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Abstract

Molecular Dynamics simulations are a crucial tool for understanding the dy-
namic behaviour of molecular systems. They are often based on force calcula-
tions between particle pairs described by the Lennard-Jones potential. While
the Lennard-Jones potential suffices to correctly model interactions in a broad
range of applications, its fixed exponents for attractive and repulsive forces fail in
specialized applications such as the accurate description of dense fluids. Here, the
Mie potential as a more flexible, generalized form of the Lennard-Jones potential
offers a solution. When simulating the interactions for a large number of particles,
a lot of computational effort is needed. Therefore, parallelization techniques such
as vectorization are essential for enhancing performance in molecular dynamics.
The goal of this thesis is the implementation of force calculations based on the Mie
potential in the particle simulation library AutoPas. To reduce computational cost,
vectorization techniques are applied. Different implementations are introduced
and analyzed. For these implementations, the influence of different exponents in
the Mie potential on the performance is compared.
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1. Introduction

In recent decades, Molecular Dynamics (MD) simulations have become a crucial
tool for gaining new insights into the dynamic behaviour of molecular systems at
an atomic and molecular level[1]. The ability of MD simulations to provide de-
tailed insights into structural dynamics and kinetics of diverse molecular systems
makes them significant for many fields ranging from material sciences[2] to the
simulations of biomolecules[1]. Particularly in the field of drug development, MD
simulations are well integrated. This helps making the development of novel drugs
more efficient and less costly by reducing the number of real-life experiments
needed during the development process[3].

MD simulations help understanding, interpreting and even replacing exper-
iments by modelling physical interactions of many individual particles at the
atomic or molecular scale. For calculating these interactions, the Lennard-Jones
potential[4] is commonly used, which models van der Waals interactions between
two particles.

However, while there are many successful applications of the Lennard-Jones
potential, it fails to accurately model more complex interactions. Especially the
repulsive force of the Lennard-Jones potential may not accurately depict the forces
at hand, with examples in the modelling of noble gases[5], dense fluids[6] or coarse-
grain models of larger molecules[7]. A possible solution is the implementation of a
force calculation based on a more general force potential, with the Mie potential[8]
being the method of choice. The Mie potential offers more flexibility in the choice
of attractive and repulsive forces, allowing for the modelling of forces that are
more similar to those observed in the experiment at hand.

However, due to the high numbers of computations needed for the particle
interactions during a MD simulation, the computational costs of each calculation
has to be considered. Besides a computationally effective implementation, par-
allel programming can accelerate MD simulations even further. In this context
vectorization techniques, like the usage of Single Instruction Multiple Data (SIMD)
instructions, are an important tool to speed up MD simulations significantly [9].

This thesis aims to implement force calculations based on the Mie potential
in MD simulations with a focus on applying vectorization techniques. To this
end, different implementations of the Mie potential are explored and compared
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1. Introduction

regarding their computational cost. Then these approaches are implemented in
the particle simulation library AutoPas[10] and finally the performances of the
different implementations are evaluated.
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2. Theoretical Background

2.1. Fundamentals of Molecular Dynamics Simulations

Molecular Dynamics simulations calculate the movement of particles from a
given initial position x and velocity v in a defined time period. This is done by
discretising in time and solving Newton’s equations of motion at each time step:

v =
dx
dt

, a =
dv
dt

(2.1)

The velocities and positions are then updated at every time step. In order to
calculate the acceleration Newton’s second law is used to describe the relation
between the force F acting on a particle with a mass m and its acceleration a.

F = m · a (2.2)

To calculate the acceleration one needs to compute the total force acting on
a particle at every simulation step. The total force is equal to the sum of all
individual forces. The individual force is defined by the negative gradient of the
corresponding potential U:

F = −∇U (2.3)

2.2. Force Potentials

Several potentials exist that can be used in different contexts, such as the gravita-
tional or coulomb potential [11, pp. 28–29]. In Molecular Dynamics a commonly
used potential is the Lennard-Jones potential.

2.2.1. Lennard-Jones Potential

The Lennard-Jones potential [4] is a short range pair potential that describes
the interactions between two electronically neutral particles. It is defined as the
following:

3



2. Theoretical Background

U(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

(2.4)

Here, r represents the distance between the interacting particles, ϵ defines the
depth of the potential well and σ, also known as the particle size, the finite particle
distance at which the potential is zero.

The Lennard-Jones (LJ) potential consists of two terms. The first term which
scales with r−12 describes attractive van der Waals interactions between particles
whereas the second term, scaling with r−6, describes repulsive interactions stem-
ming from the overlap of electron orbitals of the particles at short distances. The
different exponentiation of the interactions results in strong repulsive interactions
dominating at short distances below σ and attractive interactions dominating
at larger distances. This creates a distinct shape for the resulting energy curve
featuring an energy minimum with a depth of ϵ at a certain distance between
particles (see Figure 2.1).

0.5 1.0 2.0
r

1

1

U(r)
F(r)

Figure 2.1.: The Lennard-Jones Potential. For large distances r the force approaches
zero

σ and ϵ typically are particle specific. To describe the potential between two
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2. Theoretical Background

particles of different types special mixing rules need to be used. One such rule is
the Lorentz-Berthelot combining rules[12, 13]:

ϵij =
√

ϵiϵj σij =
σi + σj

2
(2.5)

While there is a physical justification to use the exponent 6 in the Lennard-Jones
potential to describe repulsive forces [14], the exponent 12 for attractive forces is
primarily chosen to allow for efficient computation. This results in inaccuracies
when applying the potential to specialized applications such as the prediction
of properties of noble gases[5] or of saturated liquid viscosities of non-spherical
particles[15]. Here, the Mie potential[8] provides a suitable alternative.

