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Abstract—We present a prototype of a tool leveraging the
synergy of model driven engineering (MDE) and Large Language
Models (LLM) for the purpose of software development process
automation in the automotive industry. In this approach, the
user-provided input is free form textual requirements, which are
first translated to Ecore model instance representation using an
LLM, which is afterwards checked for consistency using Object
Constraint Language (OCL) rules. After successful consistency
check, the model instance is fed as input to another LLM for
the purpose of code generation. The generated code is evaluated
in a simulated environment using CARLA simulator connected
to an example centralized vehicle architecture, in an emergency
brake scenario.

I. INTRODUCTION

The rise of large language models (LLMs), initiated by
popularity of the now well-known ChatGPT towards the end
of 2022, has affected almost every aspect of our everyday
life – from simple customer services and question answering
to entertainment and science. Apart from its innovation, the
main drive behind LLM adoption in various areas working
field and scientific areas is to either automatize repetitive tasks
which are traditionally done by humans, or help them achieve
improved outcomes by providing suggestions or hints. In area
of computer science and software engineering the usage of
LLMs is identified for several distinct purposes in literature
[1], [2]:

1) code generation – automatically generating of either
boilerplate code or full applications, algorithms and other
useful code scripts (tests, configuration files);

2) code augmentation – adding the missing parts to the
code or additional functions/classes to achieve the given
goal;

3) code analysis – providing suggestions how the provided
source code can be improved in order to avoid well-
known bugs, security vulnerabilities and other code-
related issues which are identifiable in design-time;

4) code explanation – LLM is able to provide quite verbose
comments which correspond to specific parts of the code,
explaining its purpose and usage;

5) data analysis – it was also shown that LLMs trained on
enormous amount of textual data are also able to mimic
the traditional machine learning algorithms and perform
supervised learning tasks, such as classification.

On the other side, when it comes to automotive industry,
software is the crucial aspect which shapes the innovation
in this area. However, traditional automotive architectures
rely on hundreds of heterogeneous devices (electronic control
units – ECUs), provided by different OEMs, using distinct
architectures, OS and software platforms. Therefore, software
development and its maintenance in automotive area becomes
increasingly difficult, taking into account the demand for
additional functionalities (such as infotainment) and advanced
automated control scenarios (such as autonomous driving),
which usually involve the usage of even more devices, such as
sensors, actuators and specific co-processors. The latest con-
cept of centralized automotive architecture enables a flexible
software-defined vehicle.

Therefore, in this paper, we propose the means for LLM-



aided design and developments of centralized car systems,
starting from high-level feature specification. Apart from
LLMs, our proposed framework relies on model-driven soft-
ware engineering principles. Utilization of formal specifica-
tions – such as metamodels and constraint rules – enables
verification and validation of LLM outcomes, which are, due
to their nature, prone to the so-called hallucinations, where the
generated output is incorrect. Such unreliability can be fatal in
domains such as automotive. Therefore, we propose design-
time, formal verification of generated results. In synergy
with user supervision, and manual intervention and correction
where needed, it should largely mitigate the cons of LLM
usage.

In this work, LLMs will be adopted to tackle the following
aspects:

1) requirements extraction and summarization – generating
formal list of verifiable requirements based on free-form
ISO standard or reference architecture text;

2) automated design – creating verifiable car system model
instances based on user requirements;

3) code generation – automated parametrization of deploy-
ment configuration templates.

II. MOTIVATION BEHIND CENTRALIZED ARCHITECTURE

The main goal of a centralized car architecture is to pro-
vide the so-called ”single-system illusion”, which has many
advantages compared to other state-of-art solutions [3], [4].

Lower Hardware Costs: Centralized systems consolidate
multiple control functions into powerful processors, signif-
icantly reducing the need for numerous individual control
units with separate processors, memory, and electronics. This
consolidation can lead to economies of scale in purchasing,
resulting in lower overall hardware costs. Additionally, the
amount of computing power can be minimized through ef-
ficient scheduling of the different functionalities on a cen-
tralized system. In contrast, in distributed systems redundant
computing hardware exists since there is a need to process data
on different hardware components that are often not shared
across the system, especially if components from multiple
manufacturers are involved. This leads to parts of the hardware
being idle instead of working on other processing tasks.

