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Abstract

We calculate the mean throughput, number of collisions, successes, and idle slots for
random tree algorithms with successive interference cancellation. Except for the case
of the throughput for the binary tree, all the results are new. We furthermore disprove
the claim that only the binary tree maximizes throughput. Our method works with many
observables and can be used as a blueprint for further analysis.
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1. Introduction

An important aspect of wireless communication involves multiple users utilizing a shared
resource such as a wireless channel. If more than one user transmits on the same channel at
a given time, their signals interfere with each other and their messages cannot be decoded.
Hence, we need intelligent channel access schemes to facilitate efficient use of the wireless
resources. Recently, the idea of massive Internet of things (IoT) for smart cities and smart fac-
tories has become popular [21]. In a massive IoT, a large number of users transmit short packets
to a single receiver. Moreover, the users become active randomly and hence their transmissions
cannot be governed by a predetermined schedule. For massive IoT scenarios, distributed ran-
dom access (RA) schemes are better suited as they provide minimal signalling and control
overhead [26].

Tree algorithms are a class of distributed RA schemes. If the receiver cannot decode a
message from a user due to interference from other users, then all interfering users retransmit
their message at a random time in the future as selected by the tree algorithm until each user
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2 Q. VOGEL ET AL.

can transmit in a unique time period without interfering with any other user. Note that users
can only communicate with the receiver and not among themselves.

Tree algorithms solve the problem by iteratively splitting users into different groups until
each group has only one user. This repeated splitting can be described by a tree, hence the
name tree algorithm. Each group then transmits in a time slot determined by the algorithm. A
metric of a tree algorithm’s efficiency is the ratio between the number of users n and the time
it takes until all users have successfully transmitted their packet, called the throughput. Yu
and Giannakis introduced the binary tree algorithm with successive interference cancellation
(SICTA) in [27]. SICTA extends previous tree algorithms and offers high throughput. The
key idea of SICTA is to successively remove user packets along the tree once they become
decoded; this way, some of the previous groups may become reduced to having just a single
user, propelling a new round of decoding and successive interference cancellation (SIC). In
this work, we analyze the throughput of SICTA, as well as the mean number of collisions,
successes, and idle slots, for the general version of the algorithm in which the users randomly
split into d groups, d ≥ 2.

The rest of the paper is organized as follows. In Section 1.1, we give a brief overview of
the novel aspects of our work. In Section 2, we first give a brief mathematical description of
the model, for readers unfamiliar with SICTA. We then state the main results. In Section 3 we
provide background on tree-splitting algorithms and mention related work (see Section 3.3). In
Section 4, we prove our results, i.e. we derive the correct expression for the collision resolution
interval (CRI) length conditioned on the number n of initially collided users for the d-ary
SICTA. We then give asymptotic expressions for the throughput, number of collision slots, and
number of immediately decodable slots (henceforth referred to as successes) when the number
of users n tends to infinity. We also derive results on the mean delay experienced by a user.

1.1. Overview of our contributions

Compared to other tree algorithms such as standard tree algorithm (STA) and modified tree
algorithm (MTA), studying the properties of SICTA requires a more careful approach. Indeed,
SIC (see Section 3) introduces further dependencies into the model that are non-trivial, espe-
cially in the case d ≥ 3. These subtle dependencies have caused errors in the literature [27],
which were identified in [6]. However, [6] does not include the formal analysis but provides
simulation results indicating the value of the final result. In this work, by adding another coor-
dinate (the split number M ∈ {1, . . . , d}), we are able to reformulate the model as a Markovian
branching process and prove the correct results.

The analysis of d-ary tree algorithms is mainly (despite a number of graph-theoretic
approaches having been carried out; see [8] and references therein) done by combining gen-
erating functions with tools from complex analysis; see [9, 17, 19, 20, 27], for example. With
the Markovian structure at hand, we can use the aforementioned tools to derive closed-form
expressions for many observables of the process. Arguably the most important characteristic
of a tree algorithm is the CRI length, denoted by (ln)n≥0, conditioned on the number of packets
in the initial collision n. We analyze the law of ln by deriving a functional equation, which the
moment-generating function for ln solves, see Proposition 1. To obtain an explicit formula for
the mean Ln =E[ln], we differentiate the moment-generating function and solve the ensuing
functional equation. This method also works for the variance of ln, as well as for the higher
moments. We also give the functional relations for the moment-generating functions of the
number of collisions and successes occurring during SICTA and derive explicit formulas for
their means. We stress that our method works for a large class of observables, although the
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Analysis of d-ary SICTA 3

solution of the functional equations must be checked on a case-by-case basis; see the proof of
Corollary 1.

Using the explicit formula for Ln, we leverage asymptotic analysis to extract the leading
term. Contrary to many tree models (see [5] for an overview), the mean CRI length Ln does
not converge when divided by n but instead has small, non-vanishing fluctuations. Asymptotic
analysis was done in detail for STA in the case of equal splitting in [19], and for d = 2 and
biased splitting in [9]. To derive the leading term from the explicit formulas for the mean
throughput, number of collisions, and successes, we developed a more robust expansion that
works for both fair and biased splitting and any d ≥ 2. We achieve this by using some explicit
identities derived from the binomial series together with the geometric sum formula. This can
then be combined with use of the residue theorem as in [19].

We furthermore calculate the extremal points for the leading order of the observables. We
verify the conjecture that the maximal throughput of log(2) can be achieved for any d-ary
SICTA (with d ≥ 2), given suitable splitting probabilities. This conjecture was formulated in
[6], based on numerical simulations.

We also numerically simulate the minimal collision rate subject to a minimum-throughput
constraint. As the number of collisions corresponds to the number of signals stored in the
access point, this result helps to gauge memory requirements. We show that a small reduction
in throughput allows for a (relatively) large reduction in collisions. This is of interest when the
arrival rate is not too close to the critical stability threshold, as one is able to reduce collisions
without affecting the mean throughput much.

In the final section of the paper, we give a recursive relation which allows for the calculation
of the moment-generating function of ln up to arbitrary degree: see Proposition 3. We also solve
a functional equation for the mean delay for SICTA in steady state: see Proposition 4.

2. Results

2.1. A mathematical model for SICTA

In this section we give an abridged description of SICTA from the mathematical point of
view, in order to be able to state the main results rigorously. For readers familiar with SICTA
this can be skipped on first reading. For a full description of the algorithm we refer the reader
to Section 3.

The underlying objects of our study are d-ary (d ≥ 2) labelled trees with random, integer-
valued labels. The label of the root is a fixed, non-random number in N0. The nodes with label
n ∈ {0, 1} have no children. Nodes with label n > 1 have children (c1, . . . , cd). The labels of the
children are distributed according to the multinomial distribution Mult(n, p), where p ∈ (0, 1)d

is a vector of splitting probabilities, i.e.
∑d

j=1 pj = 1. We keep p fixed throughout the entire tree.
As 0 < pj < 1 for all j ∈ {1, . . . , d}, the resulting tree will almost surely be finite. Labelling
only depends on the parent node, and hence the resulting tree has a Markovian structure.

For the STA, the CRI length ln is defined as the total number of nodes in the tree. However,
for SICTA certain nodes are skipped: if the sum of the labels to the left of a node is greater
than or equal to the label of the parent minus 1, this node will not be counted; see Section 3
for more details and a justification of this. We also refer the reader to Figure 1 for an example.
A definition of the CRI length ln for SICTA is as follows: given a fixed node with label n ≥ 2,
we denote the last non-skipped slot by M, which is defined as

M = inf

{
k ∈ {1, . . . , d} :

k∑
j=1

Ij ≥ n − 1

}
, (1)
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4 Q. VOGEL ET AL.

FIGURE 1. Illustration of the ternary (d = 3) tree algorithm. The number outside each node represents
the slot number. The number inside each node in the tree represents the number of users transmitting in

that slot. Slots 5, 8, 9, and 10 will be skipped in the SICTA.

where {Ij}j∈{1,...,d} are the labels of the children (c1, . . . , cd) of the node. As {Ij}j∈{1,...,d} are
Mult(n, p) distributed, their sum equals n and hence M is well defined. A recursive definition
of the ln is then given by

ln =
⎧⎨⎩1 if n = 0, 1,

1{M < d} +∑M
j=1 lIj if n ≥ 2;

(2)

see Section 3.2 for a derivation.

2.2. Main results

For k ∈ {0, . . . , d − 1}, we write F(k) =∑d
j=k+1 pk.

Theorem 1. For any d ≥ 2 and any probability vector p ∈ (0, 1)d with
∑d

j=1 pj = 1:

(i) For n ≥ 1,

E[ln] = Ln = 1 +
n∑

i=2

(
n

i

)
( − 1)i(i − 1)

∑d−2
k=0 F(k)i

1 −∑d
j=1 pi

j

. (3)

(ii) As n → ∞,
Ln

n
=

∑d−2
k=0 F(k)

−∑d
j=1 pj log pj

+ g1(n) + o(1), (4)

where g1(n) is given in (39). Furthermore, if (28) has no positive integer solution, then
g1(n) = 0. The term g1(n) is usually very small but has a lengthy expression, we have
hence decided to delay its definition until later.

