
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN
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“From this distant vantage point, the Earth might not seem of any particular interest. But for us, it’s
different. Consider [...] that dot. That’s here. That’s home. That’s us. On it everyone you love,

everyone you know, everyone you ever heard of, every human being who ever was [...].

-Carl Sagan



Abstract

Riemann solvers form a crucial component in solving partial differential equations (PDEs) nu-
merically using Discontinuous Galerkin (DG) or Finite Volumes methods, which are invoked
extensively often in the final code. This thesis implements HLL-type, exact, and augmented
Riemann solvers in the open-source software ExaHyPE 2, an engine to generate simulations
for hyperbolic PDEs in first-order formulation. Thereby, the solvers are evaluated and veri-
fied with the ADER-DG approach applied to the non-homogeneous shallow water and elastic
wave equations in various example problems like dam break, lake at rest, and oscillating lake.
The work shows that in this context, the choice of Riemann solver influences properties such
as accuracy or well-balancedness. However, due to the high order of convergence, the dif-
ferences between the solvers are small, in particular, if scenarios with smooth solutions are
considered. Furthermore, the necessary adjustments to the solvers to allow for numerically
demanding problems like inundation and tsunami simulations are outlined.
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Kurzfassung

Riemann-Löser bilden eine wesentliche Komponente in der numerischen Lösung partieller
Differentialgleichungen (PDEs) mittels Diskontinuierlicher Galerkin (DG) und Finiter Volu-
men Verfahren, die im finalen Code sehr häufig aufgerufen wird. Diese Arbeit implementiert
HLL-basierte, exakte und erweiterte Riemann-Löser in der Open-Source Software ExaHyPE 2,
einer Engine zur Generierung von Simulationen für hyperbolische PDEs erster Ordnung.
Dabei werden die Löser mit dem ADER-DG-Ansatz angewandt auf die Flachwasser- und
elastische Wellengleichungen mittels Dammbruch- sowie ruhender und oszillierender See-
Szenarien evaluiert und verifiziert. Es wird gezeigt, dass die Wahl des Riemann-Lösers in
diesem Kontext Einfluss auf Eigenschaften wie Genauigkeit und Stabilität hat. Allerdings
sind die Unterschiede in den Lösern aufgrund der hohen Konvergenzordnung klein, ins-
besondere wenn Gleichungen mit glatten Lösungen betrachtet werden. Darüber hinaus wer-
den die notwendigen Anpassungen an den Lösern für numerisch anspruchsvolle Probleme
wie Überschwemmungs- und Tsunami-Simulationen skizziert.
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Part I.

Introduction and Fundamentals
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1. Introduction

Earthquakes are some of the most devastating natural disasters worldwide: They can cause
enormous damage to human settlements and cost thousands of lives. The earthquake in
Turkey and Syria on February 6th 2023, for example, claimed over 50,000 victims and nu-
merous injuries, destroying the livelihood of many people for decades. Another frightening
consequence of earthquakes underwater are tsunamis: The sudden displacement of water
due to the release of underground tension leads to large-scale tidal waves, posing a threat
to any neighboring coastal regions. For instance, the Boxing Day tsunami, caused by the
Sumatra-Andaman earthquake in 2004, was one of the most severe since the beginning of
recording, with over 200,000 deaths and three affected continents.

A crucial component in mitigating the consequences of future earthquakes are early warn-
ing systems, which aim to inform the population in time so that they can leave the danger
zone. As a result of the Sumatra earthquake, for example, the GITEWS framework was de-
veloped. It allowed for both locating the earthquake’s source as well as forecasting where the
tsunami waves would hit (sometimes denoted as Run-Up). The underlying model for wave
propagation was based on the shallow water equations, a non-linear hyperbolic system of
partial differential equations (PDE) to simulate fluid flows where the horizontal length scale
is significantly greater than the vertical one. Thus, the mathematics of marine modeling and
computational seismology helps to reduce risks for tsunami and earthquake-prone countries.

However, creating and running such simulations is a challenging task for several reasons:
On one hand, the sheer size of the considered domain is overwhelming. Tsunamis can ex-
tend thousands of kilometers for hours while forming both regions with high activity as well
as areas where the ocean is at rest. Therefore, regular Cartesian grids, even used on high-
performance machines, are hardly employable. Instead, unstructured meshes together with
adaptive mesh refinement are to be preferred. On the other hand, the mathematics and nu-
merical treatment are demanding: Stability requirements imposed by (almost) discontinuous
bottom topography, potential shock waves, or inundation scenarios need special care when
discretizing space and time. Finite Volumes (FVM) or Discontinuous Galerkin (DG) methods
are here the means of choice over traditional approaches like Finite Elements (FEM) or Finite
Differences.

ExaHyPE (An Exascale Hyperbolic PDE Engine) is an open-source software that helps gen-
erate simulations with such requirements: Instead of writing the code from scratch, it enables
source code generation for any hyperbolic system of PDEs in first-order formulation with
source terms and non-conservative product, hiding most of the mathematical and computa-
tional complexity. The user can choose between DG and FVM as a numerical scheme to solve
the equations. Initially funded and completed in 2020, ExaHyPE is currently being rewritten
under the name ExaHyPE 2 to improve the code base, allowing for additional features in the
future.
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1. Introduction

One of the key components of the generated code is the so-called Riemann solver. A Rie-
mann solver resolves the discontinuity between two faces arising when employing DG or
FVM, or in other words, it solves the Riemann problem between these faces. This solver
is called tremendously often throughout the simulation, as any two neighboring grid cells
share at least one such discontinuity per time step. Furthermore, the solver can be realized
using different goals and strategies in mind, for example, one might implement it exactly
and approximately or completely and incompletely - Consequently, they play an important
role in the simulation’s performance and accuracy. Even though researching Riemann solvers
isolated or in the context of FVM has a long tradition, their performance embedded in Ex-
aHyPE 2 has not been investigated yet. This thesis aims to close this gap and implement and
evaluate various Riemann solvers in the newer framework. The work is structured as follows:

Chapter  2 introduces the topic by first deriving hyperbolic PDEs and describing analytical
solutions. Afterward, numerical methods are discussed, and it is shown where Riemann
problems occur in the final schemes, justifying the necessity of using Riemann solvers. Finally,
ExaHype 2 and applications are presented.

Chapter  3 discusses common Riemann solvers using the shallow water equations as an ex-
ample. Besides exact solvers specific to this equation, approximate but universal ones are
derived in detail and selected for the rest of this thesis. Subsequently, the solvers are imple-
mented in ExaHyPE 2 and checked for correctness in Chapter  4 .

Finally, Chapter  5 compares the Riemann solvers in the context of ExaHyPE 2 with different
criteria: First, dam-break scenarios are used to test how well the solvers resolve resulting
shock and rarefaction waves in the setting of the homogeneous shallow water equations and
DG method. Next, bathymetry is added to the equations, and the capability of the solvers
to maintain an ocean at rest is assessed. The modifications to the solvers to deal with dry
initial states and inundation scenarios are outlined subsequently, providing the necessary
steps to enable tsunami simulations. Finally, the universal solvers are tested with the three-
dimensional elastic wave equation to show that the work can be used for other applications
too. This work ends with a summary and conclusion and describes potential future work
with ExaHyPE 2 and Riemann solvers.
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2. Fundamentals

This chapter summarizes the main foundations of this thesis. First, hyperbolic partial differ-
ential equations and their solution methods are introduced. Then, the terms Riemann prob-
lem and Riemann solver are explained in greater detail using the example of linear equations
and the need for them is clarified with an overview of numerical methods. Finally, ExaHyPE 2
and its applications, which play an extensive role in the rest of the work, are briefly addressed.

2.1. Conservation Laws and Hyperbolic PDEs

The physical basis of many hyperbolic PDEs form so-called conservation laws: They are char-
acterized such that the size of a physical quantity does not change over time. For instance, the
conservation of mass states that mass can not be created or destroyed within a closed system.
In the following, conservation laws and hyperbolic PDEs together with analytical solution
approaches are introduced, forming a solid basis for understanding Riemann solvers.

2.1.1. Derivation

An often-found intuitive example in literature (e.g. [ 30 , chap. 1]) for deriving conservation
laws is advection through the cross-section [x1, x2] of a very thin (i.e., one-dimensional) pipe,
which is summarized in the following:

f(q(x1, t)) f(q(x2, t))

x1 x2

q

∫ x2

x1
q(x, t)dx

Here, the mathematical description of the considered quantity is a scalar-valued function
q(x, t) with its overall sum expressed by the integral

∫ x2

x1
q(x, t)dx. On the contrary, the rate of

change is given by the inflow and outflow f(q) (flux) at both ends of the pipe, modeled using
the time derivative:

∂

∂t

∫ x2

x1

q(x, t)dx = f(q(x1, t))− f(q(x2, t)) = −[f(q(x, t))]x2
x1

= −
∫ x2

x1

∂

∂x
f(q(x, t))dx (2.1)

If assuming q ∈ C1(R×R,R), f ∈ C1(R,R), integral and partial derivative are exchangeable,
and with that, the equation can be rewritten to∫ x2

x1

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (2.2)
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2. Fundamentals

yielding the integral-form of a one-dimensional conservation law. Since smoothness was as-
sumed, this integral equation is fulfilled if

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (2.3)

which is denoted as the differential form of the conservation law. Expanding the derivative
under the assumption of smoothness creates a further useful version of the PDE:

∂

∂t
q(x, t) + f ′(q(x, t))

∂

∂x
q = 0, (2.4)

where f ′(q) denotes the Jacobian matrix of the function. This version is called quasi-linear
form of the PDE and is essential to understanding non-linear Riemann problems, as will be
demonstrated in Chapter  3 .

The example is transferable to two dimensions as well [ 30 , chap. 18] by introducing two
flux functions f(q) and g(q) in x and y direction and the double integral

∫ ∫
Ω q(x, y, t)dx dy

over the considered domain Ω. The rate of change is then expressible by a flux in normal
direction n along the domain’s boundary ∂Ω:

∂

∂t

∫ ∫
Ω
q(x, y, t)dx dy = −

∫
∂Ω

(
nx, ny

)(f(q)
g(q)

)
ds. (2.5)

Similar assumptions on smoothness as in the one-dimensional case then lead to the integral
form in two dimensions:∫ ∫

Ω

∂

∂t
q(x, y, t) +

∂

∂x
f(q) +

∂

∂y
g(q)dx dy = 0. (2.6)

Dropping function arguments and using subscripts for partial derivatives lead to the compact
differential form

qt + f(q)x + g(q)y = 0, (2.7)

which is even further generalizable by setting f to a vector-valued functions with component-
wise fluxes f1(q), ..., fn(q) in n spatial directions and using the divergence operator ∇ · f =∑n

i=1
∂fi
∂xi

:

qt +∇ · f(q) = 0. (2.8)

An even more abstract notation of Equation  2.8 takes an additional source term ψ(q) such as
gravity or friction:

qt +∇ · f(q) = ψ(q). (2.9)

This equation is denoted as balance law since flux function and source term need to cancel
out and require additional care when solving the equation numerically or analytically, as
demonstrated in Section  3.3 .
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2. Fundamentals

2.1.2. Analytical Solutions

For some of the equations defined before, there exists an analytical solution [ 30 , chap. 2]. For
example, if assuming f in  2.3 to be a constant-coefficient linear function, i.e., f(q) = vq, the
advection equation qt + vqx = 0 can be obtained. Its solution is just a translation with speed v
of the initial distribution q(x, 0) = q̃(x) of the considered quantity in time without change of
shape:

q(x, t) = q̃(x− vt). (2.10)

If f is equal to a diagonalizable constant-coefficient matrix A ∈ Rm×m with real eigenvalues,
i.e., f(q) = Aq = RΛR−1q exists, the equation can be rewritten to a diagonal system by
defining w = R−1q:

qt +Aqx = 0 ⇒ qt + (RΛR−1)qx = 0 ⇒ R−1qt + Λwx = 0 ⇒ wt + Λwx = 0. (2.11)

Each of the arising advection equations can then be solved independently using Equation  2.10 .
Thus, the solution of a conservation law of the form{

qt(x, t) +Aqx(x, t) = 0

q(x, 0) = q̃(x)
(2.12)

can be viewed as a superposition of m independent waves, where the p-th wave has the form
w̃p(x) = (R−1q̃)p(x) and advects with velocity λp without change of shape:

q(x, t) =

m∑
p=1

w̃p(x− λpt)rp. (2.13)

The curves X(t) = x0 + λpt are called p-characteristics, and the scalar coefficients wp(x, t)
characteristic variables. The solution method is known as method of characteristics. It is
generalizable to other types of PDES, for example, the non-homogeneous scalar transport
equation qt + f(x)qx = b(x), which is not further discussed here.

To find Solution  2.13 from above, it was assumed that the diagonalization A = RΛR−1

exists and that all eigenvalues are real. This property is also called hyperbolicity. For the two-
dimensional homogeneous version qt+Aqx+Bqy = 0 hyperbolicity is fulfilled if both matrices
A,B ∈ Rm×m are diagonalizable with real values and so is any linear combination Ǎ = nxA+
nyB of them for any choice of n = (nx, ny) ∈ R2. Intuitively, this transfers the idea of m
propagating waves in two spatial directions. If A and B are simultaneously diagonalizable,
i.e., they share the same eigenvectors, then the decompositions A = RΛxR

−1, B = RΛyR
−1

again yield an analytical solution by defining w = R−1q:

wt + Λxwx + Λywy = 0. (2.14)

Using these solution approaches allows the implementation of linear or linearized Riemann
solvers. To begin with, the term Riemann problem is explained in more detail.
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2. Fundamentals

2.2. The Riemann Problem

Figure  2.1 shows a special type of initial value for a one-dimensional scalar-valued PDE: Two
constant states ql (left) and qr (right) are separated by a discontinuity at x = 0. A conservation
law with this initial value is called a Riemann problem. Mathematically, it is described as a
Cauchy problem of the form

qt + f(q)x = 0, (2.15)

q(x, 0) = q̃(x) =

{
ql, x < 0

qr, x > 0
, (2.16)

q̃(x)

ql

qr

0

Figure 2.1.: Initial value of a one-
dimensional scalar PDE. At t =
0, two constant values ql and qr
are separated by a single dis-
continuity. A conservation law
together with this initial value
is called a Riemann problem.
A Riemann solver answers how
this discontinuity evolves.

where ql, qr ∈ R and q, f might also be vector-valued.
A Riemann solver tries to answer how this discontinuity
propagates and changes over time. Riemann problems
arise in various ways. On the one hand, it may make sense
to use them directly as a model. One example here is the
dam break scenario, where the sudden collapse of a dam
results in the collision of two roughly constant but dif-
ferent water levels. This problem is used in Section  5.1.1 

as a test problem for the evaluation of various Riemann
solvers. Another model is acoustics in a layered medium,
where the propagation of sound waves through a mate-
rial with two stripes of constant density is investigated.
The Riemann problem then emerges in the transition of the
two densities. The by far larger application, however, is
the numerical treatment of hyperbolic conservation laws.
Here, the Riemann problem originates from the spatial dis-
cretization when employing Discontinuous Galerkin or Fi-
nite Volume methods, which is further discussed in Sec-
tion  2.3 . Before outlining this, the next part describes an
analytical strategy for solving simple Riemann problems
first, which helps understand more complex examples.

2.2.1. An Analytical Solution

The previous section introduced the scalar-valued one-dimensional advection equation

qt + vqx = 0, v ∈ R. (2.17)

Together with the initial value from  2.16 , this yields the simplest non-trivial Riemann prob-
lem. To solve the equation, the solution procedure for constant-coefficient hyperbolic PDEs
from Section  2.1.2 can be applied. Here, the constant coefficient matrix A is just the scalar
value v which is, per assumption, real-valued. Thus, the eigendecomposition reads R =
1,Λ = v,R−1 = 1, and, therefore, the solution is given by Equation  2.18 .

7



2. Fundamentals

q(x, t) =

m∑
p=1

w̃p(x− λpt)rp = q̃(x− vt) =

{
ql, x− vt < 0

qr, x− vt > 0
. (2.18)

Subsequently, one can conclude that the discontinuity translates at speed v along the charac-
teristic x− vt as expected from the previous investigations.

An often seen visualization of the analytical solution to Riemann problems is the x/t-plane,
as shown for example for  2.18 for positive v in Figure  2.2.1 . This diagram should be un-

−2 2 4

1

2

3

4

5

t = 1.5

ql qr

x

t

Figure 2.2: Analytical solution for an example
Riemann problem with Equation  2.17 for posi-
tive v ∈ R. The discontinuity advects along the
characteristic X(t) = x − vt marked in purple.
The red area has the value ql, while the blue are
has qr. The dotted line marks the x position of
the jump at fixed t = 1.5.

derstood as follows: the black intersecting line marks the solution q at a fixed time t (here:
t = 1.5) over the whole x-dimension. In the left (red) region, the value of q(x, t) equals ql,
whereas within the right (blue) part q(x, t) is qr. The discontinuity between the two values is
located where the x point intersects the purple line (in the figure marked with a dotted line).

A generalization of this solution idea to a one-dimensional system ofm equations is straight-
forward. The Riemann problem extends to

qt +Aqx = 0, A ∈ Rm×m, (2.19)

q(0, x) = q̃(x) =

{
ql, x < 0

qr, x > 0
. (2.20)

As hyperbolicity is assumed, the decomposition A = RΛR−1 with real eigenvalues exists,
and thus the constant initial states ql and qr are decomposable into

ql =
m∑
p=1

(wl)prp, qr =
m∑
p=1

(wr)prp (2.21)

with coefficients (wk)p ∈ R, k ∈ {l, r}, as the eigenvectors rp ∈ Rm form a basis of Rm. Then,
the p-th initial condition from  2.20 reads

8



2. Fundamentals

q̃p(x) =

{
(wl)p, xp < 0

(wr)p, xp > 0
(2.22)

And with that, the solution can be written into a sum of left and right-going waves

q(x, t) =
∑

p|λp<
x
t

(wr)prp +
∑

p|λp>
x
t

(wl)prp. (2.23)

To make this essential solution concept clearer, example 3.1 (a) from LeVeque’s book [ 30 ] is
outlined in the following. The Riemann problem is given by

qt +Aqx = 0, A =

(
0 4
1 0

)
, ql = (0, 1)T , qr = (1, 1)T . (2.24)

It is easy to verify that the system is hyperbolic and its diagonalization A = RΛR−1 with
normed eigenvectors is

R =
1√
5

(
2 −2
1 1

)
= (r1|r2),Λ =

(
2 0
0 −2

)
, R−1 =

√
5

4

(
1 2
−1 2

)
. (2.25)

To get the decomposition for ql = (wl)1r1 + (wl)2r2, qr = (wr)1r1 + (wr)2r2 one needs to solve
the linear systems Rwl = ql and Rwr = qr, respectively, yielding

wl = R−1ql =

√
5

2

(
1
1

)
, wr = R−1qr =

√
5

4

(
3
1

)
. (2.26)

The components of w thus are Riemann problems with the following modified initial condi-
tions:

w̃1(x) =

{√
5
2 , x < 0
3
√
5

4 , x > 0
, w̃2(x) =

{√
5
2 , x < 0
√
5
4 , x > 0

. (2.27)

And finally, the solution of the Riemann problem is given in Equation  2.28 .

q(x, t) = w̃1(x− λ1t)r1 + w̃2(x− λ2t)r2 = w̃1(x− 2t)
1√
5

(
2
1

)
+ w̃2(x+ 2t)

1√
5

(
−2
1

)
. (2.28)

Figure  2.3a visualizes the solution q at t = 1 in q/x plane: Each component has two shock
waves that separate three constant regions. On the contrary, Figure  2.3b shows q2 in x/t
plane. Here, each wedge marks the transition from one shock wave to another. The black
intersecting line marks t = 1, where the results are shown in the left figure. Again, one can
interpret that the Riemann problem describes a superposition of discrete waves (here: two)
that propagate over time.

