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Abstract

In the transportation system of developed countries, there is a large stock of bridges

requiring substantial attention for long-term operation. Digital Twins (DTs) provide a

promising solution for the maintenance and operation of bridges, thanks to their ability

to mirror physical/structural conditions. A bridge DT generally consists of a geometric-

semantic model whose creation, however, requires extensive manual e↵ort. Photogram-

metry and Laser Scanning are two primary geodetic techniques that can capture bridges’

geometric status, leading to Point Cloud Data (PCD). Point clouds are sparse represen-

tations of real-world objects and do not inherently convey surface characteristics or

geometry. To recognize the underlying geometry and provide a volumetric representa-

tion, they need to be abstracted and reconstructed properly. In current practice, the

geometric digital twinning of bridges from their point clouds is conducted manually, thus

increasing the costs associated with model creation. To benefit from the advantages of

bridge DTs, the costs associated with the digital twinning of bridges must be decreased.

This research aims to automate the geometric digital twinning process of bridges from

their PCD using Artificial Intelligence (AI) techniques and optimization algorithms.

The process of geometric digital twinning consists of two major steps known as semantic

segmentation and model reconstruction. This thesis proposes two modules automating

each part. The first module addresses the automated semantic segmentation of bridge

PCD by proposing a novel Deep Learning (DL) architecture, coined a Multiscale Spa-

tial Feature Descriptor Network (MSFD-Net). This model encodes the global, local,

and relative features of points and decodes these features in various scales to determine

the class label of points. MSFD-Net is tested using the PCD of ten bridges located in

Bavaria, Germany, to segment the bridges’ entire point cloud into partial point clouds

belonging to four classes, namely Background, Railing, Deck, and Abutment. The results

of applying MSFD-Net demonstrate an Overall Accuracy (OA) of 96.97 % and a mean

Intersection over Union (mIoU) of 91.57 %. To automate the second part, parametric

modeling is selected as a solid modeling approach to create the 3D geometric model of

bridges from their segmented PCD. Following the concept of reverse engineering with
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Abstract

parametric modeling, Parametric Prototype Models (PPMs) are proposed as tools to

extract parameter values from point clouds. A local and global optimization problem

is defined to adjust and assemble PPMs into an integrated model. These optimization

problems are further augmented by new definitions to address point clouds with a large

amount of occlusion. The proposed approach is validated by applying it to the segmented

point cloud of ten single-span RC bridges as well as more complicated geometries that

exist in multi-span bridges. The results show that the proposed approach can generate

the parametric model of bridges with a Mean Absolute Error (MAE) of 8.43 cm. The

prospective benefit of this approach for end-users is the massive reduction in modeling

time and prevention of unwanted errors that commonly occur in practice.
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1 Introduction

This thesis aims to automate the geometric digital twinning process of existing bridges

from Point Cloud Data (PCD) by Artificial Intelligence (AI) techniques and optimization

algorithms. To this end, the author initially breaks down the title into its constituent

elements, o↵ering brief definitions for each component. These components are further

covered in this chapter more comprehensively. This approach ensures that the reader

gains a clear and accurate comprehension of the primary objectives of the research.

Digital twin modeling of...

The author defines a Digital Twin (DT) as a digital replica capable of simulating and

representing a physical object within a digital environment. A DT must stay connected

to the physical object to handle bidirectional updates; otherwise, this concept down-

grades to a digital model at a lower integration level. The frequency of these updates,

however, can be di↵erent depending on the requirements of the physical object and DT.

This thesis only addresses the geometric modeling process of DTs, not other sections,

such as modeling metadata and attachment of other semantics, such as reinforcement

details or flawed/defective areas. Thus, the main objective of this research is to generate

a Digital Twin (DT) that stays geometrically connected to the physical object and can

communicate properly.

...existing bridges...

In the scope of this thesis, bridges are considered the object/asset of interest for dig-

ital twinning. The author addresses the core concepts and definitions of DTs in the

following sections and sheds light on the necessity of using DTs in the Architecture,

Engineering, Construction, Operations, and Management (AECOM) industry. Further-

more, the author describes bridge DTs and elaborates on their potential advantages,

especially in the Operation and Maintenace (O&M) phase of bridges. This research
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1 Introduction

focuses on the existing bridges that are already available in the transportation network

of countries, more specifically, single-span Reinforced Concrete (RC) bridges, as they

constitute a large number of existing bridges across developed countries. Furthermore,

the current geometric status of the bridge (post-construction) is targeted, i.e., the as-is

or as-built status, not as-designed. Data acquisition techniques such as laser scanning

and photogrammetry can be employed to capture the current geometric status of exist-

ing bridges. Both methods lead to the bridge Point Cloud Data (PCD) that will be the

main data source used in this research to create the bridge DT. Thus, this thesis aims

to automate the geometric digital twinning of existing bridges from their PCD.

...using optimization algorithms and artificial intelligence techniques.

PCD of bridges must be processed and enriched further for generating an e�cient

geometric DT containing geometric details such as dimensions and volumes. The terms

optimization algorithms and AI techniques forming part of the title are the methods

employed to automate the geometric modeling process of bridges from PCD. Optimiza-

tion algorithms are practical in geometric modeling from PCD, systematically organizing

and enhancing the data to accurately represent the bridge’s geometry. These algorithms

streamline the extraction of relevant geometric features, such as the dimension of the

bridge components and their spatial dependency. Simultaneously, integrating AI tech-

niques brings a higher level of automation to the geometric modeling process. Machine

learning (ML) algorithms can detect patterns within the PCD, learning from diverse

datasets to recognize and categorize various bridge elements. This ability to automati-

cally identify and interpret structural components facilitates the creation of the bridge

DT model.

This chapter briefly introduces the requirements, challenges, and hypotheses in cre-

ating a bridge DT and proposes a method to automate the digital twinning process of

existing bridges. This concise thesis representation aims to familiarize readers with the

problem at hand and its proposed solution. The following chapters will further elaborate

on these concepts, ensuring a thorough comprehension encompassing all relevant details.

1.1 Requirements

The fundamental premise of the thesis is that a geometric-semantic model forms the

core of a bridge DT. This model is presented in a 3D digital environment where the

volumetric body of bridge elements can be observed, measured, and enriched with meta-

2



1.2 Challenges

data collected from the structure. It can represent the current status of the bridge and

the spatial relationship between bridge elements. It can also be connected to Internet of

Things (IoT) devices, be enriched with semantic information, and communicate with the

existing Bridge Management Systems (BMS). These features enable bridge DTs to act

as an e�cient platform, especially in the O&M phase of bridges where the conventional

methods cannot solely cover the large number of existing bridges.

In the development of the geometric-semantic model for the bridge DT, it is required

to ensure an accurate representation of geometric parameters. A mere geometric demon-

stration, without precisely defined parameters, may compromise the practical e�ciency

of the DT. An ideal geometric bridge DT must be represented with a finite number of

parameters controlling the bridge dimensions. This representation links the bridge DT

to the actual bridge for accepting geometric updates and reporting geometric measure-

ments, i.e. geometric imports and exports. This abstract representation also ensures

that the model has been designed logically following the bridge engineering require-

ments governing the bridge design. Thus, injecting/integrating the bridge engineering

concepts in generating the bridge geometric model can be expressed as one of the primary

requirements in creating a practical bridge DT.

In addition to accurately defining parameters, it is crucial to determine their values

precisely. A bridge DT might be similar in shape or type to the physical bridge; however,

it may still require thorough attention to ensure that the assigned parameter values

are precise. Any inaccuracies in determining these values can impede the practical

application of the DT, hindering its e↵ectiveness in mirroring the actual bridge and

potentially leading to inaccurate assessments and decision-making. Furthermore, the

parameters and values obtained from each bridge element must be aligned with their

neighboring elements to generate the integrated/assembled 3D model required for a

bridge DT. Otherwise, the precise piece-wise definition of each bridge element in terms

of parameters and values might not be accurate for the entire bridge.

1.2 Challenges

The maintenance process of bridges can be supported with DTs; however, the manual

creation of the required model for digital twinning is not only costly but also error-prone.

Currently, the costs associated with creating bridge DTs outweigh the short-run benefits

of the model. Hence, transportation authorities rely primarily on conventional man-

agement systems, which might lack the comprehensive insights necessary for e�cient

O&M of bridges. To bridge this gap, there’s a critical need for advancements in automa-
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1 Introduction

tion technologies that streamline the generation of digital twin models. By leveraging

cutting-edge techniques such as Machine Learning (ML), Artificial Intelligence (AI), and

advanced data processing algorithms, the process of creating and updating DTs can be-

come more cost-e↵ective, accurate, and scalable. Automation promises to reduce the

manual e↵ort involved in model creation, thereby mitigating the financial burden and

improving the accessibility of DT technology for bridge management. Cost-e↵ective and

automated methods for digital twinning provide invaluable insights, fostering proactive

maintenance strategies and ensuring the long-term sustainability and safety of bridges

in civil infrastructure networks.

To benefit from the potential advantages of bridge DTs, the cost associated with

modeling must be decreased to a large extent. Semantic segmentation and model recon-

struction are two essential yet costly steps in the geometric digital twinning of bridges.

Following the requirements and specifications of a geometric DT, it needs to be capa-

ble of receiving and handling geometric updates to stay geometrically connected to the

physical asset. Among the existing solid modeling approaches, parametric modeling

provides an access point through which geometric updates can be handled e�ciently.

Despite the advantages of parametric modeling in dynamic shape updating, this ap-

proach is expensive and also requires much manual e↵ort to define geometric constraints

and parametric dependencies among components. This further intensifies the modeling

expenses associated with bridge DTs.

Considering the aforementioned cases, the geometric digital twinning problem of bridges

can be broken down into two subproblems, including semantic segmentation and para-

metric modeling. Semantic segmentation is the initial step in geometric digital twinning,

where the input point cloud is divided into the point cloud of bridge elements. This step

distinguishes the points belonging to the bridge structure and determines the type of

bridge elements. Through semantic segmentation, the initial problem is simplified from

the entire bridge point cloud to the point cloud of bridge components.

Parametric modeling is the next step, addressing the modeling process of bridge com-

ponents from their segmented point clouds. The resulting model from this approach must

be parametric, meaning that the volumetric models should be capable of updating their

shapes depending on the input value of parameters. They must also contain geometric

constraints to control the object geometry while being updated. These models should

also incorporate the parametric dependencies among the bridge components to generate

a consistent and coherent bridge model. Most importantly, the bridge components must

be described with a finite number of parameters, each controlling a dimension.
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The high complexity arising from these models limits the scalability and practical

application in digital environments. This complexity can limit the seamless integration

of digital twinning processes where adaptable models are necessary. Aside from the re-

quirements addressing an ideal bridge DT, the challenges concerning the input dataset

also need to be considered. PCD is an unstructured dataset without an underlying grid

as in images. It often exhibits occlusion and clutter due to various factors. Limitations

in sensor capabilities, like a restricted field of view or resolution, lead to incomplete data

capture when objects block the sensor’s view. Furthermore, areas with low light condi-

tions, such as beneath the bridge deck, pose challenges for photogrammetry, resulting

in substantial occlusion. Additionally, complex environments, such as dense vegetation

around bridges, can result in clutter within point clouds.

1.3 Hypotheses

The thesis considers the following key hypotheses:

Hypothesis 1: The O&M of bridges can be more e↵ectively supported by DTs than

by conventional management approaches.

Hypothesis 2: Point clouds captured through laser-scanning or photogrammetry

are a suitable basis for creating semantically rich DTs of existing bridges.

Hypothesis 3: Deep neural networks allow the robust segmentation of a bridge

point cloud into subsets representing individual bridge components.

Hypothesis 4: A significant number of existing bridges fall into similar classes and

can be represented by highly parametrized bridge models.

Hypothesis 5: With the help of metaheuristic optimization approaches, pre-defined

parametric model components can be fit into the respective point cloud segments.

Hypothesis 6: Using highly parametrized overall bridge models ensures the geo-

metrically and semantically coherent creation of the DT models of existing bridges.

These hypotheses contribute to a research methodology, guiding meaningful insights

into the geometric digital twinning of bridges.

5
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1.4 Proposed Solution

This thesis aims to address the aforementioned challenges by proposing an automated

method for geometrically digital twinning of bridges. Figure 1.1 illustrates the research

method designed to transform raw bridge PCD into the parametric model of the entire

bridge structure. It consists of two major and a minor/auxiliary module emphasizing

semantic segmentation of bridge point clouds and subsequent parametric modeling using

the segmented point clouds resulting from the previous module.

The first module focuses on the semantic segmentation task. Considering the robust

performance of Deep Learning (DL) models, their adaptability/flexibility, and less de-

pendency on tuning problem-specific thresholds (after training), a Multiscale Spatial

Feature Descriptor (MSFD-Net) is proposed that can semantically segment the input

raw bridge point clouds into the point cloud of bridge elements. MSFD-Net is designed

to capture three sets of features, including local, global, and relative features, and em-

ploy them in classifying points. Global features of points are defined individually in the

3D space. They are features such as (x, y, z) coordinates of points and RGB color codes

that are defined for each point separately. The local features, however, are calculated

considering the local neighborhood of points. These features generally provide infor-

mation about the underlying surface that points represent in their local neighborhoods.

Relative features also describe the pair-wise dependencies among points to represent the

spatial relationships in a scene. They compensate for the lack of communication between

points that are not close enough to be described in a local neighborhood. MSFD-Net

decodes these features on various scales to benefit from low-level (rough) features gen-

erated in the initial blocks, as well as the high-level (fine) features extracted from the

last encoding layers when assigning a class label to each point.

A minor/auxiliary module is defined between the first and second major modules to

bridge the gap between semantic segmentation and parametric modeling. This module

contains functions for clustering, de-noising, boundary points detection, plane detection,

geometry generation, etc., and a research method to connect the first module to the

second one. This minor module is responsible for processing the segmented point clouds

by the first module and preparing them for the second module.

The second major module in the proposed framework addresses the parametric mod-

eling problem. This module uses a reverse engineering approach to generate the bridge’s

geometric DT. Considering the desired model of the bridge, Parametric Prototype Mod-

els (PPMs) of the bridge elements are created. PPMs are dummy parametric models

that can change their geometry based on the value of parameters. These models are

6



1.4 Proposed Solution

Figure 1.1: Proposed framework for geometric digital twinning of bridges.

defined considering a set of parameter values and geometric constraints. PPMs can be

set up with random values in ranges obtained by bridge engineering knowledge. In this

research, they are used to derive the value of parameters from the point cloud of bridge

elements. For this purpose, a local optimization problem is defined to fit the PPMs

into their corresponding segmented point cloud. In doing so, the randomly initialized

parameter values will be adjusted to values representing the bridge element point cloud.

The objective function of the piece-wise optimization problems is also augmented with

new terms to address model fitting in scenarios with a large amount of occlusion. The

piece-wise model fitting of bridge elements leads to the 3D model of each element. To

assemble the bridge elements and generate the 3D geometric model of the entire bridge, a

global optimization problem is defined to adjust the shared parameters among elements.

Finally, all the parameter values after assembly are injected into the entire bridge’s

3D parametric model or PPM, leading to the 3D model representing the entire bridge

7



1 Introduction

point cloud. This research covers all these modules to provide an end-to-end method for

processing raw bridge point clouds and creating their geometric DT models.

The key contributions of this thesis are as follows:

Contribution 1: Definition of an end-to-end framework to receive raw bridge point

clouds and generate their geometric DT automatically.

Contribution 2: Proposal of a novel DL model to automate the semantic segmen-

tation process of bridge point clouds.

Contribution 3: Description of a parametric modeling paradigm to generate the

parametric model of bridge components from their segmented point clouds.

Contribution 4: Proposal of a parametric assembly method to integrate the mod-

eled bridge elements into a single bridge model with the capability of updating

shape.

1.5 Thesis Structure

The thesis is structured as follows:

• Chapter 2 elaborates on the concepts required for creating a bridge DT. It starts

with defining this term and continues with its applications in the AECOM industry.

It further shows how a bridge DT can facilitate the O&M process of existing

bridges. Then, the required techniques for digital twinning are introduced. Finally,

the current practice in the manual creation of DTs is reviewed.

• Chapter 3 focuses on semantic segmentation and model reconstruction as two fun-

damental steps in creating bridge DTs and reviews the various existing approaches.

It also shows how the required inputs for modeling a bridge can be estimated. It

finally points out the existing research gaps that can be addressed in the thesis.

• Chapter 4 introduces MSFD-Net (Module 01) as a DL model for the semantic

segmentation of large-scale bridge point clouds. This chapter elaborates on the

model architecture, its various blocks, and the concept behind them. It further

shows how the extracted feature maps can be fused in various scales to generate

the final feature map required for classifying points.

• Chapter 5 elaborates on the Minor Module required for bridging the gap between

semantic segmentation and parametric modeling modules. It contains the devel-

oped algorithms and methods for preparing segmented point clouds for the second
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major module. Clustering, de-noising, boundary points detection, and model gen-

eration are all topics and problems that are covered in this chapter.

• Chapter 6 covers the second major module (Module 02) concerning parametric

modeling of bridge elements from segmented point clouds, explaining the concepts

and implementation details. It proposes PPMs as a tool to extract parameter

values from bridge point clouds. It also describes the objective functions that can

be written over PPMs for model-to-cloud fitting. This chapter further addresses

the assembly problem for geometric digital twinning of the entire bridge, explaining

how the entire bridge model can be generated.

• Chapter 7 evaluates the major modules and quantifies their performance in terms

of di↵erent statistical metrics. To validate the performance of MSFD-Net, it is

compared with another state-of-the-art DL model, and expensive tests are con-

ducted on both. In each case, the performance of the models is evaluated on

previously unseen bridge point cloud samples. This chapter then uses the con-

tent elaborated in Chapter 5 to prepare the segmented point clouds for the second

module. It contains a research method on how the segmented point clouds can

be processed further using the proposed algorithms in the previous chapters. To

validate the parametric modeling module, it is tested in geometric digital twin-

ning of ten single-span RC bridges. In each case, the di↵erence between the point

cloud and the model is measured, and the results are presented. The core algo-

rithms of the method are also compared with other existing methods. This chapter

also demonstrates the algorithms’ occlusion-resistant performance and the model’s

editability/adaptability for accepting geometric updates.

• Chapter 8 finally ends the thesis with a conclusion, summarizing the thesis, dis-

cussing the research development, the significant findings, including known limita-

tions, possible generalizations, and topics for future research.

9





2 Research Background

This chapter provides an in-depth exploration of the aforementioned concepts, presenting

detailed definitions and insights. Additionally, it delves into the current state of the DT

market, specifically emphasizing its relevance within the civil infrastructure domain. The

discussion elaborates on the limitations of the conventional/traditional inspection meth-

ods and Bridge Management Systems (BMS). Furthermore, it highlights the prospective

benefits that DTs can o↵er across di↵erent stages of construction, particularly to the

O&M phase. This chapter ends by showing the current practice in creating bridge DTs

and highlighting the most cumbersome steps in the geometric modeling process of bridges

from their PCD.

2.1 Digital Twin (DT)

A DT represents the virtual counterpart of a physical object or system, with the ability

to simulate its real-world counterpart within a digital environment. This concept has

garnered significant attention across various industries, o↵ering numerous possibilities for

enhancing e�ciency, productivity, and decision-making. The concept of DT has its roots

in the aerospace industry, where it was initially developed to model and monitor complex

aircraft systems. National Aeronautics and Space Administration (NASA) played a

prominent role in popularizing this idea in the 1960s as a “living model” of the Apollo

mission. Following the oxygen tank explosion on Apollo 13 and the resulting damage

to the main engine, NASA utilized a variety of simulators to assess the incident and

expanded the physical model of the spacecraft to incorporate digital elements [1]. This

pioneering DT marked the initial instance of its kind, enabling the constant intake of data

to create a model of the events prior to the incident for examination and the exploration

of subsequent actions.

In the technology and data representation domain, Digital Twin (DT), Digital Model

(DM), and Digital Shadow (DS) [2] are interconnected concepts; however, with various

levels of integration between the digital and the physical object, as shown in Figure 2.1.
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The main di↵erence between these models relies on the data flow and the connection

type between the model and the physical object. The characteristics and applications

of each digital representation are as follows [3, 4]:

Figure 2.1: Various integration levels between a digital and a physical object [5].

• Digital Model (DM): It is a virtual representation of an object, system, or process.

It is essentially a computer-generated 3D model or a mathematical representation

that mimics a real-world object or system. DMs can vary in complexity, from

simple 3D CAD models of a physical product to complex mathematical models

used in scientific simulations. These models are primarily used for visualization,

analysis, and design, and they provide a foundation for the development of more

advanced concepts such as Digital Shadow (DS) and Digital Twin (DT).

• Digital Shadow (DS): It is an extension of the DM. It represents the real-time or

near-real-time data and information associated with a physical object or system.

Think of it as a ”mirror” reflecting its physical counterpart’s current state and

behavior in the digital environment. These shadows are crucial in industries such

as IoT and monitoring, where data from sensors, cameras, or other sources is

continuously collected and used to update the model. This digital representation
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allows for remote monitoring, predictive analysis, and detecting anomalies in the

physical world. It is used for tasks such as predictive maintenance, optimizing

energy consumption, and improving overall e�ciency [6, 7].

• Digital Twin (DT): It is the most advanced and comprehensive representation

of a physical object or system. It combines the concept of a DM with the real-

time data of a DS. A DT is a dynamic model showing the virtual counterpart

of a physical object. It must be capable of communicating with the physical

object to handle bidirectional updates. The interval of these updates can vary

significantly and depends on the object type and its requirements. For instance,

the update intervals of a jet engine can be in the range of minutes, while a city’s

DT might be updated only once per month or year. A DT cannot only capture the

current state but also predict and simulate future behavior. This feature makes

it a powerful tool for testing, analysis, and decision-making. DTs are used across

various industries, from manufacturing to urban planning and space exploration

[8, 9]. For instance, in manufacturing, the DT of a machine can simulate its

performance, identify potential issues, and recommend optimization strategies, all

prior to physical changes.

Over the years, the advancement of DT technology has been primarily led by progress

in computing power, sensor technology, and connectivity. According to Grand View

Research (GVR) [10], the DT market in 2023 has been estimated at $16.75 billion and is

expected to increase by up to $155.84 billion in 2030 at a compound annual growth rate

(CAGR) of 37.5%. The main factors impacting the huge surge of investment in DT have

been claimed: 1) reducing the time and cost of development; 2) preventing unplanned

downtime; 3) emerging technologies such as the IoT and Point Cloud Data (PCD); and

4) growing use of DT for maintenance purposes. DTs find utility across a spectrum of

domains, including manufacturing, healthcare, smart cities, and infrastructure. The DT

concept is built on several key principles that are fundamental to understanding and

implementing this technology e↵ectively. These principles include [8, 9, 11]:

• Virtual Representation: A DT is a digital or virtual replica of a physical object,

system, or entity. It should accurately represent the physical counterpart in terms

of its geometry, behavior, and attributes. This virtual representation forms the

foundation of the DT concept.

• Real-Time Data Integration: DTs are not static models but dynamic ones that

are continously updated with real-time data from sensors, IoT devices, or other
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sources. This real-time data integration ensures that the DT remains a current

and accurate reflection of the physical system.

• Simulation and Analysis: DTs are not just passive representations but active sys-

tems capable of running simulations and analyses. These simulations can model

the behavior of the physical entity, allowing for predictive analysis, what-if scenar-

ios, and testing in a risk-free virtual environment. This capability is particularly

valuable for optimization and decision-making.

• Historical Data Repository: In addition to real-time data, DTs accumulate his-

torical data over time. This historical context provides a valuable resource for

retrospective analysis, trend identification, and long-term planning. It aids in

comprehending how the physical system has evolved and what changes or im-

provements have been made.

• Interconnectivity: DTs are often part of a broader network. This interconnectivity

allows for data sharing and collaboration between various models and real-world

systems. It can lead to more comprehensive insights and better coordination.

• Lifecycle Management: DTs typically cover the entire lifecycle of a system, from

design and development to O&M. This ensures that DTs are valuable not only dur-

ing the initial phases but throughout the system’s existence, aiding in maintenance,

optimization, and operation.

• Cross-Domain Integration: DTs can integrate data and models from multiple do-

mains, allowing for a holistic view of complex systems. For example, in the context

of a smart city, a DT might integrate data from transportation, energy, and envi-

ronmental systems to enable comprehensive urban planning.

• Human Interaction: While DTs are driven by data and automation, they also

accommodate human interaction. Engineers, operators, and decision-makers can

interact with DTs through user interfaces to monitor, control, and analyze systems.

• Security and Privacy: With the influx of data and connectivity, security and pri-

vacy are crucial principles. DTs must implement robust security measures to pro-

tect data and ensure the privacy of sensitive information, especially when dealing

with personal or confidential data.

• Scalability: DTs can scale from representing individual components to entire sys-

tems or even entire cities. The technology should be scalable to accommodate the

complexity and size of the systems it represents.
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These key principles collectively enable the creation and operation of DTs, making them

a powerful tool for a wide range of industries and applications, from manufacturing to

smart cities and infrastructure management.

A DT is a meticulously crafted concept defined to meet a set of requirements and

specifications essential to fulfill its anticipated applications [9]. This definition serves as

the blueprint for creating a virtual counterpart that accurately mirrors a physical object,

system, or entity in a digital format. These requirements and specifications are the

foundation upon which the DT is built, setting the boundaries and objectives that guide

its development and operation. They encompass a wide range of factors, including the

Level of Detail (LoD) to be replicated, data accuracy, the parameters to be monitored,

and the extent of interactivity it should o↵er. For instance, when constructing a DT for

a manufacturing plant, the requirements might specify the need for real-time monitoring

of machine performance, predictive maintenance capabilities, and the ability to simulate

various operational scenarios. In contrast, a DT for a smart city infrastructure might

focus on tra�c management, energy e�ciency, and urban planning.

The precision and interconnectivity of the DT representation are intrinsically linked to

these requirements, ensuring that it adequately replicates the physical entity. Thus, the

more comprehensive and specific the requirements and specifications, the more e↵ective

and valuable the DT becomes in facilitating decision-making, optimizing processes, and

enhancing the overall understanding of the physical counterpart.

2.2 DT in the AECOM Industry

DTs potentially have various applications in the AECOM industry. They can be used

to model and manage buildings and civil infrastructure assets throughout their entire

lifecycle, from Design and Construction to O&M. In the AECOM sector, the concept of

”DT” has been expressed as an evolved version of Building Information Modeling (BIM)

or Bridge Information Modeling (BrIM) with capabilities and di↵erences in the linkage

of the model to the real asset. As DTs have the ability to inherit all the features of the

conventional models, the concepts of BIM and BrIM are described first and extended

then to that of the DT.

BIM plays an increasingly prominent role in the AECOM industry by providing the

geometric-semantic representation of assets. BIM is a 3D modeling and information

management method that integrates various aspects of a construction project into a

single and coherent model [12]. This geometric-semantic model provides a 3D represen-

tation of data, allowing stakeholders to visualize the design and realize the contextual
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dependencies among components/elements. This 3D model improves design comprehen-

sion and communication among the involved members and parties in the project to end

up with more accurate decisions. Hence, risk mitigation can be expressed as one of the

significant features of a BIM model as it provides a platform for assessing the design

changes on the project. Beyond being a geometric model, BIM includes semantic infor-

mation about the project, such as materials, schedules, and performance specifications.

This data can also be updated and shared, ensuring all the stakeholders use an up-to-

date version of the data. BIM models also serve as tools for as-built documentation

capturing the current state and changes made during the construction. This feature

makes them also appropriate for the construction phase, where some changes might oc-

cur in the project implementation. It provides insight into the maintenance schedules,

equipment specifications, and space utilization. Sustainability is one of the benefits of

BIM by providing data on material, energy performance, and lifecycle analysis. Several

studies [13, 14] show the application of BIM in reducing CO2 emission during the life

cycle of buildings as well as sustainable decision-making of building structures to achieve

an equilibrium between energy e�ciency and performance. Serving as a database in the

post-construction phase, BIM extends its realms to the Facility Management (FM) of

buildings, where it potentially improves the e�ciency of data exchange in the mainte-

nance phase of the asset [15]. However, the primary concern lies in the absence of FM

during the developmental stages of BIM [16]. Considering the construction phase of

buildings, BIM models are broadly categorized into the following three classes [17]:

• As-designed : It signifies the virtual representation and documentation of a build-

ing at the point where the design has been finalized. It also deals with integrating

the collected data by the design team before construction. An as-designed BIM

provides detailed information about the architectural, structural, and mechanical

design. These models encompass 3D visualizations, technical specifications, ma-

terials, and other relevant data. As-designed BIM models can be referred to as

a reference point throughout the construction process, allowing more productive

communication among architects, engineers, contractors, and clients.

• As-built : It is the BIM model generated after completion of the construction pro-

cess, reflecting the accurate and up-to-date status of the physical structure, sys-

tems, and components of the project. These models result in the precise documen-

tation of the building at a specific point in time. As-built models can be achieved

by either applying the changes to the as-designed model during the project’s con-

struction phase or surveying the implemented building and creating a BIM model
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right after the construction phase. The up-to-date representation of these models

aids them in finding many applications in FM, including rehabilitation, operation,

and maintenance. Despite the various applications of as-built models, they are less

common than as-designed models in current practice. This is mainly due to the

challenges and costs associated with the creation and semantic enrichment of the

models.

• As-is or as-maintained : The real-world assets might undergo some changes during

their service life (e.x., two rooms in a building might be merged). As-is BIM refers

to the model representing the current status of the building at a point in time

after construction. Creation of an as-is model necessarily requires on-site data

collection using techniques such as laser scanning or photogrammetry. Compared

with as-built models, they are less common and more costly; however, they provide

a highly precise map for well-informed decision-making. As-is models are also

highly practical for condition assessment and analysis of the structure after aging

and experiencing changes. The manual creation of these models and semantic

enrichment is labor-intensive and error-prone. They, thus, are the least common

category of BIM models that can be found currently.

Similar to BIM for buildings, BrIM addresses the digital representation and man-

agement of bridge infrastructure in the entire life cycle of the structure. In the civil

infrastructure domain, bridges have been widely investigated for developing BrIM in

the as-designed, as-built, and as-is phases. A detailed comparison by Kumar et al. [18]

illustrated the significant advantage of using BrIM over conventional approaches by im-

plementing three bridge projects by spending five times less time. In addition to the

as-designed and as-built phases of bridges, BrIM has been highly beneficial in the as-is

phase for data acquisition and structural health monitoring (SHM) [19, 20]. BrIM can

facilitate the inspection and evaluation process of bridges [19], as it is highly e↵ective

in the 3D representation and documentation of flawed and defective areas of bridges.