(iii) The first term on the right-hand side of (4) is minimized for p = pbi ∈ (0, 1)d with pj =
2− min{j,d−1}, j ∈ {1, . . . , d}. For pbi,∑d−2

k=0 F(k)

−∑d
j=1 pbi

j log pbi
j

= 1

log(2)
.

Furthermore, for pbi, g1(n) is bounded between 10−3 and 10−6.
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TABLE 1. Summarizing the results for different observables of SICTA. See Section 4 for more details.

Closed Asymptotic Evaluated
Name Symbol formula leading term at pbi

Throughput
n

Ln
(3)

−∑d
j=1 pj log pj∑d−2
k=0 F(k)

log(2)

Collisions rate
Cn

n
(23)

1 − pd

−∑
j=1 pj log(pj)

1

2 log(2)

Success rate
Sn

n
(24)

∑d
k=2 pk log F(k − 1)∑d

j=1 pj log pj

1

2

Idle slot rate
In

n
(25) (43)

1 − log(2)

2 log(2)

The proof of the first statement in Theorem 1 is given in Corollary 1, that of the second
statement in Proposition 2, and the last statement in Lemma 3.

Remark 1. In applications, the important characteristic of a collision-resolution protocol
(CRP) is given by its asymptotic throughput, which is given by limn→∞ n/Ln. However, it
is more convenient to work with Ln/n from a mathematical perspective. Result-wise, there is
no difference, as Ln > 0 for all n.

We summarize the results for other important observables of the SICTA process in Table 1.
We refer the reader to (22) and (24) for the formulas for the collisions and successes; see also
Section 4. The proofs are very similar to those for the throughput, apart from the asymptotic
leading term for the number of successes; see Lemma 2. Furthermore, we obtain a number of
results regarding the mean delay of SICTA in steady state. We state them in Section 4.5, as
they require more technical background.

3. Background

3.1. Tree algorithms

The first tree algorithm was introduced in [3]; it is also known as the Capetanakis–
Tsybakov–Mikhailov-type CRP, also known as the STA. The protocol addresses the classical
RA problem where several users must transmit packets to an access point (AP) over a time-
slotted shared multiple access channel with broadcast feedback. The most basic form of the
algorithm is STA, which proceeds as follows. Assume that n packets are transmitted by n
different users in a given slot.

• If n = 0, then the slot is idle.

• If n = 1, then there is only one packet in the slot (also called a singleton), and the packet
can be successfully decoded.

• If n > 1, the signals of n different transmissions interfere with each other, and no packet
can be decoded. This scenario is called a collision. The users must retransmit their
packets according to the CRP.
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Collision resolution protocol. At the end of every slot, the AP broadcasts the outcome of the
slot, i.e., idle (0), success (1), or collision (e, where e stands for error), to all the users in
the network. If the feedback is a collision, the n users independently split into d groups.
The probability that a user joins group j is pj where j ∈ {1, . . . , d}, d ≥ 2, pj ∈ (0, 1), and∑d

j=1 pj = 1. In the next slot, all the users who chose the first group (j = 1) retransmit their
packets. If this results in a collision once again, then the process continues recursively. Users
who have chosen the (j > 1)th group observe the feedback. They wait until all users in the
(j − 1)th group successfully transmit their packets to the AP. We can represent the progression
of the CRP in terms of d-ary trees as shown in Figure 1. Here, we show an example with the
initial number of collided users n = 4 and d = 3. Each node on the tree represents a slot. The
number inside the node shows the number of users that transmit in a given slot. The slot num-
ber is shown outside the node. After a collision node, the first group branches to the left of the
tree, the second group branches in the middle, and the third group branches to the right. The
number of slots needed from the first collision until the CRP is complete is known as the CRI.

The main performance parameter for tree algorithms is conditional throughput, defined as
the ratio n/Ln of the number of users n and the expected total number of slots in a CRI Ln.
In the example from Figure 1, it is 0.4 packets/slot. Furthermore, the asymptotic throughput
(as n → ∞) is important for knowing the algorithm’s maximum stable throughput (MST). The
MST gives the stability of the RA scheme for a given arrival rate of users, λ ∈R

+. Users arrive
according to a Poisson process with intensity λ.

For example, the stability of the gated RA scheme is given by

MST = 1

lim supn→∞ Ln/n
≥ λ. (5)

We analyze the case of SICTA with a Poisson arrival rate λ > 0 of new packets in Section 4.5
for λ < MST.

3.2. Successive interference cancellation

In STA, collision signals are discarded at the receiver. A new method where the receiver
saves collision signals and tries to resolve more packets per slot was introduced in [27]. Here,
the receiver subtracts the signals of successful packets from the collision signals. This process
is known as SIC. Let Ys be the signal of slot number s, and Xi be the signal of the packet
of user i. In the example from Figure 1, the receiver will save Y1 and Y2. In an interference-
limited channel, i.e. one for which noise can be effectively neglected, the received signal is the
sum of all packets transmitted in that slot, Y1 = X1 + X2 + X3 + X4 and Y2 = X1 + X2 + X3.
We will keep the same slot indices as for STA in the diagram for legibility. Since all the users
are treated the same, we assume that the first user to be resolved is user 1, then user 2, and so
on until user 4. In slot 6, the receiver gets Y6 = X1. Since there is no interference in this slot,
the receiver can decode the packet. It is then able to remove X1 from Y1 and Y2. Similarly, after
slot 7 the receiver can remove X2 from Y1 and Y2. After removing X1 and X2, only X3 remains
in Y2. Thus the packet from user 3 can be decoded. The receiver can then proceed to remove
X4 from Y1 and decode X2 without the need for user 4 to have transmitted a packet after the
first slot. In this manner, the receiver can decode two packets after slot 7, resulting in a shorter
CRI. We can easily see from the diagram that if all the signals from a particular node in the tree
are removed, then all the remaining children of that node can be skipped. Another advantage
of SICTA is the knowledge that the rightmost branch of the tree can always be skipped. If the
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algorithm reaches the rightmost branch of a node and still has not decoded all the signals from
that node, this rightmost branch will be a definite collision and can hence be skipped.

The asymptotic throughput of SICTA was shown (incorrectly) to be (ln d)/(d − 1) in [27],
achieved for fair splitting. Thus, SICTA with fair splitting was thought to be the only configu-
ration that achieves the optimal asymptotic throughput of ln 2 packets/slot. However, a premise
in their analysis for d > 2 was shown to be wrong in [6]. In [27], it was assumed that only the
rightmost branch can be skipped. It fails to consider a scenario for d > 2 where more than one
child node can be skipped when all the signals in the parent node are resolved. In the example
from Figure 1, [27] failed to consider that slot 9 would be skipped after all the signals in Y1 are
decoded after slot 7. The correction paper [6] did not provide the formal analysis but merely
pointed out the mistake from [27]. However, it did provide simulation results indicating that a
special biased distribution of splitting probabilities, where

pj =
⎧⎨⎩0.5j j ∈ {1, . . . , d − 1},

0.5d−1 j = d,

achieved a throughput of log(2) ≈ 0.693 packets/slot for all values of d. In this work, we
formally prove this indication to be correct.

3.3. Related work

As mentioned before, tree algorithms were introduced by [3]. A number of analytical results
are due to Flajolet and Mathys, see [9, 18, 19]. Delay analysis was done in [20]. Yu and
Giannakis introduced SICTA in [27]. There have been several publications regarding SICTA;
for example, in [1, 23] variants of SICTA are considered and in [24, 25] the case where K > 1
packets can be decoded in each step (multi-packet reception) is examined. The case of win-
dowed and free access was studied in [22]. Analysis of the depth of the resulting tree was
carried out in [11, 12]. Recently, large-deviation analysis was applied to random access algo-
rithms, see [13, 15]. In these articles, the authors estimate the probability of rare events, such
as large throughput deviations, from their expected mean.

4. Analysis

4.1. Derivation of the functional equations

Recall that given a vector of probabilities p = (p1, . . . , pd), at each collision each user inde-
pendently chooses a slot j ∈ {1, . . . , d} with probability pj. Let Ij denote the number of users
who have chosen the jth slot.

For a collision of n packets, we recall that the last non-skipped slot M for SICTA is defined
in (1). The evolution of the CRI length ln of n collided users is then given by (2), which can be
seen as follows: since the remaining slots {IM+1, . . . , Id} hold at most one packet, they can be
decoded from the original signal minus the decoded signals; see also [6]. Furthermore, the last
slot can always be skipped, as it is the difference between the initial signal and the signals to
the left.

Our first result is a functional equation for the moment-generating function for ln. For this,
recall that

E[zln] =
∑
k≥0

zk
P(ln = k),
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where we interpret this as a formal power series (see [5, Chapter 2]) outside its region of
convergence. It satisfies

d

dz
E[zln] =

∑
k≥1

kzk−1
P(ln = k).

