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Abstract

This work revolves around dynamic workloads on distributed systems. Simulations that
require finer resolutions in subdomains of interest induce load imbalances that cannot be
rectified with static load-balancing. This work aims to analyze available dynamic load-
balancing strategies of ExaHyPE 2. ExaHyPE 2 is an HPC simulation software that
depends on Peano 4, a dynamically adaptive grid traversal framework. We deduced and
justified custom load-balancing metrics for ExaHyPE 2. These metrics can be easily tailored
for analyzing other applications experiencing MPI+X scaling problems. The metrics are
then used for evaluating previously analyzed strategies. During testing, problematic load-
balancing behavior is highlighted. Intra- and inter-rank metrics give insights into load
distribution and density. Conclusions about the quality of the load-balancing strategies
were drawn with multiple load-balancing algorithms yielding deficient results. Finally, a
fine-granular post-processing tool for plotting workload over time is provided that will aid
future work with analyzing dynamic load-balancing statistics of ExaHyPE 2 and Peano 4.
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1. Introduction and Background

In high-performance applications, the challenge of scalability is inevitable. In the field of
high-performance computing (HPC), parallelism is crucial. Programs that are not capable
of scaling with available hardware will be inferior to capable parallel applications. Load-
balancing is relevant in HPC applications in the context of multiple threads that are
scheduled on a single processing core, as well as multiple processes that are mapped onto
different processors. When exascale supercomputers run resource-expensive simulations,
uneven load-balancing bottlenecks programs, although the hardware could achieve faster
data processing. The framework ExaHyPE 2 is an exascale hyperbolic partial differential
equation (PDE) engine for PDEs in the first-order formulation. The uneven load-balancing
in ExaHyPE 2 induced by dynamically adaptive mesh refinement prevents applications
from running efficiently on modern supercomputers. It restricts the exhaustion of available
computing resources.

Initially, load-balancing algorithms can be classified by multiple properties. In the course of
this thesis, two main properties are most relevant. First, an algorithm implements a static or
dynamic load-balancing based on its degree of adaptivity. Second, it implements centralized
or distributed load-balancing depending on the number of load-balancing instances that
make decisions simultaneously [1]. The difference between static and dynamic algorithms is
the following:

• Static: Makes decisions independent of the run-time state of the application to balance.
(Stateless load-balancing)

• Dynamic: Makes decisions based on the state of the application and its gathered
run-time information. (Stateful load-balancing)

The difference between centralized and distributed algorithms is explained below:

• Centralized: Makes decisions on a singular master program instance or a singular
master thread of a process. (Master decides, workers comply)

• Distributed: Makes decisions on all program instances or all process threads. (Equal-
ity in decision-making)

In the application that this thesis targets, ExaHyPE 2, dynamic load-balancing is the only
option for dynamically changing workloads. This is based on a property of Peano 41, the
underlying dynamically adaptive Cartesian mesh traversal framework. As the mesh of Peano
4 is subdivided into chunks, which are then balanced, Peano 4’s feature to refine or coarsen
the simulation mesh during the program’s run-time induces differing workloads of chunks
traced over time. Therefore, a static load-balancing algorithm like a pure round-robin or

1Peano 4 and ExaHyPE 2 source code: https://gitlab.lrz.de/hpcsoftware/Peano
Peano 4 and ExaHyPE 2 documentation: https://hpcsoftware.pages.gitlab.lrz.de/Peano/html/index.html
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1. Introduction and Background

randomized algorithm is not viable, as they do not account for the differing workloads and
induce broad stalling. A dynamic load-balancing algorithm is a necessity for this software.
Whether a centralized or distributed load-balancing approach achieves better results will be
evaluated in this thesis.
The software that ExaHyPE 2 was built on, Peano 4, has various features and dedicated,
informative papers about its design decisions and stack-based memory use [2, 3]. Peano
4 uses spacetrees, a generalization of octrees, in order to partition the space domain into
a multilevel grid that provides flexible precision. This flexible precision provides custom
resolution for areas of interest during a simulation. Peano 4 is a tree-based adaptive mesh
refinement software. The overall 13 design decisions that are discussed in the original paper
reveal illuminating details about Peano 4’s internal structure and data management. In the
following, the design decisions relevant to this thesis are summarized and briefly explained
to facilitate an entry into the topic. Design decisions that, for example, target user-injected
code for applications are not discussed.

Figure 1.1.: Peano 4’s space domain decomposition of a 2D grid. [2]

The first design decision denotes that uniqueness is conferred upon cells and vertices of
spacetrees by their spatial position and corresponding level. Consequently, while multiple
vertices may spatially coincide, they reside at different levels [2]. This distinction of levels
can also be viewed in Figure 1.1, where the first three grids depict the same space that was
subdivided recursively. The level of the cells viewed from the leftmost to the third, rightmost
grid differs by two, although they exist in the same space.

Second, the Peano 4 software tripartitions space along each dimension as the Peano
Space-Filling Curve (SFC) is used for linearizing the space [2]. This partitioning can also
be examined in the two-dimensional grid of Figure 1.1. For dimension 3, the SFC can
be extended to fill a cube; for dimensions greater than 3, the Peano curve can linearize
hypercubes.

Third, the grid traversal order is prescribed by Peano 4, i.e., all tree vertices are traversed
but the user cannot influence the traversal order. Nonetheless, assured temporal constraints
establish a guaranteed partial order on the traversal’s transitions [2].

Fourth, Peano 4 provides strict element-wise multilevel data access by default. However,
the relaxation of these data access permissions is permitted. This is achieved by allowing
each vertex to point to its adjacent cell data at the cost of 2d pointers per vertex, where d
indicates the dimension [2].

Fifth, Peano 4 utilizes the Peano SFC to linearize the tree data structure. It adheres to a
Depth-First Search (DFS ), causing the traversal to interpret the spacetree as a bit stream [2].
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Using the DFS, traversing through different grid levels is prioritized over traversing to
neighbors with the same parent vertex.
The final crucial design decision, which determines the spatial domain’s decomposition

and whether data is replicated to preserve the spacetree topology, leads to Peano utilizing a
non-replicating data layout and implementing top-down tree partitioning. This establishes
a logical master-worker topology on the ranks. [2]. More in-depth information on the
decomposition and splitting is provided in the course of this thesis.

After these insights into the Peano 4 software, the hybrid memory management is especially
noteworthy. Peano 4 provides flags for its hybrid memory management that utilizes shared
and distributed memory to scale on high-performance systems. For shared memory, Peano 4
provides multiple library support like OpenMP, Intel® oneAPI Threading Building Blocks,
SYCL, and more. MPI is used for distributed memory management. The goal of this hybrid
MPI+X approach is to minimize inter-node communication by roughly subdividing the space
onto compute nodes and then letting each node exploit the shared memory for quick access
to, e.g., adjacency information, as most of the memory for tree traversals is held locally.

The main difficulty of this approach is compensating for dynamically changing workloads
as the multilevel grid refines or coarsens during run-time. As dynamically changing loads in
applications are common in HPC, this thesis is helpful to ExaHyPE 2, and its core ideas are
of interest to other HPC applications facing a similar challenge. For this reason, the final
goal of this thesis is to analyze and evaluate available load-balancing strategies of Peano 4
and lay the basis for a new superior strategy that unites the advantages of the analyzed
strategies.
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2. Related Work

This thesis builds on Peano 4, an open-source framework that uses automatons to apply
solvers on dynamically adaptive Cartesian meshes. To summarize Peano 4’s structure
roughly, the mesh’s adaptivity is achieved by hosting the space domain, the Cartesian grid,
on multiple spacetrees. First, a single spacetree covers the entire domain. This spacetree can
refine the underlying Cartesian grid by increasing its depth and hosting new, finer grids (cf.
Figure 1.1). One of these grids replaces a cell, a leaf node of the previous spacetree. This
spacetree, or the entire space domain, can be traversed in parallel by splitting the spacetree
into multiple single spacetrees. The tree data structure allows splitting off an inner node and
hosting a new spacetree from this node as its root. For a more in-depth explanation, refer
to the paper that compares and evaluates different design decisions made for the software
Peano 4 [2]. Almost all code that forms the core of Peano 4 is written in C++, whereas
setup, post-processing, visualization, and other features are realized in Python.

As Peano 4 provides the back-end of a simulation, the middle-ware could be a self-written
framework or, in the case of this thesis, ExaHyPE 2, An Exascale Hyperbolic PDE Engine,
view [4, 5]. The use cases of such an engine are various but primarily focus on simulating
gravitational waves in astrophysics simulations or seismic waves, e.g., earthquakes. The
frontend of a simulation consists of the user-specific application code. ExaHyPE 2 builds
on the spacetree management logic of the Peano 4 framework and provides additional
functionality for specifying partial differential equations and, e.g., PDE terms, boundary
conditions, solvers, and load-balancing strategy for the simulation.

Besides the ExaHyPE 2 joined with Peano 4, the field of tree-based adaptive mesh
refinement is the subject of current research. In the context of balancing loads for these
scenarios, the field of graph partitioning is relevant. The problem of partitioning a graph is
proven to be NP hard [6], but heuristics that can yield satisfying results have been developed
in the past. While graph partitioning is a subject of different kinds of research, the most
frequent subject is solving optimization problems. In order to balance loads perfectly across
p processes with t threads, a (p · t)-way graph repartition is searched for. As Peano 4’s code
base is complex, memory management and memory locality are important, so repartitioning
Peano 4’s internally decomposed spacetree demands further research. After repartitioning,
the divide-and-conquer approach enables the exploitation of all parallel computing resources
by simply assigning each thread one partition. The decision characteristic of how the graphs
should be repartitioned is the weight of the vertices.

For future developments on Peano 4, an insight into the ParMETIS library may serve
useful [7]. ParMETIS follows a multilevel strategy to repartition graphs by first coarsening
the existing graph, then partitioning the coarse graph and finally refine the partitioned
graph again. It should be noted that ParMETIS’ development has come to a halt; the last
maintenance of the code is dated March 2023.

When reviewing the history of the thesis’ main problem, balancing loads of structured
adaptive mesh refinement software led to initial research in 2001. The paper introduced a
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load-balancing algorithm that improved early load-balancing efforts by slicing workload into
smaller sub-workloads and distributing these across processors [8]. The introduced load-
balancing algorithm does not take memory locality into account, resulting in unnecessarily
dispersed load redistribution. Peano 4 tries to keep the memory as local as possible, so an
approach similar to the early beginning of the problem is suboptimal. Interestingly, the
paper also introduced metrics for measuring the load-balancing quality. In the course of
this thesis, custom load-balancing metrics for measuring the quality of load-balancing will
be developed and tailored to the set-of-trees data structure of Peano 4. The metrics of the
paper can be considered as a reference for the self-developed metrics.

The load-balancing optimization of MPI+X applications is also the subject of very recent
research. MPI+X denotes general hybrid memory using systems, with MPI for inter-process
communication and a variable X for intra-process data exchange. A research group focused
on how to improve performance in an MPI+X environment. Their key idea was to postpone
the work induced by the inner cells of an adaptive mesh and prioritize the cells at either
MPI boundaries or AMR-relevant locations [9]. This prioritized cell processing speeds
up MPI communication as the lower priority computations can be performed during the
MPI communication of already finished high-priority cells. The realization of these low-
and high-priority computations implements a task-based approach. During mesh traversal,
ready tasks are spawned directly and no task-dependency graph is explicitly built. The
non-prioritized tasks form so-called enclaves, tasks whose low priority allows computation in
the background.
In general, load-balancing approaches for distributed systems can be categorized. This

categorization differs static load-balancing (SLB) from dynamic-load-balancing (DLB) and
further subdivides DLB into the categories centralized or distributed [10]. This categorization
served as an entry point to the dynamic load-balancing field and was useful in outlining
the structure of this thesis. Therefore, the following chapter revolves around the load-
balancing that is available in Peano 4 and thus also in ExaHyPE 2, its categorization and
implementation.
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3. Load-Balancing in Peano 4

Peano 4’s current load-balancing strategies are stateful and decentralized or stateful and
centralized. The stateful characteristic of the strategies is inevitable for a well-balanced
multi-core and multi-threaded program, see Chapter 1. As Peano 4 follows a single program,
multiple data (SPMD) programming model, every process or MPI-rank hosts an instance of
the load-balancer, which can make internal decisions about its local threads and spacetrees,
but also invoke inter-rank rebalancing if the own rank becomes too work-heavy or light-work
compared to other ranks. This SPMD property of Peano 4 forces load-balancers to work
decentralized, refer Chapter 1, except for strategies with the spread-out prefix as they
emulate decentralized behavior by rank-wise querying the rank ID and, e.g., stagnating or
waiting if the rank ID is not the master rank’s ID of 0.

