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Kurzfassung
Mit dem Ziel die Nachhaltigkeit in der Bauindustrie zu verbessern, gibt es vermehrt Be-
strebungen, nachwachsende Ressourcen zu verwenden. Hierbei liegt ein besonderer
Schwerpunkt auf Holz. Holzdecken sind umweltfreundlicher als beispielsweise Beton-
decken. Weiterhin erhalten hybride Stahl-Holzdecken zunehmend Aufmerksamkeit, da
sie oftmals eine erhöhte Tragfähigkeit im Vergleich zu reinen Holzdecken aufweisen. Bei
holzbasierten Decken treten jedoch häufig Beschwerden der Bewohnerinnen und Be-
wohner über Schwingungen und akustische Probleme auf. Diese Doktorarbeit befasst
sich aus diesem Grund mit hybriden Stahl-Holz-Strukturen und untersucht ihr dynamis-
ches Verhalten, insbesondere in Bezug auf die Vibroakustik. Es werden verschiedene
Einflussfaktoren auf das dynamische Gesamtverhalten analysiert. Ein Schwerpunkt liegt
hierbei auf den Auswirkungen der Verbindungen auf das Gesamtstrukturverhalten. Ein
weiterer wichtiger Faktor bei der Untersuchung dieser Strukturen sind die inhärenten
Schwankungen des Werkstoffs Holz. Diese mit den Verbindungen- und Materialparame-
tern verbundenen Unsicherheiten erschweren die Vorhersage der dynamischen Reaktion
der Deckenstrukturen. In dieser kumulativen Arbeit werden daher experimentelle und
numerische Methoden zur Untersuchung des vibroakustischen Verhaltens von hybriden
Stahl-Holz-Elementen vorgestellt. Experimentelle Untersuchungen liefern die modalen
Eigenschaften von Probekörpern. Zusätzlich wird eine experimentelle Analyse des Ein-
flusses der Verbindungen durchgeführt und das teilweise nichtlineare Verhalten der Struk-
turen im Zusammenhang mit der Amplitudenabhängigkeit und Beiträgen höherer Ord-
nung wird in Messungen betrachtet. Weiterhin wird die Bayes’sche Inferenz zur Iden-
tifizierung der variierenden Materialeigenschaften von Holz angewendet. Dabei wer-
den die Unsicherheiten in Bezug auf die Materialparameter bestimmt und anschließend
in Monte-Carlo-Simulationen verwendet. Hier werden sowohl die Unsicherheiten der
Verbindungen als auch der Materialparameter berücksichtigt. Ebenfalls wird die Finite-
Elemente-Methode eingesetzt, um die Charakteristika zu bestimmen, welche das Un-
wohlsein der Bewohnerinnen und Bewohner beeinflussen. Hierbei liegt der Schwerpunkt
auf den Schwingungsdosiswerten und Trittschallpegeln für hybride Stahl-Holz-Decken.
Trotz der experimentellen Identifikation von Nichtlinearität in Form einer leichten Am-
plitudenabhängigkeit der Dämpfung und Oberschwingungen höherer Ordnung bei bes-
timmten Eigenschwingungen wird in dieser Studie das Verhalten der Struktur zur Vere-
infachung mithilfe linearer Simulationsmodelle dargestellt, um die Berechnungskomplex-
ität zu verringern. Weiterhin zeigen die Monte-Carlo-Simulationen nicht vernachlässig-
bare Schwankungsbreiten der Eigenfrequenzen aufgrund der Variabilität von Material-
und Verbindungsparametern, was die Relevanz der Berücksichtigung ihrer Unsicherheit
unterstreicht. Die Ergebnisse zeigen, dass die derzeitigen Deckenschwingungen die
geforderten Grenzwerte für Gebrauchstauglichkeit nicht einhalten. Dies betont die Not-
wendigkeit weiterer Untersuchungen, welche beispielsweise Maßnahmen zur Verbesser-
ung des Dämpfungsverhaltens beinhalten. Die numerische Studie zu den Trittschallei-
genschaften zeigt ein ähnliches Verhalten der simulierten Trittschalldruckpegel mit den
Literaturwerten für Beton- und Estrichböden. Zukünftige Studien sollten sich daher mit
der experimentellen Validierung dieser Ergebnisse befassen.
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Abstract

With the goal of enhancing sustainability, the construction industry is transitioning towards
utilizing renewable materials, with a particular emphasis on wood. Wood-based floor
structures are environmentally more friendly compared to concrete floors. Therefore, hy-
brid steel-wood ceilings are also attracting increasing attention due to their often higher
load-bearing capacity compared to pure wood ceilings. However, residents often complain
about vibrations and acoustic problems with wood-based ceilings. For this reason, this
doctoral thesis explores hybrid steel-timber structures, focusing on the dynamic behavior
of the structures, specifically in relation to vibroacoustics. To comprehensively address
these challenges, this study examines various factors influencing the overall dynamic per-
formance. Here, a special focus lies on the effects of joints between the timber and steel
components. Another important factor when investigating these structures is the natu-
ral variation of the material wood. These inherent uncertainties associated with joint and
material parameters complicate predicting the floor structure’s dynamic response. Experi-
mental and numerical methodologies are introduced to analyze the vibroacoustic behavior
of hybrid steel-timber elements. Experimental investigations give the modal properties of
test specimens. Additionally, the influence of the joints is analyzed experimentally, and
the partially nonlinear behavior of the structures is investigated in measurements related
to amplitude dependency and higher-order contributions. Bayesian inference is applied
to identify the varying timber material properties. Thereby, uncertainties related to ma-
terial parameters are determined and, subsequently, utilized in Monte Carlo simulations
considering both joint and material parameter uncertainties. Additionally, the finite ele-
ment method is employed to explore characteristics influencing resident discomfort, with
a specific focus on vibration dose values and impact sound pressure levels for hybrid
steel-timber floors. Despite experimental detection of nonlinearity as a slight amplitude-
dependency in damping and higher-order harmonics at certain natural modes, the study
linearizes the structure’s behavior using linear simulation models to simplify the compu-
tations. The Monte Carlo simulations reveal non-negligible ranges of variation in natural
frequencies due to material and joint parameters, emphasizing the importance of consid-
ering their uncertainty. Furthermore, findings indicate that current floor vibrations do not
meet the required serviceability limits, suggesting further investigations. These include
measures to enhance inherent damping. The numerical study on impact sound proper-
ties shows that the simulated impact sound pressure levels align with literature values for
concrete and screed floors. Future studies should deal with an experimental validation of
these results.
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1 Introduction

In recent years, research on timber as a construction material for buildings received in-
creasing attention due to the rise of engineered wood materials and sustainability con-
cerns in society [1, 2], as wood is a comparably environmentally friendly product. The
production of concrete releases eight times more net carbon emissions than lumber does.
[3] In this context, studies on hybrid timber-concrete or timber-steel structures are mov-
ing into focus [4]. Hybridization aims to use each material optimally such that the hybrid
system performs better than a homogeneous structure [5]. In the case of hybridization at
the component level, materials are combined for a structural element such as a slab [6],
a beam element [7], or for joints [8]. At the building level, the hybrid system is constructed
from building elements of different materials, e.g., cross-laminated timber (CLT) panels
and steel frames for beams and columns in a hybrid steel-timber (HST) building [5]. The
material wood can be represented by orthotropic material behavior, which is described by
nine independent elastic constants representing the behavior in three axes: longitudinal
(parallel to the fiber), radial (perpendicular to the growth rings in the radial direction), and
tangential (perpendicular to the fiber and tangential to the growth rings). This leads to
three moduli of elasticity, El, Et , and Er, three shear moduli, Glr, Glt , and Grt , and three
Poisson’s ratios, µlr, µlt , and µrt . The remaining material properties follow from the sym-
metry of the elasticity matrix of the orthotropic material. [9] Unlike timber, steel represents
an isotropic material, which uses the interrelated parameters, elasticity modulus Es, shear
modulus Gs, and Poisson’s ratio µs. Only two out of three are required to fully character-
ize the elastic behavior of the steel. [10] When combining both materials, wood shows
its strength in terms of compressive strength [9]. In completion, steel contributes its high
tensile strength. This combination leads to improved load-bearing capacity when the ma-
terials are appropriately arranged in a structural element [5]. However, to achieve the
best possible environmental compatibility, a simple disassembly of hybrid structures with-
out bonding components is desirable [4]. In terms of fire safety, wooden building elements
show advantageous properties if designed with sufficient cross-sections, as a protective
layer develops in case of fire that prevents further charring [11]. This layer extends the
fire resistance period of a wooden component [11], unlike steel, which quickly loses its
strength with increasing temperature [12]. Hence, if designed properly, HST structures
can profit from better fire safety than steel-only systems. In addition, wood and hybrid
wood structural elements are advantageous when using optimized manufacturing meth-
ods for off-site prefabrication [2, 13]. Likewise, wood has a high strength-to-weight ratio
[14]. For this reason, wood or hybrid wood buildings are often lighter than other building
types, favoring them in terms of seismic activity due to less inertial forces being gener-
ated. Another advantage of the low weight relates to fewer geotechnical limitations on the
construction site [15].

As high-rise timber buildings and larger spans have recently become more popular, the
floors have become more susceptible to vibrations. So even though new products satisfy
the design criteria for load-bearing capacity, the criteria for serviceability must also be ful-
filled [16]. Otherwise, residents could complain about excessive vibrations [17]. Nonethe-
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1 Introduction

less, ongoing discussions exist concerning the vibration characteristics and the criteria
for acceptable levels of occupant comfort in the context of timber and hybrid timber floors
[18, 19]. In addition, the evaluation regarding a standard related to the limit state of vi-
bration serviceability does not necessarily correspond to the perception of residents [20].
Consequently, engineers and researchers do not yet agree on which standard should be
applied, especially since disadvantages have been discovered in many of them. Never-
theless, vibration analyses are particularly relevant for wood and hybrid wood structures
since, according to a survey, vibrations in wooden structures are more often perceived as
disturbing than for, e.g., concrete ceilings [21].

Additionally, lightweight constructions exhibit subpar airborne and impact sound insula-
tion. Noise resulting from impacts within timber structures frequently emerges as a rele-
vant cause of residents’ complaints [22]. Ingelaere [23] highlights that wooden structures
exhibit superior insulation characteristics within the middle and high-frequency spectrum
compared to their heavier counterparts, e.g., those out of concrete. Consequently, inves-
tigations often focus on low-frequency impact noise, which is said to be more disturbing
and annoying [24]. The overall floor system has to be significantly altered in terms of
damping, mass, or stiffness in case of a problematic floor [25]. Consequently, accurate
prediction models might prevent changes after the manufacturing of a floor, limiting un-
necessary consumption of resources [26, 27]. For impact noise, the typically applied
design processes, i.e., using ISO 12354-2 [28] and analytical or empirical approaches
[29], have been developed for heavy floors, leading to deviations of the predictions for
lightweight structures. So far, theoretical and empirical evaluation methods of bare timber
floor impact sound levels are barely available [30]. Hence, there is still a need for an
in-depth analysis of the impact sound and vibration characteristics of timber and hybrid
timber structures, which is dealt with in this thesis.

1.1 State of the art

The following sections give an overview of the research on HST structures and the vibroa-
coustics of timber-based floors. Moreover, the commonly applied prediction methods and
the inherent uncertainty, which can be dealt with using Bayesian inference and Monte
Carlo simulations, are described. Finally, the effects of joints within structures are pre-
sented, and the contributions of this thesis to the field of vibroacoustics of HST floors are
summarized.

1.1.1 Hybrid steel-timber building elements

Current research on HST building elements covers a wide range of disciplines, whereas
load-carrying capacity investigations are the most common. The most popular design
features an H-shaped steel beam connected with CLT and LVL panels at the top flange
via screws or bolts. Usually, experimental three- or four-point bending tests are employed
to assess various structural aspects, such as the load-bearing capacity and maximum
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1.1 State of the art

strength. [7, 31–33] In addition, research is conducted on developing empirical formulas,
various numerical approaches, including 1-D frame, 2-D continuum-based nonlinear and
3-D Finite Element methods (FEM) [7, 34–38], and analytical models, e.g., the elastic
theory of layered beams [39, 40]. By employing the models, the authors conduct a va-
riety of parametric studies to identify critical factors influencing the bending behavior of
steel-timber beams, e.g., the type of connector [40], initial imperfection [35], and mate-
rial nonlinearities [34]. The performed measurements are subsequently utilized to vali-
date the modeling approaches. Moreover, whole floor structures of modular prefabricated
steel-timber systems are analyzed experimentally, focusing on, e.g., in-plane stiffness and
damage states [41, 42].

Many studies focus on the mechanical processes in relation to statics within joints of
HST structures, i.e., beam-to-panel or column-to-beam joints, for example, concerning
load-displacement curves and failure modes using push-out tests. Loss et al. explore
various fasteners and connection types and analyze the joints’ nonlinear behavior ex-
perimentally and numerically [42–44]. Another group of authors also conduct various
studies on the behavior of joints constructed by different fastener types, and with or with-
out glue [38, 45–48]. Moreover, the energy dissipation capacity and equivalent viscous
damping of the joints are identified by experiments with low-cycle high amplitude loading
[49]. Furthermore, Chiniforush et al. investigate the long-term behavior and creep coeffi-
cient of steel-timber joints by employing analytical, numerical, and experimental methods.
Thereby, the authors assess the effect of varying temperature and moisture content of
the timber on the structural behavior of the timber, steel, and connectors for a service life
of 50 years. [50–55] Some research efforts have also been devoted to fire resistance.
The thermo-mechanical response of HST structures when exposed to fire is examined
via experimental tests in a furnace. Moreover, one-way coupled numerical analysis is
conducted through Computational Fluid Dynamics and FEM software. This way, various
cross-sections and connection types are tested. [56–59] However, only a few studies on
the seismic performance [60] and on the life cycle assessment [61] exist.

Despite the previous effort, a limited number of studies on the vibrational behavior of HST
systems have been performed. Cold-formed steel floors with wood-based particle floor
boards are investigated for serviceability criteria by conducting static tests, heel drop tests,
and walking tests. These are conducted numerically, in the lab, or in situ to determine
deflection limits, natural frequencies, and time-history accelerations [62–66]. Moreover,
CLT-steel floors with varying boundary conditions, beam spacing, and beam sizes are in-
vestigated by numerical modeling, experimental testing, and analytical considerations to
examine their dynamic behavior among others in terms of natural frequency and mode
shapes [67–70]. For HST cross-sections consisting of an H-shaped steel beam with a
timber panel on top, the authors conduct extensive experimental and numerical studies
[71–73]. They perform experimental modal analysis on the steel-timber beams to iden-
tify natural frequencies and mode shapes of various setups and calibrate an FE model
against those tests. Investigations concerning building code regulations are carried out
through the FE model using experimentally determined damping properties. Parametric
studies are realized as well, e.g., considering different shear connector types, CLT panel
orientations, and dimensions. [71–73] Although low-frequency acoustics are a major con-
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cern for lightweight floor structures [30] and research exists on floors using cold-formed
steel profiles and oriented-strand board [74], no studies of the building acoustics of hybrid
cross-sections made of steel and timber have been performed so far.

Lastly, review articles on steel-timber hybrid structures exist covering a wide range of
topics [75–77] and vibrations only [19] showing the great interest of the research com-
munity in these systems. Therefore, this thesis deals with the vibrational characteristics
of HST structures and conducts a numerical investigation of the impact sound insulation
properties of HST floors.

1.1.2 Vibrations and acoustics of timber floors

The rapid construction, impressive strength-to-weight ratio, and lightweight attributes lend
favor to timber-based structures. However, the rising pursuit to construct larger spans
and taller timber buildings raises concerns about vibrations in floors and similar struc-
tural elements. While engineered wood products improve load-bearing capacity, meeting
serviceability criteria can still be challenging [16]. As vibrations are a major concern re-
garding the serviceability of a floor structure, design standards also deal with this issue.
Timber floors are often analyzed concerning measures of velocity and acceleration levels
of a floor’s dynamic response. Here, the root-means-square (RMS) and root-mean quad
values are taken into account [78], e.g., for the computation of the Vibration Dose Value
(VDV) in BS 6472 [79]. Moreover, response factors, which represent the perceptible level
of vibration, are applied as limits to evaluate the performance of a floor [80]. In addition,
floor deflection and fundamental frequency are incorporated in the current draft of Eu-
rocode 5 to consider stiffness- and frequency-based criteria [81]. Nevertheless, bearing
in mind the different design codes, consent on the usage of various available vibration
criteria and limits for HST floors has yet to be achieved. Practitioners frequently rely on
various design references to evaluate the vibrations of different types of floors. These in-
clude general design guidelines such as the “Design Guide for Footfall Induced Vibration
of Structures” (CCIP-016 [82]) and “AISC Design Guide 11” [83], which are commonly ap-
plied for evaluating vibration in concrete, steel, and composite floors. Moreover, there are
specialized standards tailored to timber structures, such as “Eurocode 5” [84], the “Cana-
dian Wood Council (CWC)” [85], “Canadian Standards Association (CSA O86-19)” [86],
the "CLT Handbook”[87], and the “American Engineered Wood Association APA–E710”
[88] to address the vibration performance of timber floors. In some cases, researchers
also propose consulting “SCI P354” [89] for lightweight cold-formed steel floors, including
those featuring timber floorboards [19]. Although still more thorough validation is neces-
sary on steel-timber floors, in their review on vibration assessment methods, Cheraghi-
Shirazi et al. [19] conclude that for now, AISC Design 11 [83] and CCIP-016 [82] currently
recommend the most suitable approaches for HST floors. Nonetheless, the ongoing dis-
cussion about the appropriate design guidelines for HST floors often leads researchers
to rely on existing timber-related design standards like Eurocode 5 and the guidelines of
the Canadian Wood Council [19], indicating consensus of researchers that HST floors
behave to some extent similarly to timber floors. Hence, due to the vast number of stud-
ies related to timber floors and, at the same time, a rather limited number related to HST
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floors, the relations and issues explored in this section often deal with timber floors while
assuming transferability to HST floors. Evaluating existing research on timber and vibra-
tion identifies floor vibrations as the most discussed topic [78], hence emphasizing the
great interest of the research community.

Low-frequency vibration issues are mainly connected to the interaction with human activi-
ties, such as running and walking, potentially leading to excessive vibrations and concerns
regarding residents’ discomfort. In contrast, high-frequency vibrations lead to effects in
the audible frequency spectrum [78]. Although noise and vibration are commonly ad-
dressed independently, several authors propose that the primary discomfort encountered
within buildings results from a cumulative impact of both [90]. Annoying vibrations occur
when the floor structures vibrate in resonance with the walking pace or alternative hu-
man activities [78]. Additionally, issues arise concerning the perception of timber floor
vibrations due to individual sensitivity and perceived acceptability of vibrations in diverse
environments [20]. Another concern relates to the possible wear and deterioration of
timber components due to extended exposure to recurrent dynamic loading resulting in
fatigue-induced failures and diminished strength and durability of the timber flooring sys-
tem [91, 92].

Experimental studies in laboratories or in situ and numerical studies are performed to
evaluate floor vibrations, identify countermeasures, verify compliance with serviceability
guidelines, and improve existing designs. Although numerical methods are increasingly
used and thus come into focus, experimental approaches to vibration characterization are
still the most commonly used. [78] For the HST structures at hand, no experimental and
numerical studies have been performed so far. Therefore, this thesis aims to fill this gap.

As stated before, the discomfort of inhabitants arises due to a combination of vibration and
noise events. Hence, the acoustic behavior of timber or hybrid timber floors also accounts
for an important factor, especially in the case of impact sound [24, 30]. In general, sound
transmission can be airborne, e.g., due to inhabitants talking, or structureborne, e.g.,
due to residents walking. Consequently, two criteria are taken into account - airborne
sound insulation and impact sound insulation - to determine the acoustic performance
of a ceiling component. For both of them, the direct sound transmission through the
component, as well as the indirect flanking transmission via adjacent components, e.g.,
walls, are relevant. The evaluation of both is usually carried out through measurements
[78] according to the standards ISO 12354-1 [93] and ISO 12354-2 [28]. Single-number
quantities that are applied for the acoustic rating of the floor are calculated by employing
the rules of ISO 717-2 [94]. The single-number ratings are subsequently compared to the
applicable national or international building regulation, e.g., DIN 4109 for Germany [95].
Although airborne noise can be problematic for timber structures, issues due to impact
sound transmission are often more prominent [96]. Hence, the focus is repeatedly laid
on the impact sound of the floors. In this context, the normalized impact sound pressure
level is adopted as the relevant parameter for comparison [97].

Lightweight structures suffer from poor impact sound insulation properties in the low-
frequency range [98]. Therefore, it is important to especially consider the frequencies
below 100 Hz when dealing with the acoustics of timber and hybrid timber floors. In the
case of both, airborne and impact sound insulation, the average sound pressure levels
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are usually measured for the frequency range of the one-third octave bands with center
frequencies from 100Hz to 5000Hz, which are optionally expanded down to 50Hz. As
measurements are usually performed in ceiling test rigs with transmission and receiving
rooms [97, 99], low-frequency acoustic measurements can be challenging, especially for
small room sizes due to the long wavelengths of low-frequency sound. Consequently, re-
searchers are working to develop reliable prediction models, especially for low-frequency
noise control [100]. Furthermore, it is noted, for example, by Caniato et al. [30] that the
acoustic performance varies greatly depending on the flooring and insulation products
used, types of timber, construction practices, overall dimensions, and built-up. Here, ac-
curate prediction tools are advantageous over experimental evaluations since parametric
studies can be conducted easily. However, this large variability can also cause problems
for prediction tools. Differences between in situ and laboratory tests, but also effects of
whole systems on individual components, make accurate predictions significantly more
difficult [101]. An accurately implemented and tuned prediction model is consequently
important to investigate impact sound properties. However, such analyses have not been
performed for HST structures before and are therefore done in the scope of this thesis.

1.1.3 Jointed structures and nonlinearities

One factor that largely affects the variability of timber structures is the type of the used
joints and their realization. Joints significantly influence a structure’s dynamics as they
represent one major source of uncertainty. The phenomena occurring in joints mainly
depend on the orientation of the transmitted force in the connections, i.e., normal and
tangential [102]. Damping more prominently appears in tangentially than normally loaded
joints due to “gas-pumping” and friction by relative motion at the interface of components
[103]. The asperities in the contact surface experience local microscopic deformations,
which include elastic and plastic deformations, potentially inducing micro slip [102]. How-
ever, the effects of normal damping increase if a gap appears in the joint, leading to
slapping or micro-impacts emerging [104].

To distinguish between micro slip and macro slip in joint connections under tangential
load, it is important to note that in the former case, partial slip exists in the contact area,
while a larger part of the joint still maintains adherence. As the driving force rises or the
normal pressure diminishes, a point is reached where components start moving relative
to each other, leading to macro slip. Notably, micro slip and macro slip exhibit nonlin-
ear behavior, and the superposition principle does not apply. Nevertheless, experimental
investigations often show an approximately linear behavior of joints when excitation am-
plitudes are small and macro slip is avoided. [102]

In [105], various factors contributing to nonlinear behaviors in assembled systems are
discussed. First, the system’s geometry is affected by macro slip under expected ex-
citation levels. Second, coupled modes emerge in the structure’s response. Third, the
stiffness at the joint interface diminishes, and in the joint interface, damping significantly
increases within the micro slip to macro slip transition range before subsequently decreas-
ing. Based on these observations, three phenomena related to joint-induced nonlinearity
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are recognized: amplitude-dependent stiffness, amplitude-dependent damping, and the
occurrence of nonlinearly coupled modes or higher-order harmonics. To elaborate, if
the system’s natural frequency changes with increasing load amplitude, it signifies the
presence of amplitude-dependent stiffness and possibly amplitude-dependent damping.
When loading induces slippage at the joint and the damping ratio shifts due to heightened
excitation, amplitude-dependent damping affects the structure’s response. Additionally,
nonlinearly coupled modes can manifest when the system is driven at one natural fre-
quency, and other modes become prominently excited. This behavior leads to the emer-
gence of multi-harmonic responses. However, it is important to note that while harmonic
distortion indicates the engagement of non-smooth nonlinearity near resonance, it does
not necessarily imply nonlinear modal interaction. [105] Nonlinearly coupled modes or
modal interaction appear when excitation at one resonance frequency results in an unex-
pectedly large amplitude response in other modes of the studied structure. This situation
may arise for commensurate or nearly commensurate natural frequencies. [106, 107]

As an initial categorization approach, the degree of nonlinearity aids in classifying a
structure. The assumption of linearity holds if none of the aforementioned phenomena
are evident. Weak nonlinearity is indicated when amplitude-dependency is detected,
while strong nonlinearity is evident in the system if nonlinearly coupled modes or higher-
order harmonics are present alongside amplitude-dependency. [105] Depending on the
strength of nonlinearity, different modeling approaches are often employed. Further re-
search also investigates various linear and nonlinear joint models and their suitability.
[102] Although previous research on joints of HST structures has been conducted to
identify, e.g., load-displacement curves, an investigation of nonlinearities in the dynamic
behavior has not been the subject of studies so far and will be dealt with in this thesis.

1.1.4 Prediction tools for vibroacoustics

For the prediction of the vibration performance of timber or hybrid timber floors, experi-
ments account for an important measure to evaluate a floor’s vibration behavior. Addition-
ally, calculation tools are applied [80]. A comparative study by Casagrande et al. [108]
investigates the commonly employed kinds of methods, their assumptions, simplifications,
and acceptability regarding two case studies. The authors’ findings are presented below
to provide an overview of the prediction tools. Analytical approaches compute specific
properties, e.g., the natural frequency, vertical displacement, velocity, and acceleration,
via simplified expressions to study the dynamic behavior. For numerical explorations, of-
ten, the FEM is applied. This technique can account for the vibrational behavior of the floor
in more detail, and moving walking loads are adopted to excite the simulated structure.
These approaches can also be used to compute reference parameters, such as maximum
deflection, natural frequencies, and mode shapes. With respect to experimental methods,
laboratory and in situ tests are performed. Here, modal or walking tests are conducted to
compute, e.g., damping properties, natural frequencies, and VDVs. The authors of [108]
conclude that analytical procedures are easy-to-use approaches for evaluating a prelim-
inary design. Nevertheless, they are often based on observations from experiments on
specific floor structures, limiting the transferability to other floor types. Numerical meth-
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ods can represent the behavior more accurately than analytical approaches but constitute
a more elaborate methodology, thus necessitating a higher expertise. Experiments are
often applied since they provide a reliable evaluation of the vibration performance. [108]
However, laboratory tests are costly [109, 110] and require specific equipment and facil-
ities. Moreover, in situ tests are possible only after the construction of the floor, which
prohibits preliminary design studies.

The most used method to assess the acoustic characteristics of a building element is
to conduct standardized measurements either in situ or in an acoustic laboratory [97,
99, 111]. Often, such measurement results are then used in a subsequent step to esti-
mate the performance of new structures. Moreover, analytical, numerical, and empirical
approaches are utilized to approximate the sound transmission loss and impact sound
pressure level of floor structures [101]. However, the prediction through such tools some-
times shows considerable deviations from the real behavior [112]. Furthermore, their
accuracy diminishes due to a large variety of designs for timber, and thus, hybrid timber
floors [101]. Prediction tools for sound transmission vary from analytical formulas to more
complex methods. Analytical approaches are developed for single-leaf partitions [113],
double-leaf partitions including structural connections [114], and sandwich panels [115].
One example of a more complex method is the transfer matrix method, e.g., in [116],
which considers “infinite lateral extent multilayer walls for a particular angle of incidence”
[117]. Nevertheless, although beneficial at mid to high frequencies, the transfer matrix
method shows suboptimal behavior in the low-frequency range. Here, researchers, e.g.,
[118], utilize the FEM, which can be applied to structures of unrestrained complexity [117].
Arjunan et al. [119] even expand their study to the entire frequency range (100 - 3150
Hz) relevant to building acoustics. However, the computational effort and limitations of the
applicability of FE models in the higher frequency range have to be kept in mind, thus fa-
cilitating research related to hybrid methods, e.g., a hybrid FE-TMM [120], a modal-based
TMM [121], and a hybrid SEA-FE [122] approach. Moreover, the statistical energy analy-
sis is applied to study the airborne sound transmission [123]. Recent studies by Bader et
al. [101, 124] proposed a new technique by applying artificial neural networks.

When considering impact sound, i.e., sound radiation from floor structures under loading
of a tapping machine [125], in addition to the structure and the sound radiation into the
receiving room, an adequate prediction of the impact load itself is required. This prediction
is especially challenging for lightweight floor structures since the interaction of the floor
and the tapping machine hammers shows considerable impact on the load due to the
tapping machine’s and the overall structural behavior [126]. Brunskog et al. [126] thus
established a model that incorporates the interaction for the case of a lumped model.
More recent studies, e.g., [100], used the approach by Brunskog et al. for investigations
using FEM.

In practice, there often exists a disparity between FEM predictions and actual test out-
comes, mainly related to model form errors and approximation errors, which are both
forms of either epistemic or aleatoric uncertainty [127]. To mitigate these disparities, a
process known as model updating or model calibration involving the iterative adjustment
of model parameters is often employed. This iterative approach decreases approxima-
tion errors and strengthens the model’s reliability and precision. The process entails
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determining model parameters by minimizing a specific objective function tailored to the
problem. [128] Various methodologies have been proposed for this purpose, e.g., genetic
algorithms [129], or Bayesian optimization [130, 131].

1.1.5 Uncertainty and Bayesian inference applied to timber
structures

The challenge of precisely understanding the behavior of timber-based structures, which
are subject to various uncertainties, often leads researchers to favor experimental inves-
tigations over simulated ones. In practical scenarios, when the prediction of the response
of a vibroacoustic system is required, mechanical modeling is typically involved. Here,
two distinct sources of uncertainty are introduced: model uncertainties and data uncer-
tainties. Model uncertainties pertain to the applicability of a model to the specific problem
at hand, representing a form of epistemic error. On the other hand, data uncertainties
are a type of aleatoric error linked to the parameters of the system, such as geometri-
cal attributes, boundary conditions, or material properties. Addressing data uncertainties
can be accomplished by incorporating random quantities, such as random variables or
stochastic fields, into the parameters within the prediction tool. [105, 132]

In engineering practice, these uncertainties are often addressed using safety factors,
which result in conservative designs [133]. To enhance efficiency, recent research on re-
liable predictions for building elements has shifted its focus towards considering data un-
certainties rather than relying on safety factors. For example, recent studies on stochastic
analyses of wooden floors, including CLT slabs [134] and floors made of wood beams and
particle boards [135], employ the Monte Carlo method to account for the randomness of
material properties and determine the vibroacoustic response of the floor within confi-
dence intervals. The random material parameters are determined by calibrating FE mod-
els to match eigenfrequencies obtained from experimental modal analyses [134, 135].
Alternatively, more sophisticated objectives could be achieved by incorporating prior in-
formation on elastic constants within a Bayesian framework [136]. Previous research has
applied Bayesian inference to laminated, orthotropic materials like engineered wood prod-
ucts, e.g., for general thin orthotropic laminates [137], thick orthotropic laminated plates
[136], laminated timber beams [138], and CLT structures [139]. These studies utilize
different types of tests and data, such as static deflection tests, natural frequencies, or
frequency response data, to determine material properties. Within this thesis, an uncer-
tainty quantification related to the vibrational behavior of the HST structures is performed
to investigate the effects of input parameter uncertainty. Such analyses have not been
conducted so far for HST structures.
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1.2 Contributions and accomplishments

This cumulative thesis contributes to the field of vibroacoustics of HST structures, ad-
dressing the issues highlighted in the Introduction. Therefore, three peer-reviewed publi-
cations build the basis of this work, introducing numerical and experimental approaches
that investigate the overall dynamic behavior of the structures. The major accomplish-
ments can be briefly summarized as follows:

• Paper A [140] deals with experimental investigations related to modal properties of
HST systems. Moreover, nonlinearities due to joints are detected by considering
amplitude-dependency and higher-order harmonics.

• In Paper B [141], a Monte Carlo simulation is employed to quantify the uncertainty in
the modal properties of the HST building elements. Uncertainties related to timber
materials are analyzed using Bayesian Inference.

• Paper C [142] characterizes HST floors in a vibroacoustic sense by numerically com-
puting VDV and impact sound pressure levels. The adopted FE model is based on
a calibrated model and experimental investigations on small-scale test specimens.
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2 Investigations of hybrid steel-timber
structures

First, the HST structures under investigation are described in section 2.1. Afterward,
information based on the experimental studies performed on the HST elements is given
in section 2.2. Finally, the numerical approaches utilized for the investigations on the HST
systems are elucidated in section 2.3.

2.1 Objects of investigation

This thesis deals with a specific kind of HST structure. The top and bottom LVL plates
represent the chords of the HST element. A trapezoidal steel core is placed between
them. Due to manufacturing reasons, two types of joints are applied to connect the indi-
vidual components: steel-timber and timber-steel joints. The labels of the joints refer to
the sequence in which the components are joined together. In the case of the steel-timber
joint, the fastener is first driven through the steel and then into the wooden plate. For a
timber-steel joint, the assembly is carried out the other way around. As a fastener, either
screws or nails are employed. Timber-steel joints are solely built by screws, whereas
steel-timber joints are manufactured by either, depending on the test sample.

Figure 1: HST cross-section types: closed (left) and open cross-section (right).

A variety of test specimens is analyzed within the appended publications. These speci-
mens differ by dimensions, e.g., steel frame thickness, fastener type, e.g., the diameter
of the screw, type of timber material, e.g., LVL made from beech or spruce and pine, and
the cross-section type, i.e., open and closed. The difference between open and closed
cross-sections becomes apparent when looking at the lower layer of the HST element.
A continuous LVL panel is attached to the steel core for closed configurations, whereas
individual LVL planks constitute the lower chord for open cases. Examples of both cross-
section types are displayed in Fig. 1.
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2 Investigations of hybrid steel-timber structures

The structures are to be analyzed for future use as a floor structure, requiring investi-
gations regarding vibration and acoustic characteristics, as elucidated in the Introduction.
Consequently, the methods described in the following sections deal with experimental and
numerical approaches to this purpose.