2.2.2. Mie Potential

The Mie potential[8] is a generalization of the Lennard-Jones potential. As such
it is often also referred to as the general Lennard-Jones potential or the (n,m)
Lennard-Jones potential. Instead of using fixed exponents of 12 and 6 to model
attractive and repulsive interactions, it uses flexible exponents of n and m:

U(r) = Cε
[(σ

r

)n
−

(σ

r

)m]
(2.6)

with

C =
n

n−m
(

n
m
)

m
n−m (2.7)

where n > m > 3 [16]. Here n and m represent positive integers. For the
exponents n = 12 and m = 6, this corresponds to the Lennard-Jones potential. Its
flexible exponents, however, make the Mie potential a better choice in potential
for certain applications. Especially the exponent n, characterizing the distance
dependency of attractive interactions, is often varied when applying the Mie
potential[17, 18, 19].

Figure 2.2 shows the (n,6) Mie potential for different n values. Increasing n
results in a shift of the potential minimum to lower distances while simultaneously
increasing the steepness of the repulsion, effectively narrowing the potential.

For example, the pair potential of noble gases is only accurately described by
the (n,6) Mie potential with n values ranging from n = 11 for Neon to n = 14 for
Krypton[17]. Analogously, for modelling phase equilibria of branched alkanes,
alkenes and perfluoralkanes, only the (n,6) Mie potential with n values between
14-16, 16 and 36-44 yielded accurate results[18, 19]. These examples highlight the
advantages of using the Mie potential instead of the Lennard-Jones potential when
a fixed exponent of 12 fails to describe attractive interactions accurately.
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2. Theoretical Background
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Figure 2.2.: (n,6) Mie potential with different repulsive exponents. The attractive
exponent m is fixed at 6.

2.2.3. Cutoff

To calculate the correct force of a particle in each simulation step, one needs to
consider every interaction between particles inside the domain. This gets compu-
tationally expensive for large numbers of particles. For a simulation based upon
a pairwise potential of N particles, this approach would lead to a computational
complexity of O

(
N2).

The computational cost can be significantly reduced by the introduction of a
cutoff radius rc. The pairwise forces are then only calculated for particle pairs
with distances smaller than the cutoff radius. This is based upon the observation
that for short-range potentials the forces between particles converge to 0 for larger
distances. While this comes with a loss of accuracy, the effects are very small
when the chosen rc is large enough [11]. However, using different exponents for
the Mie potential, can alter the potential curve and thus requires choosing the
cutoff radius carefully. For instance, decreasing the repulsive exponent n leads
to a slower convergence of the potential to 0 (see Figure 2.2). This increases the
forces for longer distances, which requires a higher cutoff to be set.

6



2. Theoretical Background

2.3. Efficient Exponentiation

An efficient computation of the pairwise force calculation is desirable to calculate
a large number of particle interactions. The fixed exponents in the Lennard-Jones
Potential (6 and 12) allow for optimized exponentiation. In contrast, the Mie
potential’s variable exponents require a different approach.

The simplest way to compute x to the power of n, is to multiply x n times with
itself. This requires n− 1 multiplications leading to a computational complexity
of O(n).

Our goal is to minimize the number of multiplications for the calculation of
xn to maximize efficiency. This is known to be equivalent to minimizing the
number of additions to compute n starting from 1. This problem is modelled by
addition-chains. An addition-chain for the number n is a sequence of positive
integers starting from one:

[1, k2, k3, k4, .., ki, .., n] (2.8)

where each number k > 1 in the list is equal to the sum of any two previous
numbers in the sequence and the final number is n[20]. An addition-chain for n
has length l, where l is one less than the number of elements in the chain.

[ 1 2  3 6 12 15 ]

1+1 1+2 3+3 6+6 12+3

𝑛1 ∗ 𝑛1 𝑛1 ∗ 𝑛2 𝑛3 ∗ 𝑛3 𝑛6 ∗ 𝑛6 𝑛3 ∗ 𝑛12

[ n1 𝑛2 𝑛3 𝑛6 𝑛12 𝑛15 ]

Figure 2.3.: Additive Exponentiation. A minimal addition chain for 15 is shown.
Five multiplications are necessary to compute n15.

The calculation of the power xn can then be done using an addition-chain for n.
The shorter the chain, the fewer additions are needed to compute n starting from
1, or the fewer multiplications are needed to compute xn starting from x. How a
chain is used to calculate a power is shown in more detail in Figure 2.3.

7



2. Theoretical Background

Then, instead of n multiplications with the naive loop approach only l multi-
plications are needed for the exponentiation when using an addition-chain for n
with length l.

In the context of the Mie potential two powers with the same base are computed.
This enables to combine calculations for both powers.

An addition-sequence is an addition chain with the constraint that it con-
tains a set of given numbers [21]. Say n is the biggest integer in the set s, then
[1, k2, k3, ..., n] is a addition sequence of s if:

∀m ∈ s : m ∈ [1, k2, k3, ..., n] (2.9)

and each number k > 1 in the sequence is equal to the sum of any two previous
numbers of the sequence.

In the context of the Mie potential using an addition-sequence for {m, n} is of in-
terest. The length of the addition-sequence indicates the number of multiplications
needed to compute both xm and xn.

