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Abstract—3D object detection is a vital computer vision task in
mobile robotics and autonomous driving. However, most existing
methods have exclusively focused on achieving high accuracy,
leading to complex and bulky systems that can not be deployed in
a real-time manner. In this paper, we propose the ER3D (Efficient
and Real-time 3D) object detection framework, which takes stereo
images as input and predicts 3D bounding boxes. Instead of
using the complex network architecture, we leverage a fast-
but-inaccurate method semi-global matching (SGM) for depth
estimation. To eliminate the accuracy degradation in 3D detection
caused by inaccurate depth estimation, we introduce decoupled
regression head and 3D distance-consistency IoU loss to boost
the accuracy performance of the 3D detector with a small com-
puting overhead. ER3D achieves both high-precision and real-
time performance to enable practical applications of 3D object
detection systems on robotic systems. Extensive experiments with
the comparison of the state of the arts demonstrate the superior
practicability of ER3D, which achieves comparable detection
accuracy with significant leadership on inference efficiency.

I. INTRODUCTION

3D object detection is an essential vision task in scene per-
ception and motion prediction of autonomous driving. LiDAR-
based detection can achieve highly accurate and reliable en-
vironment perception [10], [29], but the high cost of LiDAR
hardware hinders its mass deployment. Vision-based (Stereo or
monocular) 3D object detection is considered as an attractive
alternative solution to LiDAR due to the low cost of vision
sensors (cameras). We focus on stereo vision-based 3D object
detection in this paper. Although state-of-the-art approaches
may achieve success in improving accuracy or accelerating
models, none of them could fulfill the demand of obtaining
accurate and real-time 3D object detection at the same time.
We aim to bridge this gap in this paper, and present the object
detection framework ER3D (Efficient and Real-time 3D) that
achieves both high precision and real-time performance.

Currently, there have been significant advancements [2],
[6], [11], [17] in the field of vision-based 3D object detec-
tion due to the appealing advantages of low cost, compact
size, and high energy efficiency. Generally, these methods
can be broadly categorized into accuracy-first approaches
and efficiency-first approaches according to the emphasis
aspects. The advancements that prioritize detection accuracy
[2], [4], [17] typically propose a diverse array of novel
architectures and system pipelines with the aim of elaborating
the undiscovered optimization opportunities. Although these
proposals tend to be accurate and reliable in producing 3D
detection results, the bulky and high computational complexity
architecture hinders the deployment of resource-constrained
embedded systems (e.g., drones). For example, DSGN [2],
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Fig. 1: Comparison of ER3D with state-of-the-art approaches.
We illustrate the Accuracy (mAPs;p of IoU = 0.7 on
moderate set of KITTI validation dataset) on the y-axis and
FPS (Frames Per Second) on the z-axis. We collect the results
of accuracy and runtime from the published papers. For more
details please check Tab. II.

which achieves impressive 54.27% mAPsp detection accuracy
on the moderate set, takes 682 ms on the reasonably powerful
Tesla V100 GPU platform, as shown in Fig. 1 and Tab. II.
It is far too slow for mobile robotics systems. The second
category which focuses on system latency performance offers
solutions for improving computation efficiency and timeliness.
They optimize their system through reduction and lightweight
techniques to mitigate the computational burden. However,
these techniques can only be seen as a rough and simple
approach toward real-time responsiveness since they failed to
optimize their system in a systematic view. As a result, they
have to compromise their accuracy to achieve improvement in
real-time performance.

To tackle the aforementioned problem, we propose a real-
time 3D object detection framework ER3D that produces state-
of-the-art detection accuracy, as shown in Fig. 1. ER3D lever-
ages an efficient but less accurate stereo matching algorithm,
Semi-Global Matching (SGM) [7], as the depth estimator
to reduce the computational burden, attaining a significant
boost on the real-time responsiveness. To eliminate the ac-
curacy degradation produced by the biased depth estimation
of SGM, we first perform an ablation study to identify the
most important factors that impact detection accuracy. Then,
based on this knowledge, we adopt decoupled regression
head to place emphasis on important branches of the IoU
metric to better understand the inner pattern of the depth
map. Moreover, we define a custom loss function to further
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Fig. 2: Overview of proposed ER3D system.

sense the localization errors and amend it with corresponding
loss terms. Performance evaluation on the KITTI dataset
indicates that ER3D achieves a good tradeoff between the
computational cost and the detection accuracy. To the best of
our knowledge, ER3D is the fastest stereo-based 3D detection
system (47 fps on TITAN RTX GPU) with state-of-the-art
detection accuracy. It achieves 2x inference speed while still
achieving similar accuracy as the state-of-the-art algorithms.
(A release of code for reproducing our results, as well as
a video demo, is available at an anonymous GitHub link
https://github.com/weiyangdaren/ER3D.)