9
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−4 −2 2 4

−4

−2

2

4

x

q q1
q2

(a) Visualization in x/q plane at t = 1.

−4 −2 2 4

0.5

1

1.5

2

qm q′rq′l

x

t x− 2t = 0
x+ 2t = 0

(b) Visualization in x/t plane for the second com-
ponent.

Figure 2.3.: Visualization of the one-dimensional system of Riemann problems with two com-
ponents taken from LeVeque [ 30 ], first example 3.1. Left: visualization in x/q plane for both
components at t = 1. Right: visualization in x/t plane for the second component of q. q′l, q

′
r

represent the modified variants of ql, qr resulting from the decomposition of the initial values.
qm is the middle state separating the two constant states using two characteristics x− 2t and
x+ 2t

Carrying the idea of the example further, it can be concluded that a linear Riemann problem
of size m has m characteristics and m + 1 areas with constant values, i.e., as one crosses the
p-th characteristic, Xp(t) = x − λpt becomes zero and therefore, the value changes from (ql)p
to (qr)p (or vice versa). In other words, the solution jumps as shock wave from the left value
(wl)prp to the right value (wr)prp by a scalar value αp:

((wl)p − (wr)p)rp = αprp. (2.29)

The resulting vector is still an eigenvector ofA, leading to the Rankine-Hugoniot jump condi-
tion for linear Riemann problems: The difference (wl−wr) is an eigenvector, and the velocities
are eigenvalues of A. For arbitrary given ql, qr, this is not always true. Subsequently, the Rie-
mann problem can be considered as the approach to split qr − ql into jumps that fulfill the
condition. Using this fact leads to a different solution strategy: Decompose the jump in the
initial values by solving

qr − ql = Rα⇒ α = R−1(qr − ql), (2.30)

where αprp is the jump in the p-th discontinuity and express the solution by either modifying
the left data by all left-going waves or the right data by all right-going ones:

q(x, t) = ql +
∑

p:λp<
x
t

αprp = qr −
∑

p:λp≥x
t

αprp. (2.31)

10
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2.2.2. Generalized Riemann Problems

The previous section derived a general analytical solution strategy for a constant-coefficient
linear Riemann problem. However, there are several generalizations that have not been cov-
ered, yet. For example, the flux function may be a nonlinear or spatially varying system, i.e.,
the Riemann problem now takes the form

qt + f(x, q)x = 0, (2.32)

q(0, x) = q̃(x) =

{
ql, x < 0

qr, x > 0
. (2.33)

An even more abstract equation is stated by Toro [ 43 , chap. 19]. He discusses a non–linear
system of hyperbolic balance laws

qt + f(x, q)x = b(q), (2.34)

q(0, x) = q̃(x) =

{
ql(x), x < 0

qr(x), x > 0
, (2.35)

summarized under the name GRPK (generalized Riemann Problem of order K) where next
to the additional source term the initial states are now introduced as k-times non-trivial con-
tinuously differentiable functions in spatial direction instead of scalar values. In that case,
GRP0 is the classical Riemann problem from Equation  2.16 . Additionally, Riemann problems
in more than one spatial direction have not been described at all. However, as it turns out,
for the main field of application of Riemann solvers in the numerical solution of hyperbolic
PDEs, it is not necessary to be able to solve these problems explicitly. In fact, many of these
equations can be effectively reduced to a classical Riemann problem in one spatial direction,
maybe nonlinear or with spatially varying flux-function, by either splitting in each direction
or clever reformulation. Then, approximate or exact Riemann solvers based on the solution
ideas of one-dimensional linear systems can be employed to complete the numerical scheme.
Hence, the next section illuminates how exactly (generalized) Riemann problems arise in the
numerical solution and how they are relatable to classical formulations.

2.3. Numerical Treatment of Hyperbolic PDEs

In Section  2.1.2 , analytical solutions for some types of hyperbolic PDEs have been outlined.
However, most hyperbolic PDEs do not have such a solution or are only solvable under cer-
tain restrictions. Moreover, there are other types of equations as well that are not necessar-
ily hyperbolic but rather elliptic or parabolic. Therefore, three main categories of numerical
solvers have been developed over the past years: The oldest ones are Finite Difference meth-
ods, where the differential form of a PDE is approximated by a point-wise discretization in
space and advanced by implicit or explicit Runge-Kutta schemes in time. The Finite Volumes
method, on the contrary, approximates the integral form of a PDE by dividing the domain
into constant cell averages that communicate through fluxes at the cell edges. Lastly, the Fi-
nite Element method approaches the variational formulation of the problem by introducing

11



2. Fundamentals

the so-called weak form of the PDE together with local control elements, which reconstruct
the solution with higher-order polynomials. Not all numerical schemes create Riemann prob-
lems. Therefore, all of them are summarized in the following, and it is shown why or why
not Riemann solvers are necessary. For this purpose, a homogeneous hyperbolic system of
the form

qt + f(q)x = 0 (2.36)

is examined as example problem.

2.3.1. Finite Differences

Following Larsson and Thomeé [ 27 , chap. 12] or Toro [ 43 , chap. 5], Finite Differences first
divide the domain Ω into a Cartesian grid with discrete points xi = i ·∆x. Subsequently, the
partial derivatives are expanded to

f(q)x = f ′(q)qx, (2.37)

under the assumption of smoothness and approximated using backward difference quotients
for the differential operator

qx =
∂q

∂x
≈ q(t, xi)− q(t, xi−1)

∆x
, (2.38)

derived by a Taylor expansion for least two times continuously differentiable functions q(t, x±
∆x). Applying similar for the time derivative with tn = n ·∆t but using forward differencing

qt =
∂q

∂t
≈ q(tn+1, x)− q(tn, x)

∆t
(2.39)

and rewriting the equation yields the first-order upwind scheme in two dimensions to solve  2.36 

Qn+1
i = Qn

i +
∆t

∆x
(f ′(Qn

i )(Q
n
i −Qn

i−1)), (2.40)

where Qn
i ≈ q(tn, xi). Similar formulations lead to two-dimensional schemes as well. Equa-

tion  2.40 can also be seen as Riemann-free numerical formulation, as no Riemann problems
have to be solved at all. As Toro points out [  43 , chap. 5], this yields a suitable scheme when
applied to the one-dimensional advection equation. There are many other well-studied Finite
Difference schemes that might have better convergence properties (e.g., the Lax-Wendroff
scheme), however, they all share certain disadvantages: For example, Finite Differences are
limited to structured grids. In addition, boundary conditions have to be handled with care so
that they do not destroy the convergence properties of higher-order schemes. Extrapolation
when using Neumann boundary conditions, as well as the Shortley-Weller scheme for curvi-
linear boundaries, are listed as examples. Furthermore, the classical derivative of a discontin-
uous solution is not defined. In other words, Finite Differences impose several assumptions
on the smoothness of the solution, which excludes certain classes of simulations, especially in
the context of hyperbolic PDEs.

12
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Another important property that Finite Differences lack without modification is the con-
cept of conservation, which means that the behavior of the underlying conservation law is
imitated. Toro here mentions the necessity of any numerical scheme for conservation laws to
be conservative [ 43 , chap. 5]: On the one hand, he cites the results of Hou and LeFloch [ 22 ],
stating that non-conservative schemes do not converge to the physically correct solution in
the case of shock waves. On the other hand, he combines this with the results of Lax and
Wendroff, according to which convergent schemes converge to the weak solution of the con-
servation law [ 28 ]. As shock waves are an essential part of conservation laws (as it is also
shown in Section  3.1 ), the following focus relies on intrinsic conserving schemes, starting
with the Finite Volumes method.

2.3.2. Finite Volumes

The starting point of the Finite Volumes method is the division of the spatial domain into
local volumes Ω =

⋃
iΩi. In one dimension, these are intervals of non-equidistant size Ωi =

[xi− 1
2
, xi+ 1

2
]. Furthermore, it is assumed that each cell stores an average of the conserved

quantity stored in its center at discrete time tn:

Qn
i ≈ 1

xi+ 1
2
− xi− 1

2

∫
Ωi

q(x, tn)dx. (2.41)

The integral form of a conservation law, as found in Equation  2.2 , implies that the rate of
change is the flux difference at both ends of the cell. Integrating this form from one point tn
to another tn+1 gives∫

Ωi

q(x, tn+1)dx−
∫
Ωi

q(x, tn)dx =

∫ tn+1

tn

f(q(xi− 1
2
, t))dt−

∫ tn+1

tn

f(q(xi+ 1
2
, t)))dt. (2.42)

Inserting the approximation  2.41 into  2.42 and rewriting creates

Qn+1
i = Qn

i +

∫ tn+1

tn

f(q(xi− 1
2
, t))dt−

∫ tn+1

tn

f(q(xi+ 1
2
, t)))dt. (2.43)

To continue, it is helpful to define an approximation to the flux of the average:

Fn
i− 1

2

≈ 1

tn+1 − tn

∫ tn+1

tn

f(q(xi− 1
2
,t))dt. (2.44)

Because then, Equation  2.43 takes the well-known form

Qn+1
i = Qn

i − tn+1 − tn
xn+1 − xn

(Fn
i+ 1

2

− Fn
i− 1

2

)
equidistance

= Qn
i − ∆t

∆x
(Fn

i+ 1
2

− Fn
i− 1

2

), (2.45)

which Toro additionally defines as conservative method [ 43 , chap. 5]. Though it has not been
yet discussed how to obtain the approximation of the flux average, it may be assumed that
the value can be reconstructed only using Qn:

Fn
i− 1

2

= F(Qn
i−1, Q

n
i ), F

n
i+ 1

2

= F(Qn
i , Q

n
i−1), (2.46)
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xi− 1
2

xi xi+ 1
2

Ωi−1 Ωi Ωi+1

Qn
i

Qn
i+1

Qn
i−1

Qn

q

Figure 2.4.: Sketch of a Finite Vol-
umes discretization: The domain is
subdivided into local cells Ωi that
store an averaged value Qn

i of the an-
alytical solution q at time tn. An es-
sential difficulty is to define the flux
at the cell edges, which is solvable by
a local Riemann problem.

where F is also called numerical flux. Since a homo-
geneous conservation law was considered, the overall
change of the averaged quantity from Qn

i to Qn+1
i can

be seen as difference of the values going in - and out-
side of the cell. However, this value is ambiguous in
the above discretization as Figure  2.4 illustrates: At
xi+ 1

2
, the analytical flux (and thus the modification at

the right cell edge) is determinable by either choosing
f(Qn

i ) or f(Qn
i+1). Hence, a tempting approach might

be to define the numerical flux as the average of the
two options:

F(Qn
i , Q

n
i+1) =

1

2
(f(Qn

i ) + f(Qn
i+1)), (2.47)

which, however, turns out to be an unstable choice.
A breakthrough contribution to this was performed
by Godunov in 1958 [ 18 ]: He replaced the time inte-
gral  2.44 by the analytical flux calculated using the so-
lution q↓(Qn

i , Q
n
i+1) to the Riemann problem with ini-

tial data ql = Qi, qr = Qi+1 and the original conserva-
tion law:

Fn
i+ 1

2

≈ F(Qn
i , Q

n
i+1) = f(q↓(Qn

i , Q
n
i+1)). (2.48)

Or in other words, the (numerical) flux along the cell edges is the (analytical) flux computed
with the solution of the Riemann problem at x = 0. The Riemann problem can thereby be
solved exactly (e.g. if dealing with linear constant-coefficient systems, as seen in Section  2.2.1 )
or suitably approximated. The latter prevents complicated generalized Riemann problems
from being solved analytically, which is further discussed in Section  3.2 .

LeVeque introduced a different viewpoint on the Finite Volumes method that is often used
in the definition of Riemann solvers: The current averaged value Qn

i is modified from the left
cell with right-going waves and from the right cell with left-going ones. He denotes this as
fluctuations, yielding a generalized wave-propagation algorithm of the form

Qn+1
i = Qn

i − ∆t

∆x
(A+∆Qi− 1

2
+A−∆Qi+ 1

2
), (2.49)

where A+∆Qi− 1
2

denotes the right-going waves from the left cell and A−∆Qi+ 1
2

the left-going
waves from the right one. For a constant-coefficient linear system, for instance, the modifying
waves expand to

A+∆Qi− 1
2
=

m∑
p=1

(λp)
+Wp

i+ 1
2

,A−∆Qi− 1
2
=

m∑
p=1

(λp)
−Wp

i+ 1
2

, (2.50)

where Wp

i− 1
2

:= (αi− 1
2
)prp are numerical waves denoting the modification to the initial dis-

continuity of the Riemann problem as introduced in Equation  2.30 . λ+ := max(λ, 0), λ− :=
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min(λ, 0), on the other hand, filter right-going and left-going waves from the cell edges, re-
spectively. LeVeque’s contribution provides a more general view of Finite Volumes, which is
in particular useful when discussing more complicated PDEs. An illustration of his idea can
be found in Figure  2.5 

tn

tn+1

xi− 1
2

xi+ 1
2

Qn
i

Qn+1
i

∆t

λ2∆t λ1∆t

W2
i− 1

2

W1
i− 1

2

W1
i+ 1

2

W2
i+ 1

2

Figure 2.5: Visualization of LeVeque’s
wave propagation algorithm based on
Finite Volumes [ 30 , chap. 4]: An average
cell quantity Qn

i is modified from the left
with W2

i− 1
2

and from the right with W2
i− 1

2

within a single time step tn+1 = tn +∆t.

When considering two-dimensional equations of the form  2.7 , the starting point is now the
scheme  2.5 and the average quantities are expressed via the integral Qn

i,j ≈ 1
∆x∆y

∫
Ω q(x, y, tn)

dxdy. Applying similar reformulations as above and assuming a rectangular grid then gives
the fully-discrete flux-differencing method, which is very close to the formulation in one di-
mension:

Qn+1
i,j = Qi,j −

∆t

∆x
(Fn

i+ 1
2
,j
− Fn

i− 1
2
,j
)− ∆t

∆y
(Gn

i,j+ 1
2

−Gn
i,j− 1

2

), (2.51)

where there are several approaches to deal with the fluxes. For example, Godunov’s method
implies that the flux can be approximated by solving the Riemann problem in each direction

Fn
i+ 1

2
,j
≈ f(q↓(Qn

i,j , Q
n
i+1,j)), G

n
i,j+ 1

2

≈ g(q↓(Qn
i,j , Q

n
i,j+1)). (2.52)

Alternatively, one can apply dimensional splitting, where the following equations are solved
for each direction:

qt + f(q)x = 0, qt + g(q)y = 0, (2.53)

which LeVeque states to be an effective approach [ 30 , chap. 19]. Regardless, in both methods
it is sufficient to solve a one-dimensional Riemann problem. Therefore, discussing and imple-
menting Riemann problems for each spatial direction individually is in the context of Finite
Volumes is adequate in many situation.

Finite Volumes have several advantages over Finite Differences, even though they are closely
related: For example, they are conserving per definition and are not restricted to a particular
grid. They allow for adaptive mesh refinement without losing their convergence property,
leading to successful use in real-life applications. However, in their original form, they are
only of first order and although there exist variations that increase the order of convergence
(e.g., by adding correction terms to the wave propagation method in  2.49 ), this is typically
seen as one of this method’s main weaknesses. Therefore, Discontinuous Galerkin meth-
ods have been developed, which are summarized in the following based on introductory
books [ 27 ] [ 21 ] and papers [ 6 ].
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2.3.3. Discontinuous Galerkin Methods

The Discontinuous Galerkin (DG) method is sometimes considered a combination of the clas-
sical Finite Element (or Continuous Galerkin) method with the Finite Volumes approach. DG
approximates the solution to the variational problem, which is derived using the weak form of
the conservation law. To obtain the latter, Equation  2.36 is multiplied with a function ϕ ∈ Πn

from a suitable space of polynomial test functions of degree n and integrated over the spatial
domain: ∫

Ω
qtϕ(x) + f(q)xϕ(x)dx = 0. (2.54)

As in Finite Volumes, the domain is split into non-overlapping subdomains
⋃

k Ωk = Ω with
Ωk = [ak, bk]. The linearity of the integral operator then gives∑

k

∫
Ωk

qtϕ(x) + f(q)xϕ(x)dx = 0. (2.55)

In the following, only a single element is considered. Using integration by parts subsequently
expands  2.55 to ∫

Ωk

qtϕ(x)dx+ [f(q)ϕ(x)]bkak −
∫
Ωk

f(q)ϕx(x)dx = 0. (2.56)

As in the Continuous Galerkin method, the solution space V of q is approximated with the
finite-dimensional space of test functions Πn = ⟨ϕ1, ..., ϕn⟩ with basis functions ϕi(x) where
equality holds for n → ∞. Then, q can be approached with a sum of time-dependent coeffi-
cients ai(t):

q(x, t) ≈
n∑

i=1

ai(t)ϕi(x). (2.57)

Inserting the approximation into  2.56 and reformulations then demands that for all ϕj holds:
n∑

i=0

∂ai
∂t

(t)

∫
Ωk

ϕi(x)ϕj(x)dx+ [f(q)ϕj(x)]
bk
ak

−
∫
Ωk

f(

n∑
i=0

ai(t)ϕi(x))
∂ϕj
∂x

dx = 0. (2.58)

For instance, if applying the procedure to the advection equation qt + vqx = 0 from Sec-
tion  2.1.2 on [0, 1] and using monomial basis polynomials of degree 1, ϕ0(x) = 1−x, ϕ1(x) = x,
then gives for the first term: ∫ 1

0
ϕj(x)ϕi(x)dx =

(
1
3

1
6

1
6

1
3

)
=:Mi,j , (2.59)

where M is typically denoted as mass matrix and for the last term∫ 1

0
f(

M∑
i=0

ai(t)ϕi(x))
∂ϕj
∂x

dx
f(q)=vq

= v
M∑
i=0

ai(t)

∫
Ωk

ϕi(x)
∂ϕj
∂x

dx (2.60)

⇒
∫ 1

0
ϕi(x)

∂ϕj
∂x

dx =

(
−1

2 −1
2

1
2

1
2

)
=: Si,j , (2.61)
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with S called stiffness matrix. The calculations above using the local interval [0, 1] is thereby
not necessarily a restriction, as a mapping ξk,

ξk : [0, 1] → [ak, bk], x 7→ (bk − ak)x+ ak, (2.62)

can be used together integration by substitution∫ bk

ak

ϕ(x)dx =

∫ 1

0
ϕ(ξk)(bk − ak)dx, (2.63)

to transfer the cell-local coordinates to a reference element. With a suitable choice of polyno-
mials, the integrals are precomputable and lead to a stable and efficient matrix-vector prod-
uct. Furthermore, the mass matrix can end up in diagonal form, making computations effi-
ciently. In practice, Lagrange polynomials together Gauss-Lobatto or Legendre quadrature
nodes xi, xj are used for that purpose:

ϕi(x) = Πn
j=0,j ̸=i

x− xj
xi − xj

. (2.64)

−0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

Figure 2.6.: Distribution of the
Legendre quadrature nodes for
n = 3 on [−1, 1]. The non-
equidistant distribution avoids
Runge’s phenomenon, however,
needs to be kept in mind for
point-wise comparisons.

