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Abstract 

Gradient-based structural optimization has achieved great success in a wide 

range of industrial applications, in conjunction with linear finite element 

analysis. However, further applications in large-scale industrial problems 

with nonlinear behaviors, including geometric, material, and boundary 

condition nonlinearities, remain challenging tasks and face numerous 

hindrances. One of the fundamental difficulties lies in sensitivity analysis, 

i.e., evaluating derivatives of system responses with respect to design 

variables. Considering the characteristics of nonlinear finite element 

systems, much higher complexity and larger computational efforts are 

foreseeable, especially when node-based design variables are adopted. 

Obtaining sensitivities accurately and with high efficiency is hence of 

significant importance. 

This thesis investigates several issues related to obtaining efficient and 

accurate sensitivity analysis for two types of nonlinear structural systems: 

geometric nonlinearity and elastoplasticity. Firstly, a semi-analytical 

adjoint method for geometric nonlinear problems is explored. To eliminate 

the numerical errors introduced by element rotation in semi-analytical 

approximation, a correction term that can be analytically constructed is 

proposed. With this correction, the sensitivities become more accurate. 

More importantly, the stability of sensitivities is improved, thereby 

expanding the range of proper perturbation sizes in the semi-analytical 

approximation. 

Secondly, an adjoint sensitivity analysis approach is explored for 

simultaneous consideration of geometric nonlinearity and elastoplasticity. 

The sensitivity must be evaluated through a stepwise backward procedure 

due to the history-dependency of plasticity. Consequently, both storage and 

computational costs increase in proportion to the number of load steps. To 

address this issue, rules for load step reduction in the sensitivity analysis 

are investigated. The proposed strategies are mathematically proven based 

on two special properties of adjoint variables. The effectiveness of these 

techniques is demonstrated through various numerical examples, including 

a large-scale engineering example under complex load histories. 
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The proposed load step reduction is first discussed and demonstrated 

under small strain conditions and an isotropic hardening material model. It 

is then extended to kinematic hardening and general mixed hardening cases, 

where back stresses and hardening ratios are taken into consideration. 

Finally, the applicability of the techniques to finite strain elastoplasticity is 

investigated. Multiple examples show that the presented techniques are 

well-suited to evaluate the sensitivity of these types of problems both 

accurately and efficiently. 
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Zusammenfassung 

Die gradientenbasierte Strukturoptimierung hat in einer Vielzahl von 

industriellen Anwendungen in Verbindung mit linearer Finite-Elemente-

Analyse großen Erfolg erzielt. Dennoch bleiben weitere Anwendungen in 

groß angelegten industriellen Problemen mit nichtlinearem Verhalten, 

darunter geometrische, materielle und Randbedingungs-Nichtlinearitäten, 

eine anspruchsvolle Aufgabe und stehen vor zahlreichen Hindernissen. Eine 

der grundlegenden Schwierigkeiten besteht in der Sensitivitätsanalyse, das 

heißt in der Bewertung von Ableitungen der Systemantworten im Hinblick 

auf Designvariablen. Angesichts der Eigenschaften nichtlinearer Finite-

Elemente-Systeme ist eine erheblich höhere Komplexität und größerer 

Rechenaufwand absehbar, insbesondere wenn knotenbasierte 

Designvariablen verwendet werden. Die genaue und effiziente Ermittlung 

von Sensitivitäten ist daher von erheblicher Bedeutung. 

Diese Dissertation untersucht mehrere Probleme im Zusammenhang mit 

der effizienten und genauen Sensitivitätsanalyse für zwei Arten 

nichtlinearer Struktursysteme: geometrische Nichtlinearität und 

Elastoplastizität. Zunächst wird eine semi-analytische adjungierte Methode 

für geometrisch nichtlineare Probleme erforscht. Um die durch die semi-

analytischen Näherung eingeführten numerischen Fehler aufgrund der 

Elementrotation zu eliminieren, wird ein Korrekturterm vorgeschlagen, der 

analytisch konstruiert werden kann. Durch diese Korrektur werden die 

Sensitivitäten präziser. Noch wichtiger ist, dass die Stabilität der 

Sensitivitäten verbessert wird, was den Bereich geeigneter 

Perturbationsgrößen in der semi-analytischen Näherung erweitert. 

Zweitens wird ein Ansatz für die adjungierte Sensitivitätsanalyse erforscht, 

der die gleichzeitige Berücksichtigung von geometrischer Nichtlinearität 

und Elastoplastizität ermöglicht. Aufgrund der geschichtsabhängigen 

Plastizität muss die Sensitivität durch ein schrittweises, rückwärts 

gerichtetes Verfahren ermittelt werden. Infolgedessen steigen sowohl die 

Speicher- als auch die Rechenkosten proportional zur Anzahl der 

Lastschritte an. Um dieses Problem zu lösen, werden Regeln zur 

Reduzierung der Lastschritte in der Sensitivitätsanalyse untersucht. Die 

vorgeschlagenen Strategien werden mathematisch basierend auf zwei 
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speziellen Eigenschaften der adjungierten Variablen nachgewiesen. Die 

Wirksamkeit dieser Verfahren wird durch verschiedene Beispiele, 

einschließlich eines groß angelegten industriellen Beispiels unter 

komplexen Lastverläufen, demonstriert. 

Die vorgeschlagene Reduzierung der Lastschritte wird zuerst unter 

Bedingungen geringer Dehnung und einem isotropen 

Verfestigungsmaterialmodell diskutiert und demonstriert. Anschließend 

erfolgt die Erweiterung auf kinematische Verfestigung und allgemeine 

Mischverfestigungsfälle, in denen Rückspannungen und 

Verfestigungsverhältnisse berücksichtigt werden. Schließlich wird die 

Anwendbarkeit der Techniken auf die Elastoplastizität mit großen 

Dehnungen untersucht. Mehrere Beispiele zeigen, dass die vorgestellten 

Techniken gut geeignet sind, die Sensitivität dieser Art von Problemen 

genau und effizient zu bewerten. 
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1. Introduction 

1.1 Motivation 

Structural optimization, categorized into size optimization, shape 

optimization, and topology optimization, plays a crucial role in the modern 

design of structures to enhance product performance. In the field of shape 

optimization, a traditional method for describing structural shapes is through 

parametric representation. However, these geometric parameters 

automatically introduce additional constraints on the various modes of 

structures to be optimized. 

Non-parametric shape optimization, also known as node-based shape 

optimization, overcomes this disadvantage by utilizing the coordinates of 

surface nodes in the finite element model of a structure as design variables. 

This approach provides a much more detailed description of structural shapes, 

significantly expanding the design freedom of structures. Another advantage 

of non-parametric shape optimization is its natural suitability for local 

improvements, such as local stress relief features. 

To solve non-parametric shape optimization, two types of algorithms are 

usually employed: gradient-based algorithms and derivative-free algorithms. 

Starting from an initial point, gradient-based algorithms iteratively search for 

an optimal solution based on sensitivity information, i.e., derivatives of 

responses with respect to design variables. To obtain sensitivities for non-

parametric shape descriptions, adjoint variable methods are normally 

preferable to direct methods because the number of design variables is often 

much larger than the number of responses. Accurate and efficient adjoint 

sensitivity analyses for linear structural systems have been widely 

investigated and have achieved great success in a wide range of industrial 

applications. 

Among the challenges of nonlinear sensitivity analyses, efficiency cannot be 

overemphasized. For nonlinear structural systems, the solution procedure is 

often more complicated than that for linear problems, leading to increased 

complexity in nonlinear sensitivity analysis and resulting in higher 

computational and storage costs compared to the linear case. On the other 
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hand, the number of iterations in nonlinear optimization is often much larger 

than that in linear optimization for the same problem size. Therefore, the 

required number of sensitivity analyses in nonlinear optimization is 

correspondingly much larger. The efficiency issue becomes even more 

significant when the number of design nodes is large. 

In addition to efficiency, the accuracy of sensitivities is also important in 

nonlinear optimization. It not only influences the search direction to optima 

but also affects the convergence speed, i.e., the number of iterations, in the 

optimization procedure. Hence, a highly efficient and accurate sensitivity 

analysis procedure is essential for a successful gradient-based nonlinear 

shape optimization. This dissertation makes every effort to investigate 

techniques to eliminate numerical errors and employ appropriate methods to 

improve efficiency in sensitivity analyses. 

1.2 Literature survey 

In this section, state-of-the-art sensitivity analysis methods are summarized, 

along with their advantages and disadvantages. An overview of research on 

sensitivity analysis for geometrical and material nonlinear problems is 

presented. 

1.2.1 Design sensitivity analysis methodologies  

There are various methods for conducting design sensitivity analysis (DSA) in 

structural optimization, as depicted in Figure 1-1. These methods can typically 

be categorized into [HA89, CK05a, CK05b]: global finite difference (GFD) 

approach, continuum approach, discrete approach, and other computational 

approaches. 
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Figure 1-1. Hierarchy of design sensitivity analysis methods 

The global finite difference method employs forward, backward, or central 

finite differencing schemes to calculate sensitivities. In the continuum method, 

derivatives are first taken on the variational equations of a structural system, 

and then the formulas are discretized. The discrete approach derives the 

sensitivity of structural systems based on discretized governing equations of 

finite element systems. 

Other computational approaches employ specialized tools to compute or 

approximate sensitivities. Based on the chain rule, automatic differentiation 

methods compute sensitivities by differentiating elementary functions of 

structural systems [NQR98]. However, these methods have limitations for 

structural design sensitivity analysis due to their significant demand for 

computer memory. The complex variable method utilizes a complex finite 

element formulation and computes a system response by perturbing design 

parameters along the imaginary axis. It then takes the division of the 

imaginary function by the perturbation size as an estimation of the derivative 

of the response [MWB+13, HSM15]. The virtual distortion method evaluates 

sensitivities based on a so-called influence matrix, which describes the 

interaction between physical quantities related to design variables and the 

entire structure [KH98, KWH07]. Response surface methods first establish 

response functions between design variables and structural responses and 

then compute sensitivities analytically on the response surface [SC02, Kam11]. 

The global finite difference method is a computationally expensive method to 

calculate sensitivities and thus is not applicable to large-scale problems. 

Design sensitivity analysis 

Global finite difference Continuum approach Discrete approach Other comp. approach 

Direct differentiation method Adjoint variable method 

Analytical Semi-analytical 
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However, as the most straightforward way to evaluate derivatives, global 

finite difference results are good benchmarks for investigations of more 

sophisticated sensitivity analysis techniques. The continuum approach and 

the discrete approach are two general solutions for finite element based 

sensitivity analyses. The discrete methods are more commonly implemented 

in commercial finite element codes [KHK05]. 

Both the continuum approach and the discrete approach can be further 

classified into the direct differentiation method (DDM) and the adjoint 

variable method (AVM). The direct approach computes sensitivities based on 

the direct differentiation of state variables. In the adjoint variable method, 

direct differentiations are eliminated by introducing adjoint variables and 

governing equations. The adjoint sensitivity analysis method is more efficient 

when the number of design variables exceeds the number of response 

functions, which is usually the case in non-parametric shape optimization. 

No matter whether a direct or adjoint approach is employed, derivatives of 

physical quantities such as the stiffness matrix or pseudo-load vectors are 

often required after discretization. The analytical derivatives of these 

quantities are difficult to obtain. Therefore, the semi-analytical technique, 

where analytical derivatives are approximated by finite differencing, is widely 

employed. 

1.2.2 Sensitivity analysis with geometric and material nonlinearity  

The design sensitivity analysis of a nonlinear system is often more complex 

than that of a linear system, with an exception being the elastic nonlinear 

problem. Geometrical nonlinearity and hyperelasticity are two typical issues 

that fall into this category. In this type of problem, sensitivity is determined 

solely by the final load step due to the path-independency [CD00, CK05b]. 

Linear sensitivity analysis approaches can be straightforwardly extended and 

applied to it. Additionally, based on the co-rotational formulation of geometric 

nonlinearity, element-independent analytical sensitivity expressions are 

presented [PM06]. The co-rotational framework utilizes only the linear finite 

element library and does not require kinematic nonlinear element 

formulations. 
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Sensitivity analysis for general nonlinear materials, which exhibit plasticity or 

viscosity, is essentially different from linear cases due to path-dependency. 

The responses and state variables of a load step are characterized not only by 

current loading conditions but also by previous loading histories. Therefore, 

sensitivity computations are often performed following each load step or time 

step in an incremental procedure [WA87, PC99b, SMR01, CK05b]. 

The direct differentiation method has been successfully applied to various 

material nonlinear sensitivity analyses in an incremental procedure. 

Sensitivity computations are presented for cases such as Norton-Soderberg 

power-law creep materials [VLH91], spread plasticity with geometric 

nonlinearity under seismic loading [HM10], in-plane stress elasto-

viscoplasticity [KK96], anisotropic elastoplastic shells [Ho05], J2 plasticity 

with multi-yield-surface and nonlinear hardening [WKT03, GCE09], Prandtl-

Reuss elastoplasticity with geometric nonlinearity [SR01, Sch01], beam 

elements with plastic hinges [Pe03], laminate composites with bilinear 

elastoplastic materials [CG95], nonlinear elasticity with frictionless contact 

[ST94], and elastoplasticity with frictional contact [KCC00, SKD02]. A non-

differentiable problem that may occur at transition points, such as at points 

where material behavior turns from elastic to plastic or vice versa, has been 

discussed [OA94]. Taking the derivatives of adjacent points above or below 

the discontinuity will well solve the problem without leading to substantial 

errors. It is not necessary to compute the sensitivities at the initial yielding 

point in order to obtain sensitivities at the subsequent steps [SR01]. 

Unlike the direct differentiation approach, the applicability of adjoint variable 

methods for path-dependent problems was once an issue [RHW+85, KAH+97]. 

Since each adjoint variable corresponds to a response function at only one 

single step rather than the entire loading history, the sensitivities of state 

variables at all previous steps are still required [TA90, VH93, SR01]. These 

sensitivities at previous steps must be treated as additional response 

functions, which would significantly increase the total number of responses 

and jeopardize the advantage of the adjoint variable method [KK99, Hi95]. 

The key to solving the challenge is to avoid implicit derivatives of state 

variables in previous steps by introducing additional adjoint variables. 

Following this idea, adjoint sensitivities for transient non-linear coupled 

systems are achieved by introducing adequate adjoint variables for the 
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independent and dependent residuals [MTV94]. Adjoint sensitivity analysis 

with elastoplasticity is obtained as a direct extension of this method. By 

employing adjoint variables corresponding to nodal balance equations and 

the boundary conditions of material flow velocity, adjoint sensitivity analysis 

for non-steady forming could be implemented [CFC+03]. By introducing 

adjoint variables corresponding to boundary conditions on average residence 

time fields, sensitivity analysis and optimization of polymer sheet extrusion 

and molding processes are presented [Sm03]. Based on equilibrium governing 

equations, as well as a computational fluid grid induced by elastic 

deformations, adjoint sensitivity information for fluid-structure interaction 

problems is obtained [MNF03].  

For path-dependent problems, it is shown that both direct and adjoint 

methods maintain their relative advantages as in linear or path-independent 

problems [Car05]. It has also been pointed out that sensitivity analysis for a 

path-dependent problem must be based on the consistent tangent operator, 

which specifies the variation of stress with respect to strain in the underlying 

finite element analysis [VLH91, VH93]. 

Both the computational cost and memory cost of path-dependent nonlinear 

sensitivity analysis increase significantly compared to single-step analysis. In 

the direct differentiation method, derivatives of state variables at each load 

step must be computed. In the adjoint variable method, additional adjoint 

variables at each load step must be solved. Some empirical experiences may 

be utilized to reduce the number of load steps or simplify the load history. 

Through numerical investigation involving a single tetrahedral element and a 

two-bar truss structure with bilinear elastoplastic material, it has been 

demonstrated that sensitivities only need to be calculated at the last step in a 

monotonic loading process [Köb15]. For a cyclical load history, design 

sensitivities must be computed at both the unloading starting point and the 

actual load point [Car05]. However, a theoretical justification for proper load 

step reduction is still lacking. The systematic investigation into load step 

reduction is particularly crucial for the application to large-scale problems. 

1.2.3 Accuracy problem of semi-analytical approximation  

In sensitivity analysis, derivatives of intermediate quantities, including the 

stiffness matrix and pseudo-load vectors, are often required. A widely 
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employed approach is to evaluate these derivatives using finite difference 

approximation, also known as semi-analytical approximation. The biggest 

advantage of this approach is that it leads to straightforward implementation, 

and there is no need to access specific finite element formulations.  

However, the semi-analytical approach causes accuracy problems, even in 

linear sensitivity analysis [BCH88, PCR89, Mle92, CO93]. Rigid body rotation 

of finite elements is recognized as the source of the error, and various 

techniques have been presented to eliminate its influence on sensitivities. It 

has been shown that the first-order finite difference results, when multiplied 

by appropriate correction factors which can be easily pre-computed, are equal 

to the analytical derivatives of the stiffness matrix, mass matrix, and initial 

stress stiffness matrix for the isoparametric Mindlin plate element [PC99]. 

For general types of elements, "exact" semi-analytical sensitivity [ORL93, 

BFD08, Fi10] and refined semi-analytical analysis [BK97, KB98] are two 

effective methods in linear cases, although neither of them leads to the exact 

analytical derivatives. The "exact" semi-analytical approach corrects the finite 

difference approximation of the tangent stiffness matrix by adding an 

additional term, called the correction term, so that a set of rigid-body 

conditions is satisfied. The correction term is expressed as a member in the 

product space of a set of zero eigenvectors. The refined semi-analytical 

technique focuses on correcting the approximation error of the derivatives of 

internal force vectors, and the correction term is a linear combination of zero 

eigenvectors. The refined semi-analytical approach has also been extended to 

the geometric nonlinear case [BK00]. 

1.2.4 Implementation of sensitivity analysis in commercial finite 

element codes  

Commercial finite element analysis software is favored for large-scale 

structural analysis in the industry due to its efficiency, robustness, and 

recognition. Therefore, optimization and sensitivity analysis techniques are 

often integrated with commercial finite element analysis codes to expand 

their fields of applications. However, commercial software always functions 

as a black box, where intermediate quantities needed in sensitivity analysis 

may not be available or accessible. 



 

 8  

 

With limited information, linear sensitivity analysis with Kirchhoff flat shell 

elements is implemented in Abaqus based on the discrete direct 

differentiation method [ZD99]. Direct semi-analytical sensitivity analysis with 

refined correction is realized in ANSYS for linear problems with solid and shell 

elements [LYL04]. Sensitivities with linear elastic solid elements in a contact 

problem are attempted in MARC using the direct method [PRA93]. The 

complex variable finite element method and sensitivity analysis are 

implemented in Abaqus for pure elastoplastic problems with 16-node 

axisymmetric quadrilateral user elements [MWB+13, MFG+15]. There is still 

not much reported regarding the integration of geometric nonlinear 

sensitivity analysis into commercial codes, not to mention geometric 

nonlinear problems with material nonlinearities. 

1.3 Scope and outline of thesis 

This dissertation is based on the research in Work Package 2, Nonlinear 

Sensitivity-Based Shape Optimization of the LaSciSo project (Large Scale 

Industrial Structural Optimization for Advanced Applications). The focus of 

the work package is on high-quality sensitivity analysis for nonlinear, non-

parametric shape optimization. The objective of this dissertation is to 

investigate methods to improve the accuracy and efficiency of adjoint 

sensitivity analysis in nonlinear, non-parametric shape optimization. 

Specifically, two types of nonlinearities are within the scope of this research: 

geometric nonlinearity and elastoplasticity. 

The major contributions of this thesis to the research field are: 

• Extension of the correction term in exact semi-analytical sensitivity 

analysis to the case of geometric nonlinearity. 

• Analytical formulation of zero-eigenvectors, which are used in 

constructing the correction term efficiently. 

• Proposal and theoretical proof of two numerical properties of adjoint 

variables for adjoint sensitivity analysis, considering simultaneous 

elastoplasticity and geometric nonlinearity. 

• Proposal and theoretical proof of two load step reduction rules in the 

adjoint sensitivity analysis procedure to improve efficiency.  
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• Extension of proposed load step reduction techniques to elastoplasticity 

with a mixed-hardening material model. 

• Extension of proposed load step reduction techniques to the case of finite 

strain elastoplasticity, along with a discussion on the applicability. 

The dissertation is organized as follows. 

In Chapter 2, an in-house finite element solver used in the study is presented. 

The solver can deal with simultaneous geometric nonlinearity and 

elastoplasticity. Although the ultimate and ideal industrial goal is to develop 

and implement the sensitivity analysis procedure in commercial finite 

element codes, an accurate in-house nonlinear finite element solver is highly 

demanded due to two reasons. Firstly, commercial finite element codes may 

not provide all necessary outputs to calculate sensitivities. Secondly, the 

intermediate quantities provided by commercial finite element codes may 

introduce numerical errors, which may lead to unreasonable sensitivity 

results and even fallacious conclusions.  

Based on the solver, the semi-analytical adjoint sensitivity formulation for 

geometric nonlinear problems under both external force and prescribed 

displacement is derived in Chapter 3. The accuracy problem of the semi-

analytical approach for geometric nonlinear sensitivity analysis is 

investigated. The "exact" semi-analytical correction is extended to this 

problem, and a correction term is constructed analytically to eliminate the 

errors. The sensitivity analysis procedure is integrated into the TOSCA 

optimization platform, and several non-parametric shape optimization 

examples are presented for demonstration. 

In Chapter 4, the adjoint sensitivity approach for simultaneous geometric 

nonlinearity and small strain elastoplasticity with the isotropic hardening 

model is formulated and implemented. Techniques to reduce the number of 

load steps in the sensitivity analysis are proposed, theoretically proved, and 

demonstrated with multiple examples from small-scale bar truss examples to 

large-scale solid structures in Chapter 5. In Chapter 6, the presented 

techniques are extended to kinematic hardening and combined hardening 

material models with proof and demonstrations. In chapter 7, the applicability 

of the adjoint sensitivity analysis and load step reduction rules is investigated 

for a more general case, i.e. large strain elastoplasticity, where the logarithmic 
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strain measure and multiplicative decomposition of the deformation gradient 

are adopted. 

The thesis is finally summarized in Chapter 8 with an outlook on further 

research work. 
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2. Introduction to nonlinear finite element analysis 

In this chapter, the theory of nonlinear finite element analysis for geometric 

nonlinearity and elastoplasticity is briefly introduced. This serves as the basis 

for deducing the adjoint sensitivity formulation of structural responses. The 

mechanical quantities obtained from the finite element analysis form the 

foundation of sensitivity analysis. To overcome potential limitations of 

outputs from commercial finite element codes, an in-house nonlinear finite 

element solver is developed based on the theory and is employed in the 

research. 

2.1 Geometric nonlinear analysis with secant stiffness matrix 

2.1.1 The Newton-Raphson method 

Geometric nonlinearity describes the nonlinear relationship between load 

and displacement when large structural deformation occurs. The Newton-

Raphson method is commonly used at each load step of the finite element 

analysis to obtain the displacement of equilibrium iteratively. The flowchart 

of this method from load step t to the next load step t+1 is depicted in Figure 

2-1. 

In the flowchart, 𝑼 
𝑡  is the nodal displacement vector, 𝑭 

𝑡  is the nodal 

external force. Throughout the paper, the upper left superscript denotes the 

load step. 𝑹 is the residual force, 𝑲T denotes the tangent stiffness matrix, 

𝑭int is the internal force vector corresponding to the displacement. In each 

iteration, an incremental displacement is obtained by solving a system of 

linear equations, with the residual force on the right-hand side. Then the 

displacement is updated by the increment, and the residual force is 

recomputed. The iterative procedure terminates if the residual force is 

sufficiently small. 
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Figure 2-1. Newton-Raphson iterative solution procedure for geometric 

nonlinearity 

On the element level, the internal force is obtained through stress integration:  

 𝑭int = ∫𝑩𝝈𝑑𝑣
 

𝑉

 (2.1) 

where 𝑩 is the deformation matrix, 𝝈 is the elemental stress and V stands 

for the volume of an element. 

Instead of stress integration, when Green-Lagrangian strain is employed, the 

internal force vector can also be straightforwardly evaluated by multiplying a 

secant stiffness matrix 𝑲S  by the displacement vector, as shown in the 

following equation [OOM+86, Pe05]:  

 𝑭int = 𝑲S(𝑼) ∙ 𝑼 (2.2) 

This approach via secant stiffness matrix is introduced in the next section.  

2.1.2 Introduction to the secant stiffness matrix 

The secant stiffness matrix possesses a straightforward physical meaning that 

connects total displacement and internal force. The formulation and 

Yes 

Add ∆𝑼 to 𝑼 
𝑡+1  

Calculate residual force 𝑹 = 𝑭
 

𝑡+1 − 𝑭int( 𝑼
 

𝑡+1 ) 

 𝑹 <ε 

Obtain 𝑼 
𝑡+1  

Given 𝑼 
𝑡 , 𝑭 

𝑡 , 𝑹 = 𝑭
 

𝑡+1 − 𝑭
 
𝑡   

𝑼 
𝑡+1 = 𝑼

 
𝑡

Solve 𝑲T( 𝑼
 

𝑡+1 ) ∙ ∆𝑼 = 𝑹 

No 
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application of the secant stiffness matrix in geometrically nonlinear finite 

element analyses have been investigated [OOM+86, Oñ91, MOM98]. 

Additionally, the secant stiffness matrix has been employed in the analysis of 

the stability of frame structures [CG96] and the estimation of buckling load 

factors [Oñ95]. 

 

Figure 2-2. Tangent and secant stiffness matrices at an equilibrium point 

Figure 2-2 depicts the force-displacement equilibrium curve of a general 

nonlinear problem. The secant stiffness matrix is the slope of the secant line 

connecting the initial point and the equilibrium point. While the tangent 

stiffness matrix reflects the relationship between incremental displacement 

and incremental force, the secant stiffness matrix describes the relationship 

between total displacement and total force. 

There are three kinematic descriptions that are usually used in geometrically 

nonlinear finite element analysis: total Lagrangian formulation, updated 

Lagrangian formulation, and co-rotational formulation [No12, Cr00]. In the 

total Lagrangian formulation, strains and stresses are measured with 

reference to the initial undeformed configuration. The updated Lagrangian 

formulation uses the deformed configuration from the previous step as the 

reference state, and the reference configuration is updated as the solution 

procedure proceeds. In the co-rotational formulation, a local reference frame 

is attached to each element, and it translates and rotates with the 

corresponding element as a rigid body. In the context of the secant stiffness 

matrix approach, where the stiffness matrix is dependent on the total 

displacement, the total Lagrangian formulation could be naturally employed. 

In the following, the formulations of the secant stiffness matrix for general 

finite elements under geometric nonlinearity is introduced. These 

KS(U) 

equilibrium curve 

U U 
0 

F 

KT(U) 
Fint 



 

 14  

 

formulations have been derived by Pederson [Pe05, Pe06, Pe08], where 

Green–Lagrange strain and its conjugate second Piola-Kirchhoff stress are 

adopted.  

The components of the nonlinear Green–Lagrange strain 𝜀ij  in Cartesian 

coordinates are defined as 

 𝜀ij =
1

2
(𝑢i,j + 𝑢j,i) +

1

2
(𝑢k,i ∙ 𝑢k,j) (2.3) 

where variable 𝑢 is the displacement field and indices i, j, k represent the 

three directions in three-dimensional space. The Einstein summation 

convention applies to the index k. After discretization, the formulas can be 

expressed in matrix form using the Voigt notation for strain: 

 𝜺 = 𝑩L𝑼 +
1

2
𝑼T𝑩N𝑼 (2.4) 

where 𝑩L  is the linear strain–displacement matrix, 𝑩N  is a symmetric 

matrix describes the nonlinear relation between displacement and strain, and 

the upper right superscript T represents the transpose operator. The variation 

of strain follows 

 δ𝜺 = (𝑩L + 𝑼T𝑩N)δ𝑼 (2.5) 

The general equilibrium equation, according to the principle of virtual work 

over an element volume, is 

 ∫δ𝜺T𝝈d𝑣
 

𝑉

= δ𝑼 ∙ 𝑭 (2.6) 

By substituting Eq.(2.5) into Eq.(2.6), the equilibrium equation is derived: 

 ∫(𝑩L + 𝑼T𝑩N)T𝝈d𝑣
 

𝑉

= 𝑭 (2.7) 

Comparing Eq.(2.7) and Eq.(2.1), it follows that 

 𝑩 = 𝑩L +𝑼T𝑩N (2.8) 
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The constitutive relationship between the second Piola-Kirchhoff stress and 

the Green–Lagrange strain is 

 𝝈 = 𝑫𝜺 = 𝑫 ∙ (𝑩L +
1

2
𝑼T𝑩N) ∙ 𝑼 (2.9) 

where 𝑫  represents the elastic constitutive relation between strain and 

stress.  

For simplicity, denotes 

 �̅� = 𝑩L +
1

2
𝑼T𝑩N (2.10) 

The equilibrium equation is derived by substituting Eqs.(2.8) to (2.10) into 

Eq.(2.7), 

 ∫𝑩T𝑫�̅�d𝑣
 

𝑉

∙ 𝑼 = 𝑭 (2.11) 

Thus, the general formulation of the secant stiffness matrix is obtained: 

 𝑲S(𝑼) = ∫𝑩
T𝑫�̅�d𝑣

 

𝑉

 (2.12) 

In addition, the tangent stiffness matrix can be derived from Eq.(2.12): 

 

𝑲T(𝑼) = ∇𝑼(𝑲S(𝑼) ∙ 𝑼) = ∇𝑼∫(𝑩
L +𝑼T𝑩N)T𝑫(𝑩L𝑼+

1

2
𝑼T𝑩N𝑼)𝑑𝑣

 

𝑉

= ∫𝑩T𝑫𝑩𝑑𝑣
 

𝑉

+∫𝛁𝑼𝑩
T𝝈𝑑𝑣

 

𝑉

 

(2.13) 

The first term reflects the elastic stiffness matrix and displacement stiffness 

matrix, while the second term represents the stress stiffness matrix. It can be 

seen that, unlike the tangent stiffness matrix, the secant stiffness matrix in Eq. 

(2.12) is asymmetric. 

Furthermore, both tangent and secant stiffness matrices for several element 

types can be analytically formulated using nodal coordinates and nodal 

displacements. An example is provided in Appendix A for the 3D 4-node 

tetrahedral element, as presented by Pederson [Pe06]. The analytical 

expressions of stiffness matrices offer a solid foundation for studies on 
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sensitivity analysis. In particular, they are helpful for tracing the source of 

errors. 

2.2 Simultaneous geometric nonlinear and elastoplastic 

nonlinear analysis 

In this section, nonlinear analysis is extended to simultaneous geometric 

nonlinearity and small strain elastoplasticity.  

2.2.1 Elastoplastic material model 

Plasticity describes a material undergoing irreversible deformation in 

response to an applied load. The elastoplastic material model depicts a 

material that possesses both elasticity and plasticity. Most ductile metals, 

widely used in mechanical engineering, fall into this category. 

Figure 2-3 presents a 1D rheological model of elastoplasticity. It is composed 

of two springs with stiffness 𝐸  (Young’s modulus), 𝐸P  (Plastic modulus), 

respectively, and a frictional element with maximum friction force 𝜎Y (yield 

strength). 

 

Figure 2-3. 1D rheological model of elastoplasticity 

The elastoplastic material behavior in a loading-unloading procedure is 

illustrated in Figure 2-4. The material behaves elastically initially. Once the 

stress exceeds the initial yield strength 𝜎0 , the plastic strain 𝜺p  gradually 

accumulates, which is the irreversible part after unloading. 