The rest of this article is organized as follows: In Section
II, we elaborate on the motivation of this article through
an ablation experiment. Then we present our real-time 3D
object detection framework in Section III. The comparisons
of our system with state-of-the-art are illustrated in Section
IV. Section V briefly introduces stereo-matching algorithms
and stereo-based 3D object detection approaches. Finally, we
conclude this article in Section VI.

TABLE I: Results by replacing the specific item of the
predicted labels and the ground truth labels on the KITTI
validation set. We report the metric AP;p with JoU = 0.7
of the car category. The ground truth values are denoted as
gt and predicted values are denoted as pred. Left: results of
PL:AVOD [25] with partial replacement with ground truth la-
bels. Right: evaluation of ground truth labels partially covered
by predicted results. Red indicates the delta of improvement
and indicates the degradation. Note that z-axis denotes
the depth dimension in the point cloud coordinate.

Configuration mAP | Configuration mAP
PL:AVOD [25] 38.97 Ground Truth [5] 100

w/ gt ze 50.39(+11.42) w/ pred x. 64.36 ( )
w/ gt ye 45.86(+6.89) w/ pred y. 98.95( )
w/ gt ze 41.33(+2.36) w/ pred z. 81.54( )
w/ gt (Te,Ye,ze)  68.18(+29.21) | w/ pred ((ze,ye,zc) ) 40.56 ( )
w/ gt w 39.51(+0.6) w/ pred w 98.89( )
w/ gt h 39.01(+0.04) w/ pred h 99.93( )
wi gt l 39.84(+0.9) w/ pred 98.23 (-1.77)
w/ gt (w, h,l) 40.31(+1.34) w/ pred (w, h,1) 85.58( )
w/ gt 6 39.43(+0.46) | wi pred 6 81.06( )

II. MOTIVATION

Estimating the bounding boxes (BBs) of the interest objects
is the fundamental task of 3D object detection. For a stereo pair
(Ir, Ir), the crucial goal of the models is to locate the center of
each object C' (z, Y., z.) and estimate the 3D size S (w, h, 1)
as well as the horizontal orientation 6 in the 3D space. LiDAR-
based methods [10], [29] outperform pseudo-LiDAR based
methods [17], [25] in terms of detection accuracy, even with
the same 3D detector model. Since the only difference between
the two of them is the precision of depth perception (i.e.,
LiDAR point cloud measurement vs stereo-image-based depth
estimation). We can easily attribute this accuracy degradation
to imprecise depth perception. To verify this assumption, we
follow the same idea of [14] to conduct an ablation experiment.

Setup. The most used evaluation metric, IoU [31], reveals
the overlap proportion of the predicted BB with ground truth.
Since it can be seen as a combination of seven indicators
(Te, Ye, 2e, w, h, 1, 0), we can replace one of the indicators with
ground truth while remaining others to separately test the effect
of a specific item on the overall. Driven by this idea, we collect
the ablation experiment results from the BB predictions of
PL:AVOD [25] approach and summarize them in Tab. 1.

Observations. Among seven different branches of replace-
ment, a prominent accuracy boost appears when we replace
the depth-related values (z.,y., 2.) with the ground truth,
implying that the most accuracy drop can be explained by
inaccurate depth of the object center (x. indicates the distance
of the object to the optical center of the camera, y. and z,. are
derived with the participation of depth). Similar fact also arise
when we cover the ground truth with predicted results (right
side replacement of Tab. I). Therefore, we conclude that the
precision of depth estimation is the key factor that affects the
accuracy of 3D object detection.

III. METHOD

In this section, we first outline the flow of the proposed
efficient and real-time 3D detection system. Then, we elab-
orate on two accuracy promotion schemes that we utilize to



enhance detection accuracy. Toward the practical deployment,
we also provide parallel optimizations for GPU devices of our
system, ensuring efficient utilization of hardware resources and
enabling faster inference speeds.

