Analysis of legacy and VGOS Intensives at IVS AC DGFI-TUM

Matthias Glomsda, Manuela Seitz, Detlef Angermann

Deutsches Geodätisches Forschungsinstitut,

Technische Universität München (DGFI-TUM)

13th IVS General Meeting & 25th Anniversary Session 4

Tsukuba, Japan March 6, 2024

Considered session types and properties

> Two (mostly) simultaneous Intensive sessions available per day, one each in legacy and VGOS mode:

type	mode	code	observation time [UTC]	most frequent station networks / baselines
IVS-INT-1	legacy	i (XU)	Mon-Fri 18:30 (before 10/23) 17:30 (since 10/23)	KOKEE, WETTZELL (~81%) KOKEE, WETTZELL, SVETLOE (~5%) MK-VLBA, WETTZELL (~4%)
IVS-INT-2	legacy	q (XK)	Sat-Sun 07:30	MK-VLBA, WETTZELL (~57%) MK-VLBA, WETTZELL, ISHIOKA (~19%) KOKEE, WETTZELL and WETTZELL, ISHIOKA (~11%)
VGOS-INT-A	VGOS	v (VI)	Mon-Fri 18:30 (before 10/23) 17:30 (since 10/23)	KOKEE12M, WETTZ13S (~83%) KOKEE12M, ONSA13NE (~11%)
VGOS-INT-B	VGOS	b (VB)	Sat-Sun 07:30 (03/22-09/23) 05:30 (since 10/23)	ISHIOKA, ONSA13NE, ONSA13SW (~65%) ISHIOKA, ONSA13NE (~22%) ISHIOKA, ONSA13SW (~13%)

Our data sample: all corresponding sessions between 2020.0 and 2024.0 (percentages above refer to this period). Other Intensive series, mostly on single weekdays, are ignored.

Considered session types and properties

- Other occasionally involved stations: SVETLOE (IVS-INT-1); NYALE13S, NYALES20, SESHAN25 (IVS-INT-1 and IVS-INT-2); GGAO12M, MACGO12M (VGOS-INT-A).
- > Usually, more observations per baseline in VGOS Intensives (faster-slewing broadband antennas).
- > VGOS-INT-B with 3 baselines: the most observations in general, but only observing regularly since 2022.

Analysis setup

- Radio Interferometry component of DGFI Orbit and Geodetic parameter estimation Software (DOGS-RI) applied.
- > Estimated parameters in our **1h Intensives**:
 - constant DUT1
 - the quadratic clock offset (3 parameters per station) w.r.t. the reference station clock
 - a single zenith wet delay per station
- Station positions, quasar coordinates, and remaining Earth orientation parameters (EOP) fixed to ITRF2020 (incl. post-seismic deformation, excl. signals), ICRF3, and IERS 20 C04, respectively.
- In our 24h sessions:
 - all above parameters estimated (NNT/NNR w.r.t. a priori values).
 - linear DUT1 (offset plus drift)
 - above reference frames and EOP series used as a priori values.
 - piecewise-linear tropospheric parameters estimated (zenith delay: 1/h legacy, 4/h VGOS; gradients: 4/d legacy, 1/h VGOS).

Internal results: DUT1 and formal errors

- > Figures: DUT1 corrections to a priori IERS 20 C04 with (formal) error bars separated by Intensive session type.
- Formal errors generally largest for INT-1 (legacy) and smallest for INT-B (VGOS).
- Better precision for DUT1 in INT-2:
 - MK-VLBA has larger sensitivity than KOKEE, enabling more observations.
 - improved scheduling since mid-2020 (both Schartner et al., 2022).
- Outliers: formal error > 40 μs,
 or |ΔDUT1| > 120 μs.

Internal results: comparison with 24h sessions (dgf2023a)

Intensives: legacy vs. VGOS

- weighted mean offset of about 13 µs, larger than mean formal error for VGOS
- formal errors larger for legacy (fewer observations, less precise measurements)

Legacy: Intensives vs. 24h sessions

- R1/R4 sessions only
- no significant offset in DUT1
- formal errors do not differ systematically (remember different DUT1 parameterization)

VGOS: Intensives vs. 24h sessions

- no significant offset
- largest (W)RMS, but scarce data
- formal errors of 24h sessions mostly smaller?

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Comparison with other ACs: legacy Intensives

- Data taken from .eopi files at CDDIS.
- About -13 µs offsets w.r.t. GSFC and USNO, annual signal w.r.t. BKG and GSFC.
- Formal errors similar, smallest for TU Vienna.