In the following different algorithms for computing powers will be introduced.

2.3.1. Binary Exponentiation

Binary exponentiation, also known as exponentiation by squaring, is a common
method to compute integer powers efficiently [20]. To compute xn it repeatably

Figure 2.4.: Calculating x41 by squaring and multiplying. The product of the red
numbers is the solution. To compute the red numbers x is repeatedly
squared (green colours). On the right is the corresponding addition
chain. 8 Multiplications are required to compute x41

8



2. Theoretical Background

squares x for every digit of the binary expansion of n. If the digit is a 1 it
also multiplies the current value of x with an accumulator. The accumulator is
initialized with 1. An example for computing x41 is shown in Figure 2.4.

The number of multiplications needed to compute the power is the number
of digits minus 1 of the binary representation of the exponent, added to the
number of 1’s in the exponent. As the exponent e has ⌊log2 e⌋ binary digits, the
computational complexity is O(log n).

2.3.2. Double Addition-Chain

Now a method will be introduced that computes two exponentiations xm and
xn simultaneously. For that an addition sequence for {m, n} will be constructed,
which will be called a double addition-chain. The concrete computation of the
exponentiations then uses a representation of said chain. The algorithm follows
this paper: [22]

Each element xi of the double addition-chain is either the sum of the two
elements before it xi−2 + xi−1, a doubling of the element before it 2× xi−1, or the
sum of 1 and the element before it 1 + xi−1. It will be seen that by doing this only
three variables are needed when calculating xm and xn: One to store x, and two
accumulators for xm and xn. Furthermore, when calculating the exponentiations,
in each step one of the accumulators is multiplied either by x, by itself or by the
other accumulator. At first the algorithm applies the inverse rules to (m, n)) until
(0, 1)) is reached. The order of the applied rules is stored, and can later be used to
construct the double-addition chain or to compute the exponentiations (xm, xn)
and implement the exponentiation.

Construction of the Double Addition Chain

Starting with (α, β) = (m, n) a sequence is constructed by recursively applying
the inverse operations until the pair (0, 1) is reached. Each number from an
intermediate pair j ∈ (αi, βi) obtained in this way will be part of the double
addition-chain. The inverse operations are either a decrement, a division by two,
or a subtraction of one element from the other. The inverse rules are shown in
Equation 2.10.

(αi+1, βi+1) =


(

αi,
βi
2

)
if αi ≤ βi

2 ∧ βi mod 2 = 0(
αi,

βi−1
2

)
if αi ≤ βi

2 ∧ βi mod 2 = 1

(βi − αi, αi) if αi >
βi
2

(2.10)

9



2. Theoretical Background

Let k be the recursion depth where (αk, βk) = (0, 1). Two k-bit vectors τ, ν will
be used to represent the sequence of additions that construct the chain.

τi =

{
0 if αk−i ≤ βk−i

2

1 if αk−i >
βk−i

2

(2.11)

νi = βk−i mod 2 (2.12)

Starting from (0, 1)) a sequence (mi, ni)i that ends with (m, n) will then be
constructed. This is done by starting from (0, 1)) and processing the information
encoded in τ and ν:

(mi+1, ni+1) =


(mi, 2ni) if τi+1 = 0∧ νi+1 = 0

(mi, 2ni + 1) if τi+1 = 0∧ νi+1 = 1

(ni, ni + mi) if τi+1 = 1

(2.13)

It can be seen that the information in ν is only relevant, if τi+1 = 0. This allows
merging τ and ν by inserting νi into τ if τi = 0. The specific exponentiation uses
the merged bit-vector for computing xm and xn as will be further detailed in the
implementation section [22].

2.4. Vectorization

Vectorization can further accelerate force calculations[9]. It is a parallel computing
method that processes multiple data elements simultaneously within a single in-
struction, known as Single Instruction Multiple Data (SIMD). The same instruction
is applied to all data elements at once, thus reducing the number of instructions
needed. Most modern CPUs support SIMD through special vector-registers and
vector-instructions that come with instruction set extensions. The acceleration
compared to non-vectorized calculations depend on the size of the register, and
the size of the datatype. A vectorized multiplication is illustrated in Figure 2.5.
Vectorization can be achieved by different approaches.

2.4.1. Autovectorization

One option is to rely on the compiler to automatically detect suitable code-
segments and vectorize them. In this case, standard scalar code without any
additional modifications is sufficient, which keeps the code easy to read and
maintain while ensuring functionality independent of the used processor. The

10



2. Theoretical Background

Figure 2.5.: Example of a SIMD operation. Assuming a vector-register size of
256 bit, four 64bit floating-point values can processed using a single
instruction instead of four.

processor must support vectorization and the required compile-flags need to be
set. There is no guarantee that autovectorization will be successful as the compiler
needs to ensure the correctness of the vectorized code. In more complex scenarios
it may fail due to data dependencies or other reasons. Compiler directives can
provide additional information to the compiler, increasing chances of successful
vectorization. For instance, OpenMP can be used to indicate that a loop can be
vectorised1.

1 #pragma omp simd
2 for(i=0; i<N; i++){
3 // do stuff
4 }

Listing 2.1: OpenMP SIMD directive indicating that the for loop can be vectorized.

However the vectorised code may not be optimal.