Improved Energy Efficiency: By minimizing the number
of control units and optimizing computing resources, central-
ized architectures can decrease vehicle’s energy consumption.
This efficiency is crucial for electric vehicles, where energy
usage directly affects range and performance. Since there is
only the central unit that requires power for data processing,
it is much easier to monitor and influence it.

High Application-Level Communication Speed: Central-
ization allows for faster communication speeds at the applica-
tion level, as data does not have to traverse multiple nodes
(control units) before reaching its destination. Instead, the
applications run on the same computational hardware and can
directly access any data without the need to communicate with
external components.

Simplicity in Application Development: Writing applica-
tions becomes simpler in a centralized system, because de-
velopers only need to target a single computing environment,
streamlining the development process. All applications can be
unified in terms of inter-application-communication, sensor
and actuator abstraction through the use of an underlying
hardware abstraction layer, isolation mechanisms like con-
tainers, scheduling systems and so on. This vastly simplifies
the software development and makes it largely hardware
independent.

Simplified Software Failure detection: Since all software
runs on a single system, it is much easier to identify occurring
errors. All systems can be monitored on a software level
instead of the need to debug the communication on the wire.
What is more, the amount of proprietary, black box ECUs from
various manufacturers is minimized. Uniform runtime environ-
ment simplifies error handling since common low level error
detection routines can be used, which monitor all applications
and handle errors on the same platform using unified error
handling mechanisms, without the external communication
overhead.

Full System Control: A centralized architecture ensures
that all vehicle data and processing capabilities are centralized,
providing comprehensive control over the vehicle’s function-
ality through software. The amount of private intellectual
property, including custom hardware and software, in the
vehicle is reduced. Therefore, many software components and
functionality can be adapted by the car manufacturer itself,
without the need of help from external suppliers.

Simplified Wiring and Connectivity: Direct connections
to the central computational unit or straightforward data
tunneling through network switches eliminate the complex
wiring and communication layouts, characteristic to distributed
systems.

Facilitates Software-Defined Vehicle Concepts: Central-
izing data and processing simplifies the transition towards
software-defined vehicles, where software, rather than hard-
ware, defines vehicle functionality. This centralization supports
easy software updates and upgrades, feature improvements,
and addressing safety issues.

Ease of Hardware Upgrades: If designed with hardware
extensibility in mind, centralized systems simplify the addition
of new hardware, contrasting with the challenges of integrating
new components in hardware-heavy distributed systems, where
the hardware is often hardwired with the rest of the system
and permanently installed on the chassis, meaning that any
hardware update or upgrade is a complex task. Additionally,
when exchanging components of a distributed system, the
compatibility with the rest of the system must be ensured,
which may be difficult if the components were heavily in-
terconnected. A centralized hardware built on top of proper
hardware abstraction mechanisms is largely unchallenged by
those problems.



III. LLM-ENABLED WORKFLOW

The proposed workflow leveraging synergy of LLMs and
model-driven engineering is depicted in Fig. 1.

In the first step, a domain expert enters the requirements
in free-form natural language into the given form with pre-
defined fields. The arguments from this form are forwarded,
together with the predefined Ecore metamodel, to a prompt
constructor (described later). The prompt for the LLM is
constructed using the following template:

Prompt1 – Model instance creation: Create XMI model
instance for [Requirements input] and [Ecore metamodel]

As outcome of the process, an XMI model instance depict-
ing the requirements with respect to the Ecore metamodel is
generated.

For the purpose of requirements consistency verification,
OCL rules [5] based on a reference architecture and the
metamodel are extracted as well:

Prompt2 – Constraints extraction: Based on reference re-
quirements [Reference requirements or part of ISO standard
document] and metamodel [Ecore metamodel] extract OCL
constraints

Once the instance model is verified, resource allocation
step is preformed, which assigns car features to corresponding
chips available to the central car server. The outcome of this
process is an allocation matrix giving the information on how
features and their corresponding containers will be mapped to
the hardware.

The created model instance is leveraged for code generation,
either using conventional rule-based solutions or an LLM.
There are several possible steps where model instance can be
used for code generation: parametrizing pre-defined compo-
nents (CARLA excerpts [6]), containerizing components, gen-
erating deployment descriptors. The corresponding parameters
are extracted from model instance and inserted into prompt
templates, or the whole metamodel/model instance is used.