The latter are the roots of the Legendre polynomials
and are non-equidistantly distributed. This avoids the oc-
currence of oscillations that arise when using an equidis-
tant grid and polynomial interpolation with higher-order
(the so-called Runge phenomenon). A visualization of the
nodes for order n = 3 can be found in Figure  2.6 along
[−1, 1]. The remaining task is to handle the flux term in
the middle of the equation. Here, the essential difference
between DG and classical finite elements becomes visi-
ble: The latter assumes polynomials whose support spans
the global domain continuously and, with that, produces
a continuous solution. In the former, the basis functions
are assumed to exist only locally and thus to be discon-
tinuous over the full domain. This property is outlined in
Figure  2.7 . Therefore, an evaluation of f at the edges of
the local interval is not defined and consequently, the full
semi-discrete system requires special treatment of the face
integral, which gets reinterpreted as local Riemann prob-
lem:

[f(q)ϕj(x)]
bk
ak

= f(q↓(ak))ϕj(x)− f(q↓(bk))ϕj(x) =: fj . (2.65)

Overall, this suggests to study a numerical scheme of the following form for each local ele-
ment:

M
∂m

∂t
+ f − Sk = 0 ⇒ ∂m

∂t
=M−1(Sk − f), (2.66)
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(a) Continuous Galerkin
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(b) Discontinuous Galerkin
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Ωk−1 Ωk Ωk+1

ϕ
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q

(c) Finite Volume

Figure 2.7.: Sketch of different numerical solution strategies for an artificial one-dimensional
conservation law: Continuous Galerkin (a) uses linear hat functions that span the domain con-
tinuously and, therefore, enable continuous reconstruction of the solution. Using DG (b), on
the other hand, discontinuities across elements are allowed due to the purely local existence
of the basis functions, requiring the solution of a Riemann problem between the elements.
Finite Volumes (c) can also be seen as DG method with zero-order polynomials. Here, a Rie-
mann problem has to be solved as well.

where the remaining coefficients are grouped into time-dependent vectors m and k. This
semi-discretized system has excellent convergence properties in space: Cockburn et al. show,
e.g., that the optimal convergence rate is of order O(hn+1) on a triangular mesh for transport-
reaction problems [ 5 ]. However, efficiency starts to decrease if the polynomial degree exceeds
n > 8, as Kronbichler observes [ 26 ]. In addition, the increased computational effort could
be considered as a disadvantage for this: A higher polynomial degree raises the number of
support points and, thus, also the size of the element-wise matrix. Furthermore, discretizing
in time needs special care. If using Runge-Kutta methods, the number of stages scales super-
linear compared to the order of convergence (also called butcher barrier): For a convergence
order ≥ 5 in time there, for example, there are at least six computational stages required.
This issue reduces the efficiency of the scheme dramatically or enforces an artificial reduc-
tion of the convergence order in time. To overcome this gap, Toro et al. contributed the idea
of so-called ADER (Arbitrary DERivative in space and time) schemes [  46 ]. Since a detailed
derivative exceeds the scope of this section, a brief summary is given in the following:

First, Equation  2.58 is integrated over a control volume in time [tn, tn+1] and expanded via
integration by parts. Then, a generalized Riemann problemGRPn is defined on the cell edges
with polynomial discontinuous initial data, where the state at each cell interface is expanded
using a Taylor series in time. With the help of the Cauchy-Kowalevski product, the time
derivatives are subsequently replaced using spatial derivatives, which are calculable using
classical Riemann solvers. The result is then a solution of GRPn, which is a time evolution
of the numerical solution. Dealing directly with the Cauchy-Kowalevski product can become
tedious or even unfeasible when non-linear hyperbolic PDEs need to be solved, and it is
furthermore not able to deal with stiff source terms [ 9 ]. Thus, the ADER-DG scheme is imple-
mented using a space-time predictor in practice, which can also be found in the open-source
software ExaHyPE 2 [ 10 ]. Its usage is sketched in the following section using an example
problem definition.
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2.4. ExaHyPE 2

ExaHyPE 2 (An Exascale Hyperbolic PDE Engine, second generation) 

1
 provides an engine to

simulate hyperbolic PDEs of the form

∂Q

∂t
+∇ · F (Q) +

∑
i

B(Q)
∂Q

∂xi
= S(Q), (2.67)

whereB denotes the non-conservative product and S potential source terms. ExaHyPE 2 aims
to reduce the complexity of implementing numerical schemes as derived above by allowing
the user to specify their problem into a Python file and then generating the necessary code
for HPC platforms. With that, ExaHyPE 2 hides away required computational and numerical
details, which are cumbersome to implement. Next to adaptive mesh refinement on block-
structured grids, ExaHyPE 2 enables hybrid OpenMP parallelization as well as GPU support
using SYCL standard and load balancing with space-filling curves (however, note that by the
time of writing many of these features were only available on an experimental basis). Even
though main parts of the code are generated, the engine allows the implementation of certain
kernels, such as the Riemann solver, by the user to provide tailor-made optimizations. An
example problem definition is given in Appendix  B.1 , which shall be quickly discussed in the
following:

• Line 5 defines the project together with the created namespace structure and the name
of the resulting executable.

• From 7 to 13, the numerical scheme is defined: Here, ADER-DG with cubic polynomials
and the Rusanov approximate Riemann solver in combination with adaptive time step-
ping has been chosen. The equation has four conserved quantities, i.e., q = (q1, q2, q3, q4)

T .
• Lines 15 and 16 combine project and numerical scheme. As no other options (like source

term or non-conservative product) have been specified, the considered equation has the
form qt +∇ · f(q) = 0.

• 18-27 set the simulation parameters: The domain is two-dimensional restricted on the
interval [0, 1]2. The simulation runs from t = 0 until t = 1 and plots an output once every
0.005 time steps have been passed. No periodic boundary conditions are supposed.

• Finally, load balancing is activated, and the path to the necessary Peano installation is
set (29-34).

After executing the ExaHyPE 2 specification file, the generated code is almost up and run-
ning: The only thing that needs to be implemented is the generated main C++ file, where at
least the definition of the flux ∇ · f(q), the maximum eigenvalue of the Jacobian of the flux
function max |λp| (in this case needed for the Riemann solver and the control of the time step
size), and boundary conditions together with initial values have to be incorporated. How to
conduct this in particular is described more in detail in Section  4.1 . For further information
on ExaHyPE 2 in general, refer to the tutorial and documentation provided with the source
code repository.

1
 https://gitlab.lrz.de/hpcsoftware/Peano.git 
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2.5. Applications

Before concluding the chapter, two application examples of ExaHyPE 2 are shown: The shal-
low water equations for modeling water flows embedded between topography and free sur-
face for simulation of waves found in oceans and atmosphere, and the three-dimensional
linear elastic wave equations for seismic wave simulations. Both are used in the subsequent
chapters to evaluate and implement Riemann solvers.

2.5.1. Shallow-Water Equations

h(x, y)

b(x, y)

Figure 2.8.: Cross section of the
two-dimensional shallow water
equations. Water of height h is
embedded between the bottom
topography b and a free surface.

The shallow water equations are derived from the depth-
averaged Navier-Stokes equations by assuming a signifi-
cantly larger horizontal length scale compared to the ver-
tical one. For further reading on how to derive the model,
one can refer to the literature, e.g. LeVeque [ 30 , chap. 13].
Let denote h the water height, hu/hv the momentum in
x/y direction, and b the height of the bathymetry. Then,
the two-dimensional shallow water equations neglecting
Coriolis, frictional, and viscous forces read as

qt + f(q)x + g(q)y = ψ(q), (2.68)

with q = (h, hu, hv)T being the conserved quantity and
flux vectors as well as source terms given by

f(q) =

 hu
hu2 + 1

2gh
2

huv

 , g(q) =

 hv
huv

hv2 + 1
2gh

2

 , ψ(q) =

 0
−gh∂xb
−gh∂yb

 . (2.69)

A sketch of this model is shown Figure  2.8 . The semi-discrete form qt + f ′(q)qx + g′(q)g(q) =
ψ(q) is given with the Jacobian

f ′(q) =

 0 1 0
−u2 + gh 2u 0

−uv v u

 g′(q) =

 0 0 1
−uv v u

−v2 + gh 0 2v

 . (2.70)

For the following work, the eigendecomposition of that form is needed. As e.g. LeVeque
shows [ 30 , chap. 21], the eigenvalues and eigenvectors for f ′(q) are

λ1 = u−
√
gh, λ2 = u, λ3 = u+

√
gh, (2.71)

r
(x)
1 =

 1
u−

√
gh

v

 , r
(x)
2 =

0
0
1

 , r
(x)
3 =

 1
u+

√
gh

v

 , (2.72)
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and for g′(q):

λ1 = v −
√
gh, λ2 = v, λ3 = v +

√
gh, (2.73)

r
(y)
1 =

 1
u

v −
√
gh

 , r
(y)
2 =

0
1
0

 , r
(y)
3 =

 1
u

v +
√
gh

 . (2.74)

Define the matrices R1 = (r
(x)
1 |r(x)2 |r(x)3 ), R2 = (r

(y)
1 |r(y)2 |r(y)3 ), c :=

√
gh. The inverses are then

given by

R−1
1 =


u+

√
gh

2
√
gh

− 1
2
√
gh

0

−v 0 1

−u−
√
gh

2
√
gh

1
2
√
gh

0

 =

 u+c
2c − 1

2c 0
−v 0 1

−u−c
2c

1
2c 0

 , (2.75)

R−1
2 =


v+

√
gh

2
√
gh

0 − 1
2
√
gh

−u 1 0

−v−
√
gh

2
√
gh

0 1
2
√
gh

 =

 v+c
2c 0 − 1

2c
−u 1 0
−v−c

2c 0 1
2c

 , (2.76)

which then completes the full eigendecomposition of the system.

2.5.2. Elastic Wave Equation

The three-dimensional elastic wave equations model elastic deformation as, e.g., found in
earthquakes. As LeVeque shows [ 30 , chap. 22], they can compactly be written in the form

qt +A(s)qx +B(s)qy + C(s)qz = 0. (2.77)

q(s, t) = (σxx, σyy, σzz, σxy, σyz, σxz, u, v, w)
T is a nine-component vector with stresses σij and

velocities in Cartesian space s = (x, y, z)T ∈ R3. A,B,C are 9 × 9 matrices incorporating
the Lamé parameters λ and σ, describing the relationship between stress and strain in elastic
deformation as well as velocities u, v, w (see the next page for a component-wise description
for A,B,C) The eigenvalues of A,B,C are:

s1 = −cp, s2 = −cs, s3 = −cs, s4 = 0, s5 = 0, s6 = 0, s7 = cs, s8 = cs, s9 = cp, (2.78)

with

cp =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
, (2.79)

taken from literature [ 11 ].
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A =



0 0 0 0 0 0 −(λ+2µ) 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −µ

− 1
ρ

0 0 0 0 0 0 0 0

0 0 0 − 1
ρ

0 0 0 0 0

0 0 0 0 0 − 1
ρ

0 0 0


, B =



0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 0 −(λ+2µ) 0
0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 0 0 0 −µ
0 0 0 0 0 0 0 0 0
0 0 0 − 1

ρ
0 0 0 0 0

0 − 1
ρ

0 0 0 0 0 0 0

0 0 0 0 − 1
ρ

0 0 0 0


, (2.80)

C =



0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 −(λ+2µ)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 −µ 0 0

0 0 0 0 0 − 1
ρ

0 0 0

0 0 0 0 − 1
ρ

0 0 0 0

0 0 − 1
ρ

0 0 0 0 0 0


.

The eigenvectors and their inverses found in the work of Dumbser and Käser [ 11 ] are pro-
vided for A in Equation  2.81 . The decomposition for the other matrices can be found in Ap-
pendix  A.1 -  A.4 

R(x) =


λ+2µ 0 0 0 0 0 0 0 λ+2µ
λ 0 0 0 1 0 0 0 λ
λ 0 0 0 0 1 0 0 λ
0 µ 0 0 0 0 0 µ 0
0 0 0 1 0 0 0 0 0
0 0 µ 0 0 0 µ 0 0
cp 0 0 0 0 0 0 0 −cp
0 cs 0 0 0 0 0 −cs 0
0 0 cs 0 0 0 −cs 0 0

 , R−1
(x) =



1
2(λ+2µ)

0 0 0 0 0 1
2cp

0 0

0 0 0 1
2µ

0 0 0 1
2cs

0

0 0 0 0 0 1
2µ

0 0 1
2cs

0 0 0 0 1 0 0 0 0
− λ

λ+2µ
1 0 0 0 0 0 0 0

− λ
λ+2µ

0 1 0 0 0 0 0 0

0 0 0 0 0 1
2µ

0 0 − 1
2cs

0 0 0 1
2µ

0 0 0 − 1
2cs

0
1

2(λ+2µ)
0 0 0 0 0 − 1

2cp
0 0


. (2.81)

In the next chapter, a step back is taken, and Riemann solvers for these applications are dis-
cussed.
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Riemann Solvers and Implementation
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3. Riemann Solvers

The previous part of this thesis showed that conservation and balance laws can be used to
model frequent physical phenomena. Typically expressed via systems of hyperbolic PDEs,
their numerical discretization using Finite Volumes or Discontinuous Galerkin methods drives
the need to solve one or many Rieman problems at cell interfaces, a hyperbolic PDE with a
step function as initial data. The problems can be solved analytically in some cases, for ex-
ample when considering constant-coefficient equations. ExaHyPE 2 is an engine to generate
code for simulating hyperbolic PDEs in first-order formulation, such as the two-dimensional
shallow water and the three-dimensional linear elastic wave equation. In the following, dif-
ferent strategies to solve a Riemann problem are presented, and implementation details are
highlighted. Here, the first sections deal exclusively with the shallow water equations as an
example of a non-linear multi-dimensional system. Initially, the derivations are performed
using the one-dimensional, homogeneous version:

qt + f(q)x = 0, f(q) =

(
hu

hu2 + 1
2gh

2

)
(3.1)

and then subsequently extended to deal with the dimensional-split formulation as well as
bathymetry and dry states.

3.1. Exact Solvers

First, an exact Riemann solver is derived based on introductory works [ 30 , chap. 15] [ 25 ].
This will then be used in Chapter  5 to decide whether the increased computational effort
justifies the gain in accuracy. It should be noted that even though the Riemann problem can
be calculated exactly, it is not derivable in a closed form due to its non-linearity. In general, it
is helpful to recall the insights gained for linear hyperbolic systems in Section  2.2 : A system of

ql qr

Rarefaction

(a) Rarefaction

ql qr

Shock

(b) Shock

Figure 3.1: Sketch of the x/t plane
for a Riemann problem with rar-
efaction and shock waves. As the
problem is nonlinear, the charac-
teristics are no longer parallel to
each other.
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m equation results in m separate waves. However, they can now be either shock or (centered)
rarefaction waves and arise because the characteristics are no longer parallel to each other as
illustrated in Figure  3.1 .

What these waves look like when applied to the shallow equation is shown in Figure  3.2 :
The chosen Riemann problem is the dam break scenario with initial water height h = 4 for
x < 0 and h = 2 for x > 0. Apart from that, the water is assumed to be at rest, i.e., hu = 0. As
one can see, two different waves propagate over time: On the left, there are two water levels
of height h = 4 and h = 2 connected by a linear sloping function, the rarefaction wave. On
the right, a shock wave between h = 3 and h = 2 propagates.

0

0.5

1

1.5

2

2.5

3

3.5

4

−1 −0.5 0 0.5 1

Analytical

h
(x
,t
)

Domain x

(a) t = 0

0

0.5

1

1.5

2

2.5

3

3.5

4

−1 −0.5 0 0.5 1

Analytical

h
(x
,t
)

Domain x

(b) t = 0.05

0

0.5

1

1.5

2

2.5

3

3.5

4

−1 −0.5 0 0.5 1

Analytical

h
(x
,t
)

Domain x

(c) t = 0.10

Figure 3.2.: Analytical solution to the dam break Riemann problem for the one-dimensional
shallow water equations. The initial discontinuity splits into a rarefaction and shock wave. In
a general solution strategy, one has to determine which type of connecting waves occur.

Thus, the solution to the Riemann problem can be rephrased to the following strategy:
For each direction, find a state qm such that ql is connected to qm by a (physically correct)
1-shock or 1-rarefaction wave and qr is connected to qm by a (physically correct) 2-shock or
2-rarefaction wave, yielding in total four possible combinations. qm must therefore satisfy
both conditions simultaneously.