Evaluating the derivative at z = 1 gives the mean,

d

dz
E[zln]

∣∣∣∣
z=1

=
∑
k≥1

kP(ln = k) =E[ln]. (6)

Proposition 1. Define for x, z ∈C the formal power series

Q̃(x, z) =
∑
n≥0

xn

n!E[zln].

Then

Q̃(x, z) =
d∏

i=1

Q̃(xpi, z) + (z − z2)
d−2∑
k=0

(1 + F(k)x)
k∏

i=1

Q̃(xpi, z), (7)

where F(k) =∑d
j=k+1 pk. Furthermore, there exists δ > 0 such that Q̃(x, z) converges abso-

lutely for all x, z ∈C with ‖z| < 1 + δ.

Before embarking on the proof, we remark that in the literature, see for example [27],
researchers work with Q(x, z) = e−xQ̃(x, z). As it simplifies the notation, we work with Q̃(x, z)
for now and use Q(x, z) in the later parts of the article. From Proposition 1, we can obtain
closed formulas for the mean, variance, and higher-order terms. We apply this for the mean.
The proof of Proposition 1 is given after the proof of Corollary 1.

Corollary 1. For all n ≥ 0,

Ln =E[ln] = 1 +
n∑

i=2

(
n

i

)
( − 1)i(i − 1)

∑d−2
k=0 F(k)i

1 −∑d
j=1 pi

j

. (8)

Proof. Note that, by definition, Q̃(x, 1) = ex. Set K(x) = (dQ̃/dz)(x, 1), which exists as
z = 1 is an inner point in the region of convergence of Q̃(x, z), and is analytic. By (taking
the derivative of) (7), we have

K(x) =
d∑

i=1

K(pix)e(1−pi)x −
d−2∑
k=0

(1 + F(k)x)ex
∑k

j=1 pk . (9)

Set Q(x, z) = e−xQ̃(x, z). Define the Poisson generating function L(x) of Ln as

L(x) = e−x
∑
n≥0

xn

n! Ln = dQ

dz
(x, 1) = e−xK(x), (10)

where the penultimate equality holds on account of (6). Equation (9) now yields

L(x) =
d∑

i=1

L(pix) −
d−2∑
k=0

(1 + F(k)x)e−F(k)x.
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Using the expansion L(x) =∑
n≥0 αnxn gives, by comparing coefficients, for n ≥ 2,

αn = αn

d∑
i=1

pn
i + 1

n! ( − 1)n(n − 1)
d−2∑
k=0

F(k)n.

Hence,

αn = 1

n!
( − 1)n(n − 1)

∑d−2
k=0 F(k)n

1 −∑d
i=1 pn

i

. (11)

Noting that by (10) we have e−x ∑
n≥0 xnLn/n! =∑

n≥0 xnαn, by comparing coefficients again
we then have

Ln =
n∑

i=0

n!
(n − i)!αi.

By (2), we have α0 = 1 − α1 = 1. Hence, we obtain (8). �

Remark 2. Note that for d = 2 we obtain the same result as [27, (30)], as F(0) = 1. Also note
that by taking higher-order derivatives (with respect to z) in (7) we can obtain closed formulas
for the variance of ln as well as higher moments. We leave that to the reader. The proof of
Corollary 1 establishes the first claim in Theorem 1.

We now proceed to the proof of Proposition 1.

Proof of Proposition 1. The proof is split into three parts. We first use Lemma 4 to determine
the radius of convergence. The main part of the proof consists of deriving a recursive formula
for E[zln], where we need to do a case distinction for the value of M. Using the recursive
expressions in (14) and (16) for Qn(z), we then sum over all n, to obtain a functional equation
for Q̃, making use of cancellation effects along the way.

By Lemma 4, there exist C, δ > 0 such that, for all z with |z| < 1 + δ, we have |E[zln]| ≤
Cn|z|n. This allows us to bound the moment-generating function

|Q̃(x, z)| ≤
∑
n≥0

C|xz|n
n! ,

which converges. The moment-generating function Qn(z) is defined as

Qn(z) =E[zln] =
d∑

k=1

E[zln, M = k] for z ∈C.

Note that for k < d we can split

E[zln, M = k] =E

[
zln, M = k,

M∑
j=1

Ij = n − 1

]
+E

[
zln , M = k,

M∑
j=1

Ij = n

]
,

while for k = d we have {M = d} = {
M = d,

∑M
j=1 Ij = n

}
, and hence

E[zln, M = d] =E

[
zln , M = d,

M∑
j=1

Ij = n

]
.
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In order to facilitate the analysis, we set

P(d)
n =

{
μ ∈N

d
0 :

d∑
k=1

μk = n

}
,

(
n

μ

)
=
(

n

μ1, . . . , μd

)
= n!

μ1! · · · μd! .

Given a probability vector p = (p1, . . . , pd), we also introduce

p(μ) =
d∏

j=1

p
μj
j for μ ∈N

d. (12)

We now now do a case distinction with respect to the value of
∑M

j=1 Ij.

For the case
∑M

j=1 Ij = n, if M = k and
∑k

j=1 Ij = n, and then Ik cannot be zero or one,
because otherwise M would be at most k − 1. Hence, for k ≤ d, we expand using (2) and the
Markov property:

E

[
zln, M = k,

M∑
j=1

Ij = n

]
=

∑
μ∈P(k)

n

(
n

μ

)
p(μ)1{μk > 1}z1{k<d}

k∏
j=1

Qμj (z). (13)

Note that 1{μk > 1} can be written as 1 − 1{μk = 0} − 1{μk = 1}, and furthermore that
{
μ ∈

P
(k)
n : μk = 0

}
is isomorphic to P

(k−1)
n , and similarly

{
μ ∈P

(k)
n : μk = 1

}
is isomorphic to

P
(k−1)
n−1 . With this in mind, we rewrite (13) as

∑
μ∈P(k)

n

(
n

μ

)
p(μ)1{μk > 1}z1{k<d}

k∏
j=1

Qμj (z)

=
∑

μ∈P(k)
n

(
n

μ

)
p(μ)z1{k<d}

k∏
j=1

Qμj (z) −
∑

μ∈P(k−1)
n

(
n

μ

)
p(μ)z1+1{k<d}

k−1∏
j=1

Qμj (z)

− pk

∑
μ∈P(k−1)

n−1

(
n

μ

)
p(μ)z1+1{k<d}

k−1∏
j=1

Qμj(z). (14)

Note that the cases {μk = 0} and {μk = 1} give us an extra factor of z, as Q0(z) = Q1(z) = z.
The case {μk = 1} gives an extra factor of pμk

k = pk.

For the case
∑M

j=1 Ij = n − 1, note that this implies k < d given M = k. Write F(k) =∑k
j=1 pj

and F(k) = 1 − F(k) for the cumulative distribution function induced by p. We obtain

E

[
zln , M = k,

M∑
j=1

Ij = n − 1

]
= nzF(k)

∑
μ∈P(k)

n−1

(
n − 1

μ

)
p(μ)1{μk > 0}

k∏
j=1

Qμj (z). (15)

Indeed, if
∑M

j=1 Ij = n − 1, we have n choices to select one packet and place it on the slots {M +
1, . . . , d}. Summing over all possible slots gives us a probability of pk+1 + · · · + pd = F(k).
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We have n − 1 packages left to distribute amongst the k slots, which gives the multinomial
coefficient.

In the same way as (14), we expand (15) as

nzF(k)
∑

μ∈P(k)
n−1

(
n − 1

μ

)
p(μ)1{μk > 0}

k∏
j=1

Qμj(z)

= nzF(k)

( ∑
μ∈P(k)

n−1

(
n − 1

μ

)
p(μ)

k∏
j=1

Qμj (z) − z
∑

μ∈P(k−1)
n−1

(
n − 1

μ

)
p(μ)

k−1∏
j=1

Qμj (z)

)
, (16)

where we have used 1{μk > 0} = 1 − 1{μk = 0} and that
{
μ ∈P

(k)
n−1 : μk = 0

}
is isomorphic

to P
(k−1)
n−1 .

Having the two recursive expressions (14) and (16) for Qn(z) at hand, the next step of the
proof consists of summing over n ≥ 0 and noticing cancellation.

On account of (2), by recalling that l0 = l1 = 1 we have

Q̃(x, z) =
∑
n≥0

xn

n!E[zln] = (1 + x)z +
∑
n≥2

d∑
k=1

xn

n!E[zln, M = k].

