
Chair of Computational Modeling and Simulation
TUM School of Engineering and Design
Technical University of Munich

Graph-based Entity Alignment: Adapting
SGAligner for Point Cloud to BIM Align-
ment

Scientific work to obtain the degree

Master of Science (M.Sc.)

at the TUM School of Engineering and Design
of the Technical University of Munich.

Supervised by Prof. Dr.-Ing. Andre Borrmann
Fiona Collins M.Sc.
Sebastian Esser M.Sc.
Chair of Computational Modeling and Simulation

Submitted by Binod Singh ()

e-Mail: binod.singh@tum.de

Submitted on 26. Jan 2024

Abstract

Integration of the as-built reality represented using point cloud and as-designed generally
represented using Building Information Modeling is an integral process in progress monitor-
ing and more general Digital Twin (DT) activities. An up-to-date as-built model helps save
time, and resources and allows for informed decision-making. Alignment helps update the
old or outdated as-designed model to the current standards. But due to lack of digitization
and BIM not being readily available, comparing point clouds taken at different phases
during the building lifecycle provides an alternative approach for progress monitoring and
compliance checking. Traditionally, this process involves overlaying recent point cloud data
with the designed model or previous point cloud data, identifying common elements, and
analyzing the differences. However, this method has limitations, especially when elements
are far apart or have different shapes.

This study utilized a graph-based learning method to link semantic instances between two
point clouds of a scene. Graph-based representations were derived and enriched, and
multi-modal encoders were leveraged to link two semantically same building elements.
Subsequently, this method was employed to investigate PCD-BIM integration.

The trained multi-modal architecture showed promising results with an Mean Reciprocal
Rank (MRR) score of 0.99 when normal scenes were analyzed and an MRR score of
0.97 when deviated scenes were fed to the model. The base case had an MRR score
of 0.79, showing promising results of graph-enriching methods, an increase of 25%, and
demonstrating that the method is robust to positional deviations.

Using PCD-PCD to generalize PCD-BIM did not provide sufficient insights but highlighted
the need for its training module.

The results showcase the proposed solution’s potential for integrating PCD-PCD in the
built environment. The best-performing model finds links between the same building
elements without processing individual points, significantly reducing the computing time.
This leads to the downstream task of finding node correspondences and registration being
computationally cheaper and faster. Keywords: Point Cloud, BIM, Entity Alignment,
Graph Attention Network (GAT), Multi-Modal Encoder, Semantic, MRR

I

Acknowledgement

I would very much like to extend my gratitude to Fiona for her support, guidance, and
mentorship she has provided. It was very instrumental in seeing this thesis to its destination.
From being ready for instantaneous meetings to wanting to go through the steps together
so we could come up with ideas to solve the problem, it was a pleasure to have had the
opportunity to work under her guidance.

I also would like to express my appreciation to Sebastian. This marks our second project
together, and I am highly thankful for his insights and the unwavering support that he
offered throughout the journey. Working with him was undoubtedly an enriching experience.
A big thank you to Prof. Borrmann and the Chair of Computational Modeling and Simulation

for providing me with the invaluable resources that have been crucial to the success of my
research.

Finally, to my family and friends, who have been a cornerstone of everything I have been a
part of. I am deeply indebted to them.

II

Contents
Abstract . I
Acknowledgement . II

1 Introduction 1
1.1 Background . 3
1.2 Motivation . 4
1.3 Research Objective . 4
1.4 Structure of thesis . 4

2 Theoretical Background 6
2.1 Point Cloud . 6

2.1.1 Point Cloud Registration . 6
2.1.2 Deep Learning in Point Clouds . 7

2.2 Building Information Modeling . 8
2.3 Graph Data Structure . 8

2.3.1 Knowledge Graph (KG) . 9
2.3.2 Entity Alignment (EA) . 10

2.4 Deep Learning Architectures for Graph Data 11
2.4.1 Graph Neural Network (GNN) . 12
2.4.2 Graph Convolution Network (GCN) 13
2.4.3 Graph Attention Network (GAT) . 14

3 Related Work 16
3.1 GeoTransformer . 16

3.1.1 Feature Extraction . 17
3.1.2 Superpoint Matching . 17
3.1.3 Point Cloud Registration . 18
3.1.4 Loss Functions . 18

3.2 Graph-based linking of Point Cloud and BIM 18
3.2.1 BIM to GDT . 19
3.2.2 Point Cloud to GPCD . 19
3.2.3 Graph Matching . 19

3.3 Contrastive Learning For Entity Alignment 20
3.3.1 Intra-modal Contrastive Loss . 20
3.3.2 Inter-modal Alignment Loss . 21
3.3.3 Objective Function . 22

3.4 Scene Graph Aligner (SGAligner) . 22
3.4.1 3D scene graphs . 23
3.4.2 3D Scene Graph Alignment . 23
3.4.3 Uni and Multi-Modal Embeddings . 23
3.4.4 Point Cloud Registration . 24

III

3.4.5 Evaluation Metrics . 25

4 Methodology 27
4.1 Dataset . 28

4.1.1 Point Cloud Dataset . 28
4.1.2 BIM Dataset . 30

4.2 Sub-Scenes Generation . 31
4.2.1 Overlap Information . 32

4.3 Pre-processing . 33
4.3.1 Processing Structural Information . 33
4.3.2 Processing Attribute Information . 35
4.3.3 Processing Relation Information . 35

4.4 Multi-Modal Encoder . 36
4.5 Network Architecture . 39
4.6 Node Correspondences . 40
4.7 Registration . 40

5 Results 42
5.1 Architectural Data . 42

5.1.1 Case 1: Structure and Object Encoder 43
5.1.2 Case 2: Structure, Object and Relational Encoder 43
5.1.3 Case 3: Structure, Object, Relational and Attribute (ifc2vec) Encoder 44
5.1.4 Case 4: Structure, Object, Relational and Attribute (geometric)

Encoder . 45
5.1.5 Case 5: Structure, Object, Relational and Attribute (combined) En-

coder . 45
5.1.6 Case 6: Structure, Relation and Attribute Encoder(combined) 46
5.1.7 Results Comparison . 47
5.1.8 Ablation Study . 48

5.2 Architectural Data with furniture Elements 49
5.2.1 Case 1: Structure, Object, Relation, and Attribute (combined) Encoder 50
5.2.2 Case 2: Structure, Relation, and Attribute (combined) Encoder . . . 50
5.2.3 Results Comparison . 50
5.2.4 Ablation Study . 51

5.3 Point Cloud and BIM Data . 52

6 Discussion and Limitations 53
6.1 Discussion . 53

6.1.1 Architectural Data . 53
6.1.2 Architectural Data with Furniture Elements 54
6.1.3 Point Cloud and BIM . 57
6.1.4 Use Case . 57

6.2 Limitations . 58

IV

7 Future Work and Conclusion 60
7.1 Future Work . 60
7.2 Conclusion . 61

A Dataset 62
A.1 Subscenes . 62

A.1.1 Dataset without Furniture . 62
A.1.2 Dataset With Furniture . 62

B Results 63
B.1 Architectural Data . 63

B.1.1 Case 1: Structure Encoder and Object Encoder 63
B.1.2 Case 2: Structure, Object and Relational Encoder 64
B.1.3 Case 3: Structure, Object, Relational and Attribute(ifc2vec) Encoder 64
B.1.4 Case 4: Structure, Object, Relational and Attribute(geometric) Encoder 65
B.1.5 Case 5: Structure, Object, Relational and Attribute(combined) Encoder 66
B.1.6 Case 6: Structure, Relational and Attribute(combined) Encoder . . . 66

Bibliography 68

V

List of Figures

1.1 Alignment Conceptual Diagram . 1
1.2 Registration Conceptual Diagram . 2

2.1 PointNet Architecture . 8
2.2 Types of Graph Data Structures . 9
2.3 Example of a Knowledge Graph . 10
2.4 Example of a multi-modal entity alignment 11
2.5 Overview of message aggregation from node’s local neighborhood 12
2.6 Basic Layout of Graph Neural Network . 13
2.7 Graph Attention Network . 15

3.1 Backbone of GeoTransformer . 17
3.2 Graph-based Linking Methodology . 20
3.3 Architrecure of Multi-modal Contrastive Learning based Entity Alignment

(MCLEA) . 22
3.4 Scene Graph Aligner (SGAligner) Network Architecture 24

4.1 Thesis Methodology . 27
4.2 Point Cloud and BIM Dataset without Furniture 28
4.3 Point Cloud and BIM Dataset with Furniture 29
4.4 Scene to Graph . 29
4.5 BIM to BIM Graph . 31
4.6 Overview of Subscene Generation . 31
4.7 Structure Encoder . 37
4.8 Object Encoder . 37
4.9 Attribute Encoder . 38
4.10 Relational Encoder . 39
4.11 Overview of TUM Aligner . 40

5.1 Overall Loss of ϕS + ϕP . 43
5.2 Overall Loss of ϕS + ϕP + ϕR . 43
5.3 Overall Loss of ϕS + ϕP + ϕR + ϕA

i . 44
5.4 Overall Loss of ϕS + ϕP + ϕR + ϕA

g . 45
5.5 Overall Loss of ϕS + ϕP + ϕR + ϕA

i+g . 45
5.6 Overall Loss of ϕS + ϕP + ϕR + ϕA

i+g . 46
5.7 Altering Node Semantic Example . 48

6.1 Architectural Data Alignment Metric Comparison 53
6.2 Node Semantic Changed, Alignment Metric Comparison, Architectural Data 54
6.3 Furniture Data Alignment Metric Comparison 55
6.4 Node Semantic Changed, Alignment Metric Comparison 56

VI

6.5 MRR vs % of Nodes Removed . 56
6.6 Failure Case . 59

B.1 ICL uni-modal and multi-modal Loss (ϕS + ϕP) 63
B.2 IAL Loss (ϕS + ϕP) . 63
B.3 ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR) 64
B.4 IAL Loss (ϕS + ϕP + ϕR) . 64
B.5 ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR + ϕA

i) 64
B.6 IAL Loss (ϕS + ϕP + ϕR + ϕA

i) . 65
B.7 ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR + ϕA

g) 65
B.8 IAL Loss (ϕS + ϕP + ϕR + ϕA

g) . 65
B.9 ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR + ϕA

i+g) 66
B.10 IAL Loss (ϕS + ϕP + ϕR + ϕA

i+g) . 66
B.11 ICL uni-modal and multi-modal Loss (ϕS + ϕR + ϕA

i+g) 66
B.12 IAL Loss (ϕS + ϕR + ϕA

i+g) . 67

VII

List of Algorithms
2.1 Iterative Closest Point (ICP) Algorithm . 7
2.2 Random Sample Consensus (RANSAC) Algorithm 7
4.1 Space Information Extraction . 30
4.2 Conversion to Mesh . 30
4.3 Point Sampling and BIM Graph Extraction 30
4.4 Subscene Generation Algorithm . 32
4.5 Overlap Information . 32
4.6 Subscenes Preprocessing . 34
4.7 IFC2VEC Embeddings Processing . 35
4.8 Combining geometric and ifc2vec embeddings 35
4.9 Processing Relation . 36
4.10 Node Correspondences . 40
4.11 Estimating Transformation . 41

VIII

List of Tables

5.1 List of Architectural Classes . 42
5.2 Alignment Metric of ϕS + ϕP . 43
5.3 Comparison of Registration results of ϕS + ϕP with GeoTransfomer 43
5.4 Alignment Metric of ϕS + ϕP + ϕR . 43
5.5 Comparison of Registration results of ϕS + ϕP + ϕR with GeoTransfomer . 44
5.6 Alignment Metric of ϕS + ϕP + ϕR + ϕA

i . 44
5.7 Comparison of Registration results of ϕS +ϕP +ϕR+ϕA

i with GeoTransformer 44
5.8 Alignment Metric of ϕS + ϕP + ϕR + ϕA

g . 45
5.9 Comparison of Registration results of ϕS +ϕP +ϕR +ϕA

g with GeoTransfomer 45
5.10 Alignment Metric of ϕS + ϕP + ϕR + ϕA

i+g 45
5.11 Comparison of Registration results of ϕS+ϕP+ϕR+ϕA

i+g with GeoTransfomer 46
5.12 Alignment Metric of ϕS + ϕR + ϕA

i+g with changed relationship semantics . . 46
5.13 Alignment Metric of ϕS + ϕR + ϕA

i+g . 46
5.14 Comparison of Registration results of ϕS + ϕR + ϕA

i+g with GeoTransfomer . 47
5.15 Comparison of Alignment Results between different models 47
5.16 Comparison of Registration Results between different models 47
5.17 Node Semantic Changed . 48
5.18 Removing Edges . 49
5.19 Removing Nodes . 49
5.20 List of Architectural and Furniture Classes 49
5.21 Alignment Metric . 50
5.22 Comparison of Registration results of with GeoTransfomer 50
5.23 Alignment Metric . 50
5.24 Comparison of Registration results of with GeoTransfomer 50
5.25 Comparison of Alignment Results between different models for data with

furniture . 50
5.26 Comparison of Registration Results between different models for data with

furniture . 51
5.27 Node Semantic Changed for data with furniture 51
5.28 Removing Edges for data with furniture . 51
5.29 Removing Nodes for data with furniture . 51
5.30 Alignment of Point Cloud to BIM . 52

IX

Acronyms

2D Two Dimensional

3D Three Dimensional

AI Artifical Intelligence

BIM Building Information Modeling

CAD Computer Aided Design

CD Chamfer Distance

EA Entity Alignment

FMR Feature Matching Recall

GAT Graph Attention Network

GCN Graph Convolution Network

GIS Geographic Information System

GNN Graph Neural Network

IAL Inter-modal Alignment Loss

ICL Intra-modal Contrastive Loss

ICP Iterative Closest Point

IFC Industry Foundation Classes

IR Inliner Ratio

KG Knowledge Graph

KL Kullback-Leibler

KPConv Kernel Point Convolution

LiDAR Light Detection and Ranging

LLMs Large Language Models

MCLEA Multi-modal Contrastive Learning based Entity Alignment

MCS Maximum Common Subgraph

MRR Mean Reciprocal Rank

NLP Natural Language Processing

PCA Principal Component Analysis

PCD Point Cloud

QL4BIM Query Lanuguage for Building Information Modeling

RANSAC Random Sample Consensus

Continued on next page

X

Table 0: (Continued)

RR Registration Recall

RRE Relative Rotation Error

RTE Relative Translation Error

SE Special Euclidean group

SGAligner Scene Graph Aligner

SO Special Orthogonal group

SVD Singular Value Decomposition

XI

Chapter 1

Introduction

Building Information Modeling and Point Cloud play pivotal roles in construction and built
environment sectors. BIM, a digital representation of the physical and functional character-
istics of a building (LEE et al., 2006), serves as a comprehensive digital representation or
as-designed geometry. PCD, usually derived from Light Detection and Ranging (LiDAR)
sensors offer a nuanced three-dimensional depiction of the as-built environment. Infor-
mation flow between a physical building and its digital twin lies at the core of improving
transparency and informed decision-making in the built environment (KRITZINGER et al.,
2018). Progress monitoring during the construction phase of a building leverages both data
streams and provides real-time insights into progress, quality assurance, and compliance
with the design specifications (BRAUN et al., 2020). It also allows for timely intervention
and adjustments to maintain the desired standards. This enables model updates and
compliance checks, making progress monitoring a proactive tool to identify discrepancies
between the digital model and physical structure.

Progress monitoring is achieved by integrating the point cloud of an area of interest
with its digital model and analyzing the potential differences(COLLINS et al., 2023). The
integration process combines data streams to establish connections between heteroge-
neous representations of the same building elements (SACKS et al., 2020). Traditionally,
data are integrated using an iterative spatial-based method. The point cloud is acquired,
pre-processed, and integrated with its digital counterpart, where the task is to create
a link to the as-built point cloud representation with its historic element representation
(COLLINS et al., 2023). This task of matching same entities across data streams is known
as alignment (Z. WANG et al., 2018). The conceptual diagram is shown in fig. 1.1.