Comparison with other ACs: VGOS Intensives

- > No VGOS results for USNO in .eopi file.
- Increased offset of about -18 μs w.r.t. GSFC, clear annual signal w.r.t. BKG and GSFC, but none w.r.t. TU Vienna.
- Formal errors of GSFC generally larger.

Impact of a priori antenna positions

- bkg2023a, vie2023a and dgf2023a use ITRF2020 (excl. signals) for a priori positions, usn2023c and gsf2023a use own global solutions.
- Baseline dependent offset in DUT1 when changing the a priori TRF (compare Dieck & Johnson, 2023), e.g., in our solution:

Derivatives \u03c8 DUT1/\u03c8\u03c7 from Nothnagel & Schnell (2008) provide similar offsets, e.g., for November 2022 (however, the authors expect much more scatter for WETTZELL KOKEE and WETTZELL MK-VLBA):

baseline	WETTZELL ISHIOKA	WETTZELL KOKEE	WETTZELL MK-VLBA
∆ <i>DUT</i> 1	-36.13 μs	-11.13 μs	-9.80 µs

Impact of celestial pole offsets (CPOs)

- Annual signal in differences explained by application of CPOs, i.e., corrections
 ΔX, ΔY to precession-nutation model (compare Malkin, 2011; Dieck, 2023).
- GSFC and BKG do not apply precessionnutation corrections.
- Impact on DUT1 depends on sidereal time (Nothnagel & Schnell, 2008), Intensive sessions start at different solar times: hence, annual signals with phase lags.
- Curious: phase shift much more pronounced for legacy sessions, and not observed by Malkin (2011).

ТШ

Differences w.r.t. combined DUT1 series (2020.0 – 2024.0)

IERS 20 C04 vs.	legacy wmean [µs]	legacy WRMS [µs]	VGOS wmean [µs]	VGOS WRMS [µs]
gsf2023a	-22.0	32.6	-17.2	30.4
usn2023c	-21.7	31.4	-	-
bkg2023a	-9.8	34.8	-3.1	31.7
vie2023a	-13.2	33.3	-7.6	31.7
dgf2023a	-8.7	30.4	-2.8	28.3
ESA EOPs vs.	legacy wmean [µs]	legacy WRMS [µs]	VGOS wmean [µs]	VGOS WRMS [µs]
gsf2023a	-17.1	21.0	-14.5	22.3
usn2023c	-16.1	18.9	-	-
bkg2023a	-4.6	22.2	4.3	18.2
vie2023a	-6.9	20.8	0.3	19.1
dgf2023a	-3.6	20.7	4.1	19.2
USNO finals 2000A vs.	legacy wmean [µs]	legacy WRMS [µs]	VGOS wmean [µs]	VGOS WRMS [µs]
gsf2023a	-16.6	20.8	-13.5	20.4
usn2023c	-16.2	18.9	-	-
bkg2023a	-4.4	21.5	4.8	18.8
vie2023a	-6.1	20.6	1.1	19.3
dgf2023a	-3.3	20.7	3.2	18.1

> WRMS errors similar across ACs and observation modes, again (additional) offset for gsf2023a and usn2023c.

Conclusions

- > DUT1 results and formal errors of dgf2023a Intensives generally match those of other ACs.
- Weighted) mean offsets in DUT1 between ACs can be explained with different a priori antenna positions.
- > Annual signals in DUT1 differences are created by omission of precession-nutation corrections.
- dgf2023a reveals (weighted) mean offset of about 13 µs between DUT1 from legacy and VGOS Intensives.
- > Relation of DUT1 precisions between (legacy and VGOS) Intensive series quite as expected.
- Baseline geometry and session time relevant for (differences in) results.

Acknowledgements

We thank Karen Baver (GSFC), Chris Dieck (USNO), Sigrid Böhm (TU Vienna), and Anastasiia Walenta (BKG) for providing and helping us understand their Intensives data.

References

- C. Dieck and M. Johnson [2023]: A new the Wiggle in the Wobble? Proceedings of the IVS GM 2022
- C. Dieck [2023]: Eliminating the Wiggle in the Wobble Presentation at EVGA WM 2023
- Z.M. Malkin [2011]: The impact of celestial pole offset modelling on VLBI UT1 intensive results Journal of Geodesy
- A. Nothnagel and D. Schnell [2008]: The impact of errors in polar motion and nutation on UT1 determinations from VLBI Intensive observations Journal of Geodesy
- M. Schartner et al. [2022]: Improvements and comparison of VLBI INT2 and INT3 session performance Journal of Geodesy

THANK YOU FOR YOUR ATTENTION!

ARE THERE ANY QUESTIONS?

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München