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Abstract

Fetal neurodevelopment is a complex and tightly controlled process where disruptions can
affect postnatal health. Single-cell transcriptomic technologies have enabled the detailed
molecular characterisation of such dynamic developmental processes over the past years. The
curation of single-cell transcriptomics data into harmonised cellular reference atlases has
further unveiled the diversity of cellular states in the human brain. While the quantity of
single-cell transcriptomics datasets has been growing continuously, data curation remains
a laborious and largely manual task. Neural organoids have emerged as powerful three-
dimensional models of human neurodevelopment, recapitulating the intricate interplay of
different cellular states and fate transitions to generate complex neural tissue landscapes
in vitro. Despite the potential and the increasing adoption of organoids as model systems,
a comprehensive neural organoid reference is lacking to evaluate their shortcomings and
strengths. A reference of this kind could additionally serve as the starting point for gaining
deeper insights into human neurodevelopment. An in-depth understanding of human-specific
neurodevelopmental processes forms the foundation for studying the onset and development
of many psychiatric and neurodevelopmental disorders and ultimately developing novel
treatments. While genetic risk factors for these diseases have been widely studied, the
mechanisms underlying the effects of environmental risk factors are still poorly understood.

I address the abovementioned challenges through three interconnected contributions in
this thesis. First, I develop a data curation tool for more efficient construction of cellular
reference atlases. Second, using this tool, I construct a neural organoid reference atlas to
uncover the current limitations of this model system and ease contextualising new organoid
datasets from health and disease. Last, using the organoid atlas as a reference, I analyse the
effects of glucocorticoid (GC) exposure on brain development in organoids to improve our
understanding of the environment’s impact on brain development and disease.

My first contribution introduces a data and model zoo called sfaira. It facilitates the large-scale
curation and reuse of single-cell genomics data and enables their automated analysis with pre-
trained end-to-end models. The sfaira software provides an easily extendable and structured
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Abstract

collection of single-cell transcriptomic datasets using controlled metadata vocabularies and
an interactive interface for streamlined data curation. These curation functionalities of sfaira
greatly facilitated the collection and streamlining of the datasets for the Human Neural
Organoid Cell Atlas (HNOCA), the second contribution of this thesis. The HNOCA is
a large-scale integrated reference atlas that captures the cellular diversity from 36 neural
organoid datasets based on 26 differentiation protocols. In a comparison with fetal brain
data, the HNOCA provides insight into cellular states under-represented in neural organoids,
highlights systematic transcriptomic differences between organoids and primary tissue and
quantifies the transcriptomic fidelity of different organoid cell types. I showcase the value
of using the HNOCA as a reference dataset for evaluating novel organoid differentiation
protocols and contextualising a new organoid dataset, modelling the effects of environmental
risk for psychiatric diseases on neurodevelopment, the third contribution of this thesis. In
this dataset, I use synthetic glucocorticoids (sGCs), a commonly prescribed type of drug
in pregnancies at risk for preterm birth, as an example of a widely encountered prenatal
environmental risk factor for psychiatric disease. I find that chronic GC exposure in organoids
affects the transcription of critical neurodevelopmental genes and predominantly primes
the development of the inhibitory neuron lineage, resulting in an increased abundance of
inhibitory neurons. I identify PBX3 as a possible mediator of the GC-induced lineage priming
effect.

The work presented in this thesis advances the state of the art in single-cell genomics data
infrastructure, improves our understanding of neural organoids as a model system, and
provides insight into the molecular mechanisms mediating the effects of environmental
disease risk on human brain development. Altogether, this work underscores the power of
integrating large-scale single-cell transcriptomics data and neural organoid technologies to
unravel the complexities of neurodevelopmental processes and their disruption in disease.
It paves the way towards improved disease modelling in organoids, with the potential to
support novel therapeutic strategies in psychiatry and beyond.
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Zusammenfassung

Die pränatale Gehirnentwicklung ist ein komplexer und präzise gesteuerter Prozess, dessen
Störung die spätere Gesundheit beeinträchtigen kann. Einzelzell-Transkriptomik-Technologien
haben in den letzten Jahren eine detaillierte molekulare Charakterisierung solcher dy-
namischer Entwicklungsprozesse zugänglich gemacht. Harmonisierte Referenzatlanten aus
Einzelzell-Transkriptomdaten ermöglichen es, die zelluläre Vielfalt des menschlichen Gehirns
zu erfassen. Während die Menge der Einzelzell-Transkriptomik-Datensätze kontinuier-
lich zunimmt, bleibt die Kuratierung der Daten eine mühsame und weitgehend manuelle
Aufgabe. Neurale Organoide haben das Potenzial, wirkungsvolle dreidimensionale Modelle
der menschlichen Gehirnentwicklung zu sein. Sie bilden das vielschichtige Zusammen-
spiel verschiedener Zellzustände und Entwicklungsstadien ab und generieren komplexe
neurale Gewebelandschaften. Trotz dieses Potenzials und der zunehmenden Verbreitung von
Organoidmodellen fehlt ein umfassender Referenz-Datensatz, welcher deren Defizite und
Stärken aufzeigt und weiterhin einen tieferen Einblick in die menschliche Gehirnentwicklung
geben könnte. Ein tiefgehendes Verständnis der zugrunde liegenden neurobiologischen
Prozesse ist wiederum entscheidend für die Entwicklung neuer Therapien psychiatrischer
Erkrankungen und neurologischer Entwicklungsstörungen. Während die genetischen Risiko-
faktoren für diese Krankheiten bereits Gegenstand vieler Untersuchungen sind, ist unser
Verständnis der Wirkmechanismen umweltbedingter Risikofaktoren ungleich geringer.

In dieser Arbeit adressiere ich die oben beschriebenen Forschungslücken durch drei in-
einandergreifende Beiträge. Erstens entwickle ich ein Werkzeug zur Datenkuratierung,
das eine effizientere Erstellung von zellulären Referenzatlanten ermöglicht. Zweitens ver-
wende ich dieses Werkzeug zur Konstruktion eines neuralen Organoid-Referenzatlas. Dieser
hilft einerseits, derzeitige Grenzen des Modellsystems aufzuzeigen und andererseits neue
Organoid-Datensätze in Kontext zu setzen. Drittens nutze ich diesen Atlas als Referenz, um
in einem weiteren Experiment den Effekt von Glukokortikoiden auf die Gehirnentwicklung in
Organoiden zu analysieren. Dadurch trage ich zu einem besseren Verständnis der Wirkungs-
mechanismen bei, welche den umweltbedingten Risiken für psychiatrische Erkrankungen
zugrunde liegen.
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Zusammenfassung

In meinem ersten Beitrag stelle ich die eigens entwickelte Daten- und Modellbibliothek
sfaira vor. Sie unterstützt die automatisierte Datenanalyse mit zuvor trainierten End-to-
End-Modellen. Weiterhin ermöglicht sfaira es, umfangreiche Einzelzell-Genomikdaten zu
kuratieren und somit wiederverwendbar zu machen. Die sfaira Software bietet eine leicht
erweiterbare strukturierte Datenbank mit definierten Metadatenvokabularen für Einzelzell-
Transkriptomdaten sowie eine interaktive Schnittstelle für eine effiziente Datenkuratierung.
Diese Kuratierungsfunktionen erleichterten es erheblich, die Datensätze für den HNOCA,
den zweiten Beitrag dieser Arbeit, zusammenzustellen. Der HNOCA ist ein umfassender
integrierter Referenzatlas, der die zelluläre Vielfalt von 36 neuralen Organoid-Datensätzen
auf der Grundlage von 26 Differenzierungsprotokollen erfasst. Durch den direkten Vergleich
mit fetalen Gehirndaten gibt der HNOCA Einblick in zelluläre Zustände, die in neuralen
Organoiden aktuell noch nicht ausreichend repräsentiert sind. Weiterhin hebt der Vergleich
systematische transkriptomische Unterschiede zwischen Organoiden und Primärgewebe her-
vor und quantifiziert die transkriptomische Güte der verschiedenen Organoid-Zelltypen. Ich
demonstriere den Nutzen der Verwendung des HNOCA als Referenz-Datensatz, um neuart-
ige Organoiddifferenzierungsprotokolle zu bewerten. Analog verwende ich den HNOCA,
um einen neuen Organoid-Datensatz zu kontextualisieren, welcher die Auswirkungen um-
weltbedingter Risiken für psychiatrische Erkrankungen auf die Neuroentwicklung mod-
elliert. In dieser Modellierung, dem dritten Beitrag dieser Arbeit, verwende ich synthet-
ische Glukokortikoide, ein häufig verschriebenes Medikament in Schwangerschaften mit
Frühgeburtsrisiko, als Beispiel für einen weitverbreiteten pränatalen Umweltrisikofaktor für
psychiatrische Erkrankungen. Ich zeige, dass eine chronische Glukokortikoid-Exposition
in Organoiden die Transkription wichtiger neurologischer Entwicklungsgene beeinflusst.
Außerdem fördert diese überwiegend die Entwicklung inhibitorischer Nervenzellen, was
wiederum zu einer erhöhten Anzahl selbiger Zellen führt. Ich identifiziere das Gen PBX3 als
einen möglichen Vermittler dieses Glukokortikoid-induzierten selektierenden Effekts.

Zusammenfassend entwickelt die hier vorgestellte Arbeit die verfügbare Infrastruktur für
Einzelzell-Genomikdaten weiter, verbessert unser Verständnis neuraler Organoide als Mod-
ellsystem und gibt Einblick in die molekularen Wirkmechanismen umweltbedingter Risiko-
faktoren auf die menschliche Gehirnentwicklung. Somit unterstreicht diese Arbeit die
Bedeutung der Zusammenführung umfangreicher Einzelzell-Transkriptomdaten und neuraler
Organoid-Technologien, um die Komplexität neurologischer Entwicklungsprozesse und deren
Störung durch Krankheiten zu entschlüsseln. Sie ebnet den Weg für eine verbesserte organoid-
basierte Krankheitsmodellierung mit dem Potenzial, neue therapeutische Strategien in der
Psychiatrie und darüber hinaus zu ermöglichen.
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1. Introduction

Understanding the development of the human brain, with its immense complexity, remains a
prominent challenge in biomedical research. Studying the intricate mechanisms of neurodevel-
opment and how aberrations can lead to disease requires sophisticated models and finely
resolved cellular profiling approaches. In this thesis, I aim to bridge this gap by using
single-cell genomics technologies to deepen our understanding of neural organoids as models
of the developing brain and to investigate the impact of an environmental risk factor for
psychiatric disease on neurodevelopment.

I structure this introduction into four parts. First, I provide an overview of single-cell
transcriptomics data generation, their computational analysis and curation into large-scale
cellular atlases. Next, I introduce neural organoid models of human neurodevelopment and
explore recent related single-cell ribonucleic acid sequencing (scRNA-seq) studies. I then
describe how the environment can impact human brain development and touch upon GC
exposure as an example of an early-life environmental challenge. I consequently introduce
in vitro models of the developing brain that could be employed to study the effect of such
environmental challenges. Lastly, I summarise the main research questions addressed by this
thesis and outline my specific scientific contributions.

1.1. Single-cell transcriptomics

As the fundamental unit of all living organisms, every cell performs specific roles that
contribute to an organism’s overall functioning. The disruption of cellular processes can
lead to illnesses, highlighting the importance of cellular studies in understanding health and
disease. For example, over 100 genes can affect the risk for autism spectum disorder (ASD)
by impairing critical neurodevelopmental pathways when disrupted [1]. In another example,
lissencephaly, disruptions in one of only a few relevant genes can lead to severely altered
brain structure due to malfunctioning cellular pathways underlying neuronal migration [2].

1



1. Introduction

Cells are categorised into two types: prokaryotic and eukaryotic. While prokaryotic cells are
the building blocks of bacteria and archaea, eukaryotic cells comprise all animals, plants,
and fungi. Unlike prokaryotic cells, eukaryotic cells contain a nucleus beside their various
organelles, concentrating the cell’s genetic material, the DNA. In protein biosynthesis, genetic
information stored in the nucleus is transcribed into messenger RNA (mRNA) and sub-
sequently translated into proteins. Proteins are essential for most cellular functions, and cells
continuously synthesise and degrade them to adapt their function to the specific requirements
of their current environment and state. Quantifying the amount of mRNA per gene present
in a cell can, therefore, inform about a cell’s current identity and function.

The first approaches to quantifying mRNA molecules from individual cells and selected
genes used, for example, single-cell quantitative polymerase chain reaction (PCR) [3, 4] or
manual dissection of fixed tissues combined with reverse northern blotting [5] and were later
followed by first micro-fluidic devices [6, 7]. In 2009, sequencing technologies enabled the
first successful whole-transcriptome scRNA-seq study of seven individual murine primordial
germ cells [8].

1.1.1. Single-cell transcriptomics technologies

Since 2009, technological advances have allowed for a dramatic scaling of scRNA-seq experi-
ments, recently reaching three to four million cells per study [9, 10]. Despite these tremendous
improvements in scale, a sizeable fraction of each mRNA quantification protocol is identical
across approaches [11]. In the first step, as many mRNA molecules in a cell as possible are
converted to complementary DNA (cDNA) via reverse transcription, followed by synthesis of
the second strand. Next, the cDNA is amplified by either PCR [12] or in vitro transcription [3,
13]. In the tagmentation step, adapters essential for downstream sequencing are integrated,
thus completing the single-cell library generation process (Fig. 1.1).

A critical differentiation among generated libraries is between full-length and tag-based ap-
proaches. Full-length protocols capture entire mRNA transcripts, enabling in-depth analyses
such as alternative splicing and allele-specific expression [14]. In contrast, tag-based methods
selectively target the mRNA’s 3′ or 5′ ends. This is achieved by targeting the mRNA using
oligo-dT primers for the 3′ end, which bind to the poly-A tail of the polyadenylated mRNA,
or specific primers for the 5′ end, which bind to the capped start of the transcript. While
tag-based methods do not allow for in-depth analyses such as isoform detection and hinder
unambiguous mapping to the genome [15], they offer higher throughput and cost efficiency.
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Importantly, tag-based protocols also enable the use of unique molecular identifiers (UMIs).
These short nucleotide sequences are added to the cDNA before the amplification step,
serving as a unique label for each transcript [16]. Using UMIs in single-cell protocols mainly
helps to combat amplification bias, where specific sequences are preferentially duplicated in
the amplification step [17], but also improves the accuracy of downstream data normalisation
[18]. While the use of UMIs and capturing full-length transcripts were initially mutually
exclusive, several newer approaches have been developed to accommodate both features [19,
20].

Beyond the distinction between full-length and tag-based scRNA-seq protocols, cell separation
is the main differentiating factor between the different approaches to constructing a single-
cell library. The commercial Fluidigm C1 platform, which uses a microfluidic chip for
cell separation, has been employed together with some of the early protocols, including
CEL-seq2 [21] and Smart-seq version 1 [22]. The most commonly used protocols nowadays
are either based on microwell plates, where each cell is placed into a separate well, or
microfluidic droplet techniques, primarily using water droplets suspended in oil as reaction
chambers. Examples of plate-based protocols include MARS-seq [23], the commercial ICELL8
solution [24], Smart-seq2 [25], and Smart-seq3 [20]. Droplet-based protocols include, for
example, inDrop [26], Drop-seq [27], and 10x Chromium [28], a prevalent commercial platform
supporting a large number of scRNA-seq experiments at the time of writing this thesis. In
addition to these approaches, split-pool barcoding protocols such as sci-RNA-seq3 [29] have
recently allowed for cost-efficient scaling of scRNA-seq experiments to up to four million
cells [9].

Over the past years, single-cell transcriptomics has become a ubiquitous approach in bio-
medical research. It could be considered a successor to bulk RNA sequencing as it offers
cell- instead of sample-level resolution and enables, for example, unbiased detection of cell
identities and previously unavailable insights into cellular heterogeneity [30]. It should be
noted, however, that bulk RNA sequencing is still the preferred method in situations where
cellular heterogeneity is not the focus of the study and reduced noise levels are required as
bulk readouts are generally less prone to noise given that they can be considered an average
over many cells [31].
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Figure 1.1.: Single-cell transcriptomics protocols. Selected protocols and their constituent
steps used for scRNA-seq library preparation. The data presented in this thesis is
mostly generated using the 10x Genomics Chromium platform, which is similar
to the Drop-seq protocol, and the Smart-seq2 protocol for full-length transcript
capture. IVT, in vitro transcription. UMI, unique molecular identifier. Reproduced
from [32] with permission from Elsevier.

1.1.2. Computational analysis of single-cell transcriptomics data

The quantitative analysis of single-cell transcriptomics data is generally based on a cell-
by-gene count matrix. Each entry represents the count of mRNA detections for a specific
gene in a particular cell. A count matrix is obtained by demultiplexing the raw sequencing
output, aligning sequencing reads to a reference genome or transcriptome, and quantifying
the number of reads mapping to each gene in a cell-specific manner via the cell barcodes.
Pipeline tools such as the 10x Genomics Cell Ranger software [28], STARsolo [33], or
kallisto | bustools [34] efficiently automate these steps in a user-friendly manner.

Analysing scRNA-seq data requires specialised tools due to its high dimensionality, scale,
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and complexity. While the most-used analysis tools in Python (scanpy [35]) and R (Seurat

[36]) have been cited many thousand times (see https://www.scrna-tools.org/table),
there are now over 1000 individual computational tools available, addressing all aspects
of scRNA-seq analysis [37]. This proliferation partly reflects the complexity and diversity
of the data and the studied biological questions but is also a result of multiple competing
tools being developed for individual applications. This has created a need for structured
benchmark studies, evaluating the performance and suitability of competing tools for a given
task. Heumos and Schaar [38] offer an overview of the latest benchmarking results across
tasks and derive a comprehensive list of current best-practise recommendations in single-cell
genomics data analysis.

The abovementioned tools, scanpy and Seurat, are prominent representatives of pipeline-
based analysis tools for scRNA-seq data. These pipelines typically encompass several steps:
quality control (QC) to remove low-quality samples, normalisation to adjust for cell size
and sequencing depth, feature selection to reduce noise, batch correction to mitigate effects
from different sample origins and technical confounders, and dimensionality reduction to
simplify data complexity while retaining essential information (Fig. 1.2a). [39]. While such a
structured approach offers excellent flexibility and is widely adopted in the community, it
requires careful tuning at each step to ensure optimal results and is not readily transferred to
new datasets.

Downstream analysis steps generally focus on identifying cellular structure and attributing
variance in the data to biological mechanisms. Cellular structure is mainly determined by
grouping cells with similar transcriptomic profiles into clusters and using known marker
genes to assign each cluster a cell type label (Fig. 1.2b). Depending on the biological question,
attributing variance to biological mechanisms can take multiple forms. A common question
is on the cell type-specific differences in gene expression between two groups of cells, such as
treatment and control cells (differential expression (DE) analysis). The identified significant
differentially expressed genes (DEGs) are often functionally annotated by statistically testing
for enrichment of known functional gene sets (gene set enrichment). Testing for differences
in composition, for example, between donors or treatment groups, evaluating covarying
transcriptional changes between samples (cell-cell communication) or genes (gene regulatory
network (GRN) inference), or predicting transcriptional effects of unseen perturbations
(perturbation modelling) are other commonly applied downstream analyses (Fig. 1.2c) [38].

Autoencoder (AE)-based analysis approaches, such as scVI [40] or DCA [41], replace parts
of the manual preprocessing and feature selection steps in scRNA-seq data analysis. These
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Figure 1.2.: Example single-cell transcriptomics analysis pipeline. a. Common prepro-
cessing and batch correction steps of a scRNA-seq analysis pipeline. b. Typical
components of cellular structure identification in scRNA-seq downstream analysis.
c. Selected approaches for mechanistic interpretation and functional annotation
of scRNA-seq data. Reproduced from [38] with permission from Springer Nature.
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methods produce a low-dimensional latent representation directly from the raw transcript
counts while implicitly performing preprocessing tasks, including normalisation, feature
selection, and batch correction. While some (variational) AE-based approaches additionally
offer certain downstream analysis functionality (for example, DE analysis in scVI [40]), many
common downstream steps, such as cell type identification, DE analysis, or compositional
analyses, are generally carried out in the same manual way as described above for pipeline
approaches (Fig. 1.2c).

Notably, unlike pipeline approaches, parametric AE models can be, by design, distributed
pre-trained on extensive datasets, facilitating the analysis of novel data. This has been
widely adopted through the query-to-reference mapping paradigm. This powerful approach
allows mapping novel datasets onto existing reference datasets for their analysis [42]. As
such, query-to-reference mapping enables the rapid contextualisation of new data against a
backdrop of well-characterised cell types or states, providing a framework for interpretation
and discovery. Recently, foundational models have been suggested [43] [44] as a new concept
in single-cell genomics data analysis. These large, usually transformer-based models are
pre-trained on transcriptional data from tens of millions of cells and can be applied to many
tasks by fine-tuning on small datasets, similar to how current large language models are
operated [45].

Analysis of developmental single-cell transcriptomics data

Applying single-cell transcriptomics analysis to developmental biology has led to marked
advances in our understanding of development across different human tissues, including,
for example, the brain [46–48], the pancreas [49, 50], the lung [51–53], blood [54, 55], and
across the whole fetus [9]. Analysing developmental scRNA-seq data can be challenging
and requires tailored approaches. A primary challenge is the dynamic nature of developing
tissues, characterised by ongoing continuous changes in gene expression patterns. In such
settings, standard clustering methods may not adequately capture transient states or the
progression of cells along developmental trajectories, complicating the assignment of cells to
discrete types.

Trajectory inference methods have been developed to capture differentiation processes and
their underlying transcriptional driving forces [56]. These techniques enable mapping con-
tinuous developmental pathways by ordering cells along a pseudo-temporal axis through, for
example, computing diffusion processes on the cellular k-nearest neighbour (kNN) graph
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[57, 58], comparing distances of mean transcriptional signatures of clusters [59], or leveraging
additional data modalities such as the quantification of unspliced mRNA reads [60, 61].
A selection of trajectory inference approaches have been benchmarked for their accuracy,
usability, and scalability [62]. Downstream trajectory inference tools (such as CellRank [63],
Palantir [58], or FateID [64]) enable in-depth analyses of developmental processes, including
the inference of gene dynamics over pseudo time and the detection of genes underlying de-
velopmental processes, so-called driver genes. CellRank, for example, computes a transition
matrix from the output of the techniques mentioned above to automatically detect the initial
and terminal states of a differentiation trajectory and uses this information to compute driver
genes and gene expression dynamics.

1.1.3. Large-scale data curation in single-cell transcriptomics

With an ever-increasing number of scRNA-seq datasets publically available, new opportunities
for machine-learning models trained on millions of cells to provide new biological insight
emerge. Recently, so-called foundation models gained attention in single-cell genomics
following their breakthroughs in language modelling. These models are pre-trained on data
from tens of millions of cells to learn the fundamental relationships of gene expression. They
can consequently be efficiently fine-tuned for specific tasks with only minimal extra data
and have the potential to drive a paradigm shift in single-cell genomics data analysis [45].
Similarly, in single-cell genomics query-to-reference mapping, leveraging multiple existing
datasets as a reference to augment or contextualise new experimental data can accelerate
scientific discovery [42]. Overall, the reusability of data is becoming an increasingly important
factor in enabling progress in the field.

The Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles [65] offer a
structured framework to improve the reusability of scientific data. They ensure that data is
not only stored in an accessible manner but is also comprehensible and easily reusable by
other researchers. The data for most published scRNA-seq studies are Findable via weblinks or
accessions in the Data Availability section of the associated manuscript. They are also usually
Accessible through public repositories such as Zenodo or the Gene Expression Omnibus.
While the first two FAIR principles (Findable and Accessible) are generally fulfilled in the
field, this is much less the case for the Interoperable and Reusable principles. The main
interoperability issue of published scRNA-seq datasets is the multitude of file types used
for depositing the data. Some filetypes, such as loom (https://loompy.org/) or hdf5
(https://www.hdfgroup.org/solutions/hdf5/), require the installation of specific software
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packages, while others, such as the R-specific rds format, require the use of particular
programming languages. Some of the universal file formats, including compressed text files
(for example, using the .tsv.gz extension), can also pose challenges in the case of large datasets:
while filesize on disk can be relatively small through compression, these data formats store
a dense count matrix, which can easily exceed the available system memory once loaded,
even on powerful server instances. Formats storing sparse matrices on disk elegantly avoid
memory limitations but can be slow to process. While these challenges in interoperability
rarely entirely prevent data reuse, they make the process unnecessarily time-consuming for
researchers. Free-text metadata, used in most published studies, further complicates data
reuse. When several such studies are combined into a single reference dataset, two identical
cell types might have slightly differently spelt labels and, without time-consuming manual
intervention, will be treated as separate entities in downstream processing. This applies to
cell type labels and almost all metadata, including tissue labels, experimental protocol, cell
line of origin, and others, preventing efficient data reuse.

Streamlining available datasets through manual data curation is required to alleviate the
abovementioned challenges, enable efficient data reuse, and unlock the full potential of the
vast number of published scRNA-seq datasets. Data curation should include converting
free-text metadata to controlled vocabularies as offered by the respective ontologies [66–68],
available for almost all relevant metadata annotations. The generation of new datasets and
the consequent insights into, for example, cell type heterogeneity should, in turn, lead to an
updating of existing ontologies to maintain their utility [69]. Recent emerging streamlined
data repositories, such as the CZ CELLxGENE Discover Census [70], the Human Cell Atlas (HCA)
Data Portal (https://data.humancellatlas.org), or the EBI Single cell expression atlas [71],
present a leap towards reusable data in single-cell genomics. Such repositories foster data
reuse by providing streamlined data and metadata and offering multiple convenient data
access options. Beyond these immediate advantages, their presence also encourages proper
data curation by the authors at publication time, paving the way to a sustained improvement
in data reusability in the field.

1.1.4. Single-cell transcriptomic atlases

Single-cell transcriptomic atlases are curated collections of datasets from the same biological
system or tissue, aiming to provide a comprehensive reference map of the constituent cells.
While the term atlas has been used to describe individual large-scale single-cell transcriptomic
studies [72–75], it generally describes an integrated dataset comprised of several individual
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studies by multiple research groups. Launched in 2016, the HCA initiative represents
an ongoing effort to coordinate and harmonise the systematic generation of cell atlases
from human tissues, aiming to characterise all human cell types based on their distinct
transcriptomic signatures [76]. This endeavour has been enabled by the advent of single-
cell transcriptomics, providing unprecedented resolution in studying cellular heterogeneity
and revealing insights into cells’ unique identities and states. Several atlases have thus far
emerged from the constituent HCA Biological Networks. For instance, the Human Brain
Cell Atlas [10] is a comprehensive neural atlas generated by an individual research group. It
provides a detailed map of neuronal and glial cell types across brain regions, enhancing our
understanding of the brain’s complex architecture. In contrast, the Human Lung Cell Atlas
[77] is an integrated and harmonised collection of 49 datasets that charts the cell landscape
involved in respiratory function and pathology.

Besides data curation, described in the previous chapter of this thesis, data integration is
a central element in constructing these atlases. It involves computationally blending data
from multiple studies to create a cohesive and comprehensive integrated dataset. This is
achieved by removing contributions of technical confounders such as sequencing technology
or experiment site from the data. Many different data integration tools have been suggested
in the literature and comprehensively benchmarked for their performance [78]. Some of the
best-performing algorithms for scRNA-seq data integration included unsupervised [40, 79]
and semi-supervised approaches [80, 81]. The latter can ingest prior information, such as cell
type labels, to guide the integration process. Going one step further, a recently developed
semi-supervised method has been designed to consider multiple levels of hierarchical cell
type labels, potentially aiding the integration of datasets from particularly heterogeneous and
complex tissues [82].

The opportunities presented by integrated cell atlases are vast. They can, for example,
establish a community consensus on cell type labels for a given tissue [77], facilitating a
common language for researchers to communicate their findings. Additionally, these atlases
can enable the detection of novel, rare cell types that might be overlooked in individual
studies [69] or inform about intra-cell type heterogeneity across different subsections of a
tissue [10]. Perhaps most significantly, they provide a ground truth for the rapid annotation,
contextualisation, and analysis of novel datasets [42].
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1.2. Human neural organoids

The brain is the centre of human cognition and behaviour. It is critical to our overall health and
well-being. Despite many advances in neuroscience, key aspects of human neurodevelopment
still need to be fully understood. Gaining a better understanding of these processes is a
prerequisite for comprehending the aetiology of neurological and psychiatric diseases and
developing suitable treatments. These conditions represent a significant global health burden,
affecting millions worldwide and posing substantial challenges in diagnosis, treatment,
and long-term management. Understanding the complexity of brain development and the
pathogenesis of neurological and psychiatric disorders is still challenging due to ethical,
technical, and practical difficulties in studying human brain tissue directly. Besides the
profound complexity of the brain, the scarcity of fetal post-mortem tissue and the limitations
of post-mortem samples compared to in vivo tissue samples are the key limiting factors in
modern neuroscience and psychiatry. Rodent models are valuable and accessible proxies to
study human neural development. However, these models lack an abundance of outer radial
glia (RG) characteristic of humans [83, 84] and differ in structural [85] and transcriptomic [86]
aspects.

The emergence of neural organoids offers great potential in research areas where human-
specific features are crucial, such as psychiatry [87]. Organoids are three-dimensional in
vitro tissue models that allow for exploring previously inaccessible human-specific aspects
of neurodevelopment and disease and open new avenues for developing targeted therapies
to alleviate the global burden of brain disorders. They have, for example, already provided
insights into the mechanisms underlying gyrification during neurodevelopment [88, 89],
genetic diseases like microcephaly [90], and environmentally-conferred conditions such as
Fetal Alcohol Spectrum Disorders [91].

1.2.1. Human neurodevelopment

The development of the human brain is a complex and tightly controlled process. Neural
tube formation in the human embryo starts around postconceptional day 23 and leads to a
tube-like structure comprising neuroepithelial cells. The neural tube is initially structured into
three main segments (vesicles): the forebrain (prosencephalon), midbrain (metencephalon)
and hindbrain (rhombencephalon) (Fig. 1.3a). These vesicles later subdivide to give rise to
the different regions of the developed brain (Fig. 1.3b).
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Figure 1.3.: Schematic of the neural tube. a. The three primary brain vesicles of the three-
to four-week-old embryo. b. The five secondary brain vesicles of the five-week-
old embryo. Reproduced from [92] Chapter 13.1 (Licensed under the Creative
Commons Attribution 4.0 International license: https://creativecommons.org/
licenses/by/4.0/).

In the further development of the human brain, neuroepithelial cells divide to create neural
progenitor cells (NPCs) (such as apical RG found in the ventricular zone of the developing
telencephalon), which further develop into neurons. This generation of neurons in the devel-
oping brain is called neurogenesis. In the developing telencephalon, approximately between
postconceptional days 48 and 191, neurons are generated from apical RG by migration to the
subventricular zone (then referred to as basal or outer RG) and consequent differentiation via
the intermediate progenitor (IP) cell type. Following neurogenesis, newborn neurons, also
known as neuroblasts, throughout the developing brain, migrate to their final locations in a
process called neuronal migration. In the forebrain, newly born cortical projection neurons
migrate radially to the cortical plate, while inhibitory neurons generated in the ganglionic
eminences migrate laterally to the same location. Gliogenesis, the maturation of RG into
macroglial cells (oligodendrocytes and astrocytes), occurs after neurogenesis and peaks
around birth. Subsequent neurodevelopmental processes like synaptogenesis, myelination,
and synaptic pruning also continue well into or occur exclusively in the postnatal period.
Please refer to [93] for an in-depth introduction to neurodevelopment.