Some core concepts are especially noteworthy to facilitate understanding interactions
during the load-balancing processes. The spacetree set Ti, a singleton, holds the local trees
of the i-th rank pi. Additionally, there is a blacklisting functionality per rank which can veto
tree splits. This is done by adding trees into a blacklist map and frequently updating this
blacklist Bi. Blacklisted trees of rank i are kept on the blacklist Bi for three grid traversals
by default. This behavior stems from the tree-splitting process of Peano 4’s core routines,
where a tree is only marked to split in the first grid traversal, then in the state of splitting in
a second traversal, and finally split with ownership transfer in the final, third, grid traversal.
This blacklisting ensures the integrity of trees and prevents forking off trees that are already
in the splitting process.
Also, the load-balancing statistics, which are used to make decisions, are not generated

on demand but rather stored and updated throughout the run-time by the load-balancer
itself. To determine the load of a spacetree, the local unrefined cell count is the default for
the load-balancing toolbox of Peano 4, but the possibility of implementing custom metrics
for the load determination of trees and processes is also provided.

3.1. Overview of Key Load-Balancing Stages

In Peano 4, all load-balancing strategies run through a set of internal states. The current
state is an essential internal variable determining the further progression of load-balancing
actions. Peano 4’s load-balancer can be interpreted as a stateful automaton L. By the
SPMD model, this automaton is an instance of a process and can be indexed as Li for
process i. During run-time, all load-balancers have an identical underlying implementation.
However, they may be in different internal states at the same real-time depending on the
inter- and intra-rank statistics like local unrefined cells, recent local tree splits, and more.
The list of states on which all current load-balancing strategies rely is:
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3.2. How Trees are Split in Peano 4

Undefined Default, initial error state of AbstractLoadBalancing class. Unused by all
other load-balancing strategies.

InterRankDistribution The code is in the earliest load-balancing stage. The load shall be
distributed among ranks; intra-rank distribution is not relevant yet. All load-balancing
strategies start in this state and prioritize the distribution of inter-rank workload.

IntraRankDistribution At the beginning of this state, there’s at most one tree per rank.
The code has spread over all ranks. Next, spread over all threads inside the ranks.

InterRankBalancing The initial spread is completed. In this state, the load is balanced
between the ranks to meet the load-balancing quality.

IntraRankBalancing The inter-rank load-balancing quality is sufficient. Now, balance in
the ranks, i.e., among local spacetrees.

WaitForRoundRobinToken The current rank waits for a token to perform inter-rank balance
changes for which other ranks comply in a round-robin fashion.

Stagnation The code has achieved a sufficient load-balancing quality and does not balance
further. It is not switched off, as switched-off states can transition to active states
again.

SwitchedOff The code has locally switched-off the load-balancing. It may be reactivated
but currently satisfies expectations or needs to be inactive so as not to interfere with,
e.g., inter-rank load-balancing decisions of a different rank.

Some additional load-balancing states for specific strategies will be noted if and only if
necessary.

3.2. How Trees are Split in Peano 4

This section explains how splitting off cells is implemented in Peano 4. First and foremost,
the splitting is one of the core features of Peano 4 and, therefore, has an extremely high
code complexity. Thus, this explanation is restricted to general information regarding the
splitting. An in-depth analysis exceeds the scope of this thesis. The splitting is explained
extensively in publications of Tobias Weinzierl, refer to Chapter 7 of [2] and Chapter 5 of [11].
Spacetrees and the spacetree sets that allow parallelism are highly relevant for explaining
the splitting feature, the heart of Peano 4’s tree logic. Additionally a load-balancer needs to
call the split(...) function:

1 peano4 : : p a r a l l e l : : Spacet reeSet : : g e t In s tance ( ) . s p l i t (
2 sourceTree , // Source t r e e ID from which the c e l l s w i l l s p l i t o f f
3 peano4 : : S p l i t I n s t r u c t i o n {numberOfCells ,
4 peano4 : : S p l i t I n s t r u c t i o n : : Mode : : AggressiveTopDown } ,
5 targetRank // Target rank ID , s e t own rank f o r in t ra−rank s p l i t .
6 ) ;

Listing 3.1: Call from load-balancer to SpacetreeSet

7



3. Load-Balancing in Peano 4

The second argument, a split instruction, contains the number of fine grid cells that shall
split off as first and the mode to split off as a second value. This triggerSplit(...) call to
the spacetree set initiates preparation for the split. Currently, Peano 4 provides two splitting
modes: the aggressive top-down and finer bottom-up approach. Internally, Peano 4 uses
top-down tree splitting to keep the spacetree topology consistent. The leitmotiv is deploying
new trees to ranks by cutting out subtrees of the initial spacetree. As the space-filling Peano
curve implies an order over all spacetree cells, cutting out a subtree and deploying it to
another rank keeps the total order consistent as long as the remote root is logically connected
to its parent. Independent from the internal storage and tree management, the two different
splitting modes determine how to find the ideal root note from which to split. In both
modes, the spacetree set, after reserving a spacetree ID for the new tree and resolving the
spacetree described by the passed sourceTree ID, delegates the split to the tree by calling
tree.split(newID,instruction), with tree being the resolved tree that shall split off
cells. Internally, the tree uses a three-stage splitting realization. First, cells are marked
to split in the initial iteration. Then, they are in the process of splitting after the second
iteration. Finally, they are considered split in the third, i.e., the last iteration. For the
bottom-up splitting, the precise number of finest grid cells that are split off is guaranteed to
match the requested number of cells to split as best as possible. For the top-down splitting,
a number equal to or greater than the requested cells that are split off is sufficient and will
be used for splitting. Peano 4 tries to stay as close to the requested number as possible, but
constraints that are elaborated on in the Peano 4 documentation under the topic Domain
Decomposition have priority over requested cell counts. All load-balancing will have to
decide which splitting mode is most suitable. The advantage of top-down splitting is that
the probability of splitting off trees as a whole is maximized. The advantage of bottom-up
splitting is the best chance of meeting the requested number of cells to split off, at the risk
of fragmenting the tree-topology quicker. After briefly explaining the function stack that
the load-balancer uses to instantiate new trees and the main difference between bottom-up
and top-down splitting, we move on to the load-balancing strategies that Peano 4 currently
provides.

3.3. Available Load-Balancing Strategies

This section serves as an entry point to understand already existing load-balancing strategies.
As a base for all load-balancing schemes of Peano 4, an abstract load-balancing class
exists that offers wrappers with semantic checks and core functionality to retrieve grid and
rank statistics. In the case of writing one’s own load-balancer for Peano 4 or comparable
MPI+X applications, the abstracted functionality is substantial. Some functions that mostly
implement variable-value-getting logic or simple checks are omitted in the following to focus
on the essence of the load-balancing strategies.

Additionally, the input parameters for the below-defined functions may vary from the
actual implementation in ExaHyPE 2. This difference is because, e.g., an initial load-
balancing configuration created with user parameters at the start of the application is
realized as member variables of the load-balancer in ExaHyPE 2. In all algorithms of this
thesis, member variables are explicitly named as input for functions to avoid unexplained
variable names and not require any previous knowledge. Usually, the two most relevant
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3.3. Available Load-Balancing Strategies

functions that update the internal load-balancing state and take load-balancing action, i.e.,
initiate splits, rely solely on member variables and no passed arguments.

At present, five unique load-balancing strategies have been implemented: bi-partitioning
recursively, splitting an oversized tree, spreading out, spreading out hierarchically, and
spreading out once the grid stagnates. Additionally, there is the possibility to cascade
these strategies, i.e., running through a hierarchy of load-balancing strategies, switching to
the next when the previous strategy stagnates. The following subsections explain the core
idea of each strategy and summarize their behavior for state-switching and applying the
load-balancing updates.

3.3.1. Recursive Bi-Partition

The first and most straightforward strategy already implemented is the recursive bi-partition.
Its core approach to achieve better load-balancing quality is splitting the trees up aggressively.
The heaviest local tree w.r.t the cost metric, which defaults to the cell count, is determined.
Successively, some checks, like the tree not being blacklisted, are performed. Then, the
recursive bi-partition strategy ideally splits the tree into two equal-sized trees. For this, a
top-down splitting scheme is used (cf. Section 3.2).

Algorithm 1: updateState of recursive bi-partition

Input: state, roundRobinToken
Output: state, roundRobinToken

1 Function updateState(state,roundRobinToken):

2 if state = ”SwitchedOff” then
// do not update

3 else if areRanksUnemployed() then
4 state ←− ”InterRankDistribution”
5 else if isInterRankBalancingBad() and isMyTurn(roundRobinToken) then
6 state ←− ”InterRankBalancing”
7 else if isIntraRankBalancingBad() then
8 state ←− ”IntraRankBalancing”
9 else

10 state ←− ”WaitForRoundRobinToken”
11 roundRobinToken ←− (roundRobinToken + 1) % getNumberOfRanks()

12 return state, roundRobinToken

Algorithm 1 shows that the functions in the conditions of the if-clauses do not use the
previous internal state, nor is it used to switch the state in the Algorithm 1 itself. The
independence from the state means that the current state is almost exclusively unused to
update, i.e., the state-transition graph is a directed, fully connected graph for the states
of inter-rank distribution, inter-rank balancing, intra-rank balancing, and waiting for the
round-robin token. The exception is the node of the switched-off state, which is fully
connected to the other states with incoming edges, but the only outgoing edge is a loop
to itself. Before investigating the splits instructed by this load-balancing strategy, some
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3. Load-Balancing in Peano 4

functionality needed to be extracted, refer to Algorithm 2.

Algorithm 2: Utility function for recursive bi-partition

Input: heaviestSpacetree, state,
numLocalUnrefCellsOfHeavSpacetree

Output: boolean

1 Function canSplitRB(heaviestSpacetree,numLocalUnrefCellsOfHeavSpacetree,
2 state):
3 return fitsIntoMemory(state) and heaviestSpacetree ̸= −1
4 and not isBlacklisted(heaviestSpacetree) and
5 numLocalUnrefCellsOfHeavSpacetree > getMinAllowedTreeSize(state)

The function canSplitRB() shortens repeated conditional checks for the recursive bi-
partition strategy, as these condition checks are performed before triggering any split. They
confirm that, from the perspective of the load-balancer, nothing interferes with instructing
a split on the tree of concern. The return statement involves the evaluation of multiple
conditions. First, fitsIntoMemory(...) uses a worst-case estimate for the heaviest local
spacetree’s splitting behavior and ensures sufficient memory. Second, the heaviest local
spacetree passed into the function must exist, i.e., the rank is not empty. Third, the spacetree
must not be blacklisted, i.e., it is not already splitting or performing other AMR operations,
which could interfere with the spacetree topology’s consistency when trying to split. Last,
the number of local unrefined cells of the heaviest local spacetree must exceed the minimum
allowed tree size, a command line option that can be passed into the application. Splitting
off a tree is forbidden if the tree size is the prescribed minimum. If all these conditions
hold, a split will be instructed. After clarifying this functionality, view Algorithm 3 for the
decision-making on splitting off cells.

Initially, four values are retrieved and calculated in Algorithm 3. The variable assign-
ments are drawn in front of the switch-case expression as it serves better readability. For
implementation, the variables can be held in their local scopes of need. The first two values
are the tree IDs of the heaviest local spacetree and a spacetree within the tolerance to
the heaviest local spacetree1. The justification for both values is that during inter-rank
distribution, the code only allows one of a range of spacetrees for a split if they are within a
tolerance interval under the heaviest local spacetree. During the inter-rank balancing stage
of recursive bi-partition, this freedom of choosing a sufficiently good tree for the split is
removed.