2.2 Experimental studies

Ewins [143] mentions a threefold motivation to conduct experimental vibration studies.
First, one can assess the kind and magnitude of structural vibration responses. Second,
models and prediction tools are validated, and third, structural parameters, e.g., natural
frequencies and damping properties, are determined. For the latter item, experimental
modal analysis is usually conducted. [143]

2.2.1 Experimental modal analysis

For experimental modal analysis, the tested structure is driven to vibrate by a known exci-
tation, often in the form of white or pseudo-random noise. At the same time, the vibration
levels are recorded, e.g., as surface velocities or accelerations, to identify natural frequen-
cies, modal damping, and mode shapes. [143] Unlike natural frequencies and damping
properties, analyzing mode shapes requires spatial information, meaning vibration mea-
surement data has to be recorded at distributed observation points on the structure. To
this aim, the approach of laser Doppler vibrometry has gained popularity over the last
decades. Due to the possibility of easily relocating the laser beam by optical devices,
there is no need to, e.g., attach many accelerometers to the test specimen. [144] In gen-
eral, a time signal is measured by a respective device. Filters, such as antialiasing filters,
are subsequently applied to the time signal, which is then windowed by, e.g., a rectangu-
lar or Hanning function to reduce leakage effects. Finally, a Fast Fourier Transformation
(FFT) is applied to compute the frequency response functions (FRF) of the investigated
structure. Modal parameters are then extracted by adopting mathematical algorithms,
such as polynomial curve fitting. [145]

Experimental modal analysis is conducted within the scope of Paper A. Based on this,
model updating is performed in Paper C as described in section 2.3.2. Moreover, the
acquired data is utilized in Paper B.

2.2.2 Experimental nonlinearity detection

As elucidated in the Introduction, amplitude-dependent stiffness and damping properties,
nonlinearly coupled modes, and higher-order harmonics represent indicators of prevalent
nonlinearity in the structure’s response.

Amplitude-dependent stiffness and damping values are studied by investigating FRFs and
the respective modal data while exciting the structure at varying force levels [105]. If the
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Figure 2: Example FRFs for varying load levels, i.e., 1N, 2N, 3N, and 4N

resonance peaks in the transfer functions or the respective natural frequencies shift to
lower or higher frequencies for altered excitation levels, amplitude-dependent stiffness is
present in the structure. In cases where the vibration amplitude at the resonances or the
modal damping values change due to adapted loads, one detects amplitude-dependent
damping. An example is plotted in Fig. 2, where both effects are illustrated for the left
peak. The left peak shows a slightly reduced peak amplitude and a slight shift in reso-
nance frequency to higher values. The right peak around 208Hz reveals no frequency
shift, and a negligible decrease in vibration levels is visible.

A different approach is conducted if higher-order contributions are to be detected. The test
specimens are excited by sine-sweep loading, whereas the excitation frequency ranges
vary within specified limits. The sweeping time must be chosen carefully so the struc-
ture can vibrate at the defined excitation frequencies. In this case, the acquired time
data is not directly processed by an FFT. Instead, the frequency spectra are represented
over time in spectrograms. Here, the abscissa displays the time dependence, and the
ordinate refers to frequency dependency. [146] A notably high-amplitude response at
higher-order modes for excitation at a specific resonance frequency indicates nonlinearly
coupled modes or modal interaction [106, 107].

Fig. 3 depicts two example spectrograms, one plot with and one without higher-order con-
tribution. For the left plot of Fig. 3, a low excitation level is chosen, and, thus, the structural
response is only visible at the excitation frequencies, i.e., between 50 and 100 Hz, indicat-
ing linearity. In the case of the right plot of Fig. 3, a higher load level is applied, leading to
structural responses at the excitation frequencies and multiples of these, hence indicating
higher-order contributions and nonlinearity. Furthermore, the effects of impurities of the
excitation’s input sine wave must be considered [147].

The approaches described for nonlinearity detection are applied in Paper A.
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Figure 3: Example spectrograms without (left) and with (right) higher-order contributions

2.3 Numerical methods

Related to the modeling approaches, orthotropic, as opposed to isotropic material behav-
ior, is explained since timber structures are the subject of investigation in all appended
studies. This material behavior is presented together with some details on the applied
damping concepts. Moreover, the FEM is briefly introduced while presenting commonly
used damping and fastener models, which have been applied in the appended publica-
tions. Modal analysis and time-harmonic are conducted as deterministic analysis types.
This is followed by the introduction of the Rayleigh-Ritz method for moderately thick or-
thotropic plates. Besides, stochastic approaches using Monte Carlo simulations and Latin
Hypercube sampling are presented. Afterward, elaborations on model calibration suc-
ceed, followed by elucidations on the Bayesian inference method. Finally, the approaches
used for the vibroacoustic validation of the HST floors, i.e., VDV and impact sound com-
putations, are described in the section on post-processing.

FEM is used in all three appended publications. Its probabilistic version is applied to HST
structures in Paper B. Additionally, the Bayesian inference and Rayleigh-Ritz method are
applied to the case of the investigated LVL plates. Paper C employs model calibration
together with FEM to compute the vibroacoustic characteristics described in the sec-
tion Post-processing.

2.3.1 Modeling approaches

As timber represents an anisotropic material, the applied material model is described
first. Subsequently, the two types of numerical models utilized for the analysis of the
HST structures, i.e., FEM and the Rayleigh-Ritz method, are elucidated. Additionally,
uncertainty quantification related to timber material properties and joint parameters is
conducted in this work using probabilistic analysis, which is described at the end of this
subsection.
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2.3 Numerical methods

Material behavior

In the scope of this work, elastic material behavior is assumed, which can be described
by Hooke’s law of elasticity. Grimsel [148] introduces a proportionality between stress σkl
and strain tensor εi j as

εi j = Ji jklσkl. (2.1)

by establishing a set of proportionality factors Ji jkl. Due to the reciprocity of shear stresses,
stress and strain tensors are symmetric. Hence, the components of the elasticity tensor
of the first two pairs of indices are equal [148]

Ji jkl = J jikl = Ji jlk = J jilk, (2.2)

where the i, j,k, l vary from 1 to 3. Moreover, due to the assumption of the existence of an
elastic potential, the interchangeability of the index pairs follows [148]

Ji jkl = Jkli j. (2.3)

Consequently, of the original 34 = 81 components, only 21 are independent of each other,
which leads to the Voigt matrix formulation

ε1
ε2
ε3
γ23
γ13
γ12

=


s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66




σ1
σ2
σ3
τ23
τ13
τ12

 , (2.4)

where the matrix is symmetric, i.e., si j = s ji [148]. Using this description, general anisotropic,
linear elastic material behavior can be defined. In the case of isotropic material behavior,
only two non-zero components in the elasticity tensor exist due to symmetry axes in the
material. [149] The following elasticity matrix D = s−1 is gained [149]:

D =


D11 D12 D12 0 0 0

D11 D12 0 0 0
D11 0 0 0

D11−D12
2 0 0

sym D11−D12
2 0

D11−D12
2

 . (2.5)

For orthotropic materials, due to the symmetric condition of the elasticity matrix of the
overall twelve entries, only nine entries in the elasticity matrix are independent and non-
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zero [149]:

D =


D11 D12 D13 0 0 0

D22 D23 0 0 0
D33 0 0 0

D44 0 0
sym D55 0

D66

 . (2.6)

In this case, two orthogonal symmetry planes intercept the coordinate axes [149]. For
wood, often orthotropic material behavior is assumed since wood shows three main axes,
i.e., longitudinal l, tangential t, and radial r [148]. Locally, the engineering properties
moduli of elasticity Ei, shear moduli Gi j, and Poisson’s ratios νi j are related to the factors
of eq. (2.4) as follows [148]

Et = 1/s11; Grt = 1/s44; νtl =−s12

s22
. (2.7)

All other entries of the elasticity matrix can be computed analogously [148]. Together
with the structure’s geometry, the elasticity matrix contributes to the stiffness matrix K,
whereas the material’s density influences the mass matrix M defined in section 2.3.1
[150].

Damping theories All real-world structures inherit some kind of damping. Conse-
quently, amplitudes of vibration do not continue with the same magnitude infinitely but
decrease and come to an end after some time. Damping can occur due to many fac-
tors, such as internal friction in the material or effects due to surrounding fluids. Hence,
different types of damping are defined, i.e., structural, viscous, and coulomb damping.
Structural or hysteretic damping is related to frictional effects within the materials. [151]
Using the damping coefficient g, the structural damping force is computed as [152]

F0 =
g

πω
u̇. (2.8)

Here, u̇ denotes the structure’s velocity, and ω represents the circular frequency. Coulomb
damping, or dry friction, arises when a structure moves on a dry surface or two structures
move relative to each other. Here, the damping force results as [151]

F0 = µN, (2.9)

with the normal force N of the moving structure on the surface and the coefficient of friction
µ.

Viscous damping is assumed to be proportional to the velocity and emerges in vibrat-
ing systems immersed in fluids [151], for dashpots, and hydraulic dampers [152]. The
respective damping force is given as [151]

F0 = cu̇ (2.10)
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using the viscous damping coefficient c. Often, the loss factor is utilized to describe
damping. It is defined as [153]

η =
c|ω|

k
, (2.11)

with the stiffness k. A frequency-dependent viscous damping coefficient c(ω) can be
stated as [153]

c(ω) =
kη(ω)

|ω| . (2.12)

Finite element modeling

Simulations represent a physical relation as a mathematical model, which numerical
methods such as the FEM approximate. The solution of interest is subsequently taken
from the approximation. However, errors are introduced within simulations, i.e., model
form and approximation errors. In the FEM, objects of investigation are represented by
an assembly of finite elements, such as beams, plates, shells, and solids. [127] An exem-
plary FE model is visualized in Fig. 4.

Figure 4: Exemplary mesh of an FE model of an HST element. Steel parts are colored in
purple. Timber components are plotted in cyan.

The respective equations that describe a problem are solved at the nodes of the elements,
and the solution within the elements is found using the nodal solution and the elements’
respective shape functions, e.g., quadratic or linear. [127]

Regarding its dynamic behavior in 3D, a node of a corresponding element can perform
six possible movements, i.e., it has six degrees of freedom (DOFs) - three translations,
i.e., in x-, y-, and z-direction, in the case of a cartesian coordinate system, and three
rotations around the respective coordinate axes. [151] These deformations can be identi-
fied through the equations of motion, e.g., for the forced vibration of a single DOF system
[151]:

mü(t)+ cu̇(t)+ ku = F(t), (2.13)

with the mass m, the damping c, the stiffness k, the displacement function u(t), and the
loading function F(t) depending on time. ü and u̇ denote the twofold and single derivatives
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with respect to time. [151] When considering a complete structure, a system matrix is
assembled from the elements’ system of equations, which leads to stiffness K, mass M,
and damping matrices C instead of scalar values [151]:

Mü(t)+Cu̇(t)+Ku = F(t), (2.14)

with the force vector F(t) and the vector of displacements u(t). The matrix dimensions
correspond to the number of DOFs ndof, i.e., the matrices M, C, and K have the dimension
ndof × ndof and the vectors u and F are of the size ndof × 1. The displacement vector
consists of the nodal solutions regarding the respective DOFs, which is used to compute
the overall vibration response within the finite elements by the shape functions. [151]

Modeling of damping The mass and stiffness matrices of eq. (2.14) are constructed
using the defined material behavior and properties (section 2.3.1). The last missing part
of eq. (2.14) represents the damping matrix. When assuming a time-harmonic excitation,
the following relation is established from eq. (2.13) [153]:

[−mω
2 + iωc(ω)+ k]ū(iω) = F̄(iω), (2.15)

where the displacement ū(iω) and the force F̄(iω) are given in the frequency domain.
However, due to causality principles, physical limitations must be considered. Therefore,
to establish damping by applying eq. (2.12) leads to

[−mω
2 + k(1+ iη(ω)sgn(ω))]ū(iω) = F̄(iω), (2.16)

with sgn() representing the signum function. [153] The viscous damping describes a
material or structural damping with a dependency on the velocity or displacement. This
is achieved by introducing a complex stiffness or, in the case of a material, a complex
elasticity modulus, for example. The damping ratio follows as D = η/2. [154]

Challenges in theoretically or experimentally identifying damping still remain, resulting
in simplified approaches to represent damping within a structure [151]. Hence, another
favorable damping approach in the context of multi-DOF systems has been established,
called Rayleigh damping [155]. Here, the damping matrix is assumed to be proportionally
dependent on the mass and stiffness matrix [154]:

C = αM+βK, (2.17)

where the individual entries on the diagonal of the damping matrix result as Cii = α +βω2
i .

Here, ω2
i represents the circular natural frequencies of the investigated structure. In this

case, the modal damping ratios equal

Di =
1
2

(
α

ωi
+βωi

)
, (2.18)

where α is the mass and β the stiffness matrix multiplier [154]. Hence, when conducting
modal analysis, a modal damping ratio can be defined [156].
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Joint modeling Joint models can be categorized based on the dimension regarding
their extension. Lumped models, also known as 0-D models, assume no spatial exten-
sion and are suitable when the joint’s size is small related to the structure’s dimensions
and the contact area stays constant. The 0-D models are applicable as long as the
smallest considered wavelength is larger than the joint’s patch size. For cases where
the contact area shows nearly constant conditions in one direction, line models (1-D) can
be utilized. Alternatively, when local differences within the entire joint patch need to be
considered, interface models (2-D) are employed. Moreover, joint models can be catego-
rized based on the linearity of their behavior. However, experimental investigations often
show an approximately linear behavior of joints when excitation amplitudes are small and
macroslip is avoided. [102] Hence, regularly, the structural behavior is equivalently lin-
earized. When comparing nonlinear and linearized system matrices, only some matrix
entries are changed since nonlinearity occurs only at some positions in the structure.
[157]

Joint models are realized in different ways in the FEM. On the one hand, a surface-by-
surface implementation is possible with the help of zero-thickness or thin-layer elements,
which accounts for 2-D models. On the other hand, node-to-node or node-to-surface
elements are applicable, representing 0-D models and a hybrid 0-to-2-D option. [102]

A balance between detailed representations of joint kinematics and the computational
resources needed to predict the dynamic structural responses seems favorable [158].
Calibrated node-to-node joint models based on linear springs [159] and damper elements
[157] are easily implemented in an FE model. The commercial FE software ANSYS of-
fers various implementations of such elements with the COMBIN-series, whereas the
COMBIN14 element represents the easiest implementation. It consists of a linear spring
with constant k and a damper with the coefficient c, which acts as a uniaxial tension-
compression component with longitudinal and torsional capabilities. [160] The element’s
damping is included in the form of damping coefficients as part of the structural damping
matrix, where the damping force is given as, e.g., [156]

Fx =−c
d
dt

ux. (2.19)

The joint’s spring stiffness directly contributes to the system’s stiffness matrix [156]. These
uniaxial elements are applied to connect the individual structural components in the re-
quired DOF directions (Fig. 5).

When combining a one-dimensional element with a 3D FE model, issues regarding non-
physical singularities of stresses are involved. To overcome those complications, whole-
joint kinematics are introduced, which couple the contact areas surrounding a bolt as two
rigid surfaces connected by a single element. [161] Different implementations of such an
option are conceivable.

A combination of surface-to-surface contact via thin-layer or zero-thickness elements,
which are defined by a constitutive matrix, and a node-to-node contact via spring ele-
ments represents the “MPC184 General Joint Element”. Here, relative displacements
and rotations between the connected nodes are possible if not prohibited by defined con-
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component 2

component 1

Figure 5: Structural components are coupled via uniaxial springs in the respective DOF
directions.

straints. [160] Their behavior is specified by a general stiffness matrix with 21 independent
entries [160]:

djoint =


d11 d12 d13 d14 d15 d16

d22 d23 d24 d25 d26
d33 d34 d35 d36

d44 d45 d46
sym. d55 d56

d66

 . (2.20)

The first three indices refer to the relative displacements in the element’s local x-, y-, and
z-direction, whereas the latter three indices assign the rotational DOF directions [160].

Modal analysis Once all structural components, i.e., timber plates, steel frame, and
joints, are represented in the model, analyses can be conducted, e.g., modal analysis.
For an unloaded, undamped structure, i.e., considering the undamped free vibrations of a
structure, the force vector is set to zero, i.e., F(t) = 0, and the following equation of motion
is given [162]:

Mü(t)+Ku(t) = 0. (2.21)

A harmonic displacement form [162]

u = acosωt (2.22)

is assumed for the free vibrations of a linear system with the vector of the amplitudes of
motion a. Subsequently, by inserting eq. (2.22) into eq. (2.21) and factoring out the cosine
term, an eigenvalue problem is established [162]:

(K−ω
2
i M)a = 0. (2.23)

20



2.3 Numerical methods

The nontrivial solution to this problem gives the circular natural frequencies ωi and the
eigenvectors a corresponding to the eigenvalues, i.e., the natural frequencies. These are
the mode shapes of the system and can be arranged in the modal matrix of the system
[Φ]. [162]

Time-harmonic analysis For time-harmonic analysis, it is assumed that linear struc-
tures perform steady-state vibrations at the frequencies of interest f ∈ f [Hz] [162]. The
structural response can be found by solving the general equation of motion in eq. (2.13)
while introducing a harmonic, i.e., sine or cosine function, excitation of a structure as

F = Fmax exp{iΨ}exp{iΩ t}, (2.24)

with the force amplitude Fmax, the applied circular frequency Ω = 2π f , and the force phase
shift Ψ [162].

Moreover, a harmonic displacement description as

u = umax exp{iϑ}exp{iΩ t} (2.25)

is utilized with the displacement amplitudes umax and the displacement phases ϑ [162].

Subsequently, a reformulated equation of motion is established by inserting eq. (2.24) and
eq. (2.25) into eq. (2.13) as [162]

(−Ω
2M+ iΩC+K)umax exp{iϑ}exp{iΩ t}= Fmax exp{iΨ}exp{iΩ t}. (2.26)

By solving this equation, the complex displacement vector u at the respective frequencies
f ∈ f [Hz] is found [162].

Rayleigh Ritz approach for modal data related to orthotropic moderately thick
plates

For some assessments, many model evaluations and hybrid methodologies, e.g., com-
mercial FE software and a programming environment, are required. This necessitates a
computationally faster model. Hence, additionally, to the commercially implemented FEM,
a Rayleigh-Ritz approach is applicable.

The often-used classical plate theory assumes thin plate structures and does not consider
transverse shear deformation effects. This can lead to wrong predictions of buckling loads
and natural frequencies when the theory is applied to thicker plates. [163] The term “thick
plate” relates to the ratio of plate thickness and considered wavelengths. Applying the
first-order shear deformation theory of Mindlin presents a remedy for this [164] and builds
the basis for the following derivations.

Wood is usually simulated as an orthotropic material due to its anatomy (sec. 2.3.1) [148].
Moreover, vibration measurements (sec. 2.2) are often conducted with hanging supports
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to simulate free boundary conditions [143]. Therefore, a Rayleigh-Ritz method for or-
thotropic Mindlin-Plates with free supports is introduced [163, 165].

The energy functionals for the strain and kinetic energy of the plate are computed by
incorporating the constitutive equations specific to a moderately thick orthotropic plate
with the length lt , width bt , and thickness h. In order to fulfill the boundary conditions,
trigonometric basis functions are employed as follows [165]

ϕm(x) =
{

cos(λmx) m ≥ 0
sin(λmx) m < 0 , λm = mπ/lt , (2.27)

ϕn(y) =
{

cos(λny) n ≥ 0
sin(λny) n < 0 , λn = nπ/bt , (2.28)

(2.29)

to define the displacements w and rotations ψi of the plates as [165]

ψx(x,y) =
∞

∑
m=−2

∞

∑
n=−2

Amnϕm(x)ϕn(y), (2.30)

ψy(x,y) =
∞

∑
m=−2

∞

∑
n=−2

Bmnϕm(x)ϕn(y), (2.31)

w(x,y) =
∞

∑
m=−2

∞

∑
n=−2

Cmnϕm(x)ϕn(y). (2.32)

The deformation functions rely on the coefficients Amn, Bmn, and Cmn to describe the po-
tential and kinetic energies, U and T , and build the Lagrangian expression [165].

The Lagrangian is calculated as [163]

L = T −U. (2.33)

Here, the strain energy is computed as [163]

U =
∫∫

A

{
D11

(
∂ψx

∂x

)2

+D22

(
∂ψy

∂y

)2

+(µxyD11 +µyxD22)
∂ψx

∂x
∂ψy

∂y
+

Dxy

(
∂ψx

∂y
+

∂ψy

∂x

)2

+κGxzh
(

ψx +
∂w
∂x

)2

+κGyzh
(

∂w
∂y

)2
}

dxdy

(2.34)

considering the flexural rigidities of the plate [163]

D11 =
Exh3

12(1−νxyνyx)
, (2.35)

D12 =
νxyExh3

12(1−νxyνyx)
, (2.36)
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D21 =
νyxEyh3

12(1−νxyνyx)
, (2.37)

D22 =
Eyh3

12(1−νxyνyx)
, (2.38)

Dxy =
Gxyh3

12
. (2.39)

Furthermore, the total kinetic energy is calculated as [163]

T =
ρhω2

2

∫∫
A
[w2 +h2(ψ2

x +ψ
2
y )/12]dxdy. (2.40)

The Lagrangian expression is derived with respect to the coefficients and, subsequently,
minimized. Therefore, it is summarized in matrix form as [163]

(K−ω
2M)Ec = 0, (2.41)

with the stiffness matrix K, the mass matrix M, the natural frequencies f = ω/(2π) and
the coefficient matrix [165]

Ec =


A−2,−2 A−2,−1 ... AM,N
B−2,−2 B−2,−1 ... BM,N
C−2,−2 C−2,−1 ... CM,N


T

, (2.42)

where the truncation order M = 8 and N = 8 is applied.

Probabilistic analysis

Various uncertainties are inherent when analyzing structures, such as the stiffness of
supports [166], joints [167], and irregularities in material data, especially in wood, due
to natural growth, knots, and changing fiber directions [9, 168]. Probabilistic analysis is
performed to assess the influence of the parameter uncertainties on the response of engi-
neering structures. Here, often the FEM is utilized as a deterministic analysis tool, but it is
applied in a stochastic context within the Monte Carlo simulation approach. Probabilistic
design parameters undergo sampling, and a series of deterministic computations are ex-
ecuted to yield insights into the distribution or specific statistics of response parameters.
While this approach is accurate, straightforward, and widely applicable, its popularity is
tempered by its high computational cost. Hence, for deterministic executions, computa-
tional advantages can be gained from the use of commercial code. Moreover, efficient
sampling techniques, e.g., stratified sampling and Latin hypercube sampling, decrease
the necessary computational resources significantly. [169]

For Monte Carlo simulations, design parameters, e.g., moduli of elasticity, can be repre-
sented as random fields depending on the spatial variable x. The design parameters can
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be regarded as random variables if assumed to be homogeneous over the spatial domain.
[169]

Realizations are created in accordance with the statistics of the random fields or ran-
dom variables within the Monte Carlo method. Subsequently, for each of the considered
variables kMC, i.e., stochastic input parameters, nMC independent Gaussian distributed
random numbers ζMC with mean zero and variance of one are generated and saved in
the matrix R of size nMC × kMC. [169] Then, a Cholesky decomposition of the target co-
variance matrix C of size kMC × kMC is computed as [169]

LLT = C, (2.43)

with the lower triangular matrix L. Next, an nMC × kMC matrix U of Gaussian random
numbers with zero mean and a covariance corresponding to the target matrix is estimated
[169]:

U = RLT . (2.44)

The vector of mean values m ∈ R1×kMC is added to each row in the matrix U to attain
the target mean values. Latin hypercube sampling decreases the number of samples
required to explore the target statistics. Here, the samples are distributed over the whole
sampling space. When reducing the dimensionality of the problem to two instead of kMC,
a Latin square is given if only one sample in each row and column is taken. This concept
is expanded to a general number of dimensions for a Latin hypercube. This way, the risk
of leaving parts of the sample space unexplored is decreased. [169]

The probabilistic analysis using Monte Carlo simulations and Latin hypercube sampling
investigates the uncertainty of the system by propagating the random design parameters
through the simulation model [135].

The uncertainty of model input parameters can be taken from measurement data by, e.g.,
calibrating an FE model and its parameters until the target error lies below a threshold.
This procedure can be repeated for several experiments on seemingly similar structures
to provide a set of calibrated model parameters. Subsequently, mean and variance are
computed from the dataset to represent the uncertainty of the input properties. Errors
and uncertainties related to the model, such as those arising from the model itself, the
considered boundary conditions, or excitation, are not taken into account here. Only inter-
specimen and, to some extent, measurement uncertainty are incorporated by conducting
measurements on similar specimens. Since this approach requires iteratively performing
an FE simulation and adjusting the model input parameters, it can be seen as an iterative,
i.e., a model updating approach. As an example, this technique has been applied to
identify timber material properties in [135].
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2.3.2 Model calibration and parameter optimization

Even though advanced FE techniques for structural analysis are readily available, a no-
table disparity in practical applications between analytical or numerical predictions and
actual test results often exists. Adjustments to modeling assumptions and parameters are
made until the correlation between predictions and experimental outcomes meets prac-
tical requirements. Traditionally, this involves a trial-and-error process, which generally
proves to be time-consuming and may be impractical in certain situations. Consequently,
computational procedures have been established to calibrate model parameters utiliz-
ing experimental data. Specifically, modal data, such as natural frequencies and mode
shapes derived from measured frequency response data, are widely used as an objective
for adjusting model parameters. [128]

When applying FEM to model a physical system, idealization errors, such as model sim-
plifications, discretization errors, e.g., too coarse of an FE mesh, and errors related to
model parameters, e.g., material parameters, are introduced. The goal of every structural
analysis is to minimize all three error types within the model.

Model updating

Often, an iterative process, also known as model updating, is employed to reduce the
error due to parameter estimates [128]. Therefore, a residual related to the discrepancy
between predicted and measured structural behavior is established [128]:

ε = zm − z(θ), (2.45)

with the measured quantities zm, here, natural frequencies and modes, and the predictions
z(θ) dependent on the parameter set θ.

The procedure of model updating is affected by the parametrization of the problem, as
updating a large number of parameters might lead to an almost perfect agreement while
losing physical insight. Moreover, only outputs sensitive to the chosen updating parame-
ters should be accounted for.

When applying the FEM to perform model updating, an optimization problem based on an
objective function in terms of the residual (eq. (2.45)) is formulated. The objective func-
tions often depend on modal data, i.e., natural frequencies and modes. Two approaches
are commonly applied to incorporate frequencies and modes in the objective. [129]

First, single-objective functions are employed, which include weightings of terms related
to frequencies and terms related to mode shapes [129]:

e(θ) = w f

(
n f

∑
i

r2
i f

)1/2

+wm

(
nm

∑
i

r2
im

)1/2

, (2.46)

with the frequency weighting factor w f , the residual of frequencies ri f , the number of
considered frequencies n f , the mode weighting factor wm, the residual related to modes
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rim, and the number of considered modes nm. The weightings are selected to represent
the degree of uncertainty associated with the measured quantities. Hence, natural fre-
quencies are often weighted more than the modes since they are identified more easily.
However, the choice of weightings is initially unclear and is usually found by trial and error.
[129]

Second, to overcome the challenge of choosing appropriate weightings, multi-objective
functions are utilized, which consist of the same terms as the single-objective function but
do not require any weights [129]:

mine(θ) = min(e1(θ)&e2(θ)) =

{
e1(θ) =

(
∑

n f
i r2

i f

)1/2

e2(θ) =
(
∑

nm
i r2

im
)1/2

. (2.47)

Here, one tries to identify the optimal solution in the Pareto optimal front [129]. For con-
flicting objectives, a single optimal solution is not attainable. Rather, a set of alternative
solutions known as Pareto optimal solutions exist. These solutions are considered opti-
mal because, within the parameter space, no other solutions outperform them when all
objectives are taken into account. [170] To identify the best solution, it is essential to es-
tablish a sensible criterion. In problems framed within the FE model updating context with
two sub-objective functions, i.e., bi-criterion problems, an additional constraint is typically
imposed, which aims to achieve effective compromises or “trade-offs” between conflicting
objective functions in an optimal fashion. [129]

The objective related to frequencies often takes the form [71]

e1(θ) =
n f

∑
i

αi

(
fexp,i − fi(θ)

fexp,i

)
, (2.48)

with the optional individual frequency weighting αi, the measured natural frequencies
fexp, the number of considered frequencies n f , and the computed natural frequencies f(θ)
depending on the model parameters θ.

The objective function related to mode shapes is given as [71]

e2(θ) =
nm

∑
i=1

(
1−MACi

MACi

)2

, (2.49)

with the experimentally determined and numerically predicted natural modes, Φexp and
Φ(θ). Usually, the Modal Assurance Criterion MAC is calculated as [171]

MACi =
|ΦT

exp,iΦi(θ)|2
(ΦT

exp,iΦexp,i)(Φi(θ)T Φi(θ))
. (2.50)

To minimize the objective functions, various optimization approaches, e.g., genetic algo-
rithms, particle swarm optimization, and Bayesian approaches, are applied [129].
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Bayesian inference

A common strategy to estimate material parameters while considering the uncertainty
related to the parameters is the so-called Bayesian inference. In this context, probabili-
ties associated with uncertain material input parameters in a simulation model are deter-
mined. The approach involves updating prior information on model parameters, such as
in this thesis the material properties of timber, by integrating experimentally determined
data. This enhances the level of confidence in the probability distribution of the material
parameters. [172]

The probabilistic model of uncertain material parameters denoted as the posterior proba-
bility [172]

p(θ|fexp) ∝ p(fexp|θ)p(θ), (2.51)

is established using Bayes’ rule with the uncertain parameters θ, the measured data fexp,
the prior probability of an uncertain parameter p(θ), and the likelihood p(fexp|θ). The
denominator in Bayes’ formula serves as a normalization of the probabilities and is often
left out, as in eq. (2.51) [172].

Within the context of vibroacoustics, the relevant measured data fexp often consists of
natural frequencies obtained by experimental modal analysis (sec. 2.2.1). The uncertain
material parameters θ serve as inputs to a forward model ft(θ), which is a Rayleigh-
Ritz approach in this work (sec. 2.3.1). The forward model, along with the measurement
data, is employed to estimate the likelihood. A computationally efficient forward model is
preferably chosen since many model evaluations are necessary for Bayesian inference if
Markov Chain Monte Carlo methods are employed. [172]

The initial probabilities, also known as priors, comprise the beliefs regarding the uncertain
parameters before incorporating measurement data [172]. Prior predictive checks can be
performed to verify that the prior probabilities represent physically meaningful ranges of
values. Here, it is determined whether the forward model represents the actual data.
The prior predictive checks are essential if a complex problem with little data is studied
since, in this case, the priors exert a strong effect on the posterior probabilities. Hence,
a prior predictive distribution is evaluated by drawing values from it, assuming the model
represents the physical behavior accurately. The similarity of the observed data with the
prior predictive distributions is then checked. [173]

To ascertain the posterior densities in light of the measurement data fexp, the likelihood
p(fexp|θ) is integrated with the prior probabilities p(θ). Thus, the likelihood assesses
the probability of obtaining a specific measurement result given a particular material pa-
rameterization θ. The mean of the distribution µ relates to the actual measured natural
frequencies fexp, while the standard deviation σ refers to the measurement noise. [174]
When describing the problem related to the measurement data and model parameters
while the mean is connected to the model parameter, the residual error is assumed to
have a zero mean µlik = 0 and is given as [174]

εi = fexp,i − ft,i(θ), (2.52)
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with fexp,i being one of the 1 ≤ i ≤ n f measured datasets. Subsequently, through maxi-
mizing entropy, the probability of the residual error [174]

p(εi|θ, ft(θ),σlik,i,µlik = 0) =
1√

2πσlik,i
exp
{
− ε2

i

2σ2
lik,i

}
, (2.53)

is found, given the forward model ft(θ), the model parameters θ, and the standard devi-
ation σlik,i. It is crucial for the employed forward model ft(θ) to accurately reproduce the
experimental data [174].

The probability associated with each data point corresponds to the probability of the resid-
ual error at that specific data point p(fexp|θ, ft(θ),σlik) = p(ε|θ, ft(θ),σlik) [174]. Conse-
quently, the overall likelihood function is calculated as the joint probability of all data points
[174]

p(fexp|θ, ft(θ),σlik,1,σlik,2, ...,σlik,n f ) = p(ε1,ε2, ...,εn f |θ, ft(θ),σlik,1,σlik,2, ...,σlik,n f ). (2.54)

Given that the noise is consistent across most measurements in typical experiments, it is
presumed that σlik = σlik,i for all 1 ≤ i ≤ n f , where n f equals the number of experimentally
identified natural frequencies [174]. Moreover, following the principle of maximum entropy,
the individual measurements are logically considered independent, resulting in the joint
probability as follows [174]:

p(fexp|θ, ft(θ),σlik) =
n f

∏
i

1√
2πσlik

exp
{
− ε2

i

2σ2
lik

}
. (2.55)

Furthermore, more than one specimen, i.e., nr ≥ 1, is examined to account for the repeata-
bility of measurements. As a result, the scalar values in the residual error in eq. (2.52)
transform into vectors with a length of nr: εi = fexp,i − ft,i(θ).

Marginalization is applied to the joint probability, if the hyperparameters are not of specific
interest, to estimate a likelihood without the standard deviation σlik [174]:

p(fexp|θ, ft(θ)) =
∫

p(fexp,σlik|θ, ft(θ))dσlik

=
∫

p(fexp|θ, ft(θ),σlik)p(σlik|θ, ft(θ))dσlik.
(2.56)

For the marginal distribution p(σlik|θ, ft(θ)), Jeffrey’s prior

p(σlik|θ, ft(θ)) =
1

σlik
. (2.57)

is assigned employing the principle of maximum entropy [174].
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Then, the integration from eq. (2.56) is executed with the limits σlik ∈ [0,∞) leading to a
marginalized likelihood that can be represented by a Student’s t-distribution [174]

p(fexp|θ, ft(θ)) =
Γ (n f /2)

2

(
π

n f

∑
i=1

ε2
i

)−n f /2

, (2.58)

where Γ (...) denotes the standard gamma function. The experiments conducted on indi-
vidual specimens j ∈ nr are incorporated by aggregating the error regarding those data
points as [174]

p(fexp|θ, ft(θ)) =
Γ (n f /2)

2

(
π

n f

∑
i=1

nr

∑
j=1

ε
2
ji

)−n f /2

, (2.59)

where ε ji = fexp, ji − ft, ji(θ).