σ

  

E Ep 
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Figure 2-4. Elastoplastic material behavior in a loading-unloading procedure 

In the small strain case, the total strain 𝜺  is additively decomposed into 

elastic strain part 𝜺e and plastic strain part 𝜺p  

 𝜺 = 𝜺e + 𝜺p (2.14) 

The relationship between total stress and total strain is 

 𝝈 = 𝑫e𝜺e = 𝑫e(𝜺 − 𝜺p) (2.15) 

where 𝑫e  is the elastic constitutive relation matrix. In a 1D case, 𝑫e 

represents the elastic modulus E. In Figure 2-4, 𝐸tan  denotes the tangent 

modulus, which reflects the relationship between incremental stress and 

incremental strain 

 𝑑𝝈 = 𝐸tan ∙ 𝑑𝜺 (2.16) 

The plastic modulus 𝐸p denotes the relationship between incremental stress 

and incremental plastic strain 

 𝑑𝝈 = 𝐸p ∙ 𝑑𝜺p (2.17) 

Therefore, 𝐸tan has the following relation to Young’s modulus and the plastic 

modulus 

 𝐸tan =
𝐸𝐸p

𝐸 + 𝐸p
 (2.18) 

σ

  
E
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The total plastic strain results from the accumulation of incremental plastic 

strains from individual load step 

 𝜺p =∑ ∆𝜺p 
𝑡

𝑡
 (2.19) 

where the incremental plastic strain is the product of the incremental 

equivalent plastic strain and a vector 𝐚 which is called the flow vector 

 ∆𝜺p = ∆𝜀eqv
p
∙ 𝐚 (2.20) 

The flow vector describes the direction of incremental plastic strain. In metal 

plasticity, it is typically assumed that flow vector is in the same direction as 

the normal to the yield surface. This is referred to as the associated-flow rule: 

 𝐚 =
𝑑𝑓(𝝈)

𝑑𝝈
=
𝑑|𝝈|eqv

𝑑𝝈
 (2.21) 

Otherwise, it is referred to as a non-associated flow rule. 

In Eq.(2.21), 𝑓(𝝈) is a function of stress that defines the yield surface 

 𝑓(𝝈) = |𝝈|eqv − 𝜎Y(𝜀eqv
p
) = 0 (2.22) 

where |∙|eqv is an equivalent stress measure, 𝜎Y is the yield strength, which 

is dependent on the material properties and equivalent plastic strain 𝜀eqv
p .  

The equivalent stress measure is determined by the employed yield criterion. 

One widely used criterion for metal plasticity is the von Mises yield criterion. 

The von Mises equivalent stress is then determined by this criterion 

 

|𝝈|von Mises

= √
(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎11 − 𝜎33)

2 + 6(𝜎12
2 + 𝜎23

2 + 𝜎13
2)

2

= √
(𝜎1 −𝜎2)

2 + (𝜎2 −𝜎3)
2 + (𝜎1 −𝜎3)

2

2
= √

3

2
∑∑ 𝑠𝑖𝑗

2

𝑗𝑖

 

(2.23) 



 

 19  

 

where 𝜎1  to 𝜎3  represent the three principal stress components, and 𝑠𝑖𝑗  

denotes the deviatoric stress components defined by 

 𝑠𝑖𝑗 = 𝜎𝑖𝑗 −
1

3
𝜎𝑘𝑘 (2.24) 

According to the development of yield strength, plasticity is categorized into 

three types: hardening, softening, and perfect plasticity. Hardening plasticity 

depicts an increase in yield strength as plastic strain accumulates, while 

softening plasticity depicts just the opposite, i.e. a decrease in yield strength. 

Perfect plasticity is an ideal model where the yield strength remains 

unchanged. These three types of plasticity are defined by the sign of the 

tangent modulus 

 𝐸tan and 𝐸p {

> 0     hardening         
= 0 perfect plasticity
< 0      softening         

 (2.25) 

For the hardening plasticity, three typical hardening rules describe the 

development of the yield surface: isotropic hardening, kinematic hardening, 

and mixed hardening, also known as combined hardening. The development 

of the yield surface under the isotropic hardening rule is depicted in Figure 

2-5. It assumes that the yield surface expands uniformly in all directions as 

plastic strain increases.  

The cases of kinematic hardening and mixed hardening will be discussed in 

Chapter 6. 

2.2.2 Newton-Raphson iteration for elastoplasticity 

The Newton-Raphson method is also employed to solve elastoplastic 

nonlinear problems. The flowchart for this method at a new load step t+1 from 

the previous step t is depicted in Figure 2-6. In each iteration, an incremental 

displacement is obtained by solving a system of linear equations, similar to 

the process in geometric nonlinearity. Two major differences exist: the 

inclusion of the tangent stiffness in the linear equation system and the 

utilization of a return mapping algorithm. 

 



 

 20  

 

 

(a) 1D development of yield strength (b) 3D development of yield surface in 

the space of principal stress 

components, taking von Mises yield 

criterion as an example 

Figure 2-5. Increase of yield strength and expansion of yield surface under isotropic 

hardening rule 

 

Figure 2-6. Newton-Raphson iteration for elastoplasticity 
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The tangent stiffness matrix follows the expression in Eq.(2.13), with the 

elastic constitutive matrix being replaced by 𝑫ep . 𝑫ep  describes the 

relationship between incremental stress and incremental strain in 

elastoplastic analysis 

 ∆𝝈 = 𝑫ep ∙ ∆𝜺 (2.26) 

In an elastic step, it equals the elastic constitutive matrix 𝑫e. During a plastic 

step, 𝑫ep is expressed as follows [Cr00]: 

 𝑫ep = 𝑸−1 ∙ 𝑫e − 
𝒅

𝐚 ∙ 𝒓 + 𝐸p
 (2.27) 

where 

 

𝑸 = 𝑰 + 𝑫e ∙
𝑑𝐚

𝑑𝝈
∙ ∆𝜀eqv

p
 

𝑑𝐚

𝑑𝝈
=

𝟏

|𝝈|eqv

(

  
 

[
 
 
 
 
 
1 −0.5 −0.5

−0.5 1 −0.5
−0.5 −0.5 1

 

 
3   
 3  
  3]

 
 
 
 
 

− 𝐚T ∙ 𝐚

)

  
 

 

𝒓 = 𝑸−1 ∙ 𝑫e ∙ 𝐚T 

𝒅 = 𝒓 ∙ 𝒓T 

(2.28) 

After updating the nodal displacement, the stress and equivalent plastic strain 

will be updated to calculate the internal force and stiffness matrix in the next 

iteration. These quantities cannot be determined explicitly from nodal 

displacement when plasticity occurs. A return mapping algorithm is typically 

employed to perform this task implicitly. The algorithm is introduced in the 

next section. 

2.2.3 Return mapping algorithm 

The return mapping algorithm [Cr00] is usually used to determine the stress 

and equivalent plastic strain with a given incremental strain. The algorithm is 

described below, taking the von-Mises yield criterion as an example. 
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Given stress 𝝈 
𝑡  and equivalent plastic strain 𝜀 

𝑡
eqv
p , firstly, calculate the 

incremental strain ∆𝜺  through the incremental displacement ∆𝑼 . Then, 

assume it is an elastic increment, i.e. ∆𝜀eqv
p

= 0, and update the trial stress with 

 

∆𝝈try = 𝑫
e ∙ ∆𝜺 

𝝈try = 𝝈 
𝑡 + ∆𝝈try 

(2.29) 

Calculate the von Mises equivalent stress using 𝝈try and check whether it is 

not larger than the yield strength at step t. 

If it is true, then the element is indeed in an elastic state, and the assumption 

∆𝜀eqv
p

= 0 holds. Therefore, it follows 𝝈 
𝑡+1 = 𝝈try, 𝜀 

𝑡+1
eqv
p 

= 𝜀 
𝑡
eqv
p 

, and 𝑫ep = 𝑫e. 

Otherwise, initiate the return mapping algorithm: 

a)  Calculate trial associated flow vector 𝐚: 

 𝐚 =
𝑑|𝝈try|Mises

𝑑𝝈
=

3

2|𝝈try|Mises

[𝑠11, 𝑠22, 𝑠33, 2𝑠12, 2𝑠13, 2𝑠23] (2.30) 

b) Update the incremental plastic strain 

 

∆𝜀eqv
p

= ∆𝜀eqv
p
+
|𝝈try|Mises

− 𝜎 
𝑡
Y
 − 𝐸p ∙ ∆𝜀eqv

p

𝐚 ∙ 𝑫e ∙ 𝐚T + 𝐸p
 

∆𝜺p = ∆𝜀eqv
p
∙ 𝐚 

(2.31) 

c) Update trial stress 

 𝝈try = 𝝈 
𝑡 +𝑫e ∙ ∆𝜺 − 𝑫e ∙ ∆𝜺p (2.32) 

 

d) Check if |𝝈try|Mises
− 𝜎 

𝑡
Y
 − 𝐸p ∙ ∆𝜀eqv

p
= 0. If it is not satisfied, go 

back to step a). Otherwise, the algorithm stops and provides the 

result 

 

𝝈 
𝑡+1 = 𝝈try 

𝜀 
𝑡+1

eqv
p 

= 𝜀 
𝑡
eqv
p 
+ ∆𝜀eqv

p
 

(2.33) 
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After updating the stress and equivalent plastic strain, the internal force could 

be calculated following Eq.(2.1). 
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3. Adjoint sensitivity analysis with geometric nonlinearity 

In this chapter, the adjoint sensitivity formulation for geometric nonlinear 

problems is derived using the secant stiffness matrix. An analytical correction 

term is proposed to eliminate the rotation error in the semi-analytical 

approximation. Several optimization examples with the TOSCA shape 

optimization solver are presented. 

3.1 Adjoint sensitivity analysis formulation under prescribed 

displacement and external force 

Under both prescribed displacement and external force, the system response 

f of a geometric nonlinear system can be expressed as a function of unknown 

displacement, unknown reaction force, and design variables. The 

displacement and reaction force are also dependent on design variables. 

Therefore, the sensitivity of the system response with respect to a design 

variable s follows 

 
𝑑𝑓(𝑼(𝑠), 𝑭(𝑠), 𝑠)

𝑑𝑠
=
𝜕𝑓

𝜕𝑠
+
𝜕𝑓

𝜕𝑼

T

∙
𝑑𝑼

𝑑𝑠
+
𝜕𝑓

𝜕𝑭

T

∙
𝑑𝑭

𝑑𝑠
 (3.1) 

where derivative of displacements and reaction forces need to be evaluated. 

The idea of the adjoint variable method is to avoid the calculation of these 

derivatives by cancelling them out with additional terms. These additional 

terms are products of adjoint variables with derivatives of governing 

equations, which are identical to zero and contain 𝑑𝑼 𝑑𝑠⁄  and 𝑑𝑭 𝑑𝑠⁄ . Here, 

the equilibrium equation of the finite element system is utilized 

 𝑹(𝑼(𝑠), 𝑭(𝑠), 𝑠) = 𝑲S(𝑼(𝑠), 𝑠) ∙  𝑼(𝑠) − 𝑭(𝑠) ≡ 𝟎 (3.2) 

The total derivative of the residual force vector, which is identical to zero, is 

calculated as 

 𝟎 =
𝑑𝑹

𝑑𝑠
=
𝜕𝑹

𝜕𝑠
+
𝜕𝑹

𝜕𝑼

T

∙
𝑑𝑼

𝑑𝑠
+
𝜕𝑹

𝜕𝑭

T

∙
𝑑𝑭

𝑑𝑠
=
∂𝑲S
∂𝑠

∙ 𝑼 + 𝑲T ∙
𝑑𝑼

𝑑𝑠
−
𝑑𝑭

𝑑𝑠
 (3.3) 
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Define the adjoint variable 𝝀  as a column vector given by 𝝀 = [𝝀f 𝝀d]
T , 

where 𝝀f  corresponds to degrees of freedom with external force, and 𝝀d 

corresponds to degrees of freedom with prescribed displacement. Pre-

multiply the transpose of the adjoint variable to Eq. (3.3) and then subtract it 

from Eq. (3.1), this yields 

 
𝑑𝑓

𝑑𝑠
=
𝜕𝑓

𝜕𝑠
+
𝜕𝑓

𝜕𝑼

T

∙
𝑑𝑼

𝑑𝑠
+
𝜕𝑓

𝜕𝑭

T

∙
𝑑𝑭

𝑑𝑠
− 𝝀T ∙ (

∂𝑲S
∂𝑠

∙ 𝑼 + 𝑲T ∙
𝑑𝑼

𝑑𝑠
−
𝑑𝑭

𝑑𝑠
) (3.4) 

After merging similar terms, the sensitivity has been reformulated as 

 
𝑑𝑓

𝑑𝑠
=
𝜕𝑓

𝜕𝑠
− 𝝀T ∙

∂𝑲S
∂𝑠

∙ 𝑼−(𝑲T ∙ 𝝀 −
𝜕𝑓

𝜕𝑼
)
T

∙
𝑑𝑼

𝑑𝑠
+ (

𝜕𝑓

𝜕𝑭
+ 𝝀)

T

∙
𝑑𝑭

𝑑𝑠
 (3.5) 

The external forces and prescribed displacements on a structure are given 

quantities, independent of design variables. Consequently, the components of 

the derivative of the displacement vector, which correspond to the degrees of 

freedom with prescribed displacement, are zero. Similarly, the components of 

the derivative of the reaction force vector, which correspond to the degrees of 

freedom with external force, are also zero. They are expressed as follows: 

 

𝑑𝑼

𝑑𝑠
= [𝑑𝑼

f 𝑑𝑠⁄
𝟎

] 

𝑑𝑭

𝑑𝑠
= [

𝟎
𝑑𝑭𝑑 𝑑𝑠⁄

] 

(3.6) 

With Eq.(3.6), the fourth term in Eq. (3.5) is 

 (
𝜕𝑓

𝜕𝑭
+ 𝝀)

T

∙
𝑑𝑭

𝑑𝑠
= (∇𝑭𝒅𝑓 + 𝝀

d)
T
∙
𝑑𝑭𝑑

𝑑𝑠
 (3.7) 

Enforcing Eq. (3.7) to be zero leads to 

 𝝀𝑑 = −∇𝑭𝒅𝑓 (3.8) 

With Eq.(3.6) and Eq.(3.8), the third term in Eq. (3.5) is 
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 (𝑲T ∙ 𝝀 −
𝜕𝑓

𝜕𝑼
)
T

∙
𝑑𝑼

𝑑𝑠
= (𝑲T ∙ [

𝝀𝑓

−∇𝑭𝒅𝑓
] −

𝜕𝑓

𝜕𝑼
)
T

∙ [𝑑𝑼
𝑓 𝑑𝑠⁄
𝟎

] (3.9) 

Enforcing Eq. (3.9) to be zero yields that 𝝀f  satisfies the system of linear 

equations 

 𝑲T ∙ [
𝝀𝑓

−∇𝑭𝒅𝑓
] = [

∇𝑼𝒇𝑓

𝑿
] (3.10) 

𝝀f and 𝑿  are unknown variables to be solved. Finally, the sensitivity of 

response 𝑓 equals 

 
𝑑𝑓

𝑑𝑠
=
𝜕𝑓

𝜕𝑠
− [

𝝀𝑓

−∇𝑭𝒅𝑓
]
T

∙
∂𝑲S
∂𝑠

∙ 𝑼 (3.11) 

According to Eq. (3.11), the adjoint sensitivity analysis could be obtained by 

following the flowchart in Figure 3-1. 

 

Figure 3-1. Flowchart of adjoint variable method for geometric nonlinear 

sensitivity analysis 

In the flowchart, the linear perturbation analysis in step 2 involves solving a 

system of linear equations using the tangent stiffness matrix at the 

equilibrium point. The pseudo displacements and forces are determined 

through the appropriate partial derivatives of the response function. 

Step 1: Full geometric nonlinear analysis to 

get equilibrium displacement 𝑼 

Step 2: Solve Eq. (3.10) with pseudo prescribed 

displacement −∇𝑭𝒅𝑓 and pseudo force ∇𝑼𝒇𝑓 to 

obtain adjoint variable 𝝀 

Step 3: Evaluation of ∂𝑲S ∂𝑠⁄  

Step 4: Calculate sensitivity with Eq. (3.11) 

formulation 
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In the third step, the partial derivative of the secant stiffness matrix with 

respect to design variables needs to be evaluated. This derivative can be 

approximated using a forward scheme semi-analytical approach 

 
∂𝑲S(𝑼, 𝑠)

∂𝑠
≈
∆𝑲S(𝑼, s)

∆𝑠
=
𝑲S(𝑼, 𝑠 + ∆𝑠) − 𝑲S(𝑼, 𝑠)

∆𝑠
 (3.12) 

This semi-analytical approximation can be implemented with little effort for 

general types of elements. The disadvantage of this apporach is the well-

known accuracy problem, which will be discussed later in Section 3.2 and 3.3. 

It should be noted that, the design variables in non-parametric shape 

optimization are the nodal coordinates. Therefore, the finite difference of 

Eq.(3.12) is carried out at the element level, considering only those elements 

with design nodes as their vertices. This ensures the efficiency of the semi-

analytical implementation. 

3.2 Validation of adjoint sensitivity analysis 

In this section, the semi-analytical sensitivity analysis procedure presented in 

the previous section is numerically validated.  

A cantilever beam structure, depicted in Figure 3-2(a), is employed, and 3D 4-

node tetrahedral elements are used to mesh the structure. The design 

variables consist of the vertical coordinates of nodes on the centerline of the 

bottom surface, as illustrated in red in Figure 3-2(b). 

  

(a)  Model description (b)  Design nodes (red points) along the beam 

Figure 3-2. Cantilever beam model (Length = 300 mm, width = 15 mm, height = 15 

mm, Young’s modulus = 209 GPa, Poisson’s ratio = 0.3) 

The structure is fixed at one end, and a prescribed displacement of 100mm in 

the vertically downward direction is applied at the other side. The total 

X 

Y 
U 

Fixed end  
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vertical reaction force at the support is defined as one response function. In 

Figure 3-3, the sensitivities of this response obtained by the semi-analytical 

adjoint variable method are compared with the global finite difference results. 

The horizontal axis represents the x-coordinate of the design nodes. The 

perturbation size in the semi-analytical approximation is 10-5mm, while the 

perturbation size in the global finite difference approach is 10-6mm. It can be 

observed that the adjoint sensitivity results match quite well with the finite 

difference results from a real value perspective. 

 

Figure 3-3. Sensitivity of reaction force obtained by semi-analytical adjoint variable 

method and global finite difference method 

However, concerning the perspective of relative error, the accuracy issue 

mostly discussed in linear systems arises. Figure 3-4 illustrate the scaled 

sensitivity, defined as the ratio of semi-analytical adjoin sensitivities to global 

finite difference results:  

 scaled sensitivity =  
Sensitivity of semi analytical adjoint method

Sensitivity of global FD
 (3.13) 

The scaled sensitivity measures the relative error between the two results. It 

indicates that, near the free end, the scaled sensitivity deviates significantly 

from 1, signifying a notable increase in relative error. 
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Figure 3-4. Scaled sensitivity of reaction force response 

The perturbation size employed in the semi-analytical approximation 

influences the correctness of the sensitivity result. Figure 3-5 presents the 

semi-analytical sensitivity results using different perturbation sizes, ranging 

from 10-3 to 10-8 mm. It shows that if the perturbation size is too small or too 

large, incorrect sensitivity results could be obtained. 

 

Figure 3-5. Sensitivity of reaction force response with different perturbation sizes. 

The design variable is the vertical coordinate of a design node near the loaded end 

The maximum stress is usually another typical response in structural 

optimization. Since the location of the maximum stress point may change 

between iterations, stresses of a number of elements should be defined as 

responses to capture the maximum stress. To reduce the number of system 

responses, some aggregation functions are proposed to approximate the 

maximum stress with a single system response [QL10]. One of the typically 

used function is the P-norm of a set of interested elements: 
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 σmax ≈ (
1

m
∑σe

p

m

e=1

)

1/p

 (3.14) 

where m  is the number of selected elements, and p is the aggregation 

parameter, which is an integer.  

The adjoint sensitivity analysis approach is validated with the P-norm of von-

Mises equivalent stress as a response. The von Mises stress of 28 elements 

around the fixed end is included into the function evaluation. The parameter 

p is set to be 20. The sensitivities of the P-norm response obtained by semi-

analytical adjoint variable method and global finite difference method are 

presented in Figure 3-6. The scaled sensitivity result is presented Figure 3-7.  

 

Figure 3-6. Sensitivity of P-norm stress obtained by semi-analytical adjoint variable 

method and global finite difference method 

 

Figure 3-7. Scaled sensitivity of P-norm stress response 
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As it appears, the sensitivity results of both approaches match well with each 

other. However, the accuracy issue resurfaces at the free end. 

3.3 Rotation error of semi-analytical approximation 

As presented in Section 3.2, the semi-analytical approximation leads to an 

accuracy problem in the sensitivity analysis. The following example clearly 

illustrates that this error is caused by the rigid body rotation of elements.  

In this example, the same cantilever beam model as in Section 3.2 is employed. 

As depicted in Figure 3-8, instead of applying a vertical prescribed 

displacement, a displacement of 30mm is applied in the axial direction at the 

free end. 

 

Figure 3-8. Cantilever beam model under prescribed displacements in axial 

direction 

This prescribed displacement leads to a pure extension of the beam. The total 

axial reaction force is defined as the response, utilizing the same design 

variables as presented in Section 3.2. The sensitivity and scaled sensitivities 

of semi-analytical adjoint approach and global finite difference approach are 

illustrated in Figure 3-9 and Figure 3-10, respectively. 

 

Figure 3-9. Sensitivity of reaction force under axial prescribed displacement 
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Figure 3-10. Scaled sensitivity of reaction force under axial prescribed 

displacement  

The results show that, under pure extension, the semi-analytical sensitivity 

perfectly align with the benchmark without any accuracy issues. This 

numerical demonstration highlights that the accuracy problem only arise 

when there is elemental rotation in the underlying finite element system. 

3.4 Correction term for semi-analytical approximation in 

adjoint sensitivity analysis 

In the linear case, the rotation error has been successfully eliminated by both 

the "exact" semi-analytical approach and the refined semi-analytical approach. 

The idea behind both methods is to add a correction term to the finite 

difference of either the stiffness matrix or the internal force vector. This term 

is introduced to ensure that the semi-analytical approximation satisfies the 

so-called rigid body conditions or zero-eigenvector conditions. The correction 

term is constructed from the rigid body movement vectors of individual 

elements. 

In this section, this idea is extended to the geometric nonlinear case. The 

construction of the correction term is based on the secant stiffness matrix 

outlined in Eq. (2.12).  

Firstly, the zero-eigenvector conditions are deduced. Similar to every stiffness 

matrix, the secant stiffness matrix of a 3D element has a degree of rank 
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deficiency of 6. This means there are in total six zero eigenvectors {𝝋i}i=1,…,6 

that satisfy the condition 

 𝑲S ∙  𝝋i = 𝟎 (3.15) 

Since the matrix transpose operator does not change the rank of a matrix, the 

rank deficiency of 𝑲S
T  is also 6. As a result, there must be six zero 

eigenvectors {𝝎i}i=1,…,6 such that 

 𝑲S
T ∙  𝝎i = 𝟎 (3.16) 

When the secant stiffness matrix is asymmetrical, the sets {𝝋i} and {𝝎i} are 

not identical. They are referred to as right and left eigenvectors, respectively. 

Both sets of eigenvectors can be orthogonalized using the Gram-Schmidt 

process, as presented in the following. The orthogonalized vectors are 

denoted by {𝝋i
o} and {𝝎i

o}. 

 

𝝋1
o = 𝝋1  

𝝋i
o = 𝝋i −∑

〈𝝋i ,   𝝋j
o〉

〈𝝋j
o ,   𝝋j

o〉
j<𝑖

𝝋j
o  (for i = 2,… ,6) 

(3.17) 

 

𝛚1
o = 𝛚1 

𝝎i
o = 𝝎𝑖 −∑

〈𝝎i ,   𝝎j
o〉

〈𝝎j
o ,   𝝎j

o〉

 

j<𝑖

𝝎j
o  (for i = 2,… ,6) 

(3.18) 

The operator 〈∙ , ∙〉  represents the inner product of two vectors. The 

orthogonalized vectors {𝝋i
o}  and {𝝎i

o}  are still eigenvectors of 𝑲S  and 

𝑲S
T, respectively.  

Further, by replacing 𝝋i with 𝝋i
o in Eq. (3.15) and taking partial derivative 

with respect to the design variable, pre-multiplying 𝝎j
oT on the left yields 

 𝝎j
oT ∙

∂𝑲S
∂𝑠

∙  𝝋i
o +𝝎j

oT ∙ 𝑲S ∙
∂𝝋i

o

∂𝑠
 = 𝟎 (3.19) 

Using 

http://www.google.com.hk/search?safe=strict&client=aff-maxthon-newtab&channel=t1&q=orthogonalized&spell=1&sa=X&ei=oq3SUZq_AszZsgaOyYHoCQ&ved=0CCkQvwUoAA
http://www.google.com.hk/search?safe=strict&client=aff-maxthon-newtab&channel=t1&q=orthogonalized&spell=1&sa=X&ei=oq3SUZq_AszZsgaOyYHoCQ&ved=0CCkQvwUoAA
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 𝝎j
oT ∙ 𝑲S = (𝑲S

T ∙  𝝎j
o)
T
= 𝟎 (3.20) 

The second term in Eq. (3.19) vanishes, and the following 36 zero-eigenvector 

conditions are obtained 

 𝝎j
oT ∙

∂𝑲S
∂𝑠

∙  𝝋i
o  = 0   (for i, j = 1,… ,6) (3.21) 

If a semi-analytical approximation of ∂𝑲S ∂𝑠⁄  is accurate, it should satisfy all 

of these conditions. Unfortunately, this is usually not the case. Therefore, a 

correction term 𝑻 must be added to the semi-analytical approximation result 

 
∂𝑲S
∂𝑠

≈
∆𝑲S
∆𝑠

+ 𝑻 (3.22) 

Substituting Eq. (3.22) into Eq. (3.21) results in 

 0 = 𝝎j
oT ∙

∆𝑲S
∆𝑠

∙  𝝋i
o +𝝎j

oT ∙ 𝑻 ∙  𝝋i
o  (for i, j = 1,… ,6) (3.23) 

Therefore, the correction term must satisfy 

 𝝎j
oT ∙ 𝑻 ∙  𝝋i

o  = −𝝎j
oT ∙

∆𝑲S
∆s

∙  𝝋i
o   (for i, j = 1,… ,6) (3.24) 

Constructing the correction term in the production space of {𝝋i
o} and {𝝎i

o} 

 𝑻 =∑ ∑ 𝛼ij
6

j=1

6

i=1
𝝎j
o𝝋i

oT (3.25) 

By substituting Eq. (3.25) into Eq. (3.24), the coefficients {𝛼ij} are obtained 

using the orthogonality of {𝝋i
o} and {𝝎i

o}  

 𝛼ij =
−𝝎j

oT ∙
∆𝑲S
∆𝑠 ∙  𝝋i

o

〈𝝎j
o ,   𝝎j

o〉〈𝝋i
o,   𝝋i

o〉
 (3.26) 

Usually, the sets of zero eigenvectors {𝝋i} and {𝝎i} are obtained by solving 

the eigenvalue problems of Eqs. (3.15) and (3.16). The numerical solution may 

introduce extra numerical errors, and the errors will be further transmitted 
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to the sensitivity analysis. Therefore, efficient and accurate way to obtain 

these two sets of eigenvectors is valuable. The following analytical 

expressions of these eigenvectors are proposed in [WCB15], which avoid 

additional numerical calculations. 

The set of {𝝎i}  can be obtained from a mechanical point of view by pre-

multiplying the displacement vector at the equilibrium point with Eq. (3.16) 

 𝑼T ∙ 𝑲S
T ∙ 𝝎i = 𝑭

T ∙ 𝝎i = 0 (3.27) 

It means that the work done by an external force 𝑭  on {𝝎i}  is zero. 

Therefore, {𝝎i}  should be the rigid body movement under the deformed 

configuration. Taking the 3D 4-node tetrahedral element shown in Figure 

3-11 as an example, where the four nodes are numbered from 0 to 3. Nodal 

coordinates in the undeformed configuration are denoted by {𝑐iα} , nodal 

displacements by {𝑢iα} , and the nodal coordinates of the deformed 

configuration by {𝑑iα} , where i = 0, 1, 2, 3, and α = x, y, z. The following 

relations hold 

 𝑑iα = 𝑐iα + 𝑢iα (3.28) 

 

Figure 3-11. 3D 4-node linear tetrahedral element 

Then, the three zero eigenvectors representing the rigid translation of the 

deformed element along x-, y-, and z- axes are 

 
𝝎1 = [1 0 0 1 0 0 1 0 0 1 0 0]T 

𝝎2 = [0 1 0 0 1 0 0 1 0 0 1 0]T 
(3.29) 

0 

1 

2 

3 
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𝝎3 = [0 0 1 0 0 1 0 0 1 0 0 1]T 

and the three zero eigenvectors representing rigid rotation of the deformed 

configuration around x-, y-, and z- axes are 

 

𝝎4 = [0 −𝑑0z 𝑑0y 0 −𝑑1z 𝑑1y 0 −d2z 𝑑2y 0 −𝑑3z 𝑑3y]T 

𝝎5 = [𝑑0z 0 −𝑑0x 𝑑1z 0 −𝑑1x 𝑑2z 0 −𝑑2x 𝑑3z 0 −𝑑3x]T 

𝝎6 = [−𝑑0y 𝑑0x 0 −𝑑1y 𝑑1x 0 −𝑑2y 𝑑2x 0 −𝑑3y 𝑑3x 0]T 

(3.30) 

Eqs. (3.29) and (3.30) are the analytical expression for {𝝎i}.  

The zero eigenvectors {𝝋i} can be assumed to have the same form as {𝝎i}, i.e. 

the position of zero entries in {𝝋i} are the same as those in {𝝎i}. With this 

restriction, a set of empirical formulas for {𝝋i} is found through numerical 

observation. Analytically, {𝝋i} contain three rigid body translation vectors 

that are identical to 𝝎1 to 𝝎3 

 

𝝋1 = 𝝎1 

𝝋2 = 𝝎2 

𝝋3 = 𝝎3 

(3.31) 

and three rotational vectors as follows  

    𝝋4 = [0 −(𝑑0z + 𝑐0z) 𝑑0y + 𝑐0y 0 −(𝑑1z + 𝑐1z) 𝑑1y + 𝑐1y 0 −(𝑑2z + 𝑐2z) 𝑑2y + 𝑐2y 0 −(𝑑3z + 𝑐3z) 𝑑3y + 𝑐3y]T 

    𝝋5 = [𝑑0z + 𝑐0z 0 −(𝑑0x + 𝑐0x) 𝑑1z + 𝑐1z 0 −(𝑑1x + 𝑐1x) 𝑑2z + 𝑐2z 0 −(𝑑2x + 𝑐2x) 𝑑3z + 𝑐3z 0 −(𝑑3x + 𝑐3x)]
T 

    𝝋6 = [−(𝑑0y + 𝑐0y) 𝑑0x + 𝑐0x 0 −(𝑑1y + 𝑐1y) 𝑑1x + 𝑐1x 0 −(𝑑2y + 𝑐2y) 𝑑2x + 𝑐2x 0 −(𝑑3y + 𝑐3y) 𝑑3x + 𝑐3x 0]T 

(3.32) 

where 𝝋4  to 𝝋6  differ from 𝝎4  to 𝝎6  by replacing the terms 𝑑iα with 

𝑑iα + 𝑐iα.  

With analytical expressions of both {𝛗i} and {𝛚i}, there is no need to solve 

the eigenvalue problems, thereby improving both the efficiency and accuracy 

in constructing the correction term. 

It should be noted that, the above formulas are obtained and verified based on 

the asymmetric secant stiffness matrix of the 3D 4-node tetrahedral element. 

Although it has not been verified in this dissertation, there is no foreseeable 
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reason that these formulas are not applicable to other types of 3D finite 

elements. 

3.5 Numerical examples 

In this section, the effectiveness of the correction term is demonstrated 

numerically with the same cantilever beam example presented in Section 3.2. 

The two responses, namely the reaction force and P-norm stress, are also the 

same.  

Figure 3-12 presents the scaled sensitivity of the reaction force response with 

and without the correction term. These values are calculated by dividing the 

semi-analytical adjoint sensitivity by the global finite difference sensitivity. 

The figure clearly shows that the large relative error near the free end is 

significantly eliminated after incorporating the correction term into the semi-

analytical approximation. Although not presented here, a similar 

phenomenon is also observed with the P-norm stress response.  

