
Technische Universität München
TUM School of Life Sciences

Charting targets for CAR T cell therapy and
investigating species-specific neural differentiation:

Towards novel cellular therapies at the single cell level

Moritz Thomas, M.Sc.

Vollständiger Abdruck der von der TUM School of Life Sciences der Technischen
Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Markus List

Prüfende der Dissertation:

1. Prof. Dr. Dr. Fabian J. Theis

2. Prof. Dr. Wolfgang Enard

Die Dissertation wurde am 21.03.2024 bei der Technischen Universität München eingereicht
und durch die TUM School of Life Sciences am 18.07.2024 angenommen.





Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to Carsten Marr for granting
me the opportunity to pursue my PhD in his group and allowing me to work on such fascinating
projects with numerous outstanding collaborators. Carsten’s mentorship has been invaluable and
his ideas, guidance and positive attitude throughout all our scientific discussions helped me grow
both professionally and personally. His impact on me cannot be understated. I could not have
asked for a better supervisor.

I am also deeply thankful to Fabian Theis for enabling my PhD, for his unwavering support
throughout my time as a master and PhD student and for creating such an amazing, open and
thriving research environment at the Computational Health Center in Helmholtz Munich.

I would further like to thank all the collaborators I had the pleasure of working with, in particular
Sebastian Kobold, Christian Schröter, Micha Drukker, and Katharina Götze, for their valuable
guidance and support during our meetings. Additionally, I would like to thank Wolfgang Enard
and Maria-Elena Torres Padilla for being part of my thesis advisory committee, providing valuable
ideas and support to my projects.

The ICB and the AIH have been a wonderful place to conduct research, surrounded by fantastic
and inspiring individuals. I feel incredibly lucky to have met so many remarkable people across
the Marr, Theis, and Peng labs. I would like to thank Dominik Waibel, Melanie Schulz, Benedikt
Mairhörmann, Ruben Brabenec, Alexandra de la Porte, Julia Schröder, Ali Boushehri, Lea
Schuh, Minas Schwager, Michael Sterr, Sophia Wagner, Lorenz Lamm, and Valentin Koch for
engaging in stimulating scientific discussions, contributing their ideas to my projects, and offering
continuous support. A special thanks goes to Sophie Tritschler for introducing me to the world of
computational biology and providing valuable guidance at the start of my master’s thesis and
PhD. Equally important, I am grateful to all members of the Computational Health Center for
fostering such an enjoyable working atmosphere.

To my family, I cannot express enough gratitude for your unwavering support throughout this
journey leading to my thesis. You all made this journey a very enjoyable and memorable expe-
rience. I could not have done it without you. To Isabel, Jakob, Martin, Patrick, and Anabel,
thank you for being by my side at all times.

And thank you, Zuleika, for showing me the meaning of success.

i





Abstract

Breakthroughs in single cell omics, a discipline that focuses on the analysis of individual cells, have
revolutionized our understanding of complex cell biology in recent years. Technologies such as
single cell RNA sequencing (scRNA Seq) and single cell sequencing for DNA accessibility (scATAC
Seq), routinely allow sequencing thousands of individual cells. This generates massive amounts
of data that, with the help of sophisticated computational techniques, provide unprecedented
insights into the molecular underpinnings of cellular identity and function. Cellular therapies have
gained increasing attention as a promising approach for the treatment of a variety of diseases, yet
persistent challenges involve refining their performance while ensuring widespread scalability. In
this thesis, I explore and analyze scRNA and scATAC data with the goal of contributing to the
safety and efficacy of cellular therapies employing chimeric antigen receptor (CAR) T cells or
pluripotent stem cells (PSCs).

A promising form of therapy using immune cells is the genetic modification of a patient’s T cells
to generate so-called CAR T cells. These cells can bind to cancer-specific targets and thus
have an increased potential to recognize and fight cancer cells. Despite remarkable progress in
the treatment of B cell lymphomas, broad applicability of CAR T cells is still hindered by a
lack of cancer-specific and thus safe targets, resulting in a range of sometimes severe and life
threatening side effects. I introduce a computational approach to identify potential targets for
CAR T cell therapy using large scale scRNA Seq data. Applying this approach to acute myeloid
leukemia, an aggressive blood cancer, led to the discovery of two previously unidentified targets
that demonstrated robust efficacy with minimal toxicity, providing a strong rationale for further
clinical development. In addition, I investigate global gene expression profiles of targets that are
currently being tested in clinical trials. I interpret target expression in tumor cells and healthy
tissues in conjunction with clinical outcome data obtained from patients who underwent CAR T
cell therapy and propose novel targets that exhibit a favorable gene expression pattern across
malignant and healthy cells.

PSCs have enormous potential for regenerative medicine, given their ability to differentiate into
specific cell types that are required to repair damaged or destroyed tissues. As a result, they
have garnered significant attention as a potential remedy for the global shortage of transplantable
tissues and organs. However, clinical use is still limited due to slow and inefficient differentiation
protocols of these cells and immature properties of the derived cell types. Acceleration of stem cell
differentiation requires a better understanding of the basic mechanisms that determine cellular
developmental time. However, these developmental times vary between species and remain
poorly understood. Therefore, I use timelapsed multiomic sequencing, a method that allows
us to simultaneously observe changes in gene expression and DNA accessibility over time, to
characterize differentiation of PSCs from three species to neural progenitor cells. I explore distinct
species-specific variations in gene expression, global differentiation rates, cell cycle phases, DNA
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accessibility, transcription factor activity, and potential factors driving differentiation.

This thesis presents strategies for handling extensive transcriptomic and timelapsed multiomic
data, demonstrating their potential for driving progress in cellular therapies. The findings of this
thesis facilitate the identification and clinical development of novel CAR T cell therapeutics and
establish groundwork to develop improved and more effective protocols for stem cell differentiation
in the field of regenerative medicine.
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Zusammenfassung

Bahnbrechende Fortschritte in der Einzelzell-Omik, einer Disziplin, die sich mit der Analyse
einzelner Zellen befasst, haben in den letzten Jahren unser Verständnis der komplexen Zellbiologie
revolutioniert. Mit Technologien wie der Einzelzell-RNA-Sequenzierung (scRNASeq) und der
Einzelzell-Sequenzierung für DNA-Zugänglichkeit (scATAC Seq) können routinemäßig Tausende
individueller Zellen sequenziert werden. Dadurch entstehen riesige Datenmengen, die mit Hilfe
hochentwickelter rechnerischer Verfahren beispiellose Einblicke in die molekularen Grundlagen
der zellulären Identität und Funktion bieten. Zelluläre Therapien haben als vielversprechender
Ansatz für die Behandlung einer Vielzahl von Krankheiten zunehmend an Aufmerksamkeit ge-
wonnen, doch die Herausforderungen bestehen weiterhin darin, ihre Leistung zu verbessern und
gleichzeitig eine breite Skalierbarkeit zu gewährleisten. In dieser Arbeit untersuche und analysiere
ich scRNA und scATAC Daten mit dem Ziel, zur Effektivität und Sicherheit zellulärer Therapien
beizutragen, bei denen chimäre Antigenrezeptor (CAR) T Zellen oder pluripotente Stammzellen
(PSZ) eingesetzt werden.

Eine vielversprechende Form der Therapie mit Immunzellen ist die genetische Modifizierung
von T Zellen eines Patienten, um daraus sogenannte CAR T Zellen zu erzeugen. Diese Zellen
können an krebsspezifische Zielstrukturen binden und besitzen dadurch ein erhöhtes Potenzial
zur Erkennung und Bekämpfung von Krebszellen. Trotz bemerkenswerter Fortschritte bei der
Behandlung von B-Zell-Lymphomen wird eine breite Anwendbarkeit von CAR T Zellen durch
einen Mangel an krebsspezifischen und dadurch sicheren Zielstrukturen behindert, was sich in einer
Reihe von mitunter schwerwiegenden und lebensbedrohlichen Nebenwirkungen äußert. Ich stelle
einen computergestützten Ansatz zur Identifizierung potenzieller Zielstrukturen für die CAR T
Zelltherapie unter Verwendung von umfangreichen scRNA Seq Daten vor. Die Anwendung dieses
Ansatzes auf die akute myeloische Leukämie, ein aggressiver Blutkrebs, führte zur Entdeckung
von zwei bisher unerkannten Zielstrukturen, die eine robuste Wirksamkeit bei minimaler Toxizi-
tät zeigten, was eine solide Grundlage für die weitere klinische Entwicklung darstellt. Darüber
hinaus untersuche ich globale Genexpressionsprofile von Zielstrukturen, die derzeit in klinischen
Studien getestet werden. Ich interpretiere die Expression dieser Zielstrukturen in Tumorzellen
und gesundem Gewebe in Verbindung mit klinischen Daten von Patienten, die mit CAR T Zellen
behandelt wurden, und schlage neue Zielstrukturen vor, die ein vorteilhaftes Genexpressionsmuster
in malignen und gesunden Zellen aufweisen.

PSZ verfügen über ein enormes Potenzial für die regenerative Medizin, da sie in der Lage sind, sich
in spezifische Zelltypen zu differenzieren, die für die Reparatur von geschädigtem oder zerstörtem
Gewebe erforderlich sind. Als potenzielles Mittel gegen den weltweiten Mangel an transplantierba-
ren Geweben und Organen haben sie dadurch große Aufmerksamkeit erregt. Der klinische Einsatz
ist jedoch aufgrund langsamer und ineffizienter Differenzierungsprotokolle dieser Zellen, sowie
unausgereifter Eigenschaften der gewonnenen Zelltypen begrenzt. Die Beschleunigung der Stamm-
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zelldifferenzierung erfordert ein besseres Verständnis der grundlegenden Mechanismen, welche die
Entwicklungszeit der Zellen bestimmen. Diese Entwicklungszeiten sind jedoch für jede Spezies
unterschiedlich und bislang nur unzureichend bekannt. Daher nutze ich Zeitraffer-Multiomik
Sequenzierung, eine Methode, die es ermöglicht, gleichzeitig Veränderungen in der Genexpression
und der DNA-Zugänglichkeit im Laufe der Zeit zu beobachten, um die Differenzierung von PSZ
aus drei Spezies zu neuralen Vorläuferzellen zu charakterisieren. Ich untersuche ausgeprägte
speziesspezifische Variationen in der Genexpression, den globalen Differenzierungsraten, den Zell-
zyklusphasen, der DNA-Zugänglichkeit, der Aktivität von Transkriptionsfaktoren und potenziellen
Einflussfaktoren auf die Differenzierung.

In dieser Arbeit werden Strategien für den Umgang mit umfangreichen transkriptomischen und
Zeitraffer-Multiomik Daten vorgestellt und ihr Potenzial für den Fortschritt bei Zelltherapien
demonstriert. Die Ergebnisse dieser Arbeit erleichtern die Identifizierung und klinische Entwicklung
neuartiger CAR T Zelltherapeutika und bilden die Grundlage für die Entwicklung verbesserter
und effektiverer Protokolle für die Stammzelldifferenzierung im Bereich der regenerativen Medizin.
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1 Introduction

Cellular therapies refer to the use of living cells for the treatment of various diseases and medical
conditions. The earliest records of cellular therapy are found in the Ebers Papyrus, an ancient
Egyptian medical document dating back to 1550 BC that describes the use of plant extracts
to treat various ailments such as diarrhea, skin diseases, and even cancer. Similarly, blood
transfusions have been practiced for centuries, with the earliest evidence dating back to ancient
Greece, where Ovid mentioned the removal and replacement of “bad blood” in the seventh book
of the Metamorphoses in 43 BC [1].

In more modern times, the first actual recorded blood transfusion was performed by Richard
Lower in 1665 between two dogs, and between an animal and a human the following year [2,
3]. However, the practice was abandoned for many centuries, since safe transfusions required
understanding and recognition of blood types, which was not achieved until the early 20th
century [4]. Then, rather than simply administering blood transfusions, researchers began to
show a growing interest in completely replacing a patients’ damaged blood-forming cells with
healthy cells. This procedure, known as bone marrow transplantation, was first employed in the
treatment of leukemia, a progressive malignancy that results in the production of large amounts
of abnormal or immature white blood cells from the bone marrow. The first successful bone
marrow transplantation was performed by E. Donnall Thomas in 1957 on identical twins, whose
cells had the same set of genetic markers [5].

However, allogeneic transplantation, i.e. transplantation of cells or tissue from a donor to a
non-genetically identical host recipient posed a challenge, as the patient’s immune system was a
hindrance to transplantation by recognizing matter from other bodies as foreign and attempting
to reject it [6]. One approach to circumvent this issue was to perform an initial eradication of both
malignant and healthy blood cells using high doses of chemotherapy and radiation, destroying
the functioning marrow, before replacing it with healthy donor bone marrow cells [7].

Despite this workaround and early successes in transplantations, patients would often suffer from
anemia, infections, or experience cancer relapse, because the transplanted cells failed to engraft,
meaning they didn’t successfully migrate to the host’s bone marrow and establish a new blood
cell production system [8]. Furthermore, in certain cases, the donor cells themselves exhibited an
immune response against the patient’s body, a phenomenon known as graft-versus-host disease [9].
However, it is interesting to note that patients who suffered from graft-versus-host disease also
showed the least signs of cancer relapse [10, 11], indicating that foreign engrafted immune cells
effectively targeted residual cancer cells in the patient. This realization that a patient’s immune
system could effectively be redesigned to subsequently recognize and attack cancer led to what is
now known today as the concept of adoptive cell therapy. It explores the possibility of reengineer-
ing or training immune cells to recognize and attack cancerous cells without harming healthy
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cells from the host [12]. Adoptive cell therapy completely transformed the perception of drugs
from synthetic or purified small molecules to living cells, expanding the boundaries of medicine
as well as therapeutic manufacturing and commercialization [13].

In recent years, cellular therapies have gained increasing attention as a promising approach for
the treatment of a variety of diseases, including cancer, autoimmune disorders, cardiovascular
diseases and HIV [14–16]. The global cell therapy market size was valued at 21.6 billion USD in
2022 and is expected to grow at a compound annual growth rate of 14.15% from 2023 to 2030 [17].
Compared to traditional drug-based treatments, cellular therapies offer the promise of targeted
and personalized therapies with potential long-lasting effects, and reduced side effects. However,
the efficacy of cellular therapies is heavily dependent on the cells’ ability to properly integrate with
the host tissue and perform their intended function [14]. Thus, a comprehensive understanding of
the biology and behavior of the cells used, as well as the development of appropriate delivery
methods, is essential. Despite significant progress in the field, many challenges, such as improving
the safety and efficacy of these therapies and facilitating scaling for widespread use, remain to be
solved. Nevertheless, the potential benefits of cellular therapies are significant and their continued
development holds great promise for the treatment of various diseases and conditions [18].

Cellular therapies can be broadly classified into autologous and allogeneic therapies. Autologous
therapies use cells that are derived from the same individual receiving the treatment, whereas
allogeneic therapies use cells that are derived from a usually genetically similar, but not identical,
donor. Autologous therapies have the advantage of avoiding immune rejection, as the cells used
are from the patient’s own body, thus minimizing the need for immunosuppressive drugs and
reducing the risk of graft-versus-host disease. However, autologous therapies may be limited by
the availability and quality of a patient’s own cells, as well as the potential for contamination or
mutation during processing [14, 19, 20]. A promising approach for autologous treatments involves
the use of immune cells, specifically T cells, due to their potential to recognize and target specific
cells, such as cancer cells or cells infected with a virus [21]. Notably, despite commonly observed
acute toxicities [22], these autologous treatments are commonly employed in the treatment of
hematological malignancies such as leukemia and lymphoma, demonstrating highly encouraging
results [23, 24].

On the other hand, allogeneic therapies have the potential for greater scalability and availability,
as cells can be derived from healthy donors, thus offering “off-the-shelf” supply for a wider range
of patients. However, this approach requires careful matching to avoid immune rejection and
graft-versus-host disease [14, 19, 20]. For allogeneic cellular therapies, pluripotent stem cells,
which can differentiate into various cell types, including those involved in tissue repair and
regeneration, have shown great potential, offering scalable and cost-effective treatments [25].
Nevertheless, significant challenges persist, notably the potential for tumor formation, which may
occur if reprogramming factors remain active or when immature cells persist in the final cell
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product [25]. Despite these hurdles, ongoing clinical investigations involving pluripotent stem
cells for allogeneic therapies span various clinical domains, underscoring their potential to address
an array of diseases and injuries. Notable applications include age-related macular degeneration,
spinal cord injury, Parkinson’s disease, and type 1 diabetes [25].

In the upcoming sections, I will present the utilization of T cells for autologous cellular therapies,
as well as pluripotent stem cells for allogeneic cellular therapies.
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1.1 Somatic cell-based cellular therapies for cancer treatment

Non-stem cell-based therapies encompass a wide range of treatments that utilize somatic non-stem
cells, i.e. cells that make up the body of an organism and are not involved in reproduction, such
as immune cells, pancreatic islets cells, or fibroblasts. These cells are typically obtained either
from healthy donors or from the patient themselves, and are then subjected to various forms of
manipulation or treatment before being administered to the patient [14]. Of the cell types used in
non-stem cell-based therapies, pancreatic islet cell transplantation has shown particular promise
as a treatment for patients with type 1 diabetes [26, 27].

Another emerging area of non-stem cell therapies is adoptive cell therapy, which involves the
modification of immune cells, such as T cells, followed by their infusion into patients to elicit an
immunologic response against tumors [28, 29]. The most prominent form of adoptive cell therapy
is chimeric antigen receptor (CAR) T cell therapy, which I will describe in more detail below.

1.1.1 CAR T cell therapy for treatment of hematological malignancies

The recognition of foreign proteins by mature T cells is mediated by receptors located on their cell
surface, which typically suffices to eradicate malignant cells or viruses [30]. However, cancer cells
are characterized by their ability to evade, suppress and exploit the host immune system, enabling
them to grow and spread rapidly [31]. The genetic modification of a patient’s T cells to express
a CAR has evolved as a promising strategy for enhancing the immune response against cancer
cells. These engineered CARs then redirect the T cells’ specificity and function, enabling them
to recognize and selectively target tumor-specific antigens. Following ex vivo expansion, these
CAR T cells are infused back into the patient, where they selectively migrate to sites of tumor
growth and exert their cytotoxic effects by recognizing and killing cancer cells [21] (Figure 1.1a).

CAR T cell therapy has undergone significant improvements over the years, as evident from the
successive generations of CAR structures themselves, resulting in substantial enhancements in
the efficacy and safety of CAR T cells [32]. Characterized by improved CAR T cell expansion,
modulation of the antigen density threshold for activation, and increased overall persistency, these
advancements have led to the development of "living drugs" that form the backbone of modern
CAR T cell therapy today [32, 33].

Figure 1.1b illustrates the components of a typical CAR. At its core, a baseline or prototype CAR
comprises an ectodomain consisting of a single-chain variable fragment (scFv) to specifically rec-
ognize and bind to the tumor antigen. This is followed by a hinge or spacer domain that provides
conformational flexibility and projects the scFv away from the cell surface. The transmembrane
domain anchors the receptor in the T cell surface. Costimulatory and CD3⇣ signaling domains,
which promote CAR T cell expansion and persistence, and provide downstream activation signals,
have been shown to be significant contributors to the overall efficacy of CAR T cell therapy [32].
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Figure 1.1: An overview of CAR T cell therapy. a) The workflow of CAR T cell therapy:
Patient’s T cells are removed from the blood (1) and genetically engineered to
express the gene for a chimeric antigen receptor (CAR) (2). CAR T cells are
subsequently expanded in the laboratory (3), before being infused back into the
patient (4). b) Prototype structure of a CAR including the antigen-binding single
chain variable fragment (scFv) domain, a hinge domain, a transmembrane domain
and intracellular costimulatory and signaling domains.

Since their inception in 1987 [34], the field of CAR T cell therapy has rapidly evolved from a
promising immuno-oncology approach in preclinical models to over 1000 clinical trials testing
CAR T cells (registered on http://www.clinicaltrials.gov as of March 2023). Despite these
advancements, the substantial cost, reaching several hundred thousand USD per patient, remains
a formidable barrier to the broader administration of CAR T cell therapy [35, 36]. Nevertheless,
six FDA-approved and commercialized CAR T cells targeting B cell lineage antigens CD19 or B
cell maturation antigen (BCMA) have demonstrated clinical efficacy in patients suffering from
various B cell malignancies, including B cell lymphoma, B cell acute lymphoblastic leukemia, and
multiple myeloma [21, 32, 37–40].

1.1.2 Lack of safe targets prevents broad clinical application of CAR T cells

Despite the remarkable progress made in the treatment of B cell lymphomas, CAR T cell therapy
is associated with acute toxicities. While some toxicities were expected, such as B cell aplasia,
occurring when B cell-specific antigens like CD19 or BCMA are targeted [21], many unforeseen
toxicities emerged, which, importantly, were retrospective findings, discovered only after treatment
inception [41–43]. The two most commonly observed acute adverse effects of CAR T cell therapy
are cytokine release syndrome and neurologic toxicity.
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Cytokine release syndrome is a systemic inflammatory response caused by the release of large
amounts of proinflammatory cytokines by activated CAR T cells [33]. Upon encountering their
target cells, CAR T cells release cytokines, such as interleukin-6 (IL-6), tumor necrosis factor-alpha
(TNF-↵), and interferon-gamma (IFN-�), which activate other immune cells, leading to the release
of additional cytokines. This cytokine cascade can quickly spiral out of control [44], resulting
in a wide range of symptoms from minor constitutional symptoms, such as fever, to long-term
and potentially life threatening consequences such as multi-organ failure [42]. The severity of
cytokine release syndrome varies widely between patients and is dependent on several factors,
such as the extent of tumor burden and the dose of CAR T cells administered [21, 23].

Neurotoxicity, on the other hand, despite being reported many times [23, 45, 46], remains poorly
understood. It is believed to involve the disruption of the blood-brain barrier due to inflammation
caused by increased cytokine levels [47–49], which can lead to a wide range of symptoms such as
confusion, delirium, expressive aphasia or seizures [43].

The origins and management of these toxicities are not yet well understood in the context of
CAR T cell therapy, although it is commonly believed that these adverse effects are a consequence
of the interaction between CAR T cells and the cells they target. As the efficacy of these therapies
heavily depends on targeting tumor-specific antigens, these side effects have been partially linked
to target expression and availability [43].

An ideal target antigen serves as a vital survival signal for the tumor clone and is restricted
to the tumor cell [43, 50]. Conversely, shared expression and subsequent engagement of target
antigens on nonpathogenic tissues is commonly believed to increase the risk for these so-called
on-target, off-tumor toxicities [51–53]. For instance, the use of CAIX (CA9)-targeting CAR T
cells for the treatment of renal cell carcinoma resulted in hepatobiliary toxicity, likely due to
shared expression of CAIX on bile duct epithelium [54, 55]. Similarly, administration of CAR T
cells targeting HER2 in a patient with colorectal cancer led to cardiorespiratory failure due to
cross-reactivity with pulmonary and cardiac tissue [56, 57].

Identifying and selecting safe target antigens is thus pivotal to translate the vast potential of
CAR T cell therapy to non-B cell malignancies and optimize long-term patient management and
outcomes.
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1.2 Pluripotent stem cells for regenerative medicine

Stem cells are undifferentiated cells capable of self-renewal and differentiation into various cell
types depending on their developmental potency [14, 58]. Pluripotent stem cells (PSCs) are
a type of stem cell that can differentiate into cells of all three germ layers, i.e. layers of cells
formed during embryonic development that develop into different parts of the body. PSCs can
therefore give rise to almost all cell types in the body, except for extraembryonic structures like the
placenta [58]. PSCs can be derived from different stages of biological development [59] (Figure 1.2).

Figure 1.2: The origin of PSCs during development. Pluripotent cells of various types can
be obtained by explanting or reprogramming cells at different stages of development,
ranging from early embryonic stages to postnatal adulthood.

Embryonic stem cells (ESCs) are derived from the early inner blastocyst cell mass of preimplan-
tation embryos. ESCs express key pluripotency genes and have the ability to differentiate into
any cell type in the body, providing an unlimited supply of cells for therapeutic purposes. In
contrast, epiblast stem cells (EpiSCs) are derived from the epiblast layer of epithelial cells in
postimplantation embryos and exhibit a slightly more limited developmental potential compared
to ESCs [59]. However, the use of embryonic and epiblast stem cells is controversial due to ethical
concerns related to the use of human embryos and endangering fetal lives [60].

Given these concerns, a major breakthrough occurred in 2006, when researchers demonstrated
that mature and differentiated cells could be reprogrammed back into stem cells [61, 62]. These
reprogrammed cells are known as induced PSCs (iPSCs) and can be generated from various adult
somatic cells in vitro. iPSCs exhibit similar characteristics to ESCs and provide a promising
alternative, with the added advantage of not raising ethical concerns [59, 63]. Since then, iPSCs
are becoming increasingly attractive for their potential to generate personalized therapies, with
many different iPSC lines customized for specific applications [64].

Given their ability to differentiate into various cell types of the human body, including specific cell
types that are required to repair damaged or destroyed tissues, PSCs hold enormous potential for
regenerative medicine, providing a way for cell differentiation or tissue repair and have garnered
significant attention as a potential remedy for the global shortage of transplantable tissues and
organs [64]. Steady advancements in cell culture and differentiation techniques have expanded
the scope of PSCs in cellular therapies and their potential impact on human health [25, 65],
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facilitating promising treatments for various diseases, including type 1 diabetes, where PSCs can
be differentiated into insulin-producing beta cells, potentially replacing dysfunctional insulin-
secreting beta cells [66–68], heart failure [26, 69], where PSCs can be differentiated into mature
cardiomyocytes, Parkinson’s and Alzheimer’s disease or strokes [70].

The generation of patient-specific iPSC lines has revolutionized stem cell research by providing a
customizable and biocompatible platform, thus become indispensable for disease modeling and
high-throughput screening for drug discovery and toxicity tests [71–73]. However, the clinical
use of PSCs for cell differentiation or tissue repair is still limited to investigational regenerative
medicine, as their translational potential is hindered by certain limitations, such as the slow and
inefficient differentiation process, as well as the immature characteristics of derived cell types [59,
63, 65, 71, 74, 75]. The yield of functional cells is usually quite low, with major yield loss often
being reported during later stages of the differentiation process. For example, for cell types with
complex functions, such as insulin-producing beta cells, the majority of yield loss is often encoun-
tered at later stages, impacting the efficiency and success of the therapeutic outcome [76, 77].
The overall efficiency of the differentiation process can also heavily be influenced by its duration,
as PSC differentiation into specific cell lineages often involves multiple steps, and each transition
may introduce inefficiencies that contribute to yield loss. Differentiation of PSCs into functional
cell types often takes several weeks [59, 75]. Consequently, there is a growing interest in accelerat-
ing the differentiation of PSCs to produce functional cell types more rapidly and efficiently [14, 75].

The complex process of PSC differentiation can be better understood by studying mammalian
developmental timescales underlying cellular differentiation. Exploring beyond human timescales
is essential, as comparative studies across species can provide insights into evolutionarily conserved
and species-specific aspects of PSC differentiation. Analysis of factors that influence cellular
development can facilitate a more efficient and expeditious differentiation of PSCs into desired
cell types, contributing to the development of more robust and universally applicable therapies.
As such, studying developmental timescales is critical for realizing the full potential of PSCs in
cellular therapies [78].

1.2.1 Species-specific differentiation timescales

Mammalian embryonic development follows a defined sequence of events, although the duration
of these events varies widely among different species. For instance, while it takes 13 days for
human embryos to proceed from oocyte fertilization to gastrulation, mice reach this stage in
just six days [79]. Furthermore, the timescales of organogenesis, as well as neuronal differentia-
tion in the peripheral nervous system and midbrain are notably longer in humans than in mice [80].

In vivo developmental speed is reflected by the pace of in vitro differentiation of PSCs and
remains remarkably species-specific [78, 81]. In addition, the segmentation clock, a molecular
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process governing the rhythmic generation of repeating structures, such as precursor cells in the
spine, oscillates at a 2.5 and 5-hour periodicity in mouse and human PSC differentiation models,
respectively [82]. These findings suggest that cell differentiation timescales have a genetic basis
that is intrinsic to the cells themselves.

However, this intrinsic timescale can be modified by extrinsic factors. For example, reducing the
number of cells in mouse embryos through pharmacological or mechanical methods slows down
differentiation compared to proliferation during gastrulation [83, 84]. Additionally, diapause allows
many mammals to halt development when environmental conditions are unsuitable for prenatal
or postnatal survival [85]. Moreover, the creation of interspecies chimeras from pluripotent cells
of different species suggests that external signals can coordinate cell differentiation timescales [75,
86, 87].

Taken together, these observations indicate that genetically determined cell-intrinsic mechanisms
establish species-specific developmental timescales that can be influenced by both evolutionary
and environmental factors. Recent studies propose that differences in biochemical reaction rates
may contribute to interspecies differences between mouse and human [78, 81, 88]. However,
despite the growing attention in this field, the molecular mechanisms governing these timescales,
particularly beyond human and mouse development, remain largely elusive. PSCs represent an
invaluable experimental tool for elucidating the mechanisms underlying species-specific differentia-
tion timelines. The epiblast-like primed pluripotent state, which is shared by human ESCs, mouse
EpiSCs, and iPSCs derived from non-human and human primates [89, 90], provides a common
starting point for comparative studies. By inducing differentiation of primed PSCs in vitro to
generate developmental intermediates and potentially somatic-like cells, it becomes feasible to
compare the dynamics of cell state transitions across diverse species.

