
Evaluating the Efficiency and Scalability of CubeSat Simulations on
Low-Capacity Systems: A Comparative Study

Clemente Javier Juan Oliver
Technical University of Munich

TUM School of Engineering and Design
Chair of Pico- and Nanosatellites and Satellite Constellations

Caroline Herschel Straße 100 85521 Ottobrunn - Germany
clemente.juan@tum.de

Abstract

With the exponential growth in CubeSat launches in the
recent years, added to the developments in satellite con-
stellations operating jointly, an urge for complex-system
implementations and simulations is needed. Yet, the scal-
ability and computational feasibility of simulating Cube-
Sat operations on distributed, low-capacity systems remain
under-explored. This study addresses this gap by evaluating
the efficiency and scalability of CubeSat simulations across
a variety of computing environments, including MATLAB
Simulink, C++, and C++ integrated with High-Level Ar-
chitecture (HLA), both on Windows and Linux operating
systems, and also including x86 and ARM CPUs archi-
tectures. Through comparative analysis across conven-
tional PCs and a cluster of single-board computers (SBCs),
this research critically assesses the viability of leveraging
’low-power,’ ’low-cost’ computing resources for distributed
CubeSat constellations simulations.

Our findings reveal significant challenges in balancing
simulation fidelity with computational resource allocation,
particularly when scaling up simulations using HLA-based
distributed architectures on low-capacity systems. The
results suggest that, without substantial enhancements in
computational power or accepting compromises in simula-
tion quality, the effectiveness of adopting HLA for Cube-
Sat simulation at scale is limited. These insights challenge
prevailing assumptions about the computational efficiency
of distributed simulations and underscore the need for in-
novative approaches to optimize resource use. This study
contributes to the broader discourse on satellite simula-
tion technologies, urging a reevaluation of computational
strategies to advance the capabilities of CubeSat simula-
tions for accessible space exploration.

1. Introduction

The CubeSat industry has experienced an unprecedented
boom, with launches skyrocketing in recent years [1]. This
surge not only marks a new chapter in space exploration
but also underscores an urgent need for sophisticated simu-
lation tools capable of keeping pace with the rapid devel-
opment of these compact satellites. As CubeSats evolve
into more complex systems, the simulation landscape be-
comes increasingly diverse [2], spanning from basic single-
component setups to intricate multi-system architectures,
each with its own set of programming languages and tech-
nical challenges. This is particularly relevant in the evolv-
ing framework of federated satellite networks, that can be
composed by myriads of heterogeneous CubeSats working
together [3].

The goal of this work is to present a comprehensive per-
formance comparison of CubeSat simulations. By transi-
tioning from traditional monolithic simulations to a cutting-
edge distributed system based on the High-Level Architec-
ture (HLA) standard [4], we explore the computational fron-
tiers of scaling satellite constellations simulations across
different platforms, hardware architectures and simulation
environments.

Embracing a distributed architecture is a strategy aimed
at enhancing system flexibility and responsiveness. Within
this architectural framework, subsystems are frequently
geographically dispersed, dealing with resource exchange
through standardized interfaces like the HLA. The evolu-
tion of networking technology, coupled with the growing
demands for system flexibility, have established distributed
simulations architecture as a dominant solution across vari-
ous technical systems [5].

Despite the increasing adoption of distributed architec-
tures in these kind of simulations, research on the factors
driving the shift and the cost/benefit analysis of transition-

1



ing from monolithic to distributed architectures have not
been that widely studied, such as the case of Crawley et
al. [6], where the costs and benefits of transition from one
architecture to another are not quantified.

Central to this investigation, the following question arise:
how does the implementation of a distributed simulation ar-
chitecture impact the efficiency and scalability of CubeSat
simulations, particularly when constrained by low-capacity,
low-cost computing resources? This question not only
delves into the technical trade-offs inherent in maintaining
high-quality simulations against the limitation of computa-
tional resources, but also ventures into the broader impli-
cations of these choices for the future trajectory of satellite
simulation technologies.

By framing our research within this context, we aim to
discuss the pathways through which CubeSat simulation
methodologies can evolve, marking a contribution to the on-
going dialogue on advancing space technology simulation
frameworks.

2. Background

A real satellite model developed as part of the TUM
MOVE-II project is considered for this project. The real
CubeSat has been in Sun synchronous Low Earth Orbit (575
km) since late 2018 [7]. The nanosatellite simulator, ini-
tially designed in Simulink, comprises several subsystems,
including a complete space environment subsystem, ther-
mal management, electrical model, satellite dynamics, orbit
mechanics model, etc. Nevertheless, a more complete re-
view of its structure will be given in Section 3.1.

Introduced by Professors Robert Twiggs and Jordi
Puig-Suari, CubeSats have revolutionized educational and
commercial space exploration by leveraging commercially
available components, significantly lowering costs [8].
Classified as S3-SATs (Student, Space, Study Satellite),
CubeSats exhibit a cubic shape with dimensions under 10
cm and a weight below 1.33 kg [9]. They serve primarily as
educational tools, aiming to teach satellite construction and
control, enhance student engineering skills, and facilitate
scientific data gathering. Despite their educational focus,
CubeSats are also increasingly employed for commercial
space experiments.

In order to obtain a more realistic environment for the
simulations, when integrating the MOVE-II model into con-
stellation simulations, more specifically into the Federated
Satellite Systems (FSS) concept proposed by Golkar et al.
[3], a review of the trade-offs related to transitioning this
model architecture across the architecture spectrum is stud-
ied and presented.

The distinction between monolithic and distributed mod-
els here is crucial. A monolithic model consolidates all per-
tinent information into a single entity, while a distributed

model fragments the system into multiple submodels. Each
submodel encapsulates a segment of the overall model. The
decision on how to partition the model into submodels is a
significant design choice, influenced by various factors. For
instance, in traffic simulation, the division might be based
on geographic regions or traffic types, reflecting the intri-
cacies of the simulated scenario [10]. For the case of this
paper, the encapsulated system in the distributed architec-
ture would be represented by the whole nanosatellite model
as an entity that communicates with other identical models.

In the scope of providing an adaptable and versatile dis-
tributed simulation environment for these FSS, focusing on
a Distributed Modeling and Simulation (DM&S) approach,
one could think of implementation such as the High Level
Architecture (HLA) [4], the Distributed Interactive Simula-
tion (DIS) [11] or their middleware application equivalent:
the Data Distribution Service (DDS) [12]. HLA’s archi-
tecture is specifically tailored for large-scale, interoperable
simulation exercises, often with a focus on military appli-
cations. In contrast, DIS is traditionally used for real-time
military training simulations, emphasizing interoperability
and real-time interaction. DDS offers a more generic data
distribution framework suitable for a wide range of real-
time distributed applications beyond simulations, empha-
sizing data-centric communication and Quality of Service
(QoS) policies.

For the scope of this project an HLA-based architec-
ture will be the chosen one, since it is the most widely
used distributed simulation standard as well as the one rec-
ommended by NATO [13] for this kind of applications.
HLA enables several simulations (federates) to communi-
cate through a runtime infrastructure (RTI), all managed by
a Federation Object Model (FOM) that specifies the condi-
tions used to exchange data [4, 14, 15].