BrIM can be also used in connection with BMS for documentation, structural analysis,

and condition assessment [19]. The same applies to manual inspections and the localiza-

tion of identified defects and damages. Compared with traditional 2D drawings, BrIM

provides a more comprehensive representation in a 3D environment with the capability

of continuous semantic enrichment at various levels. This model can be shared with

the involved teams in the project and is used for more accurate decision-making on the

possible rehabilitation of the structure. Applications of BrIM can be summarized as

follows [21, 22, 23, 24, 25]:
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• Inspection: BrIM provides a geometric-semantic model that can be used to plan,

gather, archive, and apply damage-related data based on the location of a sur-

veyed bridge. In this context, Unmanned Aerial Vehicles (UAVs) for structural

monitoring and maintenance, Remotely Piloted Aircraft Systems (RPAS) to en-

hance operational e�ciency and Light Detection and Ranging (LiDAR) systems

for automated crack detection can be employed, and their results are linked to the

model as shown in Figure 2.2.

Figure 2.2: Bridge inspection using UAVs [26].

• Accelerated bridge construction: BrIM can be applied in the entire spectrum of

construction activities within the project, starting from conceptual design to the

construction phase. The utilization of BrIM improves the e�ciency and sustain-

ability of bridges by optimizing material consumption and decreasing the need for

information and change requests. BrIM can be employed for documentation and

generating related diagrams, conducting design analyses, and planning the posi-

tioning of precast concrete components. Furthermore, it can assist in the rapid

implementation of bridges by determining the surrounding ground level and facil-

itating the transportation and placement of the superstructure components.

• Structural analysis: A BrIM model can be used as input for structural software

for analysis and design of the structure (Figure 2.3). This integration allows for

the creation of structural positioning diagrams within the model as well as the

automated generation of reinforcement details based on the results of the structural
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analysis. Additionally, BrIM can be employed for Finite Element Modeling (FEM)

and further analysis of the bridge.

Figure 2.3: BrIM model imported in structural analysis software [27].

• Rehabilitation and repair: Numerous bridge structures require rehabilitation and

repair due to changing weather conditions, the aging of the structure, and various

other considerations. Aging bridges, especially those spanning rivers and tunnels,

require rehabilitation actions to meet conditions and safety requirements. BrIM

allows multiple experts from di↵erent domains to access and work on the target

structure simultaneously. This live monitoring of construction activities and other

relevant aspects ensures that up-to-date geometric-semantic information is being

used in the maintenance phase of the structure.

• Management and maintenance: The resulting model of BrIM can be connected to

a BMS for automated extraction and retrieval of documents as shown in Figure

2.4. This system can address bridge degradation and determine the priority for

maintenance actions, identifying fragmentation damage via point cloud analysis

and incorporating damage components. This integration not only improves the

decision-making process but also enhances the accuracy of assessments by lever-

aging advanced analytical techniques provided by BrIM and the organizational

capabilities of the BMS.

In the context of AECOM, the concepts of DT and BIM/BrIM have been connected

and brought together [29, 30]. For instance, Figure 2.5 shows the life cycle of a DT

in di↵erent stages of design, construction, and operation. Each stage has also been

interconnected with a type of BIM model such that the end point of the design stage has
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Figure 2.4: Bridge management through BrIM and laser scanning where the bridge data is
attached to the model to visually represent clashes [28].

been devoted to the as-designed BIM, the endpoint of the construction stage to the as-

built, and after that on to the as-is. This diagram also has a horizontal axis representing

the border between the DT and the physical asset, herein called a Physical Twin (PT).

Following this diagram, a DT undergoes an evolution since the start of the project as

follows [29]:

• Foetal DT: During the design phase, the asset’s design team works on the con-

ceptual plan. The initial DT of the asset encompasses both product and process

information. This file serves as a reference point for assessing construction out-

comes and can provide guidance for maintenance purposes.

• Child DT: Moving on to the construction phase, the child DT includes o↵-site pre-

fabricated assemblies and on-site constructed components. Consequently, the child
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DT contains as-built product information and as-performed process information,

reflecting the asset’s physical status at di↵erent stages during construction. Over

this stage, the process information accumulates in the child DT until construction

is complete. Each change is updated in the asset’s child DT to represent the as-is

status, facilitating progress monitoring and quality control.

• Adult DT: In the operation stage, the adult DT remains unchanged due to the

completion of construction. The asset’s adult DT supports performance analy-

sis, including aspects such as energy consumption and component maintenance.

Collected data is added to the as-maintained model to develop the adult DT.

Figure 2.5: Life cycle of a DT in the design, construction, and operation stages [29].

While there are similarities and connections between a DT and a BIM/BrIM model,

they have di↵erent definitions and cannot be simply mapped onto each other. Following

the definition of a DT, this model requires a physical counterpart that must already exist.

Nonetheless, an as-designed BIM is created before starting the construction process when

no physical object is yet built. Thus, a DT cannot be defined in the pre-construction
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phase and is related to an as-designed BIM model. However, a DT defined at other

stages, such as construction and operation, might inherit some geometric-semantic data

from the as-designed phase. Considering the DT concept, there must be a bidirectional

link between the physical object and the DM such that the up-to-date data can be

imported and exported, and its reflection is seen on both sides. However, most of the

existing as-built and as-is models still lack such a link to handle bidirectional updates.

The DT concept is highly generic as it finds its roots in the manufacturing industry

[31]. This model is defined purposefully based on a set of requirements, specifications,

and boundaries that might result in a model completely di↵erent than that of the as-

built and as-is. For instance, the DT of a building can be a simple data model or

interface for capturing the thermal changes in rooms through sensors and setting the

temperature accordingly. In this example, a digital model and a physical object exist

that can bidirectionally communicate through an access point, while the model is not

similar to the conventional BIM models. In better words, BIM/BrIM can be considered

as a specific type of DT only if they can provide an access point to handle the bidirectional

data transition and execution of queries. Otherwise, the concept downgrades to a DM

or DS as it loses its link for the required updates and integration.

2.3 DT in the O&M of Bridges

There is a large stock of bridges in the transportation system of developed countries

requiring substantial attention for long-term operation. The United States (US) spends

roughly $14.4 billion per year to address the deteriorating bridge conditions [32]. In

the United Kingdom (UK), the annual maintenance cost of road networks has been

estimated at around £4 billion [33]. In Germany, the maintenance cost of only federal

bridges has been approximated to e350 million every year [34].

The recent Americal Society of Civil Engineers (ASCE) report card [35] shows that

there is an extensive network of over 617,000 bridges in the US. Currently, 42% of these

bridges are more than 50 years old, and among them, 7.5% are deficient bridges. The

report card also asserts the deterioration rate of existing bridges has exceeded the rate

of repair and rehabilitation as the conventional methods cannot adequately provide a

mechanism for e�cient coverage of all bridges. It thus recommends the annual spending

on bridges to be increased from the current $14.4 billion to $22.7 billion, meaning a 58%

increment; otherwise, addressing all the current deficient bridges takes until 2071. It also

predicts the deterioration over the next 50 years will become increasingly overbearing,

and thus, systematic bridge maintenance programs must be implemented.
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Considering the prominent role bridges play in the civil infrastructure domain, Na-

tional Bridge Inspection Standards (NBIS) require transportation agencies to evaluate

the condition of existing bridges at frequent intervals over the service life of the struc-

ture [36]. Following the German standard DIN 1076 [37] and NBIS, di↵erent inspection

stages are considered for a bridge, including routine inspections, initial inspections, in-

spections on special occasions, hands-on inspections, etc. A complete list of various

bridge inspection types can be seen in Table 2.1.

Table 2.1: Inspection types of bridges according to the U.S. code of federal regulations [36].

Inspection Description

Damage Inspection An unscheduled inspection to assess structural damage
resulting from environmental factors or human actions.

Fracture-Critical
Member Inspection

A hands-on inspection of a fracture-critical member or
member components that may include visual and other
nondestructive evaluation.

Hands-On Inspec-
tion

Inspection within arms length of the component. Inspec-
tion uses visual techniques that may be supplemented by
NDT.

In-Depth Inspection A close-up inspection of one or more members above or
below the water level to identify any deficiencies not read-
ily detectable using routine inspection procedures; hands-
on inspection may be necessary at some locations.

Initial Inspection First inspection of a bridge as it becomes a part of the
bridge inventory to provide all Structure Inventory and
Appraisal data and other relevant data and to determine
baseline structural conditions.

Routine Inspection Regularly scheduled inspection consisting of observations
and/or measurements needed to determine the physical
and functional condition of the bridge, to identify any
changes from initial or previously recorded conditions,
and to ensure that the structure continues to satisfy
present service requirements.

Special Inspection An inspection scheduled at the discretion of the bridge
owner, used to monitor a particular known or suspected
deficiency.

Underwater Inspec-
tion

Inspection of the underwater portion of a bridge sub-
structure and the surrounding.

Initial inspections are simple assessments carried out to monitor the bridge’s initial

condition, leading to a reference point describing the as-built conditions. Routine in-

spections are the main bridge assessment process. These inspections are conducted at
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specified intervals to ensure the bridge’s structural integrity, safety, and overall condi-

tion. Routine inspections might be followed by an in-depth examination of the element

in cases where the damage is not readily detectable. In critical cases, an in-depth ex-

amination of damage is required within the arms length of the bridge element. This

step might need the use of monitoring systems, sensors, and data collection tools to

track the bridge’s performance over time continually. It might also be followed by a

fracture-critical member inspection to provide further details about the flawed area.

Damage and special inspections are less frequent than routine inspections and are

conducted under unique circumstances or events that might a↵ect the bridge’s integrity.

Such occasions include extreme weather events, natural disasters, or incidents like vehicu-

lar collisions. These inspections ensure that the bridge’s safety and structural conditions

are evaluated promptly in response to specific situations. Some bridges are subjected to

specific regulations or standards as well due to their unique design, location, or impor-

tance. Inspections tailored to these special regulations ensure that the bridge complies

with all requirements and remains safe to use. Underwater inspections are also a special

type of bridge inspection mainly conducted for bridges whose sub-structure is partially

under water.

Due to the large number of bridges, the pressing necessity for various types of in-

spections, and the high cost of repair, corresponding agencies have developed various

rating systems for prioritizing bridge rehabilitation projects [32]. In Germany, the main

inspections are mostly conducted through visual assessment of the structure [38]. For

every visible damage lying on the primary bridge elements such as abutments, deck,

girders, and piers, four factors, including valuation criteria, stability, tra�c safety, and

durability, are considered, and then, a condition index in the range of 1.0 (very good

condition) to 4.0 (insu�cient condition) is determined, as shown in Table 2.2 [38].

Likewise, in the US and UK, operators inspect and rate a bridge following instruc-

tions and standards such as NBIS [36], Association of State Highway and Transportation

O�cials (AASHTO) [40], and Manual for Highway Structures [41]. The US condition

rating system, however, is established within another range, spanning from 0, indicating

a ”Failed” state, to 9, signifying an ”Excellent” condition. This system provides a struc-

tured framework for the classification of bridges, allowing for consistent assessment of the

condition and performance. The ratings, as outlined in Table 2.3, aid bridge authorities

and engineers in making decisions regarding maintenance, repairs, and infrastructure

investment.

The inspection process of bridges conventionally leads to 2D documents containing

geometric-semantic information concerning the current status of the bridge. These doc-
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Table 2.2: Description of bridge condition rating in Germany [39].

Grade Description

1.0-1.4 Very good structural condition
Continue normal maintenance

1.5-1.9 Good structural condition, but may have less long-term durability
Continue normal maintenance

2.0-2.4 Satisfactory structural condition, but may have less long-term durability
Continue normal maintenance and consider a plan for repair

2.5-2.9 Unsatisfactory structural condition
Tra�c safety may be a↵ected
Structure is not su�ciently durable
Continue normal maintenance and plan for repair
Restrictions on tra�c use or load may be needed

3.0-3.4 Critical structural condition
Tra�c safety is a↵ected
Structure is not durable
Immediate repair is needed
Restrictions on tra�c use or load are needed

3.5-4.0 Inadequate structural condition
Tra�c safety is not adequate
Structure is not durable
Immediate repair or rehabilitation is needed
Restrictions on tra�c use or load are needed

uments are captured into a BMS. These systems are typically created internally by the

managing organization of a country (with or without the assistance of private companies)

or procured as o↵-the-shelf solutions and then customized to align with their specific re-

quirements [43]. SIB-Bauwerke (Road Information Database – Structures) is the German

BMS that receives construction data, inspection reports, and intervention history follow-

ing the guideline ASB-ING (Instruction for the Road Information Database, Subsystem

structural data) [44], and characteristics of damages, according to RI-EBW-PRÜF [45].

Bridge engineers and experts generally employ the collected information in the BMS to

analyze and interpret data to determine a grade for the current conditions of bridges

following the defined ratings in Table 2.3 or 2.2.

Despite the feasibility of utilizing this conventional approach in the O&M phase of

bridges, the rising costs from visual inspection, data collection, management, and inter-

pretation prevent transportation sectors to cover operating bridges e�ciently. Further-

more, the current approach has the following limitations:
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Table 2.3: NBIS ratings for bridge conditions [42].

Rating Condition Description

9 Excellent New condition, no noteworthy deficiencies

8 Very
good

No repair needed

7 Good Some minor problems, minor maintenance needed

6 Satisfactory Some minor deterioration, major maintenance needed

5 Fair Minor section loss, cracking, spalling, or scouring for
minor rehabilitation; minor rehabilitation needed

4 Poor Advanced section loss, deterioration, spalling or scour-
ing; major rehabilitation needed

3 Serious Section loss, deterioration, spalling or scouring that
have seriously a↵ected the primary structural compo-
nents

2 Critical Advanced deterioration of primary structural elements
for urgent rehabilitation; bridge maybe closed until
corrective action is taken

1 Imminent
failure

Major deterioration or loss of section; bridge may be
closed to tra�c, but corrective action can put it back
to light service

0 Failed Out of service and beyond corrective action

• The data collection process often results in the accumulation of information in

various formats, necessitating a subsequent integration process. This integration

phase involves harmonizing and consolidating data from di↵erent sources, ensuring

it can be e↵ectively and cohesively utilized for analysis and decision-making.

• Data interpretation using the current BMS, which primarily relies on 2D docu-

ments, can be laborious and complex. The reliance on 2D representations often

presents significant challenges when comprehending and making sense of the data.

• The inspection process, which is mainly conducted through direct observation of

the bridge components, requires a substantial investment of both time and cost.

This can be even intensified in bridges that have hard-to-reach regions, such as

tall piers and elevated bridge decks that are not simply accessible, as shown in

Figure 2.6. These inaccessible regions compound the time and cost associated

with the inspection, as specialized equipment and extensive safety measures are

often necessary to carry out thorough assessments.
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Figure 2.6: Traditional bridge inspection process [46].

• Planning bridge rehabilitation and strengthening programs only relying on the

BMS leads to significant challenges. This di�culty arises from a lack of a compre-

hensive 3D representation of the bridge, including its intricate geometric-semantic

details. Without a three-dimensional view, understanding the bridge’s spatial char-

acteristics remains limited, making it complicated to plan e↵ective rehabilitation

and strengthening strategies. Furthermore, the data collected following inspec-

tions might prove inadequate, leaving gaps in the information necessary for precise

planning. This case generally results in the repetition of the inspection process.

The consequences of this ine�ciency are financial and impact project timelines,

potentially delaying the bridge rehabilitation process.

• The complexity of the data interpretation process significantly inhibits the active

involvement of experts in the decision-making process and the evaluation of the

bridge’s current condition. As a result, the outcomes tend to be subjective and

can exhibit variations when assessed by di↵erent experts. The subjectivity arises

from the inherent challenges in comprehending and interpreting data, leading to a

potential lack of concurrence among experts and their varying perspectives on the

bridge.

• The collected data is not available for particular bridge elements; thus, detailed

information such as materials, cracks, and their locations are often captured by

hand sketches. For instance, Figure 2.7 represents various variants of damage

inserted into the SIB-Bauwerke BMS. Despite the 2D representation of the damage,

its location, the hosting element, and the characteristics of the crack, such as its

depth, length, and width, are not obvious. As a result, decision-making on the

type of damage and its impact on the entire bridge structure becomes challenging.
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The absence of comprehensive, detailed data may hinder the ability to make well-

informed assessments and decisions in the maintenance phase of bridges.

Figure 2.7: Varaiants of damages in the SIB-Bauwerke BMS.

• Applied changes to the bridge following retrofitting cannot be easily documented

and integrated into the conventional BMS. The challenge lies in the complexi-

ties associated with capturing and updating the BMS to accurately represent the

post-retrofit state of the bridge. Changes to the bridge structure, components,

or systems may involve various alterations, from structural enhancements to the

installation of advanced instruments. These alterations often necessitate updates

to the BMS to ensure that it accurately reflects the bridge’s current state. This

process can be complicated and time-consuming, requiring precise data collection,

thorough documentation, and the integration of new information into the BMS.

The di�culty in reflecting these post-retrofit changes in the BMS can result in a

lag between the physical state of the bridge and its digital representation. This

temporal disconnection may restrict e�cient maintenance, management, and oper-

ation of the bridge, as decisions must be ideally based on the up-to-date conditions
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of the bridge. Aside from these, in many cases, a history of the applied changes is

required for informed decision-making and planning further possible actions. For

instance, the length of a crack, its propagation over time, and its closeness after

retrofit must be available.

• Most existing BMS only provide tools for the statistical analysis of the bridge

elements. In other words, there is no 3D model that can be analyzed with cutting-

edge analysis software. This case is more common for old bridges without any 3D

representation, while they are the major candidates for rehabilitation actions. In

many cases, a bridge, after retrofitting, needs to be analyzed again to ensure the

strengthening procedure has improved the performance of the bridge in sustaining

the applying dead and live loads to the structure. Also, continuous monitoring of

old bridges is necessary in many cases that can be achieved through IoT devices

such as sensors.

To address these challenges, conventional methods for maintaining, managing, and

operating bridges need to be supported with digital methods. Considering the current

system’s limitations, a DT can be defined for existing bridges. A bridge DT promises a

substantial improvement in extending the life cycle of bridges by providing a coherent

digital replica mirroring the physical reality, including the current status of the actual

asset [47]. As described in Section 2.1, a DT is defined purposefully based on its an-

ticipated applications, serving the use cases and requirements that generate a DT for a

specific domain. The prominent feature of a DT is its capability to be linked with the

actual asset through an access point or a communication gate to handle bidirectional

updates. The interval of these updates might di↵er depending on the asset type and

the desired use cases [47]. For bridges, adjustments to geometry may need occasional

attention, especially when variations in the shape of bridge components are detected.

A feasible scenario can be a bridge subjected to the dynamic load of vehicular traf-

fic, resulting in significant deflection. In this case, addressing and managing geometric

updates becomes crucial to ensure structural integrity and performance.

Nonetheless, a DT must be capable of receiving and handling the required updates to

provide an up-to-date representation of the actual asset. A bridge DT can be as simple

as a 2D map representing the general but up-to-date information of the bridge or as

complicated as a 3D geometric model that includes all the cracks and spalling on the

structure, as well as the state of the interior systems, such as pre-spanning cables. The

DT can inherit all the features of BrIM, is linked with the BMS, and reflects the impact
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of the external factors on the structure [48]. All these features enable DT to perform as

an e�cient digital representation for supporting and facilitating the O&M of bridges.

A DT can be generated based on a set of requirements and specifications, and in spe-

cial cases, it can converge to a BrIM/BIM model if the bidirectional link between the

model and the physical object is established. Requirements are the system’s goals, while

specifications convey more details about the requirements. Considering the limitations

of the current management, maintenance, and operation system, the absence of a 3D

representation has given rise to issues concerning the comprehensive comprehension of

the semantic-geometric status of bridge elements as well as their spatial relationships. It

is also necessary for the structural analysis of the bridge and illustration of the flawed/de-

fective areas on the body of the structure. Thus, 3D geometric modeling of bridges can

be expressed as one of the requirements of an advanced/ideal bridge DT.

This 3D geometric representation also has some specifications. For instance, the geo-

metric model must represent the current geometric status of the bridge and be capable

of handling geometric updates. Another requirement is to connect the model to not

only the actual asset (this is the core feature of a DT) but also the BMS to encompass

the historical data of the bridge and handle bidirectional updates between the physical

bridge and its 3D digital model. This feature solves the problems associated with the

long-lasting data interpretation process and integrates various data formats through a

linked 3D visualization. In this case, compatibility of the BMS with the model and

secure communication can be expressed as one of the specifications.

The DT can also have the capability of connecting to IoT devices, such as sensors,

to provide real-time data about the current condition of the bridge and instant com-

munication between the physical bridge and its digital model. Such a bridge DT can

provide high-level information about the dimensions of the elements and their spatial

relationships, the type and characteristics of damages and their locations on the bridge,

the historical data about the bridge such as the propagation of cracks, the behavior of

the structure under applying loads, and a model for advanced analysis of the structure.

A typical bridge DT representation can be seen in Figure 2.8, where various data sources

such as 2D plans and damage pictures have been connected to the model to demonstrate

their location and other semantic information on the bridge model. The linking of these

resources already creates significant benefits. The legacy tabular inspection data can

be enriched with spatial representations, which improves the inspection process, as the

location of damages can be easily retrieved. On the other hand, the geometry model is

enhanced with material and type specifications from the bridges’ documentation data

[48].
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Figure 2.8: DT model linked with heterogeneous data sources [48].

2.4 Data Acquisition for Geometric Digital Twinning

To achieve a practical bridge DT that can be e�ciently used in facilitating the O&M

process, the bridge’s 3D geometric-semantic model needs to be created. This model

must also be up-to-date and represent the geometric status of the structure, including

geometric constraints, dimensions, and volumes. The primary data for constructing this

model consists of visual and spatial information. Although the means of collecting such

data are typically limited to external surfaces, these data encompass the full potential

to achieve results at a comparable level with visual observation. The outcome of the

reality-capturing process is generally in 2D and 3D data formats such as images and point

clouds. They can be obtained through sensors or by applying a set of transformations

and processing steps to infer additional spatial details, e↵ectively converting the 2D

data into 3D data [49]. Since the selection of acquisition and transformation methods

significantly impacts the quality, quantity, and characteristics of the final output, it is

essential to consider a combination of both in line with the distinct requirements and

specifications.

Various techniques can be employed to acquire the 2D and 3D data required for digital

twinning. Photogrammetry and Laser Scanning are two primary geodetic techniques

commonly used to capture existing assets due to the low manual e↵ort required. Both

techniques generate PCD, however, with varying levels of accuracy and density. In the
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civil infrastructure domain, these techniques have been commonly used to gather data

about geometry, concrete deterioration, steel rebar corrosion, water seepage, concrete

cover delamination, spalling, deflection, and cracks [49, 50]. Recently, a comparative

analysis of accuracy and reliability has also demonstrated the capability of both methods

in the digital twining of bridges [51].

Laser scanning, generally referred to as LiDAR, relies on the emission of laser beams

toward the target object or environment. This technique employs either time-of-flight

or phase-based technology to meticulously capture and record the (x, y, z) coordinates

of objects, as well as the accompanying intensity data. In time-of-flight systems, the

method relies on measuring the time taken for emitted light or laser pulses to bounce

o↵ objects and return to the scanner. This time measurement is then converted into

distance, enabling the precise determination of the object’s position in three-dimensional

space. On the other hand, phase-based technology operates by examining the phase shift

of emitted light or laser waves when they encounter surfaces and are reflected back to the

scanner. This phase shift data is interpreted to calculate the 3D coordinates of scanned

objects. Time-of-flight has been used more commonly in civil engineering applications

[49].

LiDAR sensors are typically mounted on one of two types of platforms: Terrestrial

Laser Scanning (TLS) systems are often mounted on tripods, while Mobile Laser Scan-

ning (MLS) systems have sensors mounted on frames that can be carried or driven. TLS

systems are commonly used for capturing extensive outdoor spaces and indoor environ-

ments, as they can measure points over distances with high precision. However, they

need to be moved and set up for each measurement, resulting in separate datasets that

must be registered to create a coherent point cloud. LiDAR, due to its line-of-sight limi-

tation, may lead to significant occlusions depending on the geometry of the surroundings.

MLS systems are more portable and lightweight but are less precise than TLS. Contrary

to TLS, they can capture data while moving, reducing the occurrence of occlusions and

increasing the coverage level.

Photogrammetry is concerned with capturing 2D images of an object from di↵erent

angles and aligning the common points in the images, leading to PCD [50]. It relies on

the principles of triangulation to determine the 3D location of points. It is also called

Videogrammetry when capturing videos instead of photos. Photogrammetry consists

of two fundamental steps: Structure from Motion (SfM) and MultiView Stereo (MVS)

[52]. SfM is a method used to construct a 3D representation from a set of overlapping

images captured from various angles. The SfM method was initially proposed based on

computer vision techniques to estimate the camera position using multiple images [53].
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The SfM process starts with the detection and extraction of distinctive features through

feature matching and geometric validation. It subsequently reconstructs the object in a

3D spatial context with the intrinsic and extrinsic camera parameters for all the involved

images. MVS, on the other hand, receives the outcomes of SfM and computes depth and

normal information for pixels within the images, e↵ectively creating a dense point cloud

that represents the entire scene.

The e↵ectiveness of photogrammetry primarily depends on detecting and matching

features/key points within the images. The aim is to identify key points corresponding

to the same point in 3D space across distinct 2D images. Photogrammetric methods

identify key points at places with notable color changes, typically indicative of well-

textured and distinct surfaces. However, the challenge arises when dealing with weakly

textured and uniformly colored surfaces, such as plain white walls, which are common

in indoor environments. In such cases, while the reconstruction quality may not match

that of outdoor environments with strongly textured surfaces, photogrammetry is still

capable of identifying the crucial feature points. These key points often align with the

boundaries of objects and architectural elements within the indoor environment. As a

result, the reconstructed 3D key points provide valuable information about the location

and dimensions of objects within the environment.

Photogrammetry is typically divided into two main categories: aerial photogram-

metry, which employs cameras positioned in the air, and terrestrial photogrammetry,

where cameras are either handheld or mounted on tripods. Specifically, close-range pho-

togrammetry, associated with terrestrial photogrammetry, deals with object distances

of roughly 200 meters or less. On the other hand, small-format aerial photogrammetry

falls in between these two categories, as it combines the advantages of an aerial vantage

point with the proximity to objects, resulting in high image detail capture [54].

Figure 2.9 depicts the results of laser scanning and photogrammetry of three bridges

[55]. Laser scanning generally results in high accuracy and precision point clouds, typi-

cally in the range of 1-5 cm error on vertical surfaces, making them appropriate for DTs

requiring precise measurements, such as architectural and archaeological documentation,

as well as industrial inspection and monitoring.

The accuracy of a photogrammetric point cloud depends on various factors such as

camera calibration, camera resolution, the number of images, and the vertical/horizontal

overlap between images. In well-controlled conditions, photogrammetry can generate a

point cloud at a competitive accuracy and density level with laser scanning [55]. Laser

scanning is appropriate for low and mid-range object capturing and generally requires

heavy and expensive equipment with a careful setup. Photogrammetry, however, is
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Figure 2.9: Visual comparison between laser scanning and photogrammetry [55].

scaleable, especially aerial photogrammetry, which paves the way for capturing hard-to-

reach regions using UAVs. In terms of cost, photogrammetry can be more cost-e↵ective,

especially when using consumer-grade cameras and software [56]. A brief comparison of

these two capturing methods can be seen in Table 2.4. The resulting point clouds from

laser scanning and photogrammetry can be used in various applications such as survey-

ing and mapping, architectural and engineering design, urban planning, environmental

monitoring, etc. Point clouds can also be mentioned as the main data source for the

geometric digital twining of bridges, as they represent the current geometric-semantic

information of the structure.
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Table 2.4: Comparison between Laser Scanning and Photogrammetry [57, 56].

Photogrammetry Laser Scanning

Modeling type Image modeling Range modeling
Data output Point cloud data Point cloud data
3D information To be derived Direct
Spatial resolution Very high high
Surface Needs texture variation Captures any type of surface
Scale Absent Present
Light Dependent independent
Intensity/Color Very good Limited
3D coordinate acquisition Complicated Direct
Accuracy and density Medium to high High
Range and coverage Scaleable Short to mid-range
Texture reconstruction Very good limited
Mobility and setup Handheld devices and drones Heavy equipments and careful setup
Time of data acquisition Quite short long
Instrument cost Low High

2.5 AI in the AECOM Industry

A large amount of data can be potentially generated throughout the lifecycle of assets

with acquisition technologies and IoT devices, such as sensors, cameras, actuators, ma-

chines, etc. The collected data must be processed and interpreted e�ciently to benefit

from its potential advantages. AI is one of the most transformative and rapidly evolving

fields in the realm of computer science and technology. It principally aims to create sys-

tems and machines that can mimic human cognitive processes, enabling them to reason,

learn, perceive, and interact with the world. In the AECOM domain, AI provides the op-

portunity to convert data into actionable knowledge for a wide range of applications [58].

Machine Learning (ML), Neural Network (NN), Natural Language Processing (NLP),

Computer Vision, and Optimization can be mentioned as sub-branches of AI with many

applications in the AECOM industry.

2.5.1 Machine Learning (ML)

The field of ML focuses on developing algorithms and models that enable machines to

learn and interpret input data to make predictions. ML employs computer systems

to construct models that can subsequently facilitate decision-making and produce ex-

pected results for new inputs. The applications of ML encompass a diverse spectrum,

including the automatic creation of knowledge representation models, the generation of

knowledge bases for expert systems, planning, constructing numerical and qualitative
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models, text classification, text mining, knowledge acquisition for controlling dynamic

processes, speech-to-text transcription, handwriting recognition, object recognition in

images, and so on [59, 58]. Unsupervised, semi-supervised, and supervised learning are

subbranches of ML with various levels of supervision to learn the input data. Supervised

learning is devoted to the learning paradigms that need an annotation/labeling process

before training, while semi-supervised learning needs a lower number of labeled data,

and unsupervised can directly learn the input data without an annotation process.

2.5.2 Neural Network (NN)

Neural Network (NN)1 form the major component of ML models. Inspired by the struc-

ture of neurons in human brains and strings, known as synapses, connecting the neurons,

the mathematical model of NNs has been proposed. Figure 2.10 shows a simple NN

model in which a set of neurons have been connected to each other with weighted links.