3.1.1. Two Shock Waves

Section  2.2.1 outlined the derivation of the Rankine-Hugoniot jump conditions, which for
linear systems take the form

A(ql − qr) = λ(ql − qr). (3.2)

Or in other words, the speed of a shock wave is an eigenvalue, and the difference of both
discontinuities an eigenvector of q. A generalization of this formula can be derived as well:

f(ql)− f(qr) = s(ql − qr). (3.3)

If it was known that one side forms a shock wave, then  3.3 can be used to resolve the Riemann
problem. Set ql to a connecting vector q∗ and qr to an unknown state q and expand the shallow
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water equations. Then, a system of two equations arises:

f(q∗)− f(q) =

(
h∗u∗ − hu

h∗u
2
∗ − hu2 + 1

2g(h
2
∗ − h2)

)
=

(
s(h∗ − h)

s(h∗u∗ − hu)

)
= s(q∗ − qr). (3.4)

This system is over-determined as there are three unknowns: h, u, s, whereas h∗, u∗ stay fixed.
The family of solutions is resolvable by parameterization using h and by rearranging the first
equation and inserting it into the second:

u2 − 2u∗u+ (u2∗ −
g

2
(
h∗
h

− h

h∗
)(h∗ − h)) = 0 ⇒ u(h) = u∗ ±

√
g

2
(
h∗
h

− h

h∗
)(h∗ − h). (3.5)

Reparameterizing with h = h∗ + α gives

hu = h∗u∗ + α(u∗ ±
√
gh∗(1 +

α

h∗
)(1 +

α

2h∗
)). (3.6)

Now suppose that there are two shocks on every side of the Riemann problem and subse-
quently enter ∗ ∈ {r, l} for q∗ into  3.6 . This yields two equations as the middle state qm lies on
both curves:

um = ur + (hm − hr)

√
g

2
(
1

hm
+

1

hr
), um = ul + (hm − hl)

√
g

2
(
1

hm
+

1

hl
). (3.7)

Both equations together give a formula for hm that can be solved using a nonlinear root finder,
e.g. via Newton’s method. Inserting hm into one of them then gives the solution to the two-
shock Riemann problem qm = (hm, hmum).

3.1.2. Two Rarefaction Waves

The overall solution of the Riemann problem with a p-rarefaction wave has the structure

q(x, t) =


ql, if x

t ≤ λp(ql)

q̃(xt ), if λp(ql) ≤ λp(qr)

qr, if x
t ≥ λp(qr)

, (3.8)

where λp(qK),K ∈ {l, r}, denotes the characteristic speed of each side.
In contrast, inside a rarefaction, the values q̃ change proportionally to a corresponding

eigenvector rp, or in other words, they lie on a curve defined by

q̃′(ξ) = rp(q̃(ξ)), (3.9)

where q̃(ξ), ξ = x
t is a parameterization of the solution. Expanding this equation for the

shallow water equations gives
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{
h′(ξ) = 1

(hu)′(ξ) = u±
√
gh

. (3.10)

The different signs again yield the 1- or 2-wave. Fixing the point (h∗, h∗u∗) and integrating
the equations results then into

hu = hu∗ ± 2h(
√
gh∗ −

√
gh), (3.11)

⇒ u± 2
√
gh = u∗ ± 2

√
gh∗, (3.12)

where the two quantities are called Riemann invariants for the shallow water equations.
As rarefactions are similarity solutions, they are constant along ξ = x

t . This suggest to
define the characteristic speeds from  3.8 as

λp(q̃(ξ)) = ξ. (3.13)

If considering the 1-rarefaction connecting ql with qm yields, for example, λ1(ξ) = ũ−
√
gh̃ = ξ

as a result from the system’s eigendecomposition. Rewriting this to h̃ = (ũ−ξ)2

g and inserting
into the Riemann invariants from  3.12 then ends up with

h̃ =
(ul + 2

√
ghl − ξ)2

9g
, ũ =

ul + 2
√
ghl

3
+

2

3
ξ. (3.14)

For a two-rarefactions solution it is sufficient to consider the two integral curves described by
Equation  3.11 , that connect ql and qm as well as qm and qr by a rarefaction wave:

um = ul + 2(
√
ghl −

√
ghm), um = ur − 2(

√
ghr −

√
ghm). (3.15)

Equating both formulas yield an explicit term for hm under the assumption of positivity:

hm =
1

16g
(ul − ur + 2(

√
ghl +

√
ghr))

2. (3.16)

The remaining question for a full solver is how rarefactions can be distinguished from shock
waves. A rather simple criterion is the Lax entropy condition, which holds for 2-shock solu-
tions: It postulates that the characteristic speed to the left is greater than the one to the right.
For a 1-shock this results in

ul −
√
ghl > um −

√
ghm. (3.17)

Together with the generalized Rankine-Hugoniot jump conditions from  3.3 these inequalities
simplify to: hm > hl and similar for the 2-shock: hm > hr. If the condition is violated, a
rarefaction wave can be assumed.
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3.1.3. Generalized Solver

For a full solution to the Riemann problem of Equation  3.1 , the intermediate state qm is al-
lowed to be connected with either a rarefaction or a shock to both quantities ql, qr, depending
on the underlying initial values. Thus, finding qm is equivalent to defining the functions

Φl(h) =

{
ul + 2(

√
ghl −

√
gh), if h < hl

ul − (h− hr)
√

g
2(

1
h + 1

hl
), otherwise

(3.18)

together with

Φr(h) =

{
ur − 2(

√
ghr −

√
gh), if h < hr

ur + (h− hr)
√

g
2(

1
h + 1

hr
), otherwise

(3.19)

and applying a nonlinear root finder such as Newton’s method to Φ(h) := Φl(h) − Φr(h),
returning hm. The value can subsequently be used in Φl to obtain um. The structure inside
potential rarefaction waves is then reconstructable with the previous section if required.

3.1.4. Passive Tracer

A special form of the shallow water equation arises when the two-dimensional formulation
is split along x direction:

qt +

 hu
hu2 + 1

2gh
2

huv


x

= 0. (3.20)

The system is also denoted as shallow water equations with passive tracer, as v or u can be
interpreted as the concentration of a tracer that flows with the fluid but does not influence it.
This equation is of importance for the following sections in the sense that the associated Rie-
mann problem must be solved and implemented in ExaHyPE 2 if the homogeneous version
of the shallow water equations (i.e., Equation  2.68 with ψ(q) = 0, ∀q) should be simulated.
A deeper insight on ExaHyPE 2’s design is given in Chapter  4 . For now it is sufficient to
observe that solving the Riemann problem for  3.20 is not exactly the same as for  3.1 because
an additional third component with speed u is involved, and, therefore, three waves occur in
total. However, as Toro points out [  42 ], the solution procedure for h and hu are the same as
derived above, but for the advected quantity the solution reads

v(x, t) =

{
vl, if um > x

t

vr, if um < x
t

, (3.21)

as the third equation in  3.20 is decoupled from the other two and changes only across dx
dt = u.

This property of v is denoted as a linearly degenerate field or contact discontinuity. The same
thoughts hold for the split in y direction and u as tracer variable.
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3.1.5. Dry Bed

h(x, y)

b(x, y)

Figure 3.3.: Sketch of a shallow
water problem with dry states:
the water stops at a coastal re-
gion. Dealing with dry states
involves difficulties in the nu-
merical scheme as well as the
Riemann solver, as the veloci-
ties u, v are not defined and need
separate treatment.

In case the water height h in  3.20 approaches zero, i.e.,
h→ 0, an additional consideration of this case is necessary.
The reason is that the velocities u = hu/h and v = hv/h
are not defined. These scenarios are also called dry bed
problems and occur in the shallow water equations, for in-
stance, because islands are simulated in the topography
as sketched in Figure  3.3 or if initially flooded areas dry
out due to fluctuations in the water height. There are two
main aspects to consider: On the one hand, the numer-
ical model must remain stable and positivity-preserving.
However, depending on the method chosen, this entails
comparatively many difficulties (such as dividing by a wa-
ter height that is almost equal to 0 [ 3 ]), as will be further
discussed in Section  5.1.4 and  5.1.5 . On the other hand, the
Riemann solver must also be adapted to handle these sce-
narios, even when neglecting bathymetry b and just setting
one side of the initial values to zero. Following Ketcheson
et al. [ 25 ] or George [ 16 ], a dry state qr to the right is al-
ways connected to a wet state ql to the left via a centered
rarefaction wave. This suggests defining the solution to
this scenario as follows:

q(x, t) =


ql, if x

t ≤ ul −
√
ghl

q̃l, if ul −
√
ghl ≤ x

t ≤ ul + 2
√
ghl

0, otherwise

, (3.22)

where q̃ is given in Section  3.1.2 . A visualization for this scenario in one dimension can be
found in Appendix  B.2 . The same can be stated for the opposite case, i.e., ql is dry and qr is
wet. For completely dried regions (hl = hr = 0), it is intuitive to define the Riemann solution
to zero, as neither water nor momentum can change at all. To summarize the exact Riemann
solution, a pseudo algorithm is provided:

1 IN : ( hL , huL , hvL ) = qL , (hR , huR , hvR ) = qR , x , t
2 i f hL <= 0 and hR <= 0 :
3 f l u x := 0
4 e l s e i f hL > 0 && hR <= 0 :
5 qm = ( 3 . 2 2 )
6 e l s e i f hR > 0 && hL <= 0 :
7 qm = ( 3 . 2 2 , analogously )
8 e l s e :
9 hm = f i n d r o o t ( ( 3 . 1 8 ) − ( 3 . 1 9 ) )

10 um = p h i l (hm) // ( 3 . 1 8 )
11 vm = i f um > 0 . 0 then vL e l s e vR
12 qm = d e t e r m i n e r a r e f a c t i o n s t r u c t u r e (hm, um, vm) // using ( 3 . 1 4 )

As the pseudo code shows, several steps are involved in the exact solution, which might
increase computational complexity. Subsequently, the next section tries to find cheaper, but
potentially less accurate, alternatives.
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3.2. Approximate Solvers

The previous section derived an exact Riemann solver for the shallow water equation with
passive tracer and dry beds. Every exact Riemann solver has the property of being com-
plete, i.e., it fully covers the wave structure of the Riemann problem. However, this is not
always necessary for an approximation of the solution. For example, one could argue that
the flux is driven by two strong waves only - and thus, calculating their influence suffices to
properly approximate all unknowns. Riemann solvers that use only a part of the underlying
wave structure are called incomplete and are always an approximation to the underlying true
solution. Examples of the latter are HLL-type solvers, which typically use two waves to ap-
proach the solution. However, there are also complete approximate solvers, such as the Roe
or other linearized solvers. In the following, both types of solvers are briefly discussed on the
homogeneous shallow water equations with passive tracer.

3.2.1. HLL-family

One way to derive a general class of two-wave solvers are the Rankine-Hugoniot jump con-
ditions and assuming only two present waves W1,W2 with speeds s1, s2 [ 25 ]. Then, the dif-
ference between the fluxes on the right and left side is just the modifications from both edges:

f(qr)− f(ql) = s1W1 + s2W2 = s1(qm − ql) + s2(qr − qm)

⇒ qm =
f(qr)− f(ql)− s2qr + s1ql

s1 − s2
, (3.23)

leading to a scheme of the form

qm =


ql, if 0 ≤ s1
f(qr)−f(ql)−s2qr+s1ql

s1−s2
, if s1 < 0 < s2

qr, if 0 ≥ s2

. (3.24)

In this case, the wave velocities were explicitly denoted by si instead of λi because they do not
necessarily have to coincide with the eigenvalues as they do for linear problems. This basic
scheme is also denoted as two-wave or HLL-based solver and gives a template for Riemann
solvers depending on the choice of s1, s2. The most common implementations are the Lax-
Friedrich, HLL, and HLLE solvers. There are also extensions to the scheme to allow for three
waves, which the HLLC solver demonstrates.

Lax-Friedrich and Local Lax-Friedrich

The Lax-Friedrich approach can be gained from Equation  3.23 by assuming −s1 = s2 = s.
Then it reduces to

qm =
f(qr)− f(ql)

2s
− 1

2
(qr + ql). (3.25)

The choice of s then determines the method. The original Lax-Friedrich method uses s =
max(|λ(f ′(q))|) on the entire grid, whereas the local Lax-Friedrich selects the maximum on
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the current local domain s = maxΩk
(|λ(f ′(q))|). The latter choice is also denoted as Rusanov

flux. An alternative form [ 30 ] that directly yields the flux at the cell interface is

Fi− 1
2
= f(qm) =

1

2
(f(qr) + f(ql)− s(qr − ql)). (3.26)

HLL

Both Lax-Friedrich methods suffer from strong numerical diffusion [ 30 , chap. 4], which
smears out discontinuous solutions. The original HLL (Harten, Lax, van Lear) [ 20 ] solver
helps in mitigating that issue. It can be obtained by either substituting

s1 = max
Ωk

(λ), s2 = min
Ωk

(λ) (3.27)

directly in  3.24 , or alternatively, one can integrate the integral form of a one-dimensional
conservation law  2.2 over a control volume [xl, xr] × [0, T ] and rearrange the equation, as
summarized by Toro [ 44 ]. This results then in

Fi− 1
2
=


f(ql) if 0 ≤ s1
s2f(ql)−s1f(qr)+s1s2(qr−ql)

s2−s1
if s1 ≤ 0 ≤ s2

f(qr) if 0 ≥ s2

. (3.28)

HLLE

Einfeldt proposed a further development of the HLL scheme in the context of gas dynam-
ics [ 13 ], which resolves shocks more accurately:

s1 = min
p

(min(λ(f ′(ql))p, λ̂p)), s2 = max
p

(max(λ(f ′(qr))p, λ̂p)), (3.29)

where λ̂p denotes the p-th eigenvalue of the Roe average, which is further discusses in Sec-
tion  3.2.2 . In addition, HLLE does not need an entropy fix like the Roe solver.

Another modification to HLLE is HLLEM [ 14 ], where the attempt was made to approximate
a potential third wave as well. This scheme has also been successfully employed in shallow-
water simulations [ 8 ].

HLLC

Another approach to resolve more than two waves was made by Toro [ 43 ]. He generalizes
the idea of HLL to a three-wave solver of the form using three velocities SL, SR, S∗ and sum-
marized his approach under the name HLLC (HLL with contact discontinuity). The start-
ing point is Equation  3.30 [ 44 ], which is obtainable by integrating the integral form over
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3. Riemann Solvers

[xL, 0]× [0, T ] and [0, xR]× [0, T ] under assumption of a generic intermediate speed S∗:

Fi+ 1
2
=


FL 0 ≤ SL

F∗L = FL + SL(Q∗L −QL) SL ≤ 0 ≤ S∗

F∗R = FR + SR(Q∗R −QR) S∗ ≤ 0 ≤ SR

FR 0 ≥ SR

. (3.30)

For the shallow water equations the star vectors expand to

Q∗L =

 h∗
h∗S∗
h∗ψL

 , Q∗R =

 h∗
h∗S∗
h∗ψR

 . (3.31)

Using the assumptions h∗L = h∗R = h∗ and u∗L = u∗R = u∗ = S∗, which are fulfilled in the
exact solution, yields

h∗ =
hR(uR − SR)

u∗ − sR
, S∗ = u∗ =

sLhR(uR − SR)− sRhL(uL − SL)

hR(uR − SR)− hL(uL − SL)
. (3.32)

Let be aL =
√
ghl, aR =

√
ghR. As stable and efficient estimate for SL and SR he states

SL = uL − qLaL, SR = uR + qRaR, (3.33)

with

qK =


√

1
2
h̄(h̄+hK)

h2
K

, if (shock) h̄ > hK

1, otherwise (rarefaction)
(3.34)

for K ∈ {R,L} as well as

h̄ =
1

g
(
1

2
(aL + aR)−

1

4
(uR − uL))

2. (3.35)

In general, HLL-type Riemann solvers provide stable results under low computational costs.
Their quality can be seen as a good compromise between efficiency and accuracy for many
applications, even though they introduce numerical diffusion and dissipation and are not able
to deal with contact discontinuities (except for the HLLC or HLLEM scheme). However, their
main advantage lies in the universal applicability without the need to know the full wave
structure of a system. The latter is especially difficult when dealing with large highly non-
linear systems, for which it is difficult to derive a full eigendecomposition and, with that, an
exact Riemann solver. Subsequently, all of them are implemented in ExaHyPE 2 for evaluation
throughout this work, except for HLLEM, as the HLLC solvers seem to be more widespread
in literature. However, when focusing on accuracy, more elaborate approximate solvers are
potentially required, and it might be enlightening to compare them. One of the most popular,
the so-called Roe solver, is derived in the following.
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3. Riemann Solvers

3.2.2. Linearized Solvers and Solver of Roe

A simple but complete approximate class of Riemann solvers are linearized solvers. Here, the
initial problem qt + f(q)x = 0 is replaced by a suitable linearization at each cell interface:

qt + Âqx = 0, (3.36)

where Â is valid approximation of f ′ at Qi, Qi−1. LeVeque states that employment of lin-
earized solvers is easily justified, as the solution to conservation laws typically consists of
isolated shocks and contact discontinuities [ 30 , chap. 15]. Here, the variations in the Jacobian
matrix are roughly constant, and Â is an acceptable approximation to the real flux. However,
he emphasizes that the chosen linearization should satisfy the following conditions [ 30 , chap.
15]:

1. Hyperbolicity: Â it is diagonalizable with real eigenvalues.
2. Consistency: Â→ f ′(q) for Qi−1, Qi → q.
3. Conservation across discontinuities: f(qr)− f(ql) = Â(qr − ql).

Then, the theory for analytical solutions of constant-coefficient system from Section  2.2 can
be applied and the solution then consists of m waves with speeds λ̂. LeVeque also discusses
some choices for Â [ 30 , chap. 15], e.g.

Â = f ′(Q̂), (3.37)

where Q̂ is an average of ql, qr, e.g. Q̂ = 1
2(ql + qr). Another option could be to average the

fluxes directly as in

Â =
1

2
(f ′(ql) + f ′(qr)). (3.38)

However, both choices may not fulfill the desired properties. Roe’s idea, on the other hand,
was to establish a matrix Â based on the properties (1)-(3), which is equal to f ′(q̂) when eval-
uating at a specific state q̂ [ 40 ]. q̂ is thereby denoted as Roe average and Â as Roe linearization
or Roe matrix. For now, assume that Â has already been obtained. Then, it can be shown that
the Roe numerical flux is directly given by

f(qm) ≈ Âqm =
1

2
(f(ql) + f(qr)−

m∑
p=1

(λ̂+p − λ̂−p )αpr̂p), (3.39)

where the λ̂p, r̂p are eigenvectors and eigenvalues of the Roe matrix and α = R̂−1(qr − ql) the
modifications obtained from the inverse of the eigendecomposition of it.