Prompt3 – Parametrizing components: Based on Ecore
instance [Ecore instance model] fill in the template [CARLA
excerpt]

The goal of this prompt is to leverage parameters from Ecore
model instance, describing car component characteristics and
add insert them CARLA code excerpt.

Prompt4 – Containerizing components: Write Docker-
file to containerize script [script name] written in [Lan-
guage/Technology used] using dependencies [Libraries and so
on]

Prompt5 – Automated generation of adapters between com-
ponents: Generate Python code to convert [source format] to
[target format]

Prompt6–Deployment descriptor generation: Generate
[Docker Compose or Kubernetes descriptor] to run contain-
ers: [For each container in ZoneController.containers:]
[Container.image] on ZoneController open port
[container.communicationPort] with environment variables
[Container->Sensor/Acutator properties] based on model
instance [Ecore model instance]

Finally, the generated Docker Compose file or Kubernetes
descriptor is deployed and run on Central Car Server. The cor-
responding Docker images (Python scripts relying on CARLA
client library in our case) are assumed to be available within
local or custom (remote) Docker image repository. Customiza-
tion of these docker images is performed by parametrizing the
corresponding Docker Compose environment variables, based
on sensor/actuator characteristics.

The whole code generation workflow from user require-
ments to CARLA code is described in form of pseudocode
in 1.

Data: requirement, metamodel, standard
Result: CARLAcode
xmi←
executePrompt(prompt1, requirement,metamodel);

ocl←
executePrompt(prompt2, standard,metamodel);

pass← verify(ocl, xmi,metamodel);
if pass is true then

CARLAcode← executePrompt(prompt6, xmi);
else

CARLAcode← null;
print(Requirementnotcompliantwithstandard)

end
Algorithm 1: Code generation

Additional details and whole vision of full LLM integration,
including user feedback steps are described in [7]. However,
they are not included in the presented prototype implemen-
tation, but planned to be included in the final version of the
tool.

IV. CENTRALIZED CAR SERVER METAMODEL

Centralized Car Server metamodel covers both the hardware
and software components, together with aspects of func-
tional (FR) and non-functional (NF) requirements. Hierarchi-
cal overview of aspects covered by metamodel is given in Fig.
2.

As it can be seen, on the top level, metamodel covers the use
cases/scenarios in automotive as a concept, such as highway
pilot. These scenarios are further broken down into features,
which are mapped to the actual software components, repre-
sented as Docker containers in our case. On the other side,
when it comes to resource allocation, there are two different
perspectives involved: 1) Software component allocation - how
features are mapped to containers 2) Hardware component
allocation - how software components are mapped to set of
available hardware resources. For the first aspect, the crucial
elements are functional requirements which determine the set
of features that will be taken into account. On the other
side, when it comes to aspects of hardware allocation, non-
functional requirements, such as costs, power consumption,
processing power and others are considered.

This metamodel is based on the idea that Central Car Server-
controlled car contains several ZoneControllers, where each



Fig. 1. LLM-enabled workflow for model-driven automotive development.

of them is responsible for distinct part of car (like front,
rear, side etc). However, from the developer’s perspective,
the architecture is designed to provide illusion of unified,
centralized system. ZoneController could be either an isolated
virtual machine running within Central Car Server (therefore,
it is important to take into account which VM platform and
image are used) or physically distinct application-specific chip
- Co-Processor (such as Infineon’s solution).

ProcessingNode represents element of metamodel that gen-
eralizes components which are able to execute processing
tasks. For such elements, the following aspects are relevant
and taken into account:

• memory capacity
• processing power
• number of cores
• maximum bandwidth/data rate
• architecture - ARM/x86 etc.
• realtimeCapability - whether the processing node has

support for realtime execution

Within the system’s scope, we identify two types of pro-
cessing node components: Master and Slave. While slave
components are usually single, dependent chips (required to
be connected to a master) - such as GPU, TPU and FPGA,
master components represent more general boards with addi-
tional components which can act independently, attach/detach
slave devices and schedule tasks for execution. In that sense,
ZoneControllers are subclass of master processing nodes.