Once the likelihood function is established, the priors are checked, and the forward model
is implemented in the framework, the posterior distribution is constructed by eq. (2.51).
Here, methods to explore these probabilities are applied since analytical solutions for
the posterior seldom exist, as in the case of conjugacy. Therefore, Markov Chain Monte
Carlo sampling methods, which compute samples for each likelihood evaluation from the
model, are utilized. [172] One example of a Markov Chain Monte Carlo sampler is the
so-called Sequential Monte Carlo (SMC) sampler. Multimodal posterior probabilities are
handled more easily with this approach, as the sampler is less prone to becoming trapped
in local minima than traditional Markov Chain Monte Carlo methods. This challenge is
addressed by incorporating the concept of tempering, where the number of states of a
physical system is based on the system’s temperature. The system remains within a
single state for zero Kelvin, whereas all possible states are equally likely obtained for an
infinite temperature. [175] This concept is incorporated in Bayes’ theorem by adding the
parameter β , the inverse temperature or tempering parameter, to eq. (2.51) [175]:

p(θ|fexp)β = p(fexp|θ)β p(θ). (2.60)

In the case of β = 0, p(fexp|θ)β = 1, which leads to the tempered posterior p(θ|fexp)β

resembling the prior p(θ). On the contrary, if β = 1, the tempered posterior equals the
actual full posterior. The SMC algorithm starts by sampling from the prior since it is easier
than sampling from the posterior. Subsequently, by slowly increasing the value of β , the
sampler moves to the more complex posterior distribution. Hence, the sampling proceeds
iteratively until the tempering parameter β lies above a value of one. These steps are
conducted for a provided number of nc chains. Moreover, within SMC, resampling takes
place by replacing samples with a low probability by samples with a higher probability.
The number of steps the algorithm needs to easily transition from one stage to another is
determined internally based on the difficulty of the problem while also considering com-
putational resources. [175]

When sampling within the Bayesian inference framework would lead to high computa-
tional effort, a first approximation of the posterior’s mean values can also be gained by
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applying maximum likelihood or maximum a-posteriori estimation. Both approaches are
based on the likelihood function in eq. (2.59) and Bayes’ formula in eq. (2.51). Generally,
the maximum likelihood estimate represents the posterior mode for a noninformative or
improper prior. For other types of priors, a maximum a-posteriori estimation is performed
to obtain a guess on the posterior mode without requiring extensive model evaluations.
[172, 176]

2.3.3 Post-processing

Once the needed model parameters are found and calibrated, the simulation model is
built, and the analysis of the HST structures follows.

Computation of the vibration dose value

As stated in section 1.1.2, currently, AISC Design 11 [83] and CCIP-016 [82] appear to
be the most reasonable design guides to be applied to HST floors. The codes rely on the
evaluation of VDVs, which are either estimated based on numerically or experimentally
determined vibration responses of floors. The numerical approach is elucidated in the
following.

Floor structures with natural frequencies exceeding 4Hz are analyzed employing the im-
pulse response calculation steps as outlined in the following [82, 83, 89]:

1. Modes Φm and natural frequencies fm up to two times the fundamental frequency f0
for m ∈ nm

2. Effective footfall impulse: Ieff,m = 54 · f 1.43
w / f 1.30

m

• fw = 1.8Hz maximum walking frequency

3. Peak velocity in each mode m: v̂m = Φe,mΦr,mIeff,m/m̂m

• Φe,m the value of the mode shape m at the excitation position

• Φr,m the value of the mode shape m at the receiving position

• m̂m the modal mass of mode m

4. Velocity response in each mode over the period of one footfall T :
vm(t) = v̂m exp{(−2π fmζ t)}sin(2π fmt)

• v̂m modal velocity magnitude

• ζ as the modal damping ratio

5. Total response to each footfall: v(t) = ∑
nm
m=1 vm(t) ·wm

• wm weighting taken from [79] as suggested in [82]

6. For a time-harmonic analysis: total response to each footfall transformed from ve-
locity to acceleration by â = (−iω)v̂
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7. Root-mean-square (RMS) response evaluated over one footfall:
aw,RMS =

√
1
Tf

∫ Tf
0 a(t)2dt

For continuous vibrations, the response factor is computed using the acceleration time
history. However, in the case of intermittent vibration, which occurs more frequently for
floors, the VDV is the preferred quantity for evaluating the vibration serviceability of a floor
structure. [83] It is defined as [83]

VDV =

(∫ Tf

0
a4(t)dt

)1/4

= 0.68 ·aw,rms(nday/nightTsingle)
1/4, (2.61)

where aw,rms denotes the RMS-acceleration response from above, and nday = 32 and
nnight = 16 represent the occurrences of floor crossings during day and night. The time of
a floor crossing is computed as

Tsingle =
dfloor
vstep

=

√
(l2 +b2)

(1.67 f 2
w −4.83 fw +4.50)

, (2.62)

with l and b being the width and length of the investigated floor structure.

Thus, by FE modal analysis, the fundamental frequency f0, the natural frequencies fm,
and respective modal masses m̂m of modes up to two times the fundamental frequency are
calculated. The modal damping ratios are determined based on vibration measurements
or are given by recommendations of design guides, e.g., 1% in Eurocode 5 [84].

Calculation of impact sound levels

The created FE model of the HST floors is also utilized for impact sound investigations.
Here, a numerical implementation of the standardized tapping machine is applied as an
excitation.

Tapping machine loading In the standard ISO 10140-5 [125], the tapping machine is
established as an excitation source for impact sound measurements. Consequently, in the
case of FE simulations, the tapping machine load is implemented as a force to estimate
impact sound pressure levels numerically. The details on determining this force in the
frequency domain are given below.

As illustrated by Brunskog et al. [126], a floor structure is represented by a general
frequency-dependent driving point impedance Zdp. The applied hammer impact force
f0(t) = F0δ (t) using the dirac impulse δ (t) is Fourier transformed to result in the frequency-
dependent force f0(ω) = F{f0(t);ω} = F{F0δ (t);ω} = F0, which lies between 2M0v0 for
elastic impacts and M0v0 for plastic impacts. Here, M0 = 0.5kg denotes the weight of a
hammer and v0 = 0.886m/s equals the initial hammer velocity. [126] As a first estimate,
the geometric mean

√
2M0v0 can be considered [177]. Subsequently, the spectrum of the

continuing impact is computed as [126]
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f′1(ω) =
f0

1+ iωM0/Zdp
, (2.63)

and the corresponding force in time f′1(t) is found by an inverse Fourier transform. After
applying the time of the zero crossing of the hammer impact tcut = {min t|t > 0, f′1(t) = 0}
to the force in time, the force spectrum F1(ω) is determined by a Fourier transform.
Lastly, the application of the Fourier series components Fn = F1(n fh) fh with the frequency
fh = 1/Th and period Th = 0.5s for each of the five hammers as an excitation of the floor
structure follows. [126]

Moreover, using the the local ZL and global impedance ZG, the driving-force impedance
of the floor is estimated as [100]

Zdp =
ZG(ω)ZL(ω)

ZG(ω)+ZL(ω)
, (2.64)

since it is required for eq. (2.63). For the computation of the global impedance [100]

ZG(ω) =
−iKdyn, j j(ω)

ω
, (2.65)

the dynamic stiffness of the floor [100]

Kdyn, j j(ω) =−ω
2M j j +K j j(1+ ig) (2.66)

is retrieved from the numerical model at the DOF of the impact j. Hence, the mass M j j
and stiffness K j j matrix entries and a material damping coefficient g of the material at the
contact surface of the hammer and structure are ascertained [100].

The local impedance corresponds to [100]

ZL(ω) =
2Erh

iω(1+ν)(1−ν)
, (2.67)

where rh denotes the hammer radius, ν =
√

νxy ·νyx represents the Poisson’s ratio, and
E =

√
Ex ·Ey denotes the elasticity modulus of the respective material.

The force is determined by utilizing the presented relations and, subsequently, applied
to the FE model of the investigated floor structure in a time-harmonic analysis in the
frequency range of interest. The FE simulation solves the system of equations, as exem-
plarily specified in sec. 2.3.1, and the quantities of interest, i.e., structural displacements
and velocities, are found.

Commonly, the normalized impact sound pressure levels as ratings are compared to min-
imum reference levels in current design codes for acoustic requirements in buildings, e.g.,
DIN4109 in Germany [95]. Therefore, a transition of the acquired structural velocities
to sound power values is performed by the commonly employed Rayleigh integral [178].
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Subsequently, the computed sound power is converted to sound pressure and the corre-
sponding normalized impact sound pressure levels.

Conversion to sound power In order to compute the radiated sound power, details
on the computation of sound fields due to structural vibrations are given. If a vibrating
structure is in contact with a fluid, the fluid is displaced at the fluid-structure interface,
thus generating sound. The deformation of a small element on the vibrating surface leads
to a displacement of the adjacent fluid volume part. When superposition is assumed to be
applicable, the overall sound field is established considering the summed contributions of
small surface elements. [178] The sound pressure p(r, t) produced by a uniformly, radially,
harmonically pulsating sphere of radius as at circular frequency ω in the free field reads
as [178]

p(r, t) =
1

1+ ikas

iωρ0Q̃
4πr

exp{i[ωt − k(r−as)]}, (2.68)

with the air density ρ0 = 343m/s, the wave number k, the radial distance from the sphere’s
center r, the complex amplitude of the source’s volume velocity Q̃, and the complex am-
plitude of volume acceleration iωQ̃. In the case of a small source dimension compared to
the investigated wavelength, i.e., kas ≪ 1, a “monopole source” is analyzed, and eq. (2.68)
changes to [178]

p(r, t) =
iωρ0Q̃

4πr
exp{i[ωt − kr]}, (2.69)

where exp{−ikr}/4πr is often referred to as “Green’s function”.

Considering an infinite and rigid plane surface on which an elementary volume source
operates, one observes Q̃/2 on one side of the panel. At the same time, the pressure is
computed by eq. (2.69) [178]. If a small piston vibrates on the plane surface, the normal
surface velocity is defined as [178]

vn(t) = ṽn exp{iωt}, (2.70)

and it is stated that Q̃ = 2ṽnδS. Thus, eq. (2.69) is reformulated as [178]

p(r, t) =
iωρ02ṽnδS

4πr
exp{i[ωt − kr]}, (2.71)

with the element’s surface area δS. Here, infinitesimally small sources are assumed,
which is valid until very close to the source area if the dimension of the source area d
complies with the limit kd ≪ 1 [178]. When summing or integrating over the small sources,
eq. (2.71) is valid for infinitely extended plane surfaces [178] and results in the formulation
established by Lord Rayleigh [179]:
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p(r, t) =
iωρ0

2π
exp{iωt}

∫
S

ṽn(rs)exp{−ikR}
R

dS, (2.72)

with the position of the observation point r, the position of the element rs, and the magni-
tude of the difference of both vectors R = |r− rs|. The formula is often applied to evaluate
the radiation from vibrating planes and baffled pistons [178].

The sound intensity is then obtained from the time-averaged product of sound pressure
and particle velocity by [178]

Ī(r) =
1
T

∫ T

0
p(r, t)v(r, t)dt, (2.73)

with T being a suitable length of time to assess the mean intensity value. In the case of
a far field, the sound intensity is radially directed due to the particle velocity and pressure
being radially directed and in phase. Thus, the sound intensity is calculated by the product
of radial velocity ṽr and sound pressure. [178] If a harmonic vibration is considered, the
particle velocity is given as p̃(r,ω)/(ρ0c) with the wave velocity c, and the sound intensity
results as [178]

Ī(r) =
1
2

Re{ p̃∗(r,ω)ṽr(r,ω)}= |p̃(r,ω)|2
2ρ0c

. (2.74)

Subsequently, the radiated sound power is calculated by an integral of the far-field inten-
sity over the hemispherical surface centered on the radiating panel [178]:

P̄ =
∫

S
Ī(r,ω)dS. (2.75)

If the formulation is adapted for a grid of Re elementary radiators while assuming time-
harmonic motion, the velocities of the elements and sound pressure values are collected
in vectors [178]:

ṽe = [ṽ1 ṽ2 ...ṽRe]
T (2.76)

and

p̃e = [p̃1 p̃2 ...p̃Re]
T . (2.77)

By choosing elements that are small with respect to acoustic and structural wavelengths,
the radiated sound power is obtained as the sum of the elements’ radiated sound powers
by [178]

P̄(ω) =
Re

∑
e=1

1
2

AeRe{ṽ∗e p̃e}=
S

2Re
Re{ṽH

e p̃e}, (2.78)
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with the element’s area Ae and the overall panel area S. The pressure of each element is
computed by [178]

p̃e(xl,yl) =
iωρ0Ae exp

{
−ikRl j

}
2πRl j

ṽe(x j,y j), (2.79)

with the distance between the centers of the lth and jth element Rl j. This relation can be
assembled in the symmetric impedance matrix [Z̃] with the entries [178]

Z̃l j(ω) =
iωρ0Ae

2πRl j
exp
{
−ikRl j

}
, (2.80)

so the sound power is obtained by [178]

P̄(ω) =
S

2Re
Re{ṽe[Z̃]ṽe}. (2.81)

Transition to normalized impact sound pressure level Subsequently, the sound power
level Lw is determined from the sound power as

LW = 10log10(P/10−12). (2.82)

From the equidistant frequency data, third-octave band data is computed. Then, the
relations from [180] are applied to retrieve sound pressure levels from sound power levels
by

Lp = LW −
{

10log
(

A
A0

)
+4.34

A
S
+10log

(
1+

cS
8V f

)
+C1 +C2 −6

}
, (2.83)

with the equivalent absorption surface A [m2] of the room given as

A =
55.26V

cT60
, (2.84)

and using

• T60 the reverberation time of the investigated room

• V the respective room volume

• A0 = 1 [m2] the reference surface

• S the overall surface of the room

• f [Hz] the center frequency of third-octaves

• C1 =−10log
(

ps
ps,0

)
+5log

[
273.15+Θ

Θ0

]
and
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• C2 =−10log
(

ps
ps,0

)
+15log

[
273.15+Θ

Θ1

]
correction terms with

– ps,0 = 101.325kPa the static air pressure

– ps [kPa] the static air pressure in the investigated room

– Θ [K] the air temperature in the room

– Θ0 = 314K and Θ1 = 296K the reference temperatures.

Finally, the normalized impact sound pressure level is obtained by [97]

Ln = Lp +10log
(

A
10m2

)
. (2.85)
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3 Summary of Appended Publications

This chapter summarizes the publications Paper A [140], Paper B [141], and Paper C
[142]. The key aspects, results, and the authors’ individual contributions are highlighted.
Reprints of the full texts are provided in Appendix A.

3.1 Paper A

Vibroacoustic response of steel-timber composite elements

Bettina Chocholaty, Nicolaas Bernardus Roozen, Marcus Maeder, Steffen Marburg

Summary In this work, HST elements are investigated experimentally and numerically
in terms of vibroacoustics. Here, the influence of the joints on the overall structural dy-
namics is of interest, which is especially relevant since assembled systems often reveal
prominent nonlinear behavior due to their joints [105]. This study aims to comprehensively
investigate the influence of various properties on the dynamics of HST elements. These
investigations include exploring dimensions, fasteners, joint types, and other pertinent
factors. Another focus lies on detecting nonlinearities in the system, particularly con-
cerning amplitude-dependent stiffness and damping, higher-order contributions, and the
presence of nonlinearly coupled modes. Therefore, vibration measurements with varying
load levels are performed using random excitation types or sine-sweep loading. The re-
sults are analyzed by applying EMA or by visualization in spectrograms. Overall, 12 test
samples are studied to evaluate the influence of various parameters, e.g., dimensions and
LVL material type. Moreover, a manually calibrated FE model is used in a time-harmonic
analysis to numerically investigate the vibroacoustics of the HST elements.

Comparing the measurement results of assemblies of different configurations reveals the
anticipated impact of geometric parameters, e.g., component thickness, on the first nat-
ural frequency of the system — an essential criterion for assessing floor vibrations in
terms of serviceability. Among others, thicker steel sheets contribute to higher natural
frequencies and increased damping. This effect is enhanced by thicker timber plates, al-
beit being subject to potential manufacturing uncertainties. The choice of fastener type
is equally crucial, as it affects the structure’s stiffness. The two cross-section types, one
with a single-component lower chord, i.e., the closed configuration, and another with a
partitioned lower chord, i.e., the open configuration, significantly influence the two lowest
structural modes. Due to the less stiff behavior of the open cross-section, the decision
to opt for an open configuration should be made carefully, always considering the floor’s
lowest natural frequency. Comparisons with existing steel-timber elements reveal higher
natural frequencies of the proposed structure, which are deemed more favorable due to
the human perception of low-frequency vibrations as unpleasant. The damping behavior
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is influenced by geometric parameters, the fastener type, and joint tightness. Neverthe-
less, it needs to be kept in mind that the prediction of damping in structures is complex
and subject to uncertainties.

The conducted observations on nonlinearity primarily highlight the occurrence of higher
harmonics in responses, as there is no evidence of amplitude-dependent stiffness, and
only slight amplitude-dependent damping is identified. Notably, amplitude-dependent
damping is detected when forces induce micro-slip in joints, and higher harmonics are
often found near nodal lines with high rotational deformations. Furthermore, configura-
tions with less stiff characteristics, such as higher steel frames and thin steel sheets in
open configurations, result in a more pronounced contribution of higher harmonics. Con-
sequently, exploring nonlinearities seems to be a critical aspect of studies on steel-timber
composite structures.

A reasonably good correspondence of the response of the calibrated FE model using
the measured data is achieved with a linear FE model as an initial proof-of-concept. How-
ever, future work may involve a more complex model incorporating nonlinearity and higher
harmonics, possibly using the Harmonic Balance Method. Additionally, the current man-
ual calibration of the model suggests the need for automatic optimization to obtain more
accurate parameters.

Contribution Bettina Chocholaty contributed to the conceptualization and methodology
of the experimental and numerical study. Bettina Chocholaty and Nicolaas Bernardus
Roozen contributed to the conceptualization and methodology of nonlinearity detection.
Bettina Chocholaty and Marcus Maeder conceptualized the measurement setup. Bettina
Chocholaty carried out the measurements and code implementation for the measurement
data post-processing. Bettina Chocholaty conducted the FE simulations and prepared the
draft of the manuscript. Bettina Chocholaty and Nicolaas Bernardus Roozen contributed
to the discussion of the results. All authors provided critical feedback and approved the
final version of the manuscript.

Reference Chocholaty, B., Roozen, N. B., Maeder, M., & Marburg, S. (2022). Vi-
broacoustic response of steel-timber composite elements. Engineering Structures, 271,
114911. https://doi.org/10.1016/j.engstruct.2022.114911.
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3.2 Paper B

Vibration response of a hybrid steel-timber building element with uncertain mate-
rial and joint parameters

Bettina Chocholaty, Martin Eser, Karl-Alexander Hoppe, Daotong Wang, Steffen Marburg

Summary In view of economic viability and environmental sustainability, material-efficient
designs of building elements receive increasing attention. Hereof, reliable prediction tools
for designing HST floors regarding vibrations aim at rendering experimental campaigns
less important, thus requiring less experimental prototyping while saving resources [181].
Due to model and data uncertainties inherent to prediction tools [132] and small varia-
tions of seemingly similar building elements, safety factors are commonly applied in the
design process of building elements in engineering practice [133]. However, over the last
few years, alternative research has investigated the benefit of employing approaches that
consider data uncertainties within the prediction tools. Monte Carlo methods are adopted
to perform a stochastic analysis of building elements, e.g., wooden floors. Thereby, the
randomness of assembly or component uncertainties related to materials and joints is
taken into account. [134, 135]

Accordingly, in this appended publication, a probabilistic FE analysis of an HST building
element is conducted using the Monte Carlo method. Here, the effect of timber mate-
rial and joint parameter uncertainties is propagated to the vibration response of the HST
structure. The material uncertainties are represented by posterior distributions found by
Bayesian inference. The required measurement data for the Bayesian inference is col-
lected from EMA on small-scale LVL plates. Moreover, the forward model necessary to
evaluate the likelihood is built upon a Rayleigh-Ritz approach for orthotropic plates. The
uncertainty related to the joints of the HST specimen is considered by taking coefficients
of variation from the literature and performing a maximum a-posteriori estimation to as-
sess the mean values for the joints. Here, experimental modal data and an FE model
of the HST element are utilized. Subsequently, the probabilistic analysis is conducted by
considering the identified probabilities of LVL material and joint properties. Furthermore,
Latin hypercube sampling is applied to allow for an efficient evaluation of the parameter
space. Finally, ranges for the natural frequencies of the HST specimen are computed in
the form of percentiles and compared to the measured quantities.

The approach based on Bayesian inference allows the identification of narrower posterior
probabilities than the prior knowledge suggested. This, in turn, implies abated uncer-
tainty of LVL material properties after accounting for measurement data. Moreover, the
identified posterior means deviate from the material data provided by the manufacturer,
highlighting the relevance of considering the material variability at hand in component de-
signs. The probabilistic analysis reveals significant ranges for some of the investigated
natural frequencies, especially regarding the 5th and 95th percentiles. Hence, the impor-
tance of accounting for data uncertainty in structural designs is emphasized, particularly
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in view of enhanced resource efficiency. Finally, it is observed that only the first mea-
sured natural frequency lies within the range obtained by the probabilistic analysis of the
HST element. Thus, further investigations seem reasonable, especially dealing with the
joints of the HST structure, e.g., by applying Bayesian inference to infer the unknown joint
properties or testing different joint modeling approaches.

Contribution Bettina Chocholaty, Martin Eser, and Karl-Alexander Hoppe contributed to
the conceptualization and methodology of Bayesian inference. Bettina Chocholaty con-
ceptualized the analyses for uncertainty quantification. Bettina Chocholaty conducted
the numerical simulations and the measurements. Bettina Chocholaty prepared the FE
model. Daotong Wang carried out the code implementation of the forward model. Bettina
Chocholaty implemented the remaining code and prepared the draft of the manuscript.
Bettina Chocholaty and Steffen Marburg contributed to the discussion of the results. All
authors provided critical feedback and approved the final version of the manuscript.

Reference Chocholaty, B., Eser, M., Hoppe, K.-A., Wang, D., & Marburg, S. (2023).
Vibration response of a hybrid steel-timber building element with uncertain material and
joint parameters. Archives of civil and mechanical engineering, 24(1), 22. https://doi.
org/10.1007/s43452-023-00819-z.
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3.3 Paper C

Vibration and impact sound properties of hybrid steel-timber floor structures

Bettina Chocholaty, Nicolaas Bernardus Roozen, Karl-Alexander Hoppe, Marcus Maeder,
Steffen Marburg

Summary When dealing with lightweight floors, such as wood or hybrid wood, a higher
susceptibility to annoying vibrations is often observed, being even more pronounced for
large-scale and lean constructions [17, 20]. Therefore, due to the likely exceedance of
permissible vibration limits and the potential discomfort with wooden floors, investigating
the vibration performance of wood-based floors proves to be important [21]. Moreover,
timber-based floors tend to show critical behavior regarding impact sound characteristics
[182]. Evaluation of the vibroacoustic performance of floors relies primarily on laboratory
testing. However, especially if conducted in certified testing facilities, these tests are often
time-consuming and costly. [109, 110] A remedy to this is provided by using FE models
[181] if the simulations are adequately calibrated [128].

Thus, within this work, the impact sound and vibration serviceability characteristics are
studied numerically to verify the applicability of the HST elements as floor structures in
buildings. First, the unknown fastener parameters of the utilized FE model are calibrated
by considering experimental modal data. However, due to spatial limitations, no vibra-
tion measurements have been performed on full-scale HST floor specimens. Hence,
small-scale HST specimens are tested. Their natural frequencies and mode shapes are
estimated and used to calibrate the simulation. The calibration is carried out by applying
multi-objective optimization. Then, the FE model is adapted to represent the full-scale
HST floor specimens using the calibrated fastener parameters. Based on this model, vi-
bration limits and impact sound criteria are evaluated. Here, the VDVs for different config-
urations are considered. Again, two types of cross-sections, an open and closed setting,
are investigated. As described before, the cross-sections mainly differ by the construction
of the lower structural layer, being either one continuous or many separate LVL boards.
Moreover, fully clamped or free support conditions are applied to the FE model since the
actual boundary conditions are not known due to missing full-scale in-situ tests. This way,
a potential range of the vibration response is computed as the actual support conditions
will fall within the range of clamped to free supports. Thus, FE modal analysis is carried
out to identify natural frequencies, modal masses, and mode shapes for the computation
of VDVs. Additionally, a numerical version of the commonly used tapping machine for
impact sound tests is implemented and applied as an excitation to the floor configurations
in the FE model. Time-harmonic analyses are conducted to yield the vibration response
of the HST floors due to tapping machine loading in the required frequency range. Sub-
sequently, the Rayleigh integral is employed to compute sound power values. Finally, the
sound power is transformed to normalized impact sound pressure levels.

The VDVs calculated for the HST floors are compared to commonly considered limit val-
ues, leading to the overall rating of "adverse comments possible". Hence, there is still
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a need to improve the vibration response by carefully adding distributed mass or further
investigating the damping properties of the floors. Comparing the two types of cross-
sections reveals only minor differences regarding normalized impact sound pressure lev-
els, barely recommending one type over the other. The influence of free or clamped
support conditions is mainly observable in the low-frequency range, similar to what could
be expected. Moreover, a comparison of the normalized impact sound pressure level of
the HST floors to floors built from concrete and screed is made, yielding a somewhat com-
parative behavior. Thus, although it has to be kept in mind that the FE results are based
on modeling assumptions regarding the fastener parameters, the floor damping behav-
ior, and the support conditions, the HST floors seem to be competitive with commonly
employed floors. This implies that they could be regarded as advantageous in terms of
weight and sustainability.

So far, the study assumes the transferability of the model calibrated on small-scale spec-
imens to full-scale floor structures. However, this conjecture has to be validated in future
studies while considering appropriate in-situ support conditions. Moreover, additional
structural components, e.g., floating floors, are not yet considered in the FE model and
will also influence the impact sound behavior of the HST floors. Future studies should
deal with these topics.

Contribution Bettina Chocholaty, Nicolaas Bernardus Roozen, and Marcus Maeder
conceptualized the study. Bettina Chocholaty, Nicolaas Bernardus Roozen, Karl-Alexander
Hoppe, and Steffen Marburg contributed to the methodology. Bettina Chocholaty carried
out the code implementations and conducted the FE simulations. Bettina Chocholaty pre-
pared the draft of the manuscript. Bettina Chocholaty, Nicolaas Bernardus Roozen, and
Karl-Alexander Hoppe contributed to the discussion of the results. All authors provided
critical feedback and approved the final version of the manuscript.

Reference Chocholaty, B., Roozen, N. B., Hoppe, K.-A., Maeder, M., & Marburg, S.
(2024). Vibration and impact sound properties of hybrid steel-timber floor structures. Acta
Acustica, 8(11), 1-18, https://doi.org/10.1051/aacus/2024001.
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4 Discussion and Conclusions

4.1 Contribution and discussion of this research

This cumulative thesis deals with the vibrational and acoustic characteristics of HST struc-
tures. The structures have top and bottom LVL layers with a corrugated steel core. Key
aspects explored include the effects of the structure’s joints on its overall behavior, the
influence of uncertainties in joint and material properties, and the potential use of HST
structures as floor elements.

The analyses conducted in Paper A revealed that joints induce nonlinear effects in the
structure’s response. While initial linear modeling approaches may be suitable, the study
suggests that nonlinear modeling might be necessary to fully capture the joint’s effects.
The comparison of the measurement results with an experimental modal analysis in liter-
ature conducted on HST elements made of CLT and an H-shaped steel beam indicates
higher natural frequencies for the first couple of modes for the currently investigated HST
elements. In Paper B, Bayesian inference that identifies LVL material properties pro-
vides reasonable estimates. Moreover, considering uncertainties in material properties
and joint stiffness values results in significant variations in the natural frequencies of HST
building elements. Nevertheless, some discrepancies between measured and simulated
natural frequencies remain, which might be attributed to manufacturing uncertainties and
modeling inaccuracies. The subsequent study in Paper C improves the model, achieving
a good match of natural frequencies and modes through deterministic model calibration.
However, challenges still remain due to the complexity of the structure and unaccounted
effects in joints. Vibration serviceability analysis indicates relatively high VDVs, neces-
sitating further studies on damping, support conditions, and other factors. Comparable
studies in previous research, such as Hassanieh et al.’s [73] work on HST floors, showed
the suitability of HST floors for some but not all kinds of buildings. Additionally, Owolabi
et al.’s [69] experiments on U-shaped steel with Cross-Laminated Timber (CLT) provided
valuable insights by considering subjective vibration evaluation. A subjective vibration
evaluation is also a possible next step for the LVL-steel floors investigated in this thesis.
To the best of the authors’ knowledge, no impact sound evaluations on such types of
floors have been conducted yet. Therefore, no valid comparison of the performed impact
sound study can be drawn.

The comprehensive exploration of LVL and trapezoidal steel structures allows for insight-
ful comparisons with commonly used CLT-steel structures. Furthermore, the uncertainty
quantification on HST elements offers implications for developing prediction tools for such
structures. The initial estimates of vibration serviceability and impact sound character-
istics highlight the potential suitability of HST structures in residential and commercial
buildings, presenting a sustainable alternative to concrete floors. Notably, the study ex-
tends prior research by addressing impact sound.
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4.2 Limitations

Advances in modeling engineering structures always rely on assumptions and an abstrac-
tion of reality. Therefore, they only represent a replica of real-world behavior being subject
to uncertainties and errors. Although accurate modeling selection and calibration improve
the accuracy, deviations related to reality will remain. Adequate material modeling regard-
ing the appropriate selection of material parameter values especially improves the model
accuracy. [132] Furthermore, for heterogeneous materials such as wood [183], more re-
fined, localized models can improve the prediction quality, e.g., on lamella-basis [184].
Further, adequate modeling of joints still poses challenges to engineers and researchers
since joints induce complex behavior in a structure. A linear simulation approach based
on linear element types might not be elaborate enough, and an advanced approach, e.g.,
using an Iwan-type model, would be beneficial for the studies of HST systems. [102]
Moreover, FE simulations have limitations, as their accuracy depends on the discretiza-
tion. This is especially true for higher frequencies, where smaller elements are required
to accurately describe a structure’s response [185]. However, for large structures, simula-
tions with small elements lead to very costly and time-consuming computations. Hence,
one has to weigh the benefits and drawbacks of simulation approaches when deciding
which simplifications and assumptions are acceptable.

Another important aspect to remember regarding simulation and modeling is the trans-
ferability of the computed results. One may find an accurate prediction via a calibrated
FE model for a specific test specimen. However, a slight variation in the test specimen or
its support conditions may require an adapted FE model, thus limiting the validity of the
simulation results.

Some limitations also exist related to vibration measurements. In most experiments, some
type and extent of measurement errors are introduced, even if conducted with precision
and care [186]. For example, a slightly skewed load application could introduce horizontal
forces in the test specimen, although only vertical ones have been asked for. Moreover,
the position of accelerometers or scan points can influence the measurement quality since
some positions on the structure might be better suited than others, e.g., in the context of
spatial aliasing. [143] How samples are supported also strongly affects the measured
response [187]. Measurement engineers often try to achieve supports similar to free
boundary conditions of simulations by using rubber bands or soft airbags [188]. This is
done since free supports are deemed to be established more easily than, e.g., simply
supported boundaries. However, even if attached with care, these supports may uninten-
tionally influence the damping or stiffness of the investigated structure.

The repeatability and reproducibility of measurement results are also of major concern
related to established supports and applied excitation. [143] Often, repeatability is not as
easily guaranteed as expected. This is also a major concern in nonlinearity detection.
Nonlinearity is often induced by frictional effects in joints. However, friction strongly de-
pends on the current contact status, which is significantly influenced by the current state
of assembly. [189] Hence, different results might be obtained if the structure is dis- and
subsequently reassembled. Consequently, the repeatability of measurements poses a
great challenge to vibrational experiments. Finally, a limitation of the conducted experi-
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mental studies is given by the effect of friction between components degrading over time
due to cycles of loading and unloading during the service life of the structure [105], which
has not been assessed so far.

4.2.1 Future work

With regard to the limitations explained before, the following ideas emerge for future re-
search.

Parametric study on the impact sound insulation properties: As of now, the impact
sound computations have been conducted using a single excitation position. One next
step could be to consider a variety of loading positions to evaluate the effect on the nor-
malized impact sound pressure level. Furthermore, a larger variety of HST floors could be
investigated regarding impact sound in a parametric study. This includes but is not limited
to variations of the used LVL material type, the height of the floor, or similar factors. In the
parametric studies, the frequency range of interest for impact sound properties ranges
up to more than 3000 Hz. At the same time, floor structures with minimum requirements
for their dimensions have to be investigated. This leads to large FE models that require
large computational effort. Hence, as another extension of the current research, model or-
der reduction approaches could be applied to make the above-elucidated analyses more
feasible.

Uncertainty quantification related to VDVs and impact sound characteristics: Sim-
ilar to investigating the effects of uncertain material and joint parameters on the modal
characteristics of the HST elements, uncertainty quantification for VDVs and normalized
impact sound characteristics can be performed. This way, slight variations in the assem-
bly of HST floors are incorporated in the uncertain parameters, and their effect on the
vibroacoustic response is assessed. The aforementioned model order reduction is also a
feasible tool for these investigations.

Elaborate measurement campaign on HST structures: In an extensive experimental
campaign, many factors could be investigated. The repeatability of the vibration measure-
ments could be quantified by studying the effect of slightly varying measurement setups,
as well as dis- and reassembly. Moreover, varying torques in the fasteners and different
contact pressures in the joints could be investigated in future experiments. Lastly, a long-
term experimental study on the friction effects for loading and unloading cycles could be
of interest.

Investigations on damping of LVL material and HST structures: As the VDVs of the
HST elements range within the possibility of adverse comments from residents, a more
elaborate study of the damping properties could be beneficial. On the one hand, the
material damping inherent to LVL, especially regarding frequency-dependency, might be
of interest. On the other hand, the overall damping properties of HST floors are a relevant
research objective, e.g., considering in-situ support conditions. This might give insight
into how to improve the behavior of the HST floors related to vibration serviceability.