Only the heaviest local spacetree is considered for the inter-rank balancing. The number
of local unrefined cells of the heaviest local spacetree is assigned to the third variable. This
number is directly reused to calculate the cells that each core should receive. The naming
convention may be misleading. For clarification, cellsPerCore describes the cells that go
to another rank’s new tree (case InterRankDistribution), another or the own rank’s new
tree (case InterRankBalancing), or just the own rank’s new tree (case IntraRankBalancing).
Furthermore, if the tree is larger than the configured minimum size of any tree, the previously

1See Appendix Section A.1, Peano 4 source code is inconsistent with strategy
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Algorithm 3: updateLoadbalancing of recursive bi-partition strategy

Input: state, config
Result: triggering a tree-split

1 Function updateLoadbalancing(state, config):

2 heaviestSpacetreeTol ←− getIdOfHeaviestLocalSpacetreeInTolerance()

3 heaviestSpacetree ←− getIdOfHeaviestLocalSpacetree()

4 numLocalUnrefCellsOfHeavSpacetree ←− getWeightOfHeavLocSpacetree()

5 cellsPerCore ←− max(1, numLocalUnrefCellsOfHeavSpacetree /2,
6 config.getMinTreeSize(state))
7 switch state do
8 case ”InterRankDistribution” do
9 if canSplitRB(heaviestSpacetreeTol,

10 numLocalUnrefCellsOfHeavSpacetree, state)
11 and getLightestRank() ̸= getMyRank() then
12 triggerSplit(heaviestSpacetreeTol,cellsPerCore,
13 getLightestRank())

14 case ”InterRankBalancing” do
15 if canSplitRB(heaviestSpacetree,
16 numLocalUnrefCellsOfHeavSpacetree, state) then
17 triggerSplit(heaviestSpacetree,cellsPerCore,
18 costMetric.getLightestRank())

19 case ”IntraRankBalancing” do
20 if canSplitRB(heaviestSpacetree,numLocalUnrefCellsOfHeavSpacetree,
21 state) then
22 triggerSplit(heaviestSpacetree,cellsPerCore,getMyRank())

23 otherwise do
// nothing

11



3. Load-Balancing in Peano 4

heaviest tree is split in half, ⌊number of local unrefined cells of heaviest spacetree/2⌋, i.e., bi-
partitioned. Note, the triggerSplit(. . . ) function of the recursive bi-partition is just a
wrapper for the previously mentioned split() function of Listing 3.1 with blacklisting and
statistic updating.

When this concept is applied repeatedly, and the already split trees are split again with
the same rules, the domain decomposition is recursive. This is the core concept of the
strategy. When reflecting on the bi-partitioning of trees, this principle can lead to bad
results if applied at the start of an ExaHyPE 2 application. The scheme assumes a fast
refining and building grid and thus splits aggressively. Although the concept is functional,
the logarithmically decreasing tree size of the strategy leads to large size differences in the
early stages of grid construction and imposes imbalances that have a grave impact due to
the further refinement of the grid during construction. Its delayed use is recommended.

3.3.2. Split-Oversized-Tree

The split-oversized-tree load-balancing strategy has the core idea of not letting trees exceed
a maximum cost threshold. The strategy uses the doesLocalTreeViolateThreshold()

function, see Algorithm 4, to determine whether at least one of the local spacetrees violates
the preset threshold. The threshold function calls getTargetTreeCost(), which in turn uses
a minimum over the per-rank thread count, the predefined maximum number of spacetrees
per rank, and the current number of local spacetrees to determine whether any of the local
spacetrees are oversized. After retrieving this minimum, the global cost, i.e., the summed-up
cost of all ranks and their trees, is divided by the rank count and the above-mentioned
minimum to obtain the tree cost threshold. The threshold is pessimistic, as dividing by the
minimum maximizes the quotient. Let the following example clarify how the threshold is
computed:

Let the number of processes, i.e., ranks, be eight, with three spacetrees currently hosted
on each of the eight ranks. The maximum number of trees per rank is set to four. The
threads per rank are set to six. The local costs for the trees are 200, 400, and 500 for the
rank that currently decides whether to rebalance. We assume the global costs are 7200.
First, we perform the aforementioned minimum operation. After taking the min (3, 4, 6) = 3,
we divide the global costs by the number of ranks and by the minimum, 3, to obtain the
threshold: 7200 cells / 8 ranks / 3 trees per rank = 300 cells per tree. Lastly,
doesLocalTreeViolateThreshold() yields true as at least one of the three local trees
exceeds the threshold, and the strategy initiates rebalancing.

Other than the additional doesLocalTreeViolateThreshold() condition, the state tran-
sitions are remarkably similar to those of the recursive bi-partition provided in Algorithm 1.
Before investigating the state transitions of this strategy, some functionality was abstracted
again, see Algorithm 5.

The function canSplitSOT() shortens later conditional checks for the split-oversized-tree
strategy, as these condition checks are performed before triggering any split to a remote rank.
Analog to Algorithm 2, the conditions ensure that, from the perspective of the load-balancer,
nothing interferes with instructing a split on the oversized tree. The return statement of
canSplitSOT() again involves the evaluation of multiple conditions. Only the differences
from Algorithm 2 are explained. The third condition checks whether the passed spacetree is
sufficiently large in order to perform a split. Lastly, the computed number of ideal splits
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Algorithm 4: updateState of Split Oversized Tree

Input: state, roundRobinToken
Output: state, roundRobinToken

1 Function updateState(state,roundRobinToken):

2 if state = ”SwitchedOff” then
3 and heaviestSpacetree ̸= −1 // do not update

4 else if areRanksUnemployed() then
5 state ←− ”InterRankDistribution”
6 else if isInterRankBalancingBad() and isMyTurn(roundRobinToken)
7 and doesLocalTreeViolateThreshold() then
8 state ←− ”InterRankBalancing”
9 else if isIntraRankBalancingBad()

10 and doesLocalTreeViolateThreshold() then
11 state ←− ”IntraRankBalancing”
12 else
13 state ←− ”WaitForRoundRobinToken”
14 roundRobinToken ←− (roundRobinToken + 1) % getNumberOfRanks()

15 return state,roundRobinToken

Algorithm 5: Utility function for Split Oversized Tree

Input: spTree, state
Output: boolean

1 Function canSplitSOT(spTree,state):
2 return fitsIntoMemory(state) and not isBlacklisted(spTree)
3 and getCostOfLocalTree(spTree) > getTargetTreeCost()

4 and computeNumberOfSplits(spTree) > 0

13
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must exceed 0, i.e., splitting the tree is considered useful by the strategy.
If all these conditions hold, a split will be instructed. Next, let us focus on the decision-making
of the split-oversized-tree strategy as depicted in Algorithm 6.

Algorithm 6: updateLoadbalancing of split-oversized-tree strategy

Input: state, config, costMetric
Result: triggering a tree-split

1 Function updateLoadbalancing(state,config,costMetric):

2 heaviestSpacetreeTol ←− getIdOfHeaviestLocalSpacetreeInTolerance()

3 heaviestSpacetree ←− getIdOfHeaviestLocalSpacetree()

4 numLocalUnrefCellsOfHeavSpacetree ←− getWeightOfHeavLocSpacetree()

5 switch state do
6 case ”InterRankDistribution” do
7 if canSplitSOT(heaviestSpacetreeTol, state)
8 and heaviestSpacetreeTol ̸= −1
9 and getLightestRank() ̸= getMyRank() then

10 triggerSplit(heaviestSpacetreeTol, getLightestRank(), 1)

11 case ”InterRankBalancing” do
12 if canSplitSOT(heaviestSpacetree, state)
13 and heaviestSpacetree ̸= −1 then
14 triggerSplit(heaviestSpacetree, getLightestRank(),
15 computeNumberOfSplits(heaviestSpacetree))

16 case ”IntraRankBalancing” do
17 for t ∈ getLocalSpacetrees() do
18 if canSplitSOT(t, state) then
19 triggerSplit(t, getLightestRank(),
20 computeNumberOfSplits(t))

21 otherwise do
// nothing

Note 1: The triggerSplit(sourceTree, targetRank, numberOfSplits) function is
a wrapper around the split() function described in Listing 3.1, but adds strategy-relevant
instructions. The function divides the total weight of the source tree by the number of
splits plus one to get the number of cells per split. The addition with one accounts for
the remaining tree on the current rank. All splits decrease the source tree’s weight by the
previously calculated number of cells per split.

Note 2: The function computeNumberOfSplits() is used for passing the correct argument
to triggerSplit(...). It first computes an initial ideal number of splits by dividing the
source tree’s cost by the ideal tree cost retrieved from getTargetTreeCost() and subtracting
one to again account for the remaining tree after all splits. This value then is bounded by
[1; remaing slots of the remote spacetree set]2. Lastly, the number of splits is decreased until

2See Appendix Section A.1, Peano 4 source code is inconsistent with strategy
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the first value is obtained for which the cells per split-off tree exceed the configured minimum
tree size. This approach is viable as decreasing the number of splits increases the number of
cells per tree. The obtained value is finally returned by computeNumberOfSplits().

Like the recursive bi-partition, this strategy is more fit for delayed load distribution.
Initial distribution with this strategy may lead to an early uneven load distribution. This
behavior comes from the limit that is used to split off trees. Especially during the early
grid construction, the local unrefined cells of rank 0 grow exponentially. A more aggressive
load-balancing scheme is suitable for this phase of an ExaHyPE 2 application. Once the
initial splitting process has progressed and the load is distributed well across all ranks,
intra-rank distribution with the split-oversized-tree strategy can yield good results.

3.3.3. Spread-Out

This strategy is kept very simple. Its main idea consists of distributing the total load
among all ranks as balanced as possible. For this, a bottom-up-splitting of the trees is used.
Inter-rank- or intra-rank balancing is not in the interest of this strategy. After the initial
distribution, it does not balance further. The strategy employs each rank with precisely as
many trees per rank as deemed suitable in the context of this strategy, w.r.t the thread
count. Hence, this strategy is centralized, refer Chapter 1. This unique behavior is realized
by querying the current rank ID and switching all worker ranks, i.e., all ranks except for
master rank 0, into the stagnation state. The stagnating ranks no longer actively contribute
to the load-balancing process but can receive trees from remote ranks, in the case of the
spread-out strategy only from rank 0.

The strategy also builds on an initial waiting phase for the best inter-rank distribution.
It keeps track of the stable grid iterations, i.e., the number of consecutive recent grid
sweeps that did not alter the global number of inner unrefined cells, and only initiates
splits when the grid has been stationary for four grid traversals or another more complex
condition holds. More on the second condition follows later in Subsection 3.3.5, as the
spread-out-once-grid-stagnates strategy lacks this second condition. Unfortunately, the two
conditions form a huge downside of the strategy, as a large portion of the grid must be
constructed inside a singular spacetree of rank 0 before any load is balanced. This initial
grid construction procedure, which suffers from exponential cell growth, should rather rely
on multi-core and multi-threaded application principles. Subsection 5.2.3 will delve into the
problematic behavior in greater detail.

As this strategy only relies on two internal states, namely inter-rank distribution and
stagnation, the previous separately defined functions for updating the state and the load-
balancing are both merged into the updateLoadbalancing(...) function (cf. Algorithm 7).

Note 1: The if-condition of line 11 in Algorithm 7 evaluates to false for all non-master
ranks, comparable to an early return statement appended to line 9. This relates to the
aforementioned stagnating behavior of all non-master ranks.

