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Abstract: Although showing remarkable zero-shot and few-shot capabilities across a wide variety of tasks, Large Lan-
guage Models (LLMs) are still not mature enough for off-the-shelf use in engineering design tasks. Organiza-
tions implementing model-based systems engineering practices into their product development processes can
leverage on ontologies, models, and procedures to enhance LLMs applied to engineering design tasks. We
present a methodology to integrate an Object-Process Methodology model of a space system into an LLM-
based spacecraft design assistant and show a performance improvement, as compared to a conventional LLM.
The benchmark is evaluated through subjective expert-assessed and an objective cosine-similarity-based cri-
teria. The results motivate additional efforts in integrating Model-Based Systems Engineering practice into
LLMs as means to improve their performance and reduce shortcomings such as hallucinations and black-box,
untraceable behavior.

1 INTRODUCTION

In the last five years, research and development of
foundation models such as Large Language Models
(LLMs) has experienced exponential growth. To-
day, these models display excellent capabilities in text
generation and question-answering tasks. Particularly
after the release of ChatGPT by OpenAI in late 2022,
LLMs have emerged as a technology with the po-
tential of transforming science, engineering and busi-
ness. The current efforts in industry and academia
focus on the development and commercialization of
applications enabled by LLMs to support a myriad of
tasks typically carried out by humans. (Myers et al.,
2023)

Engineering design tasks are not extraneous to the
potential impact of LLMs. Many design processes
can either be supported or automated to some extent
by LLM-based tools, thanks to well-established stan-
dards and procedures, and data of heritage products
and services that can be ingested and learned by the
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models. However, there are shortcomings related to
LLMs that prevent them from being able to be used,
off-the-shelf, to assist in engineering design tasks.
Hallucinations and incapability to perform numerical
calculations are some of them (Kaddour et al., 2023),
impacting negatively their reliability in these tasks.

This paper presents a methodology to increase the
reliability of design assistants based on LLMs, ad-
dressing some of the aforementioned challenges, by
the integration through prompting of generic system
models of the system under design. In particular, we
apply this methodology to a spacecraft design assis-
tant able to produce technical requirements and spec-
ifications with a high-level space mission statement
as the input (Garcia Alarcia and Golkar, 2023), with
Object-Process Methodology (OPM) models. The
work shows an improvement in the performance of
the design assistant when compared to one with-
out an LLM+OPM integration. Our preliminary re-
sults show a promising pathway for the integration
of Model-Based Systems Engineering (MBSE) con-
structs, in particular, systems models, into foundation
models and LLMs, for a higher degree of accuracy
and trustworthiness in engineering design tasks.



2 STATE OF THE ART &
RESEARCH QUESTION

Foundation models, this is, general-purpose AI mod-
els trained on large quantities of data that can perform
a myriad of different tasks, have gone a long way in
the last half a decade. In 2018, the introduction of
the Generative Pre-trained Transformer-1 (GPT-1) by
OpenAI (Radford and Narasimhan, 2018) and of the
Bidirectional Encoder Representations from Trans-
formers (BERT) by Google (Devlin et al., 2019),
based on the essential contributions of the transformer
architecture with self-attention mechanism (Vaswani
et al., 2023) and word embeddings (Mikolov et al.,
2013), were the cornerstones of a revolution that
has changed the Natural Language Processing (NLP)
discipline with the emergence of what nowadays is
known as Large Language Models (LLMs).

Today, current state-of-the-art LLMs such as GPT-
4 from OpenAI (OpenAI, 2023), Gemini from Alpha-
bet (GeminiTeam, 2023), Llama 2 from Meta (Tou-
vron et al., 2023), and Falcon (Almazrouei et al.,
2023) or Mistral (Jiang et al., 2023) (from TII and
Mistral AI, on the open-source side) are models with
billions of parameters that even show zero-shot ca-
pabilities in text, picture, audio or video generation,
among other modalities. Research and development is
steering towards the applications side, as in the case of
chatbots (in particular after the introduction of Chat-
GPT by OpenAI) and more broadly assistants, as the
question is also posed on whether these models are
the predecessors of an Artificial General Intelligence
(Bubeck et al., 2023). With the current state-of-the-
art LLMs, there is for many tasks no longer need
for building complex systems trained from scratch,
and in many cases even fine-tuning base models, as
the general-purpose models show excellent capabili-
ties with one-shot or few-shot in-context learning and
prompt engineering.