To each ZoneController, a set of Components (either Hard-
ware or Software) is assigned in order to implement particular
usage Scenario. Moreover, scenario consists of one or many
Features. Each of the Features is derived from free-form
textual specification coming from Requirements Specification.
Moreover, a feature can be safety-critical, which is reflected
in container redundancy and other strategies adopted to ensure
safety compliance by the components. When it comes to
hardware components there are three identified types: Co-
Processors, Sensors and Actuators. Co-Processor represents
slave ProcessingNodes, such as GPU, TPU, FPGA which



Fig. 2. Hierarhical representation of Centralized Car Server Metamodel.

are designed to execute some specific tasks with high per-
formance, such as object detection and sensor data analysis.
Sensors cover commonly used sensing devices in vehicular
systems, such as Camera, Lidar, Ultra-violet and others. Role
of these devices is to record quantitative measurements repre-
senting some real-phenomenon.

For Sensors, the following aspects are relevant:

• measurementUnit - such as pixels, intensity
• measurementFormat - RGB bitmap, CSV data and other
• measurementsPerSecond- how frequently the data is mea-

sured
• parameterList - list of sensor-specific parameters, such as

Camera’s fov angle, image Height and Width, LIDAR’s
number of channels etc.

On the other side, for Actuator, relevant aspects are:

• commandFormat - such as MQTT JSON message or
some other specific protocol

• parameters - list of command parameters, such as accel-
eration amount, steering angle

Additionally, to each of the Sensors/Actuators, correspond-
ing software container Controller is assigned in runtime, which
is run within the isolated environment on the ZoneController.
This container is responsible for enabling the function of
sensor/actuator device. For sensors, it can start sensing, per-
forming reading sensor measurements and stop sensing. For
actuators, it can turn the device on or off and issue commands
to them.

When it comes to Software resources, they have the follow-
ing common properties:

• memoryDemand - estimation how much memory is re-
quired on the assigned ProcessingNode to run it

• processingDemand - estimated processing power required
• bandwidthDemand - how much data is exchanged or

consumed by the software component

• realtimeRequired - denotes whether the software compo-
nents require realtime capabilities

The main unit of software abstraction is ApplicationCon-
tainer. It represents an isolated environment where some spe-
cific processing task or sensor/actuator controller is executed.
Container has the following properties:

• image - name of the image which is used as base for
creation of container

• targetTechnology - which kind of underlying container-
ization/orchestration engine is used, such as Docker,
Docker Compose or Kubernetes engine

• repository - URL of the corresponding online repository,
private container registry or automotive vendor software
catalogs where resources required for running the con-
tainer can be accessed

• script [optional] - exact name of the script which will
be run inside the container, useful only for additional
capabilities of automated script containerization

• dependencies [optional] - list of libraries and runtime
environments (such as Python) used by container, also
useful only in case of automated containerization

• architecture - for which processor architecture was the
container built for, such as ARM/x86

• communicationPorts - list of ports which are used for
communication with this container, so they have to be
exposed in order to access them from other components,
such as port 2000 in case of CARLA simulator-based
components

Additionally, one more type of Software components are
ProcessingTasks. They represent either data analysis method
implementaton (image or LIDAR-measurement based object
detection) or control algorithms. ProcessingTasks usually take
data as input from either Sensor element or another Process-
ingTask. For each of them, the following aspects need to be
taken into account:



• inputs - list of aspects which are taken as inputs
of the performed computation/processing/transforamtion.
For example, it is ”image” for object detection.

• outputs - what is generated as outcome of the performed
transformation, such as steering or brake command in
case of car control algorithm

• inputFormat - list of formats corresponding to each of the
inputs specified, such as ”RGB” or ”CMYK” for image

• outputFormat - list of formats for the products generated
• compatibleFormat - list of compatible formats, recog-

nized by task as proper input. In case that provided inputs
are not in corresponding format, adoption of adapter
methods between the components would be needed

Regarding the abstract interface of these components, they
perform processing which takes into account inputs, inputs
formats and output formats, while the result of the transfor-
mation outcome is output. There are various possibilities for
input and output combinations:

• Image based object detection - inputs are images, outputs
is a number of objects detected

• Control algorithm - input is a number of obstacles,
outputs are acceleration, steering angle or brake activation

• ConnectionLink elements are used for representation of
relationships - either virtual or physical connections be-
tween two components, considering the protocol, type of
connection and latency.