3. Methodology

In this study, the CubeSat model acts as the federate,
performing an Earth observation mission simulated over a
duration of 8 orbits (about 13 hours) with generic obser-
vation targets given by a set of vectors including coordi-
nates and time constraints that are tracked. After an ini-
tial 5-minute stabilization period, the satellites initiate the
tracking maneuvers for each target. Following an initial ac-
quisition phase where the satellite orients itself towards the
target (nadir pointing) and stabilizes its position, it initiates
a recording period for attitude control error lasting 2 min-
utes. This process is repeated for almost 80 target tracking
maneuvers, taking a total time of 10 minutes each.

With these premises, two main objectives are stablished:
firstly, to conduct a simulation performance comparison
across various simulation environments and hardware ar-
chitectures; and secondly, to evaluate the computational

2



boundaries of distributed simulations within an HLA frame-
work, particularly focusing on the impact of increasing fed-
erate numbers. These main points will provide with insights
about the challenges of moving from a monolithic to a dis-
tributed simulation and will shed light on the behaviour of
this type of distributed simulations.

The methodology unfolds from a well-established
Simulink model, extensively validated through the MOVE-
II project’s prolific research output [7].

The Simulink simulation, while functional, may not be
the most computationally efficient to scale in conventional
PCs. Consequently, a next step includes performing the
transition from MATLAB to C++ code. This approach pro-
vides with another software application whose components
are tightly integrated and designed to work together as a
single unit (monolithic architecture as well). This shift not
only promises enhanced performance but also facilitates in-
tegration into an HLA environment, marking a pivotal step
towards achieving a more scalable and distributed architec-
ture.

Initially, when transitioning towards a distributed sim-
ulation, a first approach to implement a distributed archi-
tecture would be to concatenate several Simulink MOVE-II
models without the need of implementing an upper architec-
ture like the HLA. This approach raises critical questions
about the resources and rationale behind adopting a com-
plex Runtime Infrastructure (RTI) for distributed CubeSat
simulations.

To address these inquiries, three distinct simulation en-
vironments are evaluated: MATLAB Simulink, standalone
C++, and C++ within an HLA-RTI framework. These en-
vironments are tested across two operating systems (Mi-
crosoft Windows and Linux) and two hardware architec-
tures (x86-64 and ARM), providing a comprehensive plat-
form for examining the simulation performance under a va-
riety of conditions. The selection of these specific environ-
ments and architectures is driven by their relevance to cur-
rent CubeSat development practices and the need to under-
stand the simulations’ performance across commonly used
systems. Detailed scenarios for these experiments are fur-
ther elaborated in Section 3.5.

3.1. Description of the CubeSat Model

The CubeSat Simulink model has a closely intercon-
nected subsystem structure, which allows a comprehensive
simulation and yields valuable information that can be ex-
tracted from it. In addition to the Simulink blocks, the use of
precompiled functions (S-Functions in MATLAB) is imple-
mented, enabling advanced computations with lower com-
putational overhead thanks to their dynamically linked sub-
routines [16].

Figure 1 depicts the structure of the Simulink model.

While the model comprises numerous lower-level subsys-
tems and configurations, this simplified diagram can be
used as a reference for the CubeSat’s system architecture.
The integration of these blocks and functions within the
simulation code grants an extensive range of accurate data
on the state of the satellite. It is worth noting that all signals
can be extracted at any point of the simulation, providing a
practical validated model available to use in a wide range of
situations.

Moreover, in spite of the model’s modular architecture,
this model can be described as a monolithic application, due
to its tight subsystems’ integration, its direct interconnec-
tions, and communications and its single codebase [17, 18].

The activity diagram for the model is presented in Fig-
ure 2. First, initialization routines are executed following
the Mission Control commands and general data from the
model is introduced. Afterwards, if no flags were raised,
the step function is called, performing a whole loop through
the satellite model taking into account the space environ-
ment, disturbances and the actual satellite state. Next, with
the computed results, a new satellite state is stored and a
data logfile is written. Finally, if no error flags raised and
all steps were computed, the program executes cleanup and
exit functions to terminate the run.

3.2. MATLAB to C++ Adaptation Process

Although the original Simulink model has a variable
timestep, in order to adapt it to C++ without major mod-
ifications, a fixed timestep of 0.05s was set. This fixed
timestep was chosen as it is the smallest timestep used by
signal configurations in the Simulink simulation, ensuring
that the C++ simulation remains consistent with the origi-
nal model.

In order to obtain a functional simulation, the Simulink
Coder tool was the chosen approach. It proved to be the
most reliable and fastest way to achieve a C++ adaptation,
although not trivial. A practical C++ version can be ob-
tained when selecting appropriate configuration parameters
for the Simulink Coder [19] in order to get wide support
for compiling code across different platforms [20, 21], such
as the ones depicted in Table 1. Before achieving the final
simulation executable, the fact that the initialization code
has to be included and some of the MATLAB libraries and
S-Functions are not automatically correctly compiled and
linked must be taken into account. Moreover, header files
need proper tuning as well. Finally, some custom configu-
rations like a log file and performance monitoring tools are
included in this step as well.

The transition from MATLAB to C++ preserves all sig-
nals, calculated data, and states from the original Simulink
model, thus enabling access to a wealth of data for further
analysis and integration into the HLA-based satellite fed-

3



Figure 1. CubeSat model simulator architecture in the SysML modelling language.

Target selection

System target file Generic real-time target
Language C++11(ISO)

Build process

Toolchain Windows MinGW64 — CMake/gmake
Toolchain Linux GNU gcc/g++ — CMake/gmake
Build configuration Debug

Table 1. Simulink Code main configuration
parameters used in this work.

eration simulator. It should be stated that fixed timesteps
simplifiy the integration process and reduce potential errors
in discrete-event simulations but they also lead to unnec-
essary computations when system dynamics are slow, af-
fecting performance. Nevertherless, the enhanced perfor-
mance and flexibility provided brings more benefits than
drawbacks despite this fixed timestep. This journey from
MATLAB to C++ underscores the significance of strate-
gic decision-making in simulation adaptation, balancing be-
tween maintaining model integrity and optimizing compu-
tational performance while opening the possibility for ad-
vanced data analysis and integration into larger simulation
frameworks.

3.3. Integration into the FSS HLA-based
Simulator

In order to be able to test satellites in a more realistic
environment, working in a federation with more satellites
and communicating with systems just as they would in real
life, an HLA-RTI system provides with a distributed mod-
elling and simulation environment [22] for the operation of
a FSS in a virtual environment. The two main points of
the HLA IEEE standard are: promoting interoperability be-
tween simulations and aiding the reuse of models in differ-
ent contexts [23]. Nevertheless, the HLA is an architecture,
not a software, therefore the use of RTI middleware soft-
ware is required to support operations of a federation exe-
cution [14]. In this case, the CERTI runtime infrastructure
was used. CERTI is an Open Source HLA RTI implemen-
tation [24, 25].