Note 2: For the strategy to work, getNumberOfTreesPerRank() is relevant. As the
algorithmic implementation of how the number of trees per rank is computed is similar in
the previously described getTargetTreeCost() function of Subsection 3.3.2, only major
differences are mentioned in the following. The function calculates the perfect number of trees
per rank. If the grid was stable during the three recent grid sweeps, the code intentionally
risks a tree size lower than the user-prescribed minimum tree size: The strategy’s primary
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Algorithm 7: updateLoadbalancing of spread-out strategy

Input: state, config, costMetric, prevNumberOfCells,numberOfStableGridIterations
Result: state, prevNumberOfCells, numberOfStableGridIterations,

triggering a tree-split

1 Function updateLoadbalancing(state,config,costMetric,
2 prevNumberOfCells,numberOfStableGridIterations):

3 if prevNumberOfCells = getGlobalNumberOfInnerUnrefinedCells() then
4 numberOfStableGridIterations ←− numberOfStableGridIterations +1
5 else
6 numberOfStableGridIterations ←− 0

7 if not getMyRank().isGlobalMaster()
8 and state = ”InterRankDistribution” then
9 state ←− ”Stagnation”

10 numberOfTreesPerRank ←− getNumberOfTreesPerRank()

11 if numberOfTreesPerRank > 0 then
12 ranks ←− getNumberOfRanks()

13 cellsPerTree ←− round(getGlobalNumberOfInnerUnrefinedCells() /
ranks / numberOfTreesPerRank)

14 cellsPerTree ←− max(1, cellsPerTree)
15 for targetRank ∈ ranks do

// omitted: accommodate for rank 0 already hosting one tree

16 thisTreesCells = cellsPerTree
// omitted: modify thisTreesCells for an imperfectly even

// spread, increment by 1 for some trees

17 triggerSplit(thisTreesCells,targetRank)

18 state ←− ”Stagnation”

19 else
20 prevNumberOfCells = getGlobalNumberOfInnerUnrefinedCells()
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goal is to spread the work as evenly as possible, so this violation is acceptable. For this, if
the grid is not predicted to change, the best effort of the spread-out scheme is to distribute
the total number of inner unrefined cells perfectly among all trees of all ranks. Second,
suppose instead, the grid is still undergoing changes during the last three grid sweeps, but
the local number of inner unrefined cells of the master rank root tree is sufficiently large. In
that case, all ranks receive their inherent maximum number of trees, bound by user input or
thread count, all of equal weight. If neither of the two cases holds, the strategy postpones
load-balancing until more cells are refined or more recent grid sweeps are stable.
The triggerSplit(numberOfCells,targetRank) in line 17 of Algorithm 7 is a simple

wrapper that defaults the source tree to rank 0 and tree ID 0, thus only relying on the cell
count and target rank as passed arguments. This load-balancing scheme is predestined to
work well on applications that do not use dynamically adaptive mesh refinement but are
initially refined during grid construction and then remain unchanged. The strategy is only
viable for the initial workload distribution of adaptive mesh refinement simulations, not the
full simulation.

3.3.4. Spread-Out-Hierarchically

The strategy follows a similar workflow of the spread-out scheme, refer to Subsection 3.3.3.
The main difference is its staged or name-implied hierarchical distribution. First, the focus
is put on the spread-out that uses MPI, i.e., the inter-rank spread. A single tree is deployed
to each rank. Second, each rank internally balances the received single tree across all its
threads. For this, the method only uses two states, inter-rank- and intra-rank-distribution.
Algorithm 8 provides the state transitions of spread-out-hierarchically.

Algorithm 8: updateState of spread-out-hierarchically strategy

Input: state, config, costMetric
Result: triggering a tree-split

1 Function updateLoadbalancing(state,config,costMetric):

2 switch state do
3 case ”InterRankDistribution” do
4 if getGlobalNumberOfTrees() > 1 or getNumberOfRanks() ≤ 1 then
5 state ←− ”IntraRankDistribution”

6 case ”IntraRankDistribution” do
7 if getLocalSpacetrees().size() > 1 then
8 state ←− ”Stagnation”
9 if getNumberOfThreads ≤ 1 then

10 state ←− ”Stagnation”

11 otherwise do
// nothing
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Additionally, the strategy uses a set of possible actions dependent on the load-balancer’s
internal state. The list of actions is: spread equally over all ranks, spread equally over
all threads, and none. At the beginning of the update load-balancing function, the next
action is determined by a call to getAction(). Algorithm 9 describes the decision-making
of the spread-out-hierarchically strategy. As the getAction() function realizes additional
decision-making, its core functionality is described in the following paragraph.

Algorithm 9: updateLoadbalancing of spread-out-hierarchically strategy

Input: state, config
Result: triggering a tree-split

1 Function updateLoadbalancing(state,config,costMetric):

2 action ←− getAction()

3 switch action do
4 case ”SpreadEquallyOverAllRanks” do
5 cellsPerRank ←− round(getGlobalNumberOfInnerUnrefinedCells() /
6 getNumberOfRanks())

7 cellsPerRank ←− max(cellsPerRank,1)
8 for targetRank ∈ getNumberOfRanks() // Start with targetRank 1

9 do
10 thisRanksCells ←− cellsPerRank

// omitted: modify thisRanksCells for an imperfectly even

// spread, increment by 1 for some ranks

11 triggerSplit(thisRanksCells,targetRank)

12 case ”SpreadEquallyOverAllThreads” do
13 heaviestSpacetree ←− getIdOfHeaviestLocalSpacetree()

14 if heaviestSpacetree ̸= −1
15 and not isBlacklisted(heaviestSpacetree) then
16 numLocalUnrefCellsOfHeavSpacetree ←−
17 getWeightOfHeavLocSpacetree()

18 numberOfSplits ←− getNumberOfSplitsOnLocalRank()

19 cellsPerCore ←− numLocalUnrefCellsOfHeavSpacetree
20 / (numberOfSplits +1)
21 cellsPerCore ←−max(1, cellsPerCore, config.getMinTreeSize())
22 for i ∈ numberOfSplits do
23 thisCellsPerCore ←− cellsPerCore

// omitted: modify thisCellsPerCore for an imperfectly

// even spread, inc. by 1 for some trees

24 triggerSplit(thisCellsPerCore,getMyRank())

Note 1: getAction() of line 2 in Algorithm 9 is not provided as pseudo-code to decrease
redundancy to already provided algorithms. To summarize its behavior, it differentiates the
internal load-balancing state: In inter-rank distribution, the action SpreadEquallyOverAll-
Ranks is returned by default. This default action is discarded as soon as some conditions
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do not hold, e.g., the current action-retrieving rank is not rank 0, or the current trees have
been intra-rank balanced in the last three load-balancing updates, or the tree that shall
be split is not sufficiently large to deploy at least one minimal spacetree to each rank. If
the conditions do not hold, the action none is returned. In intra-rank distribution, the
program flow is similar: The action SpreadEquallyOverAllRanks is returned by default. If a
single condition is unmet, this default action is replaced with none as a return value. The
condition formulates that the local spacetree may not be too lightweight to keep all threads
busy and may simultaneously not violate any minimum tree size criteria defined by the user.

Note 2: The getNumberOfSplitsOnLocalRank() function is also not elaborated further.
The documentation and source code provide implementation details. The returned value is
generated by using familiar concepts of other strategies like Subsection 3.3.2 and its internals
of the getTargetTreeCost() function or Subsection 3.3.3 and its getNumberOfTreesPer-
Rank() function.

Note 3: The triggerSplit(numberOfCells,targetRank) function is a wrapper for the
spacetree split(...) function like in previous strategies. As the spread-out-hierarchically
strategy guarantees that only a single spacetree exists on the current rank when triggering
a split, the source tree is implicitly the current rank’s sole tree and two passed arguments
suffice.

3.3.5. Spread-Out-Once-Grid-Stagnates

This strategy is almost identical to the spread-out strategy. The spread-out-once-grid-
stagnates strategy likely served as a predecessor for the improved spread-out strategy
described in Subsection 3.3.3. It restricts itself to initiating the perfect tree and rank
spread once the grid is stagnating, i.e., the number of stable grid iterations exceeds three.
Compared to spread-out, this strategy does not allow splits on a mesh still subject to change.
Therefore, it inherits and even worsens the problem of spread-out. The mesh has to be
fully built in one spacetree of rank 0 before any rebalancing occurs. Spread-out mitigated
this problem by splitting earlier once all ranks could receive their ideal tree counts with
a predefined minimum number of local unrefined cells, although the grid is still changing.
Subsection 3.3.3 describes calculating the ideal number of trees per rank. The main problem
of this strategy stems from the communication during the splitting phase: The MPI that is
used to communicate new tree requests to remote ranks has a maximum buffer size. For large
meshes built initially, the entire split communication happens between four grid traversals,
i.e., all remote ranks receive the requests, the new trees and cells, and all data via MPI
buffers simultaneously. This massive communication spike is problematic; look forward to
Subsection 5.2.5 for tests of the spread-out-once-grid-stagnates strategy.

3.3.6. Cascade: Spread-Out into Recursive Bi-Partition

Unlike previously introduced strategies, this strategy uses a cascade of load-balancing
schemes. The cascade strategy works in the following fashion. First, primary and secondary
load-balancing are defined. Initially, the primary strategy spread-out (cf. Subsection 3.3.3)
is used for balancing. When any rank’s load-balancing stagnates, i.e., the internal load-
balancing state is switched to stagnation or switched off, the succeeding recursive bi-partition
(cf. Subsection 3.3.1) is activated. Therefore, this cascade spreads the load out in a bottom-
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up manner and afterward rebalances by recursively bi-partitioning the largest tree on each
rank by top-down splitting. This rebalancing with recursive bi-partition after a good initial
spread counteracts the above-mentioned problem of large tree size differences when using
only the recursive bi-partition strategy. Currently, the implementation does not allow the
load-balancing to ascend the cascade again. However, as spread-out only serves for the initial
distribution, this is irrelevant. This cascading approach is motivated by one main advantage.
A balancing strategy that initially yields great results can be followed by a strategy that
works well for later re-balancing.

3.3.7. Cascade: Spread-Out into Split-Oversized-Tree

Like the cascade strategy above, this strategy uses spread-out (cf. Subsection 3.3.3) as the
primary load-balancer. After spread-out switches into a stagnating state, the secondary
strategy split-oversized-tree (cf. Subsection 3.3.2) is used. Note that, by construction, the
use of the primary or secondary load-balancer is a rank-wise decision, so an arbitrary share
of ranks can use the secondary strategy while the remaining ranks still use the primary
strategy or vice versa. In the case of the spread-out strategy, all ranks initially use the
strategy. After the first load-balancing update, only rank 0 is still active and all other
ranks have switched to stagnation. Then, the split-oversized-tree strategy is activated to
further rebalance any imbalances induced by dynamic workload shifts. This cascade of
load-balancing strategies inherits the main advantage of the previously introduced spread-out
into recursive bi-partition cascade Subsection 3.3.6. The primary load-balancer is identical
to the preceding strategy, and the secondary load-balancer improves load-balancing quality
by maintaining the configured maximum tree size.
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Adaptive Workloads

How can the load-balancing quality of the dynamically adapting space domain be evaluated?
For single-core and multi-core multi-threaded applications, load-balancing metrics were
developed. The following explains the reasoning behind these metrics and why they help to
compare different load-balancing strategies of ExaHyPE 2. Note that these load-balancing
metrics, although tailored to ExaHyPE 2, can be transformed to measure other multi-core
and multi-threaded applications. Therefore, the following analysis is of broader relevance
than only for ExaHyPE 2 applications.

Let P be the set of MPI program instances and pi be the i-th program instance in the
context of MPI. Furthermore, p equals the number of MPI processes running simultaneously.
Additionally, let T be the set of trees hosted on a previously determined rank and τj be
its j-th tree. Although described by a mathematical set, a total order is implied for the
elements of P and T .

P = { pi | 0 ≤ i < p, with i, p ∈ N}, for the number of processes or compute nodes p

T = { τi | 0 ≤ j < τ, with j, τ ∈ N}, for the number τ of trees per node

By this definition |P| = p and |T | = τ . Furthermore, let τ∗ ∈ T be the tree and p∗ ∈ P the
process with the maximum number of local unrefined cells. The problem of measuring the
quality of load-balancing for ExaHyPE 2 can be divided into two sub-problems: intra-rank
load-balancing and inter-rank load-balancing quality. Solving these problems answers how
well the load is balanced within one process, intra-rank, and how well the load is balanced
among multiple processes, inter-rank.

4.1. Intra-Rank Metric for Comparing MPI Programs

First, the intra-rank load-balancing quality problem is resolved. Thus, a metricMpi was
designed for a single MPI compute node i. Although this problem is considerably simpler,
the fundamental idea is transferable to the superordinated inter-rank problem. This metric
solely relies on the number of local unrefined cells luc of a spacetree.

4.1.1. Idea and Realization

Following the keep-it-simple concept, the metric uses the average number of local unrefined
cells as a baseline. The reasoning behind using the luc count is that this number directly
correlates to the total workload a spacetree imposes on the simulation. As the cells are local
and unrefined, meaning they have no further refined cells hosted at the same space and thus
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on a lower spacetree level, they result in a workload per time step for the program.

The MPI intra-rank metricMpi should ideally penalize imbalanced and reward balanced
load distribution. Therefore, it is generated for a single MPI-program instance pi by summing
over all load-balancing statistic-dump time steps Θi concerning the rank i that the process
runs on. τ∗t,i denotes the spacetree of time step t and process i that hosts the maximum
number of local unrefined cells. avgx∈Tt,i(luc(x)) describes the average local unrefined cells
of time step t and rank i, where x is a single spacetree and only used for indicating elements
of the set Tt,i.