 

Figure 3-12. Scaled sensitivity of semi-analytical adjoint method with and without 

correction term 

Sensitivity results for the two responses with different perturbation sizes are 

presented in Table 3-1 and Table 3-2, respectively. The design node is located 

near the free end, where the largest relative error occurs. It shows that, for all 

perturbation sizes, the accuracy of sensitivity is significantly improved by 

adding the correction term.  
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Table 3-1. Sensitivities of reaction force response at a design node near the free end 

(ref. result = 0.0500 N/mm) 

Perturbation 

size (mm) 

Semi w/o correction Semi. with correction 

Sensitivity(N/mm) Error(%) Sensitivity(N/mm) Error(%) 

10–3 –3.02 –6131% 0.0582 16.2% 

10–4 –0.256 –612% 0.0509 1.62% 

10–5 0.029 –43% 0.0501 0.16% 

10–6 –0.001 –102% 0.0501 0.02% 

10–7 0.284 467% 0.0501 0.02% 

10–8 –2.76 –5612% 0.0503 0.51% 

10–9 6.22 12326% 0.0508 1.50% 

Table 3-2. Sensitivities of the P-norm stress response at a design node near the free 

end (ref. result =–0.0072 MPa/mm) 

Perturbation 

size (mm) 

Semi w/o correction Semi. with correction 

Sensitivity 

(MPa/mm) 
Error(%) 

Sensitivity 

(MPa/mm) 
Error(%) 

10–3 0.1833 –2637% –0.0086 19.4% 

10–4 0.0118 –263.9% –0.0074 1.82% 

10–5 –0.0054 –25.79% –0.0072 0.06% 

10–6 –0.0073 1.53% –0.0072 –0.12% 

10–7 –0.0095 31.8% –0.0072 –0.14% 

10–8 –0.0469 550% –0.0072 0.08% 

10–9 –0.2820 3804% –0.0071 –1.77% 

What’s more, the results also demonstrate that sensitivity outcomes are 

significantly less reliant on the choice of perturbation size when the correction 

term is applied. In industrial applications, structures are often meshed with 

varying element sizes in different areas, and the element size may change 

when the structure is updated during optimization. Therefore, special 

attention must be given to the selection of the perturbation size for nodal 

coordinates. By incorporating the correction term, the stability of sensitivity 

results increases, facilitating the selection of perturbation size. 

It is also interesting to investigate the relation between the accuracy of 

sensitivity and the degree of nonlinearity. The degree of nonlinearity could be 

measured by the magnitude of loading. In this cantilever beam example, it is 

the magnitude of the prescribed displacement. If the prescribed displacement 
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is sufficiently small, the problem is close to a linear one. A larger prescribed 

displacement leads to a higher degree of geometric nonlinearity. 

Three different levels of prescribed displacement, i.e. 1 mm, 10 mm, and 100 

mm, are applied to the free end of the beam. Sensitivity results with correction 

term for the reaction force response are listed in Table 3-3. 

Table 3-3. Sensitivities of the reaction force response at a design node near the free 

end under different prescribed displacement 

Perturbation 

size (mm) 

u = 1 mm 

Ref. Sens.= 0.00035 N/mm 

u = 10 mm  

Ref. Sens.= 0.0035 N/mm 

u = 100 mm  

Ref. Sens.= 0.05N/mm 

Sensitivity  

(N/mm) 
Error(%) 

Sensitivity  

(N/mm) 
Error(%) 

Sensitivity  

(N/mm) 
Error(%) 

10–3 0.000397 13.5% 0.00399 14.1% 0.0582 16.2% 

10–4 0.000355 1.35% 0.00355 1.41% 0.0509 1.62% 

10–5 0.000350 0.13% 0.00350 0.14% 0.0501 0.16% 

10–6 0.000350 0.01% 0.00350 0.01% 0.0501 0.02% 

10–7 0.000350 0.00% 0.00350 0.02% 0.0501 0.02% 

10–8 0.000350 0.03% 0.00351 0.29% 0.0503 0.51% 

10–9 0.000354 1.06% 0.00353 0.88% 0.0508 1.50% 

For the convenience of observation, the relative errors against the 

perturbation size under different prescribed displacements are depicted in 

Figure 3-13. 

 

Figure 3-13. Sensitivity errors versus perturbation size under different levels of 

prescribed displacement 

It shows that the relative error of the semi-analytical approach with the 

correction term are nearly independent of the level of nonlinearity. This 
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property is also important in practical applications when the load factor itself 

is a system response or when the linear behavior of a structural system 

changes to nonlinear due to change in the structure’s shape. 

3.6 Optimization examples with TOSCA Structure 

In this chapter, the semi-analytical adjoint sensitivity method with a 

correction term is integrated into the TOSCA structure shape optimization 

environment. Several optimization examples are presented to demonstrate 

the applicability of the sensitivity analysis procedure in solving geometric 

nonlinear optimization problems. 

3.6.1 Introduction to TOSCA Structure 

TOSCA Structure is a software package that aims to enhance product 

development through topology and shape optimization. As depicted in Figure 

3-14, TOSCA Structure can generate an optimized CAD model from a 

conceptual design space by combining topology optimization and shape 

optimization techniques. 

 

Figure 3-14. Production development circle of TOSCA Structure (Source: 

https://www.3ds.com/products-services/simulia/products/tosca/) 
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Both a derivative-free controller method, and a gradient-based algorithm 

(Method of Moving Asymptotes) are employed in the TOSCA optimization 

module. The controller method possesses the advantages of fast convergence 

and easy integration into general finite element solvers. It has already been 

extended to tackle both linear and nonlinear structural optimization problems 

demonstrating successful applications in lightweight optimization and stress 

concentration reduction problems [MSS05]. However, the limitation of the 

controller method is that it is difficult to handle constraints in optimization. 

To overcome this restriction, a sensitivity-based algorithm is employed. It is 

capable of handling multiple objectives and large number of constraints. The 

flowchart in Figure 3-15 depicts the sensitivity-based structural optimization 

procedure of TOSCA. 

 

Figure 3-15. Flowchart of sensitivity-based shape optimization in TOSCA 

The presented adjoint sensitivity analysis procedure is integrated into the 

TOSCA environment. After each sensitivity evaluation, a sensitivity filter is 

applied to eliminate oscillations in the sensitivities. Subsequently, mesh 
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smoothing and regularization tools are employed to ensure the smoothness of 

the optimized surface and maintain a high-quality mesh for the updated 

structure. The iteration continues until the optimization criteria are satisfied. 

3.6.2 Optimization example of a cantilever beam under large 

prescribed displacement 

In this example, an optimization example of a cantilever beam subjected to a 

large prescribed displacement is presented.  

The original structure is the same as in Figure 3-2 (a), including the material 

properties. The prescribed vertical displacement is −94.7mm which leads to a 

total reaction force of 20000N in vertical direction. The vertical coordinate of 

all nodes at the bottom surface are the design variables, depicted by the red 

dots in Figure 3-16. The objective is to maximize the vertical reaction force at 

the fixed end. One constraint is that the total weight, measured by the volume 

of the structure, should not increase. 

 

Figure 3-16. Design nodes at the bottom surface of the structure 

With the presented semi-analytical adjoint sensitivity analysis procedure, 

sensitivity-based optimization is carried out in TOSCA Structure. The result 

after 30 iterations is depicted in Figure 3-17. The total reaction force increases 

from 20000N to 32336N, representing a 61.7% improvement. The total 

volume of the optimized structure is 67520mm3 which remains almost the 

same as the original. 

 

 

 

 

(a) Side-view of the optimized structure (b) Deformation of the optimized beam 

under prescribed displacement 

Figure 3-17. Optimization results of the cantilever beam after 30 iterations 
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3.6.3 Optimization example of a V-shaped beam with snap-

through 

In this section, a V-shaped beam optimization problem is presented. The 

structure is depicted in Figure 3-18, which is plane symmetric and fixed on 

both ends. The vertical coordinates of all nodes at the top and bottom surfaces 

are chosen as design variables. A prescribed displacement is applied at the 

center, and the total vertical reaction force is measured. The force- 

displacement curve at the loading point is depicted in Figure 3-19, showing a 

snap-through behavior of the structure. 

 

Figure 3-18. V-shaped beam structure (red dots depict design nodes at the top and 

bottom surfaces) 

 

Figure 3-19.  Reaction force-displacement curve of the original structure 

The objective of the optimization is to maximize the reaction force when the 

prescribed displacement is 12mm. One constraint is that the total volume of 

the structure should not increase. The optimization converges after 50 

iterations. The undeformed, optimized structure and its deformation under 

the prescribed displacement at the final load step are depicted in Figure 3-20. 
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Figure 3-20. Optimized structure (top) with its deformation (bottom) under the 

prescribed load 

The force-displacement curve of the original structure and the optimized 

structure is compared in Figure 3-21. It shows that the reaction force 

increases significantly after optimization, rising from 3383N to 14869N. 

 

Figure 3-21. Reaction force-displacement curve of original and optimized structure 

Another optimization is performed with the same original structure. The 

optimization aims to maximize the reaction force under a prescribed 

displacement of 1mm, i.e. to achieve the highest possible initial stiffness of the 

structure. The volume constraint still applies. Additionally, a lower bound of 

300N is set for reaction force throughout the entire loading procedure, i.e. 

with prescribed displacement ranging from 1mm to 12mm.  

The optimization procedure convergences after 74 iterations, and the 

optimized structure, along with its deformation at the final load step 

(u=12mm), is illustrated in Figure 3-22. 

The force-displacement curves of the original structure and the optimized 

structure are depicted in Figure 3-23. 
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Figure 3-22. Optimized structure (transparent) with its deformation under the 

prescribed displacement 

 

Figure 3-23. Reaction force-displacement equilibrium curve of original and 

optimized structure 

The results show that the minimum reaction force of the optimized structure 

is 363N, which satisfies the constraint. The reaction force at the first step 

increases from 1865N to 2056N, representing a 10.2% increase. 
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4. Adjoint sensitivity analysis with isotropic hardening 

elastoplasticity and geometric nonlinearity 

In this chapter, the adjoint sensitivity formulation for simultaneous isotropic 

hardening elastoplasticity and geometric nonlinearity is presented. The 

deduction follows the procedure outlined by [MTV94]. The formulation is 

confined to small strain elastoplasticity with large deformation. The derived 

approach is demonstrated through numerical examples. Extensions to more 

general hardening models and finite strain elastoplasticity will be discussed 

in later chapters. 

4.1 Adjoint sensitivity formulation 

4.1.1 Definition of state variables  

For elastoplasticity analysis, the physical quantities at an equilibrium point 

are not determined solely by the current displacement due to path-

dependency. Through the solution procedure presented in Section 2.2, sets of 

displacement vectors { 𝑼 
𝑡 }𝑡=1

N , stress { 𝝈 
𝑡 }𝑡=1

N , equivalent plastic strains 

{ 𝜀 
𝑡
eqv
p
}
𝑡=1

N  are obtained. These quantities serve as the basis for deriving all other 

physical quantities and mechanical responses. Here, N is the total number of 

load steps. 

By introducing a state variable 𝑽 
𝑡 , which is composed of stress and equivalent 

plastic strain  

 𝑽 
𝑡 = (

𝝈 
𝑡

𝜀 
𝑡
eqv
p ) (4.1) 

For any system response 𝑓, it can be expressed either explicitly or implicitly 

as a function of { 𝑼 
𝑡 }𝑡=1

N , { 𝑽 
𝑡 }𝑡=1

N , and the design variables in optimization, i.e. 

 𝑓 = 𝑓( 𝑼 
1 (𝑠), 𝑼 

2 (𝑠),… , 𝑼 
N (𝑠), 𝑽 

1 (𝑠), 𝑽 
2 (𝑠), … , 𝑽 

N (𝑠), 𝑠) (4.2) 
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4.1.2 Deduction of adjoint sensitivity formulation 

According to Eq. (4.2), the sensitivity of a response function 𝑓 with respect 

to a design variable is determined by 

 
𝑑𝑓

𝑑𝑠
=
∂𝑓

∂𝑠
+∑

𝜕𝑓

𝜕 𝑼 𝑡

T 𝑑 𝑼 
𝑡

𝑑𝑠

N

𝑡=1

+∑
𝜕𝑓

𝜕 𝑽 𝑡

T 𝑑 𝑽 
𝑡

𝑑𝑠

N

𝑡=1

 (4.3) 

Following the concept of adjoint sensitivity analysis, the computing of 

derivatives of displacements and state variables can be circumvented by 

cancelling them out with additional terms associated with adjoint variables. 

For this purpose, several governing equations are employed. Firstly, in 

accordance with the equilibrium condition, the residual forces must be equal 

to zero at all load steps 

𝟎 ≡ 𝑹 
𝑡 ( 𝑼 

𝑡 , 𝑽 
𝑡 , 𝑠) = 𝑭ext − 𝑭int = 𝑭ext −∫ 𝑩 

𝒕 T 𝝈 
𝑡 𝑑𝑣

 

𝑉

 (t = 1,2, … , N)  (4.4) 

The total derivative of the residual force with respect to a design variable is 

 
𝑑 𝑹 
𝑡

𝑑𝑠
=
𝜕 𝑹 
𝑡

𝜕𝑠
+
𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡
∙
𝑑 𝑼 
𝑡

𝑑𝑠
+
𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡
∙
𝑑 𝑽 
𝑡

𝑑𝑠
 ≡  𝟎 (4.5) 

According to Eq. (2.15), the stress and plastic strain follow the incremental 

relation 

 𝝈 
𝑡 = 𝝈 

𝑡−1 +𝑫e[( 𝜺 
𝑡 − 𝜺 

𝑡−1 ) − ∆𝜺p 
𝑡 ] (4.6) 

where the increment of plastic strain, as per Eq. (2.20), is 

 ∆𝜺p 
𝑡 = 𝜺p 

𝑡 − 𝜺p 
𝑡−1 = ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡  (4.7) 

and according to the yield and consistency condition, it has 

 ( 𝜀 
𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ [| 𝝈 

𝑡 |eqv − 𝜎Y( 𝜀 
𝑡
eqv
p 
)] = 0 (4.8) 
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Writing Eqs. (4.6) and (4.8) as a vector function 𝑯 
𝑡 : 

𝑯 
𝑡 ( 𝑼 

𝑡 , 𝑼 
𝑡−1 , 𝑽 

𝑡 , 𝑽 
𝑡−1 , 𝑠) = (

𝝈 
𝑡−1 +𝑫e[( 𝜺 

𝑡 − 𝜺 
𝑡−1 ) − ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡 ] − 𝝈 
𝑡

( 𝜀 
𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ [| 𝝈 

𝑡 |eqv − 𝜎Y( 𝜀 
𝑡
eqv
p 
)]

) ≡ 𝟎 (4.9) 

𝑯 
𝑡  is referred to as dependent residual in literature [MTV94] and is identical 

to zero at each load step. 

The dependent residual is a function of variables at both the current and the 

previous load step. The total derivative of the dependent residual with respect 

to a design variable is 

𝑑 𝑯 
𝑡

𝑑𝑠
=
𝜕 𝑯 
𝑡

𝜕𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡
𝑑 𝑼 
𝑡

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡−1

𝑑 𝑼 
𝑡−1

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
𝑑 𝑽 
𝑡

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡−1

𝑑 𝑽 
𝑡−1

𝑑𝑠
≡  𝟎  (4.10) 

As the residual force and the dependent residual are both zero at each load 

step, pre-multiplying adjoint variable vectors 𝝀 
𝑡  to 𝑹 

𝑡  and adjoint variable 

vectors 𝜸 
𝑡  to 𝑯 

𝑡 , and then subtracting them from the response function,  

will not alter the response value, i.e.  

 𝑓 = 𝑓 −∑ 𝝀 
𝑡 T 𝑹 

𝑡

N

𝑡=1

−∑ 𝜸 
𝑡 T 𝑯 

𝑡

N

𝑡=1

 (4.11) 

Utilizing Eqs. (4.3), (4.5), (4.10) and Eq. (4.11), it follows 

𝑑𝑓

𝑑𝑠
=
∂𝑓

∂𝑠
+∑

𝜕𝑓

𝜕 𝑼 
𝑡

T 𝑑 𝑼 
𝑡

𝑑𝑠

N

𝑡=1

+∑
𝜕𝑓

𝜕 𝑽 
𝑡

T 𝑑 𝑽 
𝑡

𝑑𝑠

N

𝑡=1

−∑ 𝝀 
𝑡 T (

𝜕 𝑹 
𝑡

𝜕𝑠
+
𝜕 𝑹 
𝑡

𝜕 𝑼 
𝑡
∙
𝑑 𝑼 
𝑡

𝑑𝑠
+
𝜕 𝑹 
𝑡

𝜕 𝑽 
𝑡
∙
𝑑 𝑽 
𝑡

𝑑𝑠
)

N

𝑡=1

 

−∑ 𝜸 
𝑡 T (

𝜕 𝑯 
𝑡

𝜕𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

𝑑 𝑼 
𝑡

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡−1

𝑑 𝑼 
𝑡−1

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

𝑑 𝑽 
𝑡

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡−1

𝑑 𝑽 
𝑡−1

𝑑𝑠
)

N

𝑡=1

 

(4.12) 

By merging similar terms and enforcing the coefficients of 𝑑 𝑼 
𝑡 𝑑𝑠⁄  and 

𝑑 𝑽 
𝑡 𝑑𝑠⁄  to be zero, it yields 
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𝑑      
𝑑𝑓

𝑑𝑠
=
∂𝑓

∂𝑠
−∑ 𝝀 

𝑡 T
∂𝑹t

∂s

N

𝑡=1

−∑ 𝜸 
𝑡 T

𝜕 𝑯 
𝑡

𝜕𝑠

N

𝑡=1

 

                          +(
𝜕𝑓

𝜕 𝑼 N

T

− 𝝀 
N T

𝜕 𝑹 
N

𝜕 𝑼 N
− 𝜸 
N T

𝜕 𝑯 
N

𝜕 𝑼 N⏟                  
=0

)
𝑑 𝑼 
N

𝑑𝑠
 

                          +(
𝜕𝑓

𝜕 𝑽 N

T

− 𝝀 
N T

𝜕 𝑹 
N

𝜕 𝑽 N
− 𝜸 
N T

𝜕 𝑯 
N

𝜕 𝑽 N⏟                  
=0

)
𝑑 𝑽 
N

𝑑𝑠
 

              −∑ ( 𝝀 
𝑡 T

𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡
+ 𝜸 
𝑡 T

𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡
+ 𝜸 
𝑡+1 T

𝜕 𝑯 
𝑡+1

𝜕 𝑼 𝑡
−
𝜕𝑓

𝜕 𝑼 𝑡

T

⏟                            
=0

)
𝑑 𝑼 
𝑡

𝑑𝑠

N−1

𝑡=1

 

           −∑( 𝝀 
𝑡 T

𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡
+ 𝜸 
𝑡 T

𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
+ 𝜸 
𝑡+1 T

𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡
−
𝜕𝑓

𝜕 𝑽 𝑡

T

⏟                          
=0

)
𝑑 𝑽 
𝑡

𝑑𝑠

N−1

𝑡=1

 

                       − 𝜸 
1 T(

𝜕 𝑯 
1

𝜕 𝑼 0
𝑑 𝑼 
0

𝑑𝑠
+
𝜕 𝑯 
1

𝜕 𝑽 0
𝑑 𝑽 
0

𝑑𝑠⏟            
≡0

)                                    

(4.13) 

A series of systems of linear equations related to the adjoint variables is 

obtained 

 

(

 
 

𝜕 𝑹 
N

𝜕 𝑼 N

T
𝜕 𝑯 
N

𝜕 𝑼 N

T

𝜕 𝑹 
N

𝜕 𝑽 N

T
𝜕 𝑯 
N

𝜕 𝑽 N

T

)

 
 
(
𝝀 

N

𝜸 
N ) =

(

 
 

𝜕𝑓

𝜕 𝑼 N

𝜕𝑓

𝜕 𝑽 N )

 
 

 (4.14) 

(

 
 

𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T

𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

T

)

 
 
(
𝝀 
𝑡

𝜸 
𝑡 ) = −

(

 
 

𝜕 𝑯 
𝑡+1

𝜕 𝑼 𝑡

𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡 )

 
 

T

𝜸 
𝑡+1 +

(

 
 

𝜕𝑓

𝜕 𝑼 𝑡

𝜕𝑓

𝜕 𝑽 𝑡 )

 
 
  (𝑡 = N − 1,… ,1) (4.15) 

Then the sensitivity of the response is 



 

 50  

 

 
𝑑𝑓

𝑑𝑠
=
∂𝑓

∂𝑠
−∑ 𝝀 

𝑡 T
∂ 𝑹 
𝑡

∂s

N

𝑡=1

−∑ 𝜸 
𝑡 T

𝜕 𝑯 
𝑡

𝜕𝑠

N

𝑡=1

 (4.16) 

Instead of computing derivatives of displacements and state variables, the 

partial derivatives of the residual force and dependent residuals are required 

to solve the adjoint variables and calculate sensitivity. For the convenience of 

further discussion, these partial derivatives are derived and presented in the 

following. 

According to Eq. (2.1), it follows 

 
𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡
= −

𝜕∫ 𝑩 
𝑡 T 𝝈 

𝑡 𝑑𝑣
 

𝑉

𝜕𝑼t
= −∫∇𝑼 𝑩 

𝑡 T 𝝈 
𝑡 𝑑𝑣

 

𝑉

 (4.17) 

 
𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡
= −(

𝜕

𝜕 𝝈 𝑡
𝜕

𝜕 𝜀 𝑡 eqv
p )∫ 𝑩 

𝑡 T 𝝈 
𝑡 𝑑𝑣

 

𝑉

= −(∫ 𝑩 
𝑡 T𝑑𝑣
 

𝑉

0) (4.18) 

If load step t is an elastic step, then the dependent residual is  

 𝑯 
𝑡 = (

𝝈 
𝑡−1 +𝑫e( 𝜺 

𝑡 − 𝜺 
𝑡−1 ) − 𝝈 

𝑡

𝜀 
𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p ) = 0 (4.19) 

According to the expression of 𝜺 
𝑡  in Eq. (2.4), it yields  

 
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡
= (𝑫

e
𝜕 𝜺 
𝑡

𝜕 𝑼 𝑡

0

) = (𝑫
e 𝑩 
𝑡

0
) (4.20) 

 
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡−1
= (−𝑫

e
𝜕 𝜺 
𝑡−1

𝜕 𝑼 𝑡−1

0

) = −
𝜕 𝑯 
𝑡−1

𝜕 𝑼 𝑡−1
 (4.21) 

 
𝜕 𝑯 
𝑡

𝜕𝑠
= (𝑫

e
𝜕( 𝜺 

𝑡 − 𝜺 
𝑡−1 )

𝜕𝑠
0

) = (𝑫
e
𝜕 𝜺 
𝑡

𝜕𝑠
0

) − (𝑫
e
𝜕 𝜺 
𝑡−1

𝜕𝑠
0

) (4.22) 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
= (

𝜕

𝜕 𝝈 𝑡
𝜕

𝜕 𝜀 𝑡 eqv
p ) 𝑯 

𝑡 = (−𝑰 −𝑫e 𝐚 
𝑡

0 1
) = (

𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
)

−1

 (4.23) 
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𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡−1
= (

𝜕

𝜕 𝝈 𝑡−1

𝜕

𝜕 𝜀 𝑡−1
eqv
p ) 𝑯 

𝑡 = (𝑰 𝑫e 𝐚 
𝑡

0 −1
) = −

𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
 (4.24) 

If load step t is a plastic step, then the dependent residual is 

 𝑯 
𝑡 = (

𝝈 
𝑡−1 +𝑫e[( 𝜺 

𝑡 − 𝜺 
𝑡−1 ) − ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡 ] − 𝝈 
𝑡

| 𝝈 
𝑡 |eqv − 𝜎Y( 𝜀 

𝑡
eqv
p 
)

) = 𝟎 (4.25) 

where the yield strength for isotropic hardening follows 

 𝜎Y( 𝜀 
𝑡
eqv
p 
) = 𝜎0 +∫ 𝐸p𝑑𝜀eqv

p
𝜀 
𝑡
eqv
p 

0

 (4.26) 

The expression 𝜕 𝑯 
𝑡 𝜕 𝑼 

𝑡⁄ , 𝜕 𝑯 
𝑡 𝜕 𝑼 

𝑡−1⁄ , and 𝜕 𝑯 
𝑡 𝜕𝑠⁄  still follow Eqs. (4.20) 

and (4.22). Other partial derivatives of 𝑯 
𝑡  are obtained as: 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
= (

𝜕

𝜕 𝝈 𝑡
𝜕

𝜕 𝜀 𝑡 eqv
p ) 𝑯 

𝑡 = (
−𝑰 − 𝑫e

𝑑 𝐚 
𝑡

𝑑 𝝈 𝑡
∆𝜀eqv

p
−𝑫e 𝐚 

𝑡

𝐚 
𝑡 𝑇 −𝐸p

) (4.27) 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡−1
= (

𝜕

𝜕 𝝈 𝑡−1

𝜕

𝜕 𝜀 𝑡−1
eqv
p ) 𝑯 

𝑡 = (𝑰 𝑫e 𝐚 
𝑡

0 0
) (4.28) 

4.1.3 Solution of adjoint variables 

The adjoint variables are obtained by solving the linear systems in Eqs. (4.14) 

and (4.15). It should be noted that these equations must be solved backward, 

from the last step N to the first step 1. At step N, Eq. (4.14) yields  

 (
𝜕 𝑹 
N

𝜕 𝑼 N
−
𝜕 𝑹 
N

𝜕 𝑽 N
𝜕 𝑯 
N

𝜕 𝑽 N

−1
𝜕 𝑯 
N

𝜕 𝑼 N
)

T

𝝀 
N =

𝜕𝑓

𝜕 𝑼 N
−
𝜕 𝑯 
N

𝜕 𝑼 N

T
𝜕 𝑯 
N

𝜕 𝑽 N

−T
𝜕𝑓

𝜕 𝑽 N
 (4.29) 

The following will show that the matrix on the left-hand side conforms 

Eq.(4.30) for all load steps  
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𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡
−
𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−1
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡
= − 𝑲 

𝑡
T
  (4.30) 

Eq. (4.30) is proven separately for an elastic step and a plastic step. Firstly, if 

load step t is an elastic step, utilizing Eqs. (4.17), (4.18), (4.20), (4.23) and 

(2.13), it follows 

 

𝜕 𝑹 
𝑡

𝜕 𝑼 
𝑡
−
𝜕 𝑹 
𝑡

𝜕 𝑽 
𝑡

𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−1
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

= −∫∇𝑼 𝑩 
𝑡 T

𝝈 
𝑡 𝑑𝑣

 

𝑉

+ (∫ 𝑩 
𝑡 T

𝑑𝑣
 

𝑉

0) (
−𝑰 −𝑫e 𝐚 

𝑡

0 1
) (𝑫

e 𝑩 
𝑡

0
)

= −∫ 𝑩 
𝑡 T

𝑫e 𝑩 
𝒕 𝑑𝑣

 

𝑉

−∫∇𝑼 𝑩 
𝑡 T

𝝈 
𝑡 𝑑𝑣

 

𝑉

= − 𝑲 
𝑡

T
  

(4.31) 

Secondly, for a plastic load step t, denote 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−1

= (
𝑾1 𝑾2

𝑾3 𝑾4
) (4.32) 

By referencing Eq. (4.27), it can be verified that 

 𝑾1 = 𝑸
−𝟏 −

𝒅 ∙ 𝑫e−1

𝐚 ∙ 𝒓 + 𝐸p
 (4.33) 

where 𝑸, 𝒓 and 𝒅 follow Eq. (2.28). 

Combing Eqs. (4.17), (4.18), (4.20), (4.32) and (2.13), it follows 

𝜕 𝑹 
𝑡

𝜕 𝑼 
𝑡
−
𝜕 𝑹 
𝑡

𝜕 𝑽 
𝑡

𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−1
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

= −∫∇𝑼 𝑩 
𝑡 T

𝝈 
𝑡 𝑑𝑣

 

𝑉

 

+ (∫∇𝑼 𝑩 
𝑡 T

𝝈 
𝑡 𝑑𝑣

 

𝑉

0)(𝑸
−𝟏 −

𝒅 ∙ 𝑫e−1

𝐚 ∙ 𝒓 + 𝐸p
𝑾2

𝑾3 𝑾4

)(𝑫
e 𝑩 
𝑡

0
)

= −∫ 𝑩 
𝑡 T

(𝑸−𝟏𝑫e −
𝒅

𝐚 ∙ 𝒓 + 𝐸P
) 𝑩 
𝑡 𝑑𝑣

 

𝑉

−∫∇𝑼 𝑩 
𝑡 T

𝝈 
𝑡 𝑑𝑣

 

𝑉

= −∫ 𝑩 
𝑡 T

𝑫ep 𝑩 
𝑡 𝑑𝑣

 

𝑉

−∫∇𝑼 𝑩 
𝑡 T

𝝈 
𝑡 𝑑𝑣

 

𝑉

= − 𝑲 
𝑡

T
  

(4.34) 
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Therefore, Eq. (4.30) holds for both elastic and plastic steps. By substituting 

Eq. (4.30) into Eq.(4.29), the adjoint variable vectors 𝝀 
N  and 𝜸 

N  can be 

obtained: 

 

𝑲 
N

T
 𝝀 
N =

𝜕𝑓

𝜕 𝑼 N
−
𝜕 𝑯 
N

𝜕 𝑼 N

T
𝜕 𝑯 
N

𝜕 𝑽 N

−T
𝜕𝑓

𝜕 𝑽 N
 

𝜸 
N =

𝜕 𝑯 
N

𝜕 𝑽 N

−T

(
𝜕𝑓

𝜕 𝑽 N
−
𝜕 𝑹 
N

𝜕 𝑽 N

T

𝝀 
N ) 

(4.35) 

Adjoint variable vectors 𝝀 
𝑡  and 𝜸 

𝑡  are obtained backwardly by solving 

Eq.(4.15) from load step N-1 to load step 1, which yields 

𝑲 
𝑡

T
 𝝀 
𝑡 = (

𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 𝑡

T

) 𝜸 
𝑡+1 +

𝜕𝑓

𝜕 𝑼 𝑡
−
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕𝑓

𝜕 𝑽 𝑡
  

𝜸 
𝑡 =

𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T

(
𝜕𝑓

𝜕 𝑽 𝑡
−
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

𝜸 
𝑡+1 −

𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡

T

𝝀 
𝑡 ) 

(4.36) 

4.2 Numerical examples 

In this section, two numerical examples are presented to demonstrate adjoint 

sensitivity analysis in Section 4.1. The first example involves a truss structure 

with bar elements, while the second example features a cantilever beam 

structure meshed with tetrahedral elements.  

4.2.1 100-bar truss structure 

In this example, a 100-bar truss, as depicted in Figure 4-1, is employed. Nodes 

on the left end of the structure are fixed, and an external force is applied to the 

right end. The material is assumed to be incompressible with a Young’s 

modulus of 210GPa, an initial yield stress of 235MPa and a plastic modulus of 

100GPa. A bilinear elastoplastic and isotropic hardening material model is 

assumed. 
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Figure 4-1. 100-bar truss structure (design nodes are highlighted by red dots)  

The load history is presented in Figure 4-2 (a), consisting of a loading and a 

fully unloading stage. The force-displacement curve of the loaded end is 

shown in Figure 4-2 (b). The plastic strain history of a bar element at the fixed 

end is depicted in Figure 4-2 (c). The deformation of the structure at fully 

loading and fully unloading steps are illustrated in Figure 4-3. 

 

(a) Load history on the structure 

  

(b) Force-vertical displacement curve at 

the loaded end 

(c) Plastic strain history at the fixed end 

Figure 4-2. Load history and finite element analysis results of the truss beam 

structure 
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(a) Undeformed and deformed structure at 

fully loaded step (Load step 40) 

(b) Undeformed and deformed structure at 

fully unloaded step (Load step 80) 

Figure 4-3. Deformed configuration of the 100-bar truss structure 

In the sensitivity analysis, the remaining vertical displacement of the free end 

after fully unloading is defined as the system response. Design nodes, located 

at the bottom of the structure, are highlighted by red dots in Figure 4-1. The 

vertical coordinates of these nodes serve as the design variables. The 

sensitivities obtained using the adjoint variable method are compared with 

global finite difference results in Figure 4-4, where the horizontal axis 

represents the x-coordinate of the design nodes. The figure shows a perfect 

match between the two results.  

 

Figure 4-4. Adjoint sensitivity results and global FD results 

4.2.2 Cantilever beam structure with tetrahedral elements 

In this example, the adjoint sensitivity analysis approach is validated using an 

example of 3D solid elements. The cantilever beam structure, previously 

introduced in Section 3.2, is employed here for demonstration. The material 
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properties remain consistent with the bar truss example, with a Poisson's 

ratio of 0.3. The vertical coordinates of the design nodes, highlighted by red 

dots in Figure 4-5, serve as the designated design variables. Two different load 

histories are applied to the free end of the structure.  