Influence of additional structural components on HST floors: For built-in situations,
additional structural components, such as floating floors and suspended ceilings, are ap-
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plied to floor structures. These components could improve the impact sound insulation
properties of the HST floors. However, their effects remain unexplored so far and might
be analyzed in future research, both numerically and experimentally.

4.3 Closing remarks

This thesis has taken a step toward the vibroacoustic characterization of HST elements
for use in residential or commercial buildings. To this aim, a thorough experimental inves-
tigation has been performed to construct a reliable numerical prediction tool. Although
the experimental validation of full-size HST floor structures regarding vibrations and im-
pact sound still needs to be performed, a first estimate of the related properties has been
computed numerically. Moreover, the implementation of a probabilistic model represents
a base for further investigations on uncertainty within the behavior of HST structures. The
gained insights on the vibroacoustic behavior of LVL-corrugated steel structures offer a
variety of future research possibilities through which new knowledge can be acquired. In
summary, this comprehensive investigation of HST structures has led to a deeper un-
derstanding of their vibrational behavior, identified key challenges, and highlighted their
potential as a sustainable alternative in construction.
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A B S T R A C T

With the increasing demand for sustainable construction and, at the same time, for larger spans in buildings and
high-rise buildings, composite timber structures are gaining more attention, and steel–timber hybrid elements
offer a promising approach. Therefore, this study analyzes a novel steel–timber composite floor structure
experimentally and numerically. The investigations focus on the vibrational behavior of the structures while
considering nonlinearities due to frictional effects in joints. First, eigenfrequencies, damping properties, and
consequently, the vibrational characteristics of the systems are determined. Then, detection of nonlinearity
follows, investigating amplitude-dependent stiffness and damping and the occurrence of higher harmonics.
Results reveal nonlinearities indicated by the occurrence of higher-order harmonics and slight amplitude-
dependent damping. Furthermore, the influence of parameters, such as steel thickness and fastener type, on the
vibrational behavior of the structures is investigated, comparing specimens of various configurations. Finally,
the experimental results validate a linear Finite Element model using the commercial software ANSYS as a first
approach despite the nonlinearities that occurred during the measurements. Nonetheless, further investigations
could deal with nonlinear models to get more detailed insight.

1. Introduction

Replacing concrete and structural steel with wood-engineered prod-
ucts saves greenhouse gas emissions such as carbon dioxide emissions,
increasing sustainability [3,4]. Furthermore, fast construction, high
strength-to-weight ratio, and lightweight characteristics favor buildings
made of timber. However, the increasing demand for larger spans
and high-rise timber buildings leads to higher susceptibility of floors
and similar building elements to vibrations. Therefore, although the
design criteria concerning load-bearing capacity are fulfilled due to
new engineered-wood products, the serviceability criteria might not
be met [5]. In this case, occupants note excessive vibrations in terms
of annoyance [6]. Moreover, lightweight structures show poor sound
insulation properties for both airborne and impact sound. The typically
low mass per unit area of those building elements leads to high sound
transmission [7].

Current research in wooden structures focuses increasingly on com-
posite structures to overcome drawbacks in wooden materials such
as impermanence and limited application. Initial advances for com-
bining timber and steel deal with columns built from steel cross-
sections surrounded by wooden materials for use as a column in build-
ings [8]. Further researchers proposed beam and floor elements con-
structed from structural steel and engineered wood products. Those

∗ Corresponding author.
E-mail address: bettina.chocholaty@tum.de (B. Chocholaty).

investigations consider different sections for the steel, such as omega-
shaped cold-formed steel, U-shaped sections, C-shaped cold-formed
steel, welded steel beams, or H-shaped beams. Moreover, different en-
gineered wood products are investigated: cross-laminated timber (CLT)
and laminated veneer lumber (LVL). Static load bearing capacities [9],
load–slip curves, and failure modes of joints [10] are analyzed for
various types and combinations of steel and wood elements. Experi-
mental and numerical tests on prototypes highlight the advantages of
such composite steel–timber systems compared to typical construction
materials in the related articles [11,12]. In [13], the authors study static
nonlinearities due to connectors, geometry, and interface conditions.
The first approach toward vibrational characterization of steel–timber
floor systems has been recently made in [2,14].

Consequently, steel–timber composite structures of various configu-
rations are analyzed in the literature. Investigations deal with different
steel sections, wooden materials, and the arrangement of components.
Nonetheless, structures constructed by a corrugated steel core with a
top and bottom chord made of LVL plates have not been studied so far.
Furthermore, most works investigate static properties on the joint level
or the overall floor structure. However, studies considering vibrational
effects of the structures are rare, and no detailed investigation of the
dynamic behavior of the joints has been conducted so far.

https://doi.org/10.1016/j.engstruct.2022.114911
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Joints significantly influence the dynamics of a structure. In [15],
several reasons are given for nonlinearities in an assembled system.
First, under expected excitation levels, macro-slip influences the sys-
tem’s geometry. Second, coupled modes appear in the structure’s re-
sponse. Third, the stiffness in the joint’s interface becomes smaller, and,
finally, in the jointed interface, the damping rises significantly in the
regime of micro-slip until macro-slip, then it decreases. Based on this,
three phenomena concerning joint-related nonlinearity are identified,
i.e., amplitude-dependent stiffness, amplitude-dependent damping, and
occurrence of nonlinearly coupled modes or higher-order harmonics.
First, if the natural frequency of the system changes as the load am-
plitude increases, amplitude-dependent stiffness exists. Second, if the
loading is sufficient to cause slippage in the joint and the damping ratio
changes due to increased excitation amplitude, amplitude-dependent
damping also influences the structure’s response. Third, if the system
is excited at one natural frequency and other modes are strongly
activated, nonlinearly coupled modes exist in the structure. This con-
dition is indicated by multi-harmonic responses. However, harmonic
distortion suggests the activation of non-smooth nonlinearity in the
neighborhood of the resonance but not necessarily nonlinear modal
interaction [15]. Nonlinearly coupled modes or modal interaction only
occur if an excitation at one resonance frequency leads to a surprisingly
large-amplitude response at other modes of the investigated structure.
This might be the case for commensurate or nearly commensurate
natural frequencies [16,17].

As a first approach, the strength of nonlinearity helps to classify a
structure. Linearity is assumed if none of the above-described phenom-
ena is revealed. Weak nonlinearity exists if amplitude-dependency is
observed. Strong nonlinearity is revealed in the system if nonlinearly
coupled modes or higher-order harmonics appear additionally to the
amplitude-dependency [15]. Different modeling approaches are used
depending on the strength of nonlinearity. Several joint models and
their applicability are investigated in [18]. A popular linear modeling
approach also used in the context of this study is the Finite Ele-
ment (FE) analysis. In the case of wood–steel composite structures,
it should also be noted that wood components often have a greater
thickness than, for example, steel components. For this reason, it is
in general appropriate to use, e.g., volumetric elements or higher
order shear deformation elements when modeling timber structures
with finite element methods [19,20]. Additionally, experimental val-
idation of the used models is of great importance. Modal data such as
eigenfrequencies and eigenmodes are often used in this context [21].

This article deals with a steel–timber composite structure and its
vibrational behavior. The investigated sandwich structure consists of
two LVL plates and a corrugated steel core which is a new design for
this type of structure. Furthermore, the focus lies on the influence of the
joints on the overall vibroacoustics. To the best of our knowledge, no
studies on the dynamic behavior of building elements made of LVL and
corrugated steel exist in literature. Further, no detailed study on the
influence of the joints and the thereby introduced nonlinearity on the
structural dynamics of steel–timber composite structures has been con-
ducted. This paper aims to fill this gap by performing a comprehensive
investigation of the vibrations of the proposed element. Experimental
as well as numerical investigations are presented. Based on the results,
insights are subsequently gained regarding the influencing parameters
and their applicability for steel–timber composites.

The article is organized as follows. Section 2 explains the experi-
mental program and numerical simulations. In Section 3, the results
of experiments and numerical modeling are presented together with a
discussion of the results. Finally, Section 4 concludes this study and
discusses ideas for future work.

2. Investigations on steel–timber composite elements

This section presents and discusses the conducted experimental and
numerical investigations. First, the steel–timber composite element is
introduced. The experimental setups and investigations follow. Finally,
the numerical approach for validation is described.

2.1. Steel–timber composite element

The investigated steel–timber composite sandwich elements consist
of top and bottom chord LVL plates and a corrugated steel frame as
the core (Fig. 1). The two different investigated cross-section types
differ mainly in the lower chord. The closed configuration includes
a continuous lower wooden panel (Fig. 1(b)), while the open one is
divided into individual wooden boards at the bottom chord (Fig. 1(a)).

Furthermore, the connection between the components is realized
either with a steel–timber or timber–steel joint. The open configuration
only uses steel–timber joints. On the contrary, the closed cross-section is
constructed by a timber–steel joint in the upper connection and a steel–
timber joint in the lower one (Fig. 1(b)). For the steel–timber joint, a
screw or nail is first driven through the steel sheet and, subsequently,
into the LVL component. In the case of the timber–steel joint, a screw
is first driven through the LVL and then through the steel component.
However, problems can arise for the latter joint since the connection
between the LVL board and steel sheet lacks pretension. This results
in a deformation of the steel component just before drilling through,
leading to a remaining gap between steel and timber. Therefore, the
connection becomes weaker than for the steel–timber joint. The influ-
ence of the joint configuration and other parameters are investigated
by experimentally analyzing various combinations of timber material,
system dimensions, and fastener types. Subsequently, a numerical study
is conducted to validate the measurements.

2.2. Experimental setup and investigations

Measurements are performed on samples with varying parameters
in two different settings. First, smaller size samples are investigated in
the vibrational laboratory at the Technical University of Munich (TUM).
Second, further measurements on larger test specimens are performed
at the chair of Timber Structures and Building Construction at Karlsruhe
Institute of Technology (KIT).

2.2.1. Objectives and specimen details
The experiments aim to measure transfer functions. Subsequently,

modal parameters are derived by employing an experimental modal
analysis. See Ewins [22] for deeper insight into the topic of experimen-
tal modal analysis. In addition, numerical studies, which are further
discussed in Section 2.3, are validated using this data.

As described in the introduction (Section 1), jointed structures are
prone to nonlinearities influencing the vibrational behavior, e.g., due
to effects of friction [23]. The experiments focus on identifying nonlin-
earities and determining whether they should be taken into account. In
order to conduct realistic tests, attention is paid to the maximum re-
sulting vibration amplitudes. The amplitudes are chosen as reasonable
limits of the application as a floor structure. In [24], standard impact
sound levels are given for raw ceilings as a function of the area-related
mass. Since the graph provided in [24] stops at 100 kg∕m2 with 95 dB
and the investigated structures have less than 100 kg∕m2, 100−110 dB
was selected as a limit, including a small safety margin.

Detecting nonlinearity concentrates on three aspects: amplitude-
dependent stiffness, amplitude-dependent damping, and the appear-
ance of higher harmonics in the structure’s response.

Vibration measurements are conducted on the samples listed in
the appendix in Table A.1 to investigate the vibroacoustic behavior of
the steel–timber composite structure. The tested specimens vary with
respect to the dimensions of the overall structure, dimensions of the
components, material properties, overall configuration, and type of
fastener. The different fasteners are summarized in Table 1.
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(a) Open configuration. (b) Closed configuration.

Fig. 1. Cross-section of open (left) and closed (right) steel–timber composite element.

Table 1
Fastener types used to assemble steel–timber elements.

Fastener Description (manufacturer) Picture

SBS1 Screw 4.2 × 38 (Rothoblaas)

BS1 Screw 6.0 × 64 (SFS)

HS2 Screw 5.0 × 40 (SFS)

Re Screw 6.0 × 90 (Reisser)

Re* Screw 6.0 × 90 (Reisser) (adapted tip)

StNa Nail Unpublished prototype

2.2.2. Measurement setup
The specimens are excited using a B&K,1 modal exciter type 4824

together with a stinger. The stinger is added in order to reduce any
transferred moments. Subsequently, the force transducer (B&K Force
Transducer Deltatron Type 8230) connects the stinger to the structure.
On the opposite surface of the specimens, a scanning Laser Doppler
Vibrometer PSV-500.2 (LDV) measures the structural vibrations. The
shaker applies the excitation force to the lower chord for closed
specimens while measuring the surface velocities on the upper chord
through the LDV, as displayed in Figs. 2(a), 2(b), 3(a) and 3(c) For
the open configurations, the force transducer is attached to the upper
timber chord, and the vibration measurements are conducted on the
lower side of the structure (Figs. 3(b) and 3(c)).

Hanging support is chosen for the measurement to avoid in-plane
stresses influencing the structural response due to gravitational ef-
fects [25]. Depending on the sample size, two different ways of sus-
pension are realized at TUM and KIT. At TUM, rubber bands hold the
smaller samples in place, whereas heavy-duty slings and a crane are
utilized at KIT to support the larger structures. Exemplary setups are
visualized in two figures (Figs. 2 and 3). Slight shear stress might have
been introduced by the supports at KIT in contrast to TUM due to the
three-point support of the slings. This might lead to slightly higher
natural frequencies at KIT. Additionally, rubber bands exhibit more
damping than slings which could lead to smaller vibration amplitudes
at TUM as opposed to KIT. However, a comparison of the mode shape
(1,1) (Figs. 6 and 7) for specimens tested at TUM, respectively KIT,
showed similar vibration amplitudes at supported and unsupported

1 Hottinger Brüel & Kjær GmbH, D-64293 Darmstadt, Germany
2 Polytec GmbH, D-76337 Waldbronn, Germany

corners of the samples. Therefore, the influence of the suspension seems
negligible.

First, to measure the transfer functions between the force transducer
signal and the vibration signal at each scanning point, white noise and
pseudo-random noise serve as the excitation signal for measurement at
TUM and KIT, respectively. All signal channels are windowed using a
Hanning window. Depending on the circumstances, such as the geome-
try, the number of scan points is chosen between 𝑛𝑠𝑝 = 60−275. At each
measurement point, 25 time windows are recorded and transferred to
the frequency domain through the Fast Fourier Transformation (FFT).
Again, due to the circumstances, different sampling rates 𝑓𝑠𝑚𝑝 as well
as frequency resolutions of 𝛥𝑓 are determined. The sampling rate 𝑓𝑠𝑚𝑝
and frequency resolution of 𝛥𝑓 range between 𝑓𝑠𝑚𝑝 = 0.8−5 kHz and
𝛥𝑓 = 0.16−0.39Hz, respectively. The resulting 25 transfer functions
are averaged in the complex plane to improve the signal-to-noise-
ratio (SNR). Furthermore, the force level is altered to investigate the
amplitude-dependent nonlinearities as 𝐹𝑘 ≊ 𝑘 ⋅ 𝐹0 with 𝑘 = 1, 2, 3, 4,
where the approximation is based on the root-mean-square (RMS)
values within the stochastic force excitation signal.

In contrast to the small structures, the larger specimens analyzed
at KIT are excited using a higher force level due to the larger mass of
the complete structure. The applied force is given as 𝐹𝑙 ≊ 𝑙 ⋅ 𝐹0 with
𝑙 = 1, 5, 10.

To identify force levels 𝐹𝑘 and 𝐹𝑙, preliminary measurements uti-
lizing a sine-sweep loading investigated the maximum surface velocity
levels. Here, the measurements are set in such way that for 𝑘 = 4 and
𝑙 = 10 the maximum resulting surface velocity amplitudes remains
within a range of 100 dB – 110 dB with the corresponding reference
of 0 dB = 5 ⋅ 10−8m∕s. An explanation for the choice of this limit is
given in Section 2.2.1. The identified load levels are further used for
all measurements of this sample type.

Furthermore, the samples are excited by a sine sweep loading
approximately at the first three eigenfrequencies. Comparable load
levels as before are used. Depending on the circumstances, the scan
point number 𝑛𝑆𝑃 = 60 − 253, the sampling rate 𝑓𝑠𝑚𝑝 = 1−2 kHz and
the time resolution 𝛥𝑡 = 0.5−1ms are chosen. The velocity and force
data collected in the time domain are then converted to the frequency
domain and represented in a spectrogram.

Measurements at TUM — two-component assembly:
The designed floor structure consists of three components, i.e., two

timber plates and a steel frame. However, as a first step, an assembly
built by the lower LVL chord and the steel frame only is studied
experimentally to identify the effect of the joints in the structure. This
procedure is applied to specimens 𝑉 1𝑎, 𝑉 2𝑎, 𝑉 3𝑎, and 𝑉 4𝑎 (Table A.1).

Measurements at TUM and KIT — three-component assembly:
Next, investigations on a complete assembly consisting of three

components, i.e., bottom LVL chord, steel frame, and top LVL chord,
are performed. Three different groups are distinguished herein. The
samples tested at KIT measure 3.5m in length, the specimens tested
at TUM only 0.6m. The tests at KIT are conducted on closed and



Engineering Structures 271 (2022) 114911

4

B. Chocholaty et al.

(a) Scan setup using rubber bands for suspension. A LDV
is used to measure surface velocities on the specimen.

(b) Shaker setup: a stinger in
combination with a force trans-
ducer is used to apply an excita-
tion to the specimen.

Fig. 2. Measurement configurations at TUM.

(a) Scan of upper chord
for closed configurations
via LDV. The suspen-
sion is realized using
heavy-duty slings.

(b) Scan of lower
chord for open
configurations via
LDV. The suspension
is realized using
heavy-duty slings.

(c) Shaker setup for lower or upper chord: a
stinger in combination with a force transducer
is used to apply an excitation on the specimen.

Fig. 3. Measurement configurations at KIT.

open structures. The groups consequently are small, closed samples
(TUM), i.e., 𝑉 1𝑏, 𝑉 2𝑏, 𝑉 3𝑏, and 𝑉 4𝑏, long, closed samples (closed
samples measured at KIT), 𝑉 7 and 𝑉 8, and long, open samples (open
configurations measured at KIT), i.e., 𝑉 9 and 𝑉 10. A complete list of
all configurations and the corresponding labeling is presented in the
appendix (Table A.1).

2.3. Numerical simulation using finite element analysis

Within the scope of this work, a simulation model is built employing
FE analysis. The following section discusses the FE model used to
represent the steel–timber element.

2.3.1. Objectives
Experiments often account for the most work- and cost-intensive

part of the design process of products and structures, e.g., cars and
buildings. Therefore, simulation techniques such as the FE method are
applied to reduce this effort by shifting first-stage developments into

the virtual environment. The response of different structural config-
urations is computed with little effort using a parametric simulation
model since no test specimens and, consequently, no manufacturing is
necessary. Furthermore, by means of a model, the proposed building
element will be verified for application in commercial and residential
buildings in the context of acoustics and vibrations in future studies.

2.3.2. Components
All FE simulations are conducted using the commercial software

ANSYS.3 by means of the intern programming language Mechanical
APDL The simulation model has three essential components similar to
the real structure: an upper chord built from an LVL plate, a steel frame
in the middle, and a lower LVL chord. The wooden parts are modeled
with hexahedral elements (SOLID186), for which orthotropic material
properties are assumed. On the contrary, the steel frame is represented

3 ANSYS, Inc., https://www.ansys.com
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Fig. 4. Spring–damper element used to connect the translational DOFs of nodes related
to joints [1].

by shell elements (SHELL281) with isotropic material properties. All
elements use quadratic trial functions. For all components, a mesh
size of approximately 0.03m is used. For components that prohibit
such mesh sizes due to smaller dimensions, the mesh size is adapted
accordingly. This leads in the example of Section 3.2 to an overall
number of DOFs of approximately 97,000.

As specified in the introduction (Section 1), different types of
joint models exist in the literature. For simplicity, an element with a
displacement-proportional spring and a velocity-proportional damper is
implemented to represent the joint behavior within the FE model. See
Yang and Park for deeper insight [26] into the model. At the positions
of the screws or nails in the structure, the translational degrees of
freedom (DOFs) of the timber plate and steel frame are connected by
these spring–damper elements (COMBIN14 [1]) in all three directions,
i.e., x-, y- and 𝑧-direction. A representative picture of the element is
displayed in Fig. 4.

Exemplarily, a full FE model is provided for better understanding
(Fig. 5).

The geometric dimensions of the structure remain fixed from the
start corresponding to the measurement samples.

For the steel material properties, i.e., elasticity modulus, shear mod-
ulus, and density, values are given in [27]. Nevertheless, the stiffness
and density differ from wood product to wood product, so non-identical
material parameters are assumed for different products. Although man-
ufacturers provide material properties to some extent, those are mainly
valid for static analysis. Consequently, to analyze structural dynamics,
material properties have to be deduced from the static properties
for higher frequencies, or individual vibration measurements on the
wooden components only have to be conducted.

In this study, two types of LVL, i.e., Steico LVL X 4 (NLVL) [28] and
Baubuche5 (BB) [29] are used. For NLVL, measurements on separate
plates are performed to identify the properties listed in Table 2. Similar
to the measurement setup in Section 2.2.2, experimental modal analysis
is performed on suspended LVL plates to identify the modal parameters
such as eigenfrequencies and mode shapes. By solving a subsequent
inverse problem, the material properties of NLVL are calibrated. On
the contrary, for BB (Table 3), the material properties are calibrated
using the more complex assembly model described above. Furthermore,
to the authors’ best knowledge, appropriate parameters for the joint
elements are missing in the literature and, therefore, are calibrated
manually utilizing modal information derived from the measurements.
For the example investigated in Section 3.2, the identified spring stiff-
nesses and damping constants in horizontal (x, y) (𝑘ℎ𝑜𝑟, 𝑐ℎ𝑜𝑟) and
vertical (z) (𝑘𝑣𝑒𝑟, 𝑐𝑣𝑒𝑟) directions are also listed (Table 3).

Finally, time-harmonic analyses are conducted to validate the nu-
merical model, consisting of joints, LVL plates, and steel parts, con-
cerning the experiments. Therefore, the frequency range of interest is
adapted in correspondence with the experiments, which is in the case

4 Softwood LVL by STEICO SE, D-85622 Feldkirchen, Germany
5 Hardwood LVL by Pollmeier Massivholz, D-99831 Amt Creuzburg,

Germany

Table 2
Material properties of NLVL and steel.

Steel Literature data [27]

𝐸 2.1 ⋅ 1011 N∕m2

𝜈 0.3
𝜌 7850 kg∕m3

𝜁 1 ⋅ 10−4

NLVL Manufacturer’s data [28] Fitted properties

𝐸𝑥 10.6 ⋅ 109 11.9 ⋅ 109 N∕m2

𝐸𝑦 2.5 ⋅ 109 25.1 ⋅ 108 N∕m2

𝐸𝑧 – 25.1 ⋅ 108 N∕m2

𝐺𝑥𝑦 1.5 ⋅ 108 7.3 ⋅ 108 N∕m2

𝐺𝑥𝑧 – 6.9 ⋅ 108 N∕m2

𝐺𝑦𝑧 – 5.0 ⋅ 107 N∕m2

𝜈𝑥𝑦 – 0.42
𝜈𝑥𝑧 – 0.42
𝜈𝑦𝑧 – 0.42
𝜌 530 660 kg∕m3

𝜁 – 0.01

Table 3
Material properties of BB and joint parameters.

BB Manufacturer’s data [29] Fitted properties

𝐸𝑥 12.8 ⋅ 109 29.6 ⋅ 1010 N∕m2

𝐸𝑦 2.0 ⋅ 109 28.1 ⋅ 108 N∕m2

𝐸𝑧 – 40.2 ⋅ 107 N∕m2

𝐺𝑥𝑦 4.3 ⋅ 108 62.1 ⋅ 108 N∕m2

𝐺𝑥𝑧 – 39.3 ⋅ 108 N∕m2

𝐺𝑥𝑦 – 28.1 ⋅ 107 N∕m2

𝜈𝑥𝑦 – 0.42
𝜈𝑥𝑧 – 0.42
𝜈𝑦𝑧 – 0.42
𝜌 800 820 kg∕m3

𝜁 – 0.01

Screws/nails Fitted properties

Stiffness 𝑘ℎ𝑜𝑟 4.0 ⋅ 106 N∕m
Stiffness 𝑘𝑣𝑒𝑟 4.5 ⋅ 105 N∕m
Damping 𝑐ℎ𝑜𝑟 750 N s∕m
Damping 𝑐𝑣𝑒𝑟 750 N s∕m

of the example of Section 3.2 𝑓ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = 10−310Hz. Here, a frequency
resolution of 𝛥𝑓 = 1.0Hz is used. The boundary conditions are adapted
to simulate the suspension in the measurements by using soft springs.
Also, the loading is chosen according to the experiments.

3. Results

Results from experimental and numerical investigations are pre-
sented in the following.

3.1. Experimental results

First, the experimental results are described. Some of the mode
shapes observed for measurements at TUM and KIT are plotted in Fig. 6
and Fig. 7, respectively.

In the case of Fig. 7, the plots are split into two parts since the
measurements on the structure at KIT have to be done in two parts due
to the size of the structure. The two parts are combined by the LDV’s
software via stitching. Still, a visual break remains in the plots.

Furthermore, modes of similar shapes appeared more often than
once for some specimens, e.g., mode shape (0,2)* (see Table C.1,
Table C.4 and Fig. 6). The assembly process can lead to inaccuracies in
mounting conditions and uncertainties, e.g., concerning the symmetry
of specimens. Moreover, not clearly identifiable mode shapes occur in
the experimental modal analysis. Such an ‘unclear’ mode represents a
mode shape that cannot be attributed to a comparable mode and is
visualized in Fig. 6.
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Fig. 5. Three-dimensional sketch of exemplary FE model of steel–timber structure.

Fig. 6. Exemplary mode shapes observed for measurements at TUM.

Fig. 7. Exemplary mode shapes observed for measurements at KIT.

Additionally, for two-component assemblies, local modes appear
where only steel frame parts vibrate, and for three-component assem-
blies, when single corners move independently from the rest of the
structure (‘local’ mode in Fig. 6). Also, due to the specimens’ geometric
properties, the top and bottom chords of the three-component assem-
blies, in some cases, vibrate separately, i.e., modes (0,1) and (1,0). For
mode (0,1), the top LVL plate rotates independently of the lower chord
around the lateral axis and, for mode (1,0), around the longitudinal
axis (Fig. 6).

The experiments at TUM are conducted for four load levels (load
factor (LF) 1 to 4) for investigations concerning amplitude-dependency.

The median value and standard deviation for the eigenfrequencies at
the four load levels are calculated. The median instead of the mean is
chosen to minimize the effect of outliers. Both statistical parameters
are given in Table C.1 in Appendix C. Additionally, Table C.2 lists the
median value and standard deviation of the loss factors identified for
the assemblies. Last, Table C.4 summarizes the results obtained for the
sine sweep measurements at TUM to investigate the contributions of
higher-order harmonics.

At KIT, essentially the same experiments as at TUM are performed.
The measurements help to identify eigenfrequencies, loss factors, and
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higher harmonics in the structural response. Table C.3 lists the re-
sults for eigenfrequencies and loss factors, again considering median
values and standard deviations, whereas Table C.5 summarizes the
investigations for higher harmonics.

3.1.1. Comparison between assemblies
This section contrasts the results of samples of various configu-

rations (refer to Table A.1 for the specimens’ details). In this way,
influences of several parameters, e.g., geometry, are identified. The
following comparisons use the median values from Table C.1.

First of all, the investigation deals with the specimens’ dynamic
stiffness and modal mass effects by means of the identified eigenfre-
quencies. Furthermore, the damping behavior is analyzed by comparing
identified loss factors. Nonetheless, uncertainties in identifying the
above-mentioned characteristics exist, especially related to damping.

The following influential parameters are identified: steel thickness
(comparison of 𝑑𝑠 = 0.75mm to 𝑑𝑠 = 1.25mm) together with fastener
type (SBS1 to HS2 (two-component assembly — denoted by ‘a’ in
Table A.1) and SBS1/BS1 to HS2/Re (three-component assembly —
denoted by ‘b’ in Table A.1)), steel height (ℎ𝑠 = 0.100m to ℎ𝑠 = 0.155m)
together with LVL plate thickness (ℎ𝑡 = 0.045mm to ℎ𝑡 = 0.055mm), LVL
material type (BB to LVL), timber–steel joints (two-component assem-
blies to three-component assemblies), and open/closed configurations.

Higher eigenfrequencies result from stiffer specimens due to thicker
steel sheets, higher steel frames, thicker LVL plates, or the transition
from two-component assemblies to three-component assemblies. How-
ever, although the material type BB is stiffer in a static sense, comparing
the two LVL types does not show increasing eigenfrequencies. The
reason lies in the higher effective masses due to a higher density
of BB as opposed to NLVL. Furthermore, other effects counteract the
stiffening mentioned above. For the lateral bending mode of an open
specimen, the effective added mass due to thicker steel is more promi-
nent than the introduced effective stiffness. Moreover, the timber–steel
joint, compared to the steel–timber joint (refer to Fig. 1 for the joint
types), introduces less stiffness into the structure. Among others, this
is seen by comparing two-component to three-component assemblies.
Besides, for thicker steel sheets as well as higher steel frames together
with thicker LVL plates, tight connections, i.e., tight timber–steel joints,
become more complex. Thicker steel sheets are a possible reason since
they resist more to a screw to be drilled through. Furthermore, thicker
LVL plates foster uncertainties in the joint such as skewed screw angles.
Additionally, higher steel frames show more flexibility. That is why the
steel bends more under the tip of the screw to be drilled through. The
resulting gap might remain after the finished manufacturing. Similar
softening effects due to the timber–steel joint can also be observed by
comparing open and closed cross-sections. Whereas the lateral bend-
ing mode shows increased eigenfrequencies for the closed setup, the
eigenfrequency in the case of the first longitudinal bending mode
decreases. The first fact results from the obviously less stiff lower
chord in the open setup. However, the latter stems from the stiffer
steel–timber joint used twice in the open configuration but only once
together with a softer timber–steel joint in the closed configuration.
Consequently, some influential parameters counteract the intuition that
stiff structures, at first sight, lead to higher eigenfrequencies.

Concerning damping properties, larger contact areas result in higher
damping in the specimen, whereas larger remaining gaps in a connec-
tion reduce the damping. Samples with thicker steel sheets thereby
show higher damping since the steel is less bent around the fastener
and, consequently, remains in place, which goes along with larger
contact surfaces. Furthermore, samples with weaker timber–steel joints,
such as higher steel frames and thicker LVL plates, contain larger
remaining gaps, which results in less damping due to smaller contact
surfaces. This is again supported by the comparison of open to closed
setups. Higher damping occurs in the open cross-sections since the
tighter steel–timber joint is used twice instead of once together with
a timber–steel joint.

Figs. 8(a) and 8(b) show the deviation concerning the mean value
for the eigenfrequencies and damping values for the measurements at
TUM. Depicted are boxplots. For each mode, e.g., (1,1), the eigenfre-
quencies of all tested assemblies at load factor 1 are normalized by
the mean value of those eigenfrequencies. From this, the boxplots are
created showing the median value (red line), lower and upper quantile
(lower and upper bound of the box), whiskers (lower and upper end
of the black line), and outliers (black circles). For the cross-assembly
comparison, the quantile values lie within the same range for all modes,
except for mode (2,0), where it is smaller than for the other modes.
However, the whiskers for modes (1,1) and (0,2) are the largest for
the TUM assemblies, indicating more significant variability. For the
loss factor, quantiles for modes (0,2), (1,2), and (0,3) reveal the largest
value and lie within the same range. Nevertheless, mode (1,2) indicates
the most considerable variability in damping since it shows the largest
whiskers. So mode (1,2) seems to be quite sensitive to changes concern-
ing damping, whereas mode (1,1) is primarily influenced in the case of
the eigenfrequencies.

Fig. 9(a) illustrates the boxplot considering the eigenfrequencies of
samples tested at KIT. Here, the lateral bending mode (2,0) shows by far
the most significant variation. This phenomenon is logical since open
and closed configurations are compared. The reduced stiffness in the
lateral direction for open in contrast to the closed samples leads to
significant differences in the eigenfrequencies.

Finally, Fig. 9(b) presents boxplots of the loss factors identified for
the specimens measured at KIT. The damping values of mode shape
(1,1) vary the most for the cross-assembly comparison. In this case,
closed configurations lead to higher damping than the open samples
due to the effects within the closed configurations’ timber–steel joints.
These phenomena are activated when the structure vibrates in mode
shape (1,1). Further, more considerable differences occur for the modes
(1,2) and (0,3), which coincides with the previous results.

Comparison with previously studied steel–timber-structures:
The eigenfrequencies determined in this study are compared with

values from a reference article to evaluate the vibrational character-
istics of the proposed elements. In Hassanieh et al. [2], the authors
identify dynamic characteristics of steel–timber beams made of a CLT
slab connected to an H-steel profile below by modal testing. They inves-
tigate 3m long and 1m wide beams. Since those dimensions match the
ones from the specimens measured at KIT quite well, their results are
used for comparison. However, in the reference study, the specimens
have been simply supported in the test, whereas in this study, a free
boundary condition is simulated by the suspension. Consequently, the
mode shapes are not easily compared. However, the first torsional mode
shapes and the first bending modes, which look alike, are contrasted in
Table 4. In this table, H1 to H6 denote samples tested in Hassanieh
et al. [2].

As can be seen, the herein proposed steel–timber element shows
higher eigenfrequencies for all modes except for the second bending
mode. Here, only V10 can compete. Higher frequencies are advanta-
geous since low natural frequencies of ceiling structures cause increased
disturbance to residents. Furthermore, floor vibrations are critical in
the lower frequency range around the first eigenfrequency concerning
the serviceability criteria of floors. In this range, the proposed element
performs much better.

3.1.2. Weakly nonlinear behavior — Amplitude-dependent stiffness and
damping

Tables C.1 and C.2 depict the eigenfrequencies, respectively loss
factors, for each assembly for all load levels by considering the standard
deviations given. The standard deviation thereby shows the variations
due to changes in excitation amplitude.

Hardly any differences in the eigenfrequencies are observed for
varying load levels. All except for one eigenfrequency revealed a stan-
dard deviation of less than 1Hz. Consequently, no amplitude-dependent
stiffness could be identified.
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(a) Boxplots of eigenfrequencies (b) Boxplots of loss factors

Fig. 8. Cross-assembly comparison at observed modes of eigenfrequencies 𝑓𝑖 and loss factors 𝜂𝑖 for all specimens 𝑖 = 1,… , 𝑛 measured at TUM: values at load factor 1 𝑓𝑖 or 𝜂𝑖
are normalized by the cross-assembly mean value 𝑚𝑒𝑎𝑛(𝑓0 ,… , 𝑓𝑖 ,… , 𝑓𝑛) or 𝑚𝑒𝑎𝑛(𝜂0 ,… , 𝜂𝑖 ,… , 𝜂𝑛).

