
Technische Universität München
TUM School of Engineering and Design

Evaluation and Simulation-Based Optimization of
Urban Traffic Resilience

Qinglong Lu
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Abstract

Transportation system disruptions often result in significant social and economic con-
sequences, particularly with the increasing frequency of triggers like natural disasters
and man-made incidents. This necessitates effective methods for evaluating and opti-
mizing system performance under disruption conditions. Resilience, a comprehensive
measure describing systems’ ability to withstand and recover rapidly from disruptions,
has become a central focus in this research direction. Traffic resilience, a term created
for assessing transportation system resilience from the perspective of traffic flows, is yet
to be comprehended at the methodological level and implemented at the practical ap-
plication level. This dissertation aims to develop methods, algorithms, and experiments
to address this problem. A conceptual relation diagram is constructed to describe the
interdependence of the essential components for traffic resilience assessment frameworks.
Specifically, the diagram illustrates that dynamic travel demand modeling and reliable
traffic resilience indicators are two prerequisites for the evaluation and optimization
of urban traffic resilience. The dissertation contributes to these three research domains
across data sources, modeling frameworks, practical applications, and empirical insights.

In terms of origin-destination (OD) demand estimation, methods relying on conven-
tional data sources like household travel surveys and traffic network detection encounter
limitations due to low observability and indeterminateness, particularly during disrup-
tions. The dissertation explores the potential of opportunistic data, particularly location-
based social network (LBSN) data, to overcome these limitations. More specifically, we
develop a dynamic OD matrix estimation method based on LBSN data by leveraging a
two-stage stochastic programming framework, with specific consideration of the unique
characteristics of LBSN data regarding confirmed trip purpose identification and activity
chain hosting. On the other hand, a three-step framework integrating histogram-based
feature engineering, clustering, and classification models is proposed to estimate demand
pattern changes under demand-side disruptions using crowdsensed data and station char-
acteristics. These methods provide a way to capture demand changes and accurately
estimate disrupted travel demand by solely utilizing publicly available data.

Further, we propose novel traffic resilience indicators according to the Macroscopic
Fundamental Diagram (MFD) dynamics before and after disruptions, given that the
MFD is an intrinsic property of a homogeneously congested transportation network.
More importantly, we distinguish the indicators for different types of disruptions, in-
cluding demand-side (e.g., hyper-congestion), supply-side (e.g., link closure), and mixed
disruptions, due to the discrepancy between the system’s manifestations in MFD dy-
namics when encountering these disruptions. Inspired by the serving rate of facilities
defined in the queueing theory and the primary role of transportation in facilitating
the movement of people and goods, resilience loss is measured by the reduction in trip
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completion rate. Furthermore, we explore the relationship between resilience loss and
network topological attributes, such as centrality and connectivity, from a variety of
synthetic disruption experiments to evaluate the extent to which network topology can
explain traffic resilience.

To address simulation-based optimization for urban traffic resilience, the dissertation
investigates the feasibility of using surrogate models as a time-efficient alternative to
resource-intensive simulations. A physics-informed surrogate modeling framework in-
corporating the proposed MFD-based traffic resilience indicators is developed, which
combines a physical component derived from an analytical network model with a func-
tional component for modeling the difference between simulation results and approxima-
tions. Then, we apply this framework to post-disruption recovery measure optimization
problems for examination and validation purposes, in which lane reversal control is em-
ployed as the recovery measure. Decision-makers can utilize this framework to quickly
design appropriate recovery measures in response to disruptive events.
The proposed models, frameworks, and algorithms are evaluated through experiments

conducted in large-scale real-world networks, including Tokyo, Kyoto, and Munich.
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Zusammenfassung

Verkehrsunterbrechungen führen häufig zu erheblichen sozialen und wirtschaftlichen Fol-
gen, insbesondere aufgrund der zunehmenden Häufigkeit von Auslösern wie Naturkata-
strophen und von Menschen verursachten Vorfällen. Dies erfordert wirksame Methoden
zur Bewertung und Optimierung der Systemleistung unter Störungsbedingungen. Resi-
lienz, ein umfassendes Maß für die Systemleistung unter Störungen, ist zu einem zentra-
len Schwerpunkt in dieser Forschungsrichtung geworden. Verkehrsresilienz, ein Begriff,
der zur Bewertung der Resilienz von Verkehrssystemen aus der Perspektive von Ver-
kehrsströmen geschaffen wurde, muss noch auf methodischer Ebene verstanden und auf
praktischer Anwendungsebene implementiert werden. Diese Dissertation zielt darauf ab,
Methoden, Algorithmen und Experimente zu entwickeln, um dieses Problem anzuge-
hen. Ein grundlegendes Beziehungsdiagramm wird erstellt, um die Interdependenz der
notwendigen Komponenten für einen Rahmen zur Bewertung der Verkehrsresilienz zu be-
schreiben. Insbesondere veranschaulicht das Diagramm, dass die dynamische Schätzung
der Reisenachfrage und zuverlässige Indikatoren für die Verkehrsresilienz zwei Voraus-
setzungen für die Bewertung und Optimierung der städtischen Verkehrsresilienz sind.

Im Bereich der Schätzung von Ursprungs-Ziel (OD) Nachfragen stoßen herkömmliche
Methoden, die sich auf Datenquellen wie Haushaltsreisebefragungen und Verkehrsnet-
zerkennung verlassen, aufgrund geringer Beobachtbarkeit und Unbestimmtheit, insbe-
sondere während Störungen, auf Grenzen. Diese Dissertation erforscht das Potenzial von
opportunistischen Daten, insbesondere von datenbasierten sozialen Netzwerken (LBSN),
um dieses Problem zu lösen. Genauer gesagt, wird mithilfe eines zweistufigen stochasti-
schen Programmierungsrahmens eine dynamische OD-Matrix-Schätzmethode unter Ver-
wendung von LBSN-Daten entwickelt, wobei deren Vorteile bei der Bestätigung des Rei-
sezwecks und Hosting der Aktivitätenketten berücksichtigt werden. Andererseits wird
ein dreistufiger methodischer Rahmen vorgeschlagen, der histogrammbasierte Merkmals-
konstruktion, Clusterbildung und Klassifizierungsmodelle integriert, um Änderungen im
Nachfragemuster des öffentlichen Verkehrs (ÖV) aufgrund von nachfrageseitigen Störungen
unter Verwendung von crowdsensing-Daten und Stationsmerkmalen zu schätzen.

Bezüglich der Indikatoren für die Verkehrsresilienz werden neuartige Indikatoren vor-
geschlagen, die aus der Dynamik des makroskopischen Fundamental Diagramms (MFD)
vor und nach Störungen abgeleitet sind. Da MFD eine intrinsische Eigenschaft eines ho-
mogen verstopften Verkehrsnetzes ist und es Unterschiede in den Einflussmechanismen
gibt, die verschiedenen Arten von Störungen zugrunde liegen, messen diese Indikatoren
separat die Resilienzverluste durch Stau und Netzwerkunterbrechungen. Inspiriert von
der Bedienungsrate von Einrichtungen, wie sie in der Warteschlangentheorie definiert ist,
und der primären Funktion des Verkehrs, Menschen und Güter zu befördern, wird der
Resilienzverlust durch die Verringerung der Reiseabschlussrate gemessen. Darüber hin-
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aus untersuchen wir die Beziehung zwischen Resilienzverlust und netzwerk-topologischen
Attributen wie Zentralität und Konnektivität anhand einer Vielzahl von synthetischen
Störungsexperimenten, um zu bewerten, inwieweit die Netzwerk-Topologie die Verkehrs-
resilienz erklären kann.

Um die simulationsbasierte Optimierung der städtischen Verkehrsresilienz anzugehen,
untersucht diese Dissertation die Machbarkeit der Verwendung von Surrogatmodellen
als zeit-effiziente Alternative zu ressourcenintensiven Simulationen. Es wird ein physik-
informierter Surrogatmodellierungsrahmen entwickelt, der die vorgeschlagenen auf MFD
basierenden Verkehrsresilienzindikatoren integriert und eine physische Komponente aus
einem analytischen Netzwerkmodell mit einer funktionalen Komponente kombiniert, um
die Unterschiede zwischen Simulationsergebnissen und Annäherungen zu modellieren.
Anschließend wenden wir diesen Rahmen auf das Optimierungsproblem von Maßnah-
men zur Wiederherstellung nach Störungen an, bei dem die Umkehrung der Fahrspur
als Wiederherstellungsmaßnahme eingesetzt wird. Entscheidungsträger können diesen
Rahmen nutzen, um schnell geeignete Wiederherstellungsmaßnahmen als Reaktion auf
Störungsereignisse zu entwerfen.
Die vorgeschlagenen Modelle, Rahmen und Algorithmen werden durch Experimente

in großen realen Netzwerken, einschließlich Tokyo, Kyoto und München, bewertet.
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Chapter 1

Introduction

1.1 Background and motivation

Natural disasters and special events, whether planned or unplanned, can easily result in
disruptions to urban transportation systems. These disruptions have demonstrated their
devastating effects on people’s daily lives, as well as social and economic activities, as
can be inferred from the ramifications of their triggers. For instance, in 2023, 28 natural
disaster events caused more than a billion dollars in damage per event in the United
States alone (NOAA, 2024). Among these events, two resulted in 247 and 100 deaths,
respectively, while an additional five events caused more than 10 deaths each.

Additionally, the frequency of natural disasters has notably increased in the past two
decades. According to a report collated by the United Nations Office for Disaster Risk
Reduction (UNDRR), the number of disaster events between 2000 and 2019 was 1.74
times that in the previous twenty years (between 1980 and 1999), resulting in approxi-
mately $2.97 trillion in economic losses. The disruptions caused by these disasters, for
instance, road inundation due to flooding (increases about 2.34 times within the same
period), impose a significant challenge on transportation system operations. Therefore,
it is imperative to develop a comprehensive methodological framework for establishing
reliable assessment and enhancement mechanisms to assist in improving the performance
of transportation systems in the face of disruptive events.

The term resilience originates from the Latin word “resiliere”, which means bounce
back or spring back. It was first conceptualized and applied in academic research by
Holling (1973) specifically in evaluating ecological systems. Since then, it has been intro-
duced to various disciplines, including organization, economics, social science, engineer-
ing, etc. (Zhou et al., 2019). In the evaluation of system performance under disruptions,
resilience is deemed more comprehensive compared with other terms proposed for similar
purposes, such as vulnerability and robustness. This is because it explicitly accounts for
the additional recovery phase, including the new equilibrium state and recovery speed,
which is, however, usually overlooked by other terms. Mathematically, system resilience
can be quantified by integrating the deviation of system functionality from its optimal
state throughout the disruption period (Bruneau et al., 2003). This can be expressed as
Equation (1.1), where t0 and t1 indicate the start and end of the disruption, respectively,
and Q(t) represents the system functionality at time t. For ease of understanding, Fig-
ure 1.1 provides a graphical illustration of the calculation of resilience loss, commonly
referred to as the “resilience triangle” in the literature. Upon the occurrence of a disrup-
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tion, the system experiences a decline in functionality. However, owing to the system’s
inherent resilience and the implementation of recovery measures, this decline eventually
stabilizes and initiates a process of restoration towards a new equilibrium state. Hence,
the entire disruption period can often be divided into a disruption phase and a recovery
phase.

R =

∫ t1

t0

(100−Q(t)) dt (1.1)

Disruption
phase

System functionality

Time

100%
Disruption event

Recovery
phase

Resilience loss

Figure 1.1: Graphical definition of system resilience.

The application of the resilience concept to transportation systems has attracted much
attention from scholars and practitioners in recent years (see reviews from Zhou et al.,
2019; Gonçalves and Ribeiro, 2020; Pan et al., 2021; Serdar et al., 2022). Whilst trans-
portation system resilience is defined slightly differently from one another across relevant
publications to accommodate specific application requirements, a typical definition given
by the Federal Highway Administration (FHWA) of the United States is as follows: “Re-
silience represents the ability to prepare for changing conditions and withstand, respond
to, and recover rapidly from disruptions”. Moreover, it is worth noting that disruptions
in transportation systems often come with recurring or non-recurring congestion, thereby
impeding traffic efficiency. Accordingly, traffic resilience has been proposed to evaluate
the traffic states over the course of a given disruption. Here, traffic resilience is defined
as “the ability of an urban road transportation system to prepare for different kinds of
disruptions, effectively serve vehicles, and recover rapidly to its optimal serving rate”
(Lu et al., 2024c). Compared to conventional indicators for evaluating transportation
system resilience, reliable traffic resilience indicators offer a reasonable alternative in
traffic-oriented evaluations of transportation system performance under disruptions.

The Origin-Destination (OD) matrix, as a representative of mobility demand patterns,
is indispensable in urban transportation management and traffic control systems (Xiong
et al., 2020; Qurashi et al., 2022; Lu et al., 2024b). Combining it with a traffic assignment
model enables the investigation of urban traffic flows in a detailed manner. Hence, the
OD matrix usually serves as a fundamental component of numerous traffic operational
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applications. Clearly, accurate travel demand estimates are also crucial to the reliability
of traffic resilience evaluation. To date, conventional OD estimation methods typically
rely on either household travel surveys or traffic measurements collected by fixed loop
detectors spread throughout the network and floating cars (e.g., taxis). However, the
former category of methods is often limited to long-term urban planning applications
owing to the low frequency of survey implementation (Jin et al., 2014), while the latter
structurally suffers from the indeterminateness issue due to the insufficiency of detec-
tors compared to the high-dimensional OD flows (Cascetta et al., 2013; Antoniou et al.,
2016; Qurashi et al., 2022). Furthermore, in the context of disruptive events, these
conventional methods are prone to encountering missing data issues resulting from po-
tential infrastructure damage. These limitations make them inappropriate for dynamic
estimation of disrupted travel demand. Mahajan (2023) suggested that streaming data
from emerging data sources can help address this challenge. Emerging data here refers
to data types emerging from relatively newer sources, for instance, mobile crowdsensed
social media (Harrison et al., 2020). It has also been highlighted that these data can
provide disrupted travel demand management with reliable and up-to-date information
(Pender et al., 2014). As a result, leveraging these opportunistic data for travel demand
estimation provides opportunities to overcome the limitations inherent in conventional
methods in the context of transportation disruptions.

On the other hand, a reliable indicator of system functionality is also critical to the
evaluation of system resilience. As per Yang et al. (2023), about 50 indicators have been
proposed to quantify transportation system resilience. These indicators can be primarily
classified as network topology-based indicators (e.g., link criticality) and trip-based indi-
cators (e.g., average travel time). While network topology-based indicators are capable
of providing insight into the structural risk of transportation networks, and trip-based
indicators can reflect traffic efficiency to some extent, they often fail to incorporate infor-
mation on transportation network characteristics, traffic dynamics, and travel demand
patterns simultaneously. Therefore, they may not fully represent transportation system
resilience as a holistic property of the system.

Existing resilience optimization approaches for transportation systems can be mainly
categorized into big data-driven, simulation-based, mathematical programming, and
probabilistic methods (Serdar et al., 2022). Among these, simulation-based methods
hold the superiority of integrating disaggregate models of stochastic driver behaviors
(e.g., car-following, lane-changing, route choice), which, once calibrated using real data,
can provide accurate and detailed traffic state estimates for a given strategy (Osorio and
Chong, 2015). However, traffic simulation models are generally computationally expen-
sive due to their complex, dynamic, and stochastic nature, restricting their applications
in many practical problems that require fast decisions, such as emergency recovery mea-
sure optimization. Consequently, it is beneficial to develop efficient models to cope with
this issue so as to improve the use of simulation-based approaches in practice. Surrogate
modeling approaches, which combines the advantages of traffic simulators in estimating
time-dependent traffic dynamics and the efficiency of mathematical optimization, have
been proposed for this purpose.
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To summarize, with accurate dynamic demand estimates and reliable resilience indica-
tors, one is able to create a testbed to examine various resilience enhancement strategies.
The optimization of urban traffic resilience thus becomes possible. We present the con-
ceptual relation diagram in Figure 1.2 to illustrate this essential argument. Simply
speaking, it says that demand modeling and resilience indicators are two prerequisites
for traffic resilience evaluation and optimization.

Demand
modeling

Resilience
indicators

Traffic resilience
evaluation and optimization

Figure 1.2: Relation diagram of the three essential components in traffic resilience assessment
frameworks.

1.2 Problem definition and research objectives

Given the huge social and economic losses resulting from disruptions to transportation
systems, analyzing their response to and recovery from such disruptions is always of
great interest to the transportation community. Although the resilience concept has
been extensively employed to assess the performance of urban transportation systems
under disruptions, traffic resilience, emphasizing the fundamental functions of trans-
portation, i.e., faciliatating the movement of people and goods, is a relatively new term
in the literature. A comprehensive traffic resilience assessment framework relies on three
essential components: dynamic travel demand modeling, traffic resilience indicators, and
traffic resilience optimization approaches. To date, however, the state-of-the-art has yet
to provide satisfactory and convincing solutions in these three directions. It follows that
the Research Questions (RQs) listed below remain open for researchers, which are also
the focus of the dissertation.

RQ(1) How can we precisely estimate the travel demand under disruptions?

RQ(2) What indicators can be employed to reliably measure traffic resilience in urban
transportation systems?

RQ(3) How can we accurately formulate and efficiently solve traffic resilience optimiza-
tion problems?

Following these RQs, this dissertation aims to advance the modeling of disrupted
travel demand, as well as the evaluation and optimization of urban traffic resilience.
Given the limitations of conventional data sources in the estimation of travel demand
under disruptions and the great potential of emerging opportunistic data in providing
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real-time information on urban mobility patterns, it is expected to obtain benefits from
developing travel demand estimation methods using opportunistic data. On the other
hand, since state-of-the-art microscopic traffic simulation models can produce complex
and reliable traffic dynamics via their detailed modeling of the intertwined interactions
between system supply and demand, they have become a popular tool for addressing
transportation operation and control problems. However, no studies have been con-
ducted to explore their applications to traffic resilience optimization problems to date.
With these considerations, the following Research Objectives (ROs) are formulated:

RO(1) Investigate the applications of emerging opportunistic data in travel demand
estimation.

RO(2) Develop robust and reliable traffic resilience indicators to evaluate the perfor-
mance of urban transportation systems under disruptions.

RO(3) Explore the relationship between traffic resilience indicators and conventional
resilience indicators adopted in transportation systems.

RO(4) Develop simulation-based approaches for traffic resilience optimization.

RO(5) Develop computationally efficient algorithms to tackle city-wide traffic resilience
optimization problems.

1.3 Dissertation contributions

This dissertation contributes to the existing body of knowledge on travel demand mod-
eling, traffic resilience, and simulation-based optimization. In particular, we summarize
the main contributions of the dissertation below.

• Travel demand estimation methods built upon emerging opportunistic data.

• Robust traffic resilience indicators based on Macroscopic Fundamental Diagrams
(MFDs).

• Regression analysis relating traffic resilience with transportation network topology.

• Surrogate modeling for simulation-based traffic resilience optimization problems.

• Post-disruption recovery measure optimization model for improving traffic re-
silience.

• Efficient algorithms for solving discrete simulation-based optimization problems.

Detailed contributions are specified in the respective chapters of the dissertation.
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1.4 Dissertation structure and list of publications

The structure of the dissertation is shown in Figure 1.3. The dissertation is centered and
focused around the central diagram (also provided in Figure 1.2) describing the interre-
lation among travel demand modeling, traffic resilience indicators, and traffic resilience
evaluation and optimization. The current chapter and the subsequent chapter, through
reviewing the state-of-the-art literature, identify research gaps, formulate RQs, and de-
lineate ROs. The central conceptual relation diagram (Figure 1.2) is also an outcome
of this analysis. The next chapter after that expands the relation diagram to develop
a methodological framework for traffic resilience evaluation and optimization. For each
component in the diagram, two chapters with different research topics are embedded,
contributing to the understanding of the corresponding field from both theoretical and
practical perspectives. Finally, the dissertation concludes with a summary of research
findings and insights gleaned from the studies, and outlines future research directions.

Origin-destination demand
estimation with location-

based social network data

Chapter 4

Estimating demand pattern
changes under disruptions

with crowdsensed data

Chapter 5

Traffic resilience indicators
based on macroscopic
fundamental diagrams

Chapter 6

Regression analysis between
traffic resilience and network

topology

Chapter 7

Surrogate model for
simulation-based traffic
resilience optimization

Chapter 8

Simulation-based recovery
measure optimization

Chapter 9

Resilience
indicators

Demand
modeling

Research findings
and future work

Chapter 10

Methods
and data

Chapter 3Introduction

Chapter 1

Literature review

Chapter 2

Traffic resilience
evaluation and optimization

Figure 1.3: Dissertation structure.

We briefly describe the key contents of each chapter as follows.

• Chapter 1 introduces the background, motivation, and research questions, objec-
tives, contributions and the structure of this dissertation. It presents the con-
ceptual relation diagram illustrating the three essential components of a traffic
resilience assessment framework and their interdependent relationship, directing
the research endeavors of the dissertation.
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• Chapter 2 reviews the state-of-the-art literature related to the ROs of this dis-
sertation. It covers topics such as travel demand estimation, indicators and opti-
mization approaches for transportation system resilience, and the simulation-based
optimization approaches in transportation engineering. This chapter aims to iden-
tify literature gaps crucial for addressing the ROs.

• Chapter 3 presents the overall methodological framework of the dissertation, which
is also a general framework for investigating traffic resilience evaluation and opti-
mization problems. It also summarizes the models, solution algorithms, data, and
study areas used in the following chapters.

• Chapter 4 develops an OD estimation model driven by location-based social net-
work data leveraging the two-stage stochastic programming framework. We pro-
pose an algorithm that integrates Markov chain Monte Carlo sampling and the
generalized Benders decomposition algorithm to solve the model.

• Chapter 5 develops a three-step busyness-based framework involving a histogram-
based feature engineering approach, a clustering model component, and a clas-
sification model component to investigate the potential of crowdsensed data for
capturing demand pattern changes in public transport systems under demand dis-
ruptions.

• In Chapter 6, inspired by the fact that the Macroscopic Fundamental Diagram
(MFD) is an intrinsic property of a homogeneously congested transportation net-
work, we proposes MFD-based traffic resilience indicators by associating the trip
completion rate and system functionality. Resilience to demand-side and supply-
side disruptions are separately considered due to the distinction in their influencing
mechanisms.

• Chapter 7 provides a regression analysis of the relationship between traffic re-
silience indicators and conventional network topology-based indicators. It illus-
trates the extent to which structural risks can explain traffic resilience. On the
other hand, it can serve as a general guidance for the construction of traffic-oriented
resilient transportation networks.

• Chapter 8 develops a physics-informed surrogate model to expedite the solution
algorithm for simulation-based traffic resilience optimization problems. The model
integrates a dynamic and temporally correlated analytical network model to offer
information on the physical laws between the variables of interest, and a functional
component to capture the difference between analytical and simulated values.

• Chapter 9 applies the proposed surrogate model to address post-disruption recov-
ery measure optimization problems with an objective to improve traffic resilience.
The lane reversal technique is creatively used as recovery measures under supply
disruptions.
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• Chapter 10 concludes by summarizing the proposed methods, findings, and in-
sight from the experiments conducted, and also suggests possible future research
directions.

This dissertation comprises a collection of the following publications resulting from
the research endeavors described herein.

Journal articles:

– Lu, Q.-L., Qurashi, M., and Antoniou, C. (2023b). Simulation-based policy anal-
ysis: The case of urban speed limits. Transportation Research Part A: Policy and
Practice, 175:103754.

– Lu, Q.-L., Mahajan, V., Lyu, C., and Antoniou, C. (2024a). Analyzing the impact
of fare-free public transport policies on crowding patterns at stations using crowd-
sensing data. Transportation Research Part A: Policy and Practice, 179:103944.

– Lu, Q.-L., Qurashi, M., and Antoniou, C. (2024b). A two-stage stochastic pro-
gramming approach for dynamic OD estimation using LBSN data. Transportation
Research Part C: Emerging Technologies, 158:104460.

– Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2024c). Traffic
resilience quantification based on macroscopic fundamental diagrams and analysis
using topological attributes. Reliability Engineering & System Safety, 247:110095.

– Lu, Q.-L., Sun, W., Lyu, C., Schmöcker, J.-D., and Antoniou, C. (2024d). Post-
disruption lane reversal optimization with surrogate model to improve urban traffic
resilience. (Under Review).

Peer-reviewed conferences:

– Lu, Q.-L., Qurashi, M., and Antoniou, C. (2022). A stochastic programming
method for od estimation using lbsn check-in data. In 4th Symposium on Man-
agement of Future Motorway and Urban Traffic Systems (MFTS 2022).

– Lu, Q.-L., Qurashi, M., and Antoniou, C. (2023c). A two-stage stochastic pro-
gramming approach for dynamic OD estimation. In 102nd Annual Meeting of the
Transportation Research Board (TRB 2023).

– Lu, Q.-L., Mahajan, V., Lyu, C., and Antoniou, C. (2023a). Analyzing crowding
in public transport during 9-EUR ticket using crowdsensing data. In 25th Euro
Working Group on Transportation Meeting (EWGT 2023).
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– Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2023d). An
MFD-based optimization approach to improve transportation system resilience
under infrastructure disruption. In 25th Euro Working Group on Transportation
Meeting (EWGT 2023).

– Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2023e). Surrogate
modeling for recovery measure optimization to improve traffic resilience. In 9th
International Symposium on Transport Network Resilience (INSTR 2023).
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Literature review

The content of this chapter has been partially presented in the following works:

Lu, Q.-L., Mahajan, V., Lyu, C., and Antoniou, C. (2024a). Analyzing the impact of fare-
free public transport policies on crowding patterns at stations using crowdsensing
data. Transportation Research Part A: Policy and Practice, 179:103944.

Lu, Q.-L., Qurashi, M., and Antoniou, C. (2024b). A two-stage stochastic programming
approach for dynamic OD estimation using LBSN data. Transportation Research
Part C: Emerging Technologies, 158:104460.

Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2024c). Traffic resilience
quantification based on macroscopic fundamental diagrams and analysis using topo-
logical attributes. Reliability Engineering & System Safety, 247:110095.

Lu, Q.-L., Sun, W., Lyu, C., Schmöcker, J.-D., and Antoniou, C. (2024d). Post-disruption
lane reversal optimization with surrogate model to improve urban traffic resilience.
(Under Review).

2.1 Introduction

This chapter reviews the literature and the state-of-the-art approaches and applications
in the field pertaining to the three essential components of traffic resilience assessment:
travel demand modeling, resilience indicators, and resilience evaluation and optimization.
As such, this chapter is structured into three sections, each dedicated to one specific
aspect.

In the first section, we delve into the issue of scalability inherent in conventional traffic-
measurement-based OD demand estimators, which stands as a major limitation of these
methods. We review the endeavors that focus on eliminating this limitation, which
becomes particularly pronounced when considering the conditions under disruption sit-
uation. Given the potential of opportunistic data in either replacing, complementing
or supplementing conventional data in OD estimation (Pender et al., 2014; Mahajan
et al., 2023), we also review the state-of-the-art in using opportunistic data, in partic-
ular Location-Based Social Network (LBSN) data and crowdsensed data, for demand
modeling.

In the second section, we conduct a comprehensive review of network-wide resilience
indicators proposed for transportation systems. In particular, according to the re-
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search scope of this dissertation, we primarily focus on two categories: those based
on simulation-based approaches and those developed using the concept of MFD.

In the third section, we review the literature on major disruption categories that
have been broadly investigated in the transportation community and the evaluation
approaches adopted. Additionally, we are also interested in approaches to recovery mea-
sure optimization aimed at improving transportation system resilience. Recognizing the
computational cost associated with traffic simulation models, we then summarize surro-
gate modeling approaches to transportation simulation-based optimization problems to
improve their computational efficiency.

According to the findings obtained from the review, we have identified the research
gaps for each research topic, which are detailed in the respective sections of this chapter.

2.2 Dynamic travel demand modeling

2.2.1 Traffic-measurement-based estimators

State-of-the-art traffic measurement systems, such as loop detectors, capture the ef-
fect of the mobility demand on the network and not the demand itself (Frederix et al.,
2011; Shafiei et al., 2017). Therefore, traffic-measurement-based dynamic OD estimators
structurally suffer from the issue of indeterminateness in estimating realistic OD flow pat-
terns and estimate rather the fluctuations with respect to an existing prior OD estimate
from survey/planning models (McNally, 2007) using time-dependent traffic measure-
ments, instead of the whole demand itself. Furthermore, such methods require mapping
the OD estimates into a comparable set of traffic measurements to formulate a traffic-
measurement-based objective function. Therefore, an evident distinction in such models
is the use of an assignment matrix, where assignment matrix-based algorithms explicitly
use an analytical representation of the relationship between demand and traffic counts
for Dynamic Origin-Destination Demand Estimation (DODE) (Cascetta and Postorino,
2001; Toledo and Kolechkina, 2012), which is usually assumed to be linear and is not the
case in reality, especially for large-scale and complex networks. Thus, recent years saw
a shift towards assignment matrix-free methods which allow more accurate modeling of
the supply and demand relationship using Dynamic Traffic Assignment (DTA) and can
also incorporate other data sources which can not be analytically related to OD flows
(e.g., Bluetooth data). However, even the popular assignment matrix-free algorithms,
e.g., Simultaneous Perturbation Stochastic Approximation (SPSA) (Balakrishna et al.,
2007), fail to estimate large-scale problems, since the gradient approximation gets highly
sensitive against increasing problem non-linearity, while the computational requirements
(i.e., the number of iterations and running DTA iteratively) also increase exponentially.

To address the scalability issues of DODE, recent literature moved towards either
reducing the OD dimensions or reducing problem non-linearity by adding structural/-
correlation information in the objective function. The most prominent scalability ap-
proach is the use of Principal Component Analysis (PCA) (Djukic et al., 2012; Qurashi
et al., 2019, 2022) that directly reduces OD dimensions and non-linearity transforming
OD matrix into lower dimensional orthogonal Principal Components using the extracted
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variance in historical OD estimates. Although powerful and intuitive, PCA-based meth-
ods, strongly rely on the presence and quality of historical estimates to extrapolate es-
timation patterns. Next comes the use of quasi-dynamic methods that use a correlation
assumption to reduce the DODE estimation variables (Cascetta et al., 2013; Cantelmo
et al., 2014; Bauer et al., 2017). At first, Cascetta et al. (2013) proposed the assumption
of keeping OD shares constant with varying generation profiles of each origin, signifi-
cantly reducing the estimation variables. While later to eliminate the requirement for
a historical OD matrix in the original framework, Bauer et al. (2017) combined a Gen-
eralized Least Squares (GLS) estimator for link flows and a maximum entropy term for
the non-observable traffic distribution across paths in the modified framework, assuming
instead of constant OD shares, constant path choice proportions over time-of-day inter-
vals for days with similar mobility patterns. Besides them, two other prominent SPSA
scalability approaches also exist that explicitly attempt to reduce problem non-linearity
via either using weight matrices to add OD flows and network correlation information in
the DODE objective function (Antoniou et al., 2015) or clustering homogeneous model
parameter (Tympakianaki et al., 2015).

Although all the above-mentioned efforts do significantly improve DODE scalabil-
ity, they still fundamentally require setting up dynamic traffic models alongside the
estimation algorithm setup and running them iteratively (varying by their convergence
efficiency). Furthermore, almost all such conventional approaches apart from Cantelmo
et al. (2020) do not consider modeling activity chains and trip purpose information
during estimation. However, OD flows are an aggregated representation of individuals’
activity-travel chains.

2.2.2 Origin-destination demand estimation based on location-based social
network data

Leveraging the benefits of high resolution in spatial and temporal dimensions at a low
cost, LBSN check-in data has emerged as a reliable secondary data source for travel
demand estimation (Hu and Jin, 2017; Silva et al., 2019). The unique feature of self-
contained confirmed trip purposes (activities) has given LBSN an unparalleled advantage
in OD estimation. LBSN data, a kind of geotagged social media data, is capable of
estimating distance and duration distributions, OD matrices, and individual activity-
based mobility patterns (Zhou et al., 2018). Furthermore, it is also a supplementary and
reliable data source for analyzing urban activities and behaviors (Rizwan et al., 2020).
Consequently, some LBSN data-based approaches have been proposed to understand
and estimate OD demand.

Previous studies have shown the feasibility of using LBSN check-in data for demand
pattern estimation. For instance, Hu and Jin (2015) applies a simple time-dependent
model to estimate trip attraction and validates the feasibility of using LBSN check-in
data in demand pattern estimation. Due to the heterogeneity of venue categories in
demand patterns, they suggested that trip arrival patterns of different venue categories
should be considered separately. Similarly, Yang et al. (2014b) and Yang et al. (2015)
apply an integrated model that combines a hierarchical clustering method for venue cat-
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egorization and a regression model to estimate trip production and attraction. Trips are
then distributed according to a singly constrained gravity model. However, these models
require calibration with the ground truth OD data provided by the local urban planning
agency. Cebelak (2013) and Jin et al. (2014) further improve this approach by replacing
the singly constrained gravity model with a doubly constrained one. The experiment
results show that the modified method can significantly reduce the OD estimation er-
ror caused by the sampling bias from the singly constrained model. Additionally, other
conventional trip distribution models for urban travel demand analysis, such as the ra-
diation model, rank-based model, and population-weighted opportunities model, with
inputs extracted from LBSN data, have also been tested and compared in Kheiri et al.
(2015). However, these models can only provide a static (day-level) solution to the OD
estimation problem.

Inspired by the promising performance of the Hawkes process in self-reinforcing behav-
ior modeling in Cho et al. (2014), Hu and Jin (2017) presents a time-of-day zonal arrival
estimation model by integrating the Hawkes process and an LBSN check-in observation
model into a state-space modeling framework. This approach can reduce the sampling
bias in OD estimation caused by the difference between social behaviors and real travel
patterns. In addition, Hu et al. (2019) incorporates a Latent Dirichlet Allocation (LDA)
model for profiling zonal functionality based on the venue categorical distribution and a
Pearson Product-Moment Correlation (PPMC) analysis method for measuring pairwise
zone correlation. These two methods can help improve the performance of the zonal
trip arrival and OD estimation models in the previous model, which is crucial for the
performance of LBSN-data-based OD estimators (Jin et al., 2014).

However, none of the existing literature has fully utilized the trip purpose and activity
chain information contained in LBSN data. Moreover, most models were constructed
based on conventional gravity models, which require additional information about the
population and network. Additionally, they overlooked the uncertainty factor of user
social behaviors.

2.2.3 Demand pattern analysis with crowdsensed data

The proliferation of smartphones equipped with positioning technologies has provided
a novel means of collecting mobility data, opening up new avenues for Public Trans-
port (PT) policy evaluation in a more cost-effective manner (Tse et al., 2018). These
devices generate vast volumes of real-time data on individuals’ activities and mobility
through location-based services, social networks, and other mobile applications. Some
smartphone datasets have been leveraged for urban mobility analysis for purposes such
as PT network design (e.g., Pinelli et al., 2016, using mobile phone trajectories) and PT
accessibility analysis (e.g., Cai et al., 2017, using mobile phone signaling data). Unlike
these normally unavailable sensitive personal data, crowdsourced data, such as geotagged
tweets (Chaniotakis et al., 2017), provide new opportunities to gain more insights into
urban mobility, including demand patterns, without increasing privacy exposure risks
(Capponi et al., 2019; Vitello et al., 2023). However, despite the rapid growth of crowd-
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sourced data, their potential for analyzing demand patterns, particularly in the context
of disruptions, has not been fully explored (Niu and Silva, 2020).