 

Figure 4-5. Illustration of the cantilever beam example 

In the first load case, a procedure involves loading, partially unloading, and 

reloading is applied to the free end of the beam. The load history is depicted 

in Figure 4-6 (a). The contour of equivalent plastic strain at the final step is 

presented in both the original and deformed configuration in Figure 4-6 (b). 

 

 

 

(a) Load history 

(b) Contour of equivalent plastic strains 

on the original and deformed 

structure 

Figure 4-6. Load case one: load history and contour plot of equivalent plastic strain  

The sensitivities of two system responses are evaluated: one pertains to the 

vertical displacement at the free end, while the other concerns the equivalent 

plastic strain of one element at the fixed end. The partial derivatives of the 
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second response with respect to displacement and state variables are as 

follows: 

 

𝜕𝑓

𝜕 𝑼 𝑡
= 0  (𝑡 = 1,2, … , N) 

𝜕𝑓

𝜕 𝑽 𝑡
= 0  (𝑡 = 1,2, … , N − 1) 

𝜕𝑓

𝜕 𝑽 N
=

[
 
 
 
 
 
0
⋮
0
1
0
⋮
0]
 
 
 
 
 

   

(4.37) 

The non-zero entry is at the position that corresponds to the equivalent plastic 

strain of the element in the state variable vector. 

The adjoint sensitivity results of the two responses are compared with global 

finite difference results in Figure 4-7. The horizontal axis represents the x-

coordinate of the design nodes. The comparison reveals that the adjoint 

sensitivities closely align with the finite difference results for both responses. 

  

(a) Sensitivities of vertical displacement 

response 

(b) Sensitivities of equivalent plastic 

strain response 

Figure 4-7. Sensitivity results comparison for the first load case of cantilever beam 

example 

In the second load case, two single forces are simultaneously applied in the 

vertical and horizontal directions to the free end. The vertical force follows a 

loading-partially unloading-holding constant procedure, while the horizontal 

force undergoes a monotonically loading procedure, starting from the load 

step when the vertical force begins to hold constant. The load histories in both 
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directions are depicted in Figure 4-8 (a). The contour of the equivalent plastic 

strain at the last load step is presented in Figure 4-8 (b). 

 

 

(a) Load history 
(b) Contour of equivalent plastic strain on 

both original and deformed configuration 

Figure 4-8. Load case two: load history and contour plot of equivalent plastic strain 

on the original and deformed structure 

Two responses are defined as system responses. One is the equivalent plastic 

strain, which remains the same as in the first load case. The other is the 

displacement in the horizontal z-direction at the free end. Sensitivities using 

the adjoint variable method and the global finite difference method are 

presented in Figure 4-9, showing good agreement between the results. 

  

(a) Sensitivities of horizontal displacement 

response 

(b) Sensitivities of equivalent plastic strain 

response 

Figure 4-9. Sensitivity results comparison for the second load case of 

cantilever beam example 
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The above examples demonstrate the adjoint variable sensitivity analysis 

approach for addressing simultaneous elastoplasticity and geometric 

nonlinearity problems. 
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5. Load step reduction in the adjoint sensitivity analysis 

In this chapter, the computational cost and memory cost of the adjoint 

variable method presented in Chapter 4 are analyzed. Techniques to reduce 

both costs through load step reduction are discussed, and the efficiency and 

accuracy of the proposed methods are demonstrated through multiple 

examples. 

5.1 Computational and memory cost of adjoint sensitivity 

analysis 

Section 4.1.2 and Section 4.1.3 show that the primary computational cost of 

adjoint sensitivity analysis lies in solving adjoint variables.  

The solution of { 𝝀 
𝑡 }𝑡=1

N  requires solving linear systems N times, where N is 

the total number of load steps. Each linear system is of the size of total number 

of degrees of freedom of the underlying finite element system. The solution of 

adjoint variables { 𝛄 
𝑡 }𝑡=1

N  could be carried out element by element. Therefore, 

the computational cost for 𝛄 
𝑡  is negligible. In sum, the total computational 

cost to obtain adjoint variables lies in the solution of { 𝝀 
𝑡 }𝑡=1

N , which is 

proportional to the total number of load steps. 

The memory cost is measured by the number of non-zero values that must be 

stored simultaneously in a computer system. According to Eqs.(4.35) and 

(4.36), tangent stiffness matrices at the equilibrium point, partial derivatives 

of the residual force, and partial derivatives of the dependent residual are 

required in the solutions of adjoint variables. These quantities are gradually 

collected during nonlinear analysis at each step. Due to the backward solution 

procedure of adjoint variables, these quantities at all load steps must be kept 

in memory until the last step of finite element analysis is finished. 

The direct storage of all these variables is not the most efficient way from the 

memory point of view. To minimize memory cost, it is suggested to store only 

displacement and state variables at all load steps. During sensitivity analysis, 

intermediate quantities are retrieved from them. Recomputation happens 

only at the element level. Therefore, the computational effort could be 
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neglected. However, the required storage space is still proportional to the 

number of load steps in sensitivity analysis.  

Based on the discussion, the key to saving computational and memory costs 

in adjoint sensitivity analysis is the reduction of the total number of load steps. 

In the following sections, how to decrease the number of load steps without 

sacrificing accuracy is investigated. In Section 5.2, two properties regarding 

adjoint variables are claimed and theoretically proven. With these properties, 

Section 5.3 further proves that many load steps can be skipped in the 

sensitivity analysis. Adjoint variables needs to be solved only at much fewer 

load steps. 

5.2 Two properties of adjoint variables 

Before entering the discussion, it is important to clarify one assumption 

regarding system responses and establish a clear definition of load steps. 

Firstly, given a sequence of load steps L= {1, 2, …, t-2, t-1, t, …, N}, a system 

response f investigated in this section is assumed to be dependent only on the 

displacement and state variables at the last step. This assumption is 

mathematically formulated as follows: 

 

𝜕𝑓

𝜕 𝑼 𝑡
= 0           for 𝑡 < N 

𝜕𝑓

𝜕 𝑽 𝑡
= 0           for 𝑡 < N 

(5.1) 

Many practical mechanical responses fall into this category, including final 

displacement, maximum equivalent plastic strain and maximum equivalent 

stress. In addition, many responses can be expressed as a composition of 

functions of this type, i.e. 

𝑔( 𝑼 
1 , 𝑼 

2 , … , 𝑼 
N , 𝑽 

1 , 𝑽 
2 , … , 𝑽 

N ) = ℎ°(𝑓1( 𝑼 
1 , 𝑽 

1 ), 𝑓2( 𝑼 
2 , 𝑽 

2 ), … , 𝑓𝑁( 𝑼 
N , 𝑽 

N )) (5.2) 

where function 𝑓𝑘( 𝑼 
𝑘 , 𝑽 

𝑘 ) is dependent only on the quantities at step 𝑘. The 

sensitivity of 𝑔 is obtained using the chain rule with sensitivities of 𝑓𝑘 . To 

calculate the sensitivity of 𝑓𝑘 , just take step 𝑘 as the last load step. Thus, 𝑓𝑘  

is a function satisfies the assumption in Eq. (5.1).  



 

 62  

 

Secondly, in future discussions, an elastic load step is defined as a load step in 

which all finite elements behave elastically. Otherwise, the load step is called 

a plastic load step.  

In the following, two properties regarding adjoint variables are claimed and 

proved. 

Property 1. If a load step t is an intermediate (i.e. t<N) elastic load step, then 

𝝀 
𝑡 = 0. 

Proof: 

According to Eqs. (4.24) and (4.28) 

 

𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡
= (𝑰 𝑫e 𝐚 

𝑡+1

𝟎 𝑐
) 

𝑐 = {
−1     𝑖𝑓 𝑠𝑡𝑒𝑝 𝑡 + 1 𝑖𝑠 𝑒𝑙𝑎𝑠𝑡𝑖𝑐
   0      𝑖𝑓 𝑠𝑡𝑒𝑝 𝑡 + 1 𝑖𝑠 𝑝𝑙𝑎𝑠𝑡𝑖𝑐

 

(5.3) 

By combining Eqs.(4.20), (4.21), (4.23) and (5.3), it yields 

𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 
𝑡

T

= ( 𝑩 
𝑡 T𝑫e 0) ((

−𝑰 𝟎

− 𝐚 
𝑡 T𝑫e 1

) (
𝑰 𝟎

𝐚 
𝑡+1 T

𝑫e 𝑐
) + 𝑰)

= ( 𝑩 
𝑡 T𝑫e 0) (

𝟎 𝟎

( 𝐚 
𝑡+1 T

− 𝐚 
𝑡 T)𝑫e 𝑐 + 1) = 𝟎 

(5.4) 

By substituting Eq.(5.1) and Eq.(5.4) into Eq.(4.36), it follows 

 𝑲 
𝑡

T
 𝝀 
𝑡 = (

𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 
𝑡

T

) 𝜸 
𝑡+1 +

𝜕𝑓

𝜕 𝑼 
𝑡
−
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕𝑓

𝜕 𝑽 
𝑡
= 𝟎 (5.5) 

which leads to 

 𝝀 
𝑡 = 𝟎 (5.6) 

□ 

Property 2. If both load step t and t+1 are plastic, and the flow vectors satisfy 

𝐚 
𝑡 = 𝐚 

𝑡+1 , 
d 𝐚 
𝑡

d 𝛔 
𝑡
= 0, then 𝝀 

𝑡 = 0 and 𝜸 
𝑡 : = (

𝜸𝝈 
𝑡

𝜸 
𝑡
𝜀eqv
p
) = ( 𝜸𝝈 

𝑡+1

0
). 
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Proof: 

Using the assumption of 𝑑 𝐚 
𝑡 𝑑 𝛔 

𝑡⁄ = 0, Eq.(4.27) is simplified to 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

T

= (
−𝑰 𝐚 

𝑡

− 𝐚 
𝑡 T𝑫e −𝐸P

) (5.7) 

Using the assumption 𝐚 
𝑡 = 𝐚 

𝑡+1  and Eq.(4.28), it follows 

 
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

= (
𝑰 𝟎
𝐚 
𝑡 T𝑫e 0

) (5.8) 

The first column of Eq.(5.7) differs from that of Eq.(5.8) only by a negative sign. 

Therefore 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

= (
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

T

)

−1

(
𝑰 𝟎
𝐚 
𝑡 T𝑫e 0

) = (
−𝑰 𝟎
𝟎 0

) (5.9) 

By combining Eqs (4.20), (4.21) and (5.9), it follows 

𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 𝑡

T

= ( 𝑩 
𝑡 𝐓𝑫e 0) (

𝟎 𝟎
𝟎 1

) = 𝟎 (5.10) 

Substituting Eq. (5.1) and Eq. (5.10) into Eq. (4.36), it follows 

 𝑲 
𝑡

T
 𝝀 
𝑡 = (

𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 
𝑡

T

) 𝜸 
𝑡+1 +

𝜕𝑓

𝜕 𝑼 
𝑡
−
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕𝑓

𝜕 𝑽 
𝑡
= 𝟎  (5.11) 

which leads to 

 𝝀 
𝑡 = 0 (5.12) 

Furthermore, substitute Eqs.(5.1), (5.9) and 𝝀 
𝑡 = 0 into Eq. (4.36). It has 

𝜸 
𝑡 =

𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T

(
𝜕𝑓

𝜕 𝑽 𝑡
−
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

𝜸 
𝑡+1 −

𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡

T

𝝀 
𝑡 ) = (

𝑰 𝟎
𝟎 0

) 𝜸 
𝑡+1 = ( 𝜸𝝈 

𝑡+1

0
) (5.13) 
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□ 

5.3 Load step reduction in the adjoint sensitivity analysis  

Based on the properties of adjoint variables, this section proposes and proves 

load step reduction rules in adjoint sensitivity analysis. These rules 

demonstrate that certain load steps can be skipped in sensitivity analysis 

without altering the results. 

Elastic load step reduction rule: Given a sequence of load steps L = {1, 2, ..., 

t-1, t, t+1, …, N}, if step t is an intermediate elastic load step, then skip step t as 

the load steps contain only S = {1, 2, ..., t-1, t+1, …, N} will not change the 

sensitivity results. 

Before delving into the proof, it is important to clarify several points. Firstly, 

the load step reduction occurs only during the sensitivity analysis phase, with 

no impact on the nonlinear finite element analysis.  

Secondly, when the load step t is skipped in the sensitivity analysis, step t-1 

becomes adjacent to step t+1 in the backward calculation of adjoint variables. 

Thirdly, it is obvious that by skipping step t, the adjoint variables obtained 

from step N to step t+1 remain unchanged, as no step has been skipped in the 

backward procedure yet, i.e., 

 
𝜸S
𝑛 = 𝜸L

𝑛   (for 𝑛 > 𝑡) 

𝝀S
𝑛 = 𝝀L

𝑛   (for 𝑛 > 𝑡) 
(5.14) 

where the left subscript S and L denote quantities obtained with load steps 

sequence S and L, respectively. 

Lastly, since the finite element analysis is independent of the sensitivity 

analysis, the quantities and partial derivatives in load step sequences S and L 

are the same if they are not related to step t. Mathematically, it follows  

 

𝜕 𝑹S
𝑛

𝜕𝑠
=
𝜕 𝑹L
𝑛

𝜕𝑠
 (for 𝑛 ≠ 𝑡) 

                            
𝜕 𝑯S
𝑛

𝜕𝑠
=
𝜕 𝑯L
𝑛

𝜕𝑠
 (for 𝑛 ≠ 𝑡 and 𝑛 ≠ 𝑡 + 1) 

(5.15) 
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and 

 

𝜕 𝑯S
𝑛

𝜕 𝑼 𝑛
=
𝜕 𝑯L
𝑛

𝜕 𝑼 𝑛
     (for 𝑛 < 𝑡) 

𝜕 𝑯S
𝑛

𝜕 𝑽 𝑛
=
𝜕 𝑯L
𝑛

𝜕 𝑽 𝑛
     (for 𝑛 < 𝑡) 

𝜕 𝑯S
𝑛

𝜕 𝑽 𝑛−1
=
𝜕 𝑯L
𝑛

𝜕 𝑽 𝑛−1
      (for 𝑛 < 𝑡) 

𝜕 𝑯S
𝑛

𝜕 𝑼 𝑛−1
=
𝜕 𝑯L
𝑛

𝜕 𝑼 𝑛−1
      (for 𝑛 < 𝑡) 

𝑲S
𝑛

T
 = 𝑲L

𝑛
T
         (for 𝑛 < 𝑡) 

(5.16) 

Now, the proof of the first load step reduction rule is presented. 

Proof:  

Mathematically, it needs to show: 

 
𝑑 𝑓L
 

𝑑𝑠
=
𝑑 𝑓S
 

𝑑𝑠
 (5.17) 

According to Eq.(4.16), the left-hand side and the right-hand side are 

 

𝑑 𝑓L
 

𝑑𝑠
=
𝜕𝑓

𝜕𝑠
− 𝛬L

 − 𝛤L
  

𝑑 𝑓S
 

𝑑𝑠
=
𝜕𝑓

𝜕𝑠
− 𝛬S

 − 𝛤S
  

(5.18) 

where 

 

𝛬L
 =∑ 𝝀L

𝑛 T
𝜕 𝑹L
𝑛

𝜕𝑠

𝑡−1

𝑛=1

+ 𝝀L
𝑡 T

𝜕 𝑹L
𝑡 T

𝜕𝑠
+ ∑ 𝝀L

𝑛 T
𝜕 𝑹L
𝑛

𝜕𝑠

N

𝑛=𝑡+1

 

𝛬S
 =∑ 𝝀S

𝑛 T
𝜕 𝑹S
𝑛

𝜕𝑠

𝑡−1

𝑛=1

+ ∑ 𝝀S
𝑛 T

𝜕 𝑹S
𝑛

𝜕𝑠

N

𝑛=𝑡+1

 

(5.19) 

and 
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𝛤L
 = ∑ 𝜸L

𝑛 T
𝜕 𝑯L
𝑛

𝜕𝑠

𝑡−1

𝑛=1

+ 𝜸L
𝑡 T

𝜕 𝑯L
𝑡

𝜕𝑠
+ 𝜸L
𝑡+1 T

𝜕 𝑯L
𝑡+1

𝜕𝑠
+ ∑ 𝜸L

𝑛 T
𝜕 𝑯L
𝑛

𝜕𝑠

N

𝑛=𝑡+2

 

𝛤S
 =∑ 𝜸S

𝑛 T
𝜕 𝑯S
𝑛

𝜕𝑠

𝑡−1

𝑛=1

+ 𝜸S
𝑡+1 T

𝜕 𝑯S
𝑡+1

𝜕𝑠
+ ∑ 𝜸S

𝑛 T
𝜕 𝑯S
𝑛

𝜕𝑠

N

𝑛=𝑡+2

 

(5.20) 

Comparing both formulas in Eqs.(5.19) and (5.20) and taking Eqs.(5.14) to 

(5.16) into account, Eq.(5.17) holds if the following three items are all proven: 

1. 𝝀L
𝑡 = 0 

2. 𝝀S
𝑛 = 𝝀L

𝑛  and 𝜸S
𝑛 = 𝜸L

𝑛  for 𝑛 ≤ 𝑡 − 1 

3. 𝜸L
𝑡 T 𝜕 𝑯L

𝑡

𝜕𝑠
+ 𝜸L

𝑡+1 T 𝜕 𝑯L
𝑡+1

𝜕𝑠
= 𝜸S

𝑡+1 T 𝜕 𝑯S
𝑡+1

𝜕𝑠
 

Since step t is elastic, the first item is directly obtained from Property 1. in 

Section 5.2. 

For the second item, firstly, show that it holds for 𝑛 =  𝑡 − 1 . Using the 

assumption in Eq.(5.1), it follows from Eq.(4.36) that 

𝝀L
𝑡−1 = 𝑲L

𝑡−1
T
 −1 ∙ (

𝜕 𝑯L
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯L
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝜸L
𝑡 −

𝜕 𝑯L
𝑡

𝜕 𝑼 𝑡−1

T

𝜸L
𝑡 ) (5.21) 

By utilizing Eq.(5.16) and substituting the terms on the right-hand side with 

quantities from the load sequence S, it obtains  

𝝀L
𝑡−1 = 𝑲S

𝑡−1
T
 −1 ∙ (

𝜕 𝑯S
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝜸L
𝑡 −

𝜕 𝑯L
𝑡

𝜕 𝑼 𝑡−1

T

𝜸L
𝑡 ) (5.22) 

Due to the assumption in Eq.(5.1) and 𝝀L
𝑡 = 0, it gets from Eq. (4.36) that 

𝜸L
𝑡 = −

𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯L
𝑡+1

𝜕 𝑽 𝑡

T

𝜸L
𝑡+1  (5.23) 

By substituting Eqs.(4.23), (4.24), (4.28) into Eq.(5.23) and using Eq.(5.14), it 

has 
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𝜸L
𝑡 = (

𝑰 0
𝐚 
𝑡 T𝑫e −1

) (
𝑰 0
𝐚 

𝑡+1 T𝑫e 𝑐
) 𝜸S
𝑡+1 = (

𝑰 0
( 𝐚 
𝑡 T − 𝐚 

𝑡+1 T)𝑫e −𝑐
) 𝜸S
𝑡+1  (5.24) 

where 𝑐 equals −1 if step t+1 is elastic and 𝑐 equals 0 if step t+1 is plastic.  

When step t is skipped, step t-1 and step t+1 become adjacent. Therefore, 

according to Eqs.(4.24) and (5.24), it follows 

𝜕 𝑯L
𝑡

𝜕 𝑽 
𝑡−1

T

𝜸L
𝑡 = (

𝑰 0
𝐚 
𝑡 T𝑫e −1

) (
𝑰 0

( 𝐚 
𝑡 T − 𝐚 

𝑡+1 T)𝑫e −𝑐
) 𝜸S
𝑡+1 = (

𝑰 0
𝐚 

𝑡+1 T𝑫e 𝑐
) 𝜸S
𝑡+1 =

𝜕 𝑯S
𝑡+1

𝜕 𝑽 
𝑡−1

T

𝜸S
𝑡+1  (5.25) 

According to Eqs. (4.21) and (5.24), it follows that 

𝜕 𝑯L
𝑡

𝜕 𝑼 𝑡−1

T

𝜸L
𝑡 = −( 𝑩 

𝑡−1 T𝑫e 0) (
𝑰 0

( 𝐚 
𝑡 T − 𝐚 

𝑡+1 T)𝑫e −𝑐
) 𝜸S
𝑡+1  

  = −( 𝑩 
𝑡−1 T𝑫e 0) 𝜸S

𝑡+1 =
𝜕 𝑯S
𝑡+1

𝜕 𝑼 𝑡−1

T

𝜸S
𝑡+1  

(5.26) 

By substituting Eqs.(5.25) and (5.26) into Eq.(5.22), and using Eq.(4.36), it 

obtains 

𝝀L
𝑡−1 = 𝑲S

𝑡−1
T
 −1 ∙ (

𝜕 𝑯S
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

−
𝜕 𝑯S
𝑡+1

𝜕 𝑼 𝑡−1

T

) 𝜸S
𝑡+1 = 𝝀S

𝑡−1  (5.27) 

Using the assumption in Eq. (5.1), it follows from Eq. (4.36) that  

𝛄L
𝑡−1 = −

𝜕 𝑯L
𝑡−1

𝜕 𝑽 𝑡−1

−T

∙ (
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝛄L
𝑡 +

𝜕 𝑹L
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀L
𝑡−1 ) (5.28) 

Finally, using Eqs.(5.16), (5.25), (5.27) and replacing terms on the right-hand 

side by quantities in the load sequence S, it gets  

𝛄L
𝑡−1 = −

𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T

∙ (
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

𝜸S
𝑡+1 +

𝜕 𝑹S
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀S
𝑡−1 ) = 𝛄S

𝑡−1  (5.29) 

From Eqs.(5.27) and (5.29) at step t-1, it easily gets  
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𝝀S
𝑛 = 𝝀L

𝑛  and 𝛄S
𝑛 = 𝛄L

𝑛  (𝑓𝑜𝑟 𝑛 ≤ 𝑡 − 2) (5.30) 

Thirdly, from Eqs.(4.22), (5.14) and (5.24), it gets 

𝜸L
𝑡 T

𝜕 𝑯L
𝑡

𝜕𝑠
+ 𝛄L
𝑡+1 T

𝜕 𝑯𝐿
𝑡+1

𝜕𝑠

= 𝜸S
𝑡+1 T (𝑰 𝑫e( 𝐚 

𝑡 − 𝐚 
𝑡+1 )

𝟎 −𝑐
)(𝑫

e (
𝜕 𝜺 
𝑡

𝜕𝑠
−
𝜕 𝜺 
𝑡−1

𝜕𝑠
)

0

) + 𝜸S
𝑡+1 T (𝑫

e (
𝜕 𝜺 
𝑡+1

𝜕𝑠
−
𝜕 𝜺 
𝑡

𝜕𝑠
)

0

)     

= 𝜸S
𝑡+1 T

(𝑫
e
(
𝜕 𝜺 
𝑡+1

𝜕𝑠
−
𝜕 𝜺 
𝑡−1

𝜕𝑠
)

0

) = 𝜸S
𝑡+1 T 𝜕 𝑯S

𝑡

𝜕𝑠
 

(5.31) 

The proof of the three items is concluded here.  

□ 

To reduce a plastic load step t, the following rule is proposed and proven. 

Plastic load step reduction rule: Given a sequence of load steps L = {1, 2, ..., 

t-1, t, t+1, …, N}, if step t and step t+1 are both plastic load steps, 𝐚 
𝑡 = 𝐚 

𝑡+1  

and 
d 𝐚 
𝑡

d 𝛔 
𝑡
= 0, then skip step t as the load steps contains only S = {1, 2, ..., t-1, 

t+1, …, N} will not change the sensitivity results. 

Proof:  

The same as the previous proof, it is suffice to show 

1. 𝝀L
𝑡 = 0 

2. 𝝀S
𝑛 = 𝝀L

𝑛  and 𝜸S
𝑛 = 𝜸L

𝑛  for 𝑛 ≤ 𝑡 − 1 

3. 𝜸L
𝑡 T 𝜕 𝑯L

𝑡

𝜕𝑠
+ 𝜸L

𝑡+1 T 𝜕 𝑯L
𝑡+1

𝜕𝑠
= 𝜸S

𝑡+1 T 𝜕 𝑯S
𝑡+1

𝜕𝑠
 

The first item is directly obtained from the Property 2 in Section 5.2. 

For the second item, firstly show that it holds for n=t-1. Obviously, Eq.(5.22) 

still holds here 

𝝀L
𝑡−1 = 𝑲S

𝑡−1
T
 −1 ∙ (

𝜕 𝑯S
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝜸L
𝑡 −

𝜕 𝑯L
𝑡

𝜕 𝑼 𝑡−1

T

𝜸L
𝑡 ) (5.32) 

Using Eq.(4.21) and Property 2 in Section 5.2, it follows 
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𝜕 𝑯L
𝑡

𝜕 𝑼 
𝑡−1

T

𝜸L
𝑡 = −( 𝑩 

𝑡−1 𝐓
𝑫e 0) (

𝜸
𝝈S 

𝑡+1

0
) = −( 𝑩 

𝑡−1 𝐓
𝑫e 0) (

𝜸
𝝈S 

𝑡+1

𝜸
 S

𝑡+1

𝜀eqv
p
) =

𝜕 𝑯S
𝑡+1

𝜕 𝑼 
𝑡−1

T

𝜸S
𝑡+1  (5.33) 

According to Eq.(4.28) and the assumption of 𝐚 
𝑡 = 𝐚 

𝑡+1 , it has 

𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

= (
𝑰 0
𝐚 

𝑡+1 T𝑫e 0
) (5.34) 

Using Property 2 in Section 5.2, it follows 

𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝜸L
𝑡 = (

𝑰 0
𝐚 

𝑡+1 T𝑫e 0
) ( 𝜸𝝈S 

𝑡+1

0
) = (

𝑰 0
𝐚 

𝑡+1 T𝑫e 0
) (

𝜸𝝈S 
𝑡+1

𝜸 S
𝑡+1

𝜀eqv
p
) =

𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

𝜸S
𝑡+1  (5.35) 

By substituting Eqs.(5.32) and (5.35) into Eq.(5.32) and using Eq.(4.36), it 

obtains 

𝝀L
𝑡−1 = 𝑲S

𝑡−1
T
 −1 ∙ (

𝜕 𝑯S
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

−
𝜕 𝑯S
𝑡+1

𝜕 𝑼 𝑡−1

T

) 𝜸S
𝑡+1 = 𝝀S

𝑡−1  (5.36) 

Using the assumption in Eq.(5.1), it follows from Eq.(4.36) that  

𝛄L
𝑡−1 = −

𝜕 𝑯L
𝑡−1

𝜕 𝑽 𝑡−1

−T

∙ (
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝛄L
𝑡 +

𝜕 𝑹L
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀L
𝑡−1 ) (5.37) 

Finally, using Eqs.(5.16), (5.35), (5.36) and replacing terms on the right-hand 

side by quantities in the load sequence S, it obtains 

𝛄L
𝑡−1 = −

𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T

∙ (
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

𝜸S
𝑡+1 +

𝜕 𝑹S
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀S
𝑡−1 ) = 𝛄S

𝑡−1  (5.38) 

From Eqs.(5.36) and (5.38) at step t-1, it easily gets  

𝝀S
𝑛 = 𝝀L

𝑛  and 𝛄S
𝑛 = 𝛄L

𝑛  (𝑓𝑜𝑟 𝑛 ≤ 𝑡 − 2) (5.39) 

Lastly, according to the Property 2 in Section 5.2 and 𝛄L
𝑡+1 = 𝛄S

𝑡+1 , the third 

item is proven by 
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𝜸L
𝑡 T

𝜕 𝑯L
𝑡

𝜕𝑠
+ 𝜸L
𝑡+1 T

𝜕 𝑯L
𝑡+1

𝜕𝑠
= (

𝜸𝝈S 
𝑡+1

0
)

T

(𝑫
e (
𝜕 𝜺 
𝑡

𝜕𝑠
−
𝜕 𝜺 
𝑡−1

𝜕𝑠
)

0

)+ (
𝜸𝝈S 

𝑡+1

𝜸 S
𝑡+1

𝜀eqv
p
)

T

(𝑫
e (
𝜕 𝜺 
𝑡+1

𝜕𝑠
−
𝜕 𝜺 
𝑡

𝜕𝑠
)

0

)

= (
𝜸𝝈S 

𝑡+1

𝜸 S
𝑡+1

𝜀eqv
p
)

T

(𝑫
e (
𝜕 𝜺 
𝑡+1

𝜕𝑠
−
𝜕 𝜺 
𝑡−1

𝜕𝑠
)

0

) = 𝜸S
𝑡+1 T 𝜕 𝑯S

𝑡

𝜕𝑠
 

(5.40) 

□ 

The elastic load step reduction rule is applicable to all types of elements. It 

theoretically proves that, in the adjoint sensitivity analysis, all intermediate 

elastic load steps can be skipped without losing accuracy. 

The plastic load step reduction rule states that, for two consecutive plastic 

steps, the former plastic step can be skipped without changing the sensitivity 

results if two conditions are satisfied. The prerequisites include 𝐚 
𝑡 = 𝐚 

𝑡+1  

and 
d 𝐚 
𝑡

d 𝛔 
𝑡
= 0.  

For a bar element undergoing tension or compression, the flow vector equals 

𝐚 = {
1          in tension
−1  in compression

 (5.41) 

Hence, its derivative is equal to 0, i.e. 

d𝐚

d𝛔
= 𝟎 (5.42) 

Therefore, the two prerequisites could be strictly satisfied by bar elements 

when two adjacent plastic steps are both in tension or in compression. In such 

cases, sensitivity analysis following plastic reduction rule will yield the same 

results as using all load steps.  

However, for general 3D elements with the von Mises yield criterion, 𝑑𝐚 𝑑𝛔⁄  

follows Eq.(2.28) and it is always non-zero. Therefore, the second prerequisite 

in the plastic load step reduction rule can’t be satisfied. The same holds true 

for general 2D elements. Thus, the plastic reduction rule cannot be used 

directly. 

The prerequisites in plastic case require that the flow vectors in two 

consecutive plastic steps remain constant. It is expected that if the flow 
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vectors do not change too much, the sensitivity results could still be valid. 

Therefore, the following empirical rule is proposed to reduce the plastic load 

steps in the sensitivity analysis with 2D and 3D elements. 

Empirical rule: Given a sequence of load steps L = {1, 2, ..., t-1, t, t+1, …, N}, if 

step t and step t+1 are in a monotonic loading stage, then step t could be 

skipped in the sensitivity analysis. 

Sensitivity analysis following the empirical rule will not yield exact results. 

The effectiveness and influence on result accuracy will be investigated 

through numerical examples in Section 5.5 and 5.6. 

5.4 Demonstration with a 100-bar truss structure 

In this section, the presented load step reduction techniques are verified using 

the same 100-bar truss structure presented in Figure 4-1. The material 

properties and design variables are also consistent with those in Section 4.2.1. 

Three load cases are applied to the structure to demonstrate the reduction in 

load steps under different situations. 

In the first load case, the vertical force at the free end of the structure follows 

a total of 35 load steps, as depicted in Figure 5-1. The load history could be 

divided into three stages: an initial stage with the load monotonically 

increasing from step 1 to step 12, followed by a partial unloading stage from 

step 13 to step 22, and finally, a reloading stage from step 23 to step 35. The 

force at the final step is greater than that in the intermediate steps. The green 

dots in Figure 5-1 represent elastic load steps in the nonlinear finite element 

analysis, while the red diamond points illustrate plastic load steps. 

According to the reduction rule for elastic load steps, all the elastic load steps 

can be skipped in this example. For the plastic steps, since the load 

monotonically increases during the initial loading and the reloading stage, all 

bars maintain their status either in tension or in compression between two 

consecutive steps. According to the plastic reduction rule, the former one in 

each pair of consecutive plastic steps can be skipped. This results in only two 

steps, step 12 and step 35, remaining in the sensitivity analysis. Now, step 12 

and step 35 become two consecutive plastic steps. They have the same load 
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Figure 5-1. Load history of the first load case. The pentagram depicts the reduced 

load step in sensitivity analysis 

direction, and hence there is no alternation of tension and compression for 

any bar element between these two steps. Therefore, step 12 can once again 

be skipped. Finally, only the last load step is needed in the sensitivity analysis, 

which is listed in Table 5-1 and highlighted by a pentagram in Figure 5-1.  

