
29
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_4

CHAPTER 4

Defining Productivity
in Software Engineering
Stefan Wagner, University of Stuttgart, Germany

Florian Deissenboeck, CQSE GmbH, Germany

Successful software systems are subject to perpetual change as they need to be

continuously improved and adapted to continuously changing requirements. Software

evolution is the term used in software engineering to refer to this process of developing

software initially and then repeatedly updating it. It is an essential goal to minimize

the cost and to maximize the benefits of software evolution. In addition to financial

savings, for many organizations, the time needed to implement software changes largely

determines their ability to adapt their business processes to changing market situations

and to implement innovative products and services. With the present yet increasing

dependency on large-scale software systems, the ability to develop and change existing

software in a timely and economical manner is essential for numerous enterprises and

organizations in most domains.

We commonly call this productivity, which across disciplines and domains refers

to the ratio between output and input. The input side—the cost spent—is relatively

easy to measure in software development. The challenge lies in finding a reasonable

way to define output as it involves software quantity and quality. The software

engineering community has so far been unable to develop a thorough understanding of

productivity in software evolution and the significance of the factors influencing it, let

alone universally valid methods and tools to analyze, measure, compare, and improve

productivity. Perhaps the most difficult issues are the many factors that influence

https://doi.org/10.1007/978-1-4842-4221-6_4

30

productivity—and that they are different in every project, which makes it so hard to

compare them. What complicates the situation is the lack of an established, clearly

defined terminology that serves as a basis for further discussions.

Hence, we see the disambiguation of the terms that are central to productivity as

a first important step toward a more mature management of productivity in software

engineering. For that, we make use of the existing work from other research areas with a

focus on knowledge work. We discuss the terms frequently associated with productivity,

namely, efficiency, effectiveness, performance, and profitability, and explain their

mutual dependencies. As a first constructive step, we propose a clear and integrated

terminology.

To better put the terminology in the perspective of software engineering, we start

with a description of the history of software productivity.

�A Short History of Software Productivity
A wide variety of definitions of software development productivity have been discussed

for more than four decades. In the beginning, however, this discussion was usually

based on anecdotal evidence presented by renowned researchers and practitioners of

the field. For example, Brooks stressed in 1975 the importance of people-related factors

for software productivity [3], which was more recently followed up on by DeMarco and

Lister [4], as well as Glass [5]. First isolated experiments were carried out to investigate

productivity variations and its causes as early as 1968 [7, 11].

The late 1970s and early 1980s brought the first attempts to tackle software

development productivity in a more comprehensive manner. As measuring productivity

requires a well-defined notion of the size of the generated product, considerable effort

was spent on the definition of size metrics that do not suffer from limitations of the

classic lines of code (LOC) metric. In 1979, Albrecht introduced function points to

express the amount of functionality of an information system rather than the size of its

code. Based on the specification of a system instead of on its implementation, function

points were designed to support early development effort estimation and to overcome

limitations inherent to the measurement of LOC, e.g., comparability between different

languages. Function points provide a basis for productivity measures such as function

points per week or work-hours per function point.

In parallel, Boehm developed his cost estimation model COCOMO—now COCOMO

II [1]—which is part of the standard software engineering knowledge today. While

Chapter 4 Defining Productivity in Software Engineering

31

not directly based on function points but on LOC, COCOMO addresses development

productivity by explicitly including productivity factors such as required reliability

or the capability of the analysts. Boehm also recognized the importance of reuse, a

phenomenon unknown in manufacturing, for software productivity and introduced a

separate factor that should cover this influence.

The 1980s deepened the understanding of software productivity by significantly

enlarging the then poor empirical knowledge base. Most notably, Jones contributed to

this through his systematic provision and integration of a large amount of data relevant

for productivity analyses. In his books, he discusses various factors for productivity and

presents industrial averages for these factors that potentially form a basis for productivity

assessments. Nevertheless, one of his insights [6] is that for each project a different set of

factors may be most influential.