Each neuron has a linear/non-linear function (activation function) that can generate pre-

dictive values from the input data (feature vectors). NNs create a system that is not only

Figure 2.10: Multilayer Perceptron (MLP) with one hidden layer [60].

complex enough to describe complicated relationships but also derivable such that its

weights can be tuned with gradient-based optimization algorithms in a backpropagation

process. This mathematical model makes NNs capable of approximating trends among

data points even in a high dimensional problem space that cannot be simply expressed

1Also denoted as ”Artificial Neural Network (ANN)”.
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by conventional regression models. NNs have been used widely in various fields, such as

NLP, computer vision, and robotics.

2.5.3 Natural Language Processing (NLP)

NLP is a field that deals with text as input to interpret, intercept, and generate hu-

man language. NNs are also the main component of NLP models to interpret text and

generate desired results. NLP models generally need a preprocessing step known as to-

kenization to convert the input text to vectors representing the data. Various types of

tokenization exist; the most common are word-level, character-level, and semantic-level.

These methods only di↵er in how they assign a value to the input text. For instance,

word-level tokenization assigns a specific number to each word, while character-level

expresses each character by a number. Tokenization is generally followed by an embed-

ding module in most NLP architectures. Embedding represents the tokenized text from

a high-dimensional to a lower-dimensional space, allowing the network to learn more

about the relationship between inputs and to process the data more e�ciently. Text em-

bedding modules mostly use a pre-trained model such as BERT (Bidirectional Encoder

Representations from Transformers) [61] for precise input encoding. Text data is natu-

rally sequential, i.e., a piece of text is a sequence of words that might have dependencies

between them. To extract features from text and preserve these dependencies, NN mod-

ules such as 1D Convolution layers, Recurrent Neural Networks (RNN), Long Short-Term

Memory (LSTM), and Gated Recurrent Unit (GRU) can be employed [62, 63]. Most

recently, there has been a significant surge in the adoption of Large Language Models

(LLMs). These models use transformers that work with self-attention mechanisms. Self-

attention enables the transformer to assign weights to di↵erent parts of a sentence such

that the more important parts in a sequence can be emphasized in generating results.

As a result, the number of weights decreases, and the model can learn quicker than the

traditional models such as LSTM. The best example of an LLM is ChatGPT, which

employs transformers to encode text.

The trace of NLP models can be seen in the AECOM domain. They have been em-

ployed to streamline and automate the process of evaluating compliance with building

codes and regulations [64]. By parsing and analyzing textual documents, these models

aid in ensuring that construction projects meet the necessary legal and safety require-

ments, reducing errors and expediting the compliance checking process [65]. These

techniques have also been used to enrich textual data with structured information. This

process involves extracting and categorizing data from unstructured texts, making it

more accessible and useful for various AECOM applications [66]. This data enrichment
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facilitates better decision-making and improved data management. NLP-driven search

engines and information retrieval systems enhance the accessibility of vast volumes of

AECOM documents and data [67]. Operators can e�ciently retrieve relevant informa-

tion from project documentation, research materials, and historical data, saving time

and ensuring that crucial insights are readily available. NLP models support the O&M

of built environments. They support managing work orders, analyzing service requests,

and generating maintenance schedules based on textual inputs, thereby enhancing the

overall e�ciency of FM processes. By extracting insights from textual data, construction

managers can make informed decisions, monitor project milestones, and ensure timely

project delivery [68]. A typical example of NLP-enabled systems is shown in Figure 2.11,

where the system automatically extracts and transforms both regulatory information and

design information in BIM for automated compliance reasoning.

Figure 2.11: NLP-enabled system for automated compliance checking [68].

2.5.4 Computer Vision

Contrary to NLP, which mainly focuses on text, computer vision is a field concerned

with interpreting visual data such as images, videos, and scans. The visual data required

for computer vision can come from various sources such as cameras, satellite imagery,

scanners, etc. Various tasks such as semantic segmentation, object detection, classifi-

cation, motion analysis, image generation, and 3D reconstruction can be considered in
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this category. DL techniques, especially Convolutional Neural Network (CNN)s, have

revolutionized NLP and computer vision. DL is a specific type of ML in which the model

architecture generally contains a higher number of layers with complex dependencies for

extracting features from the input data. As going forward in the encoding part of DL

models, more features are extracted typically through convolution layers, thus increasing

the depth of feature maps. Figure 2.12 shows the architecture of VGG 16 [69] in which

the depth of feature maps increases while their size (width and height) decreases. The

pyramid shape of the architecture can visually depict the definition of deep architectures.

Figure 2.12: Architecture of VGG 16 [69].

From this model on, there have been fundamental architectures such as ResNet [70],

GoogleNet [71], RCNN [72], YOLO [73], etc., each bringing new concepts and modules

to the realm of ML and DL. For instance, in the ResNet architecture shown in Figure

2.13, the idea of using skip connections was proposed to address the vanishing gradient

problem (the gradient in deep architectures becomes very small as we approach the

initial layers; thus, the weights of those layers cannot be tuned properly).

Transfer learning is also a strong ML technique that has been widely used in computer

vision. This approach uses a model previously trained on a dataset to tackle a related yet

distinct task. Research studies have shown that the initial layers of DL models typically

capture rough and fundamental features that can be transferred across other datasets,

whereas the last layers capture fine and task-specific features. Hence, the weights of

the initial layers can be frozen, and the model is only trained on its last/top layer(s).

Fine-tuning in transfer learning is also a technique in which more layers from the top are

unfrozen and tuned during the training process. This can improve the model’s accuracy

as it increases the adaptability of the pre-trained model for the new task.
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Figure 2.13: Architecture of ResNet [70].

DL architectures generally contain various modules/layers. Each module is employed

for a specific operation depending on the expected tasks from the model. 1D, 2D,

and 3D convolution, pooling, and fully connected layers are the fundamental building

blocks for constructing DL network architectures. However, the ever-evolving field of DL

constantly seeks to enhance the capacity of models using advanced modules to capture

and process intricate patterns, information, and relationships within data.

Self-attention [74] is a module proposed for generating weights through fully connected

layers and applying those weights to the feature vectors to emphasize the important

features in generating final feature maps2. The proposed attention mechanism in the self-

attention module has also found its way to other modules, such as Non-Local Attention

(NLA) [75] and Global Context Block (GCB) [76], as shown in Figure 2.14.

Figure 2.14: Spatial encoding of features using NLA (left) and GCB (right) [76].

2A feature map in a deep learning architecture is a three-dimensional array representing the output of
neurons in a specific layer.
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These modules also use a weighting mechanism to provide the spatial relationship

among feature vectors that convolution layers cannot properly process. This is because

the kernel size3 in convolution layers is generally limited; thus, the pair-wise dependencies

among pixels standing far from each other cannot be encoded e�ciently. Contrary to the

NLA module that uses two convolution layers to generate weights, GCB only employs a

single convolution layer, leading to a lighter module that can be used in the sequential

layers of the deep architectures.

For sequential data processing in tasks, such as motion analysis, NLP, and time series

analysis, where each data point depends on its previous sample(s), specific types of NN

modules, such as RNN, LSTM, and GRU (Figure 2.15), have been designed [62, 63].

RNNs contain recurrent cells that enable information to flow from one time step to the

next. This recurrent connection forms a loop in the network, allowing the network to

maintain a hidden state or memory of previous time steps. RNNs su↵er from the vanish-

ing gradient problem, making them unable to e�ciently capture long-term dependencies.

LSTM addresses this problem by introducing an input gate, a forget gate, and an out-

put gate that can control the flow of new information into the cell, the data from the

previous time step, and the data that should be read. GRU is also a simplified version

of LSTM with only two gates (update and reset) that control the passed information

from the previous step and data that should be forgotten [62].

Figure 2.15: Neural network modules for encoding sequential data [77].

Generative AI is also a subset of AI that has gained strong attention in recent years.

Generative AI generates new data or content that resembles the input data it has been

trained on. The input data can be text, image, audio, or video. Generative Adversarial

Networks (GANs) [78] are fundamental architectures in the context of generative AI.

GANs encompass two modules called generator and discriminator. These two modules

always compete to produce results similar to the actual samples with some di↵erences.

3The kernel size in a convolutional neural network represents the dimensions (height and width) of the
filter or convolutional window applied to input data during the convolution operation.
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The generator generates data using an input noise, while the discriminator is a binary

classifier that tries to distinguish between the generated data and the real one (training

sample). This adversarial process improves the quality of generated data by the gener-

ator. Most recent GAN architectures can not only generate data from the same data

format but also from other formats. For instance, text data can be used to generate

images corresponding to the content of the input text [79].

Computer vision also has a wide range of applications in the AECOM domain. Using

the images and videos captured by cameras, these models can monitor the progress of the

construction, ensuring the work is completed as scheduled. Defected or damaged areas of

materials, structural elements, and welds can be detected automatically using computer

vision models [80]. These models can also specify the type of corruption and recommend

the next actions for facilitating the rehabilitation process [81, 82]. Computer vision

models can monitor the construction site during the project’s implementation phase to

ensure safety compliance by detecting and altering potential hazards [83]. They can

also observe the pose gestures of workers and analyze the surrounding environment to

enhance safety measures [84]. These models can read and interpret technical drawings

for automated 3D model reconstruction of buildings [85, 86]. This typical application

can be seen in Figure 2.16, where building components such as walls, windows, and doors

have been detected using computer vision models.

Figure 2.16: Model reconstruction of building floor plans using computer vision [85].

They can also compare the implemented project with the planned model and detect

the discrepancies between these data sources, ensuring accuracy and adherence to archi-

tectural specifications [87]. Computer vision can assist in managing construction-related

documents, such as blueprints, invoices, and contracts, by automatically scanning and

classifying them [88]. GAN models can generate and recommend architectural plans

based on a set of requirements such as the number of rooms, area, and dimensions

[89]. They can also automate the model reconstruction process of buildings and bridges

42



2.5 AI in the AECOM Industry

from scan data using 3D DL models. Augmented reality (AR) devices use computer

vision to overlay digital information onto the real world, helping architects, engineers,

and construction workers visualize designs and layouts in the physical environment [90].

Computer vision can optimize energy usage by monitoring real-time occupancy levels,

lighting, and temperature conditions and adjusting accordingly.

2.5.5 Optimization

Optimization is a technique used to find the best/optimal solution in the feasible space

of the problem. Optimization problems are generally expressed as minimization or maxi-

mization problems. The main goal of optimization algorithms is to minimize or maximize

an objective/cost/loss function with respect to a set of parameters in a constrained or

unconstrained problem space. The definition of the objective function is dependent on

the problem. Based on the definition, various optimization algorithms can be used. For

example, if the objective function and its constraints can be expressed in a linear for-

mat, linear programming methods such as simplex can be employed. Beyond this type

of optimization, a diverse array of methods exists, each designed to address a category

of optimization problems.

Most conventional optimization algorithms are deterministic, e.g., the simplex method

in linear programming. Deterministic optimization algorithms that use gradient infor-

mation are called gradient-based algorithms [91]. Gradient-based algorithms are a class

of techniques used to find the optimal values of parameters in non-linear optimization

problems. They are the type of first-order optimization requiring the first-order deriva-

tive to calculate the value of the gradient. These algorithms need a closed-form objective

function to calculate the first derivative and guarantee convergence. They start from a

point in problem space, and based on the value of the gradient and its direction, the

algorithm updates parameters, as shown in Figure 2.17. It does so by stepping in the di-

rection opposite the gradient. The step size is controlled by a parameter called learning

rate. A smaller learning rate results in smaller steps, while a larger learning rate leads

to larger steps. Even though gradient-based algorithms require a convex function, they

can be used for non-convex problems with smooth problem space. An example of this

can be seen in machine learning models that mostly use gradient-based algorithms such

as Gradient Descent (GD), Stochastic Gradient Descent (SGD), Adam, and RMSprop in

the training phase on non-convex space to minimize the loss value and tune the network

weights.

Heuristic optimization, a problem-solving approach that prioritizes practicality over

guaranteed optimality, utilizes methods to e�ciently explore solution spaces. These
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Figure 2.17: Convergence of a typical gradient-based algorithm [92].

approaches provide quick but approximate solutions, recognizing the trade-o↵ between

speed and the assurance of finding the global optimum. Metaheuristic computation is a

sub-field of AI to solve optimization problems, especially with incomplete or imperfect

data information [93]. The evolution of biological and natural systems has inspired most

metaheuristic algorithms [94, 95]. Contrary to gradient-based optimization algorithms,

metaheuristic algorithms are derivative-free and not dependent on the closed-form for-

mulation of the objective function. This feature enables them to optimize nonlinear,

multi-modal, and multivariate functions whose derivatives are not computable. Similar

to other optimization techniques, metaheuristic algorithms require an objective/fitness

function to evaluate the quality of the model. Most metaheuristic algorithms such as

Particle Swarm Optimization (PSO) [96], Genetic Algorithm (GA) [97], Teaching Learn-

ing Based Optimization (TLBO)[98], Grey Wolf Optimizer (GWO) [99], and Firefly Al-

gorithm (FA) [100] are population-based. This means a list of solutions/candidates is

proposed initially based on the problem space (discrete or continuous) and the ranges of

the parameters. This list is further improved by considering the fitness function value

and the algorithm strategy, as shown in Figure 2.18. Finally, the best solution is reported

as the global optimum location in the space of the problem.

Metaheuristic algorithms have also been used for energy, cost, and topology optimiza-

tion of structures. In the context of energy management, metaheuristics have shown

promising performance in optimizing the allocation and consumption of resources, lead-

ing to more sustainable and e�cient energy utilization [102]. These algorithms enable

intelligent decision-making processes, considering factors such as energy demand, cost

constraints, and environmental impact. Topology optimization, another application area

of metaheuristic algorithms, involves finding the optimal configuration of a structure or

system to meet specific performance criteria. An example of these algorithms can be
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Figure 2.18: Convergence of a typical population-based metaheuristic algorithm as the number
of iterations increases from left to right [101].

seen in truss topology optimization, where the members with higher contributions to

sustaining loads are selected, as shown in Figure 2.19. Metaheuristic algorithms, with

their ability to explore vast solution spaces and overcome local optima, play a significant

role in achieving optimal designs. These techniques have been successfully employed

in engineering industries to enhance components’ structural integrity and performance

[103]. In the context of NNs, the conventional gradient-based algorithm used for train-

ing the model can be replaced with metaheuristic algorithms, o↵ering an alternative and

complementary method for fine-tuning the weights and biases of NN. This technique im-

proves the robustness and model performance, particularly when faced with non-convex

and high-dimensional parameter spaces [94].

Figure 2.19: Truss topology optimization using metaheuristic algorithms [104].

45



2 Research Background

2.6 Current Practice in Geometric Digital Twinning of

Bridges

Despite the significant benefits of bridge DTs in the O&M phase of bridges, most trans-

portation agencies still rely only on conventional systems to manage assets. Table 2.5

shows the results of a survey from engineers and contractors in 2017, where they were

asked about the value a BIM model can provide in various phases of construction [105].

Across four countries of the US, UK, France, and Germany, most respondents believe that

BIM delivers the most significant value during the design development phase. According

to this report, only one of the 24 BIM-using owners has selected the maintenance phase.

This observation implies that most transportation infrastructure owners currently view

BIM as a tool to enhance design and construction processes without fully recognizing

its potential for optimizing asset management and operational aspects.

Table 2.5: The results of a survey about the greatest value of BIM according to Engineers and
Contractors (%) [105].

US UK France Germany

Before Design Begins

Preplanning (US)/Brief (UK, France, Germany) 7 0 4 2

Predesign (US)/Concept (UK, France, Germany) 15 22 10 19

During design

Design Development (US)/Developed Design (UK, France, Germany) 36 49 49 44

Construction Documentation (US Only) 11

Bidding/Construction/Installation

Bid Letting (US) 1

Production (UK, France, Germany) 13 20 22

Construction (US)/Installation (UK, France, Germany) 28 7 3 13

Post-Construction

Project Closeout (US)/As Constructed (UK, France, Germany) 0 7 12 0

Maintenance (US)/Use (UK, France, Germany) 0 2 1 0

Another reason that prevents transportation agencies from broadly using DTs in the

post-construction phase is the high cost and complexity of creating these models. At the

core of a bridge DT, a geometric model exists that needs to be created in the initial step.

This model can then be enriched with metadata collected by IoT devices such as sensors

and is connected to a BMS. However, model creation is still the preceding problem in

the digital twinning of bridges. Figure 2.20 shows the six required steps for generating a
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geometric DT, from point cloud generation to a 3D volumetric model. In what follows,

a description of each step is brought up, and common practices are discussed.

Figure 2.20: Required steps to create the geometric model of a bridge DT.

• Point cloud generation: As described in Section 2.4, PCD is the most appropriate

data format for generating a geometric DT as it can represent the current geometric

status of the structure. Creating point clouds typically involves advanced surveying

and data acquisition techniques, such as laser scanning and photogrammetry, which

are essential for developing an accurate and comprehensive digital twin. This step

focuses on collecting precise and accurate data that will form the foundation of

the geometric digital twin.

• Preprocessing: The output of laser scanning and photogrammetry is a raw PCD

comprising millions or even billions of individual data points. This raw dataset,

however, requires significant processing to be usable in creating a DT. This involves

data alignment, noise reduction, and data registration, ensuring that all data points

are accurately positioned in a common coordinate system and correcting errors or

inaccuracies.

• Semantic segmentation: It involves identifying and classifying various elements

within a given scene. When dealing with point clouds, such as those representing

bridges, these points can represent various structural components, including rail-

ings, the bridge deck, abutments, and more. In many applications, such as model
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reconstruction, semantic modeling, and establishing spatial relationships among

the components, it is highly advantageous to partition the entire point cloud of

the bridge into smaller, more manageable subsets known as clusters or instances.

This segmentation step o↵ers two significant benefits. 1) By breaking down the

entire point cloud into smaller clusters, the complexity of the task is reduced. This

is particularly useful as these clusters typically consist of a lower number of points,

making subsequent analysis more computationally e�cient. 2) Each point cluster

is assigned a label indicating the element type it represents within the bridge struc-

ture. This labeling is practical, as it provides clear and meaningful information

about the identity and intent of each cluster. It essentially answers the question

of which specific structural element every point cluster corresponds to.

• Model reconstruction: Point clouds generally consume a significant amount of

memory as each point is stored as a separate data element. Also, point clouds

cannot solely provide rich information about the geometric details of elements.

Hence, they need to be processed further, enriched, and summarized to encompass

the semantic-geometric information. Model reconstruction is a set of techniques

to create or recreate a 3D model or representation of an object, scene, or environ-

ment. This process typically involves transforming real-world objects, scenes, or

conceptual designs into digital 3D models that can be rendered, manipulated, and

used in various applications, including animation, simulation, virtual reality, and

Computer Aided Design (CAD). Triangulation/tesselation, mesh representation,

boundary representation as well as procedural/parametric modeling are among the

well-known model reconstruction techniques.

• Assembly: Piece-wise geometric modeling of bridge elements from their point

clouds leads to a set of volumetric bodies that must be assembled for a unified

and integrated 3D representation. In CAD software, assembling elements refers to

positioning and connecting multiple parts or components to create a complete de-

sign or assembly. The components need to be interconnected correctly for a bridge

to function as a cohesive structure. CAD software provides tools for specifying

connections, welds, bolts, or other fasteners between elements. The software’s

parametric functionalities can be used to define relationships and dependencies

between components, ensuring that changes in one part propagate correctly to

related parts.

• 3D volumetric model: The last step is to check the integrity and compatibility

of the model with the point cloud. This crucial phase serves as a final quality
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assurance process, ensuring that the 3D volumetric model accurately represents

the real-world objects or environment from which the point cloud data has been

derived. In this phase, the model’s dimensions are cross-checked against the point

cloud data to confirm that the scale is consistent. This is particularly vital for

bridges where precise measurements are required. Furthermore, discrepancies or

issues are detected and addressed through an iterative refinement process. This

may involve modifying the 3D model, adjusting parameters, or making further

measurements using the point cloud.

Among the aforementioned cases, Semantic Segmentation and Model Reconstruction

are the most challenging steps requiring significant manual e↵ort. Also, Assembly is

a process that requires precise models for implementation; otherwise, neighboring ele-

ments cannot be integrated and might need an iterative process for the refinement of

the generated models from the previous step. In current practice, various techniques

and tools are employed to facilitate the geometric modeling of bridges. However, the

process is still highly challenging, labor-intensive, and error-prone. To shed light on

these challenges, the manual process of generating bridge models from point clouds is

reviewed, and common methods and tools are described in more detail.

As mentioned, point clouds are generally bulky datasets containing millions of points.

They, hence, require a large data storage space and processing resources. To address

this problem, point clouds are generally subsampled. Subsampling of point clouds refers

to the process of reducing the number of data points in a point cloud while attempting

to preserve essential geometric or spatial characteristics. There are various methods

for subsampling point clouds. Uniform Grid Sampling (UGS), Random Sampling (RS),

and Furthest Point Sampling (FPS) are the most common sampling methods used in

practice.

• Uniform Grid Sampling (UGS): It is a method of subsampling point clouds in which

the space occupied by the point cloud is divided into a regular grid or lattice of

equally sized cells or voxels. Each cell represents a small, uniform region within the

point cloud’s spatial extent. In UGS, one or more points from each cell are selected

to represent that cell. This method helps reduce the density of the point cloud by

keeping only a subset of the original points, typically one per cell, ensuring that the

subsampled point cloud retains a uniform distribution of points across the entire

dataset. UGS is often used to simplify PCD while preserving important spatial

characteristics.
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• Random Sampling (RS): It randomly selects a number of points from the original

PCD. RS is the simplest and fastest existing subsampling algorithm. Contrary to

UGS, which does not provide a mechanism for controlling the number of sampled

points, RS can result in a specific number of points after subsampling. However, it

may not preserve the spatial distribution or density of points in the original point

cloud. It can result in areas with high point density being underrepresented in the

sample while areas with lower density are overrepresented.

• Furthest Point Sampling (FPS): This technique aims to select points that are the

furthest apart from each other, ensuring that the subsampled PCD retains the

key spatial characteristics of the original dataset while reducing its size. FPS

provides a mechanism to control the number of subsampled points and proper

point cloud coverage. However, it is computationally more expensive than RS

and UGS, limiting its applications. Figure 2.21 shows the results of applying each

subsampling method to a bridge point cloud.

Resulting point clouds from laser scanning or photogrammetry are often corrupted by

noise, which can arise from various sources, including sensor limitations, environmental

factors, or the data acquisition process. To reduce the value of error from point cloud

processing algorithms, raw point clouds are generally denoised.

Denoising is the process of removing or reducing noise while preserving the underlying

structure and features of the 3D data. Filtering techniques such as median, Gaussian, or

bilateral filters are typically used to remove noise. These filters can be applied to each

point or neighborhood of points within the point cloud. Figure 2.22 shows a bridge point

cloud after applying a Statistical Outlier Removal (SOR) filter. This filter calculates the

average distance of points to their nearest neighbors in each local neighborhood and

their standard deviation. It then removes the points that are farther than the average

distance plus a number of times the standard deviation.

Transformation is the next preprocessing step performed to make the point cloud more

manageable and easier to work. The transformation of point clouds is often referred to

as Translation and Rotation. Translation is the process of moving/shifting the point

cloud, while Rotation is defined as rotating the point cloud around the coordinate axes.

Both cases can be performed by defining a transformation matrix and multiplying the

point cloud with the matrix. In some cases, it is more suitable to translate the input

point cloud to the origin of the coordinate system and rotate it around one or more

coordinate axes.
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(a)

(b)

(c)

Figure 2.21: Subsampled bridge point cloud using: a) UGS; b) RS; c) FPS.

Semantic segmentation is the next essential step to enrich the input point cloud. Se-

mantic segmentation of point clouds is the process of dividing the input point cloud

into the point cloud of various elements/components in the scene, as shown in Figure

2.23. In current practice, this step is often conducted manually by drawing polygons

around the point cloud of elements belonging to the same family. Operators generally

face several challenges during this step. Finding the best views for segmentation can

be a time-consuming task. It involves rotating the point cloud to reveal the most infor-
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(a) (b)

Figure 2.22: Point cloud of a bridge: (a) before de-noising; (b) after de-noising.

(a) (b)

Figure 2.23: Semantic segmentation of a bridge point cloud: (a) before segmentation; (b) after
segmentation. Class colors: yellow: background; blue: bridge deck; red: railings;
green: abutments.

mative perspectives for separating points accurately. In complex scenes with multiple

surfaces and intricate details, determining the optimal rotation angles and sequences

can be labor-intensive. Furthermore, these selected views might still contain underlying

points that are not observable due to occlusions or scanning limitations. Identifying and

managing these unobservable points can pose a significant challenge during segmenta-

tion. Drawing polygons around point cloud segments is fundamental in creating point

segments. However, it cannot provide a one-size-fits-all solution, especially when deal-

ing with points not along straight paths or exhibiting complex geometries. Ensuring

that the polygons accurately match the underlying structures can be a demanding task,

requiring operator expertise. Each element within the point cloud usually requires at

least one polygon for precise segmentation. This manual polygon drawing process can

be both time-consuming and error-prone, especially in cases involving a large number of

elements. Cropping each element by hand introduces the possibility of errors. Inaccurate
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cropping can result in incomplete or overlapping segments, which can negatively impact

downstream applications that rely on the accuracy of the segmented data.

Semantic segmentation is generally followed by Instance Segmentation or Clustering.

Instance segmentation aims to identify and distinguish individual objects or instances

within a point cloud. Contrary to semantic segmentation, which groups points into

categories (e.g., abutments, railings, bridge deck, background), instance segmentation

assigns a unique label to each distinct object, even if they belong to the same category.

For example, Figure 2.24 shows the results of instance segmentation in which the two

instances of abutments and railings have been segmented further even though they belong

to the same class.

(a) (b)

Figure 2.24: Instance segmentation of a bridge point cloud: (a) before segmentation; (b) after
segmentation. Class colors: yellow and orange: abutment instances; blue and
dark green: railing instances; red: background; green: bridge deck.

Once the segments are created, they must be saved and labeled individually. This

data management aspect becomes highly challenging in larger projects where numerous

segments must be organized, cataloged, and appropriately labeled for easy retrieval and

analysis. Without e�cient data management practices, the sheer volume of segmented

parts can lead to confusion and ine�ciencies. Furthermore, ensuring that the overall

segmentation process remains standardized and consistent across the project is essen-

tial, especially in collaborative environments. Maintaining quality control and iterative

adjustments to correct errors further adds to the complexity of the segmentation task.

To find access to the bridge’s geometric details, each element needs to be modeled

from its corresponding segmented point cloud. In current practice, two approaches are

commonly used for the volumetric modeling of bridge components, as shown in Figure

2.25. The first approach measures the distances between points to estimate the parame-

ter values corresponding to each bridge component. This comprehensive set of measured

dimensions is then saved and labeled, ensuring they can be retrieved for further analysis
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(a) (b)

Figure 2.25: Common approaches for geometric modeling of bridge components: (a) first ap-
proach; (b) second approach.

and manipulation. Simultaneously, a library of crafted dummy parametric models is

created for each individual bridge component. These models are designed to be inher-

ently adaptable, aligning with the parametric nature of the bridge components. They

are created to enable the geometry of the dummy models to be dynamically altered in

response to changes in the parameter values. In the next step, the previously saved pa-

rameter values are imported into these parametric dummy models, as shown in Figure

2.26. This integration enables the bridge component to dynamically adjust its shape.

In doing so, it represents and reconstructs the segmented point cloud of the element.

This approach combines measurement, model creation, and parametric adjustment to

represent the bridge components.

While there are benefits in employing parametric models to facilitate the modeling

process, the task of measuring every dimension within a point cluster can be laborious

and time-consuming. Additionally, the process of saving and labeling each parameter

value can be challenging, particularly in the case of bridges with many elements be-

longing to the same class; for example, assume a bridge with ten piers. Furthermore,

there is the potential for inaccuracies in the derived parameter values from the point

cluster, primarily due to the possibility of human errors. This potential for inaccuracies

intensifies the need for precise attention to detail and rigorous quality control, as even a

minor discrepancy in parameter values can have major e↵ects on the overall structural
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Figure 2.26: Importing the value of parameters into an abutment instance.

integrity and performance of the bridge, emphasizing the critical role of precision and

accuracy in the modeling and design of bridges.

In the second approach, the point clusters are directly imported into a BIM-authoring

software, which serves as the platform for generating the 3D model. Prior to this step, a

preprocessing procedure can be undertaken to reposition the origin of the point clusters,

streamlining subsequent operations. This step ensures the selection of an appropriate

reference or working plane aligned with the surfaces or cross-sections of the point clusters.

The modeling process starts with drawing 2D sketches, often in the form of a polygon or

other relevant shapes, directly on the selected reference plane, as shown in Figure 2.27.

These initial sketches serve as the architectural blueprint for the forthcoming 3D model.

Simultaneously, constraints such as parallelism, connectivity, perpendicularity, and sym-

metry are applied to ensure that the evolving design aligns with specific requirements

and standards. If parametric modeling is of interest, functions controlling the geometry

are defined as well, a↵ording the model the flexibility to adapt and respond to evolving

design criteria. These 2D sketches are finally transformed into a volumetric body using

a CAD functionality such as Extrude, Sweep, Revolve, or Loft.

In direct modeling using point clusters without relying on parametric models, it is

essential to recognize that this approach necessitates a repetitive geometric modeling

procedure that must be rigorously conducted for each point cluster. The iterative na-

ture of this process requires more manual e↵ort when confronted with the substantial

volume of point clusters associated with bridge structures. Consequently, what may
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Figure 2.27: Geoemtric modeling of a wing wall in a BIM-authoring software.

initially seem a streamlined method can rapidly evolve into a challenge due to the ex-

tensive data and details that must be addressed. Also, a notable challenge emerges in

the precise definition of reference and working planes for creating 2D sketches. The

limited availability of straightforward and intuitive tools within most BIM-authoring

software platforms further compounds this challenge. Defining accurate reference planes

without such tools necessitates a profound understanding of the software’s capabilities

and a significant degree of manual input. Therefore, an additional layer of complexity

is added to the modeling process, underscoring the requisite proficiency and meticulous

attention to detail for achieving accurate and consistent results. This is particularly crit-

ical when dealing with the complex geometric characteristics of bridges. Furthermore,

inaccuracies in drawing 2D sketches are still a potential risk that might end up with

major inconsistency in modeling the bridge components.