2.4.2. Vector Intrinsics

AVX

AVX (Advanced Vector Extensions) intrinsics were introduced by Intel in 2011.
They offer support for 256 bit and 128 bit sized registers. The datatypes and

1https://www.openmp.org/spec-html/5.0/openmpsu42.html
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2. Theoretical Background

functions follow the following pattern:

• Datatypes: __[size][type]

• Functions: _mm[size]_[instruction]_[type]

SVE

SVE (Scalable Vector Extensions)[23] intrinsics are defined in the arm_sve.h header
file. The vector length for SVE is variable and can range from 128 bit up to 2048
bits. The functions and arithmetic datatypes follow the schema:

• Datatypes: sv[type]_t

• Functions: sv[instruction][_disambiguator][_type0][_type1][_predication]

2.5. Compile-time Programming

The calculation of the forces based on the Mie potential depends strongly on the
exponents of the potential. If the exponents are known at compile time, the com-
piler can make additional optimizations which potentially can increase efficiency.
Compile-time programming allows to evaluate code segments at compile-time
rather than at run-time. Different C++ features that enable compile-time program-
ming will be briefly reviewed.

Constexpr

Variables and functions marked with the keyword constexpr can be evaluated at
compile-time. Constexpr variables are constant and must be initialized with a con-
stant expression. Constexpr functions must not have any side-effects. Conditional
expressions can be evaluated at compile-time when using constexpr-if statements.

Template Metaprogramming

Templates are evaluated and instantiated at compile time. This allows for more
complicated compile-time programming. It is known that template metapro-
gramming in C++ is turing complete [24]. The following snippet shows a basic
example.

1 template <int N>
2 constexpr int fac(){
3 if constexpr(N==0)

12



2. Theoretical Background

4 return 1;
5 else
6 return N* fac<N−1>();
7 }
8 int main(){
9 std::cout << fac<12>() << std::endl;

10 }

Listing 2.2: A short example function using constexpr if and template
metaprogramming. The faculty will be computed at compile time.

13



3. AutoPas

In this chapter AutoPas is introduced and existing structures that are relevant for
this thesis are discussed.

A tool of choice for efficient MD simulations is the C++ library AutoPas1. To the
user AutoPas acts a black box that chooses the optimal algorithm for the provided
scenario.[25] It achieves this by testing all available combinations of algorithms
and containers periodically and selecting the fastest one. It does this repetitively
during the simulation as the best performing algorithm might change with time.

3.1. Particle Container

To ensure that only particle pairs with distance less than the specified cutoff radius
are included in the pairwise force calculation, all particle pairs with distance
within the cutoff must be determined at each simulation step. For that AutoPas
implement different algorithms.

1. Direct Sum The most straightforward approach is to store all N particles
in a single container. For each particle the distances to all other particles
are computed. This is visualized in Figure 3.1 where the red particle is the
particle for that the pair-wise forces are currently calculated. The arrows
stand for the distance-calculations. This leads to a complexity of O(N2). Thus
it is only suitable for small N where the number of computations required is
small and not outweighed by the complexity of other methods.[25]

2. Linked Cells The Linked Cells (LC) method divides the simulation domain
into a grid of cells. In most cases a cell width rc of equal or bigger than the
cutoff radius is chosen. Particles distances are then only calculated between
particles within a cell and adjacent cells, thus reducing the complexity to
O(N). The neighboring cells are shown in blue in Figure 3.1 and the particle
cell is marked red. While the memory overhead for the cell structure is
quite small, an additional computational overhead for moving the particles
in between cells is required[25]. Particles of the same cell can be placed

1https://github.com/AutoPas/AutoPas
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3. AutoPas

continuously in memory, improving vectorization capabilities. However the
LC method still computes a lot of unnecessary distance calculations, with a
hitrate of below 16% in neighboured cells[10]:

Cuto f f volume
Search volume

=
4
3 πr3

c

(3rc)3 ≈ 0.155 (3.1)

Direct Sum Linked Cells Verlet Lists Verlet Cluster 
Lists

Figure 3.1.: Comparison of different particle containers. Interactions are computed
for the red particle. Particles within the cutoff are green, particles that
are potentially within the cutoff radius are grey. White particles are
out of reach for the red particle. Adapted from [25]

3. Verlet Lists Each particle stores a list of references to all neighbouring
particles within a certain interaction radius rc + ∆s where ∆s is called Verlet
skin (yellow circle in Figure 3.1)[25]. When a particle leaves the interaction
radius, the neighbour lists need to be rebuilt for each particle, which is
expensive. Due to the introduction of the Verlet skin this only has to be done
every nth iteration. To facilitate the rebuilding of the lists AutoPas builds the
Verlet List container upon the Linked Cell container. Only the distances of
particles within the interaction radius has to be evaluated. With ∆s = s ∗ rc

15



3. AutoPas

the hitratio increases to[10]:

Cuto f f volume
Search volumeVL

=
4
3 πr3

c
4
3 πrc(1 + s)3

≈ 1
1 + s3 (3.2)

For s = 0.15 the probability evaluates to 1
1+0.153 ≈ 0.658 which is a far better

value than in Linked Cells. However storing the lists for all particles result in
a big memory overhead. Based on the lists it is not possible to infer whether
two particles are next to each other in memory. This can lead to poor caching
and vectorization difficulties[25].

4. Verlet Cluster List is built upon Verlet Lists and was developed by Páll
and Hess[26]. Neighbouring Particles are put together into cluster of size
M. Instead of particles the neighbour lists store references to clusters, thus
reducing the size of the lists and the total number of lists by a factor of 1

M .
For the distance calculations all particles of the clusters in the neighbour
lists are considered. Choosing M as a multiple of the processors vector
length allows for efficient vectorization. A downside is the rather complex
implementation and a lower hitrate because of the increased interaction
radius.