Crowdsensed check-in rates or busyness data at Point of Interests (POIs) is a typical
kind of crowdsourced data. The raw location data from mobile devices near POIs are
collected and transmitted via an internet connection to a central server. These raw
data from numerous personal devices are processed, anonymized, and aggregated to
provide the busyness data at POIs. Among others, the real-time busyness data of PT
stations, representing the crowding patterns, contains valuable information about PT
demand patterns. Therefore, one can evaluate the impact of disruptions by a before-
after comparison of the crowding patterns extracted from busyness data. These emerging
crowdsensed data have wide coverage and fine resolution, enabling a detailed empirical
analysis of the impact of disruptions on PT demand patterns at a large scale.

Examples of such crowdsensed data sources include Foursquare check-ins (D’Silva
et al., 2018) and popularity trends (Capponi et al., 2019; Timokhin et al., 2020). Previous
studies have successfully extracted spatiotemporal demand patterns and activities from
these data (Timokhin et al., 2020; MacKenzie and Cho, 2020; Capponi et al., 2019;
Möhring et al., 2021). Live POI check-in rates have also been used to analyze the
impact of special events or interventions, such as lockdowns during the pandemic of
Corona Virus Disease 2019 (COVID-19), on POI demand patterns (Mahajan et al.,
2021), the impact of natural disasters, such as heavy snowfalls, on people daily activities
within the urban area (Santiago-Iglesias et al., 2023).

2.3 Transportation system resilience indicators

2.3.1 Resilience indicators in simulation-based evaluation

The evaluation of transportation system resilience has traditionally focused on purely
topological measures derived from the theory of complex network analysis, such as con-
nectivity (e.g., alpha index) and accessibility metrics (e.g., betweenness centrality) (see
Table 1 in Zhang et al., 2015; Pan et al., 2021, for a review). While these static indica-
tors provide some insight into the structural risk of transportation networks, they fail to
characterize the impact of traffic demand changes and the development and cascading
effects of disruptions in the spatiotemporal dimension (Shekar et al., 2017; Zeng et al.,
2019; Xu and Chopra, 2022). In addition, these indicators also fail to evaluate the in-
fluence of a partial loss of capacity due to sub-links failure (there are usually multiple
sub-links between two nodes in transportation networks) (Guidotti et al., 2017). Since
disruptions often come with traffic congestion, to comprehensively assess the resilience
of transportation networks, it is essential to take into consideration traffic dynamics that
capture the time-varying nature of network congestion.

In a comparative analysis conducted by Balal et al. (2019), multiple traffic dynamics-
oriented resilience measures were examined, including queue length, link speed, link
travel time, frontage road delay, and detour route delay. The study found a relatively
low correlation among these measures, suggesting that the importance of links to net-
work resilience depends on the specific measure employed. This finding implies that
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evaluating network resilience at the link level may lead to contradictory conclusions and
offer limited contributions. Consequently, the need to reliably measure network perfor-
mance in both spatial and temporal dimensions has pushed the evaluation of resilience
beyond local traffic performance (e.g., travel time, speed, and delays of individual links
or intersections) towards the development of network-wide measures (Miller-Hooks et al.,
2012; Gao et al., 2016).

Bucar and Hayeri (2020) presented a framework for assessing the effects of precipitation-
induced flood events in urban areas using a two-layer simulation model. Metrics such as
vehicle miles traveled, vehicle hours traveled, and trips completed were employed to eval-
uate system resilience. Similarly, Hoogendoorn et al. (2015) evaluated network resilience
by measuring changes in level-of-service due to density deviation caused by incidents.
Average speed served as a proxy for level-of-service, making system resilience a function
of density and density deviation. However, these indicators overlook the comparison
between disruption and normal operation situations, as well as the time required for
recovery, which are important considerations in defining resilience. Additionally, they
make the calculation of the optimal system functionality (i.e., the equilibrium state
before disruption) challenging, as they heavily depend on demand levels and patterns.

On the other hand, Chen and Miller-Hooks (2012) and Zhang et al. (2015) utilized
the ratio of the maximum post-disaster throughput to the pre-disaster throughput as a
resilience indicator. Chen and Miller-Hooks (2012) employed this measure to optimize
post-event recovery actions, while Zhang et al. (2015) used it to assess the significance
of network topology in resilience. Yao and Chen (2023) applied the percolation theory,
using the giant component size (i.e., the size of the largest connected component of the
network), to evaluate network resilience to random failures. However, these indicators
overlook traffic dynamics and their time-varying nature, thus providing an inaccurate
depiction of resilience along the temporal dimension.

2.3.2 Resilience indicators based on macroscopic fundamental diagrams

In recent years, there has been significant interest among scholars in resilience indicators
based on the theory of MFD, since it represents an intrinsic property of a homogeneously
congested transportation network. One of the pioneering efforts in this direction in the
field of transportation resilience was made by Kim and Yeo (2017), who proposed a net-
work performance loss indicator utilizing the concept of MFD to assess the criticality of
network links. The indicator takes into account that disruptive events lead to increased
spatial heterogeneity in traffic flow, thereby altering the shape of the MFD. The perfor-
mance loss is quantified as the proportion of the aggregated flow reduction caused by
disruptions, given by

FR =

∫ kc
k0
q(k)− qd(k) dk∫ kc
k0
q(k) dk

(2.1)

where q(k) and qd(k) are the weighted space-mean flow across the network under normal
and disruption operation conditions, respectively; k0 and kc represent the lower and
upper bounds for comparison. However, in their definition, both q(k) and qd(k) are
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weighted based on the total length of the original network, without accounting for link
removal during disruptions. This weighting scheme can lead to inaccurate comparisons
(Amini et al., 2018). Furthermore, the comparison solely focuses on the shape of the
MFD, disregarding the temporal dynamics of the network. Consequently, the comparison
may introduce biases in cases where the MFD shape remains unchanged despite the
occurrence of disruptive events.

To address these limitations, Amini et al. (2018) introduced an improved indicator by
considering trip length changes in the evaluation of network resilience. They defined the
service rate of a network as the number of completed trips per unit of time. Building
upon the linear relationship discovered by Geroliminis and Daganzo (2008) between
trip production (P ) and trip completion rate (D), i.e., P = LD, where L represents
the average trip length, and leveraging the relationship between trip production and
weighted flow, i.e., P =

∑
i∈L qili = qL, where L denotes the length of all links equipped

with detectors, they derived a resilience index that reflects the network’s service rate
using weighted flow as a surrogate. The index is calculated as follows:

RI(t) = q(t)− qd(t)× L
Ld

(2.2)

where L and Ld are the average trip length under normal and disruption conditions,
respectively. We note that this index has been normalized by L/L without distinguishing
the network before and after disruptions. It means, the same as in Kim and Yeo (2017),
the length of the network is assumed unchanged during disruptions, which violates the
reality of infrastructure disruptions.

Further, Gao et al. (2022) introduced a definition of traffic resilience for a system
comprising two reservoirs, utilizing the total congestion deviation, which is measured as
the difference between the operational vehicle accumulation and the optimal value. As-
suming parabola-shaped MFDs, the traffic resilience is computed through the following
equation:

TR = −
∫ tc

t0

∣∣∣∣n1(t)− nmax
1

2

∣∣∣∣+ ∣∣∣∣n2(t)− nmax
2

2

∣∣∣∣ dt (2.3)

where ni(t) is the vehicle accumulation at reservoir i at time t, and nmax
i is the corre-

sponding maximum accumulation The time interval from t0 to tc represents the conges-
tion period. A larger congestion deviation (the term inside the integral at a specific t)
represents severer congestion or more spare capacity. Note that this indicator is designed
for evaluating the resilience to hyper-congestion. However, characterizing capacity spare
as a measure of resilience loss may be unreasonable since it is primarily determined
by limited travel demand rather than network malfunction. Resilience, as an indicator
of system functionality, should not be affected by capacity spare. Additionally, using
accumulation as a metric for transportation system performance, particularly during
disruptions, has limitations. Firstly, the number of vehicles within the network, repre-
sented by accumulation, does not provide a comprehensive reflection of transportation
network functionality. The performance/functionality of a system/facility is generally
represented by its service rate (i.e., the trip completion rate in MFD) rather than the
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number of customers (i.e., the accumulation in MFD). Secondly, the optimal accumula-
tion during disruptions can exceed or equal that of normal operations, implying that the
same accumulation value may result in lower resilience loss during disruptions, leading
to inaccurate estimations.

2.4 Transportation system resilience optimization

2.4.1 Transportation system disruptions and resilience evaluation

Seismic resilience and flood resilience are primary focuses due to the severe conse-
quences of earthquakes and floods. Studies on seismic resilience primarily focus on
post-earthquake recovery optimization. Given the role that bridges play in the resilience
of road–bridge transportation networks, scheduling the recovery of bridges has been ex-
tensively studied. Various metrics have been utilized to determine bridge recovery sched-
ules, including network connectivity and vehicular traffic (Ahmed et al., 2022), recovery
time and cumulative benefit rate (Zhang et al., 2022a), network travel time (Zhang et al.,
2022b), and recovery time and skewness of the recovery curve (Somy et al., 2022). There
are also some studies only performed pure assessment of resilience to seismic hazards,
such as Virtucio et al. (2024), and Zhang et al. (2023c). Regarding flood resilience, vari-
ous flood scenarios have been investigated, such as hurricane-induced flood (Dong et al.,
2023), and precipitation-induced flood (Bucar and Hayeri, 2020; Wassmer et al., 2024).
These investigations often rely on empirical analyses using historical data focusing on
the influence on network topology, reliability, and stability (Dong et al., 2023; Bucar and
Hayeri, 2020; Wassmer et al., 2024). Noteworthy, Zhang and Alipour (2023) proposed a
two-stage stochastic programming approach to optimize pre-disruption mitigation and
post-disruption recovery measures simultaneously to enhance resilience to flood hazards,
where data-driven simulation was employed. In addition to seismic resilience and flood
resilience, snow storm resilience and typhoon resilience have also received increasing
attention in recent years, such as Fang et al. (2022), Mirjalili et al. (2023), and Santiago-
Iglesias et al. (2023).

Some studies also explored resilience equality issues. For instance, Byun and D’Ayala
(2022) provided a probabilistic analysis of disruption inequality across urban areas re-
garding seismic resilience. The inequality problem of disruptions has also been examined
from the perspectives of socioeconomic groups and access to amenities (Wei et al., 2022;
Anderson et al., 2022).

On the other hand, evaluating the resilience of multi-modal transportation systems
has emerged as a research hotspot in recent years, given the interdependence among
different urban transportation systems such as subway, bus, and taxi. Examples include
Wang et al. (2023) (bus, subway and taxi), Chen et al. (2023) (bus and metro), Zhang
et al. (2023b) (focusing on node reliability), Aparicio et al. (2022) (focusing on topolog-
ical robustness), and Fang et al. (2022) (focusing on complementary transport modes).
These studies collectively contribute to a deeper understanding of the resilience dynam-
ics inherent in multi-modal transportation systems, thus providing valuable insights for
enhancing their overall resilience in the face of disruptions.
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Various models have been applied to address resilience-based evaluation and opti-
mization problems, with notable categories including probabilistic models, mathematical
optimization models, and data-driven models. Probabilistic models usually integrate a
hazard component with a probability distribution of disturbance intensity, an evaluation
component quantifying resilience, and a simulation component for mapping strategies
to resilience outputs. For example, Amini and Padgett (2023) proposed a methodol-
ogy integrating hazard and debris exposure models to assess the impact of hurricane-
induced debris on transportation network resilience. Similar frameworks were presented
in Taghizadeh et al. (2023) and Wu and Chen (2023) to evaluate the seismic resilience of
transportation systems during emergency medical responses. Additionally, Zhang et al.
(2023a) applied a probabilistic recovery model to measure the restoration of bridges af-
ter earthquakes. In contrast, mathematical optimization models are applied to assist
in planning pre-disruption mitigation and post-disruption recovery strategies, subject
to practical constraints such as budget, computational time, and personnel constraints
(Serdar et al., 2022). Representative models include two-stage stochastic programming
(e.g., Zhang and Alipour, 2023), and bi-level optimization (e.g., Amghar et al., 2024).
However, these models often suffer from computational inefficiency, particularly in large-
scale transportation networks.

On the other hand, data-driven methods leverage sensor data, such as loop detector
data and Global Positioning System (GPS) data, collected over an extended period.
With advancements in sensor technology and database storage and processing, these
methods have also gained significant attention. Moreover, they hold promise for pro-
viding real-time information on resilience. For instance, Diab and Shalaby (2020) used
metro system data to evaluate the impact of outdoor tracks and weather conditions
on system resilience. Roy et al. (2019) proposed a method to detect disruptions from
geo-located social media data and assess their impact on mobility resilience. A hybrid
knowledge-based and data-driven approach was developed in Yin et al. (2022) with the
aid of the Bayesian Network model and historical metro data to identify component
weakness and enhance resilience with proper improvement. For a comprehensive review
and comparison of these model categories, including their merits and limitations, readers
are referred to Serdar et al. (2022).

In summary, while the aforementioned studies vary in terms of the disruptions of
interest and the methods used for solution, they all rely on appropriate resilience in-
dicators for evaluation and optimization. Thus, there is a pressing need for a reliable
resilience indicator to facilitate the application of the resilience concept in urban road
transportation systems from the perspective of traffic flow.

2.4.2 Recovery measure optimization for transportation system resilience

Determining economically viable post-disruption recovery measures is critical to re-
silience assessment and optimization (Xu et al., 2022). Notably, recovery measure op-
timization for road–bridge transportation networks, among others, has attracted sub-
stantial attention, given the pivotal role of bridges in the resilience of such networks.
Different scenarios, ranging from urban (e.g., Zhang and Alipour, 2020) to rural envi-
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ronments (e.g., Zhang et al., 2022a), necessitate distinct methodologies and resilience
emphases. Urban scenarios often emphasize social-economic outcomes, while rural con-
texts prioritize minimizing total recovery time and time delay. In contrast, Zhang et al.
(2017) utilized a synthetic network for evaluation, proposing a recovery action scheduling
optimization for road–bridge networks by minimizing total recovery time and the skew
of the recovery curve.

Studies have also focused on resilience optimization for systems that couple trans-
portation systems with other correlated functional systems. For instance, Ge et al.
(2019) developed a Mixed-Integer Linear Programming (MILP) model to optimize the
post-storm recovery process (repair scheduling) in power and transportation systems si-
multaneously, given their heavy interdependence. Similarly, in optimizing the resilience
of power distribution systems, Li et al. (2022) integrated the optimization of repair crew
allocation on the road network into a two-stage modeling framework to explicitly mea-
sure the influence of their interdependence. In addition, Pei et al. (2024) formulated a
two-stage recovery strategy optimization model for the interdependent transportation
and healthcare system post-earthquake, to maximize seismic resilience.
Rather than exclusively focusing on recovery measures, some studies embed optimiza-

tions for both preparedness and recovery measures into an integrated modeling frame-
work. Stochastic programming, owing to its capability to incorporate a set of disruption
scenarios, is a commonly used technique, such as in the road–bridge network resilience
optimization problem (Zhang and Alipour, 2020), the OD connectivity (a resilience in-
dicator) optimization problem (Liao et al., 2018), and the network topology evaluation
(w.r.t. network resilience) problem (Zhang et al., 2015). However, these methods often
build on analytical formulations with strong simplification assumptions (e.g., recovery
measures are defined as capacity increases), making them less practical and easier to
implement in real applications. As a result, the case studies analyzed therein are on
either synthetic networks (e.g., in Ge et al., 2019; Li et al., 2022) or simple, small real
networks (e.g., in Chen and Miller-Hooks, 2012; Zhang and Alipour, 2020) tractable by
their models.
To more accurately approximate real situations and provide a realistic evaluation

of system functionality, scholars resort to adding more components representing traffic
states in their modeling processes. Examples include considering user travel behav-
iors (Zou and Chen, 2021), employing traffic assignment methods (Pei et al., 2024),
incorporating uncertainty quantification via sampling algorithms (Xiao et al., 2022; Nan
and Sansavini, 2017; Zhang and Alipour, 2020), modeling user equilibrium (Zhao and
Zhang, 2020; Li et al., 2019), and using simulation-based objective evaluation (Liao et al.,
2018). However, these detailed considerations significantly increase computational costs
due to the exploration of large solution spaces and the expensive functionality eval-
uation (Zou and Chen, 2021). This runs counter to the rapidity property of system
resilience (Bruneau et al., 2003; Pei et al., 2024), which requires timely, efficient, and
effective recovery measures after disruptive events (Liu et al., 2021; Aydin et al., 2018;
Alkhaleel et al., 2022; Wang and Wang, 2020). Therefore, although simulation-based
modeling approaches provide a more accurate way to quantify resilience (Ahmed and
Dey, 2020), efficient solution algorithms are crucial to increase their values in practical
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applications, especially for large-scale transportation networks. However, this aspect has
been addressed in relatively few works.

2.4.3 Surrogate modeling for simulation-based urban road transportation
optimization

Simulation models for time-dependent traffic dynamics at the individual level are usually
computationally expensive, requiring several minutes to over an hour for a single run,
depending on the network scale (Chen et al., 2014). Large-scale transportation opti-
mization problems involving high-dimensional decision variables and uncertainty would
further increase the computational cost of simulation-based objective functions. Conse-
quently, it easily suffers from the difficulty of extensively exploring the decision space
within a limited computational budget (López and Monzón, 2010). Metaheuristic algo-
rithms are commonly adopted to address large-scale problems due to their superiority
in handling high-dimensional optimization (Osorio and Chong, 2015; Chen et al., 2015).
However, treating the simulator as a black box without considering structural relation-
ships among variables of the underlying transportation problem can lead to intensive
recalls of objective evaluations to identify the direction of performance improvement
(Osorio and Chong, 2015; Chen et al., 2015). Large-scale simulations, thus, are usually
limited to what-if scenario analysis.

Surrogate model (also known as metamodel) based simulation optimization is one fea-
sible approach to address such high-dimensional optimization problems with expensive-
to-evaluate objective functions. Surrogate modeling is a macro-modeling technique that
attempts to replicate the response surface describing the relationship between decision
variables and simulation outputs (Forrester et al., 2008). In other words, the surrogate
model replaces the complex traffic simulator with a simplified analytical approximation,
enabling faster computation. This approach combines the advantages of simulation in
estimating time-dependent traffic dynamics and the efficiency of mathematical optimiza-
tion.

Surrogate modeling has found applications in various simulation-based transporta-
tion optimization problems. Examples include identifying faulty behavior regions of
autonomous vehicles (Beglerovic et al., 2017), optimizing highway toll charges (Chen
et al., 2014), and freeway dynamic OD estimation (Huo et al., 2023). While conven-
tional general-purpose (functional) surrogate models mainly include low-order polyno-
mials, spline models, radial basis function, and Gaussian Process Regression (GPR),
state-of-the-art surrogate models integrate an additional physical component that yields
structural information about the problem to expedite algorithm convergence. Osorio
and Bierlaire (2013) combined an analytical queueing network model (Osorio and Bier-
laire, 2009) with a quadratic polynomial to address traffic signal control problems for
a small network of 12 links. The computational efficiency of the initial queueing net-
work model was later improved in Osorio and Chong (2015) and Chong and Osorio
(2018) to enable city-scale traffic signal control. This physics-informed surrogate model
methodology was then applied to high-dimensional offline time-independent OD cali-
bration in Osorio (2019b) and time-dependent OD calibration in Osorio (2019a), where
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the analytical queueing network model was replaced with a network model integrating a
simple route choice model, a flow propagation model, and a speed-density relationship
model, to fit the characteristics of OD calibration problems. Furthermore, Zhou et al.
(2023) extended this approach to discrete simulation-based optimization for (two-way)
car-sharing network design problems (i.e., fleet allocation across stations to maximize
the expected profit).

Despite its advantages in computational efficiency and promising performance uncov-
ered in the literature, few efforts have been made to optimize post-disruption recovery
measures using surrogate modeling. Although artificial neural network-based surrogate
models have been adopted to assess seismic risk in road-bridge transportation networks
(Yoon et al., 2020) and optimize post-earthquake recovery measures for interdependent
transportation and healthcare systems (Pei et al., 2024), they relied on less accurate
mathematical models, providing no time-dependent information. No studies have pro-
posed simulation-based recovery measure optimization via surrogate models.
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Chapter 3

Methods and data

The content of this chapter has been partially presented in the following works:

Lu, Q.-L., Mahajan, V., Lyu, C., and Antoniou, C. (2024a). Analyzing the impact of fare-
free public transport policies on crowding patterns at stations using crowdsensing
data. Transportation Research Part A: Policy and Practice, 179:103944.

Lu, Q.-L., Qurashi, M., and Antoniou, C. (2024b). A two-stage stochastic programming
approach for dynamic OD estimation using LBSN data. Transportation Research
Part C: Emerging Technologies, 158:104460.

Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2024c). Traffic resilience
quantification based on macroscopic fundamental diagrams and analysis using topo-
logical attributes. Reliability Engineering & System Safety, 247:110095.

Lu, Q.-L., Sun, W., Lyu, C., Schmöcker, J.-D., and Antoniou, C. (2024d). Post-disruption
lane reversal optimization with surrogate model to improve urban traffic resilience.
(Under Review).

3.1 Introduction

This chapter introduces the methodological framework for traffic resilience evaluation
and optimization, followed by an introduction to the fundamental methods for the topics
involved in the framework, and data and study areas for experiments conducted in
subsequent chapters.

The chapter is structured as follows: The next section presents the overall method-
ological framework for implementing traffic resilience evaluation and optimization. Sub-
sequently, we introduce the fundamental models and algorithms applied to solve the
problems highlighted in the framework in Section 3.3. Finally, we present the data used
and study areas considered in the dissertation in Section 3.4.

3.2 Methodological framework

In Chapter 1, we presented a conceptual relation diagram illustrating the three essential
components—demand modeling, resilience indicators, and optimization approaches—in
traffic resilience evaluation and optimization, as depicted in Figure 1.2. In this section,
we expand upon that diagram by incorporating specific modules for each component,
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as illustrated in Figure 3.1. The expanded diagram serves as the methodological frame-
work of the dissertation, which, in fact, is also a general framework for traffic resilience
research. In the following, we provide a detailed introduction to the modules and their
interactions displayed in the framework sequentially, respecting the order of components
mentioned above.

Demand modeling

Traffic resilience evaluation and optimization

Resilience indicators

Conventional data: 
Travel surveys, 

loop detectors, census, etc.

Non-conventional data: 
Mobile phones, 

social media, smart cards,
drone videography,etc.

Normal 
travel demand

Disrupted 
travel demand

Supply-side 
disruptions

Demand-side 
disruptions

Mixed 
disruptions

Preparedness measure optimization: 
Strategic and tactical network design,

resource allocation, etc.

Recovery measure optimization: 
Tactical and operational network design,

traffic controls, etc.

Traffic simulator

Network data

Figure 3.1: Overall methodological framework for traffic resilience evaluation and optimization.

3.2.1 Disrupted travel demand modeling

In the demand modeling component of the methodological framework (Figure 3.1), we
add two modules to account for the alteration of travel demand under different opera-
tional conditions of transportation systems. To be specific, normal and disrupted travel
demand estimation are the main focuses in this component.

Data sources for transportation analysis and modeling can generally be categorized
into conventional and non-conventional (emerging) data, as outlined by Mahajan (2023).
Figure 3.1 enumerates several types of data that have been commonly used in travel de-
mand modeling. However, collecting conventional data tends to be time-consuming and
expensive, and their declining availability and usability during transportation disruptions
highlight the need for demand estimation models built upon emerging data sources.
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The dissertation focuses on estimating disrupted travel demand. There are two ways
to accomplish this task: directly estimating the disrupted demand or estimating demand
pattern changes, from which disrupted demand can be derived by subtracting the changes
from normal travel demand, as depicted in Figure 3.2. Both conventional and emerging
data sources are valuable in either approach. However, since conventional data are
prone to data missing issues during disruptions and emerging data offer advantages in
terms of availability and coverage, we primarily focus on developing approaches based
on emerging data sources. Specifically, opportunistic data has emerged as a promising
candidate to complement, supplement, or replace conventional data in travel demand
modeling, as discussed in Chapters 1 and 2. Therefore, in Chapter 4, we develop an
LBSN-based OD estimator, and in Chapter 5, we explore the potential of crowdsensed
data for estimating demand pattern changes.

Normal 
travel demand

Demand pattern
changes

Disrupted 
travel demand

Figure 3.2: Disrupted travel demand modeling.

3.2.2 Traffic resilience indicators

Transportation system disruptions can be categorized into demand-side disruptions,
supply-side disruptions, and mixed disruptions, depending on their impact on the de-
mand and supply sides of the system. Mixed disruptions are characterized by the pres-
ence of both demand-side and supply-side disruptions. The empirical analysis, illustrated
in Chapter 6, suggests that the resilience indicators for different categories of disruptions
should be distinguished owing to the distinct manifestations of the system. In Chapter 6,
we address this need by developing different indicators for measuring traffic resilience
to different categories of disruptions based on MFD dynamics. Furthermore, Chapter 7
aims to deepen the understanding of traffic resilience by conducting a regression analy-
sis on its relationship with previous transportation resilience indicators, such as network
topological attributes.
Nevertheless, it is worth mentioning that all disruptions are intertwined with travel

demand due to the inherent interdependence between system supply and demand, which
is also indicated in Figure 3.1, emphasizing the complex relationship between disruptions
and travel demand across the transportation system.

3.2.3 Traffic resilience evaluation and optimization

After preparing disrupted travel demand and resilience indicators, traffic resilience evalu-
ation and optimization can be performed. These optimization problems can be classified
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into two main categories: preparedness measure optimization and recovery measure op-
timization, according to the existing literature on transportation resilience optimization.
Resilience indicators typically serve as the objective or part of the objective function in
these optimization problems, although they may also only serve as evaluation metrics
for optimization results.

Most transportation resilience optimization problems can be considered as network
design problems due to their similarity in the modeling process. According to Farahani
et al. (2013), network design problems can be categorized into strategic, tactical, and
operational design problems based on the nature of decision variables in terms of their
time span and impact on infrastructures. Preparedness measure optimization problems
mainly encompass strategic and tactical network design and resource allocation. Re-
covery measure optimization problems mainly include tactical and operational network
design and traffic control problems. Note that tactical network design can be either
preparedness or recovery optimization, depending on the scenario characteristics and
decision variables.

In general, preparedness measures intend to enhance the system’s ability to withstand
disruptions, while recovery measures attempt to improve the system’s recovery during
disruptions. Both preparedness and recovery measures interact with travel demand.
However, whilst preparedness measures are more likely to affect normal travel demand
in the long run, recovery measures have an immediate impact on disrupted demand.
We emphasize that the focus of the dissertation is on simulation-based optimization in
order to leverage the advantages of advanced traffic simulators in modeling complex
interactions among system demand, supply, and travelers. Network data and travel
demand are essential inputs to the traffic simulator. In Chapter 8, a surrogate model
is constructed to expedite the algorithm for solving simulation optimization problems
without losing the benefits of simulations. Subsequently, Chapter 9 utilizes the surrogate
model to address recovery measure optimization problems in the immediate aftermath
of disruptions.

3.3 Methods

This section summarizes some fundamental methods that are used to support the mod-
eling and solution development for the methodology presented in the next chapters.
Table 3.1 shows the chapters where these methods are used.

3.3.1 Optimization algorithms

3.3.1.1 Sample average approximation

In Chapter 4, we develop an LBSN-based OD estimator by utilizing the Two-Stage
Stochastic Programming (TSSP) framework. In Chapter 8, we establish a surrogate-
based simulation optimization model. Both models consider the uncertainty in travel
and driving behaviors. The resulting problems are non-convex and difficult to get solved
as the expectation Eξ embedded in the objective function is usually an integral of a
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Table 3.1: Summary of methods.

Method Chapter

Optimization algorithms
Sample average approximation Chapter 4, Chapter 8
Generalized Benders decomposition algorithm Chapter 4
Machine learning techniques
Markov chain Monte Carlo sampling Chapter 4
LightGBM classification model Chapter 5
Simulation-based optimization fundamentals
Generic formulation of simulation-based optimization Chapter 8, Chapter 9
Surrogate model for traffic simulators Chapter 8, Chapter 9

complex function. ξ is a random variable describing the problem state. Accordingly, in
practice, we often need to assume ξ has a finite number of possible realizations, such
that we can estimate Eξ by

Eξ [f(x, ξ)] =
N∑
n

pnF (x, ξn) (3.1)

where x is the decision variable, N is the total number of realizations, pn denotes the
probability of realization n, and f denotes the stochastic objective function. However,
the probability distribution of these realizations is often unavailable. To address this,
applying an appropriate sampling technique and the Sample Average Approximation
(SAA) method, the expectation can be approximated as

Eξ [f(x, ξ)] ≈
1

Ns

Ns∑
n

F (x, ξn) (3.2)

where Ns is the total number of scenario samples.

3.3.1.2 Generalized Benders decomposition algorithm

The TSSP problem for estimating OD matrices presented in Chapter 4 can be solved
via decomposition algorithms. We apply the Generalized Benders Decomposition (GBD)
algorithm, which was first proposed in Geoffrion (1972) for addressing the mathemat-
ical programming problems with complicating variables (i.e., variables that if fixed to
given values render a simple or decomposable problem). In TSSP, the first-stage deci-
sion variables are the complicating variables of the problem. The idea behind GBD is
to decompose the original problem into a master problem and a series of subproblems
(one per scenario). In the master problem, the first-stage decisions, denoted by x, are
optimized. In the subproblems, the second-stage decisions, denoted by y, are optimized.
They are solved alternately until convergence. At a specific iteration k, the subproblems
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are solved first separately resulting in the optimum yk(ξ) given xk−1 and scenario ξ. An
optimality cut (or feasibility cut) is constructed based on the dual solutions of subprob-
lems (or feasibility problem), which is added to the master problem as a new constraint.
Given all cut constraints created through a pass-back mechanism from subproblems in
previous iterations, the master problem is solved with respect to x resulting in xk. Note,
these cuts gradually reduce the feasible space of the complicating variable.
To describe the algorithm, we sequentially provide the formulations of the subproblem

(SP), the feasibility problem (FP), and the master problem (MP). At the k-th iteration,
for a given scenario ξn and xk−1, the SP is formulated as follows:

(SP)min
y

f2(y, ξn) (3.3)

s.t. Constraints in the second stage (3.4)

x = xk−1 : λkn (3.5)

where f2(·) denotes the objective function of the second-stage problem. Compared to the
original second-stage problem, SP has an additional equality constraint, Equation (3.5),
which fixes the complicating variable x to the optimal value from the previous itera-
tion. The solution of SP provides values to yk in different scenarios, as well as the
corresponding optimal Lagrange multipliers vector associated with Equation (3.5), i.e.,
the optimal dual variables, λk. However, it is possible that not all SPs are solvable,
whilst the feasibility of SPs is directly relative to the construction of Bender’s cut at the
respective algorithm iteration, i.e., optimality cut or feasibility cut. If SP is feasible, the
optimality cut would be established using the terms in the Lagrangian function of SP
that are relevant to x. The formulation is given below.

Lo(x,yk(ξn), λkn) = f2(y
k(ξn), ξn) + (λkn)

⊤(x− xk−1) (3.6)

However, if SP is infeasible, the following FP needs to be solved.

(FP)min
y,η

η (3.7)

s.t. Constraints in the second stage (3.8)

η ≥ 0 (3.9)

x− xk−1 ≤ η : µkn (3.10)

Similarly, we can get the Lagrangian multiplier vector µkn for the constraints expressed
by Equation (3.10). The Lagrangian function of FP is given by (the terms irrelevant to
x have been eliminated)

Lf (x, µkn) = (µkn)
⊤(x− xk−1 − η) (3.11)

In this case, a feasibility cut is created based on the Lagrangian function of FP. Once
SPs and/or FPs have been tackled, MP will be updated by adding new constraints of
Benders cut in the current iteration. MP is formulated as

28



3.3 Methods

(MP)min
x,α

f1(x) + α (3.12)

s.t. Constraints in the first stage (3.13)

ws
Ns

Ns∑
n=1

Lo(x,yt(ξn), λtn) ≤ α ∀t ∈ Io (3.14)

Lf (x, µtl) ≤ 0 ∀l ∈ Stf , ∀t ∈ If (3.15)

where f1(·) denotes the objective function of the first-stage problem, Io is the set of
indices of the iterations at which all SPs are feasible, If is the set of indices of the
iterations at which at least one of the SPs is infeasible, and Stf is the set of scenarios
whose associated SPs are infeasible at iteration t. Equations (3.14) are denominated as
optimality cuts, while Equations (3.15) are feasibility cuts. From the MP, we can get
the values of the first-stage decision variables xk.

Algorithm 1 Generalized Benders decomposition algorithm.

1: Initialize the first-stage variable x0.
2: Initialize the iteration index k = 1, complicating variables xk = x0, error tolerance
ϵ, maximum number of iterations M .

3: Set the lower bound of the objective function zk = 0, and the upper bound zk = ∞.
4: while |zk − zk|/|zk| ≥ ϵ and k < M do
5: Set k := k + 1.
6: Solve the subproblems by fixing x as xk−1 .
7: if all subproblems are feasible then
8: Obtain solution yk and the dual variables of those constraints that fix the com-

plicating variables to given values λk.
9: Calculate:

z = f1(x
k−1) + w2

Ns
f2 (y, ξn).

10: Update the upper bound zk = min{zk−1, z}.
11: Set Io := Io ∪ {k}.
12: else
13: Solve the feasibility problems associated with the infeasible subproblems.
14: Obtain solution yk, dual variable µk and the set of infeasible subproblems Skf .
15: Set If := If ∪ {k}.
16: end if
17: Add the new optimality cut (or feasibility cuts) to the master problem.
18: Solve the master problem to get xk and αk.
19: Update the lower bound zk = f1(x

k) + αk.
20: end while

It is worth mentioning that if the original objective function is convex on the com-
plicating variable, GBD can guarantee the strong optimality condition, i.e., the opti-
mal solution from the decomposed problems is equivalent to the original problem. For
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convenience, further details on the procedure of the GBD algorithm are presented in
Algorithm 1, where Ns denotes the number of scenarios, and ws denotes the weight of
the second-stage objective in the objective function of the first-stage problem.

3.3.2 Machine learning techniques

3.3.2.1 Markov chain Monte Carlo sampling

In Chapter 4, we integrate the Markov chain Monte Carlo (MCMC) sampling method,
which has been popularly adopted for scenario generation in stochastic programming,
with the SAA method to solve the TSSP. Note, the integration of Monte Carlo (MC) and
SAA can reduce the computational costs in generating cuts relative to the discrete-then-
solve approach. GBD is one kind of such approach. The modified Metropolis-Hastings
algorithm proposed in Au and Beck (2001) is implemented.