However, for some other tasks, such as engineer-
ing design, this is not the case. Due to the high com-
plexity, interdependent, and iterative nature of these
processes, with also specific norms and practices be-
ing instituted in each industry, the direct application
of conventional LLMs is not enough. Even though
this starts to be explored, for instance by NVIDIA in
the chip design industry (Liu et al., 2023), there is
still a need to enhance LLMs for engineering design.
In this sense, the models can leverage:

• Accumulated heritage, such as previous products
and services and their data

• Ontologies of the respective industrial fields, with
the important concepts and their relationships

• The standards and processes that apply

• Other typical norms and practices

Despite this, shortcomings that are still faced come in
the form of hallucinations (nonsensical or unfaithful
text generation (Ji et al., 2023)), lack of particularly
well-structured inputs and outputs, no calculation ca-
pabilities due to their statistical nature, poor domain
specialization in many fields relying on proprietary
data (Ling et al., 2023), and performance limits as-
sociated to the reduced context windows of the mod-
els as well as token output limitations (Ratner et al.,
2023).

The augmentation of LLMs with Knowledge
Graphs (structures that capture and display informa-
tion in an arranged way, including the interrelations
between entities) at training, validation, and also in-
ference time has already been explored by a series
of works (Agrawal et al., 2023), as means of mini-
mizing hallucinations. However, this is to the best of
our knowledge the first work that looks at augmenting
LLMs with systems engineering models, in particular
in the frame of a design assistant.

In essence, there appears to emerge a significant
opportunity to incorporate foundation models, partic-
ularly LLMs, into the engineering design discipline
that is still relatively unexplored, facing some chal-
lenges that shall be researched. Additionally, the in-
dustry sectors that would benefit the most from this
integration are particularly the ones following sys-
tems engineering discipline practices and standards.
The way systems engineering decomposes the engi-
neering process into smaller steps going from a high
level driven by the stakeholders’ needs and require-
ments to system requirements, a system architecture,
and finally a system design, and structures the product
or service life-cycle (INCOSE, 2023b), is beneficial
to the structuring of an LLM-based design assistant.
This applies in particular to organizations follow-
ing Model-Based Systems Engineering (MBSE) prac-
tices. The system models that are built during a prod-
uct’s design, be it in Systems Modeling Language
(SysML) (Hause, 2006), Object-Process Methodol-
ogy (OPM) (Dori, 2002), Unified Modeling Language
(UML) (Koç et al., 2021), in code, etc., can be inte-
grated into the LLM to improve its performance on
new designs.

Our contribution answers the question of whether
the integration of MBSE into an LLM, in particular of
an OPM semantic model of a generic system through
prompting, effectively improves the reliability of a de-
sign assistant tool based on an LLM.



3 METHODOLOGY

In this work, we integrate a generic model of the sys-
tem under design, through prompting, with a design
assistant based on an LLM. In particular, the design
assistant first takes a space mission statement as user
input in natural language. In the background, with-
out user intervention, the generic system model is in-
cluded as well into the prompts. The LLM component
of the design assistant transforms that initial mission
statement into a list of technical specifications.

The results of this process are then compared with
the output of the same LLM without the system model
integrated, to understand if the design assistant tool
performances are improved by the MBSE-LLM inte-
gration. In both this and the former case, the same list
of subsystem requirements or technical specifications
are expected as an output, starting from the same mis-
sion statement.

3.1 Model-Based Systems Engineering
Tool

The Model-Based Systems Engineering (MBSE) tool
used in this work is the Object-Process Methodology,
a conceptual language for systems modeling, which
natively exploits a bi-modal representation: Object-
Process Diagram (OPD), a visual representation of
the system including the entities of the model (ob-
jects, processes, and states) and links and relations
among them, and Object-Process Language (OPL),
a list of English sentences describing the model in
a human-oriented language. Each OPD, except for
the System Diagram (SD), the top-level OPD, can
be obtained by refinement, in-zooming, or unfolding,
of a thing (object or process) in its ancestor OPD,
to avoid the loss of details and to keep the overall
view of the system. The text is automatically gen-
erated by the OPM software (OPCloud or OPCAT) as
the model is created. (Dori, 2002) The natural lan-
guage representation is ideal as it makes the integra-
tion of this MBSE tool with Large Language Models
(LLMs) easier. Other MBSE tools exist, like SySML,
that allow to model different aspects of a system (e.g.
SySML uses four types of diagrams: structure, be-
havior, requirements, and parametric). However, they
are practically equivalent for our purposes, since only
the architecture of a generic system must be mod-
eled. OPM has been selected because it is more intu-
itive and natively exploits the bi-modal representation
(OPD and OPL).