CERTI has a characteristic architecture, consisting of
two main RTI processes: a local (ambassador) one (RTIA)
and a global one (RTIG), as well as linked library (libRTI).
This architecture can be seen in Figure 3

More specifically in this case, the CubeSat simulation
has to be inserted as a federate, which will locally inter-
act with the Ambassador process (RTIA). Then RTIA and
RTIG exchange messages through the network, so that the
RTIG can manage the creation and destruction of federa-
tion processes and monitor data exchange. RTIG serves as
a centralized (intelligent) broadcaster which takes and de-

4



Figure 2. CubeSat model activity diagram in the SysML modelling language.

Figure 3. CERTI architecture [24].

livers the messages to the interested RTIAs [26].
With respect to the HLA simulator used, whose architec-

ture is depicted in Figure 4, one can distinguish four types of
blocks regarding functionality: Simulation, Control, HLA
and Utility.

On a structural point of view, the main file is respon-
sible for including all the necessary libraries (including the
CubeSat and other federates ones) and coordinate the differ-
ent federates attached through the simulator function. Then,
the simulator instantiates each model included in it and ob-

tains a simulation object with its attribute values1 for each
one of them. Finally, the HLA function manages each con-
nected model as a federate, creating a unique RTIG and an
RTIA for each one of the federates. It assigns one feder-
ate to manage the federation, thus allowing the rest to sim-
ply join the existing federation. This block also includes
the Federation Object Model (FOM), which is a specifica-
tion defining the information exchanged, including object
classes, object class attributes, interaction classes, interac-
tion parameters, Management Object Model (MOM)2 con-
tents, and other relevant information [4, 14, 15]. As seen
in Figure 3, this HLA function is directly associated to the
simulator.

In the case of this paper, the orange model block is per-
formed by the CubeSat C++ code. This way, one can add,
in principle, an unlimited amount of satellite model feder-
ates if the computational power is available. Therefore, with
this setup, simulations between different number of fed-
erates can be carried out until reaching the computational
power limit of the machine, obtaining a function of its per-
formance based on the number of participants taking part in
these simulations.

1named characteristic of an object class or object instance [4]
2MOM provides facilities for access to RTI operating information dur-

ing federation execution [14]

5



Figure 4. HLA simulator architecture in the SysML modelling language.

3.4. Solver Performance and Data Manage-
ment Considerations

Finally, some theoretical background and calculations
are presented to provide with the complete picture.

In the context of the MATLAB Simulink model, the
solver configuration employs the ode45 solver, an explicit
Runge-Kutta method, specifically the Dormand-Prince vari-
ant [27]. This choice is pivotal for simulations that de-
mand adaptive timestep control to ensure precision. The
ode45 solver dynamically adjusts timesteps (either con-
tracting or expanding them) to maintain the desired accu-
racy levels across the simulation. This adaptability, while
beneficial for accuracy, introduces variability in computa-
tion time, primarily influenced by the model’s complexity
and the numerical stability requirements [28].

The execution time of the ode45 solver, used in Cube-
Sat simulations, is influenced by system stiffness, rapid
state changes, and precision needs. For stiff equations,
ode45’s explicit nature may require more steps to find a so-
lution, impacting efficiency. Conversely, it optimizes speed
and accuracy for non-stiff problems, despite the higher
computational cost associated with its adaptability [29].
The solver’s performance is crucially dependent on the dy-
namics of the system being modeled, including the rate of
change in state variables and the complexity of the differ-
ential equations [27, 30]. Despite these challenges, ode45

is favored for its versatility, efficiency in handling non-stiff
problems, and integration within MATLAB, making it a
suitable choice for CubeSat simulation tasks that demand
both precision and adaptability.

Then moving onto the C++ model context, a fixed step
(0.05 s) had to be configured in order to generate consistent
code with respect to the Simulink model.

In the context of the High Level Architecture (HLA)-
based simulation employed within this project, the Cube-
Sat model generates an extensive array of data, including
over 3,000 signals and more than 500 states, such as po-
sitions, velocities, battery states of charge, etc. Given the
substantial volume of data, the potential data transmission
rates across the HLA network are significantly high. To
manage the complexity and volume of data effectively, the
study strategically selects only a limited number of double-
precision vector variables for transmission within the HLA
framework (position and velocity vectors). Consequently,
the size of the data packets broadcasted by the satellite
model is quantified at 24 bytes for each attribute value
transmitted. This calculation does not account for addi-
tional metadata that may accompany the messages, such as
federate-specific details.

Moreover, the configuration of the HLA simulator intro-
duces a variable dimension to the simulation’s data handling
capabilities. The simulator’s settings permit adjustments to
the message transmission frequency and the synchroniza-

6



tion strategy among federates. Specifically, it allows for the
customization of the operational tempo, including options
to synchronize computation steps across all federates before
proceeding to subsequent calculations. This adaptability
in the HLA simulator’s configuration underscores the sys-
tem’s flexibility in balancing data transmission efficiency
with computational demands and synchronization require-
ments within distributed simulation environments [4].

In this study, the messaging protocol is designed to
replicate one second of simulation time, taking into ac-
count the predefined timestep of 0.05 seconds. Conse-
quently, this protocol stipulates the transmission of a mes-
sage at every twentieth simulation step. Achieving real-
time simulation fidelity necessitates that the cumulative pro-
cessing of twenty steps and data communication opera-
tions—encompassing both outbound and inbound transac-
tions—must be completed within a one-second timeframe.
This critical consideration for real-time behavior under-
scores the importance of optimizing computation and com-
munication workflows to adhere to the simulation’s tempo-
ral parameters. Future discussions will delve into the tem-
poral efficiency of the simulation, particularly through the
analysis of the simulated time per second metric.

In order to determine the computation time, following
other related simulations such as the one conducted by Ger-
vais et. al [23], the metric of Worst Case Execution Time
(WCET) is the main objective. Since CERTI does not pro-
vide any liabilities regarding real-time execution [31], some
modifications had to be applied to compute the correct run-
time characteristics, such as latency measurements.

3.5. Hardware and Testing Scenarios

Various configurations have been deployed across multi-
ple computers to cover a spectrum of test scenarios. The ini-
tial setup involves a laptop that dual-boots Windows 11 and
Ubuntu 22.04, powered by an Intel Core i7-8750H proces-
sor with 6 cores and 12 logical processors, clocking speed of
2.20 GHz. This system is equipped with 16GB of DRAM,
a GeForce GTX 1060 graphics card with 6GB of memory,
and relies on HDD for storage. Additionally, there is a
group of six PCs, each configured to dual-boot Windows
11 and Debian 12. These computers are outfitted with In-
tel Xeon E-2146G processors at 3.50GHz, featuring 6 cores
and 12 logical processors, 16GB of RAM, NVIDIA Quadro
P620 graphics cards with 2GB of memory, and utilize SSDs
for storage. The testing array is completed with a cluster of
ARM-based single board computers (SBCs), comprising a
mix of Raspberry Pi model 4Bs, Raspberry Pi model 5s, and
OKdo ROCK 4C+ SBCs. The laptop and SBCs are located
in the same building, while the rest of the PCs are located
in a different building a few hundred meters apart, although
on the same network.

Regarding different environments and platforms, the fol-
lowing cases can be presented:

1. Simulink Model (Windows): evaluation of the
Simulink CubeSat model within the MATLAB frame-
work on two distinct Windows-based systems to assess
model behavior and performance.