Table 5-1. The reduced load step for load case 1 of the 100-bar truss example 

Reduced load step Corresponding FEA load step Load (N) 

1 35 15 

The sensitivity result calculated with the reduced load step is compared with 

that employing all load steps in Figure 5-2. The two system responses 

considered are the vertical displacement at the free end and the maximum 

equivalent plastic strain at the fixed end. 

To assess the accuracy of sensitivities, the relative value is defined as the ratio 

of sensitivity calculated using the reduced load steps to sensitivity calculated 

using all load steps: 

 relative value =  
Sensitivity with reduced load steps

Sensitivity with all load steps
 (5.43) 

The relative values are presented in the subfigures on the right. The results 

show that, for both responses, sensitivities with the reduced load step are the 

same as those obtained using all load steps. 

35 12 
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(a)  Sensitivities of vertical displacement 

response in load case 1 

(b) Sensitivity relative value of vertical 

displacement response in load case 1  

  

(c)  Sensitivity of equivalent plastic strain 

response in load case 1 

(d) Sensitivity relative value of equivalent 

plastic strain response in load case 1 

Figure 5-2. Sensitivities comparison for load case 1 of the 100-bar truss example 

In the second load case, the vertical force follows a total of 50 load steps, as 

depicted in Figure 5-3. The load history comprises four stages: initial loading 

from step 1 to step 10, complete unloading from step 11 to step 20, reverse 

loading in the opposite direction from step 21 to step 35, and finally, a fully 

unloading stage from step 36 to step 50. The maximum force of the load in the 

opposite direction is larger than that in the initial loading stage. 

According to the load step reduction rules, all elastic steps, except the last one, 

can be skipped in the sensitivity analysis. Since the force monotonically 

increases during loading and reverse loading, the states of tension or 

compression remain unchanged for each bar in either stage. Hence, the former 

one in each pair of consecutive plastic steps can be skipped in the sensitivity 

analysis. Therefore, only plastic steps 10, 35, and elastic step 50 remain. Now, 

steps 10 and 35 are two consecutive plastic steps with opposite external force 

directions. Some bars change from tension to compression, and some change 
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 Figure 5-3. Load history of the second load case. Pentagrams depict the reduced 

load steps in sensitivity analysis 

from compression to tension. Therefore, the former step 10 can’t be skipped 

in this case. In summary, steps 10, 35, and 50 are needed in the sensitivity 

analysis. They are listed in Table 5-2 and highlighted in Figure 5-3 by 

pentagrams. 

Table 5-2. Reduced load steps for load case 2 of the 100-bar truss example 

Reduced load step Corresponding FEA load step Load (N) 

1 10 10 

2 35 -15 

3 50 0 

The sensitivity results are presented in Figure 5-4. The two system responses 

are the same as in load case 1. The results show that the sensitivities with 

reduced load steps match exactly with those obtained using all load steps. 

In the third load case, a force with both horizontal and vertical components is 

applied at the free end. The load history is depicted in Figure 5-5. defining 

three stages: an initial loading stage from step 1 to step 5, horizontal 

unloading and vertical loading from step 6 to step 38, and finally, a vertically 

plastic loading stage from step 39 to step 50. 

In the first stage, the stress state of bars is primarily influenced by the 

monotonically increasing extensional force in the horizontal direction. 

Consequently, there is no transition between tension and compression in bars. 

50 

35 

10 
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Following the plastic load step reduction rule, the first four steps can be 

skipped. Applying the elastic load step reduction rule allows for the omission 

of all elastic steps in the sensitivity analysis. 

  

 

(a)  Sensitivities of vertical displacement 

response in load case 2 

(b) Sensitivity relative value of vertical 

displacement response in load case 2 

(c)  

  

 

(d)  Sensitivity of equivalent plastic strain 

response in load case 2 

(e) Sensitivity relative value of equivalent 

plastic strain response in load case 2 

(f)  

Figure 5-4. Sensitivities comparison for load case 2 of the 100-bar truss example 

In the last vertically plastic loading stage, tension or compression is 

determined by the bending moment caused by the vertical force. As the 

vertical force monotonically increases, all steps except the last one can be 

skipped in the sensitivity analysis. At this point, only steps 5 and 50 remain in 

the sensitivity analysis. 

The horizontal force in step 5 induces tensional stress in all the bars. In step 

50, the vertical force leads to bending deformation of the structure, resulting 

in some bars being in compression. Therefore, both steps 5 and 50 must be 

included in the sensitivity analysis. 
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(a)  Load history in horizontal x-direction (b) Load history in vertical y-direction 

Figure 5-5. Load history of the third load case. Pentagrams depict the reduced load 

steps in sensitivity analysis 

The reduced load steps are listed Table 5-3 and highlighted in Figure 5-5. 

Table 5-3. Reduced load steps for load case 3 of the 100-bar truss example 

Reduced load step Corresponding FEA load step Load (N) 

1 5 Fx=5000, Fy=5 

2 50 Fx=0, Fy=40 

Sensitivities of the two system responses are evaluated, and the results are 

presented in Figure 5-6. It shows that the sensitivities with the reduced load 

steps match exactly with those obtained using all load steps. 

 

 

 

 

 

5 

50 
5 

50 
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(a)  Sensitivities of vertical displacement 

response in load case 3 

(b) Sensitivity relative value of vertical 

displacement response in load case 3 

  

(c)  Sensitivity of equivalent plastic strain 

response in load case 3 

(d) Sensitivity relative value of equivalent 

plastic strain response in load case 3 

Figure 5-6. Sensitivities comparison for load case 3 of the 100-bar truss example 

5.5 Demonstration with a cantilever beam structure meshed 

with 3D solid elements 

As discussed in Section 5.3, theoretically, plastic load steps of finite element 

systems with general 2D and 3D elements should not be skipped in the 

sensitivity analysis. However, the number of load steps can be significantly 

reduced by following the proposed empirical rule. Therefore, it is worth 

evaluating the inaccuracy that the empirical rule will introduce into the 

sensitivities. In this section, the load step reduction rules are demonstrated 

with a cantilever beam example meshed with 3D 4-node tetrahedral elements. 

The accuracy of sensitivities will be quantified. 
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The structure is the same as in Figure 4-5, including material properties and 

design variables. Three typical load cases are applied on the structure. Both 

geometric nonlinearity and small strain elastoplasticity are considered. 

The first load case is depicted in Figure 5-7, where the load history is 

composed of three stages: the initial loading stage from step 1 to step 5, the 

unloading stage from step 6 to step 8, and the reloading stage from step 9 to 

step 16. In this example, the average vertical displacement at the free end and 

the maximum equivalent plastic strain at the fixed end are the two system 

responses. 

 

Figure 5-7. Load history of load case 1 for the cantilever beam example. The 

pentagram depicts the reduced load step 

This load history is similar to the load case 1 in Section 5.4. Following the 

elastic load step reduction rule and the empirical rule for plastic steps, only 

the last load step is left in the sensitivity analysis. The reduced load step is 

listed in Table 5-4 and highlighted with a pentagram in Figure 5-7. 

Table 5-4. Reduced load step for load case 1 of 3D cantilever beam example 

Reduced load step Corresponding FEA load step Load (N) 

1 16 10000 

Sensitivities calculated with the reduced load step are compared in Figure 5-8, 

with those calculated using all load steps, from both real and relative value 

perspectives. 

16 
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(a) Sensitivities of the vertical displacement 

response in load case 1 

(b) Sensitivity relative value of vertical 

displacement response in load case 1 

  

(c) Sensitivity of equivalent plastic strain 

response in load case 1 

(d) Sensitivity relative value of equivalent 

plastic strain response in load case 1 

Figure 5-8. Sensitivity comparison for load case 1 of 3D cantilever beam example 

From a real value point of view, it shows that the sensitivities with the reduced 

load step match well with those using all load steps. From a relative value 

point of view, sensitivities with a reduced load step have errors of less than 

0.5% for the displacement response. The error of sensitivities for the 

equivalent plastic strain response is 3% on average, with a maximum of 7%. 

The second load case is illustrated in Figure 5-9, where the load history 

comprises loading, unloading, reverse loading, and unloading stages. By 

excluding monotonic plastic load steps and elastic steps, plastic step 4, plastic 

step 14, and elastic step 20 remain in the sensitivity analysis. It is important 

to note that, even though steps 4 and 14 are consecutive, they experience force 

in opposite directions. The load history progresses from 0N to 4000N (step 4) 

and then to -6000N (step 14), making it non-monotonic. Consequently, both 
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steps must be included in the sensitivity analysis. The three reduced load 

steps are listed in Table 5-5 and highlighted with pentagrams in Figure 5-9. 

 

Figure 5-9. Load history of load case 2 for the cantilever beam example. 

Pentagrams depict the reduced load step 

Table 5-5. Reduced load steps for load case 2 of 3D cantilever beam example 

Reduced load step Corresponding FEA load step Load (N) 

1 4 4000 

2 14 -6000 

3 20 0 

The sensitivities results are compared with those using full load steps in 

Figure 5-10. 

The results indicate a good match between sensitivities obtained with 

reduced load steps and those obtained with all load steps from a real-value 

perspective. Errors in sensitivities for the displacement response average 2%, 

while errors in sensitivities for equivalent plastic strain response average 

3.5%. The change in force direction during loading and reverse loading stages 

results in a more significant alteration of flow vectors. This more pronounced 

change in flow vectors leads to an increase in errors following the empirical 

rule. 

4 

20 

14 
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(a)  Sensitivities of the vertical displacement 

response in load case 2 

(b) Sensitivity relative value of vertical 

displacement response in load case 2 

  

(c)  Sensitivity of equivalent plastic strain 

response in load case 2 

(d) Sensitivity relative value of equivalent 

plastic strain response in load case 2 

Figure 5-10. Sensitivity comparison for load case 2 of 3D solid beam example 

To demonstrate the necessity of load step 4 in sensitivity analysis, two 

situations are discussed. In one scenario, step 4 is skipped in the sensitivity 

analysis, meaning only steps 14 and 20 are considered, as shown in Figure 

5-11(a). The resulting vertical displacement sensitivities are presented in 

Figure 5-11(b). Clearly, if step 4 is omitted, the sensitivity results are entirely 

incorrect. 

In another scenario, step 3 is employed in the sensitivity analysis instead of 

step 4, as illustrated in Figure 5-12(a). The vertical displacement sensitivities 

obtained are presented in Figure 5-12(b). Clearly, the sensitivity results are 

also entirely incorrect. 
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     (a) Reduced load steps with step 4 being 

skipped 

(b) Sensitivity of the vertical displacement 

response 

Figure 5-11. Sensitivity results if load step 4 is wrongly skipped in load case 2 

  

(a) Reduced load steps with step 3 instead of 

step 4 

(b) Sensitivity of the vertical displacement 

response 

Figure 5-12. Sensitivity results if step 3 is included instead of step 4 

The two situations mentioned above demonstrate that the load step reduction 

rules proposed in Section 5.3 are not only sufficient for obtaining accurate 

sensitivity results but also necessary. Adhering to these rules is essential, as 

skipping load steps that violate these principles will result in inaccurate 

outcomes. 

The third load case on the cantilever beam is depicted in Figure 5-13, where 

the load applies in the vertical y-direction and horizontal z-direction 

simultaneously. Together, they define three stages: a vertically plastic loading 

stage from step 1 to step 5, an elastic stage from step 6 to step 8, and a 

horizontally plastic loading stage from step 9 to step 18. The deformation and 

contour plot of the equivalent plastic strain at the last load step are depicted 

in Figure 5-14. 
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Figure 5-13. Load history of load case 3 for the cantilever beam example. 

Pentagrams depict the reduced load step 

 

Figure 5-14. Contour plot of equivalent plastic strain at the last step on undeformed 

and deformed structure  

In the sensitivity analysis, the first four plastic steps are skipped according to 

the empirical rule. The three intermediate elastic steps are also skipped due 

to the elastic load step reduction rule. In the horizontally plastic loading stage, 

the force in the y-direction holds constant, and the force in the z-direction 

monotonically increases. In this situation, the empirical rule still applies. 

Hence, steps 9 to 17 are skipped in the sensitivity analysis. In summary, only 

steps 5 and 18, as listed in Table 5-6 and highlighted in Figure 5-13, are 

employed in the sensitivity analysis. 

Figure 5-15 compares the sensitivity results obtained using both reduced load 

steps and all load steps. 

From the perspective of real values, sensitivities obtained with reduced load 

steps still match well with sensitivities obtained with all load steps. However, 

5 

18 

X 

Z 
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Table 5-6. Reduced load steps for load case 3 of 3D cantilever beam example 

Reduced load step Corresponding FEA load step Load (N) 

1 5 Fy=5000, Fz=0 

2 18 Fy=2000, Fz=10000 

 

  

(a) Sensitivities of the vertical 

displacement response in load case 3 

(b) Sensitivity relative value of vertical 

displacement response in load case 3 

  

(c) Sensitivity of equivalent plastic strain 

response in load case 3 

(d) Sensitivity relative value of equivalent 

plastic strain response in load case 3 

Figure 5-15. Sensitivity comparison for load case 3 of 3D cantilever beam example 

the relative error in this case is larger than in the previous two cases. The 

maximum error of the displacement response is 8%, with an average of 5%. 

The maximum error of the equivalent plastic strain response reaches 17%, 

with an average of 8%. This can be explained by the change in the direction of 

the resultant load force during the horizontally plastic loading stage. The 

resultant load force changes its direction in every load step. Correspondingly, 
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the flow vectors also change direction in every step. Therefore, a more severe 

change in the flow vectors could be imagined, leading to larger errors in 

sensitivities. 

5.6 Demonstration with a connecting rod example  

In this section, the rules for reducing load steps are demonstrated using a 

large-scale industrial example, specifically, a connecting rod structure in an 

internal combustion piston engine, also known as a conrod. Figure 5-16 shows 

the finite element model of a typical connecting rod structure, meshed with 

6584 nodes and 27160 3D 4-node tetrahedral elements. The material 

properties are listed Table 5-7. 

 

Figure 5-16. Finite element model of a connecting rod structure 

Table 5-7. Material properties of the connecting rod example 

E-modulus 

(GPa) 

Plastic modulus 

(GPa) 

Initial yield strength 

(MPa) 
Poisson’s ratio 

210 100 450 0.3 

The rod bolt is fixed, and a horizontal force in the x-direction and a vertical 

force in the y-direction are uniformly applied to the inner surface nodes of the 

small end. The load history contains 19 load steps, as depicted in Figure 5-17. 

rod bolt, fixed 

small end 

big end 

Fy 

Fx 
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The structure is initially compressed in the y direction in step 1. From step 2 

to step 7, the compressive load monotonically increases, and additionally, a 

horizontal force is gradually applied, leading to the bending of the rod. From 

step 8 to step 12, the horizontal force is fully unloaded, while the vertical force 

is partially released. The bending load increases in the negative x direction, 

accompanied by a slight increase in the compressive load from step 13 to step 

16. Finally, from step 17 to step 19, the horizontal force is fully unloaded again, 

while the vertical force gradually increases to the same value as in step 1. 

 

Figure 5-17. Load history on the small end of the connecting rod 

Nonlinear finite element analysis shows that there are 10 elastic steps and 9 

plastic steps, as illustrated in Figure 5-17. Under the given load history, the 

maximum horizontal displacement is 15.0 mm, occurring at step 7 at the top 

of the small end. The contour of displacement at step 7 is depicted in Figure 

5-18, showing both the original and deformed structures. When compared to 

the dimensions of the model, the displacement is significant, making the 

problem geometrically nonlinear. 

7 

19 
16 
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Figure 5-18. Contour plot of displacement on original and deformed structure at 

step 7 

The contour plot of equivalent plastic strain at the last load step 19 is depicted 

in Figure 5-19 (a). The maximum equivalent plastic strain is 2.34%, located on 

the surface of the neck near the larger end. A total of 106 elements around this 

point are selected, as shown in Figure 5-19 (b), and the average equivalent 

plastic strain of these elements at the last step is defined as one system 

response. 

  

(a) Contour plot of equivalent plastic 

strain at load step 19, max=2.34% 

(b) Selected elements around the 

maximum equivalent plastic strain point 

Figure 5-19. Contour of equivalent plastic strain at the last load step 

Ux=15.0mm at step 7 

H
=1

6
7

.8
m

m
 

W=84mm 
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Figure 5-20 shows the deformation of the structure at the last load step. The 

average x-displacement and y-displacement at the small end are defined as 

the second and third system responses, respectively.  

 

Figure 5-20. Contour plot of displacement on both original and deformed 

configuration at the last load step. Average displacement of small end nodes: 

Ux=6.48mm, Uy=-0.47mm 

The design variables for the structure consist of the x-coordinates of 228 

nodes highlighted in Figure 5-21. These nodes are situated on one side of the 

surface between the small end and the big end.  

 

Figure 5-21. Design nodes of the structure 
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According to the rules for reducing elastic load steps, all elastic load steps are 

disregarded in the sensitivity analysis, except for the last step. Following the 

empirical rule, plastic steps 2 to 6, 14, and 15 are also omitted due to the 

monotonic load history. However, the remaining plastic steps, 7 and 16, are 

necessary since their loads are in opposite directions. The three reduced load 

steps in the sensitivity analysis are highlighted by pentagrams in Figure 5-17 

and listed in Table 5-8.  

Table 5-8. Reduced load steps in sensitivity analysis of the conrod example  

Reduced load step Corresponding FEA load step Load (kN) 

1 7 Fx= 29.7, Fy= -49.5 

2 16 Fx= -29.7, Fy= -13.9 

3 19 Fx= 0, Fy= -19.8 

The contours of sensitivities for the three responses are depicted in Figure 

5-22. As shown in Figure 5-22 (b), the sensitivities of the equivalent plastic 

strain response are close to zero for nodes far away from the maximum 

equivalent strain point. This is reasonable because the equivalent plastic 

strain is a local response influenced mainly by the local structure shape. The 

negative value means that if the node moves along the positive x-direction, 

which is the outer direction of the surface, the equivalent plastic strain will 

decrease.  

In Figure 5-22 (c), sensitivity results show that if design nodes move along the 

outer surface direction, the final displacement in the horizontal direction will 

decrease. In Figure 5-22 (d), the sensitivity results reveal that if design nodes 

move along the outer surface direction, the final displacement in the vertical 

direction will increase. This is attributed to the decrease in plastic strains 

when the design nodes move outwardly. In the final step, the small end of the 

conrod returns closer to the centerline due to less plastic deformation. 

Consequently, this results in a decrease in horizontal displacement and an 

increase in vertical displacement. 
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(a) Side view of 

design nodes 

(b) Sensitivity of the 

equivalent plastic 

strain response (/mm) 

(c) Sensitivity of x-

displacement 

response (mm/mm) 

(d) Sensitivity of y-

displacement 

response (mm/mm) 

Figure 5-22. Contour of sensitivities for the connecting rod example 

To verify the accuracy of the results, the relative values of sensitivities are 

calculated and depicted in Figure 5-23. The figures show that the relative 

values are close to 1 for all three responses, demonstrating that the sensitivity 

results with the reduced load steps closely match the results obtained using 

all load steps. 
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(a) Side view of 

design nodes 

(b) Relative value of 

the equivalent plastic 

strain sensitivity 

(c) Relative value of 

x-displacement 

sensitivity 

(d) Relative value 

of y-displacement 

sensitivity 

Figure 5-23. Relative values of sensitivities for the connecting rod example 

The maximum and average relative errors of sensitivities are summarized in 

Table 5-9. They show that sensitivity errors with reduced load steps are small. 

Table 5-9. Relative error of sensitivities for the connecting rod example 

Response Maximum error Average error 

equivalent plastic strain 10.0% 0.9% 

x-displacement 1.2% 0.3% 

y-displacement 1.3% 0.2% 
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6. Adjoint sensitivity analysis and load step reduction for 

mixed hardening elastoplasticity  

In this chapter, the presented adjoint variable method for sensitivity analysis 

and load step reduction techniques is extended to a mixed hardening material 

model. Pure kinematic hardening is a special case of this discussion. 

The major difference from isotropic hardening arises from an additional 

quantity, i.e., the back stress, in nonlinear finite element analysis. Its influence 

on the adjoint sensitivity analysis formulations is presented. The properties 

of adjoint variables and the load step reduction rules are verified. Finally, 

numerical examples are provided to demonstrate the applicability of load step 

reduction rules. 

6.1 Nonlinear analysis procedure and consistent tangent 

stiffness matrix for mixed hardening elastoplasticity 

The fundamental difference between mixed hardening elastoplasticity and the 

isotropic hardening case lies in the development of the yield surface. In the 

isotropic hardening model, the yield surface expands uniformly in all 

directions. Mixed hardening elastoplasticity assumes that not only does the 

size of the yield surface expand, but also the center of the yield surface shifts 

in the stress space. As depicted in Figure 6-1, the stress tensor 𝜶, referred to 

as back stress, measures the translation of yield surface’s center. 

The yield strength at a step t is equal to 

 𝜎 
𝑡
Y
 = 𝜎0 +∫ 𝐸p𝛽𝑑𝜀eqv

p
𝜀 
𝑡
eqv
p

0

 (6.1) 

where 𝛽 is the hardening ratio, which lies between 0 and 1. If 𝛽 equals 1, it 

describes pure isotropic hardening behavior. When 𝛽 is equal to 0, the size 

of the yield surface remains constant, describing a pure kinematic hardening 

rule. 
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(a) 1D development of yield strength (b) 3D development of yield surface in 

the space of principal stress 

components, taking von Mises yield 

criterion as an example 

Figure 6-1. Development of yield strength and yield surface of mixed hardening 

elastoplasticity 

The nonlinear Newton-Raphson iterative solution procedure in Section 2.2.2 

still applies to the mixed hardening case, except that the back stress is an 

additional quantity to be determined through the return mapping algorithm. 

Given stress 𝝈 
𝑡 , back stress 𝜶 

𝑡 , equivalent plastic strain 𝜀 
𝑡
eqv
p  at step t, and 

an incremental strain ∆𝜺 determined by the incremental displacement, the 

trial stress is calculated as follows: 

 

∆𝝈try = 𝑫
e ∙ ∆𝜺 

𝝈try = 𝝈 
𝑡 + ∆𝝈try 

(6.2) 

where ∆𝜀eqv
p

= 0 , ∆𝜶 = 0  are assumed. Then the equivalent stress is 

calculated with 𝝈try − 𝜶 
𝑡 . If the equivalent stress is smaller or equal to the 

yield strength at step t, then the element behaves elastically and 𝝈 
𝑡+1 =

𝝈try ,  𝜶 
𝑡+1 = 𝜶 

𝑡 , 𝜀 
𝑡+1

eqv
p 

= 𝜀 
𝑡
eqv
p . Otherwise, the return mapping algorithm is 

employed to determine the increments [SH98]: 

Set ∆𝜀eqv
p
= 0, ∆𝜶 = 0, ∆𝝈try = 𝑫

e ∙ ∆𝜺, 𝝈try = 𝝈 
𝑡 + ∆𝝈try, 𝜶try = 𝜶 

𝑡 + ∆𝜶  

−𝜎0 

  

  
𝜎0 

 𝜎 

𝜀𝑃 

𝜎3 𝜎1 

𝜎2 

𝜶 
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a) Calculate trial associated flow vector 𝐚 based on 𝝈try and 𝜶try: 

 𝐚 =
𝑑|𝝈try − 𝜶try|eqv

𝑑𝝈
 (6.3) 

b) Update the incremental plastic strain: 

 
∆𝜀eqv

p
= ∆𝜀eqv

p
+
|𝝈try − 𝜶try|eqv

− 𝜎 
𝑡
Y
 − 𝐸p ∙ ∆𝜀eqv

p
∙ 𝛽

𝐚 ∙ 𝑫e ∙ 𝐚T + 𝐸p
 

∆𝜺p = ∆𝜀eqv
p
∙ 𝐚 

(6.4) 

c) Update trial stress: 

 𝝈try = 𝝈 
𝑡 + 𝑫e ∙ ∆𝜺 − 𝑫e ∙ ∆𝜺p (6.5) 

d) Compute trial back stress: 

 

∆𝜶 = (1 − 𝛽) ∙ 𝑫α ∙ ∆𝜺p 

𝜶try = 𝜶 
𝑡 + ∆𝜶 

(6.6) 

where 

 𝑫α =
𝐸p

3

[
 
 
 
 
 
2  
 2

  
  

  
  

  
  

2  
 1

  
  

 
  

   
1  
 1]

 
 
 
 
 

 (6.7) 

Check if |𝝈try − 𝜶try|eqv
− 𝜎 

𝑡
Y
 − 𝐸p ∙ ∆𝜀eqv

p
∙ 𝛽 = 0. If it is not satisfied, then go 

back to step a. Otherwise the algorithm stops. 

When the stopping condition of the algorithm is met, it provides: 

 

𝝈 
𝑡+1 = 𝝈try 

𝜶 
𝑡+1 = 𝜶try 

𝜀 
𝑡+1

eqv
p 

= 𝜀 
𝑡
eqv
p 
+ ∆𝜀eqv

p
 

(6.8) 
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The consistent tangent stiffness matrix has the same expression as in 

Eq.(2.13). The constitutive matrix 𝑫ep at a plastic step is: 

 𝑫ep = 𝑸−1 ∙ 𝑫e − 
𝒅

𝐚 ∙ 𝒓 + 𝐸p ∙ 𝛽 + 𝐚 ∙ 𝑫α ∙ 𝐚T ∙ (1 − 𝛽)
 (6.9) 

where 𝑸, 𝒓 and 𝒅 follow in Eq.(2.28). 

6.2 State variables and adjoint sensitivity analysis 

In mixed hardening elastoplasticity, the back stress is also a state variable. 

Define the state vector as follows 

 𝑽 
𝑡 = (

𝝈 
𝑡

𝜀 
𝑡
eqv
p 

𝜶 
𝑡

) (6.10) 

For a system response 𝑓, it can be either explicitly or implicitly expressed as a 

function of { 𝑽 
𝑡 }𝑡=1

N  and { 𝑼 
𝑡 }𝑡=1

N : 

 𝑓 = 𝑓( 𝑼 
1 (𝑠), 𝑼 

2 (𝑠),… , 𝑼 
N (𝑠), 𝑽 

1 (𝑠), 𝑽 
2 (𝑠),… , 𝑽 

N (𝑠), 𝑠) (6.11) 

To derive the adjoint sensitivity formulation, the dependent residual 𝑯 
𝑡  

should be defined. The two governing equations in Eqs. (4.6) and (4.8) still 

hold in mixed hardening case. Additionally, as described in the return 

mapping algorithm, the incremental back stress and incremental plastic strain 

have a relation 

 𝜶 
𝑡 − 𝜶 

𝑡−1 = (1 − 𝛽) ∙ 𝑫α ∙ ∆𝜺p 
𝑡  (6.12) 

where the incremental plastic strain is: 

 ∆𝜺p 
𝑡 = 𝜺p 

𝑡 − 𝜺p 
𝑡−1 = ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡  (6.13) 

Therefore, the dependent residual 𝑯 
𝑡  could be defined as 
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 𝑯 
𝑡 ( 𝑼 

𝑡 , 𝑼 
𝑡−1 , 𝑽 

𝑡 , 𝑽 
𝑡−1 , 𝑠) = (

𝝈 
𝑡−1 + 𝑫e[( 𝜺 

𝑡 − 𝜺 
𝑡−1 ) − ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡 ] − 𝝈 
𝑡

( 𝜀 
𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ [| 𝝈 

𝑡 − 𝜶 
𝑡 |eqv − 𝜎Y( 𝜀 

𝑡
eqv
p 
)]

𝜶 
𝑡−1 + (1 − 𝛽) ∙ 𝑫α ∙ ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡 − 𝜶 
𝑡

) ≡ 𝟎 (6.14) 

The adjoint sensitivity formulation is then derived in the same way as in 

Section 4.1.2, which leads to 

 
𝑑𝑓

𝑑𝑠
=
∂𝑓

∂𝑠
−∑ 𝝀 

𝑡 T
∂ 𝑹 
𝑡

∂s

N

𝑡=1

−∑ 𝜸 
𝑡 T

𝜕 𝑯 
𝑡

𝜕𝑠

N

𝑡=1

 (6.15) 

The adjoint variables 𝝀 
𝑡  and 𝜸 

𝑡  are solved backwardly through 

𝑲 
𝑡

T
 𝝀 
𝑡 = (

𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 𝑡

T

) 𝜸 
𝑡+1 +

𝜕𝑓

𝜕 𝑼 𝑡
−
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕𝑓

𝜕 𝑽 𝑡
  

𝜸 
𝑡 =

𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T

(
𝜕𝑓

𝜕 𝑽 𝑡
−
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

𝜸 
𝑡+1 −

𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡

T

𝝀 
𝑡 ) 

(6.16) 

The derivatives of the residual force vector and the dependent residual for 

mixed hardening elastoplasticity with an associated flow rule are presented 

below for the convenience of further discussion.  

According to Eq.(2.1), it has 

 
𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡
= −

𝜕 ∫ 𝑩 
𝑡 T 𝝈 

𝑡 𝑑𝑣
 

𝑉

𝜕 𝑼 𝑡
= −∫∇𝑼 𝑩 

𝑡 T 𝝈 
𝑡 𝑑𝑣

 

𝑉

 (6.17) 

 
𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡
= −(

𝜕

𝜕 𝝈 𝑡

𝜕

𝜕 𝜀 𝑡 eqv
p 

𝜕

𝜕 𝜶 𝑡
)∫ 𝑩 

𝑡 T 𝝈 
𝑡 𝑑𝑣

 

𝑉

= −(∫ 𝑩 
𝑡 T𝑑𝑣
 

𝑉

0 𝟎) (6.18) 

If a load step t is an elastic step, then the dependent residual is 

 𝑯 
𝑡 = (

𝝈 
𝑡−1 +𝑫e( 𝜺 

𝑡 − 𝜺 
𝑡−1 ) − 𝝈 

𝑡

𝜀 
𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 

𝜶 
𝑡−1 − 𝜶 

𝑡

) = 𝟎 (6.19) 

According to Eq.(2.4), the derivatives of 𝑯 
𝑡  are 
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𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡
= (

𝑫e
𝜕 𝜺 
𝑡

𝜕 𝑼 𝑡

0
𝟎

) = (
𝑫e 𝑩 

𝑡

0
𝟎

) (6.20) 

 
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡−1
= (

−𝑫e
𝜕 𝜺 
𝑡−1

𝜕 𝑼 𝑡−1

0
𝟎

) = −
𝜕 𝑯 
𝑡−1

𝜕 𝑼 𝑡−1
 (6.21) 

𝜕 𝑯 
𝑡

𝜕𝑠
= (

𝑫e
𝜕( 𝜺 

𝑡 − 𝜺 
𝑡−1 )

𝜕𝑠
0
𝟎

) = (
𝑫e
𝜕 𝜺 
𝑡

𝜕𝑠
0
𝟎

) − (
𝑫e
𝜕 𝜺 
𝑡−1

𝜕𝑠
0
𝟎

) (6.22) 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
= (

𝜕

𝜕 𝝈 𝑡

𝜕

𝜕 𝜀 𝑡 eqv
p 

𝜕

𝜕 𝜶 𝑡
) 𝑯 
𝑡 = (

−𝑰 −𝑫e 𝐚 
𝑡 0

0 1 0
0 0 −𝑰

) =
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−1

 (6.23) 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡−1

= (
𝜕

𝜕 𝝈 
𝑡−1

𝜕

𝜕 𝜀 
𝑡−1

eqv
p 

𝜕

𝜕 𝜶 
𝑡−1 ) 𝑯 

𝑡 = (
𝑰 𝑫e 𝐚 

𝑡 0
0 −1 0
0 0 𝑰

) = −
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

 (6.24) 

If a load step t is a plastic step, then the dependent residual follows 

 𝑯 
𝑡 = (

𝝈 
𝑡−1 +𝑫e[( 𝜺 

𝑡 − 𝜺 
𝑡−1 ) − ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡 ] − 𝝈 
𝑡

| 𝝈 
𝑡 − 𝜶 

𝑡 |eqv − 𝜎Y( 𝜀 
𝑡
eqv
p 
)

𝜶 
𝑡−1 + (1 − 𝛽) ∙ 𝑫α ∙ ( 𝜀 

𝑡
eqv
p 
− 𝜀 
𝑡−1

eqv
p 
) ∙ 𝐚 

𝑡 − 𝜶 
𝑡

) = 𝟎 (6.25) 

𝜕 𝑯 
𝑡 𝜕 𝑼 

𝑡⁄ , 𝜕 𝑯 
𝑡 𝜕 𝑼 

𝑡−1⁄  and 𝜕 𝑯 
𝑡 𝜕𝑠⁄  are the same as Eqs.(6.20) to (6.22). 