1.2.2. Neural organoids as models of human neurodevelopment

Derived from induced pluripotent stem cells (iPSCs) or embryonic stem cells, human neural
organoids are three-dimensional self-organising systems that model the intricate process of
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human brain development in vitro. Predominantly covering development during the first
and second trimesters, they capture the critical neurodevelopmental process of neurogenesis.
When cultured for 250 to 300 days, neural organoids have been shown to also resemble
more advanced developmental (including postnatal) stages, with processes such as synapse
formation occurring [94].

Structurally, neural organoids display several features reminiscent of the developing human
brain. This includes the organisation of cells in layers around a central lumen, with RG lining
the apical side (ventricular zone), IPs in the subventricular zone, and neurons positioned
closer to what resembles a cortical plate [90, 95]. Notably, after about 150 days in culture,
organoids can begin to display a form of cortical layering, distinguishing between upper and
deeper layer neurons [96]. Furthermore, organoids can produce NPCs and neurons from
various brain regions, even within a single organoid, highlighting their versatility as a model
system [97]. They can contain a diverse array of neuronal cell types, partially resembling the
cellular composition of the fetal brain while showing high transcriptional similarity in the
cell types present [98, 99]. In older organoids, macroglial cells like oligodendrocyte precursor
cells (OPCs) and astrocytes can also emerge [100–102].

However, neural organoids as a model system are not without limitations. The composition
of cell types can significantly vary, not only across different organoids but also from primary
tissue, with, for example, outer RG being underrepresented in organoids [103]. Structurally,
the compact layering of neurons in organoids lacks the spatial fidelity observed in the primary
brain and surrounding tissues, such as the meninges, are absent. Moreover, transcriptional
analysis using scRNA-seq revealed a unique metabolic stress signature in organoids dis-
tinct from the cellular states encountered in primary fetal brain [103, 104]. Additionally,
the absence of critical non-ectodermal-derived components like microglia [105, 106] and
vasculature [107] highlights the limitations in fully recapitulating brain complexity, although
recent attempts have been made to integrate these elements too [108–111]. Combining these
ongoing endeavours with efforts to reduce cell stress and increase reproducibility in organoid
differentiation protocols would lead the way to more accurately mimic the complexities and
functions of the human brain, thereby enhancing the potential of neural organoids in basic
research and clinical applications.
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1.2.3. Neural organoid technologies

Generating neural organoids involves differentiating pluripotent stem cells into neural cell
types within a three-dimensional culture system. Embryonic stem cells or iPSCs are initially
aggregated to form embryoid bodies, facilitating cell-cell interactions essential for creating
organoid structures. As organoids have presented profound self-patterning characteristics
during their development [112], there are currently two main approaches for organoid
differentiation from embryoid bodies, producing either unguided or regionalised organoids.

Unguided organoid differentiation protocols rely entirely on the system’s inherent self-
patterning abilities and do not add additional guiding molecules (morphogens) [113, 114].
This unbiased approach can generate organoids containing neural cells from a variety of
brain regions, partially mimicking the complexity of the developing human brain (Fig. 1.4).
It thereby enables studying the intricate self-organisational mechanisms underlying human
brain development. At the same time, the lack of external guidance also leads to significant
variability in regional composition across organoids from the same differentiation experiment
[97], limiting the reproducibility of the approach.

The generation of regionalised organoids, in contrast, relies on adding morphogens to the
organoid media to induce the development of specified brain regions. While the selection of
morphogens is closely inspired by known signalling factors in early human neurodevelopment,
such protocols provide an arguably less physiological environment for cellular differentiation
and maturation. Besides the added control in organoid generation, such approaches offer
a high degree of reproducibility and can also increase the maturation rate of the organoids.
Morphogens have been used to generate organoid models of various brain regions, most
prominently the dorsal telencephalon [99, 115–117], but also the ventral telencephalon [118,
119], the thalamus [120] and hypothalamus [121], the midbrain [122], the hindbrain [123], and
the ChP [124]. Besides specific brain regions, neural organoids have been guided to enrich
particular cell types such as oligodendrocytes [125].

Over the past years, significant efforts have been made to develop protocols that produce
neural organoids that are more similar to their primary counterparts. Improvements have
been suggested at different points of the protocol. Examples include the embedding in
matrigel towards the beginning of the protocol to enable more complex tissue growth [90],
adding specific maturation media to support development [126], or slicing of the organoids
at later protocol stages to improve nutrient supply and reduce cell stress [96]. More involved
approaches include the construction of assembloids [127], where organoids of different brain
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Figure 1.4.: Immunohistochemistry stains of unguided neural organoids resembling dif-
ferent brain regions. a. Structural organisation of apical NPCs (SOX2, red) and
basally located neurons (TUJ1, green). b. Forebrain neurons (FOXG1, red). c.
Choroid plexus (ChP) tissue (TTR, green). d. PROX1 (green) and FZD (red) mark
hippocampal regions. e. SOX2 (red) marks RG. Mitotic RG (P-vimentin (P-vim),
green) are present at the apical membrane (arrows) and outside the ventricular
zone (arrowheads). f. Layering of more mature upper-layer neurons (SATB2, red)
and younger deep-layer neurons (CTIP2, green). DAPI (blue) marks nuclei of
cells. Reproduced from [113] with permission from Springer Nature.

regions are cultured in close proximity and functionally integrate to form basic neural circuits
[118, 128]. More recently, the transplantation of neural organoids into living animals has
been shown to boost organoid maturation while displaying an integration of neural circuits
[129].

1.2.4. Neural organoids as disease models

Besides being powerful models of human-specific neurodevelopment [97], neural organoids
offer unique disease-modelling capabilities due to their accessibility and flexibility. Either
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by derivation from patient-specific cell lines or by exposing organoids to external stimuli
and stressors, they can be used to model the contribution of genetic and environmental
risk factors to the onset and development of disease. In the context of neurodevelopmental
disorders (NDDs), organoids have helped study genetic diseases, for example, shedding light
on altered neuronal migration [130] and the role of apical RG [131] in neuronal heterotopia
and suggesting possible treatment options [132]. Further genetic diseases studied in organoids
include Timothy syndrome [118], Rett syndrome [133, 134], and Miller-Dieker syndrome [135].
Organoids have also served as valuable models of neurodegenerative diseases, including
Alzheimer’s disease [136] and Parkinson’s disease [137]. In the context of viral infections,
organoids have helped to understand the effects of the Zika virus [138, 139] and human
cytomegalovirus [140] on brain development.

In the context of psychiatry, organoids derived from schizophrenia patients have shown
altered progenitor survival and impaired neurogenesis [141]. In ASD, perturbing three risk
genes resulted in asynchronicity in the development of excitatory and inhibitory neuron
classes [142], substantiated by a large-scale perturbation screen of ASD risk genes indicating
priming of the ventral telencephalic inhibitory neuron lineage in ASD [143]. Concerning
external toxin exposure modelling, neural organoids have provided insight into, for example,
the neurotoxic effects of alcohol [91, 144] and methamphetamine [145], leading to apoptosis,
impaired development, or neuroinflammation.

1.3. Neurodevelopment and psychiatric disease

Neurodevelopment is a highly intricate and tightly regulated process that lays the found-
ational framework for brain architecture, affecting an individual’s susceptibility to disease.
Deviations in this process, whether due to genetic, epigenetic, or environmental factors, can
predispose individuals to psychiatric conditions later in life [146]. For instance, schizophrenia
has been associated with disruptions in synaptic pruning, a critical process of neurodevelop-
ment [147, 148]. Similarly, ASD exemplifies the profound impact of early neurodevelopmental
anomalies during neurogenesis on cognitive and behavioural outcomes, as noted in Section
1.2.4.

Studying the genetic underpinnings of psychiatric conditions provides further evidence
for the tight link between neurodevelopmental processes and the aetiology of psychiatric
disease. In a recent study, several risk genes for ASD and other NDDs have been shown
to affect interneuron generation and migration, thereby directly interfering with critical
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neurodevelopmental processes [149]. Conversely, many variants linked to genes with known
essential roles in neurodevelopmental pathways confer risk for ASD, schizophrenia or other
psychiatric diseases [150–152]. Overall, these disorders often arise from a complex interplay
of genetic vulnerabilities and early life experiences, emphasising the importance of the
neurodevelopmental period in psychiatric disease manifestation [153].

1.3.1. Environmental impact on brain development and disease

The heritability of psychiatric conditions varies profoundly by disorder. For example, ASD is
considered a largely genetic disease with heritability estimates around 75 % [154]. In contrast,
for major depressive disorder, heritability is estimated to be below 50 % in the general
population [155, 156]. Environmental factors, therefore, play an essential role in the onset
and development of psychiatric disease. Early human brain development during pregnancy
is marked by extensive tissue transformation and rapid brain maturation. Hence, it is a
highly susceptible period for environmental perturbations interfering with the developmental
process.

Birth weight, a coarse proxy for the environmental conditions experienced by the fetus
during pregnancy, has been correlated with multiple neurobehavioural outcomes, including
educational attainment and executive function, as well as disease-related outcomes, including
attention deficit hyperactivity disorder and depressive symptoms [157]. Many forms of
environmental interference with development have been associated with increased risk for
psychiatric diseases, ranging from immune-induced perturbations caused by viral infections
[158] to widespread chemicals with potentially neurotoxic properties [159]. Beyond exposure
to pathogens or harmful substances, any difficulties arising during pregnancy and birth [160,
161] as well as impaired maternal health and well-being, also contribute to disease risk [162].
These factors can lead to measurable structural aberrations in the newborn child’s brain [163,
164].

While the exact mechanisms underlying environmental interference with development are
diverse and not fully understood, GCs have been suggested as one potential mediator of
prenatal adversity in the unborn child [165].
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1.3.2. Glucocorticoids in brain development

GCs are vital steroid hormones primarily produced by the adrenal cortex that play several
important roles in the human body. Firstly, they are essential mediators of the human stress
response as a component of the hypothalamic-pituitary-adrenal (HPA) axis. In case of a
stress-inducing stimulus, the hypothalamus releases corticotropin-releasing hormone, which
prompts the pituitary gland to secrete adrenocorticotropic hormone, which in turn stimulates
the adrenal cortex to produce GCs, such as cortisol. GCs exert their function by binding to
glucocorticoid receptors (GRs) and mineralocorticoid receptors present in the cytosol of most
cells throughout the body. Upon binding GCs, the GR translocates to the nucleus, regulating
the transcription of various genes as a transcription factor (TF) by binding to GC-response
elements [166] and interacting with other TFs [167]. Besides their role in the human stress
response, GCs play a crucial role in development.

GCs are critical for the development of several tissues, such as the lung [168] and the
cardiovascular system [169]. Additionally, they regulate essential processes like synapse
formation and elimination, neural migration, and neurogenesis in the developing brain [165].
GC levels are tightly regulated during development across many mammals, and in the unborn
human child, GC levels rise sharply during the third trimester [170]. These hormonal signals
are crucial for the timely execution of developmental milestones and for preparing the fetus
for birth [171]. While the exact underlying molecular mechanisms are not fully understood,
the role of GCs in neurodevelopment is a delicate balance, with aberrant levels having the
potential to alter brain structure and function (Fig. 1.5a) and the fetal HPA-axis (Fig. 1.5b),
affecting postnatal behaviour and increasing the risk of neuropsychiatric disorders [165,
172].

Maternal stress or diseases can lead to elevated maternal GC levels during pregnancy, which
can profoundly affect fetal brain development [173]. While the placenta acts as a barrier, to
a large extent protecting the fetus from maternal GC levels, its protective function can be
reduced through stress and increased GC levels in the mother [174] (Fig. 1.5c), leading to
altered GC levels in the fetus. Excessive GC exposure in the unborn child can disrupt neural
development, leading to structural changes in the brain and altered postnatal behaviour [175].
Besides structural changes, epigenetic modifications, mainly on the DNA-methylation level,
have been suggested to mediate the effects of excess GCs on behavioural outcomes [165, 176]
(Fig. 1.5d), and to play a role in the intergenerational transmission of adverse experiences
[173, 177].
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Figure 1.5.: Effects of excess prenatal GC exposure. a. GCs influence neurodevelopment
by impairing neuronal differentiation and affecting key limbic system structures,
including the amygdala and hippocampus. b. Excess GCs lead to increased
fetal HPA axis basal activity. c. Elevated GC levels impact the placenta by
hindering its vascular development and growth and suppressing the expression
of HSD11B2. This enzyme protects the fetus from maternal GCs. d. Increased
GC levels modify the fetus’s epigenetic framework, boosting transcriptional reac-
tions to stressors encountered later in life. ACTH, adrenocorticotropic hormone;
CRH, corticotropin-releasing hormone; CRHR1, corticotropin-releasing hormone
receptor 1; HSD11B2, hydroxysteroid 11-β dehydrogenase 2; NR3C1, nuclear
receptor subfamily 3 group C member 1; VEGF, vascular endothelial growth
factor. Reproduced from [165] with permission from Elsevier.
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Beyond increased endogenous GC levels in the mother, the fetus can be exposed to non-
physiological levels of GCs through the pharmacological use of sGCs, such as dexamethasone
and betamethasone during pregnancy. SGCs are critical antenatal drugs, accelerating the
maturation of the fetus, especially its lungs, in case of risk for preterm birth. Unlike their
endogenous counterparts, sGCs readily cross the placenta and exert their pharmacological
effects directly on the fetus [178]. Their use significantly reduces fetal morbidity and mortality
[179] but also affects fetal neurodevelopment [165, 171]. Given that over ten per cent of babies
(over 13 million) were born prematurely in 2020 [180], antenatal GC treatment is a sizable
environmental factor for fetal brain development. Studies suggest that the long-term outcomes
of antenatal GC treatment on the brain depend on the timing of administration. For extremely
preterm births (before 28 gestational weeks), a beneficial effect of GC treatment is observed
with a significantly reduced risk for impaired neurodevelopment [181, 182]. In contrast,
administering GCs later in pregnancy was associated with adverse long-term outcomes,
including an increased prevalence of mental and behavioural disorders and neurocognitive
impairments [183–186].

1.3.3. Modelling glucocorticoid effects on brain development

Rodent models have provided valuable insights into GC effects on brain development, such
as altered HPA-axis activity in rats [187] and altered hippocampal development in mice
[188]. As discussed in Section 1.2, fundamental differences exist between the developing
lissencephalic rodent brain and the gyrified human brain, limiting the capacity of rodents
to model human GC-induced neurodevelopmental aberrations that could lead to disease.
Larger mammals, such as sheep, have been used to study GC exposure in a gyrified brain
[189, 190]; however, their handling as model animals is much more complex and expensive
while they still not have the same underlying genetic information and regulation as humans.
As discussed in Section 1.2.2, human neural organoids, while still far from perfect, are
accessible three-dimensional models of human brain development and have already been
used successfully to model the effect of psychiatric disease risk factors (Section 1.2.4). The
remainder of this section focuses on neural organoid models. Please refer to [172] for an
in-depth review of different in vitro modelling approaches of the neurobiological effects of
GCs.

The mechanisms underlying the onset and development of psychiatric diseases are complex
and likely involve multiple cell types. Modelling the effects of environmental risk factors for
disease on development in neural organoids is, therefore, best done in models that accurately
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recapitulate the cell type diversity and interactions occurring in the primary fetal brain. While
some cell types, such as microglia, are inherently absent in current neural organoid models
and are only added in specialised protocols [111], general protocol choice can affect the cell
type diversity in the organoid. For example, organoids derived using strongly regionalised
cortical protocols [96, 103] often lack a significant population of inhibitory neurons. Such a
lack can limit the ability of the model to capture relevant developmental aberrations, such as
an imbalance in excitatory and inhibitory neuronal lineage development, which is relevant
for the aetiology of certain psychiatric diseases [191–194]. While having their own limitations
(Section 1.2.3), unguided neural organoids generally produce a more comprehensive array of
neural cell types and might be preferential models in that regard. Alternatively, the fusion of
regionalised organoids of different brain regions into assembloids is a promising approach
for modelling development in the context of psychiatric diseases with a specific focus on
neural circuits [149].

Besides implicating multiple cell types, there is strong evidence for the involvement of
multiple brain regions beyond the cortical regions in the onset and development of psychiatric
diseases. To name some examples, dysregulation in the midbrain has been associated with
schizophrenia and bipolar disorder [195, 196] and thalamic connectivity system deficits have
been linked to various psychiatric conditions, including schizophrenia, bipolar disorder, major
depressive disorder, and ASD [197, 198]. The hypothalamus, as part of the HPA-axis, has been
associated with, for example, anxiety disorders [199, 200] and the hindbrain, specifically the
cerebellum and pons, have been implicated in ASD [201–203]. Therefore, understanding the
contribution of environmental risk factors, such as GCs, to the aetiology of disease requires
the consideration of multiple brain regions. As in the previous section, unguided neural
organoids arise as a particularly suitable model in this context, as they can generate neuronal
cells from various brain regions and, therefore, can provide a broader view of GC exposure
effects during brain development.

1.4. Research questions and contributions of this thesis

The main question I address in this thesis is how to improve our understanding of neural
organoids as a model system of the developing brain to consequently use them to discover
the mechanisms underlying the onset and development of psychiatric diseases. I structure
this question into the following open challenges:
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1. Single-cell genomics technologies have enabled many scientific breakthroughs over the
past years, and the number of publicly available scRNA-seq datasets is growing rapidly.
Public data can provide a rich resource to augment and contextualise new studies
through integrated atlases. However, data curation and reuse have remained challenging
and time-consuming due to a lack of metadata standardisation and consistent data
formats in the field.

2. The curation of large-scale transcriptomic cell atlases can uncover the mechanisms
underlying development and disease. The human brain is one of the most complex
organs in the human body and is critical to our overall health and well-being. Neural
organoids have emerged as powerful in vitro models of human neurodevelopment.
Combining a large number of existing neural organoid scRNA-seq datasets into a com-
prehensive single-cell atlas would uncover underrepresented sections of the developing
human brain in organoid models. It would further provide insight into systematic
transcriptomic differences between organoids and primary fetal brain and pave the way
towards more faithful organoid model systems. It would also enable the rapid and
effective contextualisation of newly generated neural organoid datasets.

3. Improved in vitro models of human brain development in health and disease are the
foundation for developing future treatment strategies. Novel model systems such
as neural organoids have enabled promising advances in understanding the genetic
contribution to the onset and development of psychiatric diseases in a human context.
While it is widely accepted that environmental factors also strongly contribute to
these pathological processes, the underlying mechanisms have been investigated to a
significantly smaller extent.

In this thesis, I aim to facilitate the curation of large-scale transcriptomic cell atlases with a
new software framework, uncover the current limitations of neural organoid models through
an integrated neural organoid cell atlas and improve our understanding of the mechanisms
underlying environmental risk for psychiatric diseases using neural organoids.

Specifically, I address the three abovementioned challenges with the following contributions:

1. In collaboration with David Fischer, I developed the sfaira package. sfaira is a data
and model zoo for single-cell genomics that allows for efficient data curation and
automated analysis. In particular, sfaira facilitates the curation of large-scale single-cell
atlases using controlled metadata vocabularies and streamlining of feature spaces.
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2. In collaboration with Zhisong He and Jonas S. Fleck, I constructed the HNOCA, a har-
monised single-cell reference atlas encompassing a comprehensive list of public neural
organoid scRNA-seq datasets. HNOCA revealed compositional and transcriptional
differences between primary fetal brain and organoids and serves as a reference to
contextualise novel scRNA-seq datasets.

3. I show that chronic exposure to GCs, an example of an environmental challenge during
development, affects the expression of several key neurodevelopmental genes and leads
to priming of the inhibitory neuron lineage in neural organoids.

These contributions are related to each other in that I used the sfaira framework to curate
the datasets for the HNOCA. sfaira allowed for an efficient harmonisation of the comprising
datasets’ metadata, which was essential for several aspects of our analysis and visualisations
presented in the HNOCA manuscript. In a further connection, I used the HNOCA as a
reference atlas to assign cell type labels in our GC-treated neural organoid scRNA-seq dataset.
The availability of the HNOCA as a reference atlas allowed me to identify the neuronal
cells in the dataset as originating from non-telencephalic brain regions, a less common
region of neuron origin in unguided neural organoids. Additionally, the HNOCA result
highlighting cell stress as a universal property of neural organoid scRNA-seq data enabled
me to improve the preprocessing of the newly generated organoid data. See Fig. 1.6 for a
visual representation of these contributions and their connections.

Altogether, my contributions deepen our understanding of neurodevelopmental disorder
development and pave the way towards improved disease modelling in organoids, which has
the potential to drive novel therapeutic strategies in psychiatry and beyond.

The main findings of my work have already been published in a peer-reviewed journal or
are under revision at the time of writing this thesis. Therefore, this thesis is based on and in
parts identical to the following publications:

1. Fischer, D. S.*, Dony, L.*, König, M., Moeed, A., Zappia, L., Heumos, L., Tritschler, S.,
Holmberg, O., Aliee, H. & Theis, F. J. Sfaira accelerates data and model reuse in single
cell genomics. Genome Biology 22, 248. doi:10.1186/s13059-021-02452-6 (2021)

2. He, Z.*, Dony, L.*, Fleck, J. S.*, Szałata, A., Li, K. X., Sliškovic, I., Lin, H. -C., Santel, M.,
Atamian, A., Quadrato, G., Sun, J., Pasca, S. P., Camp, J. G., Theis, F. & Treutlein, B. An
integrated transcriptomic cell atlas of human neural organoids. In revision. Preprint
[204] doi: 10.1101/2023.10.05.561097 (2023)
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Figure 1.6.: Thesis contributions overview. A pyramidal schematic displaying the relation-
ship between the contributions presented in this thesis. Robust and scalable
infrastructure serves as a foundation for curating comprehensive datasets that
provide a reference to contextualise novel datasets addressing specific biological
questions.

3. Dony, L., Krontira, A. C., Kaspar, L., Ahmad, R., Demirel, I. S., Grochowicz, M., Schäfer,
T., Begum, F., Sportelli, V., Raimundo, C., Koedel, M., Labeur, M., Cappello, S., Theis, F.
J., Cruceanu, C.*, Binder, E. B.* Chronic exposure to glucocorticoids amplifies inhibitory
neuron cell fate during human neurodevelopment in organoids. In review. Preprint [205]
doi: 10.1101/2024.01.21.576532 (2024)

Note that "*" denotes an equal contribution to the publication. Specifically, I have made the
following contributions to these publications:

• Publication 1: Together with David Fischer, I wrote the package code and carried
out the analysis for the publication. I lead the data curation and model training with
support from David Fischer. I designed the organoid-specific metadata scheme with
input from the other authors.

• Publication 2: Together with Zhisong He and Jonas S. Fleck, I collected and retrieved the
scRNA-seq data included in the HNOCA with suggestions from Fabian Theis, Sergiu P.
Pasca, J. Grayson Camp and Barbara Treutlein. Together with Zhisong He, I performed
the DE and transcriptomic comparison analysis with support from Irena Sliškovic
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and Katelyn X. Li. Together with Katelyn X. Li, Irena Sliškovic and Artur Szałata, I
curated the HNOCA data and harmonised the associated metadata. I preprocessed and
integrated the HNOCA datasets with support from Katelyn X. Li and Irena Sliškovic.
Together with Zhisong He, Jonas S. Fleck and Artur Szałata, I developed the HNOCA
data processing pipeline. Together with Katelyn X. Li, I performed the benchmark of
integration methods. I provided input for the cell type hierarchy curation by Zhisong
He and Jonas S. Fleck. I coordinated the work of Artur Szałata, Katelyn X. Li, and Irena
Sliškovic by defining tasks and providing input where needed.

• Publication 3: Together with Elisabeth B. Binder, Cristiana Cruceanu, and Fabian Theis,
I defined the main questions and analysis steps of this work. I analysed all scRNA-seq
and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-
seq) data. I interpreted and visualised the results with input from my co-authors.

During my doctoral work, I contributed to the following additional peer-reviewed publications
not included in this thesis (in chronological order):

1. Bastidas-Ponce, A., Tritschler, S., Dony, L., Scheibner, K., Tarquis-Medina, M., Salinno, C.,
Schirge, S., Burtscher, I., Böttcher, A., Theis, F. J., Lickert, H. & Bakhti, M. Comprehensive
single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis.
Development 146, dev173849. doi:10.1242/dev.173849 (2019)

2. Dony, L., König, M., Fischer, D. S. & Theis, F. J. Variational autoencoders with flexible
priors enable robust distribution learning on single-cell RNA sequencing data in ICML
2020 Workshop on Computational Biology (WCB) Proceedings, Paper 37. https://icml-com
pbio.github.io/2020/papers/WCBICML2020_paper_37.pdf (2020)

3. Lotfollahi, M.*, Dony, L.*, Agarwala, H.* & Theis, F. J. Out-of-distribution prediction
with disentangled representations for single-cell RNA sequencing data in ICML 2020
Workshop on Computational Biology (WCB) Proceedings, Paper 41. https://icml-compbio
.github.io/2020/papers/WCBICML2020_paper_41.pdf (2020)

4. Cruceanu, C., Dony, L., Krontira, A. C., Fischer, D. S., Roeh, S., Di Giaimo, R., Kyrousi,
C., Kaspar, L., Arloth, J., Czamara, D., Gerstner, N., Martinelli, S., Wehner, S., Breen,
M. S., Koedel, M., Sauer, S., Sportelli, V., Rex-Haffner, M., Cappello, S., Theis, F. J.
& Binder, E. B. Cell-Type-Specific Impact of Glucocorticoid Receptor Activation on
the Developing Brain: A Cerebral Organoid Study. American Journal of Psychiatry 179,
375–387. doi:10.1176/appi.ajp.2021.21010095 (2022)
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5. Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L., Lücken,
M. D., Strobl, D. C., Henao, J., Curion, F., Single-cell Best Practices Consortium, Aliee,
H., Ansari, M., Badia-i-Mompel, P., Büttner, M., Dann, E., Dimitrov, D., Dony, L.,
Frishberg, A., He, D., Hediyeh-zadeh, S., Hetzel, L., Ibarra, I. L., Jones, M. G., Lotfollahi,
M., Martens, L. D., Müller, C. L., Nitzan, M., Ostner, J., Palla, G., Patro, R., Piran,
Z., Ramírez-Suástegui, C., Saez-Rodriguez, J., Sarkar, H., Schubert, B., Sikkema, L.,
Srivastava, A., Tanevski, J., Virshup, I., Weiler, P., Schiller, H. B. & Theis, F. J. Best
practices for single-cell analysis across modalities. Nature Reviews Genetics 24, 550–572.
doi:10.1038/s41576-023-00586-w (2023)

6. Sikkema, L., Ramírez-Suástegui, C., Strobl, D. C., Gillett, T. E., Zappia, L., Madissoon,
E., Markov, N. S., Zaragosi, L. - E., Ji, Y., Ansari, M., Arguel, M. - J., Apperloo, L.,
Banchero, M., Bécavin, C., Berg, M., Chichelnitskiy, E., Chung, M.- i., Collin, A., Gay,
A. C. A., Gote- Schniering, J., Hooshiar Kashani, B., Inecik, K., Jain, M., Kapellos, T. S.,
Kole, T. M., Leroy, S., Mayr, C. H., Oliver, A. J., Von Papen, M., Peter, L., Taylor, C. J.,
Walzthoeni, T., Xu, C., Bui, L. T., De Donno, C., Dony, L., Faiz, A., Guo, M., Gutierrez,
A. J., Heumos, L., Huang, N., Ibarra, I. L., Jackson, N. D., Kadur Lakshminarasimha
Murthy, P., Lotfollahi, M., Tabib, T., Talavera-López, C., Travaglini, K. J., Wilbrey-Clark,
A., Worlock, K. B., Yoshida, M., Lung Biological Network Consortium, Chen, Y., Hagood,
J. S., Agami, A., Horvath, P.,Lundeberg, J., Marquette, C.- H., Pryhuber, G., Samakovlis,
C., Sun, X., Ware, L. B., Zhang, K., Van Den Berge, M., Bossé, Y., Desai, T. J., Eickelberg,
O., Kaminski, N., Krasnow, M. A., Lafyatis, R., Nikolic, M. Z., Powell, J. E., Rajagopal, J.,
Rojas, M., Rozenblatt-Rosen, O., Seibold, M. A., Sheppard, D., Shepherd, D. P., Sin, D.
D., Timens, W., Tsankov, A. M., Whitsett, J., Xu, Y., Banovich, N. E., Barbry, P., Duong, T.
E., Falk, C. S., Meyer, K. B., Kropski, J. A., Pe’er, D., Schiller, H. B., Tata, P. R., Schultze, J.
L., Teichmann, S. A., Misharin, A. V., Nawijn, M. C., Luecken, M. D. & Theis, F. J. An
integrated cell atlas of the lung in health and disease. Nature Medicine 29, 1563–1577.
doi:10.1038/s41591-023-02327-2 (2023)

7. Krontira, A. C., Cruceanu, C., Dony, L., Kyrousi, C., Link, M. - H., Kappelmann,
N., Pöhlchen, D., Raimundo, C., Penner-Goeke, S., Schowe, A., Czamara, D., Lahti-
Pulkkinen, M., Sammallahti, S., Wolford, E., Heinonen, K., Roeh, S., Sportelli, V., Wölfel,
B., Ködel, M., Sauer, S., Rex-Haffner, M., Räikkönen, K., Labeur, M., Cappello, S. &
Binder, E. B. Human neurogenesis is altered via glucocorticoid-mediated regulation of
ZBTB16 expression. Neuron In press. doi:10.1016/j.neuron.2024.02.005 (2024)
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While these publications are not discussed further in this thesis, the following connections
exist:

• Additional Publication 1 describes a scRNA-seq analysis of Neurogenin3-positive
cells in the developing mouse pancreas. Under the guidance of Sophie Tritschler, I
analysed the scRNA-seq data and generated parts of the visualisations presented in the
manuscript. These contributions equipped me with a good understanding of scRNA-seq
analysis in a developing system focusing on lineage analysis, which helped me analyse
the neural organoid scRNA-seq datasets presented in this thesis.

• Additional Publication 2 suggests a more expressive prior for variational autoencoder
(VAE)-based representation learning for scRNA-seq data. I conceived the project with
input from David Fischer, defined the datasets and metrics for the manuscript and,
together with Martin König, developed the method. Karin Hrovatin has since further
explored this approach for the large-scale integration of scRNA-seq data in challenging
scenarios similar to the HNOCA presented in this thesis.

• Additional Publication 3 explores different approaches to obtaining disentangled latent
spaces in scRNA-seq representation learning. I provided input on biologically relevant
features for disentanglement and, together with Mohammad Lotfollahi, coordinated the
project. We obtained promising results for disentangling perturbation effects from other
biological variation, which could aid the analysis of future perturbation studies similar
to the one presented in the context of GCs in this thesis.