Our implementation of the generic space system
of systems for the integration in the design assistant
is composed of three systems: space segment, ground

segment, and user segment (as represented by Figure
1). The space segment includes the launcher and one
or more spacecraft with their relevant subsystems; the
ground segment comprises the ground stations and the
mission control center; the user segment refers to the
users and their services. For each subsystem, com-
ponents and properties are defined. The measurable
properties are indicated with the proper measurement
unit. If the number of components is more than one,
the properties values are defined as vectors.

As for the spacecraft, the OPM model describes
its payload, the orbit, the associated ground stations
for data processing, Telemetry & Telecommand sub-
system, Command & Data Handling subsystem, Atti-
tude & Orbit Control subsystem, Propulsion subsys-
tem, Electrical & Power subsystem, Thermal Control
subsystem, the structure, as well as general spacecraft
parameters and the launcher to be used for orbit inser-
tion.

The space system model has been designed to be
meaningful while being as generic as possible, includ-
ing a large set of potential spacecraft components.
The values of the properties are all preset as tbd (to
be defined) as they are aimed to be completed by the
design assistant tool upon the generation of the tech-
nical specifications. A view of the model at a lower
decomposition level is illustrated in Figure 2.

Figure 1: Object-Process Methodology System diagram of
the space system of systems. Highest level view.

3.2 Large Language Model

A Large Language Model (LLM) is used to convert
the high-level mission statement into technical speci-
fications, which are used to derive the design elements
necessary for the following design steps (e.g., system
budgets, CAD models, etc.). Thanks to its capability
of processing and generating human-like language,
the LLM takes as an input the mission statement to-
gether with the generic OPL to be modified and com-
pleted. It then produces a new OPL, and so with it the
list of subsystem requirements, for the specific mis-
sion of interest. The research challenge is to trans-
form a high-level mission statement, which can be
ambiguous, inconsistent, or incomplete due to the use



Figure 2: Object-Process Methodology diagram of a propellant tank.

of natural language, into clear, unambiguous, trace-
able, and comprehensive technical requirements, fol-
lowing systems engineering practice. At the time of
the paper, many LLMs are available (GPT 3.5, GPT 4,
BARD, Falcon, PaLM, Claude, and others). Each one
of them has different characteristics, advantages and
drawbacks. We used GPT 4 - an API based LLM - for
the work presented in this paper, to facilitate the inte-
gration with other applications, e.g. a chatbot design
assistant, and for its context length.

3.3 LLM + OPM Integration

The OPL is integrated into the design assistant by
prompting the LLM, and one of the challenges faced
is that the current OPL length (around 9600 tokens)
is longer than most of the current LLMs context win-
dows limits. Indeed, because of the direct relation be-
tween computational costs and context window size,
the number of tokens an LLM can process is limited.
In this work, OpenAI’s GPT 4-128k (November 2023
version), codenamed gpt-4-1106-preview, has been
used due to its larger 128k context window, through
API calls. However, the OPL has been divided into
smaller chunks, following the system model structure
depicted in Table 1.

To control the results for the variation of the se-
lected LLM, the objective criterion is also obtained
using a different model from OpenAI, GPT 3.5, in
its version gpt-3.5-turbo-16k with a 16k-token con-
text window. Due to the size of the OPL and the slid-
ing context window, it is feasible that some parts of
the OPL are cut, however, this impact is reduced by
the use of the average cosine similarity metric. Us-
ing other LLMs is at this point not feasible due to the
small context window sizes (4096 tokens for Llama
2, 2048 tokens for Falcon, or 4096 tokens for Mistral,

Table 1: Number of tokens for each of the OPL chunks.

OPL CHUNKS NUMBER OF TOKENS
Payload 347

Orbit 182
Ground Station 579

TT&C 766
CDH 493

AOCS 3043
Propulsion Subsystem 1071

EPS 1488
TCS 1413

Spacecraft 239
Launcher 12

for instance).
These OPL pieces are given as input to the LLM

step by step, by adding new inputs to the previous
context, for three reasons:

• The previous input-output pairs represent a con-
text and contain the required information so that
the LLM can proceed in the design process.

• The previous input-output pairs represent an ex-
ample on how to generate technical specifications,
increasing the average quality of the output.

• Compatibility with LLMs having shorter context
windows.

3.4 Benchmarking

To evaluate the design assistant tool’s performance,
two different criteria have been implemented to score
the output: a subjective criterion, based on an expert’s
review, and an objective criterion, thought of as a nu-
merical scoring.