The aspects of power consumption, together with costs by
each of the hardware components (co-processors, sensors and
actuators) can be taken into account as well, especially in
the design phase when the decision regarding the selection
of corresponding parts have to be taken into account by non-
functional requirements-aware optimization-based resource al-
location mechanisms.

V. COMPONENT INTERFACES

This section gives an overview of high-level, abstract in-
terfaces characteristic for various types of system component
interfaces.
ProcessingNode

• scheduleTask(containerId) – processing nodes
should be able to execute the assigned computational
tasks

• freeResources (containerId) – processing
nodes should be able to free up the resources for app
containers which are no longer required

ZoneController (inherited from ProcessingNode
→ Master): Apart from task scheduling, ZoneCntrollers
should be able to attach/detach slave devices, such as sensors,
actuators and co-processors

• attachDevice(deviceId)
• detachDevice(deviceId)

Actuator Controller: application container respon-
sible for managing of actuator devices (turn on or off) and
execution of commands for given protocol, format and specific
parameters.

• turnOn()
• turnOff()
• executeCommand(protocol, parameters,
template, allowedLatency) – parametrizes
command template with given set of actuator-specific
parameters, while the deadline for command completion
should not exceed the value of allowed latency

Sensor Controller: application container enabling
the acquisition of measured sensor data and managing of
sensing devices

• startMeasuring(measurementsPerSecond,
parameters) – sets up sensing device to start
measuring the observed real world phenomenon,
generating the given number of measurements per
second, for given sensor setup configuration parameters

• stopMeasuring() – device should stop measuring
values

• getMeasurements(allowedLatency) – compo-
nent should return the current measurements in no longer
time than the one given by allowedLatency param-
eter

Processing Task: application container which takes
sensor data or other processing task’s output values as its input,
performs some kind of data transformation and generates
outputs in given format

• process(inputs, inputFormat,
compatibleFormat, outputFormat,
allowedLatency): outputs

Co-Processor: additional chips used for processing
should be able to go to power saving mode if not used for
computation

• powerSavingMode()

Interfaces are not included as part of Ecore metamodel
specification. Therefore, another formalism is used for in-
terface specification, such as Interface Definition Language
(IDL). Example of adopting such notation for ZoneController
is given:

interface ZoneController{
void scheduleTask(String containerId);
void freeResource(String containerId);
void attachDevice(String deviceId);
void detachDevice(String deviceId);

}

VI. PROTOTYPE IMPLEMENTATION

The initial implementation of prompting tool is done in
Python programming language. When it comes to construction
of prompts that will be forwarded to LLM, we can distinguish
four crucial processing steps:

• model parsing – depending on particular scenario involv-
ing LLM, different information, such as property values
could be required from the model instances. For that
purpose, considering that we rely on Ecore framework,
the corresponding parsing library for Python is used –



Fig. 3. Centralized Car Server Metamodel.

PyEcore. This library enables convenient model instance
parsing, element traversal and parameter retrieval.

• prompt construction – in this step, we take the parsed
values from the model instance or user-provided free-
form text and parametrize pre-defined prompt templates.

• prompt execution – invoking the prompting service API
of the underlying LLM – either locally deployed or in
cloud (assuming that the corresponding LLM is properly
deployed, accessible via current network and exposes
such interface). As we make use of ChatGPT in our
current experiments, OpenAI’s Python API for this LLM-
based service is used.

• interpreting LLM outputs – post-processing of the results
which are returned from LLM, including their parsing,

extraction of relevant results and even further transform-
ing them to suitable form for the next block within
the LLM-enabled pipeline. In this step, it is of utmost
importance to clear the LLM-generated result from all
the additional text which resulted due to ”hallucination”
effect. Therefore, after this step, we should have clean, at
least syntactically correct output of LLM which can be
further used.

UML class diagram illustration the prototype tool imple-
mentation is given in Fig 4.

