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Abstract— Motion planners are essential for the safe opera-
tion of automated vehicles across various scenarios. However,
no motion planning algorithm has achieved perfection in
the literature, and improving its performance is often time-
consuming and labor-intensive. To tackle the aforementioned
issues, we present DrPlanner, the first framework designed
to automatically diagnose and repair motion planners using
large language models. Initially, we generate a structured
description of the planner and its planned trajectories from
both natural and programming languages. Leveraging the
profound capabilities of large language models in addressing
reasoning challenges, our framework returns repaired plan-
ners with detailed diagnostic descriptions. Furthermore, the
framework advances iteratively with continuous feedback from
the evaluation of the repaired outcomes. Our approach is
validated using search-based motion planners; experimental
results highlight the need of demonstrations in the prompt and
the ability of our framework in identifying and rectifying elusive
issues effectively.

I. INTRODUCTION
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Motion planners for automated vehicles are responsible
for computing safe, physically feasible, and comfortable mo-
tions [1]. However, to the best of our knowledge, no universal
algorithm currently exists that can safely and reliably solve
the motion planning problem in all scenarios (see Sec. I-
A.1). Therefore, it is crucial to continuously evaluate and
enhance the performance of a motion planner during its
development. A major challenge is the excessive manual
effort required, which entails diagnosing the planner based on
a variety of critical test scenarios and evaluation metrics. This
process requires not only deep expertise in motion planner
functionalities but also a comprehensive understanding of
how various aspects of the algorithm correlate with per-
formance. Furthermore, the discrepancy between the design
of the algorithm and its practical implementation is another
significant factor to consider. To address these challenges, we
establish a nuanced framework that leverages the remarkable
emergent abilities of large language models (LLMs) [2]–[4]
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Imperfect Motion Planner
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Diagnosis: Cost calculation includes negative value
Prescription: Ensure cost is non-negative by including condition that sets cost

Repaired planner: def heuristic function(self, node current :
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search tree
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Fig. 1: An example usage of DrPlanner: In a critical scenario, our imperfect
motion planner plans a trajectory. The description of the trajectory and the
planner is then fed into DrPlanner. By harnessing the strengths of LLMs
in understanding common sense and programming languages, we adeptly
diagnose and repair the deficiencies within the planner.

to automatically provide and apply diagnostic solutions for
a motion planner, which is shown in Fig. 1.

A. Related Work

Subsequently, we review the literature on the imperfec-
tions of motion planners, automated software repair, and the
application of LLMs in motion planning.

1) Imperfections of Motion Planners: Although many
motion planning algorithms can tackle a diverse range of
tasks, they often face issues related to probabilistic com-
pleteness, computational complexity, or real-time constraints
in finding the optimal solution [1], [5], [6]. For example,
the authors of [7] examine the solvability of the planning
problem using multiple trials and a specified time budget.
They demonstrate that both their planner and state-of-the-
art alternatives [8], [9] might fail to find a feasible solution,
even when one exists. Moreover, most previous studies do
not benchmark motion planners across a variety of scenarios,
even though they are developed with a few use cases in mind.
This lack of comprehensive evaluation makes it challenging
to assess and compare the algorithms, let alone improve
them. Besides, advanced deep learning algorithms [10]–[12]
have been applied over the past decades to handle complex
scenarios and learn from experience. However, guaranteeing
safety, rule compliance, and social compatibility of motion
planners remains a challenge [13]–[15].

2) Automated Software Repair: With the increasing com-
plexity and size of software, automatic debugging and repair
techniques have been developed to reduce the extensive man-
ual effort required to fix faults and to improve quality [16].
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For instance, human-designed templates are used to repair
certain types of bugs in code [17]–[21], but their effective-
ness is limited to the hard-coded patterns. To overcome these
limitations, deep-learning-based approaches utilize neural
machine translation [22] to learn from existing patches,
treating the repaired code as a translation of the buggy one
[23]–[26]. However, the performance of these approaches is
limited by the quality and quantity of the training data as
well as its representation format [27]. As LLMs have shown
emergent abilities in solving programming tasks [28]–[31],
they are applied for generating program patches [32]–[34],
self-debugging [35], [36], and cleaning code [37]. Unlike
simply maintaining functional equivalence, we aim to both
rectify imperfections and boost the performance of the plan-
ning algorithms. The aspect of performance improvement
aligns with [38], but our work distinguishes itself by focusing
on motion planners with a larger codebase. Another branch
of work focuses on repairing the outcome of given software
[39]–[41] or addressing specified diagnostic criteria [42].