We first examine the case M = 1, as it is a bit different from the rest. We have, for n ≥ 2,

E[zln, M = 1] = pn
1zQn(z) + npn−1

1 F(1)zQn−1(z), (17)

as for M = 1 either n or n − 1 packets must have picked the first slot. The first case has a
probability of pn

1 and the second of npn−1
1 (1 − p1) = npn−1

1 F(1). Recall that p1 + F(1) = 1. We
hence get

∑
n≥2

xn

n! (pn
1Qn(z) + npn−1

1 F(1)Qn−1(z)) = Q̃(p1x, z) − z − zp1x + xF(1)[Q̃(p1x, z) − z]

= Q̃(p1x, z)(1 + F(1)x) − z(1 + x)

by reindexing. Consider the first summand on the left-hand side of this equation. By employing
an index shift, we obtain

∑
n≥2

xn

n! pn
1Qn(z) =

(∑
n≥0

(xp1)n

n! Qn(z)

)
− z − zp1x = Q̃(p1x) − z(1 + p1x).

The second summand follows in the same fashion.
Now fix k ∈ {2, . . . , d} and consider the case M = k. We begin with the case

∑k
j=1 Ij = n,

which yields, for k ≤ d,

∑
n≥2

xn

n!E
[

zln, M = k,
k∑

j=1

Ij = n

]
=
∑
n≥0

xn

n!E
[

zln, M = k,
k∑

j=1

Ij = n

]
,
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as, for M ≥ 2, we need to have n ≥ 2. By (13) and (14),

∑
n≥2

xn

n!E
[

zln, M = k,
k∑

j=1

Ij = n

]
= z1{k<d}

k∏
j=1

Q̃(pjx, z)

− z1+1{k<d}(1 + pkx)
k−1∏
j=1

Q̃(pjx, z), (18)

which we illustrate with the last term in (14): recall that for non-negative sequences {a(i)
n }i,n≥0,

k∏
i=1

(∑
n≥0

a(i)
n

)
=
∑
n≥0

∑
μ∈P(k)

n

k∏
i=1

a(i)
μi

. (19)

Hence, employing an index shift, we obtain

∑
n≥0

xn

n!
∑

μ∈P(k−1)
n−1

(
n

μ

)
p(μ)z1+1{k<d}

k−1∏
j=1

Qμj(z) = xz1+1{k<d} ∑
n≥1

∑
μ∈P(k−1)

n−1

k−1∏
j=1

Qμj (z)(pjx)μj

μj!

(19)= xz1+1{k<d}
k−1∏
j=1

(∑
n≥0

(pjx)n

n! Qn(z)

)

= xz1+1{k<d}
k−1∏
j=1

Q(pjx, z).

The other terms in (18) follow similarly. Summing the right-hand side of (18) from k = 2 to d
gives

d∏
j=1

Q̃(pjx, z) − z(1 + pkx)
d−1∏
j=1

Q̃(pjx, z) +
d−1∑
k=2

z
k∏

j=1

Q̃(pjx, z) − z2(1 + pkx)
k−1∏
j=1

Q̃(pjx, z).

(20)
Using (16), the case 2 ≤ k < d and

∑k
j=1 Ij = n − 1 gives, in a similar fashion,

∑
n≥2

xn

n!E
[

zln, M = k,
k∑

j=1

Ij = n − 1

]
= xzF(k)

k∏
j=1

Q̃(pjx, z) − xz2F(k)
k−1∏
j=1

Q̃(pjx, z).

Summing the right-hand side of the above over all k ∈ {2, . . . , d − 1} gives

d−1∑
k=2

zF(k)
k∏

j=1

Q̃(pjx, z) − xz2F(k)
k−1∏
j=1

Q̃(pjx, z). (21)
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When adding (17), (20), and (21), we notice that the terms with d − 1 products (of Q̃( · ))
cancel. Hence, we obtain the functional relation

Q̃(x, z) =
d∏

i=1

Q̃(xpi, z) +
d−2∑
k=0

(z − z2)(1 + F(k)x)
k∏

i=1

Q̃(xpi, z).

This concludes the proof of Proposition 1. �

We remark that from (14) and (16) we could derive a recursive formula for Ln such as [27,
(18)]. However, this is of no use to our analysis as the closed-form expression is more direct.

We can also look at the number of collisions cn, which follow the recursive equations

cn =
⎧⎨⎩0 if n ∈ {0, 1},

1{M < d} +∑M
j=1 cIj if n ≥ 2.

(22)

In this case, following similar steps as for the throughput, we obtain

Cn =
n∑

i=2

(
n

i

)
( − 1)i(i − 1)(1 − pi

d)

1 −∑d
j=1 pi

j

. (23)

The result relies on the functional relation for the exponential moment-generating function

R̃(x, z) =
∑
n≥0

xn

n!E[zcn],

given by

R̃(x, z) = (1 + x)(1 − z) + (z − 1)(xpd + 1)
d−1∏
i=1

R̃(pix, z) +
d∏

j=1

R̃(pjx, z).

We also give the formula for Sn, the expected number of successes:

Sn = 1 +
n∑

i=2

(
n

i

)
( − 1)i−1i

(
1 −∑d

k=1 pkF(k − 1)i−1
)

1 −∑d
j=1 pi

j

, (24)

based on

sn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if n = 0,

1 if n = 1,∑M
j=1 sIj if n ≥ 2.

Its exponential moment-generating function S̃(x, z) satisfies

S̃(x, z) = (1 − p1)x(z − 1) +
d∏

i=1

S̃(xpi, z) +
d−1∑
k=1

xpk+1(1 − z)
k∏

i=1

S̃(xpi, z).

Finally, the number of idle slots,
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in =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if n = 0,

0 if n = 1,∑M
j=1 iIj if n ≥ 2,

satisfies in = ln − cn − sn and hence

In =
n∑

i=2

(
n

i

)
( − 1)i(i − 1)

(∑d−2
k=1 F(k)i + pi

d + i
i−1

∑d
k=1 pkF(k − 1)i−1

)
1 −∑d

j=1 pi
j

. (25)

Note that the above procedure can be carried out for any observable as long as it is additive
as we move down the tree. This is a common occurrence in the analysis of random trees [5].
A further example of such an additive observable would be the number of nodes with degree R
or greater. This might be of interest in practice since the interference of many signals could be
difficult to control in terms of noise.

4.2 Asymptotic analysis

We extend the methods from [19] to allow for asymptotic analysis in both the equal-split
and biased cases. The first key identity for our method is

1

1 −∑d
j=1 xj

=
∑
m≥0

∑
μ∈Pd

m

(
m

μ

) d∏
j=1

x
μj
j for

d∑
j=1

|xj| < 1, (26)

which follows from the geometric sum and the multinomial formula, as

1

1 −∑d
j=1 xj

=
∑
m≥0

(
d∑

j=1

xj

)m

=
∑
m≥0

∑
μ1,...,μd∈N0
μ1+···+μd=m

m!
d∏

j=1

x
μj
j

μi! .

The other identity is stated in a separate lemma.

Lemma 1. For all x ∈C and all n ∈N,

n∑
i=2

(
n

i

)
( − 1)i(i − 1)xi = 1 − (1 − x)n−1(1 + (n − 1)x). (27)

Proof. Recall that the binomial theorem gives

n∑
i=1

(
n

i

)
xi = (1 + x)n − 1, (1 + x)n−1nx =

n∑
i=1

(
n

i

)
ixi,

where the second formula follows from the first by taking the derivative and then multiplying
both sides by x. Using these,
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n∑
i=2

(
n

i

)
( − 1)i(i − 1)xi =

n∑
i=1

(
n

i

)
( − 1)i(i − 1)xi

=
n∑

i=1

(
n

i

)
( − 1)iixi −

n∑
i=1

(
n

i

)
( − 1)ixi

= −(1 − x)n−1nx + (1 − x)n + 1

= 1 − (1 − x)n−1(1 + (n − 1)x). �

We now state the main result of this section.

Proposition 2.

(i) If the equation
p1/k1

1 = · · · = p1/kd
d (28)

has no positive integer solution, then

Ln

n
=

∑d−2
k=0 F(k)

−∑d
j=1 pj log pj

+ o(1).

(ii) If (28) does have a positive integer solution, then

Ln

n
=

∑d−2
k=0 F(k)

−∑d
j=1 pj log pj

+ g1(n) + o(1), (29)

where g1(n) is given in (39).

Note that Proposition 2 establishes the second claim in the proof of Theorem 1.

Proof. Recall that, due to (8),

Ln = 1 +
d−2∑
k=0

n∑
i=2

(
n

i

)
( − 1)i(i − 1)F(k)i

1 −∑d
j=1 pi

j

.