The modified Metropolis-Hastings algorithm adopts an accept-reject principle. In the
nth step, we denote the current state by ξn (high-dimensional) and denote the proposed
state by ζn. For a specific variable v in the state vector, denote the proposal distribution
of the value of v at time τ by Sv(·|qv). The proposed state qv(ζn) is then sampled from
Sv(·|qv(ξn)), i.e., qv(ζn) ∼ Sv(·|qv(ξn)). The acceptance probability can be calculated as

av(qv(ξn), qv(ζn)) = min

{
1,

πv(qv(ζn))Sv(qv(ξn)|qv(ζn))
πv(qv(ξn))Sv(qv(ζn)|qv(ξn))

}
(3.16)

where πv(·) is the known distribution of v at time τ . Finally, the proposed state ζn is
accepted or rejected based on the principle below.

qv(ξn+1) =

{
qv(ζn) if uv ≤ av(qv(ξn), qv(ζn))

qv(ξn) otherwise
(3.17)

where uv is a scalar drawn from a standard uniform distribution, i.e., uv ∼ U(0, 1).
The full description of MCMC sampling is given in Algorithm 2, where V represents

the set of variables in the state vector.

3.3.2.2 LightGBM classification model

In Chapter 5, we apply LightGBM to perform PT station classification based on busyness-
based features and station characteristics. LightGBM is an improved version of the
gradient boosting decision tree model that has gained popularity in recent years due to
its exceptional performance. Traditional decision tree models classify data into different
categories using “if-else” decision rules that partition the feature space into subspaces.
However, a single decision tree can overfit easily and doesn’t generalize well to new data.
Gradient boosting is an ensemble technique that improves decision tree performance by
training multiple trees sequentially, with each tree trained to correct the errors of previ-
ous trees (Bishop, 2006). LightGBM further improves gradient boosting by introducing
gradient-based one-side sampling and exclusive feature bundling techniques (Ke et al.,
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Algorithm 2 Modified metropolis-Hastings algorithm.

1: Initialize the number of samples to generate Ns.
2: Initialize the current state ξ0 = ξ.
3: Initialize n = 0.
4: while n < Ns do
5: for each v = 1, 2, · · · , |V| do
6: Simulate qv(ζn) ∼ Sv(·|qv(ξn)).
7: Compute the acceptance probability with Equation (3.16)
8: Accept or reject with Equation (3.17)
9: end for

10: Construct the (n+ 1)th state:

q(l)(ξn+1) = q(l)(ξ0)

q(ξn+1) =
[
q1(ξn+1), q2(ξn+1), · · · , q|V|(ξn+1)

]⊤
11: Set n := n+ 1.
12: end while

2017). The former technique selects data points with the largest gradients during train-
ing, focusing on the most difficult samples. Exclusive feature bundling groups relate
features together to reduce dimensionality and, thus, improve model efficiency. These
unique techniques have made LightGBM one of the most competitive machine learning
models for a wide range of applications in both academia and industry (Shwartz-Ziv and
Armon, 2022; Bojer and Meldgaard, 2021).

3.3.3 Simulation-based optimization fundamentals

3.3.3.1 Generic formulation of simulation-based optimization

Due to the stochasticity in transportation systems, simulation-based optimization gen-
erally estimates the corresponding transportation problems with SAA as

(SO) min
x∈Ωx

f̂(x;Ψ) =
1

Ns

Ns∑
i=1

Fi(x;Ψ) (3.18)

where x denotes the vector of decision variables, Ωx indicates the feasible space, Ψ indi-
cates the exogenous variables (e.g., network topology) in simulations, Ns is the number
of simulation runs, Fi(·) is the i-th realization of the stochastic system performance
measure F . f̂ can then be regarded an approximation to F using the mean of Ns

realizations.
Stochastic traffic simulation can provide considerable information about the effects of

implementing specific control decisions. While simulation-based optimization approaches
have been widely used to address traffic control and management problems such as what-
if analysis in urban planning, practical real-time control problems for alleviating the
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negative impact of disruptions often demand quick responses, imposing a challenge on
the determination of effective measures, especially for large-scale networks. Surrogate
modeling approaches thus have been proposed to address the real-time simulation-based
optimization problems.

3.3.3.2 Surrogate model for traffic simulators

Surrogate models have been proposed to accelerate the solution for simulation-based
optimization problems, such as Osorio and Bierlaire (2013); Chong and Osorio (2018);
Osorio (2019a). Making use of a similar structure to the ones developed in these studies,
we propose a surrogate model that integrates a physical (problem-specific) component
and a functional (general-purpose) component. The proposed surrogate model has the
form of

M (x, z;β,θ) = ηfA(x, z;θ) + ϕ(x;β) (3.19)

where fA(·) represents the physical component, and ϕ(·) represents the functional com-
ponent. Generally, the physical component is derived from a analytical model, while the
functional component is calculated from a regression model. z denotes the endogenous
variables in the physical component, while θ denotes the exogenous variables. β denotes
the parameters to be estimated in the functional component.

Step (1)

Step (2)

Step (3)

Determine current iterate 

Fit the functional component of the surrogate model

Sampling
strategy for

decision space
exploration: 

Simulator 

Optimize surrogate 

+Physical Functional 

(a) (b)

Step (4)

Figure 3.3: Surrogate model framework.

Figure 3.3 shows the main steps of the framework for building a reliable surrogate
model. For a given iteration k, the framework will execute the following steps:

Step (1) The framework determines the best decision until iteration k as the current it-
erate (xk) according to their performance estimates resulting from simulations.
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Step (2) Using all decision samples that have been simulated until iteration k to fit the
functional component to estimate the parameters involved (β). By doing this,
the functional component is updated with the simulation samples added at
iteration k.

Step (3) This step includes two processes, namely exploitation and exploration. (a)
Exploitation: The surrogate model is updated by changing its functional com-
ponent with the updated version resulting from Step (2). With the updated
surrogate model, we solve the optimization problem under investigation to
obtain the optimal (suboptimal) solution (solutions) under the current approx-
imating state, namely x∗

k. The initial guess often uses the current iterate xk.
(b) Exploration: In order to prevent the algorithm from getting stuck in a lo-
cal optimum, decision sampling is implemented to explore the decision space.
Sometimes, this sampling step might be conducted only within a neighborhood
of x∗

k to reduce unhelpful points.

Step (4) Apply traffic simulators to evaluate the decision samples obtained from Step
(3) to augment the dataset of simulation samples. Terminate the procedure if
the maximum number of simulation runs is reached, otherwise proceed to Step
(1).

Essentially, the physical component is a macroscopic approximation of the traffic sim-
ulator. It is less detailed and accurate but is more computationally efficient to evaluate
given its simplicity and differentiable property. The functional component, on the other
hand, models the distance between the simulated data and the approximations derived
from the physical component. It follows that the surrogate M can be interpreted as
a macroscopic approximation to the objective function provided by fA, which is cor-
rected parametrically by a scaling factor η and a separable error term ϕ (Osorio and
Chong, 2015). With algorithm iterating, the surrogate model M will become more and
more accurate, i.e., the results from the surrogate model will approach the results from
simulations. Therefore, it can be used to find the optimal solution under the current
approximating state by solving an analytical optimization problem that is usually easy
to solve with a variety of mainstream solvers. M thus can be used to approximate f̂
and accelerate the algorithm convergence, thereby reducing the number of simulation
runs needed to find well-performing solutions of the SO problem.

3.4 Data and study areas

This section summarizes the data used and study areas considered in the next chapters.
Table 3.2 shows the chapters where these data and study areas are considered.
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Table 3.2: Summary of data and study areas.

Method Chapter

Data
Foursquare location-based social network data Chapter 4
Location-based social network data processing Chapter 4
Google popular times data Chapter 5
Google popular times data processing Chapter 5
Study areas
Tokyo city, Japan Chapter 4
Kyoto city, Japan Chapter 6, Chapter 7, Chapter 9
Munich city, Germany Chapter 6, Chapter 7

3.4.1 Data

3.4.1.1 Foursquare location-based social network data

An LBSN check-in event is automatically recorded when a user posts with geo-location
information or visits a venue (a point-of-interest). Each check-in is described by a user
ID, a venue ID, and the time of the check-in. Table 3.3 lists the main fields of a check-in.
In this regard, we can treat venues as detectors of check-in events, and users are the
objects being detected. Compared to conventional household surveys, LBSN check-in
data can be collected with a much higher frequency at a very low cost, and compared
to traffic flow measurements, detectors of check-in events (i.e., venues) are “deployed”
much denser within the urban area. The high resolution in both spatial and temporal
dimensions has made LBSN data a reliable data alternative to model and estimate OD
patterns within urban areas.

Table 3.3: Main fields of check-in events.

Field Description Example

Time Time of the check-in Apr 03, 2013, 18:17:18
User ID Unique anonymized ID of the user 4bf58dd8d4898
Venue ID Unique anonymized ID of the venue 4f0fd5a8e4b
Latitude Latitude of the venue 35.7051
Longitude Longitude of the venue 139.6196
Venue category Category of the venue Restaurant

We test the OD estimator presented in Chapter 4 using the Foursquare check-in data.
Foursquare was launched in 2009 and has provided the leading LBSN service for more
than a decade. As of 2019, it has included 105 million POIs in 190 countries and re-
gions and received 1 billion check-ins annually. Foursquare data thus has broad spatial
coverage and can somewhat capture human behavior in urban areas. Foursquare has its
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own proprietary taxonomy of more than 1000 categories. According to the hierarchical
taxonomy of categories (version 2012), ten parent categories are defined, including Arts
& Entertainment, College & University, Event, Food, Nightlife Spot, Outdoors & Recre-
ation, Professional & Other Places, Residence, Shops & Service, Travel & Transport.

3.4.1.2 Location-based social network processing

Figure 3.4: Process of extracting relevant information from LBSN check-in data for OD esti-
mation.

By combining with the pre-registered location and category information of venues,
check-in data has become a carrier of activity-oriented urban mobility patterns. Such
data can be used to model and understand urban travel demand by aggregating the
check-ins at venues based on specific categorization methods. Figure 3.4 depicts the data
processing and information extraction procedure for preparing necessary inputs to the
proposed OD estimator. Normally, venue-side data and user-side data are distinguished
in the site server (Yang et al., 2015). Venue-side data contains the check-in statistics with
respect to venues, while user-side data preserves the check-in history of users. As shown
in the figure, venue-side data are obtained by aggregating the user-side data at the venue
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level. It has been recognized that one can aggregate venue-side check-in data based on the
categorical hierarchy adopted by the site to model the activity-based mobility flows (Hu
et al., 2019). For example, in a three-level categorical hierarchy, Chinese restaurants and
buffets belong to the venue type “Restaurant” which is a sub-category node of the root
category “Food”. Each root category can be viewed as one certain type of activity. The
categorical hierarchy thus provides an intuitive way to group venues into activities. By
comparing the patterns of different activities at different locations, one is able to analyze
mobility patterns. On the other hand, the activity share matrix at different times of
the day can be estimated by aggregating the activity-level movements deduced from
the activity chains extracted from user-side data. While activity check-ins reflect the
respective productions and attractions, activity share matrices can provide information
for estimating the distributions for those productions and attractions. Therefore, we
can combine the information contained in LBSN data to estimate and understand the
mobility patterns within urban areas.

3.4.1.3 Google popular times data

Google’s Popular time (GPT) graph (Google, 2023) displays the level of busyness of a
Point of Interest (POI) at different times of the day relative to its busiest hour of the
week. The historical busyness of a POI is measured on a relative scale of 0 to 100, with
100 indicating the busiest hour. The live busyness is computed based on the relative
busyness compared to the corresponding historical period. The popular time graph for
POIs is publicly accessible on Google Maps (Google Maps, 2023). Figure 3.5 provides
an example of the Google Popular Times (GPT) graph for the Munich Central Station
on April 7, 2023. The blue bars show the historical busyness levels hourly. The red bar
represents the live busyness level when it is retrieved.

Figure 3.5: Example of GPT graph showing historical (blue) and live popularity (red).

The use of GPT graph as a crowdsensed data source for measuring the busyness of
POIs, such as PT stations, has been recognized as a valuable approach for exploring
urban dynamics (e.g., patterns of urban activity) (Vitello et al., 2023; Niu and Silva,
2020). Given the high penetration of Google services, this publicly accessible proxy for
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crowding is available at a sheer scale in any city (Vitello et al., 2023; Möhring et al.,
2021).

3.4.1.4 Google popular times data processing

GPT data is collected and used to measure demand pattern changes in PT stations in
Germany in Chapter 5. Specifically, the GPT data of 2,134 railway stations, including
U-Bahn (urban subway) and S-Bahn (city rapid railway) stations, were collected in two-
hour intervals before (May 26 – May 31), during (Jun 1 – Aug 31) and after (Oct 9 –
Dec 9) the 9-EUR implementation. Figure 3.6 shows the location distribution of these
stations across Germany.
Considering that some stations may have very sparse entries, the collected GPT

dataset is cleaned through three filters: (i) Historical busyness cannot be zero at all
time intervals for an entire week; (ii) Historical busyness should be updated at least
once a week; (iii) Live data of at least one time interval should be non-null in all peri-
ods before, during, and after the implementation of 9-EUR. Finally, 293 stations were
preserved.

Figure 3.6: Location of selected PT stations.

3.4.2 Study areas

3.4.2.1 Tokyo city, Japan

The Foursquare check-in data of Tokyo city, Japan, from April 2012 to February 2013,
are used in the experiments conducted in Chapter 4. We refer the reader to Yang et al.
(2014a) for a more detailed description of the dataset. Figure 3.7a shows the map of the
study area and the delineation of Traffic Analysis Zones (TAZs). The study area (1,302
km2) is divided into 17 TAZs. Figure 3.7b exhibits a heatmap of 10,000 check-in records
randomly sampled from the entire dataset which contains 573,703 records. The heatmap
has a clear center and the color intensity gradually fades from the center outward.

37



Chapter 3 Methods and data

(a) Layout of TAZs (b) Heatmap of check-ins

Figure 3.7: Study area: City of Tokyo.

Due to the lack of venue-side data, we aggregate user-side data hourly for each root
venue category, each TAZ, and each day to reconstruct the venue-side dataset. Categories
with fewer than five check-ins are not further defined as activity nodes of the TAZ.
This can help identify the functionality of TAZs and the source of their production
and attraction over time. It is worth mentioning that even though “home” and “work”
activities are not covered adequately in LBSN data, the demand for them is still partially
included in “Residential” and “Professional” activities, respectively.

Furthermore, we apply the moving average (seven days) technique to cancel some
randomness of check-in behavior. In terms of the user-side dataset, we first extract the
activity chain of each user. An activity share matrix can then be derived by counting
the transfers between every two activities followed by normalization.

3.4.2.2 Kyoto city, Japan

The selected area covers the main city of Kyoto, enclosed by four main roads in different
directions. The Kyoto study area spans approximately 6 km × 8 km (48 km2). The
network consists of 1189 links with 217 detectors. In this network, detectors are fairly
evenly distributed, as shown in Figure 3.8.

At regular times of the year, various events are held in Kyoto, such as the Gion
Festival1 in July. During the Gion Festival, Shijo, the main road in the center of Kyoto,
and the surrounding roads are temporarily controlled at night for about one to two
weeks, during which motor vehicles are prohibited from entry. Figure 3.8c shows the
area that might be closed temporarily during the festival. Temporary link/area closures
due to such special events can render the supply-side disruptions (SSDs) discussed in
Chapter 6. Therefore, the SSD scenario of the Kyoto network is defined as the closure of
links highlighted in Figure 3.8c from 7:00 to 8:00, during which 85 links (7% of all) are

1See https://www.yasaka-jinja.or.jp/event/gion/ for more information about the festival.
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closed. All links are open outside this period. Due to a lack of required demand data,
the closure is set in the morning rather than evening as in reality.

(a) Kyoto city center (b) Kyoto network detectors (c) Kyoto disruption area

Figure 3.8: Kyoto city center and locations of detectors.

3.4.2.3 Munich city, Germany

The concerning area of Munich is about 10 km × 10 km (100 km2) large, covering the
busiest streets and commercial areas in Munich. The network consists of 2605 links
with 564 detectors. Detectors are evenly distributed across the network, as shown in
Figure 3.9b. Figure 3.9c shows a supply-side disruption (SSD) scenario design for the
comparative analysis conducted in Chapter 6 to examine the role of network topology
in traffic resilience. The area closure indicated in Figure 3.9c serves as the hypothetical
SSD scenario. Similarly, 209 links (8% of all) are closed from 7:00 to 8:00.

(a) Munich city center (b) Munich network detectors (c) Munich disruption area

Figure 3.9: Munich city center and locations of detectors.
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Chapter 4

Origin-destination demand estimation with
location-based social network data

The content of this chapter has been partially presented in the following work:

Lu, Q.-L., Qurashi, M., and Antoniou, C. (2024b). A two-stage stochastic programming
approach for dynamic OD estimation using LBSN data. Transportation Research
Part C: Emerging Technologies, 158:104460.

4.1 Introduction and research contributions

Existing OD estimation methods primarily rely on three travel data sources, i.e., tradi-
tional household surveys, traffic measurements, and positioning technology-based data
(Yang et al., 2015). Traditional household surveys are time-consuming, labor-intensive,
and expensive, therefore are normally restrained within a limited area at a low fre-
quency (e.g., once or twice a decade). These surveys, while providing detailed socio-
demographical representation of demand, are only viable to develop planning models
that depict average network conditions due to their limited frequency. The second data
type of traffic measurement relies on fixed detection infrastructure distributed over the
network and has been widely used in DODE methods since it provides the required time-
varying dynamics of network states for estimation. However, traffic-measurement-based
DODE methods, on one hand, structurally suffer from the issue of indeterminateness in
estimating realistic OD flows patterns (i.e., multiple sets of varying OD matrix patterns
can satisfy the constraints imposed by the traffic measurements and optimize the system
objective at the same time) (Cascetta et al., 2013; Antoniou et al., 2016; Qurashi et al.,
2022) and on the other require significant computational resources to run dynamic traf-
fic simulations that map estimated demand patterns on network models to attain and
match traffic measurements iteratively.

Methods using the third data source type have attracted much attention in recent
years. The ubiquity of smartphones equipped with positioning technologies, such as
GPS and Bluetooth, has resulted in the regular real-time generation of large sets of well-
distributed data that also provides unprecedented opportunities for the implementation
and application of OD estimation methods. One such suitable data type is LBSN data
that has been used to develop demand models, due to its broad urban spatial and
temporal coverage and confirmed trip purposes (Hu and Jin, 2017). LBSN services
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generate a large amount of anonymous check-in data of venues and users, making it a
natural “host” of urban mobility patterns (Jin et al., 2014; Yang et al., 2015). More
specifically, the check-in time series of venues records the travel destination distribution
in both spatial and temporal dimensions, while the check-in history of users reflects
the activity chains of individuals. Utilizing the LBSN data allows replacing the traffic
measurements with the check-in data, which on one hand is a more direct and accurate
representation of the demand patterns and on the other removes the significant burden
of developing traffic models and estimating simulation-based objective functions.

To tap the potential of using LBSN data for dynamic demand estimation, this chapter
establishes a TSSP framework integrating the activity chains to model activity-level
mobility flows using LBSN data. To the best of our knowledge, this is the first effort to
apply it to model the dynamic OD estimation problem based on LBSN data.

The contributions of this chapter are as follows:

• We develop a dynamic OD demand estimation method based on the TSSP frame-
work using a type of emerging opportunistic data, location-based social network
data, which supplements the body of OD estimation algorithms, especially under
transportation disruptions. This approach can effectively mitigate the indetermi-
nateness issue inherent in methods based on traffic measurements.

• We develop a GBD algorithm to efficiently solve the constructed OD estimation
problem, enabling the application of the proposed estimator to online estimation.

This chapter is structured as follows: In Section 4.2, the mathematical model of the
OD estimator based on LBSN data is constructed, followed by the solution algorithms.
Later on, case studies are elaborated and model performance is evaluated. Finally, we
draw some conclusions and suggest future directions for research.

4.2 Methodology

4.2.1 Traffic analysis zone graph model

To facilitate the subsequent model development, we introduce the graph model of a TAZ
as depicted in Figure 4.1. Specifically, the nodes within the graph model include a group
of activity nodes, a virtual source, and a virtual sink. The edges, on the other hand,
comprise activity flows that connect the activity nodes and virtual flows that link the
virtual source and sink to the activity nodes. Note that inter-zone flows, connecting
different TAZs, fall outside the scope of any specific TAZ. Activity nodes and activity
flows are defined as follows:

Definition 1 (Activity node) An activity node is a concentrating representation of
the venues belonging to a certain root category inside the modeled traffic analysis zone.

Definition 2 (Activity flow) An activity flow indicates the movements of people be-
tween two activity nodes within the modeled traffic analysis zone.
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… …Zone 𝑖
: Activity node

: Virtual source

: Virtual sink

: Virtual flow

: Inter-zone flow

: Activity flow

: A TAZ

Figure 4.1: Graph model of a traffic analysis zone.

For example, of the venue category hierarchy illustrated in Figure 3.4, all venues falling
under the category V1 located within a given TAZ collectively form an activity node.
The activity flows represent the movements between venue categories. In addition, we
create a virtual source and a virtual sink for each TAZ for respectively aggregating the
total incoming and outgoing trips, and effectively bridging the inter-zone flows and zonal
activity flows. Here, inter-zone flows are what we traditionally call OD flows. In the
following, we will also refer to them interchangeably as either inter-zone flows or OD
flows. Virtual sources and virtual sinks are defined as follows:

Definition 3 (Virtual source) A virtual source of a traffic analysis zone refers to a
node that serves as the central recipient for all inter-zone flows emanating from other
traffic analysis zones. The virtual source is responsible for allocating these inflows across
all activity nodes within the same zone.

Definition 4 (Virtual sink) A virtual sink of a traffic analysis zone refers to a node
that serves as the central origin for all inter-zone flows destined for other traffic analysis
zones. The virtual sink is responsible for allocating the outflows from the zonal activity
nodes to other zones.

For a TAZ graph model, its virtual source and sink are connected to all of its activity
nodes. Virtual flows are used to represent the movement of individuals either from the
virtual source to an activity node or from an activity node to the virtual sink. Thus,
the sum of flows to the sink and the sum of flows to the source can represent the zonal
trip production and attraction, respectively. Later, we will show that inter-zone flows
and activity flows are the first-stage and second-stage decision variables in the proposed
TSSP model. That is to say, virtual sources and sinks are the bridge that links the
first-stage and second-stage decisions. This treatment also enables the utilization of
decomposition algorithms to expedite the solution of the OD estimation problem.

4.2.2 LBSN-data-based OD estimator

OD flows are generated when people travel for various activities across different locations.
Namely, OD patterns are the aggregated result of activity check-in patterns. Since OD
patterns of a certain time-of-day interval would not change significantly within a period
free of disruptive events (i.e., without critical changes in either supply or demand), the
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following assumption is plausible and is introduced to drive the modeling of the LBSN-
data-based OD estimator.

Assumption 1 For a certain time-of-day interval, similar activity check-in patterns on
different days within a predefined reference period are generated by similar OD patterns.

With this assumption, a certain OD matrix needs to be mapped onto multiple check-in
pattern scenarios (defined later in this section). In essence, this assumption allows us
to exert additional constraints on the OD estimation problem for a specific time-of-day
interval, thereby reducing the search space of the posterior OD estimates. Therefore, the
LBSN-data-based OD estimator holds the potential of mitigating the indeterminateness
issue existing in those based on traffic measurements.

The previous analysis inspires the development of an LBSN-data-based dynamic OD
estimator leveraging a two-stage stochastic programming framework for incorporating
multiple check-in pattern scenarios. Stochastic programming is an approach for modeling
optimization problems under uncertainty. In the proposed model, check-in patterns
represent the uncertain output of a certain OD matrix input to the system. In the
two-stage framework, OD flows are the decision variables of the first-stage problem, and
activity flows are the decisions of the second-stage problem.

To formulate the problem, we present the following modeling process for a specific time
interval τ . For ease of presentation, the superscript τ will be omitted unless specified.
With a slight abuse of notation, the variables corresponding to τ−1 will be indicated with
a superscript (l). For example, qτ and qτ−1 will be written as q and q(l), respectively.
Some important notations with their descriptions are listed in Table 4.1.

4.2.2.1 First-stage problem: OD flows estimation

In the first stage, the OD flows are the decision variables. They are determined within the
space restricted by three key considerations. First, akin to traffic-measurement-based
OD estimators, taking into account the deviation between the posterior OD estimate
and the prior OD estimate in the objective function can align the posterior OD estimate
with a known OD pattern. The prior OD flows can be historical values or results from
a four-step model that can capture the OD patterns under similar conditions. Second,
we can easily deduce the zonal trip production and attraction for every TAZ from the
estimated OD flows. Combining these estimated production and attraction values with
a relationship model between zonal check-in counts and zonal production/attraction is
capable of adjusting the OD demand level based on check-in observations. Third, the
inclusion of multiple check-in pattern scenarios in the framework also plays a critical
role in constraining the search space of the posterior OD flows.

Therefore, we formulate the generic objective function of the two-stage stochastic
programming model for OD estimation using LBSN check-in data as follows:

min
x

wxfx
(
x,x(p)

)
+ wpfp

(
P̂ (x), P (q)

)
+ wafa

(
Â(x), A(q)

)
+ wsEξ[Q(x, ξ)] (4.1)
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Table 4.1: Notation in the LBSN-based OD estimator.

Sets
Vi set of activity nodes in the graph model of TAZ i
Z set of TAZs in the study area

Parameters
ρ activity share matrix
ρuv,i activity share from activity node u to v in i (normalized by the check-ins at

u)

x(p) prior OD estimates
q observed check-in counts
qv,i observed check-in counts at activity v within TAZ i

q(l) observed check-in counts in the last time interval of the interval of interest

q
(l)
v,i observed check-in counts at activity v within TAZ i in the previous time

interval

P̂ (x) zonal production derived from x

Â(x) zonal attraction derived from x
P (q) zonal production estimated based on the observed check-in counts q
A(q) zonal attraction estimated based on the observed check-in counts q
ξ problem state at the second stage representing the second-stage scenario
qv,i(ξ) check-in counts of activity v in TAZ i under scenario ξ
∆i(ξ) difference of check-in counts in scenario ξ between two successive time inter-

vals

∆̂i(yi) difference of check-in counts derived from the optimized activity flows yi
Y observed traffic measurements
A traffic assignment method
wx weighting factor for prior OD estimates in the objective function
wp weighting factor for zonal productions in the objective function
wa weighting factor for zonal attractions in the objective function
ϵb threshold parameter of the lower bound for the posterior OD flows
ϵb threshold parameter of the upper bound for the posterior OD flows
ϵa threshold parameter of the lower bound for activity shares
ϵa threshold parameter of the upper bound for activity shares
ϵs threshold parameter of the lower bound for the source imbalance
ϵs threshold parameter of the upper bound for the source imbalance
ϵt threshold parameter of the lower bound for the sink imbalance
ϵt threshold parameter of the upper bound for the sink imbalance
Ns number of second-stage scenario samples

Decision variables
xij OD (inter-zone) flow from TAZ i to j
yvu,i activity flow from activity node v to u within TAZ i
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where x is the decision variable of the first-stage problem, i.e., OD flows, x(p) is the given
prior OD flows. q is the vector of observed check-in counts, with each element represent-
ing the check-in counts at an activity node. fx(·) is the Goodness-of-Fit (GoF) function
measuring the difference between the posterior and prior OD flows. P̂ (x) and Â(x)
are the vectors of out-flows (i.e., zonal production) and in-flows (i.e., zonal attraction)
of zones, which are obtained by aggregating the posterior OD flows x correspondingly.
P (q) and A(q) are the given production and attraction vectors estimated with the ob-
served check-in counts q. The empirical findings about their relationship are expounded
on in Section 4.3.1. fp(·) and fa(·) measure the GoF between the modeled and the mea-
sured zonal production and attraction, respectively. wx, wp and wa are weighting factors
that quantify the relative reliability of the prior OD estimate, the prior production es-
timate and the prior attraction estimate. The last term in Equation (4.1) measures
the expected minimum difference between the estimated and observed check-in counts
difference given the OD flows x. ws is a weighting factor that quantifies the trade-off
between the optimization of OD flow patterns and check-in patterns.
Besides, we enforce bound constraints on the OD flows to prevent the emergence of

unrealistic solutions. These bounds are defined as multiples of the prior OD estimates
given by

ϵbx
(p)
ij ≤ xij ≤ ϵbx

(p)
ij ∀i, j ∈ Z (4.2)

Where xij denotes the OD flow from TAZ i to j, Z denotes the set of TAZs under
consideration, ϵb (< 1) and ϵb(> 1) are threshold parameters.

4.2.2.2 Second-stage problem: Activity flows estimation

The further restriction of search space of OD flows is achieved by introducing a set
of check-in scenarios of the second-stage problem state, as expressed by the last term
in Equation (4.1), i.e., wsEξ[Q(x, ξ)]. Eξ calculates the expectation with respect to a
random vector ξ, defined on the probability space (Ω,F ,P), with Ω being the sample
space, F being the event space, and P being a probability distribution defined on F .
ξ is a random variable describing the problem state at the second stage. Q(x, ξ) is the
optimal value of the second-stage problem under scenario ξ.
In this study, a realization of the second-stage problem represents a check-in pattern

scenario. Here, check-in patterns represent the changes in check-in counts between two
successive time intervals. Considering the activity share difference in different times-of-
day intervals, a check-in pattern scenario can then be described as a tuple composed
of the check-in counts of the relevant two time intervals and the corresponding activity
share matrix, i.e.,

(
q(l),q,ρ

)
, where ρ indicates the activity share matrix at τ .

The objective of the second-stage problem is to determine the activity flows that min-
imize the deviation between the estimated check-in counts difference and the observed
one (i.e., q(l) − q). Noting the structure of the proposed TAZ graph model and the
definition of check-in pattern scenarios, three conditions must be taken into account
and modeled in this stage, including (i) the conservation of check-in counts at activity
nodes, (ii) the shares of activity flows, and (iii) the balance of inter-zone OD flows and
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zonal activity flows at the virtual sources and sinks. For illustration purposes, Figure 4.2
provides a graphical presentation of these conditions.

Time

Interval 𝜏

…
…

…
…

(c) Inflow balance constraints (Equation (3.8)) (d) Outflow balance constraints (Equation (3.9))

(b) Activity share constraints (Equation (3.6))(a) Inventory constraints (Equation (3.5))

Figure 4.2: Graphic illustration of the conditions considered in the second-stage problem.

For a given check-in scenario ξ, the objective function of the second-stage problem
can be expressed as

Q(x, ξ) = min
y

∑
i∈Z

fs
(
∆̂i(yi),∆i(ξ)

)
(4.3)

where ∆i(ξ) = q
(l)
i (ξ) − qi(ξ) is the observed check-in counts difference in scenario ξ,

∆̂i(yi) is the estimated check-in counts difference derived from the optimized activity
flows yi. As can be seen, this objective function is also the term inside the expectation
calculator in the last term of the first-stage objective.

For activity node v in TAZ i, we have ∆̂v,i =
∑

u∈(Vi\{v})∪{t} yvu,i−
∑

u∈(Vi\{v})∪{s} yuv,i.
fs(·) is a GoF function measuring the fitting between the estimated and observed check-
in counts differences.

The first condition (see Figure 4.2a) expresses that for an activity node v, the total
departing flows cannot be greater than the combined arriving flows and the number of
check-ins recorded during the previous interval. It can be written as∑

u∈(Vi\{v})∪{t}

yvu,i −
( ∑
u∈(Vi\{v})∪{s}

yuv,i + q
(l)
v,i(ξ)

)
≤ 0 ∀v ∈ Vi,∀i ∈ Z (4.4)

where Vi is the set of activity nodes in TAZ i. In practice, only the main venue categories
in the TAZ will be considered for the sake of: (i) reducing the noise in the statistics
caused by insufficient venues of a specific category; (ii) distinguishing different TAZs
with respect to the land-use functionality and characteristics.

We denote ρvu,i the share of activity flow from activity node v to u within TAZ i during
interval τ . We can thus construct activity share constraints for the second condition (see
Figure 4.2b) to restrict the search space of activity flows by making use of the activity
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share matrix. This matrix encapsulates the activity chain information derived from
user-side data. The constraints are given by

(1− ϵa)ρvu,iq
(l)
v,i ≤ yvu,i ≤ (1 + ϵa)ρvu,iq

(l)
v,i ∀v, u ∈ Vi,∀i ∈ Z (4.5)

where ϵa and ϵa are predefined threshold parameters within the range (0,1). They serve
the purpose of mitigating the over-fitting issue during optimization by permitting slight
deviations of activity flows from their theoretical values. Note, the activity share matrix
can be normalized at either the network level or the TAZ level. For simplification, for
a specific time-of-day interval of the day, we consider a common activity share matrix
for the entire area, which can be estimated from the historical check-in data. As such,
ρvu,i = ρvu, ∀i ∈ Z. Then, Equation 4.5 can be simplified as

(1− ϵa)ρvuq
(l)
v,i ≤ yvu,i ≤ (1 + ϵa)ρvuq

(l)
v,i ∀v, u ∈ Vi, ∀i ∈ Z (4.6)

Regarding the third condition, it is natural to impose the inflow and outflow balance
constraints on the source and sink nodes, as shown in Figure 4.2c and 4.2d, respectively.
Importantly, this condition establishes a connection between the decision variables in the
first- and second-stage problems. More specifically, the inflow balance indicates that, for
a specific TAZ, the aggregate virtual flows from the source node should equal the sum of
inter-zone flows to it. Similarly, the outflow balance indicates that, for a specific TAZ,
the sum of virtual flows to the sink node should match the sum of inter-zone flows from
it. Nevertheless, due to the randomness and incompleteness of the activity information,
it is reasonable allow a subtle deviation in both constraints. Consequently, the inflow
and outflow balance can be expressed as

(1− ϵs)
∑

j∈{Z−i}

xji ≤
∑
v∈Vi

ysv,i ≤ (1 + ϵs)
∑

j∈{Z−i}

xji ∀i ∈ Z (4.7)

(1− ϵt)
∑

j∈{Z−i}

xij ≤
∑
v∈Vi

yvt,i ≤ (1 + ϵt)
∑

j∈{Z−i}

xij ∀i ∈ Z (4.8)

where ϵs, ϵs, ϵt and ϵt are predefined threshold parameters in the range (0,1), representing
the extent to which the conservation can be violated. ysv,i denotes the virtual flow from
the virtual source to activity node v within TAZ i, while yvt,i denotes the virtual flow
from v to the virtual sink.