In the first step, Ecore model instance file is loaded
into the tool and parsed using loadModel method of
ModelParser which has currentModelPath as argu-
ment. As outcome of this process object representation is



Fig. 4. LLM-enabled tool prototype.

formed in memory, so its structure and properties can be
traversed. After that, it is possible to retrieve the values of
distinct element attributes, using getAttribute method,
which looks for the given model instance element and re-
turns the value of target attribute/property. Moreover, we
have PromptConstructor which contains a list of prompt
templates. In our current version of the prototype, we include
three types of templates, which are relevant to the scope of
our proposed workflow: model instance creation, OCL rule
extraction and code generation template.

The implementation of the prompt construction mechanism
is in valorizeTemplate, which parametrizes the prompt
template from the list with given identifier value. The second
argument of this method is the list of parameter values which
will be used to parametrize the prompt selected by id. These
parameters are extracted from the model instance itself, relying
on ModelParser.

Once the prompts are constructed, the next step is
PromptExecutor, which is responsible for executing the
prompts parametrized with appropriate values from the in-
stance model. PromptExecutor can optionally have one or
more apiKeys stored, which are used for authentication in
case of external LLM-based services, such as ChatGPT. These
values are user-specific and should not be exposed publicly.
The crucial method of prompt executor is executePrompt
which sends the constructed prompt to selected LLM model,
taking into account the maximal answer length, limited by
tokenLimit (which prevents from unexpected charges in
case of external, pay per use services). The result of this
method is raw output coming directly from LLM in response
to the forwarded prompt.
CodeGenerator coordinates the LLM-based flow – from

user-defined and reference requirements in textual form to
generated executable code, such as Docker container. It con-
tains a list of code templates for various types of assets
that are expected to be generated (such as Docker Compose
YAML file, Kubernetes YAML descriptors or CARLA Python
scripts) which are inserted as input to prompt constructor for
parametrization of specific prompts.

However, the generated response could contain redundant

or additional text which is not useful for the further work-
flow, so it needs to be post-processed. For this purpose,
we perform post-processing of the generated results and the
outcome depends on the template identifier itself, as the same
template is likely to lead to the generation of similar result
by LLM. The underlying method is postProcess, and
it has two arguments: templateId – identifier of prompt
template; llmResult – the raw output of LLM. The output
of this method is the string which contains only the useful
information, without additions.

For intermediary steps involving model instance usage,
before the process of code generation, the XMI Ecore model
instance is forwarded to ConsistencyChecker. Its main
method performs XMI model instance verification for given
Ecore metamodel definition and set of OCL rules. For each
of the rules, the output would be pass or fail. In case that
all checks pass, the flow goes further to code generation
phase. Otherwise, a message to the end-users is sent, so they
know that manual intervention or correction is needed. In
our prototype, this class relies on an external executable file
implemented in Java programming language and packed as
JAR file.

Additionally, our current prototype implementation also
includes several auxiliary classes:

• UserInterface – Handles user input from web form
- either reference or custom requirements, and forwards
them to RequirementsCollector.

• RequirementsCollector – Used for construction
of requirements dataset in automated manner. It is as-
sumed that web-based GUI is used by experts in order
to enter the requirements in textual form with respect
to the structure, which is later described in the section
about the used datasets. There are three methods in this
class. The first one adds the requirement to the dataset
in CSV format, based on reference requirements. The
second retrieves the i-th row from the requirements. The
third one accepts user-defined requirement, coming from
the web input form.

• Utilities – Provides functionalities enabling to read
textual file as string from disk and vice versa – to write



string variable into given textual file.

VII. EXPERIMENT DEMONSTRATION ENVIRONMENT

The Central Car Server runs isolated environments for
ZoneControllers, where each of the ZoneControllers runs a
set of assigned Docker containers. ZoneControllers can be
either physically (distinct chips or co-processors) or logically
isolated (VMs or containers).

Practically, to each of the ZoneControllers, a distinct Docker
Compose file defining the running containers and ports they
use for communication can be assigned. Additionally, adoption
of Kubernetes is considered as well, especially considering the
cloud-over-the-air update scenario and redundancy mechanism
incorporation in order to increase the overall robustness of the
resulting system. When it comes to code generation, the idea
is to extract model instance parameters and target to produce
Docker Compose files or Kubernetes descriptor YAML files,
where each of these files will be executed by one of the zone
controllers.

