns. To classify this dataset effectively, a

model trained to learn patterns between geometric features and classes involving col-

umns is necessary. Previous uses of TUM-F2 lacked an increased representation of

the column class, resulting in low recall values. To address this, a dataset with in-

creased column presence is employed. Despite columns being misclassified as walls,

other objects are correctly assigned, as shown in Table 7. Without the additional da-

taset, the classifier mixes classes due to the underrepresentation of the column class.

 Preci-

sion

Recall f1-

score

Sup-

port

11.0 0.93 0.97 0.95 80919

22.0 0.99 0.99 0.99 33399

33.0 0.98 0.99 0.99 23188

44.0 0.90 0.82 0.86 25526

55.0 0.96 0.85 0.90 6368

66.0 0.81 0.54 0.65 471

 Preci-

sion

Recall f1-

score

Sup-

port

11.0 0.92 0.95 0.93 117900

22.0 1.00 1.00 1.00 128593

33.0 0.98 0.98 0.98 133354

44.0 0.90 0.78 0.83 25555

55.0 0.97 0.87 0.92 7604

66.0 0.89 0.85 0.87 14083

Table 7: Classification of dataset TUM-F2 and the performance metric of its classification model with
an overall accuracy of 0.96.

Table 6: Classification of dataset TUM-F1 and the performance metric of its classification model with
an overall accuracy of 0.95.

Implementation and Results 52

4.2 Experimental Result on the Staircase Parameter Extraction

Once the staircase has been labeled in the entire dataset, it is further processed to

extract numerical values to be inserted into a parametric model, that defines the overall

shape of the parametric model. This process involves extracting points labeled as

stair, applying a grid to shift the entire staircase upwards, removing points associated

with a railing by using DBSCAN and dividing the staircase into different parts based on

the number of landings within the staircase. In the case of dataset TUM-F0 and TUM-

F1 the staircase is divided into three runs and corresponding two landings. The first

run aligns with an increasing x-axis, the second run aligns with a decreasing y-axis and

the third run aligns with a decreasing x-axis. Dataset TUM-F2 contains two runs and

corresponding one landing. The first run is aligned towards an increasing y-axis, the

second run aligns with a decreasing x-axis.

Figure 21: Classification of dataset TUM-F2.

Implementation and Results 53

4.3 Experimental Result on the Creation of Staircase Models

The division of the modified staircase prepares the point cloud for the extraction of

numerical values, which describe the staircase’s width, length, height, number of steps,

tread height and tread width.

TUM-F0

 Width Length Height Number

of Steps

Tread

Height

Tread

Width

Part a 1.91 m 2.78 m 1.38 m 9 0.14 m 0.31 m

Part b 1.86 m 4.82 m 2.48 m 16 0.15 m 0.30 m

Part c 1.90 m 1.49 m 0.76 m 5 0.13 m 0.30 m

TUM-F1

Part a 1.75 m 2.14 m 1.03 m 7 0.13 m 0.30 m

Part b 1.95 m 4.65 m 2.38 m 16 0.14 m 0.29 m

Part c 1.86 m 1.19 m 0.56 m 4 0.11 m 0.30m

TUM-F2

Part a 2.03 m 0.82 m 0.86 m 5 0.14 m 0.16 m

Part b 1.70 m 5.38 m 3.04 m 18 0.16 m 0.30 m

Table 8: Parametric values for datasets TUM-F1 and TUM-F2.

Implementation and Results 54

To establish the reference planes for aligning the staircase’s height within the dataset

TUM-F0, the extracted heights must be aggregated. With reference to the provided

Table 8, the floor height is established at 4.63 meters. Moreover, the number of steps

required to reach the desired height is specified. To determine the total number of

steps, the counts for parts a, b, and c are summed, resulting in a total of 30 steps. This

ensures the creation of 30 steps within the given height. The calculation involves di-

viding 4.63 meters by 30, yielding approximately 0.15 m per step.