In the beginnings of the 2000s, several researchers proposed economic-driven

or value-based software engineering as an important paradigm in future software

engineering research. For example, Boehm and Huang [2] point out that it is not only

important to track the costs in a software project but also the real earned value, i.e., the

value for the customer. They explain that it is important to develop the software business

case and keep it up-to-date. By doing so, they open up a new perspective on software

productivity that reaches beyond development costs and explicitly includes the benefits

provided for the customer.

During the 2000s and the recent years, agile software development has made a strong

impact on many organizations that develop software. One of the core principles of agile

development is to create customer value. Hence, many aspects of agile development

aim to focus on this value generation. One example is the evolution from continuous

integration to continuous delivery [13], i.e., to deliver value to customers not at the

end of the project or a sprint but continuously. Another aspect related to productivity

brought in by agile development was the counting of story points and the calculation

of velocity as the number of story points per sprint. However, many proponents of agile

development recommend not to use this measure of velocity as a productivity measure

because it can lead to unwanted effects. For example, Jeffreys [15] states, “Velocity is

so easy to misuse that one cannot recommend it.” The effects can include that story

points are inflated instead of used as a means to identify too large stories and keeping

developers from working on stories with a small number of story points. Hence, agile

software development has no clear definition of productivity or a solution for measuring

productivity.

Chapter 4 Defining Productivity in Software Engineering

32

�Terminology in the General Literature
Our starting point is Tangen’s [12] Triple-P-Model, which is a well-established model in

knowledge work research to differentiate productivity, profitability, and performance as

well as the programming productivity Wikipedia article (https://en.wikipedia.org/

wiki/Programming_productivity). Especially in software engineering, efficiency is used

instead of productivity; we also discuss it and differentiate it from effectiveness. Finally,

following Drucker [8], we include a short discussion on the influence of quality on

productivity. We discuss each of these terms separately in the following sections and will

integrate them afterward.

�Productivity
While there is no commonly agreed on definition of productivity, there appears to be

consensus that productivity describes the ratio between output and input.

Productivity = Output / Input

Across the various disciplines, however, different notions and different measurement

units for input and output can be found. The manufacturing industry uses a

straightforward relation between the number of units produced per time unit and the

number of units consumed in production. Nonmanufacturing industries use person-

hours or similar units to enable comparison between outputs and inputs.

As long as classical production processes are considered, a metric of productivity

is straightforward: how many units of a product of specified quality are produced at

which costs? For intellectual work, productivity is much trickier. How do we measure

the productivity of authors, scientists, or engineers? Because of the rising importance

of “knowledge work” (as opposed to manual work; see also “What We Can Learn

from Productivity Research About Knowledge Workers” [8]), many researchers have

attempted to develop productivity measurement means that can be applied in a

nonmanufacturing context. It is commonly agreed on that the nature of knowledge work

fundamentally differs from manual work and, hence, factors besides the simple output/

input ratio need to be taken into account, e.g., quality, timeliness, autonomy, project

success, customer satisfaction, and innovation. However, the research communities in

neither discipline have been able to establish broadly applicable and accepted means for

productivity measurement yet [9].

Chapter 4 Defining Productivity in Software Engineering

https://en.wikipedia.org/wiki/Programming_productivity
https://en.wikipedia.org/wiki/Programming_productivity

33

�Profitability
Profitability and productivity are closely linked and are, in fact, often confused. However,

profitability is most often defined as the ratio between revenue and cost.

Profitability = Revenue / Cost

The number of factors that influence profitability is even greater than the number

of factors that influence productivity. Particularly, profitability can change without any

change to productivity, e.g., due to external conditions such as cost or price inflation.

�Performance
The term performance is even broader than productivity and profitability and covers a

plethora of factors that influence a company’s success. Hence, well-known performance

control instruments such as the Balanced Scorecard [14] do include productivity as

a factor that is central but not unique. Other relevant factors are, for example, the

customers’ or stakeholders’ perception of the company.

�Efficiency and Effectiveness
Efficiency and effectiveness are terms that provide further confusion as they are often

mixed up themselves; additionally, efficiency is often confused with productivity.