3.2. Data Layouts

There are two common options for storing particle data in memory that are
displayed in Figure 3.2.

• Structure of Arrays (SoA) stores each particle property (e.g. x-position,
velocity) in a separate array. This enables to load sequential data (of one
particle property) from memory in one load operation, which is of advantage
for vectorization.

• Arrays of Structure (AoS) stores an array of particle objects. Each object
contains all of the particle’s properties. This can be advantageous if one wants
to load all properties in a non sequential manner. However for vectorization
we want to load contiguous data of a single property from memory, which
makes AoS not suitable for vectorization.

16



3. AutoPas

Figure 3.2.: Comparison of the SoA and AoS data layout by storing coordinates.
For simplicity only the storage of three coordinates is displayed.

3.3. Overview of Relevant Classes

With MD-flexible, AutoPas includes an executable for running particle simulations.
Force calculations used in MD-flexible so far are based solely on the Lennard-Jones
potential. The following section introduces its most relevant classes which have to
be adapted to also use the more generalizable Mie potential for force calculations.

3.3.1. Functor

For calculating pairwise interactions between multiple particles, AutoPas intro-
duces the class Functor.h. It includes four functors:

• AoSFunctor The AoS-Functor exists for situations where the AoS data layout
is used. It calculates the pairwise interaction between two particles. However
for reasons described in Section 3.2 this functor is not vectorizable.

• SoAFunctorSingle This Functor calculates all the pairwise interactions of a
single SoA-Structure. When using Linked Cells this corresponds to comput-
ing the forces of Particles within the same cell.

17



3. AutoPas

• SoAFunctorPair When calculating forces between two adjacent cells using
Linked Cells the SoAFunctorPair-Functor need to be used. It takes two SoAs
as parameters and calculates the pairwise interactions between them.

• SoAFunctorVerlet The Verlet Functor used by the Verlet List container takes
an SoA of particles, an index for the current particle, and a (neighbour) list
of particles for the neighbours of the current particle. It then computes all
pairwise interactions between the current particle and its neighbours.

To use specific force potentials in simulations, a custom functor class needs to
be implemented that provide implementations of these functors.

Lennard-Jones Functor

AutoPas already contains a variety of custom functors for the Lennard-Jones
potential using Autovectorization, AVX-intrinsics and SVE-intrinsics. In the heart
of the functors the same sequence of instructions is used to calculate the force,
that is displayed in algorithm 1.

Algorithm 1: LennardJonesForce

1 l j6← σ2 ∗ 1
r2

2 l j6← l j6 ∗ l j6 ∗ l j6
3 l j12← l j6 ∗ l j6
4 l j12m6← l j12− l j6
5 f ac← ε ∗ 24 ∗ (l j12 + l j12m6) ∗ 1

r2

6 f orce← dr ∗ f ac
7 return f orce

Figure 3.3.: Sequence of instructions to calculate the forces, given σ, r and ε using
the LJ potential

ParticlePropertiesLibrary

This class contains the physical properties of all molecule types. It also stores the
mixed values for the force calculations between the different types. We will extend
the library for the Mie potential.

18



4. Implementation

Three functor classes of the Mie potential with different vectorization techniques
are implemented: One using AVX vector intrinsics, one using SVE vector intrinsics
and one using autovectorization with OpenMP. Additional, for each functor, a
variant is offered where the exponents are provided at compile time. These
functors compute the exponentiations using three different algorithms.

For a more effective comparison with the Lennard-Jones functors, most of the
structure of the LJ functors will be adopted. Where necessary changes will be
introduced. The primary difference to the LJ functors will be the computation of
the forces due to the variable exponents.

The formula for the force computation of the Mie potential is as follows:

FMie(r) = Cε
[
n
(σ

r

)n
−

(
m

σ

r

)m] 1
r
=

[
Cεn

(σ

r

)n
− Cεm

(σ

r

)m] 1
r

(4.1)

The terms Cεn and Cεm are independent of r and remain constant throughout
an simulation. They can be precomputed. For that reason the ParticlePropertyLi-
brary is extended with a separate mixing-Data storage for the Mie-potential to
store the new values. Consequently, the key computational factor are the two
exponentiations. These will be referred to as mien for

(
σ
r

)n and miem for
(

σ
r

)m in
the remainder of the thesis.

4.1. Force Calculation of the Mie Potential

4.1.1. Square-root

When calculating the distance r between two particles, a square root must be taken.
However, for reasons of efficiency, this should be avoided where possible.This
can be done for all straight exponents, because raising a Euclidean distance to its
second power is just a dot product:

(
σ
r

)2
= σ2

(x1−x2)
2+(y1−y2)

2+(z1−z2)
2
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4. Implementation

4.1.2. Naive-Loop

The naive method to implement the exponentiation involves using a simple for-
loop. First mien is initialized with one or with the square root of the second power

of the fractal
√

σ2

r2 , depending on whether the exponent is odd. Then mien is

multiplied ⌊ n
2 ⌋ times with σ2

r2 . (see Listing 4.1).

1 mie_n = n & 1 ? sqrt(fract) : 1; //check if n is odd; fract = sigmaSquared * invdr2;
2
3 for (size_t k = 1; k < n; k += 2) {
4 mie_n = mie_n * fract;
5 }

Listing 4.1: The naive loop approach for calculating the exponentiaton. The
implementation using SVE/AVX or auto-vectorization is similar.