Other partial derivatives are 

 

 

 

𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡
= (

𝜕

𝜕 𝝈 
𝑡

𝜕

𝜕 𝜀 
𝑡
eqv
p 

𝜕

𝜕 𝜶 
𝑡 ) 𝑯 

𝑡 =

(

 
 
−𝑰 − 𝑫e

𝑑 𝐚 
𝑡

𝑑 𝝈 
𝑡
∆𝜀eqv

p
−𝑫e 𝐚 

𝑡 0

𝐚 
𝑡 T −𝐸p ∙ β − 𝐚 

𝑡 T

0 (1 − 𝛽) ∙ 𝑫α ∙ 𝐚 
𝑡 −𝑰 )

 
 

 (6.26) 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡−1

= (
𝜕

𝜕 𝝈 
𝑡−1

𝜕

𝜕 𝜀 
𝑡−1

eqv
p 

𝜕

𝜕 𝜶 
𝑡−1 ) 𝑯 

𝑡 = (
𝑰 𝑫e 𝐚 

𝑡 0
0 0 0
0 −(1 − 𝛽) ∙ 𝑫α ∙ 𝐚 

𝑡 𝑰
) (6.27) 
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6.3 Load step reduction for mixed hardening elastoplasticity 

In this section, the properties of adjoint variables in Section 5.2 and the load 

step reductions rules in Section 5.3 are extended to mixed hardening 

elastoplasticity. They are also theoretically proven. The system responses 

discussed here are assumed to still satisfy Eq.(5.1). 

Property 1. If a load step t is an intermediate elastic load step, then 𝝀 
𝑡 = 0. 

Proof: 

According to Eqs.(6.24) and (6.27) 

 
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡
= (

𝑰 𝑫e 𝐚 
𝑡+1 0

0 𝑐 0
0 𝑑 𝑰

) (6.28) 

where 

 

𝑐 = {
−1     if step 𝑡 is elastic
   0      if step 𝑡 is plastic

 

𝒅 = {
                   0                      if step 𝑡 is elastic

   −(1 − 𝛽) ∙ 𝑫α ∙ 𝐚 
𝑡         if step 𝑡 is plastic

 

(6.29) 

Combining Eqs.(6.20), (6.21), (6.23) and (6.29) yields 

𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 
𝑡

T

= ( 𝑩 
𝑡 T𝑫e 0 0)((

−𝑰 0 0

− 𝐚 
𝑡 T𝑫e 1 0
0 0 −𝑰

)(
𝑰 0 0

𝐚 
𝑡+1 T

𝑫e 𝑐 𝒅T

0 0 𝑰

) + 𝑰)

= ( 𝑩 
𝑡 T𝑫e 0 0)(

0 0 0

( 𝐚 
𝑡+1 T

− 𝐚 
𝑡 T)𝑫e 𝑐 + 1 𝒅𝑇

0 0 0

) = 𝟎 

(6.30) 

By substituting Eq.(5.1) and Eq.(6.30) into Eq.(6.16), it follows 

 𝑲 
𝑡

T
 𝝀 
𝑡 = (

𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 
𝑡

T

) 𝜸 
𝑡+1 +

𝜕𝑓

𝜕 𝑼 
𝑡
−
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕𝑓

𝜕 𝑽 
𝑡
= 𝟎 (6.31) 
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which leads to 

 𝝀 
𝑡 = 𝟎 (6.32) 

□ 

Property 2. If load steps t and t+1 are both plastic, and the flow vectors satisfy 

𝐚 
𝑡 = 𝐚 

𝑡+1 , 
d 𝐚 
𝑡

d 𝛔 
𝑡
= 0, then 𝝀 

𝑡 = 0 and 𝜸 
𝑡 = (

𝜸𝝈 
𝑡+1

0
𝜸𝜶 

𝑡+1
). 

Proof: 

By employing the assumption that 𝑑 𝐚 
𝑡 𝑑 𝛔 

𝑡⁄ = 0 , Eq.(6.26) is thereby 

simplified to 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

T

= (

−𝑰 𝐚 
𝑡 𝟎

− 𝐚 
𝑡 T𝑫e −𝐸P ∙ β (1 − 𝛽) 𝐚 

𝑡 T𝑫α

𝟎 − 𝐚 
𝑡 −𝑰

) (6.33) 

Using the assumption 𝐚 
𝑡 = 𝐚 

𝑡+1 , it follows from Eq.(6.27) that 

 
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

= (
𝑰 𝟎 𝟎
𝐚 
𝑡 T𝑫e 0 −(1 − 𝛽) 𝐚 

𝑡 T𝑫α

𝟎 𝟎 𝑰
) (6.34) 

It follows from Eqs.(6.33) and (6.34) that 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

= (
−𝑰 𝟎 𝟎
𝟎 0 𝟎
𝟎 𝟎 −𝑰

) (6.35) 

By combining Eqs.(6.20), (6.21) and (6.35), it has 

𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 𝑡

T

= ( 𝑩 
𝑡 𝐓𝑫e 0 𝟎)(

𝟎 𝟎 𝟎
𝟎 1 𝟎
𝟎 𝟎 𝟎

) = 𝟎 (6.36) 

Substituting Eq.(5.1) and Eq.(6.36) into Eq.(6.16) yields 
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 𝑲 
𝑡

T
 𝝀 
𝑡 = (

𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

T

−
𝜕 𝑯 
𝑡+1

𝜕 𝑼 
𝑡

T

) 𝜸 
𝑡+1 +

𝜕𝑓

𝜕 𝑼 
𝑡
−
𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T
𝜕𝑓

𝜕 𝑽 
𝑡
= 𝟎 (6.37) 

which leads to 

 𝝀 
𝑡 = 𝟎 (6.38) 

Furthermore, by substituting Eqs.(6.35), (6.38) and Eq.(5.1) into Eq.(6.16), it 

yields 

𝜸 
𝑡 =

𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡

−T

(
𝜕𝑓

𝜕 𝑽 
𝑡
−
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

T

𝜸 
𝑡+1 −

𝜕 𝑹 
𝑡

𝜕 𝑽 
𝑡

T

𝝀 
𝑡 ) = (

𝑰 𝟎 𝟎

𝟎 𝟎 𝟎

𝟎 𝟎 𝑰

) 𝜸 
𝑡+1 = (

𝜸
𝝈 

𝑡+1

0

𝜸
𝜶 

𝑡+1

) (6.39) 

□ 

Building upon the two properties mentioned above, the load step reduction 

rules proposed in Section 5.3 can be extended to mixed hardening 

elastoplasticity as follows. 

Elastic load step reduction rule: Given a sequence of load steps L = {1, 2, ..., 

t-1, t, t+1, …, N}, if step t is an intermediate elastic load step, then skip step t as 

the load steps contain only S = {1, 2, ..., t-1, t+1, …, N} will not change the 

sensitivity results. 

Proof:  

Following the same discussion as in Section 5.3, it is suffice to prove 

1. 𝝀L
𝑡 = 0 

2. 𝝀S
𝑛 = 𝝀L

𝑛  and 𝜸S
𝑛 = 𝜸L

𝑛  for 𝑛 ≤ 𝑡 − 1 

3. 𝜸L
𝑡 T 𝜕 𝑯L

𝑡

𝜕𝑠
+ 𝜸L

𝑡+1 T 𝜕 𝑯L
𝑡+1

𝜕𝑠
= 𝜸S

𝑡+1 T 𝜕 𝑯S
𝑡+1

𝜕𝑠
 

The first item is obtained directly from the first property of adjoint variables. 

For the second item, firstly, prove that it holds at 𝑛 =  𝑡 − 1. By substituting 

Eqs.(5.1) and (5.16) into Eq.(6.16), it has 
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𝝀L
𝑡−1 = 𝑲S

𝑡−1
T
 −1 ∙ (

𝜕 𝑯S
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝜸L
𝑡 −

𝜕 𝑯L
𝑡

𝜕 𝑼 𝑡−1

T

𝜸L
𝑡 ) (6.40) 

Using Eq.(5.1) and 𝝀L
𝑡 = 0, it follows from Eq.(6.16) that 

𝜸L
𝑡 = −

𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡

−T
𝜕 𝑯L
𝑡+1

𝜕 𝑽 𝑡

T

𝜸L
𝑡+1  (6.41) 

By substituting Eqs.(6.23) and (6.28) into Eq.(6.41) and using Eq.(5.16), it has 

𝜸L
𝑡 = (

𝑰 0 0
𝐚 
𝑡 T𝑫e −1 0
0 0 𝑰

)(
𝑰 0 0
𝐚 

𝑡+1 T𝑫e 𝑐 𝒅T

0 0 𝑰
) 𝜸L
t+1 = (

𝑰 0 0
( 𝐚 
𝑡+1 T − 𝐚 

𝑡 T)𝑫e −𝑐 −𝒅T

0 0 𝑰
) 𝜸S
𝑡+1  (6.42) 

Step t-1 and step t+1 are adjacent steps in load sequences S. Therefore, using 

Eqs.(6.24) and (6.42), it follows 

𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝜸L
𝑡 = (

𝑰 0 0
𝐚 
𝑡 T𝑫e −1 0
0 0 𝑰

)(
𝑰 0 0

( 𝐚 
𝑡 T − 𝐚 

𝑡+1 T)𝑫e −𝑐 −𝒅T

0 0 𝑰
) 𝜸S
𝑡+1

= (
𝑰 0 0
𝐚 

𝑡+1 T𝑫e 𝑐 𝒅T

0 0 𝑰
) 𝜸S
𝑡+1 =

𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

𝜸S
𝑡+1  

(6.43) 

Additionally, using Eqs.(6.21) and (6.42), it has 

𝜕 𝑯L
𝑡

𝜕 𝑼 𝑡−1

T

𝜸L
𝑡 = −( 𝑩 

𝑡−1 T𝑫e 0 𝟎)(
𝑰 𝟎 𝟎

( 𝐚 
𝑡 T − 𝐚 

𝑡+1 T)𝑫e −𝑐 −𝒅T

𝟎 𝟎 𝑰
) 𝜸S
𝑡+1

= −( 𝑩 
𝑡−1 T𝑫e 0 𝟎) 𝜸S

𝑡 =
𝜕 𝑯S
𝑡+1

𝜕 𝑼 𝑡−1

T

𝜸S
𝑡+1  

(6.44) 

Finally, by substituting Eqs.(6.43) and (6.44) into Eq.(6.40), it yields 

𝝀L
𝑡−1 = 𝑲S

𝑡−1
T
 −1 ∙ (

𝜕 𝑯S
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

−
𝜕 𝑯S
𝑡+1

𝜕 𝑼 𝑡−1

T

) 𝜸S
𝑡+1 = 𝝀S

𝑡−1  (6.45) 

Further, by combining Eqs.(6.16), (6.43), (6.45) and (5.16), it obtains 
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𝛄L
𝑡−1 = −

𝜕 𝑯L
𝑡−1

𝜕 𝑽 𝑡−1

−T

∙ (
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝛄L
𝑡 +

𝜕 𝑹L
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀L
𝑡−1 ) =

= −
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T

∙ (
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

𝜸S
𝑡+1 +

𝜕 𝑹S
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀S
𝑡−1 ) = 𝛄S

𝑡−1  

(6.46) 

From the proof at 𝑛 =  𝑡 − 1 and backward calculation with Eq.(6.16), it can 

be easily derived that 

 𝝀S
𝑛 = 𝝀L

𝑛  and 𝛄S
𝑛 = 𝛄L

𝑛  (𝑓𝑜𝑟 𝑛 ≤ 𝑡 − 2) (6.47) 

Thirdly, from Eqs.(5.14), (6.22) and (6.42), it has 

𝜸L
𝑡 T

𝜕 𝑯L
𝑡

𝜕𝑠
+ 𝜸L

𝑡+1 T
𝜕 𝑯L
𝑡+1

𝜕𝑠
= 𝜸S

𝑡+1 T (
𝑰 𝑫e( 𝐚 

𝑡 − 𝐚 
𝑡+1 ) 𝟎

𝟎 −𝑐 𝟎
𝟎 𝒅 𝑰

)(
𝑫e (

𝜕 𝜺 
𝑡

𝜕𝑠
−
𝜕 𝜺 
𝑡−1

𝜕𝑠
)

0
𝟎

) + 𝜸S
𝑡+1 T(

𝑫e (
𝜕 𝜺 
𝑡+1

𝜕𝑠
−
𝜕 𝜺 
𝑡

𝜕𝑠
)

0
𝟎

)

= 𝜸S
𝑡+1 T

(

 
 𝑫

e
(
𝜕 𝜺 𝑡+1

𝜕𝑠
−
𝜕 𝜺 𝑡−1

𝜕𝑠
)

0
0 )

 
 
= 𝜸S

𝑡+1 T𝜕 𝑯S
𝑡

𝜕𝑠
 

(6.48) 

□ 

Plastic load step reduction rule: Given a sequence of load steps L = {1, 2, ..., 

t-1, t, t+1, …, N}, if step t and step t+1 are both plastic load steps, 𝐚 
𝑡 = 𝐚 

𝑡+1  

and 
d 𝐚 
𝑡

d 𝛔 
𝑡
= 0, then skip step t as the load steps contains only S = {1, 2, ..., t-1, 

t+1, …, N} will not change the sensitivity results. 

Proof:  

The same as in the previous proof, it is suffice to show 

1. 𝝀L
𝑡 = 0 

2. 𝝀S
𝑛 = 𝝀L

𝑛  and 𝜸S
𝑛 = 𝜸L

𝑛  for 𝑛 ≤ 𝑡 − 1 

3. 𝜸L
𝑡 T 𝜕 𝑯L

𝑡

𝜕𝑠
+ 𝜸L

𝑡+1 T 𝜕 𝑯L
𝑡+1

𝜕𝑠
= 𝜸S

𝑡+1 T 𝜕 𝑯S
𝑡+1

𝜕𝑠
 

The first item is directly obtained from the second property of adjoint 

variables. 

The second item will be obtained if it holds at 𝑛 =  𝑡 − 1 . To prove that, 

Substituting Eqs.(5.1) and (5.16) into Eq.(6.16), it has 
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𝝀L
t−1 = 𝑲S

t−1
T
 −1 ∙ (

𝜕 𝑯S
t−1

𝜕 𝑼 t−1

T
𝜕 𝑯S
t−1

𝜕 𝑽 t−1

−T
𝜕 𝑯L
t

𝜕 𝑽 t−1

T

𝜸L
t −

𝜕 𝑯L
t

𝜕 𝑼 t−1

T

𝜸L
t ) (6.49) 

Since step t-1 and step t+1 are two consecutive steps in load sequences S, 

therefore, by combining Eqs.(6.20), (6.21) and the second property of adjoint 

variables, it yields 

𝜕 𝑯L
𝑡

𝜕 𝑼 
𝑡−1

T

𝜸L
𝑡 = −( 𝑩 

𝑡−1 T𝑫e 0 𝟎)(
𝜸𝝈L

𝑡+1

0
𝜸𝜶L

𝑡+1
) = −( 𝑩 

𝑡−1 T𝑫e 0 𝟎)(

𝜸𝝈L
𝑡+1

𝜸𝜀eqv
pL

𝑡+1

𝜸𝜶L
𝑡+1

) =
𝜕 𝑯S
𝑡+1

𝜕 𝑼 
𝑡−1

T

𝜸S
𝑡+1  

(6.50) 

Utilizing Eq.(6.27), it obtains 

𝜕 𝑯L
𝑡

𝜕 𝑽 
𝑡−1

T

𝜸L
𝑡 = (

𝑰 0 0
𝐚 
𝑡 T𝑫e 0 −(1 − 𝛽) 𝐚 

𝑡 T𝑫𝜶

0 0 𝑰
)(

𝜸
𝝈L

𝑡+1

0

𝜸
𝜶L

𝑡+1
)

= (
𝑰 0 0

𝐚 
𝑡 T𝑫e 0 −(1 − 𝛽) 𝐚 

𝑡 T𝑫𝜶

0 0 𝑰
)

(

 

𝜸
𝝈L

𝑡+1

𝜸
𝜀eqv
p

L

𝑡+1

𝜸
𝜶L

𝑡+1
)

 =
𝜕 𝑯S
𝑡+1

𝜕 𝑽 
𝑡−1

T

𝜸
S

𝑡+1  

(6.51) 

Finally, substituting Eqs.(6.50) and (6.51) into Eq.(6.49) yields 

𝝀L
𝑡−1 = 𝑲S

𝑡−1
T
 −1 ∙ (

𝜕 𝑯S
𝑡−1

𝜕 𝑼 𝑡−1

T
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

−
𝜕 𝑯S
𝑡+1

𝜕 𝑼 𝑡−1

T

) 𝜸S
𝑡+1 = 𝝀S

𝑡−1  (6.52) 

 

Further, substituting Eqs.(6.51), (6.52) and (5.16) into Eq.(6.16), it has 

𝛄L
𝑡−1 = −

𝜕 𝑯L
𝑡−1

𝜕 𝑽 𝑡−1

−T

(
𝜕 𝑯L
𝑡

𝜕 𝑽 𝑡−1

T

𝛄L
𝑡 +

𝜕 𝑹L
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀L
𝑡−1 ) =

= −
𝜕 𝑯S
𝑡−1

𝜕 𝑽 𝑡−1

−T

(
𝜕 𝑯S
𝑡+1

𝜕 𝑽 𝑡−1

T

𝜸S
𝑡+1 +

𝜕 𝑹S
𝑡−1

𝜕 𝑽 𝑡−1

T

𝝀S
𝑡−1 ) = 𝛄S

𝑡−1  

(6.53) 

From Eqs.(6.22) and the second property of adjoint variables, the third item 

is obtained 
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𝜸L
𝑡 T

𝜕 𝑯L
𝑡

𝜕𝑠
+ 𝜸L
𝑡+1 T

𝜕 𝑯L
𝑡+1

𝜕𝑠

= (

𝜸
𝝈L

𝑡+1

0

𝜸
𝜶L

𝑡+1

)

T

(
𝑫e (

𝜕 𝜺 
𝑡

𝜕𝑠
−
𝜕 𝜺 
𝑡−1

𝜕𝑠
)

0

0

) +(

𝜸
𝝈L

𝑡+1

𝜸
𝜀eqv
p

L

𝑡+1

𝜸
𝜶L

𝑡+1

)

T

(
𝑫e (

𝜕 𝜺 
𝑡+1

𝜕𝑠
−
𝜕 𝜺 
𝑡

𝜕𝑠
)

0

0

)

= (

𝜸
𝝈S

𝑡+1

𝜸
𝜀eqv
p

S

𝑡+1

𝜸
𝜶S

𝑡+1

)

T

(
𝑫e (

𝜕 𝜺 
𝑡+1

𝜕𝑠
−
𝜕 𝜺 
𝑡−1

𝜕𝑠
)

0

0

) = 𝜸S
𝑡+1 T

𝜕 𝑯S
𝑡+1

𝜕𝑠
 

(6.54) 

□ 

The elastic load step reduction rule, the same as in the case of isotropic 

hardening, applies to all types of elements. The plastic load step reduction rule 

strictly applies to 1D elements. For general 2D and 3D elements, the following 

empirical rule is proposed to reduce the plastic load steps. 

Empirical rule: Given a sequence of load steps L = {1, 2, ..., t-1, t, t+1, …, N}, if 

step t and step t+1 are in a monotonic loading stage, then step t could be 

skipped in the sensitivity analysis. 

Sensitivity analysis following the empirical rule will sacrifice some accuracy 

in exchange for efficiency. Its effectiveness and influence on the accuracy of 

sensitivity are investigated through numerical examples in the following. 

6.4 Demonstration with a 100-bar truss structure 

In this section, the load step reduction rules for mixed hardening 

elastoplasticity are demonstrated through 100-bar truss examples presented 

in Section 5.4. The only difference is that the material is assumed to follow 

mixed hardening rule with a hardening ratio equal to 0.1.  

The load history, comprising a total of 50 load steps, is illustrated in Figure 

6-2. It is the same as the second load case in Section 5.4. This load history 

consists of four stages: the initial loading stage from step 1 to step 10, the fully 

unloading stage from step 11 to step 20, the reverse loading stage from step 

21 to step 35, and finally, the fully unloading stage from step 36 to step 50. In 

comparison with Figure 5-3, where an isotropic hardening model is assumed, 

more steps exhibit plastic behavior here under the mixed hardening model. 
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Figure 6-2. Load history of the 100-bar truss example under mixed hardening 

model. Pentagrams depict the reduced load steps in the sensitivity analysis 

All elastic load steps could be skipped in the sensitivity analysis according to 

the elastic load step reduction rule. In the monotonic loading and reverse 

loading stages, flow vectors remain constant. The former in each pair of 

consecutive plastic steps can be skipped following the plastic load step 

reduction rule. Therefore, only plastic steps 10, 35, and 50 remain in the 

sensitivity analysis. The force directions in these three steps are opposite, 

causing the flow vector of some bars to change direction. Hence, the load steps 

can’t be further reduced. In summary, steps 10, 35, and 50 are necessary in 

the sensitivity analysis. They are highlighted in Figure 6-2 by pentagrams and 

listed in Table 6-1. 

Table 6-1. Reduced load step for the 100-bar truss example with mixed hardening 

elastoplasticity 

Reduced load step Corresponding FEA load step Load (N) 

1 10 10 

2 35 -15 

3 50 0 

The system responses are the vertical displacement at the free end and the 

equivalent plastic strain of an element at the fixed end. The sensitivity results, 

calculated by reduced load steps, are compared with those using all load steps 

in Figure 6-3 (a) and (c). Their relative values are presented in Figure 6-3 (b) 

and (d). They show that the sensitivities with reduced load steps are perfectly 

accurate in this 1D element example. 

50 

35 

10 
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(a) Sensitivity of vertical displacement 

response 

(b) Sensitivity relative value of vertical 

displacement response 

  

(c) Sensitivity of equivalent plastic strain 

response 

(d) Sensitivity relative value of equivalent 

plastic strain response 

Figure 6-3. Sensitivity comparison for the 100-bar truss example with mixed 

hardening elastoplasticity 

6.5 Demonstration with a connecting rod example  

In this section, the applicability of load step reduction rules for mixed 

hardening model is demonstrated through the conrod example in Section 5.6. 

All the setups of the problem are the same except a hardening ratio 0.3 is 

assumed for the material. The load history, identical to that in Section 5.6, is 

depicted in Figure 6-4. It illustrates that, due to the change in the hardening 

model, the elastic and plastic steps in the nonlinear analysis differ. 
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Figure 6-4. Load history on the small end of the conrod with hardening ratio of 0.3. 

Pentagrams depict the reduced load steps. 

According to the elastic load step reduction rule, all intermediate elastic load 

steps are skipped in the sensitivity analysis. Based on the empirical rule, 

plastic steps 2 to step 6, step 11, step 13 to step 15 could be skipped because 

they lie in monotonically loading procedures. The four load steps needed in 

the sensitivity analysis are highlighted by pentagrams in Figure 6-4 and listed 

in Table 6-2. In contrast to the isotropic hardening case, the inclusion of plastic 

step 12 is necessary in this scenario. 

Table 6-2. Reduced load steps in sensitivity analysis with hardening ratio 0.3  

Reduced load step Corresponding FEA load step Load (kN) 

1 7 Fx= 29.7, Fy= -49.5 

2 12 Fx=0.0, Fy= -9.9 

3 16 Fx= -29.7, Fy= -13.9 

4 19 Fx= 0.0, Fy= -19.8 

The three system responses are the same as in Section 5.6, i.e., average 

equivalent plastic strain around critical area, and average x and y 

displacements at the small end. The sensitivities obtained with reduced load 

steps are compared with those using all load steps in Figure 6-5. They show 

that the sensitivities match very well. 

19 
16 

7 

12 
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(a) Sensitivity of average 

equivalent plastic strain 

response 

(b) Sensitivity of average x-

displacement response 

(c) Sensitivity of average 

y-displacement response 

Figure 6-5. Comparison of sensitivity results. In each of these three figures, the 

result with reduced load steps is depicted on the left and result with all load steps 

is presented on the right 

To investigate the influence of the hardening ratio on sensitivity accuracy, the 

percentage errors of sensitivities under isotropic hardening (β=1), kinematic 

hardening (β=0) and mixed hardening with β=0.3 are compared in Table 6-3. 

The errors are calculated by comparing sensitivities using reduced load steps 

to sensitivities obtained with all load steps.  

Table 6-3. Relative error of sensitivities under different hardening ratio  

Response 

Isotropic hardening 

(𝛽 = 1) 

Mixed hardening 

(𝛽 = 0.3) 

Kinematic hardening 

(𝛽 = 0) 

Maximum  

error 

Average  

error 

Maximum  

error 

Average  

error 

Maximum  

error 

Average  

error 

equiv. plastic strain 4.3% 0.3% 5.9% 2.3% 31.3% 6.2% 

x-displacement 1.2% 0.3% 17% 6.5% 19.1% 4.5% 

y-displacement 1.2% 0.2% 28% 10.0% 51.9% 10.3% 

It should be noted that sensitivities are typically used to determine the 

direction in which to update the design variables in gradient-based 

optimization. The directional vector is primarily influenced by relatively large 
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values, while sensitivities with relatively small values are considered less 

important. However, the relative error at these small value points could be 

extremely large due to small denominators, introducing unnecessary noise in 

the assessment of sensitivity accuracy. For this reason, the average and 

maximum relative errors listed in Table 6-3 are evaluated only with 

sensitivities whose absolute values are not less than 1% of the maximum 

absolute value.   

Table 6-3 shows that the levels of accuracy for the mixed hardening model and 

pure kinematic hardening model are similar. The errors under the pure 

isotropic hardening model are the least. The increase in errors in kinematic 

hardening and mixed hardening can be explained by the more severe violation 

of the constant flow vector condition in reducing plastic load steps. Under 

these two models, the flow vectors and their derivatives are not only 

dependent on the stress tensor but also on the back stress tensor. Therefore, 

even in a monotonic loading procedure, the flow vector may change its 

direction more significantly than in the pure isotropic hardening case. 
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7. Adjoint sensitivity analysis and load step reduction for 

finite strain elastoplasticity 

In this chapter, load step reduction rules for finite strain elastoplasticity are 

investigated. The finite strain elastoplasticity analysis is briefly introduced, 

followed by the presentation of adjoint sensitivity formulations. The 

discussion on load step reduction is then extended to this type of problem. 

Applicability and limitations are demonstrated through several examples. 

7.1 Finite strain elastoplasticity 

The extension of the small strain plasticity to the finite strain plasticity is not 

straightforward. The fundamental difference lies in the strain measure and 

how the total deformation is decomposed into elastic and plastic parts.  

In the small strain case, the Green-Lagrangian strain could be used, and the 

total strain is additively decomposed into an elastic and a plastic term. For 

finite strain nonlinearity, the logarithmic strain, or the so-called Hencky strain 

measure, is always employed as a proper measure. The elastic and plastic 

parts are obtained based on the multiplicative decomposition of the total 

deformation gradient.  

Given the total deformation gradient 𝑿0
𝑡 , which is the derivative of deformed 

configuration at step t with respect to the original configuration at step 0, it 

can be decomposed into the multiplication of an elastic deformation gradient 

𝑿e 
𝑡  and a plastic deformation gradient 𝑿p 

𝑡  

 𝑿0
𝑡 = 𝑿e 

𝑡 ∙ 𝑿p 
𝑡  (7.1) 

This multiplicative decomposition is proposed by Lee and Liu [LL67, Lee69], 

and widely accepted in the finite strain elastoplasticity analysis. The elastic 

deformation gradient can further be decomposed through right polar 

decomposition: 

 𝑿e 
𝑡 = 𝑹e 

𝑡 ∙ 𝑼e 
𝑡  (7.2) 
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where 𝑹e 
𝑡  is an orthonormal matrix, referred to as the elastic rotation tensor, 

and 𝑼e 
𝑡  is a symmetric positive-definite matrix, called the elastic right 

stretch tensor. The elastic logarithmic strain is then defined by 

 𝜺e 
𝑡 =

1

2
𝑙𝑛 𝑿e 
𝑡 T

𝑿e 
𝑡 = 𝑙𝑛 𝑼e 

𝑡  (7.3) 

The work-conjugate stress measure of this strain is the rotated Kirchhoff 

stress �̅�  [GB95, CMB11, NEM16]. The constitutive relationship between 

them is 

 �̅� 
𝑡 = 𝑫e 𝜺e 

𝑡  (7.4) 

The rotated Kirchhoff stress is the spatial Kirchhoff stress 𝝉 rotated to the 

intermediate stress-free configuration by 𝑹e 
𝑡 . The spatial Kirchhoff stress is 

eventually obtained by back-rotating �̅� as 

 𝝉 
𝑡 = 𝑹e 

𝑡 �̅� 
𝑡 𝑹e 
𝑡 T

 (7.5) 

The Kirchhoff stress is related to the Cauchy stress 𝝈 through the Jacobian 

determinant of the deformation gradient by: 

 𝝉 
𝑡 = 𝐽 𝝈 

𝑡 = det| 𝑿0
𝑡 | ∙ 𝝈 

𝑡  (7.6) 

The internal force can be obtained by integration either under the deformed 

volume or the initial volume: 

 𝑭int = ∫ 𝑩 
𝑡 𝝈 

𝑡 𝑑𝑣 = ∫ 𝑩 
𝑡 𝝉 

𝑡 𝑑𝑣
 

𝑉0

 

𝑉

 (7.7) 

The nonlinear Newton-Raphson solution procedure for finite strain finite 

element analysis is illustrated in Figure 7-1. In contrast to the small strain case, 

the plastic deformation gradient is an additional quantity to be solved at each 

step. To simplify the discussion, isotropic hardening plasticity is assumed 

initially. The extension to mixed-hardening and kinematic hardening cases 

will be presented in Section 7.5. 
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Figure 7-1. Newton-Raphson solution procedure for finite strain elastoplasticity 

The return mapping algorithm is employed to determine stress, equivalent 

plastic strain, and plastic deformation gradient at step t+1 based on the total 

deformation gradient at t+1 and quantities from the preceding step at t. The 

algorithm's procedure is summarized as follows [EB90, DPR94]: 

Given 𝑿0
𝑡+1 , and quantities of 𝑿p 

𝑡 , 𝜀 
𝑡
eqv
p

, 𝝉
 
𝑡  at previous step t, 

(a) Assume a trial elastic state, i.e. ∆𝜀eqv
p
= 0  and ∆𝜺p = 𝟎 . Obtain the 

trial elastic deformation gradient by 

 𝑿 
𝑡+1

∗
e = 𝑿0

𝑡+1 ∙ 𝑿 
𝑡 p−1 (7.8) 

(b) Perform the right polar decomposition 

Yes 

Update 𝑿 
𝑡+1 p, 𝝉 

𝑡+1 , 𝜀
 

𝑡+1
eqv
p 

 

Calculate 𝑹 = 𝑭
 

𝑡+1 −  𝑭int 

  

 𝑹 <ε 

Obtain 𝑼 
𝑡+1 , 𝑿 

𝑡+1 p, 𝝉 
𝑡+1 , 𝜀

 
𝑡+1

eqv
p 

 

Given quantities at t, 𝑹 = 𝑭
 

𝑡+1 − 𝑭
 
𝑡  

Assume 𝑼 
𝑡+1 = 𝑼

 
𝑡 , 𝑿 

𝑡+1 p = 𝑿 
𝑡 p, 𝝉 

𝑡+1 = 𝝉
 
𝑡 ,  

𝜀
 

𝑡+1
eqv
p 

= 𝜀
 
𝑡
eqv
p 

 

Solve 𝑲 
𝑡+1

T∆𝑼 = 𝑹 to get 𝑼 
𝑡+1  and 𝑿0

𝑡+1  

 

No 

Use return mapping algorithm 
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 𝑿 
𝑡+1

∗
e = 𝑹 

𝑡+1
∗
e ∙ 𝑼 

𝑡+1
∗
e (7.9) 

(c) Calculate the trial elastic logarithmic strain and trial stress 

 𝜺 
𝑡+1

∗
e =

1

2
𝑙𝑛 𝑿 
𝑡+1

∗
eT 𝑿 
𝑡+1

∗
e = 𝑙𝑛 𝑼 

𝑡+1
∗
e (7.10) 

 �̅� 
𝑡+1

∗ = 𝑫
e 𝜺 
𝑡+1

∗
e (7.11) 

(d) Check for the yield condition. If | �̅� 
𝑡+1

∗|eqv − 𝜎 
𝑡
Y
 − 𝐸p ∙ ∆𝜀eqv

p
≤ 0, then 

�̅� 
𝑡+1 = �̅� 

𝑡+1
∗, and the algorithm stops. If not, continues to step (e).  