Following the extensive discussion of two prominent forms of cellular therapies, it becomes evident
that understanding cellular dynamics at a molecular level is paramount. Transitioning from the
exploration of PSCs and interspecies developmental variations, the following section now shifts
focus to the fundamental unit of life: the cell.
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1.3 The flow of genetic information within a cell

The concept of a cell as the fundamental unit of life was first introduced in the mid-17th century
by Robert Hooke. Using a primitive microscope, he observed tiny structures resembling small
rooms in a cork slice and named them "cells", derived from the Latin word "cellula” [91]. The
classical cell theory was subsequently extended to the animal kingdom by Theodor Schwann in
1839, who proposed cells as the basic units of life, further stating that all organisms are made
of cells and that these cells come from preexisting cells that have multiplied [91]. Animal cells,
or eukaryotic cells, have a complex structure that enables them to perform various functions
(Figure 1.3a). At the core of every animal cell is the nucleus, which contains the genetic material
in the form of DNA, which is organized into structures called chromosomes. As it regulates gene
expression and is involved in various cellular processes such as DNA replication and repair, the
nucleus is considered the control center of the cell [92]. The nucleolus, a subregion within the
nucleus, is involved in the production of ribosomes, the cellular structures responsible for protein
synthesis. Surrounding the nucleus is the cytoplasm, a gel-like substance that fills the cell and
contains various organelles, such as mitochondria, which are responsible for generating energy
through cellular respiration. Mitochondria contain their own DNA and are able to replicate
independently of the cell. The plasma or cell membrane is a flexible, selectively permeable barrier
that encloses the cell, separates its internal environment from the external environment and
regulates the movement of substances in and out of the cell [92].

Figure 1.3: The molecular basis of life. a) Simplified structure on an animal cell. b)
The central biological dogma illustrating the flow of genetic information from
DNA to mRNA to protein. Adapted from the templates “Structural Overview
of an Animal Cell” and “Central Dogma” from BioRender.com, retrieved from
https://app.biorender.com/biorender-templates (2023).

In the 19th century, Gregor Mendel introduced the concept of genes as the mechanism of inher-
itance through his experiments with pea plants, discovering that specific traits were inherited
in a predictable manner. Mendel’s work on genetics laid the foundation for our understanding
of heredity and the transmission of traits from one generation to the next and set the stage
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for further investigations into the nature and function of genes. However, the discovery of the
molecular structure of DNA as a double stranded helix in 1953 by Watson and Crick [93] kicked
in the true golden age of molecular biology. The DNA double helix is composed of strands of
nucleotide molecules linked by phosphate groups. Each nucleotide consists of a deoxyribose sugar,
a phosphate group and a nucleobase. In DNA, there are four different types of nucleobases:
adenine (A), cytosine (C), guanine (G) and thymine (T). Hydrogen bonds between matching
nucleotides (A-T and G-C) hold together the two strands, hence DNA is usually measured in
base-pairs (bp).

In the central dogma of molecular biology [92], the flow of information within a cell is traditionally
displayed from double stranded DNA to single stranded RNA to protein (Figure 1.3b). The
DNA hereby serves as a blueprint for gene and protein expression and stores long-term genetic
information in the cell’s nucleus and is constantly being renewed, a process called DNA replication.
Transcribing regions of DNA gives rise to single stranded RNA. While there are many types of
RNA molecules of different length, properties and function [94], the messenger RNA (mRNA)
ultimately gets translated into a protein. Before protein production however, immature mRNA
molecules are subject to post-transcriptional modifications. These include a polyA extension at
the end of the molecule and removing regions of RNA that do not code for proteins, leading
to a mature, functional RNA molecule that can then be transported out of the nucleus to the
ribosomes, where protein synthesis takes place.

Discoveries in cellular complexity and function in the last 50 years ushered in a new understand-
ing of cellular and molecular complexity. Sequencing technologies have allowed researchers to
accurately identify the key nucleotide sequences within DNA, providing a fundamental attribute
by which all life forms can be delineated and distinguished from one another. Widespread
sequencing technologies gained popularity in the late 1970s with the Sanger Sequencing protocol,
utilizing the process of DNA amplification using modified, labeled nucleotides, enabling accurate
characterization of each base in the DNA [95, 96]. While facilitating a then revolutionary under-
standing of molecular biology, the Sanger sequencing method was limited in throughput due to its
labor-intensive nature, requiring multiple rounds of labeling, sequencing, and separation of DNA
fragments, making it difficult to sequence large numbers of samples quickly and efficiently [97].

Since the early 2000s, steady progress in both development and subsequent analysis of cellular
sequencing, largely impacted by the Human Genome Project [98], has given rise to next generation
sequencing (NGS) assays [99, 100]. These technologies perform millions of parallel sequencing
reactions on a micrometer scale, thus heavily decreasing the sequencing cost per base, and in turn
facilitating high throughput sequencing of larger genomes [100]. Although these assays typically
produce shorter read fragments (usually up to 500 bases) at an increased error rate, their high
throughput allows for massive sequence coverage of millions of short DNA fragment reads to
construct a best-fit consensus sequence of DNA.
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This ’genomics revolution’ [100] driven predominantly by these advancements DNA sequencing
technology, has significantly transformed the cost and accessibility of DNA sequencing. The ex-
pense associated with sequencing the human genome witnessed a remarkable descent, plummeting
from an estimated 10 million USD in 2007 to 10,000 USD in 2012, and currently standing at less
than 1,000 USD [101, 102]. DNA sequencing capability and accessibility have increased at a rate
even higher than the computing revolution popularly described in Moore’s law, doubling roughly
every five months between 2004 and 2010 [101].
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1.4 Understanding identity and function of single cells

Traditionally, these sequencing assays were performed in bulk, averaging the obtained readout
from millions of cells in a sample, thereby masking cellular heterogeneity and molecular pro-
grams [103–105]. Conversely, single cell omics technologies measure a variety of possible features,
such as gene expression or DNA accessibility at a single cell level, enabling the study of cellular
identity, heterogeneity, development and disease with unprecedented resolution [105]. In recent
years, rapid technological advances have enabled genome-wide profiling of RNA, DNA, and protein
at the single cell level, with an ever-increasing scale, now routinely covering thousands or even
millions of single cells [106, 107].

With the emergence of high throughput single cell omics technologies, it is now feasible to create
reference maps of human tissues, known as atlases [108]. These atlases act as comprehensive
catalogs of cellular profiles and provide valuable insights into the diversity and function of differ-
ent cell populations within tissues and organs [104], enabling an accurate dissection of cellular
heterogeneity and identification of novel cell types [109, 110].

Figure 1.4: Advanced single cell technologies provide insights into the molecular
complexity of human health and disease. a) Key organs and biological systems,
as well as associated cancer types, for which the Human Cell Atlas initiative and
related studies have compiled large-scale single cell atlases in both healthy and
diseased patients. b) Various technologies and data modalities are employed to
approximate cellular identity, leveraging distinct molecular phenotypes at the single
cell level. Adapted from Rood et al. [104] and Jackson & Vogel [111].

Additionally, single cell atlases have played a crucial role in advancing our understanding of
disease biology. By analyzing cell atlases from patients with diseases in comparison to healthy
references, researchers can gain insights into the intricate biological complexities either on a cellu-
lar population level [112, 113] or by identifying disease-related genes and gene programs in which
they participate [114, 115], further enabling discovery of biomarkers for disease diagnosis and
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prognosis [104] (Figure 1.4a). In the context of cellular therapies, this allows for the identification
of regenerative mechanisms that are utilized as therapeutic targets or for improving engineered
cell therapies by defining and comparing the desired target state from human-derived models to
healthy human tissue [104].

The advent of atlases and the availability of numerous single cell datasets have significantly
transformed our understanding of cellular identity and function. Traditionally, cells have been
classified into cell types using phenotypic measurements such as gene or protein expression or
morphology [116]. However, recent technological advances in sequencing, imaging, and mass
spectrometry have allowed the characterization of various aspects of cellular identity and function,
including genomic variations (such as single nucleotide variation and copy number variation), tran-
scriptomic measurements (such as transcript sequence and abundance), epigenomic measurements
(such as chromatin accessibility and conformation, DNA methylation, and histone modification),
and proteomic measurements (such as protein sequence and abundance) [116] (Figure 1.4b).
Importantly, these different omics layers are connected with each other. For instance, mRNA
expression only has measurable functional potential when it is ultimately translated into a protein.
Furthermore, mRNA expression is heavily regulated by epigenetic mechanisms such as histone
modifications, which modulate DNA accessibility.

Therefore, approaches that integrate these diverse sources of information, so-called multiomic
technologies, offer a more comprehensive understanding of cellular identity, function, and disease-
related shifts, facilitating new prospects of causal and mechanistic biology, ultimately approxi-
mating cellular identity and function in much higher detail and resolution [116]. Through this
expanded the range of features for cell type classification, traditional classification schemes that
delineate distinct cell types shifted towards a more continuous representation of cellular states [117,
118]. Consequently, molecular cell identity should not be perceived as a fixed set of characteristics
obtained from a single measurement, but rather as a combination of different omics [118].

The subsequent sections will provide an overview of two widely employed single cell omics
techniques: single cell RNA sequencing (scRNA Seq), which characterizes gene expression profiles
at the single cell level, and single cell assay for transposase-accessible chromatin sequencing
(scATAC Seq), which captures chromatin accessibility patterns in individual cells.

1.4.1 Profiling gene expression at the single cell level

Since all cells in our body share nearly identical genetic material, knowledge of an organism’s
DNA sequence and regulatory element positions provides limited insight into the intricate and
dynamic operations that occur within a cell. Consequently, researchers have increasingly focused
on profiling the cellular transcriptome, which offers greater insights into cellular protein produc-
tion. The first transcriptomic sequencing of a single cell was reported in 2009 [119]. Since then,
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significant technological advances have reduced the required input volume and increased both the
number of cells and the sensitivity of readouts [120, 121].

Although numerous scRNA Seq platforms and protocols have been developed in the meantime [122,
123], the fundamental steps remain similar. Initially, cells are isolated and lysed, followed by
capture of cellular mRNA and its reverse transcription into double-stranded cDNA while si-
multaneously barcoding each molecule with a unique cell identifier. Certain protocols permit
further barcoding of each individual molecule using a unique molecular identifier (UMI). Finally,
cDNA is amplified and the labeled cells and/or molecules are pooled to construct a library for
next-generation sequencing. In the subsequent section, I will provide an overview of the most
widely used commercial droplet-based scRNA Seq platform from 10X Genomics (Figure 1.5).

Figure 1.5: An overview of droplet-based single cell RNA sequencing from 10X
Genomics. a) Cells and tagged microbeads as input to droplet-based sequencing
protocols. b-f) Experimental workflow: Labeled beads and cells are captured in
droplets (b). Cell lysis releases mRNA, which binds to oligonucleotides on the
microbeads (c-d). cDNA is synthesized from mRNA and subsequently amplified
before libraries are generated, pooled and sequenced (e-f). Adapted from the
template “CITE-seq Workflow” from BioRender.com, retrieved from https://app.
biorender.com/biorender-templates (2023).

The scRNA Seq platform from 10X Genomics employs microfluidic technology to partition
individual cells into nanoliter-sized droplets that capture cells along with a bead coated with
oligonucleotides. These oligonucleotides consist of a distinct cell barcode, UMIs, and a poly(T)
sequence that captures mRNA molecules (Figure 1.5a). Upon lysis of captured cells within the
droplet, mRNA binds to the poly(T) sequence of the oligonucleotides on the bead (Figure 1.5b-d).
Within each droplet, mRNA is reverse transcribed into cDNA. After amplification of the cDNA,
droplets that contain cDNA from each cell are pooled together and subjected to NGS sequencing
(Figure 1.5e-f). The use of unique cell barcodes and UMIs enables precise identification and
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quantification of gene expression in individual cells, even at low sequencing depth.

In order to understand the intricate landscape of cellular dynamics and its implications for cellular
therapies, the integration of additional omics approaches becomes pivotal. While traditional
single cell techniques, such as scRNA Seq, provide valuable insights into gene expression, they
fall short in capturing the comprehensive regulatory mechanisms governing cellular behavior.
Therefore, scATAC Seq, the most popular approach to profile chromatin accessibility at the single
cell level, will briefly be outlined below.

1.4.2 Profiling chromatin accessibility at the single cell level

Cellular heterogeneity does not solely arise from gene expression information, but also from the
regulation of gene expression through epigenetic modifications of the genome. As all cells start
with the same genetic background, chromatin must be highly adaptable to facilitate changes in
the accessible regions of DNA for flexible transcription. Accessibility of sequences within the
genome can therefore be viewed as a mark of genomic activity, representing the expression of
particular genes or the openness of specific sequences, including enhancers or transcription factor
binding sites [124, 125].

Figure 1.6: Profiling chromatin accessibility with droplet-based single cell ATAC
sequencing from 10X Genomics. a) Transposase enzyme inserts and tags
accessible regions of DNA. b) Experimental workflow: Labeled beads and nuclei
are captured in droplets and subject to transposase tagmentation. Fragments are
amplified, a sequencing library is prepared and sequenced. Resulting fragments
represent regions of open chromatin. Adapted from the templates “ATAC Sequencing”
and “CITE-seq Workflow” from BioRender.com, retrieved from https://app.biorender.
com/biorender-templates (2023).

In recent years, researchers have utilized transposase enzyme activity to profile chromatin accessi-
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bility across single cells, which randomly fragments and tags chromatin DNA and subsequently
inserting adapters for sequencing (Figure 1.6a). As certain regions of DNA are wrapped around
histone proteins, these regions are not physically accessible for the enzyme and cannot be frag-
mented. Therefore, resulting fragments represent accessible regions in chromatin DNA. Since
its conception in 2015 [126], numerous variations of the original protocol have emerged. Similar
to scRNA Seq, I will briefly outline the commercially available scATAC Seq protocol from 10X
Genomics (Figure 1.6b).

The scATAC Seq workflow begins with cell isolation, followed by the release of the nuclei via
cell lysis. The isolation of nuclei is critical to ensure the capture of chromatin DNA and avoid
extraneous sources of DNA, such as mitochondrial DNA. Next, nuclei are incubated with a Tn5
transposase enzyme containing sequencing adapters that cuts and inserts sequencing adapters
into accessible regions of chromatin DNA, resulting in tagged fragments of chromatin DNA. These
fragments are then encapsulated into droplets along with barcoded oligonucleotides that contain
a cell barcode and a UMI. Similar to scRNA Seq, each droplet contains a unique combination
of chromatin fragments that can be attributed to a specific cell. The droplets are subsequently
pooled and PCR amplified to create a sequencing library for subsequent NGS sequencing.

Single cell sequencing technologies, such as scRNA Seq and scATAC Seq, have revolutionized
our ability to investigate cellular heterogeneity. Simultaneous profiling of gene expression and
chromatin accessibility on the same cells has enabled a more comprehensive characterization of
the entire cell state (see chapter 5).These approaches have not only expanded our fundamental
understanding of cellular biology but also hold great promise in improving the efficacy and safety
of cellular therapies.
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1.5 Research questions and contributions

The advent of single cell technologies has revolutionized the field of cellular biology, offering
unprecedented opportunities to probe the molecular underpinnings of cellular identity and function
in health and disease.

CAR T cell therapy, while promising in B cell malignancies, faces challenges in translating its
success to other malignancies due to a lack of safe targets, evident from the observed toxicities and
limited efficacy of CAR T cells (see section 1.1.2). Current target identification strategies suffer
from their retrospective nature, where safety considerations often follow efficacy assessments. In
addition, with a rapid increase in clinical trials, careful consideration of the safety and potential
risks associated with target antigen selection is essential before initiating clinical testing.

Despite offering a customizable and biocompatible platform, the translational potential of PSCs for
cell differentiation or tissue repair remains constrained by limitations such as slow and inefficient
differentiation processes and immature characteristics of derived cell types (see section 1.2). Accel-
erating the differentiation of PSCs to yield functional cell types more rapidly and efficiently is of
great interest, but requires a fundamental understanding of developmental timescales underlying
cellular differentiation.

The present thesis addresses the following research questions:

1. Can we use single cell RNA sequencing data to identify new targets for CAR T cell therapy?

2. Can we examine the gene expression profiles of current CAR targets as a means of guiding
target selection before clinical translations?

3. Can we profile gene expression and chromatin accessibility from single PSCs from diverse
mammalian species undergoing neural progenitor differentiation to characterize species-
specific developmental timing?

In the context of cellular therapies, I used scRNA Seq data across healthy and malignant cell
populations to identify and evaluate putative therapeutic targets for CAR T cell therapy. Addi-
tionally, I characterize features of species-specific developmental timing during neural progenitor
differentiation, thus establishing groundwork for optimizing stem cell differentiation protocols for
regenerative medicine applications (Figure 1.7b).
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Figure 1.7: Overview of thesis contributions to cellular therapies. This thesis presents
a novel approach for identifying new targets for CAR T cell therapy (1), analysis of
current CAR targets on malignant and healthy cell populations (2), and characteri-
zation of gene expression and chromatin accessibility during PSC differentiation (3).

To address the first question, I make the following contributions:

1.1 I present a computational methodology to identify potential targets for CAR T cell therapy
utilizing large-scale single cell gene expression data from malignant and healthy cell popula-
tions. Addressing a critical gap in the field, the approach overcomes the scarcity of safe
targets for CAR T cell therapy, thus facilitating broader therapeutic application.

1.2 I validate the approach using acute myeloid leukemia (AML) data, which led to the discovery
of two previously unidentified target epitopes for CAR T cell therapy in AML: CSF1R
and CD86. The discovery underscores the benefit of a criteria-based target identification
approach.

1.3 I benchmarked the two identified target antigens CSF1R and CD86 on a transcriptomic level
to the reference genes CD123 and CD33 using two independent AML cohorts consisting of
over 100,000 single cells from 20 individuals and over 500,000 single cells from vital healthy
human tissues.

1.4 In collaboration with Adrian Gottschlich and Ruth Grünmeier under supervision of Prof.
Sebastian Kobold, functional validation of these CAR T cells was carried out in vivo and in
vitro. Established CAR T cells demonstrate robust in vitro and in vivo efficacy with minimal
off-target toxicity toward relevant healthy human tissues, providing a strong rationale for
further clinical development.

The corresponding manuscript is published in Nature Biotechnology [127] (shared first authorship).
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To address the second question, I make the following contributions:

2.1 In collaboration with Ruben Brabenec and Lisa Gregor under supervision of Prof. Sebastian
Kobold, we screened current clinical trials and scientific literature to obtain approved and
investigational CAR targets in clinical trials as well as clinical outcome data obtained from
patients who underwent CAR T cell therapy.

2.2 To assess the specificity of CAR targets on tumor cells for CAR-T cell therapy, I characterize
CAR target expression in over 300,000 single cells obtained from patients suffering from
follicular lymphoma, multiple myeloma, and acute lymphoblastic leukemia between cell
populations and individual patients.

2.3 To identify potential patterns that might indicate potential risks for on-target, off-tumor
toxicities, I analyze differences in global CAR target expression using a transcriptional atlas
of over 3 million single cells from 35 healthy tissues throughout the human body.

2.4 In conjunction with clinical outcome data obtained from patients who underwent CAR T
cell therapy, I interpret differences between CAR target expression profiles on malignant
and healthy cell populations.

2.5 I identify novel CAR targets for the treatment of follicular lymphoma, multiple myeloma,
and acute lymphoblastic leukemia that exhibit a favorable gene expression pattern across
both malignant and healthy cell populations using a computational screening approach
based on single cell gene expression data.

The corresponding manuscript is in preparation (shared first authorship).

To address the third question, I make the following contributions:

3.1 In collaboration with Alexandra de la Porte under supervision of Prof. Micha Drukker,
we generated PSCs from human, mouse, and cynomolgus monkey (macaca), established
standardized cell culture conditions and a common protocol for neural progenitor cell
differentiation for all species. RT-PCR and immunostaining results performed by Alexandra
de la Porte and Julia Schröder under supervision of Dr. Christian Schröter, respectively,
confirmed successful differentiation of PSCs across all three species.

3.2 To characterize global species-wide differences during neural progenitor cell differentiation,
I analyzed timelapsed single cell multiomic sequencing data from over 75,000 differentiating
PSCs from human, mouse, and macaca over a ten-day differentiation course utilizing
combined single cell gene expression and single cell chromatin accessibility profiling.
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3.3 I characterize and compare species-specific timescales underlying neural progenitor differ-
entiation on various levels, including gene expression, cell cycle distribution, chromatin
accessibility and transcription factor activity.

3.4 I characterize species-specific variations in cellular stages and global differentiation rates
during neural progenitor development using single cell gene expression data and identify TF
regulators that exhibit similar dynamics between gene expression and TF motif accessibility,
serving as putative drivers of cellular differentiation.

The corresponding manuscript is in preparation (shared first authorship).

As parts of my contributions have already been published in peer-reviewed journals or are in the
process of review or submission, sections 3, 4 and 5 of this thesis correspond to or are to some
degree identical to the following publications:

Core publications (note that “*” marks an equal contribution):

1. Gottschlich, A.*, Thomas, M.*, Grünmeier, R.*, ... Marr, C. and Kobold, S., 2023.
Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of
acute myeloid leukemia. Nature Biotechnology, pp.1-15. Shared first authorship.

2. Thomas, M.*, Brabenec, R.*, ... Kobold, S. and Marr, C., 2023. Single-cell gene expression
screening for efficacy and safety prediction of CAR T cell therapy targets. In preparation.
Shared first authorship.

3. Thomas, M.*, de la Porte, A.*, Schröder, J.*, ... Drukker, M., Schröter, C. and Marr, C.,
2023. Single-cell multiomic comparison of differentiating pluripotent stem cells from three
mammalian species. In preparation. Shared first authorship.

My individual contributions to the first publication are as follows:

Carsten Marr, Sebastian Kobold and I had the idea to use single cell gene expression data to
identify novel targets for CAR T cell therapy. Together with Carsten Marr and Sebastian Kobold,
I developed the outline of the computational approach. I designed and wrote the entire code
and created the complete computational framework to develop an approach to identify targets
for CAR T cell therapy based on gene expression data. I applied the approach to AML data
and identified two previously unrecognized targets for CAR T cell therapy in AML. I performed
all subsequent computational analyses of these targets in tumor and healthy tissues, including
assessing and benchmarking gene expression profiles of these targets against reference targets
across malignant and healthy tissues. Together with Adrian Gottschlich, I coordinated the project,
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interpreted results, created the figures and wrote the manuscript in collaboration with Adrian
Gottschlich, Carsten Marr and Sebastian Kobold.

My individual contributions to the second publication are as follows:

Carsten Marr, Sebastian Kobold and I had the idea to examine single cell gene expression profiles
of CAR targets derived from clinical trials to identify potential differences that could account for
the observed toxicities in clinical settings. Together with Carsten Marr and Sebastian Kobold, I
developed the outline of the project and the computational framework. Together with Ruben
Brabenec, I screened clinical trials and scientific literature to obtain approved and investigational
CAR targets and processed large-scale single cell gene expression data from malignant and healthy
tissues. Lisa Gregor was responsible for screening clinical trials to obtain patient outcome data. I
performed all subsequent computational analyses of CAR targets across malignant and healthy
cell populations, including analyzing CAR target expression between malignant and healthy
cell populations and between individual patients. I interpreted differences between CAR target
expression profiles on malignant and healthy cell populations in conjunction with clinical outcome
data obtained from patients who underwent CAR T cell therapy. I identified novel CAR targets for
the treatment of follicular lymphoma, multiple myeloma, and acute lymphoblastic leukemia using
the previously explained computational screening approach based on single cell gene expression
data. I coordinated the project, interpreted results, created the figures and wrote the manuscript
in collaboration with Carsten Marr and Sebastian Kobold.

My individual contributions to the third publication are as follows:

Carsten Marr, Micha Drukker and Christian Schröter had the initial idea to profile differentiating
PSCs from multiple species to investigate species-specific developmental timescales. Together,
Carsten Marr, Micha Drukker, Christian Schröter, Alexandra de la Porte, Julia Schröder and
I refined the scope of this project. Together with Carsten Marr, I developed the outline of
the computational approach. I designed and wrote the entire code and created the complete
computational framework to analyze timelapsed multiomic data from PSCs from three species
during neural progenitor cell differentiation. I performed all subsequent computational analyses of
differentiating PSCs from three species and characterized species-specific developmental timescales
on gene expression, cell cycle distribution, chromatin accessibility and transcription factor activity
levels. I coordinated the project, interpreted results, created the figures and wrote the manuscript
in collaboration with Carsten Marr, Micha Drukker, Christian Schröter, Alexandra de la Porte
and Julia Schröder.

Furthermore, my doctoral research contributed to the following publications, which are not
included in this thesis:
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2 Computational methods for single cell sequencing data

The advent of single cell sequencing technologies has revolutionized the study of cellular hetero-
geneity and gene regulation by enabling high resolution profiling of individual cells. However,
this high throughput data presents computational challenges due to its inherent dimensionality
and sparsity, which increases as the scale and complexity of single cell sequencing experiments
continue to grow [128]. To keep pace with ever-developing technologies and corresponding bio-
logical applications, computational models must adapt and evolve. Because the computational
analysis workflow heavily depends on the experimental setup and applied sequencing protocols,
there is no gold standard for processing and analyzing single cell data. With the increasing
interest in single cell sequencing technologies (Figure 2.1a), researchers have dedicated significant
efforts to inferring biological knowledge from single cell omics data, leading to the development of
over 1400 published bioinformatic tools for single cell RNA sequencing (scRNA Seq) alone [129]
(Figure 2.1b-c).

Figure 2.1: Growing interest in single cell RNA sequencing. a) Increasing number
of single cell RNA sequencing (scRNA Seq) publications. Data extracted from
https://pubmed.ncbi.nlm.nih.gov/ as of 04-05-2023, using the search term ‘single
cell RNA sequencing’ in title, abstract, or text words. b-c) The number and
functions of computational tools developed for the analysis of scRNA Seq. Data
extracted from https://www.scrna-tools.org/ as of 04-05-2023.

This chapter of the thesis reviews computational approaches to extract biological insights from the
immense amount of data produced by scRNA Seq and single cell assay for transposase-accessible
chromatin sequencing (scATAC) Seq experiments. I will review a comprehensive workflow that
begins with a count matrix for scRNA Seq or DNA fragments for scATAC Seq and elaborate on
each step of data preprocessing and analysis that I employed throughout this thesis in subsequent
sections.
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2.1 Single cell gene expression

The analysis of scRNA Seq data typically commences with the generation of a count matrix,
which represents the number of transcripts detected from each gene for each individual cell. The
count matrix is then subject to various preprocessing and analysis steps, which will be the main
focus of this section of this thesis.

Figure 2.2: Workflow for single cell RNA sequencing data preprocessing and analysis.
a) Starting with a count matrix, data preprocessing steps are critical for analyzing
single cell RNA sequencing (scRNA Seq) data, as they help to correct for technical
variability and improve the data quality prior to downstream analysis. Data prepro-
cessing includes quality control, normalization, batch correction, feature selection
and visualization in a low dimensional embedding. b) Clustering is used to group
cells based on similarities in gene expression profiles, allowing identification of dis-
tinct cell populations. c) Differential gene expression analysis can be used to identify
genes that are significantly enriched between different cell populations. Subsequent
gene enrichment analysis on differentially expressed genes identifies pathways and
processes that are enriched in specific cell types. d) Leveraging existing annotated
reference datasets can improve the accuracy of scRNA Seq cell annotations and
facilitate comparative analyses across datasets, tissues and conditions. e) Trajec-
tory inference methods use gene expression profiles to reconstruct developmental
paths and identify lineage relationships, providing insights into cell fate decisions in
development, disease, and regeneration. Adapted from Heumos et al. [130] using
elements from BioRender.com (2023).

Ready-made analysis pipelines, such as Cellranger from 10X Genomics, provide a convenient
way to obtain count matrices from raw scRNA Seq data. The Cellranger software automatically
processes and aligns raw single cell data from 10X Genomics protocols and assigns each Unique
Molecular Identifier (UMI) read to a specific cell, a crucial process called demultiplexing. However,
in some cases, cells from multiple samples, for example from different donors or species are pooled
together in one single cell experiment to reduce costs or limit technical batch effects. Additional
demultiplexing methods, such as souporcell [131] or demuxlet [132] can be utilized to confidently
assign each of these cells to their respective sample of origin. These methods typically cluster
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cells by their genotype by calling and counting single nucleotide polymorphisms - variants in
DNA sequence that differentiate people and species - resulting in a count matrix where cells are
unambiguously assigned to their sample of origin.

Figure 2.2 displays the basic preprocessing and selected subsequent analysis steps that I used for
this thesis, starting with a count matrix. Below, the individual steps of data preprocessing and
analysis along with computational methods employed for this thesis are discussed in more detail.
For the analysis of scRNA Seq, several ready-made analysis platforms provide easy access to a
combination of various tools and pipelines, from data preprocessing to high level downstream
analysis. The most widely used platforms are Seurat [133], written in R, and Scanpy [134], part
of the Python-based scverse ecosystem [135], which I predominantly used for scRNA Seq analysis
during this thesis.