Once establishing these parameters, the staircase is generated with a user-defined

orientation, guided by visual indicators within the point cloud. This involves ensuring

perpendicularity between the stair runs and aligning staircase parts a and c horizon-

tally, while part b is aligned vertically in the xy plane. Modifying the direction automati-

cally situates landing treads. The directional change automatically divides the staircase

into three separate entities, each possessing modifiable dimensions in terms of width

and height. While the width parameter is adjusted by inputting the corresponding value,

the length of the staircase is contingent on the tread depth, a parameter defined within

the instance properties of the system family stair, depicted in Figure 22. All parameters

extracted from the point cloud data are incorporated into the introduced instance family

parameters. The generated stair family along with the PCD is depicted in Figure 23.

Figure 22: Dimensional Constraints within three parts in the entire staircase.

Implementation and Results 55

Figure 23: Dataset TUM-F0 represented with Point Cloud and Parametric Model in Autodesk Revit.

Figure 24: Dataset TUM-F1 represented with Point Cloud and Parametric Model in Autodesk Revit.

Figure 25: Dataset TUM-F2 represented with Point Cloud and Parametric Model in Autodesk Revit.

Implementation and Results 56

Autodesk Revit is extended through the visual programming interface Autodesk Dy-

namo. Dynamo enables users to create scripts, ensuring access and modification of

specific parameters within families. This section details a workflow consisting of two

primary steps:

1: Preprocessing: Numerical values of the point cloud are extracted by setting up py-

thon scripts. The extracted parametric values are then archived in a Microsoft Excel

file.

2: Parametric Modeling: The Microsoft Excel file containing archived parametric values

is imported into Autodesk Dynamo. Dynamo provides functionalities to read and pro-

cess data from Excel, facilitating access to the stored parametric values. Using the

imported parametric values, Dynamo scripts are created to parametrically define the

geometry of staircases.

The workflow demonstrates the integration of Revit, Dynamo, and additional tools like

Python scripting and Excel, offering a workflow for incorporating PCD and achieving

automatic parametric modeling within the BIM authoring environment (Lee et al.,

2023).

The provided script is utilized to extract numerical values as outlined in section 3.3.1.

In addition to extracting values, the script computes the sum of steps and the sum of

heights for each file type. Moreover, it calculates the average values for tread height

and tread width, yielding mean values for these parameters. The script concludes by

generating an Excel file that encapsulates the calculated numerical parameter values

for the targeted dataset. The resulting tables below represent the extracted values for

datasets TUM-F0, TUM-F1, and TUM-F2.

Implementation and Results 57

File Type Steps Width Length Height Tread Height Tread Width

a 9 1,9139509 2,7886763 1,3795312 0,137953123 0,309852918

b 16 1,8632183 4,8230004 2,4858317 0,146225393 0,301437526

c 5 1,9070921 1,4988875 0,7602551 0,126709176 0,299777508

Total/Average 30 4,625618 0,154187266 0,303689317

File Type Steps Width Length Height Tread Height Tread Width

a 5 2,029844 0,816208 0,8606868 0,1434478 0,1632416

b 18 1,701221 5,388573 3,0374308 0,159864778 0,299365167

Total/Average 23 3,8981176 0,169483373 0,231303383

File Type Steps Width Length Height Tread Height Tread Width

a 7 1,745069 2,1362343 1,0302789 0,128784859 0,305176327

b 16 1,9458756 4,6456127 2,3832373 0,140190431 0,290350795

c 4 1,8612299 1,1918678 0,5607626 0,112152518 0,297966955

Total/Average 27 3,9742788 0,14719551 0,297831359

Table 9: Excel file containing parametric values within dataset TUM-F0.

Table 10: Excel file containing parametric values within dataset TUM-F1.

Table 11: Excel file containing parametric values within dataset TUM-F2.