(a) Misaligned Data (b) Aligned Data

Figure 1.1: Alignment Conceptual Diagram. Dotted lines represent the same entity

Point Cloud plays a vital role in data alignment as it is a means of documenting the
changing appearance of a physical building and it allows for capturing data as the process
is going on. While the scanning process is mainly manual, the captured current data can

1

be integrated with the potentially outdated digital model to analyze potential differences
(BRAUN et al., 2020).

However, this alignment approach is not without challenges. Due to the lack of digitization
in the construction industry, BIM in most cases is not readily available. Usually, Two
Dimensional (2D) floor plans are available and integration in such cases suffers from
limitations common to Direct Visual Odometry (DVO) (KAMINSKY et al., 2009), and model
updates and compliance checks are limited in such cases. Additionally, digital twins, a
virtual representation of a complex physical asset in the digital space to closely characterize
the operations of the original physical process or system (GRIEVES, 2015), are not
necessarily based on BIM models since they are just one of the many representations.
So in most cases, point clouds taken at different timesteps during the building lifecycle
offer a way to track an everchanging environment (MEYER et al., 2022). As data is
acquired continually throughout the building lifecycle, aligning point-cloud-to-point-cloud
from different time steps presents an alternative approach to gaining valuable insights into
the project’s progress.

Integrating these data sources allows for concluding the timeline and compliance with
regulations related to a particular building element’s placement or product specifications
(COLLINS et al., 2023). Furthermore, alignment can be used as a coarse initializer for
registration instead of computing 3D correspondences directly on the entire point cloud
(SARKAR et al., 2023). Registration involves finding the spatial transformation that aligns
two point sets (LI et al., 2021). This allows for tracking the progress visually as well as
analyzing further differences. The conceptual diagram for registration is shown in fig. 1.2

(a) Unregistered, aligned Data (b) Registered,
aligned Data

Figure 1.2: Registration Conceptual Diagram

This process of matching at the point level is time-consuming and technically challenging
(COLLINS et al., 2023). Research has shown that graph-based techniques provide a struc-
tured and rich way to represent the built environment (SARKAR et al., 2023). Additionally,
research shows that graph-based representations of digital twins are beneficial for various
practical purposes (DROBNYI et al., 2024). Connectivity between elements is a feature
of the graph. There also have been suggestions for digital twins and as-built reality to
be represented as entity graphs where nodes denote an object. So, this thesis aims

2

to utilize the graph-based learning approach to tackle this alignment task, where nodes
are semantic entities with relationships between them. On top of that, as semantic and
instance segmentation is becoming mature (COLLINS et al., 2023), this thesis work aims
to utilize that information to find a link between the exact semantic element representation
in two point clouds of a scene.

It also aims to facilitate the integration process using graph-based deep learning to fuse
data and create links between building elements. First, this work investigates a deep
learning network from literature (SARKAR et al., 2023) to find links between semantic
elements in two point clouds of a scene. Then, the downstream registration task is
investigated after the node correspondences are found. Finally, after carefully examining
the network, this work explores the application of a network trained on PCD and PCD in
integrating BIM and point cloud.

1.1 Background

Point cloud alignment is an ongoing field of research. MARTENS and BLANKENBACH (2018)
use density-based point histograms to align point clouds which they also integrated into
existing BIM modelling software. SARODE et al. (2019) use PointNet (QI et al., 2017)
encoding to align point clouds and perform registration. QIAO et al. (2023) proposed a
semantic-geometric graph-theoretic method in low overlap scenarios. Two-point cloud
pairs have low overlapping areas in a low overlap scenario due to occlusions or viewpoint
change (QIAO et al., 2023). SARKAR et al. (2023) align scene graphs and the result is
then used for registering the point sets. This is also discussed in detail in section 3.4.2.
Most of these tasks are computer-vision-centric, and limited research has been done on
using deep learning with graphs to align building elements.

Aligning BIM models to their point cloud counterparts is also an actively explored area of
research. RAUSCH and HAAS (2021) uses Iterative Closest Point (ICP) method to register
point cloud to BIM. A vast amount of literature uses the spatial proximity method for regis-
tering BIM and point clouds. However, CHUANG and YANG (2023) showed that matching
based on spatial proximity poses technical complexities in case of poor registration results
and in cases where the positions of the elements haven’t been documented properly.
Therefore, a new area of research is gaining traction where instead of point-based linking,
semantic information is used, (COLLINS et al., 2023). This method does not deal with
vast amounts of points; it focuses only on a subset of points and relies more on semantic
information, making it much more computationally cheaper.

One such method is developed by COLLINS et al. (2023), where they use a graph-based
method to link point cloud and BIM using geometrical and topological relations (HU &
BRILAKIS, 2024), which is one of the bases of this research work. They showed that
elements can be linked despite positional and geometric deviations. However, one of the
limitations that they highlighted is that most connections between the building elements
should be present in both graphs.

3

1.2 Motivation

Apart from the general motivation behind the topic as discussed in the previous section, the
technical motivation behind this thesis stems from rapid advancements in entity alignment
using Deep Learning techniques, mostly in the domain of Natural Language Processing
(NLP) as well as the limitations highlighted in COLLINS et al., 2023 This thesis adopts a
graph-based learning method to abstract the high resolution and data volume.

SARKAR et al., 2023, developed a framework that showed how techniques developed
for alignment in the text domain can be leveraged to align 3D scene graphs that have
applications in robotics, localization, and navigation.

By adopting the techniques and insights from these sources, this thesis aims to develop
novel methodologies that perform alignment between building elements using deep learn-
ing and address the limitations identified by COLLINS et al., 2023, ultimately enhancing
the alignment accuracy in the construction domain.

1.3 Research Objective

The objective of this thesis can be subdivided into three main categories.

1. Investigate the use of graph-based deep learning methods for linking building ele-
ments between point cloud and point cloud

2. Study the effect of graph-enriching methods on graph alignment and registration
task

3. Examine the performance of PCD-PCD based method on BIM-PCD alignment

1.4 Structure of thesis

Chapter 2 touches upon the fundamental concepts crucial to the thesis. It details the data
types, graph data structure, entity alignment, and the various graph neural architectures.

Chapter 3 dives deeper into the topics used as a basis for this thesis work. It highlights the
state-of-the-art registration technique using deep learning, and the graph formulation of
point clouds and touches on the work of (COLLINS et al., 2023). Additionally, it emphasizes
the importance of contrastive learning for entity alignment and provides insights into the
workings of (SARKAR et al., 2023). The discussion extends to the different modalities
used, and how the results are then utilized for registration. Also, different metrics related to
alignment and registration are explained that are later used in this thesis work to measure
the model performance.

4

Chapter 4 dives deeper into the specifics of the thesis work. The dataset used, algorithms
used to preprocess along with the detailed architecture of the individual modalities. Finally,
the full network architecture is explained.

Chapter 5 focuses on the outcomes, providing a comprehensive analysis of alignment
results and their performance on registration. The results of different models are analyzed,
and compared, and the best-performing model is highlighted. It emphasizes the results of
graph-enriching methods and showcases the results of different ablation studies.

Chapter 6 discusses the results and the insights obtained. It also talks about the limitations
of the approach.

Finally, Chapter 7 summarizes key findings and offers suggestions for future research.

5

Chapter 2

Theoretical Background

This research work extends and builds upon the theoretical and practical frameworks
established by prior research, which will be discussed in the next chapter. This section
serves as a theoretical framework for the entire research work.

2.1 Point Cloud

Point clouds are unstructured, unordered points representing an object or Three Dimen-
sional (3D) space. The concept of point cloud is not new and has been around since 1960
since the invention of the laser (MAIMAN, 1960). Each data point in a PCD consists of spa-
tial coordinates X,Y and Z and might include color information in R,G and B values, as well
as normal values nx, ny, nz of a particular object. They are commonly used in computer
vision, computer graphics, remote sensing, and Geographic Information System (GIS).
Normally, point clouds are generated through 3D Scanning, LiDAR or photogrammetry.

2.1.1 Point Cloud Registration

Registration of point clouds is a fundamental task in 3D computer vision and photogram-
metry (PAN et al., 2018). The objective is to find correspondences between two distinct
point sets and determine the transformation that aligns one with the other, (MYRONENKO &
SONG, 2010). Several different iterative techniques are present for performing registration.

1. Iterative Closest Point
Initially introduced in the paper by (BESL & MCKAY, 1992), the objective is to iter-
atively find a transformation matrix that maps a given point cloud to a reference
point(can be a surface as well). It achieves this by minimizing the square errors
among the corresponding points. Given two point sets, ICP finds the best-fit transfor-
mation between that maps point set in A to point set in B. As the name suggests,
the algorithm proceeds in an iterative manner. It applies the transformation to A,
calculates the error between the transformed set A and B, and stops if the error is
less than a tolerance value. Set A is updated every iteration.

Algorithm 2.1, presents the basic version of ICP algorithm, as described by (Q.
ZHOU et al., 2022). Many other famous variations of ICP like point-to-plane and
point-to-point exist, (POMERLEAU et al., 2015).

2. Random Sample Consensus
RANSAC is a widely used algorithm for fitting models with outliers. Introduced by

6

Algorithm 2.1: ICP Algorithm
1 Given re ference P and data p o in t Q,
2 Repeat u n t i l the o b j e c t i v e < th resho ld
3 For po in t s ∈ Q f i n d corresponding near ing po in t s i n P
4 Objec t i ve Funct ion ← minimize the euc l idean d is tance

between the matching pa i r s
5 f i n d R, T t h a t minimizes the Objec t i ve Funct ion
6 Q_new ← R (Q) + T

(FISCHLER & BOLLES, 1987) as a robust method for fitting straight lines to 2D images
with outliers. The idea is to select a subset of data points, fit a model to this subset
and evaluate the model on the remaining data points. Data points that are consistent
with the model are considered inliers, while points that are not are considered outliers.
It is also an iterative process.

While ICP is a local registration method because tit relies on rough alignment as
initialization, RANSAC performs global registration which does not require any initial
transformation.

The only pre-requisite for using RANSAC is that number of data points should
outnumber the minimum number required for determining the model parameters.
Algorithm for calculating RANSAC is shown in 2.2, (DERPANIS, 2010).

Algorithm 2.2: RANSAC Algorithm
1 Randomly s e l e c t minimum po in t s requ i red f o r model parameter

de te rmina t ion .
2 Solve f o r the model parameters
3 I d e n t i f y po in t s f i t t i n g the model w i th to le rance τ1
4 I f i n l i n e r r a t i o > t h resho ld τ2 , es t imate parameters using i d e n t i f i e d

i n l i e r s and stop
5 Repeat steps 1−4 N times i f i n l i n e r r a t i o < τ2

2.1.2 Deep Learning in Point Clouds

There exist numerous architectures that deal with point clouds. Various techniques
exist to deal with the unstructured nature of point clouds. Voxel-based, (MATURANA &
SCHERER, 2015), set-based, (QI et al., 2017), graph-based, (Y. WANG et al., 2018),
multi-view-based,(W. WANG et al., 2022) are some of the methods that address the unique
challenges posed by point cloud data. These network can be used for downstream tasks
of semantic segmentation or instance segmentation or feature extraction.

In this section, the focus is on set-based approach, particularly PointNet, (QI et al.,
2017). Main reason being, its feature extraction component is used as a module, which is
explained in chapter 4.

7

2.1.2.1 PointNet

PointNet directly takes point clouds as input, without the need for intermediate representa-
tions such as voxels or meshes. The architecture consists of three main components: a
shared multi-layer perceptron (MLP) network, a max pooling layer and a fully connected
layer. The share MLP network is applied to each point independently, and produces a
point wise feature vector for each point independently. PointNet is able to capture local
features of each point while preserving its permutation invariance. This allows PointNet to
work well with unstructured point clouds that do not have a fixed topology.

Figure 2.1: PointNet Architecture, (QI et al., 2017)

2.2 Building Information Modeling

Building Information Modeling is a process that encompasses creating and managing a
digital model representing the physical and functional characteristics of a structure or a
location (Building Information Modeling: Technology Foundations and Industry Practice,
2018). It can also be called the digital twin of the physical structure that it represents
(COLLINS et al., 2021). It creates an accurate 2D or 3D geometry and adds semantic
information about the built asset in question (BRAUN et al., 2018). This includes various
relationship types about the buildings, properties of components, and other data relevant
to construction, operation, and maintenance. Also enables real-time collaboration and
interoperability.

BIM is designed in a way to cover the entire life cycle of a building, from its inception to its
construction and to its operation. It also incorporates parametric modeling, that are not
automatically turned on in traditional Computer Aided Design (CAD) software, such that
changes in one element is reflected across the entire model (EASTMAN, 2009).

2.3 Graph Data Structure

In the most basic sense, it is a mathematical structure consisting of a set of vertices (V),
colloquially called nodes, and sets of edges (E). It is a mathematical abstraction that helps

8

model objects and relationships between them (CHERNOSKUTOV, 2021). Generally, a
graph is denoted as G = (V, E).

Graph structures can be further divided into two subcategories.

1. Directed Graphs
A directed graph or digraph, (BENDER & WILLIAMSON, 2010), is a pair G = (V,E)
comprising:

- V: Set of vertices.

- E: Set of directed edges, are ordered pairs of distinct vertices. Each edge
connects a source vertex or a target vertex. If there is a directed edge from A to
B, then it is denoted as (A, B) and not (B, A) unless the relation is bidirectional.
Here A and B are

E = {(x, y)|(x, y) ∈ V2}

2. Undirected Graphs
Graph where the edges do not have a direction. It indicates a two way relationship,
that the relationship between the two edges is mutual. In such cases a edge can be
traversed in both direction. Here an edge E: (A,B) is equivalent to E: (B,A).

(a) Directed Graph (b) Undirected Graph

Figure 2.2: Types of Graph Data Structures

2.3.1 Knowledge Graph (KG)

A knowledge graph is a data structure that includes information about the entities and the
relationships linking them, (HOGAN et al., 2021). Even though they have been historically
present, they quickly gained momentum following the introduction of Google Knowledge
Graph (SINGHAL, 2012) in 2012.

Knowledge graphs are graph-structured knowledge bases. Usually, a digraph, is assumed.
It represents semantics by describing entities and their relationships with each other. The

9

main components of KGs are: nodes, edges, and labels. Labels define the relationship
between the nodes in an edge.

Figure 2.3: Example of a Knowledge Graph, (HOGAN et al., 2021)

Currently, KGs are extensively used with Machine Learning, Deep Learning, to reason
over the vast amount of stored data. Due to the vastness of the field and contexts, same
entities or similar entities appear in multiple knowledge graphs. The task of aligning two
different KGs based on the same or similar entity present in both is called knowledge
graph entity alignment. It is a huge and active area of research. (BERRENDORF et al.,
2020)

Mostly, some variation of Graph Neural Network (GNN)s are employed to extract the
information of KGs in terms of embeddings and features. Due to the current advancement
in Large Language Models (LLMs), KGs have become an important basis of many Artifical
Intelligence (AI) and NLP tasks, (Z. WANG et al., 2018).

2.3.1.1 KG in 3D Data

Works by WALD et al., 2020, and ARMENI et al., 2019, show that knowledge graphs can
be used to represent 3D data (built environment) as they provide a rich and structured
way to represent the data. WALD et al., 2020, uses a graph prediction network that can
semantically segment the objects and define a relation between the elements of the built
environment. LANDRIEU and SIMONOVSKY, 2018a, uses super point graph formulation
for the downstream semantic segmentation task. This is a huge area of research where
knowledge graphs are used to understand 3D data.

2.3.2 Entity Alignment (EA)

As discussed in the previous section 2.3.1 entity alignment refers of aligning two different
KG containing contain information from the same modality.

10

2.3.2.1 Multi-Modal Alignment

Multi-Modal Knowledge Graph Alignment, (GUO et al., 2021) refers to aligning multiple
knowledge graphs of different modalities (eg. languages, texts, images). A certain degree
of overlap must be present in the target and reference KGs. Research by Entity Visual
Alignment (LIU et al., 2021) uses visual and other knowledge to achieve multi-modal KG
alignment. There are various approaches to learning information from different modalities.
Work by (CHEN et al., 2020), (LIN et al., 2022) use common embedding space for all
the modalities. They employ different individual encoders depending upon the type of
information to obtain modality-specific representation.