3.4.1 Subjective Criterion

A tool generating technical specifications for the de-
sign of a system shall be trustworthy above all. Trust-
worthiness is evaluated as the weighted average of
six parameters that should characterize a requirement
(the output of the tool), as stated by the International
Council of Systems Engineering’s Systems Engineer-
ing Body of Knowledge (SEBoK) (INCOSE, 2023a).
We propose a parametric definition of trustworthi-
ness, decomposed as follows:

• Clarity: the output is understandable.

• Coherency: the output is compliant with the mis-
sion statement and the previous information.

• Unambiguity: the output is not subject to differ-
ent interpretations and no alternatives or redun-
dancies are generated.

• Completeness: the output is complete and suffi-
cient to proceed to the next step of the design pro-
cess.

• Traceability: the output can be traced back to
higher level specifications (e.g. mission state-
ment) and its source.

• Verifiability: the output can be easily verified
through various verification processes.

Each metric receives a score, ranging from 0 to 100
%, based on the ratio between the number of output
lines fulfilling the parameter and the total number of
output lines. Thus, the score is the percentage of out-
put satisfying the metric, as rated by an expert indi-
vidual. Only for completeness, the overall score is
the weighted average of two additional contributions:
coverage (weight=0.4), representing the percentage of
system aspects covered by the output; and granularity
level (weight=0.6), related to the level of detail of the
generated content, which must be the one of a tech-
nical specification. Coverage and granularity are as-
signed a 40/60 weight allocation to represent the idea
that the latter is more important due to the need to ob-
tain a sufficiently detailed list of requirements as an
output to the model.

A weight is assigned to each parameter as spec-
ified by Table 2, coming from analyses, past knowl-
edge, and experience. All the metrics contribute in
the same way to trustworthiness, except for traceabil-
ity, which is the most important parameter, since the
source of the output plays a very important role. In-
deed, tracing requirements from their origins through
the system design is crucial for ensuring that the sys-
tem meets its intended objectives and for managing
changes effectively, making expert analyses and in-
terventions easier. A preliminary sensitivity analysis

has been performed to select and support the weights
of the subjective criterion. The results are briefly de-
scribed in Section 4.

Table 2: Evaluation metrics and relevant weights for the
subjective criterion.

METRICS WEIGHTS
Clarity 0.1

Coherency 0.1
Unambiguity 0.1
Completeness 0.1
Traceability 0.5
Verifiability 0.1

3.4.2 Objective Criterion

A clear problem when evaluating the output of a
Large Language Model, which appears in a more ac-
centuated manner when this output is a technical re-
quirement or specification, is that there is not a single
solution, but rather a wide variety of alternative so-
lutions that can be properly formulated and be tech-
nically feasible. And even more, each of these valid
solutions has an almost infinite amount of ways of be-
ing formulated linguistically (i.e., in text) into one or
more sentences. This issue rules out the classical ap-
proaches used for evaluating Machine Learning mod-
els’ output, in which the result from a model is evalu-
ated with a validation dataset containing for each en-
try a set of finite correct outputs, also known as labels.

In this evaluation, we propose the use of the co-
sine similarity metric in order to provide an objective
result that does not rely on subjective scoring. Cosine
similarity is a distance-based similar metric already
used for LLM output evaluation by other works in the
field (Chen et al., 2023).

Cosine similarity for a vector of words ~o contain-
ing the words produced by the LLM, and a vector
of words ~g containing the words of a gold standard
answer -the comparison reference-, is defined as fol-
lows:

cos sim(~o,~g) =
~o ·~g
|~o||~g|

(1)

In practical terms, we implement the co-
sine similarity metric in Python program-
ming language, through scikit-learn library’s
sklearn.metrics.pairwise.cosine similarity function.
To achieve a higher degree of text format agnosti-
cism, we remove the set of English stop words from
both the output vector and the gold standard vector as
specified in the nltk library’s corpus. The words are
converted from strings to word embeddings with the
gensim library’s gensim.models.word2vec function
implementing the well-known word2vec algorithm



(Mikolov et al., 2013). To account for the differences
in the lengths of the vectors, we use padding. In our
case, we zero-pad the shortest vector to match the
length of the longest one. The Appendix includes
a flowchart of the objective criterion’s steps, for a
sinthesized view of it.

All in all, we measure how close, conceptually, is
the output of the design assistant to a gold standard
reference. When the output is close to the reference
the score tends to 1, when it is opposite to the refer-
ence the score tends to -1. Thus, we account for dif-
ferent plausible possibilities in the output, as they will
all be conceptually close to the gold standard. By us-
ing cosine similarity, and even more by having elim-
inated stop words, we also avoid formatting-induced
scoring changes that other methodologies might suf-
fer from.