Mpi =

∑
t∈Θi

luc(τ∗t,i) / avgx∈Tt,i(luc(x))

|Θi|
− 1 (4.1)

Per timestep t ∈ Θi, the maximum deviation of the average local unrefined cells of rank i is
calculated, summed up, and then averaged over the entire time domain of load-balancing
statistic dumps.
Thereby, if a compute node only hosts spacetrees with equal numbers of lucs, a perfectly
distributed workload, the time-step-wise quotient of the maximum and average luc repeatedly
evaluates to 1, resulting in (|Θi| · 1)/|Θi| − 1 = 0, ∀ Θi as an overall perfect load-balancing
score. Otherwise, this metric yields strictly positive values for an imperfect load-balancing
scenario. The final goal of all load-balancing schemes is to minimize the metric, minT Mpi .
The values can then be interpreted as shown in the following example:

Let rank 0, e.g., host four spacetrees. After the ExaHyPE 2-specific application was
executed and post-processed, a metric value of Mp0 = 0.3 is generated. The value of
0.3 states that, on average, there is at least one of the four intra-rank spacetrees, which
has 30% more lucs than the average spacetree could have and thereby imposes 30% more
computational effort during the same time window.

4.1.2. Justification and Faulty Alternatives

The metric of Equation 4.1 has proven effective as a tool for analysis. Nonetheless, other
considerations have been initially made but proven insufficient. For example, another metric
followed first had the maximum relative deviation of the average of Equation 4.1 changed to
the maximum relative deviation to the second highest luc count of the rank. This idea was
proven faulty quickly as if there are two spacetrees that host a significantly larger share of
total lucs than the average, this metric can indicate good load-balancing if and only if the
two spacetrees have similar cell counts. Additionally, the interpretability of this metric was
bad as the information of the average luc count is lost during computation.

For the reason of missing interpretability, an absolute cell metric yielded unusable results,
too: If Mpi of Equation 4.1 yielded the total surplus cell count and had the numerator
changed to a difference instead of a quotient, the metric again loses the relation to the average
cell counts and thus becomes uninterpretable. E.g., let such a metricMpi yield 23 if the
metric describes the maximum absolute deviation of the average by subtracting the average
and not the maximum relative deviation by dividing as currently used in Equation 4.1. A
statement about this value can be made: An average of 23 additional lucs are hosted on τ∗

for each time step.
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However, the question of how well the underlying load-balancing scheme performs remains
unanswered; the value of 23 does not indicate the quality of the load-balancing used. If the
average luc count is 5000, then the used load-balancing strategy yields nearly perfect results;
otherwise, for an average of only 5, it yields results far from perfection.

Another initially promising concept was summing up all positive deviations of the average
luc count and not using only the cell count of τ∗ as an indicator. Without respecting the
intra-rank tree count, this method would lose the magnitude of how much the average is
exceeded from the single most compute-intense and thereby impactful spacetree. Thus, if
all local spacetrees are processed in parallel, the second-to-maximum or third-to-maximum
spacetree is not performance-critical. In a parallel environment, their increased computation
time regarding the average is shadowed by the heaviest spacetree’s computation time w.r.t.
the luc count.

Alternatively, if the metric considers the intra-rank tree count, the metric would distribute
the cell count of τ∗ overall spacetrees and thereby downplay the gravity of the worse-balanced
spacetree on the run-time. The multi-threaded execution for all but one thread, which works
on τ∗, may be stalling. Hence, the domain decomposed partial grid sweep performed by the
current rank is held back. However, it should be acknowledged that the stall may not be
guaranteed:
Investigate a sample scenario with one rank, four spacetrees, and two threads. The luc

distribution follows 200, 800, 500, 500 for τ0 to τ3. If thread one traverses τ0 followed
by τ1 and thread two traverses τ2 and τ3, the uneven load-balancing is accounted for by
the threading and does not impose stalling threads. To avoid situations that rely on this
probabilistic behavior, the metric of Equation 4.1 would punish such a distribution as if
there was stalling introduced by the quadruple cell count of τ0 over τ1.

4.2. Inter-Rank Metric for Comparing MPI Programs

After solving the intra-rank metric problem and moving up the MPI+X scheme, the
next task is balancing among processes. This problem adds a challenge, as the processes
run independently except for synchronization efforts realized with MPI. Thus, the final
ExaHyPE 2 log generated line-by-line by different processes interleaves the logs of all
processes. Additionally, due to the uncoupled characteristic of processes until the next
synchronization, the log lines previously used for generating the load-balancing are dated to
different timestamps among the various processes. Nonetheless, synchronization efforts after
each grid sweep of Peano 4 guarantee that no rank dumps their statistics of the succeeding
sweep before all other ranks have dumped their statistics of the current sweep. In other
words, if pi has dumped its load-balancing statistics of e.g., time step 25, Θi,25, then all
other ranks P \ pi have already dumped their load-balancing statistics of time step 24,
Θj,24 with j ̸= i∧ 0 ≤ i < |P|. As this holds for arbitrary timestamps during the simulation,
the property can be leveraged for an inter-rank metric.

4.2.1. Idea and Realization

This characteristic can be used to generate an inter-rank metric. The sum of all lucs over
all ranks is used as a baseline. We again use the concept of maximum relative deviation to
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the average, this time the average lucs per rank.

MP =

∑
t∈Θ luc(p∗t )/avgx∈Pt

(luc(x))

|Θ|
− 1 (4.2)

For this metric,MP >= 0 holds, withMP = 0 being the best possible result, a perfectly
even spread among all processes. A value of, e.g., 0.4 can be interpreted as at least one
process that hosts the maximum amount of lucs, 40% more than the average.

4.2.2. Justification and Faulty Alternatives

This metric MP works analogously to the previously developed Mpi . Note, the set of
timestamps Θ does not contain single timestamps as elements that hold for all processes,
but rather, all elements of the set are p-tuples for the number p of processes. A tuple entry j
denotes the time by which the process pj has dumped its load-balancing statistic. As these
time differences are negligible and not of further relevance, a p-tuple can be interpreted as a
global timestamp for simplicity.
Per timestamp in Θ, the metric calculates the average local unrefined cells over all processes
P and sums up all relative deviations of this average. The process-internal spread of the lucs
among possibly multiple spacetrees is neglected, as this can be analyzed with the metricMpi

of Equation 4.1. For the quality of load-balancing among processes, the total luc count per
process is relevant. As the metric works almost identical to theMpi , the faulty alternatives
are already mentioned in Subsection 4.1.2.

4.3. Additional Metric for the Quality of Internal Balancing

During the analysis of the metrics mentioned above, one problem arose. Although both
serve as a base for comparing different strategies, each one does not reveal more details
about the internal balancing than the maximum spacetree-wise or process-wise luc count.
The bottleneck effect of the maximum candidate grants the before-introduced metrics their
relevance for comparison but not for individual evaluation of load-balancings.
This behavior is problematic and can be countered using an additional well-known metric
of statistics, the standard deviation, σ. For a population of size n with mean µ and data
points xi, the standard deviation σ of the population is defined as:

σ :=

√
n−1 ·

∑n−1

i=0
(xi − µ)2

4.3.1. Intra-Rank Metric: Standard Deviation of the Average

By these means, we can leverage this metric on a local (intra-process) level to evaluate
the spread among spacetrees of a rank. Following the previous naming convention, the
metric σpi measures the intra-rank spread with σpi = 0 describing a perfect intra-rank
load-balancing. Over all time steps Θi of rank i, σpi is defined as the average standard
deviation from the timestamp-wise average local unrefined cells of rank i:

σpi :=
∑
t∈Θi

√
|Ti,t|−1 ·

∑
x∈Ti,t

(luc(x)− avgy∈Ti,t luc(y))
2 / |Θi| (4.3)
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This metric grants insight into how well a particular rank i internally balances its spacetrees
over the entire simulation time. An example of how an analogous metric works can be
examined in the following Subsection 4.3.2 and is not repeated.

4.3.2. Inter-Rank Metric: Standard Deviation of the Average

Like σpi , another metric over all ranks can be formulated. The metric σp measures the
inter-process spread with σp = 0 describing a perfect inter-rank load-balancing. Viewed over
all time steps Θ, σp is defined as the average standard deviation from the timestamp-wise
average local unrefined cells:

σp :=
∑
t∈Θ

√
|Pt|−1 ·

∑
x∈Pt

(luc(x)− avgy∈Pt
luc(y))2 / |Θ| (4.4)

This metric adds a decision criterion about the internal quality of the load-balancing, which
is not fully focused on comparability. The impact of this combined analysis can be examined
on an inter-rank analysis of three exemplary time-slices with ten processes each. In the cases
below, |Θ| = 1, i.e., there is only one timestamp, so the summation over all timestamps and
division by |Θ| are neglected. For the following list, the notation pi = c assigns process i a
number c of local unrefined cells, ignoring the internal multi-thread spacetree spread.

1. luc split: p0 = 2500, p1, p2, . . . , p8 = 1000, p9 = 0

• avg = 1050

• Max. rel. deviation =MP = 2500/1050− 1 ≈ 1.38

• σp =
√
10−1 · ((2500− 1050)2 + 8 · (1000− 1050)2 + (0− 1050)2) ≈ 567.89

2. luc split: p0 = 2500, p1, p2, . . . , p8 = 900, p9 = 800

• avg = 1050

• Max. rel. deviation =MP = 2500/1050− 1 ≈ 1.38

• σp =
√
10−1 · ((2500− 1050)2 + 8 · (900− 1050)2 + (800− 1050)2) ≈ 484.25

3. luc split: p0 = 1500, p1, p2, . . . , p5 = 1200, p6, p7, p8 = 1000, p9 = 0

• avg = 1050

• Max. rel. deviation =MP = 1500/1050 ≈ 0.43

• σp =
√
10−1 · ((1500− 1050)2 + . . .+ (0− 1050)2) ≈ 377.49

Note, the max. rel. deviation of the cases above describes the relative deviation of the
maximum luc count from the average and does not necessarily describe the maximum relative
deviation from the average. In cases 1 and 2, these yield identical results, but for case 3, the
maximum relative deviation from the average would be the deviation of p9, which has an
absolute deviation of −1050. This behavior is intentional, as in a load-balancing context,
only the wrongly balanced compute-heavy processes impose a performance bottleneck.
When viewing cases 1 and 2 from above, the preceding metricMP collapses to the maximum
relative deviation as only one timestamp is analyzed. The metric yields identical results for
both cases. Therefore, if the processes run perfectly parallel without scheduling or memory
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dependencies, they are bottlenecked by p0 = p∗ and finish the time step simultaneously.
From a user perspective, the luc spread among processes has no further impact. However,
this spread is substantial for even load distribution, equal hardware usage, and overall
evaluation of superior load-balancing schemes. The lower standard deviation σp = 484.25
indicates a better spread and thus a more dense distribution of the recorded luc spread
around the average. Case 3 is, by construction, the best, as the lower maximum relative
deviation leads to a significant reduction of sum value, although mitigated by the subsequent
application of the square root. The maximum relative deviation of case 3 already implies a
better-performing luc split. The bottlenecking luc(p0) are closer to the average luc count,
and the standard deviation from the average is significantly smaller than in cases 1 and 2.
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5.1. Description of Test Cases

In the following, the hardware specifications used for the testing are listed. As this is not a
performance test but a load-balancing test, the underlying hardware has no effect on the
result; further hardware information is spared.

• CPU: AMD EPYC 7402 @ 2.80GHz, 24 cores, 128 MiB L3 Cache.

• RAM: 256 GiB

• Storage: 512GiB NVMe PCIe Gen4 SSD

The example 3D scenario named LOH1 was chosen for the load-balancing performance audit.
LOH1 is commonly used to verify the accuracy of seismic wave propagation codes. It models
a sediment layer over a base material. The outgoing waves from a point source in the base
material propagate through the heterogeneous material. We use this real-world example
to test the load-balancing behavior for future applications. The chosen uniform cartesian
grid for the LOH1 benchmark consists of 19683 cells with a discretization order of 7. The
12 variables hosted per cell result from three time-independent material parameters and
nine additional unknowns dependent on time for simulating wave movement. The described
problem has a total of 121 million degrees of freedom. The most relevant information for
evaluating load-balancing schemes is the total number of 19683 unrefined cells, which should
be ideally balanced among all ranks and their threads.