It suffices to calculate the asymptotic behavior for k ∈ {0, . . . , d − 2} fixed in this equation and
then sum over k. Hence, our goal is to calculate the asymptotic value of

1

n

n∑
i=2

(
n

i

)
( − 1)i(i − 1)αi

1 −∑d
j=1 pi

j

for α = F(k). (30)

We first apply (26) to rewrite the above as

n∑
i=2

(
n

i

)
( − 1)i(i − 1)αi

1 −∑d
j=1 pi

j

=
∑
m≥0

∑
μ∈Pd

m

(
m

μ

) n∑
i=2

(
n

i

)
( − 1)i(i − 1)αip(μ)i,

where p(μ) was defined in (12). Now we can apply (27) to eliminate the sum over i:

Ln =
∑
m≥0

∑
μ∈Pd

m

(
m

μ

)
(1 − (1 − αp(μ))n−1[1 + (n − 1)p(μ)α]).
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In order to increase legibility, we switch from n − 1 to n. We write an ∼ bn if an = bn(1 + o(1))
as n → ∞ for sequences (an)n, (bn)n. We use the expansion (1 − x)n = e−xn+O(x2n), which
yields

Ln+1 ∼
∑
m≥0

∑
μ∈Pd

m

(
m

μ

)
(1 − e−αnp(μ)[1 + αnp(μ)]),

neglecting the eO(p(μ)2n) term, which is negligible as p(μ) is mostly of order n−1; see [14, pp.
130–132] (or [19, (3.51)]) for proof of this fact. We now write the above as

Ln+1 ∼
∑
m≥0

∑
μ∈Pd

m

(
m

μ

)
f (αnp(μ)) where f (x) = 1 − e−x(1 + x). (31)

For a function f : C→C, its Mellin transform and the inverse are given by

M[f ; s] =
∫ ∞

0
xs−1f (x) dx, f (x) = 1

2π i

∫ c+i∞

c−i∞
x−sM[f ; s]ds (32)

for suitable c ∈R [10]. For f (x) = 1 − e−x(1 + x), f (x) =O(x2) as x → 0, and furthermore
f ′(x) = xe−x. Hence, using integration by parts in (32), we obtain

M[f ; s] = −1

s

∫ ∞

0
xsf ′(x) dx = −1

s

∫ ∞

0
xs+1e−x dx = −�(s + 2)

s
= −(s + 1)�(s)

as long as 0 > �(s) > −2. Here, � denotes the (complex) gamma function which satisfies
�(s + 1) = s�(s) for all s, s + 1 in its domain. We now apply (32) to (31) to obtain

Ln+1 ∼ −1

2π i

∑
m≥0

∑
μ∈Pd

m

(
m

μ

) ∫ c+i∞

c−i∞
p(μ)−sα−sn−s(s + 1)�(s) ds (33)

for some c > −2. Note that

∑
m≥0

∑
μ∈Pd

m

(
m

μ

)
p(μ)−s =

∑
m≥0

∑
μ∈Pd

m

(
m

μ

) d∏
i=1

(p−s
i )μi = 1

1 −∑d
j=1 p−s

j

,

using (19) in the last step. If we could interchange integration and summation in (33), this
would give

Ln+1 ∼ −1

2π i

∫ c+i∞

c−i∞
α−sn−s(s + 1)�(s)

1 −∑d
j=1 p−s

j

ds. (34)

We now make the above rigorous. First, we need to choose c > −2 in (33). We first make
sure that the function integrated in (34) does not have a pole at c + iR. Abbreviating h(s) =∑d

j=1 p−s
j , we see that poles occur for h(s) = 1. Note that for x, y ∈R, h(x + iy) = 1 implies that

x ≤ −1, as h(x + iy) =∑d
j=1 p−x

j eiy log pj and thus |h(x + iy)| ≤∑d
j=1 p−x

j . We first examine the
case where x = −1: for y solutions to h(x + iy) = 1,

d∑
j=1

p1
j eiy log pj = 1 and

d∑
j=1

p1
j |eiy log pj | = 1.
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Solutions other than y = 0 only exist if (28) has no positive integer solution, see [19, (3.67)].
Next, we show that there exists ε > 0 such that there are no solutions x + iy with x ∈ [−1 −
ε, −1). Suppose this was not the case; we could then choose two real sequences (xn)n, (yn)n

such that xn → −1 and

h(xn + iyn) =
d∑

j=1

p−xn
j eiyn log pj = 1. (35)

If (28) has a positive integer solution, then there must exist some c ∈ (0, 1) and some
k1, . . . , kd ∈N such that iy log pj = iykj log c for all j = 1, . . . , d and y ∈R. Hence, y →
eiy log pj is periodic with period at most 2π | log c|∏d

j=1 kj. This implies that we can assume,
without loss of generality, that (yn)n is a bounded sequence. Thus, there exists a converging
subsequence ykn → yo. However, (x, y) →∑d

j=1 p−x
j eiy log pj is holomorphic and non-constant

in a neighborhood of
(−1,

∑d
j=1 eiyo log pj

)
and hence cannot have infinitely many zeros in that

neighborhood [4, p. 79]. If (28) has no positive integer solution, we cannot assume that (yn)n

is bounded. However, as eiyn log pj is bounded, we may assume that (yn)n is such that, for each
j ∈ {1, . . . , d},

lim
n→∞ eiyn log pj = aj

for some aj ∈C with |aj| = 1 [16, p. 29]. By continuity, (35) gives
∑d

j=1 pjaj = 1, which

implies that aj = 1 for all j. But this would imply that the function
∑d

j=1 p−s
j − 1 has infinitely

many zeros in any neighborhood around the origin. This is a contradiction. Thus, we can
choose an ε > 0 such that h(x + iy) �= 1 for all x ∈ [−1 − ε, −1) and y ∈R.

Now choose ε > 0 such that there are no poles of (1 − h(s))−1 in the set [−1 − ε, −1) × iR.
Abbreviate c = −1 − ε from now on. Next, we show that we can interchange summation and
integration, i.e.

∑
m≥0

∑
μ∈Pd

m

(
m

μ

) ∫ c+i∞

c−i∞
p(μ)−sα−sn−s(s + 1)�(s) ds =

∫ c+i∞

c−i∞
α−sn−s(s + 1)�(s)

1 −∑d
j=1 p−s

j

ds.

For s = c + ib = −1 − ε + ib, we have

|p(μ)−sα−sn−s(s + 1)�(s)| ≤ p(μ)1+εα1+εn1+ε|s + 1||�(s)|.
Recall the Stirling approximation [7, Section 1.18, (2)],

�(z) = (2π )1/2e−zzz−1/2(1 +O(|z|−1)),

which is valid uniformly as |z| → ∞ as a long as arg (z) < π − δ for some arbitrary but fixed
δ > 0. Hence, we can bound |�(z)| ≤O(|y|x−1/2e−π |y|/2) (see also [7, Section 1.18, (6)]), which
gives, for s = c + ib, as |b| → ∞,

|p(μ)−sα−sn−s(s + 1)�(s)| ≤ p(μ)1+εα1+εn1+εO(|b|−1−ε−1/2e−π |b|/2),

which is integrable. Note that |�(c + ib)| is bounded for b in a neighborhood around the origin.
Furthermore, using (26),∑

m≥0

∑
μ∈Pd

m

(
m

μ

)
p(μ)1+ε = 1

1 −∑d
j=1 p1+ε

j

< ∞.
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Hence, by the dominated convergence theorem, we can interchange summation and
integration.

We now want to analyze

Ln+1 ∼
∫ c+i∞

c−i∞
α−sn−s(s + 1)�(s)

1 −∑d
j=1 p−s

j

ds

using the residue theorem. For this, take (βN)N such that βN ∈R, |βN | → ∞, and (1 −
h(s))−1 has no poles at ±iβN for all N ∈N. We then choose the following contours γ

(i)
N for

i = 1, 2, 3, 4:

γ
(1)
N = {−1 − ε − iβNt, 0 ≤ t ≤ 2βN},

γ
(2)
N = {−1 − ε + iβN + t, 0 ≤ t ≤ M},

γ
(3)
N = {−1 − ε + M + iβN − t, 0 ≤ 2 ≤ 2βN},

γ
(4)
N = {−1 − ε + M − iβN − t, 0 ≤ t ≤ M},
γN = γ

(1)
N ∪ γ

(2)
N ∪ γ

(3)
N ∪ γ

(4)
N ;

this describes a rectangle with length M, height 2βN , and lower-right corner at −1 − ε − iβN ,
as in [14, p. 132]. We now proceed analogously to that reference, and write

r(s) = α−sn−s(s + 1)�(s)

1 −∑d
j=1 p−s

j

for the function we integrate. By the bounds on the Gamma function, the integral over γ
(2)
N is

at most O(αεnε[βN + 1]e−βN
∫ M
−1−ε

|M + iβN |t dt
)
, and the integral over γ

(4)
N can be bounded

in the same way. For γ
(3)
N , we use the fact that

∫∞
−∞ |�(( − 1 − e) + M + it)|t dt < ∞ to

bound ∫
γ

(3)
N

|r(s)| ds ≤O
(

(αn)−M+1+ε

∫ ∞

−∞
|�(( − 1 − e) + M + it)|(t + 1) dt

)
≤O(CM(αn)−M+1+ε)

for CM some constant depending on M > 0. Hence, for γN = γ
(1)
N ∪ γ

(2)
N ∪ γ

(3)
N ∪ γ

(4)
N ,

lim
N→∞

∫
γN

r(s) ds =O(CM(αn)−M+1+ε) + lim
N→∞

∫
γ

(1)
N

r(s) ds. (36)

Take M > 0 such that −M + 1 + ε < −1, which causes the first term on the right-hand side to
be negligible as n → ∞. Let S be the set of poles of r(s) with real part −1:

S =
{

z = −1 + iy with y ∈R :
d∑

j=1

p1
j eiy log pj = 1

}
.
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Recall that all poles of r(s) have real part bounded from above by −1 and that there are no
poles with real part in [−1 − ε, −1). By the residue theorem,∫

γN

r(s) ds =
∑

z∈S : |z|≤βN

Res(r(s); s = z),

and hence, taking the limit N → ∞ and using (34) and (36),

Ln+1 ∼
∑
z∈S

Res(r(s); s = z). (37)

Next, we calculate the residues. We first analyze the pole at s = −1. We expand as s → −1:

1 −
d∑

j=1

p−s
j = 1 −

d∑
j=1

pje
−(s+1) log pj ∼ 1 −

d∑
j=1

pj(1 − (s + 1) log pj) = (s + 1)
d∑

j=1

pj log pj.