A. ER3D Overview

Driven by the observations we learned aforementioned, we
propose our efficient and real-time 3D object detection frame-
work. Fig. 2 illustrates the overview of the proposed ER3D
framework in which depth estimation, depth transformation,
and 3D detection are contained. For the depth estimation mod-
ule, we abandon the inherent routine of employing deep and
complex depth estimation network [17], [25], [29]. Instead,
the fast-but-inaccurate method SGM [7] is utilized for depth
estimation from the disparity map. The biggest challenge of
doing so is the shaky depth map that significantly distracts
the regression of the 3D detector, leading to poor detection
performance. To eliminate this drawback, we first adopt a sub-
pixel enhancement scheme [30] to transfer integer disparities
of SGM [7] into the sub-pixel values, initiating continuously
distribute point cloud representation. Then, we further propose
decoupled regression head to place key emphasis on valuable
regression branches (z., y., z.) to gain the accuracy promotion
with little overhead. In addition, with the consideration of the
training process also exist unconsecrated error measurement
and gradients, we also introduce our distance-consistency IoU
loss to sense the localization errors and compensate it with
corresponding loss terms.

To reduce computation load, we down-sampling the dense
point cloud data transformed from the depth map by mimick-
ing real LiDAR representation. This will considerably reduce
the redundant information that is not in the interest regions
(i.e., road and wall) and save tons of computing resources
in the inference phase. Then, the sparse point cloud data is
fed to the 3D detector to produce the final predictions. We
adopt PointPillar [10] as the 3D detector for its highly efficient
inference capability.

B. Decoupled Regression Head

Based on Tab. I, one of the major concerns about the
indicators prediction is their imbalance contributions to the
IoU metric. However, the regression architecture and training
strategy of prior stereo visual-based approaches still stuck in
the domain tailored for LiDAR-based methods [14], [25], [29],
failed to fully exploit their underlying detection power.

Fig. 3(a) illustrates the architecture of a typical regression
head. It first takes the spatial features from the previous
network as input. Then, it utilizes a 1x1 convolutional layer
to interpret these features and decode them as desired 3D
information. However, due to the inaccurate depth issues of the
visual algorithms, merely relying on one simple convolution
layer can hardly distinguish the difference among various
spatial dimensions (i.e., x., h,#). To this end, we introduce
decoupled regression head to help the network learns data
patterns of different branches in the regression process. As
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(b) Decoupled regression head architecture

Fig. 3: Illustration of different regression head. The convolu-
tional layers adopt 1 x 1 kernel with 6, 8, 14 or 384 channels
output.

shown in Fig. 3(b), we divide the prediction of the indicators
into two groups in which location-related items (x., Y., 2.) are
separately predicted with two 1 x 1 convolutional layers. By
doing this, indicators corresponding to the inaccurate depth
are pulled out and learned with dedicated layers, deducing a
better prediction for the offset of the predicted depth.

We also measured the overhead caused by the proposed
regression head. Without any modification, the original archi-
tecture of our 3D detector possesses 4.8M parameters. Then,
if we adopt the proposed decoupled head, we could obtain
a 3D detector with 4.9M parameters, which is only 0.1M
more than the original one. According to the ablation study
of Sec. IV-B, the introduced decoupled regression head can
improve the overall accuracy by 2.58% with only 1.2 ms extra
computing. Therefore, we believe this is a beneficial trade-off
for the practical usage.

C. Loss Function Definition

When taking the LiDAR signal as input, supervising the
training with smooth L1 Loss function could be effective [31].
However, for stereo visual-based 3D detection approaches,
due to the objective fact that the depth prediction of distant
objects is not accurate enough, there are inevitable offsets
in different axis when transforming the 2D depth map into
the 3D point cloud. In the 3D space, these offsets can lead
to different contributions to the IoU metric and confuse the
gradient direction, yielding an ill-posed convergence, as we
clearly demonstrated in Tab. I. A similar observation was
also reported in [14] where labels in the large distance are
abandoned in the training phase to reduce the effect of biased
depth input. However, this can only be seen as a rough
strategy since inaccurate depth with a small offset will remain
degrading the training of the model.