• Additional Publication 4 investigates the effects of acute GC exposure on gene expres-
sion during brain development in neural organoids. Together with Cristiana Cruceanu,
I devised the scRNA-seq analysis steps. I analysed all scRNA-seq data and produced
parts of the visualisations presented in the manuscript. This work laid the foundation
for the chronic GC exposure studied in this thesis. It showed that neural organoids
are responsive to GC treatment and a suitable model system for this application. Fur-
thermore, it highlighted that the transcriptional changes induced by GC exposure are
significantly enriched for genes associated with ASD.

• Additional Publication 5 devises best practice recommendations for analysing single-
cell data across different modalities. Together with Lukas Heumos, I contributed to
ensuring reproducibility and accessibility to the materials by developing a containerised
version of each chapter. The recommendations formulated in this work informed many
of the analysis choices taken in the work presented in this thesis.
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• Additional Publication 6 constructs an integrated human lung cell atlas. Together with
other authors, I contributed to the data curation by collecting datasets and associated
metadata for the atlas. This contribution provided me with valuable learnings for later
curating datasets for the HNOCA.

• Additional Publication 7 identified ZBTB16 as a crucial mediating factor of the GC
response in the developing brain. I analysed the scRNA-seq data presented in this
publication. This work is closely connected to the work on chronic GC exposure in
neural organoids, presented here. Specifically, it provides mechanistic insight into the
increased neuronal differentiation drive reported in this thesis.
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This chapter describes the materials and methods my collaborators and I have used to generate
the results presented in Chapter 3. I have detailed my contributions to each of the following
sections in Section 1.4 of this thesis.

2.1. Sfaira accelerates data and model reuse in single-cell genomics

This method section corresponds to, and is in part identical to, the one presented in the
following publication:

Fischer, D. S.*, Dony, L.*, König, M., Moeed, A., Zappia, L., Heumos, L., Tritschler, S.,
Holmberg, O., Aliee, H. & Theis, F. J. Sfaira accelerates data and model reuse in single cell
genomics. Genome Biology 22, 248. doi:10.1186/s13059-021-02452-6 (2021)

"*" denotes an equal contribution.

2.1.1. Data and model zoo implementation

In sfaira, we represent datasets using data loader classes, which inherit generic data loading
capabilities from a parent class. These classes are a structured version of data-loading scripts,
which are commonly used in data analysis workflows. The classes allow lazy metadata
queries through automatic metadata storage, meaning count matrices can be loaded into
memory on demand. This feature allows users to interactively subset large instance lists
of these classes. In cases where data repositories directly provide streamlined processed
datasets, individual loading scripts are not required. Instead, we interface these existing data
zoos with a single class that can be instantiated for all datasets in the zoo. sfaira maintains
the universe of all contributed data loader classes, and users can dynamically build libraries
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of a subset of these datasets through the sfaira data API. We provide all the code for the
sfaira data and model zoo in the sfaira package. Each model in the zoo is built around its
individual model class, which can be accessed through a streamlined interface, similar to the
established genomics model zoo kipoi [206].

2.1.2. Serving pre-trained model weights and topologies

The sfaira model zoo provides access to model weights stored in public versioned repositories
like Zenodo [207] or locally for private models. These parameter files are versioned, which
means they can be accessed in a reproducible manner. The sfaira model zoo is designed to
host various model architectures. Here, we only discuss the models underlying the presented
analysis results. It is important to note that we expect the model population in sfaira to
expand beyond this initial set of models in the future.

2.1.3. Intrinsic preprocessing of count data

We have added a common input data transform to all embedding and cell type prediction
models. This transform helps to reduce variability in the data, requiring less model complexity
and fewer training steps to adjust the models’ internal normalisation of the data. We chose
a transform that can be evaluated irrespective of the batch size, depending only on an
individual observation (cell). We scaled the data points x per cell i and gene j to 10, 000
and log-transformed this scaled vector to reduce variation caused by the number of UMIs
observed per cell. This variation depends on technical factors such as library depth and
stochasticity in mRNA capture during the sequencing experiment.

xij = log
(

xij

∑N
n=0 xin

× 104
)

(2.1)

It is important to note that this processing does not necessarily need to be carefully bench-
marked, unlike for principle component analysis (PCA) and downstream Uniform Manifold
Approximation and Projection (UMAP) [208] computation in standard scRNA-seq analysis
workflows, due to the innate ability of the first layers of the neural network to adjust to
unwanted sources of variation. We chose to use a basic transform to improve training per-
formance. With many datasets and sufficient training time, it is possible to imagine entirely
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removing preprocessing from these networks in the long run.

2.1.4. Output and loss function of embedding models

In sfaira, we use AE-based embedding models to learn a low-dimensional representation
of the data. Please refer to [209] for an in-depth review of deep-learning models in single-
cell genomics. Our tool supports various model outputs and loss functions. The exact
configurations are represented in the topology identifier. Studies have shown that AEs can
learn embeddings of scRNA-seq data using a negative binomial reconstruction loss. This
type of loss requires the estimation of a mean (µ) and a dispersion parameter (ϕ). In the first
version of our tool, sfaira, we have included output states specifically geared towards the
negative binomial distribution. We use an exponential inverse-linker function in the final
layer to achieve this. Two types of output are available: one that estimates a fixed dispersion
per gene and another that estimates one dispersion parameter per gene and cell. The negative
log-likelihood over N samples and J genes is computed as follows:

(2.2)
llNB(µ, ϕ; x) = −

N

∑
n=0

J

∑
j=0

log Γ(ϕj + xnj) + log Γ(xnj + 1) + log Γ(ϕj)

− xnj(log(µnj) + log(µnj + ϕj)) − ϕj(log(ϕj) + log(µnj + ϕj))

2.1.5. Output and loss function of cell type prediction models

The standard sfaira cell type prediction model assumes that the output should be a probabil-
ity distribution across cell types that are already known. The cross-entropy loss is typically
used to evaluate the fit of such probability mass distributions. As an extension, we allow mul-
tiple output categories to be assigned to a single true set of labels, which we call aggregated
cross-entropy loss. This is used when datasets differ in their cell type label granularity. For
instance, one dataset may only annotate a few tissue-specific cell types and lymphocytes. In
contrast, another dataset may contain the same four tissue-specific types and differentiate
lymphocytes further into T cells and B cells. As the cell ontology [66] usually provides a
mapping between different annotation levels, we propose aggregating the predicted class
probabilities across all labels categorised under lymphocytes for the first dataset. This allows
any probability mass distribution for a lymphocyte observation in the first dataset across
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T and B cells, enabling the classifier to learn the differences between T and B cells from
the second dataset. At the same time, the classifier can use the first dataset to improve its
model of the difference between lymphocytes and the remaining cell types. We compare the
resulting aggregated cross-entropy loss (cceagg) to cross-entropy for a binary (ccebinary) and a
multi-class (ccemulti−class) prediction problem. The transformations labelled with (*) hold if
y ⊂ {0, 1}, i.e., if the labels lie on binary support.

(2.3)ccebinary = −
N

∑
n=0

yn log(pn) + (1 − yn) log(1 − pn)
(∗)
= −

N

∑
n=0

∑
k⊂K+

log(pnk)

(2.4)ccemulti−class = −
N

∑
n=0

∑
k⊂K

ynk log(pnk)
(∗)
= −

N

∑
n=0

∑
k⊂K+

log(pnk)
(|K|=2)

= ccebinary

(2.5)cceagg
(∗)
= −

N

∑
n =0

log

(
∑

k⊂K+

pnk

)
(∀n:∑K

k=0 ynk = 1)
= ccemulti−class

where K+ is the set of positive classes with yk = 1 and K− is the set of positive classes with
yk = 0 and N is the number of observations. In the above example with lymphocytes that
are split into T cells and B cells, ∑k⊂K yk = 2 for observations assigned as lymphocytes, as the
label is yk = 2 for both the T cell and B cell class which make up the set of lymphocytes
K+. Similarly, the predicted probability mass for an observation n labelled lymphocytes is the
sum of probability masses predicted for T and B cells ∑k⊂K+ pnk. In contrast, T cell is a leaf
node label, and its set of positive classes K+ only contains the label T cell. Here, the predicted
probability mass for the label T cell is ∑k⊂K+ pnk = pnl where l is the T cell class. The accuracy
metric accagg corresponding to cceagg is:

accagg = − 1
N

N

∑
n=0

I

[(
∑

k⊂K+

pnkynk

)
≻ max

k⊂K−
(pnk)

]
(2.6)

The indicator function I[] determines whether the aggerated probability mass predicted for a
specific cell type label is greater than the probability mass assigned to any leaf node of the
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ontology that is not a subclass of the class in question. Alternatively, one could use sigmoid
transforms of independent cell type predictions. However, this approach does not take into
account the prior knowledge that a cell can only belong to one class in an adequately defined
cell type ontology. Therefore, we do not support this setting.

2.1.6. Model architectures

Our multilayer perceptron models for predicting cell types from gene expression data utilise
fully connected layer stacks. For instance, a multilayer perceptron used in this study was
trained on all protein-coding genes from either mouse or human, had one hidden layer with
128 units, was trained without L1 and L2 penalties on the parameters, and Scaled Exponential
Linear Unit (SELU) activations.

We also defined a marker gene-dominated model for predicting cell types from gene expres-
sion data. In this model, a sigmoid function based on a gene-specific linear embedding of the
gene expression values models an expression threshold. A fully connected layer then pools
information from all genes to the cell type prediction.

AEs with fully connected layers and count noise distributions were proposed in [41] to learn
embeddings of scRNA-seq data. The complete architectures are documented in the sfaira

code. An example AE used in this study was trained on all protein-coding genes from either
mouse or human, had three hidden layers of sizes 512, 64, and 512, was trained without L1
and L2 penalties on the parameters or input dropout, was trained with batch normalisation
between fully connected layers, with SELU activations, and with a single trained dispersion
parameter per gene in the output for the negative binomial reconstruction loss.

AEs with fully connected layers on count noise data were proposed in [40] to learn embeddings
of scRNA-seq data. Here, we imposed a unit Gaussian prior on the latent space activations.
The full architectures are reported in the sfaira code. An example VAE used in this study
was trained on all protein-coding genes from either mouse or human, had three hidden
layers of sizes 512, 64, and 512, was trained without L1 and L2 penalties on the parameters
or input dropout, was trained with batch normalisation between dense layers, with a SELU
activation function, and with a single trained dispersion parameter per gene in the output for
the negative binomial reconstruction loss.

We used random projection as a baseline embedding model to contextualise our reported
model performance. For this, we utilised the SparseRandomProjection() method from scikit-
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learn (v0.24.1) [210]. As with all other models, we fit the model on the training data and
project the test data to reduced dimensions (64 in this case). We then reconstructed the
original dimensionality of the data by multiplying the reduced data with the components of
the fitted random projection model. To allow computation of the losses, we considered any
negative values in the reconstruction invalid and converted them to a small positive number
(1e-10). We did the same for any zero values in the reconstruction. We then computed the
mean squared error of the reconstruction and the negative log-likelihood of the negative
binomial distribution with a constant scale of 1.0.

2.1.7. Data curation

The data included in this study at the time of publication, including human [9, 47, 74, 97,
211–243] and mouse [244–247] datasets, were obtained in the least-processed expression
matrix format provided by the dataset authors. The processing details are documented in the
respective data loaders within sfaira. For instance, the datasets used for zero-shot analyses
(Fig. 3.4b, Supplementary Fig. B.1) were obtained using scanpy [35] or from CELLxGENE
data collections [248–251], as described in the accompanying notebooks. No processing was
done except for applying the preprocessing layers discussed in Section 2.1.3. We selected
the protein-coding genes from the Mus_musculus.GRCh38.102 genome assembly for mice and
Homo_sapiens.GRCh38.102 for humans as the feature space.

It is important to note that the datasets listed here use many different cell type label con-
ventions. We mapped the cell type annotation from each dataset to the cell ontology and
identified the label space of each cell type predictor model per anatomic location based on the
most fine-grained cell types observed in that dataset. These cell type labels are leaf nodes of a
sub-graph that describes all cells observed in a given tissue and their ontological relationships
if one considers the directed acyclic graph of the ontology. We evaluated the accuracy and
loss of coarser labels during testing and evaluation using the aggregated cross-entropy and
accuracy metrics described in Section 2.1.5.

Where available, we held out complete datasets to evaluate model performance test metrics.
However, some organs were only represented by a single dataset in the data zoo. In such
cases, we held out a random set of 20 % of all cells as test data.
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2.2. An integrated transcriptomic cell atlas of human neural
organoids

This method section corresponds to, and is in part identical to, the one presented in the
following publication:

He, Z.*, Dony, L.*, Fleck, J. S.*, Szałata, A., Li, K. X., Sliškovic, I., Lin, H. -C., Santel, M.,
Atamian, A., Quadrato, G., Sun, J., Pasca, S. P., Camp, J. G., Theis, F. & Treutlein, B. An
integrated transcriptomic cell atlas of human neural organoids. In revision. Preprint [204] doi:
10.1101/2023.10.05.561097 (2023)

"*" denotes an equal contribution.

2.2.1. Collecting, curating, and harmonising 36 human neural organoid scRNA-seq
datasets

We collected data from 33 public human neural organoid datasets, obtained from 25 public-
ations [96, 97, 99, 101, 103, 104, 116–125, 133, 142, 193, 252–257], and combined them with
three unpublished datasets to create our atlas (Supplementary Table 1). To curate these neural
organoid datasets, we used the sfaira framework [258] (GitHub dev branch, 18th April 2023).
We obtained scRNA-seq count matrices and associated metadata from each publication’s data
availability section or directly from the authors for unpublished data. We harmonised the
metadata according to sfaira standards (https://sfaira.readthedocs.io/en/latest/addi
ng_datasets.html) and added an extra metadata column called organoid_age_days, describing
the number of days the organoid had been cultured for before collection.

Afterwards, we excluded any non-applicable subsets from the published datasets. These
included diseased samples and samples with disease-associated mutations (Huang et al. [121],
Sawada et al. [193], Khan et al. [252], Bowles et al. [253], Paulsen et al. [142]), fused organoids
(Birey et al. [118]), primary fetal data (Bhaduri et al. [103], Uzquiano et al. [257]), hormone-
treated samples (Kelava et al. [256]), data collected before neural induction (Kanton et al. [97],
Fleck et al. [254]), and share-seq data (Uzquiano et al. [257]). We then used all the remaining
datasets to create a single AnnData object [259] by harmonising them to a common feature
space using any genes of the protein_coding and lncRNA biotypes from Ensembl release 104
[260] while filling any missing genes in a dataset with zero counts.
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2.2.2. Data preprocessing

All data processing and analysis were done using scanpy [35] (v1.9.3), except where otherwise
stated. For QC and filtering of the HNOCA, we removed any cells expressing less than 200
genes. We then removed outlier cells based on two QC metrics: the number of expressed
genes and the percentage of mitochondrial counts. We first applied a z-transformation to the
relevant values across all cells to identify outlier cells. Cells with any z-transformed metric less
than -1.96 or greater than 1.96 were identified as outliers. We fitted a Gaussian distribution
to the histogram denoting the number of expressed genes per cell for any dataset collected
using the v3 chemistry by 10x Genomics and containing more than 500 cells after filtering. If
a bimodal distribution was detected, we removed any cell with fewer genes expressed than
defined by the valley between the two maxima of the distribution. We normalised the raw
read counts of all Smart-seq2 data by dividing it by the maximum gene length for each gene
provided by BioMart [261]. Next, we multiplied these normalised read counts by the median
gene length across all genes in the datasets. We treated those length-normalised counts
equivalently to raw counts from the UMI-based datasets in our downstream analyses.

We then log-normalised the expression matrix by dividing the raw counts for each cell
by the total counts in that cell and multiplying by a factor of 1,000,000 before taking
the natural logarithm of each count+1. We computed 3000 highly variable features in a
batch-aware manner using the scanpy highly_variable_genes() function (flavor = "seurat_v3",
batch_key = "bio_sample"). Here, bio_sample represents biological samples as provided in the
original metadata of the datasets. We used these 3000 features to compute a 50-dimensional
PCA representation of the data, which we used to compute a kNN graph (n_neighbours = 30,
metric = "cosine"). Using the kNN graph, we computed a two-dimensional UMAP embedding
[208] of the data and a coarse (resolution = 1) and fine (resolution = 80) clustering of the
unintegrated data using Leiden clustering [262].

2.2.3. Automatic marker-based cell type annotation with snapseed

We developed an auto-annotation strategy to obtain initial annotations for semi-supervised
integration. Firstly, we created a hierarchy of cell types, including progenitors, neurons, and
non-neural types, defined by a set of marker genes (available together with the analysis code
on GitHub, as stated in Section 3.2). We then used the reference similarity spectrum (RSS)
method [97] to anchor our data in a recently published human fetal brain cell atlas [46] and
constructed a kNN graph (k = 30) in the RSS space. We clustered the dataset using the Leiden

36



2. Methods

algorithm [262] (resolution = 80). We used the GPU-accelerated RAPIDS [263] implementation
provided through scanpy for both steps.

We computed the area under the receiver operating characteristic curve (AUROC) and the
detection rate across clusters for all cell type marker genes on a given level in the hierarchy.
We then calculated a score for each cell type by multiplying the maximum AUROC with the
maximum detection rate among its marker genes. Each cluster was assigned to the cell type
with the highest score. We performed this procedure recursively for all levels of the hierarchy.
We used the same procedure for the fine (resolution = 80) clustering of the unintegrated data
to obtain cell type labels as a ground-truth input for downstream benchmarking integration
methods.

We implemented this auto-annotation strategy in the snapseed Python package, which
is available on GitHub (https://github.com/devsystemslab/snapseed). snapseed is a
package to enable scalable marker-based annotation for atlas-level datasets where manual
annotation is not feasible. The package consists of three main functions: annotate() for non-
hierarchical annotation of a list of cell types with defined marker genes, annotate_hierarchy()
for annotating more complex, manually defined cell type hierarchies, and find_markers() for
fast discovery of cluster-specific features. All functions are based on a GPU-accelerated
implementation of AUROC scores using JAX (https://github.com/google/jax).

2.2.4. Semi-supervised data integration with scPoli

Conditional variational autoencoder (CVAE)-based methods have become a popular tool
for scRNA-seq data integration. They are based on a VAE architecture, where the high-
dimensional gene expression data input is first compressed into a low-dimensional latent
representation by the encoder network using a standard-normal prior and afterwards recon-
structed by the decoder network. To remove confounding batch effects from the data, CVAEs
introduce a condition covariate that is fed into the encoder and decoder network, identifying
the corresponding batch of each cell. Because of this additional information, the latent
representation no longer contains the batch information and can be used as an integrated data
embedding. scPoli [82] is a recent CVAE-based data integration tool, which uses learnable
conditional embeddings and prototypes for biological covariates to be conserved during
training, such as cell type labels. We used the scPoli [82] model from the scArches [42]
package to integrate the HNOCA datasets. To define the batch covariate for integration, we
concatenated the dataset identifier (id) with the annotation of biological replicates (bio_sample)
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and technical replicates (tech_sample), resulting in 396 batches. The model represents the batch
covariate as a learned vector of size 5. We used the top three RSS-based snapseed cell type
annotation levels as the cell type label input for the scPoli prototype loss. We chose a hidden
layer size of 1024 for the one-layer scPoli encoder and decoder, respectively, and the latent
embedding dimension as 10. We used a value of 100 for the alpha_epoch_anneal parameter.
We did not use the unlabelled prototype pretraining. We trained the model for seven epochs,
including five pretraining epochs.

Figure 2.1.: The scPoli model architecture enables semi-supervised data integration. scPoli

uses an extended CVAE architecture to remove confounding batch variation with
learnable conditional embeddings. An additional prototype loss enables the
inclusion of cell type label information in the training procedure to create a final
embedding that groups the same cell types together across datasets. L, total loss;
LVAE, CVAE loss; Lproto, prototype loss. Adapted from [82] (Licensed under the
Creative Commons Attribution 4.0 International license: https://creativecomm
ons.org/licenses/by/4.0/).
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2.2.5. Benchmarking of data integration

Due to the plethora of available scRNA-seq data integration tools, we resorted to a structured
benchmark to identify the most suitable model for our data. Please refer to [78] for an
in-depth explanation of the applied benchmark. We used the GPU-accelerated scib-metrics

Python package (v0.3.3, https://github.com/YosefLab/scib-metrics) to quantitatively
compare the results of integrating the organoid atlas with different tools. We selected the
method with the highest overall performance. We compared the data integration performance
across the following integration approaches: unintegrated PCA, RSS [97] integration, scVI
[40] integration (default parameters except for using 2 layers, latent space of size 30, and
negative binomial likelihood), scANVI [81] integrations using either the snapseed level 1, 2,
or 3 annotation as cell type label input, scPoli [82] integrations using either the snapseed

level 1, 2, or 3 annotation or all three annotation levels at once as cell type label input, scPoli

integrations of meta-cells aggregated with the aggrecell algorithm (first employed as pseudocell
[97]) using either the snapseed level 1 or 3 annotation as cell type label input to scPoli.

We used several scores [78] provided by the scib-metrics package to determine integration
quality, including Leiden normalised mutual information score, Leiden adjusted rand index, average
silhouette width per cell type label, isolated label score (average silhouette width-scored), and
cell type local inverse Simpson’s index to quantify conservation of biological variability. To
quantify batch effect removal, we used average silhouette width per batch label, integration local
inverse Simpson’s index, kNN batch-effect test (also known as kBET) score, and graph connectivity.
We ranked integration approaches by an aggregate total score of all metrics, individually
normalised into the range between zero and one.

Before benchmarking, we removed any cells from the dataset with the identical latent
representation as another cell across each integrated embedding. We repeated this process
until none of the latent representations contained any more duplicate rows, removing a total
of 3293 duplicate cells (0.002 % of the entire dataset). This was necessary for the benchmarking
algorithm to complete without errors. We used the snapseed level 3 cell type annotation,
computed on the unintegrated PCA embedding as ground-truth labels for the benchmark.

2.2.6. Pseudo time inference

Neural optimal transport is a powerful new framework that can be applied to compute
trajectories in scRNA-seq data by transporting cells across time points while minimising
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displacement costs. Please refer to [264] for an in-depth explanation of this framework. We
used a real-time-informed pseudo time based on neural optimal transport [264] in the scPoli

latent space to infer a global ordering of differentiation state. We grouped organoid age into
seven bins using the number of days in culture: (0, 15], (15, 30], (30,60], (60, 90], (90, 120],
(120, 150], (150, 450]). We solved a temporal neural problem using moscot [265]. We used the
score_genes_for_marginals() method to get proliferation and apoptosis scores for each cell and
scored the marginal distributions based on expected proliferation rates. We then calculated
marginal weights as exp(4(proli f _score − apoptosis_score)).

We solved the optimal transport problem using the following parameters: iterations = 25000,
compute_wasserstein_baseline = False, batch_size = 1024, patience = 100, pretrain = True,
train_size = 1. To determine displacement vectors for each cell in age bin i, we used the
subproblem corresponding to the [i, i + 1] transport map. We used the subproblem [i − 1, i]
for the last age bin. We calculated displacement vectors by subtracting the original cell
distribution from the transported distribution. We used the velocity kernel from CellRank

[63] to calculate a transition matrix from displacement vectors. We then used this matrix as an
input for computing diffusion maps [57]. Lastly, we determined pseudo-temporal ordering
by ranking the negative of the first diffusion component.

2.2.7. Preprocessing primary fetal brain data

We obtained the scRNA-seq data of the primary fetal brain atlas [46] processed with Cell

Ranger from GitHub (https://storage.googleapis.com/linnarsson-lab-human/human_d
ev_GRCh38-3.0.0.h5ad). We removed cells with fewer than 300 detected genes for QC. We
normalised the transcript counts for each cell by the total count, scaled them by a factor of
10,000, and log-transformed the resulting values. The feature set was intersected with all genes
detected in the organoid atlas, and using Donor as the batch key, we selected the 2000 top
highly variable genes (HVGs) with the scanpy function highly_variable_genes(). Moreover, we
created an additional column, neuron_ntt_label, to represent the neurotransmitter transporter
(NTT) subtype labels that were automatically classified based on the cell cluster metadata
AutoAnnotation column (https://github.com/linnarsson-lab/developing-human-brain/f
iles/9755350/table_S2.xlsx).
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2.2.8. Mapping the organoid atlas to the primary reference data

We compared our organoid atlas with data from the abovementioned primary human brain
atlas [46] using scArches [42]. scArches is a query-to-reference mapping tool that uses a
method called architecture surgery on CVAE-type embedding models to project query data
onto reference atlases. See Fig. 2.2 for an illustration and outline of the architecture surgery
workflow. First, we pre-trained a scVI model [40] on the primary atlas with Donor as the batch
key. The model was constructed with the following parameters: n_latent = 20, n_layers = 2,
n_hidden = 256, use_layer_norm = "both", use_batch_norm = "none", encode_covariates = True,
dropout_rate = 0.2, and trained with a batch size of 1024 for a maximum of 500 epochs with
an early stopping criterion. Next, we finetuned the model with scANVI [81], using Subregion
and CellClass as cell type labels, with a batch size of 1024 for a maximum of 100 epochs,
with an early stopping criterion and n_samples_per_label = 100. We used the scArches

[42] implementation provided by scVI-tools [266, 267] to project the organoids atlas to the
primary atlas. The query model was finetuned with a batch size of 1024 for a maximum of
100 epochs, with an early stopping criterion and weight_decay = 0.0.

2.2.9. Construction of the bipartite weighted kNN graph

We used the joint embedding of the primary reference [46] and query (HNOCA) data to
compute an unweighted bipartite kNN graph by identifying the 100 nearest neighbours of
each query cell in the reference data. This computation was done using either PyNNDescent

or RAPIDS-cuML (https://github.com/rapidsai/cuml) in Python, depending on the
availability of GPU acceleration. Similarly, we built a reference kNN graph by identifying the
100 nearest neighbours of each reference cell in the reference data. We used the Jaccard index
(J(A, B) = |AB||AB|) to represent the similarity of the reference neighbours of two connected
cells for each edge in the reference-query bipartite graph. We used the square of the Jaccard
index as the weight of the edge between reference and query in the bipartite weighted kNN
graph.
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Figure 2.2.: The scArches query-to-reference mapping pipeline. scArches uses a CVAE-
based model (as chosen by the user) that is trained with the reference data.
When mapping query data onto this reference using architecture surgery, the
reference network weights are fixed, and a query adapter is added to the network
architecture. During query mapping, only the weights of the adapter are trained.
After query training, the reference and query data can be projected together
through the network, yielding an integrated embedding. Adapted from [42]
(Licensed under the Creative Commons Attribution 4.0 International license:
https://creativecommons.org/licenses/by/4.0/).
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2.2.10. Transferring labels from primary to organoid data using the weighted kNN
graph

The weighted kNN graph estimated between the primary reference [46] and query (HNOCA)
allows transferring categorical metadata labels of reference to query cells via majority voting.
We calculated the support of each category for every query cell as the sum of weights of
edges that link to reference cells in that category. The query cell was assigned the category
with the largest support.

We constrained the transfer procedure for the final regional labels of non-telencephalic NPCs
and neurons and the NTT labels for non-telencephalic neurons. For regional labels, only
non-telencephalic regions with the finest resolution, such as the hypothalamus, thalamus,
midbrain dorsal, midbrain ventral, cerebellum, pons, and medulla, were considered as valid
categories for transfer. To transfer NTT labels, we first identified valid region-NTT label
pairs in the reference based on the provided NTT labels in the reference neuroblast and
neuron clusters. Their most common regions were then re-estimated hierarchically to the
abovementioned finest resolution. While transferring NTT labels, we considered only valid
NTT labels for the repective brain region during majority voting for each non-telencephalic
neuron with the regional label transferred.

2.2.11. Computing organoid presence scores for primary developing brain cell
types

In simple terms, the presence score is a score given to each cell in the reference dataset
that describes the chance of that cell type or state appearing in the query dataset. Here, we
calculated the presence scores of primary atlas cells in each HNOCA dataset to determine
how often a cell type or state represented by each primary cell appeared in each HNOCA
dataset.

Specifically, we subset the weighted kNN graph for each HNOCA dataset and calculated
the raw weighted degree for each cell in the primary atlas as the sum of the weights of
the remaining edges linked to the cell. We applied a random walk with restart procedure
to smooth the raw scores across the kNN graph of the primary atlas. For this, we first
row-normalised the reference data kNN graph adjacency matrix (A), to convert it into a
transition probability matrix (P). With the raw scores represented as a vector s0, in each
iteration t, we generated st as st = as0 + (1 − a)PTst−1.
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We repeated the described procedure 100 times to obtain smooth presence scores, which
we then log-transformed. We trimmed scores lower than the 5th or higher than the 95th
percentile. The trimmed scores were normalised to fall within the range of 0 to 1, and these
became the final presence scores for the respective HNOCA dataset. The maximum presence
score for the entire HNOCA dataset was calculated as the highest of all the presence scores
for each cell in the primary atlas. A high maximum presence score (close to 1) indicates that
the cell type or state appeared frequently in at least one HNOCA dataset. In contrast, a low
maximum presence score (close to 0) suggests that the cell type or state was under-represented
in all HNOCA datasets.

2.2.12. Morphogen effects on cell type composition

We used the pertpy (https://github.com/theislab/pertpy) implementation of the scCODA
algorithm [268] to test for changes in cell type composition upon administering morphogens
from different organoid differentiation protocols. scCODA is a Bayesian model to detect
and quantify compositional changes in scRNA-seq data. We extracted information about
the added morphogens from each differentiation protocol. We grouped them into 15 broad
molecule groups based on their role in neural differentiation (Supplementary Table S1) and
used them as covariates in the model. We used the region labels transferred from the primary
atlas as cell_type_identifier labels in the analysis, using the coarse level 1 cell type labels for
cell types without regional identity. We removed the very early developmental cell types,
pluripotent stem cells and neuroepithelium cells, from the dataset for this analysis. We
used our bio_sample annotation as the sample_identifier in scCODA. We ran the algorithm
sequentially with default parameters, using No-U-turn sampling (run_nuts() function). We
used each cell type once as a reference to apply a majority vote-based system for identifying
the cell types that were credibly differential in more than half of the iterations.

Additionally, we developed a second approach to test for differential composition using
regularised linear regression. Our technique involved fitting a generalised linear model
with the region composition matrix as the response variable Y and molecule usage as the
independent variable X: Y ∼ Xβ

We used lasso regularisation (α = 1) with Gaussian noise and an identity link function.
The regularisation parameter λ was determined automatically through cross-validation,
implemented in the function cv.glmnet() from the glmnet [269] R package. We considered all
non-zero coefficients β as indications of enrichment and depletion.
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2.2.13. Identifying systematic pathway differences between organoids and
primary fetal cells

To compare the transcriptomes of organoid and primary cells, we analysed the HNOCA
dataset by selecting only the cells labelled Neuron based on the final level 1 annotation.
We also used the human developing brain atlas, focusing on cells with a valid label in the
neuron_ntt_label annotation column. We also included two other fetal cortical cell datasets
[48, 98]. The data from Camp et al. [98] was further subsetted to cells labelled fetal, and we
estimated the transcripts per million reads for each gene in each cell using RSEM [270] based
on the STAR [271] mapping results. We performed PCA, kNN graph construction, UMAP
[208], and Leiden clustering [262] (resolution 0.2) using scanpy and identified the cluster with
the highest STMN2 and NEUROD6 expression as the cortical neuron cluster and used only
those cells. The data from Eze et al. [48] was subsetted to cells annotated as Neuronal in the
publications’ Supplementary Table 5 (Cortex Annotations). We then performed PCA, kNN
graph construction, and UMAP [208] to visualise the dataset. We found that only samples
from the individuals CS14_3, CS20, CS22, and CS20 contained detectable expression of STMN2
and NEUROD6, so we further subsetted the dataset to cells from those individuals.