Recall that (s + 1)�(s) ∼ −1 as s → −1 [7, Section 1.1, after (8)]. Therefore, as s → −1,

r(s) = α−sn−s(s + 1)�(s)

1 −∑d
j=1 p−s

j

∼ − αn

(s + 1)
∑d

j=1 pj log pj
.

Hence, the residue of the integrand is given by

Res(r(s); s = −1) = n
α

−∑d
j=1 pj log pj

.

Recall that if (28) has no positive integer solution, s = −1 is the only pole [19, (3.67)] and
hence the residue theorem gives∫

γN

r(s) ds = n
α

−∑d
j=1 pj log pj

.

Letting N → ∞ gives

−1

2π i

∫ c+i∞

c−i∞
α−sn−s(s + 1)�(s)

1 −∑d
j=1 p−s

j

ds = n
α

−∑d
j=1 pj log pj

,

which concludes the proof in that case.
If there are positive integer solutions to (28), then there are a countable infinity of poles.

Recall that the set of poles other than s = −1 (with real part −1) is given by the set S. We then
have

−1

2π i

∫ c+i∞

c−i∞
α−sn−s(s + 1)�(s)

1 −∑d
j=1 p−s

j

ds = n
α

−∑d
j=1 pj log pj

+ nf1(n, α),

where, as before, the residue theorem in (37) gives

f1(n, α) =
∑

−1+iy∈S\{−1}

α1−iyn1−iy�( − 1 + iy)iy

−∑d
j=1 pj log pj

. (38)
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By substituting α = F(k) and taking the sum over k in (30), we get

Ln

n
=

∑d−2
k=0 F(k)

−∑d
j=1 pj log pj

+ g1(n) + o(1),

with, recalling (38),

g1(n) =
d−2∑
k=0

f1(n, F(k)). (39)

This completes the proof of Proposition 2. �

For the bounds on g1(n) in the case d = 2 and p1 = p2, we refer the reader to [19, Table 1].
Similarly, one finds that

Cn

n
= 1 − pd

−∑d
j=1 pj log(pj)

+ g2(n) + o(1), (40)

where g2(n) = f1(n, 1 − pd). To obtain the asymptotic success rate, more work is needed. We
sketch the main steps and leave the rest to the reader.

Lemma 2. For d ≥ 2,

Sn

n
=
∑d

k=2 pk log F(k − 1)∑d
j=1 pj log pj

+ g3(n) + o(1) as n → ∞, (41)

where g3 is given in (42).

Proof. Starting from (24), we can write

pkF(k − 1)i−1 = pk

F(k − 1)
F(k − 1)i = pk

F(k − 1)
qi

k,

where we write F(k − 1) = qk to keep the ensuing formulas shorter.
Using the expansion as in the proof of Proposition 2, we get

Sn ∼
∑
m≥0

∑
μ∈Pd

m

(
m

μ

)
f2(np(μ)), where f2(x) =

d∑
k=1

pkx(e−x − e−xqk ).

Note that f2(x) ∼ x2 ∑d
k=2 pkF(k − 1) as x → 0. Here, recall that F(i) =∑i

j=1 pj. The above
expansion gives that, for �(s) > −2, the Mellin transform of f2 is well defined and equals

M[f2; s] = �(s + 1)
d∑

k=2

pk(1 − q−1−s
k ).

Furthermore, M[f2; s] has a removable singularity at s = −1:

M[f2; s] ∼
d∑

k=2

pk log F(k − 1) as s → −1,

https://doi.org/10.1017/jpr.2023.107 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.107


Analysis of d-ary SICTA 21

where we used that �(s)s ∼ 1 as s → 0 [7, Section 1.1, after (8)], as well as F(k − 1) = qk.
Hence, using (32),

∑
m≥0

∑
μ∈Pd

m

(
m

μ

)
f2(np(μ)) = 1

2π i

∫ c+i∞

c−i∞
n−s�(s + 1)

∑d
k=2 pk(1 − q−1−s

k )

1 −∑d
j=1 p−s

j

ds.

From this, using the residue theorem as in the proof of Proposition 2,

Sn

n
=
∑d

k=2 pk log F(k − 1)∑d
j=1 pj log pj

+ g3(n) + o(1),

where

g3(n) =
∑

−1+iy∈S\{−1}

M[f2; −1 + iy]

−∑d
j=1 pj log pj

, (42)

unless (28) has no positive integer solution, in which case g3 is equal to zero. �

We can use the results for Ln, Cn, and Sn to obtain

In

n
=
∑d−2

k=1 F(k) + pd +∑d
k=2 pk log F(k − 1)

−∑d
j=1 pj log pj

+ g4(n) + o(1), (43)

where g4(n) = g1(n) − g2(n) − g3(n); see (39) for a definition of g1, (42) for a definition of g3,
and note that g2 is defined just after (40).

4.3. Minimization

In this section we calculate the values of p which maximize throughput and success rate,
and minimize collisions and skipped slots.

Recall that F(k) = 1 −∑k
j=1 pj. To achieve the maximum throughput, we want to minimize

the main term in (29), i.e., ∑d−2
k=0 F(k)

−∑d
j=1 pj log pj

.

We do this in the next lemma.

Lemma 3. For pbi ∈ (0, 1)d (first defined in Theorem 1) given by pbi
j = 2− min{j,d−1} (for j =

1, . . . , d), the function

p →
∑d−2

k=0 F(k)

−∑d
j=1 pj log pj

is minimized. Furthermore, at pbi, we have∑d−2
k=0 F(k)

−∑d
j=1 pj log pj

∣∣∣∣∣
p=pbi

= 1

log(2)
.

No other minima exist besides pbi.
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Note that Lemma 3 establishes the final claim in Theorem 1, and also confirms the
prediction from [6].

Proof. We write N =∑d−2
k=0 F(k) and D = −∑d

j=1 pj log pj, so that

∑d−2
k=0 F(k)

−∑d
j=1 pj log pj

= N

D
,

in order to keep the ensuing equations shorter. Suppose that μ ∈R is our Lagrange multiplier
from the Lagrange equation

μ
d

dpi

(
−1 +

d∑
j=1

pj

)
= d

dpi

N

D
, i = 1, . . . , d.

We then obtain, for i ≤ d − 2,

μ = d

dpi

N

D
= D(d − 1 − i) + N(1 + log pi)

D2
(44)

as the parameter pi appears in (d − 1 − i) summands in the sum
∑d−2

k=0 F(k). However, the
parameters pd−1 and pd do not appear in the numerator and hence, for i = d − 1, d,

μ = d

dpi

N

D
= N(1 + log pi)

D2
.

This implies that pd−1 = pd. Note that (44) also holds true for d − 1. Using the two equations
for μ and multiplying by D2 shows that, for 1 ≤ i < j < d,

D(j − i) = N log
pj

pi
.

Hence, for the above choice of i, j,

N

D
= j − i

log(pj/pi)
.

Choosing j = i + 1, we obtain that, for some r > 0, pj+1/pj = r for all j < d − 1, and hence
pj = 2−j for all j < d. Write pbi ∈ (0, 1)d for the above distribution, given by pbi

i = 2− min{j,d−1};
for example, pbi = ( 1

2 , 1
2

)
(here d = 2) and pbi = ( 1

2 , 1
4 , 1

8 , 1
8

)
(here d = 4).

We have, for p = pbi,

N =
d−2∑
k=0

F(k) =
d−2∑
k=0

2−k = 2 − 2−d+2.

For the denominator, we obtain

D = −
d∑

j=1

pj log pj = log(2)

(
d−1∑
j=1

j2−j + (d − 1)2−d+1

)
= log(2)(2 − 2−d+2),
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where we have used the finite geometric sum formula in the last step. The two equations above
imply that, for our throughput maximizing distribution,

Ln

n
= 1

log(2)
+ g1(n) + o(n−1),

i.e. the leading term of log(2) in the asymptotics of the throughput n/Ln. This concludes the
proof.