Figure 2.4: Example of a multi-modal entity alignment, (ZHU et al., 2023)

2.3.2.2 Multi-Modal Alignment in 3D Data

Even though most of the KG alignment work has been particularly in the domain of NLP,
research work by (LANDRIEU & SIMONOVSKY, 2018b), (SARKAR et al., 2023) has shown
that KGs also facilitates the handling of 3D data.

Information-rich 3D data can be abstracted using KG to deal with the high resolution and
large data volume. The underlying geometry represented in the point cloud and BIM can
be encoded as a feature in the graph.

Work by (SARKAR et al., 2023) also shows how one can leverage the individual modalities,
with contrastive learning introduced by (LIN et al., 2022), in 3D alignment. This work is the
current state of the art in aligning 3D point cloud data represented in graphs, which is one
of the main backbones of this research work. Chapter 3 talks about the inner workings of
this research work.

2.4 Deep Learning Architectures for Graph Data

Different network architectures exist to work with structured graph data.

11

2.4.1 Graph Neural Network (GNN)

GNNs were introduced by (J. ZHOU et al., 2020), as a method to solve problems in
graph domains. They can be directly applied to graphs. Generally GNN are used in
link-prediction, classification, NLP tasks.

Given a graph G = (V,E) where V is the set of nodes and E is the set of edges, the
working of GNN can be divided into three steps.

1. Neural Message Passing:
Each node i in the graph will receive information about their state. Neighbour of a
node i is defined as Ni = {j : eij ∈ E}.

2. Aggregation: The received information is aggregated together. Message parsing
and aggregation can be defined mathematically as,

m̂i = □j∈Ni
(hj

t−1,∀j ∈ Ni) (2.1)

□ is an aggregation function like mean, max, sum, a neural network invariant to
permutability, and hjt−1 is the message incoming from node j.

Figure 2.5: Overview of message aggregation from node’s local neighborhood, (HAMILTON,
2020)

3. Update:
After the information has been aggregated, the current state of node i is updated.

hi
t = σ(hi

t−1, m̂i) (2.2)

where σ is a differentiable update function.

At each time step t, for a given node i, the aggregation function gathers information from its
neighborhoods, Ni and generates a message m̂i. The update function then combines this
message with the embedding from the previous time step hi

t−1 to generate the updated
embeddings hi

t. This happens simultaneously for all the nodes at the same time. After
the first time step, each node will have information about the features of its immediate
neighbors. After the second time step, each node will contain information from its 2-hop
neighborhood, (HAMILTON, 2020).

12

Three phases described above form the framework of a basic GNN. A trainable GNN can
be defined as,

hit = σ

(
W self

t−1 hit−1 +Wneigh
t−1 □j∈Ni h

j
t−1

)
(2.3)

where Wself
t−1, W

neigh
t−1 ∈ Rdt×dt−1 are trainable parameters. Equation 2.3 represents the

message-passing and update at the node level, the graph-level passing and update can
be defined as,

Ht = σ

(
AHt−1W

neight
t + Ht−1W

self
t

)
(2.4)

where Ht ∈ R|V |×d, denotes node representation at layer/time-step t, A is the graph
adjacency matrix.

Figure 2.6: Basic Layout of Graph Neural Network, (T. KIPF, 2016)

2.4.2 Graph Convolution Network (GCN)

GCN is one of the most popular variant of GNN. It utilizes symmetric normalization for
aggregation and incorporates a self-loop update approach, (HAMILTON, 2020).

Given a graph G = (V,E) with N nodes ni ∈ V , edges (ei, ej) ∈ E, adjacency matrix
A ∈ RN×N , and a degree matrix Dii =

∑
j Aij , the layer wise propagation rule in Graph

Convolution Network, (T. N. KIPF & WELLING, 2017) can be obtained as,

H l+1 = σ(D̂− 1
2 ÂD̂− 1

2H lW l) (2.5)

where Â = A+ IN is adjacency matrix of undirected graph G with added self connections,
IN is the identity matrix,

13

D̂ii =
∑

j Âij ,
W l represents layer specific trainable weight matrix,
σ(·) denotes an activation function and,
H l ∈ RN×N is activation in the lth layer.

2.4.3 Graph Attention Network (GAT)

(VASWANI et al., 2017) introduced attention networks which showed that self-attention
can improve a method and is sufficient for constructing a model obtaining maximum
performance on machine learning tasks. The benefit of the attention mechanism is that it
allows for variable-sized input. And when it is used to compute a representation of a single
sequence, it is termed self-attention.

Inspired by this work, (VELIČKOVIĆ et al., 2018) introduced attention-based architecture to
perform node classification based on graph-structured data. It computes hidden repre-
sentations of each node in the graph by attending using a self-attention strategy over its
neighbors.

Given a graph G = (V,E) with N number of nodes, with each node having a feature of
hi, i ∈ V , which can be written as,

h = {h1, h2, ..., hN}, hi ∈ RF (2.6)

where F is the number of features in each node. The attention layer acts on these inputs
to produce new feature sets,

h′ = {h′1, h′2, ..., h′N}, h′i ∈ RF ′
(2.7)

To transform the input features into high-level features, a shared linear transformation is
applied to every node, represented by W ∈ RF ′×F . Then self-attention mechanism is
applied on the nodes, a : RF ′ × RF ′ → R to compute attention coefficients eij . a is just a
single-layer feed-forward neural network.

eij = a(Whi,Whj) (2.8)

Attention coefficients indicate the importance of node j
′
s features to node i. eij only for

nodes j ∈ Ni, where Ni are the neighbouring nodes of i, is computed. The coefficients
are then normalized across all neighbors using the softmax function.

αij = softmaxj(σ(eij)) =
exp(σ(eij))∑

k∈Ni
exp(σ(eik))

(2.9)

In the paper, LeakyRELU was used as a non-linearity, so 2.10 can be written in its
expanded form as,

14

αij =
exp(LeakyRELU(aT [Whi||Whj]))∑

k∈Ni
exp(LeakyRELU(aT [Whi||Whk]))

(2.10)

where || denotes concatenation.

The new set of feature vectors for each node can be computed as,

h′i = σ

∑
j∈Ni

αijWhj

 (2.11)

On running experiments, this research found that multi-head attention to be beneficial. K
different independent attention mechanisms are executed on 2.13 and the features are
concatenated to get a final representation.

h′i =

∣∣∣∣∣
∣∣∣∣∣
K

k=1

σ

∑
j∈Ni

αk
ijW

khj

 (2.12)

where || represents concatenation, αk
ij represents normalized coefficients of k-th attention

mechanism and Wk represents transformation matrix. Instead of F ′ features, multi-headed
attention will now contain KF ′ features.

If multi-headed attention is applied to the final layer, instead of concatenation averaging is
employed.

h′i = σ

(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

khj

)
(2.13)

Figure 2.7: Left: Attention Mechanics employed by GAT, Right: Illustration of multi-headed
attention (K=3) by node 1 on its neighborhood. (VASWANI et al., 2017)

15

Chapter 3

Related Work

This chapter discusses research work that forms the basis of this research work. Studies
related to registration, contrastive learning, PCD-BIM alignment, and PCD-PCD alignment
are discussed in detail. Section 3.1 dives deeper into the current learning based state-
of-the-art registration method, section 3.2 outlines the methodology of the PCD-BIM
alignment. Since contrastive learning is a key part of this thesis, section 3.3 dives deeper
into how contrastive learning can be used in the case of multi-modal encoders, although
the study being in the domain of NLP. Finally, in section 3.4 the workings of the current
state-of-the-art architecture in PCD-PCD (scene) alignment is discussed.

3.1 GeoTransformer

This paper by QIN et al. (2022) deals registration of point clouds. They focus primarily on
finding accurate correspondences using learning-based approach. Given two sets of point
clouds P = {pi ∈ R3|i = 1, ..., N} and Q = {qi ∈ R3|i = 1, ...,M}, the process involves
estimating a rigid transformation T = {R, t}. This transformation aligns the two point sets
through a 3D rotation R ∈ SpecialOrthogonalgroup(SO)(3) and a translation t ∈ R3. The
objective function is defined as,

min
R,t

∑
(p∗xi ,q

∗
xi
)∈C∗

∥R · p∗xi
+ t− q∗yi∥

2
2 (3.1)

where C∗ denotes the set of ground truth correspondences between P and Q. As C∗ is
unknown, correspondences between the point sets is first established and an alignment
transformation is then calculated.

Correspondences are found hierarchically and go from coarse to fine. The method of
registration can be sub-divided into four parts.

16

Figure 3.1: Backbone of GeoTransformer, (QIN et al., 2022)

3.1.1 Feature Extraction

Kernel Point Convolution (KPConv)-FPN is used to extract features from the given point
sets. The point sets get down-sampled in the process. The down-sampled points, also
called superpoints, correspond to the coarsest resolution, denoted by P̂ and Q̂, and the
learnt features denoted by F̂P ∈ R|P̂|×d̂ and F̂Q ∈ R|Q̂|×d̂. The dense correspondences
are computed at half of the original resolution, denoted by P̃ and Q̃.

3.1.2 Superpoint Matching

Geometric Transformer encodes global contextual information and explicitly captures
geometric structures within each point cloud and ensures geometric consistency across
point clouds. GeoTransformer consists of a self-attention module to learn intra-point cloud
features and a feature-based attention module to model inter-point cloud consistency. The
two different modules are interleaved for N times to extract hybrid features ĤP and ĤQ.

The hybrid features exhibit invariance to transformation and robustness for correspondence.
The features are first normalized onto a unit hypersphere and then Gaussian correlation
matrix is computed as S ∈ R|P̂|×Q̂| with si,j = exp(−||ĥPi − ĥQj ||22). Since some patches
of point clouds are less discriminative geometrically and can have multiple patches in
another point set, dual-normalization on S is performed to suppress ambiguous matches.

si,j =
si,j∑|Q̂|
k=1 si,k

· si,j∑|P̂|
k=1 sk,j

(3.2)

Finally, the largest Nc entries in S are chosen as superpoint correspondences.

3.1.2.1 Point Matching Module

The point correspondences are from superpoint correspondences. For each superpoint
correspondence Ĉi = (p̂xi, q̂yi), a transport layer, (SARLIN et al., 2020), is used to ex-

17

tract local dense point correspondences. Computed point correspondences from each
superpoint are collected to form a final global dense point correspondences: C =

⋃Nc
i=1 Ci.

3.1.3 Point Cloud Registration

They developed a registration scheme that operates in a local-to-global manner. It com-
prises a local phase that generates transformation candidates and a global phase for
selecting transformation. In the local phase, a transformation is solved for each superpoint
match using its local correspondence.

Ri, ti = min
R, t

∑
(p̃xj ,q̃yj)∈C⟩

wi
j∥R · p̃xj + t− q̃yj∥22 (3.3)

This is solved using weighted Singular Value Decomposition (SVD) (BESL & MCKAY,
1992). The transformation obtained in this phase is very close to accurate. In the global
phase, a transformation that admits the highest number of inlier matches over the entire
global point correspondences is selected.

R, t = max
R, t

∑
(p̃xj ,q̃yj)∈C⟩

J∥Ri · p̃xj + t− q̃yj∥22 < τaK (3.4)

3.1.4 Loss Functions

Loss function L = Loc + Lp is composed of an overlap aware circle loss Loc for superpoint
matching and a point matching loss Lp for point matching.

The modules in this section 3.1 only provide a basic overview. To get a detailed overview
of GeoTransformer, regarding all the methods, and loss functions used one should refer to
(QIN et al., 2022).

3.2 Graph-based linking of Point Cloud and BIM

This study by COLLINS et al. (2023) focuses on integrating semantic elements in PCD to
BIM. Geometric features and topological relationships in the building are used.

Two different data streams are used and formulated in a graph as G = (V,W), where V

represents the nodes and W represents the distance-weighed adjacency of the nodes. A
node is one building element. A set of geometric features F , including high-level geometric
information about the element’s shape, is attached to the node.

The feature includes a semantic label, two principal components obtained using Principal
Component Analysis (PCA), and the extent of the shapes in the direction of principal

18

components.

F = {semantic_label, PC1, PC2, extent1, extent2} (3.5)

The methodology of this research can be subdivided into three categories.

3.2.1 BIM to GDT

Node and its features are extracted using a model parsing library, IfcOpenShell. Building
elements and their features are then calculated by sampling 1000 points on its surface.

Spatial-topological Query Lanuguage for Building Information Modeling (QL4BIM), devel-
oped by DAUM and BORRMANN (2014), extracts adjacent building elements. The element
connectivities are then weighted by the distance between the centroids between the
elements which form a matrix W .

3.2.2 Point Cloud to GPCD

COLLINS et al. (2022) in their work in finding geometric and topological similarities in
building elements, suggest GPCD formulation method using superpoint graph approach
formulated by LANDRIEU and SIMONOVSKY (2018a). A node/superpoint is one semantic
instance in a given point cloud. Feature matrix F , for point clouds, is calculated similarly
as described in 3.2.1.

Edges are generated using the 3D Delaunay Triangulation approach. Edges larger than
0.5m are discarded, and the distance of the remaining edges forms the matrix W .

3.2.3 Graph Matching

Geometric similarities between all nodes of the same semantic class of GPCD and GDT

are calculated using cosine similarity. This results in a list that contains ranked candidates
with a matching score M . The matching score ranges from the highest matching geometric
score to the least matching geometric score.

The highest-ranked candidate pairs are then taken and Maximum Common Subgraph
(MCS) is computed within 2-hop induced subgraphs. The next node pair is evaluated if
multiple structurally equivalent graphs are found. If no such equivalence is found, rewards
are calculated and added to the matching score, M . This process is iterative, and the
candidate pairs are re-ranked after each iteration. The calculation continues until no further
re-ranking of the candidate pairs occurs.

19

Figure 3.2: Graph-based Linking Methodology, (COLLINS et al., 2023)

3.3 Contrastive Learning For Entity Alignment

Contrastive learning is a semi-supervised machine learning technique where the model
learns to pull similar entities closer and dissimilar entities are pushed away in the embed-
ding space, (HADSELL et al., 2006).

Work by LIN et al. (2022) is in the domain of Natural Language Processing, where they
use multi-modality for alignment. This paper proposes Multi-modal Contrastive Learning
based Entity Alignment (MCLEA), where information from uni-modal is integrated into
joint representations for entity alignment. Multiple individual encoders are utilized to get
modality-specific embeddings for each entity. Their modal encodes information related to
neighborhood structures, relations, attributes, surface forms, and images.

They also introduced contrastive learning into Entity alignment, which serves as a founda-
tion for this research work. Two different losses were proposed, Intra-modal Contrastive
Loss (ICL) and Inter-modal Alignment Loss (IAL).

3.3.1 Intra-modal Contrastive Loss

The objective of ICL is to differentiate the embeddings of equivalent entities from the other
entities within each modality. It ensures that the representations of similar entities are
closer in the embedding space than to representations of non-equivalent entities within
the same modality.

In MCLEA, ICL enables the model to differentiate between the embeddings of identical
entities belonging to different Knowledge graphs within a given modality.

If S is regarded as a positive sample and any other non-aligned pair is regarded as a
negative sample,

20

then for i-th entity ei1 ∈ E1 of minibatch B, the positive set is defined as,

Pi = {ei2 | ei2 ∈ E2}

where (ei1, e
i
2) is an aligned pair.

The negative set is comprised of inner graph unaligned pairs from source KG G1 and
cross-graph unaligned pairs from target KG G2, defined as,

N i
1 = {e

j
1 | ∀e

j
1 ∈ E1, j ̸= i} and N i

2 = {e
j
2 | ∀e

j
2 ∈ E2, j ̸= i}

N i
1, N

i
2 both come from minibatch B and are designed to constrain the joint embedding

space. The alignment probability distribution qm(ei1, e
i
2) for modality m for each positive

pair (ei1, e
i
2) is defined as,

qm(ei1, e
i
2) =

δm(ei1, e
i
2)

δm(ei1, e
i
2) +

∑
ej1∈N i

1
δm(ei1, e

j
1) +

∑
ej2∈N i

2
δm(ei1, e

j
2)

(3.6)

where δm(u, v) = exp
(
fm(u)T fm(v)

τ1

)
is the encoding of the modality m and τ1 is a tempera-

ture parameter.