The piece-wise modeling process of bridge components leads to the volumetric model

of each element. These elements must be assembled to form a cohesive and integrated

model that accurately represents the entire bridge. To this end, the individual elements

are imported into an assembly environment, wherein their interrelationships and de-

pendencies can be defined through a set of constraints. The assembly process requires

precise geometric models of elements, ensuring they can be interconnected and fit to-

gether properly. For instance, when considering two adjacent elements, such as a wing

wall and a retaining wall, it is reasonable to expect they share a common edge with the

same height. However, it is common that the generated models from the modeling step

cannot meet all the requirements due to the inherent potential for human errors that

may occur during the modeling process from point clouds. The assembly process might

not be conducted properly if discrepancies and inconsistencies exist, such as variations in
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the shared edge height between the wing and retaining walls. In such cases, the assembly

process necessitates a refinement phase to rectify these inconsistencies.

It is essential to emphasize that the quality assurance procedures employed in man-

ual modeling primarily rely on visual comparisons between the generated model and

the underlying bridge point cloud. However, a significant limitation is that most exist-

ing software tools lack mechanisms for quantifying the modeling accuracy. A notable

challenge in this regard is the absence of a clearly defined and quantifiable metric for

evaluating the degree of similarity or proximity between the resulting geometric model

and the point cloud. While visual evaluation can be a valuable qualitative assessment

method, the absence of a precise quantitative measure poses challenges in achieving a

thorough and accurate assessment of the model.
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Despite the considerable advantages of DT models in facilitating the O&M process of

bridges, the costs associated with manual DT modeling currently outweigh the short-

term benefits from the model. To achieve an e�cient method for bridge DTs, the costs

associated with digital twining must be reduced to a large extent.

At the core of a bridge DT a geometric model exists whose creation is, however,

costly, labor-intensive, and error-prone. Among all the steps required for the geometric

digital twinning of bridges, semantic segmentation andmodel reconstruction are essential

yet the most challenging ones. In current practice, these steps are conducted manually,

increasing the cost and time concerning digital twinning. Considering the large number of

bridges and the high demand for providing an e�cient mechanism for bridge management

and quality assessment, those steps need to be automated or at least semi-automated.

In recent years, there have been e↵orts to automate the geometric modeling of bridges

from PCD.

This section presents an overview of the concepts, methods, and techniques proposed

for the automation of the PCD-to-DT process. Furthermore, it highlights the existing

research gaps and the key contributions of this research.

3.1 Semantic Segmentation of Bridge PCD

Semantic segmentation of point clouds is a 3D data processing task that assigns a se-

mantic label or category to each individual point in a point cloud. In computer vision, it

is defined as a classification at the point level as it aims to classify each point in the cloud

into predefined categories or classes [106]. Semantic segmentation has various applica-

tions in identifying and categorizing objects and structures within a 3D environment for

autonomous vehicles, robotics, urban planning, and augmented reality [107, 108, 109]. It

also enhances the understanding of the 3D scene by providing a detailed representation

of its components, enabling more advanced decision-making processes.
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Semantic segmentation of bridge point clouds is a crucial process that not only di-

vides the dataset into distinct segments representing bridge elements but also enriches

the point cloud by introducing a new attribute, namely class labels. By classifying points,

semantic segmentation supports various tasks such as model reconstruction, structural

analysis, planning, etc. Various sets of features, such as (x, y, z) coordinate of points,

RGB color codes, normals, and so on, can be used for point cloud segmentation. How-

ever, most existing models, algorithms, and techniques, at least, use the (x, y, z) coor-

dinate of points as the input data. The level of semantic segmentation is completely

user-dependent and is defined based on the requirements and expected use cases. For

instance, a bridge point cloud might be segmented into the point clouds of sub- and

super-structure, while in another case, it might be segmented further to the point cloud

of elements such as railings, bridge deck, piers, abutments, etc.

Bottom-up, top-down, and deep learning-based are common approaches widely em-

ployed in the semantic segmentation of bridge point clouds. Each approach has distinct

advantages and drawbacks depending on several factors, including the required number

of thresholds, the degree of automation, e�ciency against occlusion and noise, processing

e�ciency concerning speed and memory, and the scope for adaptability when applied

to previously unseen datasets. A robust method/algorithm for semantic segmentation

of bridge point clouds is the one with the lowest number of sensitive thresholds, as the

calibration of these values directly impacts the level of automation. Furthermore, it

provides a high level of automation by minimizing user intervention in processing point

clouds. In addition, it must demonstrate acceptable performance in scenarios character-

ized by visual and physical occlusion as well as noise, all of which are common challenges

encountered when dealing with point clouds. The solution should also strive for a cer-

tain level of generality, capable of performing adequately when confronted with unseen

datasets. Additionally, it should be capable of processing large volumes of data within

reasonable time frames, as the input point clouds may encompass millions of data points.

This section reviews three common approaches for the semantic segmentation of bridge

point clouds and brings the related works into the scope of each method. It further

presents the advantages and drawbacks of the methods, aiming to provide readers with

deeper insights into their respective merits and limitations.

3.1.1 Bottom-up Semantic Segmentation

The bottom-up methods transform the low-level features into a set of high-level fea-

tures and leverage them to generate a more complex system at successively higher levels

[110]. The low-level features are generally the raw attributes of PCD, such as the x, y,
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z coordinates of points, and the RGB color codes. The high-level features are typically

the surface normal, meshes, surface planes/patches, non-uniform B-Spline surfaces, and

voxels [111, 112, 113, 114, 115, 116]. Multiple algorithms are capable of utilizing these

features for primitive detection and model reconstruction. Region growing (RG), RAN-

dom SAmple Consensus (RANSAC), and Hough-Transform (HT) can be mentioned as

dominant algorithms in this category. Most of these algorithms have been proposed ini-

tially for the segmentation of images [117, 118, 119] and have been extended to 2D/3D

point clouds.

Region Growing (RG) is the most well-known category of bottom-up methods. These

algorithms start from one or more seed points (e.x., randomly selected points) and

expand the region to cover objects of interest in a point cloud [120, 121]. RG algorithms

generally employ a data structure such as kd-tree or octree and a search algorithm such

as K-nearest neighbors search (KNN) or range/ball search to detect the nearest neighbors

of points. They then start from the seed points and employ a set of features (low-level or

high-level) to grow/expand the region [122, 123]. For instance, when detecting a plane,

point normals can be used. This step is generally controlled using a set of thresholds

so that the points with similar features are added to the same cluster; for example, the

deviation in the angle of normal vectors is checked in the plane detection task. The RG

algorithms stop adding points to a cluster when no point is left in their neighborhoods

with similar features, i.e., the points whose features meet the predefined conditions. The

algorithm finishes when a label is assigned to each individual point in the point cloud.

RANdom SAmple Consensus (RANSAC) is an algorithm based on sampling an object

in a scene and evaluating its similarity using a set of thresholds [119]. In the case of point

clouds, the RANSAC algorithm can also be considered a bottom-up method as it samples

objects using a minimal number of seed points. For instance, a plane is sampled with

three randomly selected points. The similarity of the sampled object is quantified using

an objective function. This function calculates the object’s distance to the points and

classifies points as inliers if they are placed within a predefined distance/bound to the

sampled shape [124]. For example, the distance of points to a randomly sampled plane

is measured, and the points within a 10 cm distance to the plane are counted as inliers.

Over a number of iterations, RANSAC selects the sampled object with the highest

number of inliers as it shows a higher similarity to the desired object/shape. RANSAC

is an iterative algorithm that requires an objective function to measure distances and

detect inlier points. Therefore, the RANSAC algorithm has been defined mainly for

primitive shapes such as Planes, Spheres, Cylinders, Cones, and Torus whose objective

functions can be defined in a closed-form formulation and evaluated promptly [124].
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RANSAC is highly robust and can detect objects even in noisy conditions; however, it

needs a set of thresholds and hyperparameters that might not be easy to determine [125].

Hough Transform (HT) is a technique used primarily to detect primitive shapes, such

as lines, circles, and ellipses, within images and 2D/3D point clouds. It was initially

proposed as a technique for image processing [126]. The HT algorithm starts with

representing geometric features in a specific parameter space. For example, for the

detection of lines, each data point is represented as parameters describing a line in the

parameter space, e.g., slope and intercept of the line. Parameter space represents an n-

dimensional space in which each data point corresponds to a combination of parameters

describing the geometric shape. The parameter space of a line can be a two-dimensional

space with the axes slope and intercept; each data point in this space represents a line.

HT algorithm creates a voting system for every data point based on a set of thresholds

describing the similarity of the data to the target shape. The voting process is repeated

for each data point, and the results are accumulated. After all votes are cast, the data

points with the highest votes are detected, as these points are more likely to represent

the object.

Bottom-up algorithms have been used principally or partially in detecting building

and bridge components. Murali et al. [127] detected walls in building point clouds and

employed subsequent reasoning about the spatial relationships to generate the 3D BIM

model with individual rooms refined by walls, ceilings, floors, and doors. Boulaassal

et al. [128] employed RANSAC to extract the planar surfaces of facades such as walls

and windows. In another study, Hulik et al. [129] recognized planar surfaces in the

building point clouds using a 3D HT algorithm, showing that it can achieve competitive

results with the RANSAC algorithm in a well-controlled condition. Lee et al. [130]

detected planes in a bridge point cloud using M-estimator SAmple Consensus (MSAC),

a generalization of the RANSAC [131], and extracted the value of parameters for specific

types of the bridge deck by measuring the distance between each pair of planes. Yan and

Hajjar [132] used RANSAC to detect planes of steel girders in the bridge point clouds

and reconstructed the steel sections after refining the planes. Chen et al. [133] detected

a bridge deck point cloud using an RG algorithm after calculating high-level features

such as normals, RGB color codes, local density, roughness, and Gaussian curvature.

An example of using the RG algorithm for semantic segmentation of bridge point clouds

can be seen in [134]. This study employed a Quadtree (Octree in 2D) as a data structure

and a cell- or voxel-based region growing (CRG/VRG) algorithm, as shown in Figure

3.1, to extract the planar surfaces in the PCD of RC bridges.
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Figure 3.1: A bottom-up method for semantic segmentation of bridge point clouds [134].

There are fundamental algorithms with various applications in the category of bottom-

up approaches. These algorithms can be used to detect elements in a point cloud scene.

However, bottom-up algorithms have been primarily devoted to generating surface-based

geometries, especially planar surfaces and primitive shapes such as the sphere, cylinder,

cone, and torus [124, 135]. This is mainly due to the dependency of these algorithms on a

closed-form formulation for the fast evaluation of the sampled geometry. Bridge elements

generally have more complicated geometric shapes than that of primitive shapes. Hence,

bottom-up algorithms often need other post-processing algorithms and might be unable

to solely detect all bridge components in a point cloud. Furthermore, they primarily

require a set of thresholds, while tuning them might not be simple, especially in point

clouds with di↵erent resolutions. Last, they generally su↵er from occlusion and clutter,

which is common in bridge point clouds.

3.1.2 Top-down Semantic Segmentation

Contrary to bottom-up, top-down methods start from a complex system and decompose

it to subordinate systems or elements that are simpler to interpret [136]. They require

hierarchical planning and deep insight into the system so that coding cannot be started

without reaching a su�cient level of detail, at least for some parts. One prominent
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feature of top-down algorithms is in the divide-and-conquer application. They divide

a complex problem into smaller parts, solve each part individually, and then combine

solutions to address the overall problem. This approach has been commonly used in

sorting algorithms such as merge sort and quicksort [137]. The top-down methods are

often heuristic established based on a set of domain-specific information/criteria. This

knowledge-based approach can leverage the existing information, such as predefined

constraints, parameters, object types/instances, and topological relationships, to break

down the initial complex model to a set of basic elements [138, 139, 140, 141]. These

basic elements can be further refined in more detail and in many additional subsystem

levels. A pioneering study using a top-down approach was REFAB (Reverse Engineering

FeAture-Based)[142], which uses parametric geometric constraints such as parallelism,

connectivity, perpendicularity, and symmetry to convert points to mechanical models.

The top-down approach has also been used for the semantic segmentation of bridge point

clouds.

To overcome the limitations of bottom-up segmentation algorithms, Lu et al. [143] pro-

posed a heuristic top-down method for detecting bridge components following directional

geometric cuts and measuring the relative distance of points, as shown in Figure 3.2.

Zhao et al. [144] defined a heuristic algorithm using the horizontal histogram of density

and a support vector machine (SVM) for portioning structural elements in RC bridges.

Yan and Hajjar [145] proposed a top-down heuristic method for semantic segmentation

of steel girder bridges through the existing geometric and topological constraints in those

bridges. Pan et al. [146] described a top-down method based on graph construction and

combined it with a rule-based classification algorithm to segment the main elements of

heritage bridges. Qin et al. [147] employed the local and global density of points for

semantic segmentation of bridge PCD and fitted cylindrical and cuboid shapes to the

segmented point cloud of elements. Qin et al. [147] used the local and global density of

points for semantic segmentation of bridge PCD and fitted cylindrical and cuboid shapes

to the segmented point cloud of elements.

Top-down algorithms might be less dependent on thresholds or hyperparameters than

bottom-up methods. They might also show better performance in point clouds with oc-

clusion and clutter. However, most top-down algorithms are defined considering a set of

presumptions about the target bridge’s geometric conditions or topological rules. There-

fore, top-down algorithms might fail in cases where the input point cloud does not satisfy

the presumed assumptions. For instance, a top-down algorithm developed for straight

bridges might fail if the input sample has even small degrees of horizontal/vertical cur-

vature. Furthermore, top-down algorithms mostly tend to provide explicit solutions
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Figure 3.2: Top-down semantic segmentation of bridge point clouds: (a) slicing along X-axis;
(b) deck assembly slice (blue) and pier assembly slice (red); (c) comparison between
deck assembly slice and pier assembly slice; (d) mid-planes [143].

through a deep insight into the problem components. However, finding and expressing

such a solution might not be feasible in many cases.

3.1.3 Deep Learning-based Semantic Segmentation

Following the breakthrough results of applying DL models to images, there has been a

strong interest in adapting such models to 3D geometric data such as meshes or point

clouds. Contrary to images, a raw point cloud is an unstructured dataset without an un-

derlying grid. Thus, its features cannot be extracted simply by passing 2D convolution

and pooling layers [148]. To address this issue, the initial DL models mostly relied on

transforming input point clouds to either multi-view images or volumetric data (Figure

3.3) that are readable by 2D and 3D convolutions [149, 150, 151]. However, the com-

plexity and memory issues arising from the intermediate representations restricted the

capability of these models.

PointNet [152] is the first 3D DL model with the ability to process and extract features

from points directly. The architecture of PointNet is a sequence of shared MLPs with

T-Net modules, as shown in Figure 3.4. Shared MLPs are 1x1 convolution layers that

act similarly to fully connected layers. The T-Net module consists of a transformation

matrix whose entries are calculated through the network. This matrix makes the model

invariant to rigid transformations such as rotation and translation. PointNet also uses

symmetric functions such as max or mean to achieve permutation stability and conquer
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Figure 3.3: Architecture of VoxelNet [149]. Point clouds are transformed into voxels, and con-
volution layers are applied.

the unordered point cloud input. PointNet only uses the global features of points, such

as (x, y, z) coordinates and RGB color codes for the classification of points. This means

it does not provide information about the local neighborhoods and processes every point

separately, considering its global features. It also cannot simply process large-scale point

clouds in which the number of points might vary largely.

Figure 3.4: Architecture of PointNet in which global features are encoded using shared MLPs
[152].

To address these issues, PointNet++ [153] was proposed that uses an FPS subsampling

strategy in the sequential layers of the network and calculates the local features in

neighborhoods obtained by a range/ball search algorithm, as shown in Figure 3.5. For

the semantic segmentation task, the architecture of PointNet++ also converges to a U-

net [154] architecture with an encoder, bottleneck, and decoder (autoencoder), as well

as concatenation through skip links.
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Figure 3.5: Architecture of PointNet++ [153] in which local features have also been encoded.

From this model onward, 3D DL architectures have been developed in three parts of the

sampling strategy, feature extraction, and encoding-decoding process [155, 153, 156, 157].

For instance, RandLA-Net [158] employs RS as a more e�cient sampling strategy for

fast processing points. KPConv [157] proposes kernel point convolution modules/layers

to extract the local features of points, while RepSurf [159] calculates the triangular and

umbrella surface representations to encode the local neighborhoods, as shown in Figure

3.6. Thanks to the sub-sampling and up-sampling in subsequent layers of the U-shaped

autoencoder, the DL architectures are capable of inferring per-point semantics of large-

scale point clouds [158]. The encoder of these models has also been used for real-time

semantic segmentation and model-to-cloud fitting of primitive shapes [160]. DL models

have also been used in the semantic segmentation of bridge point clouds.

Figure 3.6: Architecture of RepSurf [159].

Hu et al. [161] employed a multi-view CNN to extract features from photogrammetry

and to link it with a multi-layer perceptron (MLP) to segment the point cloud of a bridge.

Lee et al. [162] added contextual features by kd-tree and K-nearest neighbors (KNN)
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search to PointNet [152] and deep graph convolutional network (DGCNN) architectures

[148] and improved the performance of these models for the semantic segmentation of

bridges. Xia et al. [163] used the local reference frame (LRF) of points and proposed a

local descriptor to extract point features in order to segment the PCD of bridges. Jing

et al. [164] augmented the point cloud dataset of bridges with synthetic point clouds

(Figure 3.7) and proposed Bridge-Net as a 3D DL model for semantic segmentation

of arch bridge point clouds. They also used RANSAC for model-to-cloud fitting and

extracting the value of parameters. Yang et al. [165] also augmented the PCD of bridges

with synthetic data and developed a DL model based on the super point graph (SPG)

architecture [155] for semantic segmentation of bridge PCD.

Figure 3.7: Generating synthetic point clouds using the bridge 3D model [164].

In contrast to bottom-up and top-down methods, DL models require a dataset for

training. Despite the proposal of methods for generating synthetic point clouds of bridges

and using them in the training phase of models [166, 164], data acquisition still seems

inevitable. Furthermore, the collected point cloud samples need to be annotated to

satisfy the requirements of a supervised learning schema. The annotation process is

generally conducted manually, typically using the methods mentioned in Section 2.6,

intensifying the manual e↵ort required. However, DL models, after training (trained

models), generally show robust performance in classifying points without the need for

using conventional thresholds that often exist in top-down and bottom-up methods.

Furthermore, DL models are highly adaptable and flexible and can still work even if the

input samples have di↵erences with the training dataset, i.e., they are not dependent
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on a set of presumptions to be satisfied. Moreover, they have a lower inference time

for classifying points and can simply segment large-scale point clouds with millions of

points. Most importantly, recent networks include the required preprocessing steps, such

as subsampling, and can directly process raw point clouds, leading to a higher level of

automation.

3.2 Bridge Model Reconstruction from PCD

Point clouds are sparse representations of real-world objects or scenes and contain a

collection of discrete points in 3D space. They do not inherently convey the surface

characteristics or geometry of objects. They are essentially unstructured datasets, lack-

ing the interconnectivity information defining the relationships between points. The

density of a point cloud might vary depending on the data acquisition method and the

distance of the scanner; some locations might be highly dense, and others quite sparse.

Furthermore, point clouds generally need a large storage space as every point in a point

cloud is stored as an individual data sample.

To recognize the underlying geometry of point clouds and represent them more e�-

ciently, they need to be summarized and reconstructed properly. In computer graph-

ics, surface modeling is a method to generate surfaces from point clouds, allowing for

e�cient rendering, editing, and analysis of 3D objects. Tessellated Surface Representa-

tion (TSR) and Polygon/Mesh Representation (PR/MR) can be considered as surface

modeling techniques. The final model of TSR-based representation or PR-/MR-based

representation is a collection of connected surface elements. This type of representation

using polygonal facets or polygon mesh is the most popular representation in computer

graphics [167] and can be used to visualize a bridge model from its point cloud, as shown

in Figure 3.8.

However, in bridge model reconstruction from PCD, the main objective is to find

access to geometric details such as the dimension of elements, volume, and their spatial

relationships. Polygon meshes cannot result in a volumetric body and provide geometric

details about bridge elements. They also su↵er from occlusions that commonly exist

in point clouds. The degree of detail depends on the resolution of the polygon mesh.

Increasing the mesh resolution can enhance the final model’s quality, albeit at the expense

of prolonging the rendering time and elevating the complexity of the representation. For

instance, an essentially smooth surface might be represented unnecessarily by thousands

of polygon facets [169]. To address these problems, another modeling approach in CAD,
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Figure 3.8: Surface representation of a bridge point cloud using meshes [168].

called solid modeling, is used that allows the volumetric representation and manipulation

of elements through a series of additive and subtractive operations.

This section reviews solid modeling approaches that can be used principally or partially

to reconstruct bridge models from PCD. Then, a summary of the methods providing the

inputs for these approaches is presented, and the related works in the scope of this

research are discussed.

3.2.1 Solid Modeling

Solid modeling is a technique in CAD and computer graphics that enables the creation

and adjustment of 3D objects. Solid modeling approaches can be categorized into implicit

representation, boundary representation, procedural modeling, and parametric modeling.

Each approach has its advantages and limitations. In this section, the concept behind

each approach is elaborated, and use cases are presented.

3.2.1.1 Implicit Representation

Implicit representation is a solid modeling approach to representing 3D shapes by a

mathematical formulation. In computer-aided geometric modeling, implicit functions

can describe a geometric space in 3D as f(x, y, z) > 0 [170] and a geometric surface as

f(x, y, z) = 0 [171]. Common implicit surface definitions are plane, sphere, torus, and

quadratic surfaces, as shown in Figure 3.9. The unique definition of an implicit solid

model requires a set of parameters, which generally describe the origin and dimensions

of the shape. The closed-form definition of implicit shapes makes them derivable and
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simple to evaluate. For instance, the equation of a sphere can be simply derived, and the

distance of points to its surface is calculated. A mathematical descriptor is a very concise

Figure 3.9: Quadratic surfaces described by a closed-form formulation [172].

and e�cient form of describing geometry, facilitating interaction with the geometry using

a set of parameters. For instance, a sphere with the center (xc, yc, zc) and the radius r

can be simply defined using a function (mathematical descriptor) such as (x�xc)2+(y�
yc)2 + (z � zc)2 = r

2. The defined sphere can be adjusted using its parameters (center

and radius), leading to a new sphere.

Implicit solid modeling is capable of generating volumetric bodies with a concise/ab-

stract definition. Furthermore, it provides a direct accessibility to the value of parameters

or dimensions describing the geometry. However, it has limitations in defining sharp fea-

tures such as edges and vertices [173], as these features cannot be simply described in a

closed-form formula. Also, implicit solid models are limited to only a number of shapes

that can be mathematically expressed through a set of parameters.

Given the segmented point cloud of a bridge, implicit modeling cannot solely describe

the entire scene. This is mainly due to the complex geometry of the bridge components

and the limitation of implicit modeling in shapes that cannot be described simply using a

set of mathematical functions. In addition, implicit modeling only provides a piece-wise

solution for the geometric representation of objects. Therefore, the reconstruction might

yield segments with individual functions lacking topological integration.

Even though implicit models come close to what is known as parametric models,

they lack the constraint-based co-dependency between representations. It means when
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updating an element geometrically, its neighboring solid models cannot interact properly,

as implicit modeling does not typically define the dependencies and relationships among

objects. The structure of the model is thus flat and limited to the segments for which

a mathematical function can be described. To increase topological integration in an

implicitly modeled scene, an extension with procedural models or parametric models is

needed.

3.2.1.2 Boundary Representation

Boundary representation (B-rep) is an explicit method that uses boundaries to describe

a shape. In B-rep, an object is expressed by a hierarchical data structure assembling

the solid by describing a network of connections between faces, edges, and vertices [174].

A vertex is defined by its (x, y, z) coordinates, an edge can be a straight or curved

line connecting the vertices, and a face can be in a parametric form connecting the

boundaries. This system of relationships defines the topology of the model and can be

represented by a data model such as a graph, which is known as vertex-edge-face graph

or vef graph [175], as shown in Figure 3.10.

Figure 3.10: B-rep data model for representing a simple pyramid [175].

The topological information can be supplemented with geometric dimensions to de-

scribe the geometric body fully. If a geometric body has only straight edges and flat

surfaces, geometric information is only required for the nodes, i.e., the coordinates of

the vertices. For the curved edges, the geometric information describing their shape or

curvature is also required [175].
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When aiming to reconstruct an entire scene from point clouds, the B-rep method is

capable of modeling more free-form objects than implicit representation. However, B-rep

tends to consume more storage space to represent geometries, especially when modeling

highly irregular and complex geometries. Also, the data model of B-rep needs to be

extended to represent more complicated geometries containing openings or cut-outs.

3.2.1.3 Procedural Modeling

Procedural modeling is a technique that relies on creating and subsequently varying a

set of base models through a sequence of rules, instructions, or algorithms. The core

concept of procedural modeling is to store not only the outcome of a modeling process

but also the sequence of creating objects and performing modeling operations, called

the model construction history. Models created this way are called procedural models or

construction history models.

Constructive Solid Geometry (CSG) can be mentioned as a pioneering procedural

modeling method in which primitive shapes such as spheres, cylinders, cones, and so

on are combined to create the desired model [176]. Intersection (\), union ([), and
di↵erence (-) are Boolean operations to create a CSG, as shown in Figure 3.11.

(a) (b) (c)

Figure 3.11: Boolean operations in CSG: (a) Union; (b) Subtract; (c) Intersect [177].

3D CAD and BIM systems have adopted the principle of Boolean operators and ex-

tended their functionality significantly by making it possible to apply them to previously

modeled 3D objects [178, 179]. This o↵ers a powerful tool for intuitively modeling com-

plex 3D objects. In the context of BIM, the definition of subtraction solids plays an

important role in the modeling of openings and penetrations [180].

Contrary to CSG, the base models of procedural models are not limited to primitive

shapes. Procedural models typically use the concept of Sweeping and Extrusion, another

solid modeling approach in some references, to create 2D sketches and transform them

to a 3D geometry by Extrusion, Sweep, Loft, or Rotation CAD functionalities [181], as

73



3 State-of-the-Art

shown in Figure 3.12. In procedural modeling, the volumetric geometries generated by

these functionalities are combined using Boolean operations to create a model with a

higher level of complexity. In doing so, not only can the sequence of operations be stored

e�ciently, but highly complex geometries that satisfy most modeling requirements are

also obtained.

Figure 3.12: CAD functionalities to transform a 2D sketch to a 3D solid model [12].

A procedural model is modular as it is expressed through a set of assembled compo-

nents. It is also auto-variant, meaning each modular component’s dimensions and shape

can be modified. One of the great features of procedural modeling is the capability of

sharing data among various module components, leading to a smaller file size. Procedu-

ral modeling can provide a volumetric model with a link through which semantics, such

as the geometric details of the modular components, are extracted. However, updating a

procedural model still needs to be conducted at a component level and mostly manually.

The lack of geometric constraints and parameters between the representations hinders a

seamless automatic model update.

3.2.1.4 Parametric Modeling

A fundamental problem in CAD is how to make intuitive knowledge explicit such that a

machine can interpret and treat it automatically [182]. Parametric modeling is a design

approach that leverages known geometric information to create a dynamic model. This

concept was developed in the 1990s [183] to capture design intent based on a set of

features and constraints. While applied primarily in mechanical engineering, the concept

has also been increasingly used to create adaptable models of infrastructure facilities

[184, 48]. Two-dimensional parametric sketches form the basis of a parametric model.

They are composed of geometric objects and parametric constraints. In a parametric

model, particular dimensions such as positions, heights, and widths are defined using
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variables instead of fixed numerical values. This feature aids designers in altering a

design or exploring di↵erent variants immediately, as shown in Figure 3.13. The set

of parametric constraints that all major constraint solvers implement is defined as the

standard geometric constraint language [185]. It comprises the dimensional constraints

for distances and angles and geometric constraints to preserve the geometric shape.

Parameter Control

Figure 3.13: Adjusting parameters value of a parametric model.

Contrary to the aforementioned solid modeling approaches, parametric modeling main-

tains the resources and relations between parts/volumes in a parametric format. As a

result, the geometry of a parametric model has the ability to be modified by changing the

value of parameters [186]. A procedural model can become a parametric model if a set

of functions expresses the relations among modular components and their dimensions.

Using this set of functions, the modular components can interact with their counter-

parts. They also contain a set of geometric constraints that control and preserve their

desired shape while being updated [48]. Geometric constraints can, for example, define

that two boundary-defining lines (e.g., of di↵erent building elements) must meet at their

ends and that two lines are perpendicular to or parallel to one another. Dimensional

constraints, on the other hand, define only dimensional values such as length, distance,

or angle.

In the scope of geometric digital twinning, a parametric model can provide an access

point for updating the existing geometry based on a set of input values. As a result, it can

provide a bidirectional link to import new geometric features into the model and export

the existing features from the model. This considerable feature makes parametric models

highly flexible and a more appropriate method for geometric digital twins that must be

capable of receiving geometric updates over their service life. Nonetheless, the modeling

process of parametric models is generally more time-consuming and labor-intensive than

those of the other solid modeling approaches. The functional implementation of the

access point in parametric models provides an extensive topological integration, allowing

the attachment of semantics at various levels. The access point can receive location-based

queries and return the model sub-views depending on the use cases.

75



3 State-of-the-Art

3.2.2 Reverse Engineering in CAD

Reverse engineering is the process of dismantling a system or model to realize how

it accomplishes a task. All reverse engineering processes consist of three basic steps:

Information Extraction, Modeling, and Review [187, 188]. Information extraction is the

process of gathering information from the desired system. Modeling is acquiring and

combining data to create the geometry, and review is the testing process of the resulting

model.

In CAD, reverse engineering has been a fundamental problem addressed with various

techniques over the years [189, 190]. The general framework of reverse engineering in

CAD has been shown in Figure 3.14. At the beginning of the process, the desired model

to achieve is assumed. In parallel, the input data (such as a point cloud) is collected. The

main objective of this technique is to convert the data to the desired model. Thus, the

input data is directed such that it can lead to the desired model at the end of the process.

Pre-processing, segmentation, feature classification, and modeling are the middle steps

to generate the model from the scanned data [191]. Each part is designed to produce

the anticipated model; for instance, the classes required for semantic segmentation are

determined based on the final model.

Figure 3.14: Reconstruction of a watch-case based on reverse engineering [191].