2.1.1 Quality control

In scRNA Seq data preprocessing, the initial step often involves identifying and removing low
quality cells. What qualifies a cell of being of poor quality is usually a matter of definition and
depends on various factors such as the experimental design, sequencing depth, and comparison to
other sequenced cells. Cells are typically inspected based on their total distributions of UMIs and
genes [136]. Cells with a comparatively low total amount of captured UMIs (counts) or genes are
removed, as these may indicate failed reverse transcription or amplification, or empty oil droplets
with background mRNA. Upper and lower thresholds for filtering cells according to captured UMI
counts are defined as Cmin and Cmax. Upper and lower thresholds for filtering cells according to
captured genes are defined as Gmin and Gmax.

Cells that are metabolically active tend to have a higher proportion of mitochondrial gene-derived
mRNA molecules. However, cells with an unusually high proportion of mitochondria-derived
genes, in conjunction with other indicators of low quality, may suggest a stressed or dying cell
with broken membranes, and are therefore typically excluded from further analysis [137, 138].
Upper thresholds for filtering cells according to their maximum fraction of mitochondria-derived
genes are defined as MTmax.

It is important to note that there is no universally accepted standard for these quality control
metrics, and the specific thresholds are often determined by manual inspection of relevant plots.
Optimal thresholds are determined by various experimental factors, such as the tissue source,
dissociation protocol, and data quality, and should be set permissively to avoid inadvertently
filtering out viable cell populations [128, 138].

In droplet-based single cell protocols, two or multiple cells can be captured in a single oil droplet,
leading to the generation of so-called doublets or multiplets that are sequenced together, masked
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as one single cell. These doublets or multiplets need to be accurately identified and removed to
prevent confounding downstream analysis and biological interpretation [139]. The likelihood of
doublet formation in droplet-based single cell experiments is related to cell concentration and the
probability of capturing multiple cells within a single droplet [132, 140].

As such, the probability of doublet formation increases when higher cell concentrations are
used to profile a larger number of single cells. While some quality control metrics can help to
identify potential doublets in scRNA Seq data, utilizing count and gene metrics alone is often
inadequate for precise doublet identification [141]. To address this issue, sophisticated doublet
identification tools, such as scrublet [142] or DoubletFinder [143], simulate artificial doublets from
the given dataset and use a nearest neighbor classifier to distinguish doublets from single cells,
thus estimating a doublet probability for each cell. Upper thresholds for filtering cells according
to this estimated doublet probability are defined as Dmax.

After quality control and doublet removal, uninformative genes of low overall expression across
cells are typically filtered out to reduce noise and improve the statistical power of downstream
analysis [138]. Genes are generally filtered out if they fail to meet the threshold specified by the
user, which is typically either a minimum number of cells expressing the gene or a minimum
count number the gene was captured across cells. Notably, empty droplets that do not contain
a single cell will still contain free-floating, ambient mRNA from other dissociating cells prior
to library preparation, which can confound downstream analysis. To address this issue, several
computational methods have been developed, such as EmptyDrops [144] or SoupX [145], which
distinguish between empty droplets and cells, thus estimating and removing cell-free ambient
mRNA contamination, which has been shown to effectively reduce technical noise and improve
the quality of downstream analysis [130].

2.1.2 Normalization

ScRNA Seq data can show considerable variation in the amount of RNA per cell, both within
a cell type and between different cell types. This is due to technical factors resulting from
the different steps of the sequencing protocol, such as mRNA capture or reverse transcrip-
tion during sequencing, as well as biological factors, such as cell size [138, 146]. Therefore,
normalization is a crucial step in the preprocessing of scRNA Seq data which aims to account
for this technical read variation between cells to enable meaningful results for downstream analysis.

The choice of normalization approach depends heavily on the gene coverage of the sequencing
protocol used. For instance, full-length sequencing protocols, such as Smart-Seq2 [147] sequence
the entire mRNA transcript and therefore need to account for gene length, as longer genes
generate more reads. In contrast, droplet-based methods, such as the one used in this thesis
from 10X Genomics, only sequence the 3’ or 5’ end of the transcript, and thus do not require
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normalization to account for differences in gene length.

The most straightforward normalization approach is total count normalization, i.e. scaling the
counts of each cell by a fixed factor, thereby accounting for differences in library size effects
between cells. Total count normalization approaches like counts per million (CPM) normalization
assumes that all cells in the dataset initially contained an equal number of mRNA molecules
and count depth differences arise only due to sampling [138]. CPM divides the counts of each
cell by the total read count and multiplies the result by a scaling factor (one million in the case
of CPM) to ensure that the sum of all counts is constant across all cells. While CPM can be
effective, it does not account for other sources of technical or biological variation, such as cell size
and differences in overall gene expression between cell types and may not be suitable for datasets
with significant technical or biological variability [138].

To address these limitations, the single cell specific scran algorithm [148] pools cells with similar
total per-cell read count, thus accounting for the inherent sparsity in scRNA Seq data. These
summed expression values are then deconvolved to estimate size factors based on a linear regression
over genes for subsequent normalization for each cell, thus heavily reducing biases from differentially
expressed genes, an advantage over classical total count normalization approaches [149].

2.1.3 Batch correction and data integration

In single cell sequencing experiments, both technical and biological variations contribute to the
total variability of the data. Batch effects arise from various sources, such as differences in
experimental sample handling, chosen sequencing platform, or sample preparation time. De-
pending on the experimental design, technical and biological variations can either be distinct
or confounded [150]. For instance, in a scenario where two samples, one from a healthy indi-
vidual and another from a diseased patient, are sequenced in separate runs, technical variation
is confounded with biological variation. These effects can introduce unwanted variation in the
data, which is unrelated to the biological variability of interest. This variation can be mistaken
for true biological signal and must be accounted for to avoid spurious downstream correlations [151].

While batch correction methods aim to remove technical batch effects between samples or cells in
the data, I refer to the task of integrating data from multiple experiments as data integration.
Both batch corrections and data integration methods aim to remove unwanted sources of variation
in the data while preserving true biological variation, but data integration methods usually deal
with challenges involving compositional differences between datasets [138, 152].

As the number and scale of single cell datasets continues to increase, it becomes crucial to
address batch effects and integrate data from multiple sources. These issues are particularly
relevant for large-scale efforts such as the Human Cell Atlas, which aims to integrate data from
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diverse tissues, platforms, and individuals [104, 151]. Consequently, numerous methods have
been developed and benchmarked against one another to address these challenges [151, 153]. I
refer to Lücken et al. [151] for an overview and benchmark of most commonly used methods for
batch correction and data integration and only highlight key methods that were used in this thesis.

ComBat [154], originally borrowed from bulk microarray data, is a parametric empirical Bayes
method that models batch effects as random effects and uses a linear regression framework
to adjust for batch effects by adjusting the mean and variance between the specified batches.
ComBat assumes that all differences between batches can be corrected by this, relatively naive,
linear scaling approach. The increasing complexity of single cell datasets, however, often leads
to variations in sample size, sampling time, conditions, and sequencing platforms, demanding
computational methods that address these complex, nonlinear batch effects [151].

One of these data integration methods is Harmony [155], which first embeds cells in a low
dimensional PCA space and iteratively removes batches by clustering similar cells from differently
specified batches or datasets. At each iteration, cluster specific centroids from each batch are used
to compute and apply linear correction factors for each cell. Batch balanced k nearest neighbors
(BBKNN) [156], another graph-based approach, uses k-nearest neighbor (k-NN) graphs to align
cells from different batches. BBKNN first constructs k-NN graphs for each batch independently
and subsequently integrates them into a joint graph, thereby applying a correction factor to the
weights of edges between cells from different batches to balance the contribution of each batch.
Additionally, single cell Variational Inference (scVI) [157] is a deep generative model that utilizes
a conditional variational autoencoder (VAE) to condition the dimensionality reduction process
on a certain batch covariate, so that the covariate does not affect the resulting low dimensional
representation. This method provides denoised counts in gene expression feature space and a
low dimensional embedding that can be used for downstream tasks like clustering and visualization.

It is worth mentioning that there is no gold standard algorithm for batch correction or data
integration, as each algorithm usually involves a trade-off between batch effect removal and
preservation of biological variability [138]. Therefore, the selection of a suitable approach should
be based upon comparison of the results obtained from multiple different batch correction or data
integration algorithms.

2.1.4 Feature selection and visualization in a low dimensional embedding

In scRNA Seq experiments, due to limited amounts of starting material and sequencing depth, a
significant number of expressed genes remains undetected in certain cells [128]. Consequently, a
large proportion of entries in the resulting gene expression matrix contain zeros. These zero counts
may arise from either true low or zero expression levels in cells or from technical artifacts, resulting
in significant heterogeneity that poses a challenge in accurately interpreting the data [138, 158].
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As every gene represents a dimension in scRNA Seq, even after filtering out these zero-count
genes during quality control, the feature space for a scRNA Seq dataset can easily exceed 15,000
genes. This large amount of captured genes make scRNA seq data highly dimensional and noisy.

Therefore, it is crucial to select informative features that describe the biological variability of inter-
est while filtering out noise, technical artifacts, and low quality genes to reduce data dimensionality
for subsequent visualization and downstream analyses. Highly variable genes (HVGs) [159] can be
identified based on normalized dispersion [136], i.e. by ordering genes along their mean expression
in several bins and selecting them according to their highest variance-to-mean ratio. However,
most feature selection methods typically consider the overall variability across the entire dataset,
thereby masking genes that are differentially expressed in rare cell populations, as these genes
only contribute minimally to the total variability [128].

For effective data visualization, it is crucial to capture and describe the underlying data structure
as preserving as possible in two dimensions. Principal component analysis (PCA), a linear
transformation method, is one of the most commonly used dimensionality reduction methods.
PCA identifies the major sources of variability in the data and projects the data onto principal
components that capture the largest proportion of the variance. The number of components
retained for later analysis will depend on the complexity of the dataset [160]. Although PCA
can effectively reduce the dimensionality of the data, it assumes that the variance is normally
distributed, which may not be the case with nonlinear single cell data.

Uniform Manifold Approximation and Projection (UMAP) [161] is a popular, nonlinear dimen-
sionality reduction and visualization method that has been widely used in the analysis of scRNA
Seq data. By constructing a cell-to-cell nearest-neighbor network, the algorithm approximates
the topology of the data, and subsequently estimates a low dimensional embedding that max-
imally preserves the underlying structure [128]. One of the advantages of UMAP over other
dimensionality reduction methods is its ability to preserve the global structure of the data while
still retaining the local relationships. However, it is important to note that UMAP visualizations
depend on the choice of parameters and the initial conditions. This may lead to overinterpretation
of relationships and heterogeneity in the data when relying on UMAP visualization alone [162].

2.1.5 Clustering

Clustering is a fundamental task in the analysis of scRNA Seq data. It groups cells with similar
gene expression profiles into discrete clusters or subpopulations. This approach is commonly used
to identify cell types and states, investigate data heterogeneity and dynamics and explore rela-
tionships between cells. Graph-based clustering methods, such as Louvain [163] and Leiden [164]
clustering, rely on constructing a graph or network between cells, where cells are represented
as nodes and edges are weighted according to the transcriptomic similarity of the connected
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cells. These clustering algorithms then partition the graph into densely connected subgraphs and
identify densely connected communities within the graph.

Louvain and Leiden clustering have been widely used in the analysis of scRNA Seq data and have
been shown to outperform other clustering methods in terms of accuracy and speed [164–166].
Nonetheless, both algorithms have their own set of parameters that can significantly affect
downstream results and interpretations, and their arbitrary nature makes reproducing prior
clustering particularly challenging [167, 168]. For instance, the resolution parameter for Louvain
and Leiden clustering determines the cluster size, and there are no definitive guidelines for
identifying an optimal value. Thus, users must make informed decisions based on the particular
dataset being analyzed.

2.1.6 Differential gene expression and enrichment analysis

Differential expression analysis is a statistical approach that enables the identification of genes
that are highly enriched across groups, samples, or conditions in the data. This analysis step is
commonly used in scRNA Seq analysis to annotate and characterize cell clusters and uncover
molecular mechanisms or pathways driving differences between cells. Several differential expression
analysis methods have been applied to or developed for scRNA Seq data, and their respective
strengths and limitations have been thoroughly investigated [169, 170]. Hence, this section solely
highlights key approaches that have been used for the analysis in this thesis.

Single cell methods that compare individual cells, such as the widely used Student’s t-test compare
the mean expression of a gene in two different groups of cells, assuming that the data is normally
distributed and that the variances are equal in the groups. While this test provides a fast and
simple approach to compute the top differentially expressed genes and usually picks up strong
differences between groups [171], scRNA Seq data is often highly variable, which can violate the
assumption of normal distributions. The Wilcoxon Rank Sum Test is a non-parametric test that
does not make any assumptions about the distribution of the data. Instead, it ranks the expression
values and compares the ranks between the two groups of cells, making it more robust to the
variability of scRNA Seq data. Pseudobulk methods, such as limma [172] or edgeR [173] aggregate
cells within a biological replicate to so-called pseudobulks before applying a statistical test. These
methods have been shown to outperform single cell approaches, accounting for technical variation
between replicates when comparing multiple groups of cells, thereby leading to less false positive
discoveries [170, 171].

While differential expression analysis is a powerful tool for identifying genes that are differentially
expressed between different conditions, the large number of results generated by this analysis
can often make it difficult to extract meaningful biological insights. One approach to addressing
this challenge is gene enrichment analysis, which can help identify biological pathways, molecular
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functions, and cellular processes that are enriched in a set of differentially expressed genes. Tools
like gprofiler [174] utilize a hypergeometric test to compare a specified number of differentially
expressed genes to gene collections from various databases, such as Gene Ontology (GO) [175] or
databases about biological pathways, diseases, and drugs such as Kyoto Encyclopedia of Genes
and Genomes (KEGG) [176]. These tools calculate the significance and overlap between the
specific gene list and the list from the database, providing insights into the potential biological
relevance of the differentially expressed genes.

2.1.7 Cell cycle inference

The cell cycle, a coordinated series of events that all cells undergo as they grow and divide, is an
important consideration in the analysis of scRNA Seq data. Knowledge of the cell cycle phase is
biologically informative at the compositional and gene level, as the cell cycle is known to affect
gene expression [177].

Marker-based cell cycle inference relies on the expression of a small set of marker genes that
are known to be associated with distinct cell cycle stages [177, 178]. Specifically, a cell cycle
score is calculated for each cell by subtracting the average expression of a set of cell cycle genes
from the average expression of a randomly sampled background set with expression values within
the same range [134]. Once cells have been assigned to a certain cell cycle stage, the effect and
variation caused by differences in the cell cycle between single cells can be regressed out using
linear models. It should be noted, however, that regressing out cell cycle-caused differences can
lead to overcorrection in certain circumstances and should be performed and evaluated with
care [138].

2.1.8 Reference mapping and label transfer

Leveraging existing annotated reference datasets to annotate new scRNA Seq data can ease
downstream analysis and biological interpretation despite issues such as technical variability and
biological noise and can be particularly useful for ongoing initiatives such as the Human Cell
Atlas [179]. However, the quality of the transferred annotations depends on the quality of the
reference data, the model, and their compatibility with the dataset [130].

A simple, yet effective approach to integrating embeddings and annotations of queried data with
a provided reference dataset is through Scanpy’s ingest approach. This method projects the query
data onto a PCA or UMAP space that has been fitted on the reference data, and, using a k-NN
classifier, maps and projects the cell labels onto the embedding. It is noteworthy that Scanpy’s
ingest does not learn a joint representation of query and reference data but solely projects the
query data onto the reference embedding.

Approaches that do learn a joint representation include scANVI [180], an extension to the previ-
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ously discussed scVI [157] model. This semi-supervised variational autoencoder model initially
learns a low dimensional representation of the query and the reference data and subsequently
trains a classifier to learn cell type knowledge on the labeled reference data. The classifier is then
used to predict and infer labels for cells in the unlabeled query data.

2.1.9 Trajectory inference and pseudotime analysis

Developmental processes, such as stem cell differentiation, occur gradually and involve a progres-
sive shift in gene expression. The study of these differentiation processes on a single cell level
has led to the revival of Waddington’s landscape [181], a concept which envisions cells during
developmental processes as balls rolling down a hill with numerous hills and valleys that represent
the complex network underlying cellular fate decisions. Ideally, one would be able to repeatedly
profile a single cell over time to investigate the underlying molecular characteristics. However,
due to the destructive nature of single cell assays, each cell can only be measured once, leading to
static snapshots of cellular states within such a landscape [182].

However, as biological events unfold unsynchronized across multiple cells, inferring a gradual
order of gene expression profiles through trajectory inference methods is possible when sampling
enough single cells along a developmental process [183]. This allows us to construct a pseudotime,
which represents the order of transcriptomic similarity and typically, to some extent, corresponds
to the cellular intrinsic temporal dynamics of differentiation. There are several computational
approaches for trajectory inference and subsequent investigation of gradual changes in gene
expression patterns along pseudotime [184]. However, these methods typically require prior
biological knowledge to determine the direction of the trajectory and fail to assign directions to
the recovered trajectories [183, 185].

Circumventing these issues, RNA velocity [186] enables an additional layer of information by
incorporating the dynamics of mRNA transcription and degradation. Newly transcribed immature
mRNA is still unspliced and, compared to mature and spliced mRNA, contains intronic sequences
that are detectable in scRNA Seq experiments [186]. Assuming a simple model for each gene that
relates the abundance of immature and mature mRNA, the change in mRNA abundance, known
as RNA velocity, can be inferred [186]. Higher abundance of unspliced mRNA for a particular
gene indicates upregulation in a cell and vice versa. Combining these velocities across genes can
then be used to estimate the future state of an individual cell.

The scVelo [182] package estimates RNA velocity through a stochastic or dynamical model,
allowing RNA velocity to be adapted to various specifications and datasets. Computational tools
such as cellrank [187] build on top of scVelo by combining trajectory inference with directional
information obtained from RNA velocity. Cellrank detects initial, intermediate and terminal
populations and predicts cell fate probabilities towards any of these terminal states. These fate
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probabilities then allow uncovering gene lineage drivers and visualizing gene expression trends
along each individual lineage.

Waddington Optimal Transport (WOT) [188] builds on the optimal transport theory and can
be used to compute distances between cells based on their gene expression profiles and infer
developmental trajectories by minimizing the transportation cost between cell states for time-
lapsed scRNA Seq data. To incorporate time information, WOT considers a sequence of probability
distributions that correspond to the gene expression profiles of cells at different time points.
By computing a time-dependent transportation plan between these distributions, WOT can
describe the transition probabilities of cells from one time point to another. WOT has been
implemented in cellrank as a module for the inference of developmental trajectories, computation
of fate probabilities and identification of gene lineage drivers in time-lapsed scRNA Seq data.
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2.2 Single cell chromatin accessibility

Regulatory mechanisms, such as epigenetics and chromatin accessibility, play a crucial role
in controlling gene expression [189, 190]. To gain a deeper understanding of chromatin state
dynamics at the single cell level, scATAC Seq can be used to quantify genome-wide chromatin
accessibility in individual cells. Although scRNA Seq and scATAC Seq share similarities in the
basic outline of their data preprocessing workflow, there are fundamental differences in individual
steps [130, 191–193]. Unlike scRNA Seq, which captures mRNA from a fixed set of genes, scATAC
Seq samples fragments from the entire accessible genome and thereby lacks a standardized feature
set, leading to data that is more sparse, noisier, and usually bigger compared to scRNA Seq [130].

Figure 2.3: Workflow for single cell ATAC sequencing data preprocessing and analysis.
a) Starting with a fragment file, a feature set first has to be defined which serves as the
basis for subsequent data preprocessing steps. Data preprocessing includes quality
control, normalization, feature selection and visualization in a low dimensional
embedding. b) Gene scores can be estimated based on the local accessibility of the
gene region, including the promoter and gene body, across all cells in the dataset.
c) Differential accessibility analysis identifies genomic regions that show differential
chromatin accessibility between different cell types or conditions. Pinpointing
these regions allows identification of key regulatory elements, transcription factors,
genes and pathways that drive cell type-specific functions and transitions. d)
Co-accessibility methods identify correlations between accessible genomic regions
in single cells, assuming that regions involved in similar biological processes have
correlated accessibility patterns that may be associated with the expression of nearby
genes. e) Transcription factor activity can be inferred based on motif enrichment,
deviations of per-cell accessibility of a given motif or through footprinting analysis.
f) Trajectory inference methods model the developmental trajectories of cells by
ordering them along a pseudotime axis. This allows the identification of cell fate
decisions and the reconstruction of differentiation pathways, as well as the detection
of genes and regulatory elements that are driving cell fate transitions. Adapted from
Heumos et al. [130] using elements from BioRender.com (2023).

Preprocessing and analyzing of scATAC Seq data begins with a fragment file that contains
detailed information about all sequenced DNA fragments generated from Tn5 transposition events,
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including their positions on the reference genome (see section 1.4.2 for a detailed explanation
of the scATAC Seq workflow). This fragment file can be obtained using ready-made analysis
pipelines such as Cellranger ATAC from 10X Genomics, which, similar to the Cellranger pipeline
for scRNA Seq data, automatically processes, aligns and demultiplexes raw single cell data from
10X Genomics ATAC protocols.

Figure 2.3 displays typical preprocessing and selected subsequent analysis steps that I used for
this thesis, starting with a fragment file. Below, the individual steps of data preprocessing and
analysis along with computational methods employed for this thesis are discussed in more detail.
As the rationale behind data preprocessing steps are similar to those of scRNA Seq, the focus will
be on the specifics of scATAC Seq. Various analysis platforms exist for the analysis of scATAC
Seq data, which combine different ready-to-use tools and pipelines for data preprocessing to high
level downstream analysis. A widely used platform for the analysis of scATAC Seq data for this
thesis is ArchR [194], a package written in R that offers an extensive suite of analysis tools for
processing and analysis of scATAC data.

2.2.1 Peak calling or binning for generation of feature matrices

In scATAC Seq, a standardized feature set is not available as it is in scRNA Seq and first has to
be identified, which is mostly done using either cell-by-peak or cell-by-bin matrices [130]. Peaks
refer to variable regions of open chromatin with an enrichment of Tn5 transposition events over
background noise. Bins, on the other hand, are uniformly sized windows across the genome that
capture all Tn5 transposition events. Binning algorithms capture Tn5 transposition events in
equal-sized genomic regions (bins).

While some analysis pipelines combine peak calling and bin calling algorithms, the choice of
peaks or bins as features depends on the research question and the characteristics of the dataset.
Peak matrices provide a more direct measure of the chromatin accessibility of each genomic
element. Due to the binary nature of scATAC Seq data, where regions are either accessible or not
accessible, peak calling is generally performed on groups or clusters of cells rather than on an
individual cell basis [130, 194]. Hence, identifying peaks requires a sufficient number of cells and
therefore may fail in rare cell types or in experiments with low amounts of captured cells [130,
195]. Bin matrices, on the other hand, can suffer from increased noise or bias when using too few
or too large genomic bins. If the bin size is too small, resulting bin matrices can be too sparse
and suffer from a high false positive rate. Conversely, if the bin size is too large, resulting bin
matrices may not capture subtle differences in chromatin accessibility or cell-to-cell variability
within a genomic region.

For this thesis, peaks were called from scATAC Seq data using Macs2 [196]. Originally designed
for ChIP Seq data, Macs2 estimates the local background noise level using a sliding window
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approach. It then models the read count distribution with a Poisson distribution using a dynamic
thresholding method to determine the significance of the peaks. The dynamic thresholding
method calculates a False Discovery Rate (FDR) to control for multiple testing, and adjusts the
threshold to ensure that the FDR is below a user-defined value.

2.2.2 Quality control

To ensure downstream analysis contains biologically meaningful features and not noise, quality
control is essential for identifying and removing low quality cells and features. Similar to scRNA
Seq quality control, there are several criteria that can be used to filter cells and peaks based on
their quality.

Low quality cells can arise from technical issues during the experiment, such as improper cell lysis
or amplification. One metric used to evaluate the quality of scATAC Seq cells is the total number
of fragments per cell, which is directly proportional to the amount of chromatin accessible to the
transposase enzyme used in the scATAC Seq protocol. Cells with very few usable fragments will
not provide enough data to make useful interpretations and should therefore be excluded [130].
Upper and lower thresholds for filtering cells according to captured fragments are defined as Fmin

and Fmax. However, the total number of fragments alone is not sufficient to assess cell quality since
this can vary widely depending on the type of cell, cell cycle stage, or the amount of input material.

Transcription start site (TSS) enrichment scores measure the enrichment of chromatin accessibility
at gene promoters compared to random genomic regions. ATAC Seq data is universally enriched
at gene TSS regions compared to other genomic regions, due to large protein complexes that
bind to promoters [126, 130, 191, 194]. The TSS enrichment score represents the ratio between
the peak of the enrichment at the TSS and flanking regions for each cell. Cells with low TSS
enrichment scores are usually of poor quality, as the signal may be too weak to detect genuine
chromatin accessibility [197]. Lower thresholds for filtering cells according to TSS enrichment
scores are defined as TSSmin.

Nucleosomes, composed of DNA wrapped around histone proteins, restrict the accessibility of
DNA and thus hinder transposase cleavage, leading to low accessibility of DNA that is tightly
wrapped around a nucleosome (see section 1.4.2 for a detailed explanation of the scATAC Seq
workflow). Because of the patterned way that DNA wraps around nucleosomes, there is a nucleo-
somal periodicity in the distribution of fragment sizes in scATAC Seq data as fragments must
span 0, 1, 2, etc. nucleosomes [130, 191]. The nucleosome signal is therefore defined as the ratio
of long fragments resulting from one or multiple histones bound between the Tn5 transposition
sites and short nucleosome-free fragments. This signal consists of distinct peaks and valleys upon
inspection of fragment size and is often used to assess the quality of scATAC Seq data [197].
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Several other criteria are used to filter out poor quality peaks from scATAC Seq data. For example,
peaks from non-standard chromosomes or chromosome scaffolds not found in the reference genome
are typically excluded as they are likely to represent experimental artifacts or low quality data.
Additionally, the ENCODE project has provided a list of certain genomic regions which are
known to have low chromatin accessibility, termed blacklist regions [198]. Peaks identified in
these blacklist regions are often associated with artifactual signals and should be removed from
downstream analysis.

2.2.3 Normalization, feature selection and low dimensional visualization

Similarly to scRNA Seq data, subsequent preprocessing of scATAC data generally involves nor-
malization, feature selection and visualization in a low dimensional embedding. However, the
computational approaches used for each step in scATAC Seq data analysis differ due to the
increased inherent sparsity of scATAC Seq data compared to scRNA Seq data. Since there are
only two copies of DNA in each cell in a diploid organism, the maximum number of counts for a
given base-pair position is two [130, 191, 193]. Thus, a zero in scATAC Seq could indicate that a
certain genomic region is either inaccessible or that it was not sampled. This inherent sparsity
causes high inter-cell similarity at all zero positions and therefore makes traditional approaches
such as PCA unsuitable for analysis of scATAC Seq data [194].

To address this challenge, latent semantic indexing (LSI), a natural language processing method,
originally designed to assess document similarity based on word counts, has been adapted for
scATAC Seq data analysis [194, 199, 200]. LSI is a layered dimensionality reduction approach
and combines term frequency-inverse document frequency (TF-IDF) normalization and singular
value decomposition (SVD). In the case of scATAC Seq, each sample is treated as a document
and each peak is treated as a term. First, the term frequency is calculated for each peak in each
single cell, which reflects the number of times a particular peak is accessible. Due to the nature
of scATAC Seq, a peak can be accessible 0,1, or 2 times. This term frequency is then depth
normalized by a constant 10,000. Then, the values are normalized by the inverse sample frequency
across all cells to identify the peaks that are more specific rather than commonly accessible.
Finally, the resulting matrix is then log-transformed, generating a TF-IDF normalized matrix
that reflects the importance of each peak to each sample. Next, SVD is performed to identify
the most valuable information across samples and represent them in a lower-dimensional space.
Finally, a more conventional dimensionality reduction technique, such as UMAP can be used to
visualize the data.

2.2.4 Gene scoring and cluster annotation

Features in scATAC Seq data are relatively hard to interpret compared to a fixed set of genes in
scRNA. When corresponding RNA data is available for the same cells, as is the case in this thesis,
gene annotations from the RNA signal can be transferred and systematically refined in ATAC
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resolution to further elucidate cellular identity, if necessary. In the absence of corresponding
RNA data, gene expression for cell type-specific marker genes can be estimated from chromatin
accessibility data alone to aid in reliable cell type annotation. This can be accomplished by
calculating gene scores, which estimate the level of gene expression based on the local accessibility
of the gene region, including the promoter and gene body, across all cells in the dataset. Adjusting
for the distance to the gene and large differences in gene size, the resulting gene scores are useful
for cell type identification based on marker gene expression and for performing differential gene
expression analysis between groups of cells [194].

To further enhance the visualization and simplify the process of cell type annotation, simple
models such as MAGIC [201] learn the manifold data and use the resulting graph to denoise gene
activity scores.