(a) Boxplots of eigenfrequencies (b) Boxplots of loss factors

Fig. 9. Cross-assembly comparison at observed modes of eigenfrequencies 𝑓𝑖 and loss factors 𝜂𝑖 for all specimens 𝑖 = 1,… , 𝑛 measured at KIT: values at load factor 1 𝑓𝑖 or 𝜂𝑖 are
normalized by the cross-assembly mean value 𝑚𝑒𝑎𝑛(𝑓0 ,… , 𝑓𝑖 ,… , 𝑓𝑛) or 𝑚𝑒𝑎𝑛(𝜂0 ,… , 𝜂𝑖 ,… , 𝜂𝑛).

Table 4
Eigenfrequencies [Hz] of specimens tested in Hassanieh et al. [2] (H1 to H6) and tested at KIT (V7 to V10)
for selected modes.
Mode H1 H2 H3 H4 H5 H6 V7 V8 V9 V10

1st torsion 10.5 10.6 10.2 6.7 6.8 – 57 48 34 49
2nd torsion 63.5 58.3 67.4 – 56.4 61.4 77 79 94 112
1st bending 24.2 24.7 24.7 17.2 21.4 24.5 71 64 67 87
2nd bending – 114.4 107.3 86.6 100.5 102.6 88 85 – 136

On the contrary, more variations are visible for the loss factors. In
the case of the loss factors, the ratio of standard deviation to median
value is additionally computed to validate the differences across load
levels relatively. Table C.2 also lists those ratios which are compared
to the signal-to-noise ratio of the measurement. If the ratio due to vari-
ation of load amplitude exceeds the signal-to-noise ratio, it is marked
in bold letters in the respective table. In this case, the differences are
considered significant, indicating amplitude-dependent damping.

From these investigations, it becomes evident that the lower-order
mode shapes, (1,1), (0,2), and (2,0), seem to initiate amplitude-
dependency more often than the higher-order modes, (1,2) and (0,3).
Local modes also often reveal amplitude-dependent loss factors, which
might be due to locally high vibration amplitudes leading to nonlinear-
ity.

Furthermore, samples with thinner steel sheets show more
amplitude-dependent damping effects than their counterparts with

thicker steel. Thinner steel sheets allow more local vibrational be-
havior due to less stiffness, leading to more complex behavior and
consequently nonlinearity in the joints. Furthermore, it is noted that
samples of an open cross-section, especially V9 with the thinner steel,
show more amplitude-dependent behavior than closed cross-sections.
Consequently, open configurations also foster nonlinearity. The results
further reveal that the fastener types BS1 and SBS1 induce more
amplitude-dependency than Re and HS2. However, this tendency is not
observed for the two-component assembly counterparts, which means
the fastener type BS1 of the timber–steel joint and not SBS1 of the steel–
timber joint initiates nonlinearity. The two-piece thread of Re might be
the reason since it allows for a tighter connection and thus more contact
area (see Table 1).

Joint damping mainly increases at sufficiently high load levels due
to the initiation of micro-slip in the joints’ interface. However, damping
decreases again once the state of macro-slip is reached in the joints.
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Table 5
Loss factors identified for exemplary modes for measurements at TUM and KIT.

Mode Specimen Load Factor (LF) Frequency [Hz] Loss factors [–]

(2,0) V8 1 107.2 0.0047
2 0.0054
3 0.0059

(1,1) V2a 1 137.9 0.0116
2 0.0113
3 0.0111
4 0.0109

(2,0) V3b 1 666.1 0.0013
2 0.0010
3 0.0050
4 0.0050

Fig. 10. FRF of V2b around resonance frequency 168 Hz at mode (0,2)*. Curves for
four load levels are depicted (LF 1 to 4). Changes of resonance frequency and loss
factors are observed.

About one-third of the observed modes show increased loss factors for
increased load amplitudes, probably due to the initiation of micro-slip
in the interface. Moreover, the loss factors reveal mixed tendencies
with increasing load levels for almost half of the observed cases. Here,
the complexity of the joint’s interface conditions introduces behavior
that cannot be interpreted easily. This effect is caused by joints getting
stuck temporarily at some excitation amplitudes and being rereleased
at higher load levels, resulting in further micro-slip. For the remaining
modes, the damping values decrease. Again, joints get stuck or are at a
state of macro-slip. However, macro-slip occurs only for high vibration
amplitudes that are probably not reached in this study. Examples for all
three cases are given in Table 5, i.e., increasing loss factors for mode
(2,0) of V8, decreasing loss factors for mode (1,1) V2a and unclear
tendencies for mode (2,0) V3b.

Slight changes in resonance frequencies and loss factors due to in-
creased load amplitudes can also be visualized in the spatially averaged
frequency response function (FRF). Fig. 10 plots the observed peak
related to mode (0,2)* for specimen V2b in the frequency range 150Hz
to 180Hz. No clear trend toward an increase or decrease is observed
according to Table 5. The same unclear effect is also visible in the
figure.

Fig. 11 again depicts boxplots. The standard deviation for one
sample at all load levels for each mode is calculated as a data basis
(given in Table C.2). Then, those standard deviations are collected for
one mode across all assemblies and presented in a boxplot. Here, a high
median value indicates larger susceptibility of a mode to amplitude-
dependency in damping. For the measurements at TUM, modes (2,0),
(0,3), and (1,2) show the highest median. On the contrary, for speci-
mens measured at KIT, the loss factors gained for mode (1,1) differ the
most due to excitation variation. Those observations correspond quite
well with the ones from the cross-assembly comparison (Section 3.1.1).

The variations of the loss factor in the cross-assembly comparison are
also the largest for modes (1,2), (0,3), and (2,0) at TUM and mode (1,1)
at KIT. Consequently, those modes for the small samples at TUM and
the larger ones at KIT are sensitive to geometric changes but also to
nonlinear effects. All in all, an amplitude-dependent damping behavior
is observable, especially for specific modes.

3.1.3. Strongly nonlinear behavior — higher harmonics
As described in Section 2.2.2, the system is excited by a swept

sinusoidal loading to identify higher harmonics in the structure’s re-
sponse. The frequency range of excitation approximately covers the
first three identified eigenfrequencies. The acquired time data is Fourier
transformed and visualized in a spectrogram.

The abscissa and ordinate of the spectrogram represent time in-
formation and frequency content, respectively. In the case of linear
structural behavior at low force levels (e.g., LF 1), the structure’s
response, e.g., in the spectrogram for LF 1 at scan point 7 of the
sample V2b (see Fig. 12(a)), only shows contributions at the frequency
of excitation. Since the frequency of excitation is swept from 120Hz to
175Hz, the peak of the structure’s fundamental response also appears
at those rising frequencies. Fig. 12(b) shows an exemplary spectrogram
of the same sample V2b and scan point for LF 4. As can be seen,
the most decisive contribution of the structure’s response appears at
the excitation frequency. However, also contributions at multiples of
these fundamental frequencies, i.e., higher harmonics, are visible. Nev-
ertheless, higher harmonics might also occur due to impurities of the
input sine wave [30]. In Noël and Kerschen [30], those impurities are
characterized by a difference in the higher harmonics’ contributions
to the maximum amplitude of less than 40 dB. Further, the detection
of significant harmonics due to nonlinearity ranges from 20 to 40 dB
difference compared to the maximum velocity amplitude. For 40 dB,
a ratio of 𝑟 = 1∕1040∕20 = 1 ⋅ 10−2 is computed. This ratio is taken
as a minimum limit for the presence of higher-order harmonics in the
following studies, i.e., medium-level nonlinearity. A level of 20 dB is
used as a limit for stronger nonlinearity, i.e., high nonlinearity level,
which corresponds to a ratio of 𝑟 = 1∕1020∕20 = 1 ⋅ 10−1. Contributions
of higher harmonics leading to a difference of more than 40 dB indicate
low-level nonlinearity.

By means of the spectrograms (see Fig. 12(b) as an example) major
contributions of higher harmonics are sought in the vicinity of struc-
tural resonances by visual inspection. For these cases, the frequency
data of the spectrogram is plotted for the specific point in time (see
Fig. 12(d) as an example). The peak velocities at fundamental and
multiple higher frequencies are identified more easily in this plot.
For the example of Fig. 12(d), the frequencies 𝑓𝑖 respectively velocity
magnitudes 𝑣𝑖 for the peaks are 𝑓0 ≊ 168Hz resp. 𝑣0 ≊ 7.9 ⋅ 10−5 m∕s,
𝑓1 ≊ 336Hz resp. 𝑣1 ≊ 9.2 ⋅10−6 m∕s, 𝑓2 ≊ 504Hz resp. 𝑣2 ≊ 1.2 ⋅10−5 m∕s
and 𝑓3 ≊ 672Hz resp. 𝑣3 ≊ 6.7 ⋅ 10−7 m∕s.

As a measure for nonlinearity, the fundamental peak amplitude 𝑣0 of
the structure’s velocity is compared to the second highest peak 𝑚𝑎𝑥(𝑣𝑖)
(i = 1,. . . ,n, multiple peaks). The ratio of the amplitude peak values
is calculated by 𝑟𝑎𝑚𝑝𝑙 = 𝑚𝑎𝑥(𝑣𝑖)∕𝑣0 and compared to the differences
described above of 20 dB and 40 dB. For the example of Figs. 12(b) and
12(d), one computes the ratio 𝑟𝑎𝑚𝑝𝑙 = 9.2 ⋅ 10−6∕7.9 ⋅ 10−5 = 1.2 ⋅ 10−1 >
1 ⋅ 10−1, which indicates a high level of nonlinearity for scan point 7.

In Fig. 12(c), the frequency spectrum of the same point in time as
for Fig. 12(d) is plotted but for load factor 1 instead of 4. However,
for lower loading, no significant higher harmonics are visible, only
measurement noise. Consequently, the structure still behaves linearly
for LF 1.

Since, for this example, the frequency 168 Hz approximately corre-
sponds to mode (0,2)* according to Table C.1 and a high nonlinearity
level is detected, a bold entry is added to Table C.4 for this mode
shape. Table C.4 also lists the position and number of scan points
revealing high or medium nonlinearity levels. Similarly, results for the
measurements at KIT are summarized in Table C.5.
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(a) Measurements at TUM (b) Measurements at KIT

Fig. 11. Comparison of standard deviations of loss factors 𝜎(𝜂𝑖) due to load variation (LF 1 to 4) in boxplots.

(a) Spectrogram of velocity measured at one scan point for load
factor 1

(b) Spectrogram of velocity measured at one scan point for load
factor 4

(c) Frequency spectrum taken from Fig. 12(a) at time
𝑡 = 57 s for load factor 1. Vertical lines indicate positions
of peak amplitudes.

(d) Frequency spectrum taken from Fig. 12(b) at time
𝑡 = 57 s for load factor 4. Vertical lines indicate positions
and markers the peak amplitudes themselves.

Fig. 12. Identification of higher harmonics for a measurement on specimen V2b for sine-sweep excitation from 120Hz to 175Hz: The load levels LF 1 (12(a), 12(c)) and LF 4
(12(b), 12(d)) are depicted. The acquired velocity time data is Fourier transformed and visualized in spectrograms (12(a), 12(b)). Spectrogram levels are given in dB (ref.
0 dB = 1m∕s). At 𝑡 = 50 s the frequency spectrum is plotted to visualize higher harmonics’ contributions (12(c), 12(d)).

For the experiments performed at TUM, two-component specimens
with high steel frames show the most locations with high nonlinearity
levels for most observed mode shapes. The high steel frame that is only
fixed at the lower chord is free to vibrate at the upper steel chord. This
leads to higher vibration amplitudes and, therefore, more nonlinear

behavior. For the three-component assemblies at TUM, the specimens
using the fastener type BS1 and SBS1 show noticeable nonlinear behav-
ior, probably due to tighter contacts and, consequently, more friction
in the joints. Moreover, the sample tested at KIT with an open cross-
section and thin steel sheets shows substantial contributions of higher
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Fig. 13. Examples of scan points with low (black markers), medium (green markers), and high (pink markers) levels of nonlinearity. Scan points with high nonlinearity levels lie
close to the nodal lines (dashed lines in plots). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

harmonics at most observed modes at most locations for the measure-
ments. The nonlinear effects seem reasonable for this specimen since
the open configuration combined with the thin steel frame does not
suppress a larger movement of the separate lower wooden chords. The
timber boards can vibrate more freely, fostering nonlinear behavior.

Considering the two tables, Tables C.4 and C.5, the results re-
veal that contributions of higher harmonics appeared for all observed
modes. However, they appear more often or stronger for some samples
and modes. Further, it is noted that the scan points where higher
harmonics were measured often are located close to nodal lines of a
mode shape, especially for mode (1,1). Figs. 13(a) and 13(b) visualize
the locations where a low, medium, and high level of nonlinearity was
detected for mode (1,1) for V3a and V9, respectively. Although the
translational displacements close to nodal lines are small, the rotational
deformations are larger. This might be why the structures behave more
nonlinearly close to nodal lines. Similar phenomena are observed in
Figs. 13(c) and 13(d) for mode shape (1,2) and mode (0,2) of V7.

Also, the local or unclear modes often show a higher level of non-
linearity. Due to inherent nonlinear behavior such as frictional effects,
modes might be hard to identify clearly, which explains the more
significant contributions of higher harmonics at those modes. For the
local modes, small parts of the samples vibrate strongly, e.g., the upper
chords of the sample V1b, leading to nonlinearity in the specimen’s
response.

Further, within this study, amplitude-dependency at modes is often
related to significant contributions of higher harmonics at that same
mode. An example is given in the following and shown in Fig. 10, 12(b),
and 12(d). Fig. 10 depicts the FRFs at the four load levels. Differences in
damping for varying excitation amplitudes are visible in the plot close
to the resonance frequency of approximately 168Hz. Contributions to
the structural response apart from the frequency, where it was excited,
are observed, looking at the spectrogram in Fig. 12(b). The frequency
of 𝑓𝑒 = 168Hz is excited approximately at 𝑡 = 50 s. Fig. 12(d) plots the
velocity data at 𝑡 = 50 s over the frequency. Here, responses at multiples
of 𝑓𝑒, i.e., 𝑓𝑟,1 = 336Hz and 𝑓𝑟,2 = 504Hz, are also noticeable.

Exemplarily, similar results are also observed for mode (1,1) of V7.
Here, the FRFs (see Fig. 14(a)) show some amplitude-dependency for

the resonance at approximately 57Hz. This frequency is excited in the
sine-sweep measurements at 𝑡 = 8 s. For this point in time, contributions
of higher harmonics are visible in the spectrogram (see Fig. 14(b)). The
frequency spectrum at 𝑡 = 8 s is visualized in Fig. 14(c) and supports
the previous assumptions of the occurrence of significant higher-order
harmonics. Nevertheless, a peak close to 0Hz appears in the spectrum
due to the measurements being slightly noisy in the lower frequencies.

In addition to the sole occurrence of higher harmonics, the effect of
modal interaction is also seen for some of the specimen. For the mode
(0,2)* of V2b at 𝑓0 ≊ 168Hz, larger contributions of higher harmonics
are identified above for the frequencies 𝑓1 ≊ 336Hz, 𝑓2 ≊ 504Hz and
𝑓3 ≊ 672Hz (see Fig. 12). Interestingly, at or close to those frequencies,
eigenfrequencies of V2b occur, i.e., at 𝑓𝑟,1 ≊ 337Hz, 𝑓𝑟,2 ≊ 500Hz and
𝑓𝑟,3 ≊ 653Hz. However, the mode shapes related to those frequencies
are not very clear (Fig. 15). This is why they are not mentioned in
Table C.1. Since those modes are activated strongly by an excitation
at the resonance frequency of 𝑓0 ≊ 168Hz, nonlinear modal interaction
for commensurate resonances is indicated.

In addition, uncertainties in the manufacturing process, such as
slightly different drilling angles or arrangement of the components
relative to each other, are inevitable. However, the test specimens
at TUM and KIT were assembled by different people with different
professional backgrounds, and nonetheless, friction effects occurred in
samples at both test rigs. The influence of manufacturing is therefore
still relevant, but not such that it can completely suppress friction
effects. As previously observed, friction has an effect on the structural
vibrations, but, at the same time, these effects can decrease over
time due to loading cycles. Therefore, further long-term investigations
dealing with the time-evolving influence of loading and unloading
cycles on the friction between components should be conducted in the
future but are outside the scope of this work.

3.2. Numerical results

As mentioned in Section 2.3.2, the created FE model will be used in
future studies for parametric and acoustic investigations.
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(a) Amplitude-dependent FRF of V7 at mode (1,1) (b) Spectrogram of one scan point on V7 for load
level factor 10: input data measured from a sine-sweep
measurement in the range of 50 − 90Hz

(c) Time point 𝑡 = 8 s of Fig. 14(b). Spectrogram levels
in dB (ref. 0 dB = 1m∕s).

Fig. 14. Relation between amplitude-dependent FRF and occurrence of higher-order harmonics: Slight amplitude-dependency is visible in 14(a) for 𝑓 = 57Hz. At this frequency,
higher harmonics are observable in the spectrogram 14(b). The frequency spectrum at this point in time of the sweep supports this observation.

Fig. 15. Modes of V2b are found at multiples of the eigenfrequency 𝑓0 ≊ 168Hz for mode (0,2)*. For those multiple frequencies large contributions of higher harmonics are found
in Fig. 12. Nonlinear modal interaction is indicated.

The validation of the simulation model is described in the follow-
ing. The comparison of measurements and simulations used harmonic
analysis in ANSYS. Herein, the frequency range of observation (𝑓𝑜𝑏𝑠 =
10Hz…310Hz), loading position (lower right corner), and boundary
conditions (free) are adapted according to the conditions in the mea-
surements. Experimental tests conducted at KIT serve as the basis for
the validation. Since a free-free boundary condition is the goal of
the hanging configuration but is difficult to achieve as an ideal in
the experiments, springs are attached to the FE model. As stated in
Section 2.3, the material properties of the wooden components, as well
as the parameters for the joints’ simulation model, had to be identified
to generate a suitable model. Due to the structure’s complexity, a
perfect fit of measurement and FE simulation data is hardly possible.

Hence, the goal is to match the eigenfrequency of the mode (1,1) and
the peak amplitude of spatially averaged FRF data at this frequency.
Furthermore, the sound power level generated by the vibrating floor
elements is compared. The sound power level is calculated based on
the velocities measured or computed on the structure’s surface away
from the load employing the Rayleigh integral [31,32]. Although the
Rayleigh integral assumes baffled boundaries, it is deemed appropriate
here for a comparison. Similar studies were also conducted by Sharma
et al. [33] using sound power levels and baffled supports.

Further details on the simulations, such as material properties used
and the application of the Rayleigh integral, are given in Appendix B.

Figs. 16(a) and 16(b) depict the spatially averaged FRF and sound
power level data for the measurement and simulation of V9. The
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(a) Spatially averaged FRFs: data from FE simulation and measurement is compared.

(b) Sound power levels: data from FE simulation and measurement is compared. Equidistant frequency and third octave band data
is plotted for comparison.

Fig. 16. Validation of FE simulation with measurements at specimen V9 by means of spatially averaged FRFs (see Fig. 16(a)) and sound power levels (see Fig. 16(b)).

eigenfrequency for (1,1) is located at approximately 𝑓(1,1) = 34Hz for
the sample. As can be seen, the fit of spatially averaged data (Fig. 16(a))
looks quite good around this frequency. Two peaks appear below
𝑓(1,1) for the simulation but not for the measurement. However, they
are about one order of magnitude smaller in amplitude. Those lower
peaks represent local vibrations of the lower chords of the specimen,
which do not show up in the measurements, probably due to higher
damping. Additional higher peaks are visible at about 100 Hz, but
the modal density is already quite high at these frequencies, making a
good fit difficult. The sound power level depicted in Fig. 16(b) reveals
deviations between measurement and simulation at similar frequencies
as the spatially averaged case. Furthermore, third-octave band data,
computed from the equidistant frequency data, show similar differences
in Fig. 16(b). However, the numerical model meets the overall trend
well.

The conclusions described above (Section 3.1) from the experimen-
tal results reveal the influence of higher harmonics on the structure’s
response. On the contrary, amplitude-dependency seems not as crucial
since only slight amplitude-dependent damping occurs. Furthermore,
the numerical validation shows good agreement between the linear
simulation model and the measurement results, especially around the
eigenfrequency of the mode (1,1). Consequently, a linear FE model is
adequate for the investigated structure as a first estimate, although
nonlinear behavior exists to some extent.

4. Conclusion and outlook

The comparison of assemblies of various configurations shows the
expected influence of geometrical parameters, such as the thickness of
components. Positive, increasing effects on the first natural frequency
of the system would be desirable since it is the critical frequency that is
considered for the serviceability criteria of floor vibrations. Assemblies
with thicker steel sheets often lead to higher eigenfrequencies and loss
factors. Thicker steel frames are less deflected during vibration and
therefore stay in contact with the timber plate, which causes frictional
effects and thus damping. Thicker timber plates also increase eigenfre-
quencies. However, the manufacturing uncertainties accumulate as well
in this case. Furthermore, other influential parameters such as the type
of fastener are also essential since they can reverse the stiffening effects
due to softer connections. The two types of cross-sections, i.e., with a
one-component lower chord (closed configuration) or with a split lower
chord (open configuration), lead to significant differences for modes
(2,0) and (1,1). Those are the lowest two and, therefore, most relevant
modes. Consequently, the choice of an open configuration has to be
made carefully, always considering the lowest natural frequency of the
floor.

A comparison with already existing and analyzed steel–timber ele-
ments shows better performance of the proposed structure concerning
the serviceability aspect. The observed larger eigenfrequencies are
beneficial since low-frequency vibrations tend to be rated as unpleasant
by humans.
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The damping behavior is also influenced by geometrical parame-
ters but mainly by the fastener type and tightness of joints. Unfortu-
nately, the prediction of damping in a structure is complex, introducing
uncertainties.

Observations concerning nonlinearity basically show the occurrence
of higher harmonics in the responses since no amplitude-dependent
stiffness, and only slight amplitude-dependent damping are discovered.
Amplitude-dependent damping occurs once the forces in the structure
become sufficient to induce micro-slip in the joints. Higher harmonics
are often detected close to nodal lines where rotational deformations
are high. Additionally, samples of softer configurations such as high
steel frames for two-component assemblies and thin steel sheets for
open configurations lead to more contributions of higher harmonics.
Hence, considering nonlinearities is a crucial aspect that should be
investigated in future studies on steel–timber composite structures.

However, since the fitted FE simulation model coincides well with
the measured response, the linear FE model seems adequate as a first
approach. A more complex model considering nonlinearity including
higher harmonics, e.g., using the Harmonic Balance Method [34,35],
can be adapted in future work. Moreover, the current model is only
fitted manually, so the next step would be to identify an optimization
problem to find more accurate parameters for the model. With this
model, sound insulation properties can be determined in future studies.

CRediT authorship contribution statement

B. Chocholaty: Conceptualization, Methodology, Software, Data
curation, Validation, Formal analysis, Visualization, Writing – original
draft, Writing – review & editing. N.B. Roozen: Conceptualization,
Methodology, Validation, Writing – review, Supervision. M. Maeder:
Data curation, Writing – review & editing, Supervision. S. Marburg:
Funding acquisition, Resources, Supervision, Writing – review.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors gratefully acknowledge the help of the chair of Timber
Structures and Building Construction at Karlsruhe Institute of Technology
for assistance with parts of the measurements. Furthermore, the authors
are thankful for the support of the manufacturers in providing the
materials for the specimens.

Funding

This study was financially supported by the German Federal Min-
istry of Food and Agriculture through the Fachagentur Nachwach-
sende Rohstoffe e.V. (FNR) (grant number 22009817) and the German
Research Foundation (DFG) (grant number MA2395/15-2).

Appendix A. Properties of test samples

The following table (Table A.1) lists the properties of specimens
tested at TUM and KIT considering geometry, materials, fasteners, and
configuration type.

Appendix B. Simulation model

Supplementary information on the Rayleigh Integral computation:
In Section 3.2, the sound power level was calculated using the

Rayleigh integral. However, a further calculation step was necessary
in the case of open configurations. Here, the requirement of a planar
radiating surface is not fulfilled. Therefore, the velocity data of the
lower side of the upper chord (marked in blue in Fig. B.17) was first
moved virtually to the lower side of the lower chord (marked in green
in Fig. B.17). Consequently, the phase of the signal was shifted by:

𝜙𝑎𝑑𝑑 = 2𝜋𝛥𝑧
𝜆

(B.1)

with 𝜆 = 𝑐𝑎𝑖𝑟∕𝑓𝑒𝑥𝑐𝑖𝑡 the wavelength, 𝑐𝑎𝑖𝑟 the wave velocity of air,
𝑓𝑒𝑥𝑐𝑖𝑡 the excitation frequency, and 𝛥𝑧 being the difference between the
position on the lower side of the upper chord and the lower side of the
lower chord (Fig. B.17). The amplitude of the signal was not modified.

Appendix C. Statistic evaluation

The following tables, Table C.1, Table C.2, and Table C.3, list the
median and standard deviation computed from eigenfrequencies and
loss factors for the measurements at TUM and KIT at varying load
levels.

Furthermore, a criterion is established to distinguish between
changes in loss factors due to measurement uncertainties and changes
due to nonlinearity. The signal-to-noise ratio is computed from the
measured coherence of a specimen in the frequency range of a mode.
In the next step, the signal-to-noise ratio is compared to the ratio of
the standard deviation to the median given in Table C.2. If the ratio
due to load variation is larger than the signal-to-noise ratio, the values
of the ratio are marked with bold letters in the corresponding entry
of Table C.2. This procedure shows that the measurement uncertain-
ties were too large for some modes so that no certain assumption
is made concerning the amplitude-dependency. An example is the
mode (0,2) of V4a. Here, the signal-to-noise ratio at load level 3 was
𝑠𝑛𝑟𝐿𝐹3,𝑉 4𝑎,(0,2) = 42.2%. At the same time, the loss factor at LF 3
𝜂𝐿𝐹3,𝑉 4𝑎,(0,2) = 0.0021 caused the larger standard deviation 𝜂𝑠𝑡𝑑 = 0.0005
compared to the median value of 𝜂𝑚𝑒𝑑𝑖𝑎𝑛 = 0.0030. Consequently, the
computed ratio concerning load variation represents no significant
amplitude-dependency for this mode shape. Furthermore, a standard
deviation to median ratio concerning the loss factor of less than 1%
was considered negligible and will not be considered any further.

Tables C.4 and C.5 list results concerning the occurrence of higher
harmonics. The procedure explained in Section 3.1 uses velocity data
presented in a spectrogram. The plots of frequency content at specific
points in time (e.g., Fig. 12(d)) serve as a basis for the following
definitions.

As a measure of nonlinearity, the fundamental peak amplitude 𝑣0
of the structure’s velocity at a specific point in time is compared to
the second highest peak 𝑚𝑎𝑥(𝑣𝑖) (i = 1,. . . ,n, multiple peaks). The ratio
of the amplitude peak values is calculated by 𝑟𝑎𝑚𝑝𝑙 = 𝑚𝑎𝑥(𝑣𝑖)∕𝑣0 and
compared to the differences of 20 dB and 40 dB described in Section 3.1.
If the ratio is smaller than 𝑟𝑙𝑖𝑚𝑖𝑡 = 1 ⋅10−2 (corresponding to a difference
of more than 40 dB), no or a low nonlinearity level is assumed, and no
entry is added to Table C.4. This limit coincides with the observations
from [30], as stated before. For a high level of nonlinearity, the ratio
should be 𝑟𝑎𝑚𝑝𝑙 > 1 ⋅ 10−1 (corresponding to a difference of less than
20 dB). In the table, this is highlighted by bold letters. A medium
nonlinearity level is reached for 1 ⋅ 10−2 < 𝑟𝑎𝑚𝑝𝑙 < 1 ⋅ 10−1. In this case,
the entry in the table uses non-bold letters. The label no data is added to
the table if no data is observed for the specified mode. This is the case
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Table A.1
Test samples at TUM (V1a to V4b) and KIT (V7 to V9). Parameters: length 𝑙, width 𝑏, and thickness ℎ𝑇 of test specimen,
material of timber plates 𝑚𝑡 as Nadel-LVL X (NLVL) or Baubuche Typ Q (BB), thickness 𝑑𝑆 and height ℎ𝑆 of steel frame,
configuration type 𝑐𝑡, fastener type — lower 𝑙𝑓𝑡 & upper connection 𝑓𝑠𝑡.

Sample 𝑙 [m] 𝑏 [m] ℎ𝑇 [m] 𝑚𝑡 𝑑𝑆 [m] ℎ𝑆 [m] 𝑐𝑡 𝑢𝑓𝑡 𝑙𝑓𝑡
V1a 0.6 0.825 0.045 NLVL 0.75 ⋅ 10−3 0.100 closed – SBS1
V2a 0.6 0.825 0.045 NLVL 1.25 ⋅ 10−3 0.100 closed – HS2
V3a 0.6 0.840 0.055 NLVL 0.75 ⋅ 10−3 0.155 closed – HS2
V4a 0.6 0.840 0.055 NLVL 1.25 ⋅ 10−3 0.155 closed – SBS1
V1b 0.6 0.825 0.045 NLVL 0.75 ⋅ 10−3 0.100 closed BS1 SBS1
V2b 0.6 0.825 0.045 NLVL 1.25 ⋅ 10−3 0.100 closed Re HS2
V3b 0.6 0.840 0.055 NLVL 0.75 ⋅ 10−3 0.155 closed Re HS2
V4b 0.6 0.840 0.055 NLVL 1.25 ⋅ 10−3 0.155 closed BS1 SBS1

V7 3.5 0.900 0.039 NLVL 0.75 ⋅ 10−3 0.155 closed Re* StNa
V8 3.5 0.900 0.040 BB 0.75 ⋅ 10−3 0.155 closed Re* StNa
V9 3.5 0.900 0.040 BB 0.75 ⋅ 10−3 0.155 open StNa StNa
V10 3.5 0.900 0.040 BB 1.25 ⋅ 10−3 0.155 open StNa StNa

Fig. B.17. Phase shift added to surface velocities computed at lower surface of upper chord.. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table C.1
Eigenfrequencies [Hz] of test samples (for details, refer to Table A.1) for observed modes for four load factors (LF)—median values 𝑓 and standard deviations 𝜎.

Mode V1a V2a V3a V4a V1b V2b V3b V4b

1,1 108.5 ± 0.02 137.9 ± 0.04 125.3 ± 0.15 144.4 ± 0.85 122.8 ± 0.10 137.1 ± 0.03 100.9 ± 0.04 120.7 ± 0.05
0,2 134.6 ± 0.06 126.2 ± 0.31 166.6 ± 0.57 175.4 ± 0.14 150.0 ± 0.07 140.3 ± 0.05 174.6 ± 0.16 155.5 ± 0.05
0,2* no data 161.1 ± 0.44 no data 150.9 ± 0.31 196.9 ± 0.14 169.3 ± 0.19 no data 204.2 ± 0.03
1,2 173.3 ± 0.56 194.5 ± 0.11 329.4 ± 0.27 285.7 ± 0.20 352.8 ± 0.47 360.5 ± 0.16 293.6 ± 0.01 384.8 ± 0.23
0,3 297.7 ± 0.35 296.6 ± 0.14 178.8 ± 0.28 273.9 ± 0.07 298.7 ± 0.09 303.4 ± 0.14 312.8 ± 0.12 361.0 ± 0.26
2,0 no data no data no data no data 663.2 ± 0.41 731.8 ± 0.42 666.1 ± 0.56 657.5 ± 0.44
0,1 no data no data no data no data 184.2 ± 0.02 no data 111.7 ± 0.03 no data
1,0 no data no data no data no data no data no data 131.1 ± 0.01 181.4 ± 0.06
Local/unclear no data 178.8 ± 0.03 156.1 ± 0.07 117.8 ± 0.05 207.9 ± 0.03 no data no data 111.3 ± 0.04

if this mode is not excited within the observed frequency range. The
number and locations of nonlinearity and its level are also investigated.
The term irregular locations means that nonlinearity is present at some
points but not many positions on the structure. Many locations means

more than half of the observed positions indicate nonlinear behavior,
whereas, for most locations, this applied to all locations except for
a small number. In the case of the label concentrated locations, all
observation points in a limited region vibrate nonlinearly.
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Table C.2
Loss factor [–] of test samples (for details refer to Table A.1) for observed modes for four load levels — measurements at TUM: median values �̃� and standard deviations 𝜎 are
given. �̃� ± 𝜎. The ratio of standard deviation to median value is listed in [%]. Ratios larger than the signal-to-noise ratio are marked with bold letters.

Mode V1a V2a V3a V4a V1b V2b V3b V4b

1,1 0.0072 ± 0.0008 0.0112 ± 0.0003 0.0088 ± 0.0001 0.0104 ± 0.0003 0.0108 ± 0.0001 0.0102 ± 0.0000 0.0061 ± 0.0000 0.0133 ± 0.0032
11.6 2.4 1.5 3.1 0.5 0.2 0.7 24.2

0,2 0.0058 ± 0.0006 0.0104 ± 0.0001 0.0035 ± 0.0000 0.0030 ± 0.0005 0.0104 ± 0.0000 0.0088 ± 0.0001 0.0094 ± 0.0006 0.0134 ± 0.0007
11.1 0.7 1.2 17.4 0.1 1.4 5.9 3.9

0,2* no data 0.0065 ± 0.0012 no data 0.0085 ± 0.0003 0.0075 ± 0.0001 0.0092 ± 0.0007 no data 0.0031 ± 0.0002
5.7 3.8 1.6 9.1 4.9

1,2 0.0093 ± 0.0013 0.0038 ± 0.0001 0.0045 ± 0.0001 0.0062 ± 0.0000 0.0154 ± 0.0008 0.0053 ± 0.0001 0.0022 ± 0.0001 0.0067 ± 0.0001
14.2 2.5 1.5 0.7 6.1 2.5 3.8 1.7

0,3 0.0099 ± 0.0013 0.0090 ± 0.0005 0.0054 ± 0.0000 0.0035 ± 0.0001 0.0040 ± 0.0000 0.0103 ± 0.0002 0.0015 ± 0.0006 0.0080 ± 0.0008
12.7 7.0 0.9 3.0 1.2 1.6 39.5 3.6

2,0 no data no data no data no data 0.0059 ± 0.0015 0.0098 ± 0.0048 0.0032 ± 0.0022 0.0097 ± 0.0014
25.6 48.3 70.0 16.5

0,1 no data no data no data no data 0.0053 ± 0.0000 no data 0.0059 ± 0.0001 no data
0.6 2.0

1,0 no data no data no data no data no data no data 0.0030 ± 0.0000 0.0029 ± 0.0009
0.8 35.2

Local no data 0.0023 ± 0.0001 0.0061 ± 0.0002 0.0025 ± 0.0001 0.0046 ± 0.0000 no data no data 0.0073 ± 0.0002
/unclear 2.8 3.1 5.8 1.1 3.9

Table C.3
Eigenfrequencies [Hz] and loss factors [–] of test samples (for details refer to Table A.1) for lowest modes for three load levels — measurements at KIT: median values and
standard deviations are given. �̃� ± 𝜎. The ratio of standard deviation to median value is listed in [%]. Ratios larger than the signal-to-noise ratio are marked with bold letters.