Implementation and Results 58

The process of defining the geometry of a staircase within Autodesk Revit and Auto-

desk Dynamo involves several steps. To begin, the corresponding system family stair

must be chosen, and the total number of steps is specified using the "desired number

of steps" parameter, as illustrated in Figure 26. With this parameter established, the

actual staircase is drawn. The alignment, number of runs, landings, and steps in each

run are determined through visual inspection. Taking the example of dataset TUM-F0,

it's evident that the staircase comprises three runs and two landings. The first run aligns

parallel to an increasing x-axis, the second run aligns parallel to a decreasing y-axis,

and the third run aligns parallel to a decreasing x-axis. This visual information is then

utilized to draw the staircase. After defining the runs and landings, the parametric val-

ues undergo refinement through the application of a Dynamo script. This script aids in

further refining the specific characteristics and details of the staircase by importing the

extracted parametric values.

Figure 26: Dynamo Script for the automatic adjustment of the staircase parameters.

Implementation and Results 59

The script initiates by importing an Excel file, leveraging the "file path" node to select

the Excel file's location. After specifying the sheet name, relevant information is ex-

tracted from the file, presented as four lists corresponding to four columns. These lists

are examined individually in the subsequent step to capture specific parameters of

interest. In the context of the TUM-F0 dataset, the focus is on values such as the sum

of all heights, the sum of steps, average tread width, and the actual run width for each

of the three runs within the stair geometry. The node "List.GetItemAtIndex" is employed

within the "Selecting specific indexes from sublist" group to access these values. Given

that the system family stair involves nested families such as runs and landings, the

script utilizes the "Element.GetChildElement" node. This ensures access to the param-

eters of each run and landing within the staircase. A crucial step involves adjusting the

run width, which is achieved through the extraction of width values for each run defined

by the "Width" parameter. The node group "Separating ChildElements into subele-

ments" facilitates the individual access to each run. The width value for each run is

then linked to the corresponding value extracted from the Excel file. Through the inter-

connection of nodes, the script automates the parametric modeling of the staircase. In

contrast to manually setting values through instance properties, the script ensures the

automatic adoption of values calculated by the Python script. The visual outcomes of

the parametric staircase closely resemble those achieved through the previous mod-

eling process. However, the efficiency gains are significant, leading to a reduction in

modeling time.

Implementation and Results 60

4.4 Evaluation

To assess the parametric values derived from the point cloud, a comparative analysis

with measurements obtained through an inch rule is processed. By analyzing the dis-

parities between these two sets of values, an evaluation of the methodology’s accuracy

is processed. The closer the correspondence between these values, the higher the

accuracy attributed to the developed methodology. This process allows for a statement

on the reliability and precision of the applied methodology in capturing and represent-

ing the complexities of the staircase geometry. The assessment is conducted based

on the three datasets, comparing, and analyzing the results to determine the con-

sistency and effectiveness of the methodology across different sets of data.

 Part TUM-F0 TUM-F1 TUM-F2

Width a 0.05 m 0.1 m 0.03 m

b 0.06 m 0.01 m 0.03m

c 0.04 m 0.01 m -

Tread Height a 0.01 m 0.01 m 0.02 m

b 0.00 m 0.00 m 0.00 m

c 0.02 m 0.03 m -

Tread Width a 0.01 m 0.00 m 0.13 m

b 0.00 m 0.01 m 0.00 m

c 0.00 m 0.00 m -

Table 12: Deviation between actual and extracted parameter values.

Implementation and Results 61

The accuracy of the methodology is reflected by comparing the calculated and meas-

ured values with each other. Notably, tread height values demonstrate the highest ac-

curacy, with a deviation of 0-3cm. Following closely are the width values, displaying a

0-6cm deviation. Width values tend to be larger in calculations. The calculation method

involves identifying the minimal and maximal x or y coordinates within the point cloud

of each run to determine the staircase's width. As these points are present in the land-

ing, the width of the staircase run is influenced, resulting in larger values. The least

accurate results are observed for tread width, with a deviation ranging from 0-13cm.