As shown in Tab. I, inaccurate depth is the main reason that
affects the accuracy of the 3D detection. When we transform
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Fig. 4: An illustrative example. The 3D view in (a) is projected
into the Bird’s Eye View (BEV) in (b) and the Perspective
View (PV) in (c). The ground truth 3D BB and its projections
in BEV and PV are denoted by red color; the predicted 3D
BB and its projections are denoted by color.

the depth map into the 3D space coordinate (point cloud
representation), this inaccurate depth will be represented as an
inaccurate positioning problem (z., ¥, 2.). Therefore, to guide
the 3D detector sensing this localization error, we define our
loss function in (1):

L= ‘CIOU + Esmooth + Ld + ACc (1)

where the IoU loss L;, = 1 — IoUsp and smooth L1 loss
Lsmooth are well-known terms from related works [10], [20]
(details omitted); we will discuss the 3D distance loss £ and
the consistency loss L. in detail next.

Fig. 4 shows an example to illustrate our loss function
definition. We use BB? and BBY' to denote the predicted
3D BB and the ground truth 3D BB, respectively; BBY_ and
BBiév to denote the predicted 2D BB and the ground truth
2D BB in BEYV, respectively; BB?  and BBI% to denote the
predicted 2D BB and the ground truth 2D BB in perspective
view(PV), respectively. We use cb?, cb?, cby. .. cbgzv, cbgv
and cb-gf) to denote the center points of the corresponding BBs.

3D Distance Loss L£;. We define the 3D Distance Loss
L4 to minimize the normalized distance between the center
points of the ground truth 3D BB and predicted 3D BB, as an
extension to the corresponding loss function in [31] from 2D
to 3D:

62(cb?, cb?")

Lo=—1n 2

where () denotes the Euclidean distance function. The nu-
merator, the squared Euclidean distance between two center
points cb? and cb?", is equal to the squared diagonal length of
the cube formed by the rectangle with diagonal line defined by
two center points cb?_and cbj’ on the (z,y) plane (BEV),
and the height equal to the z-axis vertical distance between
two center points cb} and cbgf) (PV). It can be computed
with Pythagorean Theorem:
6%(cb?, cb?") = §2(cb?_ , cb?”

bev? bev

) + (eb, (2) — bf, ()
3)

where the first term denotes the squared Euclidean distance
between the center points of 2D BBs cb? and cb{’ on the
(z,y) plane in BEV, and the second term denotes the squared
height of the cube.

The denominator of (2), dd?, is a normalization fac-
tor used to limit £; to be in the range of [0,1]. First,
we consider the BEV, and define the midpoint BB as the
minimum 2D BB enclosing the 8 BB edge midpoints,
including (zh,y5), ..., (25,45) of the predicted BB, and
(8, y8h), ..., (x3,yd") of the ground truth BB, shown as
the dotted rectangle in Fig. 4(b). (We utilize the BB edge
midpoints to define a relatively small midpoint BB, in order
to produce a bigger loss term than using the BB vertex points
to define a larger enclosing rectangle.) We use dz and dy to
denote the dimensions of the midpoint BB on the z-axis and
y-axis, respectively. It can be easily shown that the diagonal
length of the midpoint BB is an upper bound on the Euclidean
distance between cb}, ~and cbgzv. Next, we consider the
PV, and construct the smallest enclosing BB that covers both
BB}, and BBZ’;, shown as the dotted rectangle in Fig. 4(c).
We use zf and 2!’ to denote height of the upper edge and lower
edge of BB! , respectively; 28" and 29" to denote height of the
upper edge and lower edge of BBgf,, respectively; and dz to
denote its height. It is obvious that dz is an upper bound on the
vertical distance between cby, and cbgf). The normalization
factor dd? is defined as the squared diagonal length of the cube
formed by the midpoint BB on the (z,y) plane (BEV) and the
height equal to dz (PV). It can be computed with Pythagorean
Theorem:

gt gt)

dr = max(zf, ... 28, 28", ...
—min(zh, ..., 25, 28", ... 29"
dy = max(y,...,y5,v3" ... yd")
fmin(yg,...,yg,ygt,...,ygt)

_ p p gt _gt sn(P P gt _gt
dZ—maX(ZOazle07zl)_mln(20721720721)

dd? = da® + dy® + dz* 4)

From our above discussions, we conclude that (2) returns a
normalized value in the range of [0, 1].