Since the distribution in Eq.3.6 is directional and asymmetric, ICL is defined as,

Lm
ICL = −Ei∈B log

(
1

2
(qm(ei1, e

i
2) + qm(ei2, e

i
1))

)
(3.7)

ICL is applied separately on each modality as well as also on the joint embedding space.

3.3.2 Inter-modal Alignment Loss

Embeddings of different modalities are trained separately on ICL. And the complex
interaction between modalities can’t be modeled just using the fusion module. To solve
this problem, MCLEA introduced inter-modal alignment loss, which aims to minimize the
gap between the output distribution across different modalities. It helps to capture the
inter-modal interaction and obtain more meaningful representations.

Bi-directional Kullback-Leibler (KL) divergence is minimized over the output distribution
between joint embedding and uni-modal embedding. This facilitates the transfer of knowl-
edge from joint embedding to uni-modal embedding so that the uni-modal embeddings
could better utilize the information from others.

IAL is defined as,

Lm
IAL = Ei∈B

1

2

[
KL
(
q
′
o(e

i
1, e

i
2)||q

′
m(ei1, e

i
2)
)

+ KL
(
q
′
0(e

i
2, e

i
1)||q

′
m(ei2, e

i
1)
)] (3.8)

21

where q
′
o(e

i
1, e

i
2), q

′
0(e

i
2, e

i
1) and q

′
m(ei1, e

i
2), q

′
m(ei2, e

i
1) represents output predictions with two

directions of joint embedding and the uni-modal embedding of modality m.

They only back-propagate through q
′
m(ei1, e

i
2), q

′
m(ei2, e

i
1) in Eq.3.8 as knowledge distillation

(HINTON et al., 2015).

Figure 3.3: Architrecure of MCLEA that learns through IAL and ICL, (LIN et al., 2022)

3.3.3 Objective Function

MCLEA in their work defined the optimization objective as,

L = Lo
ICL +

∑
m∈M

αmLm
ICL +

∑
m∈M

βmLm
IAL (3.9)

where Lo
ICL is ICL operates on joínt embedding, αm and βm are hyperparameters. This

Loss L is further modified into,

L = Lo
ICL +

∑
m∈M

(
1

α2
m

Lm
ICL +

1

β2
m

Lm
IAL + logαm + log βm) (3.10)

where αm and βm are learned during training.

3.4 Scene Graph Aligner (SGAligner)

SARKAR et al. (2023) work concentrates on aligning 3D scene graphs. Leveraging the
concepts of multi-modality and contrastive learning inspired from LIN et al. (2022) and the
work by CHEN et al. (2020). It employs embeddings learned in a joint embedding space to
determine alignment and estimate transformation between pairs of 3D scenes. This thesis
mostly follows the framework set up by this referenced research.

This method developed by SGAligner is the first method for aligning pairs of 3D scene
graphs. Information contained in 3D scene graphs: semantic entities, their geometry, and

22

relationships between these entities are encoded independently to learn a joint embedding
space that reasons whether or not the two given nodes are similar or not. Cosine similarity
is used to get a list of matched entities and alignment is performed using the one with the
highest similarity.

The scene alignment method can further be employed for 3D point cloud registration.
The alignment result is used for coarse initialization for registration, which is further
refined by computing 3D correspondences, (QIN et al., 2022). Then, the rigid point cloud
transformation is estimated using the computed correspondences.

3.4.1 3D scene graphs

A 3D scene graph provides a structured approach to representing detailed descriptions of
real-world scenes, (KIM et al., 2020). The structure of scene graphs employed in this work
aligns with the 3D scene graph framework introduced by WALD et al. (2020). This thesis
work also leveraging that information, uses the same graph structure.

3.4.2 3D Scene Graph Alignment

3D scene graph G is defined as a pair of sets of (N ,R), where N represents node and
R represents edges. A node represents a 3D object O in a given scene. Point clouds
P and the edges R define the semantic relationship between the nodes. The network
architecture is derived from LIN et al. (2022), which was modified from the language
domain to the task of 3D scene alignment.

Four different modules for encoding information are used, as explained in 3.4.3. Object
embedding that encodes point cloud information P, structure embedding that encodes R
in the form of a structured graph, and two meta modalities that encode A and R. In the
end, these individual embeddings are combined in a weighted manner. A joint optimization
is performed using knowledge distillation across all embeddings, as explained in section
3.3.

3.4.3 Uni and Multi-Modal Embeddings

1. Object Embedding: To capture the geometric information about objects, PointNet
(QI et al., 2017) is used. Each individual point Pi of Oi serves as an input to the
model and the visual features ϕR

i for each node are then extracted.

2. Structure Embedding: This module encodes objects’ layout in a given scene ∫ .
This information is represented in the form of a structured graph. Node features
include the relative translation between object instances with the highest number of
relationships and any other object instance in the scene. GAT (VELIČKOVIĆ et al.,
2018) is used to model this information. They limit the weight matrix to a diagonal

23

matrix, to minimize computations and improve the model’s scalability, as suggested
by (LIN et al., 2022).

3. Meta Embeddings: Attributes and relationships per object Oi are modeled as
two separate embeddings using feed-forward network (BEBIS & GEORGIOPOULOS,
1994). Relationships of Oi with other objects are regarded as bag-of-words feature
vectors and used to obtain relational embedding ϕR

i . They use the same approach
for getting ϕA

i .

4. Joint Embedding: The individual embeddings are concatenated to a single compact
representation ϕ̂i for each object Oi as,

ϕ̂i =
⊕
k∈K

[
exp(wk)∑
j∈K exp(wj)

hmi

]
(3.11)

where
⊕

denotes concatenation, K = {P,S,R,A} represents each individual modal-
ity. Variable wm represents a trainable attention weight for each modality. L2
normalization is applied to each uni-modal feature before the final concatenation.

To model the interaction between modalities, a contrastive loss function is employed, which
brings aligned pairs closer and pushes misaligned pairs further in the joint embedding
space. This approach incorporates contrastive learning, mainly Intra-modal Contrastive
Loss (ICL) and Inter-modal Alignment Loss (IAL), which are described in section 3.3, 3.3.1
and 3.3.2. The optimization function used in this method is described in section 3.3.3.

Figure 3.4: SGAligner Network Architecture, (SARKAR et al., 2023)

3.4.4 Point Cloud Registration

The output of scene alignment is the set of matches entity pairs n1 and n2. 3D corre-
spondences from P i

1 and P i
2 for each entity pair is extracted. Then correspondences are

estimated by an off-shell correspondence extraction algorithm, which runs on node pairs
independently. After collecting the correspondences across all matched entities robust

24

estimator, RANSAC (FISCHLER & BOLLES, 1987) is used to get the transformation matrix
T ∈Special Euclidean group (SE)(3) between the PCD of the two scenes.

3.4.5 Evaluation Metrics

This work also introduces alignment and point cloud registration metrics, inspired by works
of LIN et al. (2022) and QIN et al. (2022). The metrics introduced here are later used by
this thesis work as well.

3.4.5.1 Alignment Metrics

1. Hits@K
Indicates the fraction of true anchor entities present within the top k predictions.

Hk(r1, ..., rn) =
1

n

n∑
i=1

I[ri ≤ k] (3.12)

where I[x ≤ y] = 1 when x ≤ y else 0 and k ∈ [1, 2, 3, 4, 5].

2. MRR
It corresponds to the average of the reciprocals of the rank of true triples.

MRR(r1, ..., rn) =
1

n

n∑
i=1

r−1
i (3.13)

3.4.5.2 Registration Metrics

1. Registration Recall (RR)
Fraction of registered point cloud pairs where transformation error is less than a
specified tolerance. Transformation error is defined as the root mean squared error
of the true correspondences after applying the transformation T.

If C is the total number of true correspondences and P and Q are the two point sets,
the transformation error between them is given by,

RMSE =

√√√√ 1

|C|
∑

(PXi,QY i)∈C

||TP→Q(PXi)−QY i||22 (3.14)

RR =
1

M

∑
i=1

[RMSEi < tolerance] (3.15)

Where M is the number of all point cloud pairs.

2. Relative Rotation Error (RRE)
It measures the angular difference between the estimated rotation and real rotation

25

matrices. If a point set A is rotated from point set B using rotation matrix R̂, if R is
the rotation matrix calculated by the iterative process as defined earlier,

RRE = arccos
trace(RR̂− 1)

2
(3.16)

3. Relative Translation Error (RTE)
Measures the euclidean distance between estimated and real translation vectors.

RTE = ||t− t̂|| (3.17)

4. Chamfer Distance (CD)
It evaluates the quality of registration. Modified chamfer distance, following (YEW &
LEE, 2020), is given as,

CD(P,Q) =
1

|P |
∑
p∈P

minq∈Qraw ||T
Q
P (p)− q||22

+
1

|Q|
∑
q∈Q

minp∈Praw ||q − TQ
P (p)||22

(3.18)

5. Inliner Ratio (IR)
It measures the proportion of inlier matches among all point matches. A match is
classified as an inlier if the distance between two points is smaller than a defined
threshold τ1.

IR =
1

|C|
∑

(PXi,QY i)∈C

I

[
||TP→Q(PXi)−QY i||2 ≤ τ1

]
(3.19)

6. Feature Matching Recall (FMR)
Fraction of point cloud pairs with an IR above a specified threshold τ2. It measures
the potential success during the registration.

FMR =
1

M

M∑
i=1

I
[
IRi > τ2

]
(3.20)

26

Chapter 4

Methodology

(a) Alignment of Point Cloud to Point Cloud (b) Alignment of Point Cloud to BIM

Figure 4.1: Thesis Methodology

The work structure of this research work can be divided into two different pipelines. The
first pipeline deals with point cloud to point cloud alignment, whereas the second pipeline
deals with aligning the point cloud to BIM. Most structures are identical in both pipelines,
except at the beginning. The point cloud- BIM has some intermediate step where points
are sampled from the surface of the BIM. The sampled point cloud represents the BIM
model and alignment of point cloud data happens with this sampled data.

27

After the initial dataset has been defined, subscenes are generated. A subscenes consist
of two scenes, from either point cloud-point cloud or point cloud-BIM, with some overlap.
Subscenes with overlap information between 0.1 and 0.9 are taken into consideration.
Then they are sent to the preprocessing module whose algorithm is detailed in 4.6. An
entity alignment model is trained on the subscene data and inference is performed on
the validation set. The transformation matrix for the validation set is calculated and their
results are visualized. The steps of the methodology are explained in detail in the following
sections.

4.1 Dataset

This section 4.1 is the first step in the research process. Point Cloud dataset and BIM
dataset are provided. Normally, this dataset is of an entire floor, as shown in fig 4.2.

4.1.1 Point Cloud Dataset

LANDRIEU and SIMONOVSKY (2018a) introduced a point graph formulation called super
point graph in 2018. It is a deep learning framework designed to tackle the problem of
semantic segmentation of millions of points. On top of that, this framework offers a concise
representation of contextual relationships between the objects (LANDRIEU & SIMONOVSKY,
2018a).

The point cloud dataset is then passed through this formulation to get a project element
map that has updated superpoint IDs, which contain semantic labels of the object as well
as their instance labels. This one dataset is then further divided into multiple datasets to
train the model, which are also called legs. The legs are normally just individual rooms in
a given floor and are termed as scenes.

(a) Point Cloud Dataset without Furniture Elements,
75M points

(b) BIM Dataset

Figure 4.2: Point Cloud and BIM Dataset without Furniture

28

(a) Point Cloud Dataset with Furniture Elements,
66M points

(b) BIM Dataset

Figure 4.3: Point Cloud and BIM Dataset with Furniture

The individual scenes are then again passed through the super point cloud formulation to
get their own individual project element map as well as a super point graph, that contains
properties about the nodes (objects) in the scene and edges which contain the relationship
between the objects in a given scene as shown in fig 4.6. The scene also gets down-
sampled in this process. Usually, the graph is in hp5 formulation, but a pickle file of the
graph formulation is also obtained.

Figure 4.4: Scene to Graph along with its project element map

29

4.1.2 BIM Dataset

Industry Foundation Classes (IFC) files are normally used to represent the BIM data.
To obtain a BIM graph, individual IfcSpaces with elements inside and adjacent to it are
extracted using IfcOpenshell. Then the space-level data is converted into a mesh file (obj)
using IfcConvert. All the elements inside of it are parsed and 5000 points are sampled from
the surface of the elements. Geometric properties are calculated for each entity, similar
to what is given by super-point graph formulation (LANDRIEU & SIMONOVSKY, 2018a).
The algorithm for extracting the BIM-graph from a BIM dataset is shown in Algorithm 4.1,
Algorithm 4.2 and Algorithm 4.3.

Algorithm 4.1: Space Information Extraction
1 Open bim_ i f c _ f i l e
2 f o r space i n bim_ i f c _ f i l e [" I fcSpace "]
3 elements ← s e l e c t (space , complete ly_ w i t h i n =True , extend =0.7)
4 i nd_ f i l e ← add (elements)
5 save ind_ f i l e as space_guid . i f c

Afterward, elements inside and adjacent to each space are saved as a separate IFC
file. The individual elements are parsed from a file extracted from the previous step
and converted into a mesh separately using IfcConvert. IfcConvert is an open-source
command line application that lets one convert files from one type to another. Here, obj

Algorithm 4.2: Conversion to Mesh
1 Open a l l space . i f c _ f i l e s saved using the prev ious step
2 f o r space_guid . i f c i n a l l _space . i f c f i l e s
3 f o r element i n space_guid . i f c [" I f cP roduc t]
4 save each element as an . i f c f i l e
5 I f cConve r t −−use−world −coords −−use−element −guid element . i f c

files for each element related to an IfcSpace are obtained. Then these individual obj files
are parsed to sample points using Open3D (Q.-Y. ZHOU et al., 2018). Then points are
uniformly sampled from each element and bim graph is extracted. The schematic flow of

Algorithm 4.3: Point Sampling and BIM Graph Extraction
1 bim_graph ← { }
2 combined_ po in t s ← np . empty ()
3 f o r id , element . ob j r e l a t e d to space . i f c
4 l a b e l ← name_ of (element . ob j)
5 mesh ← Open3d . i o . read_ t r i n g l e _mesh(element . ob j)
6 po in t s ← sample_ po in t s _uni form (mesh , number_ o f _ po in t s =5000)
7 geometr ic_ p r o p e r t i e s ← c a l c u l a t e _pca_and_pca_ ex ten t (po in t s)
8 combined_ po in t s ← append (combined_po in ts , po in t s)
9 bim_graph ← add id , labe l , geometr ic_ p r o p e r t i e s

information can be seen in fig. 4.5 BIM graph is obtained at the Space level. Its equivalent
in the point cloud dataset would be the formulation at a scene level, which is explained in

30

the section 4.1.1. No further subscenes are obtained for the BIM dataset since an entity
aligner trained on point cloud to point cloud is used to study the alignment of BIM and
PCD. But a similar algorithm described in section 4.2 can be employed.