This discrepancy arises from the calculation of tread depth, which is derived by dividing

the run's length by the corresponding number of steps within the run. The run's length

is determined by identifying the minimum and maximum values of y or x coordinates

within the point cloud. The calculated width is then subtracted from the total length to

exclude the landings' length from the point cloud. This subtraction, if a larger value,

leads to an inaccurate dimensional length and, consequently, an imprecise tread

depth.

Discussion 62

Section 1 introduced the topic of the thesis, followed by its motivation and objective. In

brief, the research on DT has observed an increase in recent decades, particularly as

the concept, originating in the manufacturing industry, transitions into the construction

industry. However, given its novelty in this industry, the process is acknowledged to be

prone to errors and labor-intensive. The thesis aims to address this challenge by for-

mulating an automated methodology for creating a DT from PCD, with a specific focus

on staircases. DT represents the status of the construction site with PCD serving as a

surface representation of the object. Since PCD contains geometric information like

coordinates, colors, and surface normals, PCD contributes to the recreation of a DT by

applying AI methods, that process the PCD to return geometric information.

Section 2 reviewed literature, clarifying concepts essential for the subsequent section.

This involved an exploration of themes such as digital twining, scan-to-BIM, PCD and

geometric features. Furthermore, the section delved into the details of point cloud se-

mantic enrichment, demonstrating the application of classification and clustering algo-

rithms to PCD. Preceding the conclusion of the section with a discussion on research

gaps, detailed introductions were made to concepts of geometric model reconstruction,

including implicit and explicit representation, along with parametric modeling.

Section 3 illustrated the steps involved in classification, clustering, parameter extrac-

tion, and geometric model reconstruction. This included interpreting performance met-

rics, analyzing appropriate parameter values for clustering, and establishing rules for

extracting necessary dimensions. The section also explained the generation of para-

metric staircase structures, exploring various combinations and orientations of land-

ings and runs. A second approach was introduced, utilizing pre-established parametric

staircase models in Autodesk Revit.

5 Discussion

Discussion 63

Thus, the section explored two methodologies for parametric modeling – one by devis-

ing a written script and another by using built-in object families in Autodesk Revit.

In section 4 the established methodology is implemented on three different datasets.

The application underscores the adaptability of the methodology to diverse scenarios.

By creating a Dynamo script, a direct link between a Python script that extracts para-

metric values, and the Revit user interface is established, facilitated through an Excel

file, containing relevant parameters for the parametric modeling of the staircase. How-

ever, the adjustment of the script becomes necessary based on observations of the

geometric characteristics of the staircase. Subsequently, each script within the process

is executed, yielding the essential information for the reconstruction of the geometric

model. This streamline approach enhances the efficiency of the DT process. The sec-

tion concludes with an evaluation, wherein calculated values are compared with meas-

ured values using an inch rule. This comparative analysis serves to validate the accu-

racy and reliability of the reconstructed geometric model.

5.1 Comparison between classification and clustering methods

While both the random forest classifier and decision tree classifier are categorized as

machine learning algorithms, notable distinctions arise between these two classifica-

tion models. A random forest classification model comprises an ensemble of decision

trees, each trained on a random subset of the data. The final prediction is determined

through a voting mechanism across all the individual trees. On the contrary, a decision

tree classification model consists of a singular tree structure, that learns patterns based

on the features of the input data. The susceptibility to overfitting is a characteristic of

decision tree classification models due to their lack of variance. Overfitting occurs when

the model memorizes the training data rather than capturing its underlying patterns. To

address this, random forest classification models are employed, incorporating predic-

tions from multiple trees to enhance robustness against overfitting. The increased di-

versity among the trees contributes to this resilience. However, it is important to note

that the time required for both prediction and training is higher for random forest clas-

sification models compared to decision tree classification models. This is referred to

the augmented number of trees in the data. To provide a practical comparison, the

classification prediction for the TUM-F1 dataset involves training both a random forest

Discussion 64

classification model and a decision tree classification model. The results of this com-

parison in the classification, along with the associated performance metrics, are illus-

trated in Figure 27 and Figure 28.