In his original idea, Roe chose a set of parameter vectors for the Euler equations to derive
Â. A more straightforward approach found in Ketcheson et al. [ 25 ] is to start with property
(3) to derive the average states:

f(qr)− f(ql) = Â(qr − ql) ⇒ f(qr)− f(ql) = f ′(q̂)(qr − ql). (3.40)
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3. Riemann Solvers

Solving this equation for the x-dimensional split shallow water equation yields

ĥ =
hr + hl

2
, û =

√
hlul ±

√
hrur√

hl ±
√
hr

, v̂ =
(hrurvr − hlulvl)− û(hrur − hlul)

(hrur − hlul)− û(hr − hl)
, (3.41)

even though LeVeque remarks that v̂ calculated analogously to û can be used successfully in
practice [ 30 , chap. 21]. The Roe solver offers a good approximation for contact discontinuities
and shock waves, with exact results for the latter in certain problems. The properties (1)-
(3) of the derived matrix stabilize the solver additionally. Moreover, the Roe averages are
easily computed in many applications, e.g., for the Euler equations. However, it has several
weaknesses, as Toro comments [ 43 , chap. 11]: First, it cannot represent rarefaction waves since
linear Riemann problems consist only of shocks, which can make the solution very inaccurate,
especially in case a (tran)sonic rarefaction occurs (i.e., a rarefaction where the sign of the
characteristics changes from negative to positive). However, this problem is circumventable
by a so-called entropy fix. Furthermore, the Roe solver is not positivity-preserving for the
shallow water equations, resulting in negative values for the water height h. Unfortunately,
this property is shared by all linear solvers [  25 ]. As an alternative, the HLLE solver can be
used, which, on the one hand, does not require an entropy fix and, on the other hand, is depth
positive-semidefinite. Nevertheless, as the Roe solver is a standard technique in the context
of Riemann solvers, it is also implemented in ExaHyPE within this thesis.

3.2.3. Other Solvers

To conclude this section, other solvers are briefly discussed that are often found in literature:
The Riemann solver of Osher [ 15 ] uses integration in phase space, where the final scheme de-
pends on the selected integration paths and their ordering as well as the choice of intersection
and sonic paths [ 43 , chap. 12]. With that, the Osher solver yields a complete approximate
solver that does not need an entropy fix and is well applicable to nonlinear equations, as it
may capture both shocks and contact discontinuities accurately [ 12 ].

Another class is approximate state solvers, where an approximation to the state rather than
to the flux is calculated [ 43 , chap. 9]. Possible choices here are, for example, solvers based
on the exact solution, like a two rarefactions exact solver. Alternatively, so-called adaptive
Riemann solvers fall as well into this categorization, where simple solvers are used in smooth
regions and isolated shocks but more advanced ones elsewhere.

A maybe interesting addition to the group of linearized solvers is the Riemann solver of
Donat and Marquina [ 7 ], where an alternative flux is used to overcome the problems of the
Roe solver, similar to an entropy fix.

Furthermore, there exist specific versions of the HLL-type solver dependent on the under-
lying physical problems, such as the HLLD solver of Miyoshi and Kusano [  34 ] or the HLLEMS
solver of Feng et al. [ 36 ] show, for instance.

Furthermore, Feng et al. [  37 ] provide a broader classification of Riemann solvers. While
they classify Roe and HLL-type solvers as Flux Difference Splitting (FDS) schemes, they
state two other classes: One of them are the Flux Vector Splitting (FVS) schemes with the
Steger-Warming Splitting as well as the van Leer’s FVS scheme, the other are Flux Splitting
schemes with the AUSM scheme as example.
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3. Riemann Solvers

3.3. Including Source Terms and Non-Conservative Products

The Riemann problems for the shallow water equations considered in the previous section
were all homogeneous. However, for realistic scenarios, a simulation of the bathymetry is
essential, which in one spatial dimension leads to a hyperbolic equation of the form

qt + f(q)x = ψ(q, x), (3.42)

as can be seen when splitting Equation  2.68 in x or y direction. These types of equations are
also called non-conservative hyperbolic PDE or balance law because the flux function needs
to be balanced with the source term. If the term involves derivatives of q (like it is the case for
the shallow water equations),

qt + f(q)x = ψ(∇q, x), (3.43)

ψ is sometimes denoted as non-conservative product instead of (algebraic) source term. This
form is required in ExaHyPE 2, as the source terms are not allowed to depend on derivatives
of the quantities (recall Equation  2.67 ). Mathematically, the more general formulation  3.42 is
preferable, and subsequently, this section discusses approaches to solve the belonging Rie-
mann problem.

Sometimes, it is possible to rewrite balance laws back to conservation laws. Under the as-
sumption of smoothness, this can be done for the shallow water equations as well (a deriva-
tion of this form can be found in Appendix  B.1 ) [ 29 ]:

qt + f(q)x + g(q)y = 0

q =


h
u
v
b

 , f(q) =


hu

1
2u

2 + g(h+ b)
huv,
0

 , g(q) =


hv
huv,

1
2v

2 + g(h+ b)
0

 . (3.44)

Then, the solution ideas from the previous sections are applicable again. Note that the con-
served variables have now changed (velocities u, v instead of momentum hu, hv).

However, such reformulations are not always desirable, e.g. if the underlying assumptions
are not applicable. One way to circumvent the Riemann problem with source term is the
fractional step or operator splitting method. Here, one first solves the homogeneous equation
and then a system of ODEs:

qt + f(q)x = 0,

qt = ψ(q, x). (3.45)

However, this approach may break the well-balancedness of numerical schemes if both steps
do not exactly balance, resulting in poor accuracy [  31 ]. Well-balancedness is an essential
property for the stability of shallow water equations, as will be further discussed in Chapter  5 .
Thus, many augmented schemes have been developed in the past to prevent such issues.
Some of them are reviewed in the following.
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One approach to balance source terms with fluxes was introduced by LeVeque in 1998 [ 31 ]:
He modified the Riemann problem in his wave propagation algorithm for quasi-steady solu-
tions of hyperbolic PDEs by introducing a new discontinuity for a cell interface i:

1

2
(ql + qr) = qi. (3.46)

In combination with decomposing the flux into

f(ql)− f(qr) = ψ(qi, xi)∆x (3.47)

it is aimed at keeping the cell averages unchanged and balancing source and flux. A similar
idea was proposed by Jenny and Müller [ 24 ]. A more robust scheme was later created by
Bale et al. [ 2 ] [ 33 ], allowing the solution of problems with spatially varying flux function and
source terms, i.e., balance laws of the form

qt + f(q, x)x = ψ(q). (3.48)

The key idea is to use a flux-based wave decomposition under the assumption of cell-centered
averages on the left and right state, where the flux difference of both cells is decomposed
similarly to the analytical approach for linear systems (see, for example,  2.30 ):

f(qr)− f(ql)−∆Ψi− 1
2
=

m∑
p=1

(βi− 1
2
)p(ri− 1

2
)p ≡

m∑
p=1

(Zi− 1
2
)p. (3.49)

The new waves Zp are then called f -Waves. The eigenvectors and eigenvalues can be derived,
for example, using the Roe linearization. On the other hand, the function ψ summarizes the
effects of the source term, which for the shallow water equations expands to

∆xΨi− 1
2
= −g

2
(br − bl)(hr + hl). (3.50)

The flux at the intermediate state is then obtainable with the relation:

Fi− 1
2
= f(ql) +

∑
p:λp<

x
t

(Zi− 1
2
)p. (3.51)

A generalization of the f -Wave idea is based on relaxation schemes as LeVeque and Pelanti
point out [ 33 ]: Here, the decomposition is based on 2m waves using the ansatz(

qr − ql
f(qr)− f(ql)

)
=

2m∑
p=1

αp

(
wp

ϕp

)
, (3.52)

which allows for a more unified view of solvers as the HLL-type and Roe solvers. George
captured this thought to establish his own augmented solver with m + 1 waves for the one-
dimensional shallow water equations with bathymetry [ 17 ]:

hr − hl
hrur − hlul
ϕ(qr)− ϕ(ql)

br − bl

 =
3∑

i=0

(αi− 1
2
)p(wi− 1

2
)p. (3.53)
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ϕ(q) = (hu2+ 1
2gh

2) is therefore the flux of momentum and (wi− 1
2
)p ∈ R3 independent vectors.

Then, the f -waves are the middle two components of

(Zi− 1
2
)p = (αi− 1

2
)p(wi− 1

2
)p. (3.54)

On the other hand, the vectors w and wave speeds s are chosen from a combination of the Roe
averages for p = 1, 3 and a corrector wave for p = 2. George’s solver unites the advantages
of the Roe and HLLE solver, as well as the f -wave approach: It is positive-semidefinite and
yields an exact solution for single-shock problems with entropy fix. Moreover, it is well-
balanced in the context of LeVeque’s wave propagation algorithm. For ExaHyPE 2, both
f -Wave and the solver of George are implemented to include source terms. In addition, the
fractional step approach of the software is applied to the homogeneous solver to allow for
general inclusion of bathymetery. More implementation details are discussed in the following
chapter.
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After introducing Riemann solvers in the previous chapter, their implementation is now con-
sidered. At first, the created code and built-in Riemann solvers are analyzed. Here, all state-
ments refer to ExaHyPE 2 with non-linear kernels using ADER-DG. ExaHyPE 2 also allows
for linear kernels, which result in an optimized code. However, except for investigation the
correctness of the Riemann solvers for the shallow water equations, it has not been used in
this work. The logic of the implementation remains the same for Finite Volumes and Runge-
Kutta DG, but as the solvers are tightly integrated into the generated code, they cannot be
isolated and adapted as a stand-alone component. After that, a brief discussion of the most
important aspects of the implementation is given to assess the efficiency of the code later in
the work. At the end of this chapter, the implemented code is examined for correctness us-
ing the linearized shallow water equations. ExaHyPE 2 is continuously under development.
Thus, a fork 

1
 was created for this thesis, starting with commit 04daa08.

4.1. Analysis

After running ExaHyPE 2’s code generation (recall Section  2.4 in combination with Appendix
 B.1 for a short introduction on that), the main C++ file has to be implemented. It can be found
in the root directory where the problem definition was called. In the case of the example given
in the appendix, it is named out.cpp and has empty methods bodies that need to be completed.
These are (for readability, the method arguments were omitted):

• refinementCriterion (...) - A method that allows the implementation of a criterion to refine
the grid based on the provided min cell and max cell parameter. For ExaHyPE 2, grid
refinement is still experimental and has to remain static throughout the simulation.

• initialCondition (...) - With this function, initial conditions may be defined.
• boundaryConditions(...) - Here, boundary conditions (BCs) need to be stored in the param-

eter vector Qoutside based on the boundary inside of the domain Qinside. In many cases
these are outflow boundary conditions (Qoutside[i] = Qinside[i]), but also reflecting bound-
ary conditions (Qoutside[i] = −Qinside[i]) or no-slip BCs (Qoutside[i] = 0) are commonly used.

• maxEigenvalue(..) - Returns the maximum eigenvalue of the (quasi-)linear form of the PDE.
This value is used for time step size control and the built-in Rusanov solver.

• flux (...) - Computes f(q)n along direction n.
• Not in the example but also required for providing all test scenarios from Chapter  5 is

nonconservativeProduct(...) to add ψ(∇q, q). For an explicit source term not depending on
the quantity’s derivative, the method algebraicSource (...) is to be preferred.

1
 https://gitlab.lrz.de/hpcsoftware/Peano/-/forks  
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ExaHyPE 2 generates per-default a Rusanov solver in the code. There are two ways to over-
write it: Either use the option

1 t h e s o l v e r . set implementat ion ( r iemann solver=exahype2 . s o l v e r s . aderdg . PDETerms .
User Defined Implementation )

in the Python problem definition, which adds the method riemannSolver(...) to the C++ file
or overwrite the same method within the file RiemannSolver.cpp in generated/kernels/aderdg/(non
)linear. Both functions have the following prototype (with the template paremeter cCompType
being double for most cases):

1 void generated : : kerne l s : : AderDG : : nonl inear : : riemannSolver (
2 examples : : exahype2 : : t u t o r i a l : : out &solver ,
3 cCompType * r e s t r i c t FL ,
4 cCompType * r e s t r i c t FR ,
5 const cCompType * r e s t r i c t const QL,
6 const cCompType * r e s t r i c t const QR,
7 const double t ,
8 const double dt ,
9 const ta rc h : : l a : : Vector<Dimensions , double> &faceCentre ,

10 const t a r c h : : l a : : Vector<Dimensions , double> &dx ,
11 const i n t d i r e c t i o n ) ;

Figure 4.1.: Two-
dimensional cell consisting
of 4 faces. Each face has
d + 1 points, when consid-
ering DG with polynomials
of degree d.

and are called once per face for each time step. To under-
stand this more in detail, a two-dimensional cell is shown in
Figure  4.1 . Along each direction, there is a negative and a pos-
itive face (x direction: red/green, y direction: blue/orange),
having a left and a right side. Each side therefore has d + 1
nodes, which are vectors of unknowns, with d being the degree
of the basis polynomials. For the example above, it holds d = 3,
thus there are in total 4 nodes with 3 unknowns each, which is
furthermore illustrated in Figure  4.2 . For each combination of
left and right side, a Riemann problem has to be solved. In n
dimensions, this concept transfers to 2n faces with (d + 1)n−1

vectors of unknowns per cell. Or, coming back to the initial
statement, one call of riemannSolver(...) needs to solve (d + 1)n−1

Riemann problems.

L R

negative face

(a) Left edge

L R

positive face

(b) Right edge

R

L

positive face

(c) Top edge

R

L

negative face

(d) Bottom edge

Figure 4.2.: Faces for which ExaHyPE’s Riemann solver is called for example problem  B.1 .
Each left/right combination of black dot marks an (analytical) Riemann problem, while
riemannSolver(...) solves all problems for a given face in one function call.
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The function declaration of riemannSolver(...) shall be discussed briefly as well before design-
ing new implementations:

• solver - A reference to the problem-solving component, which allows to call the methods
from out.cpp as stated above.

• FL / FR - Pointers containing f(ql) and f(qr) for each point of a cell’s face.
• QL / QR - Pointers containing ql and qr for each point of a cell’s face.
• t - Current time.
• dt - Current time step size.
• faceCentre - Coordinates of the center of the current face.
• dx - Size of the cell.
• direction - The direction along which the face is considered (0 - x, 1 - y, 2 - z axis). As

ExaHyPE 2 only allows for Cartesian grids, the Riemann problem vanishes in all other
directions. In other words, a dimensional-split approach is followed, reducing the Rie-
mann problem for the two-dimensional shallow water equations to the one-dimensional
shallow water equations with passive tracer and bathymetry along each direction, for
example.

The function requires overwriting FL and FR with the flux evaluated at the resulting interme-
diate state qm of the Riemann solution for both vectors, i.e. FL = FR = f(qm). However, there
are situations where the left and the right flux differ, for instance, if the flux shall be limited
in certain areas or in case of non-homogeneous problems and fractional-step-based solvers.

4.2. Design and Implementation

Based on the analysis from the previous section and using pre-built methods of the code, a
general Riemann solver for ExaHyPE 2 may look as follows:

1 void riemannSolver ( . . . )
2 {
3 constexpr auto v e c t o r s = Dimensions == 2 ? g e t B a s i s S i z e ( ) : g e t B a s i s S i z e ( ) *

g e t B a s i s S i z e ( ) ;
4 constexpr auto unknowns = getNumberOfVariable ( ) ;
5 cCompType FL2 [ unknowns ] ;
6 cCompType FR2 [ unknowns ] ;
7

8 f o r ( auto v = 0 ; v < v e c t o r s ; ++v )
9 {

10 auto *QL2 = &QL[ v * unknowns ] ;
11 auto *QR2 = &QR[ v * unknowns ] ;
12

13 //solve the dimensional s p l i t Riemann problem using QL2 and QR2, e . g . with
Roe s o l v e r and s t o r e r e s u l t s in FL2 , FR2

14

15 std : : memcpy(&FL [ v * unknowns ] , &FL2 [ 0 ] , unknowns * s i z e o f ( cCompType ) ) ;
16 std : : memcpy(&FR [ v * unknowns ] , &FR2 [ 0 ] , unknowns * s i z e o f ( cCompType ) ) ;
17 }
18 }
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In line 3, the number of nodes on each side is determined at compile time. The same is
repeated with the unknowns in line 4. 5-6 allocate buffers for the output of the Riemann
problem. Line 8 iterates through all left/right combinations and 10-11 consequently move
the pointers to the currently considered left/right pairs of initial values. If assuming that the
Riemann problem has already been solved in FL2 and FR2 (marked by the comment in line 13),
the local result can be copied into the global result vector (lines 15-16).

A shortened implementation for the HLLE solver, replacing the comment in the listing
before, may then, for instance, be stated as follows, if s1 and s2 are already given:

1 i f ( s1 >= 0 . 0 ) { [ . . . ] }
2 e l s e i f ( s1 <= 0 . 0 && 0 . 0 <= s2 )
3 {
4 cCompType q m [ unknowns ] ;
5 f o r ( auto j = 0 ; j < unknowns ; ++ j )
6 {
7 q m [ j ] = ( FR2 [ j ] − FL2 [ j ] − s2 * QR2[ j ] + s1 * QL2[ j ] ) / ( s1 − s2 ) ;
8 }
9 s o l v e r . f l u x (&q m [ 0 ] , faceCentre , dx , t , dt , d i r e c t i o n , &FL2 [ 0 ] ) ;

10 s o l v e r . f l u x (&q m [ 0 ] , faceCentre , dx , t , dt , d i r e c t i o n , &FR2 [ 0 ] ) ;
11 }
12 e l s e i f ( s2 >= 0 . 0 ) { [ . . . ] }

Here, Equation  3.24 is applied directly for each unknown in line 7. Lines 9 and 10 then calcu-
late the flux of the result and store it in the previously allocated buffers.

To include non-conservative products, the fractional-step approach of the existing Rusanov
solver is followed for non-augmented schemes, which has to be added after the solution to
the homogeneous problem was already calculated:

1 cCompType Qavg [ unknowns ] = { 0 . 0} ;
2 cCompType gradQ [ unknowns ] = { 0 . 0} ;
3 cCompType ncp [ unknowns ] = { 0 . 0} ;
4

5 f o r ( i n t n = 0 ; n < unknowns ; n++)
6 {
7 Qavg [ n ] = 0 . 5 * (QL2[ n ] + QR2[ n ] ) ;
8 gradQ [ n ] = QR2[ n ] − QL2[ n ] ;
9 }

10

11 s o l v e r . nonconservativeProduct ( Qavg , gradQ , . . . , ncp ) ;
12

13 f o r ( i n t n = 0 ; n < unknowns ; n++)
14 {
15 FR [ v * unknowns + n ] −= 0 . 5 * ncp [ n ] ;
16 FL [ v * unknowns + n ] += 0 . 5 * ncp [ n ] ;
17 }

Again, local buffers are created for intermediate results (1-3). Line 5-9 then approximates q
and ∇q. These estimates are then used to call the non-conservative product (line 11), which in
this case is supposed to be the only source term. The calculated flux of the Riemann problem
is then modified in lines 13-17 from the right- and left-going results.