Figure 4.5: Schematic Diagram of BIM to BIM Graph

4.2 Sub-Scenes Generation

Entity alignment requires two different graph formulations with some overlap between the
Knowledge graphs. Scenes produced in the earlier section are an entity of their own, with
their knowledge graphs, and have no relationship with other scenes. So, the scenes are
further broken down into sub-scenes. The algorithm is shown in 4.4

Figure 4.6: Overview of Subscene Generation. Top: Initialization of a ref plane, Bottom:
Rotation of ref plane

For a given scene, viewpoint is calculated, which is the mean of the points. Then a
reference plane is taken and two symmetric planes at an angle of α around the reference
plane are considered. Then the points between these planes are taken. If the number of
points inside these two planes satisfies the stopping criteria, a sub-scene is generated
from these points, and information regarding its objects and relationships is saved. Then
the reference plane rotates by a predefined angle β and the same process is repeated

31

Algorithm 4.4: Subscene Generation Algorithm
1 Take a Scene
2 max po in t s per subscene ← Random (20 −50)% of scene po in t s
3 view po in t ← mean(Scene po in t s)
4 r e f plane r o t a t i o n ← I n i t i a l i z e i n degrees
5 s t a r t swip ing angle ← I n i t i a l i z e
6 swip ing angle increment ← I n i t i a l i z e
7 cu r ren t mask ← False values wi th shape scene_ po in t s . shape [0]
8 subscan po in t s ← scene_ po in t s [cu r ren t _mask]
9 f o r s t a r t i n g r e f plane i n planes p a r a l l e l to [yz , zx , xy] passing

through view po in t
10 r e f plane ← s t a r t i n g r e f plane
11 cu r ren t angle ← I n i t i a l i z e to 0 degrees
12 whi le cu r ren t angle < 360
13 whi le subscan po in t s . shape [0] < max po in t s per subscene
14 plane 1 ← plane at − s t a r t swip ing angle from r e f plane
15 plane 2 ← plane at + s t a r t swip ing angle from r e f plane
16 cu r ren t mask ← po in t s between plane 1 and plane 2
17 subscan po in t s ← scene_ po in t s [cu r ren t _mask]
18 s t a r t swip ing angle ← s t a r t swipping angle + swip ing

angle increment
19 ob jec t and r e l a t i o n s h i p data ← subscan po in t s
20 save subscan poin ts , ob jec t , and r e l a t i o n s h i p data
21 r e f plane ← r o t a t e by r e f plane r o t a t i o n
22 rese t cu r ren t mask ← False values wi th shape scene _ po in t s

. shape [0]
23 rese t s t a r t swip ing angle ← I n i t i a l value
24 cu r ren t angle ← cu r ren t angle + r e f plane r o t a t i o n

until the reference plane does a complete sweep of 360 degrees. The reference plane
passes through the viewpoint and is sequentially aligned with the three principal directions.

4.2.1 Overlap Information

Algorithm 4.5: Overlap Information
1 Take a Scene
2 a l l subscenes ← Related to the scene
3 subscan i d pa i r s ← combinat ions (a l l subscenes , 2)
4 subscan p ly data a l l ← Append p ly data o f a l l subscenes
5 f o r i d p a i r i n subscan i d p a i r s
6 src p l y data ← subscan p ly data a l l [i d p a i r [0]]
7 r e f p l y data ← subscan p ly data a l l [i d p a i r [1]]
8 src po in t s ← src p l y [x , y , z]
9 r e f po in t s ← r e f p l y [x , y , z]

10 over lap r , common ids src ← compute over lap (src po in ts , r e f
po in t s)

11 i f 0 .1 < over lap r < 0.9
12 common po in t s ins tance l a b e l ← src p l y data [" o b j e c t i d "] [

common pts ids i n src]
13 over lap_data ← i d pa i r , over lap r a t i o , common po in t s

ins tance l a b e l
14 save over lap_data

32

This process is a subpart of subscene generation. After the individual subscenes are
generated, information about overlap - pertaining to common elements, the extent of
overlap - is extracted, whose algorithm is shown in 4.5.

4.3 Pre-processing

As discussed previously, point clouds and BIM are both information-rich resources. Infor-
mation regarding structure, objects, their attributes, and the relationship between them
presents a situation where multiple knowledge graphs are produced. Since this research
follows the framework introduced by SARKAR et al., 2023, the multiple knowledge graphs
must be processed by a dedicated modality. Before the information is passed to the dedi-
cated module, it should be pre-processed so that information from all different sub-scenes
has a concurrent pattern. Preprocessing methods for point clouds and BIM are the
same since they have the same graph structure.

Pre-processing of subscenes can be broadly divided into four steps. The first step deals
with processing structural information encompassing nodes, node features, edges, and
if available, edge features. The second step is the processing of object points. In this
stage, the points undergo downsampling to a predefined resolution for every object in
the subscene. This is crucial as processing object points requires significant processing
power. They are downsampled so that essential information is retained and computational
efficiency is optimized in the process. In the third step, object features which include
geometric features are processed. The final step consists of edge feature processing.
Edge features include the semantic relationships between the node entities.

The pre-processing algorithm for each of these steps for each sub-scene is shown in
section 4.3.1, section 4.3.2 and section 4.3.3. These algorithms are designed to organize
and standardize information from different subscenes systematically.

4.3.1 Processing Structural Information

The algorithm here deals with the structure of the graph that is required by the structural
encoder. This portion deals with the structure of the knowledge graph.

Center of each subscene is determined by computing the mean of its convex hull. A
root node is then identified. Root node has the highest number of outgoing relationships
among all the obejcts in the scene. The relative translation between the root nodes’ barry
center and the center of other objects within the scene is then calculated. These computed
values serve as the node features in the graph structure.

For the information to flow within the graph, edges are essential along with node features.
All the edges existing within the subscene are extracted. The algorithm to extract the node
features and edges is shown in Algorithm 4.6.

33

Algorithm 4.6: Subscenes Preprocessing
1 f o r subscene i n a l l subscenes generated
2 ob jec t i ds ← { }
3 g loba l ob jec t i ds ← { }
4 ob jec t a t r r i b u t e s ← { }
5 bar ry centers ← { }
6

7 ob jec t data ← ob jec tda ta [subscene]
8 r e l a t i o n data ← r e l a t i o n d a t a [subscene]
9 p ly data ← load p ly data (subscene)

10 po in t s ← p ly data [" x " , " y " , " z "]
11 r e s o l u t i o n ← I n i t i a l i z e
12

13 f o r id , ob jec t i n enumerate (ob jec t data)
14 ob jec t a t t r i b u t e ← ob jec t [" a t r i b u t e s "]
15 ob jec t i d = ob jec t [" i d "]
16

17 g loba l ob jec t i d ← ob jec t [" g loba l i d "]
18 ob jec t p ts ← where (p l y data [" o b j e c t I d "] == ob jec t i d)
19 ob jec t pc l ← po in t s [ob jec t p ts]
20 i f ob jec t pc l . shape [0] < read_from_ con f i g (" min_ob j_ po in t s ")
21 cont inue
22 h u l l ← ConvexHull (ob jec t pc l)
23 cx , cy , cz ← mean(h u l l)
24 # Decrease the po in t dens i t y o f r e s o l u t i o n f o r each ob jec t
25 ob jec t po in t s ← pc l _ f a r t h e s t _sample (ob jec t pcl , r e s o l u t i o n)
26

27 bar ry center ← cx , cy , cz
28 ob jec t i ds ← append (ob jec t i d)
29 g loba l ob jec t i ds ← append { g loba l ob jec t i d }
30 bar ry centers ← append (bar ry center)
31 ob jec t a t t r i b u t e s ← aapend (ob jec t a r r i b u t e)
32

33 t r i p l e s ← { }
34 pa i r s ← { }
35 edges ← { }
36 f o r id , ob j i d 1 , ob j i d 2 , r e l a t i o n i n enumerate (r e l a t i o n data)
37 i f ob j i d 1 and obj i d 2 i n ob jec t i ds
38 t r i p l e s ← append (ob j i d 1 , ob j i d 2)
39 edges ← append (c a l l REL2ID (r e l a t i o n))
40

41 i f ob j i d 1 and obj i d 2 not i n p a i r s
42 pa i r s ← append (ob j i d 1 , ob j i d 2)
43

44 # get ob j w i th high number o f r e l a t i o n
45 r oo t ob j i dx ← maxre la t ion (pa i r s)
46 r e l a t i v e t r a n s l a t i o n ← { }
47 f o r bar ry center i n bar ry centers
48 r e l a t i v e t r a n s l a t i o n ← append (bar ry center [r oo t ob j i dx] ,

bar ry center)
49

50 f o r i d 1 i n ob jec t i ds :
51 f o r i d 2 i n ob jec t i ds :
52 i f (i , j) not i n pa i r s and i f i != j
53 t r i p l e s ← append (i d 1 , i d 2 , REL2ID (" none "))
54 pa i r s ← append (i d 1 , i d 2)
55 edges ← append (c a l l REL2ID (" none "))
56

57 save data_ d i c t [subscene]

34

4.3.2 Processing Attribute Information

The attributes associated with an object in a given subscene undergo processing to
facilitate their integration into the attribute encoder.

Three types of attribute information are considered, object attributes calculated by the super
point graph formulation (LANDRIEU & SIMONOVSKY, 2018a), ifc embeddings proposed by
KAYHANI et al. (2023), and a combination of both.

The algorithm for processing geometric features from super point graph formulation is
not shown here because it has already been saved into a dictionary file while processing
structural information in 4.3.1

The algorithm shown in 4.7 adds global information, one hot encoding of object labels, to
the attribute feature.

Algorithm 4.7: IFC2VEC Embeddings Processing
1 f o r subscene i n a l l subscenes
2 data_ d i c t ← load data_ d i c t [subscene]
3 i f c 2vecemb ← { }
4 f o r ob jec t i n data_ d i c t [" ob jec ts "]
5 i f c 2vecemb ← append (i f c 2vecembeddings (ob jec t [" l a b e l "]))
6 save i f c 2vecemb i n data_ d i c t [subscene]

The algorithm shown in 4.8 combines global information in ifc2vec embeddings to local-
level object features calculated using super point graph formulation.

Algorithm 4.8: Combining geometric and ifc2vec embeddings
1 f o r subscene i n a l l subscenes
2 data_ d i c t ← load data_ d i c t [subscene]
3 combined a t t r i b u t e s ← { }
4 f o r ob jec t i n data_ d i c t [" ob jec ts "] :
5 combined a t t r i b u t e s ← append (data_ d i c t [" ob jec t a t t r i b u t e s] ,

data_ d i c t [" i f c 2vecemb "]
6 save i n the same data d i c t [subscene]

4.3.3 Processing Relation Information

Super Point graph formulation provides bidirectional relational information. There’s no
semantic information about the label that could improve the alignment metric. Both the
approaches are tried and the results are shown in chapter 5. The edge feature for each
node in a sub-scene is converted into a feature vector using the bag-of-words (BOW)
(QADER et al., 2019) technique. For each object, the frequency of occurrence of a type of
relation is used as a feature.

Algorithm for processing relation information is shown in 4.9

35

Algorithm 4.9: Processing Relation

1 f o r subscene i n a l l subscenes
2 data_ d i c t ← load data_ d i c t [subscene]
3 word2 Idx ← load_from (REL2IDX . keys)
4 edges , t r i p l e s ← data_ d i c t [" edges "] , data_ d i c t [" t r i p l e s "]
5 e n t i t i e s edge names ← [None] * len (data_ d i c t [" ob jec t _ ids "])
6 f o r i dx i n len (edges)
7 edge = edges [i dx]
8 e n t i t y = edge [0]
9 r e l name = IDX2REL(t r i p l e s [i dx] [2])

10 e n t i t i e s edge names ← append (r e l name)
11 e n t i t y edge f e a t ← { }
12 f o r e n t i t y edge name i n e n t i t i e s edge names
13 e n t i t y edge f e a t ← append (makefeaturevector (e n t i t y edge name))

Super point graph formulation only provides adjacency information. So, two building
elements are either "connected" or not. Elements having no adjacency are considered
to have a relation of type "none". This information is then used to get a two-dimensional
feature vector, where the first dimension represents bag-of-words for "connected" and the
second dimension represents bag-of-words for "none" for each object.

Besides this, another formulation is also used. Using the information obtained from the
super point graph formulation, a semantic label is added according to the relative position
of one building element with the other. The algorithm to process this information is also
the same as shown in Algorithm 4.9.

4.4 Multi-Modal Encoder

There are four different individual encoders as a part of a multi-modal encoder. They each
work separately on different types of data. Individual encoders can be switched on and off
depending on requirements. All encoders work simultaneously and embeddings in joint
space are produced which is then used to check how the model performs with alignment.

1. Structure Encoder (ϕS)

Multi-headed Graph Attention Network followed by a linear layer form structure encoder.
A linear layer is needed to get the embeddings down to a specific size, which is a hyper-
parameter.

GATConv module from PyTorch geometric is used. A subscene is taken and a root node
is obtained. In a subscene, each node represents an object, and the root node is the
one that has the highest number of connections among all nodes in the subscene. Node
features are relative translations of a given node with respect to the root node, which is
done during the preprocessing step, described in 4.3.1. So each node will have a feature
size of 3.

36

Figure 4.7: Structure Encoder

|V| represents the cardinality of objects in the subscene. Two GATConv layers are used,
and the output is fed to a feed-forward network which down-samples the embeddings from
256 to 100. The final output embedding size is |V| × 100.

2. Object Encoder (ϕP)

PointNet, (QI et al., 2017) architecture encodes the geometric information in the object
points. This module is computationally expensive, so the points are down-sampled before
extracting the features. (SARKAR et al., 2023) demonstrated state-of-the-art performance
with 512 points per object per scene. They also obtained similar performance metrics
using only 64 points, with a marginal drop of 3% on MRR.

The dataset used by this thesis work undergoes downsampling during the preprocessing
phase while undergoing super point graph formulation,(LANDRIEU & SIMONOVSKY, 2018a).
Therefore, the choice is made to retain 512 points per object per scene as used by SARKAR

et al. (2023).

Figure 4.8: Object Encoder

37

Instead of the entire PointNet architecture, only a subset of the network encodes the point
features. Three Conv1d layers, batchnorm1d layers with relu as an activation function are
used with feed-forward network to reduce the feature from |V| × 3× 512 to final output
object embedding size of |V| × 100.

3. Attribute MetaEncoder (ϕA)

A feed-forward network is used to map the features to a specific dimension. Three different
types of attributes are used to see which results in the best alignment results. Geometric
features, IFC embeddings, and a combination of both were used. This encoder maps from
|V| ×Attribute_type_size to final attribute embeddings of size |V| × 100. Attribute
size for 12 for geometric embeddings, 182 for IFC embeddings, and 194 for combined
embeddings. Geometric features as discussed in section 3.2 are used.

Figure 4.9: Attribute Encoder. Fig a) Geometric Attribute Encoder (ϕA
g). Fig b) IFC

Embeddings Attribute Encoder (ϕA
i). Fig c) Combined geometric and IFC Embeddings

Attribute Encoder (ϕA
g+i)

These attribute encoders are not used in parallel or conjunction. Fig 4.10 shows the
available attribute encoders. Only one of them can be used at a time. No matter which
type of attribute encoder has been used, the final output embedding size for all the cases
is |V| × 100.

4. Relation MetaEncoder (ϕR)

A feed-forward network is employed to get relational embeddings like an attribute encoder.
Two different relational encoders are formulated according to the type of data. First, rela-
tional information between nodes as discussed in section 3.2.2 of chapter 3, using delauny
triangulation method, is used. This information only gives us bidirectional information,

38

whether two elements are touching. So the relational dimension in this case is 2. This
information is encoded and the final embedding size of |V| × 100 is outputted.

Semantic meaning is added to the relation using "connected" or "none" information
between the nodes for the second one. Semantic meaning is derived depending upon
the relative position of one object with respect to another object. So, now the relation
dimension changes from the previous value of 2 to 11. Relational information is changed
to one of behind, front, left, right, above, down, standing on, embedded, attached,
connected, same object type, none. Then this relation information is first converted
into bag-of-words (BOW) feature vector as discussed in section 4.3.3 and passed to the
feed-forward network to get a final embedding size of |v| × 100.

Figure 4.10: Relational Encoder. Top arrow represents embeddings obtained using 2
features. Bottom arrow represents embeddings obtained using 10 features

4.5 Network Architecture

The previous section detailed the available encoders and how they encode information
from a subscene. However, one data instance consists of two different sub-scenes with
some overlap. So the information from both the subscenes needs to be concatenated to
get embeddings in the joint space. This network is termed as TUMAligner.

Figure 4.11 shows the overview of TUMAligner. Embeddings from all the individual models
are combined to form joint embeddings. |Vs1| represents the cardinality of objects in
subscene 1 and |Vs2| in subscene 2. If all the modalities are used then the total size of
embeddings produced in the joint embedding space is (|Vs1|+ |Vs2|)× 400.

The generation process of joint embeddings is explained in section 3.4.3. In the network,
a fusion layer, takes the embeddings produced by individual modalities, normalizes them
using L-2 normalization and assigns learnable weights to each modality. These weights
represent the importance of each modality in the joint embedding space. Then, they are

39

Figure 4.11: Overview of TUM Aligner

concatenated to form joint embeddings, which are used downstream for finding node
correspondences and finding the transformation matrix between the subscenes.