4.1.3. Binary Exponentiation

Now binary exponentiation is implemented to compute mien and miem. Like in
the naive loop approach mien (miem) is set to one or to the square root of the

second power of the fractal
√

σ2

r2 . For each iteration of the loop, the exponents are
shifted to process their bits according to the algorithm discussed in section 2.3.1.
This is done starting from the second bit of the exponents to avoid unnecessary
square root computations.

1
2 // check if exponents are odd
3 // fract is sigmasquared * invdr2
4 mie_n = n & 1 ? sqrt(fract) : 1;
5 mie_m = m & 1 ? sqrt(fract) : 1;
6
7 //last bit is not needed
8 n = n >> 1;
9 m = m >> 1;

10
11 //iterate through bits of exponent
12 while(n || m) {
13
14 //if current bit in m is odd, multiply
15 if(m_exp&1)
16 mie_m = fract * mie_m;
17
18 //if current bit in n is odd, multiply
19 if(n_exp&1)
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4. Implementation

20 mie_n = fract * mie_n;
21
22 //square for every bit in exponent
23 fract = fract*fract;
24
25 //shift exponents, to process next bit
26 n = n >> 1;
27 m = m >> 1;
28 }

Listing 4.2: Binary Exponentiation is used for computing the exponentiatons. Both
exponents n and m are being processed in a single loop as the squaring
part of the algorithm is equal for both exponents. The implementation
using SVE/AVX or auto-vectorization is similar.

4.1.4. Double Addition-Chain

We now want to implement the algorithm introduced in section 2.3.2 that uses
combined calculations.

Construction of the Double Addition Chain

The double addition chain only depends on n and m. Therefore it is constant
for the duration of an simulation and only needs to be computed once at the
beginning. For the bit-vector representation, an unsigned 16-bit integer is selected.
Starting with the pair (m, n) we iterate until the pair (0, 1) is reached. In each
iteration the inverse rules of the conditional equation 2.10 are applied to n and m.
We encode what rule was chosen in our addition chain according to 2.11 and 2.12.
We use another integer to point to the current bit of the chain.

1 int chain = 0;
2 int pointer = 1;
3 int i = 0;
4
5 or(; m || n != 1; i++, pointer <<= 1) {
6 if (m <= n / 2) {
7 i++;
8 if (n & 1) {
9 chain |= pointer;

10 }
11 pointer <<= 1;
12 n >>= 1 ;
13 } else {
14 auto diff = n − m;
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4. Implementation

15 n = m;
16 m = diff;
17 chain |= pointer;
18 }
19 chain = reverse_chain(chain);

Listing 4.3: Constructing the Double Addition Chain.

Implementation of the Exponentiation

When using this method taking a square root is always required. Miem is set to 0,
and mien is set to 1. It iteratetively processes the chain by applying the encoded
rules.

1 // fract is sigmasquared * invdr2
2 auto base = sqrt(fract);
3 miem = 1.0, mien = base; sqrt(fract);
4 for(size_t k = 0; k < chain_len; k++ ,chain >>= 1){
5 if(chain&1){
6
7 //multiplying miem and mien
8 auto tmp = miem;
9 miem = mien;

10 mien = tmp;
11 mien = miem * mien;
12 }
13 else{
14 chain>>=1;
15 k++;
16
17 //doubling operation
18 mien = mien * mien;
19
20 if(chain&1){
21
22 //increment operation
23 miem= miem*;
24 }
25 }

Listing 4.4: The exponentiation of mien and miem using a double addition-chain.
The implementation using SVE AVX or autovectorization is similar.
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4. Implementation

Compile Time Programming

As discussed in Section 2.5 it can be beneficial to provide the values of the
exponents at compile-time. For that three additional functors are offered. In these
functors the values of the exponents are hardcoded and stored as constexpr values.
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5. Results

This chapter analyses the performance of the different functor variants and the
algorithms for the exponentiations using the MD-flexible example that is integrated
in AutoPas. MD-flexible is a MD simulator enabling the user to configure scenarios
and running simulations with the help of input files. Performance test are run
on the the CoolMUC-21 cluster of the Leibnitz-Rechenzentrum (LRZ) and on the
Fujitsu ARM FX700 system2 located at the Helmudt-Schmidt-Universität Hamburg.
CoolMUC2 employs the ”Haswell”-based Intel Xeon E5-2690 v3 as processors.
Each node features a clock frequency of 2.60 GHz and contains 28 cores with 2
threads per core. The AVX instruction set is supported by the processor. Each
node of the Fujitsu ARM FX700 system features a clock frequency of 2.0 GHz and
has 48 cores. The SVE instruction set is supported by its used A64FX processor.
AutoPas is compiled using gcc/11.2 and the –ffast-math flag is activated to help
with autovectorization.

For the testing environment a cubic domain of size 51× 51× 51 is chosen and
the cutoff radius is set to 3. The number of particles within the domain is specified
by the number of particles per dimension x. This results in x3 particles within
the domain. The particles are uniformly distributed, which is being enforced by
choosing a particle spacing of domainsize

x . DeltaT, the time in between two simulation
steps, is set to 0. This prevents the particles from moving and is done as our
interest lays mainly in the performance of the force-calculations.