Reverse engineering can facilitate the model creation process from scanned data through

parametric modeling. Depending on the model type the scan data represents, the para-

metric model of the object can be created. Due to the parametric design of the model,

it can be compared (reviewed) with the scanned data and be further altered to reach

a higher level of similarity. Recently, this CAD approach has also been of interest to
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leverage prior knowledge about the topological and existing rules in PCD to model the

geometry of objects [192, 193].

3.2.3 Geometry Reconstruction

Various methods have been proposed to model the geometry of three-dimensional bodies

from PCD automatically or semi-automatically. The proposed approaches generally

provide the inputs for solid modeling approaches to represent a geometry with a desired

level of abstraction or details. Leveraging the closed-form description of primitive shapes

and providing an objective function to evaluate the closeness of primitives to points,

various techniques have been proposed to address the model-to-cloud fitting problem.

On top of them, the RANdom SAmple Consensus (RANSAC) algorithm [124], Hough

transform [194], and least squared optimization algorithms [195] can be mentioned. Most

recently, deep learning models have also been capable of using the objective function of

primitive shapes (Figure 3.15) to automate the simultaneous semantic segmentation and

geometric modeling of primitive shapes [160].

Figure 3.15: Primitive fitting results using deep learning models [160].

B-rep methods have also been used to construct low-semantic and generic models such

as meshes/patches from point clouds to address the emerging challenges of modeling more

complex shapes whose description by a closed-form formula is cumbersome. To reduce

the unwanted complexity of meshes in modeling and storing the geometry, bounding

hulls such as convex hull [196], ↵-shape [197], x-hull [198], concave hull [199], crust
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[200], etc. have been introduced as well. These methods generally result in the explicit

representation of the boundary points. They can illustrate the geometry of complicated

shapes solely or in combination with CAD functionalities such as extrude, loft, rotate,

and sweep. They, however, cannot simply/directly provide meaningful information about

the required parameters to create a volumetric model.

Lu and Brilakis [201] created the geometric DT of bridges from point clouds using a 2D

ConcaveHull ↵-shape method [199] and generated 3D shapes using Industry Foundation

Classes (IFC), as shown in Figure 3.16. Zhang et al. [202] detected the planar patches

from noisy point clouds and determined the boundaries of each patch by the ↵-shaped

algorithm. Wang et al. [203] employed the M-estimator SAmple Consensus (MSAC)

algorithm to detect the planar faces and extracted the value of parameters from regular

and irregular shapes through a line detection algorithm. Yang et al. [204] employed the

principal component analysis (PCA) algorithm to detect the alignment of elements and

extracted the value of parameters using the RANSAC algorithm [119].

Figure 3.16: Geoemtric modeling of a bridge deck: (a) concave hulls; (b) IfcPolyline object
[201].

Dimitrov et al. [115] proposed an approach for successively fitting uniform B-Spline

curves to the two-dimensional cross-section of point clouds. Kwon et al. [205] described

a heuristic method for extracting the value of parameters from primitive shapes such

as cuboids and cylinders. Justo et al. [206] generated the IFC model of truss bridges

using bounding boxes of instance-segmented point clouds and collision of elements. Jing

et al. [164] employed RANSAC for extracting the geometric features from segmented

bridge point clouds and created the 3D model of bridge elements. Valero et al. [207]

detected the planer surfaces in the point clouds and determined the value of parameters

by measuring the distance between planes. Oesau et al. [169] proposed a rough feature

preserving multi-scale line fitting and a graph-cut formulation to reconstruct a building

point cloud into a mesh-based model. Rabbani [195] proposed a method based on least-

squared optimization to model a piping system from its point cloud.
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Patil et al. [208] suggested an area-based adaptive hough transform to estimate single

and multiple cylinder orientations and reconstructed piping networks by finding the

connection relationships between pipes. Walsh et al. [209] segmented the point cloud of

structural elements using features such as normal vectors, curvature, and connectivity

of points and extracted the value of parameters from primitive shapes using a least-

squares optimization algorithm. Laefer and Truong-Hong [210] proposed a kernel density

estimation (KDE) algorithm to detect the density signal of steel profiles and match them

with the standard sections in a catalog.

Yan and Hajjar [132] employed the RANSAC algorithm to detect the plane surfaces

of steel profiles and model the super-structure components of bridges. Kim et al. [193]

presented an approach based on reverse engineering for segmenting pipe point clouds

through deep learning models and employed a 3D matching system to reconstruct 3D

plant models, as shown in Figure 3.17. Li et al. [160] described a deep learning model

to segment and estimate the parameter values of primitive shapes from point clouds.

Barazzetti [211] proposed an approach for the parametric as-built model generation of

complex shapes from point clouds using NURBS curves and surfaces.

Figure 3.17: Comparison of the modeled element with segmented point clouds for flange and
flange WN [193].
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3.3 Research Gaps

Despite the impressive progress in the geometric digital twinning process of bridges,

several research gaps still need to be addressed. Some of the limitations and the parts

requiring further investigation are as follows:

Gap 1: The existing DL models capable of processing points have not been ex-

pressed specifically for bridges. These models are often highly generic and require

further development for the e�cient semantic segmentation of bridge point clouds.

Gap 2: The existing models can be equipped with cutting-edge AI modules/layers

such as non-local attention, self-attention, and contextual attention for e�cient

encoding of points.

Gap 3: Most existing models only encode local neighborhoods and cannot provide

the existing spatial relationships between points located far from each other.

Gap 4: Despite the existence of mechanisms to fit primitive shapes into point

clouds, it is not crystal clear how non-primitive shapes can be modeled automati-

cally. Most bridge elements, such as the bridge deck, abutment, and parapet, are

not primitive shapes.

Gap 5: The proposed algorithms mostly follow a bottom-up approach. Hence, they

require the setting of many problem-specific thresholds, and their performance is

highly a↵ected by occlusion, which is a common problem in practice.

Gap 6: The final 3D model in similar works is not parametric, i.e., it cannot

update its shape as the value of parameters changes. Hence, the model loses its

link (access point) to the actual asset for any further geometric update, and such

updates should be applied at the component level.

Gap 7: It has not been adequately investigated how the elements are assembled

into a coherent model after the initial element-wise model fitting. This aspect is

even more relevant when the components are parametric, and the final model needs

to preserve its parametric consistency.

This thesis addresses the aforementioned research gaps by automating the semantic

segmentation and parametric modeling of bridges from their point clouds. The research

gaps 1-3 correspond to the semantic segmentation of bridge point clouds and are ad-

dressed by proposing a novel DL architecture. This model benefits from cutting-edge
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AI tools and can improve the segmentation accuracy. Research gaps 4-7 are concerned

with the model reconstruction of bridges. They are resolved through a novel optimization

method that can generate and assemble the parametric model of bridge components from

their segmented point clouds. The proposed research framework is explained in more

detail in the following chapters and tested in automated geometric digital twinning of

actual bridges.
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Segmentation

Semantic segmentation is the essential first step in the proposed framework for the

automated 3D geometric modeling of bridges from PCD. This process di↵erentiates the

point cloud of a bridge into separate point clouds of the bridge elements, thereby paving

the way for further extraction of geometric and semantic features. Despite the existence

of tools and software programs for manual semantic segmentation of bridge point clouds,

conducting this step is yet laborious, error-prone, and costly.

To address this issue, this section proposes a novel deep learning model, coined Mul-

tiscale Spatial Feature Descriptor (MSFD-Net), to automate the semantic segmentation

process of bridge point clouds. The architecture of this model can be seen in Figure 4.1.

It consists of various modules to extract local as well as global features and provides

a mechanism for describing the pair-wise relationships between points. The local fea-

tures are calculated in the Point Feature Descriptor (PFD) module and combined with

the global features using a sum function. MSFD-Net expresses point features in vari-

ous scales to leverage the low-level as well as high-level features in the label prediction

process.

Similar to other 3D DL architecture, the number of encoding blocks can vary, leading

to a larger/deeper architecture. However, we define MSFD-Net with four encoding/de-

coding as well as four scales for generating point features. Each encoding block of

MSFD-Net is followed by a random subsampling (RS) module to reduce the processing

load of the network. Thanks to this subsampling strategy in the subsequent layers of

the network and a U-shaped autoencoder, MSFD-Net is capable of processing large-scale

bridge point clouds.

The bottleneck of this architecture contains Non-Local Attention (NLA) modules to

encode the spatial relationships between points located far from each other. This chapter

describes the architecture of MSFD-Net. It breaks down the model into its constitute
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modules and explains the concepts behind them in more detail. This model is then used

in Section 7.2 for the semantic segmentation of single-span RC bridge point clouds.
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Figure 4.1: Architecture of MSFD-Net.

4.1 MSFD-Net architecture

MSFD-Net has been designed to capture the local and global features as well as the

spatial dependencies among points and model the existing patterns in various scales.

It requires the coordinates of points (x, y, z) and their corresponding normal vectors

(nx, ny, nz) as input to determine the semantic label of points in a point cloud. Other

features, such as RGB color codes, density, and even learned latent features, can also be

added and processed by this network. As shown in Figure 4.1, the architecture of MSFD-

Net is basically an auto-encoder (U-Net) expressed in several scales. The model’s encoder

includes a Point Feature Descriptor (PFD) module followed by random sub-sampling in

sequential layers. Leveraging the sub-sampling and aggregation mechanisms, MSFD-Net

can process large-scale point clouds.

The PFD module receives point features to generate a geometric representation of

the local neighborhoods. It also aggregates the generated local features and global

features and increases the receptive field of points. The bottleneck consists of Non-Local

Attention (NLA) modules providing spatial attention (pairwise dependencies) about the

point features in the latent space. The decoder has also been expressed in multi-scales to

fuse the high-level feature map of points with the basic features generated by the initial

and intermediate layers. The first scale of this model is a plain decoder collecting features

from all the layers of the network while the next scales ignore some of the intermediate

blocks to provide a better perception of the initial layers. The decoded spatial features
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are attentively fused in the end to generate a feature map from all the scales. These

modules are further described in the following sections.

4.2 Point Feature Descriptor (PFD)

As described, semantic segmentation of point clouds is a classification process at the

point level. DL architectures generate a set of features for each point and employ it to

predict class labels. While a single centroid point (i.e., a typical point in a point cloud to

be classified) might not o↵er extensive details about its underlying patterns, examining

it in conjunction with its neighboring points can yield enriched information about these

patterns. Local features are the features described at a point level considering the

neighboring points of each centroid point. In combination with global features, they

provide comprehensive information that aids the network in classifying points.

PFD aims to extract and learn the geometric features of points. It also combines

local and global features to provide a more comprehensive description of the scene. The

framework of the PFD has been inspired by the local feature aggregation module pro-

posed in RandLA-Net [158]. However, its feature encoder is di↵erent and consists of two

blocks named Local Spherical Representation (LSpR) and Local Surface Representation

(LSuR). These modules are employed in MSFD-Net to provide a more comprehensive

expression of the local neighborhoods. The details of these blocks are elaborated on

in the next sections, and then, a general overview of the feature aggregation module is

provided.

4.2.1 Local Spherical Representation (LSpR)

Point-based DL models often only adopt Cartesian coordinates for describing local neigh-

borhoods, while the relative position of points is highly sensitive to the possible trans-

formations and normalization in this coordinate system. On the contrary, the spherical

coordinate system can demonstrate the position of a point by two angles limited in the

range of [0, 2⇡] and a radius/distance, leading to a less sensitive representation. Fig-

ure 4.2a shows the local neighborhood of the centroid point pi and its K neighbors

{p1i , p2i , ..., pKi } obtained by K-nearest neighbors (KNN) algorithm. The relative position

of pi with respect to its neighbors can be expressed in the spherical coordinate system

(⇢ki ,�
k
i , ✓

k
i ) as below:

⇢
k
i =

q
xk

2

i + yk
2

i + zk
2

i (4.1)
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where (xki , y
k
i , z

k
i ) are the relative coordinates of pki in the Cartesian coordinate system

with center pi.

To prevent information loss, the normalized relative position of neighboring points

with respect to the centroid point is also encoded. This leads to three more features

(xk
0

i , y
k0
i , zk

0
i ) describing the local neighborhood using unit vectors, where x

k0
i = x

k
i /⇢

k
i ,

y
k0
i = y

k
i /⇢

k
i , and z

k0
i = z

k
i /⇢

k
i . Finally, all these six features are concatenated, leading

to the feature set fLSpR = ⇢
k
i � �

k
i � ✓

k
i � x

k0
i � y

k0
i � z

k0
i , where � is the concatenation

operation.

(a) (b)

Figure 4.2: Local representation of a neighborhood: (a) local spherical representation (LSpR);
(b) local surface representation (LSuR).

4.2.2 Local Surface Representation (LSuR)

The generated features by LSpR describe the relative position of points in a local neigh-

borhood. They can be a basis for extracting further features from the local neighbor-

hoods. However, they might yet lack adequate information about the representative

pattern by points. To handle this problem, a local Darboux frame can be defined, and

the underlying surface on which the points are positioned is approximated [212]. A

Darboux frame is a dynamic/moving frame constructed on a surface. It is the analog of

the Frenet–Serret frame and can represent the curvature, normal curvature, and relative

torsion of the surface.
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Figure 4.2b illustrates the query point pi with the normal vector ~ni as well as the

neighboring points {p1i , p2i , ..., pKi } and normals {~n1
i ,~n

2
i , ...,~n

K
i }. A Darboux frame with

the axes (~uki ,~v
k
i , ~w

k
i ) can be defined for each pair of (pi, pki ) as below [212]:

~u
k
i = ~ni, ~v

k
i = ~u

k
i ⇥

p
k
i � pi

||pki � pi||2
, ~w

k
i = ~u

k
i ⇥ ~v

k
i , (4.4)

where ||.||2 is the L2 norm of the vectors connecting the centroid point to the neighboring

points.

Based on the defined Darboux frame, the dependencies between each pair (ni, n
k
i ) can

be defined by three angles fLSuR = (↵k
i , �

k
i , �

k
i ) as follows [212]:
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i
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), (4.5)

The LSuR module is dependent on the direction of the normal vectors. Changing the

direction of the normal vectors leads to di↵erent values for the variables ↵k
i , �

k
i , and �

k
i .

This causes instability in the network performance in scenarios where the normal vectors

have an opposite direction to those of training samples. To address this issue, we augment

the local neighborhoods with respect to the normal vectors by randomly changing the

direction of normals in each neighborhood. This can be achieved by multiplying normal

vectors randomly by -1, as shown in Figure 4.3. In doing so, the model becomes invariant

to the direction of normal vectors as it has learned neighborhoods with normal vectors

in both directions.

(a) (b)

Figure 4.3: Augmentation of normal vectors on local neighborhoods: (a) original; (b) aug-
mented.
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4.2.3 Feature Aggregation

As shown in Figure 4.4, the PFD module receives a point cloud containing N points, each

described by d features, i.e. F = {f1, ..., fi, ..., fN}, where F 2 RN⇥d. This feature set is

passed through a shared MLP (M) to provide a global description of the input features

(M(fi)). In parallel, the neighboring points are gathered by a KNN search algorithm, and

the global features are distributed over the local neighborhoods (fk
i ). The neighboring

points and normals are also sent to the LSpR and LSuR blocks to generate the local

features. These features are concatenated, and a shared MLP is applied as below:

r
k
i = M(fLSpR � fLSuR), (4.6)

The feature set r
k
i has been mostly defined based on rotation angles that, in turn,

aid the network to learn local features and achieve more robust performance in practice.

The local features r
k
i and the global features f

k
i are concatenated eventually (fk

i � r
k
i )

to generate the new set F̂i = {f̂1
i , ..., f̂

k
i , ..., f̂

K
N } describing the spatial features of points

in each neighborhood. To summarize the features of the neighborhoods, symmetric

functions such as mean and max can be applied. However, to emphasize the more

important features, the weighted summation of features is calculated while the weights

are also learnable parameters for the network. This process, which is called attentive

pooling, can be described by [158]:

f̃i =
KX

k=1

(f̂k
i .g(f̂

k
i ,W )), (4.7)

where g() consists of a 1⇥1 convolution layer followed by a softmax to generate attention

scores, and W is the learnable weights of the shared MLP. Contrary to RandLA-Net,

which generates the weights W through a fully connected layer, MSFD-Net uses a con-

volution layer. This simple step can eliminate the need to change the shape of tensors

and speed up the performance of the network to a large extent.

The PFD module leads to a set of features that encapsulates points’ geometric and

semantic features. To collect residuals and preserve the lower-semantic information

incoming to the module, a skip connection is used, and two sets of features are stacked

in each layer. As a result, the receptive field of points increases, and the generated

features can be propagated over the neighborhoods.
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Figure 4.4: Point Feature Descriptor (PFD) module.

4.3 Spatial Attention

The PFD module presents every point based on a set of local and global features col-

lected from its local neighborhood. It also stacks the features and propagates them to

the surrounding neighborhoods to increase the receptive fields. To preserve the com-

putation e�ciency of the model, the number of stacks is generally limited and cannot

be increased. This limitation gradually reduces the impact radius of points, and as a

result, the pairwise dependencies (global awareness) cannot be expressed completely for

the points placed at a distance.

Figure 4.5: Non-local attention layer.

Non-Local Attention (NLA) is a module first proposed to encode the spatial dependen-

cies between pixels in images [75]. This block has also been recently used in the spatial
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encoding of point clouds [213]. Non-local networks generally consist of three 1⇥ 1 con-

volution layers to provide di↵erent representations of the input in the latent space of the

problem. As shown in Figure 4.5, the non-local attention module of MSFD-Net receives

the input feature map Fin 2 RN⇥C and generates the output feature map Fout 2 RN⇥C

that not only contains the initial inputs but also the spatial dependencies.

This NLA module only generates two representations F1 and F2 through two shared

MLPs containing a 1⇥1 convolution layer followed by batch normalization and a Rectified

Linear Activation (ReLU) function. These convolution layers generate a single feature

for each point representing its spatial position in the latent space, i.e., F1, F2 2 RN⇥1.

The batch normalization layer provides more stability, and the ReLU activation function

adds non-linearity and limits the weights to positive values. The first feature map F1

is multiplied by the transposed of the second feature map F2 and the attention matrix

F̃ = F1⌦F2
T (where F̃ 2 RN⇥N ) is obtained that encapsulates the pairwise relationship

between points. This matrix is passed through a softmax function to be normalized and

further multiplied element wisely by the input feature map Fin leading to the feature

map F̂ = Softmax(F̃ ) � Fin. To tune the impact of F̂ on the input feature map Fin,

it is passed through a 1⇥ 1 convolution layer, and the resulting feature map is summed

with Fin to generate the output feature map Fout. This implementation of the non-

local attention module can provide more stability as the attention matrix F̃ is directly

multiplied by the input feature map Fin. It also provides a more e�cient mechanism to

alleviate or augment the pair-wise relationships through a convolution layer before the

final summation.

4.4 Scale Attention

The decoder of MSFD-Net consists of multiple scales, and the number of scales changes

with respect to the number of encoding layers. These scales provide various feature maps

that contain not only the high-level features but also the low-level features [214, 213]. As

shown in Figure 4.1, the first scale of MSFD-Net collects the extracted features from all

the layers, while the next scales ignore some of the intermediate PFD blocks to reduce

the level of details. To increase the global awareness of points, the extracted features

from all the scales are passed through the NLA block. The resulting feature map is

concatenated with the extracted features from the corresponding encoder layer through

a skip link. These features are up-sampled by nearest interpolation and passed through

a 1 ⇥ 1 transposed convolution layer. To emphasize the more important scales in the
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learning process of MSFD-Net, the weighted summation of the feature maps is calculated

while the weights are also learnable parameters, as shown in Figure 4.6.

Figure 4.6: Multiscale network fusion using scale attention.

Given the feature maps F = {F1, ..., Fi, ...FS}, Fi 2 RN⇥d, where S is the total number

of scales, N is the number of points, and d is the number of features in the last layer,

the weighted summation of the feature maps can be calculated as follows:

F̃ =
SX

i=1

(F̂i.g(Fi,W )), (4.8)

where F̃ is the final feature map, g() is a function consisting of a 1⇥ 1 convolution layer

followed by a softmax to generate scale attention scores, and W is the learnable weights

of the shared MLP.

MSFD-Net is able to process the raw bridge point clouds and generate the segmented

point cloud of bridge elements. The next question to be answered is how to generate the

parametric model of each bridge element from the point cloud segments and assemble

them to achieve a coherent model for the entire bridge. Before answering this question,

the segmented point clouds need to be clustered/segmented, and the required 3D model

for the reverse engineering approach is generated. The main objective in the two fol-

lowing chapters is to compare this dummy 3D model with the segmented point clouds

and make it closer in shape to the scanned data by defining and solving local and global

optimization problems.
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to Parametric Modeling

Semantic segmentation of bridge point clouds (Module 01) yields a segmented represen-

tation of bridge components. As mentioned, it simplifies the geometric digital twinning

problem for the downstream algorithms to a large extent. However, it still needs to be

followed by other algorithms to provide an enriched representation of points that the

second module can use properly.

Within the segmented point cloud of bridges, there might still be multiple point cloud

instances. For example, two abutment instances generally exist in the point cloud of

RC bridges. To enable parametric modeling using the proposed method, the segmented

point cloud of classes containing more than one instance needs to be further segment-

ed/clustered. The reverse engineering approach also needs the desired output bridge

model before starting the model-fitting process. Based on this model, Parametric Pro-

totype Model (PPM)s are designed in Chapter 6 to derive the value of parameters from

segmented point clouds. PPMs can be applied to the boundary points of faces or cross-

sections. Thus, these points should be detected e�ciently prior to applying them.

This chapter closes these gaps by proposing and developing algorithms/methods that

prepare the segmented point clouds for applying PPMs. The segmented point clouds

resulting from the first major module are clustered through an unsupervised clustering

algorithm. The point clusters are then de-noised, ensuring no point stands far from

the target cluster. The boundary points of faces are detected through another cluster-

ing algorithm. Finally, the 3D model required for the reverse engineering approach is

designed.

5.1 Clustering & De-Noising

Multiple instances exist in the segmented point cloud of classes, such as railings and

abutments. To enable piece-wise model-fitting, the point cloud of these classes needs
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to be segmented/clustered1. To decrease the value of error resulting from downstream

algorithms, the detected clusters can be de-noised as well. Density Based Spatial Clus-

tering of Applications with Noise (DBSCAN) [215] is an automatic clustering algorithm

proposed for discovering clusters in large spatial databases. This algorithm starts from

a random point and expands the region based on the local density of data points. DB-

SCAN can be used to cluster and refine points in bridges [163]. However, setting a

threshold value for density in bridges is challenging, especially in bridge point clouds

with di↵erent resolutions. Also, it is computationally expensive and slow to process

large datasets, which is common in bridges. To address these issues, a modified version

of DBSCAN is proposed to cluster and de-noise segmented point clouds of bridges. As

shown in Algorithm 1, this clustering method starts from a random query point and

expands the region based on the connectivity of points. To reduce the complexity or-

der of DBSCAN from O(n2) to O(k log(n)), kd-tree is used as a data structure, and

the neighboring points are obtained by KNN search. Any neighbor of the query point

located within a predefined distance (radius) is added to the cluster of the query point,

and its neighbors are also added to the list of the query point neighbors. This process

is repeated for any neighboring point in the list and continues until all the points are

evaluated and assigned to a cluster.

Algorithm 1 Clustering & de-noising algorithm

Input pc: point cloud; n: number of clusters (1 for the de-noising task); r: radius; k:
number of neighbors; label: points label, initially undefined; KNN : K-nearest neighbors
search; Dist: function to calculate Manhattan distance

1: foreach p 2 pc do

2: if label(p) undefined then

3: next cluster label c

4: label(p) c

5: Neighbors N KNN(K, pc)
6: Neighbors of the query point Q N/{p}
7: foreach q 2 Q do

8: if label(q) undefined then

9: Distance d Dist(q,p)
10: if d < r then

11: label(q) c
12: Neighbors of the neighboring point S N/{q}
13: Q S [Q

14: return label

1This process is called instance segmentation or clustering.
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Similarly to DBSCAN, this clustering method might result in many clusters in each

of which the connectivity conditions have been satisfied. This algorithm is used in two

applications: clustering and de-noising. In the clustering task, the largest n clusters are

selected as the smaller clusters are more likely to represent noise clusters. In the de-

noising task, the first largest cluster is only extracted as the points in this cluster satisfy

the connectivity conditions and are far from the points belonging to other clusters.

5.2 Boundary Points Detection

A point cloud represents the external surfaces of objects in a scene. It also implicitly

contains semantic and geometric information about the objects. Depending on the use

case, a point cloud can be abstracted, simplified, and purposefully represented with a

lower number of points. In a model-fitting process, boundary points mostly contain the

geometric information of elements. Hence, the detection of these points seems necessary

for fitting PPMs.

Boundary points generally have di↵erent features than interior points. Mean shift

is one of those features proposed for detecting boundary points [216]. This point-level

feature is expressed as each point’s distance to its neighboring points’ mean point. In

general, boundary points show a higher shift value toward their mean point as they can-

not find neighboring points all around their vicinity. To detect these points, a threshold

has been defined in [216], which is based on the distance of the query point to its nearest

neighbor. However, setting the value of this threshold is di�cult, especially in point

clouds with di↵erent resolutions.

To address this problem, a Fuzzy C-Means (FCM) algorithm is employed to automate

the detection process of boundary points. FCM is an unsupervised clustering algorithm

and an extension of the K-means algorithm in which the membership degree of data

samples to clusters is expressed by fuzzy logic [217]. Considering the value of the mean

shift, points can be divided into two clusters with sharp features (boundary points)

and points with soft features (interior points). To detect boundary points, the nearest

neighbors of each point are obtained by applying KD-tree and KNN search, and the value

of the mean shift is computed. This feature is then passed through an FCM with two

clusters. Since the value of the mean shift is higher for boundary points, the resulting

cluster with the higher mean value is selected as boundary points. As a result, the

proposed threshold can be eliminated, and the required points to fit PPMs are detected

automatically, as shown in Figure 5.1.
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5 From Semantic Segmentation to Parametric Modeling

(a) (b) (c)

Figure 5.1: Boundary points detection by FCM clustering in 3D/2D: (a) an abutment; (b) a
retaining wall; (c) a wing wall.

5.3 Model Generation

To deduct the design features of modeling the entire bridge, its 3D parametric model

can be created based on a set of parameters. End users can define these parameters

following a LoD satisfying the anticipated applications of the model. This user-dependent

definition of the model is very close to the definition of a bridge DT as it is also created

based on a set of desired use cases and requirements. Figure 5.2 demonstrates the 3D

model of a single-span RC bridge created through a set of parameters to meet a desired

LoD.

List of parameters

Figure 5.2: 3D PPM of a single-span concrete bridge created following reverse engineering.

This 3D model is completely parametric and dependent on the value of parameters.

It can be defined in most of the existing BIM-authoring tools. Following reverse engi-

neering in CAD, this model requires a specific set of parameters. This user-dependent

definition of the model restricts the problem space to a model that satisfies the engi-

neering knowledge in the bridge design. In other words, the exact set of parameters is
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known, while the value of each parameter is not. If the value of these parameters can be

derived from the segmented point clouds and injected into this model, it can update its

shape and represent the geometric DT of the bridge. The only remaining question is how

to derive the value of parameters that this 3D dummy model needs. In the upcoming

chapter, we delve into addressing this question by introducing PPMs.
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Modeling1

Semantic segmentation of bridge point clouds leads to the partial point clouds of individ-

ual bridge elements. The next essential step in the geometric digital twinning method

is to generate the volumetric model of the bridge components and assemble them to

create the entire bridge model. To this end, solid modeling approaches mentioned in

Section 3.2.1 can be employed. Parametric modeling is a modeling technique that not

only generates the volumetric 3D models but also stores all the dependencies and rela-

tions among elements. It also provides an access point through which the bidirectional

updates can be handled; one of the requirements of a geometric bridge DT is to stay

connected with the physical asset.

Following the definition of parametric models and the requirements of bridge DTs,

parametric modeling can be mentioned as a suitable solid modeling approach for gen-

erating geometric bridge DTs. However, parametric modeling is the most expensive

approach, requiring more e↵ort in the design and implementation phases. To handle

this challenge, this section presents an automated framework, as shown in Figure 6.1, to

generate the parametric model of existing bridges from their segmented PCD.

Reverse engineering with parametric modeling is a technique commonly used in the

industry to convert scanned data to a CAD model. Following a reverse engineering

approach with parametric modeling, PPMs are proposed to represent the bridge or the

bridge component geometry. Reverse engineering proposes the desired final model to

achieve at the beginning of the process, while parametric modeling keeps the model

adjustable for the required reviews. Through these techniques, the initial model can

be compared and become closer in shape to the scanned data by adjusting the value of

parameters. PPMs are created based on a set of parameters as well as constraints and

fed by analyzing the bridge point clouds.

1Significant parts of this chapter have been previously published in the Journal of Automation in
Construction. The paper can be accessed at https://www.sciencedirect.com/science/article/
pii/S0926580523003618.
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PPMs are constant in type; however, their geometry can be adjusted/updated based

on the input value of parameters. They are created purposefully to end up with the antic-

ipated geometric DT model at the start of the process. Leveraging the parametric design

of PPMs, a list of candidates is generated and adjusted through a local metaheuristic

optimization to fit them into the point cloud of bridge elements. To assemble the fit-

ted PPMs, the extracted parameters from the pieces are integrated through a global

metaheuristic optimization. To generate the model of the entire bridge, the extracted

parameter values are injected into the bridge’s 3D PPM.

As a result, an inherently consistent geometric-semantic model is obtained that not

only resembles the input bridge point cloud but also preserves all the relations and

dependencies between the bridge components. The prospected benefit of this approach

for end users is the massive reduction of the e↵ort to create the geometric model of

the bridge from PCD. Considering the desired model of the bridge, PPMs are designed

in this section and used to extract the value of parameters from point clouds. The

optimized PPMs are then assembled, and the resulting parameters are imported into

the initial model to generate the parametric model of the entire bridge.

Reverse 
Engineering

2D Parametric Prototype 
Models (PPMs)

Model-Fitting by 
Metaheuristic Optimization 

(Local optimization)
Parametric Assembly by Metaheuristic Optimization

(Global Optimization)
Point cloud data 

3D Parametric Prototype Model (PPM)

Geometric Digital Twin (DT)

Segmented Point clouds
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Figure 6.1: Proposed method for geometric parametric modeling of bridges.