To compare the gene expression differences between HNOCA cells and their primary coun-
terparts, we combined cells of the same regional neuronal cell type into pseudobulk samples
using the Python implementation of decoupler [272] (v1.4.0). We added up the counts for
each sample and discarded any samples with less than ten cells or a total count of fewer than
1000 (sample annotation columns: batch for HNOCA, SampleID for the human developing
brain atlas, sample for Camp et al. and individual for Eze et al.). We then selected the intersection
of features in all datasets and removed cells with fewer than 200 genes expressed. We also
removed any genes expressed in less than 1 % of neurons in HNOCA and any genes located
on the X and Y chromosomes. We removed samples from the pseudobulk data associated
with an organoid differentiation assay that contributed less than two total samples or fewer
than 100 total cells for each regional neural cell type.

We used the edgeR [273] gene-wise negative binomial generalised linear model with quasi-
likelihood F-tests to iteratively compute DEGs between each organoid differentiation protocol
and primary cells of the matching regional neural cell types while correcting for organoid
age in days, the number of cells per pseudobulk sample, as well as median and standard
deviation of the number of detected genes per pseudobulk sample. We used the human
developing brain atlas data, Eze et al. data, and Camp et al. data as primary data for the
DE comparison in the cell type Dorsal Telencephalic Neuron NT-VGLUT. We used the human
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developing brain atlas as the sole reference for all other cell types. To determine which
genes were significantly differentially expressed, we checked their false discovery rate (FDR)
(Benjamini-Hochberg)-corrected p-value, which had to be below 0.05, and their absolute log2
fold-change (log2FC), which had to be above 0.5.

We used the GSEApy [274] Python package with the GO_Biological_Process_2021 gene set to
perform a functional enrichment analysis on our DE results.

2.2.14. Comparing the transcriptomic fidelity of different neuronal organoid cell
types to their primary counterparts

To estimate the similarity of neurons in HNOCA and their primary counterparts, we started by
computing the average gene expression for each neural cell type in the reference data [46] and
the HNOCA. We only considered the neural cell types of an HNOCA dataset if it contained
at least 20 cells. We used a Chi-squared test-based variance ratio test on the generalised linear
model with a Gamma distribution (identity link) to identify HVGs across the neural cell types
in the primary reference. We set the coefficient of variance of transcript counts across neural
cell types as the response and the reciprocal of average transcript counts across neural cell
types as the independent variable. We considered genes with Benjamini-Hochberg adjusted
p-values less than 0.01 as highly variable. Finally, we calculated the similarity between one
neural cell type in the primary atlas and its counterpart in each HNOCA dataset as the
Spearman correlation coefficient across the identified HVGs.

We determined the similarity of core transcriptomic identity between organoid and fetal cells
by comparing the co-expression of TFs obtained from the AnimalTFDB 4.0 database [275]. We
focused on TFs in the HVG list and computed Spearman correlations for the comparison.

We identified cells under metabolic stress using the scanpy score_genes() function with default
parameters to calculate scores for the canonical glycolysis gene set obtained from the enrichR
[276, 277] GO_Biological_Process_2021 database. We included all neuronal cells from HNOCA
and primary references of Braun et al. [46], Eze et al. [48], and Camp et al. [98] in this analysis.

In order to determine the robustness of the identified difference between the correlation
of glycolysis scores and the similarity of the entire transcriptome versus the correlation of
glycolysis scores and the similarity of the core transcriptome (based on TFs), we created 100
sets of HVGs, each of the same size as the highly variable TFs. We computed transcriptomic
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similarities using these sets and then evaluated their correlation with the glycolysis scores.

2.2.15. Reference mapping of the neural organoid morphogen screen scRNA-seq
data to the human developing brain atlas and HNOCA

We mapped scRNA-seq data from the neural organoid morphogen screen to two of our
models with scArches [42]: the scANVI [81] model of the human developing brain atlas
[46] and the scPoli [82] model of the HNOCA. See Fig. 2.2 for an overview of the scArches

reference mapping workflow. We used the dataset field of the screen data as the batch covariate,
containing the following categories: organoid screen, secondary organoid screen, or fetal striatum
21pcw. To map to the primary reference, we used the scVI-tools [266] implementation of
scArches without using cell type annotations and trained the model for 500 epochs with
weight_decay = 0 and otherwise default parameters. To map to the HNOCA, we utilised
scArches through scPoli and trained the model for 500 epochs without unlabelled prototype
training.
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2.3. Chronic exposure to glucocorticoids amplifies inhibitory neuron
cell fate during human neurodevelopment in organoids

This method section corresponds to, and is in part identical to, the one presented in the
following publication:

Dony, L., Krontira, A. C., Kaspar, L., Ahmad, R., Demirel, I. S., Grochowicz, M., Schäfer,
T., Begum, F., Sportelli, V., Raimundo, C., Koedel, M., Labeur, M., Cappello, S., Theis, F.
J., Cruceanu, C.*, Binder, E. B.* Chronic exposure to glucocorticoids amplifies inhibitory
neuron cell fate during human neurodevelopment in organoids. In review. Preprint [205] doi:
10.1101/2024.01.21.576532 (2024)

"*" denotes an equal contribution.

2.3.1. Stem cell culture

We used two human iPSC lines for this study. The first cell line was reprogrammed using
human iPSCs from skin fibroblasts (HPS0076:409b2, RIKEN BRC cell bank, female) [278,
279]. Here, we refer to it as Line 409b2. The second cell line was reprogrammed using a
plasmid-based protocol for integration-free human iPSCs from peripheral blood mononuclear
cells (PBMCs) from a female donor through the BeCOME study [280]. Here, we refer to it
as Line FOK4. MTA approvals were obtained for both human iPSC lines. Human iPSCs
were cultured in Matrigel-coated (1:100 diluted in DMEM-F12 (Gibco™, 31330-038), Corning
Incorporated, 354277) Costar® 6-well cell culture plates (Corning Incorporated, 3516) in
mTESR1 Basal Medium (STEMCELL Technologies, 85851) supplemented with 1x mTESR1
Supplement (STEMCELL Technologies, 85852) at 37 °C with 5 % CO2. Passaging was performed
with Gentle Cell Dissociation Reagent (STEMCELL Technologies, 07174). RevitaCell Supplement
(1:100 diluted, Gibco™, A2644501) was added for 24 hours after passaging to promote cell
survival.

2.3.2. Generating neural organoids

With some modifications, we generated unguided human neural organoids as previously
described [113]: Human iPSCs were dissociated in StemPro Accutase Cell Dissociation Reagent

48

https://doi.org/10.1101/2024.01.21.576532


2. Methods

(Life Technologies, A1110501). Single cells (n = 9000) were dispensed into each well of an
Ultra-low attachment 96-well plate with round bottom wells (Corning Incorporated, 7007)
in human embryonic stem cell medium (DMEM/F12-GlutaMAX (Gibco™, 31331-028) with 20 %
Knockout Serum Replacement (Gibco™, 10828-028), 3 % Fetal Bovine Serum (Gibco™, 16141-061),
1 % non-essential amino acids (Gibco™, 11140-035), 0.1 mM 2-mercaptoethanol (Gibco™, 31350-
010)) supplemented with 4 ng/ml human recombinant Fibroblast Growth Factor (Peprotech,
100-18B) and 50 µM Rock inhibitor Y27632 (Millipore, SCM075) for 4 days and in human
embryonic stem cell medium without bFGF and Rock inhibitor for an additional 2 days to
form embryoid bodies. On day 6, the medium was changed to neural induction medium
(DMEM/F12 GlutaMAX supplemented with 1:100 N2 supplement (Gibco™, 15502-048), 1 %
non-essential amino acids and 1 µg/ml Heparin (Sigma, H3149)) and cultured for an additional
6 days. On day 12, the embryoid bodies were embedded in Matrigel (Corning Incorporated,
354234) drops and transferred to 10-cm cell culture plates (TPP, 93100) in neural differentiation
medium without vitamin-A (DMEM/F12GlutaMAX and Neurobasal (Gibco™, 21103-049) in a
1:1 ratio, additionally supplemented with 1:100 N2 supplement 1:100 B27 without Vitamin A
(Gibco™, 12587-010), 0.5 % non-essential amino acids, insulin 2.5 µg/ml (Gibco™, 19278), 1:100
Antibiotic-Antimycotic (Gibco™, 15240-062) and 50 µM 2-mercaptoethanol) for 4 days. On day
16, Organoids were transferred onto an orbital shaker in NDM+A medium (same composition
as neural differentiation medium without vitamin-A with the addition of B27 with Vitamin A
(Gibco™, 17504-044) in place of B27 without Vitamin A) and were grown in these conditions at
37°C with 5 % CO2. NDM+A medium was changed twice weekly until the organoids were
collected for cryopreservation, single-cell dissociation, or fixation in paraformaldehyde.

To validate the inhibitory-excitatory neural lineage effects of GCs, we generated guided
ventral organoids as previously described [281]: Embryoid bodies were formed starting
from iPSCs dissociated into single cells using Accutase (Sigma-Aldrich, A6964) (n = 9,000).
Five days later, to induce brain regionalisation during the neuronal induction, embryoid
bodies were treated individually with SAG (1:10,000) (Millipore, 566660) and IWP-2 (1:2,000)
(Sigma-Aldrich, I0536) for ventral identity and with cyclopamine A (1:500) (Calbiochem, 239803)
for dorsal identity. All other culture parameters were identical to the ones described above
for unguided organoids.

2.3.3. Generating and validating a neuron-specific fluorescent reporter cell line

We used Line 409b2 human iPSCs to generate an enhanced green fluorescent protein
(eGFP)+/GAD1+ heterozygous iPSC line. Guide RNA (gRNA) (crRNA and tracrRNA,
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IDT) for editing with the recombinant S.p. HiFi Cas9 Nuclease V3 protein (IDT) was selected
to cut efficiently at a short distance from the ATG start codon of the GAD1 gene by using
the Benchling web tool (https://benchling.com). A 1611 nt donor single-stranded oligo
DNA nucleotides (ssODNs) (IDT) for homology-directed recombination was designed to have
homology arms of 222-300 nt on either side of the insert DNA, a 717 nt sequence encoding
for eGFP followed by the 3’UTR and the polyA signal. Lipofection (reverse transfection) was
performed using the alt-CRISPR manufacturer’s protocol (IDT) with a final concentration
of 10 nM of the gRNA, ssODN donor, and Cas9. In brief, 0.75 µL RNAiMAX (Invitrogen,
13778075) and the RNP mix (gRNA, ssODN, and Cas9 protein) were separately diluted in 25
µL OPTI-MEM (Gibco, 1985-062) each and incubated at room temperature for 5 min. Both
dilutions were mixed to yield 50 µL of OPTI-MEM. The lipofection mix was incubated for
20–30 min at room temperature. Cells were dissociated with Accutase (Life Technologies)
for 6 min and counted during incubation. The lipofection mix, 100 µL containing 50,000
dissociated cells in mTeSR1 supplemented with RevitaCell (1:100, Gibco) and the 2 µM M3814
NHEJ inhibitor [282] was thoroughly mixed and placed in 1 well of a 96-well plate covered
with Matrigel matrix (Corning, 35248). The media was exchanged to regular mTeSR1 media
(StemCell Technologies) containing the NHEJ inhibitor after 24 h. Single-cell–derived clonal
cell lines were analysed and genotyped by PCR using genomic DNA isolated with Quick-
Extract DNA Extraction Solution (Lucigen) and primers binding within and downstream the
modified region (Primer 1) or in the HAs (Primer 2).

Appendix A.1 lists the exact nucleotide sequences used for this work.

2.3.4. Dexamethasone exposure

The organoids were subjected to GCs by dissolving dexamethasone in dimethyl sulfoxide and
mixing it with the NDM+A culture medium. Dexamethasone was first diluted in dimethyl
sulfoxide at 100 µM and then further diluted in the NDM+A culture medium to a final
concentration of 100 nM. The organoids in the vehicle control group (referred to as Veh in
this thesis) received equal amounts of dimethyl sulfoxide. We replaced the supplemented
media every two days during chronic exposures (days 60-70 in culture). Some organoids
were collected on day 70 after being exposed for ten days. Other organoids from the same
batch were further cultured in regular unsupplemented media for a 20-day wash-out period.
This was followed by an acute exposure (at day 90 in culture) to 100nM dexamethasone or
dimethyl sulfoxide for 12 hours.
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2.3.5. Immunohistochemistry

We fixed organoids with 4 % paraformaldehyde for 45 minutes at 4°C, cryopreserved them
with 30 % sucrose, fixed them in optimal cutting temperature compound (Thermo Fisher
Scientific), and stored them at -20°C before cutting and preparation of 16 µm cryosections on
SuperFrost slides. For immunofluorescence, we postfixed sections using 4 % PFA for 10 mins
and permeabilised them with 0.3 % Triton for 5 minutes. We subsequently blocked sections
with 0.1 % TWEEN, 10 % Normal Goat Serum, and 3 % BSA. We diluted primary and sec-
ondary antibodies in blocking solution and visualised and analysed the fluorescent stainings
with a Leica laser-scanning confocal microscope. Before fixing with paraformaldehyde, we
retrieved antigens for staining with green fluorescent protein (GFP) and PBX3 or PAX6 and
SATB2. More specifically, we incubated the slides in citric buffer (0.01 M, pH 6.0) for 1 min
at 720 watts and 10 mins at 120 watts, left them to cool down at room temperature for 20
minutes, and washed them once with PBS. Alexa-anti-chicken-488 and Alexa-anti-rabbit-647
were used as secondary antibodies. All secondary antibodies are diluted to 1 µg/ml or
1:1000.

Appendix A.2 lists the specific antibodies used in this section.

2.3.6. Cell imaging and counting

We imaged the immunofluorescence slides using the confocal mode on either the MICA
Microhub microscope (Leica) with 20x and 63x lenses or the AxioScan.Z1 Slide Scanner (Zeiss)
with a 20x lens. We used the Leica Application Suite X software (v1.4.4.26810) for imaging
on the MICA Microhub microscope. To identify cells that were positively stained for PBX3
and GFP-GAD1, as well as cells that were double-positive for PBX3 and GFP-GAD1, two
independent experimenters manually counted cells in two separate staining experiments. We
counted cells using the Cell Counter Tool in ImageJ. We reported the counts as cells/mm2

normalised by tissue surface area. We quantified the AxioScan.Z1 Slide Scanner images as
total counts per entire organoid slice (n = 5 per group). We quantified the MICA Microhub
images as one representative selected tile per mosaic organoid slide (n = 10 tiles per group).
We reported the statistical analyses as 2-sided unpaired T-tests.
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2.3.7. scRNA-seq library preparation and sequencing

We used StemPro Accutase Cell Dissociation Reagent (Life Technologies) to break down indi-
vidual cells, followed by filtration through 30 µM and 20 µM filters (Miltenyi Biotec). We
then removed any debris using a Percoll gradient (Sigma). The single cells were resuspended
in ice-cold Phosphate-Buffered Saline supplemented with 0.04 % Bovine Serum Albumin
and prepared for single-cell separation. We conducted experiments in a paired case-control
design with 2 or 4 conditions on day 70 and day 90, respectively, run in parallel. We ran
the single cells through the 10x Chromium controller to form gel emulsion beads containing
barcoded single cells, which were then prepared into single-cell libraries using the Chromium
Single Cell 3’ Reagent Kit v2 according to the manufacturer’s recommendations without any
modifications (10x Genomics). To ensure an optimal cell number, we loaded 10,000 cells per
sample onto a channel of the 10x chip. We evaluated all libraries using a High Sensitivity DNA
Analysis Kit for the 2100 Bioanalyzer (Agilent) and KAPA Library Quantification kit for Illumina
(KAPA Biosystems). The sequencing of the 10x Genomics scRNA-seq was performed on an
Illumina NovaSeq 6000 (Illumina, San Diego, CA) by the sequencing core facility of the Max
Planck Institute for Molecular Genetics (Berlin, Germany).

2.3.8. scATAC-seq library preparation and sequencing

We isolated individual cells from organoids using the scRNA-seq protocol described in the
previous section. Subsequently, we prepared the nuclei and generated scATAC-seq libraries
using the Chromium Single Cell ATAC Library & Gel Bead Kit (16 reactions, PN-1000110) without
any modifications, following the manufacturer’s instructions (10x Genomics). The sequencing
of the 10x Genomics scATAC-seq libraries was carried out on an Illumina NovaSeq 6000
(Illumina, San Diego, CA) by the sequencing core facility at the Max Planck Institute for
Molecular Genetics (Berlin, Germany).

2.3.9. scRNA-seq quality control and filtering

We produced count matrices from fastq files using 10x Genomics Cell Ranger v3.0.2
[28] and the transcriptome hg38_ensrel94 [283]. The count matrices of Line 409b2 and Line
FOK4 acutely treated and control organoids (Veh-Veh and Veh-Acu conditions), aged 90 days,
were previously used in a separate analysis [284] and are available from the Gene Expression
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Omnibus repository (accession: GSE189534). We reprocessed and reanalysed all data using the
scverse [267] packages scanpy [35] v1.9.3 and anndata [259] v0.9.1 with Python v3.10.12,
unless stated otherwise.

For QC, we removed cells with less than 1200 UMI counts, cells with more than 150,000 UMI
counts, cells with less than 700 genes expressed, and cells with 25 % or more mitochondrial
UMI counts. Additionally, we removed any genes expressed in less than 20 cells after cell
filtering.

For the second QC step, we computed an initial clustering of the entire dataset using Louvain
clustering (louvain Python package v0.8.0, https://github.com/vtraag/louvain-igraph)
with appropriate preprocessing and a resolution of 0.5. We removed two samples (409b2-
D70-Chr-V1, 409b2-D70-Veh-V2) that mainly clustered separately from all other samples.
Furthermore, we removed three additional samples (409b2-D70-Veh-C1, FOK4-D90-Veh-Veh-C1,
FOK4-D90-Veh-Veh-C2) that had low numbers of expressed genes or a sequencing saturation
below 35 %, as reported by 10x Genomics Cell Ranger.

For the final QC step, we reclustered the data using the same procedure as before and
computed marker genes using the rank_genes_groups() function of scanpy with default
parameters. We removed any clusters containing mostly mesenchymal cells, epithelial cells,
myocytes, neuroectoderm, neural stem cells, macrophages, or fibroblasts based on the marker
gene signature.

2.3.10. Preprocessing scRNA-seq data and annotating cell types

We applied the following steps separately to the data obtained from Line 409b2 and Line
FOK4.

We computed normalisation size factors using the scran [285] R package v1.22.1 (R v4.1.2)
with the appropriate preprocessing to obtain an initial coarse clustering of the data as required
for this approach. We normalised the raw counts of each cell by the respective size factor and
consequently log(1 + x)-transformed them. We computed four thousand HVGs based on the
log-normalised counts using the cell_ranger flavour [28]. We computed a PCA representation
[210], kNN graph [208], force-directed graph drawing (https://github.com/bhargavchippa
da/forceatlas2) [286], Louvain clustering (https://github.com/vtraag/louvain-igraph)
[262], and partition-based graph abstraction [59] with default parameters. We used the layout
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obtained from plotting the partition-based graph abstraction results with a threshold of 0.05
as initialisation to compute a UMAP [208] with default parameters.

We ranked genes for each cluster and then sub-clustered or merged the clusters where
appropriate. We assigned cell type identities to the clusters by comparing the top-ranking
genes per cluster with known marker genes from developmental neurobiology. This resulted
in identifying eight cell types and one cluster of unknown identity.

2.3.11. Filtering non-viable cells

We applied the following steps separately to the data obtained from Line 409b2 and Line
FOK4.

To identify cells in non-viable metabolic states, we scored the following Gene Ontology
Biological Process genesets [287, 288] using the respective scanpy function with default
parameters in every cell. As previously suggested [104], we used glycolytic process (GO:0006096)
and response to endoplasmic reticulum stress (GO:0034976) as negative markers of cell viability
and gliogenesis (GO:0042043), neurogenesis (GO:0022008), and previously reported marker
genes of the ChP [124] as positive markers of cell viability. We scaled each score to the
range (0,1). We computed a joint cell viability score by adding all scaled positive viability
scores, subtracting the sum of all scaled negative viability scores, and scaling the final score
to the range (0,1). Based on the final score, we identified the Unknown cell cluster as mostly
non-viable and removed it from the dataset. Additionally, we identified cells with a final
viability score of less than or equal to 0.4 as non-viable cells and removed them from the
dataset.

Following the removal of non-viable cells, we computed HVGs, a PCA representation, a kNN
graph, a force-directed graph drawing, partition-based graph abstraction (threshold 0.001 for
computing the layout), and UMAP, following the same procedure described in the section
above.

2.3.12. Reference mapping to the Human Neural Organoid Cell Atlas

We used scPoli [82] from the scArches [42] package v0.5.9 to project the scRNA-seq data
acquired in our study to the HNOCA using the query-to-reference-mapping. See Fig. 2.1
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for an illustration of the scPoli architecture and Fig. 2.2 for an illustration of the scArches

workflow. We obtained the HNOCA data and the scPoli integration model weights used
in the original study from https://github.com/theislab/neural_organoid_atlas. We
subset the feature space of our datasets to the feature space used in the obtained model and
filled any missing genes with zero expression. We then trained the query model for five
pre-training epochs and one training epoch with unlabelled prototype training enabled. We
annealed the model hyperparameter alpha over 10 epochs and set the model hyperparameter
eta to 5. After that, we fed the data acquired in our study and the HNOCA data through
the trained model, which produced a mapped latent representation. We used this mapped
latent representation as input for the kNN graph and UMAP computation. To contextualise
the data generated in our study, we used cell type annotations from the HNOCA annotation
column annot_level_2, as shown in Fig. 3.8 of this thesis.

2.3.13. Computing differentially expressed genes

We used the R tool MAST [289] v1.20.0 (R v4.1.2) to compute DEGs per cell type between
treatment conditions on log-normalised expression data. We carried out this analysis separ-
ately for the two source cell lines and removed samples that contained less than ten cells of a
given cell type. Additionally, we removed genes expressed in less than 5 % of cells of a given
cell type to compute DEGs for that cell type. We fit a hurdle model for each cell type and
source cell line according to the following formula:

∼ ngeneson + treatment_acute + treatment_chronic + treatment_chronic : treatment_acute

where ngeneson corresponds to the number of expressed genes in the sample, treatment_chronic
corresponds to the 10-day treatment applied between day 60 and day 70 (Veh or Chr), and
treatment_acute corresponds to the 12-hour treatment applied at day 90 (Veh, Acu or None for
samples collected at 70 days in culture). We used a likelihood-ratio test to test for DEGs at
D70 (chronic effect) and D90 (chronic and acute effect).

We considered only genes with a FDR-corrected p-value of less than 0.1 in both source cell
lines and agreeing direction of log2FC as differentially expressed (consensus DEGs). This
approach helped us reduce the number of false-positive DEGs. We used the UpSetPlot v0.8.0
Python package (https://github.com/jnothman/UpSetPlot) to visualize the DEGs.
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2.3.14. Enrichment analyses

We computed consensus DEGs as described in the previous section and used them as input
for the enrichment analysis. We performed the enrichment analysis using the Python

implementation of enrichR [276, 277] via the GSEApy [274] package v1.0.5 with default
parameters. For the annotation of biological function, we used the GO_Biological_Process_2021
geneset provided by enrichR. We used the ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X
geneset provided by enrichR to perform TF target enrichments. For better coverage of TFs,
we used a second database for this enrichment: CollectTRI [290], obtained via the Python

implementation of decoupler [272] v1.4.0. We considered any hits with a FDR of less than
0.1 significantly enriched.

We summarised and visualised the Gene Ontology enrichment results using GO-Figure [291]
v1.0.1. The go.obo version used was releases/2021-05-01, the go.obo version used to create GO
relations was releases/2023-04-01, and the similarity_cutoff was 0.2.

2.3.15. Processing published neural organoid validation data

We downloaded count data, associated metadata, and gene names from ArrayExpress (acces-
sion: E-MTAB-7552) as stated in the data availability section of the associated publication [97].
We subsetted the dataset to cells from the study’s 70-day-old organoid cell line comparison
section and removed any cells from cell line 409b2 or without a cell type label. We also
removed genes expressed in less than 10 remaining cells from the dataset. We then normalised
raw counts per cell to the median total counts per cell in the dataset and log(1 + x)-transformed
them. Next, we computed HVGs and a PCA representation, as with our original datasets.
We computed an integrated kNN graph using the batch-balanced kNN algorithm [292] (bbknn

Python package v1.5.1) using cell line as a batch key and neighbours_within_batch = 5
with otherwise default parameters of the scanpy .external implementation. We computed a
UMAP representation and force-directed graph drawing from this integrated kNN graph
with default parameters. In this dataset, we identified the Cortical neurons cluster and the LGE
interneurons cluster as the excitatory and inhibitory neuron cell types, respectively.
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2.3.16. Inferring trajectories and computing driver genes

We removed the RGS5+ Neuron cluster from the dataset for Line 409b2 and Line FOK4 data,
followed by recomputing HVGs, a PCA representation, the kNN graph, a force-directed
graph drawing, partition-based graph abstraction (threshold 0.001 for computing the layout),
and a UMAP representation. We applied all the steps described in this section separately to
the data derived from Line 409b2, Line FOK4, and the external validation data.

To compute a pseudo time, we used the scanpy .external implementation of Palantir

[58] following the manual selection of an early cell within a progenitor cluster for each
dataset (RG for Line 409b2 and FOK4, Cortical NPCs for the validation data). First, we
computed a Palantir diffusion map with five diffusion components and otherwise default
parameters. Second, we computed a t-distributed stochastic neighbourhood embedding [293]
representation on the first two components of the Palantir multi-scale data matrix with
a perplexity of 150 and otherwise default parameters. We used the resulting embedding
to compute the Palantir pseudo time, sampling 500 waypoints and otherwise default
parameters.

For computing lineage probabilities based on the Palantir pseudo time, we used CellRank

[63, 294]. We installed CellRank from the GitHub main branch (https://github.com/theis
lab/cellrank) at commit c3ced63 (earliest stable version including this commit: v2.0.1). We
initiated the CellRank pseudo time kernel with the Palantir pseudo time and computed a
transition matrix. This, in turn, was used to initiate the GPCCA [295] estimator, which allowed
us to compute macrostates from the transition matrix. We manually selected inhibitory and
excitatory neuron trajectory endpoints (plus an additional ChP endpoint in Line 409b2 and
FOK4 data) from the computed macrostates and used them to compute each cell’s fate
probabilities and terminal state’s fate. We further used CellRank to compute lineage drivers
for each terminal state, correcting for FDR and discarding any drivers where the significance
of the driver correlation could not be computed. We deemed a driver gene with an FDR below
5 % significant in all downstream analyses. We used the SciPy [296] implementation of the
t-test on two related samples of scores to compute the significance of the difference between
the alignment of consensus DEGs and driver gene directionality between the excitatory and
inhibitory neuron lineages across three datasets.

For visualising gene trends, we used the kNN-smoothing on the expression data, as im-
plemented in the scVelo [61] v0.2.5 moments() function, with 30 principal components and
otherwise default parameters. Using this data, we fitted gene trends using the GAMR model
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[297] with 7 knots and plotted them along Palantir pseudo time.

2.3.17. Processing published fetal brain reference data

We downloaded the Cell Ranger-processed count matrices from the recently published
first-trimester fetal brain atlas [46] using the link provided by the authors (https://st
orage.googleapis.com/linnarsson-lab-human/human_dev_GRCh38-3.0.0.h5ad). We
obtained the associated metadata for organoid age, 10x Chromium chemistry version, and
NTT annotations from supplementary tables S1 and S2 of the publication: https://github.c
om/linnarsson-lab/developing-human-brain/files/9755355/table_S1.xlsx and https:

//github.com/linnarsson-lab/developing-human-brain/files/9755350/table_S2.xlsx.
We removed any genes expressed in less than 20 cells and cells with less than 200 genes
expressed in the dataset. Then, we normalised the total counts of each cell to 10,000 and
log(1 + x)-transformed them. Using the CellClass annotation provided by the authors, we
subset the dataset to the clusters Neuron, Neuroblast, Neuronal IPC, and Radial glia.

Using the Chemistry annotation, we subset the dataset to cells collected by the 10x Genomics
3’ v2 chemistry. We removed cells expressing neither the GABA NTT nor any glutamate
NTTs from the dataset. We also removed cells expressing both the GABA NTT and any of the
glutamate NTTs from the dataset. Finally, we created a new metadata column NTT_simplified,
indicating whether the GABA NTT or any of the glutamate NTTs were expressed in each
cell.

2.3.18. Preprocessing scATAC-seq data

We produced count matrices from fastq files using 10x Genomics Cell Ranger ATAC [298]
v2.0.0 with the reference GRCh38 (Ensembl release 94) [283]. Unless stated otherwise, we
performed all downstream analyses using the R packages Signac [299] v1.9.0 and Seurat

[219] v4.3.0 (R v4.1.2). We loaded the aggregated and filtered peak-barcode matrix from 10x
Genomics Cell Ranger ATAC and the associated fragments file and metadata with Signac.
We discarded any features detected in less than 10 cells and any cells with less than 200
detected features from the dataset. We used gene annotations from the EnsDb.Hsapiens.v86
package v2.99.0 (https://bioconductor.org/packages/release/data/annotation/html/E
nsDb.Hsapiens.v86.html). We computed transcription start site enrichment, nucleosome
signal, and the fraction of reads in peaks per cell with Signac. We used AMULET [300]
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from the GitHub main branch (https://github.com/UcarLab/AMULET) at commit 9ce413f for
detecting and removing doublet cells from the dataset.

We conducted QC on the cells in the dataset and retained only those that met all following
criteria: over 1,000 fragments in peak regions, less than 100,000 fragments in peak regions,
transcription start-site enrichment score greater than 2.7, transcription start-site enrichment
score smaller than 10, over 30 % reads in peaks, blacklist ratio smaller than 0.66 and a
nucleosome signal ratio below 10. This removed 7 % of cells, leaving us with 20,616 remaining
cells. We then performed TF-IDF normalisation [301], identified top features (min.cutoff = ’q0’),
conducted singular value decomposition, computed a kNN graph, calculated a UMAP
representation [208], and finally clustered the data [302]. We computed gene activities and
log-normalised ChromVar [303] activities using the BSgenome.Hsapiens.NCBI.GRCh38 genome
(https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapie
ns.NCBI.GRCh38.html) and motif position frequency matrices from the JASPAR2020 database
(https://bioconductor.org/packages/release/data/annotation/html/JASPAR2020.html)
[304].

2.3.19. Integrating scRNA-seq and scATAC-seq data

We carried out the integration described in this section individually for the GC-exposed and
vehicle data (scRNA-seq and scATAC-seq) from 90 days-old organoids (Veh-Veh and Chr-Veh
conditions) using the Python package GLUE [305] v0.3.2.