2.2.5 Differential chromatin accessibility

Similarly to scRNA Seq, differential accessibility analysis employs statistical models to identify
variations in accessible genomic regions across cells, conditions, or samples, enabling the discovery
of underlying molecular mechanisms or pathways among cells. It is worth noting that while
scRNA Seq data performs analyses at the gene level, scATAC Seq data may use peaks, genes
based on gene scoring methods, or even transcription factor motifs (discussed in section 2.2.7).

For an unbiased identification of marker features in a cell population of interest, first, background
cells are selected that closely resemble the cells of interest based on their quality control metrics,
such as TSS enrichment score and normalized amount of fragments per cell [194]. The normaliza-
tion of these values using quantile normalization ensures that the variance of each dimension is
distributed uniformly across the same relative scale. Subsequently, the nearest neighbors with the
most similar bias in terms of TSS enrichment and amount of fragments per cell are determined in
this normalized multidimensional space using the Euclidean distance metric [194]. The generation
of a bias-matched background cell group is crucial as it allows for a more robust determination of
significance even in smaller cell groups. Enriched features are then identified by comparing cell
groups using pairwise statistical tests such as the Wilcoxon Rank Sum Test and ranked based on
their adjusted p-value and FDR.

2.2.6 Peak co-accessibility

Co-accessibility methods identify correlation between peaks across many single cells, based
on the assumption that accessible genomic regions in the same cells are involved in similar
biological processes and their accessibility patterns may be correlated with the expression of
nearby genes [202]. The peak correlation-based approach implemented in ArchR measures the
correlation between the binary accessibility profiles of all pairs of genomic regions, resulting in a
matrix that provides co-accessibility scores for each pair of peaks. It is worth mentioning that

39



although these co-accessibility analyses are essential for understanding regulatory networks, cell
type-specific peaks are often linked as they are typically accessible within a single cell type. This
leads to a strong correlation between these peaks, but does not necessarily indicate a regulatory
relationship between them [194].

2.2.7 Transcription factor activity

After having identified a set of peaks or features that are specific to a certain cell population or
condition, it becomes possible to predict which transcription factors (TFs) may be mediating the
binding events that create those accessible chromatin sites. As key lineage-defining TFs are often
found in cell type specific accessible chromatin regions, the activity of transcription factors can
shed further light into the regulatory mechanisms governing gene expression.

In scATAC Seq data, one of the most straightforward ways to identify potential TF activity
is to search for enriched DNA binding motifs of TFs within a set of peaks or features. This
approach assumes that the presence of a particular DNA motif within an open chromatin region
indicates the binding of the corresponding TF. Databases like JASPAR [203] and Cis-BP [204]
provide detailed information about binding motifs of TFs from multiple species, which can be
used to identify enriched DNA motifs. In addition, the ENCODE consortium [205] has mapped
TF binding sites across a wide array of cell types, creating a TF motif database that can help
characterize unknown cell types, similar to the enrichment analyses described in section 2.1.6

However, these enrichment analyses are typically not performed on the single cell level and fail to
take the insertion sequence bias of the transposase into account. To address these limitations,
chromVar [206] calculates TF activity by measuring the deviation of per-cell accessibility of a
given motif from the expected accessibility based on the average of all cells or samples. This
approach calculates a deviation score for each motif for all cells, reflecting the estimated activity
of each TF across individual cells.

Motif enrichment analysis has a notable limitation in that the mere presence of a DNA binding
motif may not necessarily imply actual binding by the corresponding TF [207]. The DNA motif
may instead be bound by a different TF, be part of a larger regulatory complex, or remain
unbound altogether. Moreover, some TFs can bind to regions without any known motif, posing
challenges in identifying their activity through motif enrichment analysis alone [206, 208].

To circumvent this limitation, TF footprinting can be used to identify TFs that are bound to
a particular genomic region, based on the pattern of chromatin accessibility in that specific
region. TF footprinting is based on the notion that the binding of a TF to the DNA protects
the underlying DNA sequence from being cut by the transposase and sequenced. Consequently,
genomic regions that are bound by TFs exhibit lower levels of chromatin accessibility compared to
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flaking regions that lack TF binding. To this end, peak regions are initially scanned for any DNA
sequence that matches a motif, and the genomic locations of the relevant motifs are obtained.
To account for Tn5 insertion biases, ArchR generates a matrix of all possible hexamer position
frequencies and k-mer frequencies at Tn5 insertion sites [194]. Since conducting TF footprinting
at a single site level would typically require a substantial sequencing depth, transposase insertion
sites for a specific motif are typically merged across cells of a specific group to establish an
aggregate TF footprint and accurately predict TF binding events [194].

2.2.8 Trajectory inference and pseudotemporal ordering

Inferring a pseudotemporal ordering of single cells in a low dimensional space can be used to
investigate gradual changes in chromatin accessibility and TF activity over time. This involves
defining a trajectory backbone in ArchR, which provides a rough ordering of cell across timepoints
or cell clusters for time-lapsed or snapshot data [194]. For time-lapsed differentiation data, the
first timepoint was used as the backbone. This backbone enables the calculation of the distance
for each cell from the first cluster to the mean coordinates of the next cluster, resulting in
a pseudotime value for all cells along the previously defined trajectory. Aligning cells to the
trajectory based on their Euclidean distance to the nearest point along the manifold facilitates
the analysis of changes in chromatin accessibility peaks, gene scores, or TF deviations across
the inferred pseudotime. TFs where gene expression is positively correlated to changes in the
accessibility of their corresponding motif can then be identified by integrating of gene scores along
with TF motif accessibility across pseudotime. This can potentially reveal drivers of differentiation
or regulatory elements that are dynamic throughout the cellular trajectory [194].
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3 Single cell transcriptomics for CAR target identification in AML

CAR T cell therapy has shown promise in treating B cell malignancies, but its effectiveness in
other malignancies is hindered a crucial absence of safe targets (see section 1.1.2). Previous
target identification strategies using transcriptomics typically rely on bulk data, which lack the
granularity necessary for comprehensive analysis.

In this chapter, I first describe a new computational approach for de novo target identifica-
tion for chimeric antigen receptor (CAR) T cell therapy using single cell gene expression data.
Applying this approach to acute myeloid leukemia (AML), I identified two previously unrecog-
nized targets, CSF1R and CD86. We subsequently demonstrated their efficacy in vitro and in vivo.

The goal of this project was to utilize single cell gene expression data to identify CAR targets
with an optimal expression profile regarding their therapeutic efficacy and safety. To achieve this
goal, I developed a stepwise computational framework specifically designed to identify potential
CAR targets based on their single cell gene expression profiles. Applying my approach to AML, I
leveraged gene expression data from over 500,000 single cells collected from 15 AML patients and
9 healthy tissue samples. Aided by this high resolution, single cell expression approach, I compu-
tationally identified colony-stimulating factor 1 receptor (CSF1R) and cluster of differentiation
86 (CD86) as promising targets for CAR T cell therapy in AML. Functional validation of these
established CAR T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived
AML models with minimal off-target toxicity toward relevant healthy human tissues, providing a
strong rationale for further clinical development.

This chapter is based on and partly identical to the following publication in Nature Biotechnology:

1. Gottschlich, A.*, Thomas, M.*, Grünmeier, R.*, ... Marr, C. and Kobold, S., 2023.
Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of
acute myeloid leukemia. Nature Biotechnology, pp.1-15. Shared first authorship.

Note that “*” marks an equal contribution. See section 1.5 of this thesis for a detailed summary
of individual contributions.
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3.1 A computational framework for CAR target identification

CAR T cells targeting B cell lineage antigens such as cluster of differentiation 19 (CD19) or
B cell maturation antigen (BCMA) have demonstrated clinical efficacy in heavily pretreated
individuals suffering from different B cell malignancies, such as B cell lymphoma, B cell acute
lymphoblastic leukemia and multiple myeloma [37–39]. However, CAR T cells targeting non-B
cell-associated epitopes have yet to show similar response rates [209] (see section 1.1.2). For
instance, in myeloid malignancies, such as acute myeloid leukemia (AML), common target struc-
tures are often coexpressed on vital tissues, such as endothelial cells or hematopoietic stem and
progenitor cells (HSPCs), increasing the risk for on-target off-tumor toxicity [54, 210]. Identifying
safe target structures is thus pivotal to translate the vast potential of CAR T cell therapy to
myeloid neoplasms and other malignancies.

Newly developed CAR T cells are often directed to target structures that have already been used
for antibody therapy. By contrast, unbiased de novo target screenings for CAR T cell therapy have
rarely been conducted [50]. In addition, until recently, off-tumor antigen projections could only
leverage bulk sequencing data, missing detailed information about cell-type-specific target antigen
expression patterns [50]. Conveniently, recent advancements in single cell technologies have
provided extensive expression data, offering precise insights into healthy and malignant cells [211]
(see section 2.1). This data, still a mostly untapped resource for therapeutic development, at least
in the context of de novo antigen predictions and CAR T cell development, enables thorough on-
and off-tumor antigen prediction [212], enhancing CAR T cell development with unprecedented
resolution.

Figure 3.1: Computational scRNA Seq-based CAR target antigen identification ap-
proach. To ensure CAR efficacy, a suitable candidate is overexpressed in malignant
cells and located on the cell surface. In terms of CAR safety, the candidate should
not be expressed on T cells and show minimal expression across vital, healthy tissues.
To further optimize the safety profile of CAR targets, I focused on targets with
known pharmacological action of FDA-approved drugs.
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I thus developed a computational approach, leveraging single cell RNA sequencing (scRNA Seq)
data for CAR target identification (Figure 3.1).

To ensure CAR efficacy, a suitable candidate is (1) overexpressed in malignant cells and (2)
located on the cell surface. Overexpressed targets were identified by performing differential
expression analysis between malignant and healthy cell populations using a using a t-test with
overestimated variance (see section 2.1 of this thesis for a detailed explanation of computational
methods). To identify candidates accessible for CAR T cells on the target cell surface, I used
OmniPath [213], a large-scale molecular database, to integrate data from ligand-receptor inter-
actions, intracellular and intercellular location and tissue expression patterns [214–217] into a
comprehensive human surface gene library. This newly generated library served as a resource
for identifying candidates that are accessible for CAR T cells on the target cell surface (Figure 3.1).

Figure 3.2: Generation of a cross-organ off-target transcriptomic atlas (COOTA).
UMAP plots of 11 scRNA Seq datasets from various healthy tissues with colors
highlighting clustering of respective cell types. Cell annotations were provided by
the authors of the respective studies. Figure adapted from Gottschlich et al. [127].

In terms of CAR safety, the candidate should (3) not be expressed on T cells and (4) show
minimal expression across vital, healthy tissues. I identified enriched marker genes in T cells
by comparing the mean expression of healthy T cells to the mean expression remaining healthy
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cell types using a t-test with overestimated variance (see section 2.1 of this thesis for a detailed
explanation of computational methods). To minimize on-target off-tumor effects, I therefore
processed 11 scRNA Seq datasets from nine healthy human tissues (brain, lung, lymph nodes,
heart, skin, liver, kidney, colon and esophagus) [218–228] (Figure 3.1, Figure 3.2, Table 1). These
datasets, consisting of over 500,000 single healthy cells in total, contributed to the comprehensive
evaluation of target expression levels across various healthy tissues within the cross-organ off-target
transcriptomic atlas (COOTA). A detailed summary of all scRNA Seq datasets used to construct
COOTA is provided in Table 1. Cell annotation labels provided by the respective study authors
were thoroughly inspected and, if necessary, relabeled to facilitate global comparisons of cell
populations. I excluded targets highly expressed in vital non-immune cell lineages or on cell types
of tissues in direct proximity to infused T cells (that is, endothelium, arteries, veins, bronchial
vessels, capillary and smooth muscle cells). To mitigate batch-effect induced changes in gene
expression across tissues in COOTA, I defined thresholds based on absolute percentage values
rather than raw expression counts.

Table 1: Overview of COOTA scRNA Seq Datasets.

Organ Method Sequenced
cells

Cell
types Abbreviation Publication

Brain DroNc Seq 13,067 7 Hb2017 Habib et al., 2017 [218]
Lymph nodes 10X 37,446 6 Km2020 Kim et al., 2020 [219]
Kidney 10X 40,268 15 Sd2019 Stewart et al., 2019 [220]
Skin 10X 68,036 4 Cg2018 Cheng et al., 2018 [226]
Heart Mircowell Seq 2,753 9 Hn2020 Han et al., 2020 [228]

Lung 10X

60,633
41,503
56,304
42,995

24

Ti2020
Rn2018
Mn2019
Km2020

Travaglini et al., 2020 [221]
Reyfman et al., 2018 [223]
Madissoon et al., 2019 [222]
Kim et al., 2020 [219]

Colon 10X 41,322 8 Js2020 James et al., 2020 [227]
Esophagus 10X 87,947 10 Mn2019 Madissoon et al., 2019 [222]

Liver 10X 6,271
33,037 15 Md2018

Ra2019
MacParland et al., 2018 [224]
Ramachandran et al., 2019 [225]

To further optimize the safety profile of newly developed CAR T cells (5), I reasoned that, if
targeted therapies for any of the so far identified candidates have already been approved by
the Food and Drug Administration (FDA), the risk for unexpected, severe on-target off-tumor
toxicities will be minimized. In addition, this could shorten time and decrease regulatory hurdles
for translation of newly developed CAR T cells into clinical routines, as safety of target-directed
therapies was previously demonstrated. Thus, I utilized a database that contains information on
the interactions, pharmacology and chemical structures of all monitored FDA-approved drugs and
drug targets [229] and defined druggable targets as targets with known pharmacological action of
FDA-approved drugs.
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3.2 Identification of CSF1R and CD86 as CAR targets in AML

AML is the most common acute leukemia in adults, and its molecular heterogeneity has complicated
the successful development of new therapeutic agents [230]. Despite upfront curative intent
in most individuals with combinatorial chemotherapy, disease relapse is frequent, occurring
in over 50% of treated individuals [231]. After relapse, allogeneic hematopoietic stem cell
transplantation (allo-HSCT) remains the only curative approach; but even then, long-term
survival probabilities are below 20%. Therefore, innovative treatment options represent a high
unmet medical need. Currently, CAR T cells targeting AML-associated target antigens CD33
and interleukin-3 receptor-↵ (IL3RA, CD123) are undergoing clinical investigation. Due to
preclinical evidence of off-tumor toxicity toward HSPCs, most clinical trials are evaluating the
potential of anti-CD123 or anti-CD33 CAR T cells as a bridge-to-transplant regimen before
allo-HSCT. Early reports of these trials have shown only limited therapeutic efficacy [232–234].
Yet, more complete results of these clinical studies in AML are eagerly awaited. Meanwhile, other
targets, such as CD70, C-type lectin-like molecule-1, FMS-like tyrosine kinase-3 (FLT3), CD44
variant 6 (CD44v6), sialic acid-binding Ig-like lectin-6 (Siglec-6) or CD117, have been tested in
preclinical studies as alternative CAR targets [235–239]. However, clinical validation is pending,
and expression profiles of most of the targets raise at least some uncertainties regarding their
clinical safety and efficacy.

3.2.1 Analysis of AML and healthy cells for CAR target identification

To apply my computational approach for de novo CAR target identification to AML, I used
publicly available scRNA Seq data from 15 individuals with AML [240]. Here, I excluded indi-
vidual AML916, as it had a mixed AML phenotype expressing markers of stem cells, myeloid,
T and B lineages. Barcodes were filtered for each sample for high quality cells based on the
total distributions of unique molecular identifier counts and genes. I excluded cells with captured
counts Cmax >12,000, genes Gmax >4,000, or fraction of mitochondria-derived genes MTmax >20%
from further analysis (see section 2.1.1 for a definition and detailed explanation about applied
filtering thresholds). I excluded barcodes that could not be confidently assigned to either healthy
or tumor, as well as genes detected in less than 2% of cells from further analyses. I normalized
unique molecular identifier counts of each cell using the scran algorithm [148]. I identified the top
4,000 highly variable genes based on normalized dispersion [136]. On these, I performed dimension
reduction by computing 50 principal components. To account for technical batches, I used Har-
mony [155] to integrate data from the respective individuals. Next, I computed a neighborhood
graph on all 50 harmony-adjusted principal components with 15 neighbors. For two-dimensional
visualization, I embedding the neighborhood graph via uniform manifold approximation and
projection (UMAP) [161] with an effective minimum distance between embedded points of 0.5
(see methods section 2.1 of this thesis for a detailed explanation of applied preprocessing steps).
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Figure 3.3: ScRNA Seq-based screening approach identifies CSF1R and CD86 as
potential CAR targets in AML. a-b) UMAP showing 28,404 healthy and
malignant cells from data of 15 previously published individuals with AML harboring
15 different mutations [240]. Normalized gene expression values were log transformed.
Colors highlight the different cell types (a) and condition (b). Cell annotations are
provided; NK cells, natural killer cells; GMP, granulocyte–monocyte progenitors;
ProMono, promonocytes; EarlyEry, early erythrocytes; ProB cells, pro-B cells;
Mono, monocytes; cDC, conventional dendritic cells; pDC, plasmacytoid dendritic
cells; LateEry, late erythrocytes. c) Volcano plot showing the remaining two target
antigens with their respective FDR-adjusted log10 p value and log fold change values
from differential expression analysis between malignant HSPC-like cells and healthy
HSPCs using a t-test with overestimated variance. Dashed lines indicate applied
thresholds at a log fold change >2 and p value <0.01. d) Summary of databases
used to identify genes coding for proteins on the cell surface. e) Quantification
of T cell expression of newly identified targets. Red crosses indicate targets with
high expression on T cells, which were excluded from further analyses. Green
check marks indicate no significant expression on T cells. f) Harmonization of 11
scRNA Seq datasets from nine healthy human tissues into a COOTA consisting of
544,764 cells. A detailed summary of all used datasets is provided in Table 1. Targets
highly expressed in non-immune cell lineages or on cell types in direct proximity
to infused T cells (critical cell clusters: arterial, capillary, venous, endothelial and
smooth muscle cells) were excluded from further analysis. Figure adapted from
Gottschlich et al. [127].

A total of 28,404 sequenced healthy and malignant bone marrow cells passed quality control
(Figure 3.3a,b). Next, I sought to identify candidates with higher expression on malignant
HSPC-like cells (herein termed hematopoietic stem cell (HSC)-like and progenitor (Prog)-like)
than on healthy cells. I identified characteristic gene signatures of AML HSPCs by performing
separate differential expression analysis of AML HSC-like and Prog-like cells against their healthy
equivalents, respectively. I defined enriched marker genes as genes with log fold change >2 and
FDR-adjusted p values 0.01. Differential gene expression analyses between malignant and
healthy HSPCs revealed 96 genes that were strongly overexpressed in HSPC-like cells and were
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used for further downstream analyses (Figure 3.3c).

To obtain genes encoding proteins on the cell surface, I used OmniPath [213], a large-scale
molecular database, to access data from (1) the mass spectrometry-based cell surface protein
atlas (CSPA) [214], (2) CellPhoneDB [216], a repository of curated receptors, ligands and their
interactions, (3) the machine learning-based in silico human surfaceome [215] and (4) the human
protein atlas (HPA) [217] v20.1 (https://www.proteinatlas.org/). Permissive integration of all
datasets was critical, as cell surface expression showed strong variability between databases.
Consequently, I used the union of these databases for all subsequent analyses (Figure 3.3d).
Of the 96 genes overexpressed in HSPC-like cells, 36 genes were present in the generated li-
brary of human genes coding for proteins on the cell and were used for further downstream analyses.

Targets should not be expressed on T cells to avoid unintended CAR T fratricide that can result
from shared target expression between malignant cells and CAR T cells [50, 241]. I identified
enriched genes in T cells by comparing the mean expression of healthy T cells to the mean
expression of all other healthy cell types using a t-test with overestimated variance. Testing
was performed on the log-transformed normalized data to account for differences in sequencing
depth between samples. For further target antigen filtering, I considered upregulated genes with
false-discovery rate (FDR)-adjusted p values 0.01 and a log fold change >0. Genes that therefore
passed all previous filters but showed high expression on T cells (for example, CD52 and CRIP1)
were excluded from further analysis (Figure 3.3e).

To quantify off-target effects, I analyzed and combined a total of 11 scRNA Seq datasets across 9
healthy tissues [218–228]. I obtained raw annotated scRNA Seq data from the respective stud-
ies [218, 220, 222, 224–228] using the Python-based data repository sfaira [242]. To quantitatively
analyze the expression of possible CAR T cell therapy targets across healthy tissues, I performed
comparable preprocessing steps for each dataset separately, which involved removing low quality
cells and lowly expressed genes, normalizing cell counts using scran, selecting highly variable genes
based on normalized dispersion and visualizing the cells in a two-dimensional UMAP embedding
as described above. For the lung datasets of Travaglini, Madissoon and Reyfman [221–223], I used
publicly available data with cell annotations derived from a study integrating multiple scRNA
Seq datasets [243]. To account for technical batches along the respective samples, I calculated
batch-balanced k-nearest neighbors [156] for the datasets of Travaglini, Madissoon, Reyfman,
Ramachandran, Cheng, James and Han [221–223, 225–228]. Finally, I concatenated processed
and annotated count matrices on union variables and used the resulting matrix for target antigen
filtering. Genes were excluded if they were expressed in over 2% of cells of a critical cell cluster
(endothelial, arterial, bronchial, capillary, venous and smooth muscle cells) (Figure 3.3f).

To identify genes that encode druggable proteins, I used DrugBank [229], a database containing
information on the interactions, pharmacology and chemical structures of drugs and drug targets.
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I defined druggable genes as targets with known pharmacological action of FDA-approved drugs.
Subsequently, I further restricted the gene list to include only those meeting these criteria.

Using this approach, two potential candidates for CAR development remained: colony-stimulating
factor 1 receptor (CSF1R) and cluster of differentiation 86 (CD86). Interestingly, most of the
described CAR targets for AML (n = 20) failed the thresholds of my stringent analyses at different
levels Table 2. For example, prototypic AML antigens CD33 and CD123 did not fulfill my strict
criteria of overexpression in malignant HSPCs, most likely due to expression of both antigens on
healthy HSPCs. In addition, CD123 had high expression levels across endothelial and various
lung cell types (see section 3.2 for detailed analysis).

Table 2: Current CAR targets in AML were cross-referenced to filters used for
the single cell-based target screening approach. Log2FC HSC-/Prog-like >2:
overexpressed on HSC-/Prog-like cells with log fold change >2 and FDR-adjusted
p value 0.01, using a t-test with overestimated variance. Hyphen: Antigen did not
fulfill respective threshold or criteria. Check mark: Thresholds or criteria were passed.

AML
antigen

Log2FC
HSC-like >2

Log2FC
Prog-like >2

Expressed
on cell
surface

Low
expression
on T cells

Low
expression
on critical
cell types

Target of
FDA-approved
drugs

CD13 X - X X - -
CD33 - - X X X X
CD34 - - X X - -
CD38 - - X X X -
CD44 - - X X X X
CD70 - - X X X -
CD117 - - X X X X
CD123 - X X X - X
CLEC12A - - X X X -
CSF2RA - - X X X X
CSF2RB - - X X X X
FLT3 - - X X X X
FOLR1 - - X X - -
IL1RAP - - X X X -
NCAM1 - - X X X -
NKG2D - - X X X -
LILRB4 - X X X X -
LY6E - - X - - -
PROM1 - - X X X -
SIGLEC6 - - X X X -

To the best of our knowledge, neither anti-CD86 nor anti-CSF1R CAR T cells have been implicated
for CAR T cell therapy in AML. I thus decided to further investigate their potential.

3.2.2 Computational assessment of identified targets in AML and healthy cells

Next, I benchmarked the two identified target antigens CSF1R and CD86 to the reference genes
CD123 and CD33 to ease interpretation of receptor expression on a transcriptomic level (Fig-
ure 3.4). CSF1R was expressed in all six malignant cell clusters, but was expressed the highest on
monocyte-like or conventional dendritic cell-like clusters. CD86 was most strongly expressed in
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monocyte-like, promonocyte-like and conventional dendritic cell-like clusters (Figure 3.4a,b). In
terms of expression in malignant HSPC clusters, CSF1R expression was higher than CD86, albeit
lower than CD123 and CD33 reference genes (Figure 3.4a,b). In contrast, CD123 or CD33 were
detected in healthy HSCs and progenitors, while both CSF1R and CD86 were only minimally
expressed among these cells (Figure 3.4c).

Figure 3.4: CSF1R and CD86 are preferentially expressed on malignant HSPC-like
cells compared to healthy HSPCs. a) Expression of target and reference genes
(CD123 and CD33) in single healthy and malignant cell types. Normalized expression
values were log transformed and scaled to unit variance; Cand.: candidates; Ref.:
references. b) Expression of CSF1R and CD86 target genes in healthy and malignant
cells from 15 individuals with AML. Normalized gene expression values were log
transformed and visualized in a UMAP embedding. c) Expression of CSF1R and
CD86 target genes in malignant (HSC-like and Prog-like; left) and healthy (HSC and
Prog; right) stem cells. For visualization purposes, normalized expression values of
healthy HSPCs and a random subsample of malignant HSPCs were log transformed
and scaled to unit variance. Each peak corresponds to a cell, and peak height
indicates expression intensity. Figure adapted from Gottschlich et al. [127].

COOTA analysis revealed target antigen expression mainly in immune cells of myeloid origin
(monocytes, macrophages and dendritic cells), similar to the peripheral expression profile of
CD33 (Figure 3.5a). CSF1R and CD86 were not highly expressed on epithelial or stromal cells
(Figure 3.5a,top). In organ-specific cell clusters (Figure 14a, bottom), expression was restricted
to microglia cells in the brain, as described in the literature [244]. Additionally, in line with
my COOTA prediction, CSF1R is known to be expressed on microglia [245], raising additional
safety concerns. ScRNA Seq analysis of single human and murine brain tissue [218] confirmed
expression of CSF1R in microglia and similar expression patterns in tissue-resident myeloid cells
(Figure 3.5b,c).
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Figure 3.5: Off-tumor expression of CSF1R and CD86 is restricted to infiltrating
or tissue-resident immune cells. a) Single-cell COOTA screening for target
candidates (CSF1R and CD86) and reference (CD123 and CD33) genes. The single
cell transcriptomic atlas consists of a total of 544,764 sequenced cells from nine
different organs. Each field represents the mean expression value per cluster. Blank
fields indicate cell types not present in a study. A detailed summary of all used
datasets is provided in Table 1. b) Quantification of log-transformed normalized
target expression in single human brain cells is shown on the left. Each peak
corresponds to a cell, peak height indicates expression intensity. A UMAP plot
illustrating the expression pattern of CSF1R in human brain cells is shown on the
right. c) Csf1r expression in single mouse brain cells. A UMAP embedding of
sequenced brain cells is shown on the left. Each peak corresponds to a cell, peak
height indicates expression intensity. Normalized, log-transformed Csf1r expression
per cell type is shown on the right. Figure adapted from Gottschlich et al. [127].

To ensure the validity of my analyses and to better reflect the cytogenetic diversity of AML as a
disease, I next sought to further increase the size the patient cohort. Thus, I obtained a second
publicly available scRNA Seq dataset of five additional individuals with AML [246] (Figure 3.6).
For the cross-validation of my computational target identification approach, I used scArches [179],
leveraging scANVI, a semi-supervised variational autoencoder [180], to map the unlabeled data
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from Petti et al. [246] onto a newly generated reference map of van Galen et al. [240] (Figure 3.6a,b).

Briefly, I trained the scVI model on the raw, annotated reference data from van Galen et al. [240]
with 2 hidden layers and a dropout rate of 0.2. Next, I initialized the scANVI model from the
pretrained scVI model, and trained it for 20 epochs with 100 samples per label. Subsequently, I
created a new query model instance before training the query data. I obtained a latent represen-
tation and label predictions before computing a neighborhood graph with 15 neighbors using the
scANVI representation, and embedded the graph via UMAP as mentioned before (see methods
section 2.1.8 of this thesis for a detailed explanation).

Figure 3.6: Analysis of an additional cohort of five AML patients identifies CSF1R
and CD86 as suitable targets. a) Data from van Galen et al. [240] was used
as a reference (left) to map cells from Petti et al. [246] (right) using scANVI [180].
b) UMAP representation showing the mapped query and reference data together
(left) and the individual AML patients from the two datasets (right). c) Volcano
plot showing CD86 and CSF1R target genes with their respective FDR-adjusted
log10 p value and log fold changes from differential expression analysis between
malignant HSPC-like and healthy HSPC using a t-test with overestimated variance.
d) Computational CAR target antigen identification using the mapped dataset of
Petti et al. [246] by stepwise evaluation against a set of criteria for an ideal and
effective CAR target antigen. The decreasing number of screened AML target genes
are shown on the bottom. Figure adapted from Gottschlich et al. [127].

In line with the results above, CSF1R and CD86 were preferentially expressed in malignant cells
compared to healthy hematopoietic cells (Figure 3.6c). I applied my target identification approach
to these five additional AML patients and again identified both CSF1R and CD86 as suitable
target antigens for CAR therapy in this AML cohort (Figure 3.6d).

Both antigens were highly expressed across malignant cells in 100% of the individuals with AML
with captured malignant blasts (Figure 3.7a,b), despite the heterogeneous molecular profile of the
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participant collective [240, 246].