6.1 Parametric Prototype Models (PPMs)

A parametric model includes several parameters through which it can be altered. Also,

it comprises a set of constraints that control and preserve the object’s shape while being

updated. In 3D modeling software, the parametric modeling process is started mainly
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by drawing 2D sketches on reference/working planes. These 2D sketches are refined and

used by functionalities such as extrude, sweep, loft, and rotation to create a volumetric

3D model. Inspired by this process, we define a Parametric Prototype Model (PPM)

as a dummy model comprising human-definable parameters and constraints that can

update the shape. Figure 6.2 shows three typical 2D PPMs constructed by a set of

parameters and constraints describing the geometric shapes. Parameters include the

coordinate of origin, length of the edges, and angles, while geometric constraints might

consist of horizontal, vertical, perpendicular, coincident, etc., constraints to restrict the

geometry.

(p1, p2)

p3

p4 p5 p4

p6

(p1, p2) p3

p4

p5

p6

(p1, p2)
p3

p4

p5

p6

p7
p8

p9

Figure 6.2: Various examples of 2D PPMs.

In particular, a PPM has three features. It contains a finite number of parameters

and constraints, has a specific object type, and is a function of parameter values. For

instance, a 2D rectangular PPM must be described with only four parameters, includ-

ing the coordinate of origin (Ox, Oy), length, and width, as this object type has these

parameters in the definition. It must also be a function of the parameter values, i.e., it

can update its shape with new values of a parameter, such as width.

Contrary to the conventional model fitting methods, PPMs pave the way to fitting

into not only the point cloud of simple geometries but also more complicated geometries

that commonly exist in bridges. The programming process of a PPM is started from an

origin and extended to other vertices based on the value of parameters. Concurrently,

constraints such as parallelism, connectivity, perpendicularity, and symmetry are implic-

itly applied to the prototype model. Using Object-Oriented Programming (OOP) as an

analogy, the PPM of an element is the instance of a class containing attributes such as

dimensional values (i.e., parameter values) and constraints. Objects generated from the

class will have di↵erent parameter values.

Figure 6.3 shows the PPM of a typical bridge deck described by a set of parameters. As

can be seen, any change in the value of parameters leads to an instance of the bridge deck

class with new dimensions. Considering a point cloud associated with this bridge deck,

a list of candidates/solutions can be created and proposed for the value of dimensions
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Figure 6.3: PPM of a typical bridge deck.

the point cloud represents. To determine the value of parameters through a PPM, each

candidate needs to be quantified based on its similarity to the point cloud. To this end, a

fitness function is defined in the next section which subsequently serves as the objective

for a metaheuristic optimization algorithm.

6.2 Model-to-Cloud Fitting

A PPM is defined numerically based on a set of parameters and constraints. There-

fore, the mathematical model of the PPM cannot be expressed and derived simply by

a gradient-based algorithm. To address this issue, metaheuristic algorithms can be em-

ployed to adjust PPMs and fit them into the point cloud of elements. To instantiate a

PPM, random values can be generated in predefined ranges inspired by bridge engineer-

ing knowledge. To fit a PPM, the shortest Euclidean distance of the edges to the point

cloud must be minimized.

Considering a set of points S = {si|i = 1, ..., n}, where si 2 R2, and a 2D PPM

described by a set of parameters X = {xr|r = 1, ...,m} with the lower bound lr and

upper bound ur, in which xr 2 [lr, ur], the following objective/fitness function can be

defined in the term of mean absolute error (MAE):

F (x1, ..., xm) =
1

n

nX

i=1

ei, (6.1)

where ei is a positive value describing the shortest distance of the i
th point to the edges

and vertices of the PPM.

A PPM can typically have any position with respect to points set in the space of the

problem. The aforementioned function is capable of minimizing the distance of points

to the edges of the PPM. However, it cannot guarantee all the edges are fitted into the

point cloud. This is because some edges might not find any point in their vicinity. Thus,
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no point exists to apply a value of error to such edges, and the corresponding parameters

to the location of these edges cannot be adjusted during the optimization process. In

other words, these edges have a redundant degree(s) of freedom that must be closed.

This case is even intensified in occluded point clouds in which some parts are empty

of points. To improve the performance of the optimization algorithm and enable it to

handle occlusion, the concept of active and passive edges is proposed.

Definition: An edge is called active when it has at least one of the following conditions:

1. It possesses at least two points, or 2. It possesses at least a point and has a slope

constraint. In any other conditions, the edge is called passive as it does not have enough

points or constraints to contribute to the optimization process.

To activate the passive edges of a PPM with the number of k edges, a new penalty

term (�je
0
j) is defined for each edge j and added to the previous fitness function as

follows:

F (x1, ..., xm) =
1

n

nX

i=1

ei +
1

k

kX

j=1

�je
0
j , (6.2)

where �j is a binary value controlling the activity of edges, i.e., 0 for active edges and 1

for passive edges, and e
0
j is the value of error required to activate the passive edges.

Considering the shortest distance of points to the edges, subsets of points can be

created and assigned to each edge. Thus, the first term of the fitness function can be

rewritten for the edges, and the following simplified fitness function is achieved:

F (x1, ..., xm) =
1

k

kX

j=1

(ej + �je
0
j), (6.3)

where ej is the total distance of the edge j to its nearest points.

To determine whether an edge is active or passive, the number of points assigned to

the edge must be counted during the optimization process; this number might vary as

the PPM moves onto the plane and updates its shape. Also, the slope constraints of the

edge, such as vertical and horizontal constraints, must be controlled; these constraints

are constant. Using such information and considering the definition of the active edges,

the passive edges can be detected and activated.

To activate a passive edge, the two neighboring edges of the passive edge are con-

sidered, and the value of e0j is calculated accordingly. Figure 6.4 shows a PPM with

four edges in di↵erent model-fitting scenarios. Assume the edges of the PPM have been

assigned the index j = {1, 2, 3, 4} from the left edge in clockwise order. Figure 6.4a

depicts a rectangular PPM as all the edges of the PPM have horizontal or vertical con-
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straints. As can be seen, there is a point close to each edge of the PPM; thus, the edges

possess a point. Considering the relative position of points with respect to the edges

and constraints controlling the slope (one point and a slope constraint), all the edges

are active, and the value of error is only the shortest distance of edges to the points,

i.e., no additional value of error (penalty) is required to be added (�j = 0). Figure

6.4b shows another scenario in which the left edge has no point and only has a vertical

constraint. Since this edge has only a constraint and no point, it cannot be involved in

the optimization process (a passive edge).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.4: Various scenarios of fitting a typical PPM into a set of points.

To activate this edge and close its translational degree of freedom, a single point needs

to be assigned to this edge from the neighboring edges to meet the condition of one point

and a slope constraint. As both neighboring edges have a point and the edge has a vertical

constraint, a value of error equal to the minimum distance of the left edge (passive edge)

to the closest point of the neighboring edges is added (e01 = min(e011, e
0
12)). Figure 6.4c

illustrates another case in which the bottom and left edges are passive. However, they

both have at least a neighboring edge with a point through which they can be activated
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(one point and a slope constraint). In Figure 6.4d, the left, top, and right edges have

no points; however, the bottom edge, the right endpoint of the top edge, and the top

endpoint of the right edge possess a point. In this case, the point belonging to the

endpoints can activate the corresponding edges, i.e., the top and right edges are still

active. Nonetheless, this point cannot be used for activating the neighboring edges.

Thus, the left edge is only activated based on the point belonging to the bottom edge.

Figure 6.4e demonstrates a PPM in which the left edge has no slope constraint. Even

though this edge possesses a point, it is still passive, as it needs one more point to satisfy

the condition of two points. This edge can be activated by adding the mean value of

errors (e01 = mean(e011, e
0
12)). Figure 6.4f also illustrates a PPM in which the left and

bottom edges are passive due to a lack of points. Although the bottom edge has a

constraint and only a point from the neighboring edge is su�cient to activate it, the left

edge has neither a constraint nor two points from each neighboring edge to reach the

activity condition of two points. Thus, model fitting is impossible in this case, as the

slope of the left edge cannot be recognized. As a result, a high error value (e01 = 10e3)

is added to decrease the selection probability of this PPM.

Figure 6.4g illustrates a PPM whose left and top edges are passive. Even though the

top edge only needs a point to reach the condition of a point and a constraint, the left

edge cannot find two points from each neighboring edge to become activated. In the next

case (Figure 6.4h), the left and top edges both have no constraint, and they are passive.

The top edge already has a point, and it needs only a point from the neighboring edges

to be activated. The left edge, however, has no point and needs two points, each one

from a neighboring edge. As can be seen, the neighboring edges can give a point to this

edge; thus, it can be activated as well. The last case shown in Figure 6.4i is similar to

the previous case, while the left and top edges can only take a point from one of the

neighboring edges. Therefore, model-fitting, in this case, is impossible as well.

While Equation 6.3 is capable of model-fitting and handling occlusion to a large extent,

it cannot ensure the equal contribution of edges to the optimization process. The current

definition of the objective function is based on the distribution of points across the edges

of the PPM. This distribution might vary from a slight bias to a severe imbalance where

some edges have one point, and others have hundreds of points. This results in a lack

of sensitivity to the movement of edges with a lower number of points. To address this

challenge, the weighted summation of errors resulting from each edge is calculated.

Considering a point cloud with n points and a PPM with a number of k edges whose

edge j possesses tj points, the edge weight !j can be calculated as follows:
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8j : 1  j  k ! ↵j =
tj

n
& !j =

1

↵j + �
, (6.4)

where 1  tj  n,
Pk

j=1 tj = n, and � is a constant value (0.02) preventing a zero

denominator.

The weighted fitness function of the problem can also be rewritten, and an optimiza-

tion/minimization problem is defined for fitting a PPM into a point cloud as below:

To minimize: F (x1, ..., xm) =
1

k

kX

j=1

!j(ej + �je
0
j),

Subjected to: lr  xr  ur

(6.5)

After the initialization process, a list of candidates (population) is randomly generated

from a PPM by a metaheuristic optimization algorithm. This list will be then improved

by adjusting the initial value of parameters and minimizing the value of error resulting

from Equation 6.5. As can be seen in Figure 6.5, this optimization process leads to

a PPM that resembles the input point cloud, and its value of parameters is a close

approximation of the values the point cloud represents.

(a) (b) (c)

Figure 6.5: PPM of a typical bridge deck during the optimization process: (a) iteration 1; (b)
iteration 20; (c) iteration 100.

The approach presented here provides an element-wise model-fitting, i.e., each PPM

can extract the value of parameters from a single component (face/cross-section). In the

next section, a global optimization problem is defined to assemble and integrate all the

pieces and create the parametric model of the entire bridge.
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6.3 Parametric Assembly

The model-fitting process through PPMs leads to a list of parameters representing the

point cloud of elements. To create the parametric model of the entire bridge, these

components must be assembled consistently, e.g., dimensions of shared edges and faces

must be equal.

For this purpose, snapping algorithms have been generally proposed to connect and

integrate pieces [218, 219]. These algorithms discover matches between polygons and

search for adjacent vertices considering various conditions. The neighboring vertices are

then replaced with a new vertex representing all the vertices. Snapping algorithms can be

practical for model reconstruction and 3D representation of bridges. However, the model

cannot stay parametric in those algorithms as the location of vertices is a function of

parameters, and this function needs to meet a set of constraints. Furthermore, snapping

algorithms generally follow a bottom-up approach, starting from vertices and edges, and

mostly require setting problem-specific thresholds. To handle this challenge, a top-down

approach is proposed, and a global optimization problem is defined to assemble the

bridge components.

Figure 6.6 illustrates the point cloud of an abutment comprising two wing walls and

a retaining wall. Following the proposed method in Section 6.2, a set of parameters can

be obtained for each face/cross-section by solving element-wise optimization problems

associated with the 2D PPMs. Herein, the value of parameters has been shown by xij ,

where i and j are indices devoted to the face and parameter number, respectively. In a

parametric assembly problem, sets containing common parameters among components

can be found that logically need to be represented by a single parameter. For instance,

A2 = {x13, x24, x33} is a set including the values of height resulting from the initial

model-fitting process. Considering a top-down approach, the 3D PPM of an abutment

can be created with a group of unique parameters, among which there is only a single

parameter, such as p2 controlling the height of the abutment. To integrate PPMs, a

representative value must be generated from the set A2 and applied to the parameter

p2. Although averaging the set A2 can provide a single representative value, it cannot

lead to a permanent solution.

This results from the fact that a parametric model generally contains complicated

dependencies and relations, and it is not apparent how the dependent parameters are

a↵ected by the average function. Considering the results of the initial element-wise

model-fitting, each member of the set A2 can be a proper candidate for the parameter

p2. The discrete set A2 can be converted to a continuous interval by using the min and
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Figure 6.6: Assembly process of a typical abutment.

max functions, and each value in this range is considered a possible value for p2 as well

(min(A2)  p2  max(A2)).

Conversely, the value of the parameter p2 should apply to the PPMs associated with

the set A2 and still retain them as close as possible to their corresponding point clouds.

To satisfy these conditions, random values of the parameter p2 can be generated in the

interval resulting from the initial model-fitting, and their impact is evaluated on all

the involved PPMs. In doing so, the value leading to the best fitting of all the PPMs

can be approximated. This top-down method is only dependent on the proposed list

of candidates for a parameter. This example can be extended and is expressed as an

optimization problem for the parametric modeling of the entire bridge.

Let X = {xi|i = 1, ..., n} be the set of all the possible parameter values resulting

from fitting several PPMs into their corresponding point clouds. Following the reverse

engineering (top-down) approach, assume P = {pj |j = 1, ...,m} is also the target set of

parameter values required to create the parametric model of the entire bridge. Consider-

ing the label of parameters, the initial set X can be divided into smaller sets of parameters

that need to be assembled. Thus, a family of sets is obtained A = {Aj |j = 1, ...,m},
where Aj ✓ X and contains all the possible candidate values for the corresponding pa-

rameter pj . The parametric assembly process of the number of h PPMs can be described

as an optimization/minimization problem as follows:
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To minimize: G(p1, ..., pm) =
1

h

hX

v=1

!vFv,

Subjected to: min(Aj)  pj  max(Aj)

(6.6)

where Fv is the fitness function described in Equation 6.5 and !v is the weight assigned

to each PPM to balance the model-fitting errors. The value of !v can be calculated using

Equation 6.4 based on the total number of points and the number of assigned points to

each PPM.

This objective function receives a set of parameter values, randomly generated in

ranges obtained by the initial element-wise model-fitting. It adjusts all the involved

PPMs and fits them into the point cloud of the entire bridge.

6.4 Selection of PPMs

Given the point cloud of a bridge component (face/cross-section), a proper PPM needs

to be selected to describe the input sample. For instance, the PPM of a bridge deck

cannot be used to derive the parameter values from an abutment point cloud as these

elements are of di↵erent types.

To address this problem, a library/catalog of bridge elements is created in which

various types of PPMs exist. To select the appropriate PPM, the similarity of the

input point cloud to all the PPMs is checked. For this purpose, two methods, called

supervised and unsupervised selection, are proposed to determine the PPM required for

model fitting. As shown in Figure 6.7, both of the methods are classifiers, however, with

di↵erent levels of supervision.

The supervised selection method requires a machine/deep learning model to be trained

on the point cloud of the existing bridge elements in the catalog. There are many models

in the literature that can be used as a point cloud classifier [155, 153, 156, 157]. The

trained model can receive the point cloud of bridge elements and determine the type of

PPM required for model fitting. This approach needs a large dataset of point clouds as

well as an annotation process. However, the trained model can instantly select and call

the appropriate PPM from the catalog.

The unsupervised selection method fits each existing PPM in the library/catalog to

the input point clouds by solving a piece-wise optimization problem. Each model-fitting

process leads to a value of model-fitting error describing the similarity of the input point

cloud to the PPM. At the end of the process, the PPM with the lowest value of error is

selected as it is more likely to represent the input point cloud. In comparison with the
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supervised selection, this method does not require a dataset for training and can directly

classify the point cloud of bridge components. However, testing each PPM on the input

point cloud requires more time. The supervised and unsupervised selection methods can

both be used interchangeably for the selection of PPMs.

(a) (b)

Figure 6.7: Selection of PPMs based on the input point cloud: (a) supervised selection; (b)
unsupervised selection.

6.5 Selection of Metaheuristic Algorithm

Various metaheuristic algorithms can be used for fitting PPMs into point clouds. To

evaluate the impact of the algorithms on the performance of the model, ten di↵erent

metaheuristic algorithms, including Particle Swarm Optimization (PSO) [96], Genetic

Algorithm (GA) [97], Harmony Search (HS) [220], Di↵erential Evolution (DE) [221], In-

vasive Weed Optimization (IWO) [222], Shu✏ed Frog Leaping Algorithm (SFLA) [223],

Teaching Learning Based Optimization (TLBO) [98], Firefly Algorithm (FA) [100], Sim-

ulated Annealing (SA) [224], and hybrid PSO-GA [225] are tested.

Each algorithm is run ten times to fit an I-shaped beam PPM into a point cloud, and

the resulting mean convergence diagrams, as well as the average time required for model

fitting, are presented. The hyperparameters of each algorithm have been tuned such

that the best results are achieved for a specific number of iterations in a reasonable time

interval. Figure 6.8a shows the obtained convergence diagrams from the metaheuristic

algorithms in a logarithmic scale. As can be seen, three algorithms of PSO-GA, TLBO,

and FA have been capable of gaining the lowest model-fitting errors, respectively. Figure

6.8b also illustrates the average required time for fitting the PPMs in which the HS

algorithm has achieved the lowest modeling time.
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Comparing the results of PSO-GA, TLBO, and FA in terms of time demonstrates the

faster performance of TLBO in the model-fitting task. Among these three algorithms,

TLBO only needs one hyperparameter (number of particles/population) and stopping

criteria, while the two other algorithms have more problem-dependent hyperparameters

for tuning. Therefore, TLBO can provide a higher level of automation with minimal user

intervention. Considering the algorithm’s stability in convergence, the required time for

model-fitting, and the number of hyperparameters, TLBO is selected while all other

algorithms can also be utilized.

(a) (b)

Figure 6.8: Comparing the performance of 10 di↵erent metaheuristic algorithms in a PPM-to-
cloud fitting task: (a) Convergence diagram; (b) Convergence time.
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This chapter presents the results and case studies by starting from the raw point cloud

captured from real bridges and creating the geometric DT of each sample. In the first

part (Section 7.1), the process of generating the dense point clouds, including the acqui-

sition process as well as the point cloud generation, is explained, and an overview of the

samples is presented. In Section 7.2, the results of applying MSFD-Net and RandLA-net

[158] to the point cloud of the bridges are reported, and these models are compared using

various evaluation methods and in terms of di↵erent statistical metrics. This chapter

continues to Section 7.3, where the required algorithms to prepare the segmented point

clouds for generating bridge models are addressed. In Section 7.4, the proposed para-

metric modeling approach is applied to the point clouds, and the 3D geometric model of

bridges is generated. This section also models bridge components of multi-span bridges

to show the application range of the proposed method. It further discusses the algo-

rithm’s advantages over other existing methods in the literature and compares it with

them.

7.1 Dataset

The point cloud of ten single-span reinforced concrete (RC) highway bridges in Bavaria,

Germany, is used for evaluation and model reconstruction. This dataset has been ac-

quired through aerial photogrammetry by flying a drone around the structure and un-

derneath the bridge deck to take photographs from various angles to meet a minimum

75% frontal and 60% side overlap. All the captured images have the same resolution

of 5472 ⇥ 3078. This dataset has been processed by Agisoft [226]. This commercial

software has three major steps to generate a dense point cloud. The first step loads the

photographs and specifies their location following the GPS information. Next, images

are aligned; this step involves detecting and matching key points between the overlap-

ping images and estimating the camera parameters (position and orientation) for each

image. Agisoft employs advanced feature detection algorithms to identify key points
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within images, align them, and generate 3D point clouds. The algorithms include the

Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF),

which detect distinctive points that remain invariant under various transformations such

as scale, rotation, and illumination changes. Once key points are detected in each im-

age, Agisoft matches corresponding key points across multiple images, using techniques

such as descriptor comparison and outlier rejection. The software then conducts bundle

adjustment to refine camera positions and orientations, optimizing them to minimize

reprojection errors and ensure precise alignment. Through this process, detailed and

accurate 3D models can be generated from the collected 2D images. Additionally, it

utilizes a depth map or multi-view stereo algorithm to further enhance the density of

the point cloud by estimating the 3D positions of points in the scene and refining depth

information. In this research, the default setting of 40,000 key points for the Key Point

Limit appeared well-suited as no significant enhancement in the quality of the point cloud

could be observed when employing an alignment that exceeds this key point threshold.

In cases where the algorithm could detect no similar key point between the images, the

key points were registered manually. All the dense point clouds have been generated fol-

lowing High or Ultra High quality settings. This quality measure determines the desired

quality of the depth map generation. Higher quality settings can lead to point clouds

with more detailed and accurate geometry, while they require a longer time for process-

ing. For instance, ultra high setting means the processing of original photos, while each

following step implies preliminary image size downscaling by a factor of 4 (2 times by

each side).

Figure 7.1 shows the generated point cloud samples for the bridges. All the bridge

samples have the same type, i.e., single-span RC bridges with a straight bridge deck

supported by two abutments. However, they have di↵erent sizes with dimension values.

To decrease the processing load of the algorithms, all the bridge samples have been

subsampled by the uniform grid subsampling method with a grid size of 5 cm. This step

led to point clouds with an average density of 252 points/m2 and around 2 million points

per sample. This means the point clouds are still large-scale as they contain more than

a million points for processing.

In addition to the main dataset used for modeling single-span bridges, other datasets

such as the Cambridge bridge dataset [227] are used for validating the method on bridge

components of multi-span bridges. Contrary to the first samples, they are laser scanning

PCD, which can prove the method can not only process photogrammetric PCD but also

laser scanning. Further details about the datasets are presented in the next sections.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7.1: Photogrammetric PCD of ten single-span RC bridges. (a-j) show the bridge samples
1-10, respectively.
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7.2 Semantic Segmentation

This section covers the semantic segmentation of bridge point clouds using the proposed

model (MSFD-Net) in Chapter 4. It starts with discussing the preparation of the dataset

(annotation) and introduces the validation methods for testing the model. It also elab-

orates on the hyperparameters of the model and the values used in the training phase.

Finally, it presents the performance tests of MSFD-Net as well as RandLA-Net [158] in

the prediction of class labels in terms of di↵erent statistical metrics.

7.2.1 Data Preparation

The raw bridge point clouds generally contain (x, y, z) coordinates and RGB color codes.

They might also contain other point-level features such as normal, curvature, roughness,

etc. To generate the 3D model of single-span RC bridges, their point clouds can be

segmented into four classes: background, deck, abutment, and railing. Detecting these

elements in the point cloud streamlines the parametric modeling process to a large extent.

Hence, these four classes are considered for semantic segmentation.

Data loader of 3D DL models load point clouds in several specific formats that have

been mostly inspired by the data structure of benchmark datasets such as S3DIS [228],

SemanticKitti [229], Toronto3D [230], etc. The data loader of MSFD-Net is capable of

reading point clouds in all those formats. In this research, the bridge point clouds have

been prepared in the S3DIS format as it simply needs the text (.txt) file of the classes

as well as the entire point cloud of each sample. The annotation process of point clouds

is similar to the manual segmentation process followed in current practice (Section 2.6).

The points can be labeled using a brushing tool or by drawing polygons around elements

and separating them.

To process the point clouds with MSFD-Net, normals need to be calculated. Normal

vectors are only used in the LSuR module of the model to calculate local features. If

normals have not been produced during the point cloud generation phase, they can be

calculated using a data structure such as kd-tree and a search algorithm like KNN.

MSFD-Net is invariant to the direction of normal vectors; thus, they can be calculated

with any arbitrary direction depending on a viewpoint.

All the bridge samples are translated to the origin of the coordinate system. The

RGB color codes are normalized in the range of [0, 1] by dividing the values by 255.

However, the (x, y, z) coordinate of points is not normalized as this step can lead to

a large di↵erence in the samples’ scale, especially in noisy point clouds. Linear nor-

malization functions normalize point clouds following the Axis-Aligned Bounding Box
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(AABB) surrounding the point cloud. The AABB is a↵ected by noise points, leading

to large di↵erences between bridge samples after normalization. To augment the point

cloud samples, all the samples are randomly rotated around the z-axis. Furthermore,

independent noise is added to each point by jittering the samples with the amount of

1 mm. All these steps are conducted prior to the training process, ensuring the same

samples are being used for training both models. Due to the di↵erent number of points

in each class (imbalanced dataset), class weights are computed based on the number

of points over all the training samples in each class. Subsequently, a higher weight is

assigned to the classes with a lower number of points and vice versa.

7.2.2 Validation Method

To evaluate the model’s performance, expensive tests are conducted on MSFD-Net and

RandLA-Net [158] simultaneously through the leave-one-out cross-validation (LOOCV).

LOOCV is the most expensive k-fold cross-validation method in which the value of k is

set to the number of samples. Each fold holds one sample for testing, and the models are

trained on the remaining samples. In this research, there are ten bridge samples in total;

thus, the value of k is set to ten, and in each try, the model is trained on nine samples

and tested on one remaining unseen sample. Finally, the results are presented as the

average/mean value obtained from all the tests. Various metrics are reported for each

bridge sample and its classes. The Overall Accuracy (OA) of bridge point classification

can be calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
(7.1)

where TP, TN, FP, and FN are the total number of true positive, true negative, false

positive, and false negative predictions by the model, respectively. They can be calcu-

lated from the confusion matrix of the model after classifying points.

The performance of the model in prediction can also be described in terms of Recall,

precision, F1 score, and intersection over union (IoU) for each class i as below:

Recalli =
TPi

TPi + FNi
(7.2)

Precisioni =
TPi

TPi + FPi
, (7.3)

F1 =
2TPi

2TPi + FPi + FNi
, (7.4)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7.2: Annotated PCD of bridges. (a-j) show the bridge samples 1-10, respectively. Class
colors: Blue: Background, Green: Deck, Railing: Red, Abutment: Yellow.
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IoUi =
TPi

TPi + FNi + FPi
, (7.5)

The mean (average) performance of the models can be summarized through mean

recall (mRecall), mean precision (mPrecision), mean F1 score (mF1), and mean inter-

section over union (mIoU). These metrics can be calculated as follows:

mRecall =
1

N

NX

i=1

Recalli, (7.6)

mPrecision =
1

N

NX

i=1

Precisioni, (7.7)

mF1 =
1

N

NX

i=1

F1, (7.8)

mIoU =
1

N

NX

i=1

IoUi, (7.9)

where N is the number of classes.

7.2.3 Hyperparameters

MSFD-Net and RandLA-Net both require a set of hyperparameters to be configured.

The values of hyperparameters are determined through a trial and error process, and

the values leading to the best performance are presented. Contrary to RandLA-Net,

MSFD-Net grows not only in depth but also in the number of scales. Also, the spatial

relationships between points are encoded in each scale. The number of encoding blocks

(or scales) is the initial hyperparameter that needs to be determined. This research uses

four encoding blocks/scales for MSFD-Net. The number of 16, 64, 128, and 256 features

are extracted in each PFD module with two repetitions to increase the receptive field of

points.

We configure RandLA-Net with its original architecture containing five encoding

blocks from which the number 16, 64, 128, 256, and 512 features are extracted, re-

spectively. Similarly, the encoding process is repeated twice in each encoding block.

Four subsampling layers with a ratio of 1/4 are considered for the first four encoding

blocks so that only 25 % of the points in each layer are retained. The last encoding

layers are only subsampled with a ratio of 1/2 to emphasize fine features generated from

that layer.
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MSFD-Net only employs the first four subsampling layers with a ratio of 1/4. Sixteen

neighbors are selected for the KNN algorithm, and eight features are adopted for the

input layer. A batch size of 2 with a maximum size of 60,000 points with 100 steps per

epoch is considered to train the models. The Adam optimizer is used to train the models

with an exponential learning rate of 0.001 and a scheduler gamma value of 0.99 for 200

epochs. The hyperparameters of the models can be seen in Table 7.1.

Table 7.1: Hyperparameters of RandLA-Net and MSFD-Net.

Hyperparameter RandLA-Net MSFD-Net

Subsampling ratio [4, 4, 4, 4, 2] [4, 4, 4, 4]
Dim features [16, 64, 128, 256, 512] [16, 64, 128, 256]
Num neighbors 16 16
Max number of points 60,000 60,000
Batch size 2 2
Learning rate 0.001 0.001
Epochs 200 200
Scheduler gamma 0.99 0.99
Training steps-per-epoch 100 100
Validation steps-per-epoch 10 10

7.2.4 Performance Evaluation

MSFD-Net and RandLA-Net are trained on a single GPU (RTX 3080) with 16 GB RAM.

The performance of the models is tested on exactly the same unseen samples through the

LOOCV method. Also, the same augmentation methods are applied to the models for a

reasonable comparison. The performance of each model is reported using the evaluation

metrics introduced in Section 7.2.2, and the models’ predictions are visualized.

MSFD-Net and RandLA-Net are trained each across ten folds, with nine samples

assigned for training, while the performance is evaluated on the one remaining unseen

sample. The same hyperparameter values (Table 7.1) are employed for all folds, ensuring

no change in the value of hyperparameters is made moving from one fold to another. Ad-

ditionally, both models are controlled to utilize identical point cloud samples throughout

their training and testing phases, ensuring that augmentation does not cause significant

variations in the dataset samples.

Table 7.2 demonstrates the results of RandLA-Net in terms of the evaluation metrics

throughout the LOOCV tests. Each row shows the bridge sample tested after training

on the other nine samples. Columns also represent the OA of the models as well as

the mean values of Precision, Recall, F1 Score, and IoU obtained by averaging over
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classes. Additionally, the last row of the table illustrates the final results of LOOCV after

testing all bridge samples based on each evaluation metric. As can be seen, RandLA-

Net has been capable of achieving an OA of 96.15%. Moreover, it demonstrates good

performance across multiple metrics with mPrecision, mRecall, mF1 Score, and mIoU

values of 90.70%, 95.58%, 92.76%, and 87.20%, respectively. The results highlight the

e�ciency of RandLA-Net across bridges. However, variations in performance metrics

across di↵erent bridges imply instability in the model’s performance in the semantic

segmentation of bridge point clouds. For instance, the value of mIoU ranges from 81.83%

in Bridge 08 to 91.05% in Bridge 07, meaning a large di↵erence (9.22%) in performance.

Table 7.2: Cross-validation results of RandLA-Net on ten bridges (%).