 Preci-

sion

Recall f1-

score

Sup-

port

11.0 0.92 0.98 0.95 53329

22.0 0.99 0.99 0.99 23387

33.0 0.98 0.99 0.99 22950

44.0 0.88 0.61 0.72 9344

55.0 0.95 0.84 0.89 7210

66.0 0.98 0.86 0.92 447

 Preci-

sion

Recall f1-

score

Sup-

port

11.0 0.93 0.93 0.93 55011

22.0 0.98 0.98 0.98 26235

33.0 0.98 0.98 0.98 23703

44.0 0.65 0.65 0.65 9293

55.0 0.84 0.84 0.84 7237

66.0 0.85 0.87 0.86 439

Figure 27: Random Forest Classification Model Performance Metric TUM-F1.

Figure 28: Decision Tree Classification Model Performance Metric TUM-F1.

Discussion 65

As depicted, the utilization of the random forest classification model results in an im-

proved accuracy when predicting points associated with the staircase instance. For

instance, as shown in Figure 28, the second landing of the staircase structure was not

initially included in the staircase instance due to its similarity to floors and ceilings. The

use of the random forest classification addresses this issue, as illustrated in Figure 27.

This improvement can be attributed to the model’s capability of handling complex re-

lationships within the data. The random forest classification model allows each tree to

concentrate on specific aspects of the data and subsequently combining these diverse

trees within the ensemble, resulting in an enhancement in prediction accuracy and

robustness.

The preceding content presented a comparison between classification models. In the

following, a comparison between clustering algorithms, specifically DBSCAN and re-

gion-growing, which have been employed to group similar data points is provided.

While both algorithms partition the data into groups, their fundamental difference lies

in their approach to achieve this target. DBSCAN groups points based on their density

reachability to each other. Density reachability is determined by a neighborhood within

a specified radius, encompassing a specific number of points set by the parameter’s

eps and minPts. This algorithm is particularly effective in eliminating outliers that devi-

ate from the PCD structure. In the context of the thesis, DBSCAN has primarily been

utilized for outlier removal and the detection of specific structures within PCD, such as

the handrail.

A simplified version of the region-growing algorithm has been applied to count the

number of steps within the staircase. Each step is defined by a plane containing points

with varying x and y coordinates but nearly identical z coordinates. The algorithm uses

the similarity in z coordinates to group points into clusters based on a threshold that

determines how much the z values may differ. Subsequently, the number of clusters is

counted to determine the number of steps within the run.

DBSCAN focuses on the quantity of points within the point cloud, whereas region-

growing algorithm expands regions based on similar values within the point’s geomet-

ric features. Consequently, the region-growing algorithm is applied for various cluster-

ing problems, given the abundance of geometric features derived from the point cloud.

Discussion 66

5.2 Contributions and Limitations

This section introduces an evaluation of the contributions and limitations presented in

the thesis. The significance of understanding the impact and strength of the work un-

dertaken is emphasized by revealing the advancements made in the field. Simultane-

ously, the acknowledgment of limitations provides transparency and sets the context

for future research. Notable contributions and potential constraints inherent in the find-

ings and methodologies of the thesis will be provided.

The thesis has devised a methodology aimed at streamlining the DT creation process

from PCD. This has been achieved by illustrating approaches for extracting geometric

information that serve as the foundation for parametric modeling. Additionally, the the-

sis explored and applied classification and clustering methods to fulfill its objective.

However, employing these classification and clustering methods demands an in-

creased amount of annotated data and increased computing power for model training.