4 RESULTS & DISCUSSION

4.1 Case Study

To evaluate the design assistant tool, we have chosen
three space missions for which a large amount of in-
formation is publicly available, especially in terms of
design choices explanations, and requirements. Com-
paring the results of the design assistant tool with the
real design of a system helps in validation and evalu-
ation. Having three different space missions also al-
lows us to control the results for the variability of the
mission statement. The mission statements are en-
tered to a design assistant with an off-the-shelf LLM,
and to a design assistant with an LLM that is also
fed the generic OPM of the space system. Techni-
cal specifications are retrieved and assessed using the
subjective criterion and the objective criterion. The
first selected baseline mission is the Ten-Koh small
satellite in Low Earth Orbit, developed by the Kyushu
Institute of Technology (Fajardo et al., 2019). The
second selected mission is the big MetOp-C meteo-
rological satellite (4300 kg) from the European Space
Agency and EUTMETSAT, flying on an 884-km Sun-
Synchronous Orbit (SSO) (Righetti et al., 2020). The
third baseline mission is the LunaH-Map from NASA,
made of 6U CubeSats for lunar mapping (Hardgrove
et al., 2019). The inputs are available below for re-
producibility.

”Space radiation poses challenges to satellites,
causing anomalies like single event effects, ionizing

radiation-induced component degradation, and
charging issues. Designing satellites capable of
withstanding these anomalies requires a deep
understanding of the radiation environment.

Galactic cosmic rays, solar energetic particles, and
trapped high-energy particles contribute to this

environment, with unpredictable energy variability
in the low-Earth orbit (LEO) region, where most

satellites are located. High-energy electrons,
protons, and ions impact spacecraft differently

based on mission design, epoch, and class. Manned
missions must consider particle population
unpredictability in mission duration and life

support systems. Recent missions like Van Allen
Probes, THEMIS, MMS, ERG (ARASE), Proba-2,

and Swarm have explored near-Earth space,
providing direct measurements of charged
particles. Create a small satellite able to

characterize the plasma environment, detect
MeV-range electrons, and study material sample
changes in the space environment to demonstrate

that small, low-cost spacecraft can offer a
cost-effective approach to space environment
research, utilizing commercial components. A

detailed design is required.”

Mission Statement 1: Ten-Koh mission



”Considering the critical role satellites play in
monitoring and understanding our planet’s climate

and environmental changes, our goal is to
contribute to the next generation of Earth

observation satellites. Our envisioned satellite will
be equipped with cutting-edge instrumentation

designed to provide accurate and comprehensive
data on Earth’s atmosphere, weather patterns, and

climate dynamics. We aim to enhance our
understanding of key environmental indicators,

including greenhouse gas concentrations,
atmospheric composition, and surface temperature

variations. The mission objectives include
achieving a high level of precision in data

collection and analysis, allowing for improved
weather forecasting, climate modeling, and

environmental monitoring. We aspire to contribute
to global efforts in mitigating the impacts of
climate change by providing policymakers,

scientists, and the public with invaluable insights
into Earth’s dynamic systems. In the spirit of
collaboration, our mission seeks to establish

international partnerships to maximize the impact
and reach of our satellite’s observations. By

fostering cooperation with other space agencies,
research institutions, and commercial entities, we

aim to create a robust network of data-sharing and
collaborative initiatives that transcend borders.
Furthermore, our satellite will be designed with

scalability and adaptability in mind, ensuring that
it can accommodate future technological

advancements and evolving scientific requirements.
This adaptability will enable our mission to remain
at the forefront of Earth observation, continuously
contributing to the collective knowledge about our
planet’s changing environment. A detailed design

is required.”
Mission Statement 2: MetOp-C mission

”In response to the growing interest in lunar
exploration and the imminent expansion of lunar
activities within the next two decades, our goal is
to advance scientific knowledge and contribute to
the sustainable development of lunar resources.

Our focus lies in mapping the abundance of
hydrogen down to one meter beneath the surface of

the lunar south pole. Inspired by the renewed
interest in Moon exploration and the establishment
of a lunar space economy, our mission is dedicated

to the development of a small satellite (CubeSat
6U) capable of providing a high-resolution map of
the abundance and distribution of hydrogen-rich
compounds, like water, in this region of the Moon
and expand on the less accurate maps made by

previous missions. Our vision is to create a
cost-effective and innovative approach to lunar

environment research, addressing unique
challenges in the development of a CubeSat

intended to run longer and travel further than most
LEO CubeSat missions. LunaH-Map aims to

demonstrate the capabilities of small spacecraft in
conducting sophisticated space environment

studies. Through LunaH-Map, we aim to pave the
way for a new era of lunar exploration, where

comprehensive data on water-ice and hydrogen
distribution at the lunar south pole serves as a
foundation for informed decision-making and

sustainable resource utilization. By pushing the
boundaries of technology and embracing a

cost-effective approach, LunaH-Map aspires to
inspire future missions and stakeholders to join us
in unlocking the full potential of the Moon for the
benefit of humanity and the advancement of space

exploration. A detailed design of the mission is
required.”