3) Language Models for Motion Planning: With their
indispensable role of common sense reasoning and general-
ization [43]–[45], LLMs have been applied in motion plan-
ning for autonomous driving to make high-level decisions
[46]–[50], generate driving trajectories [51], [52] or provide
control signals directly [53]–[55]. However, the refinement
of motion planners themselves is still driven by the nuanced
intuition of humans and by real traffic data. In this work,
LLMs serve to bridge this gap by emulating human-like
problem-solving strategies, offering strategic guidance in
analyzing complex motion planners.

B. Contributions

In this work, we introduce DrPlanner, the first frame-
work to autonomously diagnose and repair motion planners,
harnessing the power of LLMs that improve as they scale
with additional data and model complexity. In particular, our
contributions are:

1) establishing a structured and modular description for
motion planners across both natural and programming
language modalities to exploit the capabilities of LLMs
for diagnosis and repair;

2) leveraging the in-context learning capabilities of LLMs
by providing demonstrations to the model at the point
where it infers diagnostic results;

3) and enhancing the understanding of underlying im-
provement mechanisms by generating continuous feed-
back in a closed-loop manner.

The remainder of this work is structured as follows: Sec. II
lists necessary preliminaries. The proposed framework for
diagnosing and repairing motion planners is described in
Sec. III. We demonstrate the benefits of our approach in
Sec. IV and conclude the paper in Sec. V.

II. PRELIMINARIES

A. Motion Planning

We refer to the vehicle for which trajectories are planned
as the ego vehicle. As illustrated in Fig. 2, motion planning

obstacles initial
state

goal
region

future
movement

Fig. 2: Exemplary motion planning problem, where the ego vehicle needs
to travel from its initial state to reach the goal region safely and efficiently.

algorithms are tasked with ensuring that the ego vehicle
travels from an initial state to a goal region within a specified
time [56]. Additionally, the solution, denoted by χ, must
satisfy common and safety-relevant requirements, such as
being drivable, collision-free, and rule-compliant [40], [57].
Meanwhile, the motion planner typically minimizes a given
objective function J(χ), e.g., by penalizing the travel time
or passenger discomfort [1, Sec. IV]. Finally, we denote a
motion planner by M and a motion planning problem by P.

B. Prompt Engineering for LLMs

The technique of using a textual string ℓ to condition
LLMs for probabilistic predictions is referred to as prompt-
ing [58]. This approach enables LLMs to be pretrained on
a massive amount of data and subsequently adapt to new
use cases with few or no labeled data. To enhance the in-
context learning capabilities, the prompt may include a few
human-annotated examples of the task, known as few-shot
prompting [2], or utilize chain-of-thought reasoning [43],
[59]. We divide the input prompt ℓ into two components:
the system prompt ℓsystem, which outlines the task for the
LLMs, and the user prompt ℓuser, providing context for the
diagnostic task. The labels, manual inputs, and automatically
generated content within the prompt are marked with angle
brackets, square brackets, and curly brackets, respectively.
The output consists of both a list of diagnosis-prescription
pairs and patched programs, collectively denoted by ℓdp and
pp. It is important to note that LLMs typically have a limit on
the number of tokens [60] they can process, which essentially
means there is a maximum length for the prompt.

III. DRPLANNER

If an LLM were asked, “How can the performance of
a motion planner be improved?”, it might respond, “It
involves a combination of software optimization, algorithmic
enhancements, and hardware improvements.” Although this
response is a reasonable completion for the prompt, it is
not necessarily actionable in diagnosing the downstream
planner with specific setups. Therefore, we adopt careful
prompt engineering with a nuanced diagnostic description,
as explained in this section. We begin by introducing the
overall algorithm, followed by its details.