Consistency loss £.. We define £, to measure the consis-
tency of aspect ratios of the ground truth 3D BB and predicted
3D BB, as an extension to the corresponding loss function in
[31] from 2D to 3D:

L.=av )]

where v measures the consistency of aspect ratio:

(arctan 22 )
= ——|(arctan — — arctan —
32 wP w9t
hP h9t 5
+ (arctan v arctan l?)

2

P w9t

w 2
+ (arctan > arctan 17) ] (6)



And « is a trade-off weighting parameter defined as:
B v
T 1—1IoUsp +v

by which the overlap area factor is given higher priority for
regression, especially for non-overlapping cases [31].
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D. Parallel Optimizations

Building on top of autonomous driving and mobile robotics,
our system has been designed to avoid intensive calculation
and complex structure to be aligned with the objective of
real-time inference. We identify the critical path of each
module and exploit the acceleration with CUDA programming
to achieve the speed-up of the whole system. With these
optimizations, our system can perform an accurate 3D object
detection with 35 ms on the embedded device and 21 ms on the
powful TITAN RTX GPU platform, enabling its practicability
on deploying into the real applications.

For the depth estimator, we optimize a sub-pixel enhance-
ment implementation for our SGM [7] algorithm. Since there
is no data dependency along the disparity dimension, our
proposal simply exploits the acceleration with the shared
memory which preloads the whole slice of matching cost along
the disparity dimension for block threads to achieve better
memory bandwidth utilization. We launch massive of parallel
threads with intensive register data reuse and warp-level data
transformation to avoid fully depending on expensive global
memory access. Meanwhile, since obtaining the pseudo-Lidar
representation from dense depth map is also a main bottle
neck of our system, which can easily consumes dozens or even
hundreds of milliseconds [25]. We hence exploit a parallelism
on GPUs to perform it timely. In the depth transformation
module, we further utilize the efficient cublasSgemm() func-
tion provided by the NVIDIA cuBLAS library [16] to obtain
the 3D locations in the reference coordinate and the LiDAR
coordinate. The thrust [16] API is also adopted during the
transformation to compact the data size by throwing outliers
and invalid points.

IV. EXPERIMENT
A. Experiment Setup

Dataset. We evaluate ER3D on two 3D object detection
benchmarks: KITTI [5] and ApolloScape [8]. The KITTI
dataset contains 7,481 training samples and 7,518 (online)
test samples, and the training samples are further divided
into the train split (3,712 samples) and the validation split
(3,769 samples). To evaluate the generalization ability, we also
utilize the ApolloScape dataset [8] to conduct the qualitative
evaluation for the proposed ER3D.

Performance Metrics. In the KITTI benchmark, objects are
divided into three difficulty categories: easy, moderate, and
hard according to the situation of occlusion and the size of the
interest object in the 3D image. In each category, approaches
are evaluated by different IoU thresholds (0.5 or 0.7) in the
BEV perspective and 3D perspective. On the test set mAP

is calculated with 40 recall positions by the official server.
The results on the validation set are calculated with 11 recall
positions for fair comparison with other approaches.

Training Details. Our system contains the learnable model
which takes LiDAR-like data as input to predict the 3D
information. To obtain its training set, we utilize SGM with
sub-pixel enhancement module to produce disparity maps.
Then, we transform them into the point cloud representation
to form the training set. Note that we only need to train the
3D detector module instead of the whole system. We train the
3D detector on NVIDIA TITAN RTX GPU with batch size of
4 for 80 epochs. We adopt the Adam optimizer with 8, = 0.9,
B2 = 0.99 and 0.01 weight decay.

B. Results

Comparison with State-of-the-art Methods. In this evalu-
ation, we compare ER3D with state-of-the-art approaches that
can be divided into accuracy-first approaches [2], [6], [11],
[17], [18], [25], [29] and efficiency-first approaches [4], [12],
[13], [23], [26]. Tab. Il summarizes the mAP performance,
runtime, and test platform of each method.

When we compare ER3D with accuracy-first approaches,
ER3D suppresses TLNet [18], Stereo RCNN [11], PL:AVOD
[25] and PL++:AVOD [29] by a large margin. It even achieves
comparable accuracy to the E2ZE:PRCNN [17] and DSGN [2],
and is only lag behind the most accurate 3D detector LIGA [6].
Moreover, we have to point out that all of these accuracy-first
approaches require at least 350ms of computing. In contrast,
the computing latency of ER3D is 21 ms, which is an order
of magnitude faster than all of these approaches. Clearly, the
large margin lead in running speed and the outstanding results
in accuracy is the strongest proof of ER3D for its practicability
and effectiveness.