Samples OA mPrecision mRecall mF1 mIoU

Bridge01 95.33 91.53 96.96 94.00 88.87
Bridge02 96.79 88.12 97.97 92.01 86.30
Bridge03 94.87 87.03 95.37 90.54 83.66
Bridge04 96.73 92.11 98.03 94.78 90.27
Bridge05 96.35 92.14 96.59 94.22 89.28
Bridge06 97.90 90.22 98.65 93.80 89.00
Bridge07 97.88 92.74 98.24 95.20 91.05
Bridge08 94.66 89.65 88.14 88.78 81.83
Bridge09 95.20 92.99 92.29 92.42 86.25
Bridge10 95.81 90.45 93.54 91.83 85.54

Avg. 96.15 90.70 95.58 92.76 87.20

In comparison, Table 7.3 presents the performance evaluation of MSFD-Net in the

context of the LOOCV test. As can be seen, MSFD-Net demonstrates a more promising

performance, surpassing RandLA-Net in metrics. It achieves an OA of 96.97%, high-

lighting its superior overall accuracy. While the models’ OA are close, performance

di↵erences become apparent in other metrics. MSFD-Net exhibits higher mean preci-

sion and recall than RandLA-Net, indicating a more robust capacity for precise positive

predictions and accurate identification of relevant classes. It also tends to have higher

F1 scores and IoU averages, indicating a better balance between precision and recall and

improved spatial overlap prediction than RandLA-Net.

Furthermore, MSFD-Net demonstrates robustness in its predictive capabilities with

mean Precision, Recall, F1 Score, and IoU values of 94.59%, 96.63%, 92.76%, and 91.57%,

respectively. To illustrate the improvement that MSFD-Net brings over RandLA-Net,

the percentage di↵erences in their average performance metrics can be measured. MSFD-

Net illustrates a 1.35% enhancement in OA compared to RandLA-Net. Moreover, it

shows substantial improvements in mPrecision, exhibiting a remarkable 4.29% increase
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and a 1.10% enhancement in mRecall. The mF1 score, a crucial measure of the balance

between mPrecision and mRecall, shows an improvement of 2.92% with MSFD-Net.

Additionally, MSFD-Net significantly boosts the mIoU by 4.88%, indicating superior

spatial overlap prediction capability compared to RandLA-Net.

Table 7.3: Cross-validation results of MSFD-Net on ten bridges (%).

Samples OA mPrecision mRecall mF1 mIoU

Bridge01 97.53 94.26 98.35 96.18 92.75
Bridge02 97.34 92.40 96.85 94.47 89.90
Bridge03 97.68 93.94 97.73 95.72 92.00
Bridge04 97.97 95.54 98.54 96.97 94.16
Bridge05 96.75 94.31 94.45 94.32 89.53
Bridge06 98.06 93.60 98.55 95.84 92.26
Bridge07 98.77 97.23 99.02 98.11 96.30
Bridge08 96.79 95.70 97.40 96.47 93.22
Bridge09 95.92 94.66 92.62 93.45 88.06
Bridge10 92.83 94.26 92.82 93.24 87.49

Avg. 96.97 94.59 96.63 95.48 91.57

The class-wise comparison of the models can be seen in Table 7.4, where the evaluation

metrics across classes and their average values obtained from the LOOCV test have been

shown. As can be seen, the Railing class has been the most challenging for both models,

yielding lower accuracy values compared to other classes.

Table 7.4: Class-wise comparison between MSFD-Net and RandLA-Net.

Metric Model Background Deck Abutment Railing Avg.

Precision
MSFD-Net 97.39 97.20 95.80 87.97 94.59
RandLA-Net 97.93 95.63 92.91 76.33 90.70

Recall
MSFD-Net 97.56 95.51 99.28 94.20 96.63
RandLA-Net 95.67 96.32 99.37 90.95 95.58

F1
MSFD-Net 97.43 96.22 97.50 90.75 95.48
RandLA-Net 96.76 95.92 96.02 82.33 92.76

IoU
MSFD-Net 95.02 92.84 95.14 83.28 91.57
RandLA-Net 93.75 92.18 92.38 70.50 87.20

One of the primary reasons contributing to the di�culty in predicting this class lies in

its limited representation within the dataset. This scarcity of data points allocated to this

class diminishes the models’ ability to e↵ectively learn its patterns and characteristics.

Even with the implementation of class weights, intended to mitigate the imbalanced class
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issue, the model still cannot find adequate samples to learn. When models encounter

fewer samples of a particular class, their performance is restricted. Furthermore, the

situation escalates when models opt to subsample points to alleviate the processing

load. Subsampling, while aiding computational e�ciency, further limits the exposure to

classes such as Railing, compounding the challenge of pattern recognition and accurate

prediction within this class.

Considering the class-wise results of the models, MSFD-Net has been able to signif-

icantly improve this class’s prediction results. This implies that this model can learn

more e�ciently even with lower number of point samples. The results also illustrate

that MSFD-Net has outperformed RandLA-Net in predicting the point label of most

classes. In terms of IoU and F1 scores, MSFD-Net has shown a superior performance

for all classes. It has also achieved a more promising performance for most classes in

terms of Precision and Recall. Further discussion and details about the models can be

found in Appendix A.

The visual comparison in Figure 7.3 illustrates the performance di↵erence between

RandLA-Net and MSFD-Net across three typical bridge samples throughout the LOOCV

test. As can be seen, MSFD-Net demonstrates a higher accuracy in classifying points.

In Bridge 01, RandLA-Net misclassifies points belonging to the Background class as the

class Deck.
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Ground Truth RandLA-Net MSFD-Net (Ours)

Figure 7.3: Visual comparison of semantic segmentation results for three bridge samples. Class
colors: Blue: Background, Green: Deck, Red: Railing, and Yellow: Abutment.
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Furthermore, in Bridge 08, it fails to detect one of the railing instances completely.

The challenges persist in Bridge 10, where the model encounters di�culty in accurately

classifying points associated with the Deck class. As can be seen, MSFD-Net has been

capable of alleviating classification errors in these samples and providing more reliable

results for the digital twinning of bridges.

7.3 Preparation of Segmented Point Clouds

Bridge point clouds need to be prepared prior to applying PPMs and deriving the value

of parameters. Figure 7.4 depicts the required steps, including semantic segmentation,

transformation, instance segmentation (clustering), and face/cross-section detection. All

these steps must be followed before starting the parametric modeling process (second

major block).

Considering a raw bridge point cloud, semantic segmentation is the initial step in

processing points, as shown in Figure 7.4a. In this research, MSFD-Net has been pro-

posed for semantic segmentation of bridge point clouds (Chapter 4) as it shows a reliable

performance in classifying points and reaches a level of accuracy whose results can be

properly used by the downstream modules/algorithms. However, the parametric mod-

eling module is not limited to this model only. Therefore, other existing methods for

semantic segmentation of point clouds, including bottom-up [134, 231, 232], top-down

[143, 145, 146], or other deep learning models [163, 165, 155] can be employed as well.

Semantic segmentation separates the raw bridge point cloud into the point cloud of

bridge elements. It also narrows down the initial problem from the entire bridge point

cloud to the point cloud of bridge elements and determines the type of each component

from which the PPM can be recognized. As described in the previous section, four classes

have been considered to classify points: Background, Deck, Abutment, and Railing.

As the points belonging to the class Background are not of interest for the geometric

modeling bridges, they are deleted, and the problem is simplified to the three remaining

classes for digital twinning.

The raw bridge point clouds are not generally along the x-axis and have some degrees

of rotation around the z-axis. For bridge point clouds with a straight deck (without

a large horizontal curvature), it is more suitable to rotate the point cloud around the

z-axis and make it along the x-axis. Thus, transformation (translation and rotation) of

the segmented point clouds is the next preprocessing step, as shown in Figure 7.4b. As

the variance of points along the length of the bridge deck is significantly higher than

in the other directions, principal component analysis (PCA) is employed to detect the
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(a)

(b)

(c)

(d)

Figure 7.4: Required preprocessing steps for the proposed method: (a) semantic segmentation;
(b) transformation; (c) clustering (instance segmentation); (d) cross-section/face
and boundary points detection.

alignment of the bridge. To this end, the point cloud of the bridge deck is projected onto

the xy plane, and a uniform grid subsampling is applied to remove the impact of overlying

points resulting from the projection. Then, PCA is executed, and the segmented point
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clouds are translated and rotated around the z-axis as much as the angle between the

principal component obtained by PCA and the x-axis.

There is generally more than one point cloud instance in the classes of abutments and

railings. Also, abutments consist of sub-elements, including a retaining wall and two

wing walls. Therefore, these classes need to be further segmented/clustered, as shown in

Figure 7.4c. To this end, the clustering algorithm described in Section 5.1 is employed

to detect the two instances in each class. As mentioned, this algorithm clusters the point

cloud instances following the connectivity rules. As the point cloud instances, such as

abutments and railings, generally stand far from each other, a connectivity radius of

r = 1 m is considered for the instance segmentation. In order to detect the point cloud

of the retaining wall and the wing walls, the RANSAC algorithm is employed. As the

number of existing faces in each abutment point cloud is known (two wing walls and a

retaining wall), the number of existing thresholds in RANSAC is reduced and limited

to only a distance threshold from the planes that can be reasonably selected (herein 10

cm), over a number of iterations (herein 300) for each plane instance.

The last remaining step is the detection of cross-section or boundary points of faces,

which are required for fitting PPMs. For this purpose, a combination of projection,

de-noising, FCM clustering, and subsampling functions/methods is employed, as shown

in Figure 7.4d. The point cloud of wing walls and retaining walls is projected onto 2D

planes using their normal vectors detected by the RANSAC algorithm in the previous

step. The boundary points are then detected by the FCM clustering algorithm proposed

in Section 5.2. As the bridge deck point cloud is the part between the retaining walls, it

is clipped and projected onto the yz plane. The railing point clouds are also projected

onto the xz plane, and their boundary points are detected using the FCM clustering

algorithm. All these point clouds are de-noised after projection, as described in Section

5.1, and subsampled by uniform grid subsampling (grid size ' 5 to 20 cm). In all

the steps, the subsampling module is optional and can be eliminated. This module

has been only used to decrease the processing loads of the algorithms and remove the

impact of overlying points due to the projection. The de-noising module also checks the

connectivity rules to ensure no point exists far from the target points.

7.4 Parametric Modeling

This section evaluates the performance of the proposed approach in creating the geomet-

ric DT of bridges. It consists of two real-world experiments. First, the entire method

is applied to the point cloud of ten single-span RC bridges, and the geometric DT of
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the entire bridge is created. Second, PPMs are applied to more complicated geometric

shapes, such as T-shaped and hollow bridge decks and piers, that mostly exist in multi-

span bridge point clouds to show the wide range of applications the algorithm can have.

Next, the proposed approach is compared with three other approaches in the literature

and its advantages are highlighted. Finally, PPMs are applied to point clouds with

large occasions, and their performance is compared with other conventional modeling

algorithms.

7.4.1 Experiment 1: Geometric Modeling of Ten Single-Span RC

Bridges

To derive the value of parameters, the corresponding PPM to each preprocessed point

cluster is selected. As shown in Figure 7.4, the semantic segmentation and the clustering

modules generally determine the type of the required PPMs for model fitting. However,

in scenarios where the type of PPMs is not known, the supervised and unsupervised

selection methods (Section 6.4) can be employed.

Figure 7.5 shows the details of PPMs used for model fitting all the bridge samples.

These PPMs include a bridge deck, wing wall, retaining wall, and railing obtained by

analyzing the bridge point cloud samples to reach a desired LoD. All the PPMs have

been initialized only once and used for the geometric digital twinning of all the bridge

samples, i.e., no user intervention is applied to the PPMs from sample to sample. Most

of the parameter intervals have been obtained by analyzing a large number of bridge

data provided by the German bridge database ”SIB-Bauwerke” as well as empirical

knowledge. For parameters such as the origin or width of the bridge deck that might

largely vary in bridges, the axis-aligned bounding box (AABB) of the point clouds, with

the lower left corner (ll) and upper right corner (ur), has been used to relatively set the

initial values. All these intervals have also been shown in Figure 7.5.

To adjust the instantiated PPMs and fit them into their corresponding point clouds,

TLBO is employed as it showed promising performance in Section 6.5. This algorithm

only needs a number of population/particles (75 particles) and a stopping criteria (300

iterations). Piece-wise optimization problems are solved by TLBO for each point cluster

representing a bridge element. Each optimization process starts with a list of candidates

randomly generated by the optimization algorithm. This list is further refined by TLBO

such that the PPMs can be fitted into the point cloud. This process leads to a close

approximation of the parameter values after optimization. Considering the number of

four wing walls, two retaining walls, two railings, and a bridge deck that exists in each

bridge point cloud, the optimization algorithm must be capable of extracting the value
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of 52 parameters. To evaluate the accuracy of the resulting models, the mean absolute

error (MAE) of PPMs is calculated by Equation 6.1 that shows the distance of points

to PPMs.

p5 p3

p9

p4
p6

p8p13

p7

(p1, p2)

p10

p11

p14

Bridge Deck

p12

p1: x-origin 2 [xll, xur]

p2: y-origin 2 [yll, yur]

p3: deck depth 2 [0.05, 1.30]

p4: cantilever width 2 [0.10, 1.80]

p5: cantilever slope 2 [5�, 75�]

p6: parapet bottom width 2
[0.05, 1.00]

p7: parapet bottom slope 2
[�45�, 0�]

p8: parapet height 2 [0.05, 1.20]

p9: parapet top width 2
[0.50, 3.50]

p10: parapet top slope 2 [�45�, 0�]

p11: deck width 2 [4.00, xur � xll]

p12: deck right slope 2 [�5�, 5�]

p13: deck left slope 2 [�5�, 5�]

p14: deck inclination 2 [�10�, 10�]
(a)

p3

p4

p5

p1, p2

Wing Wall

p1: x-origin 2 [xll, xur]

p2: y-origin 2 [yll, yur]

p3: width 2 [0.30, xur � xll]

p4: slope 2 [30�, 80�]

p5: height 2 [2.00, yur � yll]

(b)

p1, p2

p3

p4

Railing

p1: x-origin 2 [xll, xur]

p2: y-origin 2 [yll, yur]

p3: height 2 [0.50, 1.80]

p4: length
2 [0.80⇥ (xur � xll), xur � xll]

(c)
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p5

p4

p3

p1, p2 Retaining Wall

p1: x-origin 2 [xll, xur]

p2: y-origin 2 [yll, yur]

p3: height 2 [2.00, yur � yll]

p4: length
2 [0.80⇥ (xur � xll), xur � xll]

p5: slope 2 [�10�, 10�]

(d)

Figure 7.5: List of PPMs used for geometric digital twinning of the bridge point clouds: (a)
bridge deck; (b) wing wall; (c) railing; (d) retaining wall. xur, yur and xll, yll are
the x- and y� coordinate of the upper right and lower left corner of the axis-aligned
bounding box (AABB) surrounding the input point cloud. xur � xll and yur � yll

are also the length and the height of the AABB, respectively. The dimensions of
the AABB are used for the relative initialization of PPMs. All values are in meter
(m).

Table 7.5 illustrates the MAE of PPMs after the model fitting process. Averaging the

resulting values of error from the bridge samples shows that TLBO has been capable of

modeling bridges with an MAE of 8.43 cm. Note that noises and other imperfections

in the entire method have been considered in the calculation of MAE. Therefore, these

error values show the worst case in which some noises or wrongly classified points still

exist in the problem space. In addition, no external intervention has been made in the

modeling process of bridges from the point clouds. This table also demonstrates a class-

wise comparison of each element’s error value. As can be seen, the class Retaining Wall

(RW) has resulted in the highest value of MAE.

Table 7.5: MAE of the fitted PPMs into the point cluster of bridge elements (cm).

Sample Wing Wall (WW) Retaining Wall (RW) Railing (R) Deck Mean

WW1 WW2 WW3 WW4 RW1 RW2 R1 R2
Bridge 01 1.87 2.65 2.26 2.45 11.73 9.76 6.00 5.65 13.00 6.15
Bridge 02 6.67 5.48 8.08 5.75 35.26 37.06 7.89 9.91 12.97 14.34
Bridge 03 6.30 6.71 6.63 6.19 12.82 15.19 15.71 17.86 7.61 10.56
Bridge 04 3.28 3.28 4.83 4.83 4.74 9.65 17.84 17.85 8.05 8.26
Bridge 05 2.94 2.94 3.15 2.88 7.03 7.54 16.09 7.99 15.51 7.34
Bridge 06 2.82 2.37 2.39 3.07 9.05 4.25 10.32 9.95 5.98 5.58
Bridge 07 3.34 2.91 4.33 3.12 7.37 7.54 1.66 1.13 3.52 3.88
Bridge 08 4.62 3.84 17.73 5.42 20.16 18.64 13.04 9.25 4.15 10.76
Bridge 09 15.54 11.99 22.58 22.58 7.09 7.71 2.19 2.55 5.09 10.81
Bridge 10 4.93 6.10 7.76 6.45 6.22 7.73 7.86 6.36 5.95 6.60

Mean 6.08 12.33 9.35 8.18 8.43
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Figure 7.6 shows the fitted model to the retaining wall of Bridge 02 after optimization.

As can be seen, the bottom and vertical edges of the PPM have horizontal and vertical

constraints, thus preventing them from rotating and becoming closer to the points. This

instance shows that the governing reverse engineering approach and the injected bridge

engineering knowledge enforce the algorithm to generate PPMs that necessarily end up

with the anticipated 3D model. Although the rotational degrees of freedom can be given

to such edges, the 3D model must also be capable of accepting these new parameters as

the process has been started from the final model. In this example, our presumption has

been to generate a bridge model whose retaining walls have constraints on the bottom

and lateral edges.

Figure 7.6: Fitted retaining wall of Bridge 02 by the PPM.

To generate the 3D model of the entire bridge, all the extracted parameters have

been assembled by solving another optimization problem as described in Section 6.3. In

this process, all the involved PPMs are refined again so that the common parameters

among elements are integrated, and the PPMs still remain as close as possible to their

corresponding point cloud.

Figure 7.7 depicts the histogram of each bridge sample after the geometric modeling

process. The vertical axis of the diagram shows the number of points assigned to all the

involved PPMs, and the horizontal axis shows the distance of points to the PPMs in terms

of MAE. As can be seen, a large portion of points has a distance of less than 5 cm from the

fitted PPMs in all the samples. However, in sample Bridge 02 (Figure 7.7b), the variation

range of MAE is larger than a sample such as Bridge 07 (Figure 7.7g). This observation

is also compatible with Table 7.5 in which the value of MAE is higher in Bridge 02.

Comparing the point cloud of this sample with other samples shows that Bridge 02
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7.7: Histogram of bridge samples after model fitting: (a-j) show the bridge samples
01-10, respectively.

131



7 Results & Case Studies

has more di↵erences in type with respect to the desired model. Hence, the generated

PPMs from the model at the beginning of the process have not been able to completely

describe/capture di↵erences beyond the imposed presumptions/restrictions. This means

the four PPMs used for modeling all the bridge components of the ten samples have been

more compatible in type (not dimensions; the same setup/initialization has been used

for all the samples) with the point cloud of other samples. As a result, in Bridge 02, the

edges and vertices of the PPMs have not been able to move closer to the bridge point

cloud, which, in turn, has led to a higher value of error. Table 7.6 shows the overall time

required for preprocessing segmented point clouds, extracting the value of parameters,

and assembling them into an integrated model. As can be seen, the modeling time of all

the samples with around 2 million points is less than 370 sec (6.16 min).

Table 7.6: Required time for modeling bridges from point clouds.

Sample Bridge 01 Bridge 02 Bridge 03 Bridge 04 Bridge 05 Bridge 06 Bridge 07 Bridge 08 Bridge 09 Bridge 10

Time (sec) 285.41 367.07 328.16 311.76 350.18 305.01 192.07 239.94 233.03 161.15

This shows the massive reduction of the modeling time in comparison with the manual

modeling processes, which usually take several days. To visualize the 3D model of each

bridge sample, the parameter values are imported into the 3D PPM of the bridge. This

process leads to the 3D geometric model of each bridge sample as shown in Figure 7.8.

(a)

(b)
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(c)

(d)

(e)

(f)

(g)
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(h)

(i)

(j)

Figure 7.8: Point cloud of bridges and their corresponding geometric DT model. (a-j) show the
bridge samples 01-10, respectively.

7.4.2 Experiment 2: Bridge Elements

Contrary to single-span bridges, multi-span bridges have a longer deck supported by

piers. The deck of multi-span bridges generally has vertical and horizontal curvatures

and cannot be described properly by a single extrude function.

Figure 7.9 shows the process of modeling the deck of a typical multi-span bridge. To

capture the curvature and changes of such bridges, the alignment of the deck needs to be

detected in the initial step. The alignment of straight bridges/decks can be recognized

using the PCA algorithm similar to Experiment 1. In the case of bridges with horizontal

curvature, a polynomial can be fitted to the deck point cloud after projection onto the
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xy plane. Using the bridge alignment, the deck point cloud can be split into smaller

segments, each of which is placed between two planes/sections in a pre-defined distance

(�) (see Figure 7.9). These segmented point clouds can be projected onto a 2D plane and

fitted using a PPM by solving multiple piece-wise optimization problems. Note that a

single PPM with the same initialization is used for fitting all the slices of the bridge deck

point cloud. This model-fitting process leads to a list of parameters obtained from each

slice. Sweeping/connecting all the PPMs along the length of the bridge deck results in

the 3D model of the deck. However, this model might not be smoothed as the extracted

values from PPMs have di↵erences along the length of the bridge deck (Figure 7.9). To

address this issue, the values of each parameter are regularized separately in three steps.

First, assuming a normal distribution for parameter values, the outliers are removed by

calculating the mean value (µ) of the parameter and its standard deviation (�). Second,

a polynomial is fitted to the values. Third, the value of the parameter is read from the

fitted polynomial using its location.

Figure 7.9: Modeling process of a typical multi-span bridge deck.

To clarify, assume a deck point cloud with a starting point at x = 0 and an endpoint

at x = 3. Considering four sections at locations such as x = {0, 1, 2, 3}, three segments

of the point cloud can be obtained and fitted by a PPM. Let p = {2.40, 2.50, 2.60} be the

extracted values for a parameter such as the parapet width by fitting the three sequential

PPMs. After removing outliers from the set p, for ex., values more and less than µ± �

(68% of data), a polynomial, such as ax2 + bx+ c, can be fitted to the values of the set

p. Using this polynomial whose coe�cients are known after fitting, regularized values

of the parameter can be extracted by inserting the values of the set x into the fitted

polynomial (Figure 7.9).

Figure 7.10a shows the results of applying PPMs in the parametric modeling of two

multi-span bridges. The first bridge sample is Bridge 01 from the Cambridge bridge

point cloud dataset [143], which shows a concrete bridge point cloud acquired by laser
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(a)

(b)

Figure 7.10: Parametric modeling of two bridge decks from their point clouds: (a) first sample;
(b) second sample.

scanning. As the bridge deck is straight, PCA can be applied to this sample similarly to

the single-span bridges. To generate the geometric model, the bridge deck is split into

intervals of 2 m, and a PPM is fitted to each segment of the point cloud. The PPM of this

sample is similar to the PPM used for the deck of single-span bridges. After extracting

the value of parameters, outliers are removed, and a polynomial of degree two is fitted.

As can be seen in Figure 7.10a, the model has been fitted into the point cloud completely.
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Calculating the distance of points to the PPMs along the length of the bridge deck shows

an MAE of 1.67 cm/m, while noises have also been considered in calculating the value of

error; thus, the computed value shows the worst case. Figure 7.10b also demonstrates the

application of PPMs in the geometric modeling of another multi-span bridge captured

in Munich, Germany. Contrary to Experiment 1, this sample has been acquired through

laser scanning. In comparison with the previous bridge sample, this bridge deck is more

complicated in shape as it has four T-shaped concrete girders. To select the appropriate

type of PPM for describing the point cloud sample, the unsupervised selection method

proposed in Section 6.4 has been used, and T-shaped bridge decks with 3-6 girders are

tested. As the value of MAE resulting from PPM with four girders has been lower, this

type of PPM is selected.

This PPM can also be initialized similarly to the deck of single-span bridges. The

only di↵erence is the existence of girders whose dimensions can be logically set up based

on bridge engineering knowledge. In this example, a width of [0.1, 1.5] and a depth of

[0.2, 1.5] have been considered for the girders. Also, they have a distance of [0.5, 3] with

respect to each other, half of which belongs to the flange of a girder. The flange can also

have a value of slope in the range of [-3�, 3�]. This bridge deck point cloud has a length

of around 80 m, and it has been sliced every 2.5 m. This means 80/2.5 = 32 distinct

optimization problems that need to be solved to model this bridge deck. As can be seen

in Figure 7.10b, a single PPM has been capable of deriving the parameter values from

all the slices and generating the 3D model of the deck. Averaging the values of MAE

over the length of this bridge shows a value of 1.05 cm/m while noises still exist in the

problem.

Various types of piers can be seen in bridges. A common type of bridge pier is shown

in Figure 7.11, which consists of a pier cap and two pier columns. This pier can be

modeled by PPMs if the pier cap is separated from the pier column. To this end,

an FCM clustering algorithm is used for two clusters (pier cap and pier column). As

the feature vector of the FCM, three features are calculated that represent di↵erences

between these two elements. First, the pier cap is generally over the pier columns; thus,

its points have higher values of z-coordinate. Second, the pier cap is a horizontal element

while the pier column is vertical; therefore, the z-component of the points’ normal vector

is higher for the pier cap. Third, if the pier is projected onto the xy plane, the 2D density

of the points belonging to the pier column is higher as it is a vertical element. The 2D

density can be calculated by counting the number of neighboring points placed within

a circle with a predefined radius. Using these three features, the point cloud can be

segmented.
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Figure 7.11: Modeling process of a typical bridge pier.

To extract the value of parameters from the pier column, the points of each pier are

projected, and a circular PPM is fitted. Note that a circle is a primitive shape; however,

it can still be represented with three parameters, a center (x, y) and a radius (r), and

its distance to the points is minimized by a metaheuristic algorithm. The pier cap can

also be modeled by a rectangular PPM. As can be seen in Figure 7.11, the pier cap has

occlusion and some noise; however, the PPM can still perform properly. After extracting

the value of parameters, the elements can be assembled, and the 3D model of the pier

is obtained. Averaging the value of MAE from fitting the pier columns and the pier cap

shows an MAE of 1.43 cm.

7.4.3 Discussion

The performance of the proposed method can be evaluated in various scenarios and

compared with other existing algorithms. This section further discusses the model fitting

process by PPMs and highlights its advantages in geometric modeling.

7.4.3.1 Comparison with Other Methods

For comparison, the point clouds of an I-shaped beam and a bridge deck are fitted

by PPMs, ↵-Concave hull [233], and RANSAC algorithm [233]. Figure 7.12 visually

compares these methods after applying each algorithm. As can be seen, PPMs have been

more successful in model-fitting, thanks to the reverse engineering strategy governing

the optimization algorithm. The other two methods cannot provide an exact number

of parameters after model fitting and require another heuristic algorithm to refine their

results. Therefore, these methods cannot directly provide a meaningful parametric model

without any post-processing step. The proposed algorithm, however, results in a finite

number of parameters with a close approximation of their values. It also preserves
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constraints such as orthogonality, parallelism, and symmetry in model fitting to meet

the anticipated requirements.

(a) (b) (c)

Figure 7.12: Comparison the results of the model fitting approaches: (a) ↵-Concave hull [233];
(b) RANSAC [119]; (c) PPM (ours).

Table 7.7 compares the proposed method with the most recent methods [132, 210,

201] in the geometric modeling of bridges or structural elements. Each table column

represents a feature that can be a basis for comparison. The second column demonstrates

the bridge components addressed by the methods. As can be seen, the two first methods

are limited in covering all the components that generally exist in bridges and have

mainly focused on steel profiles/sections, while the third method, in addition to steel

girders, covers piers and the bridge deck. The third column in the table shows the core

model-fitting algorithm used to model the geometry from point clouds. The first method

utilizes the RANSAC algorithm for estimating the dimensions of steel profiles, while the

second method uses a kernel density estimation (KDE) algorithm to detect the type of

cross-section from a catalog. The third method also employs ↵-concave hull for more

complicated geometries, such as the bridge deck, and a density estimation algorithm to

detect the type of girders from a catalog. The column named ”Modeling Level” shows

the coverage level of the proposed approaches. The first two methods have been limited

to modeling bridge components, while the next two methods have generated the entire

model of the bridge. The Assembly column demonstrates whether the assembly process

of elements has been described or not. As can be seen, none of the other methods have

addressed this problem.
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Table 7.7: Comparison of the proposed method with three state-of-the-art methods.

Method Covered Elements Core Algorithm Modeling Level Assembly Accessibiliy to Dimensions
Parametric
Modeling

1. Yan and Hajjar [132] super-structure components:
I-shaped girders and cross-frames

RANSAC Components No
Yes

(only steel sections)
No

2. Laefer and Truong-Hong [210] Steel sections:
I-, L-, T- and C-shape sections

KDE Components No
Yes

(only steel sections)
No

3. Lu and Brilakis [201] super- and sub-structure components:
bridge girders, piers, and decks

↵-concave hull &
density estimation

Entire bridge No
Yes

(only circular pier columns
and steel sections)

No

4. Ours super- and sub-structure components:
retaining walls, wing walls, parapets,
bridge girders, piers, railings, and
decks

PPM Entire bridge Yes Yes (all elements) Yes
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The next column (Accessibility to Dimensions) represents whether the value of param-

eters/dimensions has been extracted from point clouds. The first two methods have been

capable of obtaining the value of parameters. However, these methods have only covered

steel sections such as girders or cross-frames. The third method has also been limited

and only extracted the value of parameters for circular pier columns and steel girders.

This method uses the ↵-concave hull for describing the more complicated geometries,

and as discussed in Figure 7.12, this algorithm cannot solely result in the parameter

values. The last column also shows whether the resulting model is parametric and can

accept geometric updates. As can be seen, none of the other methods have included this

feature in the geometric modeling.

7.4.3.2 Occlusion Resistant Model-Fitting

The proposed concept of active and passive edges can improve the algorithm’s perfor-

mance in fitting PPMs into occluded point clouds. This new definition of fitness function

can generate results at a competitive level with human recognition in modeling. Figure

7.13 shows the results of the model fitting a rectangular and a trapezoidal PPM into the

occluded point clouds.