5.1. Increasing the n-Exponent

To study the influence of the exponents on the run-time, experiments are conducted
for m set to 6 and selected values for n. This is especially interesting as the (n,6)
Mie Potential is commonly used in research [27]. 50 Particles were inserted per
dimension, which corresponds to a total of 125,000 particles within the domain.
The run-time is measured for the values 12,13 and 14 of n. All combinations of
functors and algorithms for the exponentiation were tested for a varying number

1https://doku.lrz.de/linux-cluster-10745672.html
2https://www.hsu-hh.de/hpc/hpc-hardware-systems/
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5. Results

of iterations depending on the speed of the specific functor. The Linked Cells
container was used with the traversal lc_c08. Figure 5.1 displays the data from
CoolMUC2, and Figure 5.2 from HSU.
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Figure 5.1.: Comparison of the Mie-AVX and Mie-Autovec Functors for increasing
n. The exponents of the Mie Potential were once provided at compile-
time and once at run-time. The tests were conducted on CoolMUC2
with a single thread.

At first one can note that the AVX and the SVE functors are significantly faster
than the functors that use autovectorization with OpenMP. This could be due to
difficulties of the compiler vectorizing the code efficiently as the algorithms for
the calculation of the powers introduce additional complexity compared to the LJ
functors.

When comparing the modes for the power calculation, it can be seen that
across all functors the computation time of the naive-loop mode and the binary-
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Figure 5.2.: Comparison of the Mie-SVE and Mie-Autovec Functors for increasing
n. The exponents of the Mie Potential were once provided at compile-
time and once at run-time. The tests were conducted on the Fujitsu
ARM FX700 system with 8 threads.
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exponentiation mode increase for n = 13 before decreasing again at n = 14,
while the performance of the double-addition chain is more consistent across the
exponents. This is explainable by the fact that it is necessary to take a square root
for odd exponents, which is a computational expensive instruction as explained in
4.1.1. In contrast the double addition-chain will calculate a square root regardless
of the oddness of the exponent.

One can also see, that while providing the exponents at compile time results in
a performance boost for the naive-loop and the binary-exponentiation methods, it
has no effect on the performance of the double-addition chain algorithm. When
providing the exponents at run-time the binary exponentiation algorithm is faster
than the naive-loop algorithm. However, when the exponents are known at
compile-time this changes. A possible explanation could lie in the simplicity of
the naive-loop approach that enables the compiler to make more optimizations
compared to the binary exponentiation algorithm, which is more complicated.
However, this does not hold true for the SVE functor where binary exponentiation
experiences a bigger speed up when providing the exponents at compile-time.

The double addition-chain method depends strongly on the double addition-
chain, which so far can only be constructed and provided at run-time. Therefore
the compiler will have difficulties optimizing the algorithm to the fullest.

10
0

10
1

Ti
m

e 
/ i

te
ra

tio
n 

[s
]

auto-
vectorization AVX

(a) naive-loop

10
0

10
1

Ti
m

e 
/ i

te
ra

tio
n 

[s
]

auto-
vectorization AVX

(b) binary exponentiation

10
0

10
1

Ti
m

e 
/ i

te
ra

tio
n 

[s
]

auto-
vectorization AVX

(c) double addition-chain

Mie (12-6) Mie (12-6), compile-time

Figure 5.3.: Effect of providing the exponents at compile-time for the case n=12 on
the exponentiation algorithms on SuperMUC2.

Figure 5.3 gives a better visualisation of the individual speedups of the different
exponentiation modes when the exponents are provided at compile time with the
data from CoolMUC2 and n fixed at 12. The corresponding figure for the ARM
system can be found in the Appendix.
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5.2. Comparison of LJ and Mie(12,6)

As previously discussed the Mie potential corresponds to the Lennard-Jones po-
tential when the exponents are set to 12 and 6. This allows for a direct comparison
of the Lennard-Jones functors with the implemented Mie functors. The exponents
will be provided at compile-time and as a exponentiation method the naive-loop
approach is chosen, as this was in all cases except of the SVE functor the best
performing method in the previous experiment for n=12. Figure 5.4 compares the
performance of the different functors on CoolMUC2.

All LJ functors perform better than their corresponding Mie equivalents. This
was expected as the Lennard-Jones functors allow for a hardcoded computation of
the force-computation due to the fixed exponents. The run-time is 20% higher in
the case of autovectorization, and 4% higher in the case of AVX when using the
Mie functors with compile-time exponents.

30 40 50
Particles / dimension

0

2

4

6

8

Ti
m

e 
/ i

te
ra

tio
n 

[s
]

(a) autovectorization

30 40 50
Particles / dimension

0.0

0.2

0.4

0.6

Ti
m

e 
/ i

te
ra

tio
n 

[s
]

(b) AVX

10
0

10
1

Ti
m

e 
/ i

te
ra

tio
n 

[s
]

auto-
vectorization AVX

(c) 50 particles / dimension

Lennard-Jones Mie (12-6) Mie (12-6), compile-time

Figure 5.4.: Comparison of the AVX and the Autovectorization Functors of the LJ
and Mie Potential. In the Mie-Potential the exponents are once pro-
vided at compile-time and once at run-time. The tests were conducted
on CoolMUC2 with a single thread

5.3. Comparison of Different Particle Containers

Also interesting is the performance of the Mie potential when using different
particle containers in AutoPas. For that the run-time of the particle containers
Linked Cells, Verlet Lists and Verlet Cluster Lists are compared. Verlet Lists is
tested in combination with the vl_list_iteration traversal and Verlet Cluster Lists is
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tested using the vcl_clusterIteration traversal. The experimental setup is the same
to the prior increasing n scenario. The results for the ARM system are displayed in
Figure 5.5.