Efficiency-first 3D detection models are also listed in
Tab. II, whose runtime are less than 100 ms. Among these
competitors, ER3D is no doubt the fastest 3D detection system
with at least 2 times speed ahead among all compared state-of-
the-art approaches. Besides this leadership in inference time,
ER3D also outperformed RTS3D [12], YOLOStereo3D [13]
and SCNetc [23] with notable leadership in accuracy. Although
ESGN [4] achieves slightly higher accuracy than ER3D, it is
worth noting that ER3D achieves 3 x faster inference speed
than ESGN [4] using the GPU with half the computing power
than ESGN [4].

Tab. III further illustrates the results of detection accuracy
and the runtime on the KITTI online evaluation benchmark.
ER3D retains the same trend as the validation set. It still
achieves comparable results to most accurate approaches with
a significant advantage on the runtime. In addition, there is
interesting fact that ER3D always achieves relatively higher
accuracy of APsp than it is of APgpy when compared to
others. For example, the APppy of ER3D is lower than
E2E:PRCNN [17] by more than 3%, while this gap is narrowed
to 0.82% in the AP3p. Moreover, ER3D even achieves a
leadership by 2.57% higher mAP on the easy set of APsp
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Fig. 5: Qualitative results of ER3D on the two datasets. The top two rows illustrate the prediction and the ground truth of the
KITTI dataset and the bottom two rows show the 3D detection results on the ApolloScape dataset. The predictions of ER3D
are illustrated as green and the ground truth 3D labels are illustrated as red. The depth of SGM is utilized to generate the point

cloud in the first and the third row.

TABLE II: Results evaluated by metric APggy/ APsp on validation set of the car category. GPU performance of FP32 (float)
in terms of TFLOPS is obtained from NVIDIA documentation. RT stands for runtime in ms.

Method Reference Platform RT(ms) loU =05 ToU =07
Easy Moderate Hard Easy Moderate Hard
TLNet [18] 2019 CVPR - - 62.46/59.5 45.99/43.71 41.92/37.99 29.22/18.15 21.88/14.26 18.83/13.72
Stereo RCNN [11] 2019 CVPR - 417 87.13/85.84  74.11/66.28  58.93/ 57.24 68.50/54.11 48.30/36.69  41.47/31.07
PL:AVOD [25] 2019 CVPR  TITAN RTX(16.3 TFLOPS) 514 89.0/88.5 717.5176.4 68.7/61.2 74.9/61.9 56.8/45.3 49.0/39.0
PL++:AVOD [29] 2020 ICLR TITAN RTX(16.3 TFLOPS) 399 89.4/89.0 79.0/77.8 70.1/69.1 77.0/63.2 63.7/46.8 56.0/39.8
E2E:PRCNN [17] 2020 CVPR - 490 90.5/90.4 84.4/79.2 78.4/75.9 82.7/71.1 65.7/51.7 58.4/46.7
DSGN [2] 2020 CVPR Tesla V100(14.1 TFLOPS) 682 -/ - -/ - -/ - 83.24/72.31 63.91/54.27 57.83/47.71
LIGA [6] 2021 ICCV TITAN Xp(12.1 TFLOPS) 350 97.22/97.06  90.27/89.97 88.36/87.94 89.35/84.92  77.26/67.06 69.05/63.80
RTS3D [12] 2021 AAAI TITAN RTX(16.3 TFLOPS) 74 90.58/90.34  80.72/79.67 71.41/70.29 77.50/64.76 58.65/46.70 50.14/39.27
YOLOStereo3D [13] 2021 ICRA GTX 1080Ti(11.3 TFLOPS) 80 -/ - -/ - - /- - [72.06 - /46.58 - /3553
PLUMENet [26] 2021 IROS Tesla V100(14.1 TFLOPS) 80 87.8/ - 80.7/ - 752/ - 744/ - 61.7/ - 55.8/ -
SCNet [23] 2022 NC Tesla V100(14.1 TFLOPS) 43 -/ - -/ - -/ - 71.26/ 55.25  53.27/41.44  45.53/ 35.13
ESGN [4] 2022 TCSVT RTX 3090(35.6 TFLOPS) 62 93.05/ - 82.22/ - 7225/ - 82.24/72.44 63.86/52.33 64.63/43.74
ER3D - TITAN RTX(16.3 TFLOPS) 21 90.40/90.27  79.61/78.42 75.32/72.94 81.25/70.10  59.48/49.58 54.47/46.00

when compared to the E2E:PRCNN [17]. We believe this is
due to the adoption of the decoupled regression head where
depth-related items are predicted with independent branches
to produce more accurate localization estimation.