(a)

(b)

Figure 7.13: Performance of the algorithm in sustaining a large amount of occlusion: (a) a
rectangular PPM; (b) a trapezoidal PPM.
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In some cases, the edges of the PPMs cannot find any point in their vicinity. Nonethe-

less, these edges can still be fitted into the point clouds. Note that a simple fitness

function definition such as Equation 6.1 cannot provide meaningful results in these cases

as the optimization algorithm cannot realize the correct placement of the passive edges.

7.4.3.3 Editability of the Resulting Model

One of the advantages of the proposed approach is the editability of the resulting model,

which is required to enable design work in the frame of rehabilitation or modification

measures. This feature enables users to modify each element by adjusting the value of

parameters as shown in Figure 7.14. Note that a point cloud only represents the object’s

outer shell. For instance, it cannot provide any information about the foundation of

abutments or the inner thickness of the bridge deck. Therefore, external resources are

still required from which the related parameters can be extracted and imported into the

model.

(a)

(b)

Figure 7.14: Editability of the model: (a) the resulting model; (b) edited model with a new
span length and foundation depth.

The resulting model of the defined method preserves all the existing relationships

and dependencies between elements, thanks to its parametric design. Also, all the ex-

isting parameters can be adjusted or unchanged during optimization. For example, a

default value for the depth of the foundation can be assumed and remained unchanged

throughout the optimization process. After optimization, this parameter can be read or
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extracted from structural drawings and imported into the model separately. The result-

ing model can also be connected to various algorithms for further enrichment. This is

highly compatible with the definition of geometric DTs, which need to stay connected

to the actual asset for handling bidirectional updates.
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8 Conclusions

This chapter introduces significant findings in achieving the geometric representation of

bridges using DTs and discusses the potential for automated processes to meet industry

demands. It highlights key contributions and the current research state, addressing the

limitations tackled in this thesis and those that might arise in future investigations. Fur-

thermore, it acknowledges encountered limitations and o↵ers insights for further refine-

ment and investigation, as well as potential directions for future research and innovation

within this domain.

This chapter encompasses three sections to conclude the thesis. The first section

summarizes the proposed method introduced in the previous chapters. It reviews the

concepts behind each chapter and elaborates on the thesis structure. The second section

discusses the research hypotheses based on which this research has been established.

It further shows how the research content can address the research hypotheses. This

section further highlights the key contributions and innovations that make the research

unique at its publication date. The next section is assigned to the limitations of the

proposed method with a focus on each module, leading to various research topics for

further investigation.

8.1 Summary of Chapters

In Chapter 1, entitled “Introduction”, the thesis title was divided into distinct compo-

nents, including “Digital Twin (DT)”, “Bridges”, “Point Cloud Data (PCD)”, “Artificial

Intelligence (AI)”, and “Optimization Algorithms”. Each term was introduced briefly,

and the existing challenges, hypotheses, and requirements for creating a bridge DT were

elaborated. To address these challenges, a method containing two major blocks and a

middle minor module was proposed. The first module was designed to automate the

bridge’s semantic segmentation process. This module receives the bridge PCD and seg-

ments it into the point cloud of bridge elements using a DL model. The middle module

clusters and de-noises the segmented point clouds. It also detects boundary points and

generates the final bridge dummy model required for parametric modeling. The sec-
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ond major module receives the clustered point clouds and the bridge dummy model. It

then generates the required PPMs following the bridge 3D model (reverse engineering

& parametric modeling) and solves local and global optimization problems for deriving

the value of parameters from the clustered point clouds.

Chapter 2 provided a comprehensive explanation of the DT concept and its potential

applications within the Architecture, Engineering, Construction, Operations, and Man-

agement (AECOM) industry, particularly in streamlining the operational and main-

tenance (O&M) process of bridges. This chapter illustrated how DTs can serve as a

practical mechanism to support the maintenance process of existing bridges. It was

discussed that a DT is defined purposefully based on a set of requirements and specifica-

tions. Requirements are the goals of the DT described based on its expected use cases,

while specifications determine further details about the requirements. It was shown that

at the core of an e�cient bridge DT, a 3D geometric model exists whose creation, how-

ever, requires spending plenty of time and cost. PCD was introduced as one of the data

sources from which the geometric bridge DT can be created. The acquisition methods

for collecting PCD were elaborated and compared. Furthermore, AI techniques and

optimization algorithms were explained, various modules were reviewed, and their ap-

plications in data interpretation and their potential in processing various data formats

were pointed out. To shed light on the expensive steps in creating bridge DTs, the

conventional approaches in generating the geometric model of bridges were explained.

Additionally, the chapter highlighted the role of Internet of Things (IoT) devices in data

collection and their connectivity to the DT for real-time structural assessment. It was

concluded that semantic segmentation and model reconstruction are two expensive steps

in manually creating bridge DTs. These particular steps were selected as the primary

components within the digital twinning process, essential for automation to make the

creation of DT cost-e�cient.

Chapter 3 focused on the semantic segmentation and model reconstruction of bridges

from point clouds. Various approaches that can be employed to automate the semantic

segmentation of bridge point clouds were reviewed. It was illustrated that all existing

approaches have their own advantages and drawbacks. The category bottom-up contains

fundamental and practical methods to automate the semantic segmentation of bridge

point clouds. However, most bottom-up methods su↵er from occlusion and clutter and

are dependent on setting problem-specific thresholds. Furthermore, they have been

mostly defined for primitive shapes that can be expressed in a closed-form formula.

Top-down methods address the occlusion problem to some extent. However, they are

yet highly problem-specific and are defined considering a set of presumptions about the

bridge. Therefore, they might fail in cases where presumptions are not satisfied even
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slightly. Deep learning (DL)-based semantic segmentation is a more recent approach that

benefits from automated extraction of point features for classification. Compared to the

two previous approaches, DL-based semantic segmentation provides more flexibility and

adaptability with less/no dependency on problem-specific thresholds. They can also

segment large-scale point clouds e�ciently and pave the way for real-time evaluation.

In the second part of this chapter, the potential model reconstruction approaches to

create a geometric DT were reviewed. It was explained that surface representation meth-

ods, such as triangulation and meshes, might not be appropriate to create a geometric

DT due to a lack of access to geometric details such as dimensions or volumes. Hence,

solid modeling approaches were elaborated. It was argued that a geometric DT must

stay connected to the actual bridge through a bidirectional link to handle geometric

updates; otherwise, the geometric DT concept might be compromised. It was concluded

that Parametric Modeling is a solid modeling approach that provides the access point

for handling geometric updates, thus providing the most appropriate representation for

geometric DTs. Solid modeling methods generally need inputs to generate geometry. For

instance, the implicit representation of a sphere needs input parameter values concerning

the center and radius of the sphere. Therefore, the most recent approaches that provided

input for solid modeling were reviewed. It was shown that most existing methods are

limited to only extracting parameter values from primitive shapes that can be defined

simply in a closed-form formula. It was also discussed that most bridge elements have

more complicated shapes that cannot be described simply in a derivable function. At

the end of this chapter, the existing research gaps that established the foundation for

this research were mentioned.

Chapter 4 was assigned to elaborate on the proposed methodology for the first ma-

jor module (semantic segmentation). A Multiscale Spatial Feature Descriptor network

(MSFD-Net) was proposed as a DL model to automate the semantic segmentation pro-

cess of bridge point clouds. It was designed to capture three sets of features, including

global, local, and spatial features, and employ them in predicting the class label of

points. The global features represent the individual characteristics of points in the 3D

space. Local features, however, illustrate the underlying surface the points can repre-

sent in their local neighborhoods. Relative/spatial features also describe the pair-wise

relationship of points in the 3D space, where global and local features cannot prop-

erly express them. MSFD-Net benefits from modules that can encode the global, local,

and relative features of points. The global features are encoded using shared MLPs.

Local features are described using relative position and normal deviation of points in

local neighborhoods. The relative features are extracted using transformers, weighting

the pairwise dependencies between points. MSFD-Net also decodes the encoded feature
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maps in various scales to benefit from not only high-level (fine) features generated in the

last layers of the encoder but also the low-level (rough) features produced in the initial

features. Besides, it summarizes the scales using an attention mechanism emphasizing

the important scales in classifying points.

Chapter 5 elaborated on the middle minor module. It presented the methods required

for processing segmented point clouds resulting from the first module. A clustering

algorithm was proposed to automate the instance segmentation process of bridges. This

algorithm is a Region Growing (RG) algorithm inspired by DBSCAN that expands

regions based on the relative distance of points. Unlike DBSCAN, it benefits from a

data structure and is not dependent on a threshold value for detecting noise points.

To detect boundary points, the mean shift of points in each local neighborhood was

calculated. Considering the higher shift of exterior points, this feature was used in the

Fuzzy C-Means (FCM) clustering algorithm for classifying boundary points. To benefit

from the reverse engineering approach, the 3D bridge dummy model was also generated

to be used for deriving the value of parameters.

In Chapter 6, Parametric Prototype Models (PPMs) were proposed as tools to derive

the values of parameters. PPMs are dummy parametric models defined based on a set

of parameters and geometric constraints. PPMs can not only be described for primitive

shapes but also more complicated geometric shapes that commonly exist in bridges.

Following a reverse engineering approach and the desired final bridge model, PPMs

can be designed to derive the parameter values required for creating the bridge model.

To fit PPMs into the point cloud of bridge elements, a new cost function was defined

that minimizes the distance of edges and vertices to points based on their contribution

(activity) to the problem. This novel cost function enables the algorithm to fit PPMs into

point clouds even with a large amount of occlusion. Solving the first local optimization

problems leads to a set of fitted PPMs into their corresponding point clouds. To generate

the integrated model of the entire bridge, PPMs need to be assembled. The assembly

process of PPMs should not only generate the desired model but also retain all the

parametric dependencies among the elements. For this purpose, a global optimization

problem was defined to refine the fitted PPMs and integrate the shared parameters

among elements. This assembly process leads to a list of parameters representing the

entire bridge. Various methods for selecting PPMs were also proposed, and their use

cases, advantages, and drawbacks were illustrated. Di↵erent metaheuristic algorithms

were also tested for fitting PPMs into point clouds, and their performance in terms of

accuracy and convergence time was compared.

Chapter 7 evaluated the performance of the proposed method in geometric digital

twinning of single-span RC bridges and the bridge components mostly seen in multi-
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span bridges. This chapter also elaborated on the minor module and the algorithms

required to process segmented point clouds and prepare them for the second module.

The performance of MSFD-Net was evaluated through leave-one-out cross-validation

(LOOCV) on ten bridges. In each case, various performance metrics were presented for

the model. In parallel, its performance was compared with RandLA-Net (another DL

model for processing point clouds).

The chapter continued with the performance evaluation of the second major module

in parametric modeling of bridge components using PPMs. Two experiments were also

designed to demonstrate the capabilities of the proposed method. The first experiment

focused on the geometric digital twinning of ten single-span RC bridges. This experiment

showed that all these bridges can be created using only four distinct PPMs, each rep-

resenting a bridge element. The second experiment also tested the performance of this

module in modeling multi-span bridges that are often more complicated in shape than

single-span bridges. Both experiments showed the capabilities of the proposed module

in model-to-cloud fitting and generating the geometric DT of the entire bridge.

This chapter further discussed the advantages of the proposed method over the conven-

tional methods and showed its performance in scenarios with large amounts of occlusion.

It also showed the model’s adaptability after reconstruction, where it can still accept

geometric updates to alter its shape immediately.

8.2 Contributions & Limitations

This thesis was established to address research hypotheses concerning the automated

geometric digital twinning of bridges from their point clouds. The motivation behind this

research stemmed from the challenges posed by traditional methods of bridge inspection,

management, maintenance, and operation. The conventional methods for supporting the

post-construction (as-is) phase of bridges are costly and cannot e�ciently cover the large

number of existing bridges. Moreover, the high costs associated with the maintenance,

along with the complexities involved in data interpretation and planning, highlight the

need for more e�cient and reliable solutions.

By leveraging advanced technologies such as digital twinning, this research aimed to

streamline the bridge O&M process by providing a comprehensive and accurate repre-

sentation of bridge structures. A bridge DT serves as a virtual replica of the physical

bridge, constructed from point cloud data obtained through techniques such as laser

scanning or photogrammetry. This digital model not only represents the geometric de-

tails of the bridge but can also be enriched with metadata and semantics collected from

the construction site.
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Following the objectives outlined by Hypothesis 1 (the O&M of bridges can be more

e↵ectively supported by DTs than by conventional management approaches), this research

explored the potential of bridge digital twinning to support asset O&M practices by

o↵ering a more e�cient and e↵ective approach compared to conventional methods. By

providing a detailed and accessible virtual representation of the bridge, well-informed

decisions regarding maintenance, rehabilitation, and future planning of bridges can be

made, thereby enhancing overall operational e�ciency and safety.

Furthermore, the suitability of point clouds captured through photogrammetry and

laser scanning for creating bridge DTs was investigated in alignment with Hypothesis 2

(point clouds captured through laser-scanning or photogrammetry are a suitable basis for

creating semantically rich DTs of existing bridges). Laser scanning or photogrammetry

enables the generation of high-fidelity point cloud data, capturing the intricate details

of the bridge structure. This data forms the foundation for creating a digital twin that

accurately reflects the physical reality of the bridge, facilitating comprehensive analysis

and decision-making processes.

A research method was proposed to alleviate the costs associated with the geometric

digital twinning of bridges. It contained two major modules focusing on semantic seg-

mentation and parametric modeling and an axillary/minor module to connect the major

modules. The first major module introduced a novel DL model, called MSFD-Net, to

automate the semantic segmentation process. This model benefits from cutting-edge

AI blocks, such as transformers and various attention mechanisms, to properly describe

the spatial relationship between points in a scene. It also utilizes an autoencoder with

random subsampling in the network’s sequential layers, making it capable of processing

large-scale point clouds. Furthermore, it decodes features in various scales to generate

a more enriched feature map for classifying points. These features enable the model to

describe local, global, and even relative features e�ciently. The results of testing this

model on ten bridges show that it can reach a mean Intersection over Union (mIoU)

of 91.57% in classifying points. Comparison between this model and RandLA-Net il-

lustrated a substantial improvement by 4.88% in the mIoU value. This addresses the

Hypothesis 3 (deep neural networks allow the robust segmentation of a bridge point cloud

into subsets representing individual bridge components) by increasing the value of accu-

racy and providing a reliable module for automating the semantic segmentation process.

The minor module introduced a set of practical algorithms to facilitate the geometric

modeling process from point clouds. This module receives the segmented point cloud of

bridges from the first module and detects the required points for model-to-cloud fitting.

Also, it contains the dummy parametric model of the bridge, following Hypothesis 4 (a
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significant number of existing bridges fall into similar classes and can be represented by

highly parametrized bridge models).

The second major module introduced a research solution to derive the value of pa-

rameters from segmented point clouds. This method is based on reverse engineering and

parametric modeling, where the presumed model is compared with the scanned data.

Considering the desired 3D model of the bridge, PPMs are generated and used to derive

the value of parameters. This step is performed by solving a piece-wise metaheuristic

optimization problem to minimize the distance of points to the edges of the PPM. This

optimization problem is also augmented with terms to enable the model to perform

properly, even in scenarios with a large amount of occlusion, supporting Hypothesis 5

(with the help of metaheuristic optimization approaches, pre-defined parametric model

components can be fit into the respective point cloud segments).

Contrary to conventional methods, this technique paves the way to modeling not

only primitive shapes but also more complicated geometries that commonly exist in

bridges. One of the considerable advantages of this approach is the exact definition of

the geometries depending on the desired use cases. For instance, a rectangular PPM is

necessarily defined with four orthogonal edges and two parameters controlling its width

and length. This aids the model in reaching a level of abstraction that is necessary

in practice. The other advantage of this approach is the adaptability of the generated

models, thanks to the parametric design of PPMs. The model can receive geometric

updates and change its shape depending on the value of input parameters.

The precise definition of PPMs and the governing reverse engineering approach pave

the way for a structured assembly process by defining another global optimization prob-

lem on PPMs. This optimization process integrates the common parameters and gener-

ates an assembled model while preserving all the dependencies required for a parametric

model. The proposed approach is the first on its own that can generate a parametric

model for the entire bridge. A significant contribution of the assembly process is in

its novel integration of parameters. Contrary to the conventional methods that mostly

assemble the neighboring elements, this approach is capable of integrating parameters

belonging to elements that stand far from each other. For instance, all piers can be

assigned the same height value even though they might not be neighboring elements

with shared edges. The results of testing the second module on the point cloud of ten

single-span bridges show that it can model the entire bridge with a mean absolute error

(MAE) of 8.43 cm. Other evaluations on the multi-span bridge elements also demon-

strated the promising performance of the model-fitting method in the geometric digital

twinning of bridges, supporting Hypothesis 6 (using highly parametrized overall bridge
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models ensures the geometrically and semantically coherent creation of the DT models

of existing bridges).

In addressing the research hypotheses, the contributions highlighted in this study have

been e↵ectively realized. Through the utilization of advanced technologies and method-

ologies, including the development of deep learning models for semantic segmentation,

the establishment of parametric modeling paradigms, and the introduction of innovative

assembly methods, this research has made significant strides in automating the geomet-

ric digital twinning of bridges. These contributions not only o↵er practical solutions for

enhancing bridge O&M but also signify advancements in the field. By bridging the gap

between conventional methods and innovative approaches, this study supports conven-

tional bridge engineering practices, o↵ering improved e�ciency, cost-e↵ectiveness, and

safety in managing and maintaining bridge infrastructure.

Considering the research results, the digital twinning process of existing bridges can

be automated to a large extent. The main focus of this research was on single-span RC

bridges as they form a large portion of the existing bridges in Germany (more than 50

%, according to a database received from the Federal Highway Research Institute).

MSFD-Net requires the calculation of normal vectors prior to the training process.

In the current implementation, this step is conducted out of the network. However, it

is highly beneficial that such features can be extracted automatically without feature

engineering. Furthermore, more advanced modules can be used in the architecture, and

relative/spatial features can be emphasized more to increase the network’s awareness

of the spatial positioning of points. The random subsampling module used in MSFD-

Net makes the model capable of fast/e�cient processing of large-scale point clouds.

However, this subsampling strategy can result in areas with high point density being

underrepresented in the sample while areas with lower density are overrepresented.

The proposed parametric modeling method might show limitations in covering more

complicated bridge types, even though most of the proposed methods are extendable

to such bridges; this case was shown for modeling components of multi-span bridges,

however, the entire bridge model was not covered.

Apart from that, the proposed method requires bridge engineering knowledge and

statistical studies to set the range of parameters that might limit the algorithm in mod-

eling highly complicated/arbitrary shapes that are too diverse in shape. Despite having

advantages in finite modeling of the bridge elements through the reverse engineering

approach, it limits the model’s capabilities to be applied to highly di↵erent bridges to

some extent. For instance, if the input point cloud di↵ers greatly from the presumed

bridge model, the generated PPMs cannot be completely fitted into the point cloud.
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This case was shown in the larger value of errors for samples with a higher di↵erence in

shape/type.

8.3 Recommendations for the Future

The promising results of this research pave the way for further research on the geometric

digital twinning of bridges. The results of training a DL model on bridges show that

these models can e�ciently automate the semantic segmentation process of bridge point

clouds. Further improvements to the model architecture and an increase in the bridge

samples can potentially enhance the model’s accuracy in prediction.

MSFD-Net establishes the spatial dependencies only in the bottleneck of the model on

each scale before decoding. However, the spatial relationships can be expressed in each

encoding block, making the model capable of an improved understanding of the scene.

To this end, Global Context Blocks (GCB) can be used in the sequential layers of the

network.

The subsampling strategy of the network can be improved using a pre-trained model.

This model can learn how to subsample point clouds so that a higher value of accuracy

can be achieved. Using this pre-trained model in the architecture can potentially improve

its performance in the semantic segmentation of points.

The local features can be extracted more e�ciently using other point cloud descriptors.

This research employed a mechanism highly close to the Point Feature Histogram (PFH)

descriptor. However, there are other types of descriptors that are commonly used for

point cloud registration.

The proposed reverse engineering approach for modeling bridges requires a library or

catalog of di↵erent bridge types. The ultimate goal is to have such a library containing

single-span, multi-span, etc., and a classifier to select the desired model from the library

in the initial step. This can be achieved using a deep learning model that receives the

input point cloud and calls the desired model from the library.

As mentioned, the proposed approach needs a range of parameter values to initialize

the model-fitting algorithm. To address this limitation, PPMs can be employed in a

GAN model to minimize the di↵erence between the point cloud and the generated model.

However, the model proposal must be restricted to the PPM in the latent space. This

approach also needs a large dataset to train the model.

Instance segmentation, denoising, and boundary point detection are all problems that

can be addressed by training a neural network. If the required dataset for training can be

prepared, these steps can be encapsulated into a single model without needing a minor

module in the middle.
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The future ideal solution can be a multi-output architecture to segment the input

point cloud into the point cloud instances of bridge elements, detect boundary points

or crucial points for model-fitting (using a pre-trained model), project points onto 2D

planes (using normal vectors), select the proper PPM (using a classifier), and fit the

PPM into the detected points (through a GAN model). Each one of these steps can be a

topic for future research, and if addressed, they can make the geometric digital twining

one step ahead.
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Segmentation

Table A.1 compares the prediction results of the models in terms of Precision. MSFD-

Net demonstrates a precision range spanning from 89% to 99%. This range signifies

the model’s consistent and high-accuracy identification capability. Notably, it achieves

Table A.1: Comparative results of Precision throughout the LOOCV test.

Sample Model Background Deck Abutment Railing Avg.

Bridge 01
MSFD-Net 99.11 95.49 96.69 85.76 94.26
RandLA-Net 99.34 90.15 95.12 81.52 91.53

Bridge 02
MSFD-Net 99.31 95.90 94.43 79.96 92.40
RandLA-Net 98.58 95.92 94.98 62.98 88.12

Bridge 03
MSFD-Net 98.36 97.21 96.29 83.91 93.94
RandLA-Net 95.74 94.52 93.08 64.79 87.03

Bridge 04
MSFD-Net 99.81 96.58 96.03 89.75 95.54
RandLA-Net 99.47 94.97 93.55 80.44 92.11

Bridge 05
MSFD-Net 95.21 99.39 93.82 88.83 94.31
RandLA-Net 98.69 94.70 92.46 82.69 92.14

Bridge 06
MSFD-Net 98.45 97.83 97.03 81.09 93.60
RandLA-Net 99.58 96.00 94.66 70.64 90.22

Bridge 07
MSFD-Net 99.72 97.46 96.50 95.23 97.23
RandLA-Net 99.23 98.77 91.98 80.98 92.74

Bridge 08
MSFD-Net 95.02 99.67 97.67 90.42 95.70
RandLA-Net 94.03 97.36 94.52 72.69 89.65

Bridge 09
MSFD-Net 98.93 93.66 93.48 92.58 94.66
RandLA-Net 99.00 94.79 87.27 90.91 92.99

Bridge 10
MSFD-Net 89.96 98.85 96.03 92.20 94.26
RandLA-Net 95.59 99.09 91.50 75.63 90.45
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higher precision in Deck and Background components, suggesting a superior ability to

segment these structural elements. This may be attributed to simpler contextual vari-

ations present in these components compared to Abutment and Railing. In contrast,

RandLA-Net displays a wider precision range, spanning from 75% to 99%. This broader

variability indicates fluctuations in the model’s precision across components. The model

tends to exhibit lower precision compared to MSFD-Net, particularly noticeable in Abut-

ment and Railing components.

Table A.2: Comparative results of Recall throughout the LOOCV test.

Sample Model Background Deck Abutment Railing Avg.

Bridge 01
MSFD-Net 96.85 98.33 99.44 98.77 98.35
RandLA-Net 92.92 98.49 99.87 96.54 96.96

Bridge 02
MSFD-Net 95.70 99.07 99.48 93.15 96.85
RandLA-Net 95.60 97.82 99.27 99.17 97.97

Bridge 03
MSFD-Net 97.86 97.05 99.68 96.34 97.73
RandLA-Net 95.57 92.91 99.88 93.14 95.37

Bridge 04
MSFD-Net 96.51 99.40 99.43 98.82 98.54
RandLA-Net 94.83 98.26 99.82 99.21 98.03

Bridge 05
MSFD-Net 99.25 93.63 99.31 85.63 94.45
RandLA-Net 94.82 97.65 99.75 94.15 96.59

Bridge 06
MSFD-Net 98.69 96.68 99.41 99.44 98.55
RandLA-Net 97.58 98.27 99.39 99.35 98.65

Bridge 07
MSFD-Net 98.70 98.68 99.52 99.19 99.02
RandLA-Net 98.80 94.83 99.50 99.84 98.24

Bridge 08
MSFD-Net 99.28 92.73 99.65 97.95 97.40
RandLA-Net 95.92 94.71 99.28 62.63 88.14

Bridge 09
MSFD-Net 93.76 99.26 98.63 78.82 92.62
RandLA-Net 92.44 98.96 98.60 79.18 92.29

Bridge 10
MSFD-Net 98.98 80.23 98.21 93.87 92.82
RandLA-Net 98.24 91.30 98.33 86.29 93.54

Table A.2 compares the prediction results of the models in terms of Recall. MSFD-

Net demonstrates recall values ranging from approximately 93% to 99%. This model

exhibits higher recall in certain components, such as Abutment and Deck, across various

bridges, indicating its ability to consistently capture these elements. However, there are

fluctuations observed in recall values across di↵erent bridges and components, suggesting

variability in its performance. In contrast, RandLA-Net displays recall values spanning
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around 62% to 99%. The model shows wider variability in recall across components and

bridges compared to MSFD-Net. It notably struggles with lower recall, particularly evi-

dent in the Railing component across several bridges, indicating di�culties in accurately

capturing this specific structural element.

Table A.3 compares the prediction results of the models in terms of F1 score. MSFD-

Net consistently demonstrates robust F1 scores, in a range from approximately 93% to

98%. This model shows consistently in achieving higher F1 scores for components such

as Abutment and Deck across di↵erent bridges. Its reliability in these areas signifies

its ability to accurately identify and segment these structural elements. Conversely,

Table A.3: Comparative results of F1 score throughout the LOOCV test.

Sample Model Background Deck Abutment Railing Avg.

Bridge 01
MSFD-Net 97.96 96.89 98.05 91.81 96.18
RandLA-Net 96.02 94.13 97.43 88.40 94.00

Bridge 02
MSFD-Net 97.47 97.46 96.89 86.05 94.47
RandLA-Net 97.07 96.86 97.07 77.03 92.01

Bridge 03
MSFD-Net 98.11 97.13 97.96 89.70 95.72
RandLA-Net 95.65 93.71 96.36 76.42 90.54

Bridge 04
MSFD-Net 98.13 97.97 97.70 94.07 96.97
RandLA-Net 97.09 96.59 96.58 88.84 94.78

Bridge 05
MSFD-Net 97.19 96.42 96.49 87.20 94.32
RandLA-Net 96.71 96.15 95.97 88.05 94.22

Bridge 06
MSFD-Net 98.57 97.25 98.21 89.33 95.84
RandLA-Net 0.99 0.97 0.97 0.83 93.80

Bridge 07
MSFD-Net 99.21 98.07 97.98 97.17 98.11
RandLA-Net 99.01 96.76 95.59 89.43 95.20

Bridge 08
MSFD-Net 97.10 96.08 98.65 94.03 96.47
RandLA-Net 94.97 96.02 96.84 67.28 88.78

Bridge 09
MSFD-Net 96.28 96.38 95.98 85.15 93.45
RandLA-Net 95.61 96.83 92.59 84.64 92.42

Bridge 10
MSFD-Net 94.25 88.58 97.11 93.02 93.24
RandLA-Net 96.90 95.04 94.79 80.61 91.83

RandLA-Net displays F1 scores spanning a wider range, approximately from 67% to

95%. This model exhibits more significant variability in its F1 scores across compo-

nents and bridges compared to MSFD-Net. Specifically, it faces challenges in achieving

higher F1 scores, notably observed in components like Railing across multiple bridges.
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This variability implies di�culties in consistently and accurately capturing these specific

structural elements, potentially impacting its reliability in certain contexts.

Table A.4 illustrates the comparison of IoU scores between the models. MSFD-Net

consistently demonstrates IoU scores within a range of approximately 89% to 98%. This

model exhibits relatively higher IoU scores, particularly for components like Background

and Abutment across di↵erent bridges. The consistency in achieving these scores sug-

gests a robust capability to accurately delineate these structural elements. In contrast,

Table A.4: Comparative results of IoU throughout the LOOCV test.

Sample Model Background Deck Abutment Railing Avg.

Bridge 01
MSFD-Net 96.01 93.97 96.17 84.85 92.75
RandLA-Net 92.35 88.92 95.00 79.21 88.87

Bridge 02
MSFD-Net 95.06 95.05 93.96 75.52 89.90
RandLA-Net 94.31 93.92 94.32 62.65 86.30

Bridge 03
MSFD-Net 96.28 94.41 95.99 81.32 92.00
RandLA-Net 91.67 88.16 92.97 61.84 83.66

Bridge 04
MSFD-Net 96.33 96.02 95.51 88.80 94.16
RandLA-Net 94.35 93.40 93.40 79.93 90.27

Bridge 05
MSFD-Net 94.53 93.09 93.22 77.30 89.53
RandLA-Net 93.64 92.59 92.25 78.65 89.28

Bridge 06
MSFD-Net 97.18 94.65 96.47 80.72 92.26
RandLA-Net 97.17 94.40 94.11 70.31 89.00

Bridge 07
MSFD-Net 98.43 96.21 96.05 94.50 96.30
RandLA-Net 98.04 93.72 91.56 80.87 91.05

Bridge 08
MSFD-Net 94.37 92.45 97.34 88.74 93.22
RandLA-Net 90.41 92.34 93.88 50.70 81.83

Bridge 09
MSFD-Net 92.82 93.01 92.28 74.14 88.06
RandLA-Net 91.59 93.86 86.20 73.37 86.25

Bridge 10
MSFD-Net 89.13 79.49 94.38 86.96 87.49
RandLA-Net 93.99 90.55 90.10 67.51 85.54

RandLA-Net showcases IoU scores spanning approximately 51% to 95%. The model

displays wider variability in IoU scores across components and bridges compared to

MSFD-Net. Notably, it struggles to achieve higher IoU scores, particularly visible in

components such as railing across multiple bridges, indicating challenges in accurately

and consistently segmenting these specific elements.
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