Mission Statement 3: LunaH-Map mission



4.2 Results of the Subjective Criterion

The outputs are not reproduced in this article due to
their lengthiness, but the results of the subjective cri-
terion are shown in Table 3 for an off-the-shelf LLM
(GPT-4 128K) and in Table 4 for the LLM+OPM in-
tegration. In all the cases the outputs are the design
of the required space mission, but with different char-
acteristics highlighted by the parameters scores. They
are clear and understandable (clarity score 100%) and
respect the mission statements and what is asked in
input. In addition, the design choices are coherent
with each other (coherency score 100%). An im-
portant difference exists, instead, in terms of ambi-
guity: the outputs of the LLM not integrated with
an OPM model are ambiguous (unambiguity score
is lower than 40%), because most of the suggested
solutions can be interpreted differently and many al-
ternatives are provided (e.g. aluminum or composite
frame are possible choices for Ten-Koh structure; a
propulsion system respecting mass and volume con-
straints is proposed without further specifications for
MetOp-C and LunaH-Map), unlike the outputs of the
tool which follow the structure of the system model
(unambiguity score 100% for Ten-Koh and MetOp-
C missions). The only exception is represented by
the lunar mission (unambiguity score 85%), whose
output is slightly ambiguous, because orbit, ground
station and communication subsystem are not com-
pletely designed by the tool. Regarding complete-
ness, coverage and detail level are analyzed: all the
system aspects are covered by the LLM+OPM tool,
while this is not always true for the LLM (MetOp-
C orbit and LunaH-Map Command&Data Handling
subsystem are not included in the outputs); and only
the MBSE-LLM integration allows us to reach the de-
tail level of technical specifications. The main preva-
lent problem is the low traceability (around 30% for
the LLM and 35% for the tool). The outputs can be
traced back to the mission statement, but not to their
origin. Integrating the OPM with the LLM makes the
requirements slightly more traceable because all the
design choices belong to the generic system model.
However, this is not enough to solve the problem, es-
pecially for numbers, which are the result of a prob-
abilistic approach, instead of the application of equa-
tions and physics models. Nonetheless, the tool out-
puts are still verifiable (verifiability score higher than
80%), because specific solutions are provided with
relevant numbers, while only small parts of the LLM
outputs can be verified, due to their ambiguities and
low detail level (verifiability score lower than 50%).
In general, it is possible to notice that the scores of
the two Earth missions are very similar, unlike the

lunar mission score. The main reason can be found
in the large amount of data available for space mis-
sions around the Earth with respect to interplanetary
missions, which makes easier the design of an Earth-
based mission. As a result of these considerations, we
can state that LLM trustworthiness is very low, but it
is improved by almost 50% thanks to the integration
with an MBSE tool.

Based on the scores of the metrics, a preliminary
sensitivity analysis has been carried out to support the
choice of metric weights and thus to verify the robust-
ness of the evaluation criterion. It consists of varying
one metric weight per time, from 0 to 1, keeping all
the other weights equal to each other. The results, not
fully reproduced in the article for a matter of brevity,
consistently show an improvement in the performance
with LLM+OPM integration across all scenarios of
metric weights. Moreover, traceability is the param-
eter with the largest impact on the LLM+OPM tool
performance, as expected, while for the off-the-shelf
LLM, clarity, coherency, and unambiguity are also
not negligible. Figures 3 and 4 exhibit the results of
the sensitivity analysis for the traceability weight in
both cases.

Figure 3: Effect of traceability weight variation on LLM
trustworthiness.

Figure 4: Effect of traceability weight variation on
LLM+OPM trustworthiness.



Table 3: Off-the-shelf GPT-4 subjective evaluation results.

LLM subjective evaluation results Ten-Koh MetOp-C LunaH-Map
Clarity 100% 100% 100%

Coherency 100% 100% 100%
Unambiguity 20% 35% 11%
Completeness

(0.4*Coverage + 0.6*DetailLevel)
46%

(0.4*100% + 0.6*10%)
38%

(0.4*91% + 0.6*3%)
36%

(0.4*91% + 0.6*0%)
Traceability 30% 30% 26%
Verifiability 35% 38% 15%

Trustworthiness 45.1% 46% 39.2%

Table 4: LLM+OPM integration subjective evaluation results.