Based on these insights, the following Riemann solvers are implemented in this work:
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Solver Ref Shallow water Linear Elastic Wave
Exact  3.1 hom. and inhom. (Rusanov ansatz) constant-coefficient
Rusanov  3.2.1 hom. and inhom. (Rusanov ansatz) hom.
HLL  3.2.1 hom. and inhom. (Rusanov ansatz) hom.
HLLE  3.2.1 hom. and inhom. (Rusanov ansatz) -
HLLC  3.2.1 hom. and inhom. (Rusanov ansatz) -
Roe  3.2.2 hom. and inhom. (Rusanov ansatz) -
F-Wave  3.3 hom. and inhom. -
George  3.3 hom. and inhom. -
2-Rfw  3.1.2 homogeneous -

Table 4.1.: Implemented Riemann solvers for the shallow water and linear elastic wave equa-
tions. Two Rarefactions (2-Rfw) is an exact solver based on the assumption of two rarefaction
waves on both sides and recommended by Toro et al. for practical use [ 45 ]. The Rusanov
ansatz for inhomogeneous problems is taken from the built-in solver of ExaHyPE 2 and mod-
ifies the homogenous solution based on an approximation of the non-conservative product.

4.3. Correctness

The correctness of the implemented solvers is verified with the linearized versions of the
shallow water equations from Section  2.5.1 . As LeVeque points out, they are obtainable by
considering waves with only small amplitudes compared to fluid depth and assuming a con-
stant depth h0 and velocity u0 [ 30 , chap. 13], [ 32 ]. q then describes deviations from these
constant states:

q(x, t) =

(
h− h0

hu− h0u0

)
, q0 =

(
h0
h0u0

)
. (4.1)

Calculating the flux function f(q)x and dropping higher-order terms O(||q||22) yields a constant-
coefficient linear system in one spatial direction by setting A := f ′(q0):

qt +Aqx = 0. (4.2)

In that case, the solution to the equation can be obtained analytically following section  2.2.1 

and using the one-dimensional eigendecomposition in  2.5.1 :

q(x, t) = w̃1(x− λ1t)r1 + w̃2(x− λ2t)r2. (4.3)

Similar thoughts lead to the two-dimensional version of the linearized shallow water equa-
tions qt +Aqx +Bqy = 0, where the dimensional-split equations

qt +Aqx = 0, qt +Bqy = 0 (4.4)

can be solved analytically, too, giving a linearized version of the shallow water equations with
passive tracer. These exact solutions are used to ensure correctness of the code using a test
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problem, which is defined in equation  4.5 for the following comparisons: A tiny water hump
is released at t = 0 into Ω = [−1, 1]× [−1, 1] and evolves over time. Since ExaHyPE 2 requires
at least two dimensions, the problem is designed with constant values along the y-direction.
Consequently, the numerical results along (−1, 0) to (1, 0) are comparable with the analytical
solution of the first equation from  4.4 .

q(x, y, 0) =
1

10
e−10x2

+ h0, q0 =

h0u0
v0

 =

2
0
0

 . (4.5)

Figure  4.3 shows the analytical results of h for t ∈ {0, 0.10, 0.20}. For the error analysis for
a single unknown of q at fixed time t and arbitrary x-coordinates, the absolute error between
the numerical solution r̃ and the analytical solution r is considered. The latter is calculated
using the non-equidistant Legendre quadrature nodes employed by ADER-DG depending on
the order and mesh size. Then, the 2-norm divided by the analytical results yields a relative
error, enabling a percentage viewpoint:

Erel(x, t) =
||r − r̃||2
||r||2

. (4.6)

The results calculated with this approach are only reasonable when smooth solutions are con-
sidered since discontinuous regions might not be captured accurately enough, which is also
taken up in the next chapter. Nevertheless, in this setting the assumption on smoothness
apply. Figure  4.3 plots this error over the straight line (−1, 0) to (1, 0) using ExaHyPE 2 for
selected points in time. The simulation employs ADER-DG with basis polynomials of de-
gree 3 and fixed grid cells with size 0.1. All solvers reach an error below 0.0006, with the
HLL-type solvers having the least at time 0.1. Towards the end of the simulation, the error
increases slightly since the considered analytic solution does not incorporate boundary con-
ditions, while ExaHyPE 2 assumes outflow of the waves. A similar error curve is shown in
Figure  4.5 for hu, where the overall errors are higher but still decent. For hv, the results are
not shown, as they match the analytical solution for the full simulation (i.e., hv = 0). These
plots show two aspects: Firstly, the error is within an acceptable range for all solvers. Thus,
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Figure 4.3.: Analytical solution of h for test problem  4.5 along the x axis: A tiny hump of water
is released into the domain. The x range of the plot was scaled to [2, 2.1] to make the results
more visible.
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a correct implementation of the Riemann solvers for the shallow water equations with pas-
sive tracer in ExaHyPE 2 can be reasonably assumed. Secondly, the differences between the
solvers are tiny in this setting, which primarily is attributable to the high order of convergence
and the smoothness of the solution. In the next chapter, it is investigated if these insights also
apply to other scenarios.
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Figure 4.4.: Relative error of h for test problem  4.5 at different points in time over the line
(−1, 0) to (1, 0) calculated with Equation  4.5 . As the magnitudes stay within an acceptable
range, a correct implementation of the Riemann-solvers for the homogeneous shallow water
equations can be assumed.
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Figure 4.5.: Relative error of hu for test problem  4.5 at different points in time over the line
(−1, 0) to (1, 0) calculated with Equation  4.5 . The numerical results for hv are as expected
equal to 0. Therefore, this error plot is omitted.
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The previous chapters presented Riemann solvers and discussed their implementational as-
pects on the example of the shallow water equations with bathymetry. In this chapter, the
solvers from Table  4.1 are compared using different example simulations. First, dam break
scenarios in one spatial dimension are examined. Afterward, the solvers are evaluated con-
cerning well-balancedness property using the shallow water equations with bathymetry. The
treatment of dry states and more complex topography in ExaHyPE 2 is discussed subse-
quently, and the insights are then applied to inundation and tsunami scenarios. Finally, the
linear elastic wave equations are examined as an example of a three-dimensional equation.
The focus of this chapter lies on contrasting the implementations in terms of accuracy and
certain properties. However, a summary of all solvers regarding performance is given in the
last section.

5.1. Shallow Water Equations

If not otherwise stated, the following settings apply to the subsequent experiments using the
shallow water equations:

• The realization in ExaHyPE 2 is directly derived from Equation  2.68 , where the source
term is implemented as non-conservative product. The eigenvalues for time step control
are taken from  2.71 and  2.73 .

• Nonlinear ADER-DG with polynomials of degree d = 3 is employed.
• The mesh size is fixed with 0.1 on the domain [−1, 1] × [−1, 1] and the time step size is

relaxed with the factor 0.9.
• The relative error is measured using the formula and derivations from Equation  4.6 with

the norm of a point wise difference using the analytical results on the non-equidistant
Legendre quadrature node. All analytical solutions are created using matlab.

• The numerical data is exported with a precision of 13 using paraview.
• For the dam break scenarios, the analytical solution is directly taken from Section  3.1 for

comparison.
• Dry states are handled using the analytical solution taken from Section  3.1.5 for all

solvers.

Using these properties, the Riemann solvers for the shallow water equations are discussed.
Here, the homogeneous version (ψ = 0) is investigated first with the help of one-dimensional
reference problems and then further extended with bathymetry. Subsequently, initial dry
states (h = 0, ψ ̸= 0) are considered on numerically challenging problems such as discontin-
uous topography, frequent drying and wetting scenarios, or complex bathymetry on real-life
data.

46



5. Results

5.1.1. Dam Break

The first considered scenario is a two-dimensional dam break simulation constant in y direc-
tion. The initial conditions are provided in Equation  5.1 . The expectation for the analytical
solution is a left rarefaction and a right shock wave in h along each fixed y, as already out-
lined in Section  3.1 . Figure  5.1 shows numerical and analytical results using the exact Rie-
mann solver along (x, y = 0): While the rarefaction wave is well-captured, oscillations near
the shock wave occur. These types of oscillations are called Gibb’s type oscillations and are
expected when employing ADER-DG with discontinuous solutions. Originally, they were
used to describe the problem that the approximation of a discontinuous function by a Fourier
series results in over- and undershoots in discontinuous regions [ 19 ].

q(x, y, 0) =



4

0

0

 x < 0

2

0

0

 x > 0

. (5.1)
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Figure 5.1.: Analytical and approximated solution of h for Equation  5.1 for fixed y = 0. A
left rarefaction wave and a right shock wave propagate after release of the discontinuity. The
numerical simulation uses the exact Riemann solver. Results are shown along x ∈ [−1, 1]
calculated with ExaHyPE 2 employing ADER-DG and cubic polynomials. Gibb’s type oscil-
lations occur around the shock wave while the rarefaction wave is captured more accurately.

The analytical and numerical results for momentum hu are plotted in Figure  5.2 using the
Roe Riemann solver. The oscillations arise here as well and are therefore not an issue of
the Riemann solver but rather of the created numerical model. One option to resolve these
oscillations is limiters or filters. As they were not available throughout large parts of this
work, a discussion of the accuracy without them is performed in the following.

As a direct comparison of all solvers with the analytical results is not practical, the relative
error from Equation  4.6 is considered in the following instead. Figure  5.4 shows the value
calculated for h over x ∈ [−1, 1] for fixed y = 0 and various points in time using point-wise
differences on the non-equidistant grid, which are in addition shown in  5.3 for the George
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Figure 5.2.: Analytical and approximated solution of hu for Equation  5.1 . hv is equal to zero,
as the problem is constant along y direction. The numerical simulation uses the Roe Riemann
solver. Results are shown for fixed y = 0 along x ∈ [−1, 1] calculated with ExaHyPE 2 em-
ploying ADER-DG and cubic polynomials. Gibb’s type oscillations occur for the dam break
scenario independent of the chosen Riemann solver.
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Figure 5.3.: Point wise error of the approximated and analytical solution of h for Equation  5.1 

for fixed y = 0 along x ∈ [−1, 1] using the Legendre quadrature nodes from the numerical
solution at t = 0.1. The results were calculated with ExaHyPE 2 using ADER-DG and cubic
basis polynomials and are used to determine the relative error defined in Equation  4.6 .

and f -Wave Riemann solver. Figure  5.4a groups HLL-type solvers in one plot, while  5.4b 

combines the remaining solvers except the two-rarefactions exact solver (since it is nearly
identically to the exact solution). Note that the y range was scaled to [0.013, 0.019]. As ex-
pected due to the similarity of the schemes, the HLL solvers exhibit similar behavior with
respect to the error, although the HLLC solver produces the lowest and the HLLE solver the
highest error. The overall smallest error is achieved by George’s augmented solver starting
at t = 0.1. The Roe and exact solvers behave almost identically, although the mathematical
analysis indicated that the former should not be able to resolve the rarefaction wave, as it is a
linear solver. The f -Wave solver performs worst at the beginning and can only approach the
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accuracy of the other solvers at later times.
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Figure 5.4.: Relative error of the dam break scenario  5.1 calculated with Equation  4.6 for un-
known h along x ∈ [−1, 1], y = 0 over selected points in time. The HLLC solver performs best
across the HLL-type solvers for this setup, while George’s augmented solver produces the
smallest error in later time points. The solution using the two rarefactions exact solver was
omitted due to its similarity to the exact one. Note that the y-axis does not start from zero to
make the differences more visible.
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Figure 5.5.: Relative error of the dam break scenario  5.1 calculated with Equation  4.6 for un-
known hu along x ∈ [−1, 1], y = 0 over selected points in time. While the HLLC solver still
performs best across the HLL-type solvers for this setup, George’s augmented solver pro-
duces not as precise results as with h. The solution using the two rarefactions exact solver
was omitted due to its similarity to the exact one. Note that the y-axis does not start from zero
to make the differences more visible.
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Figure  5.5 shows the relative error calculated analogously for hu. According to the graph,
the solvers seem to behave almost identically. However, the differences are not as notice-
able here due to the larger y range. Nevertheless, it can already be deduced that the HLLE
and f -Wave solvers provide more accurate results for momentum than for water height in
comparison to the other solvers. Also, HLLC is, in part, the most accurate among the HLL
family, while George’s augmented solver achieves less precise results. Again, Roe and the
exact solver are closely related. A fairer visual comparison, omitting the initial error, can be
found in  C.1 .

Gibb’s type oscillations might reduce the overall accuracy of the results near the discon-
tinuity, which is amplified when considering Figure  5.3 another time: The absolute error is
large around the shock wave and, therefore, so is the overall relative one, while the values
are by far lower in other regions. Therefore, it is more illuminating to distinguish the error on
both types of waves, respectively. For example, at t = 0.1, the shock wave is located between
x ∈ [0.5, 0.7], while the rarefaction wave is within x ∈ [−0.7,−0.3] as Figure  5.1c shows. On
the contrary, the relative error over these intervals is plotted in Figure  5.6 for all Riemann
solvers.
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Figure 5.6.: Relative error of shock (x ∈ [0.5, 0.7]) and rarefaction x ∈ [−0.7,−0.3] wave at t =
0.1 for dam break problem  5.1 calculated with Equation  4.6 . The additional dotted lines mark
the smallest error over all Riemann solvers (here reached by George’s augmented solver).
Due to Gibb’s type of oscillations, the error of shock and rarefaction differ highly.

As can be derived from the figure, there is a remarkable difference for both types of wave:
While the error concerning the rarefaction lies around Erel = 0.008 (minimum ≈ 0.0075,
maximum ≈ 0.0088), it is more than six times as high for the shock wave (minimum ≈ 0.0489,
maximum ≈ 0.0568). This is no surprise, as the numerical simulations using any Riemann
solver, on one hand, do not necessarily capture the shock accurately enough (and with that,
a point-wise error produces large errors around this area) and, on the other hand, do not
impose large oscillations in other parts (which increases the accuracy in general there). Thus,
an error analysis is performed for both types of waves separately in the following.
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Both minima for rarefaction and shock are obtained using George’s Riemann solver, while
the maxima are reached using HLL for the rarefaction and with f -Wave for the shock wave.
Other well-performing solvers for the rarefaction wave are the exact and, as expected, the
two-rarefaction exact solver (denoted as 2-Rfw in the figure). Interestingly, the latter also
is reasonably precise for the shock wave, together with the Roe solver for the rarefaction.
Larger deviations to the analytical solutions are extensively found in the HLL-type solvers, in
particular, with the HLLE solver.

The oscillations in the region of the discontinuity are less significant when the polyno-
mial degree is reduced, which is shown for simulations using the HLLC solver in Figure  5.7 .
Therefore, the question arises to what extent the numerical solution actually benefits from a
higher order and which Riemann solvers profit most from it. For this purpose, the error for
both wave types at time t = 0.1 is analyzed in Figure  5.8 but this time for the polynomial
degrees d = 1, 2 in addition. Here, the rarefaction wave is best resolved by the HLLE solver
for d = 1, 2. The Riemann solver of George has the highest error for these orders but is most
accurate with d = 3 using this error estimate. Both exact solvers, as well as the Roe solver
reveal consistently small deviations from the respective best result. Due to the oscillations,
the error of the shock wave is overall higher than for the rarefaction wave. The Rusanov and
HLL solver yield the smallest error for d = 1. On the other hand, no Riemann solver actually
benefits using d = 2, as the shock wave is not captured well enough to fit the analytical solu-
tion. In contrast, George’s solver has the smallest error for d = 3 followed by the two exact
Riemann solvers, matching the previous results.
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Figure 5.7.: Numerical solution of h for Equation  5.1 using the HLLC Riemann solver for
fixed y along x ∈ [−1, 1] in ExaHyPE 2 with ADER-DG and polynomials of varying order.
The Gibb’s tye oscillations are less present around the discontinuity for lower-order basis
functions, and the Riemann solvers profit differently from them as Figure  5.8 shows.

Similar questions can be asked regarding varying mesh size as illustrated in Figure  5.9 .
However, as instabilities start to appear by the end of the simulations on finer grids due to
enlarged oscillations, the comparison is performed at t = 0.05. Here, the rarefaction wave is
located around [−0.5,−0.1] and the shock wave within [0.2, 0.4]. The smallest error for the
rarefaction is achieved by the Roe (mesh size 0.3), HLLC (0.1), and George (0.03) solver, while
for the shock wave it is accomplished by Rusanov, HLLC, and George. On the other hand,
the finest grid leads to larger error values for the exact and Roe solver for all types of waves.
The same holds for HLL and HLLE.
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Figure 5.8.: Relative error of shock (x ∈ [0.5, 0.7]) and rarefaction x ∈ [−0.7,−0.3] wave at
t = 0.1 for dam break problem  5.1 calculated with Equation  4.6 and different degrees of
polynomial basis functions d. The additional dotted lines mark the smallest error over all
Riemann solvers. HLLE and Rusanov can capture the rarefaction and shock waves best on
lower orders, respectively, while George’s solver has the smallest error using d = 3.
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Figure 5.9.: Relative error of shock (x ∈ [0.2, 0.4]) and rarefaction x ∈ [−0.5,−0.1] wave at
t = 0.05 for dam break problem  5.1 calculated with Equation  4.6 and different mesh sizes. The
additional dotted lines mark the smallest error over all Riemann solvers. George’s augmented
solver profits most from a finer mesh, while the Roe and exact solver have a larger error on
all types of waves.
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5.1.2. Two Rarefactions Dam Break

Before adding bathymetry to the simulations, similar experiments as in the previous subsec-
tion are performed using a two rarefactions dam break scenario, as found in LeVeque [ 30 ,
chap. 13]:

q(x, y, 0) =
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Figure 5.10.: Analytical solution of h for Equation  5.2 for fixed y = 0. Two rarefaction waves
propagate after release of the discontinuity. Numerical results are calculated using George’s
Riemann solver along x ∈ [−1, 1] in ExaHyPE 2 with ADER-DG and cubic polynomials.
Gibb’s tye oscillations occur but are less present due to the problem’s wave structure.
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Figure 5.11.: Analytical solution of hu for Equation  5.2 for fixed y = 0. Numerical results using
the f -Wave Riemann solver are computed along x ∈ [−1, 1] in ExaHyPE 2 with ADER-DG and
cubic polynomials. All Riemann solvers exhibit fewer oscillations due to the problem’s wave
structure.
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Figure  5.10 and  5.11 show the analytical together with the numerical solution for h and
hu: Two rarefactions propagate through the domain with symmetric momentum. Due to the
wave structure and the lower water height, fewer oscillations disturb the numerical solutions,
as the simulations using the George and f -Wave Riemann solvers show.