4.6 Node Correspondences

After the normalized joint embeddings (ϕ̂i) is obtained, a distance matrix is calculated,
which contains the list of node ids. Then it is sorted from highest to lowest to get the
ranked order. The algorithm to obtain node correspondences is shown below.

Algorithm 4.10: Node Correspondences
1 Get J o i n t Embedding
2 k ← i n i t i a l i z e
3 d i s t mat r i x ← 1 − ϕ̂iϕ̂

T
i

4 ranked_ l i s t ← s o r t (d i s t _ mat r i x)
5 node_ cor rs = []
6 f o r i d i n src_ ob jec ts
7 e n t i t y _rank ← ranked_ l i s t [i d]
8 remove (element a t e n t i t y _rank [i d])
9 get top k p r e d i c t i o n s ← e n t i t y _rank [: k]

10 f o r k_ i d i n k :
11 i f not e n t i t y _rank [k_ i d] < src_ob j_count
12 node_ cor rs ← append (id , e n t i t y _rank [k_ i d])
13 get ob jec t i ds corresponding to node correspondences

4.7 Registration

FindRidigTransform function from pygcransac library is utilized to get an estimated transfor-
mation between the source points and reference points. After the node correspondences
are obtained, points corresponding to ids in both source and reference are extracted.
Then point correspondences are obtained using a method implemented by QIN et al.
(2022). These correspondences are then passed to findrigidtransform method to obtain
the transformation.

40

Algorithm 4.11: Estimating Transformation

1 Get ground t r u t h node cor res po in t s i n both src and r e f
2 I n i t i a l i z e Ransac parameters
3 f o r node i n node_ cor rs :
4 po in t s _src ← src_ po in t s [o b j e c t I d == node_ co r r [0]]
5 po in t s _ r e f ← r e f _ po in t s [o b j e c t I d == node_ co r r [1]]
6 r e f _ co r r _po in ts , s rc_ co r r _ po in t s ← append (p e r f o r m r e g i s t r a t i o n (

po in t s _src , po in t s _ r e f) from Geotransformer)
7 src_ co r r ← concatenate (src _ co r r _ po in t s)
8 r e f _ co r r ← concatenate (r e f _ co r r _ po in t s)
9 cor rs _ransac ← concatenate (src _corr , r e f _ co r r)

10 est_ t rans fo rma t i on ← f i ndR ig idTrans fo rm (co r rs _ransac , ransac_
parameters)

41

Chapter 5

Results

Different experiments were done with different modules and attributes. Different types of
datasets were used. Point clouds with just architectural information and with architectural
and furniture information. Both alignment results and registration results for all considered
cases will be discussed in this chapter in great detail. The first two sections deal with
graph alignment of point cloud and point cloud and the third section deals with leveraging
that result to align a point cloud and its bim counterpart.

5.1 Architectural Data

Data containing only the information of architectural elements were used in this experiment.
The number of different semantic classes in this case was 16.

Table 5.1: List of Architectural Classes

IfcBeam IfcColumn IfcDoor IfcSlab

IfcWall IfcWindow IfcAirTerminal IfcDuctFitting

IfcDuctSegment IfcSpaceHeater IfcPipeSegment IfcSanitaryTerminal

IfcUnitaryEquipment IfcPipeFitting IfcStairFlight IfcDamper

In the sections following this, only the overall loss is shown. All the other losses are shown
in appendix B. Every scenario listed in the sections below shows a comprehensive loss
graph alongside alignment results. Subsequently, the registration results are computed
and compared with those obtained from GeoTransformer, a state-of-the-art registration
method. Listing the registration result of every scene is avoided and a handful of the
results since registration metrics for different cases are similar, are listed in B.1.6.1.

42

5.1.1 Case 1: Structure and Object Encoder

Figure 5.1: Overall Loss of ϕS + ϕP

Metric TUMAligner
MRR 0.8748
hits@1 0.8195
hits@2 0.8787
hits@3 0.9167
hits@4 0.9345
hits@5 0.9469

Table 5.2: Alignment Metric of ϕS + ϕP

The loss graph shows that the model has converged and is not overfitting. An alignment
score of 0.87 is observed when structure and object information is incorporated into the
model. The registration results for this case are shown here in table 5.3.

Table 5.3: Comparison of Registration results of ϕS + ϕP with GeoTransfomer

Metric TUMAligner (ϕS + ϕP) GeoTransformer

CD 0.0040 0.0228

RTE 0.0028 0.0088

RRE 0.0821 0.2975

RR 1.00 1.00

5.1.2 Case 2: Structure, Object and Relational Encoder

Figure 5.2: Overall Loss of ϕS + ϕP + ϕR

Metric TUMAligner
MRR 0.8868
hits@1 0.8275
hits@2 0.8995
hits@3 0.9374
hits@4 0.9561
hits@5 0.9650

Table 5.4: Alignment Metric of ϕS+ϕP+ϕR

A relational encoder where relation information is a relation feature vector of 2 is incorpo-
rated into the model along with structure and object information. Alignment scores improve
slightly by 1% from the base case.

43

Table 5.5: Comparison of Registration results of ϕS + ϕP + ϕR with GeoTransfomer

Metric TUMAligner (ϕS + ϕP ++ϕR) GeoTransformer

CD 0.0040 0.0238

RTE 0.0035 0.0090

RRE 0.0330 0.3092

RR 1.00 1.00

A relational encoder with a relation feature vector of 11 was also incorporated. The
experiment was first conducted on a different model, shown in table 5.12. Since no
significant deviations were observed in the results when new semantics were fed to the
model, therefore, a decision was made to keep the original bidirectional semantics.

5.1.3 Case 3: Structure, Object, Relational and Attribute (ifc2vec) Encoder

Figure 5.3: Overall Loss of ϕS + ϕP + ϕR +
ϕA
i

Metric TUMAligner
MRR 0.9336
hits@1 0.8933
hits@2 0.9484
hits@3 0.9709
hits@4 0.9807
hits@5 0.9854

Table 5.6: Alignment Metric of ϕS + ϕP +
ϕR + ϕA

i

In this case, along with the existing information, a global-level feature in the form of a
semantic label of the object is included in the model to study its effects. Introducing this
global-level feature results in an enhancement of the alignment metric from 0.87 to 0.93.
Improvements in hits@k are also noticeable.

Table 5.7: Comparison of Registration results of ϕS + ϕP + ϕR + ϕA
i with GeoTransformer

Metric TUMAligner (ϕS + ϕP + ϕR + ϕA
i) GeoTransformer

CD 0.0031 0.0242

RTE 0.0036 0.0093

RRE 0.0682 0.3272

RR 1.00 1.00

Registration results also demonstrate improvement in comparison to GeoTransformer. All
the metrics used for registration show improvement as seen in table 5.7.

44

5.1.4 Case 4: Structure, Object, Relational and Attribute (geometric) En-
coder

Figure 5.4: Overall Loss of ϕS + ϕP + ϕR +
ϕA
g

Metric TUMAligner
MRR 0.9341
hits@1 0.8959
hits@2 0.9502
hits@3 0.9641
hits@4 0.9739
hits@5 0.9807

Table 5.8: Alignment Metric of ϕS + ϕP +
ϕR + ϕA

g

Geometric features of objects were obtained when using super point graph formulation on
the point sets. These instance-level features were introduced to the attribute encoder to
investigate its effects.

Table 5.9: Comparison of Registration results of ϕS + ϕP + ϕR + ϕA
g with GeoTransfomer

Metric TUMAligner (ϕS + ϕP + ϕR + ϕA
g) GeoTransformer

CD 0.0041 0.0230

RTE 0.0037 0.0098

RRE 0.0244 0.3055

RR 1.00 1.00

5.1.5 Case 5: Structure, Object, Relational and Attribute (combined) En-
coder

Figure 5.5: Overall Loss of ϕS + ϕP + ϕR +
ϕA
i+g

Metric TUMAligner
MRR 0.9712
hits@1 0.9522
hits@2 0.9789
hits@3 0.9899
hits@4 0.9943
hits@5 0.9964

Table 5.10: Alignment Metric of ϕS + ϕP +
ϕR + ϕA

i+g

45

In this experiment, the global and local level features were combined to see if that would
improve the model’s performance. All the information available about a subscene was fed
to the model.

Table 5.11: Comparison of Registration results of ϕS +ϕP +ϕR+ϕA
i+g with GeoTransfomer

Metric TUMAligner (ϕS + ϕP + ϕR + ϕA
i+g) GeoTransformer

CD 0.0018 0.0246

RTE 0.0016 0.0096

RRE 0.0085 0.3253

RR 1.00 1.00

5.1.6 Case 6: Structure, Relation and Attribute Encoder(combined)

Here, the object encoder was dropped as the network encodes information about the geo-
metric characteristics of point sets. This decision was taken as the geometric information
was already available from the superpoint graph formulation for each object.

At first, a run with newly defined relationships was conducted for this case, with 11 different
types of relations. The result can be observed in table 5.12.

Table 5.12: Alignment Metric of ϕS + ϕR + ϕA
i+g with changed relationship semantics

Metric TUMAligner

MRR 0.9953

hits@1 0.9912

hits@2 0.9981

hits@3 0.9983

hits@4 0.9988

hits@5 0.9992

Then the semantics were reverted to the original to study the effects.

Figure 5.6: Overall Loss of ϕS + ϕP + ϕR +
ϕA
i+g

Metric TUMAligner
MRR 0.9975
hits@1 0.9959
hits@2 0.9985
hits@3 0.9985
hits@4 0.9988
hits@5 0.9994

Table 5.13: Alignment Metric of ϕS + ϕR +
ϕA
i+g

46

This experiment combined the global and local level features to see if that would improve
the model’s performance. All the information available about a subscene was fed to the
model.

Table 5.14: Comparison of Registration results of ϕS + ϕR + ϕA
i+g with GeoTransfomer

Metric TUMAligner (ϕS + ϕP + ϕR + ϕA
i+g) GeoTransformer

CD 0.0047 0.0276

RTE 0.0030 0.0120

RRE 0.0952 0.3701

RR 1.00 1.00

The alignment result demonstrates drastic improvement compared to all the cases.

5.1.7 Results Comparison

Table 5.15: Comparison of Alignment Results between different models

Method MRR hits@1 hits@2 hits@3 hits@4 hits@5

ϕS + ϕP 0.8748 0.8195 0.8787 0.9167 0.9345 0.9469

ϕS + ϕP + ϕR 0.8868 0.8275 0.8995 0.9374 0.9561 0.9650

ϕS + ϕP + ϕR + ϕA
i 0.9336 0.8933 0.9484 0.9709 0.9807 0.9854

ϕS + ϕP + ϕR + ϕA
g 0.9341 0.8959 0.9502 0.9641 0.9739 0.9807

ϕS + ϕP + ϕR + ϕA
i+g 0.9712 0.9522 0.9789 0.9899 0.9943 0.9964

ϕS + ϕR + ϕA
i+g 0.9975 0.9959 0.9985 0.9985 0.9988 0.9994

Table 5.16: Comparison of Registration Results between different models

Method CD RTE RRE

ϕS + ϕP 0.0040 0.0028 0.0821

ϕS + ϕP + ϕR 0.0040 0.0035 0.0330

ϕS + ϕP + ϕR + ϕA
i 0.0031 0.0036 0.0682

ϕS + ϕP + ϕR + ϕA
g 0.0041 0.0037 0.0244

ϕS + ϕP + ϕR + ϕA
i+g 0.0018 0.0016 0.0085

ϕS + ϕR + ϕA
i+g 0.0047 0.0030 0.0952

Table 5.15 and Table 5.16 highlight the alignment and registration metrics of the best-
performing and the second-best-performing model. At every level, as new information
related to the subscenes was fed, the alignment metric and the registration metric went up.
It can also be observed that the alignment metric went up when the point encoder was
dropped.

47

5.1.8 Ablation Study

A series of ablation studies on various cases were conducted to assess the robustness of
the model. The investigation involved three cases: changing node semantics, removing
nodes, and removing edges.

For each case, two distinct scenarios were run to understand how changes to the training
and validation sets affect the model’s performance. In the first scenario, only the validation
set was modified keeping the training set intact. The validation set was kept intact in the
second case, and only the training set was altered.

5.1.8.1 Changing Node Semantic

The semantics of nodes were changed using the IFC2VEC embeddings, (KAYHANI et al.,
2023). Initially, the label of a randomly selected node was obtained, and its corresponding
IFC2VEC embeddings was calculated. Using cosine similarity, another label with the
highest similarity with the node in the embedding space was assigned as the new label.
Between 15% to 41% of the nodes in a given subscene were randomly selected and their
semantics changed.

Figure 5.7: Altering Node Semantic Example

Table 5.17: Node Semantic Changed

Dataset MRR hits@1 hits@2 hits@3 hits@4 hits@5

Val Changed 0.7186 0.6742 0.6978 0.7178 0.7389 0.7546

Train Changed 0.9791 0.9648 0.9866 0.9940 0.9940 0.9943

Here, it is observed that changing node semantics in the validation degrades the model’s
performance. But, when semantics are altered in training data, the model’s performance
almost stays the same, indicated by the metric MRR. This phenomenon can be attributed
to the inclusion of altered data in the training process. Since the model dynamically
learns and adjusts the weight of each modality in the final joint embeddings, no significant
performance degradation is observed.

48

5.1.8.2 Removing Edges

Out of all the edges defined in the preprocessing step, between 15% to 41% of the edges
are selected randomly and removed. The result is tabulated below. Removing edges did
not impact the performance of the model by much.

Table 5.18: Removing Edges

Dataset MRR hits@1 hits@2 hits@3 hits@4 hits@5

Val Changed 0.9951 0.9922 0.9951 0.9982 1.0000 1.0000

Train Changed 0.9988 0.9979 0.999 1.0000 1.0000 1.0000

5.1.8.3 Removing Nodes

Similar to removing edges, around 15% to 41% of the nodes in a subscene is selected
and removed and the performance is tabulated below.

Table 5.19: Removing Nodes

Dataset MRR hits@1 hits@2 hits@3 hits@4 hits@5

Val Changed 0.9958 0.9923 0.9982 1.000 1.0000 1.0000

Train Changed 0.9941 0.9892 0.9971 1.000 1.000 1.000

Compared to the base model, the model’s performance improves when random nodes are
removed from the training set.

5.2 Architectural Data with furniture Elements

Data containing information on architectural elements and furniture elements were used
in this experiment. Similar experiments as in the section 5.1 were also performed in this
case. In this case, the number of semantic classes was 7. Unlike the previous section,
here subscenes are transformed randomly and included in both the training and
validation sets.

Only the detail results of ϕS+ϕP+ϕR+ϕA
i+g and the best-performing model, ϕS+ϕR+ϕA

i+g

are listed down in the following sections. It is done to avoid listing every attempted model
in detail. However, in section 5.2.3 the final results of all tried models are tabulated.

Table 5.20: List of Architectural and Furniture Classes

IfcDoor IfcRoof IfcSlab IfcWall

IfcFurniture IfcWindow IfcSystemFurnitureElement

49

5.2.1 Case 1: Structure, Object, Relation, and Attribute (combined) Encoder

Metric TUMAligner
MRR 0.9388
hits@1 0.9307
hits@2 0.9507
hits@3 0.9714
hits@4 0.9767
hits@5 0.9814

Table 5.21: Alignment Metric

Metric TUMAligner GeoTransformer

CD 0.0860 0.0967

RTE 0.2154 0.2189

RRE 1.8218 1.8218

RR 1.00 1.00

Table 5.22: Comparison of Registration re-
sults of with GeoTransfomer

5.2.2 Case 2: Structure, Relation, and Attribute (combined) Encoder

Metric TUMAligner
MRR 0.9718
hits@1 0.9608
hits@2 0.9709
hits@3 0.9804
hits@4 0.9820
hits@5 0.9851

Table 5.23: Alignment Metric

Metric TUMAligner GeoTransformer

CD 0.0487 0.0611

RTE 0.1220 0.1264

RRE 0.9563 1.1128

RR 1.00 1.00

Table 5.24: Comparison of Registration re-
sults of with GeoTransfomer

5.2.3 Results Comparison

Table 5.25: Comparison of Alignment Results between different models for data with
furniture

Method MRR hits@1 hits@2 hits@3 hits@4 hits@5

ϕS + ϕP 0.7958 0.7100 0.8005 0.8545 0.8862 0.9095

ϕS + ϕP + ϕR 0.8064 0.7328 0.8037 0.8555 0.8761 0.8994

ϕS + ϕP + ϕR + ϕA
i 0.8541 0.7931 0.8550 0.8936 0.9169 0.9418

ϕS + ϕP + ϕR + ϕA
g 0.8981 0.8566 0.9052 0.9243 0.9386 0.9481

ϕS + ϕP + ϕR + ϕA
i+g 0.9388 0.9037 0.9507 0.9714 0.9767 0.9814

ϕS + ϕR + ϕA
i+g 0.9718 0.9608 0.9709 0.9804 0.9820 0.9851

50

Table 5.26: Comparison of Registration Results between different models for data with
furniture

Method CD RTE RRE

ϕS + ϕP 0.0991 0.2434 1.6379

ϕS + ϕP + ϕR 0.0200 0.0245 0.1280

ϕS + ϕP + ϕR + ϕA
i 0.0671 0.1686 1.073

ϕS + ϕP + ϕR + ϕA
g 0.0494 0.1234 0.9690

ϕS + ϕP + ϕR + ϕA
i+g 0.0860 0.2154 1.6860

ϕS + ϕR + ϕA
i+g 0.0487 0.1220 0.9563

As observed in the previous section, the model where structure, relation, and combined
attributes were fed, has the best alignment metric out of all the models.