A. Overall Algorithm

A general overview of using DrPlanner to diagnose and
repair planners is presented in Fig. 3 and Alg. 1. Before
initiating the process, the user must fill in the placeholders
enclosed in square brackets with the required manual input.



ℓsystem

ℓuser

<planned trajectory> (cf. Sec. III-B.3)

<few-shots> (cf. Sec. III-B.4)

<feedback> (cf. Sec. III-C)

<system>

<instructions> (cf. Sec. III-B.1)

LLMLLM

diagnosis

prescription

patched program

Prompt

Feedback
Generator

<motion planner> (cf. Sec. III-B.2)

P

Motion
Planner Planner

Describer
key components

Trajectory
Describer

Demonstration
Describer

helper functions

χ
Evaluator

J

J∗

Leaderboard Objective

<system>: You are an expert in diagnosing motion planners for automated vehicles. Your task is to identify diagnoses and recommend
prescriptions for the motion planner, with the objective of enhancing its performance.

<instructions>: Before you start, it is important to understand and adhere to the instructions:
- Ensure that the improved code is free from errors and that all modifications positively impact the final outcome.
- The diagnosis should concisely pinpoint each issue, using only a few words for clarity and brevity. For each prescription, provide a
detailed, step-by-step action plan. [other instructions]
- Adhere strictly to all specified instructions. In case of a contradiction with your knowledge, offer a thorough explanation.

<motion planner>: The [planning algorithm] is employed in trajectory planning to navigate the vehicle from an initial state to a
designated goal region by [principle]. The key components of the planner to be diagnosed and repaired are: [key component]
[general description] {code} + {detailed description}...

<planned trajectory>: The goal is to adjust the total objective function of the planned trajectory to closely align with the desired
value [J∗]. The current total objective function is calculated to be {J}, includes {component}, valued at {value} with a weight of
{weight}; {component}, valued at ...

<few-shots>: There are also some pre-defined helper functions that can be directly called in the [key components]: [helper functions]:
{method definition + docstring}. [examples]

<feedback>: Diagnoses and prescriptions from the iteration {number of iteration}: {diagnoses and prescriptions}. After applying
this diagnostic result, {error messages}/the updated total objective function is {Jrep}, which includes {details of the updated objective
components}. The performance of the motion planner is getting {worse/better}.

Jrep

FunctionScenario
Critical

ℓdp

pp

Fig. 3: Overview of the DrPlanner framework. The process starts with obtaining a planned trajectory for the planning problem with the given motion
planner. Then, the planned trajectory is evaluated by the objective function. Afterwards, the description for the planner is generated and used to prompt an
off-the-shelf LLM to generate the diagnoses and prescriptions for the planner, along with the patched programs. After applying the patches, the evaluation
of the updated planner is incorporated back into the prompt as feedback to continuously enhance the diagnostic performance (marked by dashed arrows).

Algorithm 1 DIAGNOSEANDREPAIRPLANNER

Input: planning problem P, motion planner M, target value J∗,
system prompt ℓsystem, LLM

Output: diagnoses and prescriptions ℓ∗dp, repaired planner M∗rep
1: χ ← M.PLAN(P)
2: J ← EVALUATE(χ)
3: ℓuser ← DESCRIBE(M, J , J∗) ▷ Sec. III-B
4: Jmin ← J , ℓ∗dp ← ∅, M∗rep ← ∅
5: while not REACHTOKENLIMIT(LLM) and Jmin − J∗ > ϵ do
6: (ℓdp, pp) ← LLM.QUERY(ℓsystem, ℓuser) ▷ Sec. III-C
7: Mrep ← REPAIR(M, pp)
8: χ ← Mrep.PLAN(P)
9: Jrep ← EVALUATE(χ)

10: ℓuser ← ADDFEEDBACK(ℓuser, J , Jrep, ℓdp) ▷ Sec. III-C
11: if Jrep < Jmin then
12: Jmin ← Jrep, ℓ∗dp ← ℓdp, M∗rep← Mrep