Figure 3.7: CSF1R and CD86 are consistently expressed across multiple patients
with differing molecular subtypes. a-b) Top: Amount of malignant and
normal cells per AML patient of van Galen et al. [240] (a) or Petti et al. [246]
(b). Bottom: Percentage of malignant and normal cells expressing target genes
CSF1R, CD86 and reference genes CD123, CD33 for each sequenced AML pa-
tient of van Galen et al. [240] (a) or Petti et al. [246](b). Figure adapted from
Gottschlich et al. [127].

In summary, using two independent scRNA Seq AML cohorts consisting of a total of 20 individuals
and over 500,000 single cells from vital healthy human tissues, I identified CSF1R and CD86 as
potential CAR targets for AML therapy.

3.2.3 Functional validation of CAR targets

Following the identification of CSF1R and CD86 as promising candidates for CAR T cell therapy
in AML, functional validation of these CAR T cells was carried out in vivo and in vitro. Note
that the experimental work that ensued was primarily conducted by Adrian Gottschlich and
Ruth Grünmeier under the supervision of Prof. Sebastian Kobold (see section 1.5 of this thesis
for a detailed summary of individual contributions). As the focus of this thesis lies on the
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computational approach, I refer to the corresponding manuscript for a detailed description of the
subsequent functional validation, including the full list of authors involved and their respective
contributions.

Briefly, after having verified the expression of CSF1R and CD86 on a protein level, CAR T
cells against both targets were developed. Efficacy of CSF1R and CD86-directed CAR T was
extensively tested in vitro and in vivo using syngeneic mouse models, human-derived models,
human cell lines and primary AML blasts. Assessment of advanced in vitro primary cell cultures
for target-expressing cell types demonstrated a better discriminatory capacity than established
anti-CD33 CAR T cells. In addition, utilizing several in vivo and in vitro models, we were able
to mitigate safety concerns regarding potential off-target toxicity.

In summary, functional validation of these established CAR T cells shows robust in vitro and in
vivo efficacy with minimal off-target toxicity toward relevant healthy human tissues, providing a
strong rationale for further clinical development.
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3.3 Discussion

Despite the remarkable progress made in the treatment of B cell lymphomas, a broad applicability
of CAR T cells beyond B cell malignancies is still hindered by a lack of safe target structures. A
major concern in target identification strategies followed so far is their à posteriori nature, where
safety is considered after efficacy and primarily not for target selection or therapeutic design.
Shifting this paradigm to a criteria-based target identification from first principles requires the
integration of gene expression of all cells in all relevant tissues. Until now, such an endeavor
was technically not feasible. Conveniently, the revolution in single cell technologies in the last
decade generated massive single cell expression data that provide detailed information about
the transcriptomic anatomy of healthy and malignant cells [104, 211], a yet mostly untapped
resource for therapeutic development. In the context of CAR T cell target screening, these
advancements allow in-depth on- and off-tumor antigen prediction [104, 212], offering unique
insights into patients and various cell types at an unmatched resolution.

I developed the first scRNA Seq approach for de novo target identification and in-depth, high
resolution off-tumor mapping across multiple tissues that is specifically tailored to predict po-
tential candidates for CAR T cell therapy. Applying the approach to AML, I identified two
previously unrecognized target antigens: CSF1R and CD86. Extensive in vitro and in vivo
validation revealed broad expression on AML blasts, strong and durable treatment responses of
newly developed CAR T cells in vitro and in vivo and minimal toxicities toward relevant healthy
cells and tissue.

For target screening, I leveraged single cell sequencing data from 15 primary AML specimens with
differing cytogenetic and mutational profiles [240], providing a direct representation of patient
heterogeneity and disease complexity. These primary samples served as invaluable resources for
identifying potential therapeutic targets with clinical significance. In addition, I validated the
obtained results in an independent cohort of five additional AML patients [246]. This cohort
was primarily employed for validation due to its small sample size and lack of crucial clinical
information regarding AML subtype and patient mutational profiles. Yet, given the highly
complex molecular landscape of AML, rare AML subtypes might still not be fully represented
in my analyses. In addition, it is important to acknowledge the inherent selection bias in data
inclusion from both malignant and healthy tissues used for target antigen filtering, as data
selection for COOTA was based on data quality and comparability, as well as the relevance
of specific tissues for assessing safety issues with CAR targets. Despite these limitations, this
study clearly demonstrates the translational potential of scRNA Seq-based screening approaches
and provides proof of principle of the whole spectrum of scRNA Seq-guided drug development
spanning from computational target identification to preclinical investigation of newly developed
CAR T cells.
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CSF1R has been previously implicated as a target for small-molecule inhibition in AML [247].
However, its expression was thought to be restricted to a small subset of AML-supportive cells in
certain individuals, while the majority of human blasts are regarded as antigen negative [248].
Using single cell gene expression data along with protein expression measurements, I was able to
confirm high CSF1R expression on AML blasts. These reported ambiguities of CSF1R expres-
sion on malignant AML blasts encourage the use of RNA-based screening algorithms for target
identification and prioritization, as methodological or biological confounders can easily mask
protein expression analysis. Nevertheless, it is crucial to bear in mind that scRNA Seq-centered
strategies come with their own limitations, such as the zero or dropout problem [249] and in any
case require protein validation.

Unsurprisingly, CSF1R was expressed on microglia, which share a common monocytic precursor,
as also known for CD33 [250]. Clinical investigation of the so far only CSF1R-directed monoclonal
antibody did not reveal neurotoxicity as a concern when depleting CSF1R-positive cells from the
periphery [251]. However, given the different mode of action of cellular- versus antibody-based
therapies, these results might not be directly transferable to anti-CSF1R CAR T cell therapy.
In addition, CAR T cells are known to be able to cross the blood-brain barrier [252, 253], and
peak levels of proinflammatory cytokines further increase permeability of this tightly regulated
barrier [254, 255]. Because of these considerations, we rigorously tested the possibility for neu-
rotoxicity in fully syngeneic mouse models, in which we implanted large quantities of CAR T
cells directly into mouse brains. Yet, we did not observe any signs of neurotoxicity. Nevertheless,
future clinical validations will need to include well-designed protocols to vigilantly detect any
signs of neurotoxicity.

CD86 is expressed on malignant AML blasts, and high receptor expression is associated with
shortened overall survival of individuals with AML [256, 257], but, to the best of our knowledge,
CD86 has never been explored as a target for (immuno)therapy of cancer. The expression of
CD86 is not limited to AML and has also been reported in numerous B cell malignancies [258].
As such, the use of CD86 CAR T cells promises not only treatment options for AML but also
applications for a variety of other hematological malignancies, such as multiple myeloma [259] and
acute lymphoblastic leukemia [260]. Nevertheless, CD86 is also expressed on healthy macrophages
and dendritic cells [261–263] and might increase the risk of immunosuppression and ensuing severe
infection. However, CTLA-4 fusion proteins, such as abatacept (targeting both CD80 and CD86),
have received approval by the FDA and are clinically used for the treatment of autoinflammatory
disorders [264]. In clinical studies, Abatacept was generally well tolerated [264].

For both CSF1R and CD86, the measured antigen densities were rather low, especially compared
to the high CD33 expression. Yet, despite our extensive functional validation, we did not observe
marked differences between CSF1R and CD86 CAR T cells compared to established CD33 CAR T
cells. Along these lines, we did not observe a correlation between lysis capacity of CAR T cells
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and site density of the respective target antigen. To a certain extent, these findings are in line
with recent reports observed for anti-mesothelin CAR T cells in solid tumors [265]. Several
factors, such as affinity and binding properties of the used single-chain variable fragment (scFv)
and conformation of the target antigen, can positively or negatively influence CAR–tumor cell
interactions. Ultimately, while high target antigen expression undoubtedly increases killing
efficacy, our data suggest that in some cases, functional cross-comparison might help to identify
promising target antigens, despite on first glance rather low antigen expression.

Similar to previous results in AML [50], I was not able to identify target antigens with expression
limited to a single immune cell lineage, as is the case for CD19 or BCMA in B cell malignan-
cies. However, expression of prime candidates CSF1R and CD86 is limited to immune cells
of myeloid origin (monocytes, tissue-resident macrophages and dendritic cells), with minimal
detection on stem or progenitor cells. Thus, these candidates could bear the advantage of clinical
application without the risk for severe bone marrow toxicity, which is a current concern of
AML-targeted treatments [232]. It should be noted, however, that to date, clinical outcome of
off-tumor gene expression on HSPCs remains elusive. Along these lines, precise projection of
off-tumor antigen expression is one of the central objectives of my single cell approach, because
unwanted toxicity may be inferred from high transcriptomic off-target antigen expression [52, 104,
212]. Yet, as outlined above, the risk of severe adverse effects caused by off-tumor activity of
CAR T cells is not fully understood, and different outcomes have been reported [266]. As such,
the latest trials evaluating the safety of CD123 CAR T cells did not show sustained cytopenia [266].

However, in most anti-CD123 CAR T cell trials currently being conducted, participants eventually
received allogeneic hematopoietic stem cell transplantation, which presumably eradicated CAR T
cells. Of note, the development of fatal cytokine release syndrome and capillary leak syndrome
following CD123 CAR T cell infusion, potentially due to off-target expression of CD123 on small
vessels, has been reported [210]. Altogether, current clinical evidence does not support a clear
definition of the critical cell types and expression thresholds that would preclude the development
of CAR T cells against a certain target to avoid unmanageable toxicities. In the long run, detailed
knowledge of off-tumor expression will allow vigilant monitoring of ‘high risk off-tumor organs’ in
clinical trials and might enable rapid side effect-mitigating treatments. Similarly, clinical lessons
from anti-CD19 or anti-BCMA CAR T cell therapy deem lineage-restricted expression patterns
as highly desirable, providing further strong evidence for the use of single cell technologies for
de novo target identification, as this might aid the search for unrecognized target antigens with
minimal off-tumor expression in healthy tissues.

I implemented stringent criteria during target identification, such as overexpressed genes on
malignant cell populations with log fold change >2 and COOTA expression filtering thresholds
of 2% in critical cells, which inherently limited the number of identified targets. This strin-
gency was deliberate to ensure the selection of high-confidence targets with minimal off-target
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effects. Also, while this approach is robust in identifying potential CAR targets, it’s important
to acknowledgethat parameter choices played a crucial role in shaping the final selection of
targets, with thresholds for overexpression and COOTA inclusion impacting the final outcome. I
iteratively adjusted parameters based on domain knowledge and preliminary validations across
diverse scRNA Seq datasets to ensure the robustness of results across diverse datasets. Future
studies could benefit from comprehensive robustness analyses to further validate the stability and
generalizability of this approach.

Many of the currently investigated CAR targets in AML failed the thresholds of overexpression
on malignant HSPCs compared to their healthy counterparts in my analyses. Herein, to a certain
extent, this data contradict data from publications of colleagues [235, 267]. Sauer et al., for
example, illustrated higher expression of CD70 in bone marrow biopsies of individuals with AML
than in bone marrow samples of healthy donors by using immunohistochemistry [235]. This
discrepancy is most likely due to my restrictive analyses, in which I have chosen rather high cutoff
criteria to ensure maximal safety of identified target antigens. Adjustment of these thresholds will
yield different results, and many of the previously identified target antigens (for example, CD123,
CD33, CD70, FLT3, C-type lectin-like molecule-1 and CD44v6) will most likely be of aid to
improve clinical care of individuals with refractory or relapsed AML. Precision medicine in AML
at the individual patient level remains challenging due to the considerable variation observed
among patients [268]. Nonetheless, my approach provides a foundation for future endeavors
aimed at refining and customizing CAR T cell therapies. The data clearly demonstrates the value
of CSF1R and CD86 as targets for CAR T cell therapy in AML, and, considering the complex
molecular landscape of AML and its highly diverse subsets, these targets are expected to be
valuable additions to the immunotherapeutic repertoire in AML.

In summary, my results highlight the potential of using high resolution, single cell transcriptomic
data for CAR T cell target selection and development. Leveraging these data and the appropriate
high dimensional analyses as standard operating procedures enables identification of potential
new target structures for targeted immunotherapy in a wide range of malignant disorders.
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4 Estimating on-tumor efficacy and off-tumor toxicity of CAR

targets by screening single cell gene expression

While CAR T cell therapy has made significant progress in recent years, its ability to achieve
the desired therapeutic effect depends on targeting tumor-specific antigens, as shared target
expression on healthy tissues can lead to severe on-target, off-tumor toxicities (see section 1.1.2).
Administration of approved CAR T cells have shown a wide range of side effects, such as neuro-
toxicity, hematotoxicity, and cytokine release syndrome. Importantly, these were retrospective
findings, discovered after introduction of these treatments into clinical practice. Flow cytometry
has traditionally served as the primary method for immunophenotypic measurements, but its low
throughput and reliance on predetermined hypotheses limit exploratory molecular profiling of
CAR T cells and their targets [269].

In this chapter, I therefore examined single cell gene expression profiles of CAR targets derived
from clinical trials involving malignancies treated with CAR T cell therapy approved by the
FDA. The primary objective of this chapter was to identify potential differences that could
account for the observed toxicities in clinical settings. Furthermore, I sought to evaluate the
expression profiles of CAR targets in malignant and healthy tissues and identify novel targets
that demonstrate a favorable expression pattern across both malignant and healthy cells.

To that end, I leveraged single cell gene expression data from over 300,000 cells obtained from
patients suffering from follicular lymphoma, multiple myeloma, and acute lymphoblastic leukemia.
Additionally, I conducted an extensive screening of CAR target expression in over 3 million cells
derived from various healthy tissues, including bone marrow, brain, lung, lymph nodes, spleen,
heart, liver, and kidney. Through my analysis, I identified notable disparities in the expression
levels of CAR targets and interpreted novel clinical outcome data with regard to the expression of
CAR targets across both healthy and malignant cell populations. Finally, I identified novel CAR
targets for the treatment of follicular lymphoma, multiple myeloma, and acute lymphoblastic
leukemia that exhibit a favorable gene expression pattern across both healthy and malignant
cell populations using a computational screening approach based on single cell gene expression data.

My findings provide guidance in identifying potential off-tumor toxicities and aid in the selection
of CAR targets in a wide range of hematological malignancies prior to their translation into
clinical applications. Consequently, this study serves as a resource for both retrospective and
prospective evaluation of therapeutic targets, offering significant support for enhancing the safety
and efficacy of future CAR T cell therapies.

This chapter is based on and partly identical to the following publication:
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1. Thomas, M.*, Brabenec, R.*, ... Kobold, S. and Marr, C., 2023. Single-cell gene expres-
sion screening for efficacy and safety prediction of CAR T cell therapy targets. In preparation.

Note that “*” marks an equal contribution. See section 1.5 of this thesis for a detailed summary
of individual contributions.
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4.1 Single cell transcriptomics for CAR target tumor efficacy estimation

With the development and approval of CD19- or BCMA-directed CAR T cells, the field of cellular
immunotherapy has seen tremendous progress in recent years and has evolved as a part of the
standard for patients suffering from various relapsed or refractory B cell malignancies [37–39].
Enormous effort has been invested in moving these advanced therapeutic products into other
hematological malignancies and, importantly, solid tumors, with limited reported success [56, 270].
A major determinant of CAR T cell safety but also efficacy is the choice of antigen. This should
be ideally ubiquitously expressed on the cancer cell and only there, be of key importance to the
disease and of no or very limited expression in healthy tissues [43, 50]. In reality, however, these
characteristics rarely apply and antigen expression is shared with other cells and tissues. Such
"on-target, off-tumor” effects [43] can result in a range of often severe, long-term and sometimes
life threatening consequences, including cytokine release syndrome (CRS), neurotoxicity, and
serious organ damage [22, 43].

For instance, treatment with anti-CD19 CAR T cells has been associated with severe neurotoxicity,
hematotoxicity, as well as CRS in varying frequencies [271, 272]. These side effects have been
partially linked to target expression and target availability, for example in the case of neurotoxic-
ity or cytokine release [43, 270]. Importantly, these findings were retrospective and discovered
only after the introduction of these treatments into clinical practice, fortunately proving to be
manageable to a large extent [43, 273]. In other cases, however, CAR-induced toxicity might be
less manageable or even fatal. Examples include CAIX (CA9)-targeting CAR T cells used for
treatment of renal cell carcinoma (RCC) that caused hepatobiliary toxicity, most likely due to
shared CAIX expression on the bile duct epithelium [54, 55]. Cardiorespiratory failure was fatal
in a patient suffering from colorectal cancer upon treatment with CAR T cells targeting HER2,
due to reactivity against pulmonary and cardiac tissue [56, 57]. Along these lines, it appears
evident that a better a priori understanding of both the product and the target might help to
mitigate risks and prioritize concepts with higher potential for efficacy with controllable safety.

The rapid growth, resolution and availability of scRNA Seq data has revolutionized our under-
standing of complex cellular biology [105, 274, 275]. Emerging large-scale atlases of healthy
human tissues and tumor mass enable therapeutic target screening across various cell populations
on a transcriptomic level, a significant aid in predicting potential risks of on-target, off-tumor
toxicities and for assessing the target specificity on malignant cells for CAR T cell therapy [104,
276].

Parker et al. demonstrated the efficacy of scRNA Seq atlases in evaluating the safety properties of
CAR targets by associating neurotoxicity of CD19-targeting CAR T cells with CD19 expression
in a small subset of brain mural cells responsible for maintaining blood-brain barrier perme-
ability [52]. Similarly, neurotoxicity in a patient suffering from multiple myeloma treated with
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BCMA-targeting CAR T cells was linked to BCMA expression in the caudate nucleus of healthy
human brain tissues [53]. Previous studies have predominantly focused on exploring a specific
subset of cells expressing the target of interest, rather than considering the broader context of
the global expression profile [52, 53]. However, with the rapid increase in clinical trials and the
consequent expansion of CAR targets, an extensive analysis of the global expression profiles of
CAR targets on both healthy and malignant tissues is lacking [212, 277].

To investigate whether the global gene expression profile of a CAR target could serve as an
indicator for toxicity effects, I focused my analyses on malignancies for which CAR T cell therapy
has FDA approval. For these malignancies, we then screened ongoing clinical trials utilizing
FDA-approved or experimental CAR target antigens for overall response rates, as well as reported
rates of neurotoxicity, hematotoxicity and cytokine release syndrome among patients who under-
went CAR T cell therapy. Finally, I analyzed transcriptomic profiles of these CAR targets in
malignant and healthy cell populations and interpreted global expression patterns of these targets
in conjunction with clinical patient outcome data (Figure 4.1).

Figure 4.1: Computational assessment of efficacy and safety of CAR targets from
clinical trials. CAR targets were acquired through screening the literature and
clinical trials. Clinical data provided insights about the efficacy and safety of
CAR targets. Target gene expression was evaluated computationally on malignant
and healthy tissues for CAR targets from clinical trials. Using a single cell gene
expression-based approach, novel CAR targets were identified.

The subsequent sections detail the different steps, including curating the CAR target list from
clinical trials, analyzing clinical outcome data derived from patients that underwent CAR T cell
therapy, generating a transcriptomic atlas encompassing malignant and healthy cell populations,
and conducting an in-depth analysis and interpretation of target expression profiles in relation
to the available clinical outcome data. Finally, using a scRNA Seq-based screening approach, I
identified novel candidates for CAR T cell therapy in these malignancies, which exhibit promising
expression patterns across both healthy and malignant cell populations.
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4.1.1 Approved and investigational CAR targets in clinical trials

To determine the malignancies of interest, I initially aimed to identify all malignancies for which
the FDA has approved CAR T cell therapy. As of February 2023, there are a total of six FDA
approved CAR T cell therapies, all utilizing CD19 or BCMA (TNFRSF17) as target antigens
to treat patients suffering from follicular lymphoma (FL), multiple myeloma (MM), acute lym-
phoblastic leukemia (B-ALL), large B cell lymphoma (LBCL), diffuse large B cell lymphoma
(DLBCL), primary mediastinal B cell lymphoma (PMBCL), high-grade B cell lymphoma (HGBL),
and mantle cell lymphoma (MCL) (Table 3).

Table 3: FDA-approved CAR T therapeutics and their respective target antigens.
Targets were obtained from the website http://www.fda.gov as of February 2023.

Therapeutic Approved for Targeting antigen
ABECMA Refractory MM BCMA (TNFRSF17)
BREYANZI Relapsed or refractory LBCL CD19
CARVYKTI Relapsed or refractory MM BCMA (TNFRSF17)

KYMRIAH Relapsed or refractory DLBCL
Relapsed or refractory B-ALL

CD19
CD19

TECARTUS Relapsed or refractory MCL
Relapsed or refractory B-ALL

CD19
CD19

YESCARTA

DLBCL
PMBCL
HGBL
DLBCL resulting from FL
FL

CD19
CD19
CD19
CD19
CD19

To identify additional targets for CAR T cell therapies in clinical trials, we performed a com-
prehensive screening of www.clinicalTrials.gov. The applied search criteria included the inter-
vention/treatment terms "CAR T Cell Therapy," "CAR T," and "CAR" applied to the above
mentioned malignancies. For FL treatment, CD19 is currently the only FDA-approved product
targeting a single antigen (Table 3). However, two additional targets, CD20 and CD22, are being
investigated in clinical trials as of February 2023 (Table 4).

Table 4: Targets from clinical trials in follicular lymphoma (FL). Targets were obtained
from the website http://www.clinicaltrials.gov as of February 2023.

Target Gene Status Malignancy ClinicalTrials Identifier
CD19 CD19 Recruiting FL NCT05326243
CD20 MS4A1 Recruiting FL NCT03277729
CD22 CD22 Unknown status FL NCT03999697

Regarding the treatment of MM, BCMA serves as the only target antigen for the two FDA-
approved CAR T cell products (Table 3). Furthermore, we identified eight additional antigens
under investigation for multiple myeloma in clinical trials (Table 5).

In the case of B-ALL treatment, CD19 is the sole target for FDA-approved CAR T cell therapies
(Table 3). We found five additional antigens being explored in clinical trials (Table 6).
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Table 5: Targets from clinical trials in multiple myeloma (MM). Targets were obtained
from the website http://www.clinicaltrials.gov as of February 2023.

Target Gene Status Malignancy ClinicalTrials Identifier
BCMA TNFRSF17 Not yet recruiting MM NCT05181501
CD19 CD19 Unknown status MM NCT04182581
CS1 SLAMF7 Completed MM NCT03958656
GPRC5D GPRC5D Active, not recruiting MM NCT04555551
NKG2D KLRK1 Completed MM NCT02203825
CD138 SDC1 Unknown status MM NCT01886976
CD38 CD38 Terminated MM NCT03473496
CD44v6 CD44 Terminated MM NCT04097301
CD56 NCAM1 Terminated MM NCT03473496

Table 6: Targets from clinical trials in acute lymphoblastic leukemia (B-ALL). Targets
were obtained from the website http://www.clinicaltrials.gov as of February 2023.

Target Gene Status Malignancy ClinicalTrials Identifier
CD19 CD19 Withdrawn B-ALL NCT04094766
BAFFR TNFRSF13C Recruiting B-ALL NCT04690595
CD22 CD22 Withdrawn B-ALL NCT04094766
CD20 MS4A1 Recruiting B-ALL NCT05418088
CD123 IL3RA Active, not recruiting B-ALL NCT02159495
ROR1 ROR1 Recruiting B-ALL NCT05694364

B cell malignancies, such as large B cell lymphoma (LBCL), diffuse large B cell lymphoma
(DLBCL), primary mediastinal B cell lymphoma (PMBCL), high-grade B cell lymphoma (HGBL),
and mantle cell lymphoma (MCL), are of great clinical significance due to their prevalence and
high rates of morbidity and mortality. They represent a diverse set of malignancies, ranging from
aggressive to indolent forms of lymphoma. Currently, CD19 is the only FDA-approved target
antigen for all these B cell malignancies (Table 3). We identified seven additional antigens being
investigated in various clinical trials (Table 7).

Table 7: Targets from clinical trials across diverse B cell malignancies. Targets were
obtained from the website http://www.clinicaltrials.gov as of February 2023.

Target Gene Status Malignancy ClinicalTrials Identifier
CD19 CD19 Recruiting LBCL, DLBCL, PMBCL NCT04812691
CD19 CD19 Recruiting HGBL NCT05418088
CD19 CD19 Recruiting MCL NCT04484012
CD20 MS4A1 Recruiting LBCL, DLBCL, PMBCL NCT03277729
CD20 MS4A1 Recruiting HGBL NCT05418088
CD20 MS4A1 Enrolling by invitation MCL NCT04911478
CD22 CD22 Unknown status LBCL, DLBCL, PMBCL NCT03999697
CD22 CD22 Recruiting HGBL NCT05418088
CD22 CD22 Unknown status MCL NCT02721407
BAFFR TNFRSF13C Recruiting MCL NCT05370430
ROR1 ROR1 Recruiting LBCL, DLBCL, PMBCL NCT05694364
ROR1 ROR1 Terminated MCL NCT02706392
CD79a CD79A Recruiting LBCL, DLBCL, PMBCL NCT05169489
CD30 TNFRSF8 Completed LBCL, DLBCL, PMBCL NCT03049449
CD137 TNFRSF9 Unknown status MCL NCT02685670
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4.1.2 Analysis of clinical outcomes in CAR T cell therapy patients

We subsequently screened clinical trials involving CAR T cell therapy that reported patient
outcome data. The screening process was primarily carried out by Lisa Gregor under supervision
of Prof. Sebastian Kobold (see section 1.5 of this thesis for a detailed summary of individual contri-
butions). We obtained a list of ongoing clinical trials utilizing CAR T cell therapy as of March 2023
by examining the websites http://www.clinicaltrials.gov (search criteria: “car-t” or “chimeric anti-
gen receptor”, filtering by completed and terminated trials) and https://pubmed.ncbi.nlm.nih.gov/
(search criteria: “car-t” or “chimeric antigen receptor”, filtering by clinical trials). Papers of respec-
tive clinical studies were obtained from https://pubmed.ncbi.nlm.nih.gov/ and were screened to
extract the clinical trial identifier, which was then used to eliminate duplicates and exclude any
trials evaluating non-CAR T products. All trials were screened by two independent individuals
to avoid human error and were carefully assessed to acquire specific information about the CAR
target employed for treating each malignancy.

Figure 4.2: Clinical patient outcome data following administered CAR T cell ther-
apies. a) Overall response rate (ORR) showing the percentage of treatment-
responsive patients following CAR T cell therapy for each target and treated
malignancy. ORR was calculated by dividing the number of patients exhibiting
partial or complete response by the total number of patients involved in the study.
b-d) Percentage of patients showing signs of hematotoxicity (b), neurotoxicity (c),
as well as CRS (defined as stages 1 and 2) and severe CRS (defined as stages 3 and
4) (d) for each target and treated malignancy. Each dot represents one clinical
study.
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For each study, we further analyzed the number of patients exhibiting signs of progressive disease,
stable disease, partial response, and complete response, which we used to calculate the overall
response rate (ORR) by dividing the number of patients exhibiting partial or complete response
by the total number of patients involved in the study. In addition, we collected relevant clinical
information pertaining to CAR safety, such as the number of patients displaying signs of hemato-
toxicity (incorporating anemia, lymphopenia, thrombocytopenia, and leukopenia), neurotoxicity,
or cytokine release syndrome (CRS).

The data obtained presents a highly heterogeneous profile with respect to response rates and
observed adverse effects across targets and malignancies (Figure 4.2). Analyzing the ORR
(Figure 4.2a), no discernible trend is evident among CAR targets with an average ORR between
60% and 90%. However, compared to other targets, the only available clinical study administering
CAR T cells targeting CS1 resulted in a low ORR of 10%. Patients receiving CD19-directed CAR T
cells displayed the highest incidence of neurotoxicity (Figure 4.2b), while showing relatively low
rates of hematotoxicity (Figure 4.2c). Hematotoxicity was most commonly observed in patients
treated with CARs targeting CD22, CS1, GPRC5D, and CD7 (Figure 4.2c). CRS rates (stages
1/2) and severe CRS rates (stages 3/4) showed similar patterns across targets, with no discernible
trend (Figure 4.2d).

4.1.3 Harmonization of single cell gene expression data

To investigate the potential for adverse on-target off-tumor effects resulting from high expression of
CAR target antigens in healthy cell populations, I conducted an extensive screening of 32 scRNA
Seq datasets based on data quality and comparability, as well as the relevance of specific tissues
for assessing safety issues with CAR targets (Figure 4.3, Table 8). These datasets encompassed
a total of 3,039,758 cells and covered 35 healthy tissues throughout the human body [218–228,
240, 278–296]. Additionally, I examined CAR target expression patterns in over 300,000 single
cells obtained from patients suffering from FL, MM, and B-ALL [297–299]. Given the limited
availability of scRNA Seq data for other B cell malignancies, such as LBCL, DLBCL, PMBCL
HGBL, and MCL, I analyzed the expression profiles of CAR targets used for treating these
malignancies in healthy cell populations.