2. Binary Executable File (Windows): deployment of a
C++ adapted CubeSat model as an executable within
Windows environments to analyze functionality and
performance, offering insights into Windows compati-
bility. This case is also analysed on the two Windows-
based computers.

3. Binary Executable File (Linux x86-64): on both
Linux distributions, a program containing the same
adapted C++ CubeSat model is run to examine its
functionality and execution characteristics within this
environment.

4. HLA-based simulator (Linux x86-64): across the
six-computer setup, a detailed assessment of a sim-
ulator that employs a distributed architecture is per-
formed, evaluating its operational effectiveness and
behavior.

5. HLA-based simulator (Linux ARM 64-bit): testing
the HLA framework on ARM-based CPU architectures
(SBC cluster), thus validating the HLA implementa-
tion’s compatibility and performance on this hardware
platform.

6. Integrated HLA Simulation Across Platforms: This
scenario involves the integration of all three computer
types (both Linux x86-64 types of PCs, and Linux
ARM 64-bit SBCs) within a singular HLA framework.
The goal is to evaluate the interoperability, perfor-
mance, and scalability of the distributed architecture
across heterogeneous computing environments, show-
casing the potential for wide-ranging applications.

By conducting these experiments across different oper-
ating systems, locations and various scenarios, the aim is
to gain a thorough understanding of the system’s behavior,
performance, and compatibility in diverse computing envi-
ronments. To sum up, Table 2 summarizes the different se-
tups and simulations that are carried out in each case.

4. Results

4.1. Runtime Analysis

This section evaluates the runtime performance of the
CubeSat simulation model across various computational en-
vironments and architectures, with a focus on monolithic

7



Simulation

Environment i7
Windows

Xeon
Windows i7 Linux Xeon

Linux
ARM
Linux

Simulink Model
(monolithic) X X

Binary Executable
(C++) (monolithic) X X X X

HLA-based Simulator
(distributed) X X X

Table 2. Environments and scenarios for the simulations.

and distributed simulations as outlined in Section 3.5. The
aim is to shed light on the advantages and limitations of
each environment in relation to simulation runtime, thereby
guiding optimal environment selection based on specific
project requirements.

To facilitate a fair comparison of simulation performance
across diverse hardware configurations, we normalize the
execution time with respect to the computational resources
of each system, specifically the number of processor cores
and their clock speeds. This normalization accounts for
variations in hardware capabilities, thereby enabling a more
equitable evaluation of simulation efficiency. The normal-
ized execution time (NET) is calculated using Equation 1:

NET =
Execution Time (minutes)

Number of Cores × Clock Speed (GHz)
(1)

This formula adjusts the raw execution time by the to-
tal processing capability available to the simulation, pro-
viding a metric of minutes per core GHz. Lower values of
NET indicate higher computational efficiency, considering
the amount of processing power employed.

A comprehensive discussion of these results and their
implications will be presented in the following ’Results and
Discussion’ section (Section 5).

4.1.1 Monolithic Simulation

The MATLAB and C++ monolithic simulations reveal sig-
nificant differences in execution times, particularly when
comparing the MATLAB environment to its C++ counter-
part. Table 3 illustrates these differences for a single satel-
lite simulation across Intel i7 and Intel Xeon processors.
Notably, the MATLAB model’s execution time was approx-
imately ten times slower than that of the C++ model, thus
excluding its use for federated simulations due to ineffi-
ciency.

Figure 5 presents results comparing normalized execu-
tion times for the C++ monolithic simulation for both the

Intel i7 and the Intel Xeon, Windows and Linux OS. Ten-
dency lines are also displayed, but results are only showed
until reaching the computational limit of each machine. The
substantial difference in execution times between MATLAB
and C++ simulations suggests inherent efficiencies in C++
for computational tasks. Moreover, the difference between
Windows and Linux execution times need further address-
ing as well.

Figure 5. Normalized execution times for
C++ monolithic applications in Windows and
Linux.

Another important metric that will be evaluated is the
simulated time per second (STPS), which quantifies the
simulation’s computational efficiency. STPS, representing
the amount of simulated time (in seconds) that can be pro-
cessed in one real second, serves as a critical metric for as-
sessing the simulation’s capability to run in near real-time
or faster. The linear equations provided for STPS across
different platforms and processors offer insights into how

8



Simulation

Environment i7
Windows

Xeon
Windows i7 Linux Xeon

Linux

MATLAB Simulink
(monolithic) 8.11 4.63

C++ (monolithic) 0.94 0.52 2.30 1.32

Table 3. Normalized execution times for single satellite monolithic simulation on different environ-
ments and processors.

the number of federates impacts simulation performance,
highlighting the scalability challenges in monolithic envi-
ronments. In the case of monolithic simulations, the lin-
earised equations are:

• Linux i7:
STPS = −1.3067× Federates+ 26.1347,
R2 = 0.9584

• Linux Xeon:
STPS = −1.1101× Federates+ 30.1683,
R2 = 0.9708

• Windows i7:
STPS = −2.4153× Federates+ 64.1051,
R2 = 0.9853

• Windows Xeon:
STPS = −2.1837× Federates+ 79.4024,
R2 = 0.9582

4.1.2 Distributed Simulation

NET for the C++ HLA-based distributed simulations for
each type of machine used are presented in Figure 6. These
simulations are performed using only one machine for the
computation of federates and in parallel, an additional ma-
chine running exclusively the RTIG. The displayed com-
puters perform the satellite simulations and send the data
through the RTIAs. Here each type of computer’s compu-
tational power can be easily compared individually before
delving into more complex simulations including different
types and numbers of machines.

Unlike the monolithic simulation environment, dis-
tributed simulations offer enhanced flexibility and scalabil-
ity, since it enables the effective handling of larger federa-
tions by distributing the computational load across multiple
machines. This approach significantly impacts the CubeSat
simulation’s ability to model complex scenarios and interac-
tions within a realistic timeframe. In this case, the linearised
equations for single machine HLA simulation execution are

Figure 6. Normalized execution times for the
distributed HLA based applications in single
machines.

not provided, since the distributed approach provides a non-
linear scalability behaviour, as presented in Table 4. A com-
prehensive analysis of this behavior and its implications for
CubeSat simulation scalability will be provided in Section
5.

To capture the full scope of distributed simulation per-
formance, Table 4 summarises the amount of satellites sim-
ulated with respect to the amount of computers taking part
in the distributed simulation. This gives the relationship be-
tween the number of machines and the total number of satel-
lites that can be simulated concurrently. Understanding this
relationship provides valuable insights into the distributed
architecture’s capacity to support large-scale CubeSat con-
stellations. Here the ROCK 4C+ boards are not displayed,
due to their comparatively lower computing capabilities,
ROCK 4C+ boards were primarily tasked with running the
RTIG process, a strategic decision aimed at optimizing the
overall simulation architecture.

9



Simulation # Intel i7 machines Intel Xeon machines Raspberry Pi 4B machines Raspberry Pi 5 machines Total Federates NET (mins per core GHz)

1 3 3 1.35
2 3 6 1.35
3 4 4 0.92
4 4 6 1.01
5 4 7 1.07
6 4 8 1.14
7 5 5 0.78
8 5 9 1.01
9 2 4 6.23
10 3 3 11.61
11 4 4 9.39
12 5 5 8.31
13 1 1 1 3 14.21

Table 4. Normalized execution times for various CubeSat simulations across different computational
setups.