Mode V7 V8 V9 V10 V7 V8 V9 V10
f [Hz] f [Hz] f [Hz] f [Hz] 𝜂 [–] 𝜂 [–] 𝜂 [–] 𝜂 [–]

(1,1) 57.1 ± 0.14 48.4 ± 0.10 33.7 ± 0.09 49.0 ± 0.02 0.0180 ± 0.0008 0.0224 ± 0.0012 0.0070 ± 0.0009 0.0067 ± 0.0002
4.6 5.4 12.8 3.2

(0,2) 70.9 ± 0.07 63.6 ± 0.05 66.9 ± 0.08 86.8 ± 0.03 0.0082 ± 0.0001 0.0114 ± 0.0001 0.0110 ± 0.0006 0.0098 ± 0.0001
1.0 0.9 5.6 0.8

(0,2) no data 76.7 ± 0.02 no data no data no data 0.0077 ± 0.0001 no data no data
0.9

(2,0) 113.9 ± 0.07 107.2 ± 0.06 52.9 ± 0.67 40.0 ± 0.07 0.0088 ± 0.0004 0.0054 ± 0.0006 0.0171 ± 0.0025 0.0048 ± 0.0003
4.7 10.9 14.4 1.4

(2,0) no data no data 72.1 ± 0.14 68.1 ± 0.03 no data no data 0.0092 ± 0.0004 0.0067 ± 0.0001
4.5 0.1

(1,2) 76.5 ± 1.18 78.8 ± 0.06 94.1 ± 0.19 93.7 ± 0.19 0.0132 ± 0.0024 0.0106 ± 0.0002 0.0074 ± 0.0004 0.0071 ± 0.019
18.1 1.5 6.0 27.4

(0,3) 88.3 ± 0.10 84.7 ± 0.02 no data 136.4 ± 0.50 0.0090 ± 0.0001 0.0062 ± 0.0001 no data 0.0037 ± 0.0011
1.0 1.0 36.2

(0,2)+(1,1) no data no data 49.6 ± 0.12 no data no data no data 0.0082 ± 0.0002 no data
1.4

(2,0)+(1,1) no data no data no data 77.1 ± 0.09 no data no data no data 0.0064 ± 0.0002
3.7

(0,2)+(1,2) 81.5 ± 0.37 68.1 ± 0.03 no data no data 0.0153 ± 0.0011 0.0178 ± 0.0004 no data no data
7.0 0.0

Local 54.2 ± 0.49 55.9 ± 0.05 82.8 ± 0.20 62.8 ± 0.01 0.0083 ± 0.0025 0.0182 ± 0.0009 0.0057 ± 0.0002 0.0052 ± 0.0002
30.4 4.8 4.0 0.4

Table C.4
Nonlinearity levels for sine sweep tests for samples measured at TUM. Displayed is the ratio between
vibration amplitudes at the excitation frequency and the second highest peak of the higher harmonics.
Bold letters — ratio smaller than 1 ⋅ 10−1 (high level of nonlinearity); normal letters — ratio smaller than
1 ⋅ 10−2 and larger than 1 ⋅ 10−1 (medium level of nonlinearity); blank — ratio larger than 1 ⋅ 10−2 (small or
no level of nonlinearity). Irregular locations — il; concentrated locations — cl; most locations — ml; many
locations — mal.
Mode V1a V2a V3a V4a V1b V2b V3b V4b

(1,1) il il il/cl il/mal il/ml il/il il il/il
(0,2) il/cl mal/il/cl il/ml il cl ml il
(0,2)* no data ml/il no data cl/ ml cl/ml il/ml no data il/il
(1,2) il/cl mal no data no data no data no data no data il
(0,3) no data no data il/il no data no data no data no data no data
(0,1) no data no data no data no data il/mal no data il/ml no data
(1,0) no data no data no data no data no data no data il/ml mal/ml
Local no data mal il/ml ml/ml cl no data no data no data
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Table C.5
Nonlinearity levels for sine sweep tests for test samples — measurements at KIT are
given. Displayed is the ratio between vibration amplitudes at the excitation frequency
and the second highest peak of the higher harmonics. Bold letters — ratio smaller than
1 ⋅ 10−1 (high level of nonlinearity); normal letters — ratio smaller than 1 ⋅ 10−2 and
larger than 1 ⋅ 10−1 (medium level of nonlinearity); blank — ratio larger than 1 ⋅ 10−2
(small or no level of nonlinearity). Irregular locations — il; concentrated locations —
cl; most locations — ml; many locations — mal.

Mode V7 V8 V9 V10

(1,1) il/ml il/il il/ml il/il
(0,2) il/ml il/mal il/ml il/ml
(0,2) no data il/ml no data no data
(2,0) no data no data il/ml il/il
(2,0) no data no data no data ml
(1,2) il/ml il/ml no data no data
(0,2)+(1,2) ml il/ml no data no data
(0,2)+(1,1) no data no data il/ml no data
(2,0)+(1,1) no data no data no data ml
(0,3) il/ml il/ml no data no data
Local/unclear il/mal il/mal il/ml il/ml
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Abstract
The design of building elements is usually done conservatively by considering safety factors. However, more efficient designs 
are gaining interest for economic and sustainability reasons. Hence, an adequate prediction tool can improve the design of 
building elements. Probabilistic modeling, for example, Monte Carlo simulations, represents a remedy to this by examin-
ing uncertainties in a structure through uncertain input parameters. In this work, a Monte Carlo simulation is performed 
to quantify the uncertainty in the modal properties of a hybrid steel–timber building element. The material properties of 
the timber material and the stiffness of the structural joints are considered uncertain inputs. The probabilistic properties 
of the timber material are evaluated utilizing Bayesian inference instead of the usually applied empirical methods. Using 
these inferred timber material properties leads to a good match of simulated and measured natural frequencies of the timber 
components. These parameters are utilized together with the joints’ uncertain inputs in the Monte Carlo simulation of the 
hybrid steel–timber building element. The results show a significant span for the identified eigenfrequencies, which proves 
the relevance of probabilistic analyses for the vibration characteristics of building elements.

Keywords Hybrid steel–timber elements · Monte Carlo simulation · Vibrations · Bayesian inference

1 Introduction

Hybrid wood structures combined with steel or concrete are 
moving into the focus of wood construction research, espe-
cially in the topic of vibrations [1]. Human activities, e.g., 
walking or jogging, can significantly influence the design 
of hybrid steel–timber floor elements in terms of vibrations 
[2]. In the design process of floor structures related to vibra-
tions, calculations or certified measurements are required 
[3]. However, analytical calculations become challenging 
for complex cross-sections, emphasizing the need to develop 
reliable, advanced prediction tools for vibrations of com-
pounded structures, such as hybrid steel–timber building 
elements. These predictive models prove to be relevant, 
especially for material-efficient designs in the context of 

economic efficiency and sustainability, since without pre-
dictive tools, various prototypes have to be tested experi-
mentally [4].

The vibroacoustic behavior of hybrid steel–timber floors 
has already been studied experimentally and numerically 
[2, 5, 6]. A steel–timber beam made of a Cross-Laminated-
Timber (CLT) panel and an H-shaped steel profile has been 
investigated concerning natural frequencies, mode shapes, 
modal damping ratios, and acceleration response. A finite 
element (FE) model has been updated to match the results 
from experimental analyses [6]. The same structure has been 
analyzed concerning vibration serviceability in [2]. A differ-
ent structure has been studied in [5]. Here, the authors have 
investigated the vibrational behavior of a structure made of 
top and bottom laminated veneer lumber (LVL) panels and 
a trapezoidal steel web.

In practice, the response prediction of a vibroacoustic 
system is generally performed through mechanical mode-
ling, which introduces data and model uncertainties. Model 
uncertainties relate to the applicability of a model to the 
specific problem at hand and represent a type of epistemic 
error. On the other hand, data uncertainties constitute a 
type of aleatoric error and are related to the parameters of a 
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system, e.g., geometrical parameters, boundary conditions, 
or material properties. Data uncertainties can be considered 
by using random quantities, e.g., random variables or sto-
chastic fields, for the parameters in the prediction tool [7, 
8]. However, in engineering practice, those uncertainties 
are often accounted for through safety factors [9] leading to 
conservative designs.

To develop more efficient designs, research on reliable 
predictions for building elements focuses increasingly on 
considering data uncertainties instead of safety factors. 
Recent studies on the stochastic analyses of wooden floors, 
i.e., a CLT slab [10] and a floor made of wood beams and 
particle boards [11], use the Monte Carlo (MC) method to 
include the randomness of the components’ material prop-
erties and to determine the vibroacoustic response of the 
floor in confidence intervals. The random material parameter 
inputs are found by calibrating FE models to match eigen-
frequencies from an experimental modal analysis. In [11], 
this has been done by determining the mean and standard 
deviation for the material parameters from 62 measurements 
on wooden beams. In [10], using a random elasticity tensor 
built from initial values from the literature, the best combi-
nation of material parameters in the FE model is sought to 
calibrate the model with results from an experimental modal 
analysis. Furthermore, non-Gaussian uncertain parameters 
of ash wood are identified using generalized polynomial 
chaos expansions and experimental modal data by solving a 
stochastic inverse problem in [12, 13].

Another approach to identifying unknown, uncertain 
parameters based on experiments and modeling is Bayesian 
inference. Former research has exploited Bayesian infer-
ence for laminated, orthotropic materials such as engineered 
wood products, i.e., for general thin orthotropic laminates 
[14], thick orthotropic laminated plates [15], laminated tim-
ber beams [16], and CLT [17]. The studies either use static 
deflection tests [16], simulated and experimentally deter-
mined natural frequencies [14, 15] or frequency response 
data of a linear dynamic model and measurements [17] to 
determine the material properties.

Prior investigations into the uncertainty quantification of 
building elements have predominantly relied on determin-
istic methods for identifying material properties through 
model calibration using experimental data [10, 11]. Alter-
natively, some studies have considered Bayesian inference 
to incorporate prior information on elastic constants, as 
exemplified by [15]. Notably, these Bayesian inference stud-
ies on engineered wood materials focus solely on inferring 
material properties without integrating them into subsequent 
analyses. Consequently, a critical gap emerges in connecting 
these approaches. In this study, this gap is filled by apply-
ing a novel combination of both methodologies to address 
the vibrational behavior of a hybrid steel-timber building 

element. This research concentrates on the quantification 
of uncertainty in the vibroacoustic behavior of this hybrid 
structure, focusing on the variability of modal properties. 
The approach adopted encompasses two main phases, 
detailed in Sect. 2 and Sect. 3. First, Bayesian inference is 
applied to establish probabilistic representations of timber 
material properties, incorporating the inherent variability 
found in real-world scenarios. These probabilistic represen-
tations serve as the foundation for the subsequent phase, 
where a probabilistic model is developed to predict the 
vibroacoustic response of the hybrid structure, as discussed 
in Sect. 3. The outcomes of these interconnected phases 
undergo thorough analysis and discussion in Sect. 4.

In summary, this article introduces a novel combination 
of two distinct methodologies applied for the first time to the 
examination of a hybrid steel–timber building element. This 
research contributes to the field of uncertainty quantifica-
tion in vibrational behavior, yielding valuable insights into 
the dynamic variations of modal properties while leveraging 
more efficient structural designs.

2  Materials and methods

This study aims to quantify uncertainty for the vibroacoustic 
behavior of a hybrid steel–timber building element, which 
has been previously studied in terms of vibroacoustics in 
[5]. The variability of the natural frequencies of the element 
due to uncertain inputs is analyzed. The overall workflow is 
visualized in Fig. 1. In Sect. 2.1, the vibrational behavior of 
the hybrid steel–timber building element is evaluated experi-
mentally and numerically. The stiffness of the joints and the 
material properties of the timber are assigned to be uncer-
tain inputs. For the latter, the approach of Bayesian infer-
ence is applied to characterize the uncertainty in Sect. 2.2. 
For the former, the parameters are identified by maximum 
a posteriori (MAP) estimation, and their variation is based 
on literature references (Sect. 2.3). Finally, the numerical 
model and these uncertain inputs are used in a probabilistic 
analysis in Sect. 2.4.

2.1  Experimental and numerical investigations 
on the hybrid steel–timber element

The investigated hybrid structure utilizes LVL panels as top 
and bottom planking and a trapezoidal steel web. Fasten-
ers connect the individual components. An overview of the 
concept is given in Fig. 1. The dimensions of the samples 
are depicted in Fig. 1 and listed in Table 1.

An FE model is created for the probabilistic analysis as 
described in Sect. 2.1.2 and is validated by vibration meas-
urements (Sect. 2.1.1).
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2.1.1  Measurements on the hybrid element

The following paragraph briefly describes the measurement 
setup and procedure. More details are available in [5]. Meas-
urements of vibration on the hybrid steel–timber element 
are carried out (Fig. 2). A B &K1 modal exciter type 4284 
applies a pseudo-random excitation on the structure by a 
stinger. Heavy-duty slings support the specimen. Hanging 
supports are chosen in the measurements to exclude influ-
ences from uncertain boundary conditions, since uncon-
strained supports are less challenging to realize adequately 
[18]. Furthermore, a B &K force transducer Deltatron Type 
8230 measures the applied force. The vibrations of the speci-
mens’ surface are identified by a scanning Laser Doppler 
Vibrometer PSV-500 (LDV)2 at an evenly distributed grid 

Fig. 1  Overview of methodological approach

Table 1  Geometric properties of the hybrid steel–timber test sample (refer to Fig. 1 for the parameter definition)

l [m] b [m] ht [m] ds [m] hs [m] bs1 [m] bs2 [m] bs3 [m]

3.5 0.900 0.039 0.75 ⋅ 10−3 0.155 0.110 0.170 0.04

Fig. 2  Measurement setup for the hybrid element

1 Hottinger Brüel & Kjær GmbH, D-64293 Darmstadt, Germany.
2 Polytec GmbH, D-76337 Waldbronn, Germany.
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of locations on the structure. For each scan point, a Fourier 
transform is utilized to transform the determined time data. 
Subsequently, the frequency response functions are calcu-
lated by means of the measured force and velocity signals. 
The Polytec system software applies a rectangular window 
to the signals.

The first five eigenfrequencies of the hybrid structure 
fexp,hyb are identified by an experimental modal analysis [18].

2.1.2  Finite element model

The commercial software ANSYS [19] is used to simulate 
the vibrational behavior of the hybrid structure. The FE 
representation of the steel–timber structure is visualized in 
Fig. 3. The lower and upper wooden panels are modeled 
by orthotropic and hexahedral elements (SOLID186) with 
quadratic shape functions. The steel web is meshed by iso-
tropic, quadratic shell elements (SHELL281). The fasten-
ers are simulated by parallel spring and damper elements 
(COMBIN14) applied for all translational degrees of free-
dom (DOFs) of nodes related to fasteners (as in, e.g., [20]). 
The adjacent nodes of a fastener are rigidly coupled in terms 
of translational DOFs (Fig. 3). In longitudinal direction, 
the screws are placed with ss = 0.12m and the nails with 
sn = 0.09m . The transversal fastener distances are given as 
sF1 = 0.010m , sF2 = 0.103m and sF3 = 0.055m . The used 
mesh size is approximately lele = 0.03m for the timber com-
ponents and lele = 0.02m for the steel parts. Those element 
sizes are chosen as a good compromise between geometrical 
constraints and the rule of thumb to use six to eight quadratic 
elements per wavelength [21]. The boundary conditions in 
the simulations are modeled as free supports to adopt the 
measurement setup.

The influence of input parameter uncertainties on the 
natural frequencies of the building element is of interest. 
Therefore, modal analysis is conducted in ANSYS. The five 
structural mode shapes fFE,hyb matching the experimentally 
determined ones are computed.

The FE model uses material properties for the steel and 
timber components, as well as joint and geometric param-
eters as inputs. The geometrical inputs for the hybrid speci-
men are given in Table 1. Uncertainties from geometrical 
parameters are assumed to be negligible. Ballast [22] states 
manufacturing tolerances of approximately 0.1% , which is 
below the uncertainties for, e.g., joints in structures, as stated 
in Sect. 2.3.

For the steel profile, the elasticity modulus Es , the shear 
modulus Gs , the Poisson ratio �s , and the density �s as pro-
vided by [23] are utilized (Table 2). Since LVL is an ortho-
tropic material, the elasticity moduli, Ex,0 , Ey,0 , and Ez,0 , the 
shear moduli, Gxy,0 , Gxz,0 , and Gyz,0 , the Poisson ratios, �xy,0 , 
�xz,0 , and �yz,0 , and the density �0 as given by the manufac-
turer [24] are used (Table 3).

Since wood is a naturally grown material, variations in 
the material occur. In [25], the authors state a coefficient of 
variation (CoV) of 0.13 for the bending modulus of elastic-
ity for timber, which is high compared to CoV = 0.03 of the 
elasticity modulus of structural steel given in [25]. Hence, 
the LVL but not the steel material properties are assigned to 
be uncertain inputs. Details on how the probabilities of the 
LVL material properties are obtained are given in Sect. 2.2.

Fig. 3  Finite element model of the hybrid steel–timber element: structural model is depicted on the left and the fastener model on the right

Table 2  Steel material properties [23]

Es [ N∕m2] Gs [ N∕m2] �s [-] �s [ kg∕m3]

2.1 ⋅ 1011 8.1 ⋅ 1011 0.3 7850
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2.2  Inverse characterization of LVL material 
properties by Bayesian inference

The characterization of uncertain timber material properties 
is done using Bayesian inference, since the method provides 
a good framework for such an identification. This approach 
is described in more detail in the following section.

The probabilities for the uncertain LVL material input 
parameters of the simulation model for the hybrid steel–tim-
ber structure are identified by Bayesian inference. In this 
method, prior information on the probability of the model 
parameters, i.e., the material properties of the LVL, is 
updated by incorporating experimentally measured data to 
strengthen the degree of belief in the probability of the mate-
rial parameters.

The probability model of the uncertain material param-
eters, i.e., the posterior probabilities p(�|fexp) , is fitted 
employing Bayes’ rule [26]

with the uncertain parameters � , the measured data fexp , the 
prior probabilities of uncertain parameters p(�) , and the 
likelihood p(fexp|�) . The denominator in Bayes’ formula 
only normalizes the probabilities, which is why it is omitted 
here [26]. The measured data fexp are represented by seven 
natural frequencies determined from vibrational experiments 
on timber panels made of LVL fexp,t via experimental modal 
analysis. The uncertain material parameters � constitute the 
inputs to the used forward model ft(�) , which is based on a 
Rayleigh–Ritz approach (Sect. 2.2.3). The forward model is 
utilized together with the measurement data to evaluate the 
likelihood (Sect. 2.2.1).

2.2.1  Likelihood

The likelihood p(fexp,t|�) is combined with the prior prob-
abilities p(�) to explore the posterior densities given the 
measurement data fexp,t . Hence, it evaluates the probabil-
ity that a certain measurement is obtained given a specific 
material parameterization � . The mean of the distribution 
represents the de facto measured natural frequencies fexp,t , 
and the standard deviation relates to the measurement noise. 
The likelihood function is computed by maximizing the 
entropy and considering it for discrete variables by means 
of a residual error �i = fexp,t,i − ft,i(�) [27]

(1)p(�|fexp) ∝ p(fexp|�)p(�),

where fexp,i represents one of the 1 ≤ i ≤ Nf  measured data-
sets. The used forward model ft(�) should be able to repro-
duce the experimental data well.

The probability regarding each data point equals the prob-
ability of the residual error at each data point. Hence, the over-
all likelihood function is computed as the joint probability of 
all data points [27]

Since the noise is the same for each measurement in most 
experiments, it is assumed that �lik = �lik,i for all 1 ≤ i ≤ Nf  . 
Nf = 7 represents the number of measured frequencies. Fur-
thermore, as justified by the principle of maximum entropy, 
the individual measurements are logically independent, 
which leads to the joint probability as [27]

Additionally, to consider the repeatability of the measure-
ments, 12 specimens Nr = 12 are investigated. Consequently, 
the scalar values in the residual error �i = fexp,t,i − ft,i(�) 
become vectors with the length Nr.

Since the hyperparameter �lik is not of particular interest in 
this study, marginalization is used on the joint probability to 
compute a likelihood probability without the standard devia-
tion �lik [27]

Using the principle of maximum entropy, the Jeffreys’ prior 
is assigned for the marginal distribution p(�lik|�, ft(�)) [27]

(2)

p(�i��, ft(�), �lik,i,�lik = 0) =
1√

2��lik,i

exp

�
−

�2
i

2�2
lik,i

�
,

(3)
p(fexp,t|�, ft(�), �lik,1, �lik,2, ..., �lik,Nf

)

= p(�1, �2, ..., �Nf
|�, ft(�), �lik,1, �lik,2, ..., �lik,Nf

).

(4)p(fexp,t��, ft(�), �lik) =
Nf�

i

1
√
2��lik

exp

�
−

�2
i

2�2
lik

�
.

(5)
p(fexp,t|�, ft(�)) = ∫ p(fexp,t, �lik|�, ft(�))d�lik

= ∫ p(fexp,t|�, ft(�), �lik)p(�lik|�, ft(�))d�lik.

(6)p(�lik|�, ft(�)) =
1

�lik
.

Table 3  LVL material properties �0 [24]

Ex,0 [ N∕m2] Ey,0 [ N∕m2] Ez,0 [ N∕m2] Gxy,0 [ N∕m2] Gxz,0 [ N∕m2] Gyz,0 [ N∕m2] �xy,0 [-] �xz,0[-] �yz,0 [-] �0 [ kg∕m3]

1.06 ⋅ 1010 2.50 ⋅ 109 3.00 ⋅ 108 6.00 ⋅ 108 1.50 ⋅ 108 1.50 ⋅ 108 0.59 0.59 0.36 530



 Archives of Civil and Mechanical Engineering           (2024) 24:22 

1 3

   22  Page 6 of 15

Subsequently, the integral from Eq. (5) is performed using 
the limits �lik ∈ [0,∞) resulting in a marginalized likelihood 
in the form of a student’s t-distribution

(7)p(fexp,t|�, ft(�)) =
Γ(Nf∕2)

2

(
�

Nf∑

i=1

�
2
i

)−Nf ∕2

,

with the standard gamma function Γ(...) . The individual 
specimens’ experiments are taken into account by summing 
the error also w.r.t. those data points

where �ji = fexp,t,ji − ft,ji(�).

2.2.2  Vibration measurements on timber panels

The experimental data are acquired by performing vibra-
tion measurements on the individual components, i.e., 12 
LVL panels ( Nr = 12 ). The components’ measurements are 
established similarly to the experiments on the hybrid ele-
ment (Sect. 2.1.1). A white-noise excitation is applied to 
the structure by the stinger. Furthermore, the sample is sup-
ported by rubber slings. The respective test setup is visual-
ized in Fig. 4.

The first seven eigenfrequencies fexp,t of the 12 LVL 
plates are identified by an experimental modal analysis [18] 
and are visualized below the abscissa in Fig. 5. The dimen-
sions of the samples, i.e., length lt , width bt , and thickness ht , 
are given in Table 4. Four samples of three different geom-
etries are used in the experiments, i.e., H45i with a thickness 
of ht = 45mm , H55i with a thickness of ht = 55mm , and 
H65i with a thickness of ht = 65mm . The fiber direction of 
the LVL is aligned with the shorter side length lt.

2.2.3  Forward model: Rayleigh–Ritz approach

A forward model is necessary to evaluate the likelihood. 
Here, many evaluations are required, which is why, instead 
of an FE approach, a computationally faster model is used. 
Due to its anatomy, wood is often modeled as an orthotropic 
material. Hence, a Rayleigh–Ritz method for orthotropic 
Mindlin plates with free supports is implemented [28]. In 
the Rayleigh–Ritz method, energy functionals for the strain 
and kinetic energy of the plate are calculated by considering 
the constitutive equations of an orthotropic Mindlin plate 
(details are given in the appendix). To satisfy the boundary 
conditions, the following trigonometric basis functions:

are utilized to describe the displacements w and rotations 
�i of the plates

(8)p(fexp,t|�, ft(�)) =
Γ(Nf∕2)

2

(
�

Nf∑

i=1

Nr∑

j=1

�2
ji

)−Nf ∕2

,

(9)𝜙m(x) =

{
cos(𝜆mx) m ≥ 0

sin(𝜆mx) m < 0
𝜆m = m𝜋∕lt

(10)𝜙n(y) =

{
cos(𝜆ny) n ≥ 0

sin(𝜆ny) n < 0
𝜆n = n𝜋∕bt

Fig. 4  Measurement setup for the components

Table 4  Dimensions of LVL samples

Label Thickness ht [m] Width bt [m] Length lt 
[m]

H451-H454 0.045 0.825 0.6
H551-H554 0.055 0.840 0.6
H651-H654 0.065 0.750 0.6

Fig. 5  Sensitivities Si for an LVL plate with thickness h = 4.5 cm for 
the seven lowest eigenfrequencies
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while satisfying the freely supported boundary conditions 
[28]. The potential and kinetic energy use the respective 
displacement and rotation functions depending on the coeffi-
cients Amn , Bmn , and Cmn to build the Lagrangian expression. 
This formulation is minimized by derivation with respect to 
the coefficients. It is summed up in matrix form as

with the stiffness matrix K , the mass matrix M , the natural 
frequencies f = �∕(2�) , and the coefficient matrix E

with truncation order M = 8 and N = 8.
From Eq. (14), natural frequencies and eigenvectors can 

be computed by solving the eigenproblem.
The supports of the model are chosen as ‘free’, similar to 

the freely suspended specimens in the experiments. As input 
parameters to the model, the dimensions of the LVL plates 
(Table 4) and the timber material properties �̂� , i.e., elasticity 
moduli in longitudinal Ex and transverse direction Ey , shear 
moduli Gxy , Gxz , and Gyz , density � and Poisson’s ratio �xy are 
required. Using the model (Eq. (14)), natural frequencies 
f� = ft(�) are determined numerically and incorporated in 
the Bayesian inference.

However, first, a one-at-a-time sensitivity analysis [29, 
30] is conducted to reduce the parameter space by identify-
ing the most relevant input LVL material parameters for the 
Bayesian inference approach. Hence, it is evaluated which 
material properties mostly influence the seven lowest natu-
ral frequencies, which lie in the range of f

�i
∈ [0, 800]Hz . 

The Rayleigh–Ritz model uses seven material input param-
eters, i.e., the material properties. Each material property 
is varied in the range of �̂�i ∈ [0.9 ⋅ 𝜃i,0, 1.1 ⋅ 𝜃i,0] . Here, 
�̂0 = [Ex,0,Ey,0,Gxy,0,Gxz,0,Gyz, 𝜈xy,0, 𝜌0]

T denotes the initial 
parameter values of the timber material properties as given 
in Table 3.

The variation range is chosen as ±10% , since the CoV for 
wooden materials is approximately given as CoV ≈ 0.1 in 

(11)�x(x, y) =

∞∑

m=−2

∞∑

n=−2

Amn�m(x)�n(y),

(12)�y(x, y) =

∞∑

m=−2

∞∑

n=−2

Bmn�m(x)�n(y),

(13)w(x, y) =

∞∑

m=−2

∞∑

n=−2

Cmn�m(x)�n(y),

(14)(K − �2
M)E = 0

(15)E =

⎧
⎪
⎨
⎪
⎩

A−2,−2 A−2,−1 ... AM,N

B−2,−2 B−2,−1 ... BM,N

C−2,−2 C−2,−1 ... CM,N

⎫
⎪
⎬
⎪
⎭

T

,

[25], which covers the parameter range within one standard 
deviation. The varied material properties are introduced in 
the forward model. Eigenfrequencies f�i are subsequently 
computed and compared to the initial results f�0 obtained 
through the initial values �0 . The respective modes are 
denoted by the number of nodal lines in the x (fiber direc-
tion) and y (transverse to the fiber) directions, e.g., (1,1), 
as depicted in Fig. 5. Then, the sensitivity is calculated as

This yields high sensitivities ( Si ≥ 0.05 ) of the natural fre-
quencies to all input material parameters �̂ except for the 
Poisson’s ratio �xy and the shear modulus Gxz (Fig. 5). Con-
sequently, the most relevant material input parameters are 
identified as � = [Ex,Ey,Gxy,Gyz, �]

T and are subsequently 
used for the inference of the timber material properties.

2.2.4  Prior probabilities

The initial probabilities—the priors—represent the beliefs 
about the uncertain parameters before measurement data are 
considered [26]. Based on the information given in [25], 
lognormal distributions �i ∼ LN(�i, �

2
i
) are assigned for the 

elasticity moduli, Ex and Ey , and for the shear moduli, Gxy 
and Gyz , and a normal distribution � ∼ N(�� �

2
�
) is assigned 

for the density � . �i denotes the location parameter in the 
lognormal distributions and the mean value for the normal 
distribution. �i represents the standard deviation in both 
cases. In [25], information on the CoV is also given as 
CoV� = 0.1 and CoVmoduli = 0.13 leading to standard devia-
tions of �� = 0.1 ⋅ �0 and �i = 0.13 . By means of the prior 
probabilities, prior predictive checks are performed [31]. 
Samples for the material values are drawn from the prior 
probabilities for a specific set of �i and �i , inserted into the 
forward model, and the seven lowest natural frequencies f� 
are determined. Then, the measured natural frequencies fexp,t 
are plotted together with the calculated natural frequencies 
f� . If the measured ones lie within the range spanned by the 
calculated values, the parameters of the prior probabilities 
indicate physically meaningful results for the natural fre-
quencies. Nevertheless, for this set of standard deviations of 
the priors, the prior predictive checks showed measured fre-
quencies lying outside the range of calculated values. Hence, 
a larger CoVmoduli = 0.25 than proposed for the moduli in 
[25] is chosen. The chosen value stems from the CoV given 
in [25] for the bending strength, since the moduli are related 
to bending strength. For this selected configuration

(16)Si = �f∕Δ�̂� = (f�̂�i − f�̂�0)∕(�̂i − �̂0).

(17)Ex ∼ LN(ln (Ex,0), 0.25
2),
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the prior predictive check results are shown in Fig. 6.
All measured eigenfrequencies fexp,t lie within the range 

of the numerically evaluated eigenfrequencies f� . Hence, the 
above priors are assigned.

(18)Ey ∼ LN(ln (Ey,0), 0.25
2),

(19)Gxy ∼ LN(ln (Gxy,0), 0.25
2),

(20)Gyz ∼ LN(ln (Gyz,0), 0.25
2),

(21)� ∼ N(�0, (0.10 ⋅ �0)
2),

2.2.5  Posterior distribution

Finally, methods are needed that explore the posterior prob-
abilities. In this context, Markov Chain Monte Carlo Sam-
pling methods are often used, since an analytical solution 
only exists in rare cases, e.g., if conjugacy is present. The 
sampling utilizes the forward model (Sect. 2.2.3), which 
must be computed for each likelihood evaluation during 
sampling [26].

This study uses the so-called Sequential Monte Carlo 
sampler within the Python package PyMC [32] to infer 
the posterior probabilities of the uncertain material 
parameters � . This algorithm is advantageous for mul-
timodal posterior probabilities. Unlike usual Markov 

Fig. 6  Prior predictive checks: the numerically ffem,t and experimentally fexp,t determined natural frequencies are plotted using contrasting colors 
for the sake of comparison
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Chains, the sampler is less susceptible to getting stuck in 
local minima, which is overcome by applying the idea of 
tempering [33].

The identified probability densities are subsequently 
available as inputs for the probabilistic analysis of the 
hybrid building element together with the uncertain joint 
stiffness values.

2.3  Uncertain joint inputs

For the modal analysis of the hybrid structure, stiffness 
properties for the fastener model (Fig. 3 on the right) are 
required. The linear spring element is applied to connect 
DOFs in the x- and y-direction with the stiffness khor and in 
the z-direction with the stiffness kver . Since different fastener 
types, i.e., nails3 and screws,4 are used for the upper and 
lower joint due to manufacturing reasons, different stiffness 
values are applied for the upper, kver,u and khor,u , and lower, 
kver,l and khor,l , joints.

Ibrahim and Pettit [34] provide an extensive overview of 
uncertainties in bolted joints and other fasteners. The authors 
point out that deterministic response evaluations could lead 
to unnecessarily conservative system designs, emphasizing 
the need to consider parameter uncertainties in jointed struc-
tures. Consequently, the joints’ stiffness values are assigned 
to be uncertain inputs in this study.

Various studies state coefficients of variation CoV for 
the stiffness in joints. The identified CoV in the literature 
ranges from 5% [35] to 25% [36]. Subsequently, CoV = 25% 
is chosen for the normally distributed probabilities of the 
joints’ stiffness. However, the joints’ stiffness values are 
not known in advance. Hence, an MAP estimation [26, 37] 
approximates the mean value of the joints’ stiffness. The 
MAP estimation is used instead of a full Bayesian infer-
ence, since the necessary large number of evaluations of the 
hybrid structure’s FE model would require too high com-
putational effort. MAP estimation is performed using the 
equations of Sect. 2.2 while replacing the forward model of 
the LVL plates with the FE simulation of the hybrid struc-
ture. Furthermore, the measurement data of the LVL plates 
are substituted by the results from the experiments on the 
hybrid specimen described in Sect. 2.1.1. Finally, the MAP 
estimation leads to the stiffness values in Table 5.