During the testing phase, many load-balancing strategies resulted in suboptimal behavior,
even with AMR disabled. In the scope of this thesis, runs with AMR would have reduced
the interpretability of the resulting load distributions by adding high-complexity refining
and coarsening operations. As the succeeding sections will show, the runs without AMR
also give insights into strategy behavior. However, the metrics of Chapter 4 were designed
to evaluate AMR applications’ load-balancing statistics. Testing non-AMR applications
does not present the metrics’ full potential. The decision about disabling AMR was made to
facilitate linking the following load-balancing luc distributions to the algorithmic behavior
of the strategies. Testing and evaluating applications with AMR enabled are the subject
of future work. The following three test cases were run with different MPI rank and OMP
thread numbers but without adaptive mesh refinement.

Case 1: Run a single program instance without MPI with 24 OpenMP threads.
This will serve for the intra-rank load-balancing evaluation.

Case 2: Run 2 program instances (ranks) that use MPI with 12 OpenMP threads each.
The reasoning behind this is to test simple inter-rank balancing and maintain the
previously tested intra-rank load-balancing quality.
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Case 3: Run 12 program instances (ranks) that use MPI with 2 OpenMP threads each.
Last, the extreme case of balancing the load between ranks with few threads will grant
insights about the quality of inter-rank load-balancing.

After clarifying the test case parameters, all strategies are evaluated using the metrics
derived in Chapter 4. These post-processing metrics are applied to the log files after a
significant run-time. Many simulations were interrupted before finishing, as the final result
of the simulation is not relevant in the load-balancing context. The reason for this early
interruption is that many load-balancers are switched off after a specific time, so the balance
stays constant afterward. If they are not switched off, it is noted in the corresponding
subsection. After the interruption, the simulation was kept running manifold the previous
time from start to switch-off. By this approach, all further noted metrics have converged to
a value. The first test case may be analyzed to a larger extent than the second and third.
This is based on easier and more in-depth explanations for a non-MPI run.

5.2. Results of Test Cases

5.2.1. Recursive Bi-Partition

The first test case without MPI resulted in bad splitting behavior. Although 24 threads were
provided, the load-balancer only created four trees. One empty fifth tree was also created for
nine load-balancing dumps but removed again. The initial behavior seems correct; examine
the first logged local unrefined cell counts:

|T | = τ τ0 ∈ T τ1 ∈ T Total luc

1 27 27

2 27 0 27

2 27 13 40

2 378 351 729

Table 5.1.: No MPI, initial load-balancing statistic dumps.

An entry of 27 for τ0 indicates that the tree with ID 0 has 27 local unrefined cells. Recall
the recursive bi-partition’s main idea: Split trees in half repeatedly.

After τ1 was created in row 2, it received 13 cells from τ0 in row 3. From row 3 to row
4, two changes happen simultaneously to τ0: The tree transfers ownership of the 13 cells
to τ1 and afterward refines its remaining 14 cells to 14 ∗ 33 = 378 cells. The 33 stem from
the Peano curve splitting a single cell into three cells along each dimensional axis. We are
considering a three-dimensional problem, so a single cell is refined into 27 finer cells. In the
same grid sweep, the 13 new cells of τ1 are refined to 13 ∗ 33 = 351 cells. The algorithmic
behavior seems promising. However, after 30 load-balancing dumps and 19-second run-time,
the load-balancing switches off, and the final configuration is depicted in Table 5.2.

The simulation would continue to run with four trees, not exploiting all 24 but only four
threads of compute resources and hosting very imbalanced tree weights. Nevertheless, it
is worth recognizing that the progression of τ0’s to τ3’s local unrefined cells indicates a
recursively bi-partitioned splitting behavior with deviation due to being unable to split 27
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τ τ0 τ1 τ2 τ3 Total luc

4 10206 4752 3299 1426 19683

Table 5.2.: No MPI, final load-balancing statistics dump after switch-off.

cells perfectly in half. The entire behavior must not be unintended, as trees can reach a
composition where splitting off further is impossible. Objectively, the load is not balanced
well. This can easily be verified with the intra-rank metrics of Chapter 4:

Mp0 ≈ 1.074 σp0 ≈ 3267 (5.1)

The metric intra-rankMp0 with a value of more than one means that, on average, the
heaviest spacetree per timestep hosts 100% more workload than in a perfectly balanced
intra-rank situation. Note that the metric, as currently implemented, does not take non-
existent trees of a rank into account, even if the rank provides more threads for computation.
This creates a more optimistic metric. If the already optimistic metric yields unsatisfying
results, an improved metric that takes the empty threads into account will result in more
severe results. Nonetheless, for the four out of 24 threads used, we can see that τ0 is the
maximum spacetree. It hosts 10206 cells instead of the perfect average for four threads,
19683/4 ≈ 4921 cells. If we verify the metric by calculating the surplus of the maximum
over the average in percent, we receive 10206/4921 − 1 ≈ 1.074. We can only verify the
metric as it has already converged over a long run-time that allows neglecting the initial
spreading behavior of the strategy.

Advancing to the second test case, the logged load-balancing statistic dumps are alarming.
The initial splitting seems correct across the ranks but later splits exhibit unfavorable luc
counts. After 11 minutes of run-time, the recursive bi-partition strategy has been stuck in the
inter-rank distribution state for the entire time. Then, the load-balancing switches off. For
this to happen, the internal bookkeeping must repeatedly evaluate areRanksUnemployed()
of Algorithm 1 as true. The results let us conclude that the algorithm does not behave
in the intended way. The individual spacetree sets of both ranks grow continuously. This
stems from the load-balancing scheme using the getLightestRank() method to determine
the target rank for splits during inter-rank distribution. The expression can be evaluated
to the local rank ID and trigger intra-rank splits, although the state of the load-balancer
is in inter-rank distribution. The load-balancing scheme generally tries to split off cells
aggressively over and over (cf. Table 5.3).

Rank τ τ0 τ1 τ2 τ3−88 τ89 τ90 Total luc

0 91 1944 1905 1905 . . . 22 22 9864

Rank τ τ0 τ1 τ2 τ3−126 τ127 τ128 Total luc

1 129 2676 2664 1282 . . . 20 20 9819

Table 5.3.: 2 MPI ranks, 12 threads each, final load-balancing statistics dump after switch-
off.

As visible in Table 5.3, the inter-rank workload is split almost perfectly. This is based on
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the previously mentioned constant internal state of inter-rank distribution. This allows the
load-balancer to balance perfectly between the ranks, with more than 100 splits that split off
trees of weight less than 45 local unrefined cells. Then, after almost 11 minutes of run-time,
the load-balancing is switched off externally. It is not turned on again, and the spacetree
decomposition remains for the rest of the simulation. This intra-rank decomposition is
strongly uneven. The load-balancer, which remained in the intra-rank balancing state,
indicates unintended behavior. The number of splits required much run-time, and we can
evaluate the quality of load-balancing with the previously derived metrics again. First,
Equation 5.2 depicts the inter-rank metrics.

MP ≈ 0.006 σp ≈ 36.95 (5.2)

MP showcases that the inter-rank spread is almost perfect, as values closer to 0 represent
a better spread. σp is comparably small, corresponding to the almost non-existent deviation
of the total local unrefined cell count between the two cells (cf. Table 5.3). However, when
examining the intra-rank spread, Equation 5.3 displays the bad spread inside the ranks.

Mp0 ≈ 14.39 σp0 ≈ 446.4

Mp1 ≈ 29.66 σp1 ≈ 461.9
(5.3)

An intra-rank spreadMpi evaluating to 14.39 or 29.66 is severely deficient. This indicates
that on rank 1, a single tree hosts almost thirty times the perfectly averaged workload inside
rank 1. An analog conclusion can be drawn for theMp0 of approximately 14, where the
heaviest tree has a surplus workload of 14 times of the perfect average that a load-balancer
strives for. The metrics support the thesis of unsatisfactory spreads.

The third test case reveals further details about inter-rank splitting behavior. Promising
inter-rank behavior was already inferable from test case 2, but the new test case indicates
contradictory behavior to the preceding tests. In the third test case, the load-balancing
is again switched off after a short run-time of 48 seconds. The final load balance can be
viewed in Table 5.4.

After test case 3, the load-balancing results seem more practical. The split is still
far from perfect, and rank 11 is unused, but the heaviest rank, rank 3, is responsible
for 4739/19683 ≈ 24% of the total workload. A perfectly even inter-rank distribution
distribution would yield a 100%/12 ≈ 8% workload. An almost identical performance to
test case 3 could be achieved by quartering the workload perfectly with one rank and four
threads or any other composition of ranks and threads whose product yields 4. Applying
the developed inter-rank metrics on the logs of the third test case yields the values displayed
in Equation 5.4.

MP ≈ 1.934 σp ≈ 1641.80 (5.4)

TheMP of 1.9 is not as bad as in test case 2, but it is still poor. A value ofMP ∈ [0; 1]
should be a minimum goal for any inter-rank balancing. Otherwise, a single rank has at
least double the workload of the perfectly averaged balance; in our example test case nearly
triple the workload. The inter-rank standard deviation σ of 1642 also implies the uneven
spread among ranks that can be examined in the Total luc column of Table 5.4. Additionally,
the 12 intra-rank metrics computed are supporting all previous conclusions with the worst
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Rank ID
Data

τ τ0 τ1 τ2 τ3 Total luc

0 1 229 229

1 1 309 309

2 2 95 559 654

3 3 94 2094 2551 4739

4 3 1275 1030 1173 3478

5 3 871 1282 1275 3428

6 4 776 1172 1149 638 3735

7 4 508 253 405 439 1605

8 3 525 79 206 810

9 3 50 304 266 620

10 1 76 76

11 0 0

Table 5.4.: 12 MPI ranks, 2 threads each, final load-balancing statistics dump after switch-
off.

intra-rank metrics of rank 3 yieldingMp3 = 0.611, and σp3 = 1063.12. Rank 3’s heaviest
tree induces a 60% additional workload on the rank on top of the average load, and its
intra-rank deviation is huge.

In conclusion, the recursive bi-partition seems not to be feasible as a standalone load-
balancer. It is important to note that this was never the goal of the strategy, as it was
designed for later rebalancing, not initially spreading work. Its capability of distributing the
work before the rebalancing phase begins is an extension based on the targeted balancing
phase.

5.2.2. Split-Oversized-Tree

The first test case without MPI but with 24 threads resulted in no load-balancing. The
load was not balanced at all. The entire grid of 19683 cells was built in tree 0 of the single
process that runs without MPI. The repeatedly logged threads available to the program at
any time were 24, matching the configuration of Section 5.1. The load-balancing is also
switched off after 16 seconds of run-time, resulting in the worst-case load-balancing with
|T | = τ = 1 spacetree and luc(τ0) = 19683 for the entire simulation time. The results are
not further analyzed with the custom-designed metrics.

The second test case with 2 MPI ranks and 12 threads each indicated bad thread
exhaustion. The inter-rank splitting phase yielded good results, with the master tree of 27
cells employing the second rank with 13 cells. The implemented strategy passes the number
of splits to a certain rank into the triggerSplit(...) method, refer to Algorithm 6, and
then triggerSplit(...) calculates the ideal number of cells to split off the tree. In the
inter-rank distribution phase, the number of splits to a certain rank defaults to 1, so the tree
is halved. This is similar behavior to the spread-out-hierarchically inter-rank distribution
phase depicted in Algorithm 9. In the test case, the load-balancing switched off after 19
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seconds of run-time. The final spread is displayed in Table 5.5.

τ τ0 τ1 Total luc

Rank 0 2 5103 4752 9855

Rank 1 2 4725 5103 9828

Table 5.5.: 2 MPI ranks, 12 threads each, final load-balancing statistics dump after switch-
off.

The strategy again uses the accessible threads poorly. Each rank could host 12 spacetree
and sweep through them in a multi-threaded fashion. Instead, only two trees are hosted
individually, and ten free threads are wasted per rank. Nonetheless, the split-oversized-tree
strategy yields good inter-rank balance. The metrics of Equation 5.5 show the quality of the
spread.