Furthermore, all activity flows and virtual flows should be non-negative as expressed
by

yvu,i ≥ 0, ysv,i ≥ 0, yvt,i ≥ 0 ∀v, u ∈ Vi, ∀i ∈ Z (4.9)

Note that in the second-stage problem, the optimal activity flows y∗ depend on the
first-stage OD flows x and the second-stage problem state ξ.
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4.2.2.3 Full two-stage stochastic model

By integrating the objective functions and constraints of the two stages of problems
described above, we obtain the two-stage stochastic programming model of the LBSN-
data-based OD estimation problem under uncertainty with multiple check-in pattern
scenarios as below.

min
x

wxfx
(
x,x(p)

)
+ wpfp

(
P̂ (x), P (q)

)
+ wafa

(
Â(x), A(q)

)
+ wsEξ[Q(x, ξ)] (4.10)

s.t. ϵbx
(p)
ij ≤ xij ≤ ϵbx

(p)
ij ∀i, j ∈ Z (4.11)

where:

Q(x, ξ) = min
y

∑
i∈Z

fs
(
∆̂i(yi),∆i(ξ)

)
(4.12)

s.t.
∑

u∈(Vi\{v})∪{t}

yvu,i −
∑

u∈(Vi\{v})∪{s}

yuv,i − q
(l)
v,i(ξ) ≤ 0 ∀v ∈ Vi, ∀i ∈ Z (4.13)

(1− ϵa)ρvuq
(l)
v,i(ξ) ≤ yvu,i ≤ (1 + ϵa)ρvuq

(l)
v,i(ξ) ∀v, u ∈ Vi, ∀i ∈ Z (4.14)

(1− ϵs)
∑

j∈{Z−i}

xji ≤
∑
v∈Vi

ysv,i ≤ (1 + ϵs)
∑

j∈{Z−i}

xji ∀i ∈ Z (4.15)

(1− ϵt)
∑

j∈{Z−i}

xij ≤
∑
v∈Vi

yvt,i ≤ (1 + ϵt)
∑

j∈{Z−i}

xij ∀i ∈ Z (4.16)

yvu,i ≥ 0 ∀v, u ∈ Vi, ∀i ∈ Z (4.17)

ysv,i ≥ 0 ∀v ∈ Vi,∀i ∈ Z (4.18)

yvt,i ≥ 0 ∀v ∈ Vi, ∀i ∈ Z (4.19)

By comparison, the proposed LBSN-data-based OD estimator resembles the generic
traffic-measurement-based OD estimator to a certain extent: (i) the proposed model also
relies on a prior OD flow estimate; (ii) fp(·) and fa(·) in the objective function of the first-
stage problem (Equation (4.10)) and the activity share constraints in Equation (4.14)
play a similar role to a traffic assignment method; (iii) both models need to handle the
stochasticity of the observed data.
On the other hand, the difference between the two methods lies in that LBSN data

are collected when the travel is finished, but traffic measurements are collected dur-
ing the travel. In other words, LBSN contains end-to-end information, while traffic
measurements record the situation between ends. As a result, the application of LBSN-
data-based OD estimators usually demands no network structure but needs information
on the activity preferences of travelers. More importantly, different from most traffic-
measurement-based OD estimators in the literature, the proposed model can be used for
dynamic OD estimation by using only the LBSN data without the need to run compu-
tationally expensive dynamic traffic simulations to generate simulated traffic measure-
ments. This puts the proposed methodology at a significant computational advantage
against most dynamic OD estimation approaches. Moreover, unlike the previous LBSN-
based estimators, essentially, our model derives the OD matrix by reconstructing the
activity-based mobility flows, making use of the confirmed trip purpose information.
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4.2.3 Solution algorithms

To solve this model, the SAA and MCMC sampling techniques introduced in Sec-
tion 3.3.1.1 and Section 3.3.2.1, respectively, are integrated to generate reliable check-in
pattern scenarios. Then, the GBD algorithm provided in Section 3.3.1.2 can be ap-
plied to estimate the OD demand. It is worth mentioning that sampling techniques
have to be fed by the check-in pattern scenario of the time interval under estimation
(i.e., (q(l),q,ρ)) in order to generate reliable sampled scenarios. We call the scenario
(q(l),q,ρ) the reference scenario to distinguish it from the sampled scenarios. The sam-
pled scenarios can be viewed as for the same time-of-day interval over different historical
days that share similar context with the reference scenario.

We present an outline of the procedure employed to address the TSSP problem for
LBSN-data-based OD estimation in Figure 4.3 to facilitate understanding. Given the
required model inputs (i.e., q, q(l), ρ, and x(p)) pertaining to the specific time interval
of interest τ , MCMC sampling is utilized to generate a batch of similar check-in pattern
scenarios based on the check-in patterns provided (i.e., q(l) and q). By integrating with
the given activity shares information (i.e., ρ), each individual scenario can be used to
configure a corresponding second-stage problem. Combining these second-stage problems
with the first-stage problem will result in the TSSP problem, which aims to estimate
the OD flows for the given time interval. Subsequently, we employ the GBD algorithm
to decompose the problem into a primary master problem and a series of subproblems.
By solving these decomposed problems alternately, the optimal OD flows (i.e., x) and
activity flows (i.e., y) that correspond to the observed check-in patterns will be obtained.

TSSP problem

Master problem

Subproblem 1 … Subproblem 𝑁𝑠

Benders’ decompositionInitialization 𝐱1

(Scenarios)

Inputs (at time interval 𝜏)

MCMC 
sampling

Check-in scenarios

𝐪(𝒍)(𝜉1), 𝐪(𝜉1)

𝐪(𝒍)(𝜉𝑁𝑠), 𝐪(𝜉𝑁𝑠)

Second-stage 
problem

First-stage 
problem

Check-in scenario sampling Solution to TSSP

Figure 4.3: Solution procedure of the proposed LBSN-data-based OD estimator.

4.3 Case study and results

We conduct a case study in Tokyo city, Japan, by using Foursquare check-in data.
The description and processing procedure of the Foursquare check-in data are provided
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in Section 3.4.1.1 and Section 3.4.1.2, respectively. The delineation of TAZs and the
distribution of check-in records across Tokyo are given in Section 3.4.2.1.

4.3.1 Algorithm setup

In the following experiments, we set the threshold parameters, {ϵs, ϵs, ϵt, ϵt, ϵa, ϵa}, as
0.2. The bound constraint parameters, {ϵb, ϵb}, are 0.2 and 5, respectively. We set the
weighting factors {wx, wp, wa, ws} as {1, 10, 0, 1} unless otherwise specified.

For the MCMC sampling, the number of second-stage realizations Ns is set to 5.
We assume a Gaussian distribution for the proposal distribution of an activity node
v at time τ denoted by Sv(·|qv(ξn)). Specifically, Sv(·|qv(ξn)) = N (qv(ξn), 0.1qv(ξn)),
where N (µ, σ) represents a Gaussian distribution with µ mean and σ2 variance. Since
Gaussian distributions are symmetric, Sv(qv(ξn)|qv(ζn)) = Sv(qv(ζn)|qv(ξn)), therefore
Equation (3.16) reduces to

av(qv(ξn), qv(ζn)) = min

{
1,

πv(qv(ζn))

πv(qv(ξn))

}
(4.20)

Regarding the GBD algorithm, the convergence threshold is ϵ = 0.05. Without loss of
generality, we apply the GLS estimator in the goodness-of-fit functions, fx(·), fp(·), fa(·)
and fs(·), resulting in a convex optimization problem with complicating variables. In
this case, the GBD algorithm can guarantee the same global optimum solution as the
original problem. Mathematically, fx(·), fp(·), fa(·) and fs(·) are given as follows:

fx
(
x, x̃τ

)
=
(
x− x̃τ

)⊤
Λx
(
x− x̃τ

)
(4.21)

fp
(
P̂ (x), P (q)

)
=
(
P̂ (x)− P (q)

)⊤
Λp
(
P̂ (x)− P (q)

)
(4.22)

fa
(
Â(x), A(q)

)
=
(
Â(x)−A(q)

)⊤
Λa
(
Â(x)−A(q)

)
(4.23)

fs
(
∆̂i(yi),∆i(ξn)

)
=
(
∆̂i(yi)−∆i(ξn)

)⊤
Λs
(
∆̂i(yi)−∆i(ξn)

)
(4.24)

where Λx,Λp,Λa and Λs are the dispersion matrices of the prior OD estimates, out-flows
distribution, in-flows distribution, and check-in pattern, respectively. For simplicity, we
set Λx = Λp = Λa = Λs = diag(1).

Moreover, considering the linear relationship between the out-flows and the number of
check-ins within the same TAZ observed from empirical data (as shown in Figure 4.4a),
we calculate P (q) = θ̂⊤q, where θ̂ = (C⊤C)−1C⊤P0, C is the matrix of the number
of check-ins aggregated by TAZs, and P0 is the vector of historical observed outflow
patterns, as the reference to penalize the demand level deduced from the estimated OD
flows. Figure 4.4a compares the observed out-flows and the out-flows estimated by a
simple linear regression model based on the number of check-ins. The R-square is about
0.89. It is worth mentioning that the entire check-in dataset is used for estimating θ̂.
Similarly, we can get the relationship model between in-flows and the number of check-ins
A(q) with the same method.
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Figure 4.4: Linear relationship between out-flows (left), in-flows (right), and the number of
check-ins.

4.3.2 Demand scenario setup

We conduct experiments on the morning peak (7 am - 10 am) of February 1st, 2013.
The morning peak is divided into three estimation time intervals each for one hour. A
one-hour time interval is set due to the limitation on the check-in data density of this
dataset. However, the proposed methodology is applicable to smaller time intervals in
the context of sufficient data, such as 15 minutes or half an hour. Regarding demand
scenario generation, Antoniou et al. (2016) points out that the quality of the prior OD
estimate, in terms of both demand level and patterns, is a key element that affects the
performance of the OD estimator. Following the suggestions therein, we perturb the
true OD flows to derive the historical OD flow estimates. More specifically, we create
the prior OD estimate using the following formulation:

x̃τ = (ϕrd + ϕrmδ)x (4.25)

where ϕrd and ϕrm are the reduction and randomization parameters for perturbation,
respectively, and δ is the random perturbation vector following Gaussian distribution.
In the following experiments, we apply ϕrd = 0.7, ϕrm = 0.3, and δ ∼ N (0, 1/3) (99.7%
of values located in [-1,1]), implying that the prior OD estimate is an out-of-date low-
demand scenario.

4.3.3 Algorithm analysis

4.3.3.1 Convergence analysis

Figure 4.5 shows the convergence results of the proposed estimation model. Since the
initial upper bound is an infinity (a very large value in numerical computing), the upper
bound at the first two iterations are invisible in the figures. The relaxed master problem
can be solved very efficiently (in seconds) as it has a limited number of constraints
and all constraints have the same format. In addition, we also found that, in our case,
subproblems are always feasible if x0 is feasible, which means all Benders type cuts are
optimality cuts, and therefore no feasibility problems needed to solve and no feasibility
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cuts are inserted to the master problem. In consequence, these experiments can be
solved at a rather cheap computational cost, which indicates the proposed modeling
framework has the potential to estimate dynamic OD matrices for large-scale networks.
As expected, the algorithm converges within only several iterations for all study intervals,
due to the property of the GBD algorithm and the convexity of the problem (GLS
estimator). Besides, we found that the convergence of the upper bound can also lead to
similar solutions to the ones obtained after the gap between the upper and lower bounds
converges. Thus, in practice, one can use solely the upper bound to define the algorithm
termination criterion. Considering that the lower bound may sometimes frustrate (which
we observed in some experiments), this criterion can be a useful substitute.
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Figure 4.5: Convergence performance of the GBD algorithm.

4.3.3.2 Estimation quality evaluation

Figure 4.6 illustrates the quality of estimation with respect to the check-in patterns by
comparing the empirical and estimated check-in pattern using scatter plots. We can see
that all data points are aligned close to the “y = x” line in the three experiments. It
means the proposed model is capable of recreating the check-in patterns. Recall that
the check-in pattern is defined as the vector of the difference in check-in counts between
successive time stamps. The good fitting of check-in patterns implies our model can also
be used to predict the check-in statistics of activities (venue types).

Similarly, Figure 4.7 visualizes the quality of the estimated OD flows by comparing it
with the target OD flows using scatter plots. The R2 of estimated versus target OD flows
in three experiments are 0.91, 0.89 and 0.93, respectively. Overall, the model reaches
an acceptable estimate with a slight underestimation in the high-demand OD pairs. We
note that the prior OD estimates underestimate the target values by 30% on average.
While our model still exhibits underestimation (especially in the high-demand OD pairs),
it can, to a certain extent, improve the situation, attributed to the inclusion of fp(·) and
the batch of check-in pattern scenarios. However, the accuracy still cannot meet the
requirements of some transportation applications. As can be seen from Figure 4.7, most
OD pairs observe a demand of fewer than 100 with many extremely small values. These
OD pairs, on one hand, impede the convergence of the algorithm, and on the other reduce
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Figure 4.6: Comparison of check-in patterns (performance of the second-stage problem).

the accuracy of the GLS estimator. Thus, three methods can be used to improve the
OD flow estimation, including (i) removing the OD pairs with small demand from the
model, (ii) applying a reliable weighting matrix in the GLS estimator, instead of using
diag(1) like in this study, and (iii) replacing the GLS estimator with other estimators,
such as maximum entropy.
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Figure 4.7: Comparison of OD flows (performance of the first-stage problem).

Further, Figure 4.8 compares the theoretic activity shares and the estimated activity
shares. Due to the large number of points, we add the heatmap effect in the figure to
represent the density of points. Brighter colors mean greater density and vice versa.
Overall, there are more points in the range of smaller values. Furthermore, in the figure,
we can observe heteroscedasticity among the data points, indicating that the variance of
the estimated activity shares increases with higher values of the true activity share. This
phenomenon arises due to the activity share constraints expressed by Equation (4.14).
These constraints restrict the feasible space of activity flows to be in proportion to the
activity share matrix extracted from the activity chain information. As a consequence,
the estimation of activity shares is affected by this constraint, leading to varying levels
of variability in the data points based on the true activity shares.

54



4.3 Case study and results

0 2 4 6
True activity share

0

2

4

6

Es
tim

at
ed

 a
ct

iv
ity

 sh
ar

e

7:00-8:00

0 5 10
True activity share

0

4

8

12

Es
tim

at
ed

 a
ct

iv
ity

 sh
ar

e

8:00-9:00

0 5 10
True activity share

0

2

4

6

8

10

Es
tim

at
ed

 a
ct

iv
ity

 sh
ar

e

9:00-10:00

0

1

2

3

4

5

Figure 4.8: Comparison of activity shares (constraint violation).

4.3.3.3 Sensitivity against the number of second-stage scenarios

The number of scenarios is critical to the effectiveness of the method and the improve-
ment in computational cost (compared to simulation-based approaches). Here, we apply
four values of Ns (5, 10, 50, and 100) to examine the model and plot their results in
Figure 4.9. Four important variables, i.e., OD flows, zonal production, zonal attraction,
and check-in patterns, are included in the comparison, and the comparison is conducted
with R2 of the estimated versus target values (with the intercept fixed at 0). Among
others, OD flows and check-in patterns are the decision variables of the model for cap-
turing the demand pattern, while zonal production and zonal attraction are counted in
the objective function with the purpose of increasing the accuracy of the demand level.
For each Ns, considering the randomness of check-in pattern sampling, results from 10
replications are used to create the box plots.

Clearly, Ns = 10 outperforms Ns = 5 in the estimation of all variables, represented
by better average R2s. It implies that 5 check-in scenarios are insufficient to effectively
restrict the search space of the OD matrix, while the new constraints introduced by
adding new scenarios can still make a difference. On the contrary, considering too
many check-in scenarios also has the possibility of resulting in sub-optimal solutions,
especially because of the inclusion of biased scenarios, and adding more complexity.
This is evidenced by the worse performance (except for attraction estimation) of the
Ns = 50 model compared to that of Ns = 10. Ns = 50 even leads to a smaller R2

than that of Ns = 5 in terms of OD flow and check-in pattern estimation. On the
other hand, the Ns = 50 model outperforms the models with fewer scenarios in terms of
zonal attraction estimation. However, we found that increasing Ns from 50 to 100 would
reduce the model performance in all four indicators. This implies that adding too many
check-in scenarios into consideration can no longer improve the model performance and
might even lead to a performance decline.

Furthermore, we note that the deviation of R2 in Ns = 10 is greater than the other
scenarios. It reflects the significance of the quality of check-in scenarios in the proposed
model. Despite variations in performance among the four model scenarios, all of them
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can output estimations of sufficient quality, thereby indicating the robustness of the
proposed approach.

The experiments and comparisons presented here were conducted in an objective state
without the presence of zonal attraction ({wx, wp, wa, ws} = {1, 10, 0, 1}). Thus, zonal
attraction serves as a validation metric to evaluate the effectiveness of the model and
algorithm. The good fit of zonal attraction in all four scenarios indicates the soundness
of the approach. Notably, the zonal attraction scores even outperform those of zonal
production, further reinforcing the validity of the model and algorithm.
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Figure 4.9: Boxplot for R-squares with different numbers of second-stage scenarios.

4.3.4 Objective function analysis

Referring back to Section 4.2.2, the objective function consists of three main types of
error terms, i.e., Eξ, {fp, fa}, and fx, where Eξ is the base model formulated as the
two-stage problem, while fp and fa can be triggered to add constraints via the trip
generation/attraction relationship with check-in patterns subject to the city data, and
fx is a conventional error term widely used in DODE literature to keep the estimated
OD patterns close to the prior OD flows. Therefore, the objective function can take
multiple states depending on the availability and quality of the data. It is important to
analyze the performance of the proposed model under all possible combinations. In this
section, we compare the model performance under five different objective function states.
Table 4.2 lists the weights of four error terms of these objective states. More specifically,
WS tests the model without any restrictions on the OD flows and zonal production and
attraction but solely with the check-in pattern optimization. WX0 is used to examine
the importance of the prior OD flows. WP0 and WA0 check the necessity of restricting
zonal production and attraction, respectively. Finally, state ALL represents the complete
form of the objective function.
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Table 4.2: Weights of error terms in different objective function states.

State wx wp wa ws
WS 0 0 0 1
WX0 0 5 5 1
WP0 1 0 5 1
WA0 1 5 0 1
ALL 1 5 5 1

Figure 4.10 compares the model performance under these objective function states
in terms of zonal production and attraction and OD flows. WS obtains a very biased
estimation in all variables. This verifies the necessity and reliability of the proposed two-
stage stochastic programming framework from the opposite side since if only considering
the expectation term in the objective function the model would degrade to a purely
single-stage problem. It means despite check-in patterns to a certain extent can be
an information carrier of OD patterns, the auxiliary information about the demand
level is required for a satisfactory estimation. Adding restrictions on zonal production
and attraction as in WX0 can significantly improve the situation. In addition to a
good fit in zonal production and attraction, WX0 also provides a fair estimation of
OD flows even without feeding any information about OD patterns. Surprisingly, WP0
performs nicely in all three estimation tasks even only having penalties for posterior OD
estimates and zonal attraction estimates. Nonetheless, it is also understandable with the
consideration that the OD matrix is the mapping result between zonal production and
attraction so determining the OD matrix and zonal attraction is capable of reproducing
the zonal production as well. Similarly, we can observe comparable results in WA0.
Furthermore, as asserted in Section 4.3.3.3, the error terms that are excluded from the
objective function, such as zonal production in WP0 and zonal attraction in WA0, can
be employed for validation purposes.
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Figure 4.10: Comparison of different objective formulations.

Overall, this proves the superiority of the proposed model in the estimation tasks
of zonal production and attraction. It also implies that with further integration of
trip distribution information (e.g., the observed trip length frequency distributions from
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LSBN activity data), the model can robustly find correct OD matrix patterns, purely
relying on LBSN data, without any prior OD estimate information (part focused for
future research). In fact, such potential has been presented in WX0 in which only
production and attraction data are available. As expected, ALL also leads to promising
results. However, its performance cannot explicitly exceed that of WP0 and WA0.

Figure 4.11 shows a clearer comparison of the model under different objective functions
by using R2 as measurement. There is no surprise that WS performs worst in all three
tasks. R2 is calculated by fitting the corresponding data to a linear regression model
constrained so that the intercept must equal 0. Under this constraint, the model may
obtain a negative R2 when the model cannot capture the trend of the data, thereby
performing worse than the mean estimate (i.e., ŷi = 1/n

∑n
i yi,∀i). This happens in WS,

where the fits of production and attraction result in a R2 of -1.10 and -0.45, respectively.
On the contrary, the rest models achieve a score greater than 0.9 in all tasks, except
WX0 gets around 0.6 in OD flow estimation. These results conform to the scatter plots
in Figure 4.10.
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Figure 4.11: R2 of zonal production, attraction and OD flows under different objectives.

4.4 Conclusions and future work

Considering the stochastic nature of human behaviors and transportation systems, we
propose a dynamic OD estimator by utilizing the scenario-based two-stage stochastic pro-
gramming framework, which integrates the activity chains extracted from LBSN check-in
data to model activity-level mobility flows. Given that OD flows are the results of ag-
gregated activity flows, the OD matrix can thus be derived from activity flows easily.
More specifically, utilizing the framework, our approach aims to minimize the errors
introduced by the inter-zone OD flows and the expected errors of the check-in patterns
in the first stage, while minimizing the errors produced by the check-in pattern sce-
narios in the second stage. The MCMC sampling is implemented to generate a batch
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of statistically significant check-in scenarios. Ultimately, a GBD algorithm is applied
to solve the two-stage stochastic programming problem, in which the optimal solution
is obtained by solving a relaxed master problem and a series of subproblems (one per
scenario) alternately.
To evaluate the effectiveness of the proposed approach, we conduct the case study

in Tokyo city, Japan, and employ the GLS estimator to measure model performance in
estimations of check-in and OD patterns, which on the other guarantees the problem con-
vexity. The experiment results show that the convergence of the GBD algorithm can be
attained within several iterations. More importantly, in regard to estimation quality, the
model also observes a good fit for check-in patterns, zonal production, zonal attraction,
and OD flows. The robustness with respect to the check-in scenarios is also examined
and evidenced by incorporating different numbers of check-in scenarios in the second-
stage problem. We also explore the objective function formulation space by adopting
multiple objective function states with different combinations of error terms. We find
that the interdependence of zonal production, zonal attraction, and OD matrix makes
the inclusion of all error terms in the objective unnecessary. In particular, considering
two of them can already produce estimations as good as considering all. It intuitively
follows that the variable excluded from the objective function can serve as the validation
metric.
However, the proposed methodology also exhibits the following limitations: (i) In cases

of LBSN data lacking venue category information, the methodology may not be viable
due to the inherent challenge of differentiating between POIs situated within the same
building. (ii) Furthermore, the variability in the representativeness of LBSN check-in
data across diverse activities, stemming from potential sampling bias, might affect the
reliability of the estimation results.
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Chapter 5

Estimating demand pattern changes under
disruptions with crowdsensed data

The content of this chapter has been partially presented in the following work:

Lu, Q.-L., Mahajan, V., Lyu, C., and Antoniou, C. (2024a). Analyzing the impact of fare-
free public transport policies on crowding patterns at stations using crowdsensing
data. Transportation Research Part A: Policy and Practice, 179:103944.

5.1 Introduction and research contributions

The proliferation of smartphones equipped with positioning technologies, such as GPS
and BeiDou Navigation Satellite System (BDS), has provided a novel means of col-
lecting mobility data, opening up new avenues for demand pattern studies in a more
cost-effective manner. These devices generate vast volumes of real-time data on individ-
uals’ activities and mobility through location-based services, social networks, and other
mobile applications. Crowdsourced data, among others, containing no sensitive personal
information, has become a popular source of data in urban mobility modeling including
demand pattern analysis. Moreover, their real-time nature enables the evaluation of
demand pattern changes caused by disruptions.
This chapter aims to examine the value of crowdsensed data, a typical crowdsourced

data, in modeling demand pattern changes at PT stations due to demand disruptions.
In particular, we investigate the response of PT stations to the demand surge resulting
from fully or partially Fare-Free Public Transport (FFPT), manifested as changes in
crowding patterns. FFPT policies allow individuals to utilize PT services free of charge
or with reduced financial charges. They serve as a PT incentive to increase PT mode
share (Thøgersen, 2009; Cools et al., 2016), which can result in demand-side disruptions
if the transit supply is not augmented concurrently.
When analyzing demand patterns at the resolution of PT stations, their heterogeneity

in terms of spatiotemporal factors of land use and transportation must be accounted
for (Fan et al., 2022). The complex relationship among surrounding land use, transport
network, population, temporal features, and historical demand patterns can lead to
different crowding patterns. Therefore, the methodology to analyze the impacts of PT
pricing policies should consider such heterogeneity. This will contribute to the knowledge
of urban mobility and activity patterns and assist policymakers and practitioners in
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formulating more rational measures for Public Transport Demand Management (PTDM)
(Vongvanich et al., 2023). The proposed methodology can also be applied to predict the
disrupted travel demand by integrating with the absolute population information as
presented in Vongvanich et al. (2023).

In this chapter, we present a three-step busyness-based framework to empirically eval-
uate the potential of a wide-coverage crowdsensed dataset in measuring the demand
pattern changes at PT stations resulting from demand-side disruptions due to FFPT.
Specifically, we first devise a similarity measure based on the changes in crowding pat-
terns at different policy implementation stages. We then integrate a clustering model to
identify different types of PT stations based on their crowding patterns and a classifica-
tion model to infer the relationship between the policy impact and station characteristics.
This chapter offers the following contributions:

• We develop a methodological framework leveraging fine-resolution and wide-coverage
PT station busyness data for demand pattern analysis.

• We apply our framework to the case of the 9-Euro ticket experiment in Germany
using opportunistic data and provide empirical findings.

The remainder of this chapter is structured as follows. We introduce the three-step
framework in Section 5.2. Section 5.3 presents the case studies and experiment results.
Finally, major findings, limitations, and future research direction are concluded in Sec-
tion 5.4.

5.2 Methodology

In this section, we propose a framework driven by crowdsensed check-in data (i.e., busy-
ness data) that can be used to evaluate the impact of FFPT policies on crowding patterns
in PT stations and estimate the relationship of the impact with station characteristics.
Specifically, we develop a three-step busyness-based evaluation framework, as shown

in Figure 5.1. In addition to the collection and preprocessing of crowdsensed data and
station attributes, the framework integrates the following three components:

Step (1) A histogram-based feature engineering approach is adopted to encode the
crowding pattern changes in PT stations. The histogram method is a means for
estimating the probability density distribution of a certain random variable. It
can provide an overview of the impact of the policy of interest on the concerned
stations. Besides, factor analysis is applied to extract significant patterns from
raw station features and reduce noise and feature dimensions.

Step (2) A clustering model is used to identify and label different types of PT stations
based on the changes in their crowding patterns. This step is to mine and
characterize the changing patterns of PT station crowding patterns. We define
these clusters as busyness-based station types (i.e., Yc in Figure 5.1), which
will serve as class labels inputted to the classification model in the following
classification step.
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Step (3) Finally, a classification model is trained on the spatiotemporal station at-
tributes and the busyness-based station types identified by the clustering model
in Step (2) so as to infer the association between them.

Furthermore, it is worth mentioning that in most platforms providing crowdsensed
services, the busyness value of a POI may be unavailable if there is a limited number of
users opting for location services. In order to estimate the crowding pattern changes, it is
necessary to impute the missing data contained in the raw busyness dataset beforehand.

Step 1: Feature engineering

Histogram
method

Station
clustering

Station classification

Station
busyness

Missing-data
imputation

Station
features

Factor
analysis

Data preparation
- Collect busyness data
- Compute station features
- Complete busyness data

- Calculate the busyness difference
- Estimate probability density
- Transform to histogram features
- Extract factors from station features

Step 2: Station clustering
- Model selection
- Busyness-based station type 
  characterization

Step 3: Station classification
- Latent variables identification
- Significant factors analysis
- Misclassfication analysis

LabelFeatures

Figure 5.1: Three-step busyness-based evaluation framework for public transport policies.

5.2.1 Histogram-based feature engineering

Generally, for a specific time stamp, crowdsensed services provide two busyness values
for POIs, namely, historical and live busyness. The deviations of live busyness from
the historical ones can be used as a proxy for PT demand pattern changes. Based on
the histogram method, we use the busyness deviations to construct a measurement to
describe the similarity between PT stations in terms of the impact of fare-free policies.
Figure 5.2 provides a graphical illustration of the proposed histogram method.
LetH ∈ Rns×nt , R̂ ∈ Rns×nt denote the historical and imputed live busyness matrices,

where ns and nt denote the number of stations and time intervals respectively. We
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Figure 5.2: Feature engineering based on the histogram method.

denote Hij and R̂ij the historical and imputed live busyness of station i at time interval
j, which can be absolute (number of visitors) or relative values (within a range like
[0, 100]) depending on the data source. For instance, Foursquare provides the number
of visitors, while Google Maps only provides the normalized value in the range [0, 100].
The busyness deviation matrix can then be calculated as D = R̂−H (Figure 5.2a). The
histogram method can then be applied to approximate the probability distribution of
the respective busyness deviations for each station and each week separately. As shown
in Figure 5.2b, for one week of data of a station, we can plot the deviations using a
histogram; there are 168 deviation values within a week for a station at which data are
updated hourly.

In the histogram method, the sample space is divided into M non-overlapping bins,
each with width ∆m. We then count the deviation values located in each bin Km and
approximate the density function by

pm =
Kmlt
168∆m

, ∀1 ≤ m ≤M (5.1)

where lt (h) is the length of each time interval, and 168 is the number of hours each
week. Repeating the calculation for every station and every week (Figure 5.2c), we can
obtain a probability density tensor of busyness deviations with dimension ns ×M × nw
where nw is the number of weeks (Figure 5.2d). This feature engineering method extracts
representative features that can reflect the crowding pattern changes from the PT station
busyness data.

5.2.2 Clustering for labeling busyness pattern changes

DenoteQ ∈ Rns×np (np is the total number of histogram bins of all weeks under consider-
ation) as the probability density matrix formed by stacking probability density vectors
of different time intervals and stations along two dimensions. The Gaussian Mixture
Model (GMM) is employed to perform the station clustering task. Given the train-
ing dataset and a GMM configuration (w.r.t. number of Gaussian components, type
of covariance matrices), model parameters (i.e., mean vectors, covariance matrices, and
mixture weights) are estimated to maximize the GMM likelihood. Note that each com-
ponent density is a np-variate Gaussian function . The problem can be addressed via
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the expectation-maximization algorithm proposed in Reynolds et al. (2009). In terms
of hyper-parameters, while they are often determined by the amount of data, one can
also make a decision based on the Bayesian Information Criterion (BIC) or the Akaike
Information Criterion (AIC). In statistics, these two criteria are used for model selection,
particularly to prevent from the overfitting issue caused by adding too many parame-
ters into the model. The present clustering model reveals the heterogeneous impacts
of fare-free policies among PT stations and provides labels to the classification model
introduced in the following.

5.2.3 Station classification using spatiotemporal attributes

Many factors can lead to the difference in the response of PT stations to PT policies,
including static features such as the network structure, and dynamic features such as
activity patterns in the station vicinity. Table 5.1 summarizes some typical influencing
factors together with their representative features. While the clustering model can iden-
tify different changing patterns of crowding patterns at PT stations, we move one step
forward by training a classification model to identify the significantly correlated factors
with the changing patterns. In this chapter, we primarily consider the four categories of
features listed in Table 5.1.

Table 5.1: Features considered in the classification model.

Feature categories Features

Location & Context Dummy variable for cities and station types (U-Bahn, S-Bahn)
Nearby activity Counts of different types of POIs around the station, popula-

tion
Crowding pattern The crowding pattern of the station for one week (before policy

implementation)
Network structure Features used in complex network analysis: # edges, # nodes,

average node degree, etc.

“Location & Context” features are able to capture the local economic situation, com-
munities’ life culture, and development pattern to some extent (Fan et al., 2022). U-Bahn
and S-Bahn in Germany refer to urban subway and city rapid railway, respectively. Other
categorizations in the context of other countries are also applicable. Similarly, “Nearby
activity” features represent the land use, demand production and attraction of the ad-
jacent area around the PT station. Apart from the statistics of POIs, the busyness
data of POIs are also valuable for modeling neighborhood activity patterns. “Crowding
pattern” features provide information related to the demand pattern of the respective
PT stations under normal operation conditions. They are extracted from the historical
busyness data collected before implementing new pricing measures. Furthermore, “Net-
work structure” features can capture the traffic conditions of local private transport,
which are very important in PT-related assessments given the strong inter-correlation
between private and public transport.
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It is worth pointing out that “Nearby activity” features might be highly correlated.
It follows that dimension reduction techniques can be applied to reduce the number of
features and preserve most information contained in the original features at the same
time. This is also applicable to the “Crowding pattern” features. In this study, we apply
factor analysis to achieve this. Factor analysis also serves as an exploratory analytical
instrument, and its application is deemed justifiable to the extent that the resulting
factors can be meaningfully interpreted.
We apply the LightGBM to perform the classification task. An introduction of this

model can be found in Section 3.3.2.2. A sequential feature selection is used to find
the best combination of features for classification. A 10-fold cross-validation is also
conducted to evaluate the performance of the LightGBM classifier on the busyness-based
station types classification task.

5.3 Case study and results

In 2022, the German federal government introduced the so-called “9-EUR Ticket” in
response to the escalating fuel and energy costs resulting from the geopolitical crisis in
Ukraine (Loder et al., 2023). The primary objective of the measure was to encourage
commuters to shift from private vehicles to PT by providing them with a monthly flat
rate of 9 EUR, which enabled them to travel on all regional, local, and urban PT ser-
vices, except for long-distance passenger services such as Intercity Express, from June
1 to August 31, 2022. It provides an unprecedented opportunity for understanding the
impact of ticket schemes with substantial discounts on PT operations and the potential
of crowdsensed data for capturing demand pattern changes. To this end, GPT data are
collected for more than 2000 PT stations in Germany to drive the busyness-based frame-
work. The introduction of GPT data can be found in Section 3.4.1.3 and Section 3.4.1.4.

5.3.1 Features and data analysis

The data collected before 9-EUR are used to extract the “Crowding pattern” features
for classification, while the data collected during and after the 9-EUR period are used
in the histogram method for clustering to identify changing patterns.
Regarding the other features adopted in the classification model, the population is

estimated using the population density map of Germany in 2019 (HDX, 2023). For the
nearest 5 and 10 stations, we calculate the mean and standard deviation of the population
densities to capture the population characteristics. Network neighbors of a given station
are defined as the closest stations to it in the entire PT network. These features capture
the connectivity characteristics regarding the busyness level within the adjacent area of
the neighboring stations. POI statistics are collected from OpenStreetMaps (84 types are
reserved after a POI counts filter). Both the population and POI statistics are estimated
and counted within a square are with a side length of 1 km. “Network structure” features
are computed using the Python package OSMnx (Boeing, 2017).
In terms of historical average patterns, two demand peaks are observed on weekdays,

including a morning peak at 8 AM and an afternoon peak at 3 PM, while only one
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peak shows up on Saturdays and Sundays at around 3 PM. It means the daily crowd-
ing patterns are different between weekdays and weekends. Furthermore, the busyness
of stations is higher on weekdays than on weekends during the daytime. In contrast,
there is a higher busyness level after 8 PM on Saturday, possibly due to more nightlife
activities on Saturday evenings. Regarding live average patterns, an apparent lift shows
up in Saturday’s pattern and Sunday’s pattern in all time intervals, compared to the
historical ones. It means the implementation of 9-EUR significantly stimulates travel
on the weekends. On the contrary, on the weekdays, while the live pattern keeps at a
similar level to the historical pattern during the daytime, it presents a higher popularity
in the evening. Another interesting point is the standard deviations of live patterns
across different stations are much greater than those of historical patterns, implying
that the influence of 9-EUR has a nature of inter-station variability. This lends support
to the development of the three-step framework and the necessity of integrating station
clustering to accurately uncover the policy’s influence.

5.3.2 Crowdsensed data imputation

Further, we notice the common missing value issue of live busyness in GPT data; when
there are insufficient visitors, the live busyness may not be available. Therefore, it is
necessary to apply a data imputation method to complete the live busyness dataset.