Ablation Experiments. In order to demonstrate the ef-
fectiveness of the proposed promotion schemes, we provide
this ablation experiment by applying different techniques and
reporting their performance. Tab. IV summarize the accuracy
of AP3;p and the runtime performance. It is clear that adopt-
ing the DC-IoU (dc.) and the decoupled head (dh.) achieve
improvement over the baseline among every evaluation metric.
On the easy subset, approximately 3% of accuracy leap can
be observed, which is the biggest benefit ER3D can attain
by separately employing the DC-IoU (dc.) or decoupled head

(dh.). If we enable these two promotion schemes simulta-
neously, ER3D can further boost its performance by up to
2%. It is also worth noting that, compared to the baselines,
the adoption of the decoupled head (dh.) only increases 0.12
ms of extra computing overhead. Considering their solid
accuracy improvement, we believe this ablation experiment is
convincing enough to demonstrate the superior performance
of our proposed approaches.

Qualitative Results. To demonstrate the generalization abil-
ity of ER3D, we visualize the 3D prediction results of two
different dataset: KITTI dataset [5] and ApolloScape dataset
[8]. The snapshot of the examples on two datasets is presented
in Fig. 5 Note that we do not perform any fine-tuning or re-
training on the ApolloScape dataset. Instead, we use the model



TABLE III: Results of the car category on KITTI test set. The
APpgry/AP;sp in percentage at JToU = 0.7 are reported. All
results are collected from the official leaderboard of KITTI
website and corresponding published papers.

Method RT(ms) Easy Moderate Hard
TLNet [18] - 29.22/18.15  21.88/14.26 18.83/13.72
PL:AVOD [25] 514 - /554 - /371 - 13137
PL++:AVOD [29] 399 66.8/ - 472/ - 40.30/ -
E2E:PRCNN [17] 490 79.6/64.8 58.8/43.9 52.1/38.1
LIGA [6] 350 88.15/81.39  76.78/64.66  67.40/57.22
YOLOStereo3D [13] 80 - /65.68 - /4125 - 13042
SCNet [23] 43 62.97/49.94 42.12/31.3 35.37/25.62
RTS3D [12] 74 72.1/58.5 51.7/31.3 43.1/ 31.1
ESGN [4] 62 - 165.80 - /46.39 - /3842
ER3D 21 76.19/67.37  54.68 /43.59  47.81/37.28

TABLE IV: Results on accumulating the proposed approaches
of ER3D on KITTI validation set. RT is an abbreviation
for runtime. We report APs;p metric of the car category
with ToU = 0.7. dc. is the DC-IoU loss. dh. represents the
decoupled head. The baseline is defined as ER3D without dc.
and dh. All reported results are collected from TITAN RTX
GPU.

Configuration  Easy = Moderate  Hard  RT(ms)
baseline 66.55 48.15 42.31 19.9
+ dc. 69.13 48.72 43.77 19.9
+ dh. 69.23 49.81 43.85 21.1
+ dc. + dh. 70.10 49.58 46.00 21.1

trained on the KITTI dataset directly to obtain these qualitative
results. As indicated in the figures, even though ApolloScape
dataset [8] is a totally different dataset with different camera
sensors and road scenarios to the KITTI dataset, ER3D still
satisfactorily detects cars at different distances. It means that
ER3D can be well generalized to the unseen dataset and hence
is practical for real-world applications.

V. RELATED WORK

In this section, we begin by introducing stereo matching
algorithms, the preliminary techniques that we used to obtain
the depth information of the surroundings. Then, we place our
effort in the context of stereo-based 3D object detection ap-
proaches, providing a detailed overview of existing approaches
and discussing their limitations.