MP ≈ 0.008 σp ≈ 35.66 (5.5)

The inter-rank metrics are easy to interpret and display that the ranks are split almost
perfectly. The generated intra-rank metrics promise deceivingly great intra-rank spreads (cf.
Equation 5.6).

Mp0 ≈ 0.035 σp0 ≈ 172.96

Mp1 ≈ 0.040 σp1 ≈ 198.22
(5.6)

This deception is based on the fact that the metric currently does not take the unused
threads into account. If, for example, the surveyed simulation had only two ranks with
two threads each available, the metrics would indicate very good balancing and would not
deceive but state the truth. Altering the metrics to avoid this behavior is a future goal.

Lastly, in the third test case of the split-oversized-tree strategy, the strategy encountered
a problem. The previously perfectly run simulation that was used for all tests terminated
after 13 seconds due to a floating point exception. For future analysis, the error produced
should be reproduced and looked into. The identical preceding setup for all tests without
mathematical errors raised leads to the suspicion that the load-balancer may perform the
exception-raising calculation. Therefore, further load-balancing spread evaluations are
omitted as the run-time is too short to draw conclusions. Additionally, the load-balancing
has not switched off yet, so conclusions can yield wrong positive or negative impressions.
The raised exception should be analyzed and circumvented before using this strategy on
loads.

5.2.3. Spread-Out

The spread-out strategy yielded great results in the first test case using only 24 threads and
a single process. As the initial space domain is first subdivided into 33 = 27 cells, these are
immediately spread across all 24 threads. This results in τ0, τ4−23 receiving one and τ1,2,3
receiving two cells each. The trees with two cells each account for the division of 27 by
24 with the remainder of 3. The remainder is spread among the first three trees that the
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load-balancer spreads to. This algorithmic behavior that respects the remainder was pointed
to in a comment in lines 16 and 17 of Algorithm 7: // omitted: modify thisTreeCells

for an imperfectly even spread, [...].
Afterward, the strategy does not act any further as the cells are perfectly spread. They

then refine to the maximum refinement level and yield the following intra-rank distribution
(cf. Table 5.6).

τ τ0,4,5,...,23 τ1,2,3 Total luc

24 729 1458 19683

Table 5.6.: No MPI, final load-balancing statistics dump after switch-off.

Note, the entries in this notation denote that each of the trees listed in the line above
has an identical amount of cells. The entries do not denote the summed lucs of all tree IDs
listed above. The reason why spread-out already decided to split when only having 27 cells
in the source tree is explained in Subsection 3.3.5, as it is based on the single condition that
spread-out uses which spread-out-once-grid-stagnates does not.
To recapitulate the spread-out strategy, it distributes load even if the grid has not been

stationary for more than three grid sweeps. This only happens when the source spacetree
can supply the required number of trees with a minimum tree size. As the minimum tree
size was not explicitly set in the initial configuration of the tests, it defaulted to 1 during
internal computations of the strategy. The 27 cells supplied are more than the 24 needed to
distribute the work successfully.
This behavior may not be ideal in this case, but providing a minimum tree size of 2

would have already led to a postponement of the distribution until the next, in our test
case second to last, refinement took place so the distribution results would improve due to
a finer spacetree decomposition. The perfect balance after waiting for the grid to be fully
constructed can also be examined in Subsection 5.2.5, where the condition leading to the
earlier distribution of spread-out is not part of the spread-out-once-grid-stagnates strategy.
Applying the metrics of Chapter 4 yields the metrics that can be inspected in Equation 5.7.

Mp0 ≈ 0.797 σp0 ≈ 240.29 (5.7)

The inter-rank metricMp0 of the single program instance that was run showcases that
each of the three trees τ1,2,3 induces an additional 80% workload in between load-balancing
updates. This stems from the already mentioned remainder of the division and can only
circumvented by increasing the minimum tree size. The standard deviation metric implies a
rather dense distribution around the average.

The results of the first test case are reproduced in the second test case with 2 MPI ranks
and 12 threads. The previous 24 spacetrees of one rank are now spread onto the two available
ranks. The load-balancing is switched off after 4 seconds of run-time, and the exact cell
distribution can be examined in Table 5.7.

The distribution, respecting algorithmic decision-making, seems perfect once again. The
τ1−3 have increased cell counts for the same reminder wrap-around behavior pointed out
before for test-case one. The metrics can be inspected in Equation 5.8.

MP ≈ 0.113 σp ≈ 1088.69 (5.8)
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Rank ID τ τ0 τ1 τ2 τ3 τ4−11 Total luc

0 12 729 1458 1458 1458 729 10935

1 12 729 729 729 729 729 8748

Table 5.7.: 2 MPI ranks, 12 threads each, final load-balancing statistics dump after switch-
off.

The metrics yield good results, with only an 11% average relative deviation from the
average cell count. The standard deviation is comparably large but does not add significant
insight in the case of only two ranks. The spread across only two ranks can be judged with
MP as well.

When examining the results of the final test case, the execution does not run smoothly. In
the first second of run-time, the entire logging halts. Then, after 1 hour of not logging, the
program terminates with an MPI error message because rank 8 invoked an MPI abort after
waiting for an MPI reduce() call to return. The final retrievable load-balancing distribution
is summarized in Table 5.8.

Data
Rank ID

0 1 2,. . . ,11

τ 2 2 2

τ0 27 54 27

τ1 54 54 27

Total luc 81 108 54

Table 5.8.: 12 MPI ranks, 2 threads each, final load-balancing statistics dump after switch-
off.

This distribution was reached within the first second of the simulation and does not
represent the inter-rank quality achieved by this strategy. In the few logs generated, the
load-balancing has not been switched off yet, and the cells must still be refined further to
meet the cell count of the fully refined grid. Revision of this test case and looking into the
unwanted MPI timeout is a future goal, as this strategy yielded perfect initial distribution if
it is tuned with the minimum tree size.

5.2.4. Spread-Out-Hierarchically

In this subsection, the next strategy is evaluated. To recapitulate, the unique behavior of
this strategy was to let the master rank only deploy one tree to each rank and successively
let the ranks themselves split the tree into the desired tree count per rank. In the first test
case without MPI and with 24 threads, this behavior should equal the spread-out behavior
of Subsection 5.2.3. After confirming the splits, the sequence of splitting and refinements
yielded an identical distribution to the spread-out strategy. The metrics and tree splits are
not repeated; review Subsection 5.2.3 for the first test case results.

The second test case used 2 ranks and 12 threads per rank. First, the master-rank tree
should be split in half, and the half should then be deployed to the second rank. After this,
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both ranks should simultaneously refine their cells and split them to each thread. When
reviewing the logged splits, we can examine the described behavior. First, τ0 of rank 0 has
27 cells. Then, it splits off 14 cells to τ0 of rank 1. Afterward, both trees fully refine the
cells of the single spacetree they host and finally split them across their threads. The final
spread after turning off the load-balancing can be examined in Table 5.9.

Rank τ τ0,10,11 τ1−9 Total luc

0 12 850 851 9477

Rank τ τ0,7−11 τ1−6 Total luc

1 12 789 790 10206

Table 5.9.: 2 MPI ranks, 12 threads each, final load-balancing statistics dump after switch-
off.

The inter-rank distribution is good, but the intra-rank distribution is perfect. The
inter-rank distribution can be measured withMP of Equation 5.9.

MP ≈ 0.038 σp ≈ 364.01 (5.9)

MP of almost 0.04 showcases that ranks 0 and 1 have total cell counts that differ from
the average by only 4% of the average. This is an indication of a very good split. The σp is
adequately small as deviating 4% from the average equals an absolute cell count of 394 cells.
The σp value of less than 394 matches the inter-rank metric. Additionally, Equation 5.10
showcases the perfect intra-rank spreads of both ranks individually.

Mp0 ≈ 0.005 σp0 ≈ 1.95

Mp1 ≈ 0.006 σp1 ≈ 2.14
(5.10)

Nothing can be added to these scores, spread-out-hierarchically performed perfectly in
the intra-rank distribution.

The third test case with 12 ranks and 2 threads per rank is a prime example of how well
a load-balancing strategy can work in the distribution phase. After 6 seconds run-time, the
load-balancing was switched off, and the last statistics dumps resulted in the distribution
that can be examined in Table 5.10

τ τ0 τ1 Total luc

Rank 0, 4-11 2 729 729 1458

Rank 1, 2, 3 2 1093 1094 2187

Table 5.10.: 12 MPI ranks, 2 threads each, final load-balancing statistics dump after switch-
off

With this strategy, most ranks received one tree with two cells of the master ranks’ 27
cells first. As 27 is not perfectly divisible by 12, the rank count, the remainder of three is
again distributed to three of the 2-cell trees. These are the initial trees of rank 1-3. Then,
the trees are refined and split perfectly across the threads. The metric score only suffers
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from the three initial cells that had to be further distributed. The intra-rank metrics for
this strategy can be examined in Equation 5.11.

MP ≈ 0.354 σp ≈ 315.01 (5.11)

Even though the strategy acted perfectly, a workload increased by 35% over the perfect
inter-rank average is induced by one of the trees τ0,10,11. The strategy could have only acted
better if a minimum tree size of 3 was set so that the initial 27 cells would not have sufficed
to deploy 12 trees to ranks with a tree size greater than 3. Intra-rank metrics are omitted
as they are extremely close to 0, and the intra-rank distribution is perfect.
In conclusion, the spread-out-hierarchically strategy has the potential to perform very

well if the minimum tree size is tuned. Even without tuning, the results were promising for
future experiments and development that can build on this strategy.

5.2.5. Spread-Out-Once-Grid-Stagnates

Last of all standalone load-balancers, the spread-out-once-grid-stagnates strategy is tested.
To recapitulate, the strategy spreads if and only if the grid was stationary for more than
three load-balancing updates and should theoretically achieve overall better results than
the spread-out strategy tested in Subsection 5.2.3. On the first test case without MPI but
with 24 threads, the strategy yielded a distribution close to perfection after 27 seconds and
switching the load-balancing off (cf. Table 5.11).

τ τ0 τ1−23 Total luc

24 823 820 19683

Table 5.11.: No MPI, final load-balancing statistics dump after switch-off.

The metrics for this case are spared as they will again show values close to 0 and do not
reveal any more insights.
The second test case that uses 2 MPI ranks and 12 threads per rank again yielded great
results. The final distribution after 28 seconds and switching off the load-balancing is
displayed in Table 5.12.

τ τ0 τ1−11 Total luc

Rank 0 12 823 820 9843

Rank 1 12 820 820 9840

Table 5.12.: No MPI, final load-balancing statistics dump after switch-off.

The results are perfect. These perfect results are only possible as the entire grid of 19683
cells is built in the initial spacetree of master-rank 0. Afterward, it is perfectly decomposed in
one giant effort. A problem that is later addressed further is the scalability of this approach.
The metrics are spared for the reason that this distribution is perfect.

The third test case with 12 ranks and 2 threads per rank yielded perfect results again.
The grid was fully built on the single tree of the master rank and then split equally across all
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ranks. The resulting split after 26 seconds of run-time and switching off the load-balancer
are displayed in Table 5.13.

τ τ0 τ1 Total luc

Rank 0 12 823 820 1643

Rank 1-11 12 820 820 1640

Table 5.13.: No MPI, final load-balancing statistics dump after switch-off.

The metrics are again omitted as the spread is perfect. In conclusion, the strategy
achieved the highest scores across all tests. However, this comes with a large drawback. The
construction of the entire grid in a singular spacetree of rank 0 does not use all available
compute resources. It is constructed in a serial fashion. This approach is not viable when
building grids for exascale simulations. The grid construction for significantly finer resolved
grids takes too much time as the total grid cell count grows exponentially following the
formula (33)l = 27l for each further refinement level l. Therefore, serial grid construction
is impossible. During extensive testing, this scalability problem arose quickly. Even if this
strategy yields perfect results for comparably small grids, it lacks parallelism.

5.2.6. Cascade: Spread-Out into Recursive Bi-Partition

The first cascading strategy uses a combination of spread-out and recursive bi-partition. In
the first test case without MPI, the initial spread-out strategy balanced the work identically
to Table 5.6. The switch from spread-out to recursive bi-partition is also logged, but the
three heavy-weight trees are not split further by the recursive bi-partition strategy. Then,
the load-balancing is switched off. Thus, in the tested case, the results do not differ from
the first test case of the spread-out strategy.