Tool subjective evaluation results Ten-Koh MetOp-C LunaH-Map
Clarity 100% 100% 100%

Coherency 100% 100% 100%
Unambiguity 100% 100% 85%
Completeness

(0.4*Coverage + 0.6*DetailLevel)
100%

(0.4*100% + 0.6*100%)
100%

(0.4*100% + 0.6*100%)
91%

(0.4*100% + 0.6*85%)
Traceability 35% 35% 35%
Verifiability 100% 100% 85%

Trustworthiness 67.5% 67.5% 63.6%

Table 5: Results of the objective criterion evaluation.

Minimum Maximum Average Std. deviation
LLM +OPM LLM +OPM LLM +OPM LLM +OPM

gpt-3.5 0.065 0.038 1.000 1.000 0.986 0.990 0.038 0.036Mission 1
(Ten-Koh) gpt-4 -0.458 0.172 1.000 1.000 0.977 0.991 0.066 0.031

gpt-3.5 -0.582 -0.544 1.000 1.000 0.984 0.992 0.052 0.040Mission 2
(MetOp-C) gpt-4 -0.817 -0.798 1.000 1.000 0.973 0.986 0.087 0.048

gpt-3.5 -0.680 -0.669 1.000 1.000 0.985 0.988 0.076 0.075Mission 3
(LunaH-Map) gpt-4 -0.696 -0.255 1.000 1.000 0.976 0.988 0.083 0.049

4.3 Results of the Objective Criterion

The results of the objective criterion are shown in
Table 5. They are controlled for mission statement
variability, with the three selected baseline missions
presented before, and for the LLM variability, using
gpt-3.5-16k-turbo and gpt-4-1106-preview. For each
token of the output, its cosine similarity to the corre-
sponding token in the gold standard reference is cal-
culated, and a vector of cosine similarities is built.
The table displays the minimum value encountered
in that vector, the maximum, the average value, and
the standard deviation. The results are presented for
the design assistant with an off-the-shelf LLM with-
out any OPM integration (labeled LLM in the table)
and for the design assistant with an LLM+OPM inte-
gration (labeled +OPM in the table).

The results are clear and confirm what was seen
already with the subjective criterion. They show that

our OPM integration improves the quality of the de-
sign assistant’s output consistently for all the mission
statements and all the LLMs, as displayed in the Aver-
age columns. This is due to the space systems ontol-
ogy that the OPM of a generic space mission provides,
and the in-context learning thereby performed by the
LLM at inference time, improving domain-specific
knowledge and reducing hallucinations. Additionally,
the integration of the OPM consistently improves the
predictability of the results, as seen in the Standard
deviation columns. This is due to the structuring of
the input and the output that naturally happens when
integrating a systems engineering model (in this case,
the OPM), bringing a structure with a set of rules,
with the LLM.



5 CONCLUSION

In this work, we have discussed the shortcomings
of using off-the-shelf LLMs for engineering design
tasks, particularly in the context of a design assistant
for spacecraft that drafts technical requirements with
a high-level mission statement as input. We have in-
troduced a methodology for integrating Model-Based
Systems Engineering models, in particular an Object-
Process Methodology model, to an LLM to improve
its reliability. We presented partial, preliminary re-
sults with both a subjective criterion, looking for the
traits that make design assistant requirements trust-
worthy, and an objective criterion comparing the out-
puts directly to a golden reference. The results show
an improvement in the quality of the outputs with the
LLM+MBSE integration. These improvements are
associated with the introduction of an ontology, being
learned in context by the LLM, that reduces halluci-
nations, as well as a higher degree of structure impact-
ing both the input and the output, all coming naturally
from the properties of the system model being intro-
duced.

In future work, we aim to increase the complete-
ness of the results in particular with a thorough sen-
sitivity analysis of weights of the subjective criterion.
Additionally, dealing with smaller LLMs and fitting
the system models to their reduced context window
remains one of the biggest open challenges, in par-
ticular, to enable these kinds of design assistants to
run on smaller devices in the edge. Related to it, un-
derstanding whether a deeper-level integration of sys-
tem models would be more useful and reliable than
prompting is also an open area for further investiga-
tion. Additionally, Large Language Models that have
been trained or fine-tuned in systems engineering or
more broadly engineering design data such as books,
papers, and standards shall be created and thoroughly
assessed to understand the performance improvement
compared to the state-of-the-art generalist models.

ACKNOWLEDGEMENTS

The authors would like to express gratitude to Prof.
Dr. Dov Dori and Dr. Hanan Kohen for granting ac-
cess to OPCloud for research purposes. We are also
grateful to Prof. Dr. Merouane Debbah for his men-
toring and insightful comments.