In the given example (shown in Fig. 5), we have two
ZoneControllers – back and front. The first one is responsible
for the frontal part of the car and runs camera sensing container
which produces input for object detection-based emergency
brake. In case that object is detected at short distance, auto-
matic emergency brake will be activated and send signal to
central car control container, as shown. A basic demonstration
of object detection implemented in CARLA simulator using
one virtual camera in the 3D environment is shown in Fig. 6.
Similarly, there is a distinct Zone Controller for the back part
of the vehicle. In our demonstration, it is assumed that two-
way integration with CARLA simulation is established, so the
images are recorded from CARLA simulation environment,
while commands issued by control component affect the car’s
position in simulation. The communication port in our case is
2000 when it comes to communication with CARLA simulator
server in both directions.

Fig. 5. Integration of central car server with CARLA simulation.

Fig. 6. 3D Object Detection in CARLA simulation environment for central
car server evaluation.

A screenshot of CARLA simulator, showing the perspective
of multiple virtual cameras in 3D environment, is given in Fig.
7.

Fig. 7. CARLA simulation environment for central car server evaluation.

VIII. RESOURCE ALLOCATION

The resource allocation problem in this case can be treated
as a mapping of software resources: m application containers
(c1, c2, ..., cm) to n processing nodes (p1, p2, . . . , pn)
with respect to some pre-defined criterion policy, such as
minimal price, minimal power consumption, minimal latency
or maximum execution speed.

In what follows, the developed model for optimal deploy-
ment is described, built upon the works from [8] and [9].
For each pair of processing node and container, we assign
a decision variable allocation[i, j] indicating whether the
container cj is deployed on the node pi or no:

allocation[i, j] =

{
1, cj is deployed on pi,

0, otherwise.
(1)

An example objective function would be to minimize the
cost of components required, by deploying the containers to
the cheapest nodes that fulfill all the criteria:

minimize

n∑
i=1

m∑
j=1

cost[i] · allocation[i, j], (2)

where cost[i] is the price of the processing node pi.
Furthermore, the following constraints have to be consid-

ered. First, the sum of the application container memory
demands – memoryDemand[j] – of the allocated containers
should not exceed the memory capacity of the processing
node – memoryCapacity[i], where this container is deployed,
given as:



m∑
j=1

allocation[i, j] ·memoryDemand[j] ≤

≤ memoryCapacity[i], ∀i ∈ [1, n] (3)

Similar conditions hold for bandwidth constraints and pro-
cessing power:

m∑
j=1

allocation[i, j] · bandwidthDemand[j] ≤

≤ bandwidthCapacity[i], ∀i ∈ [1, n] (4)

m∑
j=1

allocation[i, j] · processingDemand[j] ≤

≤ processingPower[i], ∀i ∈ [1, n] (5)

Each container, which requires real-time capabilities, must
be deployed on the processing node with such support:

m∑
j=1

allocation[i, j]·

· |realtimeCapability[i]− realtimeRequired[j]| = 0,

∀i ∈ [1, n] (6)

Similarly, for each container, its architecture type (x86,
ARM, GPU, TPU) must match with the processing node’s
computing architecture, which is relevant in our case as various
co-processors can be adopted as well

m∑
j=1

allocation[i, j]·

· |nodeArchitecture[i]− appArchitecture[j]| = 0,

∀i ∈ [1, n] (7)

IX. EXPERIMENTS

This section gives overview of the examples relying on LLM
usage, including distinction between the inputs, output and the
underlying prompt for each of them.

A. Model instance creation

Requirements + Metamodel → Model instance (Fig. 8)

B. Constraint extraction

Requirements + Metamodel → OCL constraints (Fig. 9)

C. CARLA code generation

Model instance + Template → Component Script (Fig. 10)

D. Constraint extraction

Requirements + Metamodel → OCL constraints (Fig. 12)

E. Deployment configuration generation

Model instance → Docker Compose (Fig. 11)

F. Device interoperability

Model instance → Python adapter code (Fig. 12)