We saved the scATAC-seq data as an h5ad object by exporting it to Python using anndata2ri

v1.1 (https://github.com/theislab/anndata2ri) automatic conversion. We then subset the
data for the respective treatment condition and reduced it to 101 dimensions using 15 latent
semantic indexing iterations, as implemented in GLUE. We discarded the first dimension as it
usually correlates strongly with read depth. Using cosine similarity as a metric, we used the
resulting representation to compute a kNN graph as implemented in the scanpy [35] package.
This was followed by UMAP [208] computation also using the scanpy implementation.

Next, we processed the raw scRNA-seq count data by subsetting it to the respective treatment
condition and using the scanpy package with default parameters unless stated otherwise for
the following processing steps: HVG computation (n_top_genes = 2000, flavor = "seurat_v3"),
count normalisation per cell to the median total counts per cell in the dataset, log(1 + x)-
transformation, scaling each feature to unit variance and zero mean, computation of 100
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principle components, kNN graph computation using the cosine similarity metric, and UMAP
computation.

We then computed a GLUE RNA-anchored guidance graph using the scRNA-seq and scATAC-
seq data. We fitted a GLUE model using a negative binomial probability distribution and
highly variable features from both data modalities. We used principal components as a
reduced representation of the scRNA-seq data together with the latent semantic indexing
embedding of the scATAC-seq data. We passed the data from both modalities through
the trained GLUE model and used the resulting concatenated representation to compute a
combined kNN graph and UMAP representation of the data. We used a bipartite matching
approach [306], as implemented in the scim package (https://github.com/ratschlab/scim,
master branch, commit 6392e65), to match cells from both modalities one by one into metacells.
If no scATAC-seq match was found for a scRNA-seq observation, we used only the scRNA-
seq information. We calculated the GLUE latent vector of the cell as the average latent
vector of the matched cells and used it for joint kNN graph and UMAP computation for
data visualisation. Finally, we used the Python implementation of MAGIC [307] (https:
//github.com/KrishnaswamyLab/MAGIC) to impute gene activities on the matched dataset
using k = 15 neighbours, decay = 1, thresh = 1e-4, and four nearest neighbours for kernel
bandwidth computation.

2.3.20. Gene-regulatory network inference

Inferring GRNs has been a longstanding challenge in systems biology. However, the emer-
gence of single-cell genomics technologies has propelled the development of various GRN
inference methods in recent years. These methods typically operate on scRNA-seq data,
scATAC-seq data, or multimodal data combining gene expression and chromatin accessibility
information. This information is then combined with prior information cis-regulatory ele-
ments and TF motifs to infer the GRN (Fig. 2.3). Including chromatin accessibility data in the
inference task generally improves performance as this data bears relevant information on, for
example, the accessibility of TF binding sites. In cases where only unpaired scRNA-seq and
scATAC-seq data are available, their prior integration with tools like GLUE [305] enables the
use of GRN inference tools relying on multimodal data input. Known limitations of GRN
inference approaches from single-cell genomics data are, for example, the sparsity of the data
and the lack of complete TF motif information. Please refer to [308] for an in-depth review of
GRN inference in the era of single-cell genomics.
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Figure 2.3.: Common multimodal GRN inference pipeline. Preprocessed scRNA-seq data
provides gene expression information. In case of this being the only data available,
the GRN is constructed by fitting a model which predicts gene expression from
TF expression levels alone. Preprocessed scATAC-seq data provides chromatin
accessibility information for cis-regulatory elements (CREs) that can be associated
with genes by, for example, simple distance measures. TF motif databases asso-
ciate TFs with CREs. Merging these data sources creates TF–CRE–gene triplets
which can be aggregated into a GRN. In cases of multimodal data being available,
gene expression information can further improve the prediction by informing the
TF–CRE–gene triplet association. Reproduced from [308] with permission from
Springer Nature.
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The R tool Pando [254] has been developed for GRN inference in neural organoids and
leverages multimodal data and prior information, including TF motifs, known cis-regulatory
elements and evolutionary conservation. We used Pando v1.0.3 (https://github.com/quadb
io/Pando) with R v4.1.2, in conjunction with Signac v1.9.0 and Seurat v4.3.0 (for prepro-
cessing), to infer GRNs from the integrated multimodal data separately for the two treatment
conditions (as in the integration step). First, we loaded the integrated metadata into a Seurat

object and individually preprocessed the data of the two modalities. Next, we embedded the
scATAC-seq peaks in low-dimensional space using TF-IDF normalisation [301], top feature
identification (min.cutoff = ’q0’), and singular value decomposition. We log-normalised the
scRNA-seq data (normalisation.method = "LogNormalize", scale.factor = 10000), identified
top features (selection.method = "vst", features = 4000), scaled the data, and computed a
PCA representation. We initiated the GRN using both data modalities and conserved regions
from mammals as included in Pando (phastConsElements20Mammals.UCSC.hg38). Finally, we
scanned candidate regions for TF binding sites, as provided by Pando (motif2tf data). We used
the resulting data and initialised network to infer the GRN (peak_to_gene_method = ’Signac’,
method = ’glm’) followed by gene module identification (p_thresh = 0.1, nvar_thresh = 2,
min_genes _per_module = 1, rsq_thresh = 0.05). We used ggplot2 [309] v3.4.2 and ggraph
(https://github.com/thomasp85/ggraph) v2.1.0 to generate TF-centered GRN visualisa-
tions.

As we conducted multimodal analyses exclusively in Line 409b2, we applied a stricter FDR
cutoff of 5 % to define a DEG for all DE analyses presented in Section 3.3.6 of this thesis.

2.3.21. Statistical testing

We used the SciPy [296] implementation of the t-test for the means of two independent
samples to test for significance throughout Section 3.3, unless stated otherwise. We computed
correlation coefficients using the SciPy implementation of the Pearson correlation coefficient
and p-value for testing non-correlation throughout Section 3.3, unless stated otherwise.
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In this chapter, I report the results of this thesis in three main sections. In Section 3.1, I
describe the sfaira data and model zoo and outline how it can aid scRNA-seq data curation
and analysis. sfaira greatly facilitated the data curation of the HNOCA. In Section 3.2, I
detail the construction of HNOCA and the insights it provides into the current landscape
of neural organoid scRNA-seq data. Using HNOCA as a neural organoid reference dataset
helped contextualise the new scRNA-seq data generated in Section 3.3. This section describes
a neural organoid treatment paradigm with GCs that unveils some of the effects of excess GC
exposure on the developing brain.

My contributions to this chapter’s work are detailed at the beginning of each main section.

3.1. Sfaira accelerates data and model reuse in single-cell genomics

This result section corresponds to, and is in part identical to, the one presented in the
following publication:

Fischer, D. S.*, Dony, L.*, König, M., Moeed, A., Zappia, L., Heumos, L., Tritschler, S.,
Holmberg, O., Aliee, H. & Theis, F. J. Sfaira accelerates data and model reuse in single cell
genomics. Genome Biology 22, 248. doi:10.1186/s13059-021-02452-6 (2021)

"*" denotes an equal contribution.

The sfaira package is available on GitHub: https://github.com/theislab/sfaira.

With respect to the aims of this thesis, this section addresses Challenge 1, as outlined in
Section 1.4: Single-cell genomics technologies have enabled many scientific breakthroughs
over the past years, and the number of publicly available scRNA-seq datasets is growing
rapidly. Public data can provide a rich resource to augment and contextualise new studies
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through integrated atlases. However, data curation and reuse have remained challenging and
time-consuming due to a lack of metadata standardisation and consistent data formats in the
field.

My contributions to the results presented here are as follows: Together with David Fischer, I
wrote the package code and carried out the analysis for the publication. I also led the data
curation and model training with support from David Fischer. With input from the other
authors, I designed the organoid-specific metadata scheme.

sfaira is a comprehensive repository for streamlined scRNA-seq datasets and pre-trained end-
to-end analysis models (Fig. 3.1). By integrating a model zoo with a data repository containing
datasets from numerous sources with streamlined metadata, we facilitate access to datasets
and pre-trained models (Section 3.1.1). The datasets provided use established ontologies for
most available metadata annotations and can be easily queried through summary statistics to
contextualise new observations (Section 3.1.2).

Through its unified interface, sfaira allows for the automated training of cell type clas-
sification and embedding models across a wide range of tissues and species, drastically
reducing the time and work required for a first embedding and cell type annotation of new
datasets (Section 3.1.3). It introduces a novel method to handle varying resolutions of cell
type annotations during model training and a user-friendly interface, facilitating the curation
of additional datasets (Section 3.1.5). sfaira is designed to be model-agnostic, serving as a
versatile platform for deploying and accessing models. This openness and our structured
model versioning system encourage the exchange of models between developers and users,
facilitating model sharing (Section 3.1.4). Beyond practical benefits, sfaira addresses the need
for model interpretability and generalisability. It uses a unified feature space that includes
all genes, allowing for a comprehensive analysis of gene contributions to model outcomes
without discarding low-variance features. This approach enables a deeper understanding of
the latent space dimensions concerning gene activity (Section 3.1.8) and enables zero-shot
inference on new datasets (Section 3.1.6). Moreover, sfaira showcases models trained on
highly varied datasets without relying on covariates like organ type or experimental method
(Section 3.1.7). Ultimately, sfaira aims to promote model reuse and extensive profiling across
a broad spectrum of standardised datasets, enhancing the efficiency and scope of research in
the field.
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Figure 3.1.: sfaira provides access to streamlined scRNA-seq datasets and automates key
steps in exploratory data analysis. The sfaira dataset and parameter API. The
sfaira dataset API provides streamlined access to scRNA-seq data scattered
across different public repositories. The sfaira model API can process these
datasets to generate automated embedding and cell type assignment using pre-
trained models stored on cloud servers via the sfaira parameter API. Adapted
from [258] (Licensed under the Creative Commons Attribution 4.0 International
license: https://creativecommons.org/licenses/by/4.0/).
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3.1.1. A unified framework for accessing datasets, models, annotations, and model
parameters

At the time of publication, sfaira encompassed 41 studies with 220 datasets and 8.0 million
cells (Fig. 3.2) and has since been extended (see Section 4.1). Our data zoo supports advanced
data queries based on metadata like organism, tissue type, and experimental protocol,
incorporating standardised cell ontology labels [66] for consistent cell type annotation across
datasets. Additionally, sfaira integrates ontologies for diseases [310], anatomy [68], cell lines
[311], experimental methods [67], and more to enhance compatibility between queried datasets.
Furthermore, the comprehensive metadata annotation fields enable the differentiation of
multiple tissue sources, including primary tissue, tumour tissue, two-dimensional cell culture,
and three-dimensional organoid models. sfaira provides specific annotation fields for
the efficient management of organoid data, such as for the source cell line, the type of
differentiation protocol and the exact protocol reference. sfaira supports advanced data
subsetting queries across annotation hierarchies via ontologies. The feature space of any
queried dataset can be automatically mapped to a provided genome assembly and annotation
for easy concatenation of different datasets.

The model zoo component provides a seamless interface and diverse model implementations,
simplifying model usage without navigating technical details. Provided models include
supervised linear and non-linear cell type classification models and both linear and non-linear
neural-network-based embedding models. Users can easily access pre-trained models and
their parameters, facilitating efficient model application within Python workflows. We
employ a global versioning system for models and parameters, ensuring reproducibility and
ease of access.

3.1.2. Scalable and streamlined data access and management with the sfaira data
zoo

Addressing the challenge of managing large, heterogeneous, on-disk data collections, sfaira’s
data zoo utilises data-set-specific loader classes for efficient data interaction. These classes sup-
port easy creation, maintenance, and usage, benefitting from the rich functionality provided by
pre-implemented parent classes. The zoo also introduces lazy-loaded dataset representations
for subsetting data before loading into memory. It further provides options for storing data in
h5ad-based backed anndata [259] objects or collections for use with distributed-computing
frameworks like dask (https://dask.org/).
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Figure 3.2.: The sfaira data zoo encompasses a comprehensive collection of human and
mouse scRNA-seq datasets. Summary of the sfaira data zoo for mouse and
human scRNA-seq samples at the time of publication, representing 220 datasets
and 8.0 million cells. Adapted from [258] (Licensed under the Creative Commons
Attribution 4.0 International license: https://creativecommons.org/licenses
/by/4.0/).
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sfaira provides streamlined access to large, cross-study datasets, allowing easy data statistics
queries. One common query is gene-based, which can help put observations in context.
For example, having a reference range for gene expression levels observed with scRNA-seq
can aid interpretation. This can be done with sfaira via a simple query. An example is
Ins1 expression across organs and cell types in mice, as shown in Fig. 3.3a. We find Ins1
expression in a range between 0 and 2500 normalised counts in mice, with all expression
coming from pancreatic cell types. It is worth noting that summary metrics per cell type are
often more helpful than dataset averages, which can be skewed towards frequent cell types or
extrema, such as maximum expression, which can be heavily influenced by the variance of
the expression distribution. We next analysed gene-gene dependencies, which can be used to
establish regulatory relationships through correlation. We investigated the correlation of two
cell-cycle-associated genes, Mcm5 and Pcna (Fig. 3.3b), to obtain a range for their correlation
and estimate how often these genes’ expression correlates across tissues.

Another query type is based on subsetting operations across cells using cell and dataset
metadata, enabled by the homogenous ontology-based metadata annotation across datasets
in sfaira. We also implemented relational reasoning of hierarchical metadata items based on
ontologies, which is critical to obtaining meaningful subsets. We showcase a few exemplary
data zoo summary statistics using metadata-based queries in Fig. 3.3c-g. Complexity plots of
the total number of cells versus the number of most fine-grained cell type labels per organ
generated with sfaira provide a guideline for the prioritisation of organs for further cell
type discovery (Fig. 3.3c). Focusing on cell types, we queried the fraction of T cells across
organs (Fig. 3.3d). Such an analysis can help characterise specific cell types across organs
and datasets. Lastly, we compiled a summary of total reads per cell summary statistics and
protocol summary statistics (Fig. 3.3e-g).

3.1.3. Automated single-cell data analysis with sfaira

End-to-end parametric approaches can eliminate the need for feature engineering. This
has been a significant breakthrough in image-based deep learning [312]. In single-cell
analyses, feature engineering refers to the initial analysis steps, such as normalisation, log-
transformation, gene filtering, selecting components from PCA, and batch correction [39,
313] (Fig. 3.4a). These steps are necessary to obtain meaningful embeddings and clusterings.
However, they can be a bottleneck in analysis workflows.

Pretrained embedding models can generate latent spaces amenable to downstream tasks
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Figure 3.3.: Contextualising data statistics with the sfaira data zoo. a. Comparing gene
expression patterns across organs. Mean normalised expression of Ins1 by organ
and cell type across mouse datasets shows pancreas-specific expression. b. Distri-
bution of Pearson correlation coefficients between the two cell-cycle-associated
genes Pcna and Mcm5 across mouse datasets by organ and cell type. c. The
number of cells in the sfaira data zoo per organism and organ versus the number
of cell types reveals a broad range of dataset complexity. d. Querying cell type
fractions in tissues across organisms with sfaira. This shows the fraction of
T cells per mouse dataset, grouped by organ. e. Quering technical statistics of
datasets with sfaira: mean total counts per cell in mouse and human organs
for 10x Chromium datasets. f. Number of datasets in the data zoo across ex-
perimental protocol at the time of publication. g. Mean total counts per dataset
by protocol (using UMIs where available, otherwise reads). Reproduced from
[258] (Licensed under the Creative Commons Attribution 4.0 International license:
https://creativecommons.org/licenses/by/4.0/).
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without prior feature engineering. For instance, we processed human PBMC data in a
standard preprocessing workflow [35, 39] and compared the result to a UMAP [208] of a
linear model embedding. Both approaches separated annotated cell types into distinct clusters,
demonstrating that both captured the biological heterogeneity of the system (Fig. 3.4b). We
performed four additional zero-shot analysis examples on unseen data (Supplementary Fig.
B.1) [248–251]. Quantifying the reconstruction error of the respective embedding model
allows the comparison of different embeddings. In this reconstruction task, the linear model
achieved a mean negative log-likelihood of 0.16.

We utilised sfaira’s automated cell type annotation feature to label cells and investigate
whether we could facilitate data interpretation with a preliminary proposal of cell type labels.
We used a multi-layer perceptron model trained on different datasets to predict cell types,
obtaining comparable results to the labels from the curated annotation (Fig. 3.4b). It is worth
noting that with the addition of more data and improved classifier models trained on them,
these initial annotations can become increasingly fine-grained. This example demonstrates
that pre-trained embedding and cell type classification models can perform an automated
initial analysis of scRNA-seq data, which can be further refined as required. In the next
section, we elaborate on the pre-training details of such cell type classifiers and embedding
models that allow these workflows to be executed on a large scale.

3.1.4. Facilitating model distribution for reproducible on-premise analyses

sfaira offers two types of model classes: gene expression reconstruction models (embedding
models) and supervised classification models for cell type labelling (Fig. 3.1). These models
are defined by their input and output spaces and architecture hyperparameters. sfaira

also allows the integration of other model classes for additional purposes. Input feature
space standardisation is made easy by coupling input gene sets to genome assemblies and
functional annotation of gene sets. For instance, one can define an input feature space as
the protein-coding genes in GRCh38 version 102 (Fig. 3.1). The label space of cell type
classifiers is a set of cell types in the cell ontology [66], making hierarchical labels defined in
the ontology available to the cost function of the model.

The implemented models cover a range of popular approaches: matrix factorisations, AEs,
and VAEs for reconstruction models, as well as logistic regression models and multi-layer
perceptrons for cell type classification. Third-party organisations can maintain their own
public and private repositories of model weights (model zoos) on servers or in local directories

70



3. Results

Figure 3.4.: Sfaira drastically facilitates and partially automates exploratory analysis of
scRNA-seq data. a. Standard manual scRNA-seq data analysis pipeline and
automated sfaira analysis pipeline. b. Comparison of analysis results from a
manual feature engineering workflow with the results from the sfaira-automated
embedding and cell type annotation on a human PBMC dataset. Shown are
UMAPs representations from a PCA of a manually engineered feature space and
a latent space of a linear sfaira embedding model. Colours show manual cell
type labels and automatically predicted sfaira cell type labels. Reproduced from
[258] (Licensed under the Creative Commons Attribution 4.0 International license:
https://creativecommons.org/licenses/by/4.0/).
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on-site, mitigating data privacy concerns. These parameter set versions are identified by the
organisation that performed model training, the training data, and optimisation hyperpara-
meters used to train the model. Versioning parameter sets by the organisation, input data and
hyperparameters allows for incremental updates as new data or improved estimates become
available in an ongoing grid search across optimisation hyperparameters.

sfaira provides an infrastructure that enables end-users to switch easily between different
model types from various providers, facilitating model distribution and access. This reduces
the effort required to implement and compare models, thereby improving decisions on pre-
trained model usage. Additionally, decentralised storage of model weights enables the model
zoo to respond quickly to new developments in the community.

3.1.5. Leveraging the cell ontology hierarchy to manage diverging annotation
granularity

New biological insights, for example, from atlassing studies, can lead to amendments to
existing cell type labels. This poses a significant challenge in deploying predictive models
for cell type labels based on scRNA-seq data [314]. To address this issue, we link models to
specific ontology versions and allow manual ontology extensions by the user to capture new
developments as they emerge. Another challenge is that cell types in published studies are
often annotated at varying resolutions. One study might report leukocytes in a given tissue,
while a different study might operate at a finer resolution, distinguishing between T cells
and macrophages. To solve this problem without time-consuming reannotation of all data, we
propose the usage of aggregated cross-entropy, an adaptation of the common cross-entropy loss
and an accuracy metric that can assign observations to single labels or sets of labels during
training and testing (Fig. 3.5a, Section 2.1.5).

Previous research suggests that linear models can predict cell types accurately [315]. We
trained three classes of models: logistic regression models, multi-layer densely connected
feedforward neural networks, and a novel marker gene-centric linear model. The latter
operates in a learned marker gene space, where a sigmoid mapping first transforms each
gene into a binary on-off state. This approach can facilitate model interpretation and enables
integration of prior knowledge via parameter priors in the marker state embedding layer. In
agreement with previous findings on selected organs [316] (Fig. 3.5b,c), models generally
performed equally well, with a median accuracy of 0.64 in human and 0.93 in mouse
samples. The data zoo enables streamlined training of the models. It allowed us to relate
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classifier performance to class frequencies (Fig. 3.5d,e) and zoom into individual classes
(Supplementary Fig. B.2).

3.1.6. Serving embedding models for transfer learning

Embedding models produce a low-dimensional data representation necessary for many
downstream analyses. Some frequently used models for representation learning on scRNA-
seq are PCA, nonnegative matrix factorisation [317, 318], AEs [41], and VAEs [40]. Embedding
models have been successfully used in transfer learning [317, 318], where public data informs
the learned representations. However, encoder-decoder-based workflows in unsupervised
scRNA-seq data analysis usually involve refitting the model on each new dataset for two
reasons. Firstly, it is challenging to identify applicable pre-trained models in the literature.
Secondly, unsuccessful transfer training of pre-trained models may result in unresolved
relevant variation in the data, such as new cell states. sfaira provides users with a structured
zoo of embedding models. It offers an extensive data library for pre-training, reducing the
probability of unseen components of variation relevant to the test task during training. In this
study, we benchmark our models on an extensive data collection to demonstrate that these
limitations do not apply to the provided models.

We defined whole-dataset-based test splits for data from across organs to see how well
the models can handle unseen confounding effects. The human and mouse lung dataset
embeddings exemplify that cell types are well separated (Fig. 3.6a,b). We used four classes
of embedding models to compare reconstruction errors in cross-validation splits across 35
human and 25 mouse tissues. We found that linear models perform comparably to non-linear
models, with a median top-performing negative log-likelihood of 0.13 for human and 0.50 for
mouse samples (Fig. 3.6c,d). Linear models also perform well for human PBMC data, with
a best-achieved negative log-likelihood of 0.08, which is similar to the reconstruction error
found on the held-out PBMC data (Fig. 3.4b). These models outperform baseline random
projection models, showing that scRNA-seq data can be reconstructed well by pre-trained
linear models (Section 2.1.6, Supplementary Fig. B.3) .

sfaira improves embedding analyses in three ways. Firstly, we remove the need for grid
searches or feature engineering by deploying pre-trained models with optimised hyperpara-
meters. Secondly, we facilitate future analyses given that previously annotated architecture
choices, such as bottleneck dimensions, can be applied to a new study, thereby adding value
beyond pure representation capabilities. Finally, we facilitate the inherently more challenging
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Figure 3.5.: sfaira uses the cell ontology [66] to train models on datasets with diverging
annotation resolution. a. Example of loss aggregation for diverging cell type
annotation granularity (see Section 2.1.5). The y-axis contains leaf nodes of the cell
ontology, which can be combined linearly to yield the predicted probability mass
of any coarser node in the ontology graph (x-axis). b., c. Cell type classification
accuracy in mouse (b) and human (c) organs on fully held-out test-datasets. linear,
linear classifier (logistic regression); marker; marker gene-based classifier; mlp,
multilayer percetron. d., e. Class-wise F1 prediction scores by the number of cell
types per class of cell type classifiers by model on lung data from mouse (d) and
human (e) tissue show a correlation between the two variables. Reproduced from
[258] (Licensed under the Creative Commons Attribution 4.0 International license:
https://creativecommons.org/licenses/by/4.0/).
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training of highly interpretable models by providing streamlined access to diverse datasets.
The presented embedding models exemplify candidates compatible with a model zoo, but
further pre-trained model classes could be used in the single-cell context [319].

3.1.7. Diverse training data induces model regularisation

Data integration is a delicate balance between removing technical effects resulting in inter-
sample variance, and preserving biologically meaningful variance [39]. Instead of explicitly
removing inter-sample variance, we focus on embedding models that can detect axes of
biologically meaningful variation in an unseen dataset, a technique known as zero-shot
learning [320]. One of the challenges in this approach is distinguishing between models
that capture only the relevant axes of variation and models that simply capture all variation
in the data, known as overfitting. Regularisation methods such as L1 or L2 parameter
constraints, dropout mechanisms [41], and dimension bottlenecks in latent representations
can help alleviate overfitting. While these methods can limit the degrees of freedom in
over-parameterised models, they generally do not improve model interpretability.

An alternative approach is using a highly diverse training dataset while preserving the
model capacity to encourage learning higher data abstractions instead of overfitting the
entire training domain. This approach contrasts with using variance-explaining covariates in
conditional embedding models, commonly used in data integration studies, to remove domain
differences through a projection mechanism [42]. sfaira provides an extensive streamlined
data zoo, enabling the successful training of embedding models on large scRNA-seq datasets
spanning different studies and entire organisms (Fig. 3.6e,f). In summary, sfaira facilitates
model regularisation through highly diverse training datasets to extend data reuse from
projection-based data integration to pre-trained higher-abstraction embedding models.

3.1.8. Gradient maps for interpreting non-linear embedding models

Many scRNA-seq embedding models are based on PCA for its interpretability since it
allows a straightforward interpretation of latent dimensions as linear combinations of input
features. Similarly, gradient maps from bottleneck activations to input features enable
local interpretations in non-linear embeddings of encoder-decoder networks. Gradient
maps promise to offer a higher-level view of GRNs by correlating bottleneck dimensions
to molecular pathways or similar complex regulatory elements. Our study found that
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Figure 3.6.: Training streamlined embedding models across tissues and on whole atlases
with sfaira. a., b. sfaira’s pre-trained embedding models can meaningfully
embed unseen data. UMAP of the latent space of the best-performing embedding
model for pancreas data from human (a) and mouse (b). The superimposed
colours correspond to the original, author-provided cell type labels. c., d. Re-
construction loss comparison across organs and organisms. We use the negative
binomial likelihood as a metric on reconstructed held-out test data with different
embedding models on human (c) and mouse (d) data. linear, a PCA-like linear
model; nmf, non-negative matrix factorisation; ae, AE; vae, VAE. e., f. sfaira en-
ables the training of embedding models on extensive datasets. UMAP of the latent
space of an embedding model trained on all mouse data in the sfaira data zoo at
the time of publication with the dataset (e) and cell type (f) labels superimposed.
Reproduced from [258] (Licensed under the Creative Commons Attribution 4.0
International license: https://creativecommons.org/licenses/by/4.0/).
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gradient maps of the embedding space to the model input grouped similar cell types within
a hierarchical clustering of the gradient correlation matrix, recapitulating cellular ontology
relationships in two sample datasets (Fig. 3.7a, Supplementary Fig. B.4a).

We also found that linear models and AEs are comparable in the number of features high-
lighted by these gradient-based mechanisms per cell type (Fig. 3.7a, Supplementary Fig.
B.4a) and have a similarly shaped marginal distribution of normalised gradients (Fig. 3.7b,
Supplementary Fig. B.4b). Additionally, models trained on smaller datasets tend to collapse
to only using a fraction of the gene space and representing cells based on feature correlations
in this space. Growing datasets require learning more complex representations, and any such
model collapse can be readily identified with gradient-based approaches.
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Figure 3.7.: Gradient-based model interpretation and data regularisation of non-conditional
embedding models: linear and AE embedding models for human oesophagus.
a. Correlation of cell type-wise aggregated gradients of the latent space with
respect to the input features. b. Distribution of feature-wise aggregated gradients
of the latent space with respect to the input features. Reproduced from [258]
(Licensed under the Creative Commons Attribution 4.0 International license:
https://creativecommons.org/licenses/by/4.0/).
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3.2. An integrated transcriptomic cell atlas of human neural
organoids

This result section corresponds to, and is in part identical to, the one presented in the
following publication:

He, Z.*, Dony, L.*, Fleck, J. S.*, Szałata, A., Li, K. X., Sliškovic, I., Lin, H. -C., Santel, M.,
Atamian, A., Quadrato, G., Sun, J., Pasca, S. P., Camp, J. G., Theis, F. & Treutlein, B. An
integrated transcriptomic cell atlas of human neural organoids. In revision. Preprint [204] doi:
10.1101/2023.10.05.561097 (2023)

"*" denotes an equal contribution.

The HNOCA Supplementary Tables 1-6 referenced in this section are available online: https:
//www.biorxiv.org/content/10.1101/2023.10.05.561097v1.supplementary-material.
The code used in the analysis of the results presented in this section is available on GitHub:
https://github.com/theislab/neural_organoid_atlas.

With respect to the aims of this thesis, this section addresses Challenge 2, as outlined in
Section 1.4: The curation of large-scale transcriptomic cell atlases can uncover the mechanisms
underlying development and disease. The human brain is one of the most complex organs
in the human body and is critical to our overall health and well-being. Neural organoids
have emerged as powerful in vitro models of human neurodevelopment. Combining a large
number of existing neural organoid scRNA-seq datasets into a comprehensive single-cell
atlas would uncover underrepresented sections of the developing human brain in organoid
models. It would further provide insight into systematic transcriptomic differences between
organoids and primary fetal brain and pave the way towards more faithful organoid model
systems. It would also enable the rapid and effective contextualisation of newly generated
neural organoid datasets.

My contributions to the results presented here are as follows: Together with Zhisong He
and Jonas S. Fleck, I collected and retrieved the scRNA-seq data included in HNOCA with
suggestions from Sergiu P. Pasca, J. Grayson Camp and Barbara Treutlein. Together with
Zhisong He, I performed the DE and transcriptomic comparison analysis with support from
Irena Sliškovic and Katelyn X. Li. Together with Katelyn X. Li, Irena Sliškovic and Artur
Szałata, I curated the HNOCA data and harmonised the associated metadata. I performed
HNOCA data preprocessing and integration with support from Katelyn X. Li and Irena
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Sliškovic. Together with Zhisong He, Jonas S. Fleck and Artur Szałata, I developed the
HNOCA data processing pipeline. Together with Katelyn X. Li, I performed the benchmark
of integration methods. I provided input for the cell type hierarchy curation by Zhisong He
and Jonas S. Fleck. I coordinated the work of Artur Szałata, Katelyn X. Li, and Irena Sliškovic
by defining tasks and providing input where needed.

This study harmonises 36 scRNA-seq datasets from various human neural organoid protocols
to create the HNOCA (Section 3.2.1). We establish an advanced computational pipeline that
enables a thorough quantitative comparison of the organoid atlas to a recently published
reference dataset of the developing human brain [46]. By combining the two resources, we
reannotate neural and non-neural populations in organoids and estimate the capacity of
different protocols to generate neural cells from various brain regions. We thereby identify
primary cell populations under-represented in neural organoids (Section 3.2.2). We investigate
systematic transcriptional deviations from primary tissue in neural organoids and identify
a shared signature of cell stress specific to organoid-derived neurons (Section 3.2.3). Lastly,
we highlight novel cell states in a recently published neural organoid morphogen screen
[321], using the HNOCA as a reference and representation of the current neural organoid cell
landscape (Section 3.2.4). Altogether, this study provides a rich atlas resource for assessing
the fidelity of neural organoid cell states, contextualising perturbed and diseased cellular
states, and guiding future protocol development.