I acquired raw and processed count data for cells from healthy and malignant tissues through data
repositories sfaira [242] and cellxgene (https://cellxgene.cziscience.com). Similar to section 3.2.1
of this thesis, I performed comparable preprocessing steps for each dataset. I converted count
data to the anndata format when necessary [300]. For raw and processed count data, I filtered
barcodes to retain only high quality cells based on the overall distributions of UMI counts and
genes and the fraction of mitochondria-encoded genes per cell after visual examination of each
sample, if necessary. See Table 8 for an overview of the utilized scRNA Seq datasets and applied
filtering thresholds. For each dataset, I excluded genes detected in fewer than 20 cells from
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subsequent analyses. I normalized UMI counts of each cell using the scran algorithm [148].

Next, I identified top 4000 variable genes based on normalized dispersion, as previously de-
scribed [136]. To capture the underlying data structure in two dimensions, I carried out principal
component analysis (PCA) dimension reduction by computing 15 principal components on highly
variable genes. Next, I constructed a neighborhood graph on the first 50 principal components
before embedding the neighborhood graph via UMAP [161]. Cell annotation labels provided by
the respective study authors were thoroughly inspected and, if necessary, relabeled to facilitate
global comparisons of cell populations. To account for technical batches, such as sequencing depth
or library preparation between datasets, I used scVI [157] to integrate datasets of respective
healthy tissues in an organ-wise manner (see methods section 2.1 of this thesis for a detailed
explanation of applied preprocessing steps).

Figure 4.3: Computational assessment of CAR target expression on healthy and
malignant cell populations. a) Number of single cells after quality control in
scRNA Seq datasets from 35 healthy human tissues used to quantify CAR target
off-tumor expression on healthy cell populations. b) Number of single cells in scRNA
Seq datasets from follicular lymphoma (FL), multiple myeloma (MM) and acute
lymphoblastic leukemia (B-ALL) tumors used to quantify CAR target on-tumor
expression.

To obtain reliable cell annotations for B-ALL cells, I mapped raw count data of unlabeled B-ALL
cells [299] to an annotated reference of fetal bone marrow cells [301] using the semi-supervised
variational auto-encoder model scANVI [180]. Briefly, I trained the scVI model on the raw
reference data with 2 hidden layers and a dropout rate of 0.2. I initialized the scANVI model
from the pretrained scVI model, before training it for 20 epochs with 100 samples per label.
Next, I created a new query model instance before training the query data. I obtained a latent
representation and label predictions before computing a neighborhood graph with 15 neighbors
using the scANVI representation, and embedded the graph via UMAP as mentioned before.
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Table 8: ScRNA Seq datasets and cell filtering thresholds used to assess CAR target
expression. Hyphen: Threshold was not applied. Cmax/Gmax = upper thresholds for
filtering cells according to captured UMI counts (Cmax) or genes (Gmax). MTmax = up-
per thresholds for filtering cells according to their fraction of mitochondria-derived genes.
See methods section 2.1.1 for a definition and explanation about filtering thresholds.

Condition Entity or Tissue Cmax Gmax MTmax Reference
Tumor FL 20,000 6,000 20% Han et al., 2021 [297]
Tumor MM 80,000 7,500 20% Tirier et al., 2021 [298]
Tumor B-ALL - - - Khabirova et al., 2021 [299]
Healthy Multiple tissues 4,000 2,000 20% Han et al., 2020 [228]

Healthy Multiple tissues 16,000 9,000 20% The Tabula Sapiens
Consortium, 2022 [278]

Healthy Multiple tissues 8,000 4,3000 20% Conde et al., 2022 [279]
Healthy Multiple tissues 4,000 1,700 20% Szabo et al., 2019 [280]
Healthy Brain 14,000 4,000 25% Habib et al., 2017 [218]
Healthy Brain - - 25% Berg et al., 2020 [281]
Healthy Brain - - 20% Bakken et al., 2021 [282]
Healthy Eye 45,000 10,000 20% Lukowski et al., 2019 [283]
Healthy Kidney - 7,500 20% Stewart et al., 2019 [220]
Healthy Kidney 4,000 2,500 20% Muto et al., 2021 [284]
Healthy Thymus - - 25% Park et al., 2020 [285]
Healthy Lymph nodes - - 25% Xiang et al., 2020 [286]

Healthy Lymph nodes
Lung 50,000 6,000 20% Kim et al., 2020 [219]

Healthy Lung 30,000 5,500 20% Reyfman et al., 2018 [223]
Healthy Lung 50,000 6,000 20% Travaglini et al., 2020 [221]

Healthy Lymph nodes
Oesophagus 30,000 5,500 20% Madissoon et al., 2019 [222]

Healthy Colon 60,000 5,000 20% James et al., 2020 [227]
Healthy Colon 9,000 6,000 20% Fawkner-Corbett et al., 2021 [287]

Healthy Colon
Rectum 38,000 5,500 25% Wang et al., 2019 [288]

Healthy Liver 25,000 4,000 20% MacParland et al., 2018 [224]
Healthy Liver 42,000 9,000 20% Andrews et al., 2022 [289]
Healthy Liver - - 20% Ramachandran et al., 2019 [225]
Healthy Pancreas - - 20% Baron et al., 2016 [290]
Healthy Pancreas - - 20% Peng et al., 2019 [291]
Healthy Pancreas - 7,500 20% Enge et al., 2017 [292]
Healthy Pancreas - - 20% Muraro et al., 2016 [293]
Healthy Heart 4,500 1,600 10% Litviňuková et al., 2020 [294]
Healthy Bone Marrow 17,000 4,200 20% van Galen et al., 2019 [240]
Healthy Skin - - 20% Cheng et al., 2018 [226]
Healthy Prostate 7,000 3,000 20% Henry et al., 2018 [295]
Healthy Breast 40,000 7,000 20% Bhat-Nakshatri et al., 2021 [296]

In summary, I leveraged publicly available scRNA Seq data derived from diverse healthy tissues
(Figure 4.3a) and FL, MM and B-ALL tumors (Figure 4.3b). I employed this gene expression
data to investigate the gene expression patterns of CAR targets that have undergone clinical
trials for the treatment of malignancies for which the FDA has approved CAR T cell therapy.
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4.2 Analysis of CAR targets across malignant and healthy cells

The success of CAR T cell therapy relies heavily on the precise targeting of tumor-specific antigens,
enabling specific recognition and subsequent elimination of cancer cells while minimizing damage
to healthy tissues. Achieving target selectivity is crucial for reducing side effects and enhancing
the overall safety profile of the therapy. If the target antigen is expressed at very low levels
or is absent on cancer cells, CAR T cells may fail to recognize and eliminate malignant cells.
Therefore, it is essential to thoroughly evaluate the expression levels and density of target antigens
on malignant cells prior to administering CAR T cell therapy.

4.2.1 Tumor expression of approved and investigational CAR targets

I therefore analyzed expression levels of approved and currently investigated targets for the
treatment of FL, MM and B-ALL (Figure 4.4). For FL, CD19 is presently the sole target
antigen approved for a single-target CAR T cell therapy (Table 3). Clinical trials are currently
investigating two additional targets: CD20 and CD22 (Table 4). The expression of these antigens
is restricted to malignant B-cell lymphoma cells, plasma cells, and non-malignant B cells (Fig-
ure 4.4a-c), with variations in overall and mean expression levels (Figure 4.4b-c). Notably, CD20
also demonstrated antigen expression on erythroid cell types (Figure 4.4c).

Regarding MM, BCMA currently serves as the only target antigen for the two FDA-approved
CAR T cell products (Table 3). We identified eight additional antigens being explored in clinical
trials for MM (Table 5). CAR targets for the treatment of MM exhibited high expression levels
on tumor cells overall (Figure 4.4d-f). NKG2D demonstrated the lowest overall expression
across tumor and healthy cell populations. BCMA, CS1, and SDC1 were found to be coex-
pressed on plasma or B cells, while also displaying high expression levels on tumor cells. CD44
was found to be strongly coexpressed across a wide range of healthy cell populations (Figure 4.4e-f).

In the case of B-ALL, CD19 is currently the sole target for FDA-approved CAR T cells (Table 3).
We identified five additional antigens for B-ALL that are under investigation in clinical trials
(Table 6). All CAR targets employed in the treatment of B-ALL exhibited moderate expression
levels within malignant cells. Specifically, both CD19 and CD22 were expressed in malignant and
healthy cells belonging to the B cell lineage (Figure 4.4g-i). Conversely, CD20 exhibited elevated
expression within healthy cells of the B cell lineage but relatively lower expression levels within
malignant cells of the same lineage (Figure 4.4h-i).
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Figure 4.4: Assessment of tumor expression of CAR targets for the treatment of
follicular lymphoma (FL), multiple myeloma (MM) and acute lymphoblas-
tic leukemia (B-ALL). a,d,g) UMAP showing 63,236 healthy and malignant
cells from FL (a), 212,400 healthy and malignant cells from MM (d) and 27,654
healthy and malignant cells from B-ALL (g). Normalized gene expression values
were logarithmized. Colors highlight the different cell types. Annotations of FL
and MM cells were provided by the authors. Annotations of B-ALL cell types were
obtained by matching cells to a reference of fetal bone marrow cells [301]. b,e,h)
Expression of CAR targets from clinical trials across FL (b), MM (e) and B-ALL
(h) datasets. Normalized gene expression values were logarithmized and visualized
in a UMAP embedding. FDA-approved targets have been underlined. Targets were
ordered according to their smallest euclidean distance in gene expression space to
the approved targets for each malignancy. c,f,i) Expression of CAR targets on
tumor and healthy cells for FL (c), MM (f) and B-ALL (i) datasets. Dot size
indicates the fraction of cells per cell type expressing a target, color intensity shows
mean normalized gene expression per cell type. FDA-approved targets have been
underlined. Targets were ordered according to their smallest euclidean distance to
the approved targets.
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Cancer is a highly heterogeneous disease, leading to variations in the expression of target antigens
not only across different cancer types but also among patients with the same cancer type [302].
The presence of antigen heterogeneity poses challenges in predicting and identifying suitable
candidates for CAR T cell therapy. Patient eligibility for CAR T cell therapy is often deter-
mined based on the expression of the target antigen. Therefore, when the antigen exhibits
variability in expression among patients, it becomes essential to accurately evaluate antigen ex-
pression in individual patients to ensure their suitability for the therapy. I therefore evaluated the
expression of target antigens in individual patients suffering from FL, MM and B-ALL (Figure 4.5).

Figure 4.5: CAR target expression on healthy and malignant cells per patient. a-c)
Expression of CAR targets on healthy and malignant cells per patient for FL (a),
MM (b), and B-ALL (c) datasets . Dot size indicates the fraction of cells per cell
type expressing a target, color intensity shows mean normalized gene expression per
cell type.Targets were ordered according to their smallest euclidean distance in gene
expression space to the approved targets for each malignancy.

All targets employed in FL treatment consistently exhibited higher expression levels in malignant
cells compared to healthy cell populations across all 20 patients in the FL dataset (Figure 4.5a).
Similarly, targets for MM treatment demonstrated preferentially higher expression in malignant
cells across all 20 patients compared to healthy cell populations (Figure 4.5b). Notably, in MM,
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CD19, NKG2D, and CD56 did not exhibit strong expression across malignant cells from all
patients. CD44 showed strong expression across healthy cell populations in the majority of
patients (Figure 4.5b). For targets related to B-ALL treatment, their expression densities were
generally low, resulting in an even distribution between malignant and healthy cell populations
(Figure 4.5c). However, CD19 and BAFFR exhibited the greatest difference in expression between
malignant and healthy cells per patient, with predominant expression observed across malignant
cell populations for each patient (Figure 4.5c).

In summary, I meticulously examined the expression of CAR targets in malignant cells using
three scRNA Seq datasets comprising over 300,000 cells from FL, MM, and B-ALL [297–299]
(Figure 4.3b). It should be noted that scRNA Seq data is currently unavailable for other B-cell
lymphomas mentioned in Table 3.

4.2.2 Healthy expression profiles of approved and investigational CAR targets

CAR T cells are designed to recognize and attack cells that express the target antigen upon
infusion into patients. However, there is a risk of unintended damage to healthy tissues if the
target antigen is also expressed on healthy cells. This can result in adverse toxicity effects,
particularly when the target antigen is found on vital organs or tissues. Therefore, it is crucial to
carefully select target antigens for CAR T cell therapy that exhibit high expression in cancer cells
while showing limited or no expression in healthy tissues. Achieving this selectivity is challenging
but essential to maximize the therapeutic index of CAR T cell therapy.

To investigate the potential association between high expression of CAR target antigens in healthy
cell populations and the observed adverse on-target off-tumor effects, I conducted a comprehensive
screening of CAR targets used for the treatment of FL, MM, B-ALL and various other B cell
malignanciesacross over 3 million single cells derived from multiple healthy tissues throughout
the human body (Table 8, Figure 4.6).

Regarding the targets with patient outcome data availability, I observed that CD19 and BCMA
expression was predominantly restricted to B cells or cells of the B cell lineage, such as plasma
cells (Figure 4.6a-h). GPRC5D also exhibited a similar pattern, although with lower overall
expression compared to CD19 and BCMA. Additionally, GPRC5D showed minimal expression in
brain cell populations, including astrocytes, microglial cells, and neurons (Figure 4.6b). CD22
expression was mostly confined to B cells, but was also expressed in brain oligodendrocytes
(Figure 4.6b) and myeloid cells, such as basophils or mast cells (Figure 4.6c-d). CS1 demonstrated
a broader expression pattern across immune cells in multiple tissues, including T cells, NK cells,
and myeloid cells. CD7 exhibited a broader expression across immune cells, present in a wider
range of cell populations, including T cells (Figure 4.6a-h).
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Figure 4.6: Gene expression screening of CAR targets on healthy cell populations.
a) Expression of CAR targets on pooled immune cells from all healthy tissues (left),
bone marrow (middle) and blood (right) tissues. b-h) Expression of CAR targets
across brain (b), lung (c), lymph nodes (d), spleen (e), heart (f), liver (g) and
kidney (h) tissues. Dot size indicates the fraction of cells per cell type expressing a
target, color intensity shows mean normalized gene expression per cell type. Targets
with and without clinical data were respectively ordered according to their smallest
euclidean distance in gene expression space to the approved targets.

For target antigens without patient outcome data from clinical trials, CD30 exhibited to most
similar expression pattern compared to approved targets and was expressed in a narrow range of
immune cells, particularly monocytes, but also in various brain cell types, such as astrocytes,
microglial cells, and neurons (Figure 4.6b). BAFFR expression was mainly confined to B cells
and plasma cells (Figure 4.6a-h). CD20 expression was mostly confined to cells of the B cell
lineage, such as B cells and plasma cells (Figure 4.6a-h). NKG2D expression was limited to a
narrow range of immune cells, including T cells and NK cells (Figure 4.6a). CD137 showed low
expression levels across immune cell types from multiple tissues, primarily lymphocytes and
lymphatic endothelial cells (Figure 4.6a-h). CD123 was predominantly expressed in monocytes,
macrophages, dendritic cells, and mast cells but also exhibited expression in neurons (Figure 4.6b).
ROR1 exhibited a narrow expression pattern across immune cells but was highly expressed
in vital cell types of the brain, including astrocytes, neurons, oligodendrocytes, microglia,
and was also expressed in cardiomyocytes of the heart (Figure 4.6b,f). SDC1 expression was
predominantly restricted to plasma cells, but could also be detected in specific cell populations of
the liver (Figure 4.6g) and kidney (Figure 4.6h). CD79A was predominantly restricted to B cells
and plasma cells (Figure 4.6a-h). CD38 was observed across a broad spectrum of immune cell
types, including lymphatic endothelial cells, innate lymphoid cells, T cells, and NK cells, but also
in astrocytes, neurons, and pericytes (Figure 4.6b,f). CD44 displayed the broadest expression
across screened tissues, with elevated expression levels in almost all cell types (Figure 4.6a-h).
CD56 was expressed in endothelial cells (Figure 4.6a) and showed high expression in various
brain cell types, including astrocytes, cerebellar epithelial cells, microglial cells, neurons, and
oligodendrocytes (Figure 4.6b).

In summary, I have generated an extensive transcriptional atlas comprising over 3 million cells
derived from healthy tissues. I examined CAR target expression globally across blood and immune
cells from various healthy human tissues, and assessed target expression in healthy tissues such
as the bone marrow, blood, lymph nodes, brain, lung, spleen, heart, liver, and kidney, which are
considered crucial in the pathogenesis and dissemination of B cell malignancies [303].
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4.2.3 Interpreting CAR target expression profiles with clinical outcome data

With the increasing availability of CAR T clinical data through the accumulation of numerous
clinical trials, a collection of patient outcome data has started to emerge. This valuable resource
provides significant insights into the efficacy, safety, and long-term consequences of CAR T cell
therapy in real-world clinical settings. Leveraging this wealth of patient outcome data, facilitates
a better understanding of the intricate relationship between molecular characteristics, treatment
response, and toxicity, thereby potentially identifying key factors that influence the success of the
therapy.

Figure 4.7: Reported CAR efficacies and toxicities do not arise from a direct causal
relationship with global CAR target gene expression profiles. a) Correlation
between treatment-responsive patients (calculated by dividing the number of patients
exhibiting partial or complete response by the total number of patients involved
in the study) and mean CAR target frequency on malignant cell populations per
patient. b) Correlation between clinically reported hematotoxicity in patients and
percentage of CAR target-expressing lymphatic cells in lymph nodes (left) and bone
marrow (right) tissues. c) Correlation between clinically reported hematotoxicity in
patients and percentage of CAR target-expressing B cells in lymph nodes (left) and
bone marrow (right) tissues. d) Correlation between clinically reported neurotoxicity
in patients and percentage of CAR target-expressing brain-specific cells (left) and
CAR target-expressing immune cells (right) in brain tissues. e) Correlation between
clinically reported severe CRS (defined as stages 3 and 4) in patients and percentage
of CAR target-expressing immune cells in blood (left), bone marrow (center), and
lymph node tissues (left).

To explore the potential associations between global single cell gene expression profiles and
reported patient outcomes, I examined response rates and survival outcomes in patients who
had undergone CAR T cell therapy targeting specific antigens for various malignancies (Figure 4.7).
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Intriguingly, my analysis did not reveal any significant correlation between clinical patient
outcomes and global single cell gene expression profiles. However, I did observe a marginal
increase in the overall response rate (ORR) that corresponded to the mean frequency of target
gene expression on malignant cells per patient (Figure 4.7a). Remarkably, when assessing
hematotoxicity (Figure 4.7b-c), neurotoxicity (Figure 4.7d), and CRS (Figure 4.7e), I observed a
highly heterogeneous pattern that lacked a clear association between global scRNA Seq profiles of
targets and the occurrence of toxicity effects. These findings suggest that these toxicities may not
arise from a direct causal relationship with the global expression of target genes across healthy
cell populations.
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4.3 Computational identification of potential CAR target candidates

Target specificity is a critical determinant of successful CAR T cell therapy. Considering the
substantial heterogeneity exhibited by certain targets across tumor and healthy cell populations,
I sought to leverage single cell gene expression data to identify additional candidate targets for
CAR T cell therapy in these malignancies. In chapter 3 of this thesis, I presented a computational
approach that enables the identification of suitable targets for CAR T cell therapy based on single
cell gene expression data. Consequently, I employed this target identification approach to analyze
FL, MM, and B-ALL, resulting in the identification of multiple targets suitable for CAR T
cell therapy against these malignancies (Figure 4.8). To the best of our knowledge, none of
these targets have been utilized for CAR T cell therapy in the context of these malignancies thus far.

Figure 4.8: Computationally identified CAR target candidates are highly expressed
across malignant cell populations. a-c) Expression of identified CAR target
candidates on tumor and healthy cells for FL (a), MM (b), and B-ALL (c) datasets.
Dot size indicates the fraction of cells per cell type expressing a target candidate,
color intensity shows mean normalized gene expression per cell type.

Interestingly, for FL, my computational approach revealed CD20, currently under investigation
in clinical trials, and FDA-approved CD19 as the top two hits. Additionally, I identified 9
novel candidates as potential targets for CAR T cell therapy in FL. These candidates exhibited
remarkably high and highly restricted expression on B cell lymphoma cells (Figure 4.8a).
Noteworthy among them is BKT (Bruton’s tyrosine kinase), a crucial mediator in B cell
receptor signaling, which has demonstrated remarkable effectiveness in mantle cell lymphoma
treatment [304, 305]. Furthermore, CD86, which was previously identified for AML in chapter 3 of
this thesis, has displayed promising therapeutic efficacy in AML treatment. Moreover, GUCY2C,
a CAR target utilized for colorectal cancer treatment [306, 307], emerged as another candidate.
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Figure 4.9: Gene expression screening of CAR target candidates on healthy cell
populations. a) Expression of CAR target candidates on pooled immune cells
from all healthy tissues (left), bone marrow (middle) and blood (right) tissues. b-e)
Expression of CAR target candidates across brain (b), lung (c), lymph nodes (d)
and spleen (e) tissues. Dot size indicates the fraction of cells per cell type expressing
a target candidate, color intensity shows mean normalized gene expression per cell
type.

In the context of MM, my computational approach identified BCMA as the top hit, which
currently stands as the only approved CAR product for MM treatment. Furthermore, my analysis
identified CS1, which is already undergoing investigation in clinical trials for MM treatment
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(Table 5). Additionally, I identified ten potential targets that exhibited elevated expression levels
on malignant cells (Figure 4.8b).

Regarding B-ALL, my analysis identified CD19, the sole approved CAR T cell therapy product
against B-ALL, as the leading candidate. Furthermore, I identified five additional candidates,
all displaying heightened expression across malignant cell populations (Figure 4.8c). Notably,
MME, BTK, and DPEP1 emerged once again as potential candidates. Among the other candi-
dates was FLT3, which has been previously utilized in AML treatment with CAR T cells [267, 308].

Subsequent to evaluating the expression profiles within malignant cell populations, I next
assessed the expression of target candidates across various healthy cell populations. For this,
I employed the transcriptomic atlas to examine the cross-tissue expression patterns of these
targets (Figure 4.9). Remarkably, all identified targets exhibited minimal global expression
across blood and bone marrow cells (Figure 25a), as well as brain, lung, lymph node, and spleen
tissues (Figure 4.9b-e). BTK, CD86, MME, and FLT3 displayed the broadest expression patterns.
Furthermore, P2RY12, SCN2A, and GRIN1 exhibited slight expression in brain cell populations,
primarily neurons and microglial cells (Figure 4.9b).

In summary, I analyzed gene expression patterns of approved CAR targets and targets under
investigation in clinical trials across both healthy and malignant cell populations. The observed
differences in target gene expression serve as a valuable resource for retrospective and prospective
target evaluation. Additionally, I explored the variations in gene expression among targets in
conjunction with clinical data from patients who underwent CAR T cell therapy, revealing limited
correlation between global target gene expression patterns and the observed toxicity effects in
clinical settings. To further inform the selection of CAR targets prior to clinical translation, I
put forth several novel target candidates for CAR T cell therapy against these malignancies,
leveraging a single cell gene expression-based approach.
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4.4 Discussion

With a rapid increase in clinical trials, CAR T cell therapy has gained increasing interest as
a promising approach for the treatment of relapsed or refractory B cell malignancies [37–39].
Despite the remarkable clinical success, a wider application is hindered by often life-threatening
adverse effects, such as on-target, off-tumor toxicities [22], which have been shown for a number
of CARs [52, 309–313], posing significant challenges to broad clinical application. Therefore,
careful consideration of the safety and potential risks associated with target antigen selection is
essential before initiating clinical testing.

Transcriptomic reference maps of healthy human tissues and tumor mass can be used for screening
therapeutic target expression across cell populations, predicting the potential risk for on-target,
off-tumor toxicities and the target specificity on tumor cells for CAR T cell therapy [52, 53, 104,
314–316]. However, with the rapid increase in clinical trials and the consequent expansion of
CAR targets, an extensive analysis of the global expression profiles of CAR targets on both
healthy and tumor tissues is lacking [212, 277].

To address this issue, I used single cell transcriptomics to scrutinize gene expression patterns
of CAR target antigens across both tumor and healthy tissues. We provide a comprehensive
overview of current target antigens from clinical trials in malignancies with FDA-approval
for CAR T cell therapy. Additionally, we screened clinical trials to generate patient outcome
data following administered CAR T cell therapies. I interpreted observed toxicity effects in
conjunction with global target expression profiles by generating a transcriptional landscape
of more than 300k cells across follicular lymphoma (FL), multiple myeloma (MM), and acute
lymphoblastic leukemia (B-ALL), as well over 3 million cells across 35 healthy tissues. Finally,
using a single cell gene expression-based approach, I propose novel CAR targets for the treatment
of FL, MM and B-ALL that exhibit a favorable gene expression pattern across both healthy and
tumor cell populations. The findings serve as a resource for both retrospective and prospective
evaluations of therapeutic targets and offer significant support for enhancing the safety and
efficacy of CAR T cell therapies.

I am not the first to utilize scRNA Seq for assessing the potential of on-target off-tumor toxicities
in CAR T cell therapy. However, previous approaches either did not take antigen expression levels
into account, lacked gene expression analysis on tumor data, or were limited to a small number
of healthy tissues [212, 277]. This study seeks to build on these previous efforts by providing a
more extensive analysis of CAR target antigens in tumor and healthy tissues. However, it is
important to acknowledge that this study has certain limitations. Currently, available scRNA
Seq data for other malignancies with FDA approval for CAR T cell therapy is lacking, most
likely due to induced distortions during the dissociation step in the sampling process [317, 318].
Therefore, it is important to acknowledge the inherent selection bias in data inclusion from
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both malignant and healthy tissues used for target antigen screening. Additionally, the 3’ bias
of the sequencing from the chosen public data may lead to an incomplete characterization of
isoforms [136, 319]. For example, I was only able to detect the gene CD44, which shows a high
expression pattern across a multitude of cell types, rather than specific CD44 isoforms, such as
CD44v6, which was shown to be correlated with tumor subtypes [320]. Recent computational
approaches such as drug2cell integrate drug target interactions from the ChEMBL database
(https://www.ebi.ac.uk/chembl/) to evaluate drug target expression in single cells [321]. Similar
approaches could be used to predict interactions between CAR T cells and various cell types
within the tumor microenvironment, which could help identify potential off-target effects or
unintended interactions that may lead to toxicity. Finally, while scRNA Seq undoubtedly has
great potential to benefit CAR T research [127], it is possible that gene expression results may
not always correlate with protein expression and in vivo or in vitro results. To overcome these
limitations, large-scale protein expression screening data may be necessary, which I expect to be
accessible in the upcoming years.

In chapter 3 of this thesis, I introduced an unbiased scRNA Seq-based approach for de novo target
identification of potential candidates for CAR T cell therapy [127]. Applying this approach to FL,
MM, and B-ALL, I identified several target antigens with strong overexpression on tumor cell
populations and minimal expression across vital healthy cell populations. Similarly to previous
results [50, 127], my computational approach consistently identified FDA-approved targets as the
top hits as well as additional genes that have not been utilized for CAR T cell therapy in the
context of these malignancies thus far. The observed gene expression and density levels were
relatively low for some of these targets. While a higher level of target expression is known to
enhance killing efficacy, additional factors, such as binding properties of the utilized single-chain
variable fragment (scFv) and target antigen conformation can influence the interaction between
CAR T cells and tumor cells. Nevertheless, it is crucial to bear in mind that scRNA Seq-centered
strategies come with their own limitations and in any case require protein validation.

For tumor data, rather than relying solely on specific single cell datasets, creating tumor
atlases [322, 323] using comprehensive data sources such as The Cancer Genome Atlas (TCGA;
https://www.cancer.gov/tcga) could offer a broader and more detailed tumor landscape across a
larger patient population. Similarly, atlases of healthy tissues, such as those from initiatives
like the Human Cell Atlas (HCA), can also serve as a valuable reference for mapping and
contextualization of tumor datasets. These extensive atlases of both healthy and tumor tissues
would enable more data-driven approaches to patient stratification, enhancing our understanding
of patient heterogeneity in disease context. Identifying distinct patient subgroups and identifying
commonalities between them could help link specific patient group characteristics to reported
clinical patient outcome data. One potential method for this is multiple instance learning (MIL),
where patient samples are considered as "bags" containing multiple instances (individual cells)
along with their associated clinical features (e.g., "Responder" or "Non-responder") [324]. This
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approach could uncover more meaningful patterns between single cell data from specific patients
subgroups and reported clinical toxicities, enhancing our understanding of treatment responses
and patient outcomes.

Still, the overall sparsity of data obtained from clinical trials certainly made it difficult to
perform correlation approaches between reported clinical patient data and independent single cell
data. Obtaining reliable data from clinical trials proved challenging, as discontinued studies
often lacked clear explanations for their termination, and not all studies provided detailed and
easily interpretable data regarding adverse effects. For example, it was not always clear whether
reported toxicities occurred in the same patients or different ones, making data interpretation
challenging. Additionally, accessing actual single cell sequencing data from patients in clinical
trials for CAR T cell therapy is currently unfeasible, hindering our ability to understand
treatment responses in patients who actually underwent CAR T cell therapy at the single
cell level. The lack of a centralized approach for transparently depositing such data further
complicates efforts to correlate clinical responses with single cell profiles. Given the anticipated
increase in CAR T cell therapy clinical trials, establishing a standardized platform for data
deposition would greatly facilitate meaningful correlations between clinical response and single
cell profiles.