The relative error calculated analogously to the previous section over the entire x domain is
shown in Figure  5.12 for h and in  5.13 for hu: The differences in the results among all Riemann
solvers are hardly recognizable here.
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Figure 5.12.: Relative error of the two rarefactions dam break scenario  5.2 calculated with
Equation  4.6 for unknown h along x ∈ [−1, 1], y = 0 over selected points in time. All solvers
result in similar error values. The y axis in the plots was rescaled to make differences more
visible.
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Figure 5.13.: Relative error of the two rarefactions dam break scenario  5.2 calculated for un-
known hu along x ∈ [−1, 1], y = 0 over selected points in time using Equation  4.6 . The y axis
in the plots was rescaled to make differences more visible.

54



5. Results

However, an analysis of the underlying data reveals that the Rusanov solver achieves the
least error starting from t = 0.05 while HLLC yields the largest one. In contrast to the one-
rarefaction one-shock dam break scenario, George’s solver doesn’t perform best in this case.
f -Wave, on the other hand, gives a smaller error value than before. However, it should be
noted that the difference between the values approximately adds up to 0.0002 and can thus
be regarded as nearly negligible.

For t = 0.1 a comparison with different order is performed in Figure  5.14 both for h and
hu. Due to the tiny variations within the solvers, this figure shows the differences to the
respective smallest error. In contrast to the previous simulations, d = 2 now results in an
error reduction for any solver. The f -Wave solver has the least error for d = 1, 2 for both h
and hu. Regarding d = 3, the Rusanov solver reaches the least error for both unknowns. The
exact solution assuming two rarefaction waves has an overall small error.
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Figure 5.14.: Differences to the respective smallest relative error over the full x-axis at t = 0.1
for dam break problem  5.2 calculated with Equation  4.6 and varying degree of polynomial
basis functions d. The smaller the bar, the better the results. HLLC and f -Wave can reproduce
the analytical result well on lower orders, even though the differences remain tiny.

As an intermediate conclusion, the following can be drawn for both dam break scenar-
ios and the homogeneous shallow water equations: With ADER-DG and order d = 3, HLL
solvers can provide decent results despite their incompleteness. Due to their diffuse proper-
ties, they also mitigate the effects of Gibb’s oscillations near discontinuous regions without
limiters. In particular, they still perform well over lower polynomial degrees (d = 1, 2). Aug-
mented solvers like George’s or exact solvers give satisfying results especially when consid-
ering d = 3. In fact, the two-rarefactions exact solver behaves closely to the true Riemann
solution, which confirms observations in literature [ 45 ], and thus can be seen as a reasonable
complete alternative. Shock waves, however, cannot be adequately represented in the created
numerical scheme with every solver, even though solvers like HLLC or George were designed
to capture them accurately. This results in a decrease in the overall accuracy and should be
considered in further studies. On the other hand, if a simulation such as the two rarefactions
dam break scenario is considered, which is less sensitive to oscillations, only marginal dif-
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ferences between the solvers can be observed. In particular, these are barely perceptible at
higher orders. Similar is observed when coarser or finer grids are investigated, even though
isolated solvers result in smaller errors. Therefore, the role of the Riemann solver in such
settings seems to play a less important role when only accuracy is considered.

5.1.3. Well-Balancedness

An essential property of a numerical scheme for shallow water equations is the capability to
maintain well-balancedness. That means that no or at least non-increasing artificial numeri-
cal waves are involved throughout the simulation, which could blow up the result even if no
change is expected from the analytical solution. Well-balancedness is not only a property of
a Riemann solver but rather a desired feature for the entire scheme created by ExaHyPE 2.
Therefore, the lack of well-balancedness cannot be attributed to the implemented solvers
alone. To investigate which Riemann solvers in the context of ExaHyPE’s generated code
end up in a well-balanced simulation, Scenario  5.3 is considered.

b =
1

4
e−40((x−0.5)2+(y−0.5)2), η = 0.5, hu = hv = 0 (5.3)

Here, the water level η = h+ b is constant over the full domain [0, 1]× [0, 1]. A smooth hump
in the bathymetry b is set in the center of the domain. Apart from that, the ocean is at rest
(hu = hv = 0), and the analytical solution should remain constant over the full runtime. A
sketch of this scenario can be found in Figure  5.15 .

It should be noted that this scenario involves varying topography, but does not have dry
initial states. These properties are further investigated in the following section. Figure  5.16 

shows the maximum deviation of momentum in x-direction for t = 0 to t = 1 s. Instabilities
were observed for the Roe Riemann solver, which might be led back to the lack of preserving
positivity - Thus, it is missing in the comparison and can be considered ill-balanced in the
created scheme. The other solvers yield different values: For example, the f -Wave and HLLC
solvers are the least well-balanced, while the other types of solvers result in similar (small)
deviations. However, none of the solvers is able to keep the numerical solution strictly well-
balanced, as the trend points upward for all of them, even though in a logarithmic way.

One way that can circumvent this issue is reformulating the equations as has been done
using ExaHyPE 1 [ 38 ]. Here, Rannabauer states a modification of Equation  2.68 , which allows
for cancellation of the involved terms after spatial discretization:

qt +


hu
hu2

huv
0


x

+


hv
huv
hv2

0


y

=


0

gh(h+ b)x
gh(h+ b)y

0

 . (5.4)

Implementing scheme  5.4 shows well-balancedness for the George, Rusanov, and HLL Rie-
mann solver.
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Figure 5.15.: Test scenario for well-balancedness using ExaHyPE 2 with ADER-DG and cu-
bic basis polynomials together with reflecting boundary conditions. The numerical solution
should keep the ocean at rest for the entire simulation without the appearance of spurious
waves.
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Figure 5.16.: Maximum deviation of hu over the full domain [0, 1]2 from t = 0 to t = 1 s
for the test scenario for well-balancedness using ExaHyPE 2 with ADER-DG and cubic basis
polynomials. Not every solver is capable of maintaining stability of the scheme, even though
a logarithmic growth seem to happen in most solvers. HLL and Rusanov coincide as well
as the exact and two rarefactions exact solver. Equation  5.4 , on the other hand, results in
balancedness for the George, Rusanov, and HLL Riemann solver.
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5.1.4. Dry States and Discontinuous Bathymetry

Dealing with initial dry states and keeping well-balancedness at the same time is a challeng-
ing task for both an ADER-DG setting and its Riemann solver [ 35 ]. However, it is a crucial
step towards tsunami simulations and real-life applications. Therefore, two test scenarios
were developed throughout this work that help in preparing such settings. Figure  5.17a 

shows the first problem: It is an extension to Equation  5.3 , where the smooth initial hump
now involves dry regions but still has parts where the underwater topography is unequal to
zero.  5.17b adds a discontinuous coastal region to the setup. Appendix  C.1 states the initial
values, which can be used as a reference for future work.
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Figure 5.17.: Test problems for well-balancedness involving dry states and discontinuous
coastal regions. Handling these settings is a demanding task for numerical simulations and
Riemann solvers, especially when using Discontinuous Galerkin methods. A correct numeri-
cal solution is able to maintain the ocean at rest without spurious waves.

The demands on a numerical scheme solving these scenarios are obvious: No numerical
waves are allowed to be added, or at least they should remain constant and not blow up the
results over time. However, without modifications to the problem definition as well as the
Riemann solvers, these waves might occur in the coastal regions, destabilize the result, and
produce wrong solutions. Even worse, the discontinuous beach can immediately break the
simulation. Initially, these problems were observed for all implemented Riemann solvers and
any form of the shallow water equations. To make the simulation work again, several steps
are involved:

• The formulation  3.44 without source term is implemented. Even though the assumption
of a smooth topography is not fulfilled, this equation can be used if the transition from
coast to sea in  5.17b is considered separately.

• Following the code of Breuer and Bader [ 4 ], the Riemann solver applies reflecting bound-
ary conditions if the left or right side is dry (i.e., hl := hr, hul = −hul, hvl = −hvl, bl = br
for dry left side). Initially, this excludes inundation scenarios.
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• The dry regions are defined over a threshold (e.g., h <= 0.01 implies a dry node) and
are aligned to cell interfaces before simulation start. That means that there can not arise
semi-dry regions within a single cell. Or in other words, dry cells degenerate to Finite
Volume cells. This idea is inspired by Reinartz et al. using ExaHyPE 1 [ 39 ]. Though this
approach coarsens the resolution along the coast, a way out could be to refine the grid
where it is necessary. This approach is visualized in Figure  5.18 .

• Wet cells are allowed to dry out at runtime: If one quadrature node of a cell is below
the defined threshold, the complete cell is set to h = 0. This can be seen as a correction
step to regions that were initially almost dry. However, it should be noted that this is a
unphyiscal step, as it violates the conservation of mass.

Figure 5.18: Bathymetry b for test problems  5.17 on a refined grid
along the central coastal region. To enable a stable numerical sim-
ulation, cells are entirely set to dry throughout the simulation, if the
water height falls below a defined threshold. This approach can re-
store the initial resolution of the bathymetry.

The approach runs successfully using the HLL-type Riemann solvers. Further complexity
arises when a hump of water is added around (0.75, 0.75) as Figure  5.19 shows. Here, the
HLLE Riemann solver demonstrates functionality as well. However, due to the changed semi-
discrete form and conserved quantities from Equation  3.44 compared to  2.68 it does not work
without further modification to Riemann solvers, which are based on the eigendecomposition
of the system. The experiments emphasize one advantage of the HLL-based solvers: they can
be quickly adapted to different scenarios, while still providing reasonable results in a setting
using adaptive mesh refinement.

(a) t = 0 (b) t = 0.05 (c) t = 0.15 (d) t = 0.20

Figure 5.19.: Numerical solution of h for Problem  5.17b with an additional hump of water
in the top right corner with reflecting boundary conditions in ExaHyPE 2 using ADER-DG,
cubic polynomials, and the HLLE Riemann solver. The waves hit coastal regions, which are
aligned to the cells of the simulations. The smooth landscape in the center of the domain is
refined to preserve the resolution of the bathymetry.
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5.1.5. Inundation Scenarios

In the previous problems, reflecting boundary conditions and aligning dry regions with cell
boundaries prevented areas from being flooded during the simulation. A major problem with
the latter types of simulations are the underlying assumptions of the shallow water equations:
For example, the assumption of a small vertical length scale compared to the horizontal one is
not necessarily satisfied along the coast, as Ortleb et al. point out [ 35 ]. The same is true for the
presence of a hydrostatic pressure distribution, even though the equations can still capture
many underlying physical effects well enough. Therefore, wetting and drying scenarios are
outlined in this section using the analytical dry state solution for all Riemann solvers from
Section  3.1.5 . However, it should be noted that George’s Riemann solver has been success-
fully tested for wetting and drying scenarios not employing this approach as well [ 17 ] and
there are also modifications to the wave estimates used in the HLLC solver that enables these
processes [ 23 ].

Here, the thin-layer approach that was already sketched in the previous section is updated
to realize these ideas together with Equation  2.68 : A threshold for the water height marks
dry or wet regions. However, instead of now applying reflecting boundary conditions in the
Riemann solver for dry/wet side combinations, the Riemann problem is solved analytically
with the restriction that flux of momentum is not allowed to dry regions. In the implemen-
tation, FL[i] or FR[i] is set to zero, respectively. Furthermore, the preprocessing step is added
to ExaHyPE 2’s kernels that corrects negative water heights to h = 0, which may arise due to
the created numerical scheme.

To test the implementation, Equation  C.3 from the appendix is considered first: A hump
of water is placed close to a smooth sloping beach on the domain Ω = [0, 1]2. Results are
plotted in Figure  5.20 for η = h+ b: The coast is flooded over time and dried out again in the
simulation. It should be noted that this experiment is not checked for correctness, but rather
for stable and reasonable results. Furthermore, is has to be added that several changes are
applied that break the properties of a conservation law, which have to be kept in mind: For
example, the conservation of momentum is clearly violated, as the flux is constrained.
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Figure 5.20.: Numerical results of problem  C.3 using ExaHyPE 2 with ADER-DG, cubic ba-
sis polynomials, and the exact Riemann solver based on a thin-layer approach. A wave is
flooding a smooth coastal region. ExaHyPE 2’s structure is flexible enough to create a stable
simulation for wetting and drying scenarios.
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A scenario that allows for verification of the approach as well as evaluation of the Rie-
mann solver involving wetting and drying is the so-called oscillating lake scenario taken from
Reinartz et al. [ 39 ] and Rannabauer [ 38 ] based on previous work [ 41 ][ 1 ]. Here, a droplet of
water is released in a dry basin in Ω = [−2, 2]2 and is expected to travel circularly in it. The
initial conditions together with the analytical solution are given in Equation  5.5 .

q(x, y, t) =


h
hu
hv
b

 =


max(0, 0.1(x cos(ωt) + y sin(ωt) + 3

4)− b)
1
2ω sin(ωt)h
1
2ω cos(ωt)h
1
10(x

2 + y2)

 , (5.5)

where ω =
√
0.2g and g = 9.81.The simulation using the HLLE Riemann solver is plotted in

Figure  5.21 : The initial lake oscillates through the basin and tends towards a steady state in
the center. The simulation parameters are ADER-DG using cubic polynomials, a mesh size
of 0.3, and a threshold of 0.0005 for dry regions. Not visible is the small layer of water that
naturally remains due to the numerical scheme when traversing.
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Figure 5.21.: Oscillating lake scenario  5.5 simulated in ExaHyPE 2 using ADER-DG, cubic
polynomials, and the HLLE Riemann solvers at different points in time. The constant drying
and wetting is a challenging problem for numerical schemes and involves several difficulties:
Here, a thin-layer approach is employed with h = 0.0005 as a threshold to ensure the stability
of the scheme.

Out of all tested solvers, only HLL, Rusanov, and HLLE converged at t = 3. Roe and
George operated until 0.2 and 0.12 before diverging, respectively. All other solvers diverged
almost immediately after the start (t = 0.02), revealing that they are not stable in the created
scheme. The analytical solution over x = y is plotted in Figure  5.22 together with the numeri-
cal solution using the Rusanov solver: Differences are barely visible in the plot due to the high
accuracy. However, oscillations around the wet/dry font arise and strengthen throughout the
simulation (compare, for example, x = 1 in t = 1 and x = 0.5 in t = 3). A zoomed variant can
be found in Appendix  C.2 , supporting this statement.
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Figure 5.22.: Analytical and numerical solution along x = y for Problem  5.5 for selected points
time. The simulation with ExaHyPE 2 employs ADER-DG, cubic polynomials, a fixed mesh
of size 0.3, and the Rusanov Riemann solver. Differences between both solutions are barely
notable, but oscillations start to spread around t = 3.

HLLE and HLL have similar accuracy, which is relatable to the similarity of the three
solvers. This claim is emphasized using Figure  5.23 , showing the relative error for x = y
over the full domain. The values are computed point wise with a non-equidistant grid, simi-
lar to the previous sections. Nevertheless, HLLE performs slightly better than all other solvers
at all points in time, but t = 1.5. Rusanov and HLL alternate regarding the error: HLL results
in the higher values for t ∈ {0.5, 1, 3}.

The following conclusions may be drawn from the results: HLL-type solvers are capable
of realizing flooding scenarios in ExaHyPE 2 without complex modifications to the created
numerical scheme with reasonable accuracy. Other solvers, such as exact, linearized, or aug-
mented ones, require additional adjustments. For example, in ExaHyPE 1, Finite Volume lim-
iting together with adaptive mesh refinement was used in cells with low water height [ 39 ] [ 38 ].
However, by the time of this thesis, these features are not yet available and should be ad-
dressed in future studies once the features are available.
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Figure 5.23.: Relative error for Problem  5.5 calculated over x = y in Ω = [−2, 2]2 for selected
points time using ExaHyPE 2 with ADER-DG, cubic polynomials, a fixed mesh of size 0.3,
and various Riemann solvers.
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Together with the previous section, ExaHyPE 2 and the HLL Riemann solvers are theoret-
ically suited to perform tsunami simulations. A starting point for this can be found in Fig-
ure  5.24 : Here, the hump of water is released into the domain of the Tohoku earthquake from
2011. The HLLE solver with reflecting boundary conditions from Section  5.1.4 was taken as
implementation. The results show, on the one hand, that a well-balanced scheme with com-
plex topography is obtained and, on the other hand, that a solution to the Riemann problem
with initial dry states is possible. A following task could be to implement and verify the ac-
tual tsunami waves. However, since this exceeds the scope of this paper, it is considered as a
desirable addition for future work.
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Figure 5.24.: Numerical results of an artificial tsunami simulation based on the 2011 Tohoku
earthquake in the east of Japan using the results from Section  5.1.4 and  5.1.5 . ADER-DG with
cubic polynomials and the HLLE solver was used. The results show that the Riemann solvers
together with the modifications on the numerical scheme can produce well-balanced stable
simulation on larger domains with complex bathymetry.
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5.2. Elastic Wave Equations

This section briefly discusses the three-dimensional linear elastic wave equations using two
constant-coefficient test problems. In three dimensions, a call of riemannSolver(...) in ExaHyPE
2 needs to solve all Riemann problems between a left and a right face (and not a left and a
right edge as it was required when considering the shallow water equations). In addition,
there are three dimensional-split formulations that have to be taken into account in the im-
plementation. Equation  5.6 shows the first setting in a cubical domain Ω = [0, 1]3, resembling
a two-sided dam break problem. The Lamé parameters are set constant.

σxx = σyy = σzz = σxy = σxz = σyz = v = w = 0,

u =

{
0.1 , if |x− 0.5| < 0.15

0 otherwise
,

ρ = 2.7, cs = 3.464, cp = 6.0. (5.6)

The problem is examined using the Rusanov, HLL, and an exact Riemann solver following
Section  2.2.1 using the eigendecomposition presented in  2.5.2 for each dimensional-split for-
mulation. Similar to the previous section, the comparison is drawn along the x - axis. Here,
Figure  5.25 shows the results for σxx at different points in time using ADER-DG and cubic
polynomials using the exact Riemann solver and for u in Figure  5.26 with HLL. The analytical
result is plotted for comparison as well. Gibb’s type oscillations occur, similar to what was
observed in Section  5.1.1 .
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Figure 5.25.: Analytical and approximated solution of σxx for Equation  5.6 . The numerical
simulation uses the exact Riemann solver. Results are shown for fixed y = 0 along x ∈ [−1, 1]
calculated with ExaHyPE 2 employing ADER-DG and cubic polynomials.