4.2. Scalability Assessment

Scaling the MATLAB model proved particularly chal-
lenging due to its monolithic structure and computational
intensity, which significantly impacted performance, there-
fore only one federate was simulated in this environment.
The Simulink model has a tighly interconnected structure,
which on top of the computational limitations and difficul-
ties in results’ repeatability, makes it technically challeng-
ing to add new federates for this environment. In addi-
tion to that, it has been proven that encapsulating MAT-
LAB/Simulink programs into HLA-based simulations is not
trivial [32].

In contrast, the C++ environment offered more flexibil-
ity for scalability, leveraging computing techniques to en-
hance simulation efficiency. In the C++ environment, multi-
threading was utilized to manage computational loads more
effectively, allowing for concurrent processing of simula-
tion tasks. This technique significantly enhanced the sim-
ulation’s runtime efficiency. In both Linux and Windows,
a .txt file is generated with attributes and data to simulate
the Workspace data logging of the MATLAB computations,
but no communication between federates is carried out in
the network.

Finally, the fact that CERTI was implemented only in
Linux for the HLA-based simulation should be mentioned.
This RTI allows real data exchange across the network.
Here, the simulations’ computations can be split in as many
machines as available. The integration of multithreading
with CERTI’s data exchange mechanisms highlighted the
importance of optimizing thread usage to maintain high per-
formance.

5. Discussion

After presenting the results, more detailed insights can
be obtained. The first is the highly inefficient performance

of MATLAB compared to C++. Allowing the solver to
compute the CubeSat with a variable timestep is not enough
for it to come close to the execution efficiency of C++
[33]. The execution discrepancies observed with ode45 in
practical applications can be attributed to its mechanism of
timestep adjustment, which, while ensuring accuracy, reacts
sensitively to the system’s response characteristics.

Moreover, falling below the 1 s/s threshold in simulated
time per second (STPS) signals a departure from real-time
simulation capability. This threshold is crucial for simu-
lations intended to mirror or predict real-world behavior
closely. Below this rate, the simulation’s utility for real-time
decision-making or live scenario testing becomes compro-
mised, underscoring the importance of optimizing compu-
tational strategies.

Regarding communication in the RTI, as previously
stated, the use of CPU here has another important processes
apart from the main simulation: RTIG and RTIA, which
introduce additional computational overhead. The amount
of data transferred in total (position and velocity vectors)
is approximately 150 MB per federate (RTIA). RTIG adds
an extra 50 MB overhead per simulation in order to stab-
lish reliable and secure communication between machines.
Particularly in SBCs, where resources are limited, the sub-
stantial data transfer volume significantly impacts simula-
tion scalability.

The latency values for the HLA-RTI are in the order of
milliseconds, while the messages were sent every second.
A deterministic behaviour was also shown, producing con-
sistent results in almost identical run-times (only tenths of
milliseconds apart). Therefore one can conclude that these
values can be considered as real-time [34, 35].

5.1. Performance Comparison

As depicted in Figure 5, one can clearly state that the best
performance in terms of computation efficiency is achieved

10



in the monolithic Windows C++ environment. It is worth
noting that its performance was almost two times more ef-
ficient than the following case, monolithic Linux C++. The
unexpected performance advantage of Windows C++ over
Linux could be partially explained by in-depth system pro-
filing, revealing differences in how each OS handles thread
scheduling, memory management, and system calls. These
underlying mechanisms, coupled with the specific config-
urations of our simulation software, contribute to the ob-
served efficiency gap [36].

Regarding the MATLAB environment, it was concluded
that it is not worth scaling the system to adapt it to a fed-
eration of several satellites, due to its poor execution times
compared to C++, the difficulties to implement an HLA en-
vironment in MATLAB and its rigid monolithic structure.

In the pure C++ environment, the application of multi-
threading enabled a substantial reduction in execution times
compared to the MATLAB simulations. This utilization of
concurrent processing showcases the inherent efficiencies
in C++ for computational tasks.

Finally, the HLA environment should only be compared
to the Linux one, since they perform the same simulation,
with the difference that one has a higher architecture (Fig-
ure 3) that uses the very same code as an add-on (federate).
In principle, it is clear that the pure C++ version is much
more efficient, as can be confirmed comparing the results in
Figures 5 and 6. However, taking a closer look at Table .4,
and taking for instance the Intel Xeon machines simulations
and comparing them to the Linux Xeon results in Figure 5,
one can see that the NET values are not much greater than
1 minute per core GHz, while the only results that achieve
similar results in the monolithic version are one or two fed-
erates, maybe 6, but even those are over 1 minute per core
GHz, never obtaining lower results.

Therefore, it can be deduced that the HLA implementa-
tion can provide with better results in NET, however, the
amount of federates that can take part in the simulations do
not show the same scalability performance, not achieving
more than 9 federates for a single simulation.

This difference can be explained by the HLA manage-
ment carried by RTIG, which uses up to 20% of a processor
resources (even slightly higher values at peak points), while
RTIA consumes around 10% of a CPU computation effort.
Although these values vary for different cases, for instance
in the case of fewer federates, RTIA can go as low as 7-8%
only, while for the higher number of federates these values
can achieve 13-14%. All in all, this RTI overhead has a cru-
cial impact on the CPU limit of the machines, specially in
the SBCs.

Moreover, the latency was under 3 ms for most of the
messages, reaching even less than 0.5 ms in the best cases.

Finally, regarding differences in i7 and Xeon, while both
CPUs offer similar core and thread counts, their design

philosophies cater to different segments. The Xeon E-
2146G is geared towards professional and server environ-
ments requiring reliability and performance, whereas the
Core i7-8750H is aimed at high-performance consumer lap-
tops prioritizing efficiency and portability. The Xeon E-
2146G operates at a higher base and turbo frequency, which
can lead to better performance for single-threaded applica-
tions like these ones that benefit from higher clock speeds.
Furthermore, with a larger cache (12 MB vs. 9 MB), the
Xeon E-2146G can store more data close to the proces-
sor, potentially improving performance for tasks that re-
quire frequent access to large data sets.

5.2. Insights into Trade-offs and Consider-
ations in each Environment

A characteristic fact about the MATLAB environment,
as mentioned in Section 4, is the high deviation between
different tests and problems with results repeatibility. While
the rest of the simulations’ results were in the order of hun-
dreds of milliseconds apart for the worst cases, MATLAB
simulations’s time execution differences were in the order
of hundreds of seconds.

One should not forget that MATLAB performance can
greatly vary when using different compilers provided in the
program. C++ can outperform vectorized MATLAB code
by a substantial margin, which leads to important perfor-
mance gains [36]. There are two main factors contributing
to this:

• Utilizing external libraries, such as the ones used for
the MOVE project in MATLAB, introduces additional
processing time [37].

• Matlab dynamically allocates and frees memory,
which becomes especially evident in operations like
small matrix multiplication. C++, by pre-allocating
memory, avoids the creation of unnecessary temporary
matrices, leading to significant performance improve-
ments, more particularly when repeated in loops [38].

However, it is essential to note that C++ code develop-
ment time is typically much longer.