Alternatively, we can use the following inductive argument for why Ln remains constant for
pbi as d ≥ 2 varies: For d = 3, we can combine the two 1

4 -weighted branches into one. As the
1
2 -weighted branch has the same law as the one for d = 2, and Ln is additive in the branches,
this shows that Ln is the same for d = 2 and d = 3, given pbi as the splitting probability. We can
then inductively carry this over to higher values of d. �

For pbi, we also obtain, using (40) and (41),

Cn

n
∼ 1

2 log(2)
+ g2(n),

Sn

n
∼ 1

2
+ g3(n), (45)

independently of d, the the number of slots.
Note that we can minimize Cn by setting pi = 0 for i < d and pd = 1, which gives Cn = 0.

However, this is not a sensible choice, as the algorithm will never terminate.

4.4. Collisions versus throughput

As we have seen in the previous section, the throughput-maximizing distribution does not
minimize collisions for SICTA. We show (numerically) that a small reduction in throughput
can lead to a large reduction in the number of collisions.

For p = pbi ∈R
d, the previous section showed that maximal throughput has the lead-

ing asymptotic term log(2). It was also shown that, for p = pbi, we have an average of
(2 log(2))−1 ≈ 0.72 collisions per packet. We now show that by choosing p different from
pbi we can reduce the average number of collisions, while only suffering a small reduction in
throughput. For example, a 20% reduction in optimal throughput (from log(2) ≈ 0.72 down to
0.8 × log(2) ≈ 0.55) allows for a 39% reduction in the number of collisions, from (2 log(2))−1

collisions per package down to roughly 0.44 collisions per package. In Figure 2 we have plot-
ted the minimal achievable collision rate, given a throughput reduction of at most x percent,
where x ranges from 0% to 20%, i.e. a throughput ranging from log(2) to 0.8 log(2).

Our numerical method is constructed as follows. We use (40) for the asymptotic leading
term of Cn/n, given by

1 − pd

−∑d
j=1 pj log(pj)

and
−∑d

j=1 pj log pj∑d−2
k=0 F(k)

for the leading term of n/Ln; see (29). We then use a multivariable solver to minimize the
function

p → 1 − pd

−∑d
j=1 pj log(pj)

over p ∈ (0, 1)d subject to
∑d

j=1 pj = 1 and

−∑d
j=1 pj log pj∑d−2
k=0 F(k)

≥ (1 − x) log(2),
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FIGURE 2. The minimal obtainable collision rate, constrained by achieving a certain throughput rate. The
figure was obtained numerically using a standard solver for constraint non-linear optimization problems.

pbi was used as the initial value.

which enforces a throughput reduction of at most x%. In Figure 2 we let x range from 0 to 0.2.
The initial value for p for the multivariable solver was choosen as p = pbi.

The graph in Figure 2 does not change as we vary the number of branches d.

4.5. Delay analysis

In this section we look at SICTA with gated access. We give recursive formulas that allow
for an approximation of the mean delay, as well as the transition matrix of the CRI lengths.

We now assume that packets arrive at random times with an arrival rate λ > 0. Packets wait
and accumulate until the algorithm has resolved the previous collision. We define {ck+1}∞k=0 to
be the (random) sequence where ck is the length of the kth CRI assuming a Poisson arrival rate
λ > 0 of new packets. Its randomness is twofold: once from the CRI itself, but also from the
Poisson arrival of new packages. Let {sk+1}∞k=0 be the number of packages arriving during the
kth CRI. If we condition on ck = i, sk+1 is Poi(λi) distributed. Hence, {ck+1}∞k=0 is a Markov
chain. Let π = {πi}i be the invariant distribution, which exists for λ < MST, since the drift Di

is given by

Di =E[cn+1 − cn | cn = i] =
∑
k≥0

e−λi (λi)k

k! (Lk − i) = i(EPoi(λi)[Lk/i] − 1)

as the number of new arrivals is Poi(λi) distributed. As λ < MST, we can find ε > 0 such that,
for all k large enough, Lk/k ≤ 1/λ − ε; see (5). Recall that k/i converges almost surely and in
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distribution to λ as i → ∞, if k is Poi(λi) distributed. Hence, Di will be negative and bounded
away from 0 for large enough i. This implies the existence of a stationary distribution, see [2,
Appendix 3A.5]. The probability that a tagged packet joins the system during a CRI of length
n is given by

π̃n = nπn∑∞
j=1 jπj

;

see also [27, (42)].
Suppose we are given that a tagged packet arrives during a CRI of length n. Let t = t0 + t2

be the total delay of that given packet, made up from waiting t0 slots for the previous CRI to
finish and then the time in the algorithm itself, denoted by t2. Note that t0 is independent of t2,
and that t0 is distributed uniformly on (0, n), since the arrival times of a Poisson point process
are uniform on a fixed interval. The distribution of t2 is given by l1+Rn , where Rn = Poi(λn), as
Poi(λn) additional packets will enter the queue during an interval of length n and the processing
time is given by the CRI length of the new arrivals, 1 + Rn → l1+Rn .

4.5.1. Steady-state distribution of the CRI length. In this section we state a functional recur-
sive relation which allows for the computation of the moment-generating function Q(x, z) up
to arbitrary order. This recursive relation also allows for an asymptotic computation of the
transition matrix Pi,j = P(c2 = j | c1 = i) in steady state.

Proposition 3. Recall the moment-generating function e−x ∑
n≥0 xn

E[zln]/n! (denoted by
Q(x,z)) used for the computation of moments of ln. Write

Q(x, z) =
∑
j≥0

zjqj(x), (46)

where

qj(x) =
∞∑

n=0

P(ln = j)e−x xn

n! .

For z in the region of convergence given in Proposition 1, there exists a recursive equation
which, for every j ≥ 1, gives qj(z) in terms of {qi(z)}j−1

i=0; see (50). Furthermore, q0(z) = 0.

Before embarking on a proof of Proposition 3, we show how it enables us to calculate the
transition matrix of the CRI lengths.

Corollary 2. The probability at steady state of observing a CRI length of j after having
observed a CRI length of i is given by Pi,j = qj(λi) for 0 < λ < MST.

Proof. Recall that new packets arrive according to a Poisson process with parameter λ > 0.
Furthermore, recall that we have shown that for λ < MST a stationary distribution must exist.
Given that the current CRI has length i, we can write the probability that the next CRI has
length j by doing a case distinction with respect to how many new users n arrive in i slots:

Pi,j =
∞∑

n=0

P(sk+1 = n | ck = i)P(ln = j) =
∞∑

n=0

P(ln = j)e−λi (λi)n

n! = qj(λi),

where qj(x) was given in Proposition 3 and we recall that the number of new packets is Poisson
λ in each slot. �

We now prove Proposition 3.
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Proof of Proposition 3. From (2).

qj(x) =
⎧⎨⎩0 if j = 0,

(1 + x)e−x if j = 1
(47)

as P(ln = 0) = 0 and P(ln = 1) = 1{n = 0, 1}.
Recall (46). Now, we use (7) to write

Q(x, z) =
d∏

j=1

Q(xpj, z) +
d−2∑
k=0

(z − z2)(1 + F(k)x)e−F(k)x
k∏

i=1

Q(xpi, z). (48)

Set

Q(k, x, j) =
∑

μ∈P(k)
j

k∏
i=1

qμi (xpi). (49)

Immediately,

Q(k, x, j) =
⎧⎨⎩0 if j = 0,∑k

i=0 (1 + pix)e−pix if j = 1.

As q0(x) = 0, the largest value μi (for any i ∈ {1, . . . , k}) can take in (49) is j − (k − 1), as
otherwise at least one of the other μt has to be zero (for t ∈ {1, . . . , k} \ {i}). This means that
Q(k, x, j) is a function of {qi(z)}j−(k−1)

i=0 .

Write fk(x) = (1 + F(k)x)e−F(k)x. Substituting (46) into (48) yields (see (19) for the mecha-
nism)

∑
j≥0

zjqj(x) =
∑
j≥0

zj

(
Q(d, x, j) +

d−2∑
k=0

fk(x)(Q(k, x, j − 1)1{j ≥ 1} − Q(k, x, j − 2)1{j ≥ 2})
)

.

(50)
This system of equations is recursively solvable for qj(x), as the coefficients on the right-hand

side depend only on {qi(z)}j−1
i=0 for each j. Furthermore, the initial conditions for qj(x) are given

in (47). �

4.5.2. Collision resolution delay analysis. In this section we give a formula for the mean delay
E[t2] caused by the resolution of the CRI in steady state.