5.2.4 Ablation Study

A similar study is performed as described in section 5.1.8. The results for each of the
cases are tabulated in table 5.27, table 5.28 and table 5.29

5.2.4.1 Changing Node Semantic

Table 5.27: Node Semantic Changed for data with furniture

Dataset MRR hits@1 hits@2 hits@3 hits@4 hits@5

Val Changed 0.6253 0.5608 0.5920 0.6211 0.6460 0.6603

Train Changed 0.9656 0.9555 0.9619 0.9687 0.9746 0.9793

5.2.4.2 Removing Edges

Table 5.28: Removing Edges for data with furniture

Dataset MRR hits@1 hits@2 hits@3 hits@4 hits@5

Val Changed 0.9598 0.9370 0.9703 0.9804 0.9820 0.9846

Train Changed 0.9718 0.9608 0.9709 0.9798 0.9820 0.9851

5.2.4.3 Removing Nodes

Table 5.29: Removing Nodes for data with furniture

Dataset MRR hits@1 hits@2 hits@3 hits@4 hits@5

Val Changed 0.9699 0.9558 0.9721 0.9779 0.9849 0.9895

Train Changed 0.9780 0.9677 0.9777 0.9888 0.9904 0.9915

51

5.3 Point Cloud and BIM Data

Leveraging the result of the previous section, a study was carried out to see how well a
BIM model would match its point cloud counterpart. The best-performing model was used.
The results are tabulated in table 5.30.

Table 5.30: Alignment of Point Cloud to BIM

MRR hits@1 hits@2 hits@3 hits@4 hits@5

0.5368 0.4545 0.4545 0.5454 0.5454 0.5454

The MRR score sharply declined from 0.97 to 0.53, a drop of 45%. Not only that, but the
hits@K also shows a noticeable decline.

52

Chapter 6

Discussion and Limitations

In this section results of the previous chapter 5 are discussed and the objectives set at the
section 1.3 are addressed.

6.1 Discussion

6.1.1 Architectural Data

In the context where only architectural elements were considered, the alignment score,
MRR increased as more information about the scene was given to the model. With the
addition of global-level and local-level features, the MRR score went to 0.97 from 0.87. Just
considering hits@1, where K=1, which went from 0.82 to 0.95, shows that the model found
the correct entity pair (matched nodes) 95% of the time. In the case of hits@5, where K=5,
shows the top 5 predicted entity pairs for a given source object, the probability of finding
the correct node pair went up to almost 100%. It is also observed that using all modalities
at K=3 outperforms all the other combinations, as seen in fig. 6.1 Hence, enriching the
graph certainly increased the graph alignment score. Despite all this improvement in
alignment, this was the second-best performing model.

Figure 6.1: Architectural Data Alignment Metric Comparison

Another highlight of this thesis work is that, if geometric features are available then
the point feature extractor module can be dropped with no drop in performance. This
leads to significantly faster computation time as no points are processed during training or

53

validation. So, for only graph-linking tasks geometric properties and object information
regarding the relative position are enough to find node correspondences.

After the node correspondences are found, the source and reference points are required,
but processing them is unnecessary. As no downsampling is done to the points, finding
rigid transformation between the source and the target pcd might take extra time, but IR
will increase as the points are densely packed.

The ablation study showed that in cases where the node semantics were changed, having
no information about the object label is better than having wrong semantic labels in the
validation set. If there’s a scenario where semantic information is only available for the
training set, and almost little or no semantic information is available for the validation set,
then the study shows that it is better to exclude that information from everywhere and train
the entity alignment module. Including semantic information in training but having wrong
information in validation time shows a steep decrease in alignment score from 0.97 to
0.79, a drop of 18%.

Figure 6.2: Node Semantic Changed, Alignment Metric Comparison, Architectural Data

Whereas, removing edges did not significantly affect the model’s performance. In either
case, where it was removed from the training or validation set, no more than 1% deviation
from the best scenario was observed.

6.1.2 Architectural Data with Furniture Elements

In this scenario, along with architectural elements furniture elements were also present
in both the training and validation set. To emulate real-world scenarios where the data
streams are not of similar dimensions, a subscene and the scene where the subscene was
derived from were taken as source and target. Here, the overlap is essentially 1. Also, two

54

subscenes are not always aligned perfectly in the real world, so random transformations
were added to the source, which randomly rotates between 1 and 7 degrees in all directions.
In addition to that, random translation was applied as well. Subscenes with overlap greater
than 0.1 were considered in this case.

Since randomly transformed subscenes were added, a drop in alignment metric is ob-
served in the base model. A drop from 0.87 to 0.79 in the alignment metric is observed.
However, similar to the previous section, as the complexity of the model increased, an
increase in the model’s overall performance was observed. The second-best model previ-
ously had an alignment score of 0.97 but in this scenario, an alignment metric of 0.93 was
observed.

An alignment score of 0.97 is observed in the best-performing model as shown in fig. 6.3.
The corresponding values are presented in fig. 6.3. Even after the transformed subscenes
and full scenes were modeled in the data, TUMAligner showed that it could learn features
and retain a high degree of alignment. Despite differences in datasets used, SARKAR

et al., 2023 in their best-performing model had an alignment score of 0.95 which did not
include any transformed subscenes. This showcases the potential of TUMAligner in scene
alignment and downstream registration tasks.

Figure 6.3: Furniture Data Alignment Metric Comparison

In the case of the ablation study, results similar to those of the previous section were
observed. A drop of 36% in performance was observed when trying to validate the data
with the wrong semantic level as seen in fig. 6.4, from a reference value of 0.97 to 0.62.
The data labels are shown in the figure when node semantics were changed for train
data as well as validation data. It can be seen that the model performs better when label
information is not included in comparison to when wrong semantics information is added
to the validation set. No significant changes were observed when edges and nodes were
removed.

55

Figure 6.4: Node Semantic Changed, Alignment Metric Comparison

Interestingly, when nodes were removed randomly from the train set, an increase
in the model’s performance was observed. Even though the increase in perfor-
mance is about 1%, it is hypothesized that this enhancement can be attributed to a
phenomenon akin to dropout regularization.

Therefore, an experiment was conducted where a fixed number of nodes were removed
for each subscene to see the change in MRR score. A similar experiment was done in the
case of edges as well. The results are shown below.

Figure 6.5: MRR vs % of Nodes Removed

In the case of node removal, a drop in performance is observed when at least 55% of the
nodes were removed from each subscene. Whereas, in the case of edge removal, no effect
on performance was seen even when removing 65% of the relationships, showcasing
that the semantics of the relationship do not matter as long as there is a mechanism for
information flow in the network.

56

6.1.3 Point Cloud and BIM

The alignment result obtained in table 5.30 shows the importance of a separate entity
alignment module for BIM and point cloud.

A thing to consider is that the alignment result was obtained on one data instance.
Even though the model’s performance cannot be generalized after running an experiment
on one instance, the low alignment metric emphasizes the need for a separate training
module for such cases.

Due to low node correspondence, registration results could not be obtained.

6.1.4 Use Case

In this section, the use cases of the results are discussed.

6.1.4.1 Label Information

An ablation study regarding wrong label information was done to study the effects of noise
on label accuracy. Labels on both PCD and BIM are obtained after passing the individual
data sets through a semantic segmentation model. As deep learning models are not
100% accurate, noises are introduced in the labels. The model can assign a label to
similar structures. For example, a wall and a slab generally have a similar structure from
the models’ point of view. So a wall might be labelled as slab and vice-versa. This was
modeled by taking the most similar label in ifc2vec embedding space.

As previously stated, a drop of 35% was observed in the alignment score when wrong label
information was incorporated into the validation set. Intriguingly, the model showcased
robust performance even when wrong label information was incorporated into training. As
a learnable parameter weights individual embeddings from modalities during training, the
model learns to disregard the noisy inputs in the learning process.

Furthermore, it was observed that the models’ performance was better when label infor-
mation was omitted compared to instances where wrong information was introduced in
the validation set.

6.1.4.2 Transformed Subscenes

The difficulties in integrating (aligning) two data streams were discussed in the chapter 1.
They do not have the same coordinate system, and even if they do, due to scanning
machine settings or some inherent error present, data streams do not perfectly align with
each other. Some degree of transformation is present between source and reference
data streams. This is why source scenes were transformed randomly, to mimic this
transformation observed in real life. When such scenes were incorporated into the learning

57

process, from table 5.25 it is observed that the alignment scores go down but when
geometric features are incorporated along with it an alignment score of 0.97 is achieved.

This shows that the model learns even when scenes are transformed and can find accurate
node correspondences, which is further used to find the transformation matrix between
the source and the reference scene. This way the two data streams can be aligned with
each other.

The main assumption is that data streams are already aligned to some degree, i.e., some
degree of overlap between the scenes.

6.1.4.3 Fully Overlapping Scene

Even though scenes with an overlap of 0.1 and 0.9 were only selected in the first case
which only had architectural elements. But in the case of elements with furniture, a scene,
and its full scene were also incorporated where the scene overlaps fully with its full scene.
The purpose was to study how well a small piece of a larger scene aligns.

6.1.4.4 Importance of adjacent elements

During the preprocessing phase, a link between all elements in a scene is created. This
way the model learns to prioritize the links that bring the similar elements closer and
push the dissimilar elements away. So, not knowing adjacent elements does not pose a
disadvantage when training an entity learning module.

6.1.4.5 Importance of Semantics in Relationship

Table 5.25 shows that knowing the semantics of relationships between the elements does
not significantly change the models’ performance. MRR score went from 0.79 to 0.80
between model ϕS + ϕP and ϕS + ϕP + ϕR. Hits@K are very much comparable between
the two models.

6.2 Limitations

The entity alignment module does not work if two similar scenes do not overlap at all. It
is assumed that some degree of alignment is already present. Even if two of the same
scenes are taken and a large amount transforms one, node alignment is not possible. This
is one of the major limitations of this method. Another iterative process must be used first
to bring the scenes together so there is some overlap.

Also, the two subscenes, that are to be aligned and registered need to be of similar size.
As for registration, indexes of the common elements in both the subscenes are required,
if one of the subscenes is very large compared to the other, scene_1/scene_2 → 0 as

58

scene_2 becomes larger and larger. This way the overlap tends to go to zero, and no
common elements are found in the smaller scene and hence no alignment and registration
will happen.

The relation semantic changer also does not work on objects not aligned with one of the
principal axes. So if slanted roofs and windows are present, it will give the wrong relation
semantics.

There are instances where the aligner does not produce registration results. The existence
of the same exact object in multiple replicas can explain such failure. Even with instance-
level geometric features, the registration cannot be recovered. When a scene is more
descriptive, accurate matching is recovered.

Figure 6.6: Failure Case

Information from BIM is extracted using IfcOpenshell. All the elements associated with a
space are extracted and visualized in Solibri for verification. Usually in BIM models slab
and wall geometry are modeled to span multiple rooms, which might or might not reflect
the as-built span of the concrete slab. Even though entity alignment is possible during
this case, this can be further broken down into slabs and walls of individual spaces for
accurate alignment.

The BIM Graph formulation did not have relationship information. So relationship infor-
mation from its point cloud counterpart was used. For objects belonging to BIM, it was
checked if the corresponding object was in the point cloud and relationships were imported.

One major limitation was that only one data instance was used for BIM-point cloud. The
approach was very manual as compared to point cloud-point cloud.

59

Chapter 7

Future Work and Conclusion

7.1 Future Work

The primary focus of this thesis work has been in the direction of integration of point cloud
data. Even though different studies were conducted, there are venues where this work
can be extended and improved. One interesting area would be the study of the removal of
links that are created during the pre-processing phase. This area was not fully explored
within the scope of this research. Different amounts of links can be removed and their
effect on the MRR score can be studied.

Also for Graph Attention Network, no features along the links were defined. A separate
relational encoder was used that defined the semantics of the links. An idea for future
implementation would be to implement the semantic feature inside as the link feature in
the network.

Another area that this thesis work does not explore is the scaling of the scenes. The point
cloud-to-point cloud integration happened at the subscene level. It would be interesting to
see how this module would on a formulation that is obtained at a floor level or multi-floor
level.

Since point cloud integration happened at the subscene level, reconstructing the whole 3D
scene from partial point clouds is another direction worth exploring. Essentially, studying
the problem of 3D point cloud mosaicking.

Whereas, not much was explored in integrating BIM and point cloud. The BIM components
like slab and wall span across multiple rooms so that they can be broken down into
space levels and alignment can be studied. It would also be exciting to see if the point
cloud-to-point cloud method would produce a better alignment score than what it currently
outputs.

The methodology used in this work is very manual in the BIM-PCD direction. This is where
further significant improvements can be made.

The alignment result showed the necessity of a separate entity alignment module, that
captures the complexity of the data coming from BIM. A separate entity alignment module
that works on BIM and PCD at subscene and scene levels can be a possible avenue for
furthering this work. Then the scaling of this new integration method can be studied at a
floor or multi-floor level.

60

7.2 Conclusion

This work mainly focused on the integration of point-cloud-to-point-cloud of a built reality
between two different time steps, which has its use case in progress monitoring. Graph
enriching methods were developed to enrich the point-cloud graph and to study its effect
on the alignment task. The methods developed showed that feeding the information-
rich graph to the Multi-Modal Encoder improved the model’s performance. The current
state-of-the-art SGAligner had the best alignment metric of 0.95 when used on normal
scenes, whereas the method developed here even with transformed subscenes had an
alignment metric of 0.97. Despite the differences in the datasets, the base-case model
had an alignment metric of 0.79 whereas SGAligner’s was 0.89. This bolsters the efficacy
of TUMAligner.

One of the major findings is that pointnet feature encoder can be dropped without loss
of performance. Out of the various enriching methods, geometric properties affected the
alignment metric the most. A byproduct of this outcome was that the training and inference
processing time was much faster as points did not have to be processed.

This research work shows that learning methods can be used to align 3D-built environ-
ments. However, it is important to note that while the methods developed demonstrate
improvements in aligning and registering 3D-built environments, it is also essential to
acknowledge the limitations of this approach. Some degree of overlap is assumed to be a
pre-existing knowledge.

While the result of the trained module was inefficient in point-cloud-BIM integration, it
certainly showed the need for its training pipeline. The limitations identified in this work
pave the way for potential avenues of research.

The method developed showed that TUMAligner is robust to varying degrees of overlaps. It
was also observed that aligning entities on the graph level can improve downstream tasks.
Even though the research focused on built environments, the method and the improvement
in registration show that the method can be leveraged for mapping, automation, robotics,
and medical imaging.

As decisions about the current state of the building are tied to integrating data from a
previous model, this work serves as a link between the two. Leveraging the learning-based
approach in built environments not only helps refine existing tools and methods but also
opens up new avenues to add substantial value.