A. Stereo Depth Prediction.

By exploiting the relationship of the same object between
the different perspectives of the stereo camera, stereo matching
algorithms estimate the dense depth map of the environment
[21]. Following semi-global matching (SGM) [7] algorithm
which proposes a smooth constraint to the matching cost
volume establishes a classical paradigm for most inheriting
stereo-matching models. However, SGM [7] can not achieve
satisfactory accuracy due to the unreliable census transfor-
mation. Recent studies utilize deep neural networks (DNNs)

to boost the matching cost generation and cost aggregation
[11, [31, [27], [30]. Although a significant lead in accuracy is
achieved, their intensive computation demand also leads to an
explosion of the inference time.

B. Stereo-based 3D Object Detection.

Benefiting from their low-cost and small-size properties,
stereo camera-based 3D object detection algorithms have
drawn considerable attention and are being intensively ex-
plored. With the consideration of performance orientation,
we divide established algorithms into accuracy-first and
efficiency-first approaches.

Accuracy-First Approaches. Within this line, Pseudo-
LiDAR-like stereo 3D detection approaches are popular and
achieve solid performance. Typically, these approaches em-
ploy sophisticated stereo-matching models [1], [15] to acquire
3D point cloud data and leverage advancements in LiDAR-
based 3D detection [9], [22] to generate 3D bounding boxes.
Extensive research that fuses sparse LiDAR information [29]
and conducts end-to-end training strategy [17] overcomes the
shortages associated with depth displacement and suboptimal
training paradigm, leading to the achievement of state-of-the-
art detection accuracy. However, existing Pseudo-LiDAR ap-
proaches heavily rely on leveraging complex stereo-matching
algorithms to facilitate the input of the 3D detection mod-
ule, which consumes considerable computing resources. As
a result, they cannot be executed in real-time. There are also
additional clusters that directly regress the 3D bounding boxes
by exploiting the power of stereo pairs. Li et al. [11] extends
Faster R-CNN [19] for stereo input to detect and correlate
objects in left and right images simultaneously. However, the
main concern of this work is the vulnerability to the objects
occlusion in the image where the dense alignment was directly
operated. Disp-RCNN [24] and ZoomNet [28] utilize extra
instance segmentation masks to obtain the object of interest
with decent improvements. However, relying on external labels
also increases the risk of detection failure when encountering
unseen environments.

Efficiency-First Approaches. Approaches that focus on
optimizing the system inference latency generally through
various lightweight computation architectures and extra 2D/3D
detection priors. For example, RTS3D [12] claims to achieve
real-time 3D detection with state-of-the-art accuracy. However,
the requirement of prior labels from monocular detection
makes the utilization of RTS3D still time-consuming. Simi-
larly, Liu et al. [13] incorporates the knowledge from real-
time monocular 3D detection prior and incrementally detects
the 3D bounding boxes with point-wise correlation module.
SCNet [23] presents the framework that mainly depends on
the predicted semantic key points to restore the 3D bounding
boxes. Differently from the above approaches. Gao et al.
[4] down-scales the feature generalization to speed up the
algorithmic latency. Wang et al. [26] conduct the replacement
of heavy cost volume with lightweight Pseudl-LiDAR feature
volume to gain the advance in computing latency.



However, we argue that these existing efficiency-first ap-
proaches can only be regarded as rudimentary and incomplete
proposals for practical real-time solutions, as none of them
have made efforts to optimize their systems from a holistic
perspective. A satisfactory solution that meets the requirements
of both real-time processing and accurate 3D detection is still
lacking. To tackle this challenge, the present work concentrates
on a fast-but-inaccurate backbone system and incorporates ef-
ficient enhancement techniques to improve detection accuracy.
This approach achieves an impressive detection performance
that strikes a balance between speed and accuracy, addressing
the limitations of previous approaches.

VI. CONCLUSION

In this paper, we present ER3D, an efficient and real-
time 3D object detection system tailored for autonomous
driving. To achieve low computing latency, we exploit SGM,
an inaccurate-but-efficient depth estimator to produce the
dense depth. We further provide an error-oriented decoupled
regression head and 3D distance consistency IoU loss to
improve detection accuracy caused by an inaccurate depth
map. Evaluations on the KITTI dataset indicate ER3D is on par
with state-of-the-art approaches on detection accuracy, while
is several times faster than its counterparts. The qualitative
result on the unseen dataset of ApolloScape also demonstrates
the good generalization ability of ER3D.
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