However, a point-wise error analysis at t = 0.1 over the full axis similar to the previous
sections reveals vanishing differences of 10−6 among all three solvers with respect to the an-
alytical solution. Thus, this type of problem does not permit further insights regarding the
evaluation of the solvers but indicates correctness in more than two dimensions and the uni-
versal applicability of Rusanov and HLL. A more sophisticated version of  5.6 , which creates
changes in all three directions, is obtained by setting the initial values to the Form  5.7 .
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5. Results

u(x, y, z, 0)
v(x, y, z, 0)
w(x, y, z, 0)

 =

0.1
0.1
0.1

 , if ||

x− 0.5
y − 0.5
z − 0.5

 ||2 < 0.15. (5.7)

Numerical solutions for σxz are shown in a clipped three-dimensional domain in Figure  5.27 

using the Rusanov, exact, and HLL Riemann solver. Even though a comparison using the
analytical solution was not performed, the similarity of all solutions for all points in time
indicates that the implemented solvers produce correct results. This confirms that the im-
plementation strategy outlined in Section  4.2 works correctly in three dimensions as well.
However, a significantly increased runtime compared to the shallow water equations was ob-
served during execution of the simulation, confirming the assumption made in Section  4.2 

regarding the scaling of the performance. Some general notes about the complexity of the
solvers are outlined in the next section.
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Figure 5.26.: Analytical and approximated solution of u for Equation  5.6 . The numerical sim-
ulation uses the HLL Riemann solver. Results are shown for fixed y = 0 along x ∈ [−1, 1]
calculated with ExaHyPE 2 employing ADER-DG and cubic polynomials.

-1.8e-01

1.0e-01

-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06

s
ig

m
a
 X

Z

(a) t = 0 (Rusanov)

-1.8e-01

1.0e-01

-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06

s
ig

m
a
 X

Z

(b) t = 0.075 (HLL)

-1.8e-01

1.0e-01

-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06

s
ig

m
a
 X

Z

(c) t = 0.15 (Exact)

Figure 5.27.: Numerical solution of σxz for Problem  5.7 in ExaHyPE 2 using ADER-DG, cubic
polynomials, and different Riemann solvers. The visual similarity of all simulations indicates
a correct implementation for those solvers in three dimensions.
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5.3. Notes on Performance

The comparisons among all Riemann solvers so far concerned their accuracy or qualitative
properties, such as the ability to maintain well-balancedness or stability in complex scenar-
ios. Also, it has been shown that a transition to three dimensions is feasible and yields valid
results. Here, the differences in many solvers were frequently small due to the high conver-
gence order of the ADER-DG method. Therefore, it might be incorrectly concluded that exact
or complete solvers are generally preferable to the others since they resolve the wave struc-
ture better in cases of doubt. However, one aspect that has not been considered so far is the
performance concerning memory and runtime of the solvers. As indicated in the introduction
of this thesis, a Riemann solver is called extensively in an ADER-DG or Finite Volume setting.
Thus, this property should be briefly discussed in the present section as well. A fair compar-
ison in ExaHyPE 2 is therefore hardly possible, as the overall runtime of the generated code
is determined by numerous degrees of freedom: Multithreading using CPUs and/or GPUs,
linear vs. non-linear kernels, adaptive time stepping, and load balancing are only a subset of
all possible parameters that have to be taken into account in performance analysis. Thus, the
following discussion considering a one-dimensional Riemann problem with m equations is a
descriptive complexity analysis, starting with complete solvers:

• In general, it can be noted that complete solvers tend to a linear complexity O(m ·c(m)),
as they scale with the size of the underlying conservation law. For each wave, an addi-
tional function c(m) summarizes the effort for each of these waves. This function should
be independent of m, i.e., c(m) = const.

• For a constant-coefficient equation, a matrix-vector product as shown in Equation  2.13 

needs to be calculated, when the Riemann problem should be solved exactly. The same
holds for linearized solvers such as the Roe Riemann solver, or the f -Wave approach.
Depending on the sparsity of the eigendecomposition, this can usually be implemented
efficiently. However, in general, the product is of quadratic complexity, i.e., O(m2),
which scales poorly with bigger systems when considering memory and runtime.

• A non-linear exact solver, such as derived for the shallow water equations, might in-
volve applying a nonlinear root finder to a scalar or even vector-valued function g.
Here, Newton’s method is typically used, which is locally quadratically convergent for
single roots, but still requires multiple evaluations of g and g′, which can include large
systems.

• Incomplete solvers share the encouraging property of only considering a fixed subset
of waves. This implies that their complexity is independent of the wave structure, i.e.
O(c). Two-Wave HLL solvers of the Form  3.23 and  3.26 , such as HLL, HLLE, and Ru-
sanov, enable the estimate c ≈ 1. The latter equation is even to be preferred for use in
ExaHyPE 2, as FL and FR are pre-computed before the Riemann solver is called. Together
with parallelization, a very efficient scheme can be obtained. On the contrary, an open
question is how the wave speeds s1, s2 are calculated. While Rusanov only needs one
estimate based on the system’s maximum eigenvalues, HLLE, for example, requires the
Roe averages in addition, which might add further complexity by expensive function
calls like taking the square root.
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5. Results

• Augmented solvers might include more thanmwaves for eigendecomposition. George’s
Riemann solver, for example, considers m + 1 waves for the shallow water equations,
other approaches for theoretical analyses are even based on 2m waves [ 33 ]. This can
slow down the required eigendecomposition in addition.

In summary, it can be speculated that the performance of the implemented solvers roughly
behaves as follows in a sequential application (left: fastest, right: slowest):

Rusanov ≤ HLL ≤ Two-Rfw ≤ HLLE ≤ HLLC ≤ f − Wave ≤ Roe ≤ George ≤ Exact (5.8)

The f -Wave solver was therefore preferred over the Roe solver as FL and FR are available
on function call. Here, several aspects have been left out, including, for example, memory
efficiency. A discussion of the ability to parallelize the code for GPUs and CPUs was only
briefly touched, which can in practice favor worse complexities over better ones. Here, for
example, the exact solver initially appears unfavorable due to the iterative root finder. At
the same time, it should be noted that the experiments in the previous sections indicate that
incomplete solvers can yield strong results in the experiments. These considerations are taken
into account in the next chapter for the final conclusion.
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ExaHyPE 2 (An Exascale Hyperbolic PDE Engine) is an open-source software for generat-
ing code, which solves hyperbolic partial differential equations (PDEs) using Finite Volumes
and Discontinuous Galerkin methods while hiding numerical and implementational details.
These equations enable, for example, the simulation of geophysical phenomena such as earth-
quakes and tsunamis, which helps in understanding and mitigating the consequences of these
catastrophes. An essential part of both numerical techniques is the Riemann solver, a compo-
nent that solves a PDE with a step function as initial value, the so-called Riemann problem.
It is called at least once per cell in every spatial direction and, thus, influences both the per-
formance and accuracy of the results. However, their impact in the context of ExaHyPE 2 has
not yet been investigated.

This thesis implemented HLL-type Riemann solvers together with exact, augmented, and
linearized ones on the example of the shallow water equations with and without bathymetry
in ExaHyPE 2 and verified the correctness of the code using the linearized form of the equa-
tions. Their accuracy was discussed using a one-rarefaction, one-shock dam break scenario,
showing that differences in the solvers are present but are less significant, especially when
considering higher-order schemes. In smooth solutions such as the two-rarefaction dambreak
scenario, where less Gibb’s type oscillations occur without limiters, the variation in the error
values between the solvers was tiny. Thus, computationally expensive solvers such as the
exact Riemann solver do not necessarily provide better results.

Well-balancedness was investigated using different formulations of the shallow water equa-
tions with a lake at rest problem: Here, no solver could initially keep the momenta constant.
However, reformulating the created scheme could preserve it for some of the solvers, show-
ing that the choice of Riemann solver influences this essential property. Another test for well-
balancedness was performed using a problem with initial dry states, both smooth and dis-
continuous. Several steps were involved to keep the created scheme balanced. The most
impactful step was to align the wet/dry font to cells and set reflecting boundary conditions,
degenerating coastal regions to finite volume grids, which could be mitigated by adaptive
mesh refinement. The HLL-type solver could have been successfully employed in this set-
ting.

Inundation scenarios were initially tested using the exact Riemann solver, showing that
the dry-state Riemann problem is correctly implemented. Verification was performed using
the oscillating lake scenario: Here, only the two-wave solvers showed stable results for the
full simulated time while producing results with high accuracy, although the followed thin-
layer approach violated assumptions on conservation. Due to the similarity of the schemes,
they did not differ highly within the solvers, even though HLLE tended towards a slightly
decreased error. All these ideas were finally moved together in a tsunami-like simulation,
where stability and well-balancedness were shown in a setting with complex bathymetry and
dry regions. Lastly, three of the solvers were adapted to the linear elastic wave equations,
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6. Conclusion

showing that the implementation strategy works in three dimensions as well.
As limiters were not available for the main part of this work, their impact on the results

could not be evaluated. Therefore, oscillations disturbed the investigations in this work with
discontinuous solutions. For the same reason, dynamic adaptive mesh refinement could not
be employed and verified. This may constitute the object of future studies. In addition, the
author suggests examining strategically the HLL-type solvers, as they fit best into a generic
code generation tool such as ExaHyPE. Furthermore, performance portability and potential
performance optimizations should be carried out in the future and tested using tsunami sim-
ulations with real-life data.
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A. Part I

Here are the other eigenvectors for the three-dimensional elastic wave equations defined
in  2.77 . For matrix B they read:

R(y) =



λ 0 0 1 0 0 0 0 λ
λ+ 2µ 0 0 0 0 0 0 0 λ+ 2µ
λ 0 0 0 1 0 0 0 λ
0 µ 0 0 0 0 µ 0 0
0 0 µ 0 0 0 0 µ 0
0 0 0 0 0 1 0 0 0
0 cs 0 0 0 0 −cs 0 0
cp 0 0 0 0 0 0 0 −cp
0 0 cs 0 0 0 0 −cs 0


, (A.1)

R−1
(y) =



0 1
2(λ+2µ) 0 0 0 0 0 1

2cp
0

0 0 0 1
2µ 0 0 1

2cs
0 0

0 0 0 0 1
2µ 0 0 0 1

2cs

1 − λ
λ+2µ 0 0 0 0 0 0 0

0 − λ
λ+2µ 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 1

2µ 0 0 − 1
2cs

0 0

0 0 0 0 1
2µ 0 0 0 − 1

2cs

0 1
2(λ+2µ) 0 0 0 0 0 − 1

2cp
0


. (A.2)

And for matrix C:

R(z) =



λ 0 0 1 0 0 0 0 λ
λ 0 0 0 1 0 0 0 λ

λ+ 2µ 0 0 0 0 0 0 0 λ+ 2µ
0 0 0 0 0 1 0 0 0
0 0 µ 0 0 0 0 µ 0
0 µ 0 0 0 0 µ 0 0
0 cs 0 0 0 0 −cs 0 0
0 0 cs 0 0 0 0 −cs 0
cp 0 0 0 0 0 0 0 −cp


, (A.3)
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A. Part I

R−1
(z) =



0 0 1
2(λ+2µ) 0 0 0 0 0 1

2cp

0 0 0 0 0 1
2µ

1
2cs

0 0

0 0 0 0 1
2µ 0 0 1

2cs
0

1 0 − λ
λ+2µ 0 0 0 0 0 0

0 1 − λ
λ+2µ 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 1

2µ − 1
2cs

0 0

0 0 0 0 1
2µ 0 0 − 1

2cs
0

0 0 1
2(λ+2µ) 0 0 0 0 0 − 1

2cp


. (A.4)

For future work, the two-dimensional form is given as well. The equation reads

qt +A(q)qx +B(q)qy = 0, (A.5)

with

A =


0 0 0 −(λ+ 2µ) 0
0 0 0 −λ 0
0 0 0 0 −µ
−1

ρ 0 0 0 0

0 0 −1
ρ 0 0

 , B =


0 0 0 0 −λ
0 0 0 0 −(λ+ 2µ)
0 0 0 −µ 0
0 0 −1

ρ 0 0

0 −1
ρ 0 0 0

 . (A.6)

.
The eigenvalues are given as

λ ∈ {−cp,−cs, 0, cs, cp} (A.7)

and the eigenvectors

R(x) =


λ+ 2µ 0 0 0 λ+ 2µ
λ 0 1 0 λ
0 µ 0 µ 0
cp 0 0 0 −cp
0 cs 0 −cs 0

 , R−1
(x) =


1

2(λ+2µ) 0 0 1
2cp

0

0 0 1
2µ 0 1

2cs

− λ
λ+2µ 1 0 0 0

0 0 1
2µ 0 − 1

2cs
1

2(λ+2µ) 0 0 − 1
2cp

0

 , (A.8)

R(y) =


λ 0 1 0 λ

λ+ 2µ 0 0 0 λ+ 2µ
0 µ 0 µ 0
0 cs 0 −cs 0
cp 0 0 0 −cp

 , R−1
(y) =


0 1

2(λ+2µ) 0 0 1
2cp

0 0 1
2µ

1
2cs

0

1 − λ
λ+2µ 0 0 0

0 0 1
2µ − 1

cs
0

0 1
2(λ+2µ) 0 0 − 1

2cp
.

 . (A.9)
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B. Part II

Example file for ExaHyPE 2 used in Section  4.2 . Note that this file is valid at the time of
writing this work and may be the object of future changes.

1

2 import peano4
3 import exahype2
4

5 p r o j e c t = exahype2 . P r o j e c t ( [ ”examples” , ”exahype2” , ” t u t o r i a l ” ] , ” out ” , ” . ” ,
executab le=”OUT” )

6

7 t h e s o l v e r = exahype2 . s o l v e r s . aderdg . rusanov . GlobalAdaptiveTimeStep (
8 ” out ” ,
9 order =3 ,

10 unknowns=4 , a u x i l i a r y v a r i a b l e s =0 ,
11 m i n c e l l h = 0 . 1 , max ce l l h = 0 . 1 ,
12 t i m e s t e p r e l a x a t i o n = 0 . 9
13 )
14

15 t h e s o l v e r . set implementat ion ( r e f i n e m e n t c r i t e r i o n =exahype2 . s o l v e r s . fv . PDETerms .
User Defined Implementation )

16 p r o j e c t . add solver ( t h e s o l v e r )
17

18 p r o j e c t . s e t g l o b a l s i m u l a t i o n p a r a m e t e r s (
19 dimensions = 2 ,
20 o f f s e t = [ 0 , 0 ] ,
21 s i z e = [ 1 , 1 ] ,
22 min end time = 1 . 0 ,
23 max end time = 1 . 0 ,
24 f i r s t p l o t t i m e s t a m p = 0 . 0 ,
25 t ime in be tween plo t s = 0 . 0 0 5 ,
26 periodic BC = [ False , False , Fa l se ]
27 )
28

29 build mode = peano4 . output . CompileMode . Release
30 p r o j e c t . s e t l o a d b a l a n c i n g ( ” toolbox : : loadbalancing : : R e c u r s i v e B i p a r t i t i o n ” , ”new

: : exahype2 : : LoadBalancingConfiguration ( ) ” )
31 p r o j e c t . s e t P e a n o 4 i n s t a l l a t i o n ( ” . . / . . / ” , build mode )
32 peano4 pro jec t = p r o j e c t . g e n e r a t e P e a n o 4 p r o j e c t ( Fa l se )
33

34 peano4 pro jec t . bui ld ( m a k e c l e a n f i r s t =True , n u m b e r o f p a r a l l e l b u i l d s =4)

Figure B.1.: Example problem for ExaHyPE 2.
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B. Part II

Derivation of an alternative form of the shallow water equations including bathymetry in
homogeneous form.

∂t(hu) = +∂x(hu
2 +

1

2
gh2) = −gh∂x(b)

chain rule⇒ ∂t(h)u+ h∂t(u) + ∂x(hu
2) + ∂x(

1

2
gh2) = −gh∂x(b)

Insert original eq
⇒ − ∂x(hu)u+ h∂t(u) + ∂x(hu

2) + ∂x(
1

2
gh2) = −gh∂x(b)

chain rule⇒ h∂t(u)− ∂x(h)u
2 − hu∂x(u) + ∂x(h)u

2 + 2hu∂x(u) + g∂x(h)h = −gh∂x(b)
cancel terms⇒ h∂t(u) + hu∂x(u) + g∂x(h)h = −gh∂x(b)

divide by h, rearrange
⇒ ∂t(u) + u∂x(u) + g∂x(h) + g∂x(b) = 0

rewrite⇒ ∂t(u) + ∂x(
1

2
u2) + g∂x(h) + g∂x(b) = 0

linearity of derivative
⇒ ∂t(u) + ∂x(

1

2
u2 + g(h+ b)) = 0 (B.1)
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Figure B.2.: Analytical solution to the dam break Riemann problem for the one-dimensional
shallow water equations with dry initial states.
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Figure C.1.: Error of hu for the one-rarefaction one-shock scenario  5.1.2 without t = 0.025 to
make the differences more visible.

Test scenario for well-balancedness with dry states:

b(x, y) = 0.75e−250((x−0.5)2+(y−0.5)2) + 0.25e−20((x−0.75)2+(y−0.75)2)

q(x, y, 0) =




0

0

0

0.5

 , if x ≤ 0.1 ∨ y ≥ 0.9


max(0.5− b, 0)

0

0

b(x, y)

 , otherwise

(C.1)

The hump of water added in the subsequent problem is described by:

w = 0.25e−1000((x−0.75)2+(y−0.75)2). (C.2)

h is then expressed by max(0.5 + w − b, 0).

75



C. Part III

Test scenario for inundation:

b̃(x, y) : = − 0.6

1 + e−20(x−0.3)
+ 0.6,

w̃(x, y) : =
1

4
e−50((x−0.7)2+(y−0.5)2) + 0.5,

q(x, y, 0) =


min(w̃(x, y)− b̃(x, y), 0)

0
0

b̃(x, y)

 . (C.3)

Results for the Oscillating Lake scenario at t = 3 along [0.3, 2]:
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Figure C.2.: Zoomed result for unknown h in oscillating lake scenario at time t = 3 along
[0.3, 2].
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