(e) Calculate the trial associated flow vector: 

 𝐚 
𝑡+1 =

𝑑| �̅� 
𝑡+1

∗|eqv

𝑑 �̅� 
𝑡+1

∗

 (7.12) 

(f) Update the increment equivalent plastic strain and incremental plastic 
stretch 

 ∆𝜀eqv
p

= ∆𝜀eqv
p
+
| �̅� 
𝑡+1

∗|eqv − 𝜎 
𝑡
Y
 − 𝐸p ∙ ∆𝜀eqv

p

𝐚 𝑡+1 ∙ 𝐷e ∙ 𝐚 𝑡+1 T + 𝐸p
 (7.13) 

 ∆𝜺p = ∆𝜀eqv
p
∙ 𝐚 
𝑡+1  (7.14) 

(g) Update trial elastic deformation gradient and trial elastic strain 

 𝑿 
𝑡+1

  
e = 𝑿 

𝑡+1
∗
e𝑒−∆𝜺

p
 (7.15) 

 𝜺 
𝑡+1

 
e =

1

2
𝑙𝑛 𝑿e 
𝑡+1 T

𝑿e 
𝑡+1  (7.16) 

(h) Update trial elastic stress and go back to step (d). 

 �̅� 
𝑡+1 = 𝑫e 𝜺 

𝑡+1
 
e (7.17) 

For moderately large elastic strain, such as those encountered in metal 

plasticity, it has been noted [MB05, CMB11] that Eqs.(7.15) and (7.16) could 

be approximated by 
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 𝜺 
t+1

 
e ≈ 𝜺 

𝑡+1
∗
e − ∆𝜺p (7.18) 

This approximation is exact for isotropic hardening plasticity with associated 

flow rule or combined hardening and kinematic hardening cases where the 

stress and back stress tensors commute [EB90]. Substituting Eq.(7.18) into 

Eq.(7.4), it follows 

 �̅� 
𝑡+1 = 𝑫e𝜺∗

e −𝑫e∆𝜺p (7.19) 

When the return mapping algorithm stops, the following quantities are 

obtained 

 𝝉 
𝑡+1 = 𝑹 

𝑡+1
∗
e ∙ �̅� 

𝑡+1 ∙ 𝑹 
𝑡+1

∗
eT (7.20) 

 𝜀 
𝑡+1

eqv
p

= 𝜀 
𝑡
eqv
p
+ ∆𝜀eqv

p
 (7.21) 

 𝑿 
𝑡+1 p = 𝑒∆𝜺

p
𝑿 
𝑡 p (7.22) 

In Eq.(7.20), the trial elastic rotation tensor is employed to back-rotate the 

stress tensor. Under the associated flow rule, the incremental plastic stretch 

∆𝜺p  and the trial elastic stress tensor 𝑼∗
e

 
t+1  have the same eigenvectors. 

Consequently, it can be verified that the trial elastic rotation tensor 𝑹 
𝑡+1

∗
e 

equals the real elastic rotation tensor 𝑹 
𝑡+1

 
e. 

According to Eq.(7.7), the tangent stiffness matrix at step t is calculated by 

 

𝑲 
𝑡

tan =
𝑑𝑭int

𝑑 𝑼 𝑡
= ∫

𝑑 𝑩 
𝑡

𝑑 𝑼 𝑡
𝝉 
𝑡 𝑑𝑣

 

𝑉0
+∫ 𝑩 

𝑡
𝑑 𝑹 
𝑡
 
e

𝑑 𝑼 𝑡
�̅� 
𝑡 𝑹 
𝑡
 
eT𝑑𝑣

 

𝑉0

+∫ 𝑩 
𝑡 𝑹 

𝑡
 
e𝑫
𝑑 𝜺 
𝑡
∗
e

𝑑 𝑼 𝑡
𝑹 
𝑡
 
eT𝑑𝑣

 

𝑉0
+∫ 𝑩 

𝑡 𝑹 
𝑡
 
e �̅� 
𝑡
𝑑 𝑹 
𝑡
 
eT

𝑑 𝑼 𝑡
𝑑𝑣

 

𝑉0
 

(7.23) 

where the constitutive relation matrix is 

 𝑫 = {
𝑫e                                 (elastic state)

𝑫ep in Eq. (2.27)      (plastic state)
 (7.24) 
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7.2 Adjoint sensitivity analysis with logarithmic strain 

elastoplasticity 

The formulation of adjoint sensitivity with logarithmic strain elastoplasticity 

is derived in this section.  

Firstly, a set of state variables sufficient for deriving other physical quantities 

at each time step should be selected. The selection of state variables is not 

unique. To achieve a less complicated expression in the sensitivity 

formulation, the following four quantities are chosen: displacement, rotated 

Kirchhoff stress, equivalent plastic strain, and the inverse of the plastic 

deformation gradient.  

 𝑼 
𝑡 , 𝑽 

𝑡 ≝ { �̅� 
𝑡 , 𝜀eqv

p
 
𝑡 , 𝑿 

𝑡 p−1} (7.25) 

In comparison with the small strain case in Eq.(4.1), a variable describing 

plastic deformation is included due to the multiplicative decomposition of the 

deformation gradient. 

The adjoint sensitivity formulation can be derived in a manner similar to that 

of the small strain case, employing several governing equations. The 

equilibrium condition serves as one of them: 

𝟎 ≡ 𝑹 
𝑡 ( 𝑼 

𝑡 , 𝑽 
𝑡 , 𝑽 

𝑡−1 , 𝑠) = 𝑭 
𝑡 −∫ 𝑩 

𝑡 𝑹 
𝑒

 
𝑡 �̅� 

𝑡 𝑹 
𝑒

 
𝑡 T

𝑑𝑣
 

𝑉0
  (t = 1,2, … , N)  (7.26) 

As stated in Eq.(7.9), 𝑹 
𝑡

 
e s a function of the total deformation gradient at step 

t and the inverse of the plastic deformation gradient at the previous step t-1. 

Therefore, the residual force is a function of the current displacement and 

state vectors at the current and previous steps. The total derivative of the 

residual force with respect to a design variable is 

 
𝑑 𝑹 
𝑡

𝑑𝑠
=
∂ 𝑹 
𝑡

∂𝑠
+
𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡
∙
𝑑 𝑼 
𝑡

𝑑𝑠
+
𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡
∙
𝑑 𝑽 
𝑡

𝑑𝑠
+
𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡−1
∙
𝑑 𝑽 
𝑡−1

𝑑𝑠
   (7.27) 

Besides the equilibrium condition, according to Eq.(7.19), the stress and 

elastic right stretch tensor follow the relation 
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 �̅� 
𝑡 = 𝑫e𝑙𝑛 𝑼 

𝑡
∗
e −𝑫e ∙ ∆𝜺p 

𝑡  (7.28) 

where the trial elastic stretch tensor is a function of the total deformation 

gradient at step t and inverse of plastic deformation gradient at previous step 

t-1.  

The yield and consistency condition is 

 ( 𝜀eqv
p

 
𝑡 − 𝜀eqv

p
 

𝑡−1 ) ∙ [| �̅� 
𝑡 |eqv − 𝜎Y( 𝜀eqv

p
 
𝑡 )] = 0 (7.29) 

And the inverse plastic deformation gradient is updated by 

 𝑿 
𝑡 p−1 = 𝑿 

𝑡−1 p−1 ∙ 𝑒− ∆𝜺p 
𝑡

 (7.30) 

Eqs.(7.28) to (7.30) form the dependent residual 𝑯 
t , which is identical to zero 

at each load step 

 𝑯 
𝑡 ( 𝑼 

𝑡 , 𝑽 
𝑡 , 𝑽 

𝑡−1 , 𝑠) = (

�̅� 
𝑡 −𝑫e𝑙𝑛 𝑼 

𝑡
∗
e +𝑫e ∙ ∆𝜺p 

𝑡

( 𝜀eqv
p

 
𝑡 − 𝜀eqv

p
 

𝑡−1 ) ∙ [| �̅� 
𝑡 |eqv − 𝜎Y( 𝜀eqv

p
 
𝑡 )]

𝑿 
𝑡 p−1 − 𝑿 

𝑡−1 p−1 ∙ 𝑒− ∆𝜺p 
𝑡

) ≡ 𝟎 (7.31) 

The total derivative of the dependent residual with respect to a design 

variable is 

 
𝑑 𝑯 
𝑡

𝑑𝑠
=
∂ 𝑯 
𝑡

∂𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡
∙
𝑑 𝑼 
𝑡

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
∙
𝑑 𝑽 
𝑡

𝑑𝑠
+
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡−1
∙
𝑑 𝑽 
𝑡−1

𝑑𝑠
 (7.32) 

Then, following the same procedure as in small strain case, the adjoint 

sensitivity formulation of a response 𝑓 is 

 
𝑑𝑓

𝑑𝑠
=
𝜕𝑓

𝜕𝑠
−∑ 𝝀 

𝑡 T
∂ 𝑹 
𝑡

∂s

N

𝑡=1

−∑ 𝜸 
𝑡 T

𝜕 𝑯 
𝑡

𝜕𝑠

N

t=1

 (7.33) 

where the adjoint variables 𝝀 
𝑡  and 𝜸 

𝑡  are obtained by solving the following 

systems of linear equations in a backward manner: 
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(

 
 

𝜕 𝑹 
N

𝜕 𝑼 
N

𝜕 𝑯 
N

𝜕 𝑼 
N

𝜕 𝑹 
N

𝜕 𝑽 
N

𝜕 𝑯 
N

𝜕 𝑽 
N
)

 
 

T

(
𝝀 

N

𝜸 
N ) =

(

 
 

𝜕𝑓

𝜕 𝑼 
N

𝜕𝑓

𝜕 𝑽 
N
)

 
 

 (7.34) 

(

 
 

𝜕 𝑹 
𝑡

𝜕 𝑼 
𝑡

𝜕 𝑯 
𝑡

𝜕 𝑼 
𝑡

𝜕 𝑹 
𝑡

𝜕 𝑽 
𝑡

𝜕 𝑯 
𝑡

𝜕 𝑽 
𝑡
)

 
 

T

(
𝝀 
𝑡

𝜸 
𝑡 ) = −(

0
𝜕 𝑯 
𝑡+1

𝜕 𝑽 
𝑡

)

T

𝜸 
𝑡+1 − (

0
𝜕 𝑹 
𝑡+1

𝜕 𝑽 
t

)

T

 𝝀 
𝑡+1 +

(

 
 

𝜕𝑓

𝜕 𝑼 
𝑡

𝜕𝑓

𝜕 𝑽 
𝑡
)

 
 
 (𝑡 = 𝑁 − 1,… ,1) (7.35) 

The formulation of partial derivatives for the residual force and the dependent 

residual is presented in Appendix B, from which it easily shows that by solving 

Eqs.(7.34) and (7.35), the adjoint variables are 

 𝑲 
𝑡

T ∙ 𝝀 
𝑡 =

𝜕𝑓

𝜕 𝑼 𝑡
−
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡

T
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T

(
𝜕𝑓

𝜕 𝑽 𝑡
−
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

𝜸 
𝑡+1 −

𝜕 𝑹 
𝑡+1

𝜕 𝑽 𝑡

T

𝝀 
𝑡+1 ) (7.36) 

𝜸 
𝑡 =

𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡

−T

(
𝜕𝑓

𝜕 𝑽 𝑡
−
𝜕 𝑯 
𝑡+1

𝜕 𝑽 𝑡

T

𝜸 
𝑡+1 −

𝜕 𝑹 
𝑡+1

𝜕 𝑽 𝑡

T

𝝀 
𝑡+1 −

𝜕 𝑹 
𝑡

𝜕 𝑽 𝑡

T

𝝀 
𝑡 ) (7.37) 

7.3 Load step reduction in the adjoint sensitivity analysis  

In this section, the properties of adjoint variables and load step reduction 

rules for finite strain elastoplasticity are discussed. The assumptions about 

the system response in Eq.(5.1) still apply.  

Firstly, for an intermediate elastic load step, it is the same as in the small strain 

case. 

Property 1. If a load step t is an intermediate elastic load step, then 𝝀 
𝑡 = 𝟎. 

Elastic load step reduction rule: Given a sequence of load steps L = {1, 2, ..., 

t-1, t, t+1, …, N}, if step t is an intermediate elastic load step, then skip step t as 

the load steps contain only S = {1, 2, ..., t-1, t+1, …, N} will not change the 

sensitivity results. 

The theoretical proofs of the property and load step reduction rule can be 

found in [WCB22]. They essentially follow the same idea as in the small strain 
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case, except that the expressions are more complicated due to the logarithmic 

strain measure and the multiplicative decomposition of the total deformation 

gradient. 

At an intermediate plastic step, the adjoint variable 𝝀  could also be zero 

under four conditions. The following property is proved for such a plastic step. 

Property2: If 
𝜕 𝐚 
𝑡

𝜕 �̅� 
𝑡
= 𝟎 , 𝐚 

𝑡 = 𝐚 
t+1 ,  

𝜕 𝑹 
e

 
𝑡+1

𝜕 𝑿 
𝑡 p−1

= 𝟎 , ∆𝜺 
𝑡+1 p  and 𝑿 

𝑡 p  commute, 

then 𝝀 
𝑡 = 𝟎. 

The first two conditions require that the flow vector be in the same direction 

at adjacent load steps, which is the same as in the small strain case. The other 

two conditions require that the elastic rotation tensor should be constant with 

respect to the plastic deformation gradient, and the incremental plastic strain 

should have the same principal directions as the accumulated plastic strain.  

If all these conditions are met, and furthermore, the last two conditions are 

also satisfied in the previous step, then the following plastic load step 

reduction rule is proven in [WCB22]. 

Plastic load step reduction rule: Given a sequence of load steps L={1, 2,.., t-

1, t, t+1,…, N}, if the prerequisites in Property 2 are fulfilled, additionally 
𝜕 𝑹 

e
 
t

𝜕 𝑿 
t−1 p−1

= 𝟎 , ∆𝜺 
t p  and 𝑿 

t−1 p  also commute, then skip step t as the load 

steps contain only S = {1, 2, ..., t-1, t+1, …, N} will not change the sensitivity 

results. 

The plastic load step reduction applies strictly only to 1D element. For general 

types of elements, the following empirical rule is suggested in practice.  

Empirical rule: Given a sequence of load steps L = {1, 2, ..., t-1, t, t+1, …, N}, if 

step t and step t+1 are in a monotonic loading procedure, and the incremental 

plastic flow is in close direction to the accumulated plastic flow, then step t 

can be skipped in the sensitivity analysis. 

The application of the empirical rule in finite strain elastoplasticity is 

demonstrated through several examples in the next section. Additionally, one 

example is presented to show a situation where the load step could not be 

significantly reduced. 
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7.4 Numerical examples 

7.4.1 Cantilever beam under severe bending 

In this example, the 3D cantilever beam is employed once again. The structure 

is depicted in Figure 7-2. A bilinear isotropic hardening material is assumed, 

with a Young’s modulus of 210 GPa, a plastic modulus of 50 GPa, an initial yield 

stress of 235 MPa, and a Poisson’s ratio of 0.3. 

 

Figure 7-2. Cantilever beam structure in size 300mm×15mm×15mm. Red dots are 

design nodes 

Two external forces in the horizontal x-direction and in the vertical y-

direction are applied to the free end of the structure simultaneously. There 

are 11 load steps, as described in Figure 7-3. The downward vertical load 

increases in the first three steps and then decreases gradually. The horizontal 

load in the x-direction increases throughout the procedure. 

Before proceeding to the sensitivity analysis, it is essential to verify the 

accuracy of the primal finite element analysis. Figure 7-4 presents the results 

of the finite element analysis with an in-house code, following the procedure 

outlined in Section 7.1. The x and y displacements at the free end are 

compared with those obtained from ABAQUS. The curves demonstrate that 

the displacements obtained by the in-house solver match perfectly with the 

benchmark results at all load steps. 

 

Fy 

Fx 

X 
Y 
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Figure 7-3. Load history in horizontal and vertical direction on the free end of the 

cantilever beam. Pentagrams depict the reduced load steps in the sensitivity 

analysis  

 

Figure 7-4. Comparison of nodal displacement of finite element analysis using in-

house code and ABAQUS 

The finite element analysis show that all the load steps are plastic. The 

maximum equivalent plastic strain at the last step is 25.2%. The contour of the 

equivalent plastic strain is presented in both initial and deformed 

configurations in Figure 7-5. Areas where the equivalent plastic strain is 

larger than 5% are depicted in red. The deformation shows that the beam 

structure is severely bent under the given loads. 
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Figure 7-5. Contour of the equivalent plastic strain under original and deformed 

configurations  

In the sensitivity analysis, the design variables are the vertical coordinates of 

center nodes on the bottom surface of the beam, as indicated by the red dots 

in Figure 7-2. The two system responses include the maximum equivalent 

plastic strain at the fixed end and the vertical displacement at the free end.  

Under the given load, the structure is undergoing an increasingly bending 

procedure. The plastic flows are all in close directions. According to empirical 

rules, all intermediate load steps of a monotonic loading stage could be 

skipped. Therefore, only step 3, where the vertical load transitions from 

increasing to decreasing, and the last load step must be included in the 

sensitivity analysis. The sensitivity results with only these two steps and 

sensitivities with all load steps are compared in Figure 7-6. Additionally, in 

Figure 7-6, the central finite differencing sensitivities are also presented, 

where a perturbation size of 10-5 mm is adopted. 

The results show that, the adjoint sensitivities match well with finite 

differencing results. Therefore, the adjoint sensitivity analysis procedure is 

demonstrated. 

The results also show that, from a real value point of view, the sensitivities 

with reduced load steps match well with those using all load steps. Therefore, 

the empirical rule also applies to finite strain.  

 

Y 

X 
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(a) Sensitivity of vertical displacement (b) Relative sensitivity of vertical 

displacement 

  

(c)  Sensitivity of equivalent plastic strain (d) Relative sensitivity of equivalent 

plastic strain 

Figure 7-6. Comparison of sensitivity results using all load steps and using only the 

reduced load steps (step3+step11)  

From a relative value perspective, it shows that the error increases 

significantly as we approach the free end of the beam. This increase in error is 

partially due to the sensitivities near the free end being close to zero. As a 

result, the relative error is calculated with a smaller denominator, leading to 

its amplification. After filtering out sensitivities whose absolute values are 

smaller than 1% of the maximum sensitivity, the sensitivity errors for both 

responses are summarized in Table 7-1. The average errors are smaller than 

3%, demonstrating a good match of sensitivities when the load steps are 

reduced. 
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Table 7-1. Error of sensitivities of the cantilever beam example 

Response Maximum error Average error 

Vertical displacement 15% 2.3% 

Eqv. plastic strain 11% 0.8% 

7.4.2 Cantilever beam under severe bending and twisting 

One of the requirement of the empirical rule is that the incremental plastic 

flow should be in close direction to the accumulated plastic flow. Due to the 

vagueness of this statement, it is worth presenting an example to illustrate a 

scenario where the load steps can't be reduced, even under a monotonic 

loading procedure.  

In this example, the cantilever beam structure is still used. The horizontal and 

vertical load history are depicted in Figure 7-7. In addition to these two forces, 

a constant force of 2kN is applied at the free end in the horizontal z direction.  

 

Figure 7-7. Load history for cantilever beam under bending and twisting. 

Pentagrams depict the reduced load steps in the sensitivity analysis  

The deformation of the beam at representative load steps are depicted Figure 

7-8 with contour of equivalent plastic strain. All twenty load steps are plastic 

steps. The maximum equivalent plastic strain at the final step is 36.3%. Areas 

with equivalent plastic strain larger than 5% are depicted in red. The 

deformations show that the beam slightly bends out of the x-y plane at the 

beginning under the force in the z direction. After a large enough plastic strain 
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is accumulated at the fixed end, the out-of-plane load causes the beam to twist 

severely.  

   

(a) Step 3 (b) Step 13 (c) Step 14 

   

(d) Step 15 (e) Step 16 (f) Step 17 

   

(g) Step 18 (h) Step 19 (i) Step 20 

Figure 7-8. Deformation and contour of equivalent plastic strain at representative 

load steps of cantilever beam example under severe bending and twisting 

According to the empirical rule, the turning points between monotonic 

loading procedures should be included in the sensitivity analysis. These points 

are at step 3, step 13, and step 20. During the twisting of the beam, the 

principal directions of stress change significantly. This leads to a change in the 

directions of the associated plastic flow. Therefore, the prerequisite of the 

empirical rule is violated. Consequently, from step 15 onward, all steps must 

be included in the sensitivity analysis, even if they are part of a monotonic 

loading procedure. The load steps in the sensitivity analysis must include step 

3, step 13, and steps 15 to 20, as depicted by pentagrams in Figure 7-8. These 

reduced load steps are also listed in Table 7-2. 

X 

Y 

Z 
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Table 7-2. Reduced load steps for cantilever beam under severe bending and 

twisting 

Reduced load step Corresponding FEA load step Load (kN) 

1 3 Fx=16, Fy=200, Fz=2 

2 13 Fx=80, Fy=0, Fz=2 

3 15 Fx=40, Fy=-40, Fz=2 

4 16 Fx=30, Fy=-50, Fz=2 

5 17 Fx=25, Fy=-55, Fz=2 

6 18 Fx=20, Fy=-60, Fz=2 

7 19 Fx=0, Fy=-80, Fz=2 

8 20 Fx=-20, Fy=-100, Fz=2 

The sensitivity of vertical displacement response is presented in Figure 7-9. 

The results obtained with reduced load steps (blue dashed line) perfectly 

match those obtained with all load steps (red straight line). The maximum 

percentage error is 2.0%, and the average error is 1.1%. 

 

Figure 7-9. Sensitivity of vertical displacement response 

To demonstrate the necessity of step 15 to step 19 in the sensitivity analysis, 

results of several trials are also presented in Figure 7-9. In each of these 

results, the reduced load steps in Table 7-2 are used except that one additional 

step between 15 and 19 is skipped. The results show that if any step between 

15 and 19 is skipped in the sensitivity analysis, the sensitivity will be incorrect 

or have significant errors. 
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7.4.3 Demonstration with a connecting rod example  

In this section, the load step reduction rules are demonstrated using the 

conrod example. The structure is identical to that shown in Figure 5-16. The 

load history on the small end of the conrod is depicted in Figure 7-10, with 

force magnitudes intentionally exaggerated to represent an extreme load case 

during engine failure.  

 

Figure 7-10. Load history on the small end of the conrod. Pentagrams depict the 

reduced load steps in the sensitivity analysis 

The contour of the equivalent plastic strain at the final step is presented in 

both the initial and deformed configurations in Figure 7-11. The maximum 

equivalent plastic strain is 22.3%. Areas where the equivalent plastic strain is 

larger than 10% are depicted in red. 
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Figure 7-11. Equivalent plastic strain of the connecting rod at the last load step 

According to nonlinear analysis, steps 2 to 7 and step 16 are considered plastic, 

while the remaining load steps are elastic. Following the rule for reducing 

elastic load steps, all elastic loads are skipped in the sensitivity analysis, 

except for step 19. According to the empirical rule, plastic steps 2 to 6 are also 

omitted since they follow a monotonic loading procedure. The three load steps 

that must be included in the sensitivity analysis are highlighted by 

pentagrams in Figure 7-10 and listed in Table 7-3.  

Table 7-3. Reduced load steps for finite strain conrod example  

Reduced load step Corresponding FEA load step Load (kN) 

1 7 Fx= 240kN, Fy= -200kN 

2 16 Fx= -240kN, Fy= -56kN 

3 19 Fx= 0kN, Fy= -80kN 

Three system responses are defined the same as in Section 5.6, i.e., average 

equivalent plastic strain around the critical area, and average x and y 

displacement of the small end. The sensitivities calculated with reduced load 

steps are compared with those using all load steps in Figure 7-12. All of them 

show that the results match very well.  

Max. equivalent 

plastic strain point 

and critical area 
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(a) Sensitivities of 

average equivalent 

plastic strain around 

critical point 

(b) Sensitivities of 

average x-displacement 

response 

(c) Sensitivities of average 

y-displacement 

response 

Figure 7-12. Comparison of sensitivity results of three system responses. In each 

subfigure, the result with reduced load steps is depicted on the left and the result 

using all load steps is presented on the right 

The relative error of sensitivities is calculated and summarized in Table 7-4. 

It should be mentioned that, in order to eliminate the effect of small 

denominators, sensitivities with an absolute value less than 1% of the 

maximum sensitivity are ignored. 

Table 7-4. Relative errors of sensitivities for the finite strain conrod example  

Response Maximum error Average error 

Equivalent plastic strain 25% 8.5% 

x-displacement 19% 6.6% 

y-displacement 8.7% 4.6% 

In comparison with the small strain case in Table 5-9, the relative errors are 

generally larger. However, the average relative errors of sensitivities for all 

three responses are still less than 10%. Therefore, the load step reduction 

rules still apply well for finite strain elastoplasticity.  
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7.5 Extension to finite strain elastoplasticity with mixed-

hardening model 

In this section, a brief discussion demonstrates that the reduction rules for 

finite strain elastoplasticity can be extended to the mixed-hardening model.  

For the mixed hardening model, an additional state variable and governing 

equation should be introduced for the back stress. Denote the back stress 

under stress-free configuration by �̅�. The following five quantities are taken 

as state variables in this case: displacement, rotated Kirchhoff stress, 

equivalent plastic strain, inverse of plastic deformation gradient and the 

rotated back stress:  

 𝑼 
𝑡 , 𝑽 

 𝑡 = { �̅� 
𝑡 , 𝜀 

𝑡
eqv
p 
, 𝑿 
𝑡 p−1, �̅� 

𝑡 } (7.38) 

For bilinear mixed hardening elastoplasticity, the yield surface is 

 | �̅� 
𝑡 − �̅� 

𝑡 |eqv = 𝜎 
 0

𝑌
 + 𝛽 ∙ 𝐸p ∙ 𝜀 

𝑡
eqv
p

 (7.39) 

The rotated back stress of two consecutive steps follows 

 �̅� 
𝑡 = �̅� 

𝑡−1 + (1 − 𝛽) ∙ 𝑫α ∙ ( 𝜀 
𝑡
eqv
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𝑡−1

eqv
p 
) 𝐚 
𝑡  (7.40) 

The dependent residual defined by governing equations are 
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≡ 𝟎 (7.41) 

There are no changes in the adjoint sensitivity analysis, as in the isotropic 

hardening model. The two properties and two load steps reduction rules 

presented in Section 7.3 can be proven following the same procedures. 

Additionally, the same empirical rule is proposed to reduce plastic load steps 

in the sensitivity analysis. 
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The following example demonstrates the applicability of the empirical rule for 

the kinematic hardening case. In this example, the same conrod model as in 

Section 7.4.3 is employed and a hardening ratio 𝛽 = 0 is assumed. The load 

history on the small end of the conrod is depicted in Figure 7-13, which is the 

same as the isotropic hardening case in Section 7.4.3. However, it shows that 

all the load steps behave plastically with the kinematic hardening material 

model. 

 

Figure 7-13. Load history on the small end of the conrod with kinematic hardening 

model. Pentagrams depict the reduced load steps in the sensitivity analysis. 

Before entering the sensitivity analysis, the accuracy of the primal finite 

element analysis is validated. Figure 7-14 presents the results of the finite 

element analysis using in-house code. The x and y displacements at the small 

end are compared with those obtained from ABAQUS. The curves show that 

the displacements obtained by the in-house solver match perfectly with the 

ABAQUS results at all load steps. 
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Figure 7-14. Comparison of nodal displacement of finite element analysis with in-

house code and ABAQUS 

The deformation and equivalent plastic strain at turning points of the load 

history are depicted in Figure 7-15. Areas where the equivalent plastic strain 

is larger than 20% are shown in red. The maximum equivalent plastic strain 

at the final step is 73%. This indicates that the structure undergoes severe 

back-and-forth bending under the given load history. 

    

(a) Step 7 (b) Step 12 (c) Step 16 (d) Step 19 

Figure 7-15. Deformation and contour of equivalent plastic strain at representative 

load steps of conrod example under kinematic hardening model 

According to the empirical rule, sensitivity analysis should involve all turning 

steps: step 7, step 12, step 16, and step 19. In contrast to the isotropic 

hardening case, step 12 is an additional step. This is due to step 12 being a 

plastic step under the kinematic hardening model. The sensitivity results of 

equivalent plastic strain at the critical area are presented in Figure 7-16. 
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Figure 7-16. Sensitivity results of equivalent plastic strain response 

It shows that the sensitivity analysis with reduced load steps matches well 

with results using all load steps. Excluding sensitivities whose absolute value 

is smaller than 1% of the largest value, the maximum percentage error is 41%, 

with an average error of only 3.6%. The point with the maximum percentage 

error is also identified in Figure 7-16. This figure illustrates that the large 

error is partially due to the small denominator in the calculation. Therefore, 

the applicability of the empirical rule to finite strain elastoplasticity with a 

kinematic hardening model is demonstrated. 
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8. Conclusion and outlook 

In this dissertation, techniques for the efficient and accurate adjoint 

sensitivity analysis of nonlinear finite element systems, specifically for 

geometric nonlinearity and elastoplasticity, are investigated. 

Based on the secant stiffness matrix of a geometric nonlinear system, the 

accuracy issue of semi-analytical adjoint sensitivity is discussed. The 

inaccuracy is shown to be dependent on the deformation form, primarily 

attributable to element rotation. An analytical expression for a correction 

term is formulated to address this issue while minimizing additional 

computational costs.  

Numerical results under different conditions show that the correction term 

effectively eliminates errors. It improves the stability of sensitivity results 

with respect to the perturbation size in semi-analytical approximation. When 

applied to different system responses, including reaction force and stress, the 

approach yields a similar degree of accuracy. Examples also demonstrate that 

sensitivity accuracy after correction is independent of the degree of 

nonlinearity. Therefore, the presented correction term is applicable to 

problems with extremely severe geometric nonlinearity. The effectiveness of 

the presented sensitivity analysis is also demonstrated in typical geometric 

nonlinear optimization problems by integrating it into the TOSCA non-

parametric shape optimization module.  

Adjoint sensitivity analysis with simultaneous elastoplasticity and geometric 

nonlinearities is another focus of the study. The adjoint variables must be 

solved backwardly because of the path-dependency of the problem. Both 

computational and storage costs thus grow linearly with the total number of 

load steps. To improve efficiency, this thesis attempts to provide a thorough 

answer regarding when and which load steps could be reduced in the 

sensitivity analysis. 

Firstly, several properties of adjoint variables are theoretically proven for the 

isotropic hardening model. Based on these properties, it is theoretically 

shown that, without loss of accuracy, intermediate elastic load steps can be 

skipped in the sensitivity analysis. In a monotonic loading stage, the former of 

two adjacent plastic steps can also be skipped. Following these findings, the 
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total number of load steps required in the sensitivity analysis could be 

significantly reduced. Both theoretical discussions and numerical examples on 

bar truss structures with typical load histories show that these strategies are 

exact for 1D elements. Multiple examples with tetrahedral elements are also 

presented under complex load histories. They demonstrate that, for general 

3D elements, the load step reduction rules are both sufficient and necessary 

to obtain sensitivities with high efficiency and accuracy. 

The proposed load step reduction rules are then extended to mixed-hardening 

and kinematic hardening models. Theoretical proofs and numerical examples 

demonstrate their applicability.  

Last but not least, the discussion extends to large strain elastoplasticity, where 

logarithmic strain and the multiplicative decomposition of the deformation 

gradient are commonly adopted. The prerequisites for load step reduction in 

large strain cases are more stringent. Numerical examples demonstrate that if 

the incremental plastic flow aligns closely with the accumulated plastic flow, 

as expected, some plastic steps can still be reduced. Conversely, as anticipated, 

a counterexample illustrates that when the directions of plastic flow continue 

to change, the load steps should not be reduced in the sensitivity analysis. 