13: end if
14: end while
15: return ℓ∗dp, M∗rep

For a given scenario, the motion planner M is first deployed to
address the associated planning problem P (see line 1). Sub-
sequently, the planned trajectory χ is evaluated against the
objective function J (see line 2). Following this, a diagnostic
description ℓuser encompassing the diagnostic instructions,

the description of the planner, the evaluation of the trajectory,
and the few-shot examples are formulated (see line 3). This
description, along with the system prompt ℓsystem, is then
fed into the LLM (see line 6). The structure of the input
prompt is illustrated in the center of the framework in Fig. 3.
Afterwards, the obtained patched programs are applied to
the motion planner by integrating the modifications into the
existing codebase (see line 7). However, it is important to
note that the output generated may include errors such as
hallucinations and inaccurate analyses [61]. To mitigate these
issues, we employ an iterative prompting strategy repeatedly
refining the process. The iteration is terminated when a
notable improvement in the planner is observed, e.g., when
the difference between Jmin and a target value J∗ is smaller
than a threshold ϵ ∈ R+, or when the token limit of the
LLM is reached (see lines 5-14). Finally, the repaired planner
demonstrating the best improvement, if any, along with the
corresponding diagnoses and prescriptions, is returned (see
line 15). Another regime is to finetune the LLM to the
diagnostic and repair task. However, to date, there exists no
dataset containing input-output examples as the cumbersome
improvement process of motion planners is typically neither
open-sourced nor well documented. Additionally, finetuning



usually only provides modest improvement in solving chal-
lenging and complex tasks compared to in-context learning
[36], [37], [59].

B. Diagnostic Description

As discussed in Sec. II-B, prompt design is challenging,
particularly when considering the limited information about
the diagnostic object in the pretrained LLM. To enhance
reasoning outcomes, we design a structured and compre-
hensive description of the motion planner, emulating the
process of a real doctor. Its overall skeleton is depicted in the
lower part of Fig. 3. As we assume that the motion planner
internally handles goal-reaching and drivability-checking of
the trajectory in the scenario (cf. Sec. II-A), a detailed
description of the scenario, motion planning problem, and
trajectory is omitted in the prompt. Alternatively, these tasks
can be addressed by additional modules, such as those
employing LLM-embedded agents (cf. Sec. I-A.3).

1) Instructions: The instruction provides general guid-
ance for the LLM, detailing the expected output and reason-
ing constraints. In addition, we can include the commonly
used rule-of-thumb from expert knowledge. For instance,
“merely adjusting the weighting or coefficients is often cum-
bersome and not very effective”.

2) Motion Planner: The description of the motion planner
begins with the selection and a brief introduction to the
planning algorithm. This is followed by a general description
of the key components that primarily affect the performance
of the planner. To gain a better understanding of how
the algorithm is practically implemented, we also include
the program of the key components as an additional input
modality. As mentioned in Sec. I-A.2, the LLM is then able
to generate repaired programs given corresponding instruc-
tions. Motivated by the chain of thought (cf. Sec. II-B), we
incorporate existing explanations found within the docstrings
of subfunctions to provide natural language summaries for
the code blocks. The description adheres to the format
of {subfunction name} followed by its {docstring}. For
instance, an automatically generated {detailed description}
is: “self.calc angle to goal returns the orientation of
the goal with respect to current position; ...” (cf. Fig. 6).

3) Planned Trajectory: There are various measures to
quantitatively evaluate the quality of the planned trajectory
and track its improvement. These measures include the cost
function [56], criticality measures [62], courtesy to other
traffic participants [63], and degree of traffic rule compliance
[40]. To align the LLM with the desired behavior, we present
not only the evaluation results for the selected measures but
also incorporate the target value J∗, which can be, e.g.,
sourced from the motion planning benchmark leaderboard. In
addition, the numerical data of the values and weights of the
objective components is translated into a narrative descrip-
tion by mapping them to their corresponding placeholders.