With all that in mind, despite its lower efficiency, MAT-
LAB boasts mathematically robust built-in routines and
toolboxes. The priority is obtaining accurate results, and
MATLAB’s approach of ensuring correctness before ad-
dressing efficiency is key. In contrast, C++ introduces the
possibility of subtle errors, like implicit conversions from
’double’ to ’int’, leading to approximately correct outcomes
[36].

Expressing ideas and sharing code with colleagues is
also more seamless in MATLAB. The code is not only more

11



readable and concise compared to C++, but it can also be
executed without the need for a compiler.

Furthermore, debugging MATLAB scripts, facilitated by
an interactive console and workspace, proves significantly
more efficient than debugging in C++. Identifying bugs,
such as index calculation errors, is expedited in MATLAB,
taking minutes, whereas the same task in C++ might con-
sume hours.

Looking at the monolithic results in Figure 5, the com-
putation limit of the machines is reached at around 16 fed-
erates, except in the case of Xeon Windows C++. Making
use of the STPS linearised approximations, one can com-
pare these practical limits to the theoretical limit of real-
time behaviour. If a constraint of 1s/s is used for the STPS
value, theoretical limits for Linux are 19 federates for the i7
processor and 26 for the Xeon. For Windows versions, the
limit in the case of the Intel i7 is 26 federates and 35 in the
case of the Intel Xeon. All in all, the computational limit is
reached before the real-time limit. Nevertheless, one must
bear in mind that no real communication exchange between
federates is being carried out here.

Now, regarding the HLA-RTI number of federates influ-
ence on performance, in theory, the maximum achievable
number of federates per machine can be estimated similarly
to the previous case, this is, by finding the maximum num-
ber of federates a computer can handle without reaching the
limit of simulated seconds per second of 1 s/s. If one takes
into account further problems in network communication, it
might be wise to increase this boundary condition to maybe
2 or 3 s/s as a safety factor in order to avoid any unforeseen
situations that may arise. However, HLA provides the flex-
ibility to distribute the computing loads among several ma-
chines, thus allowing for a more loose computation load for
each computer. Moreover, since the maximum amount of
federates that were achieved in a single machine is 5 (only
2 in the case of SBCs), the linear approximation might not
provide with accurate results, as was previously stated.

Looking at Table 4, one can see that the total amount
of federates taking part is not as big as in the pure C++
case, even though more machines were used. As men-
tioned, this was mainly due to CPU constraints with RTIG
and RTIA processes, which introduced significant compu-
tational overhead.

In addition, in these simulations, there was an additional
limiting factor: the least powerful machine was the one
limiting the communications. If one federate crashed, the
whole RTI froze waiting for that one satellite. So although
sufficient computational resources were available in num-
ber, for these kind of reliable TCP communications, each
machine must be able to have enough computing power to
withstand all the HLA-RTI overheads.

Finally, with regard to satellite simulations development,
based on the project phase, computational power availabil-

ity, budget constraints, and required simulation fidelity, Ta-
ble 5 provides guidance on selecting the appropriate simu-
lation environment from the ones studied in this paper. The
choice of simulation environment should also consider fac-
tors such as ease of setup and use, real-time capability, and
scalability for large-scale simulations [39].

6. Conclusions

The HLA-RTI implementation proves to be quite useful
regarding scalability and providing a distributed and realis-
tic environment for testing. Thus, its main advantage over
the rest of the environments is its flexible, adaptable and
functional settings, together with its theoretical ”unlimited”
potential number of federates. However, it was made clear
that in the case of high fidelity simulations which need a
great amount of computational power, the maximum num-
ber of federates is strictly limited by the computing power
of the least powerful machine. One should be cautious when
choosing a type of simulation too complex for this kind
of environments or budget machines, since HLA overhead
played a much more important role than expected, leading
to frequent CPU crashes.

Moreover, these advantages come with the respective
drawbacks and complications of setting up such a com-
plex system structure, such as adapting the main simula-
tion’s code, setting up the FOM, or other crucial federation
management files. For this project, the complexity of im-
plementing such an architecture introduced numerous tech-
nical challenges that, in hindsight, outweighed the benefits
achieved.

It can also be concluded that the HLA environment can-
not outperform its pure C++ version if more machines are
available to run simultaneously. This could be overcome if
a great number of more powerful computers were available,
but not in the case of conventional PCs and SBCs.

6.1 Future Research

Another topic to take into account in further investiga-
tions is the Simulink Coder configuration: while this paper
aimed for debugging optimization, one can also use the effi-
ciency optimization setup, potentially leading to more effi-
cient executions regarding both the Simulink simulation and
the C++ adaptations. Nonetheless, the complexity of the
adaptation process becomes greater when using this setup
[19].

MATLAB also offers an HLA implementation, which
can be included in the Cubesat model to represent a more
accurate simulation environment to compare with the HLA-
based simulator. In this case, the HLA-based C++ simula-
tion could in theory be exactly represented in the MATLAB

12



Criteria Recommendation

Project Phase

• Early Design (Phases A and B): MATLAB/Simulink recommended for its visual
tools and ease of use in conceptual and preliminary design.

• Integration and Testing (Phase D): C++ or HLA-RTI recommended for higher ex-
ecution efficiency and more realistic testing environments.

Computational Power

• Limited (e.g., SBCs, conventional PCs): Pure C++ recommended for its lower
computational overhead. HLA-RTI may be too demanding unless only a few fed-
erates are involved.

• Substantial (e.g., high-performance workstations, clusters): HLA-RTI becomes
feasible, offering scalable and distributed simulation capabilities.

Budget Constraints

• Tight Budget: Consider the pure C++ environment for its efficiency and potentially
lower cost due to less demand on hardware.

• Flexible Budget: HLA-RTI can be considered if the project benefits from dis-
tributed simulations and the budget can accommodate the necessary hardware.

Required Fidelity

• High Fidelity Required: HLA-RTI offers a distributed environment that can handle
complex simulations with high fidelity, especially when computational resources
are not a limiting factor.

• Moderate to Low Fidelity Sufficient: MATLAB/Simulink for early phases and pure
C++ for later phases can provide adequate fidelity for many applications without
the complexity and overhead of HLA-RTI.

Table 5. Decision criteria for selecting a simulation environment.

13



environment, leading to better comparisons and more pre-
cise conclusions [40]. Although this very same HLA imple-
mentation is not trivial to develop, even making use of this
Simulink HLA blockset [41].

In the case of the C++ HLA environment, tests could
be carried out in more powerful computers, in order to test
the hypothesis that a cluster of HLA-RTI machines can out-
perform their monolithic counterparts. Moreover, a shorter
mission or fewer amount of transmitted data might also
help.

Finally, by introducing the FSS concept mentioned, dif-
ferent missions and heterogeneous participants can be net-
worked and effectively exchange data and resources be-
tween participants in the federation [3]. Therefore, it would
be meaningful to add several types of missions and hetero-
geneous federates, since in this case all federates were the
same model following the same mission guidelines. This
will allow to see how different satellites interact between
them when carrying out different missions that may involve
each other [42].