Due to the potential difference in busyness patterns during collection periods dur-
ing and after 9-EUR, live data imputation is performed separately for the two periods.
The missing rates during and after 9-EUR are 21% and 33%, respectively. Considering
the imbalance issue of missing patterns in the dataset, i.e., some stations observe many
missing values while observing none otherwise, we apply the Probabilistic Matrix Factor-
ization (PMF) (Mnih and Salakhutdinov, 2007) to address this problem. By PMF, the
live busyness matrix will be modeled as a product of two lower-rank matrices, i.e., latent
station and time feature matrices. The missing entries in the matrix will be imputed by
maximizing the log of a posteriori distribution over station and time features.
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Figure 5.3: Comparison of true and imputed popularity (Jaczostr. station, Berlin).
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To evaluate the performance of the imputation method, we artificially design two
random missing scenarios with the same missing rates using the respective historical
datasets. In these two synthetic scenarios, PMF leads to mean absolute percentage
errors (MAPEs) of 2.3% and 1.0%, respectively. As an example, Figure 5.3 shows the
busyness time series of the Jaczostr. station, Berlin, in the first eight weeks of 9-EUR,
together with their imputed values. We can see that despite live data fluctuating more
than historical data, it also follows a clear daily pattern and the imputed values fit quite
well with the ground truth.

5.3.3 PT station clusters characterization and analysis

In the histogram method, we set all bins to the same width ∆m = 10, ∀m. Since the
busyness deviation will be in the range of [−100, 100], M = 20 bins are specified in his-
tograms. According to Equation 5.1, after specifying the same lt and ∆m for all bins, the
probability density is proportional to the counts of deviation values, i.e., pm ∝ Km, ∀m.
Thus, we use Km rather than pm in the following experiments for a more intuitive under-
standing. Additionally, the variables representing the range of [−100,−60) and [80, 100]
are removed due to their limited capability of distinguishing station samples, i.e., almost
all stations have the same value. Figure 5.4 compares the performance of GMM models
with different hyper-parameters with respect to the number of components and the type
of covariance matrices. A grid search is performed to find the best hyper-parameters
based on BIC. A lower BIC is preferable. The top subplot presents the results of consid-
ering all histogram variables, while the bottom subplot presents that of after removing
the variables representing [−100,−60) and [80, 100]. BIC is used to avoid overfitting
by incorporating a penalty term for the number of parameters in the model, which in-
terprets why the GMM models with full or tied covariance matrices (non-empty values
in all elements) for each component perform worse than the other two types of GMMs.
Furthermore, we can see that removing the variables incapable of distinguishing sta-
tions can improve the robustness of the GMM with diagonal covariance to the number
of components. Finally, focusing on the bottom case, although the GMM models with
spherical and diagonal covariance matrices show similar performance regardless of the
number of components, the GMM with 3 components and diagonal covariance matrices
leading to the smallest BIC is selected for interpretation purposes.

After reordering, the three categories of stations are indicated in Figure 5.5. The
x-axis is the bins indices, with every 14 bins constituting a histogram representing one
week of data because we have removed the six low-impact intervals mentioned above. We
have 14 weeks for the 9-EUR period and 9 weeks for the post 9-EUR period, which are
indicated with different colors in the figure. The y-axis represents different PT stations.
Red horizontal dashed lines separate different categories of stations. Zoom-in views of
some stations of each category are also provided to better illustrate the difference in
their crowding pattern changes. A clear distinction can be observed between every two
categories. To be specific, we characterize stations based on the heterogeneous impacts
of 9-EUR on their crowding patterns as (i) Cluster 1 – unaffected stations (146 stations).
Their demand patterns are almost not affected by the policy. Moreover, their crowding
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Figure 5.4: GMM models comparison based on BIC. (top) Considering all variables resulting
from the histogram method; (bottom) After removing insignificant variables.

pattern deviations are more stochastic than the others; (ii) Cluster 2 – mildly stimulated
stations (92 stations). These stations’ demand increase during 9-EUR and recover to the
original demand level slowly or keeps a similar level afterward; (iii) Cluster 3 – intensely
stimulated stations (55 stations). These stations’ demand increases significantly during
9-EUR and reduces immediately afterward.

Figure 5.6 provides the GPT time series samples during and after 9-EUR for each
station type to better illustrate the heterogeneity among different types of stations.
These time series demonstrate similar phenomena to those described above based on
histogram-based variables in terms of the changes in crowding patterns, which, on the
other hand, reflect the correctness of the characterization of stations.

Figure 5.7 provides the composition of stations in five major cities in Germany that
have more than 20 stations in the dataset. The cities are ordered based on the number
of “unaffected” stations (cluster 1). We can see that the composition is very different
from city to city. Specifically, most stations in Stuttgart and Berlin are “unaffected”,
while more than half of stations in Hamburg and Frankfurt are “mildly stimulated” and
“intensely stimulated” respectively. The PT use in Berlin did not change much due
to 9-EUR, while that in Frankfurt (a city of the Hessen state) increased significantly.
On the other hand, Munich has nearly balanced numbers of “unaffected” and “mildly
stimulated” stations. Moreover, 87.3% of “intensely stimulated” stations (55 in total)
are from Frankfurt.
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Figure 5.5: Station clusters based on busyness deviations. (blue) During 9-EUR; (orange) After
9-EUR. Green vertical lines indicate the centers of the respective histograms.

5.3.4 Latent variables extraction based on factor analysis

Factor analysis with the VARIMAX (Kaiser, 1958) rotation method is conducted on
crowding pattern features to extract significant factors that can describe the demand
patterns of PT stations. Only factors that can explain more than 2% of the total variance
and have an absolute factor loading greater than 0.5 are considered for characterizing
the factor, which leads to 11 factors from 84 crowding features.

Figure 5.8 depicts the factor loadings of features in different factors. The x-axis shows
different periods within a week, while the y-axis indicates the factors which satisfy the
constraints. Darker colors indicate a large absolute value of the corresponding factor
loading. We denote these factors extracted from crowding pattern features by CP0 to
CP10. Clear distinctions do exist among them. In particular, according to the factor
loadings, we can interpret these factors as representatives for different times of the day.
We characterize these factors as listed in Table 5.2. From these factors, we can also
see a clear distinction between weekdays, Saturdays, and Sundays. Therefore, according
to the time intervals with significant factor loadings, we define three basic types of
factors: weekday-based, Saturday-based, and Sunday-based factors. All factors can be
categorized under at least one category of them. Then, the factors belonging to both
Saturday-based and Sunday-based Saturday- and Sunday-based factors would be defined
as weekend-based factors, while those relating to all days of the week would be daily
factors.

Essentially, these factors represent the demand patterns at different periods of the week
and are latent variables contained in the crowding pattern features. For instance, CP0,
associated with the period 14:00 - 22:00, represents the demand pattern at PT stations
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Figure 5.6: GPT time series samples of the identified busyness-based station types.
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Figure 5.7: Station types distribution in major cities (ns ≥ 20).
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in the afternoons and evenings. The negative loadings in these intervals say that the
busyness level at PT stations during this time period is related in the opposite direction
from the factor. The variance each factor can explain is also provided in Table 5.2.
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Figure 5.8: Factors extracted from crowding pattern features.

Table 5.2: Factors extracted from crowding pattern features.

Factor Type Time Interpretation Loadings

CP0 Daily 14-22 Afternoon and evening Negative
CP1 Daily 0-6 Early morning Positive
CP2 Weekday-based 10-16 Weekday lunchtime Negative
CP3 Daily 22-2 Mid-night Positive
CP4 Weekday-based 4-10 Weekday breakfast time Positive
CP5 Sunday-based 10-22 Sunday after morning Negative
CP6 Weekend-based 0-6 Weekend early morning Positive
CP7 Weekend-based 6-10 Weekend breakfast time Positive
CP8 Weekday-based 4-6 Weekday before breakfast Positive
CP9 Saturday-based 10-14 Saturday lunchtime Positive
CP10 Saturday-based 16-22 Saturday evening Negative

Further, factor analysis is also conducted on the highly correlated (here, features with
an absolute correlation greater than 0.6) features in the rest of features. These features
all belong to either POI statistics, population densities, or network features. Following
the same procedure, we obtain 9 factors. The factor loadings are provided in Figure 5.9.
We denote these factors by PPN0 to PPN8 with “PPN” representing “POI statistics”,
“Population” and “Network” respectively.
We can interpret PPN factors as in Table 5.3. Due to the large amount of POI features

and the difficulty of explaining their intrinsic correlation, we do not explicitly categorize
different types of POIs and finely interpret the associated latent variables. Instead, we
only distinguish the POI-associated factors from the sign of factor loadings, resulting
in three POI-based factors with positive loadings (PPN0, PPN3 and PPN5) and two
POI-based factors with negative loadings (PPN1 and PPN8). On the contrary, for those
factors emphasizing population or network features, we can provide clear interpretations
based on the nature of associated features. In particular, the factor analysis leads to
two population-based and two network-based latent variables. The two population-
based factors indicate population and population variance, respectively, given that the
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former is correlated with the population densities of the station vicinity and its network
neighbors, while the latter is correlated with the variance in their population densities.
The two network-based factors indicate the network summation describing the counts
or summations of network elements (nodes, edges, intersections, etc.), and the network
average describing the average of network elements. Note that while the factor loadings
of the two population-based factors have opposite signs, both network-based factors have
positive loadings on the associated features.
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Figure 5.9: Factors extracted from highly correlated features.

Table 5.3: Factors extracted from highly correlated features.

Factor Interpretation Loadings

PPN0 POI positive (1) Positive
PPN1 POI negative (1) Negative
PPN2 Network summation Positive
PPN3 POI positive (2) Positive
PPN4 Population Negative
PPN5 POI positive (3) Positive
PPN6 Network average Positive
PPN7 Population variance Positive
PPN8 POI negative (2) Negative

5.3.5 Classification model evaluation

LightGBM is applied to infer the relationship between the selected station features (in-
cluding the latent variables resulting from factor analysis) and the impact on crowding
patterns. Based on the cross-validation, the model achieves a weighted F1 score of 0.704
and a balanced accuracy of 0.701. With the information gain as the importance mea-
surement, the significant features with an information gain greater than 100 are given in
Figure 5.10. As can be seen, the importance of the dummy variable indicating whether
the station is located in Frankfurt is more than two times of most of the rest of variables.
Referring back to Figure 5.7, we found that 60% of Frankfurt’s stations (48 out of 80)
are “intensely stimulated” stations, composing 87.3% of this station type. It is thus
understandable that this variable attains the highest importance. Similarly, the variable
indicating whether the station is located in Berlin illustrates a significant importance
level since 83.6% of its PT stations belong to “unaffected” stations. Additionally, the
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second to the ninth most important variables (8 out of 13) are latent variables identified
in Section 5.3.4. Four of them are extracted from crowding pattern features, represent-
ing the afternoon and evening pattern (CP0), the pattern before breakfast on weekdays
(CP8), the early morning pattern (CP1), and the evening pattern on Saturday (CP10).
This means the influence of 9-EUR on a given PT station also has a strong relationship
with its daily crowding patterns. The other four factors are PPN factors, representing
demand patterns of the POIs near the station (PPN3 and PPN8), population (PPN4)
and population variance (PPN7). The “Self loop” variable (i.e., percent of edges that
are self-loops) is one “Network structure” variable described in Table 5.1. All feature
categories listed in Table 5.1 show up in Figure 5.10.
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Figure 5.10: The most important features with information gain greater than 100.

5.4 Conclusions and future work

This chapter has presented a three-step busyness-based evaluation framework to empir-
ically analyze the PT demand pattern changes under demand-side disruptions, with a
focus on crowding patterns at PT stations. Using the example of the 9-EUR ticket im-
plemented in Germany in 2022, we have showcased the effectiveness of crowdsensed data
in estimating the varying sensitivity of PT stations to fare intervention and inferring the
factors influencing the difference.

The clustering model has successfully identified three categories of stations based on
their crowding pattern changes: (i) Unaffected stations (demand patterns are not af-
fected by the intervention), (ii) Mildly stimulated stations (demand increases during the
implementation period and recovers to the original state slowly or maintains a similar
demand level afterward), (iii) Intensely stimulated stations (they are very sensitive to
the intervention, as shown by the dramatically increasing demand during the implemen-
tation period and the sudden reduction afterward). It has revealed that most stations in
Stuttgart and Berlin are “unaffected”, while more than half of stations in Hamburg and
Frankfurt are “mildly stimulated” and “intensely stimulated” respectively. Munich has
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balanced numbers of “unaffected” and “mildly stimulated” stations. Further, the classi-
fication model suggests that the station location, activity patterns, population variance
within the area around the station and around its nearest neighbors in the network,
and demand patterns in the afternoon and evening, and weekday early morning play a
significant role in the crowding pattern changes of stations.
However, the framework can still be further improved by integrating other relevant

features, such as accessibility to the city center. Future research could also consider
including POI statistics around the areas of the station’s network neighbors, given the
significance of their population densities (and variance) in the classifier. Another im-
portant limitation of this study is that the crowding patterns of other POIs near the
station, which could capture the activity patterns nearby, are not considered and col-
lected. However, these activity patterns are expected to be highly correlated to the
crowding patterns since people usually travel to perform activities. Furthermore, while
the histogram features extracted from the distribution of crowding pattern deviations
can effectively identify PT stations with similar crowding pattern changes, it fails to cap-
ture the similarity in the temporal patterns of stations’ busyness levels. Future works
could explore the development of a method capable of combining both of these aspects.
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Chapter 6

Traffic resilience indicators based on
macroscopic fundamental diagrams

The content of this chapter has been partially presented in the following work:

Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2024c). Traffic resilience
quantification based on macroscopic fundamental diagrams and analysis using topo-
logical attributes. Reliability Engineering & System Safety, 247:110095.

6.1 Introduction and research contributions

A reliable indicator of system functionality is critical to the evaluation of system re-
silience. Although the resilience concept has been adapted to transportation systems for
more than two decades, there is no universally accepted definition of system functional-
ity in the context of urban road transportation yet. By convention, topological measures
based on complex network theory, which can represent the structural properties (e.g.,
connectivity and accessibility) of the network, are used. However, these measures can-
not capture traffic dynamics in the evaluation. On the other hand, trip-based indicators,
such as network average travel time (Dingil et al., 2019; Arango et al., 2023), average
speed (Hoogendoorn et al., 2015), and demand served (Chen and Miller-Hooks, 2012),
have also been adopted to overcome the drawbacks of the topology-based ones. However,
these indicators based on direct trip information are usually sensitive to travel demand
levels and patterns, and cannot be regarded as a property of the transportation system.
With the definition of the MFD (Geroliminis and Daganzo, 2008) and the success of

its applications to perimeter control (e.g., Zhong et al., 2018; Chen et al., 2022), one can
construct reliable and representative traffic resilience indicators by relating the MFD
dynamics and system functionality. The MFD describes the relationship among the
space-mean production, the space mean state, and spatial homogeneity in traffic flow,
offering a way to evaluate network performance without requiring detailed traffic physics.
More importantly, MFD is an intrinsic property of a homogeneously congested trans-
portation network (Huang et al., 2020; Su et al., 2020). Therefore, compared with other
measures, it holds the superiority of integrating information on transportation network
characteristics, traffic dynamics, and travel demand patterns. Note that transportation
system disruptions always render recurring or non-recurring congestion. This provides
an opportunity for measuring system resilience by comparing the MFD dynamics before
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and after disruptions. To date, several MFD-based resilience indicators have been pro-
posed, including the link criticality index based on the shape of MFDs (Kim and Yeo,
2017), the performance indicator based on travel production (Amini et al., 2018), and
the traffic resilience index based on total congestion deviation (Gao et al., 2022).

As a step in that direction, we present enhanced MFD-based traffic resilience indicators
in this chapter to address the defects in its predecessors. To be specific, we theoretically
discuss and compare the influencing mechanisms behind hyper-congestion and supply-
side disruptions, which are the transportation disruption cases mostly discussed in the
literature (e.g., Gao et al., 2022; Zhang et al., 2022a; Pei et al., 2024), highlighting the
need to differentiate the calculation of traffic resilience based on the type of disruption.
To illustrate the practical value of our approach, we conduct case studies on two real
networks, Munich, Germany, and Kyoto, Japan.

This chapter contributes to the existing body of knowledge on traffic resilience and
its practical implementation. Specifically,

• We develop novel resilience indicators for transportation systems based on the
well-established MFD concept, emphasizing their function in serving traffic flows.

• We validate the robustness and reliability of the proposed indicators through nu-
merous experiment scenarios of two real networks.

The rest of the chapter is structured as follows. Section 6.2.1 provides a brief introduc-
tion to basic concepts in the MFD. Section 6.2 presents the MFD-based traffic resilience
indicators and discusses the necessity of distinguishing between hyper-congestion and
supply-side disruptions. Then, Section 6.3 introduces the case studies and experiment
results. Finally, Section 6.4 concludes the chapter with the findings and future directions
for research.

6.2 Methodology

In order to address the limitations of existing resilience indicators discussed above, we
propose comprehensive MFD-based traffic resilience indicators in this section, partially
building upon the work presented by Amini et al. (2018). Our approach acknowledges
the need to differentiate between the evaluation of traffic resilience to hyper-congestion
and supply-side disruptions due to the distinct mechanisms through which they exert
influence on the system. This differentiation is crucial for devising and implementing
appropriate preparedness and recovery strategies to mitigate their impact and enhance
network resilience. In particular, hyper-congestion typically involves recurring events,
allowing for the application of conventional network traffic optimization methods to im-
prove resilience. On the other hand, supply-side disruptions are typically non-recurring
events that require event-specific and tailored approaches. By distinguishing between
these two types of disruptions, we can better understand the unique challenges they pose
and identify the most effective response measures. We introduce the notation listed in
Table 6.1 for ease of explanation.
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6.2.1 Macroscopic fundamental diagram

The MFD describes the relationship between the number of vehicles on a network and
their average speed. Essentially, it provides insights into the network’s internal flow
(represented by the number of vehicles per roadway length or weighted average density)
and its outflow (represented by the trip completion rate or weighted space-mean flow).
Figure 6.1 illustrates the typical parabolic shape of an MFD. One of the key advantages
of the MFD is its simplicity and applicability in real-time control problems, as it does
not require extensive traffic data from multiple sources or complex estimation methods.
The MFD can be constructed using raw field data obtained from common loop detectors
or floating car data. Moreover, the MFD is an intrinsic property of a homogeneously
congested transportation network and remains independent of traffic demand. This
makes it a valuable tool for analyzing and optimizing transportation systems under
varying conditions.
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Figure 6.1: An example of the macroscopic fundamental diagram.

Specifically, for a certain time step, the weighted average density and the weighted
space-mean flow are given by

k(t) =

∑
i∈L liki(t)∑
i∈L li

(6.1)

q(t) =

∑
i∈L liqi(t)∑
i∈L li

(6.2)

where L is the set of links with loop detectors installed, li presents the length of link
i, ki and qi represents the vehicle density and flow at link i, respectively. Meanwhile,
accumulation is the total number of vehicles in the network, which is usually difficult to
acquire in practice. Nonetheless, since the roadway length is fixed, the accumulation is
proportional to the density. It can be estimated as

n̂(t) =
∑
i∈L

liki(t) (6.3)
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where n̂ represents the accumulation.
Similarly, directly measuring the trip completion rate is often challenging, making it

necessary to estimate it using readily available traffic variables that can be easily ob-
tained. A notable finding by Geroliminis and Daganzo (2008) is that the trip completion
rate exhibits a linear relationship with the trip production, with the average vehicular
trip length serving as a scaling factor. Thus, we can estimate it as

D(t) = P (t)/L (6.4)

where D(t) denotes the trip completion rate, P (t) denotes the network trip production,
L denotes the average trip length. To estimate P (t), we can utilize the product of the
network length and the weighted space-mean flow, denoted as P̂ (t) = Lq(t). Therefore,
we can estimate the trip completion rate as below.

D̂(t) =
q(t)

γ
(6.5)

where γ = L/L denotes a scaling factor. This relationship will be employed in Chapter 6
to estimate the trip completion rate under various disruption situations.

Table 6.1: Notation in MFD-based resilience indicators development.

Notation Description

∆d(t) trip completion rate reduction at time t due to congestion
∆s(t) trip completion rate reduction at time t due to supply-side disruptions
Rd resilience loss due to congestion
Rs resilience loss due to supply-side disruptions
D(t) trip completion rate at time t
Dc optimal trip completion rate
k(t) weighted space-mean density at time t
kc critical weighted space-mean density
q(t) weighted space-mean flow at time t
qc optimal weighted space-mean flow
H(·) Heaviside step function
P (t) trip production of the entire network at time t
L set of links in the directed network G
L [km] average trip length
L total length of all links of the network
γ scaling factor between trip completion rate and weighted space-mean flow

6.2.2 Traffic resilience to congestion

As per the definition of transportation system resilience proposed by FHWA (FHWA,
2015), we define traffic resilience as below.
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Definition 5 (Traffic resilience) Traffic resilience represents the ability of an urban
road transportation system to prepare for different kinds of disruptions, effectively serve
vehicles, and recover rapidly to its optimal serving rate (i.e., trip completion rate).

Hyper-congestion, here refers to situations of congestion resulting from extremely high
demand. To make it general, traffic resilience to congestion is discussed in this study.
During such disruptions, the transportation network is unable to serve users (vehicles)
as efficiently as under normal operations due to the intricate interactions among vehicles
in congested states and the propagation of traffic congestion. In essence, the resilience
loss under congestion stems from the fact that it prevents the transportation network
from operating at its optimal performance level, which is indicated by the states in the
MFD where vehicle accumulation exceeds its critical value.
Considering that the primary function of transportation networks is to facilitate the

mobility of people and goods (Jana et al., 2023), the trip completion rate (measured in
vehicles per hour) represents the network’s service rate. Hence, the performance loss
under congestion can be evaluated by quantifying the reduction in trip completions.
Specifically, for a given time t, the reduction in trip completions can be calculated by

∆d(t) = (Dc −D(t))H(k(t)− kc) (6.6)

where ∆d(t) represents the trip completion reduction, Dc is the optimal trip completion
rate identified using MFD. The superscript d in ∆d(t) refers to demand-side disruptions
(here, congestion), which is used to distinguish from supply-side disruptions introduced
in Section 6.2.3. k(t) is the weighted average density at time t given by Equation (6.1),
and kc is the critical density. H(k(t) − kc) is an indicator function (here, a Heaviside
step function) defined as

H(k(t)− kc) :=

{
1 k(t)− kc ≥ 0

0 k(t)− kc < 0
(6.7)

This function effectively eliminates the consideration of capacity spare in the evaluation,
which is align with the discussion in Section 2.3.2 regarding the shortcoming of the
indicator proposed by Gao et al. (2022).
Then, the resilience loss can be quantified by the integral of trip completion reduction

along the disruption period.

Rd = −
∫ td

td0

∆d(t) dt = −
∫ td

td0

(Dc −D(t))H(k(t)− kc) dt (6.8)

where the time from td0 to t
d indicates the congestion period or the time period of interest.

Hence, given D̂c = qc/γ, substituting Equation (6.5) into Equation (6.8), the resilience
loss can be estimated by

R̂d = −
∫ td

td0

(
qc
γ

− q(t)

γ

)
H(k(t)− kc) dt (6.9)
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By utilizing Equation (6.9) with a specified γ value, we can compute the traffic re-
silience loss of the network contributed by congestion solely using loop detector data.
The parameter γ can be estimated by utilizing floating car data or simulation data
generated from the corresponding calibrated simulation model.
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Figure 6.2: Graphical illustration of the definition of traffic resilience to disruptions.

6.2.3 Traffic resilience to supply-side disruptions

Supply-side disruptions refer to modifications to the network structure, such as tempo-
rary closures of links, intersections, or regions due to specific events (e.g., marathons,
concerts), infrastructure malfunctions caused by natural or man-made disasters (e.g.,
earthquakes, cyberattacks).

Unlike demand-side disruptions, supply-side ones result in resilience loss by affecting
the shape of the MFD. Generally, a “shrinkage” of the MFD is anticipated. Figure 6.2a
illustrates an instance where the MFD under supply-side disruptions is situated below
the MFD under normal operational conditions. However, it is crucial to note that this
example may not accurately represent all transportation networks. In some cities, for
instance, the condition ksc < kc may not hold, as we will demonstrate in Section 6.3.5.
Similarly, the critical accumulation may not always be smaller under supply-side disrup-
tions.

The resilience of a transportation system under supply disruptions can be measured
by comparing the dynamics of the MFD before and after the disruption. Note, the
resilience loss caused by congestion under normal conditions should be removed from
the calculation of the resilience loss induced by supply-side disruptions. The difference
between the distances of the optimal trip completion rate to the completion rate under
normal conditions and to the value under disruption conditions is employed to quantify
the resilience loss solely attributable to supply disruptions. Mathematically, the trip
completion reduction caused by supply disruptions, denoted as ∆s, is calculated as
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follows:

∆s(t) = max {(Dc −Ds(t))− (Dc −D(t)) , 0} = max {D(t)−Ds(t), 0} (6.10)

While (Dc −Ds(t)) computes the total reduced trip completion rate under the supply-
side disruption, (Dc −D(t)) computes the reduced trip completion rate due to traffic
congestion if there is no supply-side disruption. Then, their difference gives the reduced
trip completion rate solely caused by the supply disruption.

The density under disruptions is usually not equal to what it should be under normal
situations. For instance, as depicted in Figure 6.2a, assume the traffic state without
disruptions is represented by (k(t), D(t)) at time t. Under disruptions, it might change
to
(
k−(t), D

s
−(t)

)
or
(
k+(t), D

s
+(t)

)
, indicating that the density may be lower or higher.

Nonetheless, it is intuitive to expect that traffic will become denser (the latter case) if
the demand is not changed as the number of available links within the network decreases.
However, in practice, some travelers might cancel their trips, leading to the former case.

Then, the resilience loss due to supply-side disruptions can be quantified by

Rs = −
∫ ts

ts0

∆s(t) d t = −
∫ ts

ts0

max {D(t)−Ds(t), 0} dt (6.11)

where the time from ts0 to t
s indicates the disruption period or the time period of interest.

Similarly, given the linear relation between the trip completion rate and the weighted
space-mean flow (i.e., D̂(t) = Lq(t)/L = q(t)/γ), we can estimate the resilience loss
caused by supply-side disruptions by

R̂s = −
∫ ts

ts0

max

{
qs(t)

γs
− q(t)

γ
, 0

}
dt (6.12)

Where γs = Ls/Ls. We distinguish γ and γs here because the average trip length and
the length of the available network are different under normal conditions and under
supply-side disruptions due to rerouting and link closures.

6.2.4 Traffic resilience to mixed disruptions

While we have discussed the situations of demand reduction and demand unchanged
under supply-side disruptions, it is often the case that sudden supply disruptions trigger
demand surges. For example, emergency demand or evacuations can lead to a sudden
demand increase (Safitri and Chikaraishi, 2022). This leads to a mixed disruption sce-
nario combining supply disruptions with increased demand, which would result in more
severe congestion and further impact traffic resilience.

Figure 6.2b illustrates a possible situation of a mixed disruption scenario. Assume
the traffic state under normal conditions is at (k(t), D(t)). With the occurrence of a
supply disruption, the traffic state changes to (k1(t), D1(t)). In this case, the change is
attributed to both the supply disruption and the emergency demand increase. Therefore,
the traffic resilience loss calculated using Equation (6.12) reflects the combined impact
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of both factors, denoted as ∆m
1 (t). Assuming a disruptive traffic state without the surge

in demand is represented by (k2(t), D2(t)), the traffic resilience loss solely due to the
supply disruption (∆ms

1 (t)) is smaller than ∆m
1 (t). The difference between them is the

portion attributed to congestion induced by the emergency demand, denoted as ∆md
1 (t).

In practice, leveraging Equation (6.12), we can obtain ∆m
1 (t) and ∆ms

1 (t) by running
simulations with augmented demand and normal demand, respectively. Then, the loss
due to demand increase can be estimated as ∆md

1 (t) = ∆m
1 (t) − ∆ms

1 (t). Noteworthy
is that, in addition to the difference in demand, the scaling factors (γs) for ∆m

1 (t) and
∆ms

1 (t) may also differ due to vehicle rerouting and detouring.

6.2.5 Physical interpretation of traffic resilience

As per the proposed definition of traffic resilience (Definition 5) and corresponding for-
mulations, physically, traffic resilience loss due to congestion Rd [veh] and supply-side
disruptions Rs [veh] represent the cumulative number of vehicles that should have fin-
ished their trips within the respective planned time intervals under optimal operational
conditions and in the absence of any supply disruptions, respectively.
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Figure 6.3: Graphical illustration of the calculation of traffic resilience.

Figure 6.3 provides an illustrative example showcasing the change of trip completion
rates under normal conditions and supply-side disruptions from 6 am to 8 pm. It vi-
sualizes the corresponding traffic resilience losses. In this example, two demand peaks
are observed at 8 am (morning peak) and 5 pm (evening peak). Within the congestion
period from td0 to td (assuming that the system returns to be uncongested at td), the
traffic resilience loss due to congestion is measured by the area between Dc and the curve
of D(t). Conversely, the traffic resilience loss due to supply-side disruptions is measured
by the area between D(t) and Ds(t) when D(t) > Ds(t). When the demand reduces to
a certain level (below the service rate under supply-side disruptions), Ds(t) will exceed
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D(t). In this case, the system is serving the “cumulative vehicles” that were delayed by
the disruption. We refer to these delayed vehicles as the network queue, as indicated in
Figure 6.3. In other words, the network queue ([veh]) at time t is the remaining portion
of traffic resilience loss ([veh]) that has not been served.

6.2.6 Normalization and discretization

Comparing the resilience of transportation networks across different cities has been a
longstanding interest within the transportation community (e.g., Ganin et al., 2019;
Kurth et al., 2020; Yin et al., 2023). However, such comparisons require normalization
due to the inherent differences in city scales, including factors such as area, population,
and car ownership. To address this, we utilize the optimal trip completion rate, which
defines the optimal functionality of the system, as a normalization factor for the trip
completion reductions. This allows us to calculate the normalized resilience losses, which
are given by

R̃d = −
∫ td

td0

(
Dc

Dc
− D(t)

Dc

)
H(k(t)− kc) dt = −

∫ td

td0

(
1− q(t)

qc

)
H(k(t)− kc) dt (6.13)

R̃s = −
∫ ts

ts0

max

{
D(t)

Dc
− Ds(t)

Dc
, 0

}
d t = −

∫ ts

ts0

max

{
q(t)

qc
− γqs(t)

γsqc
, 0

}
dt (6.14)

The traffic resilience formulations discussed above are derived for continuous observa-
tions. However, in practice, traffic dynamics are collected and aggregated into discrete
time intervals. In this case, we can calculate the trip completion reduction within each
time interval and then estimate the total traffic resilience losses by summing up the
reductions over all intervals. The estimation of total traffic resilience losses in discrete
time intervals can be expressed as follows:

R̂e = −T
2

Nt∑
t=1

(
∆̂e(t) + ∆̂e(t− 1)

)
(6.15)

where e ∈ [d, s] indicates the type of disruption events, T is the length of time intervals
(assuming all time intervals share the same length), and Nt is the total number of time
intervals within the period of interest. We assume that the period of interest starts
before the disruption events, such that we have ∆̂e(0) = 0.

6.3 Case study and results

To examine the proposed traffic resilience indicators, we implement case studies in two
cities of different types of road network topology/layout. Specifically, we selected the
city center of Munich, Germany, which features a central ring network, and the city
center of Kyoto, Japan, known for its typical grid network. See detailed description of
these two networks in Section 3.4.2.3 and Section 3.4.2.2. Residential links are excluded
from both networks.

85



Chapter 6 Traffic resilience indicators based on macroscopic fundamental diagrams

6.3.1 Simulation setup

Simulation of Urban MObility (SUMO) (Lopez et al., 2018), an open-source traffic sim-
ulator, is used to generate traffic dynamics for estimating the MFDs under various
scenarios that are expounded on in Section 6.3.3. All scenarios are simulated at the
mesoscopic resolution with a non-iterative dynamic stochastic user assignment method
that approximates the Dynamic User Equilibrium (DUE) (Lu et al., 2023b). To reduce
the influence of the stochasticity in simulations, results from 10 replications are used to
analyze the MFD dynamics of each scenario and estimate relevant variables, such as the
critical average density and the optimal weighted space-mean flow. For each scenario,
the traffic between 6 am and 10 am are simulated, with the first and last half an hour
as the simulation warm-up and dissipation periods, respectively.

6.3.2 Mesoscopic simulation model calibration

For ensuring reliable simulation results, we also conduct a calibration on the mesoscopic
simulation models. For the calibration of the mesoscopic simulation model, we mainly
focus on the OD matrices calibration by using the traffic counts collected by loop detec-
tors. Normalized root mean square error (RMSN) is used to evaluate the performance
of calibration, which is given by

RMSN =

√
N
∑N

i=1(ŷi − yi)2∑N
i=1 yi

(6.16)

where yi and ŷi are the observed and simulated traffic counts at detecting location i, N
denotes the total number of detecting locations.
For the Kyoto model, we use the movement matrices of Docomo (a Japanese mobile

phone operator) users as the initial guess of the vehicle mobility patterns. Considering
the difference in the scales of the two groups, we first find out the scaling factors resulting
in the smallest RMSN for each time interval by simply trying different convex combina-
tions of predefined lower and upper bounds. This step improves the matrices from an
RMSN error of 1.2 to 0.74. It indicates that the mobility patterns of mobile phone users
can resemble that of vehicles to a certain extent. We note that the study area is only a
part of the city of Kyoto. As a result, the amount of through traffic is very different from
the ones extracted from mobile phone data (Lu et al., 2023b) due to : (i) All vehicles can
only use the network provided to finish their trips which is inconsistent with reality in
which some can reach their destinations by the paths outside this network; (ii) Vehicles
from the area outside the study area have not been counted. To address this issue, we
first apply the simultaneous perturbation stochastic approximation (SPSA) algorithm
(Spall, 1998) to correct the OD demand from/to the outermost zones to additionally
measure the demand from/to external zones. Utilizing the corrected OD matrix as the
prior, we then employ the PC-SPSA algorithm (Qurashi et al., 2022) to calibrate the
whole OD matrix. Finally, the average RMSN reduces to a satisfactory level of 0.41.
For the Munich model, the reader is referred to the authors’ previous studies in Lu

et al. (2021) and Dadashzadeh et al. (2021) for more details about its calibration.
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6.3.3 Demand variations and supply-side disruption scenarios

To demonstrate the MFD dynamics under different demand scenarios and to validate
the underlying assumptions in the proposed approach, we consider three different travel
demand levels: small demand (SD), medium demand (MD), and large demand (LD).
The SD scenario represents the original demand level, while the MD and LD scenarios
correspond to 1.2 and 1.5 times of the original demand, respectively. For each study
area, all three demand scenarios are simulated. However, it is worth mentioning that,
in real applications, the disrupted demand should be estimated correspondingly with
available data, either conventional or emerging data (Mahajan, 2023), for instance, by
leveraging the approaches presented in Chapter 4 and Chapter 5.

The design of supply-side disruptions (SSD) is explained in Section 3.4.2.2 and Sec-
tion 3.9a. The SSD scenarios of the two cities result in comparable proportions, account-
ing for 7% and 8% of closed links in their respective networks. Also, the closed links
correspond to the busiest areas within the respective networks. This allows for a direct
comparison of traffic resilience to supply disruptions between the two networks.