4) Few-Shots: As it is not necessary for LLMs to have
prior knowledge of the other part of the large-scale motion
planner, we provide existing helper functions and their ex-
emplary usage in the prompt. Furthermore, several human-

annotated examples for improving the performance of the
specific type of motion planner can be added here, with
examples available in Fig. 5.

C. LLM Querying and Iterative Prompting

When querying the LLM, it is essential to specify the
desired output format. To achieve this, one can guide the
LLM by emphasizing the diagnoses, prescriptions, and key
components of the planner (cf. Sec. II-A) in the prompt as
desired responses or employ other third-party tools such as
LangChain1. Consequently, the structured patched results can
directly replace the original elements to repair the planner.

Human diagnosis experts often gauge the effectiveness of
prescriptions by analyzing the outcomes of individuals and
conducting follow-up consultations after the initial diagnosis.
Thus, motivated by [36], [47], [64], [65], we examine the
repaired planner by executing it and then pass the evaluation
result back to the LLM. In case of compilation or execution
errors, the previous diagnostic result is combined with the
information indicating where the error occurred and what
it entails, as feedback. Otherwise, the combination is made
with a comparison of the performance between the updated
planned trajectory and the original one.

IV. EVALUATION

We evaluate our approach using the open-source graph-
search-based motion planner2 from the CommonRoad plat-
form [56], which is written in Python. As CommonRoad
provides customizable challenges and annual competitions
where users can compete against each other on predefined
benchmarks, we can continuously integrate enhancements
into DrPlanner based on insights from a broad user base.
Furthermore, we choose GPT-4-Turbo3 as our LLM and use
its function calling feature to generate structured outputs. The
patched programs are then stringified in a JSON object and
directly parsed to the motion planner, followed by execution
through the exec function in Python. The token limit
is set to 8, 000, the threshold ϵ is equal to 10, and we
choose the sampling temperature of the LLM at 0.6 (cf.
[29, Fig. 5]). Code and exemplary prompts are available at
https://github.com/CommonRoad/drplanner.

A. A∗ Search using Motion Primitives

We adapt the standard A* search algorithm using lattice-
based graphs [66] (see Fig. 1), which employs a cost function
and an estimated cost to the goal, namely, a heuristic func-
tion, to guide the search process. The graph is constructed
with motion primitives—short trajectories generated offline
through a forward simulation of a given vehicle model.

1) Description of the Motion Planner: The heuristic func-
tion and motion primitives constitute the key components of
the planner. We provide the entire code block of the heuristic
function along with descriptions of the involved subfunctions

1https://www.langchain.com/
2https://commonroad.in.tum.de/tools/commonroad-search
3ID gpt-4-turbo-preview in the API of OpenAI

https://github.com/CommonRoad/drplanner
https://www.langchain.com/
https://commonroad.in.tum.de/tools/commonroad-search
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Fig. 4: Critical intersection scenario4in which the ego vehicle needs to safely
drive for 33 time steps. For clarity, the planned trajectories for the ego
vehicle from different planners are marked with different colors and labels.

in natural language. Furthermore, motion primitives are
referenced by IDs encoded with configurable parameters:

MP = "V vmin vmax Vstep ∆v SA δmin δmax

SAstep ∆δ T τ Model m ",

where vmin and vmax are the sampling velocity limits, δmin

and δmax are the sampling steering angle bounds, ∆v and
∆δ specify their respective step sizes, τ is the time duration
of each motion primitive, and m is the model identifier of
the ego vehicle. All parameters are given in SI units. In the
description, the explanation of the above naming convention
is included, followed by the ID of motion primitives used in
the original planner.

2) Measures of the Planned Trajectory: To evaluate the
quality of the planned trajectory, we utilize the standardized
objective function JSM1 from CommonRoad [56, Sec. VI]:

JSM1(χ) = ωAJA + ωSAJSA + ωSRJSR

+ ωLCJLC + ωOJO + ωV JV ,

where ωA, ωSA, ωSR, ωLC , ωO, and ωV are the weights
assigned to the respective objective components, and their
values are listed in Tab. I. These components include the
cost for acceleration (JA), steering angle (JSA), steering rate
(JSR), distance and orientation offset to the centerline of
the road (JLC and JO), and velocity offset (JV ). For the
evaluation scenario in Fig. 4, the target value of JSM1 is
extracted from the CommonRoad benchmark leaderboard5

and is J∗
SM1 = 0.16.