3.2.1. Building the Human Neural Organoid Cell Atlas

We built a transcriptomic human neural organoid atlas by collecting scRNA-seq data and
harmonising detailed technical and biological metadata from 33 published [96, 99, 101,
103, 104, 116–125, 127, 133, 142, 193, 252–257] and three unpublished datasets (HNOCA
Supplementary Table 1). We applied consistent preprocessing and QC to create the 1.77
million cell HNOCA from these datasets (Fig. 3.8a). The HNOCA includes cell types and
states generated with 26 distinct neural organoid differentiation protocols (three unguided
and 23 guided), covering a time range from seven to 450 days (Fig. 3.8b). We implemented a
three-step integration pipeline to remove batch effects:

1. We anchored our analysis in primary human fetal brain data by mapping the HNOCA
to a single-cell transcriptomic reference dataset of the developing human brain [46]
using the RSS [127] method.
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2. To enable a semi-supervised (label-aware) integration approach, we created an initial
marker-based hierarchical cell type annotation using our newly developed annotation
algorithm snapseed (see Section 2.2.3).

3. We used scPoli [82] for label-aware integration based on the snapseed annotations
created above.

Evaluating a range of unsupervised and semi-supervised data integration approaches using
the scIB pipeline [78], we identified scPoli as the top-performing method for our data
(Supplementary Fig. B.5). Following reclustering on the integrated representation, we refined
the cell type annotations based on the expression of canonical markers, organoid sample
age, as well as the auto-generated cell type labels. The integrated embedding allowed
us to identify three neuronal differentiation trajectories in UMAP [208] space linked to
the dorsal telencephalon, ventral telencephalon and non-telencephalic regions. We also
identified glial trajectories, leading from progenitor cells to astrocytes and OPCs (Fig. 3.8c-
e; Supplementary Fig. B.6). Cells from both unguided and guided protocols covered all
differentiation trajectories (Fig. 3.8f).

We computed a real-time-informed pseudo time for the dorsal telencephalic neuronal traject-
ory in the HNOCA using neural optimal transport [264] to understand the relevant dynamics
and transitions of cell states and types (Fig. 3.8h). This allowed us to observe consistent
pseudo-temporal expression profiles of genes such as the NPC marker SOX2, as well as
neuronal markers BCL11B (CTIP2) for deeper-layer neurons, and SATB2 for upper-layer
neurons (Fig. 3.8i). Sub-clustering of the non-telencephalic neurons to better resolve their
profound heterogeneity exposed numerous neuronal populations expressing distinct marker
genes (Fig. 3.8j-k).

3.2.2. Mapping the Human Neural Organoid Cell Atlas to a primary human fetal
brain reference

A comprehensive reference atlas of human neural cell types and states is necessary to refine
our annotations further and, in particular, accurately annotate the diverse non-telencephalic
neuronal populations. Matching the early developmental timepoints found in organoids, we
used a recently published scRNA-seq reference dataset of first-trimester developing human
brain [46] (Fig. 3.9a) as a reference for comparison with the HNOCA. Using scArches [42],
we projected the HNOCA onto the scANVI-integrated [81] primary fetal reference data. By
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telencephalon)(c), marker gene expression (d), sample age (e), and organoid
differentiation protocol types (f). g. HNOCA cell type (level-2) proportions.
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doing so, we could establish a shared latent space and create a bipartite weighted kNN
graph between cells in the HNOCA and the primary reference atlas. Using the graph, we
transferred the CellClass and Subregion labels, as well as the NTT information of neuroblasts
and neurons, to the HNOCA. The transferred labels were consistent with our assigned labels
(Supplementary Fig. B.7) and allowed us to refine the regional annotation of non-telencephalic
NPCs and neurons in the HNOCA, as well as the NTT annotation of the non-telencephalic
neurons (Fig. 3.9b). Altogether, these annotations comprise the final hierarchical cell type
annotation of the HNOCA (Supplementary Fig. B.7).

We assessed the ability of the different neural organoid protocols to generate neural cells
from various brain regions using the final regional annotation of the HNOCA (Fig. 3.9c;
(Supplementary Fig. B.7, B.8); HNOCA Supplementary Table 2). The results showed that the
unguided neural organoid protocols could generate cells from all brain regions with varying
proportions across datasets, indicating high variability between batches and lines. In contrast,
guided organoid protocols predominantly generated cells of the targeted brain region, high-
lighting morphogen guidance as an efficient tool to generate cells from specific brain regions.
Additionally, datasets of organoids guided to a specific region often showed enrichment of
cells from neighbouring brain regions on the neural axis. For instance, several midbrain
organoid protocols also produced higher proportions of diencephalic and rhombencephalic
neurons, indicating less precise morphogen guidance for these brain regions.

We evaluated the effectiveness of the different organoid protocols in covering the primary
neural cell type space by computing an organoid presence score for every primary cell type
(Section 2.2.11). We normalised the scores per organoid dataset (Supplementary Fig. B.9;
HNOCA Supplementary Table 3) and obtained the maximum presence score for each primary
reference cell type (Fig. 3.9d), quantifying how well it is represented in at least one HNOCA
dataset. Our analysis confirmed the absence of erythrocytes, immune cells, and vascular
endothelial cells in the HNOCA (Fig. 3.9e). These cell types are derived from non-ectodermal
germ layers during development, while organoids are generally exclusively ectoderm-derived.
We observed varying proportions of different brain regions represented across the neural cell
populations of the organoid datasets, including RG, IPs, and neurons. More than half of the
datasets were generated using protocols guiding towards the telencephalon. Accordingly,
telencephalic cell types were best represented in the HNOCA, while cell types of the thalamus,
midbrain, and cerebellum were least represented. This included thalamic reticular nucleus
(TRN) GABAergic neurons, dorsal midbrain m1-derived GABAergic neurons and m1/m2-
derived glutamatergic neurons, and cerebellar Purkinje cells (Fig. 3.9f,g). Importantly,
even though these cell types are less abundant in the HNOCA organoid datasets than in
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the primary reference, organoid protocols can generate these cell types when using the
appropriate morphogens. For example, Purkinje cells can be generated by cerebellum and
midbrain organoid protocols.

3.2.3. Comparing transcriptomes across organoid and fetal neuronal cells

Beyond cellular composition, we aimed to compare the gene expression patterns of primary
brain tissue and organoids generated through various differentiation protocols. Using
pseudobulk replicates, we identified DEGs for each neural cell type in the HNOCA by
comparing them to their matching primary reference cell type [46] (Fig. 3.10a; HNOCA
Supplementary Table 4). We found that for most neural cell types, more than a third
(mean = 39.8 %, sd = 11.5 %) of DEGs were common across at least half of the protocols
(protocol-common DEGs), indicating that a considerable fraction of the transcriptomic differ-
ences between organoid and primary cells was independent of the organoid differentiation
protocol (Fig. 3.10b). We validated our findings using an additional primary human cortical
scRNA-seq dataset [48] to ensure that the protocol-common DEGs were not an artefact of
using only a single reference dataset. We found a substantial overlap with the previously
identified protocol-common DEGs (Supplementary Fig. B.10; HNOCA Supplementary Table
5). We further identified a set of ubiquitous differentially expressed genes (uDEGs) that
were differentially expressed in at least half the differentiation protocols across at least 14
out of the 16 regional neural cell types (Fig. 3.10c). These uDEGs showed a high level of
consistency in log2FCs across neuron types and protocols, with a correlation above 0.8 for
over half of the combinations, highlighting their collective behaviour (Fig. 3.10d). Out of all
994 uDEGs, 244 genes had a negative log2FC throughout, and 622 genes consistently had a
positive log2FC, leaving only 128 genes (14 %) regulated in an inconsistent direction across
subtypes or protocols (Fig. 3.10e).

We next aimed to identify the biological pathways associated with these three groups of
uDEGs in our study. We performed an enrichment analysis of the Gene Ontology Biological
Pathways [287, 288] set to achieve this. Our analysis revealed that the downregulated
uDEGs were linked to neurodevelopmental processes such as neuron cell-cell adhesion and
synapse organisation. On the other hand, the upregulated uDEGs were enriched in multiple
metabolism-associated terms, such as mitochondrial ATP synthesis coupled electron transport
and canonical glycolysis (Fig. 3.10f). We confirmed these enriched terms using our validation
approach across multiple primary cortex reference datasets [46, 48]. We observed few to no
enriched terms in the inconsistently regulated uDEGs (Supplementary Fig. B.10).
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Creative Commons Attribution-NonCommercial 4.0 International license: https:
//creativecommons.org/licenses/by-nc/4.0/).
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It has been previously reported that the limitations of current culture media and impeded
nutrient supply can lead to metabolic changes and activation of energy-associated pathways
in neural organoids [103, 104]. Upon scoring the two most significantly enriched gene sets in
upregulated uDEGs across HNOCA and the primary reference atlas [46], we identified the
canonical glycolysis term as more specific to organoid cells and as showing a better separation
between organoid and primary cells (Fig. 3.10g). As such metabolic changes are considered a
cell culture-related phenomenon [104], we used the canonical glycolysis score as a universal
proxy for these stress effects in organoids (Supplementary Fig. B.11).

We wanted to investigate the specificity of increased glycolysis in organoids to different cell
types. Investigating the Kanton et al. [127] and Braun et al. [46] datasets as representative
examples of organoids and primary data, we found that glycolysis scores were distributed
evenly across all neural cell types but with an overall increase in organoid cells (Supplement-
ary Fig. B.11). We focused on dorsal telencephalic neurons – generated by most differentiation
protocols – to compare the distribution of glycolysis scores across these protocols. We dis-
covered that certain protocol features were correlated with metabolic cell stress, including the
use of maturation media, slicing/cutting of organoids, and, to a lesser extent, shaking/spin-
ning of organoids, all reducing metabolic stress (Fig. 3.10h). We noticed a negative correlation
between the average glycolysis scores and transcriptomic similarities of organoid and primary
reference cell types across differentiation protocols [103, 104]. Interestingly, the correlation
was much lower for variable TFs than for the entire gene space, indicating that these changes
in the metabolism of organoids only narrowly impact the core molecular identity of neuronal
cell types defined by TF activity (Supplementary Fig. B.11).

To evaluate the transcriptomic similarity between organoid and primary reference cell types
beyond metabolic effects, we analysed the expression of 366 variable TFs. We correlated TF
expression between matching primary and organoid neuronal subtypes. Our results showed
that guided and unguided protocols for organoid differentiation generated neuronal cell types
of similar fidelity, while transcriptomic differences across different brain regions were more
pronounced. For instance, organoid neurons from the dorsal part of several brain regions,
such as the dorsal telencephalon, dorsal midbrain, and cerebellum, demonstrated higher
similarity to their primary counterparts across organoid datasets than cell types derived from
the ventral part of most brain regions, such as the hypothalamus, ventral midbrain, and pons
(Fig. 3.10i).
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Figure 3.10.: Metabolic cell stress is a universal transcriptomic differentiator between or-
ganoids and fetal brain. a. DE analysis approach. b. Fraction of DEGs per
subtype-specific protocol. The top-left half corresponds to glutamatergic neurons,
while the bottom-right half corresponds to GABAergic neurons. The different
colours indicate brain regions. The x-axis shows the fraction of protocols, de-
noted as f. The y-axis shows the fraction of DEGs in at least f of the respective
subtype-specific protocols. The vertical dashed lines denote f = 0.5. c. Number
of protocol-common DEGs, per number of neural cell types that share a DEG.
If found in at least half of the respective subtype-specific protocols, we define
a DEG as protocol-common for a neural subtype. The 994 genes fulfilling this
criterion in at least 14 of 16 neural cell types are defined as uDEGs. d. Distri-
bution of correlation of uDEG log2FCs between different neural subtypes and
protocols. e. UDEGs are classified into three categories: inconsistent log2FC
(different subtypes show different DE direction), downregulated, and upreg-
ulated in organoids. f. Gene ontology enrichment analysis of downregulated
(upper, blue) and upregulated (lower, red) uDEGs. The areas correspond to
log-transformed adjusted p-values. g. Distribution of gene set scores (left: mi-
tochondrial ATP synthesis coupled electron transport, right: canonical glycolysis) in
primary neural cell types (upper, dark), and organoid counterparts (lower, light).
P-values show the significance of the two-sided Wilcoxon test. Both scores are
calculated with the score_genes() function in scanpy. h. Glycolysis score, as a
proxy of cell stress, of dorsal telencephalic excitatory neurons (dTelen VGLUT-N),
split by the three primary developing human brains and 27 organoid datasets
with at least 20 dTelen VGLUT-N. Datasets are ordered by their glycolysis score
medians. The lower panel shows selected features of differentiation protocols
potentially affecting cell stress. i. Spearman correlation between gene expression
profiles of neural cell types in HNOCA and those in the human developing
brain atlas [46], across variable TFs. Reproduced from [204] (Licensed under
the Creative Commons Attribution-NonCommercial 4.0 International license:
https://creativecommons.org/licenses/by-nc/4.0/).
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3. Results

3.2.4. Evaluating new neural organoid protocols using the Human Neural
Organoid Cell Atlas

The HNOCA and our analytical framework to compare cell type composition and transcrip-
tomic fidelity between organoids and a primary reference can also be used to contextualise
new neural organoid datasets. For example, we used this method to examine the scRNA-seq
data of a recently published multiplexed neural organoid morphogen screen [321]. Using
scArches [42], we projected the data onto the same latent spaces as the HNOCA and the
primary reference [46] (Fig. 3.11a, Supplementary Fig. B.12; HNOCA Supplementary Table 6).
As before, this allowed us to transfer regional labels from the primary reference to the query
cells. We found the predicted regional labels to be highly consistent with the original annota-
tion while providing higher resolution within each broader brain region (Fig. 3.11b). This
finer annotation allowed for a more detailed assessment of the effects of different morphogens
on neuron generation in different brain regions (Fig. 3.11c). We calculated presence scores
for each primary reference cell in each screen condition and compared them to the presence
scores obtained for the HNOCA using hierarchical clustering on average presence scores of
primary reference atlas clusters (Fig. 3.11d). We observed distinct presence score patterns
in many screen conditions, which suggests that organoids generated under these conditions
have regional cell type compositions that differ from those in the HNOCA datasets.

We summarised the max presence scores for the entire morphogen screen dataset to evaluate
which primary reference cell types showed an increased presence in the screening data.
We compared them to the respective scores calculated for the HNOCA data (Fig. 3.11e,f)
and identified multiple reference cell clusters that displayed a substantial abundance in-
crease under certain screen conditions (Fig. 3.11g). The most affected cell types included
LHX6/ACKR3/MPPED1 triple-positive GABAergic neurons in the ventral telencephalon, the
dopaminergic neurons in the ventral midbrain, and Purkinje cells in the cerebellum. Overall,
this projection of morphogen screen query data to the HNOCA and the primary reference
atlas enabled a refined regional annotation of the new data. It further allowed for an efficient
evaluation of the capacity of novel organoid differentiation protocols to generate neuronal
cell types that were previously underrepresented or absent in neural organoids.
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Figure 3.11.: Annotating and evaluating neural organoid morphogen screen scRNA-seq
data by mapping to HNOCA and the human developing brain atlas [46].
a. Projection approach for the neural organoid morphogen screen [321] scRNA-
seq data to the HNOCA, using the human developing brain atlas [46] as the
primary reference. The UMAPs show screen condition groups (left) and the
regional annotation of the screen data (right). b. Similarity of the regional
screen data annotation (rows) and the scArches-transferred regional labels from
the primary reference. c. Regional composition of cells in the screen dataset
from projection to the primary reference. Every stacked bar represents one
screened condition. d. Clustering of average primary presence scores of HNOCA
together with different conditions in the screen datasets. The dendrogram on
the left shows the hierarchical clustering result. The heatmap shows average
presence scores per cluster in the primary reference (columns), given data of
each protocol involved in HNOCA or the screen condition (rows). e. UMAP
of the primary reference data, coloured by the dissected regions (left) and the
maximum presence scores across the screen conditions (right). f. Increase in cell
cluster coverage from the screen conditions relative to HNOCA datasets, defined
as the difference of average maximum presence scores per cluster of the primary
reference with negative values trimmed to zero, between the screen dataset to
HNOCA. The grey horizontal line shows the threshold (0.3) to define gained
clusters in screen data. g. UMAP of the primary reference, with gained clusters
highlighted in shades of blue. Dashed circles highlight three clusters with the
highest coverage gain in the telencephalon, midbrain and hindbrain. h. Co-
expression scores of cluster marker genes of the three clusters highlighted in g,
in the primary reference (upper) and screen dataset (lower). Reproduced from
[204] (Licensed under the Creative Commons Attribution-NonCommercial 4.0
International license: https://creativecommons.org/licenses/by-nc/4.0/).
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3.3. Chronic exposure to glucocorticoids amplifies inhibitory neuron
cell fate during human neurodevelopment in organoids

This result section corresponds to, and is in part identical to, the one presented in the
following publication:

Dony, L., Krontira, A. C., Kaspar, L., Ahmad, R., Demirel, I. S., Grochowicz, M., Schäfer,
T., Begum, F., Sportelli, V., Raimundo, C., Koedel, M., Labeur, M., Cappello, S., Theis, F.
J., Cruceanu, C.*, Binder, E. B.* Chronic exposure to glucocorticoids amplifies inhibitory
neuron cell fate during human neurodevelopment in organoids. In review. Preprint [205] doi:
10.1101/2024.01.21.576532 (2024)

"*" denotes an equal contribution.

The GC Supplementary Tables 1-9 referenced in this section are available online: https:

//www.biorxiv.org/content/10.1101/2024.01.21.576532v1.supplementary-material.
The processed count matrices in h5ad format (scRNA-seq and scATAC-seq) with associated
metadata, as well as all the code used in the analysis of the results presented in this section is
available from Zenodo: https://doi.org/10.5281/zenodo.10391945. Raw scRNA-seq data
(including filtered count matrices) are available from the Gene Expression Omnibus repository:
GSE252522 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE252522): scRNA-
seq Veh, Chr, Chr-Veh, and Chr-Acu conditions. GSE189534 (https://www.ncbi.nlm.nih.g
ov/geo/query/acc.cgi?acc=GSE189534): scRNA-seq Veh-Veh and Veh-Acu conditions; Line
FOK4 = Line2; Line 409b2 = Line3; Veh-Veh = Veh, Veh-Acu = Dex. Raw scATAC-seq data
(including filtered count matrices) are available from the Gene Expression Omnibus repository:
GSE252523 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE252523).

Concerning the aims of this thesis, this section addresses Challenge 3, as outlined in Section
1.4: Improved in vitro models of human brain development in health and disease are the
foundation for developing future treatment strategies. Novel model systems such as neural
organoids have enabled promising advances in understanding the genetic contribution to
the onset and development of psychiatric diseases in a human context. While it is widely
accepted that environmental factors also strongly contribute to these pathological processes,
the underlying mechanisms have been investigated to a significantly smaller extent.

My contributions to the results presented here are as follows: Together with Elisabeth B.
Binder and Cristiana Cruceanu, I defined the main questions and analysis steps of this work.
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3. Results

I analysed all scRNA-seq and scATAC-seq data. I interpreted and visualised the results with
input from the other authors.

This work studies the effects of an environmental challenge during neurodevelopment on
gene expression and cell fate specification. We used the sGC dexamethasone as an example
of a common environmental challenge during in utero brain development and a known risk
factor for the development of mental illnesses. We quantified the transcriptional response of
chronic GC exposure in neural organoids with scRNA-seq directly after the administration
and following a wash-out period. We found that GC exposure does not induce significant
metabolic stress in organoids, given appropriate QC filtering. Through mapping to HNOCA,
we discovered that the neuronal lineage of our unguided organoid model covered exclusively
the non-telencephalic areas of the brain (Section 3.3.1). We further identified many critical
neurodevelopmental genes with altered transcription following chronic GC exposure (Section
3.3.2) and found that it leads to priming of the inhibitory neuron lineage (Section 3.3.3). We
observed an increased number of inhibitory neurons following GC exposure both in the
scRNA-seq data and in immunohistochemical stainings (Section 3.3.4). We identified PBX3 as
an example of an important lineage driving TF following GC exposure (Section 3.3.5) and
confirmed its association with the inhibitory neuron lineage by collecting scATAC-seq data
and constructing multimodal GRNs (Section 3.3.6). Overall, we demonstrate a robust effect
of GC exposure on neurodevelopment in organoids in the form of altered expression of key
neurodevelopmental genes and priming of the inhibitory neuron lineage.

3.3.1. Cell viability is not significantly affected by chronic glucocorticoid exposure
in neural organoids

We designed a chronic GC exposure paradigm in neural organoids to study the effects of
GCs on neurodevelopment. We constructed scRNA-seq libraries from 70-day-old organoids
exposed to GCs for ten days (Chr condition) and the respective vehicle control organoids (Veh
condition). These samples allowed us to quantify the instantaneous transcriptional effects of
chronic GC exposure. Additionally, we constructed scRNA-seq libraries from the Veh and
Chr condition organoids after an additional 20 days under standard culture conditions at day
90 (Veh-Veh and Chr-Veh conditions, respectively) to identify any lasting effects. Lastly, we
wanted to compare the transcriptional effects of chronic and acute GC exposure. We obtained
additional samples at day 90, with added 12-hour acute exposure before collection (Veh-Acu
and Chr-Acu conditions). We replicated all analyses in organoids from 2 human iPSC lines,
Line 409b2 and Line FOK4, with 4 replicates in each of the 6 conditions (Fig. 3.12).
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Figure 3.12.: Experimental setup and design schematic. We collected six treatment conditions
duplicated in organoids from two cell lines. We replicated each of these 12
conditions in four independent samples. We collected two treatment conditions
at day 70: Veh (exposed to the treatment vehicle dimethyl sulfoxide for ten
days starting from day 60) and Chr (exposed to the GC dexamethasone for ten
days starting from day 60). We derived the four additional treatment conditions
collected at day 90 from the day 70 conditions with sustained culturing in regular
media conditions for a further 20 days (wash-out period). The two conditions
derived from the Veh condition were Veh-Veh and Veh-Acu, with an additional
12-hour acute GC exposure applied. Analogously, the two day-90 conditions
derived from the Chr condition were Chr-Veh and Chr-Acu, with an additional
12-hour acute GC exposure applied. Figure created with BioRender.com and
reproduced from [205] (Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license: https://creativecommons.
org/licenses/by-nc-nd/4.0/).
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We analysed the data from the two cell lines separately, allowing us to focus on converging
trends across lines. Using known marker genes of developing neural cell types, we identified
eight out of the nine cell clusters in each of the lines (Fig. 3.13a; Supplementary Fig. B.13a):

• RG (GPM6B, SOX2)

• NPCs expressing cell cycle markers (TOP2A, MKI67)

• IPs (EOMES, PAX6)

• Excitatory Neurons (SLC17A6, STMN2)

• Inhibitory Neurons (GAD1, GAD2, SLC32A1, STMN2)

• A population of unspecified neurons expressing the G-protein regulator gene RGS5
(RGS5 Neurons) (RGS5, LINC00682, STMN2)

• Immature choroid plexus (ImmChP) cells (RSPO3, TPBG)

• Mature cells of the ChP (TTR, HTR2C, CLIC6).

We encountered difficulties identifying the ninth cluster (Unknown) in both datasets as it
did not present any clear marker gene signature. Many cells in this cluster were flagged
as metabolically impaired by scoring previously suggested pathways specific to non-viable
organoid cells [104] (Fig. 3.13b). We identified 12 % of the cells in both datasets as non-viable
(4304 cells in Line 409b2 data and 3559 cells in Line FOK4 data), with the Unknown cluster
having the highest fraction of non-viable cells (74 % of cells in Line 409b2 and 41 % in Line
FOK4), followed by the RGS5 Neurons cluster (54 % of cells in Line 409b2 and 15 % in Line
FOK4). Line 409b2 also had a considerable fraction of IPs and ImmChP cells identified as
non-viable cells (26 % and 20 %, respectively). Only small fractions of approximately 10 %
or less were identified for all other cell types (Supplementary Fig. B.13b). We removed all
cells identified as non-viable from the datasets, along with the entire Unknown cluster, as
it was predominantly composed of non-viable cells and lacked clear expression of marker
genes. After filtering out non-viable cells, we compared the viability scores between GC-
exposed and control samples for different conditions and found no significant difference. This
finding suggests that DE analyses between these conditions are unlikely to be confounded by
differences in cell viability. Furthermore, more apparent differentiation trajectories emerged
in low-dimensional space after removing non-viable cells (Fig. 3.13d, top).
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In line with our previous research [284], we found that GC treatment did not cause significant
variation in the low-dimensional embedding so that cells were mainly separated based on their
cell identity (Fig. 3.13d, middle). Moreover, the GR gene NR3C1 expression was relatively
uniform across most cell types and decreased with maturation, as previously reported [284]
(Fig. 3.13d, bottom). To determine the regional identity of inhibitory and excitatory neurons in
our dataset, we projected them onto the HNOCA [204]. Our neuron subtypes mapped to the
inhibitory and excitatory non-telencephalic neuronal clusters of the HNOCA, while our RG
primarily projected to non-telencephalic NPCs. Additional lineages included early cells of the
glial lineage in organoids derived from Line 409b2 and a more pronounced lineage of the ChP
in organoids derived from Line FOK4. Mapping to the HNOCA further confirmed matching
neuronal cell identities in organoids from both cell lines (Supplementary Fig. B.13c).

3.3.2. Chronic glucocorticoid exposure affects the transcription of several key
neurodevelopmental genes

We aimed to analyse the gene-regulatory and transcriptomic responses of our different GC
treatment regimens. To minimise false-positive DE hits, we focused on converging results
between the organoids derived from the two cell lines. We only considered a gene as a
DEG if it was significantly regulated at a FDR smaller than 0.1 with a consistent direction
of expression log2FC in organoids derived from both cell lines (Supplementary Fig. B.14a).
This approach reduced our list of identified DEGs while providing potentially more robust
results.

We initially focused on DEGs between the organoid conditions collected at day 70 by com-
paring Veh and Chr conditions separately for each identified cell type (Fig. 3.14a,b; GC
Supplementary Table 1). This approach identified 803 consensus DEGs, with the most DEGs
(n = 462) emerging in RG and the least in the ChP, with only three DEGs (Fig. 3.14c). However,
certain cell types, specifically IPs and RGS5 Neurons, did not yield significant DEGs, likely
due to the smaller cell numbers in these groups decreasing detection rates or higher variability
of cells across the maturation gradients within these clusters.

Several genes important for neurodevelopment were among the most responsive DEGs by
log2FC: NNAT, a gene associated with early neurodevelopment and ion channel control [322]
(mean log2FC RG = 0.56); MAB21L1, associated with cerebellum development [323] (mean
log2FC Excitatory Neurons = 0.31); NFIB, a TF known to be essential in brain development
[324] (mean log2FC Inhibitory Neurons = -0.50); the transcriptional regulators ID3 (mean
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Figure 3.13.: Chronic GC exposure in neural organoids does not induce significant meta-
bolic stress in cells. a., b. UMAP embeddings of Line 409b2 and Line FOK4 data
coloured by cell type (a) and non-viable cell label (b). c. Distributions of mean
viability scores between control (grey) and treated (blue) samples following non-
viable cell removal. Each dot represents a sample from the indicated treatment
condition. d. (top) UMAP embeddings of Line 409b2 and Line FOK4 data fol-
lowing non-viable cell removal. Coloured by cell type (top), treatment condition
(middle) and NR3C1 (GR) expression (bottom). Reproduced from [205] (Licensed
under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Inter-
national license: https://creativecommons.org/licenses/by-nc-nd/4.0/).
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log2FC in ImmChP = 0.46) and ID2 (mean log2FC in ImmChP and RG = 0.41 and 0.52
respectively). In addition to NFIB, we identified several differentially expressed TFs closely
linked to neurodevelopment, such as SOX2, HDAC2, TCF7L2, PBX3, and YBX1. One of these
TFs, YBX1, was differentially expressed in five cell types. Additional DEGs shared across five
clusters included DLK1 (a regulator of hippocampal neurogenesis [325]), PCSK1N (associated
with the neuroendocrine system [326]), the collagen gene COL3A1 (involved in neuronal
migration [327]), and MARCKSL1 (associated with neural tube defects and regeneration [328])
(Fig. 3.14c).

We used the Gene Ontology Biological Process (GO-BP) pathways to probe our DEGs for
functional enrichment. We identified neurodevelopment-associated terms in the clusters
with the largest number of consensus DEGs, including: axonogenesis, negative regulation of
nervous system development in RG; axon development, substantia nigra development in Excitatory
Neurons; cranial nerve development, regulation of neuron differentiation in Inhibitory Neurons (GC
Supplementary Table 2). However, the most significantly enriched terms did not converge
on distinct neuronal pathways. Instead, they were associated with more general terms like
cell-cycle regulation and intracellular transport in Excitatory Neurons and regulation of gene
expression in RG and Inhibitory Neurons (Fig. 3.14d). Our list of identified DEGs also
contained five of the 36 high-risk ASD genes related to transcriptional regulation previously
evaluated in a knockout screen for their effect on cell fate determination [143]: ASH1L in RG,
MYT1L and KMT2A in Excitatory Neurons, and FOXP1 and BCL11A in Inhibitory Neurons.

We evaluated the overlap of the immediate DE effect of chronic GC exposure with the lasting
DE effect after the wash-out period at day 90 (GC Supplementary Table 3). Around half as
many DEGs were regulated after wash-out compared to immediately following exposure
(393 vs 803 consensus DEGs), and 13 % of the immediate transcriptomic effect (96 DEGs)
was shared across both comparisons. The DEGs exclusively regulated in one of the two
comparisons either corresponded to pathways only involved in a short-lived response or
had already been translated to downstream transcriptional effects after the wash-out period.
This would explain the 297 DEGs exclusively responding after the wash-out and could result
from the relatively high fraction of TFs in the immediately regulated DEGs. Over half of the
genes (61 %) regulated after chronic exposure and wash-out in 90-day-old organoids were
also among the 2036 DEGs regulated following the 12-hour acute stimulation at day 90 (GC
Supplementary Table 4). Additionally, the directionality of the DE effect was aligned for over
90 % of the DEGs shared between the comparisons.

We observed that more than half of the lasting DEGs after chronic exposure to GCs are
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also part of the response seen after acute exposure to GCs in organoids at day 90. This
implies that the lasting effects are still closely linked to direct GC effects even after a 20-day
wash-out period. However, the overlap between the chronic and acute effects decreases to
40 % when considering the immediate day 70 DEGs (Fig. 3.14e), likely because of differences
in neurodevelopmental age. The cells within each cell type were, in fact, separated based on
the age of the organoid in the low-dimensional embedding, highlighting their transcriptomic
differences (Supplementary Fig. B.14c). Furthermore, we found that 12 % of the genes that
respond to acute GC exposure at day 90 had a significantly altered response based on the
organoid’s history of chronic treatment, which further underscores the long-term effect of
chronic GC exposure (GC Supplementary Table 5).

3.3.3. Trajectory analyses reveal priming of the inhibitory neuron lineage
following chronic glucocorticoid exposure

Moving beyond our DE analysis, which relies on discrete cell clusters, we were interested in
understanding the effects of chronic GC exposure on the continuous differentiation trajectories
in the evolving organoid system. We defined three lineage endpoints in our data: excitatory
neurons, inhibitory neurons, and ChP and computed the associated lineage probabilities
for every cell (Fig. 3.15a). The respective lineage probability increased steadily along the
differentiation trajectory for each lineage endpoint, starting from RG and reaching their
maximum at the endpoint (Fig. 3.15b). We excluded the ChP endpoint from the following
analysis, given our specific interest in neuronal lineage determination and the absence of
a sizeable number of DEGs in the ChP and ImmChP clusters. We validated our computed
lineage probabilities in an independent public scRNA-seq dataset from 70-day-old organoids
derived from 6 additional iPSC donor backgrounds [127]. We reprocessed the validation
data (Fig. 3.15c) and applied the same lineage inference approach we used before. We found
matching lineage trends towards inhibitory and excitatory neurons along the pseudo-temporal
axis (Fig. 3.15d).