G. Requirements verification

For purpose of formal design-time model instance verifica-
tion, we make use of the so-called Object Constraint Language
(OCL) declarative language. It represents an extension of UML
notation, giving the ability to specify some system design
aspects with more details, which are verification rules in
our case. Using OCL notation, a set of logical rules based
on reference architecture/ISO standard is defined which are
checked against the user-provided model instance. An example
of ISO standard which can be used for this purpose is ISO/TR
4804 [10] (going to be replaced soon by ISO/CD TS 5083
[11]). In our case, OCL rules are generated relying on LLM,
starting from free-form text. Let us assume that we start from
reference hardware requirements for Conditional Automated
Highway Drive: ”This system represents an example sensor
configuration with six cameras (at least 2.1MP), two LIDARs
and five radars...”. In OCL notation, we would have the
following rules for verification:

context Feature
inv CamerasCount:
self.cameras->size() = 6
context Feature
inv LIDARCount:
self.lidars->size() = 2
context Feature
inv RADARCount:
self.radars->size() = 5
context LIDAR
inv LIDARChannels:
channels > 0
inv LIDARRange:
range > 0
context RADAR
inv RADARRange:
range > 0
context Camera
inv CameraResolution:
width > 0 and height > 0
inv MinimumResolution:
(width * height) >= 2.1 * 1000000
-- Assuming resolution is measured
-- in megapixels (MP)

X. DATASET

For purpose of experimentation, we created a custom dataset
of mock automotive industry requirements based on AVC
Consortium document [12], which is publicly available. The
reason for this decision comes from fact that most of the
automotive vendors, OEMs and other industry partners might



Fig. 8. Model instance creation experiment illustration.

be concerned about their data becoming public, which could
lead to potential legal issues. As for now, two custom datasets
are created: 1) reference requirements + Ecore metamodel -
>OCL constraints 2) user requirements + Ecore metamodel
->Ecore model instance.

Table I depicts the layout of the dataset. We have the
following inputs: 1) Requirement text – Natural language,
unstructured text covering some requirement defined within
either the ISO standard or reference architecture used for
vehicle system development (first dataset) or user-defined
requirement (second dataset). Regarding the first dataset, the
idea is to collect this kind of requirements from publicly
available examples, reference documents or ISO standards for
automotive industry. This way, we aim to enforce the adoption
of good practices within the user-created system instances.
On the other side, the requirements of the second type are
collected from application form filled by user; 2) Feature –
to which feature the particular requirement is related to; 3)
Scenario – to which higher level functionality the particular
feature belongs to (such as emergency break within highway
pilot); 4) metamodel – reference, human-created metamodel.

On the other side, we have two possible outputs: 1)
OCL rules – free-form text about the architectural and
standardisation-related constraints expressed in form of OCL
rules with respect to the input metamodel; 2) model instance
– the resulting annotation of free-form text with respect to the
input metamodel.

TABLE I
LAYOUT (HEADER) OF THE DATASET: INPUTS (REQUIREMENTS TEXT,
FEATURE, SCENARIO, METAMODEL) ARE MARKED WHITE, OUTPUTS

(OCL RULE, MODEL INSTANCE) ARE MARKED GRAY.

Requirement
text Feature Scenario Metamodel OCL rule Model

instance

XI. CONCLUSION

In this paper, we presented a prototype of model-driven
framework leveraging LLMs, as an attempt to introduce
automated software development to the automotive industry.
Several use cases and examples adopting such development
approach are demonstrated, with the main goal of generating
an extensible and future-proof, centralized software vehicle
system.

According to the initial findings, such approach seems
promising, especially when it comes to reduction of time
and effort needed for development of automotive software
because of automated code generation. Additionally, auto-
mated verification of system models relying on Ecore model
instance representation and OCL rules in design-time could
potentially reduce the later efforts needed for run-time testing
of the created systems. However, the presented workflow is a
proof-of-concept, and it must be properly evaluated with large
datasets of requirements used in the industry. Our plan is to
incorporate more advanced techniques for processing of the
ISO standards and reference architectures using LLMs, such
as Retrieval Augmented Generation (RAG).



Fig. 9. OCL constraint rule extraction experiment illustration.



Fig. 10. CARLA code generation experiment illustration.

Fig. 11. Deployment configuration generation experiment.



Fig. 12. Data format interoperability experiment.
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