3) Few-Shots: To gain a deeper insight into the planner,
we include method definitions and docstrings for existing
helper functions within the planner class. As shown in
Fig. 5, we also supply a list of IDs corresponding to offline-
generated motion primitives, from which the LLM can select.

B. Case Study

We choose an intersection scenario from the Common-
Road platform (cf. Fig. 4), which is generated by the scenario
factory for safety-critical traffic scenarios [62], [67]. In
the urban environment, the search-based motion planner is

4CommonRoad-ID: DEU Guetersloh-15 2 T-1
5https://commonroad.in.tum.de/solutions/ranking

TABLE I: Comparison of the planned trajectories before and after repair.
The lowest values of each objective component are marked in bold.

Item Weight Initial Repaired Planner
Planner 1. Iteration 3. Iteration

JA 50 91.7333 14.9333 0.0000
JSA 50 0.0850 0.0102 0.0147
JSR 50 0.2525 0.0968 0.0673
JLC 1 0.3175 0.3504 0.3393
JO 50 0.0614 0.0038 0.0041
JV 20 0.0000 0.0000 0.0000

JSM1 - 4606.93 752.56 4.65

There are some pre-defined helper functions that can be directly called

in the heuristic function:

def calc_acceleration_cost(self, path: List[KSState]) -> float:

"""Returns the acceleration costs."""

...

Examples:

(input)

def heuristic_function(self, node_current: PriorityNode) -> float:

...

cost = angle_to_goal

return cost

(output)

Diagnosis: the acceleration is not considered

Prescription: add the acceleration cost to the heuristic function

def heuristic_function(self, node_current: PriorityNode) -> float:

acceleration_cost =

self.calc_acceleration_cost(node_current.list_paths[-1])

...

cost = angle_to_goal + acceleration_cost

return cost

Feasible motion primitives with the same name format that you can

directly use:

"V_0.0_20.0_Vstep_1.0_SA_-1.066_1.066_SAstep_2.13_T_0.5_Model_BMW_320i",

"V_0.0_20.0_Vstep_2.0_SA_-1.066_1.066_SAstep_0.18_T_0.5_Model_BMW_320i",

...

Fig. 5: Snippet of the few-shot prompting used for the search-based planner.

responsible for navigating the ego vehicle from the initial
state for 3.3s without colliding with any obstacles. The time
increment of the scenario is 0.1s. Moreover, we use the
planner with the setup illustrated in Fig. 6. The planned
trajectory by the initial planner is shown in Fig. 4, where the
ego vehicle brakes and steers slightly to the right, leading to
a high value of JSM1 (cf. Tab. I).

The diagnostic results using our approach are illustrated
in Fig. 7. In the first iteration, the provided helper functions
are automatically included in the heuristic function by the
LLM (cf. Fig. 7a). Meanwhile, some hyperparameters are
adjusted, such as the orientation weight and the heuristic
for zero velocity, and coarser motion primitives are applied.
Considering all the above factors, the repaired planner results
in a decrease in JSM1 of the planned trajectory, particularly in
JA, JSA, JSR, and JO (cf. Tab. I), and leads to the vehicle
traveling further forward. In contrast, the diagnostic result
from the second iteration leads to a KeyError (cf. Fig. 7b),
indicating that the repaired heuristic function is not provided
by the LLM. With the iterative prompting, the error message
is incorporated as feedback into the prompt for the third
iteration. As shown in Fig. 7c, our approach not only helps
the LLM avoid the errors from previous iterations (cf. the
diagnosis “KeyError in heuristic function”) but also retains
the previous diagnostic results that lead to a positive impact

https://commonroad.in.tum.de/solutions/ranking


1 def heuristic_function(self, node_current: PriorityNode) -> float:

2 path_last = node_current.list_paths[-1]