REFERENCES

Agrawal, G., Kumarage, T., Alghami, Z., and Liu, H.
(2023). Can Knowledge Graphs Reduce Hallucina-
tions in LLMs? : A Survey. ArXiv, abs/2311.07914.

Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A.,
Cojocaru, R., Debbah, M., Étienne Goffinet, Hesslow,
D., Launay, J., Malartic, Q., Mazzotta, D., Noune, B.,
Pannier, B., and Penedo, G. (2023). The Falcon Series
of Open Language Models. ArXiv, abs/2311.16867.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T.,
and Zhang, Y. (2023). Sparks of Artificial General
Intelligence: Early experiments with GPT-4. ArXiv,
abs/2303.12712.

Chen, Z., Du, W., Zhang, W., Liu, K., Liu, J., Zheng, M.,
Zhuo, J., Zhang, S., Lin, D., Chen, K., and Zhao, F.
(2023). T-eval: Evaluating the tool utilization capa-
bility step by step. ArXiv, abs/2312.14033.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In Burstein, J.,
Doran, C., and Solorio, T., editors, Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Associ-
ation for Computational Linguistics.

Dori, D. (2002). Object-Process Methodology – A Holistic
Systems Paradigm. Springer, New York.

Fajardo, I., Lidtke, A. A., Bendoukha, S. A., Gonzalez-
Llorente, J., Rodrı́guez, R., Morales, R., Faizullin, D.,
Matsuoka, M., Urakami, N., Kawauchi, R., Miyazaki,
M., Yamagata, N., Hatanaka, K., Abdullah, F., Ro-
jas, J. J., Keshk, M. E., Cosmas, K., Ulambayar,
T., Saganti, P., Holland, D., Dachev, T., Tuttle, S.,
Dudziak, R., and ichi Okuyama, K. (2019). Design,
Implementation, and Operation of a Small Satellite
Mission to Explore the Space Weather Effects in LEO.
Aerospace, 6(10).

Garcia Alarcia, R. M. and Golkar, A. (2023). Architec-
ture of a generative design tool for spacecraft and user
front-end implementation through a chatbot smart de-
sign assistant. In IAC 2023 Congress Proceedings,
74th International Astronautical Congress.

GeminiTeam (2023). Gemini: A Family of Highly Capable
Multimodal Models. ArXiv, abs/2312.11805.

Hardgrove, C., DuBois, J., Heffern, L., Cisneros, E., Bell,
J., Crain, T., Starr, R., Prettyman, T., Lazbin, I., Roe-
buck, B., Struebel, N., Clark, E., Nelson, D., Bauman,
J., Williams, B., Johnson, E., Christian, J., Stoddard,
G., Tsay, M., Model, J., Hruby, P., Babuscia, A., Stem,
S., Sanders, D., Hegel, E., Wiens, M., Parlapiano, S.,
Hailey, P., O’Brien, T., Mesick, K., and Coupland, D.
(2019). The Lunar Polar Hydrogen Mapper (LunaH-
Map) Mission. In 33rd Annual AIAA/USU Conference
on Small Satellites.

Hause, M. (2006). The SysML Modelling Language. In
Fifth European Systems Engineering Conference.



INCOSE (2023a). Guide to the Systems Engineering Body
of Knowledge. International Council on Systems En-
gineering, San Diego, CA, 2.9 edition.

INCOSE (2023b). INCOSE systems engineering handbook.
John Wiley & Sons, Nashville, TN, 5 edition.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y. J., Madotto, A., and Fung, P. (2023). Sur-
vey of Hallucination in Natural Language Generation.
ACM Comput. Surv., 55(12).

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford,
C., Chaplot, D. S., de las Casas, D., Bressand, F.,
Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R.,
Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T.,
Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mis-
tral 7B. ArXiv, abs/2310.06825.

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu,
R., and McHardy, R. (2023). Challenges and
Applications of Large Language Models. ArXiv,
abs/2307.10169.
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APPENDIX

To better illustrate the methodology’s objective crite-
rion, Figure 5 presents a flowchart of the steps fol-
lowed to compute the cosine similarity values be-
tween the design assistant’s output using an off-
the-shelf LLM and the golden standard, as well as
between the design assistant’s output leveraging an
LLM+OPM integration and the golden standard. The
flowchart also illustrates the metrics that are calcu-
lated to compare the cosine similarity values and
benchmark the improvement attained by the integra-
tion of the space mission’s OPM system model.
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Figure 5: Flowchart of the methodology’s objective criterion.