Acknowledgments

I extend my deepest gratitude to the MOVE-II team for
generously sharing their Simulink model, which played a
pivotal role in this research. Special thanks are also due to
the Chair of Pico- and Nanosatellites and Satellite Constel-
lations for providing the essential single-board computers
(SBCs) and PCs that facilitated our simulations.

Furthermore, I wish to express my sincere appreciation
to my supervisors, Jaspar Sindermann and Ramón Garcı́a,
for their invaluable insights, expertise, and advice through-
out the course of this study. Their guidance was instrumen-
tal in shaping both the direction and success of this work.

References

[1] Erik Kulu. ”Nanosatellite Launch Forecasts - Track
Record and Latest Prediction”. In Small Satellite Con-
ference, USA, 2022.

[2] Pedro Ângelo Vaz De Carvalho, André Ivo, Guil-
herme Venticinque, Gustavo Vicari Duarte, Matheus
Miranda, and Fatima Mattiello-Francisco. ”Simplify-
ing Operational Scenario Simulation for CubeSat Mis-
sion Analysis Purposes”. In Proceedings of the 11th
Latin-American Symposium on Dependable Comput-
ing, LADC ’22, page 125–130, New York, NY, USA,
2023. Association for Computing Machinery.

[3] Alessandro Golkar and Ignasi Lluch i Cruz. ”The fed-
erated satellite systems paradigm: Concept and busi-
ness case evaluation”. Acta Astronautica, 111:230–
248, 2015.

[4] ”IEEE Standard for Modeling and Simulation (MS)
High Level Architecture (HLA)– Framework and
Rules”. IEEE Std 1516-2010 (Revision of IEEE Std
1516-2000), pages 1–38, 2010.

[5] Mohsen Mosleh, Kia Dalili, and Babak Heydari. ”Dis-
tributed or Monolithic? A Computational Architec-
ture Decision Framework”. IEEE Systems Journal,
12(1):125–136, 2018.

[6] Edward Crawley, Bruce Cameron, and Daniel Selva.
Systems Architecture: Strategy and Product Develop-
ment for Complex Systems. Prentice-Hall, Upper Sad-
dle River, NJ, USA, 2015.

[7] Project MOVE II. https://warr.de/en/
projects/move/move-iib/. Accessed:
September 2023.

[8] N. Krishnamurthy. Dynamic modelling of cube-
sat project move. https://urn.kb.se/
resolve?urn=urn:nbn:se:ltu:diva-
58432, 2008. Accessed: August 2023.

[9] Emily Normandy. CubeSats - Space Founda-
tion. https://www.spacefoundation.org/
space technology hal/cubesats/, 2022.
Accessed: August 2023.

[10] U. Klein, T. Schulze, and S. Strassburger. Traf-
fic simulation based on the High Level Architecture.
In 1998 Winter Simulation Conference. Proceedings
(Cat. No.98CH36274), volume 2, pages 1095–1103,
1998.

[11] Peter Ryan, Peter Ross, and Will Oliver. ”Distributed
Interactive Simulation Revisited: Capabilities of the
Revised IEEE Standard”. 2018.

[12] Angelo Corsaro and Douglas Schmidt. ”The Data
Distribution Service - The Communication Middle-
ware Fabric for Scalable and Extensible Systems-of-
Systems”. 2012.

[13] Nato simulation standards - stanag 4603. https:
//nmsg.sto.nato.int/amsp/hla. Accessed on
September 2023.

[14] ”IEEE Standard for Modeling and Simulation (MS)
High Level Architecture (HLA)– Federate Interface
Specification”. IEEE Std 1516.1-2010 (Revision of
IEEE Std 1516.1-2000), pages 1–378, 2010.

[15] ”IEEE Standard for Modeling and Simulation (MS)
High Level Architecture (HLA)– Object Model Tem-
plate (OMT) Specification”. IEEE Std 1516.2-2010
(Revision of IEEE Std 1516.2-2000), pages 1–110,
2010.

14

https://warr.de/en/projects/move/move-iib/
https://warr.de/en/projects/move/move-iib/
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-58432
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-58432
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-58432
https://www.spacefoundation.org/space_technology_hal/cubesats/
https://www.spacefoundation.org/space_technology_hal/cubesats/
https://nmsg.sto.nato.int/amsp/hla
https://nmsg.sto.nato.int/amsp/hla


[16] https://mathworks.com/help/simulink/
slref/sfunction.html. The MathWorks Inc.
S-Function Documentation . Accessed: August, 2023.

[17] Kevin Hoffman. Beyond the Twelve-Factor App: Ex-
ploring the DNA of Highly Scalable, Resilient Cloud
Applications. O’Reilly Media, Inc., April 2016.

[18] Rahul Awati and Ivy Wigmore. Monolithic archi-
tecture. https://www.techtarget.com/
whatis/definition/monolithic-
architecture, 2022. Accessed: October
2023.

[19] The MathWorks Inc. Simulink Coder User’s Guide,
2023. https://es.mathworks.com/help/
pdf doc/rtw/rtw ug.pdf. Accessed: July 2023.

[20] The MathWorks Inc. Simulink Coder Target Languaje
Compiler, 2023. https://es.mathworks.com/
help/pdf doc/rtw/rtw tlc.pdf. Accessed:
July 2023.

[21] GNU make Manual. https://www.gnu.org/
software/make/manual/make.html. Ac-
cessed: August 2023.

[22] Zhijie Mao, Lin Zhou, and Yingmei Chen. ”A Satellite
Communication Simulation System Research Based
on HLA and MDIS”. In Proceedings of the 4th Inter-
national Conference on Computer Science and Appli-
cation Engineering, CSAE ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[23] Clement Gervais, Jean-Baptise Chaudron, Pierre
Siron, Regine Leconte, and David Saussie. ”Real-
Time Distributed Aircraft Simulation through HLA”.
In Proceedings of the 2012 IEEE/ACM 16th Interna-
tional Symposium on Distributed Simulation and Real
Time Applications, DS-RT ’12, page 251–254, USA,
2012. IEEE Computer Society.

[24] Eric Noulard, Jean-Yves Rousselot, and Pierre Siron.
CERTI, an Open Source RTI, why and how. In
Spring Simulation Interoperability Workshop, pages
1–11, San Diego, US, 2009.

[25] CERTI Project. https://
savannah.nongnu.org/projects/certi.
Accessed: July 2023.

[26] CERTI User Guide. https://www.nongnu.org/
certi/certi doc/User/CERTI User.pdf.
Accessed: July 2023.

[27] The MathWorks Inc. MATLAB ode45 -
Solve nonstiff differential equations. https:

//mathworks.com/help/matlab/ref/
ode45.htmlAccessed: September 2023.

[28] Jay Fleming. System of ordinary differential equa-
tions - time complexity of initial value problem.
https://scicomp.stackexchange.com/
questions/29372/system-of-ordinary-
differential-equations-time-
complexity-of-initial-value-pro.
SciComp Stack Exchange Question. Accessed:
September 2023.

[29] Nur Adila Faruk Senan. ”A brief in-
troduction to using ode45 in MATLAB”.
https://www.eng.auburn.edu/˜tplacek/
courses/3600/ode45berkley.pdf. Ac-
cessed: September 2023.