The LinkedCell container performs far better than the Verlet Cluster Lists and
the Verlet List containers. A possible explanation could be the better vectorization
properties as discussed in section 3.1. Verlet Lists perform better than the Verlet
Cluster Lists. However the opposite holds true for the CoolMUC2 cluster as
apparent in Figure 5.6. This could have multiple reasons: Firstly, it could be due to
the different architectures of the systems. Further it is also possible that the Verlet
Lists scales better with the number of threads used. The tests on the ARM cluster
were run with 8 threads, while only 1 thread was used on CoolMUC2. Therefore
running the test again with multiple threads could give better insights. Unexpected
behaviour occurs for Verlet Lists when using the AVX functor with compile-time
exponents. The performance increases for the odd exponent of 13. This stands
in contrast to previous observations and reasoning. Further experiments, e.g.
with more iterations and/or more simulated particles, are necessary to check the
reproducibility of this behaviour and identify underlying reasons.
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Figure 5.5.: Comparison of different Particle-Containers. The Mie-SVE Functor is
used with exponents provided at compile and runtime. The tests were
conducted on the Fujitsu ARM FX700 system with 8 threads
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Figure 5.6.: Comparison of different Particle-Containers. The Mie-AVX Functor
is used with exponents provided at compile and run-time. The tests
were conducted on CoolMUC2 with a single thread.
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6. Future work

This thesis presents an implementation for force calculations based on the Mie po-
tential in AutoPas. Some parts of the code might benefit from further analysis and
the application of vector intrinsics specific optimizations. Furthermore correctness
testing for the SVE functors remains an area for future research. However, since
these SVE functors follow the algorithms of the previously implemented functors
and share a similar structural framework, it is reasonable to infer that the results
presented here are accurate, although subject to future validation.

The exponents of the Mie potential should be parsed at compile-time by em-
ploying meta-programming to increase usability. It would also be interesting to
implement the construction of the double addition-chain at compile-time, and test
if this leads to any increase in performance. Regarding the exponentiations, no
algorithm performed best in all tested scenarios. Further tests with an wider range
of exponents are required to gain more insights. While this was initially planned
in the thesis, problems on the SuperMUC2 cluster significantly slowed down the
execution of experiments. However, in the tested scenarios a simple for loop was
a good method to handle the variable exponents. For smaller exponents it is
suspected that the performance of the naive-loop will perform better relative to
binary exponentiation and the double addition chain, while binary exponentiation
and the double addition-chain approach will increase in performance relative to
naive-loop for larger exponents. If the results support this thesis, it would be
interesting to implement an mechanic to select the exponentiation method based
on the values of the exponent.

Furthermore this thesis focused mainly on the force calculations. The calculation
of additional physical properties like the virial and potential energy, can easily be
enabled by adapting the current code slightly.

Until now the Mie potential was implemented in AutoPas using AVX and
SVE intrinsics. This limits its applicability to architectures that support these
specific SIMD instruction sets. However there are other instruction sets besides
AVX and SVE. Maintaining a functor for each instruction set is complex and
time consuming. A solution could be the usage of SIMD-wrappers, that offer an
additional abstraction layer in between the code and the instructions. Examples
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6. Future work

for SIMD-wrappers are xsimd 1 and google-highway 2.

1https://github.com/xtensor-stack/xsimd
2https://github.com/google/highway
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7. Conclusion

The Mie(n,m) potential is a generalized, form of the Lennard-Jones potential with
its variable exponents providing additional flexibility for attractive and repulsive
forces. It thus allows accommodating more complex interactions, making it more
suitable for specialized cases such as the modelling of the properties of nobel
gases.

This thesis focused on the implementation of force calculations based on the
Mie potential into AutoPas, a particle simulation library. For this, three different
implementations using AVX intrinsics, SVE intrinsics and autovectorization were
developed. In all of these implementations, three different methods, introduced to
handle the variable exponents of the Mie potential, were tested. Exponentiation
was realized using a simple for-loop (naive loop), using binary exponentiation and
using combined calculations for both exponents enabled by processing a double
addition chain.

It was shown that providing the exponents at compile-time rather than at run-
time can significantly accelerate the simulation. For compile-time exponents, the
naive-loop approach performed best for the tested values of the n exponent, except
for SVE intrinsics, where binary exponentiation performed best. The combined
calculation approach was not convincing in the scenarios tested.

Furthermore, the implementations using AVX and SVE intrinsics outperformed
autovectorization approaches. Several particle containers were tested, with Linked
Cells being selected as the best-performing one. When using Linked Cells and
providing the exponents at compile-time, force calculations based on the Mie(12,6)
potential were able to compete with force calculations based on the Lennard-Jones
potential, having only 20% longer run-times with autovectorization and only 4%
longer run-times with AVX intrinsics in the tested scenario.

In future, it would be interesting to explore the performance of the Mie potential
with a wider range of exponents, in order to gain deeper insights into the run-
time behaviour of the different algorithms for the exponentiation. The collected
results indicated that the Mie potential can be an interesting alternative to the
Lennard-Jones potential in AutoPas.
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A. Additional Figures

Figure A.1.: Effect of providing the exponents at compile-time for the case n=12
on the exponentiation algorithms on the Fujitsu ARM FX700 system.
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