3 angleToGoal =

self.calc_angle_to_goal(path_last[-1])

4 orientationToGoalDiff = self.calc_orientation_diff(angleToGoal,

path_last[-1].orientation)

5 cost_time = self.calc_time_cost(path_last)

6 if self.reached_goal(node_current.list_paths[-1]):

7 heur_time = 0.0

8 if self.position_desired is None:

9 heur_time = self.time_desired.start -

node_current.list_paths[-1][-1].time_step

10 else:

11 velocity = node_current.list_paths[-1][-1].velocity

12 if np.isclose(velocity, 0):

13 heur_time = np.inf

14 else:

15 heur_time =

self.calc_euclidean_distance(current_node=node_current) /

velocity

16 cost = 20 * orientationToGoalDiff + 0.5 * cost_time + heur_time

17 if cost < 0:

18 cost = 0

19 return cost

MP = "V_0.0_20.0_Vstep_4.0_SA_-1.066_1.066_SAstep_0.18_T_0.5_Model_\

BMW_320i"

Fig. 6: Heuristic function and ID of motion primitives used in the initial
planner that are to be diagnosed and repaired.

on the planner. As a result, the planner significantly improves
its performance, with a substantial reduction in JSM1 from
752.56 to 4.65, achieved by further balancing the objective
components (cf. Tab. I). Moreover, it can be observed from
Fig. 7 that DrPlanner can provide fine-grained diagnoses
and prescriptions based on both the prompt design and
fundamental aspects of programming, such as aliasing (cf.
lines 10, 13, 15 in Fig. 7c). The resulting patched programs
align precisely with these diagnoses and prescriptions.

C. Performance Evaluation

We further evaluate the performance of DrPlanner us-
ing the scenario illustrated in Fig. 4 and 50 A*-search-
based motion planners with different setups obtained from
the CommonRoad challenges. The evaluation employs the
pass@k metric and uses its unbiased version proposed in
[29, Sec. 2.1], which is defined as the probability that at least
one of the top k ∈ N+ generated code samples for a problem
passes the given tests. Here, we use a decrease of JSM1 for the
returned planner as the criterion for passing. Additionally, we
conduct ablation studies to examine the impact of omitting
two specific components within the framework: few-shots
and feedback. For each study, we execute the framework 10
times to collect solution samples.

Tab. II presents the evaluation results for DrPlanner and
its variants. Overall, DrPlanner exhibits robust capabilities
for diagnosing and repairing motion planners, achieving a
pass rate of 98.0% at k = 10 and an average reduction of
54.5% in JSM1. Note that, similar to the case study in Sec. IV-
B, the value of JSM1 does not converge with the iterations
due to diagnostic inaccuracies. However, the average number
of iterations required to observe its first decrease is 1.4.
Furthermore, the results demonstrate that both the few-shot
learning (cf. Sec. III-B.4) and the iterative prompting (cf.
Sec. III-C) play crucial roles in enhancing the effectiveness

1 def heuristic_function(self, node_current: PriorityNode) -> float:

2 ...

6 + acceleration cost = self.calc acceleration cost(path last)

7 + path efficiency = self.calc path efficiency(path last)

8 + steering angle cost = self.calc steering angle cost(path last)

9 + steering velocity cost = self.calc steering velocity cost(path last)

10 if self.reached_goal(node_current.list_paths[-1]):

11 - heur time = 0.0

11 + return 0

12 ...

16 if np.isclose(velocity, 0):

17 - heur time = np.inf

17 + heur time = 10 # Instead of np.inf, assign a high but finite

cost

18 ...

20 - cost = 20 * orientationToGoalDiff + 0.5 * cost time + heur time

20 + cost = 10 * orientationToGoalDiff + 0.5 * cost time +

heur time + acceleration cost + path efficiency +

steering angle cost + steering velocity cost
21 ...