6.3.4 Trip completion rate estimation using a proxy

Considering the changes in the average trip length and the total length of the network
under supply-side disruptions, the linear scaling factor is very likely to be different.
In this section, we used the SSD scenarios described in Section 6.3.3 as an example to
examine this estimation approach. To estimate the appropriate scaling factor γs for each
city’s SSD, we conduct simulations with the closed links across the entire simulation
period. This allows us to generate the necessary information for the γs. Figure 6.4
demonstrates the average ratio of q(t) to D(t) from 10 simulation replications in different
time intervals, excluding the warm-up and dissipation periods. Noteworthy, apart from
the canceled trips originating from or heading to the closed area, there are also some trips
cannot be carried on due to the absence of alternative routes, which are called interrupted
trips here. Figure 6.4 presents two estimated γs values for each city: one considering
all trips (in grey) and another one excluding interrupted trips (in red). For Munich, the
former is smaller than γ while the latter is greater. In Kyoto, both are greater than γ.
In general, γs should be greater than γ due to the network length decline and the trip
length increase (because of detouring). However, this is not necessary always true. If a
large amount of long-distance trips were canceled for no available route alternatives, it is
also possible to observe a decrease in the average trip length. In this case, the decrease
proportions of the average trip length and network length will determine whether γs

is greater than γ. The smaller γs obtained in Munich indicates that the average trip
length under SSD reduces with a proportion of reduction smaller than that of the total
network length.

In order to explain the factors contributing to the difference, we also plot relevant trip
statistics in Figure 6.5. As can be seen, approximately 12% of trips are interrupted in
Kyoto, while this number increases to 21% in Munich. This disparity can be attributed to
the grid structure of the Kyoto network, which provides more route alternatives between
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Figure 6.4: Estimation of γ under normal conditions and the supply disruption.

every OD pair, enabling more trips to be rerouted after network disruption compared
to the Munich network. This is also consistent with the finding in Zhang et al. (2015).
Furthermore, the grid structure can also ease the vehicle detouring, represented by the
minor average trip length increase. The average trip length of completed trips (i.e., trips
reaching their destination) is 1.05 multiples of that under normal conditions in Kyoto,
while this number is 1.27 in Munich. However, if we include the interrupted trips in the
calculation, both cities reach a number of about 0.95, i.e., a reduction of about 5% in the
average trip length. This value serves as a reference for the comparison of γs in the two
cities. Figure 6.5 also depicts the percentage of the length of closed lanes in the complete
network. Although we designed the scenarios by closing a similar proportion of links
(7% for Kyoto and 8% for Munich), the total length of closed lanes comprises 8.98%
(greater than 5%) and 5.68% (comparative to 5%) of the complete network of Kyoto
and Munich, respectively. This leads to the difference of the change in γs between the
two cities. It is worth mentioning that the errors between γ’s and L/L can be expressed
by the estimation of the production using q. To eliminate the noise introduced by the
interrupted trips, we improve the estimation by excluding those trips. The corrected
values are also depicted in Figure 6.4 and will be utilized in the following evaluation.

6.3.5 MFD dynamics analysis

Figure 6.6 shows the MFD dynamics (aggregated every 5 min) of the scenarios described
in Section 6.3.3. In the case of Munich (Figure 6.6a), in terms of demand variations,
we can see that neither scenario SD nor MD exceeds the critical point, indicating the
absence of network-wide congestion. We can also see that the dynamics become more
unstable as traffic approaches the critical point, which is consistent with the analysis
in Gao et al. (2022). Furthermore, as shown in Figure 6.7a and 6.7b where results
from different replications are averaged (with standard deviations shown), a clockwise
hysteresis loop is observed in both scenarios, but the size of the hysteresis loop is almost
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Figure 6.5: Changes in supply and demand due to supply-side disruptions.

doubled in MD compared to SD. The larger standard deviations observed in MD further
confirm the presence of an unstable state around the critical point.
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Figure 6.6: MFD dynamics of the scenarios of investigation.

On the other hand, in scenario LD (Figure 6.7c), gridlock occurs in the network
due to the over-saturated traffic. We find that the MFD dynamics are less dispersed
in the vicinity of the critical point. Additionally, we plot the MFD dynamics for the
scenario with supply disruption and large OD demand (LD-SSD) in Figure 6.6a. As
expected and consistent with findings in Kim and Yeo (2017) and Gao et al. (2022),
a noticeable reduction in weighted space-mean flow is found at the same accumulation
level. However, the critical accumulation, in this case, denoted as nsc, is comparative to
that of the normal system nc. It indicates that using congestion deviation (i.e., n(t)−nc)
to model the resilience loss due to supply-side disruptions as in Gao et al. (2022) will
lead to inaccurate estimation.

Figure 6.6b shows the traffic dynamics of Kyoto under different scenarios. Similar
to the Munich case, Kyoto also experiences fluctuations in demand variation scenarios.
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Figure 6.7: Development of MFD dynamics due to demand variations in Munich.

In contrast, in terms of the LD-SSD, Kyoto almost suffers no degradation in the MFD
shape. Therefore, it is unreasonable to directly use the area between the normal MFD
curve and the disruptive MFD curve as the measurement of resilience loss as in Kim and
Yeo (2017), as it will result in no or a very small resilience loss in Kyoto, which is incorrect
as we showed in Section 6.3.6. Nevertheless, it is essential to note that differences do
exist between the points of the same time interval under different scenarios, as explained
in Section 6.2. This finding reaffirms the notion that the influencing mechanisms of
congestion and supply-side disruptions are distinct, and therefore the traffic resilience
to them should be discussed separately. It is thus reasonable to state that the resilience
indicators proposed in this study are more reliable and robust for evaluating different
types of disruptions and transportation systems.

6.3.6 Traffic resilience evaluation

In this section, two scenarios are considered for testing the system performance: Scenario
LD is employed to assess the system’s behavior under extreme demand situations, such
as emergency travel demand, while scenario LD-SSD is utilized to test its performance
in the presence of network or infrastructure malfunctions. For comparison purposes,
we adopt the formulation of normalized traffic resilience (i.e., Equations (6.13) and
(6.14)) for the evaluation. The estimated γ’s presented in Section 6.3.4 are used for
the normalization. The resilience loss curves (i.e., the normalized trip completion rate
reduction over different time intervals) for congestion and supply-side disruptions in
Munich are given in Figure 6.8a and 6.8b, respectively. The corresponding curves for
Kyoto are given in Figure 6.8c and 6.8d.

We note that the complete life cycle of the influence of congestion is not present due
to the limitation of simulation duration (due to lack of demand data). The recovery
process is missing in the LD experiments, which prevents us from drawing definitive
conclusions regarding which city is more resilient to demand variations, especially when
observing similar reduction speeds during the disruption phase in both cities. On the
contrary, from the curves for supply-side disruptions, it is evident that Kyoto is more
resilient to supply-side disruptions (here, partial link closure), represented by a smaller
area enclosed by the “resilience triangle”. The normalized traffic resilience losses, R̃s,
are -0.38 and -0.25 for Munich and Kyoto, respectively.
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(b) Munich: Supply-side disruptions
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Figure 6.8: Traffic resilience under congestion and supply disruptions (large demand scenario).
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As per the “4R” resilience properties (i.e., robustness, redundancy, resourcefulness,
and rapidity) proposed in Bruneau et al. (2003) and characterized in Wan et al. (2018),
we can draw the following conclusions: (i) A greater minimum value obtained in Ky-
oto represents stronger robustness in dealing with disruptions. (ii) A longer during-
disruption duration (including response and recovery phases) in Kyoto implies that Mu-
nich outperforms Kyoto in terms of the property of rapidity. (iii) The resourcefulness
property affects the shape of the system functionality curve during disruption. These
two cities differ significantly from each other in this regard. To be specific, Munich grad-
ually recovers after reaching the worst performance point, whereas Kyoto oscillates back
and forth around that point until links are reopened. However, it is worth noting that
the worst point in Kyoto is much better than in Munich, indicating that even during the
disruption period, a stable “new equilibrium” can easily form in Kyoto. Nonetheless,
future works on developing a specific quantitative measurement for the resourcefulness
property would still be desirable. (iv) Due to the lack of a specific definition of the
minimum required performance here, redundancy cannot be specified. If a minimum
required performance is defined as the example we provide in Figure 6.8b and 6.8d,
i.e., -0.2 for each, the redundancy can be measured by its absolute value. However, the
redundancy property can also be evaluated by the existence of optional routes for OD
pairs. In this regard, grid-like networks usually outperform other kinds of networks. It is
essential to consider these various resilience properties while evaluating the performance
of transportation networks under different disruptions, as they provide valuable insight
into how cities respond to and recover from disturbances.

Given that the network queue can be regarded as a part of traffic resilience loss
under supply disruptions, the trends observed in the network queue curves presented
in Figure 6.9 mirror those of the functionality curves illustrated in Figure 6.8. For
comparison purposes, the network queues have also been normalized by the respective
critical traffic flows qc. While Munich exhibits a significantly longer network queue
compared to Kyoto, it is noteworthy that the Kyoto system requires more time to clear
the network queue.

The analysis presented above clearly highlights the crucial role of network topology
for traffic resilience. However, it is important to acknowledge that traffic resilience is not
solely determined by network topological attributes; it is also significantly influenced by
traffic dynamics, as evidenced by the earlier analysis. Therefore, the question of how
much network topological attributes can account for traffic resilience necessitates further
investigation and exploration.

6.4 Conclusions and future work

This chapter investigates the problem of evaluating traffic resilience of urban road trans-
portation systems. Traditional approaches have relied on static topology-based indica-
tors, such as accessibility, or simple aggregation of trip information, such as average
speed. However, these indicators have limitations: the former fails to capture the dy-
namic nature of traffic, while the latter is sensitive to travel demand. Moreover, neither
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approach adheres to the definition of system resilience as they cannot be considered as
a inherent property of networks. Recently, several indicators based on the concept of
MFDs have been developed to measure the resilience of urban transportation systems
from multiple perspectives. Unlike other resilience indicators, MFD-based indicators
possess the advantage of being network properties, as MFD represents an intrinsic char-
acteristic of a homogeneously congested network. Nonetheless, existing MFD-based
indicators have certain drawbacks, such as insufficient consideration of network struc-
ture changes, neglecting the detouring or rerouting of vehicles, or relying on inaccurate
reference points.
To overcome the aforementioned limitations, this chapter introduces a novel approach

that offers a comprehensive evaluation of traffic resilience. Our approach specifically
addresses the distinct influencing mechanisms of congestion and supply-side disruptions.
Notably, while supply-side disruptions may alter the shape of the MFD, traffic congestion
does not have the same effect. We separately discussed traffic resilience to congestion
and supply-side disruptions and built the respective indicators accordingly. Addition-
ally, we outline a methodology for discretizing and normalizing the calculation of traffic
resilience loss, enabling practical applications and facilitating comparative analyses. By
using the proposed indicators, traffic resilience loss can be physically interpreted as the
cumulative number of vehicles that should have finished their trips within the respec-
tive time intervals if the transportation system/network were operating optimally under
normal conditions (without infrastructure malfunction).
We conducted experiments in two cities — Munich, Germany, and Kyoto, Japan,

which possess different network topologies. The experiment results revealed that Kyoto’s
grid-like network demonstrates greater resilience to supply-side disruptions compared to
Munich’s central ring structure. Several factors contribute to this disparity: (i) Grid-like
networks offer more route alternatives between every OD pair so that more trips can
be rerouted after network disruption; (ii) The grid structure can also ease the vehicle
detouring.
We acknowledge the potential occurrence of mixed scenarios resulting from the inter-

play between a supply-side disruption and emergency demand (attributed to recovery
actions or public panic), as discussed in Section 6.2.4. However, the analysis of re-
lated scenarios in the experiment results is limited. Future studies can be undertaken
to develop a reliable approach to design plausible mixed disruption scenarios and ex-
plore the interaction and interdependence between traffic resilience of these two types of
disruptions in such scenarios.
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Chapter 7

Regression analysis between traffic
resilience and network topology

The content of this chapter has been partially presented in the following works:

Lu, Q.-L., Qurashi, M., and Antoniou, C. (2023b). Simulation-based policy analysis: The
case of urban speed limits. Transportation Research Part A: Policy and Practice,
175:103754.

Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2024c). Traffic resilience
quantification based on macroscopic fundamental diagrams and analysis using topo-
logical attributes. Reliability Engineering & System Safety, 247:110095.

7.1 Introduction and research contributions

Topological attributes play a critical role in the resilience property of transportation
networks (Zhang et al., 2015; Pan et al., 2021; Hao et al., 2023). For instance, attributes
such as the Alpha index and betweenness centrality can effectively characterize networks’
connectivity and accessibility, respectively. It follows that they have been extensively
employed to define and assess transportation system resilience. However, these met-
rics fail to capture the traffic dynamics of the system, and applying a single metric of
them for the assessment may lead to unreliable conclusions. To address this limitation,
some studies (such as Levinson, 2012; Parthasarathi, 2014; Huang and Levinson, 2015;
Kurth et al., 2020; Wang et al., 2023; Yin et al., 2023) have been proposed to model
the relationship between topological attributes and traffic dynamics so as to understand
to which extent network topology can determine the operation of the associated trans-
portation system. However, all of them have at least one of the following limitations:
(i) Different transportation networks are included in a single model regardless of the
topology type/style (e.g., grid-like, scale-free); (ii) The influence of travel demand on
the dependent variable is overlooked.
In this chapter, we are interested in the relationship between topological attributes

and traffic resilience to supply-side disruptions. The reason why congestion is not in-
cluded is that it often refers to recurring events, while supply-side disruptions pertain
to non-recurring events. Also, only supply disruption events will change the network
topology. To model the relationship, observations recording the network structure and
traffic states under different disruptive events are required. However, given the rarity
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of such events, it is nontrivial to collect sufficient data. Fortunately, traffic simulation
provides an economic and reliable way to address this problem. Therefore, this chapter
aims to develop a simulation-based synthetic scenario generation procedure to simulate
the influence of various supply-side disruptions. From these synthetic disruption sce-
narios, we can make one-to-one correspondence between the metric values of topological
attributes and traffic resilience losses. Specifically, in this chapter, we conduct a re-
gression analysis on their relationship with the traffic resilience loss evaluated using the
indicators developed in Chapter 6.

This chapter offers the following contributions:

• In this chapter, we build a regression model to describe the relationship between
topological attributes of transportation networks and traffic resilience. With this
regression model, traffic resilience can be roughly predicted based on the network
structure, eliminating the necessity for traffic flow information.

• We construct a simulation-based procedure for systematically creating synthetic
supply disruption scenarios.

• We compare different MFD-based indicators, which evidences the advantages and
comprehensiveness of our traffic resilience indicators.

The rest of the chapter is structured as follows. Section 7.2 presents the synthetic
scenario generation procedure, and the regression model. Section 7.3 compares different
MFD-based indicators and analyzes the regression result. Finally, Section 7.4 concludes
the chapter and suggests future research directions.

7.2 Methodology

This section first describes how supply-side disruptions influence vehicle behaviors and
develops a simulation-based synthetic scenario generation procedure for supply-side dis-
ruptions. Then, we summarize the main network topological attributes and correspond-
ing metrics. Finally, a regulated regression model is presented to estimate the relation-
ship between these attributes and traffic resilience.

7.2.1 Impact of supply-side disruptions on vehicle behaviors

Vehicles typically choose routes based on their utilities, which is evaluated by travel
costs. Travel time, as the most commonly used metric of travel cost, can be employed to
gauge changes in route efficiency following the occurrence of supply-disruption scenarios.
However, comprehending the impact of supply-side disruptions on route travel time is not
straightforward, as it depends on an equilibrium formed by several conflicting effects.
These conflicts can unilaterally determine the ultimate performance and thus require
explicit consideration. Among other factors, modeling and estimating these conflicts also
constitute one rationale for utilizing traffic simulations in synthetic scenario generation.
The logic of the influence of supply-side disruptions on vehicle behaviors is illustrated

in Figure 7.1. Generally, supply-side disruptions are modeled as link closures or speed
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Figure 7.1: Influence of supply-side disruptions on vehicle behaviors.

reductions in simulations within the literature. Link closures result in route breaks,
while speed reductions alter traffic states on affected links. These state changes impact
vehicle route choices, subsequently altering traffic distribution across the network. Traffic
assignment, in turn, affects the overall network traffic efficiency, reflected in disparities
in travel time before and after the disruption. To improve the traffic states, recovery
measures are needed. This topic is omitted here and will be discussed in Chapter 8 and
Chapter 9. It is important to note that the network requires time to reach a new steady
state. The route choice behavior of a vehicle is dependent on the latest information on
routes, such as travel time, recovery measures, and past experiences. In other words,
the traffic distribution across the network continues to change until a new equilibrium
between network supply and route choice is reached.

Conventionally, the iterative simulation-based traffic assignment is used to compute
the user equilibrium state. However, in reality, a proportion of people (e.g., non-routine
vehicles) conform to the assumption of dynamic stochastic assignment regarding route
choice behavior, continuously using navigation to achieve dynamic user optimum under
a given stochastic state of the network. As a result, simulations should be conducted
with imperfect DUE assignment, or more specifically, with a combination of DUE and
dynamic stochastic user assignment.

7.2.2 Synthetic scenario generation procedure

In this section, we propose a systemic method to create synthetic supply disruptions, by
leveraging advanced traffic simulators, for estimating the relationship model, which can
also address the limitations in previous studies. We introduce the notation in Table 7.1
for the explanation in the following text of this chapter.

Figure 7.2 demonstrates the flowchart of the procedure for synthetic supply disrup-
tion scenario generation. For simplicity, we consider supply disruptions with random
link closures. However, it is easy to extend the procedure to other types of disruptions.
A batch of scenarios should be generated for a specific disruption configuration to en-
sure statistical significance. The following description explains the process of creating a
synthetic sample dedicated to a certain city network (we denote its complete form by
G) and a certain demand matrix (denoted by M).
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Step (1) The process starts with a certain percentage number p ∈ [0, 1), indicating the
percentage of links that are blocked or damaged due to the disruptive event.

Step (2) With a certain random seed r, a disruption scenario S is created, by randomly
sampling the links to be closed. Essentially, a disruption scenario S can be
expressed as a set of closed links.

Step (3) Relevant topological attributes x describing the network topology are derived
from the damaged network G(S).

Step (4) Run traffic simulations (S) using the damaged network G(S) and the demand
matrix M to generate traffic dynamics Y (S). Note that in order to obtain sta-
tistically significant results, multiple simulation replications are necessary for
each disruption scenario. Furthermore, the portion of demand originating from
or terminating at the closed links is removed during simulations, representing
the canceled trips in reality.

Step (5) From the traffic dynamics of all simulation replications, we can estimate the
mean traffic resilience loss Rs(S). Finally, the tuple (x, Rs) constitutes a syn-
thetic observation.

By repeating this process for different r’s under the same p and for different p’s, we
can create a synthetic dataset (X,R) of disruption observations.

Table 7.1: Notation in regression analysis between traffic resilience and topological attributes.

Notation Description

r random seed
S disruption scenario — a set of closed/damaged links
G directed graph of the complete network
G(S) directed graph of the disruptive network of scenario S
x vector of topological attributes
S traffic simulator
M origin-destination demand matrix
Y simulation outputs
X dataset of topological attributes
Rs traffic resilience loss due to supply disruptions
R vector of traffic resilience losses
θ vector of parameters of the regression model
ρ hyper-parameter related to the l1-norm regularization term
f(x; θ) linear model with explanatory variables x and parameters θ
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Figure 7.2: Flowchart for the synthetic scenario generation procedure.
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7.2.3 Transportation network topological attributes and metrics

Table 7.2 lists some selected typical topological attributes that are commonly considered
in complex network topology analysis together with the respective metrics (Hagberg
et al., 2008; Zhang et al., 2015; Boeing, 2017). Note that while transportation networks
are directed graphs, some metrics are defined for undirected graphs only. For calculating
these metrics, the corresponding undirected graph of the network is used. The listed
metrics can explain the properties of the network across multiple aspects and are used
in the regression analysis in this study. Readers are referred to Boeing (2017) and Wang
et al. (2023) for more details about these attributes and metrics.

7.2.4 Variable normalization and regression model development

Using the synthetic dataset, a regression model can be estimated to describe the rela-
tionship between topological attributes and traffic resilience loss for a certain type of
network topology. Recall that traffic resilience loss is a relative value derived from the
difference between the traffic dynamics under disruptive and normal operations. Con-
sequently, in order to measure how the degree of resilience relates to the changes in
topological attributes, the explanatory dataset X should also be normalized with the
corresponding values of the complete networks and transformed into relative percentage
values. Mathematically, for a variable Xi, it is transformed into

Zi =
Xi

Xc
i

− 1 (7.1)

where Xc
i is a scalar representing the i-th topological metrics computed from the com-

plete network, Zi represents the transformed variable of Xi. We emphasize that this
transformation is necessary for obtaining better model interpretability, and this treat-
ment also differs our model from the previous ones.
Employing a regularized linear regression, we can estimate the parameters by least

squares as below:

θ∗ = argmin
θ

∑
n

(f(xn; θ)−Rsn)
2 + ρ|θ|1 (7.2)

where xn denotes the n-th sample in X and Rsn is the corresponding resilience loss, θ
denotes the vector of parameters to be estimated. f(x; θ) is a linear function with respect
to θ and its specific form depends on the transportation network of interest and the
variable selection procedure. |θ|1 denotes the l1-norm regularization of the coefficients.
The l1-norm term is also served as a built-in feature selection method, thereby leading
to sparse solutions. ρ is a hyper-parameter, indicating the weight of the penalty term.
Equation (7.2) represents a lasso model.

7.3 Case study and results

We utilize the same study areas of Munich city and Kyoto city to the ones in Chapter 6
for case studies. We also adopt the same simulation setups therein for the following ex-
periments. In this section, we first introduce the setups of the simulation-based synthetic
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Table 7.2: Typical topological attributes.

Attribute Metric Description

Basic statistics

Network statistics Number of nodes
Number of links
Average node degree
Total length of all edges
Average length of all edges

Directed graph

Assortativity Degree assortativity The assortativity coefficient is the Pear-
son correlation coefficient of degree be-
tween pairs of linked nodes.

Average neighbor
degree

The average neighbor degree of a node
measures the average degree of all nodes
within the neighborhood of a specific
node.

Centrality Average degree cen-
trality

The average of the fraction of nodes that
a node is connected to.

Load centrality The average of the fraction of all shortest
paths passing through a node.

Edge load centrality The average of the fraction of all shortest
paths passing through an edge.

Harmonic centrality The average of the sum of the reciprocal
of the shortest path distances from all
other nodes to a node.

Connectivity Alpha index Ratio of existing circuits to the maxi-
mum possible circuits.

Beta index Ratio between the number of links and
number of nodes.

Gamma index Ratio of the number of links to the max-
imum possible number of links.

Reciprocity Reciprocity Ratio of the number of edges pointing in
both directions to the total number of
edges.

Undirected graph

Clustering Average clustering
coefficient

The clustering of a node is the fraction
of possible triangles through that node
that exists.

Efficiency Global efficiency The efficiency of a pair of nodes in a
graph is the multiplicative inverse of
the shortest path distance between the
nodes.
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network disruption scenario generation procedure in our case studies. Then, we compare
the our indicators with previous MFD-based indicators reviewed in Section 2.3.2, which
lends support to the selection of our indicators for the regression analysis. Finally, we
explore the relationship between topological attributes and traffic resilience indicators.

7.3.1 Synthetic network disruption scenario design

In order to understand the relationship between traffic resilience and topological at-
tributes, we want to estimate a regression model between them with traffic resilience
loss as the dependent variable. Unlike the previous studies incorporating transportation
networks of different cities into a single model regardless of the type of topology, we
acknowledge that their relationship may differ across topology types or cities, based on
the findings from case studies in Munich and Kyoto. Therefore, we adopt the scenario
generation procedure proposed in Section 7.2.4 to generate numerous synthetic disrup-
tion scenarios for each city separately, leveraging the advance in traffic simulators and
their interfaces.

More specifically, for each city, we consider a range of percentages from 2% to 20%,
with a 2% interval, resulting in 10 different percentage values p. For each p, 100 dis-
ruption scenarios are constructed by randomly removing p percent of links from the
complete network for each scenario. Finally, 1000 scenarios are constructed. It is worth
mentioning that, isolated nodes will be removed from the network as well, if any, after
removing a set of links. Vehicle trips without route connections, after the link removal,
are considered as interrupted trips. For each scenario, as described in Section 7.2.4,
the topological attributes listed in Table 7.2 will be calculated using the disruptive net-
work, and the corresponding traffic resilience loss will be calculated using the traffic
dynamics generated from SUMO. Note, here traffic dynamics only include the measure-
ments collected by loop detectors, i.e., traffic flow, occupancy, and mean speed, to mimic
real-world conditions. All traffic measurements are aggregated every five minutes. Fur-
thermore, the scaling factor γs relating to the trip completion rate and weighted flow
have to be distinguished among scenarios to ensure accurate comparisons. All scenarios
are run for the time period between 6 am and 10 am with the calibrated demand as in
Chapter 6.

7.3.2 Comparison of MFD-based traffic resilience indicators

In Section 2.3.2, we analyzed the limitations of previous MFD-based resilience indicators
and highlighted the advantages of our proposed indicators. To validate our analysis, we
compare the curves of these normalized resilience indices under the LD-SSD scenario
of Munich in Figure 7.3. We omit the indicator proposed by Kim and Yeo (2017) as
it is static and cannot provide a comparative analysis. This also indicates that their
establishment does not stem from the system functionality curve used in the system
resilience definition.

Upon comparison, we observe that our index and Amini’s index (Amini et al., 2018)
show a very close pattern during the disruption period. Amini’s index estimates slightly
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Figure 7.3: Comparison of MFD-based dynamic traffic resilience indicators (Munich LD-SSD
scenario).

larger resilience loss during the disruption as its formulation neglects the reduction in
network roadway length. Conversely, after the disruption, our index indicates the sys-
tem recovers to the normal state, while Amini’s index counts the process of serving the
vehicles delayed by the disruption as an increase in resilience. In terms of Gao’s index
(Gao et al., 2022), no resilience loss is observed in the first 20 min of the disruption
period. This can be attributed to the fact that, as highlighted in Section 2.3.2, this indi-
cator was proposed for hyper-congestion, and cannot identify the resilience loss caused
by supply-side disruptions. Consequently, their index, known as congestion deviation,
fails to capture the degradation in traffic states accurately, leading to an incorrect es-
timation of traffic resilience loss during the disruption period. Afterward, Gao’s index
begins to decrease as a result of the rising number of vehicles in the network, where
the accumulation surpasses its critical value. This index experiences a rebound of ap-
proximately 50% after the disruption as the system restores to its normal state and the
critical accumulation also increases to its original value. It declines once more thereafter
since the accumulation keeps increasing until the end of the investigation period. To
provide a clearer presentation of the differences among these indices, Figure 7.3 does
not display the entire curve of Gao’s index. Its value steadily decreases in the invisible
region.

7.3.3 Relationship between topological attributes and traffic resilience

This regression analysis uses topological variables as the explanatory dataset and re-
silience loss as the dependent variable. More specifically, the topological metrics listed
in Table 7.2 of the network of each synthetic scenario are computed using the NetworkX
(Hagberg et al., 2008) and OSMnx (Boeing, 2017) Python packages. The normalized
resilience loss is estimated according to the approach introduced in Section 6.2.6 by using
the traffic dynamics generated from SUMO. The lasso model described in Section 7.2.4
is adopted for the regression analysis, given its sparse output that can help identify the
most significant topological attributes. A ρ value of 0.001 is used for the lasso model.
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7.3.3.1 Explanatory analysis of selected variables

We found that variables describing the same topological attribute/property are most
highly correlated. To address multicollinearity, we removed variables with a correlation
coefficient exceeding 0.7 from the explanatory dataset, resulting in a retention of four
variables: degree assortativity, load centrality, average edge length, and Beta index.
Finally, the lasso model results in non-zero coefficients for the degree assortativity, load
centrality, and Beta index for both cities, while the coefficient for average edge length is
zero. Since the p-value for degree assortativity is very large (0.935 for Munich and 0.883
for Kyoto), indicating little significance, we also removed it from the final regression
model.
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Figure 7.4: Boxplots for the selected explanatory variables and the dependent variable.

Figure 7.4 shows the value of the remaining variables identified (i.e., load centrality
and Beta index) and the dependent variable under different p values. Notably, each p
value is associated with 100 scenarios, allowing us to construct boxplots that illustrate
the distribution of variables. Different characteristics in load centrality can be observed
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between the two cities. Specifically, load centrality in Kyoto hovers around 0 across
different p values but decreases with the increase of p in Munich. Load centrality in
Munich almost remains the same when p ≤ 0.08, suggesting that local centrality might
only be impacted significantly after a sufficient number of links are closed, a phenomenon
that may also be present in Kyoto. On the contrary, the Beta index is distributed
similarly in the two cities and has similar change patterns.

7.3.3.2 Regression model interpretation

Table 7.3 presents the model estimation results by solving the problem expressed by
Equation (7.2). Only the variables with little correlations are inputted into the model,
within which average edge length and degree assortativity are insignificant in both mod-
els, so it is not listed in the table. These two regression models reveal that significant
topological attributes for traffic resilience are shared among different types of network
topology, which is centrality and connectivity in this case. However, the significance lev-
els and the extent to which they can explain traffic resilience are distinct. As suggested
by the coefficients listed in Table 7.3, the Munich network is nine times and twice more
sensitive than the Kyoto network in terms of centrality and connectivity, respectively.

Table 7.3: Regression model estimation.

Variable Topology Attr. Coef. [p-value] (Kyoto) Coef. [p-value] (Munich)

Load centrality Centrality -0.1016 [0.25] -0.9778 [<0.0001]
Beta index Connectivity 8.1062 [<0.0001] 16.6719 [<0.0001]

Kyoto model Munich model
# of samples: 925 # of samples: 949
R-squared: 0.8583 R-squared: 0.7894

Recall that all explanatory variables have been transformed to be the percentage re-
duction compared to the complete network using Equation (7.1). No intercepts are
estimated considering the sense of physical interpretation. Consequently, the coefficient
of each specific variable reflects the sensitivity of traffic resilience to that variable. For
instance, in the Kyoto model, a 10% reduction in the Beta index for three hours (the
effective simulation duration) will lead to a loss of traffic resilience of about 0.81. Ac-
cording to the definition and interpretation of (normalized) traffic resilience provided in
Section 6.2.5, it means that such a disruptive event can result in a cumulative service
rate impairment of 81%. A larger absolute value of the coefficient for the Beta index in
Munich suggests that Munich may experience more significant impairment than Kyoto
when subjected to the same level of network connectivity reduction. This conclusion
is also evident from Figure 7.4c, which demonstrates that with the same percentage
of link removal, Munich exhibits a higher absolute traffic resilience loss compared to
Kyoto. Furthermore, the relatively smaller coefficients for the other variables indicate
that the Beta index is the most correlated and influential variable in our case stud-
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ies. In other words, network connectivity plays a critical role in determining the traffic
resilience of transportation networks. Conversely, the coefficient for load centrality in
the regression models indicates that network centrality has a negative effect on traffic
resilience. It means that urban planning should avoid increasing network centrality to
enhance the network’s traffic resilience to supply-side disruptions, which aligns with the
findings from Wang et al. (2023) which found the negative relationship between node
betweenness centrality and system resilience.

Further, referring back to Figure 7.4c, when the link removal probability p is small
(≤ 0.04), the deviation of resilience loss in Munich is considerably larger than that in
Kyoto. It implies that random link removal may cause more uncertainty in the traffic
states in Munich under non-serious disruptions. This observation is further supported by
the much greater R2 obtained in the Kyoto model than in the Munich model. Therefore,
it is fair to say that grid-like networks are more resilient and stable under supply-side
disruptions in regard to traffic states. The good performance in R2 validates that the
proposed traffic resilience indicator based on MFD dynamics not only can represent
traffic dynamics but also capture the network structure characteristics. This can also be
seen from the high correlation between the Beta index and traffic resilience.

7.4 Conclusions and future work

In this chapter, we devote attention to the relationship between topological attributes
and traffic resilience. To this end, we propose a synthetic supply-side disruption scenario
generation procedure, which can be used to generate a diverse set of observations as input
for a regularized linear regression model. This allows for the examination of various
topological attributes and their impact on traffic resilience.

The experimental results provided evidence for the superiority of our proposed indi-
cators over previous MFD-based indicators in terms of reliability and robustness. Our
regression models for the two cities indicated that topological attributes significant to
traffic resilience are generally consistent across different network topology. However,
the extent to which these attributes explain traffic resilience differs. We found that
network connectivity, measured by the Beta index in this study, emerged as the most
correlated and significant attribute. A larger coefficient value for the Beta index in Mu-
nich suggests that Munich may experience a more pronounced service rate impairment
than Kyoto when confronted with a similar reduction in network connectivity. This
finding aligns with the conclusion that grid-like networks are more resilient than cen-
tral ring networks offered in Chapter 6, which is also supported by previous literature
(e.g., Zhang et al., 2015). The high correlation between traffic resilience and topological
attributes proved that the proposed indicator based on MFD dynamics can not only
represent traffic dynamics but also capture the network structure characteristics.

To further enhance our understanding of the relationship between traffic resilience
and network topology, future research endeavors can explore additional types of network
topology. Since this study primarily focused on two specific types of topology due to
data constraints, it is important to acknowledge that the insights gained in this regard

106



7.4 Conclusions and future work

are inherently limited. To overcome this limitation, one potential approach is to create
synthetic networks representing various types of network topology using advanced traffic
simulation models. A key challenge in synthetic network generation lies in the creation
of reasonable OD demand matrices for comparative analysis. This study’s findings sug-
gest that a network’s traffic resilience can be explained by its topological attributes to a
certain extent. Therefore, integrating these attributes with other relevant information,
such as network size and population data, can potentially serve as a surrogate for traffic
resilience. The prospect of deriving a general relationship model from experiment results
across numerous network scenarios is promising. Such a model can facilitate the eval-
uation of the transportation networks of real cities and assist in the design of resilient
transportation networks in a simple way.
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Chapter 8

Surrogate model for simulation-based traffic
resilience optimization

The content of this chapter has been partially presented in the following work:

Lu, Q.-L., Sun, W., Lyu, C., Schmöcker, J.-D., and Antoniou, C. (2024d). Post-disruption
lane reversal optimization with surrogate model to improve urban traffic resilience.
(Under Review).