The difference between efficiency and effectiveness is usually explained informally as

“efficiency is doing things right” and “effectiveness is doing the right things.” While there

are numerous other definitions [12], an agreement prevails that efficiency refers to the

utilization of resources and mainly influences the required input of the productivity

ratio. Effectiveness mainly aims at the usefulness and appropriateness of the output as it

has direct consequences for the customer.

�Influence of Quality
Drucker [8] stresses the importance of quality for the evaluation of knowledge worker

productivity. Productivity of knowledge work therefore has to aim first at obtaining

quality—and not minimum quality but optimum if not maximum quality. Only then can

one ask, “What is the volume, the quantity of work?” However, most of the literature in

nonsoftware disciplines does not explicitly discuss the role of quality in the output of

the productivity ratio [8]. More recent work from nonmanufacturing disciplines have

Chapter 4 Defining Productivity in Software Engineering

34

a stronger focus on knowledge, office, or white-collar work and hence increasingly

discuss the role of quality with respect to productivity [4, 9, 10]. Still, it appears that these

efforts to include quality in the determination of productivity have not yet led to an

operationalizable concept.

�An Integrated Definition of Software Productivity
As discussed, for measuring software productivity we need a measurement of input and

output of a software project. The input is the effort dedicated to its development and

evolution. The output is the value of the software for its users or customers. The value

cannot always be defined by the market value of the software as it is often developed and

used internally by organizations and as such does not have a market value. Furthermore,

the market value may be influenced by factors that we put to the level of profitability or

performance, such as currency valuations or competition on the market.

Hence, we suggest a purpose-based definition of software value. Given a purpose

(a business goal or an application vision), we ask, how well does the software address

its purpose in terms of functional and nonfunctional requirements? The answer to this

question is determined by the functionality as well as the nonfunctional quality of the

software.

On the basis of the purpose-based view, we build a consolidated summary of the

productivity-related terms. As shown in Figure 4-1, from the purpose, we derive an

ideal functionality and quality as well as the ideal effort to serve the purpose correctly.

The ideal functionality means the optimal set of features (nothing missing, nothing too

much) to fulfil the purpose. Similarly, the ideal quality is the level of the various quality

attributes that fit to the purpose in an optimal way. For example, the application scales

easily to the needed number of parallel users but not beyond. The ideal effort denotes

the number of person-hours if people trained well for the problems to be solved (i.e.,

the ideal functionality and quality) would have worked in a supportive environment on

the software. Comparing the ideal with the actually produced functionality and quality

shows the effectiveness of the software development activities; the relation of the ideal to

the actual effort gives the efficiency. Both have an influence on productivity.

Chapter 4 Defining Productivity in Software Engineering

35

We embed this in the Triple-P-Model from Tangen [12] so that it results in the

PE Model that illustrates how purpose, functionality, quality, and effort relate to

effectiveness, efficiency, productivity, profitability, and performance (Figure 4-2). The

original Triple-P-Model already provided the idea that profitability contains productivity

but adds further factors such as inflation and pricing. In turn, performance contains

profitability and adds factors such as customer perception.

Figure 4-1.  Purpose-based effectiveness and efficiency

Figure 4-2.  PE Model for software evolution productivity

Chapter 4 Defining Productivity in Software Engineering

36

We add in the PE Model that productivity is expressed as the combination of

effectiveness and efficiency: a team can be productive only if it is effective and efficient!

We would neither consider a software team productive if it was not building the features

needed by the customers nor if it spent an unnecessary amount of effort on building the

software. For effectiveness, we need to consider the purpose, functionality, and quality of

the software. For efficiency, we further consider costs. Hence, the PE Model allows us to

set all terms discussed earlier in this chapter into relation with each other.

�Summary
There is still a lot of work to do until we can have a clear understanding of productivity in

software engineering. The complexity of capturing good knowledge work is an obstacle

in general to unambiguously measuring the productivity of such work. We hope that at

least our classification of the relevant terms and the resulting PE Model can help to avoid

confusion and to focus further efforts.

Our discussion of the related terms complements the productivity framework in

Chapter 5. The framework focuses on the three dimensions of velocity, quality, and

satisfaction. While quality is covered in both chapters, we have not incorporated velocity.