MP = "V 0.0 20.0 Vstep 4.02.0 SA -1.066 1.066 SAstep 0.18 T 0.5 Model \

BMW_320i"

Diagnosis Prescription
Orientation weight too high Adjust the weight for orientation to goal

difference
Missing acceleration cost Include acceleration cost in heuristic
Missing path efficiency Include path efficiency in heuristic
Missing steering angle cost Include steering angle cost in heuristic
Missing steering velocity cost Include steering velocity cost in heuristic
Infinite heuristic for zero velocity Handle zero velocity case appropriately
Sparse motion primitives Recommend motion primitives with higher

branching factor

(a) First iteration.
KeyError: 'repaired_heuristic_function'

(b) Second iteration.
1 def heuristic_function(self, node_current: PriorityNode) -> float:

2 ...

6 + acceleration cost = self.calc acceleration cost(path last)

7 + path efficiency = self.calc path efficiency(path last)

8 + steering angle cost = self.calc steering angle cost(path last)

9 + steering velocity cost = self.calc steering velocity cost(path last)

10 - if self.reached goal(node current.list paths[-1]):

10 + if self.reached goal(path last):

11 heur_time = 0.0

12 - if self.position desired is None:

12 + elif self.position desired is None:

13 - heur time = self.time desired.start -

node current.list paths[-1][-1].time step
13 + heur time = self.time desired.start - path last[-1].time step

14 else:

15 - velocity = node current.list paths[-1][-1].velocity

15 + velocity = path last[-1].velocity

16 if np.isclose(velocity, 0):

17 - heur time = np.inf

17 + heur time = 1e6 # A large but not infinite cost

18 ...

20 - cost = 20 * orientationToGoalDiff + 0.5 * cost time + heur time

20 + cost = 10 * orientationToGoalDiff + 0.5 * cost time +

heur time + acceleration cost + path efficiency +

steering angle cost + steering velocity cost
21 ...

MP = "V 0.0 20.0 Vstep 4.0 2.0 SA -1.066 1.066 SAstep 0.18 T 0.5 Model \

BMW_320i"

Diagnosis Prescription
Orientation weight excessive Decrease orientation weight in heuristic
Heuristic excludes costs Incorporate all costs into heuristic
Zero velocity infinite cost Refine zero velocity case handling
Motion primitives high branching Optimize motion primitives branching
KeyError in heuristic function Ensure correct key for improved heuristic

(c) Third iteration.

Fig. 7: Diagnostic and repair result for the motion planner in Fig. 6. The
identical program patches in the first and third iteration are highlighted with
black borders in (c). For the second iteration, we omit the diagnoses and
prescriptions since it leads to an error.



TABLE II: Ablation studies on the design of DrPlanner. Values in bold
denote the best performance.

Method pass@k Decrement of JSM1
k=1↑ k=5↑ k=10↑ Avg. ↑ Std. Dev. ↓

w/o Few-Shots 0.0% 0.0% 0.0% 0.0% 0.0%
w/o Feedback 45.4% 86.2% 92.0% 49.6% 36.3%

DrPlanner 68.0% 95.1% 98.0% 54.5% 34.9%

of DrPlanner. In particular, the few-shots prompting is more
effective since the LLM is intrinsically unaware of the other
supportive components of the planner, e.g., the available
motion primitives. Additionally, since the initial planners are
not buggy but underperforming, the results without using
few-shots show that they cannot be easily improved with only
the descriptions of the planner and the planned trajectory.

V. CONCLUSION

We present the first framework for diagnosing and re-
pairing motion planners that leverages both common sense
and domain-specific knowledge about causal mechanisms in
LLMs. Through a modular and iterative prompt design, our
approach automates the generation of descriptions for the
planner and continuously enhances diagnostic performance.
The major limitation of our approach is that the improve-
ment of the planner cannot be guaranteed. However, as the
capabilities of LLMs advance, we anticipate the paradigm to
enhance significantly over time. Future work will involve
developing datasets by monitoring user submissions over
time, specifically focusing on sequences of edits that lead
to performance improvements. This effort will examine the
impact of different objective functions and their target values.
We encourage researchers using DrPlanner to refine their
motion planners and contribute towards establishing a large-
scale framework that encompasses a variety of planner types
for diagnostic and repair tasks.
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