We used the concept of a driver gene introduced in [63] to link our observed DE effects to
the computed lineage trajectories. For each gene in the transcriptome, we computed the
correlation of its expression with the lineage probability for each endpoint across all cells in
each of our two datasets and the validation data (8 total iPSC donors) (GC Supplementary
Table 6). We then checked the alignment of the DE effect and driver gene direction for each
DEG that was also one of the top 500 significantly associated genes for each neuronal lineage.
Given an overlap of 50 % expected by chance, both neuronal lineages experienced a possible
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acceleration in differentiation following GC exposure, as more than half of the DEGs showed
a DE effect aligned with driving the lineage. Interestingly, there was a significantly larger
alignment of the DE effect in the inhibitory neuron lineage compared to the excitatory neuron
lineage across the three datasets (p = 0.04), suggesting a somewhat selective priming of the
inhibitory neuron lineage through GC exposure (Fig. 3.15e). Supporting this finding, we
observed a significant positive correlation between the driver gene strength for the inhibitory
neuron lineage in the validation dataset and the direction of the DE effect in the inhibitory
cell clusters of our two organoid datasets (r = 0.25, p = 0.002) (Fig. 3.15f). Interestingly,
BCL11A and FOXP1, two genes with the strongest correlation with inhibitory neuron lineage
driver genes and the strongest upregulation following GC exposure, are associated with high
risk for ASD in loss-of-function experiments [143]. Therefore, in the case of these genes,
opposing regulatory effects of genetic and environmental disease risk lead to a convergent
phenotype.

3.3.4. Chronic glucocorticoid exposure leads to an increased presence of inhibitory
neurons in neural organoids

Building on the observed lineage priming of inhibitory neurons, we aimed to determine
if exposing organoids to GCs resulted in a measurable shift in cell type identity. We used
GAD1 as a specific inhibitory neuron marker across brain regions to identify cells of the
inhibitory neuron lineage (Fig. 3.16a). Our two unguided organoid datasets showed an
increased proportion of GAD1-positive cells at the RNA level after exposure to GCs: In Line
409b2, we observed a 1.7-fold increase (from 5.2 % to 8.7 %) and a 1.2-fold increase in Line
FOK4 (from 11.6 % to 13.8 %) (Fig. 3.16b). We computed the inhibitory-to-excitatory neuron
ratio to verify that the increase in GAD1-positive cells was not solely caused by an increased
number of neurons present in GC-exposed organoids. We used GAD1 and the solute carrier
SLC17A6 as markers for the two groups. The ratio consistently increased after GC exposure
in both datasets. In Line 409b2, the ratio increased from 0.52 (Veh) to 0.86 (Chr), while in Line
FOK4, it increased from 2.34 (Veh) to 2.94 (Chr).

We replicated our GC exposure paradigm in a new experiment using regionalised ventral
organoids of a CRISPR/Cas9 edited version of Line 409b2 that expressed GFP-tagged GAD1
protein. By guiding differentiation with ventralisation factors, we were able to obtain an
abundant representation of inhibitory neurons [281] (Supplementary Fig. B.15), allowing
us to validate whether chronic GC exposure would also induce an increased inhibitory
neuron abundance in a more natural environment for inhibitory neuron development. Using

99



3. Results

a.

Li
ne

 F
O

K
4

Li
ne

 4
09

b2

Inh. NeuronsEx. Neurons ChP Inh. NeuronsEx. Neuronsb.

Line 409b2 c.

e.

d. f.

Line FOK4

Lineage Endpoint

Lineage Endpoint

Kanton et al. Kanton et al.

RG
Cycling
IP
Ex. Neurons
Inh. Neurons
Imm. ChP
ChP

Cerebellar 
glutamat. neurons 1
Cerebellar 
glutamat. neurons 2
Cortical IPs
Cortical NPCs
Cortical neurons
LGE IN
MGE/CGE IN
Mid-hindbrain NPCs
Midbrain GABA IN
Purkinje cells
Ventral NPCs

H9
Cell Line

Hoik1
Kucg2
Sc102a1
Sojd3
Wibj2

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n 

of
 D

E
G

s
 w

. a
lig

ne
d 

di
re

ct
io

n

Inh. NeuronsEx. Neurons

*

Line 409b2 Line FOK4 Kanton et al.

-0.6

-0.4

-0.2

0.0

0.2

-0.75 -0.5 -0.25 0.0 0.25 0.5 0.75
Inh. Neuron lineage driver correlation

lo
g 2 

fo
ld

 c
ha

ng
e:

 C
hr

on
ic

 E
ffe

ct
 D

70 BCL11A

EEF1D

FABP7

FOXP1

GAPDH

GRIA2

IGFBP5
LDHB

MAP2

MDK

MEIS2

MIAT

MLLT11NFIA

NFIB

PEG10

RPL8

RPS17

RPS6 RTN1
TCF4

TMSB4X

RPLP1

ASD Risk Gene

0.0

1.0
0.5Lineage

prob.

Figure 3.15.: TF-induced priming of the inhibitory neuron lineage in neural organoids.
a. Force-directed graph embedding of organoid data from Line 409b2 and
Line FOK4 (with the RGS5 Neuron cluster removed) coloured by cell type.
Lineage endpoints are labelled with black circles. b. Lineage probabilities
per cell for the three lineage endpoints in Line 409b2 and Line FOK4 data.
c. Force-directed graph layout of validation data (published 70-day-old organoid
data derived from six additional cell lines) [97]. Coloured by cell type (left)
and cell line (right). Lineage endpoints are labelled with black circles. CGE,
caudal ganglionic eminence; MGE, medial ganglionic eminence; LGE, lateral
ganglionic eminence; IN, interneuron; glutamat., glutamatergic; IPs, intermediate
progenitors; NPCs, neural progenitor cells. d. Force-directed graph layout of the
validation data from six cell lines, coloured by lineage probabilities for the two
neuronal lineage endpoints. e. Fraction of consensus DEGs with aligned log2FC
direction and driver gene direction (based on the top 500 significant driver
genes, recomputed for each of the three datasets). The dashed line indicates
the fraction expected by chance (0.5). f. Magnitude of driver gene correlation
with the inhibitory neuron lineage in the validation data [321] vs log2FC of
consensus DE effect measured in our two cell lines. Genes with the highest
lineage correlation are labelled by name, and genes associated with high risk
for ASD [143] are marked in blue. Reproduced from [205] (Licensed under
the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license: https://creativecommons.org/licenses/by-nc-nd/4.0/).
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fluorescent microscopy and immunohistochemistry stainings, we confirmed an increased
level of GAD1 protein after GC exposure (Fig. 3.16c). Furthermore, chronic GC exposure
led to a significant 2.27-fold increase in GAD1-positive cells (p = 0.048, Fig. 3.16d, GC
Supplementary Table 7). We reproduced this finding in an additional staining experiment
showing a fold-change of 2.11 (p = 0.0043) (GC Supplementary Table 7).

We noted a sustained increase in the abundance of GAD1-positive cells at the RNA level
in GC-exposed organoids at day 90 following wash-out (Fig. 3.16b). In Line 409b2, the
percentage of GAD1-positive cells increased by 1.2-fold, from 3.4 % to 3.9 %. In Line FOK4,
the increase was 1.5-fold, from 13.5 % to 20.1 %. However, we observed inconsistent results in
the inhibitory-to-excitatory neuron ratio in our two datasets using GAD1 and SLC17A6 as
markers at day 90. Specifically, in Line 409b2, the ratio decreased from 1.54 (Veh) to 1.15 (Chr),
whereas in Line FOK4, it increased from 5.29 (Veh) to 6.30 (Chr).

Overall, our organoid system showed evidence of priming of the inhibitory neuron lineage
following exposure to GC, resulting in an increased number of GAD1-positive cells at the
RNA and protein level in separate experiments in both unguided and ventralised organoids.

3.3.5. Increased PBX3 expression drives inhibitory neuron priming following
chronic glucocorticoid exposure

To understand the mechanisms behind the priming of the inhibitory neuron lineage, we
determined the lineage-driving TFs with the most considerable expression changes after GC
exposure in our datasets. We found 15 TFs that had an aligned direction of expression log2FC
(in inhibitory neuron consensus DEGs) and driver correlation (with the inhibitory neuron
lineage in the validation data) (Fig. 3.17a). We postulated that a TF actively mediating the
lineage priming would be differentially expressed after GC exposure and have a significant
number of its target genes regulated. We identified 18 TFs that fulfilled these criteria across
the DEGs in all cell types: BCL6, EGR1, ID2, ID3, ID4, NEUROD1, NEUROD2, NFE2L2, NFIA,
NFIB, NR2F1, NR2F2, NRG1, PBX3, SALL2, SOX2, TFAP2A, and YBX1 (GC Supplementary
Table 8).

Intersecting the two TF subsets above revealed the hox-gene PBX3 as a positive inhibitory
neuron lineage driver in the validation data that is upregulated by GCs. Conversely, NFIA,
NFIB, EGR1, and YBX1 were downregulated by GCs and negatively correlated with the
inhibitory neuron lineage in the validation data. PBX3 was the only TF consistently among
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the top ten per cent of driver genes for the inhibitory lineage in all three datasets (top 1.4 % -
6.5 %, depending on the dataset). At the same time, it was not among the top ten per cent of
drivers for the excitatory neuron lineage in any of the datasets (Fig. 3.17b, Supplementary Fig.
B.16a). While all five identified TFs might play a role in the lineage priming, PBX3 showed the
most evident effect and, therefore, remained the focus of our further analysis as an example
of a GC-responsive lineage-priming TF. PBX3 was expressed across all cell types, with the
highest expression levels in inhibitory neurons (Fig. 3.17c, Supplementary Fig. B.16b). PBX3
is associated with hindbrain-related processes such as breathing, locomotion, and sensation
[329].

We visualised the expression of PBX3 along the pseudo-temporal lineage trajectories. We
found it to increase sharply toward the inhibitory neuron endpoint, backing its relationship
with this lineage (Fig. 3.17d, Supplementary Fig. B.16b). This was in line with our observations
from a recent atlas of first-trimester human brain development [46], which showed that
PBX3 expression is developmentally regulated, with overall higher expression in GABA-
ergic compared to glutamatergic neurons and higher in non-telencephalic compared to
telencephalic brain regions, with the highest expression in the cerebellum (Supplementary
Fig. B.16c). These findings suggest that PBX3 plays a consistent role in the development of
fetal brain and neural organoids.

We observed an increased fraction of PBX3-positive cells following GC exposure at the
transcriptional level in both cell lines: from 21 % to 26 % in Line 409b2 and 22 % to 38 % in
Line FOK4. Moreover, we also noticed an increase in the fraction of double-positive cells for
PBX3 and GAD1: from 1.7 % to 3.9 % in Line 409b2 and from 4.5 % to 8.5 % in Line FOK4.
Across double-positive cells from both datasets, we observed a significant positive correlation
between the expression levels of PBX3 and GAD1 (Line 409b2: r = 0.43, p = 4.1e-16; Line
FOK4: r = 0.36, p = 2.8e-15) (Supplementary Fig. B.16d).

We validated our findings as before in ventrally-guided organoids at day 70, using GFP-tagged
GAD1 and immunohistochemistry stainings of PBX3 to visualise protein abundances. Our
observations were consistent with the scRNA-seq data, showing that the PBX3 protein was
expressed mainly in more mature neurons that had already migrated to the outer ventricular
zone (Fig. 3.17e). We quantified the number of PBX3-positive cells across the entire organoid
slices and found a 1.73-fold increase in chronically GC-exposed organoids compared to
controls (p = 0.022; Fig. 3.17f, GC Supplementary Table 7). We also counted cells double-
positive for PBX3 and GAD1 and found a 3.35-fold increase following GC exposure(p = 0.0041;
Fig. 3.17g, GC Supplementary Table 7). Altogether, the results presented in this section
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suggest that GC-induced overexpression of PBX3 plays a role in priming the inhibitory neuron
lineage.

3.3.6. Multimodal gene regulatory networks support the role of PBX3 in
mediating lineage priming

To investigate the role of PBX3 and the regulatory mechanisms underlying lineage priming,
we obtained scATAC-seq data for 90-day-old organoids from Line 409b2 using the same
treatment paradigm as before. Analysing the gene expression data of the Line 409b2 organoids
alone showed similar trends as observed in our joint analysis earlier: the magnitude of the DE
effect in inhibitory neurons was still significantly positively correlated with the driver gene
strength for the inhibitory neuron lineage with 70-day-old organoids of Line 409b2 analysed
individually (Veh vs Chr) (r = 0.077, p = 0.046). We found that after the 20-day wash-out
period lasting until day 90 (Veh-Veh vs Chr-Veh), this correlation increased in Line 409b2
organoids (r = 0.15, p = 4.7e-3), suggesting a long-term effect of the treatment on lineage
determination (Fig. 3.18a).

We integrated the scATAC-seq data with the matching scRNA-seq samples to infer multimodal
GRNs for treatment and vehicle organoids to uncover the gene regulatory mechanisms
underlying inhibitory neuron lineage priming (Fig. 3.18b, GC Supplementary Table 9). We
used the expression of TFs and their target genes, accessibility of TF binding sites, and prior
biological information, such as conserved regions of the genome, to infer these GRNs with
the Pando tool [254]. Centring the vehicle organoid GRN on PBX3 allowed us to visualise
its baseline downstream regulatory interactions. We found that over a third (35 %) of all
genes in this TF-centred GRN were differentially expressed in at least one of the three GC
treatment conditions (Veh vs Chr, Veh-Veh vs Chr-Veh, and Veh-Veh vs Veh-Acu) (Fig. 3.18c),
highlighting the role of PBX3 in mediating the transcriptional response to GC exposure. In
the PBX3-centered GRN of GC-exposed organoids, 36 % of direct downstream targets were
gained compared to the vehicle condition. Additionally, 30 % of PBX3 downstream targets
were among the top 500 drivers of inhibitory neuron lineage (Fig. 3.18d). This observation
supports our earlier finding that large portions of the neural organoid GRN are responsive to
GCs and linked to inhibitory neuron lineage priming.

We also compared the relationship of PBX3 with the top 500 inhibitory drivers between
the vehicle and GC-exposed GRNs. We observed a considerable relative increase of 32 %
(from 0.54 to 0.71) in the fraction of inhibitory neuron driver genes in the direct PBX3 targets
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following GC exposure (Fig. 3.18d). Notably, some of the direct and second-order PBX3 target
genes in the GRN of GC-exposed organoids showed a high correlation with the inhibitory
neuron lineage and a robust expression change after exposure to GCs. Examples included
CELF4, a gene associated with synaptic development [330], depression-like behaviour in mice
[331], and ASD [332], as well as SYNPR, a common inhibitory neuron marker gene [333, 334]
(Fig. 3.18a). Overall, introducing a second data modality into the analysis underscored a
possible involvement of PBX3 in GC-mediated inhibitory neuron lineage priming.

This concludes the results section of this thesis. The results of the three interconnected
contributions introduced in this section are each summarised again at the beginning of the
relevant discussion sections on the following pages.
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Figure 3.18.: Multi-modal GRNs associate PBX3 with inhibitory neuron priming in or-
ganoids from Line 409b2. a. Magnitude of driver gene correlation with inhibit-
ory neuron lineage probability vs log2FC of Line 409b2. First and second-order
PBX3 target genes in the inferred chronic GRN are labelled in pink. Left: Directly
following treatment (70 days in culture). Right: after 20 days of wash-out (90
days in culture). Genes with an absolute lineage correlation greater than 0.45 are
labelled by name. b. UMAPs of integrated scRNA-seq and scATAC-seq data of
Line 409b2 at 90 days in culture. ScRNA-seq data is coloured by cell type, and
scATAC-seq data is shown in grey. Vehicle organoid data (left) and GC-exposed
organoid data (right). c. GRN centred around PBX3 in vehicle organoids with con-
sensus DEGs from any of the three DE comparisons: D70 Chr, D90 Chr, D90 Acu)
coloured red and TFs labelled by name. d. GRN centred around PBX3 in treated
organoids with top 500 inhibitory neuron driver genes coloured green, TFs
labelled by name. The bar chart shows the fraction of newly gained direct PBX3
downstream targets in the Chr condition. e. Fraction of inhibitory neuron drivers
in direct TF downstream targets for control (Veh-Veh) and GC exposed organoids
(Chr-Veh) of Line 409b2 at 90 days in culture. Reproduced from [205] (Licensed
under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Inter-
national license: https://creativecommons.org/licenses/by-nc-nd/4.0/).
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4. Discussion

Neural organoids, paired with single-cell genomics, have emerged as a powerful tool to study
neurodevelopment and the onset and development of psychiatric diseases. The work presen-
ted in this thesis can be structured into connected contributions in three areas: infrastructure
(for scRNA-seq data curation), data (a neural organoid reference atlas), and discovery (of
GC exposure effects on neural organoids). These contributions build on top of each other
towards improving our understanding of neural organoids as a model system and using
them to study the effect of an environmental risk factor for mental illnesses on human brain
development.

As the first contribution, detailed in Section 3.1, I presented sfaira, a data and model zoo
that facilitates scRNA-seq data curation and analysis and enables data reuse and model
sharing. sfaira’s data curation capabilities helped to compile a comprehensive reference
atlas of neural organoids, the second contribution of this thesis (Section 3.2). The data
loading interface and the ontology-based metadata management of the sfaira data zoo was
designed with organoid models in mind and greatly facilitated the collection, harmonisation,
loading, and subsetting of the relevant neural organoid datasets sourced from a heterogeneous
range of data repositories. Beyond supporting the curation process, sfaira improved the
reproducibility of the HNOCA work by significantly reducing the complexity of the custom
data loading code provided with the atlas and making the individual curated constituent
datasets easily accessible by the community. In the context of the third contribution of
this thesis (Section 3.3), the HNOCA served as a reference atlas to annotate the newly
generated neural organoid data, which models the effect of an environmental challenge in
the form of GCs on human neurodevelopment. Query-to-reference mapping of this data onto
HNOCA efficiently identified the neuronal and progenitor sub-populations as derived from
non-telencephalic brain regions, which are less commonly represented in unguided neural
organoids. This assignment helped to contextualise the findings concerning the identified
priming of the non-telencephalic inhibitory neuron lineage and the lineage-driving TFs
specific to non-telencephalic brain regions.
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In this thesis, I provided an overview of relevant background topics in Chapter 1, including
single-cell transcriptomics and related computational analysis approaches, neural organoids
and their applicability as disease models, as well as the role of GCs in neurodevelopment and
psychiatric disease. In Chapter 2, I described the experimental and computational materials
and methods underlying the results presented in Chapter 3. In the remainder of this chapter,
I summarise the findings related to each of the three contributions of this thesis and discuss
their limitations and remaining open questions.

4.1. Facilitating data curation and reuse in single-cell genomics

In Section 3.1 of the results chapter, I introduced sfaira, a data and model zoo for single-
cell genomics. sfaira addresses a central open question in single-cell genomics: while an
ever-growing amount of published scRNA-seq datasets is becoming available, there is a
profound lack of standardisation for storage and data formats, storage location, and metadata
vocabularies, limiting data reuse. The same is true for scRNA-seq data analysis, generally
done from scratch for new datasets without efficiently leveraging existing pre-trained models.
In this thesis, I outlined how the sfaira data zoo, through its ontology-controlled metadata
management and structured data loading code repository, facilitates data curation and
provides a simple interface for retrieving curated datasets, greatly facilitating data reuse.
I have further described how the sfaira model zoo, the first-of-its-kind structured model
repository for pre-trained scRNA-seq analysis models, enables efficient model reuse through
a model versioning system and an easy-to-use interface. Additionally, I explained how
sfaira can be leveraged to efficiently query summary statistics on the sfaira data zoo,
contextualising new observations and enabling an automated zero-shot embedding and cell
type assignment of new data, speeding up an initial analysis. Lastly, I outlined how sfaira

models can be interpreted using gradient-based methods to derive further biological insight
from the data. Overall, sfaira is a step towards aligning single-cell genomics data with the
FAIR principles [65].

Since its publication, I have further improved sfaira with the help of my collaborators.
We added a command line interface, guiding the user through an interactive data curation
process while supporting the mapping of metadata to the relevant ontologies and validating
all steps in the process. This addition speeds up data curation and has led to significant
growth of the sfaira data zoo through the community and us authors. As of March 2024, the
number of studies available through the sfaira data zoo has more than doubled. It currently
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encompasses 118 studies featuring 962 datasets with over 15 million cells. As mentioned
in the previous section, sfaira has also supported the data curation for the first human
neural organoid cell atlas, boosting the reproducibility of the atlas construction and enabling
downstream analyses across all datasets through harmonised metadata.

The CZ CELLxGENE Discover Census [70] represents a recent advancement in public scRNA-
seq data infrastructure, offering access to curated scRNA-seq datasets through a unified
interface. While the goals of sfaira and the Census, fostering data curation and reuse in
single-cell genomics, are well aligned, they represent complementary approaches. While the
Census focuses on creating a comprehensive, accessible cloud database of scRNA-seq datasets,
sfaira is based on a decentralised design that enables on-premise data curation, addressing
concerns around data privacy and proprietary information. sfaira has been one of the first
tools to serve large-scale curated scRNA-seq datasets. It has supported the training of several
extensive representation learning models and facilitated data curation in multiple projects.
The long-term success of a curated data repository relies on the community’s continuous
contribution and curation of new data and requires significant engineering and infrastructure
work. While sfaira will likely remain a valuable companion for custom on-premise data
curation, ongoing large-scale efforts such as the CZ CELLxGENE Discover Census will likely
become the de facto standard source for curated datasets in the future. The value of curated
and easily accessible data has also led to the creation of commercial data curation and
management providers such as Lamin (https://lamin.ai/), offering custom solutions for
commercial and academic entities. The ongoing growth and maturation of data curation
efforts pave the way towards a more practical application of deep-learning approaches to
single-cell genomics, which rely on large-scale, high-quality training data.

The recently emerging large-scale, often transformer-based, machine learning models (also
called foundation models) in single-cell genomics [43, 44, 335] promise a new approach to
scRNA-seq data analysis. Inspired by the recent breakthroughs of large language models in
natural language processing, these models leverage vast amounts of data to uncover biological
insights and predictive capabilities previously out of reach [45]. While the emerging model
architectures are generally moving away from simple encoder-decoder-based models as served
through the sfaira data zoo, this development highlights the importance of large-scale data
curation in single-cell genomics and the value of curated data repositories. This is because
the performance of large-scale foundational models is highly dependent on the availability of
extensive, curated, high-quality training data. Consequently, recent approaches have relied
on public curated repositories like the CZ CELLxGENE Discover Census [44] or extensive
proprietary curated databases [335]. In a related ongoing project in our research group, the
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sfaira repository efficiently contributed curated scRNA-seq data for close to ten million cells
to the training of a foundational model on top of the data available through existing public
curated repositories, significantly reducing the manual curation work required. As the volume
and variety of data in curated data repositories grow, so does the potential for foundation
models to revolutionise our understanding of complex biological systems, demonstrating the
critical role of large-scale data curation in driving the capabilities of computational biology
and single-cell genomics.

4.2. A path to improving human neural organoid models

In Section 3.2 of the results chapter, I introduced the HNOCA, a comprehensive, harmonised
neural organoid reference atlas. HNOCA addresses a central challenge in the neural organoid
field. While neural organoids are versatile models of early human brain development, there is
still significant room for improving their fidelity and faithfulness to human neurodevelopment.
This would increase their suitability as universal models of the developing human brain
in health and disease. Consequently, a structured analysis of the cell type diversity and
transcriptomic fidelity of current organoid models is needed to suggest concrete improvements
to organoid differentiation protocols. Furthermore, a comprehensive reference dataset is
lacking in the neural organoid field, complicating the analysis of new datasets.

In this thesis, I outlined how my collaborators and I constructed the first large-scale integrated
cell atlas of human neural organoids, the HNOCA. Using a custom pipeline, we integrated
1.8 million cells spanning 36 scRNA-seq datasets generated by 15 laboratories worldwide
using 26 differentiation protocols and various scRNA-seq technologies. I described the high
complexity of neuronal, glial and non-neural cell types, revealed by the HNOCA, that can
develop in neural organoids grown under existing protocol conditions. I explained how
we refined the regional cell type annotations by mapping the HNOCA to a recent primary
human brain atlas [46], further allowing us to identify primary neural cell states currently
under-represented or absent in organoids. I outlined our DE analysis approach between
organoids and primary fetal brain, which allowed us to identify a universal signature of cell
stress specific to organoid cells and informed our comprehensive analysis of transcriptomic
fidelity across neuronal organoid cell types. I lastly described how the HNOCA can be used
as a reference dataset by the community using the example of a recently published neural
organoid morphogen screen [321]: We demonstrated how the HNOCA and our analysis
framework enabled a refined cell type annotation of the new data and the identification of
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novel cell states previously unattainable with neural organoid differentiation protocols. The
public portion of the HNOCA is available to the community as an integrated neural organoid
reference atlas, including the complete integration and analysis pipeline. We anticipate
to release the remaining datasets soon, too. Overall, this framework and reference atlas
facilitate the quantitative and comparative analysis of scRNA-seq neural organoid data and
the evaluation of novel neural organoid protocols.

One evident limitation of the presented HNOCA analysis is the use of only a single primary
fetal brain dataset as a reference point. While the dataset [46] is one of the most extensive
scRNA-seq studies of first-trimester fetal brain development, any technical artefacts specific
to this dataset could be misinterpreted as a biological signal in the DE analysis. To rule
out any significant bias, my collaborators and I repeated a section of this analysis using
additional datasets and observed matching trends. Nevertheless, a valuable extension of
our work would be the construction of a comprehensive, integrated fetal reference dataset
comprising data from multiple labs and more mature developmental time points. Such a
reference would allow more sensitive and precise detection of transcriptomic differences
between neural organoids and the fetal brain, potentially uncovering additional systematic
differences beyond the reported universal stress signature. Additionally, it would enable a
comprehensive timing analysis of organoid age and fetal brain development. This information
would ease the selection of the right organoid age for experiments based on the relevant fetal
developmental stage, aiding the design of more meaningful organoid experiments.

The DE analysis in this work could be further improved by accounting for differences in
developmental age between the primary and organoid data in the DE model. In the current
analysis, it is not fully clear if the downregulation of neurodevelopment-associated functional
terms in organoids results exclusively from the inherent difference between primary and
organoid tissues or is partly also driven by differences in developmental age between the
two groups. Explicitly accounting for developmental age in the model would alleviate this
ambiguity, though the exact developmental mapping between primary and organoid tissue
must first be established as described above. A third improvement to this study would be to
create a user-friendly interactive web interface for interacting with the HNOCA resource. This
interface would provide a mapping functionality for new datasets to HNOCA and generate
key metrics introduced in this work, such as the maximum presence score, for all query cells
without the need to write any code. Such a service would significantly broaden HNOCA’s
reach by making it available beyond the computational biology community.

The analysis of the HNOCA has revealed several primary fetal neural cell states under-
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represented or absent in organoids. I am currently planning follow-up experiments that use
this information to increase the coverage of these primary neural cell states in organoids.
Such experiments could leverage the emerging experimental data from neuronal genetic
perturbation screens focused on patterning [254, 336] or morphogen screens [321, 337] to
identify promising approaches to improve guided organoid development. Despite only a lim-
ited number of morphogens with known roles in human neurodevelopment being currently
considered for guiding organoid development, the importance of exact morphogen concentra-
tions and timing creates a vast combinatorial space that would be extremely expensive to cover
experimentally. Over the past years, machine learning approaches have emerged as powerful
tools for in silico perturbation prediction, with the potential to drastically reduce the number
of required wet-lab experiments [80, 338–340]. I am currently considering two ways to tackle
this challenge. In the first approach, I would train perturbation prediction models, such as
scGen [80] or CPA [338] on the abovementioned morphogen screen data. I then aim to predict
the missing concentration and timing conditions for the existing morphogens in silico. Given a
well-calibrated prediction model, quantifying the uncertainty of the predictions would allow
us to define follow-up screening experiments to maximise the predictive power of the model,
given new training data. Ideally, experimental screening and computational prediction would
operate in an integrated and iterative lab-in-the-loop process where the predictions guide the
experiments and the data generated by the experiments is used to improve the computational
models further. In a second, more exploratory approach, I would use the Prophet model,
currently being developed in our research group, to identify chemical compounds that could
lead to a more primary tissue-like cell type composition. Extending beyond morphogens
known from developmental biology, this approach would predict the resulting organoid cell
type composition for a given cell line, compound, and concentration based on a database
of available compounds. As this approach represents a more complex prediction task, it
would require collecting additional training data before it can be meaningfully applied to this
challenge. Overall, the combination of high-throughput genetic and chemical perturbation
screens and advanced computational prediction approaches [341] paves the way for efficiently
screening the differentiation protocol space, ultimately leading to neural organoids more
faithfully representing fetal brain development.

The HCA project aims to map all primary cell states of the human body. Beyond this, it also
seeks to chart the cell diversity of current organoid systems across tissues in a dedicated HCA
BioNetwork. Together with the Human Endoderm Organoid Cell Atlas [342], the HNOCA
will represent the first output of the organoid BioNetwork once officially approved. A natural
extension of our work would extend a similar analysis to organoids of different tissues not
covered by the two current studies. One example could be a mesoderm-derived organoid
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atlas, including, for example, heart and kidney organoids. Once organoids of all major
tissues are included, an integrated pan-organoid atlas could provide the complete picture
of the current state of organoid technology and enable large-scale inter-tissue comparisons.
In a second direction, the HNOCA could be extended towards additional data modalities,
incorporating, for example, spatial resolution [343, 344] or information on chromatin state
[254, 345, 346] in neural organoids. The latter addition would enable the inference of GRNs in
large-scale neural organoid data, providing further insight into the intricate gene-regulatory
mechanisms underlying human brain development.

4.3. Insight into the molecular mechanisms underlying the effects of
environmental risk for psychiatric disease

In Section 3.3 of the results chapter, I introduced our chronic GC treatment paradigm in
neural organoids. As an example of a common prenatally encountered environmental risk
factor, our GC exposure paradigm provided insight into the molecular underpinnings of
environmentally mediated psychiatric disease risk. This work addresses a central challenge in
the field of psychiatric disease research. Psychiatric diseases are widely accepted to be caused
by a complex interplay of genetic and environmental risk factors [153]. There have been
several recent advances in understanding the onset and development of mental disorders in
the context of genetic risk factors by leveraging technological breakthroughs such as pooled
genetic perturbation screening and neural organoid model systems [143, 149]. The molecular
underpinnings of environmentally conferred risk have, on the other hand, been studied to a
much smaller extent.