In the second and third test cases, unintended behavior prevents assessing load-balancing
results. The logging again stops within the first second of run-time, and in both test cases,
an MPI abort error intentionally raised by a rank causes the simulation to halt after 1
hour of tracked deadlocking. This repeated MPI deadlocking behavior suggests a flaw in
the load-balancer’s explicit inter-rank communication where, e.g., global cell counts are
exchanged.

The spread-out and recursive bi-partition interaction seems to let the error occur more
frequently. Nonetheless, the MPI abort was also caused by the standalone spread-out test
with 12 ranks and 2 threads (cf. Subsection 5.2.3). In conclusion, the cascading of spread-out
and recursive bi-partition currently yields unsatisfying, unavailable load-balancing results.

5.2.7. Cascade: Spread-Out into Split-Oversized-Tree

The first test case for this strategy again resulted in promising results, although creating
more trees than threads available. Initially, spread-out spreads the work identical to the
distribution displayed in Table 5.6. Three trees host twice as many cells as the other trees.
Then, after spread-out switches into stagnation, the successor split-oversized-tree is activated.
It tries to rebalance early, during the phase where the initial split-off trees of spread-out
have not been refined yet. Thus, the three oversized trees with two lucs in comparison to
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the others with one luc are detected as oversized trees. The strategy creates three additional
trees on the rank, τ24,25,26. Initially, they could not be filled with cells and were removed
from the spacetree set after six load-balancing iterations. Then, after the 24 spread-out
trees have refined to the maximum, the three oversized trees that host 1458 cells each are
split in half and deployed to a new tree. This time, the splitting process succeeds, and
the strategy achieves a split where each of the 27 spacetrees hosts 729 cells. It’s a perfect
spread. However, creating a slight excess of trees on a local node exceeds the true parallel
capabilities of the node and does not improve performance. The excess requires the three
extra trees to wait until the traversals of three other trees have finished. The load-balancing
is switched off afterward, and the 27 trees persist for the rest of the simulation. Metrics are
omitted as they would indicate perfect load-balancing, neglecting the overloaded threading
parallel capabilities. As mentioned, reworking the metrics’ behavior to consider the thread
count is a future goal but is out of the scope of this thesis.
The second test case with 2 ranks and 12 threads per rank yielded identical results to

Subsection 5.2.3. The final distribution after the load-balancing was switched off persists. The
logs indicate that split-oversized-tree tried to split off the oversized trees but failed repeatedly.
Additionally, the secondary strategy seems to be stuck in the inter-rank-distribution state,
although all 12 trees on both ranks are fully employed due to the efforts of the primary
strategy. This suboptimal behavior demands further investigation. The spread-out’s second
test-case metrics equal those of Equation 5.8 and Equation 5.10.

Finally, the third test case resulted in an MPI error once again. Multiple ranks wait for an
MPI reduce(), and the simulation terminates after 1 hour of deadlocking. Logs were only
printed during the first second of run-time; no conclusion regarding the workload distribution
behavior can be drawn. The error seems to occur mostly on MPI-heavy runs. As the error
also occurred during the test of the standalone spread-out strategy, the cascading mustn’t
be the root of the deadlock. In conclusion, the cascade of spread-out and split-oversized-tree
yielded no improvement and provoked an MPI error. This error seems to hold back multiple
strategies that use spread-out as a primary strategy. The error’s root should be located in
the spread-out inter-rank communication.
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This last chapter serves as an overview of the knowledge gained from analyzing the different
strategies, evaluating them based on the custom metrics, and testing them under identical
conditions to achieve comparability. While recursive bi-partition and split-oversized-tree
employ a splitting strategy that triggers top-down splits, the spread-out strategy and its
variants use a bottom-up splitting scheme. The top-down splitting is practical if the accuracy
is not too important, e.g., in later splitting in a single rank after a good inter-rank distribution
has already been achieved. The bottom-up splitting, while achieving great results of equal cell
counts in test cases, is useful for initial splitting. While the spread-out-once-grid-stagnates
strategy performed well in the tests documented in this thesis, it does not allow scaling.

When referring to all strategies, the spread-out and its cascades can yield MPI deadlocks
due to buffer overflows. Additionally, the split-oversized-tree strategy resulted in an arith-
metic exception. The last strategy left is the recursive bi-partition. Recursive bi-partition
could not fill all trees in the non-MPI run and created over 200 trees in the 2-rank scenario.
In the 12-rank scenario, the recursive bi-partition left ranks – and some of their threads –
unfilled.

Currently, all load-balancing strategies available to Peano 4, except for the spread-out
hierarchical strategy, yield unsatisfying results if the grid is scaled up. The spread-out-
hierarchically strategy scored great results in the test case with 2 ranks and 12 threads per
rank and scored reasonably well in the extreme intra-rank and inter-rank test cases. Its
hierarchical approach uses available compute resources early during grid construction but
not from the very start of a simulation. Noteworthy, the spread-out family of load-balancing
strategies only distributes initial work and is incapable of AMR-induced necessary run-time
rebalancing.

A cascading strategy seems most promising for future approaches to balance loads of Peano
4 or, more generally, any tree-based adaptive mesh refinement software. The spread-out-
hierarchically strategy yielded great results for initial workload distribution and parallelizes
early grid construction. Afterward, the most promising is a working cascade that switches
to a strategy that uses top-down split instructions.

We used the LOH1 scenario as a prime example for the simulated runs, but other applica-
tions may result in different load-balancing strategies performing better. The application-wise
analysis is recommended. An MPI tracing library like Score-P [12] could prove useful for
investigating the MPI errors. After the load-balancing code has been reviewed and the
errors regarding the MPI and the floating point operation are fixed, starting test runs and
using the developed metrics to analyze imbalances across ranks or in ranks before running
production code is highly recommended. For this, the metric has to be slightly altered to
take maximum thread counts per rank into account.

The metrics that were provided in Chapter 4 have not been used to the fullest in the
course of this thesis. Their potential exceeds the analysis of converged load-balancing
distributions. Due to the analysis of test cases with static mesh refinement at the beginning
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of the simulation, the metrics’ adapting dynamic properties were not showcased. The metrics
can yield insights into balancing behavior over all ranks for the entire run-time.
Additionally, a self-developed functionality not used in the thesis but implemented for

load-balancing analysis of AMR simulations is the plotting of local (and remote) unrefined
cells over run-time, which can visually convey how the workload shifts in a rank. This feature
will also be useful for future load-balancing analysis but was not useful for examining the
load-balancing of the test cases with static mesh refinement (cf. Chapter 5). This generated
final graphic depicts the local unrefined cells of the single rank 0 in the first, non-MPI, run.
Figure 6.1 is focused on the first 12 load-balancing steps, but these graphics can be plotted
for an arbitrary temporal scope or the entire run-time. The distance from the blue dots to
the red average line give an impression of density around or spread from the average.
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Figure 6.1.: The first 12 load-balancing dumps of the single rank in the non-MPI test case
of recursive bi-partition visualized. The red line depicts the average of the
timestamp, and the blue scatter points are the local unrefined cells of individual
trees per timestep.
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A.1. Inconsistencies of the Source Code with Strategy Behavior

During the Peano 4 source code analysis, two code locations seem to implement unintended
behavior. These are noted here and should be investigated in the future.

First, the interaction of recursive bi-partition and split-oversized-tree with their super-class
AbstractLoadBalancing while querying information about the heaviest spacetree allows
ambiguity. Refer to the following two code segments, Listing A.1 and Listing A.2:

1 void too lbox : : l oadba lanc ing : : s t r a t e g i e s : : Sp l i tOver s i z edTree : :
updateLoadBalancing ( ) {

2
3 switch ( s t a t e ) {
4 case State : : In te rRankDis t r ibut ion : {
5 int heav i e s tSpace t r e e = get IdOfHeav i e s tLoca lSpace t ree ( c on f i gu r a t i on−>

getWorstCaseBalancingRatio ( s t a t e ) ) ;
6 double weightOfHeavies tSpacetree = getWeightOfHeaviestLoca lSpacetree ( ) ;
7 //Further l o g i c based on the two va r i ab l e s , omitted
8 } break ;
9 //Further switch−ca s e s omitted
10 }
11 }

Listing A.1: Split-oversized-tree or recursive bi-partiton retrieve the ID and weight of possibly
different heaviest spacetrees

In this code segment, the ID of the heaviest spacetree w.r.t. a certain tolerance is retrieved
in line 5. In the next function call in line 6, the weight of the heaviest spacetree is retrieved.
The problematic behavior is nested inside the call of line 6, responsible for the weight of the
heaviest spacetree. For getIdOfHeaviestLocalSpacetree(), refer to Listing A.2.

1 double too lbox : : l oadba lanc ing : : AbstractLoadBalancing : :
getWeightOfHeaviestLoca lSpacetree ( ) const {

2 const int heav i e s tSpace t r e e = get IdOfHeav i e s tLoca lSpacet ree ( ) ;
3 return heav i e s tSpace t r e e == NoHeaviestTreeAvai lable ? −1 : co s tMet r i c s−>

getCostOfLocalTree ( heav i e s tSpace t r e e ) ;
4 }

Listing A.2: The weight of the unique haviest spacetree is evaluated

In this source code, the second line also retrieves the ID of the heaviest local spacetree
and uses it to determine the weight. However, this weight is not taken from a spacetree
within a tolerance under the heaviest spacetree, but from the single heaviest spacetree of the
rank. Then, the weight is returned. This results in a possible scenario where the heaviest
spacetree ID w.r.t. the tolerance determined in Listing A.1 is not linked to the weight that
is returned from the true heaviest spacetree of the rank (cf. Listing A.2). The weight of
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the true heaviest tree is used to further calculate how many cells are split off a tree with a
possibly different ID. This is unintended.
Second, the split-oversized-tree strategy seems to restrict the number of off-splits to a

potential remote rank by the current ranks free space tree slots. The computeNumberOfS-

plits function is invoked during intra-rank but also inter-rank splitting decisions. Refer to
Listing A.3, a direct excerpt from the Peano 4 source code, to trace the behavior.

1 int too lbox : : l oadba lanc ing : : s t r a t e g i e s : : Sp l i tOver s i z edTree : :
computeNumberOfSplits ( int sourceTree ) const {

2 int numberOfSplits = static cast<int>( co s tMet r i c s−>getCostOfLocalTree (
sourceTree ) / getTargetTreeCost ( ) ) − 1 ;

3
4 numberOfSplits = std : : max(1 , numberOfSplits ) ;
5 numberOfSplits = std : : min (
6 numberOfSplits ,
7 c on f i gu r a t i on−>getMaxLocalTreesPerRank ( s t a t e )
8 − static cast<int>(peano4 : : p a r a l l e l : : Spacet reeSet : : g e t In s tance ( ) .

g e tLoca lSpace t r e e s ( ) . s i z e ( ) )
9 ) ;
10
11 int cur r entSourceTreeCe l l s = peano4 : : p a r a l l e l : : Spacet reeSet : : g e t In s tance ( )
12 . g e tG r i d S t a t i s t i c s ( sourceTree )
13 . getNumberOfLocalUnref inedCel ls ( ) ;
14
15 while ( cur r entSourceTreeCe l l s / ( numberOfSplits + 1) < c on f i gu r a t i on−>

getMinTreeSize ( s t a t e ) and numberOfSplits > 0)
16 {
17 numberOfSplits−−;
18 }
19
20 return numberOfSplits ;
21 }

Listing A.3: Split-oversized-tree computes the number of trees that shall be split off.

In lines 5 to 9, the minimum is taken from the previous number of splits and the remaining
slots from the current rank’s spacetree set, l. 8. In summary, the number of splits to a
remote rank should not depend on the locally available slots of the spacetree set.
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A.2. Parameters for Configuring ExaHyPE

For reproducing the results, the configuration for Peano 4 and ExaSeis, an application of
the ExaHyPE 2 framework, are provided:

Peano 4 configuration:
python3 configure.py -cc=gcc -cxx=g++ --exahype

--multithreading=omp --mpi=mpicxx --cmake=CMAKE

ExaSeis configuration:
python3 exaseis.py -s ADERDGRusanovGlobalAdaptive --min-levels 3

--amr-levels 0 --dg-order 7 -pi 0

-lb <load-balancing>

The <load-balancing> was replaced with the strategy of the according subsections (cf.
Section 5.2).
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