The proposed solution primarily addresses a low level of detail (LOD), focusing on

essential parameters such as width, length, height, tread height and tread width to

define the staircase. This choice results in a decreased information of PCD during its

processing. Notably, aspects like handrailing height, specific landing measurements

and staircase thickness have not been considered. For instance, a more detailed con-

sideration of landing measurements could have led to more accurate results for the

length parameter. While the developed methodology has proven effective in streamlin-

ing DT creation, there are inherent limitations related to the LOD and the requirements

for model training.

Conclusion 67

The proposed methodology utilizes PCD to generate a DT of staircase geometries.

The outcome of this approach comprises a geometric parametric model that aligns with

the structure of the PCD. The thesis introduces a systematic pipeline for creating a DT

from PCD. When applied to additional datasets, this pipeline serves to reduce labor

and minimize information loss throughout the DT creation process. Initiating with the

segmentation of PCD components, the approach focuses on the staircase geometry

in subsequent steps. The PCD representing the staircase undergoes further pro-

cessing to extract dimensional values. The proposed methodology offers several ben-

efits. It enables the direct extraction of parameters from the file containing XYZ coor-

dinates. The dimensioning of the PCD is addressed through clustering, classification

and algorithms that are linked with the geometric file structure. Upon establishing clas-

sification and clustering algorithms specifically for staircase structures, these will be

applied to diverse datasets to extract parametric values. The methodology not only

accelerates the parameter extraction process but also enhances precision due to its

direct correlation with the coordinates of the file of the PCD. The methodology con-

cludes by incorporating these extracted values into the parametric model, yielding a

DT of staircase structures, which ensures consistency between the DT and the PCD.

6 Conclusion

References 68

Abreu, N., Pinto, A., Matos, A., & Pires, M. (2023). Procedural point cloud modelling in

scan-to-BIM and scan-vs-BIM applications: a review. ISPRS International

Journal of Geo-Information, 12(7), 260.

Awwad, T., Zhu, Q., Du, Z., & Zhang, Y. (2010). An improved segmentation approach

for planar surfaces from unstructured 3D point clouds. The Photogrammetric

Record, 25(129).

Bello, S., Yu, S., Wang, C., Adam, J., & Li, J. (2020). Review: Deep learning on 3D

point clouds. Remote Sensing, 12(11), 1729.

Borrmann, A., König, M., Koch, C., & Beetz, J. (2015). Building Information Modeling:

Technologische Grundlagen und industrielle Praxis. Springer-Verlag.

Breimann, L. (2001). Random Forests. Machine Learning, 45, 5-32.

Daskalova, M. (2021). The 'digital twin'–a bridge between the physical and the digital

world. Retrieved from Cobuilder: https://cobuilder. com/en/the-digital-twin-a-

bridge-between-the-physical-and-the-digital-world/

Duell, R., Hathorn, T., & Hathorn, T. (2013). Autodesk Revit Architecture 2014

Essentials: Autodesk Official Press. John Wiley & Sons.

Eastman, C. (2011). BIM handbook: A guide to building information modeling for

owners, managers, designers, engineers and contractors. John Wiley & Sons.

Fayez, T.-K., Landes, T., & Grussenmeyer, P. (2007). Hough-transform and extended

ransac algorithms for automatic detection of 3d building roof planes from lidar

data. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007. Vol. 36.

Gan, G., Ma, C., & Wu, J. (2020). Data Clustering: Theory, Algorithms, and

Applications. Society for Industrial and Applied Mathematics.

Hackel, T., Schindler, K., & Wegner, J. (2016). Contour Detection in Unstructured 3D

Point Clouds. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 1610-1618.

References

References 69

Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast density-based

clustering with R. Journal of Statistical Software, 91, 1-30.

He, P., Ma, Z., Fei, M., Liu, W., Guo, G., & Wang, M. (2022). A Multiscale Multi-Feature

Deep Learning Model for Airborne Point-Cloud Semantic Segmentation. Applied

Sciences, 12(22), 11801.