The lack of a clear pattern between global scRNA Seq profiles of targets and toxicity effects
observed in this study is therefore not entirely unexpected, considering also the complex nature
of these toxicities and their current limited understanding. Hematotoxicity, neurotoxicity, and
cytokine release syndrome associated with CAR T cell therapy are multifactorial in nature,
influenced by various factors such as immune system activation, cytokine dysregulation, and
interactions with the tumor microenvironment [43, 273]. Additionally, the mere expression of a
target antigen in scRNA Seq data does not always indicate the presence of toxicity, as evident
from CSF1R, which was strongly expressed in microglia cells but did not result in observed
toxicity effects upon CAR development [127]. While not all target expression patterns from
my global scRNA Seq analysis might be directly relevant to the toxicity effects observed in
clinical studies, the data still remains valuable for clinical research and can aid in refining target
selection and understanding the underlying biological processes associated with CAR T cell
therapy. Broadly expressed targets may pose a higher risk of off-tumor toxicities due to their
potential involvement in vital biological processes across various tissues and should therefore
be closely monitored to observe potential side effects during clinical studies. Still, to allow for
a more stringent analysis of the correlation between single cell expression patterns and target
efficacy and potential for toxicity, a detailed data collection of response patterns for CAR T cells
during clinical trials is urgently needed.

Finally, it is important to note that currently, the full extent of potential risks associated with
off-tumor activity of CAR T cells is still not well understood [266]. Therefore, this study does
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not aim to evaluate the relative merits or shortcomings of any given CAR target antigen, it
merely provides a way to identify potential off-tumor activity and guide the selection of CAR
antigens before translation into clinics. Looking ahead, continued accumulation of scRNA Seq
data from patients, along with increasing availability of clinical toxicity data, will play a crucial
role in enhancing our understanding of toxicities associated with CAR T cell therapy. Early
identification of potential safety concerns associated with CAR T cell therapy facilitates the
careful assessment and monitoring of specific cell populations or therapies to ultimately gain a
better understanding of their potential risks and benefits.
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5 Timelapsed single cell multiomic cross-species characterization

of pluripotent stem cells during neural progenitor differentiation

Pluripotent stem cells (PSCs) can give rise to almost all cell types in the body, including specific
cell types that are required to repair damaged or destroyed tissues [58] and have garnered
significant attention as a potential remedy for the global shortage of transplantable tissues and
organs [64]. Steady advancements in cell culture and differentiation techniques have expanded the
scope of PSCs in cellular therapies and their potential impact on human health [25, 65]. However,
clinical use of PSCs for cell differentiation or tissue repair is still limited to investigational
regenerative medicine, as their translational potential is hindered by certain limitations, such
as the slow and inefficient differentiation process, as well as the immature characteristics of
derived cell types [59, 63, 65, 71, 74, 75]. Consequently, there is a growing interest in accelerat-
ing the differentiation of PSCs to produce functional cell types more rapidly and efficiently [14, 75].

The complex process of PSC differentiation can be better understood by studying mammalian
developmental timescales underlying cellular differentiation. Exploring beyond human timescales
is essential, as comparative studies across species can provide insights into evolutionarily
conserved and species-specific aspects of PSC differentiation. As such, studying developmental
timescales across species is critical for realizing the full potential of PSCs in cellular therapies [78].
PSCs during differentiation represent an invaluable experimental tool for elucidating the
mechanisms underlying species-specific differentiation timelines.

This chapter therefore describes a comprehensive characterization of PSCs derived from three
mammalian species as they underwent neural progenitor cell (NPC) differentiation. Combined
timelapsed single cell gene expression and chromatin accessibility profiling facilitated a detailed
investigation of species-specific timescales of cellular differentiation.

The goal of this chapter was to investigate species-specific developmental speed underlying
NPC differentiation. To ensure accurate cross-species comparisons of mammalian PSCs, we
first established uniform culture conditions and differentiation protocols. Subsequently, I
combined single cell gene expression and single cell chromatin accessibility to profile over 75,000
differentiating PSCs from human, mouse, and macaca over a ten-day NPC differentiation course.
By harnessing the gene expression and chromatin accessibility profiles obtained from the same
individual cells, I identified both conserved and species-specific transcriptomic and epigenomic
signatures associated with NPC differentiation. Differences in the distribution of cells across
various cell cycle phases during NPC differentiation and variations in transcript abundance
and cell size among species suggest that species-specific cell physiology may set the speed at
which differentiation occurs. An integrative analysis of gene scores and transcription factor motif
accessibility data unraveled correlated regulatory dynamics and key drivers of NPC differentiation.
Furthermore, by mapping cells from different species onto a shared embedding space, I could
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discern distinct patterns of progression over the course of differentiation. These findings shed
light on the complex molecular machinery governing PSC differentiation into NPC lineages
and provide insights into species-specific characteristics that influence the dynamics of cellular
differentiation.

This chapter is based on and partly identical to the following publication:

1. Thomas, M.*, de la Porte, A.*, Schröder, J.*, ... Drukker, M., Schröter, C. and Marr, C.,
2023. Single-cell multiomic comparison of differentiating pluripotent stem cells from three
mammalian species. In preparation.

Note that “*” marks an equal contribution. See section 1.5 of this thesis for a detailed summary
of individual contributions.
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5.1 Differentiating pluripotent stem cells from three mammalian species under
identical conditions

Mammalian embryonic development follows a coordinated sequence of events to ensure proper
tissue and organ formation. The duration of these events, however, varies widely among different
species. For example, while it takes 13 days for human embryos to progress from oocyte
fertilization to gastrulation, it only takes six days for mice to reach this stage [79]. Pluripotent
stem cells (PSCs), retain the ability to differentiate into specialized cell lineages representing
different stages of development [14]. Consequently, they can serve as an invaluable tool for
investigating the regulation of developmental timing across species.

In recent years, the advent of single cell multiomic sequencing technologies has revolutionized our
ability to unravel the complexities of cellular diversity and dynamics [116]. Multiomic sequencing
goes beyond traditional single cell transcriptomic methods by combining gene expression and
chromatin accessibility profiling, thus providing a more holistic understanding of the intricate
molecular mechanisms governing PSC differentiation. Capturing gene expression and chromatin
accessibility profiles of individual cells at different stages during development enables the
dissection of cellular heterogeneity and the reconstruction of lineage trajectories that follow
cellular development, thereby enhancing our understanding of developmental processes across
multiple species [183].

The utilization of differentiating PSCs from multiple species is crucial for transitioning from basic
research to potential clinical applications. By incorporating mouse and non-model organisms
such as macaca, which closely resemble human biology, we can effectively bridge the gap between
fundamental discoveries and therapeutic interventions. However, conducting comparative studies
across species can be challenging due to the inherent differences in culture conditions and growth
requirements of PSCs from various species. Typically, cells are cultured in species-specific media
formulations tailored to meet their specific needs. This divergence in culture conditions can
introduce confounding factors and hinder direct comparisons between differentiating PSCs of
multiple species. To mitigate potential biases associated with distinct culture media and focus
solely on the inherent characteristics of PSCs and their differentiation capabilities, our initial
aim was to establish standardized cell culture conditions for epiblast-like primed-state human
embryonic stem cells (ESC), mouse epiblast stem cells (EpiSC), and macaca induced PSCs (iPSCs).

The experimental aspects of harmonizing culture conditions, quantitative reverse transcription
PCR (RT-PCR), immunostainings, and neural progenitor cell (NPC) differentiation were
performed by Alexandra de la Porte and Julia Schröder under supervision of Prof. Micha Drukker
and Dr. Christian Schröter (see section 1.5 of this thesis for a detailed summary of individual
contributions), and will be briefly outlined (Figure 5.1).
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Following the evaluation of various cell culture media, we identified Universal Primate PSC Media
(UPPS) [325] as the most promising medium. Cells were then gradually adapted to the new
conditions (Figure 5.1a). Additionally, we established a common protocol for NPC differentiation
through dual SMAD inhibition [326] to explore the distinct developmental timing of each species
(Figure 5.1b). Using Matrigel coating, clump passaging with EDTA and UPPS media, we
were able to successfully cultivate all cell lines and enhance colony morphology (Figure 5.1c).
Daily RT-qPCR samples over a ten-day course of NPC differentiation confirmed a prompt
downregulation of pluripotency factor POU5F1 (also known as OCT4) upon NPC differentiation,
while neural markers SOX1 and PAX6 were gradually upregulated (Figure 5.1d). Similarly,
via immunofluorescence, SOX1 and PAX6 proteins were detectable in human and mouse cells
following dual SMAD inhibition, whereas POU5F1 was strongly downregulated early into the
differentiation protocol (Figure 5.1e).

Figure 5.1: Primed PSCs of three mammalian species are maintained and differen-
tiated under identical conditions. a) Establishing standardized cell culture
conditions for mouse, macaca, and human PSCs through gradual adaptation to
Universal Primate PSC Media (UPPS) [325]. b) Mouse, macaca and human PSCs
were subject to neural progenitor cell (NPC) differentiation. c) Colony morphology
from cultivated mouse, macaca and human cell lines. d) Daily RT-qPCR samples
for PAX6, SOX1 and POU5F1 (OCT4) over a ten-day course of NPC differentiation
for mouse, macaca and human cells. e) Immunofluorescence measurements of single
nuclei, PAX6, SOX1 and POU5F1 (OCT4) expression for mouse, macaca and human
cells.
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In summary, by employing a common culture medium, we established a platform that allows
for direct and unbiased comparisons of differentiating PSCs across three mammalian species.
Successful NPC differentiation, as evident from RT-qPCR and immunofluorescence analysis,
demonstrates the feasibility of utilizing a standardized differentiation protocol.
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5.2 Gene expression and chromatin accessibility dynamics follow species-specific
timescales

The subsequent sections detail my computational analysis of differentiating mouse, macaca
and human PSCs utilizing combined timelapsed gene expression (scRNA Seq) and chromatin
accessibility (scATAC) sequencing at eight distinct timepoints.

5.2.1 Gene expression reflects species-wide differences during differentiation

To mitigate technical cross-species batch effects, we pooled an equal number of cells from the
three species for each of the eight timepoints (Figure 5.2). Consequently, I aligned resulting
sequencing data against each of the three respective reference genomes separately. To assign
each barcode to a species of origin, I employed a two-step approach: initially, I prematurely
assigned cells to a species based on which reference genome yielded the highest counts per cell.
Subsequently, I used souporcell [131] to identify and remove doublet cells, and cluster cells on
their genotype and their respective species of origin based on single nucleotide polymorphisms.
For each sample, I filtered barcodes to retain high quality cells based on the total distributions of
unique molecular identifier counts and genes and the fraction of mitochondria-encoded genes. See
Table 9 for applied filtering thresholds. I excluded genes detected in fewer than 20 cells from
further analyses.

Figure 5.2: Timelapsed profiling of differentiating cells. PSCs of mouse, macaca and
human were sampled at 0h, 8h, d1, d2, d3, d4, d7 and d10 during NPC differentiation
and profiled using combined gene expression and chromatin accessibility sequencing.

I normalized unique molecular identifier counts of each cell using the scran algorithm [148].
I identified the top 4,000 variable genes based on normalized dispersion [136]. I performed
principal-component analysis dimension reduction by computing 15 principal components
on highly variable genes. Next, I computed a neighborhood graph on the first 50 principal
components with 15 neighbors. To identify genes involved in the linear NPC differentiation
process, I used Waddington Optimal Transport (WOT) [188] to identify potential driver

89



genes correlating with fate probabilities towards the terminal macrostate as implemented
in cellrank [187]. WOT, primarily used to infer developmental trajectories by minimizing
transportation costs between cell states for timelapsed scRNA Seq data (see section 2.1.9),
was employed here to identify genes that follow the linear trajectory towards endpoint cells at
the final timepoint. For two-dimensional visualization, I embedded the neighborhood graph
via uniform manifold approximation and projection (UMAP) [161] on these lineage driver
genes identified from WOT with an effective minimum distance between embedded points of
0.5 (see methods section 2.1 of this thesis for a detailed explanation of applied preprocessing steps).

Table 9: Cell filtering thresholds during scRNA Seq data preprocessing of differen-
tiating mouse, macaca and human cells. Hyphen: Threshold was not applied.
Cmin/Cmax= lower and upper thresholds for filtering cells according to captured UMI
counts. Cmin/Cmax, Gmin/Gmax = upper thresholds for filtering cells according to
captured UMI counts (Cmin/Cmax) or genes (Gmin/Gmax). MTmax = upper thresholds
for filtering cells according to their fraction of mitochondria-derived genes. See methods
section 2.1.1 for a definition and detailed explanation about filtering thresholds.

Species Timepoint Cmin Cmax Gmin Gmax MTmax Dmax
Mouse 0h 1,000 10,000 700 5,000 30% 20%
Mouse 8h 1,250 15,000 1,000 5,000 30% 20%
Mouse d1 1,000 8,000 500 3,500 30% 20%
Mouse d2 2,000 10,000 1,000 5,000 30% 30%
Mouse d3 1,500 10,000 1,000 4,000 30% 30%
Mouse d4 1,500 10,000 1,000 3,600 30% 30%
Mouse d7 1,000 10,000 1,000 4,000 30% 30%
Mouse d10 800 10,000 300 4,000 30% 30%
Macaca 0h 1,500 20,000 1,000 6,000 - 20%
Macaca 8h 1,500 20,000 1,000 6,000 - 20%
Macaca d1 1,000 30,000 1,000 7,000 - 20%
Macaca d2 2,500 40,000 1,500 8,000 - 20%
Macaca d3 1,500 30,000 1,000 7,000 - 20%
Macaca d4 1,000 30,000 1,000 7,000 - 20%
Macaca d7 1,000 40,000 1,000 8,000 - 20%
Macaca d10 1,000 20,000 800 6,000 - 20%
Human 0h 2,000 30,000 1,000 7,000 30% 20%
Human 8h 2,000 40,000 1,500 7,000 30% 20%
Human d1 2,000 30,000 1,500 7,500 30% 20%
Human d2 3,000 75,000 2,000 9,000 30% 20%
Human d3 2,500 40,000 2,000 7,500 30% 20%
Human d4 3,000 50,000 2,000 8,000 30% 20%
Human d7 3,500 40,000 1,500 7,000 30% 20%
Human d10 2,000 30,000 1,000 7,000 30% 20%

UMAP plots of gene expression profiles obtained from differentiating cells accurately reflected the
linear trajectory of NPC differentiation for each species (Figure 5.3a) and marker gene expression
followed the expected dynamics (Figure 5.3b). For instance, the pluripotency marker POU5F1
exhibited a gradual downregulation during NPC differentiation, while neural markers such as
SOX2, PAX6 and MAP2 displayed a progressive upregulation.
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Figure 5.3: Single cell gene expression profiling captures NPC differentiation pro-
cesses for three mammalian species. a) Gene expression UMAPs showing PSCs
of mouse (left), macaca (center) and human (right) sampled at eight time points
during NPC differentiation. Colors indicate sampling timepoints. b) Expression of
selected pluripotency and neuronal marker genes for mouse (left), macaca (center)
and human (right) cells. Normalized expression values were logarithmized and scaled
to unit variance.

To gain further insights into the cellular states during NPC differentiation, I employed
unsupervised clustering and marker genes to analyze the composition of cells throughout the
differentiation process (Figure 5.4).

For mouse cells, I observed broadest spectrum of differentiation states, ranging from pluripotent
cells to neural cells to mature neuronal cells (Figure 5.4a-d). Macaca (Figure 5.4e-g) and human
(Figure 5.4h-j) cells only reached the neural stage within the 10-day differentiation timeframe.
Notably, mouse cells exhibited a relatively faster progression, reaching the neural stage around
day 2 (Figure 5.4d), while macaca and human cells required three and four days, respectively, to
reach the neural stage (Figure 5.4g,j).

In summary, gene expression profiles of single cells from the three mammalian species effectively
captured the process of NPC differentiation and revealed differences in the overall speed of
differentiation among the species.
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Figure 5.4: Species-specific variations in cellular stages during NPC differentiation.
a) UMAP showing mouse gene scores for markers used to characterize six cellular
stages during differentiation. Scores were calculated by averaging the expression
of a set of marker genes subtracted with the average expression of a randomly
sampled reference set of genes. b,e,h) UMAP projection of differentiating mouse
(b), macaca (e), and human (h) cells along with their respective annotation of
cellular stages. c,f,i) Expression of marker genes used to characterize cellular stages
during differentiation for mouse (c), macaca (f), and human (i) cells. Dot size
indicates the fraction of cells per cell cluster expressing a gene, color intensity shows
mean normalized gene expression per cell cluster. Bars indicate total cells per stage.
d,g,j) Correlation between annotated cell clusters and sampling time for mouse (d),
macaca (g), and human (j) cells.

5.2.2 Species-specific chromatin accessibility profiles during differentiation

After confirming that gene expression profiles accurately capture global cellular changes in
cellular states during differentiation, I sought to determine whether the chromatin accessibility of
individual differentiating cells exhibits similar patterns.

First, I assigned barcodes to the respective species using the labeled cell barcodes from the
scRNA Seq analysis. I then inspected the resulting peak and tile matrices based on the number
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of fragments generated from Tn5 enzyme transposition events, transcription start site (TSS)
enrichment score and nucleosome signal per cell to obtain high quality cells. I excluded cells with
captured fragments Fmin <1,000 or TSS enrichment scores TSSmin <1 from further analysis (see
methods section 2.2.2 for a definition and detailed explanation about applied filtering thresholds).
Additionally, I excluded peaks located on non-standard chromosomes or chromosome scaffolds, as
well as peaks within genomic blacklist regions from further analysis. I then performed layered
dimensionality reduction using latent semantic indexing (LSI), consisting of normalization via
term frequency-inverse document frequency (TF-IDF) and dimension reduction via singular value
decomposition (SVD). Finally, I calculated a UMAP [161] embedding based on the LSI reduced
dimensions with 30 neighbors and an effective minimum distance between embedded points of
0.5 [194]. Finally, I transferred cell annotations from scRNA Seq cells (see methods section 2.2 of
this thesis for a detailed explanation of applied preprocessing steps).

Figure 5.5: Species-specific differences in Tn5 insertions across sampling timepoints.
a-b) Local chromatin accessibility around the representative region of the POU5F1
gene for mouse (a) and human (b) cells. Frequency of Tn5 integration is averaged
for cells from each timepoint and displayed as pseudo-bulk accessibility tracks to
visualize the DNA accessibility in a region. Identified peaks, co-accessible peaks
that are potentially correlated to the expression of nearby genes and the location of
the genes are visualized alongside these accessibility tracks.
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The Tn5 transposase enzyme cuts accessible regions of chromatin DNA, resulting in fragments
of open chromatin DNA. I illustrated the frequency of Tn5 insertions across genomic regions
(Figure 5.5). These genomic peaks represent pseudo-bulk genomic accessibility tracks, where
the Tn5 signal from all cells at each timepoint was averaged to visualize the local DNA accessibility.

Figure 5.6: Estimated gene expression from chromatin accessibility aligns with scRNA
Seq profiles. a,d) Chromatin accessibility UMAPs showing PSCs of mouse (a)
and human (d) sampled at eight timepoints during NPC differentiation. Colors
indicate sampling timepoints. b,e) Estimated gene expression scores from scATAC
Seq data (top) along with gene expression data from scRNA Seq (bottom) for
selected pluripotency, neural and neuronal markers from mouse (b) and human (e)
cells. c,f) Expression of selected pluripotency and neuronal marker genes for mouse
(c), and human (f) cells using estimate gene expression scores. Gene scores were
imputed using MAGIC [201] for visualization purposes.

In the context of mouse cells, I observed distinct peaks in the chromatin accessibility profiles
surrounding the region of pluripotency gene Pou5f1, which exhibited a rapid decline over time
during differentiation (Figure 5.5a). Similarly, in human cells, chromatin accessibility around
the POU5F1 gene demonstrated distinct peaks at earlier timepoints, gradually diminishing as
differentiation progressed (Figure 5.5b). Notably, in mouse cells, the presence of peaks around
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the Pou5f1 gene persisted until 8 hours into NPC differentiation, while human DNA surrounding
the POU5F1 gene remained accessible until 2 days of NPC differentiation.

Notably, UMAP plots of chromatin accessibility profiles obtained from differentiating cells
accurately reflected the linear trajectory of NPC differentiation for mouse and human (Fig-
ure 5.6a,d). To facilitate the visualization and interpretation of scATAC Seq data, I leveraged
chromatin accessibility patterns to estimate gene expression profiles for cell state-specific marker
genes. I calculated gene scores that estimate the level of gene expression based on the local
accessibility of the gene region, including the promoter and gene body, across all cells in the data,
adjusting for gene distances and large differences in gene size using ArchR [194] (Figure 5.6b-c,e-f).

Remarkably, estimated gene expression profiles for mouse (Figure 5.6b,c) and human (Fig-
ure 5.6e,f) cells closely resembled the actual gene expression profiles obtained from the scRNA
Seq analysis (Figure 5.3b). The gradual downregulation of pluripotency genes such as POU5F1
and NANOG, along with the upregulation of neural marker genes such as SOX2 and PAX6, were
evident during the course of differentiation (Figure 5.6b-c,e-f). Notably, the mouse neuronal
marker Map2 exhibited expression primarily in the last two timepoints (day 7 and day 10),
consistent with the findings from scRNA Seq analysis (Figure 5.6b,c).

Figure 5.7: Transcription factor (TF) activity follows specified-specific dynamics.
a,c) Heatmap of TF motif hypergeometric enrichment-adjusted p values within the
marker peaks of each sampling timepoint for mouse (a) and human (c) cells. b,d)
UMAP projection of TF motif deviation scores for pluripotency TF POU5F1 (left)
and neuronal TF PAX6 (right) for mouse (b) and human (d) cells.

To explore variations in accessible genomic regions, I identified characteristic peaks of open
chromatin of cells from each timepoint representing variations in accessible genomic regions. I
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then scrutinized these sets of peaks for enriched DNA binding motifs of transcription factors
(TFs) (Figure 5.7a,c). In mouse cells, motifs for Pou5f1 TFs were enriched during the initial
8 hours of differentiation (Figure 5.7a), while human cells exhibited enriched TF motifs for
POU5F1 until 2 days into the differentiation protocol (Figure 5.7c). Consistent with the scRNA
Seq results, Sox2/SOX2 motifs were enriched from around day 1 for mouse cells and from around
day 2 for human cells during the differentiation timecourse (Figure 5.7a,c).

To ease visualization and interpretation of TF activity, I analyzed TF activity per cell by
calculating the deviation of per-cell accessibility of a given motif from the expected accessibility
based on the average of all cells using chromVar [206] (Figure 5.7b,d). Similarly to TF motif
enrichment, the TF deviation score for pluripotency marker Pou5f1/POU5F1 was highest in cells
during early NPC differentiation and ended around day 1 for mouse cells (Figure 5.7b), while in
human cells, it decreased around day 2 (Figure 5.7d). Estimated TF activity of Pax6/PAX6
gradually increased during differentiation for both mouse and human cells (Figure 5.7b,d).

Figure 5.8: Tn5 bias-adjusted TF footprints for POU5F1. Lines are colored according to
their sampling time for mouse (a) and human (b) cells.

Considering that the mere presence of a DNA binding motif does not necessarily imply actual
binding by the corresponding TF, I performed TF footprinting analysis to identify specific TFs
that were physically bound to particular genomic regions (Figure 5.8). Footprinting analysis
confirmed the highest TF binding of POU5F1 during the first day in mouse cells (Figure 5.8a)
and the first 2 days in human cells (Figure 5.8b).

In summary, both scRNA Seq and scATAC Seq data from differentiating PSCs of multiple
species accurately reflected the NPC differentiation process. This descriptive analysis at a gene,
chromatin, and TF level revealed a consistent alignment between gene expression and chromatin
accessibility profiles, providing a more holistic understanding of cellular dynamics during NPC
differentiation.
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5.3 Unraveling pluripotent stem cell differentiation dynamics through single cell
gene expression and chromatin accessibility

The cell cycle describes a series of events that exerts regulatory control over pivotal aspects of
cellular dynamics, including cell growth, DNA replication, and cell division. Throughout the
entirety of an organism’s life cycle, cells undergo a perpetual progression through discrete and
discernible phases of this cell cycle continuum. The G2/M phase marks the transition from the
second gap phase (G2), where the cell prepares for cell division to mitosis (M), where nuclear
division and segregation of genetic material occurs. Following the completion of mitosis, cells
enter the G1 phase, the first gap phase. G1 serves as a critical decision-making point, where
cells assess environmental cues and internal signals to determine whether to proceed with cell
division or enter a non-dividing state. During the S phase, DNA synthesis occurs, resulting in
the formation of two identical copies [92].

5.3.1 The impact of cell physiology on differentiation speed

By examining marker genes specific to each cell cycle phase, I calculated a cell cycle score for
individual cells and assigned them to a particular phase (Figure 5.9a). Comparing the cell cycle
phase compositions between species, I observed a significant increase in the G1 fraction of mouse
cells over time during NPC differentiation, with 73% of cells at day 7 and 88% of cells at day 10
being in the G1 phase (Figure 5.9b). Additionally, mouse cells consistently exhibited the lowest
number of captured genes across all three cell cycle phases when compared to the other species
(Figure 5.9c).

To investigate this further, fluorescent ubiquitination-based cell cycle indicator (Fucci) cell lines
were generated, enabling the determination of the cell cycle phase over time (Figure 5.9d).
Absolute measurements of cell cycle length validated that mouse cells have a 1.4-fold shorter cell
cycle duration compared to human cells (Figure 5.9e). Notably, in line with my measurements of
captured genes, cell volume measurements using a Coulter Counter revealed that mouse cells
exhibited the smallest overall cell size (Figure 5.9f). Note that the generation of Fucci cell lines
and the experimental measurements of cell cycle length and cell volume (Figure 5.9d-f) was
performed by Julia Schröder under supervision of Dr. Christian Schröter (see section 1.5 of this
thesis for a detailed summary of individual contributions).

In summary, variations in cell cycle dynamics and cell size across species suggest that
species-specific cell physiology might be an important factor in setting differentiation speed.
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Figure 5.9: Differences among species in cell cycle phase composition and captured
genes. a) UMAP projection of mouse (top), macaca (center), and human (bottom)
cells according to their assigned cell cycle phase. b) Proportions of G1, G2M,
and S cells over time for mouse (top), macaca (center), and human (bottom) cells.
c) Amount of captured genes between species for G1 (top), G2M (center), and S
(bottom) cells. d) Generation of fluorescent ubiquitination-based cell cycle indicator
(Fucci) cell lines to determine the cell cycle phase of single cells over differentiation
time. e) Absolute cell cycle length between human (16h) and mouse (11.5h) cells
from Fucci cell tracking differs significantly (p value <0.01 using a t-test). f) Cell
volume measurements for mouse (top), macaca (center), and human (bottom) cells.

5.3.2 Cross-species mapping unveils distinct global differentiation rates

To investigate the overall speed of differentiation in PSCs across the three species, I mapped
cells from human, mouse and macaca into one common embedding (Figure 5.10). I performed
integration of embeddings and annotations of macaca and human cells using Scanpy’s ingest
function, with mouse cells serving as the reference since they exhibited the fastest differentiation
speed and therefore covered the most stages during the differentiation process.
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Figure 5.10: Projection of macaca and human cells to reference embedding of mouse
cells. a-b) Macaca (a) and human (b) cells were projected onto mouse UMAP
embedding, serving as a reference (left). Correlation between original sampling
time and novel mapped time annotation (right). c-d) Common UMAP embedding
of mouse reference and macaca (c) or human (d) cells.

It is noteworthy that instead of learning a joint representation of query and reference data, I
projected query data onto the reference embedding, allowing us to analyze how cells from the
slower species (macaca and human) correspond to cells from the fast mouse reference, thus
characterizing differences in global differentiation speed between species.

Upon mapping, I observed that macaca cells from the 10-day differentiation course only
corresponded to mouse cells until around day 4-7 (Figure 5.10a, left), leading to a global shift
between the original time and the inferred mapped time (Figure 5.10a, right). Similarly, for
human cells, this effect was even more pronounced, as human cells from the 10-day differentiation
course correspond to mouse cells until around day 4 (Figure 5.10b). To facilitate visual
interpretation, I projected cells from all three species into a common embedding, where I observed
that macaca cells progressed slightly further along the differentiation time course compared to
human cells, indicating a slightly higher differentiation speed in macaca cells compared to human
cells (Figure 5.10c-d). Finally, I compared growth rates between species, demonstrating that
mouse differentiation occurs at a pace 2.2 times faster than that of macaca, and 2.4 times faster
than human differentiation.

Overall, cross-species gene expression mapping provided insights into the global differences in
differentiation speed among the species, highlighting the unique progression and correspondence
of cells from macaca and human species to cells from the faster mouse species.
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5.3.3 Identifying temporal drivers of NPC differentiation

To analyze the temporal dynamics of gene expression and chromatin accessibility during NPC
differentiation and uncover regulatory mechanisms involved, I utilized trajectory inference
methods to find a gradual order of estimated gene expression and chromatin accessibility profiles
from scATAC Seq data. This allowed us to establish a pseudotime that corresponds to the linear
NPC differentiation process (Figure 5.11).