8.1 Introduction and research contributions

The most common approach to transportation system resilience optimization problems
has been the use of mathematical programming models. Stochastic programming (e.g.,
Chen and Miller-Hooks, 2012; Li et al., 2019; Zhang and Alipour, 2020; Alkhaleel et al.,
2022) and bi-level optimization models (e.g., Faturechi and Miller-Hooks, 2014; Zhao and
Zhang, 2020; Zou and Chen, 2021) have been extensively applied. These methods often
incorporate a User Equilibrium (UE) component, such as the probabilistic UE (Lo and
Tung, 2003), partial UE (Faturechi and Miller-Hooks, 2014), and elastic UE (Zhao and
Zhang, 2020), as constraints for estimating travelers’ response to optimization decisions.
They can yield a macroscopic-level estimation of the influence of different decisions on
system performance. Nonetheless, this estimation inevitably comes with a compromise
in accuracy due to the strong assumptions (e.g., static travel demand) behind these
simplified analytical UE components. This issue can be addressed by advanced traf-
fic simulators that integrates disaggregate models of stochastic driver behaviors (e.g.,
car-following, lane-changing, route choice), which, once have been calibrated using real
data, can provide accurate and detailed traffic state estimates for a given strategy (Oso-
rio and Chong, 2015). However, traffic simulation models are generally computationally
expensive due to their complex, dynamic, and stochastic nature. This violates another
requirement of real-time optimization problems in the context of disruptions, i.e., being
timely and efficient. Hence, it is natural to think of combining the advantages of traffic
simulators in estimating time-dependent traffic dynamics and the efficiency of mathe-
matical optimization. This inspiration has led to the development of surrogate-based
simulation optimization algorithms.
This chapter proposes a surrogate model that couples a physical (problem-specific)

component to provide structural information about the underlying problem and a func-
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tional (general-purpose) component to improve the accuracy of the surrogate. In par-
ticular, we enhance the time-independent analytical network model proposed in Osorio
(2019b) by adding a traffic state transition term in link-level density estimation, which
results in a dynamic and temporally correlated model. Furthermore, a vectorized rep-
resentation of the model is established to enable the application of an efficient Gradient
Descent (GD) algorithm for variable calculation.

The contribution of this chapter is threefold as follows.

• We initialize a physics-informed surrogate model for simulation-based traffic re-
silience optimization problems by integrating a dynamic analytical network model
and a regression model.

• We transform the analytical network model to a vectorized one to facilitate the
application of efficient solution algorithms.

• A GD algorithm is derived to efficiently tackle the vectorized version of the pro-
posed dynamic analytical network model.

The remainder of this chapter is organized as follows. Section 8.2 presents the proposed
physics-informed surrogate model for traffic resilience optimization problems. Section 8.3
provides the solution algorithm for the surrogate model. Finally, Section 8.4 conclusions
this section and points out future directions for research.

8.2 Surrogate model for simulation-based traffic resilience
optimization

In this section, a physics-informed surrogate model is formulated for traffic simulators to
enable the application of various optimization algorithms to determine well-performing
decisions to improve traffic resilience with limited financial budgets and very tight com-
putational budgets.

8.2.1 Physics-informed surrogate model and common constraints

For ease of description, we introduce the notation listed in Table 8.1. The variables with
a subscript of τ indicate the interval-wise variant of the respective variables.

In fact, Equation 3.19 represents a physics-informed surrogate model, with the struc-
tural information on variables being captured by the physical component. In this sec-
tion, we adapt the framework to the problems aiming at reducing traffic resilience loss.
Considering traffic resilience optimization problems, performance indicators evaluating
different decisions would be traffic resilience indicators. Here, we apply those proposed in
Chapter 6, given their merits compared with others. The surrogate model for simulation-
based traffic resilience optimization can then be expressed as
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(SOS-TR)min
x

M =

Nt∑
τ=1

ητR
A
τ (xτ , zτ ;θ) + ϕτ (xτ ;βτ ) (8.1)

s.t. RAτ (xτ , zτ ;θ) =
1

2

(
∆̂s
τ + ∆̂s

τ−1

)
T τ = 1, . . . , Nt (8.2)

∆̂s
τ = max

{
D̂τ − D̂s

τ , 0
}

τ = 1, . . . , Nt (8.3)

∆̂s
0 = 0 (8.4)

D̂s
τ =

1

γs

∑
i∈L vi,τki,τ li∑

i∈L li
τ = 1, . . . , Nt (8.5)

zτ = h(xτ , zτ−1;θ) τ = 1, . . . , Nt (8.6)

g(x) ≤ 0 τ = 1, . . . , Nt (8.7)

Table 8.1: Notation in the surrogate model.

Notation Description

τ index of time intervals
i index of links
r index of routes
x decision variable of the surrogate optimization problem
z set of endogenous variables in the analytical network model
θ set of exogenous variables in the analytical network model
β set of parameters of the functional component
vi,τ space-mean speed of link i in time interval τ
ki,τ density of link i in time interval τ
li length of link i
λi,τ number of vehicles driving through link i in time interval τ
vτ vector of space-mean speed of all links in time interval τ
kτ vector of density of all links in time interval τ
λτ vector of the number of vehicles driving through all links in τ
h(·) analytical network model

We replace fA(x, z;θ) with RA(x, z;θ) to demonstrate the focus on traffic resilience
optimization. We consider a problem of Nt time intervals. The objective function is to
minimize the estimated resilience loss over all intervals as expressed by Equation (8.1).
Equations (8.2) and (8.3) calculate the resilience loss and the trip completion rate reduc-
tion in the case of discrete time intervals, respectively. Note, to ease modeling, we have
replaced the original formulation of resilience loss with its absolute value here. Assum-
ing that the period of interest starts at the beginning of the disruption, then we have
∆̂s

0 = 0 (Equation (8.4)). Equation (8.5) estimates the trip completion rate leveraging
its linear relationship with the weighted space-mean flow, which was found in the empir-
ical study conducted in Geroliminis and Daganzo (2008). Equation (8.6) represents the
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analytical network model used to estimate traffic flow variables for deriving the physical
component. In particular, zτ includes the estimation of space-mean speed, density, and
arriving demand of all links, i.e., zτ = (vτ ,kτ ,λτ ). The analytical network model in this
study will be detailed later in Section 8.2.2. Finally, g(x) is a vector function, repre-
senting a collection of practical constraints effected on the decision space. Examples of
these constraints, to name just a few, include computational constraints (e.g., a limited
number of simulation runs), financial constraints (e.g., limited repair budgets), person-
nel constraints (e.g., a limited number of repair crews), conservation constraints (e.g.,
the constant number of lanes of a two-directional road), positivity constraints, integer
constraints.

To summarize, we propose a surrogate model (SOS-TR) combining a physical com-
ponent and a functional component for approximating the unknown simulation-based
objective function (Equation (3.18)) and modeling the difference between the approxi-
mation (after scaling) and simulation results, respectively. The constraints of the model
include the analytical network model used to estimate the traffic flow situation under
different decision strategies, the formulations to calculate the physical component using
these analytical estimations, and other configuration constraints imposed on the decision
space.

8.2.2 Dynamic and temporally correlated analytical network model

Table 8.2: Notation in the analytical network model.

Notation Description

Pr,τ route choice probability of route r in time interval τ
p vector of route choice probabilities
Or the OD pair connected by route r
dOr demand for OD pair Or
R set of routes of the entire network
Rli set of routes containing link i
RoOr

set of routes connecting OD pair Or
ατ value of time parameter in time interval τ
tr,τ average travel time of route r in time interval τ
ti,τ average travel time of link i in time interval τ
ni,τ number of lanes of link i in time interval τ
vmax
i maximum speed (speed limit) of link i

kjami critical density (jam density) of link i
qcapi capacity of link i
s1, s2 weighting factors of traffic states in two successive time intervals
Nod number of OD pairs in the network
Nr number of routes in the network
Nl number of links in the network
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The analytical network model developed in this study builds upon its time-independent
predecessor proposed in Osorio (2019a). The latter model is described by a system of lin-
ear and nonlinear equations that simplifies the route choice model and the speed-density
relationship model describing the traffic fundamental diagram. Although it uses time-
dependent endogenous variables, the temporal correlation of traffic states is overlooked,
i.e., the values of endogenous variables of different time intervals are independent of one
another. To this end, we extend it to the temporally correlated case by adding a state
transition term. We introduce the notation listed in Table 8.2.

The analytical network model requires as inputs OD demand matrices, from which
the demand for available routes between OD pairs can be estimated leveraging a route
choice model. Then, apply the flow propagation model that defines the relationship
between route flows and link flows to transform route demand to link-level traffic flow
states. The route choice model is defined on the travel costs of routes. This means link-
level traffic flow states and route choice probabilities are interdependent. As a result,
the analytical model adopted can be expressed as an equation system with intertwined
variables. Specifically, the proposed analytical network model zτ = h(xτ , zτ−1;θ) is
defined as below.

λi,τ =
∑
r∈Rl

i

Pτ,rdOr,τ ∀i ∈ L (8.8)

vi,τ =
vmax
i

kjami

(
kjami − ki,τ

)
∀i ∈ L (8.9)

ki,τ = s1,τ
kjami
qcapi

λi,τ
ni,τ

+ s2,τki,τ−1 ∀i ∈ L (8.10)

where the intermediate variables are given by

Pr,τ =
eατ tr,τ∑

j∈Ro
Or
eατ tj,τ

∀r ∈ R (8.11)

tr,τ =
∑
i∈L(r)

ti,τ ∀r ∈ R (8.12)

ti,τ =
li
vi,τ

∀i ∈ L (8.13)

Equation (8.8) estimates the expected arriving demand for link i by the sum of the
products of the probability for routes containing link i and the expected OD demand
of those routes. Equation (8.11) represents a route choice model by which vehicles opt
for routes based on the expected travel time. ατ indicates the value of time in τ . Equa-
tion (8.12) calculates the expected route travel time by simply aggregating the travel
time of composing links, while Equation (8.13) estimates the expected link travel time.
Equation (8.9) applies the Greenshield speed-density relationship model to specify link-
level traffic flows. Equation (8.10) relates the link’s expected density (ki,τ ) to its expected
demand (λi,τ ) as well as the density of the previous time interval (ki,τ−1). Considering
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the interdependence of the endogenous variables in this model, Equation (8.10) can be
recognized as the state transition model of traffic flows. s1,τ and s2,τ are scalars weight-
ing the influence of the demand within the current time interval and the traffic state
of the previous time interval. It is worth noting that in the system described above,
endogenous variables include λi,τ , vi,τ and ki,τ , while exogenous variables include ατ ,

vmax
i , kjami , qcapi , s1,τ and s1,τ .

Compared to the original analytical model in Osorio (2019a), we have made modifi-
cations from three aspects: (i) A state transition term is added to the calculation of the
expected density for capturing the temporal correlation of traffic states. (ii) The exoge-
nous parameters irrelevant to links, i.e., ατ , s1,τ and s1,τ , are set to be time-dependent.
We also develop an offline calibration approach to obtain plausible values for these pa-
rameters, which will be detailed in Section 8.3.3. (iii) We replace the Newell-type single-
regime speed-density model therein with the linear Greenshield model to support the
application of vectorization to further improve the computational efficiency of the net-
work model. The model vectorization process will be detailed in Section 8.3.1. We would
like to highlight that the proposed dynamic and temporally correlated analytical net-
work model is expected to outperform its predecessor, particularly in scenarios involving
varied network structures in different time intervals. This improvement in performance
is attributed to the model’s ability to capture the impact of network changes through
the transition term in Equation (8.10). Hence, this model is very suitable for traffic re-
silience optimization problems, particularly in the evaluation of supply disruptions with
(temporary) network damages or controls.

According to Equation (8.6), in addition to the traffic state from the previous time
interval (here kτ−1), outputs of the analytical network model are also dependent on the
decision variable x. However, x is not involved in the proposed network model. This
is because x is usually defined to be related to the variables explaining the network
structure or traffic flows involved in the network model. For instance, for a problem
intending to optimize lane reversal control strategies, ni,τ will be replaced with xi,τ . As
a practical application, in Chapter 9, we will present a recovery measure optimization
problem, in which the lane reversal technique is employed as the control decision.

8.3 Solution algorithms

In this section, we sequentially elucidate the vectorization of the analytical network
model and its corresponding solution algorithm, and the calibration algorithm for the
exogenous variables involved.

8.3.1 Vectorization of the analytical network Model

The dynamic analytical network model requires a scalable, efficient solution algorithm
to enhance its practical application. Otherwise, opting for more computational resources
to execute simulation evaluations may be more promising than solving the approximate
subproblem inefficiently (Osorio, 2019a). Consequently, we want to vectorize the pro-
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posed analytical network model to facilitate the development of a GD for solving required
traffic flow variables.

Denote the number of OD pairs, the number of available routes, and the number of
links in the network by Nod, Nr and Nl, respectively. The structure of a network can
then be described by the following two matrices.

• Route-OD matrix: B = [br,O]Nr×Nod
, where br,O = 1 if route r connects OD pair

O, otherwise 0.

• Route-link matrix: C = [cr,i]Nr×Nl
, where cr,i = 1 if link i is in route r, otherwise

0.

As an illustrative example, Figure 8.1 shows a simple directed network with 7 routes,
5 OD pairs (between nodes), and 5 links. The two network structure matrices for this
network is given in Figure 8.2.

1 2

3 4

Figure 8.1: A simple example network.

Routes

1 2 1 3 1 4 2 4 3 4

ODs

1

1
1
1
1

1
1

Links

1

1
1

1
1

1
1

1
1

Figure 8.2: Examples of the route-OD matrix and the route-link matrix.

To facilitate the solution for the system of equations defined by Equation (8.8) - (8.10),
we present the vectorized version of the analytical network model leveraging the above
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network structure matrices as below.

λ = C⊤ (p ◦ (Bd)) (8.14)

p = exp [αCt]⊘
(
BB⊤ exp [αCt]

)
(8.15)

t = l⊘ v (8.16)

v =
(
vmax ⊘ kjam

)
◦
(
kjam − k

)
(8.17)

k = s1
(
kjam ⊘ qcap

)
◦ (λ⊘ n) + s2k

(p) (8.18)

where the lowercase letters in bold represent the vectors of the corresponding scalar
variables listed in Table 8.1. p is an Nr-dimensional vector indicating the route choice
probabilities. d is an Nod-dimensional vector, a flattened version of the OD matrix. The
rest vectors are Nl-dimensional. Note, for simplicity of presentation, we have removed
the index of time intervals τ from corresponding variables, and the expected density of
the time interval τ−1 is indicated with a superscript (p), i.e., k(p). Originally, the system
consists of six equations, but the vectorized version only contains five. This is because
Equation (8.12) has been substituted into Equation (8.11) to derive Equation (8.15).
Operations ◦ and ⊘ denote Hadamard (element-wise) product and division, respectively.
exp [·] denotes the element-wise exponential. C⊤ indicates the transpose of matrix C.

8.3.2 Solution algorithm for the analytical network Model

To calculate the endogenous variables, we construct the following problem

min
λ

c

subject to λ = C⊤ (p ◦ (Bd))

where c is an arbitrary constant such as 0. We can get the expected demand for all
links λ∗ by solving this problem. The expected density and speed can then be obtained
by calculating Equation (8.18) and (8.17) sequentially. By applying the Lagrangian
multiplier method, it can be transformed into the following problem

(AN) min
λ

g =
1

2

(
C⊤(p ◦ (Bd))− λ

)⊤ (
C⊤(p ◦ (Bd))− λ

)
(8.19)

Problem (AN) is an unconstrained problem and we can work out a GD algorithm to
solve it. The gradient of g is given by

∇g =

(
∂C⊤(p ◦ (Bd))

∂λ
− INl

)(
C⊤(p ◦ (Bd))− λ

)
(8.20)

where INl
is an Nl ×Nl identity matrix, and
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∂C⊤(p ◦ (Bd))

∂λ
= C⊤∂p ◦ d̃

∂λ

= C⊤

(
diag(p)

∂d̃

∂λ
+ diag(d̃)

∂p

∂λ

)

= C⊤diag(d̃)
∂p

∂λ

where d̃ = Bd (independent of λ) and the diag(·) operator represents the diagonal
matrix constructed using the elements of the vector effected on. According to the chain
rule, we can calculate

∂p

∂λ
=
∂ exp[αCt]⊘

(
BB⊤ exp[αCt]

)
∂λ

(8.21)

=

(
exp[αCt][◦](αC ∂t

∂λ
)

)
[⊘]
(
BB⊤ exp[αCt]

)
− (8.22)(

exp[αCt][◦]
(
BB⊤( exp[αCt][◦](αC ∂t

∂λ
)
)))

[⊘]
(
BB⊤ exp[αCt]

)◦2
(8.23)

where (·)◦2 denotes the Hadamard power, [◦] and [⊘] denote the penetrating face product
and division, respectively. Considering a m-dimensional vector y and a m-by-n matrix
A, then y◦2 = [y21, y

2
2, . . . , y

2
m]
T , and

y[◦]A =


y1A11 y1A12 . . . y1A1n

y2A21 y2A22 . . . y2A2n
...

...
. . .

...
ymAm1 ymAm2 . . . ymAmn



A[⊘]y =


A11/y1 A12/y1 . . . A1n/y1
A21/y2 A22/y2 . . . A2n/y2

...
...

. . .
...

Am1/ym Am2/ym . . . Amn/ym


Since both exp[αCt] and

(
BB⊤ exp[αCt]

)◦2
result in a Nr-dimensional vector, the

calculation of ∂p
∂λ can be achieved using the penetrating face operations above.

Similarly, combining Equation (8.16), (8.17) and (8.18), we have

∂t

∂λ
= diag

(
(s1l ◦ vmax)⊘ (v◦2 ◦ qcap ◦ n)

)
(8.24)

which only contains exogenous variables. We can get ∂p
∂λ by substituting Equation (8.24)

into Equation (8.23). Therefore, at each algorithm iteration, by conducting the calcula-
tions backward, we can obtain the gradient ∇g.

117



Chapter 8 Surrogate model for simulation-based traffic resilience optimization

Finally, according to the GD algorithm, λ can be updated with the following rule:

λ := λ− µ∇g (8.25)

where µ is the step size. Due to the dependence on the previous interval, the vectorized
system needs to be solved sequentially for each time interval. For convenience, further
details on the procedure of the GD algorithm are presented in Algorithm 3.

Algorithm 3 Gradient Descent for solving the vectorized analytical network model.

1: For a given time interval τ and a given density vector for the previous interval k(p).
2: Initialize exogenous variables ατ , s1,τ and s2,τ , ∀τ .
3: Initialize the first guess λ(0), algorithm step size µ, maximum iterations Nmax.
4: Initialize the iteration index: k = 0.
5: for k < Nmax do
6: Compute link-level traffic flows under λ(k):
7: – Compute the vector of link density k via Equation (8.18).
8: – Compute the vector of speed v via Equation (8.17).
9: Compute the partial derivative of the link travel time vector t with respect to λ

via Equation (8.24).
10: Compute the partial derivative of the route probability vector p with respect to

λ via Equation (8.23).
11: Compute the gradient direction ∇g(k) via Equation (8.20).
12: if ∇g(k) does not change (< ϵmax) then
13: Output the solution: λ∗ = λ(k).
14: break
15: end if
16: Improve the operation strategy: λ(k+1) = λ(k) − µ∇g(k).
17: Update the iteration index: k = k + 1.
18: end for

8.3.3 Surrogate model exogenous parameter calibration

The values of ατ , s1,τ and s2,τ ,∀τ directly influence the route choice behaviors and the
relationship between demand and link performance. Applying appropriate values to
these variables is important to the accuracy and reliability of the proposed analytical
network model, i.e., the similarity of its results to simulation results. That is to say,
these variables should be calibrated to make the analytical network model generates
similar results to traffic simulations. Furthermore, considering that we are focusing on
the MFD-based traffic resilience, the objective function of the calibration should be
targeted on reducing the difference between the trip completion rates estimated from
simulation results and analytical results. On the other hand, in practice, we are blind
to the disruption data so the calibration can only be conducted offline by using the
data under normal conditions. Even though the preference of drivers/vehicles might
change after an occurrence of disruption, the variables calibrated via this method can
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still provide some beneficial information to the approximation, which has also been
proven by the experiment results.
Denote ψτ = {ατ , s1,τ , s2,τ}. Then, the offline calibration is to solve the following

problem.

(AN-C) min
ψτ

(vτ ◦ kτ − q̃τ )
⊤ (vτ ◦ kτ − q̃τ ) (8.26)

subject to Equation (8.14) - (8.18) (8.27)

where q̃τ indicates the vector of simulated traffic volumes in time interval τ . Clearly,
this calibration model aims to reducing the difference between analytical and simulated
traffic volumes. The problem can be solved via various derivative-free algorithms, such
as the SPSA algorithm (Spall, 1998).

8.4 Conclusions and future work

Inspired by the strengths of traffic simulators in estimating time-dependent traffic dy-
namics and the efficiency of mathematical optimization, this chapter presents a physics-
informed surrogate model for urban traffic resilience optimization problems. The sur-
rogate model comprises a physical component derived from a deterministic dynamic
analytical network model, coupled with a functional component for reducing the differ-
ence between simulated and analytical values. To further facilitate the application of the
proposed dynamic and temporally correlated network model, we present its vectorized
version and develop an efficient GD algorithm to solve the equation system. In order
to improve the approximation performance of the analytical network model to traffic
simulations, a calibration model is established to calibrate the exogenous variables in
the network model offline using the simulation data under normal conditions.
We note that most of the computational cost of this surrogate model comes from the

estimation of the route choice model defined as a Logit model here. Future research
can be performed to simplify the route choice model or release the requirement for
such a model to further improve the efficiency of the surrogate model. In addition,
considering that potential network structure changes may lead to significant changes in
the exogenous parameters involved in the analytical network model, the surrogate model
can also benefit from an online calibration for these parameters.
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Chapter 9

Simulation-based recovery measure
optimization

The content of this chapter has been partially presented in the following work:

Lu, Q.-L., Sun, W., Lyu, C., Schmöcker, J.-D., and Antoniou, C. (2024d). Post-disruption
lane reversal optimization with surrogate model to improve urban traffic resilience.
(Under Review).

9.1 Introduction and research contributions

This chapter presents an application of the surrogate modeling framework developed
in Chapter 8. The application focuses on the optimization of recovery measures for
strengthening urban traffic resilience in the immediate aftermath of supply disruptions.

Recall that system resilience is usually quantified by the integral of system functional-
ity reductions over the entire disruption period. Implementing recovery measures can be
useful for mitigating resilience loss through multiple ways such as increasing the recovery
speed and/or improving the worst functionality state. In transportation systems, recov-
ery measures are generally performed to reduce traffic congestion caused by disruptions.
In terms of supply disruptions, several types of recovery measures have been investigated
in the literature, including signal control, perimeter control, road expansion, and lane
reversal control, etc.

The lane reversal technique (also referred to as contraflow) is adopted as the recovery
measure. Lane reversal refers to the action of reversing the direction of lanes to reallocate
the capacities of two-directional roads to accommodate the unbalanced traffic demand in
the two directions (Zhang et al., 2019). Lane reversal has been implemented in some big
cities to deal with traffic congestion issues during peak hours and large events (e.g., sport
matches, concerts) (Zhao et al., 2014). It is a simple yet popular measure attributed to its
flexibility without the need for advance planning, design, and construction of new lanes.
To the best of our knowledge, this is the first attempt to realize this technique in traffic
simulations for the sake of optimizing traffic resilience. According to the categorization
method defined by Farahani et al. (2013), this problem can be classified as a urban road
network design problem with operational decisions.

The contribution of this chapter is twofold as follows.
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• We develop a physics-informed surrogate-based simulation optimization method to
yield well-performing recovery measures, particularly lane reversal control strate-
gies, with a very tight computational budget to improve traffic resilience for large-
scale networks.

• We apply our approach to a real network in Kyoto, Japan, which has been cal-
ibrated using real observed data. The experiment results illustrate the practical
value of lane reversal controls.

The remainder of this chapter is organized as follows. Section 9.2 presents the surro-
gate model for recovery measure optimization and develops solution algorithms for the
problem. In Section 9.3, results from case studies are analyzed and discussed. Finally,
Section 9.4 concludes this chapter.

9.2 Methodology

We introduce the notation listed in Table 9.1. The variables with a subscript of τ indicate
the interval-wise version of the respective variables.

After the occurrence of a disruptive event, decision-makers have to respond quickly to
propose an effective recovery strategy (a set of emergency recovery measures like traffic
signals tuning, temporary lane reversals) to mitigate its negative impact and minimize
social and economic losses. In this section, taking lane reversals as an example, we build
a surrogate-based recovery measure optimization model to improve the transportation
system traffic resilience to supply disruptions.

9.2.1 Definition of lane reversal control

By convention, for lane reversal control, decision variables are defined as binary vari-
ables indicating whether lane reversals are implemented on the corresponding lanes. For
instance, for a two-directional road with two lanes each direction (shown in Figure 9.1a),
decision variables can be expressed as

xij =

{
1 if reverse the driving direction

0 otherwise
(9.1)

where xij (i, j ∈ [1,2]) indicates the lane reversal decision on lane j of link i. In this
case, we need to offer each lane a specific decision variable. The problem will be a 0-1
integer programming.

On the other hand, we can use the number of lanes in each direction as the decision
variable, which can also reflect different lane reversal control situations. In this case, the
decision will be:

xi ∈ [1, 2, 3, 4] (9.2)

where xi (i ∈ [1,2]) represents the original number of lanes of link i. Clearly, such a
definition can effectively reduce the dimension of decisions.
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Table 9.1: Notation in the surrogate model for recovery measure optimization.

Notation Description

L set of links in the network
Lc set of links allowed for implementing lane reversal
Lu set of links not allowed for implementing lane reversal
x decision variable of the surrogate optimization problem
z set of endogenous variables in the analytical network model
θ set of exogenous variables in the analytical network model
β set of parameters of the functional component
δ difference between the simulated and analytical resilience losses
xi,τ number of lanes opened for link i in interval τ

x
(−)
i,τ number of lanes opened for the link opposite link i in τ

τ index of time intervals
i index of links
r index of routes
ni original number of lanes of link i

n
(−)
i original number of lanes of the link opposite link i
bf financial budget for implementing the recovery strategy

cfi cost of implementing lane reversal on a lane of link i
vi,τ space-mean speed of link i in time interval τ
ki,τ density of link i in time interval τ
li length of link i
λi,τ number of vehicles driving through link i in time interval τ
Nt number of time intervals

(a) A two-directional road (b) An unacceptable decision

Figure 9.1: Lane reversal control (right-hand traffic).
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Chapter 9 Simulation-based recovery measure optimization

It is noteworthy that in both definitions, combinations of lane reversal decisions re-
sulting in alternating directions are typically not allowed to avoid confusion during im-
plementation. For instance, the combination displayed in Figure 9.1b is generally pro-
hibited. Therefore, appropriate constraints are needed for the first type of definition,
while the second type of definition requires clarification that the lanes of each link are
consecutive and adjacent to each other.

9.2.2 Simulation-based traffic resilience optimization

Here, we employ the second definition of lane reversal for the sake of reducing the di-
mension of decisions. Considering the cascading effect of traffic congestion, lane reversal
decisions are distinguished for different time intervals. As a result, x has the same di-
mension as the number of links in the network times the time span (number of time
intervals) of the control period. The surrogate model for recovery measure optimization
can then be expressed as

min
x

M =

Nt∑
τ=1

ητR
A
τ (xτ , zτ ;θ) + ϕτ (xτ ;βτ ) (9.3)

s.t. RAτ (xτ , zτ ;θ) =
1

2

(
∆̂s
τ + ∆̂s

τ−1

)
T τ = 1, . . . , Nt (9.4)

∆̂s
τ = max

{
D̂τ − D̂s

τ , 0
}

τ = 1, . . . , Nt (9.5)

∆̂s
0 = 0 (9.6)

D̂s
τ =

1

γs

∑
i∈L vi,τki,τ li∑

i∈L li
τ = 1, . . . , Nt (9.7)

zτ = h(xτ , zτ−1;θ) τ = 1, . . . , Nt (9.8)

ϕτ (xτ ;βτ ) ∼ N (µτ (xτ ),Kτ (xτ )) τ = 1, . . . , Nt (9.9)

1

2

Nt∑
τ=1

∑
i∈Lc

cfi |ni − xi,τ | ≤ bf (9.10)

xi,τ + x
(−)
i,τ = ni + n

(−)
i ∀i ∈ L, τ = 1, . . . , Nt (9.11)

xi,τ ≥ 1 ∀i ∈ L, τ = 1, . . . , Nt (9.12)

xi,τ = ni ∀i ∈ Lu, τ = 1, . . . , Nt (9.13)

We refer the reader to Section 8.2 for an explanation of Equations (9.3) - (9.8). Equa-
tion (9.9) represents the functional component, a GPR model. While many regression
models (e.g., low-order polynomials and radial basis function) have been applied as a
functional component in the literature, GPR is employed attributed to its proven abil-
ity to approximate the response surface for the transportation simulation input-output
mapping (Chen et al., 2014; Beglerovic et al., 2017). More details about the GPR model
development and fitting are given in Section 9.2.3.
Equation (9.10) represents the financial budget constraint. As the number of lanes of

two opposite links are complementary, the total implementation cost is half of the sum of
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9.2 Methodology

the implementation costs of all links. Equation (9.11) expresses the conservation of the
number of lanes of a two-directional road (i.e., a road with opposite links). Furthermore,
here we assume lane reversal is not allowed to implement on all lanes of a link, implying
that each link should have at least one lane after implementing the recovery strategy.
This constraint is expressed as Equation (9.12). This maintains the integrity of routes,
preventing route interruption and the resulting navigation failure that may cause confu-
sion. Equation (9.13) says that the links that are not qualified for lane reversal should
keep the number of opened lanes unchanged.

9.2.3 Functional component: Gaussian Process Regression

We define the resilience loss estimated based on simulation data as simulated resilience
loss, and define the resilience loss derived from the analytical network model (after scal-
ing) as analytical resilience loss. The functional component is a GPR model estimated
using the simulated observations that relate the decision variables and the difference
between simulated resilience loss and analytical resilience loss. To be specific, until
iteration k, we obtain a dataset consisting of N (k) input vectors X(k) = [xn]

N(k)

n=1 of di-
mension Nc (the number of links under control, i.e., Nc = |Lc|), and the corresponding

targets δ(k) = [δn]
N(k)

n=1 . X(k) is the matrix of recovery strategy samples that have been
simulated until iteration k. δ(k) is the difference between the simulated and analytical
resilience losses, i.e., δn = R̃s(xn) − η(k) ◦ RA(xn), where η(k) indicates the vector of
the scaling factors estimated at iteration k. Lc represents the set of controllable links.

The problem asks for a well-performing solution with a limited number of simulation
observations. It is easy to cause the overfitting issue in high-dimensional GPR models,
particularly in initial iterations, which may mislead the solution algorithm in an incor-
rect direction. To this end, although traffic states of a certain time interval are related
to control decisions in previous intervals, we fit a GPR model for each time interval by
using only the decisions of the corresponding interval (expressed by Equation (9.9)). In
this way, the number of variables remains the same for all GPR models of different con-
trol intervals. However, this treatment may sacrifice some temporal correlation among
control variables. Nevertheless, Osorio (2019a) demonstrated that an analytical network
model, capable of capturing sufficient spatial correlation, can also incorporate temporal
correlation in the surrogate model in a simple way. This is achieved by fitting the sur-
rogate model with temporally correlated simulation observations. This approach aligns
with our treatment described above. Moreover, in our model, the temporal correlation
is further captured by the dynamic and temporally correlated analytical network model
(Equation (8.6)) presented in Section 8.2.2.
For a certain time interval τ , we assume the true resilience loss difference f is a

collection of random variables from a Gaussian process given by

f ∼ N (µ,K) (9.14)

where µ = [m′(x1),m
′(x2), . . . ,m

′(xN )] and K = K(X,X) with Kij = k′(xi,xj). m
′

represents the a priori mean function, and k′ represents a positive definite kernel function.
We set the a priori mean function m′(xi) = 0, ∀i. However, we have no access to true
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Chapter 9 Simulation-based recovery measure optimization

function values (f) in practical situations. In the k-th algorithm iteration, we denote the
recovery measures that have been evaluated by X and denote the corresponding target
by δ. Then, δ is the observed value with noise introduced to true function values f . We
assume δ = f + ϵ, where ϵ ∼ N (0, σ2I). As a result, δ ∼ N (0,K+ σ2I).

We can infer f∗ given the strategies that have been evaluated (X), corresponding
target values (δ), and the strategies to be evaluated (X∗). By definition, we have the
joint distribution below [

δ
f∗

]
∼ N

(
0,

[
K+ σ2I K∗

K⊤
∗ K∗∗

])
(9.15)

where K∗ = K(X,X∗) and K∗∗ = K(X∗,X∗). As per Rasmussen and Williams (2008),
by deriving the conditional distribution, the predictive equation for GPR can be ex-
pressed as

f̄∗ = K⊤
∗ [K+ σ2I]−1δ (9.16)

Since we only utilize the mean function calculated by the posterior distribution of pos-
sible functions for regression predictions, the equation for calculating the covariance is
omitted here.

9.2.4 Solution algorithm for the surrogate-based recovery measure
optimization problem

The traffic resilience optimization problem in this study is a discrete simulation-based
optimization problem. Considering the inclusion of the analytical network model con-
sisting of implicit nonlinear equations in the problem, we integrate a Genetic Algorithm
(GA) into the metaAHA framework present in Zhou et al. (2023), which was focused
on car-sharing service network design problems, to solve this problem. AHA is for the
Adaptive Hyperbox Algorithm proposed in Xu et al. (2013), which was developed for
solving high-dimensional discrete optimization via simulation problems. However, due
to the limited search space of each decision variable in our case (for a two-directional
road with two lanes each direction, the decision space is {1, 2, 3}), defining and updat-
ing the hyperbox at each approximating state becomes unnecessary since all decision
combinations can be regarded as within the neighbourhood of each other. Therefore,
rather than relying on the hyperbox to perform exploitation, we make use of the best
solutions of the last Nga epochs in GA. Furthermore, we also employ random sampling
to undertake the exploration task for this algorithm, specifically generating Nrs random
samples in each simulation iteration. Regarding the computational budget, we follow a
similar setup to that in Osorio and Chong (2015), i.e., the tight computational budget
is defined as a maximum number of simulation runs that can be carried out. We denote
it by N . Algorithm 4 presents the algorithm adopted to solve the proposed simulation-
based traffic resilience optimization problem. A flowchart of the algorithm is provided
in Figure 9.2 for clarity and ease of understanding.
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Algorithm 4 Simulation-based traffic resilience optimization.

1: Step 0: Initialization

• Initialize analytical network model

– Set ατ , s1,τ , s2,τ ,∀τ according to the off-line calibration results.

– Initialize other exogenous variables dτ , ∀τ,vmax,kjam,qcap.

– Define the network structure matrices B and C.

– Initialize the density of the interval previous to the period of interest: k
(p)
1 = k0.

• Set the maximum number of iteration runs N . Set the number of strategies re-
sulting from GA to preserve Nga, the number of strategies generated by random
sampling Nrs at each iteration.

• Initialize the iteration index k = 1. Current number of iteration runs N (k) = 0.

2: Step 1: Strategy optimization and sampling

• Apply GA to solve SOS-TR. Keep the best strategies of the last Nga epochs: X(k)
ga .

• Randomly sample Nrs strategies in the decision space: X(k)
rs .

• Strategies to examine: X(k) = X(k)
ga ∪ X(k)

rs .

3: Step 2: Strategy evaluation

• Run simulation with the strategies in X(k).

• Evaluate the traffic resilience losses for all strategies: {|R̃s(x)||x ∈ X(k)}.

• Update the current best strategy: x∗(k) = argminx |R̃s(x)|.

• Update iteration runs: N (k) = N (k) +Nga +Nrs.

4: Step 3: Termination check

• If N (k) ≥ N , stop, otherwise, proceed to Step 4.

5: Step 4: Surrogate model update

• Evaluate the strategies in X(k) using the surrogate model.

• Use all strategies evaluated so far to fit the scaling factor η
(k)
τ and the parameters

in the functional component β
(k)
τ for each time interval separately.