61

Appendix A

Dataset

A.1 Subscenes

A.1.1 Dataset without Furniture

A.1.2 Dataset With Furniture

62

Appendix B

Results

B.1 Architectural Data

B.1.1 Case 1: Structure Encoder and Object Encoder

Figure B.1: ICL uni-modal and multi-modal Loss (ϕS + ϕP)

Figure B.2: IAL Loss (ϕS + ϕP)

63

B.1.2 Case 2: Structure, Object and Relational Encoder

Figure B.3: ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR)

Figure B.4: IAL Loss (ϕS + ϕP + ϕR)

B.1.3 Case 3: Structure, Object, Relational and Attribute(ifc2vec) Encoder

Figure B.5: ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR + ϕA
i)

64

Figure B.6: IAL Loss (ϕS + ϕP + ϕR + ϕA
i)

B.1.4 Case 4: Structure, Object, Relational and Attribute(geometric) En-
coder

Figure B.7: ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR + ϕA
g)

0.5

Figure B.8: IAL Loss (ϕS + ϕP + ϕR + ϕA
g)

65

B.1.5 Case 5: Structure, Object, Relational and Attribute(combined) En-
coder

Figure B.9: ICL uni-modal and multi-modal Loss (ϕS + ϕP + ϕR + ϕA
i+g)

Figure B.10: IAL Loss (ϕS + ϕP + ϕR + ϕA
i+g)

B.1.6 Case 6: Structure, Relational and Attribute(combined) Encoder

Figure B.11: ICL uni-modal and multi-modal Loss (ϕS + ϕR + ϕA
i+g)

66

Figure B.12: IAL Loss (ϕS + ϕR + ϕA
i+g)

B.1.6.1 Registration Results

The order of Images are

a) Ground Truth b) Transformation_applied c) GeoTransformer d) TUMAligner

67

Bibliography

MAIMAN, T. (1960). Stimulated optical radiation in ruby. Nature.
ARMENI, I., HE, Z.-Y., GWAK, J., ZAMIR, A. R., FISCHER, M., MALIK, J., & SAVARESE, S.

(2019). 3d scene graph: A structure for unified semantics, 3d space, and camera.
BEBIS, G., & GEORGIOPOULOS, M. (1994). Feed-forward neural networks. IEEE Potentials,

13(4), 27–31. https://doi.org/10.1109/45.329294
BENDER, E. A., & WILLIAMSON, S. G. (2010). Lists, decisions and graphs. with an intro-

duction to probability.
BERRENDORF, M., FAERMAN, E., MELNYCHUK, V., TRESP, V., & SEIDL, T. (2020). Knowl-

edge graph entity alignment with graph convolutional networks: Lessons learned.
Advances in Information Retrieval.

BESL, P. J., & MCKAY, N. D. (1992). Method for registration of 3-d shapes. Sensor Fusion
IV: Control Paradigms and Data Structures, 1611, 586–606.

BRAUN, A., TUTTAS, S., STILLA, U., & BORRMANN, A. (2018). Bim-based progress monitor-
ing. In A. BORRMANN, M. KÖNIG, C. KOCH, & J. BEETZ (Eds.), Building information
modeling - technology foundations and industry practice (pp. 463–476). Springer.
https://doi.org/10.1007/978-3-319-92862-3_28

BRAUN, A., TUTTAS, S., BORRMANN, A., & STILLA, U. (2020). Improving progress moni-
toring by fusing point clouds, semantic data and computer vision. Automation in
Construction, 116, 103210. https://doi.org/https://doi.org/10.1016/j.autcon.2020.
103210

Building information modeling: Technology foundations and industry practice. (2018).
Springer International Publishing. https://doi.org/10.1007/978-3-319-92862-3

CHEN, L., LI, Z., WANG, Y., XU, T., WANG, Z., & CHEN, E. (2020). Mmea: Entity alignment
for multi-modal knowledge graph. Knowledge Science, Engineering and Man-
agement: 13th International Conference, KSEM 2020, Hangzhou, China, August
28–30, 2020, Proceedings, Part I, 13, 134–147. https://arxiv.org/abs/2209.06111

CHERNOSKUTOV, M. (2021). Data structure for faster graph processing. 2021 Ural Sym-
posium on Biomedical Engineering, Radioelectronics and Information Technology
(USBEREIT), 0297–0300. https://doi.org/10.1109/USBEREIT51232.2021.9454964

CHUANG, T., & YANG, M. (2023). Change component identification of bim models for facility
management based on time-variant bims or point clouds [Publisher Copyright: ©
2022 Elsevier B.V.]. Automation in construction, 147. https://doi.org/10.1016/j.
autcon.2022.104731

COLLINS, F., MAFIPOUR, M., NOICHL, F., PAN, Y., & VEGA TORRES, M. A. (2021). Towards
applicable scan-to-bim and scan-to-floorplan: An end-to-end experiment. In Proc.
of the 32th forum bauinformatik. https://doi.org/10.26083/tuprints-00019496

COLLINS, F., BRAUN, A., & BORRMANN, A. (2022). Finding geometric and topological
similarities in building elements for large-scale pose updates in scan-vs-bim. Proc.
of the Int. Conf. on Computing in Civil and Building Engineering (ICCCBE).

68

COLLINS, F., BRAUN, A., & BORRMANN, A. (2023). Graph-based linking of point cloud and
bim elements for extended dt integration. In Proc. of the 30th int. conference on
intelligent computing in engineering (eg-ice).

DAUM, S., & BORRMANN, A. (2014). Processing of topological bim queries using boundary
representation based methods. Advanced Engineering Informatics, 28(4), 272–
286. https://doi.org/https://doi.org/10.1016/j.aei.2014.06.001

DERPANIS, K. G. (2010). Overview of the ransac algorithm.
DROBNYI, V., LI, S., & BRILAKIS, I. (2024). Connectivity detection for automatic construction

of building geometric digital twins. Automation in Construction, 159, 105281. https:
//doi.org/https://doi.org/10.1016/j.autcon.2024.105281

EASTMAN, C. (2009). What is bim?
FISCHLER, M. A., & BOLLES, R. C. (1987). Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography. In
Readings in computer vision (pp. 726–740). Morgan Kaufmann. https://doi.org/
https://doi.org/10.1016/B978-0-08-051581-6.50070-2

GRIEVES, M. (2015). Digital twin: Manufacturing excellence through virtual factory replica-
tion.

GUO, H., TANG, J., ZENG, W., ZHAO, X., & LIU, L. (2021). Multi-modal entity alignment in
hyperbolic space. Neurocomputing, 461, 598–607. https://doi.org/https://doi.org/
10.1016/j.neucom.2021.03.132

HADSELL, R., CHOPRA, S., & LECUN, Y. (2006). Dimensionality reduction by learning an
invariant mapping. 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), 2, 1735–1742. https://doi.org/10.1109/CVPR.
2006.100

HAMILTON, W. L. (2020). Graph representation learning (Vol. 14).
HINTON, G., VINYALS, O., & DEAN, J. (2015). Distilling the knowledge in a neural network.
HOGAN, A., BLOMQVIST, E., COCHEZ, M., D’AMATO, C., MELO, G. D., GUTIERREZ, C., KIR-

RANE, S., GAYO, J. E. L., NAVIGLI, R., NEUMAIER, S., NGOMO, A.-C. N., POLLERES,
A., RASHID, S. M., RULA, A., SCHMELZEISEN, L., SEQUEDA, J., STAAB, S., & ZIM-
MERMANN, A. (2021). Knowledge graphs. ACM Computing Surveys, 54(4), 1–37.
https://doi.org/10.1145/3447772

HU, Z., & BRILAKIS, I. (2024). Matching design-intent planar, curved, and linear structural
instances in point clouds. Automation in Construction, 158, 105219. https://doi.org/
https://doi.org/10.1016/j.autcon.2023.105219

KAMINSKY, R. S., SNAVELY, N., SEITZ, S. M., & SZELISKI, R. (2009). Alignment of 3d
point clouds to overhead images. 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, 63–70. https://doi.org/10.
1109/CVPRW.2009.5204180

KAYHANI, N., MCCABE, B., & SANKARAN, B. (2023). Semantic-aware quality assessment
of building elements using graph neural networks. Automation in Construction, 155,
105054. https://doi.org/https://doi.org/10.1016/j.autcon.2023.105054

KIM, U.-H., PARK, J.-M., SONG, T.-j., & KIM, J.-H. (2020). 3-d scene graph: A sparse
and semantic representation of physical environments for intelligent agents. IEEE

69

Transactions on Cybernetics, 50(12), 4921–4933. https://doi.org/10.1109/tcyb.
2019.2931042

KIPF, T. (2016). Graph convolutional networks. https://tkipf.github.io/graph-convolutional-
networks

KIPF, T. N., & WELLING, M. (2017). Semi-supervised classification with graph convolutional
networks.

KRITZINGER, W., KARNER, M., TRAAR, G., HENJES, J., & SIHN, W. (2018). Digital twin
in manufacturing: A categorical literature review and classification [16th IFAC
Symposium on Information Control Problems in Manufacturing INCOM 2018].
IFAC-PapersOnLine, 51(11), 1016–1022. https://doi.org/https://doi.org/10.1016/j.
ifacol.2018.08.474

LANDRIEU, L., & SIMONOVSKY, M. (2018a). Large-scale point cloud semantic segmentation
with superpoint graphs.

LANDRIEU, L., & SIMONOVSKY, M. (2018b). Large-scale point cloud semantic segmentation
with superpoint graphs.

LEE, G., SACKS, R., & EASTMAN, C. M. (2006). Specifying parametric building object
behavior (bob) for a building information modeling system [Knowledge Enabled
Information System Applications in Construction]. Automation in Construction,
15(6), 758–776. https://doi.org/https://doi.org/10.1016/j.autcon.2005.09.009

LI, L., WANG, R., & ZHANG, X. (2021). A tutorial review on point cloud registrations:
Principle, classification, comparison, and technology challenges. Mathematical
Problems in Engineering, 2021, 9953910. https://doi.org/10.1155/2021/9953910

LIN, Z., ZHANG, Z., WANG, M., SHI, Y., WU, X., & ZHENG, Y. (2022). Multi-modal contrastive
representation learning for entity alignment.

LIU, F., CHEN, M., ROTH, D., & COLLIER, N. (2021). Visual pivoting for (unsupervised)
entity alignment. Proceedings of the AAAI Conference on Artificial Intelligence,
35(5), 4257–4266.

MARTENS, J., & BLANKENBACH, J. (2018). An automated approach for point cloud align-
ment based on density histograms. Intelligent Computing in Engineering and
Architecture. https://api.semanticscholar.org/CorpusID:197537469

MATURANA, D., & SCHERER, S. (2015). Voxnet: A 3d convolutional neural network for real-
time object recognition. 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 922–928. https: / /doi .org/10.1109/ IROS.2015.
7353481

MEYER, T., BRUNN, A., & STILLA, U. (2022). Change detection for indoor construction
progress monitoring based on bim, point clouds and uncertainties. Automation in
Construction, 141. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104442

MYRONENKO, A., & SONG, X. (2010). Point set registration: Coherent point drift. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262–2275.
https://doi.org/10.1109/TPAMI.2010.46

PAN, Y., YANG, B., LIANG, F., & DONG, Z. (2018). Iterative global similarity points : A robust
coarse-to-fine integration solution for pairwise 3d point cloud registration.

70

POMERLEAU, F., COLAS, F., & SIEGWART, R. (2015). A review of point cloud registration al-
gorithms for mobile robotics [ffhal-01178661f]. Foundations and Trends in Robotics,
4(1), 1–104. https://doi.org/10.1561/2300000035

QADER, W. A., AMEEN, M. M., & AHMED, B. I. (2019). An overview of bag of
words;importance, implementation, applications, and challenges. 2019 Interna-
tional Engineering Conference (IEC), 200–204. https://doi.org/10.1109/IEC47844.
2019.8950616

QI, C. R., SU, H., MO, K., & GUIBAS, L. J. (2017). Pointnet: Deep learning on point sets for
3d classification and segmentation.

QIAO, Z., YU, Z., YIN, H., & SHEN, S. (2023). Pyramid semantic graph-based global point
cloud registration with low overlap.

QIN, Z., YU, H., WANG, C., GUO, Y., PENG, Y., & XU, K. (2022). Geometric transformer for
fast and robust point cloud registration.

RAUSCH, C., & HAAS, C. (2021). Automated shape and pose updating of building infor-
mation model elements from 3d point clouds. Automation in Construction, 124,
103561. https://doi.org/10.1016/j.autcon.2021.103561

SACKS, R., GIROLAMI, M., & BRILAKIS, I. (2020). Building information modelling, artificial
intelligence and construction tech. Developments in the Built Environment, 4,
100011. https://doi.org/10.1016/j.dibe.2020.100011

SARKAR, S. D., MIKSIK, O., POLLEFEYS, M., BARATH, D., & ARMENI, I. (2023). Sgaligner :
3d scene alignment with scene graphs.

SARLIN, P.-E., DETONE, D., MALISIEWICZ, T., & RABINOVICH, A. (2020). Superglue: Learn-
ing feature matching with graph neural networks.

SARODE, V., LI, X., GOFORTH, H., AOKI, Y., DHAGAT, A., SRIVATSAN, R. A., LUCEY, S.,
& CHOSET, H. (2019). One framework to register them all: Pointnet encoding for
point cloud alignment.

SINGHAL, A. (2012). Introducing the knowledge graph: Things, not strings [Google Blog].
https://www.blog.google/products/search/introducing-knowledge-graph-things-
not/

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N.,
KAISER, L., & POLOSUKHIN, I. (2017). Attention is all you need.

VELIČKOVIĆ, P., CUCURULL, G., CASANOVA, A., ROMERO, A., LIÒ, P., & BENGIO, Y. (2018).
Graph attention networks.

WALD, J., DHAMO, H., NAVAB, N., & TOMBARI, F. (2020). Learning 3d semantic scene
graphs from 3d indoor reconstructions. Conference on Computer Vision and Pat-
tern Recognition (CVPR).

WANG, W., WANG, T., & CAI, Y. (2022). Multi-view attention-convolution pooling network
for 3d point cloud classification. Applied Intelligence, 52, 14787–14798. https:
//doi.org/10.1007/s10489-021-02840-2

WANG, Y., SUN, Y., LIU, Z., SARMA, S. E., BRONSTEIN, M. M., & SOLOMON, J. M. (2018).
Dynamic graph CNN for learning on point clouds. CoRR, abs/1801.07829. http:
//arxiv.org/abs/1801.07829

71

WANG, Z., LV, Q., LAN, X., & ZHANG, Y. (2018). Cross-lingual knowledge graph alignment
via graph convolutional networks. In E. RILOFF, D. CHIANG, J. HOCKENMAIER, & J.
TSUJII (Eds.), Proceedings of the 2018 conference on empirical methods in natural
language processing (pp. 349–357). Association for Computational Linguistics.
https://doi.org/10.18653/v1/D18-1032

YEW, Z. J., & LEE, G. H. (2020). Rpm-net: Robust point matching using learned features.
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
11821–11830. https://doi.org/10.1109/CVPR42600.2020.01184

ZHOU, J., CUI, G., HU, S., ZHANG, Z., YANG, C., LIU, Z., WANG, L., LI, C., & SUN, M.
(2020). Graph neural networks: A review of methods and applications. AI Open, 1,
57–81. https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001

ZHOU, Q.-Y., PARK, J., & KOLTUN, V. (2018). Open3D: A modern library for 3D data
processing. arXiv:1801.09847.

ZHOU, Q., SHEN, Z., XU, X., ZHI, P., & ZHAO, R. (2022). Theories and practices of self-
driving vehicles. In Q. ZHOU, Z. SHEN, B. YONG, R. ZHAO, & P. ZHI (Eds.), Theories
and practices of self-driving vehicles (pp. 27–62). Elsevier. https://doi.org/https:
//doi.org/10.1016/B978-0-323-99448-4.00002-3

ZHU, B., LIU, X., MAO, X., CHEN, Z., GUO, L., GUI, T., & ZHANG, Q. (2023). Universal
multi-modal entity alignment via iteratively fusing modality similarity paths.

72

Declaration

I hereby affirm that I have independently written the thesis submitted by me and have not
used any sources or aids other than those indicated.

Location, Date, Signature

Munich, 26.01.2024,