The identified values lie within a reasonable range with 
values given by [38], i.e., axial and shear stiffness proper-
ties of approximately 50MPa for a beam structure jointed 
by M10 bolts and nuts.

2.4  Probabilistic analysis of the hybrid steel–timber 
building element

Utilizing the identified uncertain inputs, numerical prob-
abilistic analysis for the modal properties of the hybrid 
steel–timber structure is performed to assess the influence of 
input uncertainties of the prediction tool. Parameter uncer-
tainties are considered by assuming probability distributions 
for the inputs [26] and performing an MC simulation [39]. 
Here, random samples are drawn to compute the natural fre-
quencies of the hybrid element numerically (see, e.g., [39]). 
Utilizing the MC method, target statistics, i.e., mean values, 
standard deviations, and percentiles of natural frequencies 
of the hybrid structure, are estimated by a set of generated 
realizations computed based on the samples. Latin hyper-
cube sampling (LHS) reduces the realizations necessary for 
reasonable results by evenly spreading the samples over the 
entire sampling space [40]. In [11], LHS for MC simulations 
is investigated for a wooden floor model. The authors con-
cluded that LHS using nLHS = 40 sampling steps led to con-
verged results for four sampled parameters. This indicates 
that if the number of samples nLHS is chosen equal to ten 
times the dimension d of the parameters nLHS = 10 ⋅ d , sat-
isfying results can be achieved. The probabilistic prediction 
tool used in this study is based on the model of Sect. 2.1.2 
to determine the influence of model parameter uncertain-
ties on the modal properties of the building element. Thus 
input uncertainties, i.e., for the LVL material properties 
(Sect. 2.2), Ex , Ey , Gxy , Gyz and � , and for the joint stiffness 

values, kver,u , kver,l , khor,u , and khorl (Sect. 2.1.2), are propa-
gated through the simulation model to the resulting natural 
frequencies fFE of the hybrid steel–timber test sample.

3  Results

As uncertain LVL material properties are required for the 
probabilistic analysis of the hybrid steel–timber element, 
results concerning the Bayesian inference of the LVL’s mate-
rial parameters are presented first. Second, the outcomes of 
the probabilistic analysis of the hybrid steel–timber element 
are displayed.

3.1  Stochastic estimates of the material properties 
of the LVL

The posterior probabilities of the LVL’s material proper-
ties result from the Bayesian approach (Sect. 2.2) using 
a Sequential Monte Carlo Sampler with seven chains, 
including 500 samples each. The outcome is described 
by the mean values �̂�𝜃i

 and the standard deviations �̂�𝜃i . 
The mean values are compared to the material parameters 

3 Unpublished prototype.
4 Thin sheet metal screws 6.0x90 by Reisser-Schraubentechnik 
GmbH, D-74653 Ingelfingen-Criesbach, Germany.
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provided by the manufacturer (Table 3) through the devi-
ation of the resulting mean and the provided property 
a = 1 − �̂�𝜃i

∕𝜃i,0 . These results as well as the ̂CoV = �̂�𝜃i∕�̂�𝜃i
 

are listed in Table 6. Deviations above ±10% are marked 
in bold letters.

The difference between inferred and provided material 
properties lies above 5% for all parameters, often even above 
10% , which represents a significant difference emphasiz-
ing the relevance of the Bayesian inference. Moreover, the 
identified posterior probabilities become slightly narrower 
than the priors for Ex , Ey , Gxy , and � , which is shown by the 
smaller ̂CoV (Table 6) of these material parameters com-
pared to the priors’ CoV for the density CoV� = 0.10 and 
for all other material parameters CoV�i

= 0.25 . The prior 
and posterior probabilities of all material parameters are 
plotted together in Fig. 7 to check the identified properties. 
Here, the narrower posterior probabilities are also visible. 
Furthermore, for all properties, the prior and posterior prob-
abilities overlap.

Moreover, model validation is performed concerning 
LVL plate natural frequencies using the forward model 
(Sect. 2.2.3) and experimentally determined natural fre-
quencies fexp,t of the LVL components. For this purpose, 
natural frequencies of the LVL panels, i.e., H45i, H55i, and 
H65i, are calculated numerically using an MC simulation 
(Sect. 2.4), LHS, and 6000 samples for the material proper-
ties drawn from the posterior distribution. The computed 
values fi are presented in Fig. 8 as box plots together with 
the experimentally identified values fexp,t,i.

All measured eigenfrequencies lie within the whiskers 
spanned by the sampled eigenfrequencies or even within the 
first-to-third quartile values. Hence, the inferred material 
properties, together with the forward model, represent the 
LVL material properly.

3.2  Probabilistic modal analysis of hybrid steel–
timber structure

The material properties in terms of mean and standard 
deviation identified before (Table 6) are used in this sec-
tion, together with the parameters for the joint stiffness 
(Table 5), in a stochastic analysis of the hybrid steel–tim-
ber building element. Nine parameters are assigned to be 
uncertain and are consequently sampled from their distri-
bution by LHS: Ex , Ey , Gxy , Gyz , � , khor,l , khor,u , kver,l , and 
kver,u . Using ten times the dimension of the parameters, 
the number of samples yields as nLHS = 90 . However, to 
verify the convergence of the results, additional samples 
are computed, and the results of nLHS = 110 and nLHS = 90 
are compared. The comparison is made for the first struc-
tural eigenfrequency of the FE model at approximately 
fFE,hyb = 59.4Hz . The following differences between the 
two cases are calculated:

• Deviation for mean value: (1 − f�,110∕f�,90) ⋅ 100 = −0.1%.
• Deviation for standard deviation: (1 − f�,110∕f�,90) ⋅ 100

= −2.8%.
• Deviation for 5th percentile: (1 − f5%,110∕f5%,90) ⋅ 100

= −0.0%.
• Deviation for 95th percentile: (1 − f95%,110∕f95%,90) ⋅ 100

= −0.2%.

Hence, the deviations lie below 1% for all evaluated sto-
chastic parameters except for the standard deviation, which 
lies below 3%. This is assumed to be suitable as it is done 
similarly in [11, 41].

Table 7 shows the mean values f� , standard deviations f� , 
5th fP=(0.05) , and 95th percentile fP=(0.95) of the MC simulated 
results fLHS,hyb sampled by LHS with nLHS = 90 together 
with the measured fexp,hyb and simulated eigenfrequencies 
fhyb,�0 using the initial material properties �0 (Table 3) and 
the joint stiffness values from Table 5. The mean values 
of fLHS,hyb differ from fhyb,�0 due to the deviating material 
properties identified by Bayesian inference. The identified 
modes, (1,1), (2,0), (2,1), (3,0), and (0,2), are named simi-
larly to the LVL plates in Fig. 5. For a visual illustration, 
the plots of Fig. 5 can be considered, since the mode shapes 
are just scaled to a larger geometry for the hybrid structure. 

Table 5  Mean values of stiffness of upper (u) and lower (l) joints in 
vertical (ver) and horizontal (hor) directions

khor,l [N/m] khor,u [N/m] kver,l [N/m] kver,u [N/m]

8.96 ⋅ 106 8.41 ⋅ 106 9.60 ⋅ 106 8.86 ⋅ 106

Table 6  Mean values �̂�𝜃i
 , the 

̂CoV , the manufacturer’s data 
�i,0 , and the deviation a are 
listed. Deviations above ±10% 
are marked in bold letters

�̂�𝜃i
̂CoV a �0

Ex∕10
10 N∕m2 1.49 0.19 − 0.41 1.06

Ey∕10
9 N∕m2 2.27 0.18 0.09 2.50

Gxy∕10
8 N∕m2 6.86 0.21 − 0.14 6.00

� kg∕m3 496 0.08 0.06 530
Gyz∕10

8 N∕m2 1.28 0.26 0.15 1.50
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Fig. 7  Probability densities of the inferred material properties—priors (blue) and posteriors averaged for all chains (rose)

However, it has to be noted that the fiber direction of the 
LVL panels is oriented along its shorter edge, whereas for 
the hybrid panels, the fiber direction follows the long side 
of the panel. Hence, for the hybrid structure, the first bend-
ing mode occurs along this long side, whereas for the LVL 
plates, it occurs along the transversal direction. In the case 
of the first mode, (1,1), the mean value of f�,LHS,hyb,(1,1) is 
close to the measured eigenfrequency fexp,hyb,(1,1) = 57.1Hz . 
Hence, the calculated difference equals

Moreover, the identified CoV for the MC simulations’ mean 
and standard deviation range between 0.4% and 2.86%.

If the 5th and 95th percentiles are examined, which is state 
of the art in the building sector [42], the difference between 
the respective percentile values

ranges from 1.2Hz for mode (3,0) to 7.0Hz for mode (2,0) 
(Table 7).

In Fig. 9, the probability density function estimated from 
the samples of the first natural frequency for mode (1,1) is 
visualized together with the measured frequencies, and the 
5th and 95th percentile values. Although the measured natu-
ral frequency does not perfectly match the point of maxi-
mum probability of the probability density function, it is 
still covered by the percentile values, showing an adequate 
prediction of the FE model concerning the lowest natural 
frequency of the hybrid element. However, the remaining 

(22)Δ�,LHS,(1,1)−exp,(1,1) = 2.3Hz.

(23)Δ5th−95th = fLHS,P=(0.95) − fLHS,P=(0.05)

measured natural frequencies fexp,hyb (Table 7) do not lie 
within the percentile values computed by the MC simula-
tion. One possible reason for the deviations in the modes 
(2,0), (3,0), and (2,1) is the assumption of an ideal geometry 
of the steel core in the FE model. In the ideal configuration, 
stiffness is gained via the trapezoidal slopes of the steel core. 
However, since these are most likely not ideally positioned 
in the test specimen, a stiffer structure is obtained in the 
simulation than in the measurement. This is reflected in the 
higher natural frequencies. In the case of mode (0,2), pre-
deformations and residual stresses of the steel core could 
stiffen the test specimen as a result of the manufacturing 
process. Since no pre-deformations and residual stresses are 
considered in the model, the model behaves less stiffly than 
in the measurement.

4  Discussion

The statistical estimates of the LVL material properties are 
used in the forward model to compute the natural frequen-
cies of LVL plates. The computed values comply well with 
the measured eigenfrequencies for equivalent LVL plates, 
which indicates physically meaningful inferred material 
properties. Furthermore, the inferred posterior distributions 
are narrower than the priors, which implies less uncertainty 
of the material parameters once the measurement data are 
taken into account.
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The MC simulation of the hybrid steel–timber building 
element leads to converged results for 90 Latin Hypercube 
samples. The resulting statistical estimates of the natural 
frequencies show deviations of 5–7 Hz for some of the 5th 
and 95th percentiles, which represents a significant differ-
ence and, hence, should be addressed for a proper design of 
a structure. Moreover, the deviation of the sampled mean 
values for the natural frequencies differs from the computed 
frequencies using the initial material properties provided by 
the manufacturer, which emphasizes the need for material 
parameter identification.

The first measured eigenfrequency for mode (1,1) lies 
within the range spanned by the simulated eigenfrequencies, 
which is essential since the first eigenfrequency of a floor 
is relevant for a design in terms of serviceability related 
to vibration, e.g., in the European timber design stand-
ard [43]. Still, the MC simulation results do not cover the 
other experimentally identified natural frequencies. Further 

investigations might lead to deeper insight, e.g., consider-
ing frequency-dependent material and joint parameters or 
residual stresses in the hybrid element. Furthermore, an 
approach using Bayesian inference not only for the wooden 
material properties but also for the joint parameters might 
lead to better results. However, a faster model is required 
for this. Possible approaches could be surrogate models or 
model order reduction.

Moreover, it should be noted that, currently, no strength-
related characteristics are included in the investigations. 
Static test series and further studies concerning, e.g., load-
carrying capacity could be analyzed in future studies but are 
out of the scope of the current work.

Fig. 8  Box plots of simulated eigenfrequencies of LVL plates using inferred material properties compared to experimentally determined eigen-
frequencies (green markers)
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5  Conclusions

In summary, this research article leverages Bayesian infer-
ence and Monte Carlo simulation to address uncertainty in 
the modal properties of a hybrid steel–timber building ele-
ment. The primary goal of the research is to facilitate more 
efficient building designs by shifting from traditional con-
servative safety factors to an approach that accounts for data 
uncertainty. The hybrid building element under investigation 
features a structure comprising a trapezoidal steel web and 
laminated veneer lumber flanges. Given the inherent vari-
ability in timber materials, Bayesian inference is employed 
to derive probability distributions representing the timber’s 
material properties, thereby providing a realistic representa-
tion of uncertainty. The key findings are itemized as follows:

• The posterior probabilities obtained through Bayesian 
inference reveal narrower probability distributions than 

the prior knowledge, denoting a reduction in uncertainty 
regarding the timber’s material properties.

• The research uncovers an unexpected and substantial 
deviation of inferred mean values from manufacturer-
provided data, emphasizing the importance of accounting 
for real-world variability in structural design.

The inferred material properties, together with uncertain 
joint parameters, are utilized in a Monte Carlo simulation. 
Mean values of joint properties are estimated using maxi-
mum a posteriori estimation, and the coefficient of variation 
is assigned based on literature data. Employing Latin hyper-
cube sampling and a finite element model, a probabilistic 
analysis of the hybrid building element is performed. Here, 
the following outcomes are observed:

• The 5th and 95th percentiles of the structure’s natural 
frequencies resulting from the Monte Carlo simulation 
span a range of up to 7 Hz for the natural frequency at 
83.6 Hz. This range emphasizes the significant variabil-
ity inherent in the structural response and underlines the 
critical necessity of considering uncertainty in the design 
of building elements.

• The first measured natural frequency for mode (1,1) falls 
within the range spanned by the simulated eigenfrequen-
cies, which is crucial for designing a floor with consid-
eration for vibration-related serviceability. However, it 
is observed that the other measured eigenfrequencies do 
not align with the range of eigenfrequencies calculated 
by the Monte Carlo simulation, suggesting the need for 
further investigations.

These findings collectively contribute to advancing the field 
of structural engineering, emphasizing the significance of 
probabilistic modeling and uncertainty quantification in 
optimizing building designs for enhanced efficiency. Future 
research avenues could involve extending Bayesian infer-
ence to incorporate joint parameters and exploring alterna-
tive fastener models to refine our understanding of hybrid 
element behavior.

Table 7  Mean values � , 
standard deviation � , 5th 
percentile fP=(0.05) , and 
95th percentile fP=(0.95) of 
eigenfrequencies fLHS,hyb , 
ranges between 5th and 95th 
percentile values Δ5th−95th , 
measured fexp,hyb and initially 
simulated eigenfrequencies 
fhyb,�0 are listed

fi [Hz] fLHS,hyb [Hz] Δ5th−95th [Hz] fhyb,�0 [Hz] fexp,hyb [Hz]

for mode � � P = (0.05) P = (0.95)

(1,1) 59.4 1.7 56.8 62.5 5.7 52.1 57.1
(2,0) 83.6 2.3 80.1 87.1 7.0 77.2 70.9
(2,1) 105.3 0.8 103.3 106.2 3.0 95.4 76.4
(3,0) 108.4 1.4 105.6 110.1 4.5 99.7 88.3
(0,2) 99.5 0.4 98.9 100.1 1.2 102.3 113.9

Fig. 9  Probability density function estimated by fLHS,hyb,(1,1) , 
measured frequencies fexp,hyb,(1,1) , and percentiles P = (0.05) and 
P = (0.95)
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Appendix

The Lagrangian for the orthotropic Mindlin plates is com-
puted as [28]

with the strain energy U and the kinetic energy T. The strain 
energy is calculated as

with the flexural rigidities of the plate

Moreover, the total kinetic energy is given as
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Abstract – Lightweight floor structures, such as timber or hybrid timber floors, face challenges associated with
excessive vibrations and elevated levels of low-frequency impact sound. Especially here, accurate prediction of a
floor’s vibration and acoustic behavior is essential. However, typical laboratory testing of building elements is
costly and time-consuming. To reduce costs, in this study, adapted simulations are carried out on two types of
hybrid steel-timber floor structures to evaluate vibrations and impact sound. The hybrid elements are made of
laminated veneer lumber as the top and bottom layers and a trapezoidal steel component as the web. Vibration
measurements are used in combination with Bayesian optimization to efficiently calibrate Finite Element
models, which are subsequently utilized to quantify and validate the floor structures regarding vibrations
and impact sound. The two types of cross-sections, i.e., closed and open, are investigated and compared.
The impact sound pressure level computations reveal promising results in predicting the behavior of the hybrid
structures. However, further countermeasures are required to fulfill vibration serviceability requirements.

Keywords: Hybrid steel-timber floor, Vibrations, Impact sound, Laminated veneer lumber

1 Introduction

With the growing significance of carbon neutrality and
environmental sustainability, the construction industry is
actively developing sustainable solutions. Research on
sustainable construction has recently expanded beyond
conventional materials to encompass hybrid structures that
incorporate timber in conjunction with steel [1–3], and
concrete [4, 5]. These hybrid building elements have led
to a range of investigations involving aspects such as vibra-
tion characteristics [1, 2], economic viability, environmental
sustainability [3], and safety performance [6]. One notable
area of concern in these modern hybrid structures, particu-
larly in the context of extended spans and slender designs
for lightweight floors such as wood and hybrid wood floors,
evolves around their susceptibility to low resonance fre-
quencies and annoying vibrations, which can potentially
cause discomfort among occupants [7, 8]. Consequently, a
significant challenge in the context of large-span timber
floors lies in the exceedance of allowable vibration limits,
thus making vibration serviceability a paramount criterion
for design [9].

As an example, research by Hassan et al. [10] illustrates
that in terms of deformations, Cross-Laminated Timber
slabs with spans of 7 m and relatively modest thickness
can be accommodated. However, issues arise as natural fre-
quencies dip below 8 Hz for spans of approximately 4.5 m
[10]. In such scenarios, composite or hybrid timber struc-
tures emerge as potential solutions. Perković et al. [11],
for instance, determined a natural frequency of approxi-
mately 10 Hz for a hybrid concrete-timber floor with a
7-m span.

Furthermore, lightweight structures like timber or
hybrid timber floors often encounter challenges with impact
sound insulation [12]. Typically, building standards and
regulations rely on laboratory testing for assessing the suit-
ability of floor structures. However, these laboratory tests,
especially those concerning impact sound insulation, are
time-consuming and costly [13, 14] and are conducted in
certified testing facilities. In the context of vibrational char-
acteristics, either calculations or certified measurements are
imperative [15]. Therefore, when adequately executed, sim-
ulations have emerged as an appealing alternative to labo-
ratory tests.

Simulation-based engineering design often employs
numerical models such as those based on the Finite Element*Corresponding author: bettina.chocholaty@tum.de

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acta Acustica 2024, 8, 11

Available online at:

�The Author(s), Published by EDP Sciences, 2024

https://acta-acustica.edpsciences.org

https://doi.org/10.1051/aacus/2024001

TECHNICAL & APPLIED ARTICLE



Method (FEM), a tool extensively used by engineers across
various disciplines. In practice, there tends to be a discrep-
ancy between FEM predictions and actual test results,
attributed to model form errors and approximation errors,
both considered types of epistemic uncertainty [16]. To
minimize the discrepancy between simulations and mea-
surements, model parameters are iteratively adjusted, a
procedure referred to as model updating. This iterative pro-
cess reduces approximation errors and enhances both the
reliability and accuracy of the model. The procedure
involves the identification of model parameters by minimiz-
ing a problem-specific objective function [17]. Various
approaches have been proposed for this purpose, whereas
the approach of Bayesian optimization, in particular, offers
a means to minimize the need for extensive model evalua-
tions [18]. Its efficiency results from employing Gaussian
process regression and an acquisition function for an
iterative search of optimal model parameters [19].

Furthermore, recognizing the challenges presented
by vibroacoustic properties of hybrid steel-timber floors,
recent research [2, 20, 21] has explored innovative floor
elements. In [2], the analysis focuses on a structure compris-
ing a wooden plate combined with an H-shaped steel beam,
primarily evaluating its vibration serviceability. In [20], a
modular hybrid steel-timber floor constructed by Cross
Laminated Timber and a U-shaped steel beam is studied
experimentally. Meanwhile, [21] delves into the vibrational
behavior of a hybrid steel-timber structure featuring top
and bottom laminated veneer lumber (LVL) plates and a
trapezoidal steel web floor element in between, with a
particular emphasis on the influence of joints on overall
vibroacoustics.

However, despite these valuable contributions, there
remains a need for a comprehensive assessment of the
acoustic properties of hybrid timber-steel structures, which
are relevant for the applicability of the building elements in
practice. Moreover, the structure examined in [21] has yet
to be subjected to an investigation regarding its vibration
serviceability. This study addresses this gap by studying
both vibration serviceability and impact sound levels of
the hybrid floors presented in [21]. To achieve this objec-
tive, the applied approach involves the calibration of a
Finite Element model (FE model) using Bayesian optimiza-
tion techniques [22]. The Bayesian optimization framework
is chosen since it requires fewer model evaluations for a
minimization than commonly used approaches by applying
Gaussian process regression [18]. The calibration process is
based on data derived from experimental vibration analysis,
which allows the identification of critical parameters associ-
ated with the joints within these hybrid structures. Subse-
quently, using the calibrated simulation model, vibration
limits and impact sound criteria are evaluated, providing
valuable insights into the applicability and performance of
these innovative floor elements. As a result, this research
offers a comprehensive numerical exploration of the vibroa-
coustic behavior of a novel LVL-trapezoidal steel floor
design. These findings, in turn, offer initial assessments
for the prospective integration of these building components
into sustainable construction practices.

2 Hybrid steel-timber floor structures

This study numerically analyzes hybrid structures com-
posed of LVL and trapezoidal steel frames. In detail, it is
constructed by top and bottom LVL plates with a trape-
zoidal steel core in between. The structural components
are connected by fasteners whose stiffness values are
unknown in advance. The numerical analysis is conducted
using FEM. First, a calibration of the unknown joint
parameters p is performed utilizing numerically determined
natural frequencies as well as mode shapes and results from
experimental modal analyses on small-scale test specimens,
i.e., S1* and S2*. Subsequently, the updated joint parame-
ters pnit are used in an FE simulation to analyze large-scale
floor specimens, i.e., S1 and S2, regarding vibration dose
values (VDV) and impact sound pressure levels. The
impact sound pressure level simulations use a numerically
implemented tapping machine load. The overall workflow
is visualized in Figure 1.

2.1 Description of investigated structures and
simulation models

Two configurations are investigated: a closed (S1) and
an open (S2) cross-section. Snippets of the test specimens
are visualized in Figure 2 together with their geometric
properties, which are also listed in Table 1.

According to ISO 10140-5 [23], the recommended size
of a floor structure, which is to be analyzed concerning
impact sound, is given as 10–20 m2, and the shorter edge
should be greater than 2.3 m. Hence, the dimensions of
3.6 m � 2.8 m are chosen for the hybrid floors (Tab. 1).
However, due to the testing facility’s limited spatial
capacities, it has been impossible to carry out vibration
measurements on the entire floor structures as given in
Table 1. Hence, smaller specimens are used for the model
validation and calibration, i.e., a closed S1* and an open
cross-section S2*.

The main difference between the open and closed cross-
sections lies in the design of the lower timber plate, which is
either a continuous wooden panel for closed cross-sections
or made of several separate panels for open configurations.
Based on preliminary structural investigations, it has been
determined that the upper screw connection may be too
weak in terms of load-carrying capacity and that nails
would be beneficial for the upper joint. However, as the nail
connection can only be made from the steel side, the open
variant has been designed. The respective mounting direc-
tion of the fasteners can also be seen in Figure 2. Obviously,
the different geometry, fasteners, and materials used for
both types of cross-sections influence the dynamic behavior,
e.g., the modal properties, of the investigated systems,
which is why the two types are subsequently compared con-
cerning VDV and impact sound insulation.

In the case of the closed form, both LVL plates are built
of the material BauBuche1 Type Q (BB-Q). For the open

1 Hardwood LVL by Pollmeier Massivholz GmbH & Co.KG, D-
99831 Amt Creuzburg, Germany.
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Figure 1. Overall workflow of the study: calibration of unknown model parameters p is performed utilizing numerically determined
natural frequencies as well as mode shapes and results from experimental modal analyses on the small-scale test specimens, S1* and
S2*. The updated parameters pnit are used in a subsequent Finite Element simulation to analyze the large-scale floor specimens, S1
and S2, regarding vibration dose values and impact sound pressure levels. The impact sound pressure level simulations use a
numerically implemented tapping machine load.

B. Chocholaty et al.: Acta Acustica 2024, 8, 11 3



Table 2. Material properties of LVL and steel provided by the manufacturer and literature [24, 25].

Material Ex [N/m2] Ey [N/m
2] Gxy [N/m2] mxy [–] q [kg/m3]

BB-Q 1.28 � 1010 2.00 � 109 8.20 � 108 0.04 800
BB-S 1.68 � 1010 4.70 � 108 7.60 � 108 0.04 800
Steel 2.10 � 1011 2.10 � 1011 = Ex 8.10 � 1010 0.3 7850

Figure 2. Snippets of closed (left, S1) and open (right, S2) hybrid LVL and trapezoidal steel elements. The lower timber plate is built
of a continuous lower wooden panel for closed cross-sections and made of several separate panels for open configurations. The
respective geometrical parameters are given in Table 1.

Table 1. Specimens S1 (closed) and S2 (open): the geometric parameters are defined in Figure 2. All geometric quantities are given in
[m].

Sample S1 S2

Cross-section type cT Closed Open
Material of LVL plates mT BB-Q BB-Q & BB-S
Length l 3.60 3.60
Width b 2.80 2.80
Thickness of LVL plates hT 0.040 0.040
Thickness of steel plates dS 0.75 � 10�3 1.50 � 10�3

Height of steel core hS 0.155 0.155
Width steel bS1 0.110 0.110
Width steel bS2 0.170 0.170
Width steel bS3 0.040 0.040
Longitudinal upper spacing ss 0.120 0.120
Longitudinal lower spacing sn 0.090 0.090
Transversal fastener position sF1 0.010 0.010
Transversal fastener position sF2 0.103 0.103
Transversal fastener position sF3 0.050 0.050

B. Chocholaty et al.: Acta Acustica 2024, 8, 114



cross-section, the upper plate is also made of BB-Q whereas
the lower one is made of BauBuche Type S (BB-S) [24]. The
respective material properties provided by the manufacturer
[24] or taken from literature [25] are given in Table 2. The
numerical studies use the commercial FE software ANSYS
[26]. For the FE model, the structural components are rep-
resented by quadratic shell elements (SHELL281) with the
provided orthotropic material characteristics for the timber
parts and isotropic material properties for the steel sheets.
Both specimen cross-section types use a trapezoidal core
using steel with a nominal yield strength of fy,k = 320 N/
mm2. However, the thickness of the steel core differs for
the open, dS = 1.5 mm, and closed, dS = 0.75 mm, configu-
ration. Furthermore, comparing the open and closed cross-
sections, the fastener type varies due to the manufacturing
process of the building elements. For the open configuration,
nails2 join the steel plates with the upper and the lower LVL
plate. In the closed case, nails are only applied to join the
lower LVL plate to the steel core. The upper LVL plate is
attached through screws3. The respective positions of the
fasteners are visualized in Figure 2.

For all fasteners, the ANSYS element type “MPC184
general joint” is utilized. These elements allow specifying a
stiffness matrix with 21 entries:

d joint ¼

d11 d12 d13 d14 d15 d16

d22 d23 d24 d25 d26

d33 d34 d35 d36

d44 d45 d46

sym: d55 d56

d66

2
666666664

3
777777775
: ð1Þ

Here, the indices “1”, “2”, and “3” denote displacements in
the x-, y-, and z-direction, respectively. Moreover, the
indices “4”, “5”, and “6” refer to rotational degrees of freedom
(DOFs) around the x-, y- and z-axis, respectively. The coor-
dinate directions are visualized in Figure 1. A preliminary
analysis conducted as part of this work revealed only three
stiffness parameters, i.e., d11 = dxx, d22 = dyy, and d12 = dxy,

that significantly influence the vibrational behavior of the
structure. Hence, all other entries of the fasteners’ stiffness
matrix are set to zero.

The concept for the fastener model is depicted in
Figure 3. In addition to the general joint elements, coupling
constraints for the displacement in the z-direction are
applied to closely located nodes at the interface of steel
and timber surrounding the joints. The surrounding of the
joints means within a radius of 0.022 m. This radius is deter-
mined through an empirical evaluation of the parameter
space and leads to the best match of simulation and experi-
mental results with the fixed value. In this surrounding area,
nodes that are coincident within a certain tolerance behave
as infinitely stiff coupled related to the displacement in z-
direction. The tolerance is set just large enough to cover
the distance between steel and timber components. This
way, pairs of steel and timber component nodes are coupled
concerning their displacement in z-direction.

Since the open cross-sections only use nails, denoted
by the index “n”, the same joint stiffness parameters
are assumed for the upper (u) and lower (l) joints dij,l =
dij,u = dij,n. For the case of closed configurations, different
joint parameters for upper and lower connections are set,
i.e., dij,u = dij,s and dij,l = dij,n, where the index “s” refers to
properties related to screws. As the fastener models’ param-
eters are initially unknown, they constitute the unknown
model parameters p, identified using model calibration and
vibration measurements in the first analysis step.

The FE model uses a mesh size of lele,t � 0.015 m for the
timber components and of lele,s � 0.013 m for the steel core.
In [27], six to eight quadratic elements per wavelength have
led to an acceptable error in eigenfrequencies compared to a
converged solution. Hence, the bending wavelengths k [28]
are computed using the respective material properties of
Table 2. The comparison of the sixth of the timber’s
bending wavelength k/6 with the mesh size shows that
the finite element size of the timber components is valid
up to 10000 Hz, which is sufficient for the current studies.
In the case of the steel parts, the used mesh size accounts
for six to eight quadratic elements per wavelength in the
low-frequency range. However, the mesh size is only valid
up to 1300 Hz, for S1 with a steel thickness of dS =
0.75 mm, and up to 2400 Hz, for S2 with a steel thickness

Figure 3. Fastener model: an MPC184 general joint element (represented by a black line) using a stiffness matrix between nodes
related to fasteners on the substructures (grids). Coincident nodes at the interface of steel and timber are coupled related to the z-
displacement (green lines) within an area surrounding the fastener (green circle).

2 Unpublished prototype.
3 Thin sheet metal screws 6.0 � 90 by Reisser-Schraubentechnik
GmbH, D-74653 Ingelfingen-Criesbach, Germany.
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of dS = 1.5 mm. Due to the limited computational
resources, it becomes impossible to reduce the mesh size
further. The current model for the vibroacoustic evaluation
already uses approximately 0.9 million DOFs. Hence, the
simulations are performed until the specified maximum
frequency for the respective cases.

2.2 Model calibration

For the model calibration, the closed and open samples
S1* and S2* are used. The in-plane dimensions of the test
specimens are changed to 3.50 m x 0.84 m due to the limited
spatial capacities of the testing facilities. All other proper-
ties remain as specified for the large-scale samples in
Table 1.

2.2.1 Numerical approach

The FE model of the respective sample S1* or S2* is
calibrated by iteratively adapting the model parameters p,
i.e., the joint stiffnesses values of the nails dij,n and the
screws dij,s, and computing an error e using the numerical
and experimental results. An overview of the model calibra-
tion workflow is visualized in Figure 4.

Six parameters in the FE model calibration are
unknown at the beginning:

p ¼ ½d11;s; d12;s; d22;s; d11;n; d12;n; d22;n�: ð2Þ
The closed specimen uses all six of them, whereas the open
specimen utilizes only the three parameters related to nails,
i.e., dij,n. First, the calibration of the nails’ parameters is
conducted using the data of the open specimen. Subse-
quently, those resulting nail parameters are used in the
model of the closed specimen. Second, the screws’ parame-

ters are calibrated utilizing the model and the measurement
data of the closed specimen.

The free boundary conditions and the load position are
adopted in the model in correspondence with measurement
setups. Furthermore, a frequency resolution of Df = 1.0 Hz
is applied in the frequency range of interest flow 2
[10, 312.5] Hz, which covers the measured frequency range.

2.2.2 Experimental approach

Vibration measurements are performed on the two test
samples S1* and S2* to identify modal properties through
experimental modal analysis [29]. Therefore, a pseudo-
random excitation is applied to the specimens by means
of a B&K4 modal exciter type 4284 connected to the test
samples utilizing a stinger at one point on the specimen.
Heavy-duty slings are used to suspend the test samples in
the measurement setup (Fig. 5) to simulate free boundary
conditions in the FE model.

A force transducer (B&K Force Transducer Deltatron
Type 8230) measures the force applied to the specimens.
Moreover, a scanning Laser Doppler Vibrometer PSV-
5005 (LDV) records the surface velocity on the specimen’s
side opposite the force application position on a distributed
grid of scan points. The measured force and velocity data
are combined to compute the frequency response function.
A Fast Fourier Transformation transforms the recorded
time data to the frequency domain. The resulting spectra
are averaged over 25 measurements for each scan point
in the complex plane. Furthermore, the signals are
adapted using a rectangular window. The sampling rate

Figure 4. Flowchart of the model calibration: An FE model of the respective measured sample S1* or S2* is calibrated by iteratively
adapting the unknown parameters p and computing an error e using the numerical and experimental results.

4 Hottinger Brüel & Kjær GmbH, D-64293 Darmstadt,
Germany.
5 Polytec GmbH, D-76337 Waldbronn, Germany.
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fsmp � 781 Hz and the frequency resolution of Df� 390 mHz
are applied. All data acquisition tasks utilize the Polytec
software. Further details on the measurements are given
in [21].

After performing experimental modal analyses, the
experimentally determined modes visualized in Figure 6
for the closed specimen S1* and in Figure 7 for the open
specimen S2* are used to calibrate the model.