• Update the surrogate model: M (k) =
∑Nt

τ=1 η
(k)
τ RAτ (xτ , zτ ;θ) + ϕ

(k)
τ (xτ ;β

(k)
τ )

• Set k = k + 1, proceed to Step 1.
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Traffic simulator

New simulated data

Physical component New strategies 

Simulation
observations

GPR fitting

GA optimizer
Best strategies Update surrogate

Random
sampling

Initialization

OutputNo Yes

Figure 9.2: Flowchart for the solution algorithm.

9.3 Case study and results

We conduct case studies in the city center of Kyoto, Japan, which has been used in
previous chapters, to examine the performance of the proposed surrogate model. We
refer the reader to Section 3.4.2.2 for more details about the network structure and
information on this study area. This network is a large-scale real network compared to
those used in related literature (e.g., the 122-link freight transportation network in Li
et al., 2019). Our analysis focuses on the morning period from 5 am to 12 pm, with the
initial and final hours as warm-up and dissipation periods, respectively.

The supply disruption represented by temporary closing the links within the read area
highlighted in Figure 3.8c is designed for experiments. The disruption period lasts from
6 am to 11 am. This scenario design follows similar styles as those presented in relevant
studies (e.g., Li et al., 2019; Liao et al., 2018).

9.3.1 Simulation setup

SUMO is employed for conducting simulation evaluations under various recovery strate-
gies. All simulations are conducted at the mesoscopic resolution with a non-iterative
dynamic stochastic user assignment method to approximate the DUE. The mesoscopic
model has been calibrated for morning-period demand using real observed data.

9.3.2 Analytical network model setup

This large-scale network provides tens of thousands of routes for vehicles to finish their
trips. To balance algorithm efficiency without compromising the accuracy of the ana-
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lytical network model, we filter out routes shorter than five minutes and with a demand
fewer than five trips. This step leads to 188 effective zonal OD pairs, 3,836 effective
routes and 1,023 effective links. Rather than a compromise, we treat it as a necessary
step to reduce the influence of negligible OD pairs and uncertainty in route choice behav-
iors inherent in simulations. Therefore, the dimensions of the network structure matrices
introduced in Section 8.3.2 are Nod = 188, Nr = 3836 and Nl = 1023.

Note, some links becomes unavailable in the link closure scenario described above.
With the same filter, we obtain 110 effective OD pairs, 2,802 effective routes, and 890
effective links, denoted as N lc

od = 110, N lc
r = 2802 and N lc

l = 890 with “lc” indicating
link closure. Route-OD matrices (B and Blc) and route-link matrices (C and C lc) can
then be constructed correspondingly. It is worth mentioning that these matrices are very
sparse, and thus can be handled very efficiently with specific functions available in most
programming languages, such as the sparse function in the scipy package for Python.

9.3.3 Link reversal control setup

In terms of the control period, we assume that the traffic control center needs one hour
to make decisions and allocate necessary resources (e.g., personnel, control equipment,
and materials) after the occurrence of the disruption. Therefore, the control period for
all scenarios is from 7 am to 11 am, with each controlled time interval lasting one hour.

We employ N = 150, same as Osorio and Chong (2015), as the limit of simulation runs
in Algorithm 4 to devise a contraflow-based recovery strategy. Set Nga = 10 and Nrs =
20 for algorithm exploitation and exploration respectively. On the other hand, instead
of constraining the problem with a financial budget as expressed in Equation (9.10),
we specify a fix number of controlled links (Nc) for each time interval, representing
the situation of limited personnel resources. Here, we consider three configurations for
Nc, specifically Nc ∈ {10, 15, 20}. However, it is flexible to change without much efforts.
Likewise, this should not influence the conclusions drawn from the subsequent evaluation
and analysis of experimental results.

Regarding the selection of controlled links, while decision-makers can base their choices
on local conditions, it is natural to have the following principles: (i) The road condition
allows for implementing lane reversal; (ii) Selected roads exhibit imbalanced saturation
rates in the two directions; (iii) One direction has a high saturation rate (i.e., the link is
congested), as lane reversals will not significantly impact traffic states otherwise. More
specifically, we consider links with a saturation rate ratio greater than 1.5 (principle ii)
and a saturation rate greater than 0.75 (principle iii). We choose the Nc links with the
most imbalanced saturation rates (largest ratios of saturation rates) for control.

9.3.4 Traffic resilience evaluation

It is valuable to comprehend the resilience pattern of the Kyoto system under the dis-
ruption scenario presented in Section 3.4.2.2. This scenario will also be used to assess
the proposed surrogate modeling approach in the following experiments and evaluations.
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Figure 9.3a shows the cumulative distribution of link speeds during the disruption
period (i.e., 6 am - 10 am). The difference between the normal and disruption operation
conditions mainly happens within the speed ranges of [0, 40] and [50, 70]. About 5% of
additional links observe a speed smaller than 40 km/h under the disruption condition
compared to the regular operation. This also applies to the speed range of [50, 70]. It
implies that link speeds are reduced due to the additional demand transferred from the
routes blocked due to disruption. Correspondingly, the link densities observe an increase
as presented in Figure 9.3b.

Figure 9.3c illustrates the change in trip completion rate, the system functionality
measurement utilized in this study. Each point on the line represents the traffic state of
a five-minute interval. The disruption period is indicated in grey. The total resilience
loss is obtained by integrating trip completion rate reduction across the investigation
period, represented as the shaded area in the figure.

It is evident that the extent of completion rate reduction changes with the demand
level. Compared to the normal situation, the reduction is around 10% from 6 am to 7
am, during which travel demand is relatively small. This value increases to about 20%
later due to the rising demand and reaches a new degraded equilibrium. Attributed to its
grid layout, the system offers relatively more route alternatives for vehicles to go to their
destinations compared to networks with other types of layouts, such as ring networks.
This characteristic, validated in Lu et al. (2024c), makes systems with grid networks
more stable against disturbances, facilitating the formation of a new equilibrium.
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Figure 9.3: Traffic resilience loss evaluation and comparison of traffic variables.
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9.3.5 Algorithm performance in different control scenarios

Figure 9.4a shows the overall performance of the proposed algorithm under different
control scenarios outlined in Section 9.3.3. We set the maximum simulation runs N
= 150, and strategy evaluations for each iteration for exploitation Nga = 10 (strate-
gies recommended by GA) and exploration Nrs = 20 (strategies generated by random
sampling). As a result, the algorithm terminates after five iterations. The x-axis in
Figure 9.4a represents the iteration index, and the y-axis represents the percentage im-
provement in traffic resilience loss, which is given by 100(R̃s,′ − R̃s)/|R̃s|, where R̃s,′
denotes the normalized resilience loss after implementing the recovery strategy. Clearly,
the 15-link and 20-link control scenarios achieve similar resilience improvements after
the algorithm terminates, which is about double of the one seen with the 10-link control
scenario. Furthermore, it is fair to say that the 15-link scenario is preferable in this case
study compared to the 20-link scenario for two main reasons: (i) The 15-link scenario
achieves comparable efficacy to the 20-link scenario with fewer controlled links, making
it more economical; (ii) The algorithm is more robust in the 15-link scenario, repre-
sented by its superior performance over the 20-link scenario in the first two iterations.
Surprisingly, the algorithm in the 20-link scenario performs even worse than the 10-link
scenario in the first two iterations. It is worth noting that these findings are specific
to this case study. However, they highlight the importance of determining the number
of controllable links in lane reversal control applications. Insufficient controlled links
may lead to limited improvement in resilience loss, while excessive controlled links may
increase implementation costs and reduce algorithm robustness. Consequently, selecting
an appropriate number of controlled links should consider resilience improvement, im-
plementation cost, and algorithm reliability. On the other hand, converting the problem
with a maximum personnel constraint to a problem with a maximum budget constraint
could help the algorithm automatically determine the optimal number of links given a
predefined budget.

Figure 9.4b provides a comparison of the performance of the best solutions for the
three control scenarios in different time intervals. It is interesting to see that in the 10-
link scenario, the best solution leads to a reduction in trip completion rates during the
7 am - 8 am and 8 am - 9 am intervals. However, it results in the greatest percentage
improvement in the 10 am - 11 am interval. The observation suggests that the best
control strategy might not uniformly enhance traffic across the entire control period.
Instead, it may sacrifice performance in certain periods to achieve better overall results.
This phenomenon, on the other hand, reflects the temporal correlation of traffic states
and the cascading effect of traffic congestion. Yet, the underlying reasons for these varia-
tions (e.g., the transfer of traffic congestion) would require further investigation beyond
the scope of this study. Similar phenomenon is also observed in the 20-link scenario
where the trip completion rate in interval 8 am - 9 am also sees a decline. In contrast,
the best solution for the 15-link scenario demonstrates an ability to improve traffic re-
silience across all controlled time intervals, which provides additional facet representing
the superiority of the 15-link scenario.
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Figure 9.4: Algorithm performance evaluation and comparison (5 iterations).

9.3.6 Accuracy analysis of surrogate model

In addition to evaluating the overall effectiveness of the proposed approach in enhancing
traffic resilience, it is crucial to analyze how the surrogate model evolves with algorithm
iterations to fully uncover the factors influencing the performance of the approach. Fig-
ure 9.5 depicts the distributions for the difference between simulated resilience loss and
approximated resilience loss of five algorithm iterations for three control scenarios and
four time intervals. Violin plots are employed to visualize the distributions. Figure 9.5
offers three important points regarding the characteristics of the proposed surrogate
model.

First, focusing on a single plot in the figure, the loss difference is distributed around
zero, implying that the surrogate model provides an unbiased approximation to traffic
simulation. Moreover, the reduction in loss difference with the progression of algorithm
iterations suggests an increasingly accurate approximation. This pattern holds across
all control scenarios and time intervals, except for the “15 links, 9 am - 10 am” scenario,
where the distribution variance increases slightly in the 4th and 5th iterations compared
to the previous two iterations.

Second, considering each row of plots in Figure 9.5, the variance of the loss difference
increases with time, reflecting the enduring effect of previous controls on subsequent
time intervals. Noteworthy, we only use the control variables of the corresponding time
interval to fit the functional component for constructing the surrogate model. This means
the influence of the controls in previous time intervals is not counted. While this serves
as a compromise to mitigate the dimensionality of GP models and prevent overfitting, it
also underscores the opportunity for enhancing the surrogate model through integrating
effective dimension reduction techniques.

Third, for each column of plots in Figure 9.5, it can be observed that the variance of
the loss difference increases with the number of controlled links. Similarly, an increased
number of controlled links introduces a higher dimensionality to the GP models, poten-
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Figure 9.5: Difference between simulated loss estimate and analytical loss estimate.
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tially leading to overfitting. This suggests that selecting representative variables to fit
the GP could improve the approximation accuracy of the surrogate model.

9.3.7 Surrogate model structure validation

The proposed surrogate model consists of two main components: a physical component
that approximates simulation results using an analytical network model, and a func-
tional component that estimates the difference between simulated and analytical results
(after appropriate scaling). In particular, GPR is applied as the functional component.
Essentially, this model structure can be viewed as a physics-informed surrogate model.
To demonstrate the merits of this model structure, it is crucial to examine the necessity
of the physical component and explore the form of the function component.

Table 9.2: Role of different components in the surrogate.

Func. component η s2 # links Optimal loss % improvement

GPR (x) Fitted Calibrated 10 -0.7205 3.11%
GPR (x) Fitted Calibrated 15 -0.7006 5.79%
GPR (x) Fitted Calibrated 20 -0.7004 5.81%
GPR (x) [1]Nt Calibrated 10 -0.7205 3.11%
GPR (x) [1]Nt Calibrated 15 -0.7069 4.94%
GPR (x) [1]Nt Calibrated 20 -0.7130 4.12%
GPR (x) [0]Nt Calibrated 10 -0.7291 1.94%
GPR (x) [0]Nt Calibrated 15 -0.7069 4.94%
GPR (x) [0]Nt Calibrated 20 -0.7205 3.11%
EN (x) Fitted Calibrated 10 -0.7205 3.11%
EN (x) Fitted Calibrated 15 -0.7069 4.94%
EN (x) Fitted Calibrated 20 -0.7205 3.11%
EN (x,x◦2) Fitted Calibrated 10 -0.7205 3.11%
EN (x,x◦2) Fitted Calibrated 15 -0.7035 5.4%
EN (x,x◦2) Fitted Calibrated 20 -0.7312 1.67%
GPR (x) Fitted [0]Nt 10 -0.7205 3.11%
GPR (x) Fitted [0]Nt 15 -0.7185 3.38%
GPR (x) Fitted [0]Nt 20 -0.7312 1.67%

Baseline (no control): -0.7436 -

The necessity of the physical component can be evaluated from two perspectives,
including the effect of the scaling factor η and the effect of the physical information
derived from the analytical network model. Hence, two additional experiments associ-
ated with η = 1 and η = 0 (see Equation (9.3)) are designed and executed for each
control scenario. Table 9.2 compares the percentage improvement in traffic resilience
resulting from the best solutions for these experiments. We can see that setting η =
1 leads to either the same or degrading performance in all control scenarios. Notably,
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setting η = 1 is equivalent to ignoring the systematic approximation bias of the analyti-
cal network model. The degrading performance indicates that the functional component
cannot effectively capture such systematic bias with limited observations. Furthermore,
the performance continues to decline when setting η = 0, i.e., discarding the physical
component completely from the surrogate model. In this case, the functional compo-
nent fails to reproduce similarly accurate estimations as the complete version. In other
words, the surrogate model informed by physical laws among traffic variables can guar-
antee better recovery strategies with the same simulation observations than the one
without. To summarize, both the physical relationship capturing the correlation among
traffic variables and the scaling factor accounting for the approximation bias of the an-
alytical model play a vital role in the performance of the proposed surrogate model for
recovery measure optimization.
Further, we validate the choice of GPR model as the functional component by com-

paring its performance with the simple Elastic Net (EN) model adopted in Osorio and
Chong (2015) for traffic signal control problems. The EN model is a regularized linear
regression model, which is defined as ϕEN(x) = βENx where

βEN = argmin
β

∥δ −Xβ∥2 + α1∥β∥1 + α2∥β∥2.

α1 and α2 are hyperparameters. For comparative analysis, we use xτ to fit the EN
model for the same interval. Moreover, to incorporate nonlinear features into the model,
we also evaluate the model with xτ and x◦2

τ as inputs. The experiment results are
also summarized in Table 9.2 (with subscript τ omitted). Clearly, the surrogate model
employing GPR (x) outperforms both the one with EN (x) and the one with EN (x,x◦2)
across all control scenarios regarding the improvement in traffic resilience. This suggests
that, at the approximating state of each algorithm iteration, the GPR model can more
precisely describe the shape of the real objective function (i.e., traffic simulations) surface
in the neighborhood of the current solution. As a result, the recovery strategies suggested
by GPR are closer to the optimum. This aligns with the findings from Beglerovic et al.
(2017), where GPR (Kriging) requires fewer system evaluations to yield the best results.
Chen et al. (2014) also indicated that the surrogates with low-order polynomials may
lead to biased estimations, particularly in highly nonlinear functions. On the other
hand, by comparing the EN models, we note that EN (x,x◦2) performs better than EN
(x) in the 15-link control scenario but exhibits worse performance in the 20-link control
scenario. The potential explanation for the former situation is that incorporating the
nonlinear features introduced by x◦2 enhances the approximation performance of the
surrogate model. On the contrary, the latter situation might arise from incorporating an
excessive number of variables in the functional component, leading to overfitting issues.
This would mislead the search direction of the algorithm, consistent with the findings
presented in Section 9.3.6.
Additionally, the benefits of the proposed dynamic and temporally correlated analyt-

ical network model over its predecessor are assessed by setting s2 = 0. This adjustment
renders the traffic transition term, incorporated into the density estimation function as
expressed in Equations (8.10) and (8.18), inactive. Consequently, the proposed model re-

135



Chapter 9 Simulation-based recovery measure optimization

verts to the original static version. The comparison presented in Table 9.2 demonstrates
that the surrogate with the static analytical network model exhibits inferior performance
compared to those employing the dynamic model across all control scenarios.

9.4 Conclusions and future work

This chapter investigated the optimization problem of urban traffic resilience, focusing
on emergency recovery measures, particularly lane reversal control in the aftermath
of supply disruptions. A surrogate-based simulation optimization model was applied to
address the problem. The surrogate model comprises a physical component derived from
a deterministic dynamic analytical network model, coupled with a functional component
driven by a GPR model. An algorithm integrating Gradient Descent and genetic search
within the Adaptive Hyperbox Algorithm (AHA) framework was developed to solve the
problem.

We tested the proposed approach on a large-scale real-world network in Kyoto City
with 1,189 links. A supply disruption scenario simulating the vehicle ban implemented
during the Gion Matsuri (a cultural festival) was specifically designed for testing. The
performance was assessed under three lane reversal control scenarios, i.e., 10, 15, and
20 controllable links. The experiment results suggested that the scenarios with 15 and
20 controlled links led to similar ultimate improvements in traffic resilience, but the
15-link scenario is more robust over algorithm iterations. This insight underscores the
importance of striking a balance between the number of controllable links and model
robustness. While this specific number is only applicable to the case study investigated
in this study, we can extend these case-specific findings to a general discussion. Namely,
insufficient controllable links (representing fewer control crews) cannot guarantee con-
siderable mitigation in traffic resilience loss, while excessive controllable links would
introduce too many degrees of freedom to the GPR model, which, however, can easily
cause overfitting and result in a lack of robustness.

Further, we analyzed the evolution process of the surrogate model in detail from var-
ious perspectives. First, for a given time interval and a given control scenario, the
surrogate model became more and more accurate in estimating simulation results, rep-
resented by a reduction in the variance of the distribution of their difference. Second, for
a given control scenario, the variance of the difference between simulated and approxi-
mated resilience losses increased with time intervals, highlighting the long-lasting effect
of control measures implemented in previous time intervals. In other words, temporally
correlated traffic flows can transmit the effects of control measures across the network
within a certain time period (multiple time intervals). Last but not least, we found that
the distribution variance also increased with the number of controlled links. This finding
is in line with the analysis mentioned above, i.e., excessive controllable links can cause
overfitting and frustration in surrogate approximations.

Additionally, the structure of the proposed surrogate model was examined by a series
of ablation experiments. Results confirmed the necessity of all elements contained in
the surrogate model, including the GPR functional component, the physical component,
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and the scaling factor for addressing systematic bias in the presented dynamic analytical
network model. Moreover, the integration of a transition term in the analytical network
model has also proven to be useful. Namely, the proposed dynamic network model is
capable of capturing the temporal correlation of traffic states in different time intervals,
thereby enhancing the approximation accuracy of the model.
Future research could extend this approach to incorporate budget constraints and

integrate effective dimension reduction techniques to account for the long-lasting effects
of recovery measures while preventing overfitting. Furthermore, exploring the integration
of multiple practical recovery measures, such as traffic signal control, route guidance,
and lane reversal, holds promise for providing comprehensive solutions in the disruption
recovery phase of transportation systems.
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Chapter 10

Conclusions, research findings and future
work

Enhancing the resilience of transportation systems to various disruptions caused by
natural disasters and human activities has emerged as a critical research topic within
transportation engineering and urban studies. Given the pivotal role of transportation
systems in facilitating the movement of people and goods across urban areas, this dis-
sertation aims to investigate transportation system resilience through the lens of traffic
flows. To this end, the concept of traffic resilience is employed and further refined. The
dissertation, drawing insights from relevant literature, identifies three essential modeling
components for comprehensive traffic resilience assessment frameworks: dynamic travel
demand modeling, traffic resilience indicators, and traffic resilience optimization method-
ology. These components are interconnected, with the first two serving as prerequisites
for the latter. Inspired by the conceptual relation diagram delineating the composition
and structure of this framework, the dissertation contributes to the field by conducting
studies that explore suitable data sources, appropriate modeling frameworks, efficient so-
lution algorithms, and realistic scenario designs for each component. More specifically,
the dissertation enriches the body of knowledge on the utilization of opportunistic data
for dynamic demand estimation, introduces traffic resilience indicators based on MFDs,
and proposes simulation-based approaches for traffic resilience optimization. Therefore,
the dissertation can provide all stakeholders with valuable theoretical, methodological,
and practical insights in traffic resilience evaluation and optimization.

10.1 Summary of main research findings

In the following, we present the main research findings extracted from our work specific
to each component separately to offer a concise presentation.

10.1.1 Dynamic demand modeling using opportunistic data

• The dynamic OD estimator proposed in Chapter 4, driven by LBSN data and
grounded on the scenario-based TSSP framework, establishes connections between
inter-zone OD flows and zonal activity flows. Its notable performance in replicat-
ing inter-zone OD matrices underscores the feasibility of deriving OD flows from
activity-level mobility flows and activity chain information.
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• Employing GLS for model performance assessment, the proposed solution algo-
rithm, which integrates GBD and MCMC sampling, demonstrates rapid conver-
gence and yields a robust fit for check-in patterns, zonal production, zonal attrac-
tion, and OD flows.

• The exploration of the objective formulation space suggests that, due to the inter-
dependence of zonal production, zonal attraction, and OD matrix, it is sufficient
to involve two of them in the objective function, whereas the excluded term can
serve as a validation metric for model outputs.

• Since the proposed LBSN-based OD estimator is simulation-free and independent
of network structure, its computational cost is almost the bare minimum and only
depends on the dimension of the OD matrix and the complexity of the graph
models of traffic analysis zones. Therefore, it can effectively address the com-
mon indeterminateness issue faced by conventional traffic measurement-based OD
estimators.

• Crowdsensed data harbor abundant real-time information regarding urban mobil-
ity patterns and are sensitive to system disruptions, holding substantial potential
for basing point-level demand estimation modeling, especially during disruption
periods when conventional data might be unavailable due to infrastructure dam-
age.

• PT demand pattern changes caused by demand disruptions vary across different
PT stations owing to their discrepancy in location, surrounding activity categories,
local population, and daily demand patterns under normal conditions.

• Opportunistic data represent a valuable alternative for complementing, supple-
menting, or potentially replacing conventional survey-based and traffic measure-
ment data in dynamic travel demand estimation up to a certain extent, contingent
upon data quality and coverage levels.

10.1.2 MFD-based traffic resilience indicators

• Demand-side and supply-side disruptions manifest distinct impacts on transporta-
tion systems and influence traffic resilience differently. Supply-side disruptions will
alter the shape of the MFD, often resulting in changes to traffic flow patterns, while
demand-side disruptions, such as traffic congestion, do not affect the MFD shape
but rather contribute to congestion occurrence.

• Traffic resilience indicators derived from MFD dynamics, as proposed in Chapter 6,
are capable of integrating transportation network topology characteristics, traffic
dynamics, and travel demand patterns. Compared to traditional topology-based
and trip-based indicators, as well as prior MFD-based indicators, they exhibit
superior reliability and robustness.
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• Traffic resilience loss can be interpreted as the cumulative number of vehicles
that should have finished their trips within the respective time intervals if the
transportation system/network were operating optimally under normal conditions
(without infrastructure malfunction).

• Grid-like networks demonstrate greater resilience to supply-side disruptions in com-
parison to networks with a central ring structure. This resilience is attributed to
two factors: (i) Grid-like networks offer more route alternatives between OD pairs,
facilitating trip rerouting post-disruption; (ii) The grid structure can ease vehicle
detours.

• Topological attributes can, to a certain extent, explain traffic resilience, with vari-
ations across networks with different topology layouts. Among these attributes,
network connectivity emerges as the most critical factor in ensuring transportation
system resilience to supply disruptions.

10.1.3 Simulation-based traffic resilience optimization

• Surrogate models can integrate the strengths of traffic simulators in estimating
time-dependent traffic dynamics and the superiority of mathematical optimization
in computational efficiency.

• In the physics-informed surrogate model proposed in Chapter 8 for traffic resilience
optimization, the physical component derived from a deterministic analytical net-
work model provides valuable structural information on the relationship between
traffic flow variables. Concurrently, the functional component is effective in mod-
eling the difference between simulated and analytical outputs.

• For a specific recovery strategy scenario, with the number of simulation iterations
increasing, the surrogate model gradually improves its approximation of the traffic
simulator in terms of model outputs.

• Generally, the impact of control measures can last for a relatively longer period
than the duration they are under implementation, representing the need for incor-
porating decision variables from previous time intervals in the fitting process of the
functional component. This enables capturing the influence of control measures
on traffic flow in subsequent time intervals.

• Lane reversal control is an effective and easy-to-implement recovery measure for
improving urban traffic resilience in response to supply disruptions. However,
it is important to strike a balance between the number of controlled links and
model robustness; namely, insufficient controlled links would lead to a compromised
reduction in traffic resilience loss, while excessive controlled links would easily cause
overfitting and a loss of model robustness.
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• Adding a traffic flow transition term to the analytical network model can cap-
ture more temporal correlation between traffic flows across different time intervals,
thereby enhancing the approximation accuracy of the model.

10.2 Limitations and future works

While this dissertation develops various modeling frameworks and solution algorithms for
dynamic demand estimation with opportunistic data, MFD-based traffic resilience indi-
cators, and simulation-based traffic resilience optimization, and consolidates the method-
ological framework for traffic resilience evaluation and optimization, it is important to
acknowledge that there are still some limitations in these studies that warrant further
investigation in future research. Since the limitations of each study have been discussed
in detail in their respective chapters, this section aims to highlight additional aspects
that have not been fully addressed in the dissertation but are crucial for enhancing our
understanding of urban traffic resilience and its practical applications in real operational,
tactical, and strategic scenarios. In the following subsections, we identify and discuss
the limitations of each component and suggest potential future research directions to
address these limitations.

10.2.1 Dynamic demand modeling using opportunistic data

• The inevitable sampling bias exiting in LBSN data due to the higher engagement
of young people in social media compared to other age groups may introduce in-
accuracies and render the estimation results from the proposed LBSN-based OD
estimator unrepresentative. Therefore, a promising avenue for future research is
to devise a calibration method for the scaling factor matrix to ensure that the
scaled estimation results remain accurate, thereby enhancing the practical value
of the LBSN-based OD estimator. Another way around to address this issue is to
integrate the proposed model with an LBSN simulation model. We believe that an
LBSN simulation model calibrated with the observed LBSN data has eliminated
such sampling bias inherent in LBSN data, and therefore can produce reliable sim-
ulation data closing to realistic situations. This challenge is not unique to LBSN
data and is also pertinent to other similar opportunistic data, such as crowdsensed
data. Hence, these two solutions can be extended to address similar issues encoun-
tered with other types of opportunistic data.

• Another apparent limitation of opportunistic data in dynamic demand estima-
tion is the absence of ground truth values, imposing a critical challenge in model
validation. To this end, these models must be linked to another regression model
describing the relationship between opportunistic data observations and other data
sources with ground truth values. For instance, Vongvanich et al. (2023) developed
a stepwise multiple linear regression model to estimate the correlation between the
true PT demand and the busyness rates of the POIs in the station vicinity.
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• While we have presented the potential of opportunistic data for dynamic demand
estimation, combining these data with conventional sources of data like traffic
measurements through data fusion techniques could further strengthen the relia-
bility and robustness of dynamic demand estimation frameworks. Such integrated
frameworks are versatile and applicable across various scenarios, as it is nearly
impossible that all data sources would be unavailable simultaneously.

• Due to the lack of relevant data, we could not examine the performance of the
proposed models in the context of supply disruptions. As a result, it would also
be interesting to collect some opportunistic data during transportation supply
disruptions and test our models in such scenarios.

10.2.2 MFD-based traffic resilience indicators

• The interplay between a supply-side disruption and the induced emergency demand
it creates often leads to mixed disruption scenarios. While this dissertation has
provided a method to assess traffic resilience loss under such scenarios, no exper-
iments have been conducted to analyze their resilience loss patterns and compare
them with scenarios involving a single type of disruption. Therefore, an interesting
direction for future studies would be to design plausible combinations of disrup-
tions and explore the unique characteristics of traffic resilience under these mixed
disruption scenarios.

• In the dissertation, our analyses of traffic resilience are based on traffic simula-
tion results, which can provide useful insights into the practical application of the
concept of traffic resilience. However, it is equally crucial to deduce some funda-
mental physical properties of traffic resilience for transportation systems with dif-
ferent MFD curves, such as parabola-shaped MFDs versus triangle-shaped MFDs,
through analytical modeling, as demonstrated by Gao et al. (2022) in their phase
diagram analysis. To achieve this, developing smooth approximations to the pro-
posed non-smooth indicators would be beneficial.

• The regression analysis performed in Chapter 7 is limited to two specific types
of network topology due to data constraints. Future research endeavors can en-
compass more categories of network structures present in various cities around the
world to explore the potential existence of a general principle relationship between
traffic resilience and network topology. To accomplish this, a key challenge is the
creation of reliable synthetic network generation models, with the difficulty lies in
creating reasonable OD demand matrices for comparative analysis. The prospect
of such a model is promising, given its helpfulness in the design of resilient trans-
portation networks.

• In Chapter 5, we developed a framework to estimate PT demand pattern changes
contributed by demand disruptions. However, private cars and PT are not dis-
tinguished in the development of MFD-based indicators for simplicity. While this
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simplification was practical, enhancing the definition of urban traffic resilience and
its indicators would benefit from considering the context of multimodal transporta-
tion systems. For instance, adopting the 3D-MFD proposed in Loder et al. (2017)
could replace the MFD specifically for private cars, thus providing a more nuanced
understanding of system dynamics in mixed traffic environments.

10.2.3 Simulation-based traffic resilience optimization

• Although the analytical network model developed in Chapter 8 is sufficiently effi-
cient compared with traffic simulations, more efforts can still be directed towards
simplifying its model structure and improving its implementation in programming
languages to reduce its computational cost even further.

• For simplicity, in Chapter 9, we formulated a recovery measure optimization prob-
lem with a personnel constraint, namely, a limitation on the number of controllable
links. However, acknowledging that real-world implementations may entail addi-
tional constraints such as financial limitations, future research could extend the
proposed model to incorporate these constraints. Given the increased complexity,
novel efficient algorithms would be necessary.

• In the experiments detailed in Chapter 9, we discarded control variables from
previous time intervals when fitting the functional component for traffic resilience
loss within the current interval, though recognizing the long-lasting effects of these
variables. This treatment prevents overfitting, which on the other hand, sacrifices
some accuracy. Thus, applying appropriate dimension reduction techniques to
the set of control variables for all time intervals might be useful to address this
problem.

• Another interesting direction for future research is to explore the efficacy of com-
binations of different types of recovery measures in addition to the lane reversal
control considered in our study. Examples include traffic signal control, route
guidance, and additional lane reversal strategies.

• Beyond localized link closures associated with supply disruptions, it would be valu-
able to evaluate our approaches in other disruption scenarios such as network-wide
flooding. The broader examination would enhance the robustness and applicability
of the methods presented herein.

• In addition to recovery measures, which have an effect on the recovery phase of
the disruption, preparedness measures are also critical to the capability of trans-
portation systems to withstand various disruptions. One popular research topic
in preparedness optimization lies in Road Network Design Problems (RNDPs). In
contrast to traditional methods relying on bi-level optimization frameworks cou-
pled with analytical UE constraints, future research can be conducted to explore
the application of traffic simulation in addressing this problem at strategic, tactical,
and operational decision levels (Farahani et al., 2013).
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V., Omrane, K., Kamissoko, D., Benaben, F., et al. (2023). Indicator-based resilience
assessment for critical infrastructures–a review. Safety Science, 160:106049.

Yao, K. and Chen, S. (2023). Percolation-based resilience modeling and active intervention of
disrupted urban traffic network during a snowstorm. Journal of Transportation Engineering,
Part A: Systems, 149(5):04023027.

156



BIBLIOGRAPHY

Yin, J., Ren, X., Liu, R., Tang, T., and Su, S. (2022). Quantitative analysis for resilience-
based urban rail systems: A hybrid knowledge-based and data-driven approach. Reliability
Engineering & System Safety, 219:108183.

Yin, K., Wu, J., Wang, W., Lee, D.-H., and Wei, Y. (2023). An integrated resilience assessment
model of urban transportation network: A case study of 40 cities in China. Transportation
Research Part A: Policy and Practice, 173:103687.

Yoon, S., Kim, J., Kim, M., Tak, H.-Y., and Lee, Y.-J. (2020). Accelerated system-level seismic
risk assessment of bridge transportation networks through artificial neural network-based
surrogate model. Applied Sciences, 10(18):6476.

Zeng, G., Li, D., Guo, S., Gao, L., Gao, Z., Stanley, H. E., and Havlin, S. (2019). Switch between
critical percolation modes in city traffic dynamics. Proceedings of the National Academy of
Sciences, 116(1):23–28.

Zhang, M., Yang, X., Zhang, J., and Li, G. (2022a). Post-earthquake resilience optimization
of a rural “road-bridge” transportation network system. Reliability Engineering & System
Safety, 225:108570.

Zhang, N. and Alipour, A. (2020). Two-stage model for optimized mitigation and recovery of
bridge network with final goal of resilience. Transportation Research Record, 2674(10):114–
123.

Zhang, N. and Alipour, A. (2023). A stochastic programming approach to enhance the resilience
of infrastructure under weather-related risk. Computer-Aided Civil and Infrastructure En-
gineering, 38(4):411–432.

Zhang, W., Dong, H., Wen, J., and Han, Q. (2023a). A resilience-based decision framework for
post-earthquake restoration of bridge networks under uncertainty. Structure and Infras-
tructure Engineering, pages 1–16.

Zhang, W., Wang, N., and Nicholson, C. (2017). Resilience-based post-disaster recovery strategies
for road-bridge networks. Structure and Infrastructure Engineering, 13(11):1404–1413.

Zhang, X., Mahadevan, S., and Goebel, K. (2019). Network reconfiguration for increasing trans-
portation system resilience under extreme events. Risk Analysis, 39(9):2054–2075.

Zhang, X., Miller-Hooks, E., and Denny, K. (2015). Assessing the role of network topology in
transportation network resilience. Journal of Transport Geography, 46:35–45.

Zhang, Y., Zheng, S., and Chen, Y. (2023b). Identification of key nodes in comprehensive
transportation network: A case study in Beijing-Tianjin-Hebei urban agglomeration, China.
Transportation Research Record, page 03611981231192994.

Zhang, Z., Ji, T., and Wei, H.-H. (2022b). Dynamic emergency inspection routing and restora-
tion scheduling to enhance the post-earthquake resilience of a highway–bridge network.
Reliability Engineering & System Safety, 220:108282.

Zhang, Z., Ji, T., and Wei, H.-H. (2023c). Assessment of post-earthquake resilience of highway–
bridge networks by considering downtime due to interaction of parallel restoration actions.
Structure and Infrastructure Engineering, 19(5):589–605.

Zhao, J., Ma, W., Liu, Y., and Yang, X. (2014). Integrated design and operation of urban
arterials with reversible lanes. Transportmetrica B: Transport Dynamics, 2(2):130–150.

Zhao, T. and Zhang, Y. (2020). Transportation infrastructure restoration optimization consid-
ering mobility and accessibility in resilience measures. Transportation Research Part C:
Emerging Technologies, 117:102700.

Zhong, R., Chen, C., Huang, Y., Sumalee, A., Lam, W., and Xu, D. (2018). Robust perimeter
control for two urban regions with macroscopic fundamental diagrams: A control-lyapunov
function approach. Transportation Research Part B: Methodological, 117:687–707.

157



BIBLIOGRAPHY

Zhou, T., Fields, E., and Osorio, C. (2023). A data-driven discrete simulation-based optimization
algorithm for car-sharing service design. Transportation Research Part B: Methodological,
178:102818.
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