Figure 5.11: Inferred cellular trajectory approximates NPC differentiation. a,c)
UMAP projection of inferred pseudotime for mouse (a) and human (c) cells.
b,d) Gene scores of pluripotency, neural and neuronal markers against inferred
pseudotime values for mouse (b) and human (d) cells. Cells were colored by their
pseudotime.

In the case of mouse (Figure 5.11a-b) and human (Figure 5.11c-d) cells, the inferred pseudotime
aligned well with the expected pattern of NPC differentiation. This alignment was evident from
the gradual up- or downregulation of pluripotency, neural, and neuronal markers along the
inferred pseudotime (Figure 5.11b,d).

Moving forward, I performed an integrative analysis across the cellular trajectory by integrating
estimated gene expression (gene scores) and TF motif accessibility based on chromVar [206] from
scATAC Seq data throughout the inferred pseudotime, revealing correlated regulatory dynamics
and potential drivers of NPC differentiation (Figure 5.12).

Through this integrated analysis, I identified 50 (mouse) and 34 (human) TFs where gene
expression is positively correlated to changes in the accessibility of their corresponding motif, thus
exhibiting similar dynamics between gene expression and TF motif accessibility. Among these,
eight transcription factors were conserved between species: POU5F1, GSC, NFE2, ZIC3, KLF11,
NFYA, MEIS1 and RFX4. As expected, POU5F1 (Figure 5.12) appeared prominently in both
mouse and human cells over time, indicating its involvement in regulating NPC differentiation.
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Figure 5.12: Correlated regulatory dynamics between gene scores and TF activity.
a-b) Heatmap of TFs for which estimated gene expression is positively correlated
with chromVAR TF motif deviation across the NPC differentiation trajectory for
mouse (a) and human (b) cells.

Overall, by leveraging trajectory inference methods and integrating gene expression and
chromatin accessibility data, I was able to uncover the temporal dynamics of NPC differentiation
and identify potential regulatory mechanisms involved during cellular development.

In summary, I characterized differentiating PSCs from mouse, macaca and human under
identical conditions using timelapsed combined scRNA and scATAC Seq. My analysis revealed
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that species-wide differences during NPC differentiation were accurately captured in the gene
expression and chromatin accessibility profiles of single cells, and were reflected in distinct
patterns of gene expression and chromatin accessibility as cells transitioned from pluripotent to
neural states. Furthermore, I observed variations in cell cycle distribution and cell size among the
different species, indicating that species-specific cell physiology plays a crucial role in determining
the speed of differentiation. Cross-species mapping identified species-specific global rates of
NPC differentiation, revealing that mouse differentiation occurs at a speed 2.2 times faster than
macaca differentiation and 2.4 times faster than human differentiation. Finally, integrating gene
expression and chromatin accessibility along the NPC differentiation trajectory, I identified
species-specific and conserved TFs exhibiting similar dynamics between gene expression and
chromatin accessibility, revealing putative drivers of NPC differentiation.

The study provides a comprehensive characterization of NPC differentiation in PSCs from multiple
species. I demonstrate the influence of species-specific factors on differentiation speed and highlight
the utility of gene expression and chromatin accessibility data for unraveling regulatory dynamics.
These findings contribute to a better understanding of the molecular processes and species-specific
differences during NPC differentiation.
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5.4 Discussion

Pluripotent stem cells (PSCs) hold immense potential for regenerating damaged or destroyed
tissues by differentiating into specific cell types required for tissue repair. In particular,
patient-specific iPSC lines provide a customizable and biocompatible platform and have become
indispensable for disease modeling and high-throughput screening for drug discovery and toxicity
testing [71–73]. However, the clinical use of PSCs for cell differentiation or tissue repair beyond
investigational regenerative medicine remains limited, which, among others, is due to slow and
inefficient differentiation processes, as well as immature characteristics of derived cell types [59,
63, 65, 71, 74, 75]. As differentiation of PSCs into functional cell types can take several weeks
and the yield of functional cells is usually quite low, there is a growing interest in accelerating
PSC differentiation to produce functional cell types more rapidly and efficiently to improve
regenerative medicine approaches [14, 75]. The complex process of PSC differentiation can be
better understood by studying the developmental timescales underlying cellular differentiation.
Consequently, studying developmental timescales is critical for realizing the vast potential of
PSCs in cellular therapies [78].

One interesting direction of recent regenerative medicine efforts where the timing of differentiation
plays a key role, is the generation of human organs in animals, which has garnered considerable
attention for transplantation purposes. One approach employed in this context is interspecies
blastocyst complementation, where human PSCs are introduced into embryos of other species
to generate chimeras [327]. While successful generation of mouse chimeras with rat pancreas
has been achieved by genetically modifying the mice to prevent their own cells from developing
into a pancreas [86], the consequences of species-specific developmental timing become evident
when examining the engraftment of stem cells injected into non-related host blastocysts. For
example, human stem cell engraftment in pig pre-implantation blastocysts showed limited
contribution at post-implantation stages, with only one human cell per 100,000 host cells [328].
When injecting macaca cells into the same host, the proportion of monkey-origin cells ranges
from one in 1,000 to one in 10,000 cells [329]. These disparities in developmental speed suggest
that the slower-progressing cells are likely outcompeted by the more rapidly developing host
cells. Therefore, the generation of human organs in animals requires an understanding of the
origins and mechanisms underlying developmental timing to overcome the species barrier and
achieve synchronized developmental progression between PSCs and the host organism [327].
Moreover, knowledge of species-specific developmental speed has the potential to assist in the
selection of appropriate animal models for preclinical studies. By utilizing animal models
that closely resemble the developmental speed of human cells, researchers can more accu-
rately evaluate the safety and efficacy of cellular therapies before advancing to human clinical trials.

Previous studies that investigated species-specific development have often only focused on
well-established human and mouse cells, and have employed distinct culture conditions for
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each species, resulting in limited cross-species comparability. Additionally, these studies have
typically lacked single cell resolution, which hinders a comprehensive understanding of cellular
heterogeneity within populations [78, 81, 88]. By harmonizing culture media and optimizing
differentiation methods, we established a robust experimental platform that facilitated direct and
unbiased comparisons of differentiating PSCs across multiple species. This approach enabled
us to overcome the confounding effects of distinct culture conditions, enabling a more accurate
assessment of species-specific differences. I then investigated species-specific developmental speed
underlying NPC differentiation by characterizing differentiating PSCs from human, mouse, and
macaca utilizing timelapsed multiomic single cell gene expression and chromatin accessibility
profiling.

This study unveiled distinct species-specific variations at various molecular levels during the
process of NPC differentiation. By examining gene expression patterns and chromatin accessibility
dynamics over time, I observed differences in the temporal expression and accessibility of key
markers involved in the process of NPC differentiation. By mapping cells from different species
into a common embedding space, I gained insights into the overall speed of differentiation, as
reflected by the distinct cell stages reached by cells from each species. Notably, I found that the
overall speed of differentiation varied across species, with mouse cells displaying a comparatively
accelerated progression compared to macaca and human cells. Furthermore, my investigation
of temporal dynamics enabled the identification of species-specific and conserved drivers of
NPC differentiation. To enhance our understanding of cross-species differentiation dynamics,
computational tools like moscot utilize multiomic data from multiple timepoints to map cellular
states over time and space using optimal transport [330]. Applying moscot to cross-species
multiomic data during NPC differentiation could help identify similarities and differences in
species differentiation trajectories, offering additional insights into species-specific and conserved
temporal progression of cellular states during NPC differentiation. Nontheless, the findings of this
study elucidates the complex molecular mechanisms governing PSC differentiation and provide
valuable insights into the species-specific developmental speed underlying cellular development.

At the cellular level, differences in species-specific timing were shown to be reflected in the cell
cycle, with PSCs progressing quickly through cell division by minimizing the time of cell cycle
gap phases [331]. Although core aspects of the cell cycle seem to be mostly conserved between
species, varying cell division rates among species requires a flexible, physiology-coupled cell
cycle [332], leading to differences in duration of both the cell cycle as a whole and respective
phases among species [92, 331, 333]. Strikingly, I observed a rise in the G1 fraction of mouse cells
as the differentiation progressed, with nearly all cells entering the G1 phase by day 7. Intriguingly,
when compared to the other species, mouse cells consistently exhibited the lowest number of
captured genes across all three cell cycle phases. Absolute measurements of cell cycle length
based on tracking single cells through the respective cell cycle phases revealed a shorter cell cycle
in mouse cells compared to human cells. This observation, combined with the differences in the
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absolute number of captured genes per cell between species, suggests that species-specific cell
physiology may play a crucial role in determining the speed of differentiation.

What ultimately drives species-specific developmental speed remains unclear [334, 335]. However,
it is believed that differences in biochemical reaction rates, including the rates of protein
and mRNA production and degradation, play a crucial role in determining species-specific
developmental timing [81, 88, 336]. Indeed, as protein turnover affects protein abundance and
activity and thereby impacts cellular processes, protein degradation rates were shown to influence
developmental speed [81, 337]. In line with the increased cell cycle length we observed when
comparing human against mouse cells, Rayon et al. correlated the observed slower rate of
human differentiation with an increase in protein stability and cell cycle duration in human cells
compared to mouse cells, as these factors directly influence the abundance and activity of key
regulatory proteins involved in developmental processes [81].

The cause of these differential biochemical reaction rates between species has been attributed
to the rate of metabolic activity [336, 338]. Measuring the period of the segmentation clock
using human and mouse PSCs, Diaz-Cuadros et al. show that mass-specific metabolic rates
scale with the developmental rate and are therefore higher in mouse cells than in human
cells [336]. Furthermore, measurements in mitochondria oxidative activity and glucose
metabolism in human and mouse developing cortical neurons revealed a species-specific timeline
of functional mitochondria maturation, with mouse neurons exhibiting an accelerated increase
in mitochondria-dependent oxidative activity compared to their human counterparts [338].
Therefore, studying how energy is processed in cells from the three species could help us un-
derstand the differences in how these species use mitochondria and glycolysis for energy production.

Despite the limited understanding regarding the precise molecular mechanisms governing
developmental timing, studies have demonstrated the susceptibility of developmental timing
to manipulation. For instance, by modifying culture conditions, researchers have successfully
accelerated the differentiation of PSCs into neural cell types [339–341]. However, it is often
challenging to discern whether developmental timing was altered per se or if the acceleration
simply reflects an improvement in the culture conditions, allowing for a closer approximation of
the in vivo differentiation rate [78, 342].

The preservation of species-specific developmental timing in PSCs therefore presents a practical
challenge for regenerative medicine, but also offers a unique opportunity to utilize PSCs as a novel
tissue culture model for investigating the intricate relationship between developmental timing
in mammals [78]. Studying species-specific developmental timing of PSCs promises valuable
insights into underlying molecular mechanisms to unlock potential strategies for enhancing cellular
therapies, thus opening doors to improved personalized therapeutic approaches based on a deeper
understanding of PSC differentiation.
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6 Summary and outlook

Recent breakthroughs in single cell omics have opened the door to understanding cellular
function, development, and disease dynamics at a single cell level, offering a paradigm shift in the
development and optimization of cellular therapies. However, the data generated from these
technologies is relatively novel, and consequently, data analysis remains a significant challenge.
This thesis presents the use of single cell technologies to transform and advance cellular therapies
from the perspective of computational data analysis. The thesis starts with introducing the wide
field of cellular therapies and highlights the use of chimeric antigen receptor (CAR) T cells for
cancer treatment approaches and pluripotent stem cells (PSCs) for regenerative medicine, before
introducing general concepts of single cell biology (chapter 1). The methods chapter (chapter 2)
addresses the variable properties of single cell gene expression (scRNA Seq) and single cell
chromatin accessibility (scATAC Seq) data by describing computational workflows of scRNA Seq
and scATAC Seq data analysis. Sections 3,4, and 5 present scientific contributions.

CAR T cell therapy faces challenges in translating its success to non-B cell malignancies due
to a lack of safe targets, evident from the observed toxicities and limited efficacy of CAR T
cells. Chapter 3 therefore introduces a computational approach to predict targets for CAR T
cell therapy based on scRNA Seq data. Applying this approach to AML led to the discovery
of two previously unrecognized targets. Extensive functional validation of these established
CAR T cells shows robust efficacy with minimal off-target toxicity toward healthy human
tissues, providing a strong rationale for further clinical development. With a rapid increase
in clinical trials, careful consideration of the safety and potential risks associated with CAR
target antigen selection is essential before initiating clinical testing. The second contribution
is therefore an extensive analysis of scRNA Seq profiles of CAR targets from clinical trials in
follicular lymphoma, multiple myeloma, and acute lymphoblastic leukemia tumors as well as
healthy tissues across the human body (chapter 4). While I could not observe a clear association
between global gene expression profiles of CAR targets and toxicities in the clinics, this chapter
provides valuable high resolution CAR target expression profiles and proposes novel targets
that exhibit a favorable gene expression pattern for the treatment of the above mentioned diseases.

The translational potential of PSCs for cell differentiation or tissue repair remains constrained
by slow and inefficient differentiation processes and immature characteristics of derived cell
types. Accelerating the differentiation of PSCs to yield functional cell types more rapidly and
efficiently requires a fundamental understanding of developmental timescales underlying cellular
differentiation. Chapter 5 therefore contributes a characterization of species-specific developmental
timing of PSCs derived from three mammalian species. Timelapsed profiling of differentiating cells
using combined scRNA Seq and scATAC Seq unveiled distinct species-specific variations in gene
expression, global differentiation rates, cell cycle phases, chromatin accessibility, transcription
factor activity and potential drivers of neural progenitor cell differentiation.
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6.1 The impact of single cell omics on future cellular treatments

Breakthroughs in single cell technologies over the last decade have paved the way for the creation
of comprehensive single cell and tissue atlases [343], which play a vital role in advancing our un-
derstanding of health and disease [104]. These technologies hold immense significance in medicine,
as they enable the identification of underlying mechanisms of disease initiation and progression,
novel disease signatures for diagnostic purposes, understanding the mechanisms underlying
treatment resistance, and the discovery and optimization of molecular gene and cell therapies [104].

High throughput single cell technologies are instrumental for the discovery of rare, disease-relevant
cell types, which may express critical disease-associated genes and offer potential targets for
treatment and therapy [104, 344]. Furthermore, these technologies enable the characterization of
shifts in cellular composition between healthy and diseased individuals or following therapeutic
perturbations [104, 109] and can serve as vital tools in drug development by identifying
cells and molecular pathways with high therapeutic potential for specific diseases [345].
In the realm of regenerative medicine, single cell data can facilitate the identification of
regenerative mechanisms within human tissues that can serve as therapeutic targets. Additionally,
they contribute to the development of more robust disease models by comparing healthy and
diseased tissue and predicting potential mechanisms to enhance the accuracy of these models [104].

Figure 6.1: Towards a multi-layered understanding of health and disease. Machine
learning models, such as foundation models, have the potential to comprehensively
capture cellular variation across multi-layered data. These integrated approaches
enable significant breakthroughs in cellular therapies and could revolutionize our
understanding of cellular biology across health and disease. Adapted from Ginhoux
et al. [121] and Rood et al. [104] using elements from BioRender.com (2023).

Initiatives like the Human Cell Atlas (HCA) and The Cancer Genome Atlas (TCGA) are creating
extensive cross tissue single cell atlases, increasing our understanding of health and disease on

107



a single cell level. Foundation models could likely emerge as useful tools to decipher cellular
diversity and molecular signatures [346]. These models integrate vast datasets from molecular,
spatial and morphometric modalities to comprehensively learn cellular variation. As these models
evolve and become more accessible, they could play a key role in understanding and predicting
perturbation effects. Moreover, they could facilitate the targeted design of disease perturbations,
potentially steering cells towards desired states. This has the potential to not only revolutionize
cellular therapies, but offer significant breakthroughs in our understanding of cellular biology
across health and disease (Figure 6.1) [104, 346].

Considerable breakthroughs have been made in targeting tumor-associated proteins with small
molecules, antibodies or reprogrammed immune cells. However, a crucial realization is that,
for most cancer types, there is no single ideal therapeutic target due to the inherent risk of
cross-reactive toxicity with cells in healthy tissue. Moreover, the highly heterogeneous and
constantly mutating nature of cancer commonly leads to resistance to targeted therapies through
antigenic loss or escape mutations [347, 348].

In the future, research on targeted therapies will likely move away from focusing on individual
molecules and shift towards recognizing patterns of molecular features present in tumors [347].
Utilizing single cell data from cancer and normal tissue databases will enable the identification of
discriminative patterns that differentiate tumors from relevant normal tissues [347, 349]. Drug
discovery efforts must also consider the probable mechanisms of tumor variability and escape to
design strategies that encompass a wide range of therapeutic possibilities [347]. In the context of
targeted cellular therapies, single cell data can be utilized to identify cell populations that are
dispensable or targetable within the body, considering factors such as age or sex. For instance,
the clinical success of CD19-directed therapies stems from the fact that patients can survive with
B cell aplasia [23, 347]. Additionally, the ever-expanding collection of large single cell atlases
allows for the analysis of differences between patients in cell populations and target expressing
cells across diverse donor groups [347]. Lastly, it is imperative to shift the focus from disease
onset to disease prevention, prognosis and progression, as most single cell data currently available
is derived from the former [346].

6.2 Expanding the horizons of single cell omics

Despite the remarkable possibilities of single cell data, there are still many unexplored
opportunities and areas for improvement. For example, how can we understand the function of
newly identified cell types, their relation to the underlying dynamics of a biological system and
their implications in disease? How can we characterize cell-cell interactions to unravel tissue
organization in health and disease? How can we generate new computational tools that keep up
with continuously increasing amounts of data and enable integration of multiple data modalities
to unlock novel biological insights?
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To address these challenges, the integration of additional omics types is essential to explore
different layers of cellular and tissue information. Recently, spatial transcriptomics has garnered
substantial attention due to its rapidly increasing resolution, offering insights into cellular
composition, cell-cell interactions and molecular interactions. Commercial platforms such as
Visium and the innovative Xenium platform from 10X Genomics offer targeted spatial profiling of
genes and proteins at remarkable subcellular resolution. Computational approaches for analysis
of spatial data include Squidpy, which combines tools from omics and image analysis to enable
scalable storing, manipulation and interactive visualization of spatial molecular data [350].
These advancements holds great promise for targeted cellular therapies, as understanding
cellular locations within heterogeneous tumors and their surrounding microenvironment becomes
critical for optimizing treatment outcomes. For instance, in the case of CAR T cell therapy,
restricted trafficking and tumor infiltration, coupled with the immunosuppressive tumor
microenvironment, still limit its effectiveness in solid tumors [351]. To mount an effective
response, CAR T cells must bypass this hostile tumor microenvironment, infiltrate the tumor,
recognize their tumor-specific antigen, and then differentiate and persist as memory T cells that
provide long-term protection [352]. Integrating spatial technologies can shed light on the tumor
microenvironment, potentially explaining performance limitations of CAR T therapies in solid
tumors.

However, integrating multiple layers of data creates computational challenges, and requires
development of new computational tools and methods for seamless data integration and analysis.
Therefore, combining single cell data with machine learning and more recently, deep learning
algorithms, further empower emerging cellular therapies by guiding the design of highly actionable
therapeutic approaches [347]. Deep learning methods hold the potential to integrate large-scale
datasets to enable comparative studies across species, offering molecular insights into disease
phenomena, simulating the effects of drugs or other perturbations, and facilitating drug discovery
efforts in relevant model organisms [346]. Deep learning approaches have already shown promise
in drug response prediction in cancer, such as a deep variational autoencoder for imputing drug
response [353], and CDRscan, a convolutional neural net that predicts drug effectiveness [354].
Moreover, the emergence of large language models provides an exciting opportunity for biology.
These generative neural networks trained on extensive datasets in an unsupervised manner could
potentially offer a comprehensive understanding of cellular variation across all available covariates
by connecting molecular, spatial, and phenotypic modalities [346, 355].

In addition to computational challenges, accessibility and usability of data from diverse fields pose
significant challenges for researchers. Lack of documentation and standardization in and between
clinical studies, as observed during the evaluation of clinical data from CAR T cell therapy
patients (chapter 4), significantly hindered data utilization and sharing. To overcome these
hurdles, building extensive biobank resources with rich and standardized metadata, alongside
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large-scale profiling of samples from clinically annotated and diverse cohorts, is essential. Recent
computational efforts like scverse [135] provide foundational support for single cell data modalities
and analysis, offering computational frameworks that researchers can build upon with confidence in
ongoing maintenance and improvement. Such initiatives play a vital role in extracting meaningful
insights from the ever-growing and increasingly complex single cell data landscape.

6.3 Insights from clinical data to advance CAR T cell therapies

Based on unprecedented response rates and likely cures of various B cell malignancies, CAR T
cells against CD19 and BCMA have been approved and are thus now part of the standard of care.
Enormous effort has been invested in moving these advanced therapeutic products into other
hematological malignancies and, importantly, solid tumors, with limited reported success [32, 56,
209, 270]. Since its first administration, over a decade of follow-up data on the first patients
receiving CD19-targeted CAR T cells for B cell malignancies has become available, as well as
data from numerous studies involving patients undergoing CAR T cell therapies [356, 357],
which is crucial for identifying factors associated with successful outcomes. Leveraging this
wealth of clinical data has shown that, despide many repeated forms of toxicities, the over-
arching challenge remains achieving high response rates and minimizing relapse rates [22, 357, 358].

Efforts to delineate factors influencing the success of CAR T cell therapy have been extensive.
High tumor burden, elevated baseline inflammation levels, a higher Eastern Cooperative Oncology
Group (ECOG) score, a measure of a patient’s functional status in serious illness, and the gut
microbiome have unsurprisingly been linked to reduced therapy efficacy [357, 359]. Notably,
absolute levels of CAR T cells emerged as a significant predictor of treatment response. CAR T
cells undergo rapid expansion post-infusion, reaching peak levels, and subsequently persisting at
lower levels for an extended period. Higher peak levels and sustained CAR expression during the
initial month post-infusion have consistently correlated with improved treatment responses [24,
356, 357, 360]. Therefore, promoting CAR T cell expansion and mitigating exhaustion represent
promising strategies for future advancements [361].

Integration of single cell sequencing at various stages of CAR T cell therapy holds significant
promise. T cells exhibit a range of differentiation states with diverse functions [362], and these
heterogeneous characteristics have been associated with CAR T cell responses [363]. However, the
optimal T cell composition for CAR T cell therapy remains uncertain, although evidence suggests
that the presence of less-differentiated naive T cells or central memory T cells is critical for
favorable adoptive cell therapy responses [357]. Single cell technologies can aid in characterizing
T cell heterogeneity in patients and identifying specific cell signaling pathways that can be targeted
to induce desired shifts in T cell phenotypes. Additionally, early screening of a patient’s tumor
landscape using single cell sequencing could serve as a predictive indicator of treatment-responsive
antigen-expressing cells, offering valuable insights in treatment planning and patient outcomes.
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6.4 Mitigating antigen escape through dual targeting CARs

Chapter 3 of this thesis has introduced a computational approach aimed at identifying novel
targets for CAR T cell therapy, addressing the critical issue of tumor-specific and safe targets.
I have identified two previously unrecognized targets for CAR T cells in AML, resulting in
the filing of two patents. These targets are currently undergoing preclinical testing to ensure
compliance with Good Manufacturing Practice (GMP) standards. The ultimate goal is to
progress these targets into clinical trials for potential therapeutic application. However, it is
apparent that the choice of target antigen represents just one determinant of the success of
CAR T cell therapy. Even if the tumor cells initially express the target antigen, there is a
potential for subpopulations of cancer cells to emerge during treatment that exhibit reduced
or lost antigen expression, a phenomenon termed antigen loss or antigen escape. This poses a
formidable challenge and constitutes one of the major limitations of CAR T cell therapy [22].
Antigen-negative or low-antigen-expressing cancer cells can evade CAR T cell recognition, thereby
enabling tumor evasion, leading to possible disease relapse. For example, CD19-targeted CAR T
cell therapy demonstrates durable responses in 70-90% of acute lymphoblastic leukemia patients;
however, follow-up data indicate that 30-70% of patients who experience disease recurrence after
treatment exhibit downregulation or loss of the CD19 antigen [348, 364].

Dual-targeting approaches represent a promising strategy to overcome these limitations.
Leveraging multi-antigen-targeting techniques, boolean logic has been applied to "gate" the
activity of CAR T cells, optimizing their efficiency while minimizing toxicity [365]. For instance,
T cells equipped with two independent CAR molecules or a mixture of distinct specific CAR T
cells can utilize the "OR" logic gate, which allows CAR T cells to exert antitumor effects in the
presence of either targeted antigen. By targeting two tumor-associated antigens with the "OR"
logic gate, CAR T cells can surmount the issue of antigen escape, as the presence of an alternative
target ensures continued efficacy even if one target is lost. Conversely, "AND" logic-gated CAR T
cells require simultaneous presence of both antigens for activation, achieving highly selective
antitumor efficacy. Moreover, the "NOT" logic gate can be harnessed to enable engineered T
cells to discriminate between target and non-target cells, preventing CAR-mediated killing of
healthy cells and thereby enhancing the safety of CAR T cells. Notably, this approach demands
careful calibration of the expression levels of both the "NOT" receptor and CAR receptor, as
well as relatively high expression levels of the "NOT" antigen to achieve full inhibition of CAR T
cell killing [347].

Still, the first study using dual-targeting CD19/CD22 CAR T cells for treatment of acute
lymphoblastic leukemia has reported antigen loss in over 25% of patients [366, 367]. The
utilization of single cell technologies assumes a pivotal role in this context. Since single targets
often possess limited discriminatory capabilities in distinguishing most tumors from normal tissue,
large-scale screening of tumor and healthy tissues can facilitate the identification of suitable
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antigens and the prediction of optimal combinations of all logic gates [233, 368]. For instance,
Ahmadi and colleagues harnessed publicly available single cell tumor transcriptomic data to
predict the most suitable target combinations for precise and selective cancer targeting [368].
In addition, generative models capable of predicting cellular responses to various perturbations
could be employed to predict synergistic or antagonistic interactions of different combinations
of CAR targets alongside other therapeutic interventions [321, 369]. This could enable the
identification of optimal combinations of antigens and logic gates, potentially enhancing the
efficacy of CAR T cell therapy. While these approaches seem promising, further data is needed
to determine whether targeting multiple antigens can indeed overcome the challenge of antigen
escape, or if it necessitates combination with other enhancements in CAR therapies.

6.5 Potential off-the-shelf approaches of adoptive cellular therapy

Despite the significant advancements in CAR T cell therapy, its high cost of several hundred
thousand dollars per patient, and the prolonged manufacturing process of approximately 1-2
months remain major hurdles [35, 36]. Furthermore, the labor-intensive and expensive cell
manufacturing processes, along with inadequate commercial scaling, have hindered the widespread
implementation of CAR T cell therapies to meet clinical demands [32]. Although ongoing
research and development hold promise for cost reduction over time, there is an urgent need for
more accessible and "off-the-shelf" universal therapeutics for diverse patient populations. One
potential solution lies in the utilization of lipid nanoparticles carrying mRNA instructions to
reprogram T lymphocytes into functional CAR T cells in vivo, offering transiently engineered
T cells, thereby minimizing toxicities associated with lymphodepletion and enabling precise
dosing [370].

In pursuit of enhanced controllability, flexibility, and selectivity, adapter CARs (AdCARs)
have emerged as a recent innovation [371]. These AdCAR T cells use a linker-label-epitope
specific to biotin-labeled adapter molecules, which, in turn, bind to tumor-specific antigens.
Rather than binding directly to their target cancer cells, AdCAR T cells employ an intermediate
linker, providing a versatile antigen selection strategy through infusion of multiple target-specific
adapter molecules into patients. Additionally, AdCARs can be switched on or off with ease, by
withholding or administering the adapter molecules, making them a promising and convenient
off-the-shelf therapeutic solution [371].

Besides CARs, Bi-specific T cell engagers (BiTEs) represent another compelling approach to
adoptive cell therapy. BiTEs are recombinant bispecific proteins designed to tether a T cell
to a cancer cell and trigger an immune response, comprising two linked single-chain variable
fragments from distinct antibodies, with one fragment targeting CD3 on T cells and the other
targeting antigens on malignant cells [372]. Unlike CARs, which necessitate the extraction and
modification of a patient’s T cells, BiTE antibodies directly target existing circulating T cells in
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the patient’s blood and lymph nodes, rendering them a readily available off-the-shelf treatment
option. However, it is important to note that targeting CD3 with BiTEs may inadvertently
recruit certain "counterproductive" CD3-positive T cell subsets, such as naive or exhausted
T cells [373]. Single cell sequencing could be employed to identify alternative potential T cell
targets for BiTEs, mitigating any unwanted side effects.

In 1900, the eminent German chemist and Nobel Laureate, Paul Ehrlich, set forth a visionary
notion: the conceptualization of a compound capable of selectively targeting disease-causing
agents, thereby obliterating pathogens while sparing the host from harm [374]. Ehrlich aptly
referred to these miraculous entities as "Zauberkugel" - magic bullets, a term that has since
evolved into a synonymous expression for groundbreaking therapeutic approaches employing
agents that precisely target the very structural foundations of afflicted cells. As our understanding
of the complexities involved in this endeavor has deepened, continuous advancements in cellular
therapies and single cell technologies has brought us ever closer than ever to realizing the visionary
concepts originally proposed by Ehrlich more than a century ago.
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