To calculate the expectation of t2 given that the previous CRI had length n, we employ a
case distinction. Set t2,m as the CRI length of a tagged packet, given that there are m other
packages. Then, as the arrival rates are Poi(λn) distributed,

E[t2 | ck = n] =
∑
m≥0

E[t2,m]e−λn (λn)m

m! =
∑
m≥0

∑
k≥1

kP(t2,m = k)e−x xm

m!
∣∣∣∣
x=λn

,

which we abbreviate as T2(λn).
Let g ∈ {1, . . . , d} be the gate which the tagged packet joins. The evolution of t2,m is given

by

t2,m =
⎧⎨⎩1 if m = 0,

1{g < d} +∑g−1
j=1 lIj + t2,Ig if m ≥ 1.
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Set Gm+1(z) =E[zt2,m] and G(x, z) =∑
m≥0 Gm+1(z)e−x(xm/m!). We first state a proposition

giving a recursive equation for G(x, z).

Proposition 4.

G(x, z) =
d∑

k=1

pk

(
e−x(z − zk+1{k<d}) + z1{k<d}G(pkx, z)

k−1∏
i=1

Q(pix, z)

)
, (51)

where Q is the moment-generating function of ln, as previously. As t2,m ≤ lm, the power series
converges in the same region as in Proposition 1.

Before proving Proposition 4, we explain how we can use it to obtain a formula for T2(x).
Taking the derivative with respect to z at z = 1 in (51), we obtain

T(x) =
d∑

k=1

pk

(
e−x(1 − k − 1{k < d}) + 1{k < d} + T(pkx) +

k−1∑
i=1

L(pix)

)
,

where L(x) is the Poisson generating function for Ln, as in the proof of Corollary 1. Using αn

defined in (11), this implies that, for T(x) =∑
n≥0 tnxn,

tn = 1

n!
∑d

k=1 pk
(
( − 1)n+1(k − 1{k = d}) + αn

∑k−1
i=1 pn

i

)
1 −∑d

k=1 pn+1
k

. (52)

As in [27], from this equation we can calculate tn and then numerically approximate the average
delay T2(λn) as n → ∞.

Proof of Proposition 4. Recall that g ∈ {1, . . . , d} is the gate the tagged particle joins. Define
G(k)

m+1(z) =E[zt2,m | g = k]. Note that, by doing a case distinction, Gm+1(z) =∑d
k=1 pkG(k)

m+1(z).
Furthermore, by conditioning that μi users join slot i,

G(k)
m+1(z) = z1{k<d} ∑

μ∈P(d)
m

(
m

μ

)
p(μ)Gμk+1(z)

k−1∏
i=1

Qμi (z).

Recall that G(x, z) =∑
m≥0 Gm+1(z)e−x(xm/m!). We can substitute to obtain

G(x, z) = e−xz

+
d∑

k=1

∑
m≥1

z1{k<d} ∑
μ∈P(d)

m

(
Gμk+1(z)pμk+1

k

μk!
k−1∏
i=1

Qμi (z)(pix)μi e−pix

μi!

)(
d∏

i=k+1

(pix)μi e−pix

μi!

)
.

Note that for m = 0 the sum equals pke−xzk, and hence

∑
m≥1

∑
μ∈P(d)

m

(
Gμk+1(z)pμk+1

k

μk!
k−1∏
i=1

Qμi(z)(pix)μi e−pix

μi!

)(
d∏

i=k+1

(pix)μi e−pix

μi!

)

= −pke−xzk +
∑
m≥0

∑
μ∈P(d)

m

(
Gμk+1(z)pμk+1

k

μk!
k−1∏
i=1

Qμi (z)(pix)μi

μi!epix

)(
d∏

i=k+1

(pix)μi e−pix

μi!

)
.
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Now, we split the sum by first considering the subpartition {μ1, . . . , μk}, whose cardinality we
denote by i, and then the remaining partition {μk+1, . . . , μd}, which consists of d − k parts:

∑
m≥0

∑
μ∈P(d)

m

(
Gμk+1(z)pμk+1

k

μk!
k−1∏
i=1

Qμi (z)(pix)μi e−pix

μi!

)(
d∏

i=k+1

(pix)μi e−pix

μi!

)

=
( ∞∑

i=0

∑
μ∈P(k)

i

(
Gμk+1(z)pμk+1

k

μk!
k−1∏
i=1

Qμi(z)(pix)μi e−pix

μi!

)) ∞∑
m=0

∑
μ∈P(d−k)

m

(
d∏

i=k+1

(pix)μi e−pix

μi!

)
,

where we can switch the order of summation as all the terms are positive.
Note that

e−xz −
d∑

k=1

z1{k<d}pke−xzk =
d∑

k=1

pk(e−x(z − zk+1{k<d})).

Furthermore, for k = 1, . . . , d,

∑
μ∈P(d−k)

m

(
d∏

i=k+1

(pix)μi e−pix

μi!

)
= e−∑d

i=k+1 pix
∑

μ∈P(d−k)
m

(
d∏

i=k+1

(pix)μi

μi!

)
= 1.

Hence, we get

G(x, z) =
d∑

k=1

{
pk
(
e−x(z − zk+1{k<d}))z1{k<d}

+ z1{k<d}pk

∞∑
i=0

∑
μ∈P(k)

i

(
Gμk+1(z)pμk+1

k

μk!
k−1∏
i=1

Qμi(z)(pix)μie−pix

μi!

)}
.

We now can simplify the
∑∞

i=0
∑

μ∈P(k)
i

( . . . ) as in (19). We hence find that

G(x, z) =
d∑

k=1

pk

(
e−x(z − zk+1{k<d})+ z1{k<d}G(pkx, z)

k−1∏
i=1

Q(pix, z)

)
. �

5. Discussions and conclusion

We have calculated the mean throughput, number of collisions, successes, and idle slots for
tree algorithms with successive interference cancellation. We have furthermore given a recur-
sive relation which allows for approximations of arbitrary order for the moment-generating
function of the CRI length as well as the mean delay in steady state. We have shown numer-
ically that a small reduction in throughput can lead to a bigger reduction in the number of
collisions. Furthermore, our methods can be used for other observables of the random tree
algorithm. We hence believe that by emulating our approach, more properties of random tree
algorithms can be calculated.
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Appendix A. Radius of convergence

In this appendix we prove some bounds on the radius of convergence. As we could not find
these results in the literature, we consider them of independent interest.

Lemma 4. Let pmax = maxi=j,...,d pj be the largest splitting probability. Fix ζ = √
pmax and

1 > ε > 0. Then, for all n ∈N and all z ∈C with |z|ζ < 1 − ε,

|Qn(z)| = |E[zln]| ≤
( |z|

1 − (1 − ε)ζ

)n

.

Proof. Note that for n = 1 the result is true, as l1 = 1 almost surely. We prove the lemma
via induction. We first show the result holds for Q2(z). Note that, using the bound pj ≤ pmax
repeatedly,

d∑
j=1

pn
j ≤ pmax

d∑
j=1

pn−1
j ≤ · · · ≤ pn−1

max

d∑
j=1

pj = pn−1
max ≤ ζ n.

The packets split according to the feedback from the access point. Let τ be the first time we
observe a partition with strictly more than one non-zero element, i.e. not all packets choose the
same slot.

We first consider an initial collision of n = 2 elements. Note that the probability of all pack-
ets choosing the same slot is given by

∑d
i=1 p2

i . As we split independently each time, the
probability that τ = k is bounded by

P(τ = k) =
(

d∑
i=1

p2
i

)k−1(
1 −

d∑
i=1

p2
i

)
≤ ζ 2k−2. (53)

If τ = k and n = 2, the largest element in the partition after k splits is 1. Recall that Q0(z) =
Q1(z) = z. Hence,

|Q2(z)| ≤
∞∑

k=1

E[|z|l2, τ = k] ≤
∞∑

k=1

ζ 2k−2|z|k−1|z|2 = |z|2
1 − |z|ζ 2

≤ |z|2
1 − (1 − ε)ζ

,

where ζ 2k−2 is the bound on P(τ = k), zk−1 is the factor from the first k − 1 splits, and z2 comes
from the split into two groups.

Now fix n > 2 initially collided packets. Assume that the statement is true for all k with
k < n. Abbreviate η = 1/(1 − (1 − ε)ζ ). We then get, as in (53), P(τ = k) ≤ ζ nk−n. Note that
by the induction hypothesis, if we split into a partition with more than one non-zero ele-
ment (i.e. not all packets choose the same slot), we have a bound on the moment-generating
function of

sup
k

sup
μ∈P(k)

n

(
1{there exists i �= j : μi > 0 and μj > 0}

k∏
i=1

|Qμi (z)|
)

≤ (|z|η)n−1,

as for such a split ln becomes the sum of li where each i is strictly smaller than n. Hence,

|Qn(z)| ≤
∞∑

k=1

E[|z|ln, τ = k] ≤ ηn−1
∞∑

k=1

ζ nk−n|z|k−1|z|n = ηn−1 |z|n
1 − |z|ζ n

.
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However, as

ηn−1 |z|n
1 − |z|ζ n

≤ ηn−1 |z|n
1 − (1 − ε)ζ n−1

≤ ηn|z|n,

the result follows. �
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