Hegelich, S. (2016). Decision trees and random forests: Machine learning techniques

to classify rare events. European Policy Analysis, 2(1), 98-120.

Jesse, D., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC

curves. Proceedings of the 23rd international conference on Machine learning,

pp. 233-240.

Khaloo, A., & Lattanzi, D. (2017). Robust normal estimation and region growing

segmentation of infrastructure 3D point cloud models. Advanced Engineering

Informatics, 1-16.

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in

manufacturing: A categorical literature review and classification. Ifac-

PapersOnline, 51(11), 1016-1022.

Lee, Y.-C., Leite, F., & Ma, J. (2023). A parametric approach towards semi-automated

3D as-built modeling. Journal of Information Technology in Construction.

Liu, S., Zhang, M., Kadam, P., & Jay Kuo, C.-C. (2021). 3D Point Cloud Analysis:

Traditional, Deep Learning, and Explainable Machine Learning Methods.

Springer International Publishing.

Lu, B., & Yang, W. (2019). Matching algorithm of 3D point clouds based on multiscale

features and covariance matrix descriptors. IEEE Access.

Lu, R., & Brilakis, I. (2019). Generating bridge geometric digital twins from point clouds.

EC3 Conference 2019, Vol. 1, (pp. 367 - 376). University College Dublin.

Mehranfar, M., Braun, A., & Borrmann, A. (2022). A hybrid top-down, bottom-up

approach for 3D space parsing using dense RGB point clouds. ECPPM 2022-

eWork and eBusiness in Architecture, Engineering and Construction.

Nasteski, V. (2017). An overview of the supervised machine learning methods.

Horizons. b.

Neufert, E., & Neufert, P. (2012). Architects' data. John Wiley & Sons.

References 70

Olsen, M., Kuester, F., & Chang, B. (2010). Terrestrial Laser Scanning-Based

Structural Damage Assessment. Journal of computing in civil engineering,

Vol.24 (3), 264-272.

Opoku, D., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in

the construction industry: A literature review. Journal of Building Engineering,

40, 102726.

Pan, Y. (2023). Creating an information-rich digital twin of indoor environments by

interpretation and fusion of image and point-cloud data (Doctoral dissertation).

Technische Universität München.

Rocha, G., & Mateus, L. (2021). A survey of scan-to-BIM practices in the AEC industry-

a quantitative analysis. ISPRS International Journal of Geo-Information, 10(8).

Shah, J., & Martti, M. (1995). Parametric and feature-based CAD/CAM: concepts,

techniques, and applications. John Wiley & Sons.

Sharma, H., & Kumar, S. (2016). A survey on decision tree algorithms of classification

in data mining. International Journal of Science and Research (IJSR), 5(4),

2094-2097.

Son, H., Kim, C., & Turkan, Y. (2015). Scan-to-BIM-an overview of the current state of

the art and a look ahead. ISARC. Proceedings of the International Symposium

on Automation and Robotics in Construction (Vol. 32) (p. 1). IAARC

Publications.

Tang, P., Huber, D., Akinci, B., Lipman, R., & Lytle, A. (2010). Automatic reconstruction

of as-built building information models from laser-scanned point clouds: A

review of related techniques. Automation in construction, 19(7), 829-843.

Tóvári, D., & Pfeifer, N. (2005). Segmentation based robust interpolation-a new

approach to laser data filtering. International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences.

Voelcker, H., & Requicha, A. (1977). Constructive Solid Geometry.

I hereby declare that I wrote the present thesis on my own. Only the sources and re-

sources expressly named in the work were used. Literally or analogously adopted

ideas I have identified as such.

I also assure that the present work has not yet been used as the basis for another

examination procedure.

Munich, 15.03.2024

Alexandra Bulla

Alexandra Bulla

Grasmeierstraße 25

80805 München

E-Mail: alexandrabulla313@gmail.com

Declaration

ge45tud
Highlight