In this thesis, I outlined a ten-day chronic GC exposure paradigm in unguided neural
organoids totalling six treatment conditions, including a 20-day wash-out period, to quantify
lasting effects and the impact of an additional acute GC hit. I described how this design
allowed my collaborators and myself to compile a comprehensive scRNA-seq dataset across
six experimental conditions replicated in organoids derived from two cell lines. I further
described that an organoid-specific quality-control procedure to remove non-viable cell states,
as identified in the HNOCA (Section 3.2.3), facilitated data interpretation. While GC exposure
did not significantly affect cell viability, we observed a transcriptional response in many vital
neurodevelopmental genes and TFs directly following chronic GC exposure. A subset of the
responding genes remained dysregulated following the 20-day wash-out period. More than
half of the genes involved in this longer-term response were also responsive to the acute GC
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hit, suggesting that the long-term response is still directly linked to the GC effect. Next, I
outlined our findings from the trajectory analysis, focusing on the excitatory and inhibitory
neuron developmental trajectories. We found that the transcriptional response to chronic GC
exposure correlates with an acceleration of neuronal differentiation, significantly more so for
the inhibitory neuron lineage. This priming of the inhibitory neuron lineage translated into
an increased abundance of inhibitory neurons at the transcriptional and protein level. Lastly,
I described how we identified PBX3 as an example of a TF closely associated with priming
the inhibitory neuron lineage, which responds robustly to GC exposure and regulates several
inhibitory neuron lineage drivers. Overall, we provided evidence for the selective priming of
the inhibitory neuron lineage by GCs.

The balance of excitatory and inhibitory neuron generation is critical for healthy brain de-
velopment, and disruptions to this balance have been associated with different psychiatric
diseases [191–194]. Consequently, our finding of preferential inhibitory neuron lineage prim-
ing through GC exposure provides a potential mechanism for how a prevalent environmental
risk factor might affect the onset and development of disease. Our observed phenotype aligns
with the findings of a recent pooled loss-of-function screen of 36 ASD risk genes [143]. This
suggests a converging effect of genetic and environmental risk factors for neurodevelopmental
and psychiatric disorders on cell fate determination during neurodevelopment. Five of the 36
tested ASD risk genes were also differentially expressed after chronic GC exposure in our data,
and three of them were significantly associated with an increase in the ventral-to-dorsal ratio
in the genetic loss-of-function screen. Interestingly, while we observed the same inhibitory
lineage priming phenotype as in the loss-of-function screen, all five overlapping risk genes
were upregulated following GC exposure. This divergence in regulation of these specific risk
genes in the context of a converging phenotype suggests that GC exposure affects disease risk
through different molecular pathways than the established risk genes. Further investigating
the exact mediators of environmental disease risk would provide further insights into the
complex molecular underpinnings of psychiatric disease aetiology.

Our findings have suggested the hox-gene PBX3 a candidate TF for mediating our observed
phenotype of GC-induced inhibitory neuron lineage priming. The expression of PBX3 and a
significant number of its target genes was altered after GC exposure, while PBX3 expression
was closely and selectively correlated with the inhibitory neuron differentiation trajectory.
Increased double-positive cells for PBX3 and GAD1 after GC exposure and the analysis of
the PBX3 downstream target genes in our multimodal GRN provided further evidence for
a tight association of PBX3 with GC-induced inhibitory lineage priming. Identifying PBX3
as a promising mediating candidate offers a starting point for further investigations into the
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molecular mechanisms underlying disease risk mediation. A genetically modified neural
organoid model featuring a PBX3 gene knockout could give more insight into the role of
PBX3 during brain development while highlighting affected brain regions. Alternatively, a
pooled genetic perturbation screen in organoids targeting PBX3, or one of the four additional
TFs identified as robustly responding to chronic GC exposure, alongside the respective target
genes in the GRN, could help determine the mediating pathways for the lineage priming
effect of GCs.

My collaborators and I used unguided neural organoids for the GC treatment paradigm to
obtain an unbiased model system of the developing brain representing various cellular lin-
eages. While offering a more natural and self-organised environment for neurodevelopment,
unguided neural organoid differentiation protocols provide little control over the generated
brain regions. Using the HNOCA (Section 3.2) as a reference, our organoids’ NPCs and
neurons mapped exclusively to non-telencephalic brain areas (Supplementary Fig. B.13).
While this focus on the generally lesser-studied non-telencephalic brain areas enabled the
identification of the hindbrain-associated TF PBX3 (Fig. 3.17) as a potential mediator of
chronic GC exposure effects, future work should investigate the impact of GC exposure
on further brain regions. This could be achieved using regionalised organoids of specific
brain regions or unguided organoids derived from different cell lines for added variability.
Additionally, assembloids have recently been used to study genetic risk for ASD and NDDs
[149]. Beyond the capabilities of individual organoids, assembloids can model the interaction
of multiple brain regions, making them an exciting tool for further studying environmental
perturbations of brain development.

4.4. Towards a mechanistic understanding of psychiatric disease
with improved model systems and computational tools

The contributions outlined in this thesis, together with recent scientific advancements, pave
the way towards better models of brain development and disease on multiple levels. For
example, the continuous growth of curated scRNA-seq data repositories, spearheaded by the
sfaira data zoo, enables a better molecular understanding of the healthy human neuronal
landscape. Extending these repositories and cellular atlases to samples from disease models
and primary diseased tissue will allow us to capture better the cell types involved in the
onset and development of neurodevelopmental and psychiatric disorders. At the same time,
the abundance of extensive single-cell genomics data covering health and disease will enable
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the training of more complex and expressive predictive models in computational biology, as
shown by the recently emerging foundational modelling approaches [45].

Furthermore, the HNOCA, with its detailed mapping of organoid cell states, provides a
blueprint for developing improved neural organoid differentiation protocols that produce
more faithful models of the developing human brain. Creating organoids that more faith-
fully reflect the cellular complexity and heterogeneity underlying NDDs such as ASD and
schizophrenia will, in turn, provide access to an enhanced picture of the mechanisms driving
these diseases when using these improved models in genetic or chemical perturbation studies.
Together with the emergence of high-throughput perturbation screens in organoids [143, 254],
these developments suggest a bright future for modelling NDDs and psychiatric diseases in
vitro.

The emergence of psychiatric diseases is a result of a complex interplay of environmental
and genetic risk factors [153]. As presented in this thesis, neural organoids are a powerful
platform for modelling environmental challenges during brain development. They have
helped us reveal converging phenotypes of environmental and genetic risk factors for disease.
Combining genetic and environmental risk factors in improved organoid models would be
a promising next step towards a holistic and mechanistic understanding of the complex
aetiology of neurodevelopmental and psychiatric disorders. Additionally, enhanced neural
organoid models would provide a promising platform to screen different interventions and
rescue mechanisms, offering hope for more effective and targeted treatment and prevention
approaches going forward.
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A. Supporting information

This section contains additional information to support the material provided in the main
part of the thesis.

A.1. Nucleotide sequences for generating the neuron-specific
fluorescent reporter cell line

Nucleotide sequences used in generating the custom iPSC reporter cell lined described in
Section 2.3.3:

gRNA:

5’_GGTCGAAGACGCCATCAGCT_3’

ssODN:

5’_TGCGCACCCCTACCAGGCAGGCTCGCTGCCTTTCCTCCCTCTTGTCTCTCCAGAGCCGG
ATCTTCAAGGGGAGCCTCCGTGCCCCCGGCTGCTCAGTCCCTCCGGTGTGCAGGACCCCG
GAAGTCCTCCCCGCACAGCTCTCGCTTCTCTTTGCAGCCTGTTTCTGCGCCGGACCAGTCG
AGGACTCTGGACAGTAGAGGCCCCGGGACGACCGAGCTGATGGTGAGCAAGGGCGAG
GAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGG
CCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGA
CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGA
CCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAG
CACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC
TTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACA
CCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATC
CTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGA
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CAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGAC
GGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCC
CCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGAC
CCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGAT
CACTCTCGGCATGGACGAGCTGTACAAGTAACTAGAGCTCGCTGATCAGCCTCGACT
GTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCT
GGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTG
TCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGG
AGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCT
GAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCGCGTCTTCGACCCCATC
TTCGTCCGCAACCTCCTCGAACGCGGGAGCGGACCCCAATACCACTAACCTGCGCCCCAC
AAGTAGGTCCCGCCCCAATTTTCTATCAAATGAACTGCAGGGAAGATGGGGGCGCTGGG
ACGTCGGGAGGCTGAGCTGGCGGAAAGGGAAGGGGGAGCGCGGAGATAATGGAGGCTG
GGAAATAAATGGGGCTCTGACCCCGTCCCTGCCAGAGGTCATTCGGCTGTCAGGGACGC
TAGGTGACTCCCAGGGCACCGGAAAGCGAGGACCACGCAAGGTCCGA_3’

Left and right homology arms are indicated in italics. eGFP start and stop codons are
underlined.

GFP Protein translation:

MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT
LVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDT
LVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQL
ADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELY
K*

Primer 1:

For 5’_CACTCCCACTGTCCTTTCCTAA_3’

Rev 5’_TCCTAGCTCTTCATTCCGCC_3’

Primer 2:

For 5’_GCTTCTCTTTGCAGCCTGTTTC_3’

Rev 5’_GGGCGCAGGTTAGTGGTATT_3’
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A.2. Antobodies for immunohistochemistry staining of neural
organoids

The following antibodies were used for the immunohistochemistry staining described in
Section 2.3.5.

Antigen Dilution Vendor Catalog #

DAPI 1:1000 Sigma Aldrich D9542
GFP 1:1000 Aves Lab 1020
PBX3 1:500 Abcam ab52903
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B. Supplementary figures

This chapter contains the supplementary figures referenced in the results chapter of this
thesis.

B.1. Sfaira accelerates data and model reuse in single-cell genomics

This section contains the supplemental figures for Section 3.1 of this thesis. The figures are
collectively reproduced from the supplementary material of:

Fischer, D. S.*, Dony, L.*, König, M., Moeed, A., Zappia, L., Heumos, L., Tritschler, S.,
Holmberg, O., Aliee, H. & Theis, F. J. Sfaira accelerates data and model reuse in single cell
genomics. Genome Biology 22, 248. doi:10.1186/s13059-021-02452-6 (2021)

"*" denotes an equal contribution.

Figure captions are largely identical to the ones presented in the above source. The original
figures and captions are licensed under the Creative Commons Attribution 4.0 International
license: https://creativecommons.org/licenses/by/4.0/.
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Figure B.1.: Zero-shot analysis example cases. Shown are summaries of four zero-shot
analysis scenarios which were not included in the training and testing data of
the sfaira model zoo presented in Section 3.1.1: A pancreas dataset (a., b.), a
kidney dataset (c.-e.), a heart dataset (f.-h.), and an eye dataset (k.-m.). Shown
are UMAPs of either the curated embedding published by the authors or a
UMAP of a sfaira embedding model with curated cell types or sfaira predicted
cell types superimposed (a., c., f., k.). Note that predicted and curated cell
types are not always the same but often have an ontological relationship derived
from annotation coarsity differences between model training data and these
new datasets. The relation between these predicted and observed cell types is
further characterised in confusion matrices (b., d., g., l.), simplified to coarser cell
ontology parent nodes in (e., h., m.). The analyses presented here were performed
after the final fitting of the models, which are also available on Zenodo, and thus
represent the actual behaviour of this system on new data. Minor inaccuracies in
prediction are likely due to insufficient training data annotation or are related to
issues in generalisation to the unseen domain effects in these test cases and can
be resolved quickly in secondary analyses following this preliminary analysis.
Reproduced from [258] (Licensed under the Creative Commons Attribution 4.0
International license: https://creativecommons.org/licenses/by/4.0/).
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Figure B.2.: Characterisation of the cell type classification task. Cell type-wise accuracies
for lung samples from human (a.) and mouse (b.) data. Reproduced from [258]
(Licensed under the Creative Commons Attribution 4.0 International license:
https://creativecommons.org/licenses/by/4.0/).
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Figure B.3.: Random projection models as baseline models for cell embedding models.
Shown is the negative log-likelihood on the held-out test data of a linear em-
bedding model as in Fig. 3.6, and a random projection model (Section 2.1.6)
for human (a.) and mouse (b.) data. Across all organs, the random projection
model had significantly lower negative log-likelihoods than the linear model
when comparing the mean performance across cross-validations in a one-sided
paired t-test (human: p = 1.11e-05, mouse: p = 2.11e-07). Reproduced from
[258] (Licensed under the Creative Commons Attribution 4.0 International license:
https://creativecommons.org/licenses/by/4.0/).
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Figure B.4.: Saliency-based interpretation of models trained on human kidney. Shown
are results for an AE. a. Correlation of cell type wise aggregated gradients of
embedding with respect to input features. b. Distribution of feature-wise aggreg-
ated gradients of embedding with respect to input features by cell type (colour).
Reproduced from [258] (Licensed under the Creative Commons Attribution 4.0
International license: https://creativecommons.org/licenses/by/4.0/).
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B.2. An integrated transcriptomic cell atlas of human neural
organoids

This section contains the supplemental figures for Section 3.2 of this thesis. The figures are
collectively reproduced from the Extended Data Figures of:

He, Z.*, Dony, L.*, Fleck, J. S.*, Szałata, A., Li, K. X., Sliškovic, I., Lin, H. -C., Santel, M.,
Atamian, A., Quadrato, G., Sun, J., Pasca, S. P., Camp, J. G., Theis, F. & Treutlein, B. An
integrated transcriptomic cell atlas of human neural organoids. In revision. Preprint [204] doi:
10.1101/2023.10.05.561097 (2023)

"*" denotes an equal contribution.

Figure captions are largely identical to the ones presented in the above source. The original
figures and captions are licensed under the Creative Commons Attribution-NonCommercial
4.0 International license: https://creativecommons.org/licenses/by-nc/4.0/.
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Figure B.5.: Benchmark of data integration. a. UMAPs of the HNOCA, either without any
data integration (PCA) or with different data integration methods applied. The
number in parenthesis indicates which level of RSS-based snapseed annotation
labels were provided as input to the model for methods which support semi-
supervised data integration. Dots in all UMAP embeddings, each representing a
cell, are coloured by the cell type annotation introduced in Fig. 3.8. a.c., aggrecell
algorithm. b. scIB benchmarking metrics on all tested integration methods.
c. PCA of the scPoli sample embeddings from the final scPoli integration of
the HNOCA presented throughout Section 3.2, coloured by publications, scRNA-
seq methods, organoid protocols, protocol types, cell lines, and sample ages.
d. UMAPs of the HNOCA based on the final scPoli integration, each with
one dataset highlighted. A dataset is defined as data from one protocol in one
publication. The protocol and publication of each dataset are shown by the colour
bar and indices on top of the UMAP. Reproduced from [204] (Licensed under
the Creative Commons Attribution-NonCommercial 4.0 International license:
https://creativecommons.org/licenses/by-nc/4.0/).
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Figure B.6.: Characterisation of the HNOCA. a. Expression of selected marker genes used
in the semi-automatic annotation of cell types for Figure 3.8. b. Mean cell type
proportion over all datasets per organoid age bin. c. Distribution of sample
real-time age in days over deciles of computed pseudo time. d. Expression of top
markers in different non-telencephalic neural cell types. Markers are defined as
genes with AUROC > 0.7, in-out detection rate difference > 20 %, in-out detection
rate ratio > 2, and log2FC > 1.2. When more than five markers are found, only the
top five (with the highest in-out detection rate ratio) are shown. Reproduced from
[204] (Licensed under the Creative Commons Attribution-NonCommercial 4.0
International license: https://creativecommons.org/licenses/by-nc/4.0/).
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Figure B.7.: Mapping-assisted annotation refinement of the HNOCA. a., b. UMAP of the
HNOCA coloured by the mapped cell classes (a) and brain regions (b) from
the human developing brain cell atlas [46]. c. Comparison of the HNOCA
cell type annotation with the primary reference mapping-based transferred cell
class and brain region labels. The darkness of cells indicates the proportions of
each HNOCA cell type being assigned to different cell class and brain region
categories. Brain region labels are only shown for the HNOCA neural cell types.
d. UMAP of non-telencephalic neurons, coloured by clusters (top), mapped brain
regions (middle) and mapped NTT subtypes (bottom). e. Comparison of non-
telencephalic neural cell types, defined as the concatenation of the mapped brain
region and NTT subtype, with the clusters. The middle heatmap shows the
contributions of different clusters to different neural cell types. The bar on the
left shows the neural cell types; dots under the heatmap show clusters. The
heatmaps at the bottom and on the right show the average expression of three
NTTs SLC17A6, SLC18A3, and SLC32A1 in clusters (bottom) and neural cell
types (right). f. Overview of the HNOCA cell type composition for the first
two levels of the cell annotation (left: level-1, middle: level-2) and the refined
regional annotation assisted by mapping non-telencephalic NPC and neurons to
the primary reference (right). g. Neural cell type composition of different datasets
(rows). The darkness of the heatmap shows the proportions of different neural
cell types per HNOCA dataset. The bars on the left show organoid protocol
types of different datasets. The bars on the bottom show neural cell types. Bars
on the right show total neuron numbers across datasets. Reproduced from
[204] (Licensed under the Creative Commons Attribution-NonCommercial 4.0
International license: https://creativecommons.org/licenses/by-nc/4.0/).
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Figure B.8.: Relationship between morphogen usage and cell type as well as regional com-
position. a. Schematic of estimating cell type enrichment with different morpho-
gen usages. b. This heatmap indicates in how many of the 17 scCODA iterations
(using each of the 17 regional cell identities as a reference once) the respective
morphogen was found to lead to compositional changes with respect to the
reference regional cell identity. A morphogen effect was called significant in this
consensus approach if it significantly affected cell type composition with respect
to more than half of the reference cell types. c. Effect of different morphogens on
regional organoid composition in the HNOCA. Positive values correspond to a
higher abundance of cells from the indicated regional cell identity in cases where
the respective morphogen was used in the differentiation protocol. Top: log2-fold-
effect sizes of morphogens per regional cell identity as computed by the scCODA
model. Bottom: L1-regularised linear model coefficients. The dashed arrows show
consistent enrichment/depletion identified by the two methods. Reproduced from
[204] (Licensed under the Creative Commons Attribution-NonCommercial 4.0
International license: https://creativecommons.org/licenses/by-nc/4.0/).
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Figure B.9.: Presence scores per HNOCA dataset. a. Average normalised presence scores
of different HNOCA datasets (rows) in different cell clusters in the primary
reference of the human developing brain atlas [46] (columns). The bars on the
left show organoid differentiation protocol types of the HNOCA datasets. The
bars underneath show cell class and the commonest region information of the
cell clusters in the primary reference. HyTh, hypothalamus; MB, midbrain.
b. UMAP of the primary reference, coloured by the max presence scores across
different HNOCA data subsets, split by organoid protocol types. A high max
presence score suggests enrichment of the corresponding primary cell state in
at least one HNOCA dataset among the datasets based on the specific type
of organoid protocols. A low score means an under-representation of the cell
state in all datasets in the subset. Reproduced from [204] (Licensed under
the Creative Commons Attribution-NonCommercial 4.0 International license:
https://creativecommons.org/licenses/by-nc/4.0/).
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Figure B.10.: Robustness of organoid-primary DEGs and diseases-associated organoid-
primary DEGs. a. Schematic of DE analysis between a subset of dorsal tel-
encephalic neurons in the HNOCA [99] with counterparts in two developing
human brain atlases [46, 48]. b. Number of DEGs between cortical neurons from
Velasco et al. organoid data [99] and primary fetal cortical neurons from Braun et
al. [46] (10x 3’ v2 chemistry only, [DE1]) or Eze et al. [48] ([DE2]) respectively.
c. Log2FCs across all 7470 DEGs between dorsal telencephalic neurons from
Velasco et al. [99] and either primary fetal cortical neurons from Braun et al.
[46] (10x 3’ v2 chemistry only) or Eze et al. [48] The dendrogram shows the
hierarchical clustering of DEGs based on their log2FC against the two primary
data. d. Functional enrichment analysis of the four clusters of DEGs. The
widths of the bars show log10-transformed adjusted p-value of Fisher’s exact
test. Only the first 15 terms with adjusted p < 0.05 are shown. Reproduced from
[204] (Licensed under the Creative Commons Attribution-NonCommercial 4.0
International license: https://creativecommons.org/licenses/by-nc/4.0/).
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Figure B.11.: Transcriptomic fidelity of neurons and cell stress. a. Glycolysis scores of differ-
ent neural cell types in primary (left, Braun et al. [46]) and a selected organoid
dataset (right, Kanton et al. [97]). b. Correlation between average glycolysis
scores and transcriptomic similarities (Spearman correlation) to primary coun-
terparts. Each dot represents one neural cell type generated by one protocol.
The correlation is calculated based on all HVGs (left) or TFs (right). c. The
correlation between glycolysis scores and transcriptomic similarities to primary
is significantly weaker when only TFs are considered. The box shows the distri-
bution of correlation when a random subset of HVGs, with the same number as
the variable TFs, are used. The red dot shows the correlation using variable TFs.
d. Spearman correlation between average gene expression profiles of neural cell
types in the HNOCA and those in the primary reference of human developing
brain atlas [46], across all HVGs (left, S1) or variable TFs (right, S3). The average
gene expression profile per neural cell type was calculated with all cells (S1) or
cells with low glycolysis scores (glycolysis score < 0.6, S3). e. Core transcriptomic
fidelity of organoid neurons (S2, shown in Fig. 3.10), which only considers TFs,
is higher than the global transcriptomic fidelity (S1), which considers all the
HVGs. Core transcriptomic fidelity and global transcriptomic fidelity are highly
correlated (left, x-axis - S1, y-axis - S2, each dot represents one neural cell type in
one HNOCA dataset), while core transcriptomic fidelity is significantly higher
(right, x-axis: S1, y-axis: S2 - S1, dots are coloured by density estimated with
Gaussian kernel). f. Core transcriptomic fidelity of organoid neurons is not
improved by filtering cells based on glycolysis scores. The left panel shows core
transcriptomic fidelities without (x-axis, S2) and with glycolysis score filtering
(glycolysis score < 0.6, y-axis, S3). The Wilcoxon test suggests S2 and S3 are
not significantly different (right, x-axis: S2, y-axis: S3 - S2, dots are coloured
by density estimated with Gaussian kernel). Reproduced from [204] (Licensed
under the Creative Commons Attribution-NonCommercial 4.0 International
license: https://creativecommons.org/licenses/by-nc/4.0/).
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Figure B.12.: Reference mapping of the neural organoid morphogen screen data to the
HNOCA and the human developing brain atlas. a. UMAP embedding of the
human developing brain atlas and neural organoid morphogen screen [321]
datasets based on the joint scANVI latent space coloured by brain region (left)
and dataset (right). b. UMAP embedding of the HNOCA and the screen datasets
based on the joint scPoli latent space coloured by annotated cell type (left) and
dataset (right). c. scPoli UMAP embedding of the HNOCA coloured by cell type
(left) and max presence score across all datasets (right). d. Heatmap showing
min-max scaled average presence scores of each condition in the screen dataset
in the HNOCA datasets. e. Heatmap showing min-max scaled average presence
scores of each condition in the screen dataset in each Leiden cluster in the
HNOCA, ordered by annotated cell type. f. UMAP embeddings of the HNOCA
(left) and the human developing brain atlas (right) coloured by presence scores
for each condition group in the screen dataset. g. UMAP embeddings of the
human developing brain atlas (upper) and screen dataset (lower) coloured
by coexpression scores of clusters with gained coverage in the screen dataset.
Reproduced from [204] (Licensed under the Creative Commons Attribution-
NonCommercial 4.0 International license: https://creativecommons.org/lice
nses/by-nc/4.0/).
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B.3. Chronic exposure to glucocorticoids amplifies inhibitory neuron
cell fate during human neurodevelopment in organoids

This section contains the supplemental figures for Section 3.3 of this thesis. The figures are
collectively reproduced from the Supplementary Figures of:

Dony, L., Krontira, A. C., Kaspar, L., Ahmad, R., Demirel, I. S., Grochowicz, M., Schäfer,
T., Begum, F., Sportelli, V., Raimundo, C., Koedel, M., Labeur, M., Cappello, S., Theis, F.
J., Cruceanu, C.*, Binder, E. B.* Chronic exposure to glucocorticoids amplifies inhibitory
neuron cell fate during human neurodevelopment in organoids. In review. Preprint [205] doi:
10.1101/2024.01.21.576532 (2024)

"*" denotes an equal contribution.

Figure captions are largely identical to the ones presented in the above source. The original
figures and captions are licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license: https://creativecommons.org/licenses/by-nc-nd/4.
0/.
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Figure B.13.: Chronic GC exposure in neural organoids does not induce significant meta-
bolic stress in cells. a. Selected marker gene expression per cell type and
cell line. b. Fraction of non-viable cells per cell type and cell line. The abso-
lute number of non-viable cells per cluster is displayed above each bar. The
Unknown clusters were removed from the datasets in their entirety (394 cells
in Line 409b2; 7039 cells in Line FOK4). c. Top: cells from this study pro-
jected to the HNOCA [204]. Cells are coloured by their origin dataset (left)
and cell types assigned in this study (right). Bottom: HNOCA cell type la-
bels. CP, choroid plexus; NPC, neural progenitor cell; EC, endothelial cell;
MC, mesenchymal cell; NC, neural crest; OPC, oligodendrocyte progenitor cell;
PSC, pluripotent stem cell. Reproduced from [205] (Licensed under the Creat-
ive Commons Attribution-NonCommercial-NoDerivs 4.0 International license:
https://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure B.14.: Transcriptional response following chronic GC treatment in organoids in-
cludes key neurodevelopmental genes. a. Filtering scheme used to identify con-
sensus DEGs between organoids from the two genetic backgrounds. b. Grouped
semantic space representation of the Gene Ontology Biological Process en-
richment analysis for the three cell types with the least detected DEGs. The
size of the circles corresponds to the number of terms in the cluster; their
colour corresponds to the log10(q-value) of the representative term for each
cluster. The integers within the circles enumerate the eight most signific-
ant clusters, and their representative term is written out in the legend be-
low each plot. c. UMAP embedding of Line 409b2 and Line FOK4 data col-
oured by organoid age. Reproduced from [205] (Licensed under the Creat-
ive Commons Attribution-NonCommercial-NoDerivs 4.0 International license:
https://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure B.15.: GC exposure results in an increased abundance of inhibitory neurons in
organoids. a. Representative image of whole slice dorsalised Line 409b2 (GFP-
GAD1) control organoids at day 70 in culture (Veh condition). Only very few
GAD1-positive cells are visible. Lower panel: zoomed-in inserts. DMSO, di-
methyl sulfoxide; Dex, dexamethasone. b. Representative image of whole slice
dorsalised Line 409b2 (GFP-GAD1) organoids at day 70 in culture, following
ten days of chronic treatment with GCs (100nM dexamethasone; Chr condition).
Only very few GAD1-positive cells are visible, but slightly more than in the
dorsalised control organoids. c. Representative image of whole slice ventralised
Line 409b2 (GFP-GAD1) control organoids at day 70 in culture (Veh condition). A
larger number of GAD1-positive cells than in the dorsalised organoids indicates
a successful ventralisation. Reproduced from [205] (Licensed under the Creat-
ive Commons Attribution-NonCommercial-NoDerivs 4.0 International license:
https://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure B.16.: PBX3 regulation through chronic GC exposure supports inhibitory neuron
priming. a. Correlation of NFIA, NFIB, YBX1, and EGR1 expression with lineage
probability across the excitatory and inhibitory neuronal lineages in all three
datasets. The percentile of each gene among all significant driver genes ranked by
driver strength is shown on the side of every bar. b. Expression of PBX3 in Line
FOK4 and the validation data [97] on a force-directed graph embedding (top).
Expression patterns of PBX3 across pseudo time for each of the three lineage
endpoints in Line FOK4 and the validation data [97] (bottom). c. Expression
of PBX3 in the fetal brain atlas [46] neurons and NPCs across age (in days),
dissected brain region, and NTT expression (left to right). d. Expression of
GAD1 and PBX3 in day-70 double-positive cells with fitted linear regression line.
Left: Line 409b2. Right: Line FOK4. Reproduced from [205] (Licensed under
the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license: https://creativecommons.org/licenses/by-nc-nd/4.0/).
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GFP green fluorescent protein. 51, 99, 103, 119, 120, 138

GR glucocorticoid receptor. 18, 94, 95
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Acronyms

GRN gene regulatory network. 5, 60–62, 75, 91, 104, 106, 107, 114–116

gRNA guide RNA. 49, 50, 118

HCA Human Cell Atlas. 9, 10, 113

HNOCA Human Neural Organoid Cell Atlas. iii, v, 23–25, 27, 28, 36, 37, 41, 43–47, 54, 55, 63,
79–89, 91, 94, 108, 111–114, 116, 117, 127–134, 136

HPA hypothalamic-pituitary-adrenal. 18–21

HVG highly variable gene. 40, 46, 53, 54, 56, 57, 59, 133

ImmChP immature choroid plexus. 93, 96, 97

IP intermediate progenitor. 12, 13, 83, 85, 93, 94

iPSC induced pluripotent stem cell. 12, 14, 48, 49, 91, 97, 118

kNN k-nearest neighbour. 7, 36, 39, 41, 43, 45, 53–57, 59, 60, 83

log2FC log2 fold-change. 46, 55, 84, 87, 94, 96, 100, 101, 105, 107, 128, 132

mRNA messenger RNA. 2, 4, 8, 25, 30

NDD neurodevelopmental disorder. 16, 116, 117

NPC neural progenitor cell. 12, 13, 15, 43, 57, 81–83, 85, 93, 94, 116, 129, 136, 139

NTT neurotransmitter transporter. 40, 43, 58, 83, 85, 129, 139

OPC oligodendrocyte precursor cell. 13, 81, 82

PBMC peripheral blood mononuclear cell. 48, 70, 71, 73

PCA principle component analysis. 30, 36, 39, 45, 53, 54, 56, 57, 62, 68, 71, 73, 75, 76, 127
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Acronyms

PCR polymerase chain reaction. 2, 50

QC quality control. 5, 36, 40, 53, 59, 80, 91

RG radial glia. 11–13, 15, 16, 57, 82, 83, 93, 94, 96, 97

RSS reference similarity spectrum. 36, 38, 39, 80, 127

scATAC-seq single-cell assay for transposase-accessible chromatin using sequencing. 25, 52,
59–62, 90, 91, 104, 107

scRNA-seq single-cell ribonucleic acid sequencing. 1–10, 13, 22–25, 27, 28, 30, 31, 33, 35, 37,
39, 40, 44, 47, 52, 54, 59–65, 67, 68, 70–73, 75, 79–81, 84, 88–91, 97, 103, 104, 107–112, 114,
116, 127

SELU Scaled Exponential Linear Unit. 33

sGC synthetic glucocorticoid. iii, 20, 91

ssODN single-stranded oligo DNA nucleotide. 50, 118

TF transcription factor. 18, 46, 56, 60–62, 86, 87, 91, 94, 96, 98, 100, 101, 103–105, 107, 114–116,
133

uDEG ubiquitous differentially expressed gene. 84, 86, 87

UMAP Uniform Manifold Approximation and Projection. 30, 36, 45, 54–57, 59, 60, 70, 71, 76,
81, 82, 85, 89, 95, 98, 107, 122, 127, 129, 131, 134, 137

UMI unique molecular identifier. 3, 30, 36, 53, 69

VAE variational autoencoder. 27, 33, 37, 70, 73, 76
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