2.2.3 Parameter optimization

The respective stiffness values of fasteners are calibrated
using experimental modal analysis data and the FE
modal analysis results of the samples S1* and S2*. A multi-
objective model updating [30] is used, which considers a
frequency error e1 and a mode shape error e2:

min eðpÞ ¼ minðe1 pð Þ&e2ðpÞÞ; ð3Þ

e1ðpÞ ¼
XNm

m¼1

er;mð Þ2 ¼
XNm

m¼1

fexp;m � ffem;m

fexp;m

����
����

� �2

; ð4Þ

e2ðpÞ ¼
XNm

m¼1

1�MACm

MACm

� �2

; ð5Þ

where fexp and ffem are the experimentally and numerically
determined natural frequencies, respectively, and MACm
is the modal assurance criterion of the mode shapes
computed, as described in [31]:

MACm ¼ ðUexp;mUfem;mÞ2
ðUT

exp;mUexp;mÞðUT
fem;mUfem;mÞ

: ð6Þ

Figure 6. Mode shapes for the sample S1*: experimentally determined (left) and numerically simulated (right) after model
calibration.

Figure 5. Scan setup using heavy-duty slings for suspension with Laser Doppler Vibrometer (LDV) (a) and shaker (b).

B. Chocholaty et al.: Acta Acustica 2024, 8, 11 7



Here, Nm equals the number of eigenfrequencies and modes
considered in the optimization and is assigned as Nm = 6 as
six modes per specimen, i.e., S1* and S2*, are taken into
account. A multi-objective optimization is chosen instead
of a single-objective optimization to circumvent the choice
of weightings of the errors e1 and e2. The optimization goal
is to identify the best solution in the Pareto optimal front
[32]. Hence, based on the evaluations of the objective
functions of equations (4) and (5), the Pareto optimal front,
e = (e1(p), e2(p)), is computed. For conflicting objectives, a
singular optimal solution does not exist. Instead, there is a
collection of alternative solutions referred to as Pareto
optimal solutions. These solutions are optimal because no
other solutions within the parameter space surpass them
when considering all objectives [33]. Thus, a criterion is
established to determine the most suitable solution at the
Pareto optimal front by summing both errors for each point
on the Pareto optimal front (Fig. 8) and taking the set of

parameters, which leads to the smallest sum of errors as
the best solution:

e ¼ minðe1ðpÞ þ e2ðpÞÞ: ð7Þ
As an optimization method, Bayesian Optimization is uti-
lized due to its benefits explained hereafter. First, regarding
the number of function evaluations needed, Bayesian
optimization is a highly efficient method. Furthermore,
it performs well even when the objective function contains
multiple local maxima. The method can integrate prior
beliefs concerning the problem, which aids in guiding the
sampling process and balancing the exploration and
exploitation of the search space. As it relies on Bayes’ theo-
rem, the prior knowledge embodies our initial beliefs con-
cerning the range of potential objective functions. Despite
the unknown nature of the cost function, it is justifiable to
assume that there is prior knowledge about specific proper-
ties, such as smoothness, which renders certain objective

Figure 8. Pareto optimal front of the multi-objective optimization for the closed S1* (a) and open S2* (b) specimen.

Figure 7. Mode shapes for the sample S2*: experimentally determined (left) and numerically simulated (right) after model calibration.
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functions more credible than others. As observations are
accumulated, the prior distribution and the likelihood
function are merged, leading to updated beliefs in the poste-
rior distribution. For efficient sampling, Bayesian optimiza-
tion employs an acquisition function to find appropriate
sampling locations. This decision inherently involves a
trade-off between exploration (in areas where the objec-
tive function is highly uncertain) and exploitation (sam-
pling values where the objective function is anticipated to
be high) [34]. Due to its goal to minimize the number of
objective function evaluations and, thus, to reduce the com-
putational effort, Bayesian Optimization is applied in this
study.

Since the parameters for the fasteners are initially
unknown, a manual search is performed first by picking
and testing reasonable values. Using the best choice for
the joints’ stiffness values dij,s and dij,n of the manual search,
an already acceptable match is achieved, as is visible in the
columns denoted by “before” in Table 3. The label “before” is
assigned since these results are computed utilizing manually
found parameter values. The label “after” refers to results
calculated with the parameters found by the Bayesian
optimization.

The initial joints’ parameters, as identified by the
manual search, are given in Table 4 denoted by p0. The
properties pnit in Table 4 refer to the values found by the
automatic model calibration performed using Bayesian
optimization.

The optimization, i.e., the automatic model calibration,
utilizes the manually found parameters as guiding values for
the bounds specified in the calibration procedure. Narrow,
i.e., ±25% p0, and broader, i.e., �90%/+1000% p0, bounds
are applied to thoroughly search the parameter space.
Subsequently, the pairs of errors at the Pareto front are
found, and the pair of those data points with the least
sum, i.e., e = min(e1(p) + e2(p)) is chosen as the best

solution. The respective results of the parameter search
are visualized in Figure 8, together with the Pareto optimal
front for both specimens.

From the optimization computations, the parameters
labeled as pnit in Table 4 and, thus, the natural frequencies
and MAC values denoted by “after” of Table 3 result.

Figure 8 shows that two groups of error combinations
are formed for the test specimen S1*, while there is only
one for S2*. For S1*, one group of model solutions results
in a smaller frequency error with almost equal mode error
compared to the other group. Hence, a better solution is
found for the group with the smaller frequency error. This
aspect can also be observed in Table 3. The relative
frequency error before the automatic model calibration lies
above 10% for modes 1, 3, and 6, which is strongly reduced
to errors below 10%, i.e., er,m 2 [0.02, 0.07], for all modes
except the third, where it lies slightly above, i.e.,
er,3 = 0.12. This improvement in frequency error comes
with the price of reduced MAC values for modes 3, 5, and
6, i.e., MACm 2 [0.74, 0.80]. However, the relative reduction
of MAC values before and after the automatic updating lies
below 0.03 for modes 3 and 5 and is only exceeded for mode
6 with a MAC value reduction of 0.08. Generally, the MAC
values for specimen S1* are not as good as for the open
specimen S2*. Only the MAC for the first mode lies above
0.90. For modes 2 and 5, the MAC values are still above
0.80, but the values are even lower for modes 3, 4, and 6.
The reason for this behavior is presumably the shape of
the modes. As visualized in Figure 6, only mode 1 shows
a nice and clear behavior. Modes 2–6 are either challenging
to identify, non-symmetric, or both. This circumstance
could stem from manufacturing inaccuracies, e.g., slight
relative rotations of the components, which lead to a non-
symmetric built-up, pre-stress, and pre-deformation.
Furthermore, sample S1* uses a steel sheet of thickness
ds = 0.75 mm as opposed to ds = 1.5 mm for S2*, leading
to individual parts of the steel frame vibrating locally,
which influences the global structural behavior. Moreover,
the modes are challenging to identify in the experiments,
e.g., due to closely spaced modes. Consequently, due to
the overall improved agreement between numerical and
experimental results, the updated parameters pnit are
deemed acceptable.

Table 3. Numerically ffem and experimentally fexp determined
natural frequencies [Hz], relative frequency error
er;m ¼ jðfexp;S1=2� ;m � ffem;S1=2� ;mÞ=fexp;S1=2� ;mj and MAC before and
after the automatic model calibration:m 2 [1, 6] for S1* and S2*.

S1* Before After

m fexp,m ffem,m er,m MACm ffem,m er,m MACm

1 48.3 54.3 0.12 0.98 50.8 0.05 0.98
2 76.6 81.3 0.06 0.81 71.6 0.07 0.84
3 78.7 95.8 0.22 0.77 88.0 0.12 0.74
4 90.4 90.0 0.00 0.51 90.3 0.00 0.77
5 102.1 100.7 0.01 0.81 100.5 0.02 0.80
6 114.5 136.7 0.19 0.78 106.9 0.07 0.67

S2* Before After

m fexp,m ffem,m er,m MACm ffem,m er,m MACm

1 40.0 42.7 0.07 0.90 42.7 0.07 0.90
2 49.0 51.3 0.05 0.98 49.6 0.01 0.98
3 68.1 80.2 0.18 0.92 80.1 0.18 0.92
4 77.1 96.6 0.25 0.61 94.3 0.22 0.61
5 86.9 88.6 0.02 0.97 85.1 0.02 0.97
6 105.1 100.6 0.04 0.95 97.3 0.07 0.95

Table 4. Initial p0 and calibrated pnit parameters for the closed
S1* and open S2* specimen: u and l denote the upper and lower
joint, respectively. All values in the table refer to the properties
of nails except for the entries marked by y, which refers to screw
parameters.

S1* S2*

p0 pnit p0 pnit
d11,u 2.5e7y 9.6e6y 2.5e7 5.0e7
d12,u 5.0e7y 9.2e5y 5.0e7 1.0e5
d22,u 2.5e6y 1.5e8y 2.5e6 5.0e7
d11,l 5.0e7 5.0e7 2.5e7 5.0e7
d12,l 1.0e5 1.0e5 5.0e7 1.0e5
d22,l 5.0e7 5.0e7 2.5e6 5.0e7
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For S2*, in Figure 8b, only one group of model solutions
exists, and the Pareto front is discernible. The Pareto crite-
rion assesses whether a state improves by changing one
target value without deteriorating another. The Pareto
front shows the values that represent the best compromise.
Here, no solution with a smaller frequency error could be
found without causing an increase in the mode error. Due
to this behavior, only a slight improvement of frequency
and mode error is achieved for S2* as can be seen in Table 3:
only the natural frequencies fS2�;2 and fS2�;4 become slightly
closer to the experimentally determined natural frequencies.
However, simultaneously, the match for fS2�;6 becomes
slightly worse, and the MAC values do not increase. In par-
ticular, the fourth mode, which appears to be less clear than
the others (Fig. 7), shows some discrepancy with the simu-
lation results regarding natural frequency. This mode also
shows a MAC of only 0.61, presumably due to the complex-
ity of the mode shape. Moreover, the natural frequencies of
the first and third modes, i.e., the bending modes in the lat-
eral (y-) direction, are somewhat apart from the numerical
results. However, a better match is challenging to obtain
since, for an advantageous adaptation of the joint parame-
ters, the other natural frequencies deviate more from their
experimental counterparts. Still, all MAC values lie above
0.90 except for mode 4 due to a complex mode shape.
Furthermore, except for the second lateral bending mode 3
and the unclear mode 4, the relative frequency error lies
below 10%, which is satisfying. Hence, also for the open
cross-section, the calibrated parameters pnit are assumed
to be suitable for the simulations related to the vibroacous-
tic validation, which is described in the following section.

The updated values of the fasteners are calibrated for
natural frequencies up to approximately 115 Hz and are
thus adaptable for the VDV calculations, which consider
modes around and below this frequency. However, it should
be noted that frequencies of up to 1.3 kHz and 2.4 kHz are
examined in the context of impact sound tests. Therefore,
uncertainty is added to the model by assuming that the
joint stiffnesses from the updating procedure are suitable
for these impact sound computations.

2.3 Model for vibroacoustic validation

FE analyses are performed to validate the vibration
serviceability and impact sound characteristics of the
hybrid steel-timber structures, as measurements are often
time-consuming and costly [13, 14]. Here, the floor struc-
tures S1 and S2 (Tab. 1) without additional components,
such as floating floors or walls located on the edges of the
floors, are considered in the simulations. Even though these
assumptions result in discrepancies between the predicted
and presumably observed behavior of in-situ floors, the
FE models are assumed to provide a first estimate of the
applicability of the proposed hybrid floors.

The parameters pnit (Tab. 4), i.e., the joint parame-
ters identified by calibration, are utilized for these FE
models. Given the profound influence of boundary condi-
tions on structural vibration and sound radiation in the

low-frequency regime, and in light of the unavailability of
measurements for samples S1 and S2 in a built-in configura-
tion, the investigations focus on the two extreme scenarios
regarding boundary conditions: namely, clamped (“c”) and
free (“f”). In the clamped configuration, all degrees of free-
dom are constrained along the outer edges of the floor struc-
ture, whereas in the free boundary condition scenario, none
are restrained. Furthermore, to increase computational effi-
ciency and manage system matrices with respect to memory
resources and disk space, symmetry boundary conditions
are employed in the FE model. This approach involves
discretizing and solving only one-quarter of the floor
element, assuming that the remaining three-quarters can
be derived through symmetry principles. The respective
boundary conditions are applied along the cutting planes
of the quartered floor structure. The load for impact sound
computations is located in the center of the structure, which
is the point of symmetry in x- and y-directions (see Fig. 1 for
the definition of the coordinate system). This excitation
force only excites symmetric modes in both the x- and
y-directions. Therefore, applying only symmetric boundary
conditions is theoretically sufficient, and no additional
antisymmetric boundaries need to be considered in the
response analysis.

As the VDV calculation is based on the load case of a
person crossing the floor, all kinds of modes are excited
and thus need to be considered. Therefore, for the computa-
tion of the VDV, symmetric, antisymmetric, and all possi-
ble combinations of support conditions are applied in the
simulation to incorporate both antisymmetric and symmet-
ric mode shapes.

The implementation of the antisymmetric and symmet-
ric boundary conditions is performed by imposing con-
straints on nodes, respectively DOFs, in the planes of
symmetry or antisymmetry. Hence, the following DOFs
are constrained:

� For symmetry conditions
– In the plane with the normal in x-direction: dis-

placements in x-direction, rotations around the y-
axis, rotations around the z-axis.

– In the plane with the normal in y-direction: dis-
placements in y-direction, rotations around the x-
axis, rotations around the z-axis.

� For antisymmetric conditions
– In the plane with the normal in x-direction: dis-

placements in y- and z-direction, rotations around
the x-axis.

– In the plane with the normal in y-direction: dis-
placements in x- and z-direction, rotations around
the y-axis.

Furthermore, the global impedance for the impact load
computation taken from the respective FE model is scaled
due to symmetry considerations [35].

In contrast, the “c” and “f” boundary conditions are
implemented along the outer edges as previously described.
Hence, four cases are investigated:
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� Closed cross-section, clamped boundary condition:
S1,c;

� Closed cross-section, free boundary condition: S1,f;
� Open cross-section, clamped boundary condition:
S2,c;

� Open cross-section, free boundary condition: S2,f.

The FE models of the analyzed one-quarter of the floor
structures are visualized in Figure 9.

A structural modal damping ratio of 1% is chosen
according to the recommendation of the European timber
standard [36]. The damping identified for the test specimens
S1* and S2* is deemed inappropriate for the FE-model

of the floor structures, i.e., S1 and S2, since boundary
conditions significantly influence the damping of a structure
[37] as well as the overall built-up. Furthermore, no struc-
tural vibration tests have been possible on large-scale floor
structures in a built-in situation. The chosen damping ratio
is applied as a structural loss factor gs = 0.01 � 2 in the
FE-model for the whole analyzed frequency ranges
fimpact,S1 2 [10, 1300] Hz and fimpact,S2 2 [10, 2400] Hz. Here,
uncertainty is introduced in the simulation model since
the damping value proposed by Eurocode 5 [36] applies to
low frequencies related to vibrations. A timber joist floor
investigated by Wang et al. [38] showed an approximate
structural loss factor of 0.02 up to 2500 Hz. Although

Figure 9. FE model of closed sample S1 (a) and open sample S2 (b): bottom view and side views. Steel is colored purple, and timber
parts are cyan. The element thickness is visually scaled to represent the thickness of the respective component.
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this work deals with a pure timber instead of a hybrid steel-
timber floor, the chosen loss factor of 0.02 is deemed accept-
able as a first estimate, as currently, no investigations exist
on the impact sound behavior of hybrid steel-timber floors
such as the presently studied ones.

3 Vibroacoustic criteria

The updated and adapted FE model is used in the
following sections to evaluate the floor structures, S1 and
S2, concerning the vibration serviceability and impact
sound insulation.

3.1 Vibration serviceability

A recent review on steel-timber composite floors [39]
states AISC Design 11 [40] and CCIP-016 [41] as currently
the most adequate references concerning vibrations of
hybrid steel-timber systems. According to [41], the regula-
tions described in the document apply to structures made
of plenty of construction materials with walking excitation.
For floor structures with natural frequencies above 4 Hz,
the impulsive response calculation procedure is adopted as
shown in Algorithm 3.1.

The response factor can be calculated utilizing the
acceleration time history from Algorithm 3.1, which is
related to continuous vibration. Nevertheless, a continuous
vibration is seldom the case. Consequently, the concept of
VDV proposed in [40] is used to estimate the acceptability
of intermittent vibration:

VDV ¼
Z T

0
a4ðtÞdt

� �1=4

¼ 0:68aw;rmsðnday=nightT singleÞ1=4 ð8Þ

with aw,rms the RMS-acceleration response from
Algorithm 3.1, nday = 32, nnight = 16 and the time it takes
to cross the floor

T single ¼ d floor

vstep
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þ b2Þ

q
ð1:67f 2

w � 4:83f w þ 4:50Þ : ð9Þ

Consequently, FE modal analysis is adopted to identify the
fundamental frequency f1, the natural frequencies fm of

modes up to twice the fundamental frequency, and the
corresponding modal masses m̂m of these modes. The modal
damping ratios are taken as 1%, as recommended by [36].

3.2 Impact sound

The standard ISO 10140-5 [23] specifies procedures to
measure impact sound properties. Here, the tapping
machine is described as excitation for impact sound mea-
surements. A numerical version of the tapping machine is
used in this work. The procedure to compute the load-
ing that is applied to the FE model is described in the
following.

Brunskog et al. [43] provide a method to calculate the
discrete frequency spectrum of the impact loading due to
a standard tapping machine. The floor is described by a
general frequency-dependent driving-point impedance Zdp.
The hammer impact force f0(t) = F0d(t) is applied to
the structure. This yields the frequency-dependent force
f0(x) = F0 by a Fourier transform which varies between
2M0v0 and M0v0 for an elastic and plastic impact where
v0 = 0.886 m/s is the initial hammer velocity and
M0 = 0.5 kg equals the weight of a hammer. Here, the geo-
metric mean

ffiffiffi
2

p
M0v0 is considered [44]. The spectrum of

the continuing impact is given as

f 0
1ðxÞ ¼

f0
1þ ixM0=Zdp

: ð10Þ

Then, an inverse Fourier transform computes the corre-
sponding force in time f 0

1ðtÞ. The time of the zero crossing
tcut ¼ fmin tjt > 0; f 0

1ðtÞ ¼ 0g is found and the force
spectrum F1(x) is computed by a Fourier transform.
Finally the Fourier series components Fn = F1(nfh)fh with
fh = 1/Th and Th = 0.5 s for each of the five hammers are
applied to the floor structure at the respective frequencies
[43]. An exemplary plot of the tapping machine load over
frequency is given in Figure 10.

Furthermore, the driving-point impedance of the floor
is computed from the local ZL and global impedance ZG as
follows [38]:

Zdp ¼ ZGðxÞZLðxÞ
ZGðxÞ þ ZLðxÞ : ð11Þ

Algorithm 3.1. Impulsive response calculation procedure

1: Compute modes and eigenfrequencies fm up to twice the fundamental frequency f1

2: Calculate effective footfall impulse Ieff;m ¼ 54 � f
1:43
w

f 1:30
m

with the maximum walking frequency fw = 1.8 Hz and the considered
eigenfrequencies fm

3: Compute peak velocity in each mode m: v̂m ¼ Ue;mUr;mIeff;m=m̂m with Ue,m the value of the mode shape m at the excitation position,
Ur,m the value of the mode shape m at the receiving position, m̂m the modal mass of mode m

4: From this, calculate the velocity response in each mode over the period of one footfall T with f as the modal damping ratio:
vm tð Þ ¼ v̂m exp �2pfmftð Þ sin 2pfmtð Þ with the modal velocity magnitude v̂m

5: Compute total response to each footfall vðtÞ ¼PN
m¼1vmðtÞ � wm with a weighting wm taken from [42] as suggested in [41]

6: For a time-harmonic analysis, the total response to each football can be converted to accelerations by computing the acceleration
magnitude from the velocity magnitude as â ¼ �ixð Þv̂

7: From the resulting acceleration time history, root-mean-square (RMS) response evaluated over one footfall aRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

Z T

0
aðtÞ2dt

s
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The global impedance

ZGðxÞ ¼ �iDjjðxÞ
x

ð12Þ

is found using the dynamic stiffness of the floor

DjjðxÞ ¼ �x2Mjj þ Kjjð1þ igÞ ð13Þ
taken from the FE model at the DOF j of the impact with
Mjj and Kjj as mass and stiffness matrix entries and a
material damping coefficient g = 0.0084 for the upper
timber plate, which is derived from vibration measure-
ments of the LVL plates.

The local impedance is analytically approximated [38]:

ZLðxÞ ¼ 2Erh
ixð1þ mÞð1� mÞ : ð14Þ

with rh the hammer radius, the Poisson’s ratio
m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mxy � myxp , and the elasticity modulus E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex � Ey

p
of the respective material.

The computed force is used in the desired frequency
range of fimpact as excitation on the structure in a time-
harmonic analysis. The considered frequency range differs
between open and closed cross- sections due to requirements
concerning finite element sizes. Hence, fimpact,S1 2 [10, 1300]
Hz and fimpact,S2 2 [10, 2400] Hz are applied as frequency
ranges in the simulations. The resolution of Df = 2 Hz for
the impact sound calculations results from the repetition
frequency of the hammers of the tapping machine. To deter-
mine impact sound characteristics, the sound power P is
computed from the surface velocity of the lower surfaces
of the samples, i.e., timber panels and radiating steel sur-
faces, using the Rayleigh integral [45, 46]. The sound power
level is calculated from the computed sound power P as

LW ¼ 10log10ðP=10�12Þ: ð15Þ

Moreover, third-octave band data is calculated from the
equidistant frequency data.

Since the goal is to compare normalized sound pressure
levels for the hybrid steel- timber floors, sound power levels

LW are converted to sound pressure levels Lp according to
the following relation from [47]:

Lp ¼ LW � 10 log
A
A0

� �
þ 4:34

A
S
þ 10 log 1þ Sc

8Vf

� ��

þC1 þ C2 � 6
�

ð16Þ

where the equivalent absorption surface A of the room
equals

A ¼ 55:26V
cT 60

½m2�: ð17Þ

A reverberation time of T60 = 0.45 s is considered, as spec-
ified in [48] for the respective room volume V = l � b � hroom
= 24.3 m3 where the room height is assigned to be hroom =
2.4 m and length l and width b are taken from Table 1.
Moreover, the reference surface A0 = 1 m2 and the sound
wave velocity c = 343 m/s are specified. The overall surface
of the room is computed as S = l � b � hroom � 2 +
b � hroom � 2 = 51.1 m2. Furthermore, the center frequency
of third-octaves f [Hz] and the correction terms

C1 ¼ �10 log
ps
ps;0

 !
þ 5 log

273:15þ h
h0

� 	
; ð18Þ

as well as

C2 ¼ �10 log
ps
ps;0

 !
þ 15 log

273:15þ h
h1

� 	
; ð19Þ

are required for equation (16). The calculation of the cor-
rection terms in equations (18) and (19) uses the static air
pressure ps = 95 kPa for an altitude of 500 m, the refer-
ence static air pressure ps,0 = 101.325 kPa, the air temper-
ature h = 293.2 K (=20�), h0 = 314 K and h1 = 296 K.
Subsequently, the following relation from [23] is applied

Ln ¼ Lp þ 10 log
A

10m2

� �
ð20Þ

to compute the normalized impact sound pressure.

4 Results

In this section, the findings related to vibration service-
ability and impact sound properties of the samples denoted
as S1 and S2 are presented. The boundary conditions play a
significant role in influencing the structural vibration and
sound radiation in the low-frequency range. Unfortunately,
measurements in a built-in situation have not been feasible.
Thus, a comparative analysis is conducted between two
extreme cases with different boundary conditions, namely,
clamped (“c”) and free (“f”).

4.1 Vibration serviceability properties

The VDV is a critical metric for evaluating the potential
for adverse comments in residential buildings, as prescribed

Figure 10. Example plot of load Fn against frequency.
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by the British Standard BS 6472-1 [42]. The respective limit
values for the VDV are given in Table 5, which are com-
pared with the VDV calculated for all samples j 2 [S1,f;
S1,c; S2,f; S2,c] using Algorithm 3.1 and equation (8). This
computation involves determining fundamental frequencies
f1,j, modes to be considered fm,j, and modal masses m̂m;j

through FE modeling. The results for the different sample
configurations are presented in Table 6.

Upon evaluating the VDV for the test specimens, as
shown in Table 7, several observations emerge. Firstly, it
is evident that S2,c exhibits a higher number of modes
within the specified frequency range DfS2,c 2 [0, 2 � f1,S2,c],
primarily due to its relatively high fundamental frequency
f1,S2,c and the presence of numerous localized modes origi-
nating within the steel frame, which is not as pronounced
in S1. Secondly, S2,f has a relatively low fundamental
natural frequency f1,S2,f, necessitating consideration of only
the fundamental mode within the observed range of DfS2,f 2
[0,2 � f1,S2,f] = [0, 10.58] Hz.

In terms of day and night VDV, samples S1,c, S1,f, and
S2,c exhibit similar values, around 0.57. Notably, S2,f
stands as an outlier, with a VDV reaching up to 1.67, indi-
cating problematic vibrational behavior. The other samples
fall within the “adverse comments possible” range, while S2,f
exceeds this threshold and falls into the category of “adverse
comments probable”. However, the behavior of a built-in
floor structure, which presumably lies between the extreme
boundary conditions of free and clamped, yields VDV
values that also fall within a range between “possible” and
“probable” adverse comments.

As specified in Algorithm 3.1, the structural response
depends on the damping ratio, which has been fixed using
normative specifications. Hence, uncertainty related to the
damping remains and should be kept in mind when inter-
preting the results.

4.2 Impact sound properties

The results of impact sound pressure levels are
examined from two perspectives: the influence of different

boundary conditions, i.e., free “f” and clamped “c”, and the
effect of the two distinct cross-section types, i.e., open and
closed. The comparison of the impact sound results under
the different boundary conditions “f” and “c” is depicted in
Figure 11.

Two insights can be gained from these plots. Firstly, as
anticipated, the impact of boundary conditions is most pro-
nounced in the lower frequency range, up to 80 Hz for S1
and up to 500 Hz for S2. Secondly, the impact of boundary
conditions is more substantial for the closed specimen S1
compared to the open one S2 up to 100 Hz. This discrep-
ancy arises because, in the clamped case, all edges of the
lower timber panel are fixed for S1, whereas for S2, only
the edges at the longitudinal ends of the lower timber panel
are fixed, resulting in a greater influence of boundary condi-
tions in the low-frequency range for S1.

Furthermore, a comparison of the different cross-section
types, open and closed, under both boundary conditions is
presented in Figure 12.

Both cross-section types exhibit similar quantitative
behavior, with S1 displaying slightly higher sound pressure
levels in some third octaves, specifically about 5 dB higher
than S2. This observation suggests that S2 radiates slightly
less sound than S1. Qualitatively, the two configurations
share similar curve shapes, but slight shifts in characteris-
tics are observed in frequency due to their different struc-
tural setups. For instance, under clamped support
conditions, both specimens initially exhibit a low sound
pressure level at lower frequencies, at approximately

Table 5. VDV ranges for the probability of adverse comments

Place and time Low probability
[ms�1.75]

Adverse comments
possible [ms�1.75]

Adverse comments
probable [ms�1.75]

Residential buildings day 0.2–0.4 0.4–0.8 0.8–1.6
Residential buildings night 0.1–0.2 0.2–0.4 0.4–0.8

Table 6. Fundamental frequencies f1,j [Hz], modes for the VDV evaluation fm,j [Hz], and modal masses m̂m;j of the samples j 2 [S1,f;
S1,c; S2,f; S2,c].

Sample j f1,j [Hz] fm,j [Hz] mm,j [kg]

S1,c 49.81 {49.81; 56.82; 70.06; 89.54} {0.28; 0.11; 0.04,0.03}
S1,f 17.75 {17.75; 22.45; 34.18} {0.69; 0.34; 0.21}
S2,c 63.42 {63.42; 66.96; 74.34; 84.20; 88.19; 88.99; 90.23; 92.47; {1.93; 0.43; 0.18; 0.11; 0.10; 0.10; 0.07; 0.08;

{92.50; 107.6; 108.73; 110.2; 112.73; 112.80; 116.78} {0.09; 0.06; 0.05; 0.06; 0.06; 0.42; 0.14}
S2,f 5.29 {5.29} {14.97}

Table 7. VDV during the day VDVd,j [ms�1.75] and VDV
during the night VDVn,j [ms�1.75] of the samples j 2 [S1,f; S1,c;
S2,f; S2,c].

Sample j VDVd,j [ms�1.75] VDVn,j [ms�1.75]

S1,c 0.65 0.55
S1,f 0.57 0.46
S2,c 0.57 0.48
S2,f 1.67 1.41
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30 Hz. Subsequently, a distinct peak is shown at roughly 50
Hz for S1 and approximately 63 Hz for S2. Notably, the
peak for S2 shifts to the adjacent third-octave band due
to the resonant behavior of the structure. Furthermore,
qualitative disparities become evident in the clamped
support scenario within the frequency range of 160–
800 Hz, where S2 demonstrates more fluctuations in sound
pressure levels than S1.

To provide context for the impact sound behavior of the
hybrid steel-timber floors, the impact sound pressure level
values from Table B.2 of ISO 12354-2 [49] for concrete floors
(100 mm and 180 mm thick) with a bonded screed layer
(20 mm and 50 mm thick) are included for comparison in
Figure 13. The lower and upper bounds of sound pressure
levels for the hybrid steel-timber floors are established,
offering a range of in-situ behavior. This means that in
every third-octave band, the minimum value of the four
sound pressure levels, i.e., S1,f, S1,c, S2,f and S2, c, is iden-
tified and taken as a value for the lower bound and vice
versa for the upper bound.

In the low-frequency range up to 200 Hz, the lower and
upper bounds cover values similar to those of concrete
floors. In the mid-frequency range, up to around 1000 Hz,
the hybrid floors’ sound pressure levels fall between the
two concrete floors. Beyond 1000 Hz, the hybrid floors exhi-
bit sound pressure levels higher than the concrete floors,

with a decreasing trend at 2000 Hz. This indicates that
the levels may approach those of concrete floors at higher
frequencies. However, this could not be definitively verified

Figure 11. Normalized impact sound pressure of samples S1 (a) and S2 (b) for the cases “f” and “c” for third-octave bands.

Figure 12. Comparison of the sound pressure levels of the samples S1 (closed) and S2 (open) for the cases “f” (a) and “c” (b) for third-
octave bands.

Figure 13. Comparison of the upper and lower bounds of the
sound pressure levels computed for the hybrid floor samples S1
and S2 with the values for a 100 mm thick concrete floor with a
20 mm thick bonded screed and a 180 mm thick concrete floor
with a 50 mm thick bonded screed provided in [40]. Results are
given in third-octave bands for the upper and lower bounds and
in octaves for the concrete floors.
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due to the limited computational resources and, hence,
limited observed frequency ranges. Additionally, it should
be noted that the damping and joint stiffness values are
chosen based on assumptions explained in previous sections.
Thus, the interpretation of the results is subject to the
respective modeling choices. In conclusion, the hybrid floors
demonstrate behavior similar to concrete floors. However,
influences of additional structural components of a built-
in situation, e.g., floating floors, are not considered in this
study. Hence, a more realistic setting in a building might
give more insight into the comparison of the floor types.

5 Discussion

In the present study, the FE models of the hybrid floor
structures rely on parameters derived from the calibration
of FE models of smaller specimens. It is worth noting that
this step assumes the transferability of these parameters,
a presumption that should be validated through future
large-scale tests. Moreover, the construction of all models,
both for small- and large-scale specimens, is based upon cer-
tain assumptions. These assumptions cover factors such as
the appropriateness of the realization of free boundaries in
the measurements and the suitability of the employed joint
and structural model. The results indicate that the struc-
tural behavior has been reasonably approximated.

The assessment of vibration serviceability, as evaluated
by the VDV, emphasizes concerns related to potential resi-
dent annoyance. Observably, none of the examined cases
exhibit a low probability of adverse comments. One poten-
tial remedy for enhancing the performance of these floor
structures involves increasing the distributed mass of the
floor. However, such a mass increase necessitates accurate
adjustment, as it concurrently affects the natural frequency
of the floor – a factor of substantial significance for vibra-
tion serviceability as a too-low fundamental frequency
may pose a challenge. Additionally, another potential strat-
egy for mitigating the issue of high VDV involves increasing
inherent damping. Investigating the damping characteris-
tics in greater detail may provide valuable insights for effec-
tively addressing this concern.

Regarding impact sound pressure levels, as expected,
the influence of boundary conditions is most pronounced
in the lower frequency range. Furthermore, the open and
closed cross-sections display quite similar behavior, thus
making the open setup only slightly more convenient for
practical applications. When the performance of the hybrid
structures is compared with commonly used concrete floors
with bonded screed, it becomes evident that a similar level
of performance can be achieved. Still, it is to be noted that a
built-in situation in buildings differs from the tested setting
as usually floating floors or soft coverings are applied to
further reduce impact sound noise. This step is commonly
performed after the floor installation for both concrete
and hybrid steel-timber floors. Compared to the concrete
floors, the hybrid floors might be considered beneficial in
terms of weight and sustainability.

6 Conclusions

In conclusion, this investigation explores novel hybrid
steel-timber floor elements, primarily focusing on their
vibration serviceability and impact sound performance.
Leveraging Finite Element analysis techniques, this study
provides a comprehensive examination of the behavior of
these innovative building components in terms of vibroa-
coustics. First, the Finite Element model is validated by
aligning it with experimental data on natural frequencies
and modes and determining joint stiffness values. This
calibrated model serves as the basis for the in-depth analysis
of vibration serviceability. This analysis expressed through
vibration dose values, offers an initial insight into the real-
world performance of these hybrid floor elements. Addition-
ally, this study numerically explores the hybrid steel-timber
floors’ impact sound insulation properties, an aspect that
has received limited attention in previous research. The out-
comes presented herein reveal that the proposed building
elements exhibit comparable behavior to that of conven-
tional concrete ceilings, thus making the application of
hybrid steel-timber floors feasible for future construction
projects. The assumptions related to the structural damp-
ing and the applicability of the joint stiffness parameters
at higher frequencies must be kept in mind, and further
investigations in this regard are still required. Moreover,
analyses in a realistic setting utilizing additional structural
components, e.g., floating floors, will lead to more detailed
insights into the impact sound insulation. It is worth noting
that while the resultant vibration amplitudes, as quantified
by vibration dose values, mostly fall within the range of
possible adverse comments, there remain possibilities to
further investigate the damping behavior of large-scale floor
structures, which might support their broader adoption in
construction practices. Laboratory tests on large-scale floor
structures might further be used to validate the impact
force applied to the FE model using an ISO tapping
machine.
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