As a direct extension of this work, the load step reduction for contact 

nonlinearity is worth investigating. How to integrate the developed procedure 

into commercial finite element codes, especially when state variables are not 

fully available, could be a challenging topic. In optimization applications, how 

the insignificant loss of sensitivity accuracy influences the optimization 

performance is an important topic. What’s more, the application of the load 

step reduction to sensitivity analysis in topology optimization is also 

interesting. 



 

 135  

 

Bibliography 

[BB79] K. J. Bathe, S. Bolourchi, Large displacement analysis of three-

dimensional beam structures, International Journal for Numerical Methods in 

Engineering, Vol. 14(7), pp.961-986, 1979.  

[BCH88] B. Barthelemy, C.T. Chon, R.T. Haftka, Accuracy problems associated 

with semi-analytical derivatives of static response, Finite Elements in Analysis 

and Design, Vol. 4(3), pp.249–65, 1988. 

[BFD08] K.-U. Bletzinger, M. Firl, F. Daoud, Approximation of derivatives in 

semi-analytical structural optimization, Computers & Structures, Vol. 86(13-

14), pp.1404–16, 2008. 

[BK97] H. de Boer, F. van Keulen, Error analysis of refined semi-analytical 

design sensitivities, Structural Optimization 14, pp.242-247, 1997.  

[BK00] H. de Boer, F. van Keulen, Refined semi-analytical design sensitivities, 

International Journal of Solids and Structures, Vol. 37(46–47), pp.6961–80, 

2000. 

[Car05] J. Barradas Cardoso, Structural Design Sensitivity Analysis of Elasti-

Plastic History-Dependent Response, 6th World Congress of Structural and 

Multidisciplinary Optimisation, Rio de Janeiro, 30 May-03 June 2005, Brazil.  

[CD00] K.K. Choi, W. Duan , Design sensitivity analysis and shape optimization 

of structural components with hyperelastic material, Computer Methods in 

Applied Mechanics and Engineering, Vol.187(1-2), pp.219-243, 2000.  

[CFC+03] S. H. Chung, L. Fourment, J. L. Chenot, S. M. Hwang, Adjoint state 

method for shape sensitivity analysis in non-steady forming 

applications, International Journal for Numerical Methods in 

Engineering, Vol.57(10), pp.1431–1444, 2003.  

[CG95] A. Chattopadhyay, R. Guo, Structural design sensitivity analysis for 

composites undergoing elastoplastic deformation, Mathematical and 

Computer Modelling, Vol.22(2), pp.83-105, 1995.  

[CG96] W. F. Chen, Y. Goto, Stability Design of Semi-Rigid Frames, Volume 1. 

New York: John Wiley & Sons, Inc., 1996.  

http://www.sciencedirect.com/science/article/pii/S0045782599001218
http://www.sciencedirect.com/science/article/pii/S0045782599001218
http://www.sciencedirect.com/science/article/pii/089571779500113G
http://www.sciencedirect.com/science/article/pii/089571779500113G


 

 136  

 

[CK05a] K.K. Choi, N.H. Kim, Structrual Sensitivity Analysis and Optimization 

1: Linear System, New York, Springer, 2005. 

[CK05b] K.K. Choi, N.H. Kim, Structrual Sensitivity Analysis and Optimization 

2: Nonlinear Systems and Applications, New York, Springer, 2005. 

[CMB11] M.A.Caminero, F.J.Montáns and K.J.Bathe, Modeling large strain 

anisotropic elasto-plasticity with logarithmic strain and stress measures, 

Computers & Structures, Vol 89, pp.826-843, 2011. 

[CO93] G. Cheng, N. Olhoff, Rigid body motion test against error in semi-

analytical sensitivity analysis, Computers & Structures, Vol. 46(3), pp.515–27, 

1993. 

[Cr00] M. A.Crisfield, Non-linear finite element analysis of solids and 

structures Vol.1: Essentials, John Wiley & Sons Ltd, 2000. 

[DPR94] E.N.Dvorkin, D.Pantuso and E.A.Repetto, A finite element formulation 

for finite strain elasto-plastic analysis based on mixed interpolation of 

tensorial components, Computer Methods in Applied Mechanics and 

Engineering, Vol. 114, pp.35-54, 1994. 

[EB90] A.L.ETEROVIC and K.J.Bathe, A hyperelastic-based large strain elasto-

plastic constitutive formulation with combined isotropic-kinematic hardening 

using the logarithmic stress and strain measures, International Journal for 

Numerical Methods in Engineering, Vol. 30, pp.1099-1114, 1990. 

[Fi10] M. Firl, Optimal Shape Design of Shell Structures, PhD Dissertation, 

Lehrstuhl für Statik, Technischen Universität München, 2010. 

[GB95] G.Gabriel and K.J.Bathe, Some computational issues in large strain 

elasto-plastic analysis, Computers & Structures, Vol.56, Iss.2/3, pp.249-267, 

1995. 

[GCE+09] Q. Gu, J.P. Conte, A. Elgamal, Z. Yang, Finite element response 

sensitivity analysis of multi-yield-surface J2 plasticity model by direct 

differentiation method, Computer Methods in Applied Mechanics and 

Engineering, Vol. 198(30-32), pp.2272-2285, 2009. 

[HA89] R.T. Haftka, H.M. Adelman, Recent developments in structural 

sensitivity analysis, Structural Optimization, Vol. 1(3), pp.137-51, 1989.  

http://www.sciencedirect.com/science/article/pii/S0045782509000784
http://www.sciencedirect.com/science/article/pii/S0045782509000784
http://www.sciencedirect.com/science/article/pii/S0045782509000784


 

 137  

 

[HM10] A. Habibi, H. Moharrami , Nonlinear sensitivity analysis of reinforced 

concrete frames, Finite Elements in Analysis and Design, Vol. 46(7), pp.571-

585, 2010. 

[Hi95] T. Hisada, Recent Progress in Sensitivity Nonlinear FEM-Based 

Sensitivity Analysis, JSME Intemationa Journal, SeriesA, VoL 38(3), 1995, pp. 

301-310.  

[Ho05] S. Holopainen, Parameter sensitivity of anisotropic elasto-plastic shell, 

6th World Congress on Structural and Multidisciplinary Optimization, Rio de 

Janeiro, 2005, Brazil. 

[HSM15] G.A. Haveroth, J. Stahlschmidt, P.A. Muñoz-Rojas, Application of the 

Complex Variable Semi-analytical Method for Improved Displacement 

Sensitivity Evaluation in Geometrically Nonlinear Truss Problems, Latin 

American Journal of Solids and Structures, Vol.12(5), pp. 980-1005, 2015. 

[KAH+97] M. Kleiber, H. Antunez, T. D. Hien, P. Kowalczyk, Parameter 

Sensitivity in Nonlinear Mechanics, Theory and Finite Element Computations. 

Wiley: New York, 1997.  

[Kam11] M. M. Kaminski, Structural sensitivity analysis in nonlinear and 

transient problems using the local response function technique, Structural 

and Multidisciplinary Optimization, Vol. 43, pp. 261—274, 2011. 

[KB98] F. van Keulen, H. de Boer, Rigorous improvement of semi-analytical 

design sensitivities by exact differentiation of rigid body motions, 

International Journal for Numerical Methods in Engineering, Vol. 42(1), pp. 

71–91, 1998. 

[KCC00] N.H. Kim, K.K. Choi, J.S. Chen, Shape Design Sensitivity Analysis and 

Optimization of Elasto–Plasticity with Frictional Contact, AIAA Journal, Vol. 

38(9), September 2000. 

[KH98] P. Kolakowski, J. Holnicki-Szulc, Sensitivity Analysis of Truss 

Structures,  International Journal for Numerical Methods in 

Engineering, Vol.43, pp.1085-1108, 1998. 

[KHK05] F. van Keulen, R.T. Haftka, N.H. Kim, Review of options for structural 

design sensitivity analysis Part 1: Linear systems, Computer Methods in 

Applied Mechanics and Engineering, 194 (30-33), pp. 3213–43, 2005. 

http://www.sciencedirect.com/science/article/pii/S0168874X10000247
http://www.sciencedirect.com/science/article/pii/S0168874X10000247


 

 138  

 

[KK96] M. Kleiber, P. Kowalczyk, Sensitivity analysis in plane stress elasto-

plasticity and elasto-viscoplasticity, Computer Methods in Applied Mechanics 

and Engineering, Vol.137(3-4), pp.395-409, 1996.  

[KK99] P. Kowalczyk, Michal Kleiber, Shape sensitivity in elasto-plastic 

computations, Computer Methods in Applied Mechanics and Engineering, Vol. 

171, pp. 371-386, 1999. 

[Köb15] J. Köbler, Adjungierte Sensitivitätsberechnung und 

Gestaltoptimierung von Materialien mit nicht-linearem und plastischem 

Verhalten, Master Thesis, Institut für Technische Mechanik, Karlsruhe Institut 

für Technology, 2015. 

[KWH07] P. Kołakowski, M. Wiklo, J. Holnicki-Szulc, The virtual distortion 

method—a versatile reanalysis tool for structures and systems, Structural and 

Multidisciplinary Optimization, Vol. 36, pp. 217-234, 2008. 

[Lee69] E. H. Lee, Elastic plastic deformation at finite strain, Journal of Applied 

Mechanics, Vo. 36, pp. 1-6, 1969. 

[LL67] E. H. Lee and D. T. Liu, Finite strain elastic-plastic theory with 

application to plane-wave analysis, Journal of Applied Physics, Vol. 38, pp. 17-

27, 1967. 

[LYL04] T. H. Lee, J. H. Yoo and M. U. Lee, Refined Semi-analytical Design 

Sensitivity Analysis with Commercial Finite Element Package, 10th 

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, 

New York, 2004. 

[MB05] F. J. Montáns, K. J. Bathe, Computational issues in large strain elasto-

plasticity: an algorithm for mixed hardening and plastic spin. International 

Journal for Numerical Methods in Engineering, Vol. 63(2), pp. 159–196, 2005. 

[MFG+15] A. Montoya, R. Fielder, A. Gomez-Farias, H.Millwater, Finite-

Element Sensitivity for Plasticity Using Complex Variable Methods, Journal of 

Engineering Mechanics, Vol.141(2), 2015. 

[Mle92] H. P. Mlejnek, Accuracy of semi-analytical sensitivities and its 

improvement by the "natural method", Structural Optimization, Vol.4(2), pp. 

128-131, 1992.  

[MNF03] K. Maute, M. Nikbay, C. Farhat, Sensitivity analysis and design 

optimization of three-dimensional non-linear aeroelastic systems by the 

http://www.sciencedirect.com/science/article/pii/S0045782596010729
http://www.sciencedirect.com/science/article/pii/S0045782596010729


 

 139  

 

adjoint method, International Journal for Numerical Methods in 

Engineering, Vol.56(6), pp. 911-933, 2003.  

[MOM98] A. Morán, E. Oñate, J. Miquel, A general procedure for deriving 

symmetric expressions for the secant and tangent stiffness matrices in finite 

element analysis, International Journal for Numerical Methods in Engineering, 

Vol. 42, pp. 219-236, 1998. 

[MSS05] R. Meske , J. Sauter, E. Schnack, Nonparametric gradient-less shape 

optimization for real-world applications, Structural and Multidisciplinary 

Optimization, Vol. 30(3), pp. 201-218, 2005.  

[MTV94] P. Michaleris, D. A. Tortorelli, C.A. Vidal, Tangent operators and 

design sensitivity formulations for transient non-linear coupled problems 

with applications to elastoplasticity, International Journal for Numerical 

Methods in Engineering, Vol. 37(14), pp. 2471–2499, 1994.  

[MWB+13] H. Millwater, D. Wagner, A. Baines and K. Lovelady, Improved 

WCTSE method for the generation of 2D weight functions through 

implementation into a commercial finite element code., Engineering Fracture 

Mechanics, Vol. 109, pp. 302-309, 2013. 

[NEM16] Neff P, Eidel B, Martin R, Geometry of logarithmic strain measures in 

solid mechanics. Archive for Rational Mechanics and Analysis, Vol. 222, pp. 

507-572, 2016. 

[No12] Nonlinear Finite Element Methods (textbook), Department of 

Aerospace Engineering Sciences, University of Colorado at Boulder, 2012.  

[NQR98] D.T. Nguyen, R. Qamar, H. Runesha, Automatic differentiation for 

design sensitivity analysis of structural systems using parallel-vector 

processors, Advances in Engineering Software, Vol.29(3–6), pp.375–382, 

1998. 

[OA94] M. Ohsaki, J. S. Arora, Design Sensitivity Analysis of Elastoplastic 

Structures, International Journal for Numerical Methods in Engineering, Vol. 

37, pp. 737-762, 1994.  

[Oñ91] E. Oñate, Formulation of a secant stiffness matrix for geometrically 

nonlinear finite element analysis, Nonlinear Engineering Computations, 

Swansea, U.K.: Pineridge Press, pp. 87–95, 1991. 



 

 140  

 

[Oñ95] E. Oñate, On the derivation and possibilities of the secant stiffness 

matrix for nonlinear finite element analysis, Computational Mechanics, Vol. 

15(6), pp. 572–593, 1995.  

[OOM+86] E. Oñate, J. Oliver, J. Miquel, B. Suárez, A Finite element formulation 

for geometrically nonlinear problems using a secant matrix, Computational 

Mechanics, Tokyo: Springer-Verlag, pp. 563-570, 1986.  

[ORL93] N. Olhoff, J. Rasmussen, E. Lund, A method of “exact” numerical 

differentiation for error elimination in finite-element-based semi-analytical 

shape sensitivity analyses, Mechanics of Structures and Machines, Vol. 21(1), 

pp. 1–66, 1993. 

[PC99a] Y.H. Park and K.K. Choi, Shape design sensitivity analysis of 

eigenvalues using “exact” numerical differentiation of finite element matrices, 

Structural Optimization, Vol. 8, pp. 52-59, 1994.  

[PC99b] Y.H. Park and K.K. Choi, Shape design sensitivity analysis of nonlinear 

2-D solids with elasto-plastic material, Structural Optimization, Vol. 18, pp. 

236-246, 1999.  

[PCR89] P. Pedersen, G. Cheng, J. Rasmussen, On accuracy problems for semi-

analytical sensitivity analysis, Mechanics of Structures and Machines, Vol. 

17(3), pp. 373–84, 1989. 

[Pe03a] C.B.W. Pedersen, Topology optimization of 2D-frame structures with 

path-dependent response, International Journal for Numerical Methods in 

Engineering, Vol. 57(10), pp. 1471-1501, 2003. 

[Pe05] P. Pedersen, Analytical stiffness matrices with Green–Lagrange strain 

measure, International Journal for Numerical Methods in Engineering, Vol. 

62(3), pp. 334–52, 2005.  

[Pe06] P. Pedersen, Analytical stiffness matrices for tetrahedral elements, 

Computer Methods in Applied Mechanics and Engineering, Vol. 196(1-3), pp. 

261–278, 2006. 

[Pe08] P. Pedersen, The basic matrix approach for three simple finite 

elements (working print), 2008. 

[PM06] J. M. Pajot, K. Maute, Analytical sensitivity analysis of geometrically 

nonlinear structures based on the co-rotational finite element method , 

Finite Elements in Analysis and Design, Vol. 42(10), pp. 900-913, 2006.  



 

 141  

 

[PRA93] M. J. Poldneff, I. S. Rai, J.S. Arora, Implementation of Design Sensitivity 

Analysis for Nonlinear Elastic Structures, AIAA Journal, Vo. 31(11), pp. 2137–

2142, 1993. 

[QL10] G.Y. Qiu, X.S. Li, A note on the derivation of global stress constraints, 

Structural and Multidisciplinary Optimization, Vol. 40(1), pp. 625-628, 2010. 

[RHW+85] Y.S. Ryu, M. Haririan, C.C. Wu and J.S Arora, Structural design 

sensitivity analysis of nonlinear response, Computers & Structures, Vol. 21, pp. 

245-255, 1985. 

[SC02] N. Stander, K.J. Craig, Response surface and sensitivity-based 

optimization in LS-OPT: a benchmark study, 7th International LS-DYNA Users 

Conference, Michigan, US, 2002. 

[Sch01] S. Schwarz, Sensitivitätsanalyse und Optimierung bei nichtlinearem 

Strukturverhalten, Doktor Dissertation, Institut für Baustatik, Universität 

Stuttgart, 2001.  

[SH98] J. C. Simot, TJ.R. Hughes, Computational Inelasticity, Springer-Verlag 

New York, 1998.  

[SKD02] S. Stupkiewicz, J. Korelc, M. Dutko and T. Rodi, Shape sensitivity 

analysis of large deformation frictional contact problems, Computer Methods 

in Applied Mechanics and Engineering, Vol. 191, pp. 3555–3581, 2002. 

[Sm03] D. E. Smith, Design sensitivity analysis and optimization for polymer 

sheet extrusion and mold filling processes, International Journal for 

Numerical Methods in Engineering, Vol. 57(10), pp. 1381-1411, 2003.  

[SMR01] S. Schwarz, K. Maute, E. Ramm, Topology and shape optimization for 

elastoplastic structural response, Computer Methods in Applied Mechanics 

and Engineering, Vol. 190(15–17), pp. 2135–2155, 2001. 

[SR01] S. Schwarz, E. Ramm, Sensitivity analysis and optimization for non-

linear structural response, Engineering Computations, Vol. 18(3/4), pp. 610–

641, 2001. 

[ST94] C.O. Spivey, D. A. Tortorelli, Tangent operators, sensitivity expressions, 

and optimal design of non-linear elastica in contact with applications to beams, 

International Journal for Numerical Methods in Engineering, Vol. 37, pp. 49-

73, 1994. 



 

 142  

 

[TA90] J.J. Tsay, J.S. Arora, Nonlinear structural design sensitivity analysis for 

path dependent problems. Part 1: General theory, Computer Methods in 

Applied Mechanics and Engineering, Vol. 81(2), pp. 183-208, 1990. 

[VH93] A.A. Vidal, R.B. Haber, Design sensitivity analysis for rate independent 

elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 

Vol. 107, pp. 393-431, 1993.  

[VLH91] C.A. Vidal, H.-S. Lee, R.B. Haber, The consistent tangent operator for 

design sensitivity analysis of history-dependent response, Computing 

Systems in Engineering, Vol. 2(5-6), pp. 509-523, 1991. 

[WA87] C. Wu, J. S. Arora, Design sensitivity analysis and optimization of 

nonlinear structural response using incremental procedure, AIAA Journal, Vol. 

25(8), pp. 1118-1125, 1987.  

[WCB15] W. Wang, P.M. Clausen, K.-U. Bletzinger, Improved semi-analytical 

sensitivity analysis using a secant stiffness matrix for geometric nonlinear 

shape optimization, Computers & Structures, Vol. 146, pp. 143–151, 2015. 

[WCB17] W. Wang, P.M. Clausen, K.-U. Bletzinger, Efficient adjoint sensitivity 

analysis of isotropic hardening elastoplasticity via load steps reduction 

approximation, Computers Methods in Applied Mechanics and Engineering, 

Vol. 325, pp. 612–44, 2017.  

[WCB22] W. Wang, P.M. Clausen, K.-U. Bletzinger, Load step reduction for 

adjoint sensitivity analysis of finite strain elastoplasticity, Structural and 

Multidisciplinary Optimization, Vol. 65(1), 2022. 

[We12] M. Werner, Master Thesis: Reduction models for stress sensitivities in 

industrial structural shape optimization, Department of Computational 

Engineering, TU Darmstadt, 2012.  

[Wi02] K. J. Willam, Constitutive Models for Engineering Materials, 

Encyclopedia of Physical Science and Technology (Third Edition), Vol.3, 

University of Colorado at Boulder, pp.603-633, 2002.  

[WKT03] K. Wisniewski, P. Kowalczyk, E. Turska, On the computation of 

design derivatives for Huber-Mises plasticity with non-linear hardening, 

International Journal for Numerical Methods in Engineering, Vol. 57(2), pp. 

271–300, 2003. 

http://www.sciencedirect.com/science/article/pii/0956052191900538
http://www.sciencedirect.com/science/article/pii/0956052191900538


 

 143  

 

[ZD99] W. H. Zhang and M. Domaszewski, Efficient sensitivity analysis and 

optimization of shell structures by the ABAQUS code, Structural Optimization, 

Vol. 18, pp. 173-182, 1999. 



 

 144  

 

APPENDIX A. Analytical formulation of stiffness matrices 

for 3D 4-node tetrahedral element 

In this section, analytical formulations of tangent and secant stiffness matrices 

for a 3D 4-node tetrahedral element under geometric nonlinearity are 

introduced. These formulations, as presented by Pederson [Pe06], provide 

closed-form expressions of stiffness matrices, offering a solid foundation for 

sensitivity studies. Particularly, they are useful in tracing the source of errors. 

 

Figure A-1. Coordinate configuration of a 3D 4-node tetrahedral element 

Figure A-1 depicts a 4-node linear tetrahedral element. Without loss of 

generality, Node 0 can be assumed to be located at the base point of a local 

Cartesian coordinate system. The local coordinates of nodes 1 to 3 are denoted 

by p1 to p9 and arranged in a matrix P, as shown in Eq.(A.1). In this matrix, 

the last three columns represent the coordinates of each node. 

 𝑷 = [

1 0 0 0
1 p1 p2 p3
1
1

p4
p7

p5 p6
p8 p9

] (A.1) 

In Eq.(A.2), several position parameters are defined for simplicity in 

subsequent deductions: 

 p5968 = p5p9 − p6p8 (A.2) 

X 

Y 

Z 

N0 (0,0,0) 

N
1 

(p1,p2,p3) 

N
2 

(p
4
,p

5
,p

6
) 

N
3 

(p
7
,p

8
,p

9
) 
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p3829 = p3p8 − p2p9 

p2635 = p2p6 − p3p5 

p6749 = p6p7 − p4p9 

p1937 = p1p9 − p3p7 

p3416 = p3p4 − p1p6 

p4857 = p4p8 − p5p7 

p2718 = p2p7 − p1p8 

p1524 = p1p5 − p2p4 

q𝑥 = p5968 + p3829 + p2635 

q𝑦 = p6749 + p1937 + p3416 

q𝑧 = p4857 + p2718 + p1524 

With these parameters, the volume of the element is  

 𝑉 =
1

6
det|𝑷| =

1

6
(p1p5p9 − p1p6p8 + p2p6p7 − p2p4p9 + p3p4p8 − p3p5p7) (A.3) 

and the inverse of P is 

 𝑷−1 =
1

6𝑉
[

6𝑉 0 0        0
−qx p5968 p3829 p2635
−qy
−qz

p6749
p4857

p1937 p3416
p2718 p1524

] (A.4) 

Given nodal displacements {𝑢iα}  with respect to global Cartesian 

coordinates, where i=0,..,3 denote the node number, and α=x, y, z denote the 

component in global 3D space. Using linear shape functions for the tetrahedral 

element, displacement gradients can be calculated as: 

 [

𝑢1α
𝑢α,𝑥
𝑢α,𝑦
𝑢α,𝑧

] = 𝑷−1 [

𝑢1α
𝑢2α
𝑢3α
𝑢4α

] (A.5) 

To derive an analytical expression for the secant stiffness matrix, it is 

necessary to formulate both terms of 𝑩L and 𝑼T𝑩N in Eq.(2.4). To achieve 
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these two terms, the Green-Lagrange strains in Eq.(2.3) are expressed in detail 

as 

 

𝜀11 = 𝑢𝑥,𝑥 +
1

2
(𝑢𝑥,𝑥

2 + 𝑢𝑦,𝑥
2 + 𝑢𝑧,𝑥

2) 

𝜀22 = 𝑢𝑦,𝑦 +
1

2
(𝑢𝑥,𝑦

2 + 𝑢𝑦,𝑦
2 + 𝑢𝑧,𝑦

2) 

𝜀33 = 𝑢𝑧,𝑧 +
1

2
(𝑢𝑥,𝑧

2 + 𝑢𝑦,𝑧
2 + 𝑢𝑧,𝑧

2) 

𝜀12 =
1

2
(𝑢𝑥,𝑦 + 𝑢𝑦,𝑥 + 𝑢𝑥,𝑥𝑢𝑥,𝑦 + 𝑢𝑦,𝑥𝑢𝑦,𝑦 + 𝑢𝑧,𝑥𝑢𝑧,𝑦) 

𝜀13 =
1

2
(𝑢𝑥,𝑧 + 𝑢𝑧,𝑥 + 𝑢𝑥,𝑥𝑢𝑥,𝑧 + 𝑢𝑦,𝑥𝑢𝑦,𝑧 + 𝑢𝑧,𝑥𝑢𝑧,𝑧) 

𝜀23 =
1

2
(𝑢𝑦,𝑧 + 𝑢𝑧,𝑦 + 𝑢𝑥,𝑦𝑢𝑥,𝑧 + 𝑢𝑦,𝑦𝑢𝑦,𝑧 + 𝑢𝑧,𝑦𝑢𝑧,𝑧) 

(A.6) 

By substituting the matrix form expression of displacement gradients in 

Eq.(A.5) into Eq.(A.6), 𝑩L and 𝑼T𝑩N are obtained 

 𝑩L = [𝑩Lx 𝑩Ly 𝑩Lz] (A.7) 

where 

 

𝑩Lx =

[
 
 
 
 
 
0
0
0
0
0
0

1
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0]
 
 
 
 
 

∙ 𝑷−1 

𝑩Ly =

[
 
 
 
 
 
0
0
0
0
0
0

0
0
0
1
0
0

0
1
0
0
0
0

0
0
0
0
0
1]
 
 
 
 
 

∙ 𝑷−1 

𝑩Lz =

[
 
 
 
 
 
0
0
0
0
0
0

0
0
0
0
1
0

0
0
0
0
0
1

0
0
1
0
0
0]
 
 
 
 
 

∙ 𝑷−1 

(A.8) 
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And 

 𝑼T𝑩N = [𝑼T𝑩Nx 𝑼T𝑩Ny 𝑼T𝑩Nz] (A.9) 

where 

 𝑼T𝑩Nα =

[
 
 
 
 
 0
0
0
0
0
0

𝑢α,𝑥
0
0
𝑢α,𝑦
𝑢α,𝑧
0

0
𝑢α,𝑦
0
𝑢α,𝑥
0
𝑢α,𝑧

0
0
𝑢α,𝑧
0
𝑢α,𝑥
𝑢α,𝑦]

 
 
 
 
 

∙ 𝑷−1 (A.10) 

Then, rearrange the sequences of rows and columns of 𝑩L  and 𝑼T𝑩N  to 

match the degrees of freedom in nodal displacement vector. As the integrals 

in Eqs.(2.12) and (2.13) are constant for the 4-node linear tetrahedral element, 

the stiffness matrices are: 

 𝑲S(𝑼) = 𝑩
T𝑫�̅�𝑉 (A.11) 

 𝑲T(𝑼) = 𝑩
T𝑫𝑩𝑉 + 𝛁𝑼𝑩

T𝝈𝑉 (A.12) 

where 𝑩 and �̅� are defined in Eqs.(2.8) and (2.10) via 𝑩L and 𝑼T𝑩N.  

The linear elastic constitutive matrix for the 3D type element is 

 𝑫 =
E

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈
𝜈 1 − 𝜈 𝜈
𝜈 𝜈 1 − 𝜈

 

 

1 − 2𝜈

2
  

 
1 − 2𝜈

2
 

  
1 − 2𝜈

2 ]
 
 
 
 
 
 
 
 

 (A.13) 
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APPENDIX B. Derivatives of residual force and dependent 

residual for finite strain elastoplasticity 

The derivatives of the residual force and the dependent residual in finite strain 

elastoplasticity are presented in this appendix.  

Following Eq.(7.26), it has 

 
𝜕 𝑹 
𝑡

𝜕 𝑼 𝑡
= ∫

𝜕 𝑩 
𝑡

𝜕 𝑼 𝑡
𝝉 
𝑡 𝑑𝑣

 

𝑉0
+∫ 𝑩 

𝑡
𝜕 𝑹 

e
 
𝑡

𝜕 𝑼 𝑡
�̅� 
𝑡 𝑹 

e
 
𝑡 T

𝑑𝑣
 

𝑉0
+∫ 𝑩 

𝑡 𝑹 
e

 
𝑡 �̅� 

𝑡
𝜕 𝑹 

e
 
𝑡 T

𝜕 𝑼 𝑡
𝑑𝑣

 

𝑉0
 (B.1) 

 
𝜕 𝑹 
𝑡

𝜕 𝑽 
𝑡
= (

𝜕

𝜕 �̅� 
𝑡
,
𝜕

𝜕 𝜀eqv
p

 
𝑡

,
𝜕

𝜕 𝑿 𝑡 p−1
) 𝑹 
𝑡 = (−∫ 𝑩 

𝑡
𝜕 𝑹 

e
 
𝑡 �̅� 

𝑡 𝑹 
e

 
𝑡 T

𝜕 �̅� 
𝑡

𝑑𝑣
 

𝑉0
, 0,0) (B.2) 

 
𝜕 𝑹 
𝑡+1

𝜕 𝑽 
t = (

𝜕

𝜕 �̅� 
𝑡 ,

𝜕

𝜕 𝜀eqv
p

 
𝑡

,
𝜕

𝜕 𝑿 
𝑡 p−1

) 𝑹 
𝑡+1 = (0,0,−∫ 𝑩 

𝑡 (
𝜕 𝑹 

e
 

𝑡+1

𝜕 𝑿 
𝑡 p−1

�̅� 
𝑡+1 𝑹 

e
 

𝑡+1 T
+ 𝑹 

e
 

𝑡+1 �̅�
𝜕 𝑹 

e
 

𝑡+1 T

𝜕 𝑿 
𝑡 p−1 

𝑡+1 )𝑑𝑣
 

𝑉0
) (B.3) 

Following Eqs.(7.31), it has 

 
𝜕 𝑯 
𝑡

𝜕 𝑼 𝑡
= (

−𝑫e
𝜕𝑙𝑛 𝑼∗

e
 
𝑡

𝜕 𝑼 𝑡

0
0

) (B.4) 

If load step t is elastic, then 

 𝑯 
𝑡 ( 𝑼 

𝑡 , 𝑽 
𝑡 , 𝑽 

𝑡−1 , 𝑠) = (

�̅� 
𝑡 −𝑫e𝑙𝑛 𝑼 

𝑡
∗
e

𝜀eqv
p

 
𝑡 − 𝜀eqv

p
 

𝑡−1

𝑿 
𝑡 p−1 − 𝑿 

𝑡−1 p−1

) ≡ 𝟎 (B.5) 

Therefore 

 
𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡
= (

𝜕

𝜕 �̅� 𝑡
,
𝜕

𝜕 𝜀eqv
p

 
𝑡

,
𝜕

𝜕 𝑿 𝑡 p−1
) 𝑯 
𝑡 = 𝑰 (B.6) 
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𝜕 𝑯 
𝑡

𝜕 𝑽 𝑡−1
= (

𝜕

𝜕 �̅� 𝑡−1
,

𝜕

𝜕 𝜀eqv
p

 
𝑡−1

,
𝜕

𝜕 𝑿 𝑡−1 p−1
) 𝑯 
𝑡 =

[
 
 
 𝟎 𝟎 −𝑫e

𝜕𝑙𝑛 𝑼∗
e

 
𝑡

𝜕 𝑿 𝑡−1 p−1

𝟎 −1 0
𝟎 𝟎 −𝑰 ]

 
 
 

 (B.7) 

Following Eqs.(7.31), if load step t is plastic, then 

 𝑯 
𝑡 ( 𝑼 

𝑡 , 𝑽 
𝑡 , 𝑽 

𝑡−1 , 𝑠) = (

�̅� 
𝑡 −𝑫e𝑙𝑛 𝑼 

𝑡
∗
e +𝑫e ∙ ∆𝜺p 

𝑡

| �̅� 
𝑡 |eqv − 𝜎Y( 𝜀eqv

p
 
𝑡 )

𝑿 
𝑡 p−1 − 𝑿 

𝑡−1 p−1 ∙ 𝑒− ∆𝜺p 
𝑡

) ≡ 𝟎 (B.8) 

It follows 
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𝑡
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𝑡
= (

𝜕
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𝑡 ,

𝜕
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𝜕

𝜕 𝑿 
𝑡 p−1

) 𝑯 
𝑡 =

[
 
 
 
 
 

𝑸 𝐷e 𝐚 𝑡 𝟎

𝐚 𝑡
T

−𝐸p 𝟎

− 𝑿 
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eqv

p
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]
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where 𝑸 and 𝑫ep follow Eqs.(2.27) and (2.28).
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