Velocity can be different from effort as it concentrates on how fast features are delivered

to customers. Being faster might actually need more effort. We also have not integrated

work satisfaction explicitly as it was not part of the Triple-P-Model. This is surprising

as—in hindsight—we would expect that to play a big role in knowledge work in general.

Therefore, we believe that a combination of our PE Model and the productivity framework

in Chapter 5 will clarify terms and cover the most important dimensions.

In Chapter 7, you can read about research on knowledge work as well as how (not) to

measure productivity.

�Key Ideas
This chapter covers the following key ideas:

•	 A clear terminology is important for further discussions on

productivity factors and productivity measurement.

•	 We should reflect on the history of productivity research in software

engineering.

Chapter 4 Defining Productivity in Software Engineering

https://doi.org/10.1007/978-1-4842-4221-6_5
https://doi.org/10.1007/978-1-4842-4221-6_5
https://doi.org/10.1007/978-1-4842-4221-6_7

37

•	 We need to learn from research on knowledge work productivity and

use compatible terms.

•	 The purpose of the software is the necessary basis for all definitions

of productivity and related terms.

�Acknowledgements
We are grateful to Manfred Broy for fruitful discussions on definitions of productivity in

software engineering.

�References

	 [1]	 Boehm, B. et al. Software Cost Estimation with COCOMO II, 2000

	 [2]	 Boehm, B. and Huang, L. Value-Based Software Engineering: A

Case Study. IEEE Software, 2003

	 [3]	 Brooks, F. P. The mythical man-month. Addison-Wesley, 1975

	 [4]	 DeMarco, T. and Lister, T. Peopleware: Productive Projects and

Teams. B&T, 1987

	 [5]	 Glass, R. L. Facts and Fallacies of Software Engineering. Addison-

Wesley, 2002

	 [6]	 Jones, C. Software Assessments, Benchmarks, and Best Practices.

Addison-Wesley, 2000

	 [7]	 Sackman, H.; Erikson, W. J. and Grant, E. E. Exploratory

experimental studies comparing online and offline programming

performance, Commun. ACM, ACM, 1968, 11, 3–11

	 [8]	 Drucker, P. F. Knowledge-Worker Productivity: The Biggest

Challenge. California Management Review, 1999, 41, 79-94

	 [9]	 Ramírez, Y. W. and Nembhard, D. A. Measuring knowledge worker

productivity: A taxonomy. Journal of Intellectual Capital, 2004, 5,

602–628

Chapter 4 Defining Productivity in Software Engineering

38

	[10]	 Ray, P. and Sahu, S. The Measurement and Evaluation of White-

collar Productivity.

International Journal of Operations & Production Management,

1989, 9, 28–47

	[11]	 Sackman, H.; Erikson, W. J. and Grant, E. E. Exploratory

experimental studies comparing online and offline programming

performance, Commun. ACM, ACM, 1968, 11, 3–11

	[12]	 Tangen, S.; Demystifying productivity and performance.

International Journal of Productivity and Performance, 2005, 54,

34–36

	[13]	 Jez Humble, David Farley. Continuous Delivery. Reliable Software

Releases Through Build, Test, and Deployment Automation.

Addison-Wesley, 2010.

	[14]	 Robert S. Kaplan, David P. Norton: The Balanced Scorecard –

Measures that Drive Performance. In: Harvard Business Review.

(January–February), 1992, S. 71–79.

	[15]	 Ron Jeffries. Should Scrum die in a fire? https://ronjeffries.

com/articles/2015-02-20-giles/

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 4 Defining Productivity in Software Engineering

https://ronjeffries.com/articles/2015-02-20-giles/
https://ronjeffries.com/articles/2015-02-20-giles/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 4: Defining Productivity in Software Engineering
	A Short History of Software Productivity
	Terminology in the General Literature
	Productivity
	Profitability
	Performance
	Efficiency and Effectiveness
	Influence of Quality

	An Integrated Definition of Software Productivity
	Summary
	Key Ideas
	Acknowledgements
	References