[30] Martha L. Abell and James P. Braselton. Chapter 1 -
introduction to differential equations. In Martha L.
Abell and James P. Braselton, editors, Introductory
Differential Equations (Fifth Edition), pages 1–24.
Academic Press, fifth edition edition, 2018.

[31] Albert MK Cheng. Real-time systems: scheduling,
analysis, and verification. John Wiley & Sons, 2003.

[32] Sangha Choi, Wooshik Kim, and Sugjoon Yoon. ”De-
velopment of an Encapsulator for Interoperability of
Non-HLA Based MATLAB Programs (SIMULINK
or M-file) to HLA Based Simulations”. Interna-
tional Journal of Machine Learning and Computing,
10:176–181, 2020.

[33] Tyler Andrews. ”Computation Time Compar-
ison Between Matlab and C++ Using Launch
Windows”. 2012. California Polytechnic
State University San Luis Obispo. https://
digitalcommons.calpoly.edu/aerosp/78.
Accessed: October 2023.

[34] Jürgen Gotschlich, Torsten Gerlach, and Umut Durak.
2simulate: A distributed real-time simulation frame-
work. In Jürgen Scheible, Ingrid Bausch-Gall, and
Christina Deatcu, editors, ASIM Mitteilung 149 / AR-
GESIM Report 42. ARGESIM Verlag, February 2014.

[35] Thom McLean. ”Repeatability in Real-Time Dis-
tributed Simulation Executions”. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems
and Humans, 30(4):383–391, 2000.

[36] PhD AP EcE. Performance Tradeoff: When is
MATLAB better (slower) than C/C++?, 2023.
https://stackoverflow.com/questions/
20513071/performance-tradeoff-when-

15

https://mathworks.com/help/simulink/slref/sfunction.html.
https://mathworks.com/help/simulink/slref/sfunction.html.
https://www.techtarget.com/whatis/definition/monolithic-architecture
https://www.techtarget.com/whatis/definition/monolithic-architecture
https://www.techtarget.com/whatis/definition/monolithic-architecture
https://es.mathworks.com/help/pdf_doc/rtw/rtw_ug.pdf
https://es.mathworks.com/help/pdf_doc/rtw/rtw_ug.pdf
https://es.mathworks.com/help/pdf_doc/rtw/rtw_tlc.pdf
https://es.mathworks.com/help/pdf_doc/rtw/rtw_tlc.pdf
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://savannah.nongnu.org/projects/certi
https://savannah.nongnu.org/projects/certi
https://www.nongnu.org/certi/certi_doc/User/CERTI_User.pdf
https://www.nongnu.org/certi/certi_doc/User/CERTI_User.pdf
https://mathworks.com/help/matlab/ref/ode45.html
https://mathworks.com/help/matlab/ref/ode45.html
https://mathworks.com/help/matlab/ref/ode45.html
https://scicomp.stackexchange.com/questions/29372/system-of-ordinary-differential-equations-time-complexity-of-initial-value-pro
https://scicomp.stackexchange.com/questions/29372/system-of-ordinary-differential-equations-time-complexity-of-initial-value-pro
https://scicomp.stackexchange.com/questions/29372/system-of-ordinary-differential-equations-time-complexity-of-initial-value-pro
https://scicomp.stackexchange.com/questions/29372/system-of-ordinary-differential-equations-time-complexity-of-initial-value-pro
https://www.eng.auburn.edu/~tplacek/courses/3600/ode45berkley.pdf
https://www.eng.auburn.edu/~tplacek/courses/3600/ode45berkley.pdf
https://digitalcommons.calpoly.edu/aerosp/78
https://digitalcommons.calpoly.edu/aerosp/78
https://stackoverflow.com/questions/20513071/performance-tradeoff-when-is-matlab-better-slower-than-c-c
https://stackoverflow.com/questions/20513071/performance-tradeoff-when-is-matlab-better-slower-than-c-c


is-matlab-better-slower-than-c-c.
Accessed: October 2023.

[37] Mathworks. Performance of applications that
are developed in MATLAB versus C/C++,
2020. https://www.mathworks.com/
matlabcentral/answers/704217-
performance-of-applications-that-
are-developed-in-matlab-versus-c-c.
Accessed: September 2023.

[38] Mathworks. Optimize C/C++ Code Perfor-
mance for Deep Learning, 2023. https:
//www.mathworks.com/help/coder/
ug/optimize-generic-c-cpp-code-
performance.html. Accessed: September 2023.

[39] National Aeronautics and Space Administration.
NASA Systems Engineering Handbook. NASA/SP-
6105, 1995.

[40] The MathWorks Inc. MATLAB Simulink
HLA Toolbox. https://mathworks.com/
products/connections/product detail/
forwardsim-hla-toolbox.html. Accessed:
August 2023.

[41] The MathWorks Inc. MATLAB Simulink
HLA Blockset. https://mathworks.com/
products/connections/product detail/
forwardsim-hla-blockset.html. Accessed:
August 2023.

[42] Nasir Saeed, Ahmed Elzanaty, Heba Almorad,
Hayssam Dahrouj, Tareq Y. Al-Naffouri, and
Mohamed-Slim Alouini. ”CubeSat Communications:
Recent Advances and Future Challenges”. IEEE Com-
munications Surveys and Tutorials, 2019.

16

https://stackoverflow.com/questions/20513071/performance-tradeoff-when-is-matlab-better-slower-than-c-c
https://www.mathworks.com/matlabcentral/answers/704217-performance-of-applications-that-are-developed-in-matlab-versus-c-c
https://www.mathworks.com/matlabcentral/answers/704217-performance-of-applications-that-are-developed-in-matlab-versus-c-c
https://www.mathworks.com/matlabcentral/answers/704217-performance-of-applications-that-are-developed-in-matlab-versus-c-c
https://www.mathworks.com/matlabcentral/answers/704217-performance-of-applications-that-are-developed-in-matlab-versus-c-c
https://www.mathworks.com/help/coder/ug/optimize-generic-c-cpp-code-performance.html
https://www.mathworks.com/help/coder/ug/optimize-generic-c-cpp-code-performance.html
https://www.mathworks.com/help/coder/ug/optimize-generic-c-cpp-code-performance.html
https://www.mathworks.com/help/coder/ug/optimize-generic-c-cpp-code-performance.html
https://mathworks.com/products/connections/product_detail/forwardsim-hla-toolbox.html
https://mathworks.com/products/connections/product_detail/forwardsim-hla-toolbox.html
https://mathworks.com/products/connections/product_detail/forwardsim-hla-toolbox.html
https://mathworks.com/products/connections/product_detail/forwardsim-hla-blockset.html
https://mathworks.com/products/connections/product_detail/forwardsim-hla-blockset.html
https://mathworks.com/products/connections/product_detail/forwardsim-hla-blockset.html

	. Introduction
	. Background
	. Methodology
	. Description of the CubeSat Model
	. MATLAB to C++ Adaptation Process
	. Integration into the FSS HLA-based Simulator
	. Solver Performance and Data Management Considerations
	. Hardware and Testing Scenarios

	. Results
	. Runtime Analysis
	Monolithic Simulation
	Distributed Simulation

	. Scalability Assessment

	. Discussion
	. Performance Comparison
	. Insights into Trade-offs and Considerations in each Environment

	. Conclusions
	Future Research


