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Abstract

Many simulation problems can be described using hyperbolic partial differential equa-
tions. Solving these with performance in mind while not sacrificing too much in terms
of accuracy can be achieved using refined numerical solvers, such as ADER-DG.
ExaHyPE 2 can generate sophisticated C++ code that uses ADER-DG to solve such
numerical problems. It often requires many matrix multiplications, so providing an
optimized implementation for them can be very beneficial to performance. This is
currently done using an older version of the libxsmm code generator driver, which is
deprecated, so we explore the use of another implementation: BLIS. During testing,
we find that BLIS is not as performant for the smaller matrix multiplications used
throughout most problems. On the grounds of this, we also take into consideration
Eigen and a newer version of libxsmm that generates code during runtime to determine
whether they can achieve performance that is comparable to or better than the existing
option.
We explore the performance of all four implementations in exhaustive isolated perfor-
mance tests with various matrix sizes and environments. During these tests we observe
that Eigen and the newer libxsmm version can outperform the existing implementation
in certain realistically occurring situations, mainly when the existing implementation
does not provide optimizations for the specific microarchitecture. As a result of that
and the fact that BLIS may become more performant for smaller matrix multiplications
in the future, we incorporate all three of the newly explored implementations in the Ex-
aHyPE 2 generator as an addition to the one that is already included. Consequentially,
users of ExaHyPE 2 can easily have such optimizations included in their generated
ADER-DG programs by invoking an option.
In performance tests on the entire program, we find that Eigen may sometimes out-
perform the previously used libxsmm code generator driver, even in cases where it is
optimized for the underlying microarchitecture.
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1. Introduction

1.1. Motivation

There are many use cases for physics-based simulations. For example, when wanting to
warn of incoming tsunamis, it is important to know where and how they develop and
when they will hit the shore. For that, a model that may for instance be based on the
shallow water equations can be designed. The shallow water equations are an example
of hyperbolic partial differential equations that we may want to solve numerically [46].
In order to use the model to simulate the tsunamis on a computer, we need to discretize
the problem (for example in space by dividing the domain into cells and in time by
turning continuous time into discrete time steps) and then solve the equations. We
do that with a numerical solver, using ADER-DG (Arbitrary high-order DERivatives-
Discontinuous Galerkin [22]), which applies "high order polynomials [...] to span the
solution in space and time"[8].
ADER-DG performs a multi-part process for each time step:
First, there is the predictor step: When performing that for one particular cell, we act as
if there were no other cells and just compute (by use of the polynomial), what would
change within the cell during that time step. This corresponds to a volume integration
over time [2][8].
Then, the so-called corrector step is performed, computing the solutions for the discon-
tinuities present at the cell interfaces (i.e. where two cells meet) by use of a Riemann
solver [8].
As a final part of this process, the results of both the predictor and the corrector step
are then combined to yield the solution for the calculated time step [8].
Since this process is very compute-intensive, it is important to optimize for performance
as much as possible, without making the results less accurate. This is why we want to
implement the numerical solver in C++, using state-of-the-art frameworks/libraries [8].
Taking this one step further, we do not only want to be able to solve the shallow water
equations but many different problems that can be described using hyperbolic partial
differential equations. To do all that while staying performant, the project we are work-
ing on (ExaHyPE 2, part of the Peano repository, see [52]) offers C++ code generation.
ExaHyPE 2 allows the user to simply "describe" the problem using a Python script and
some C++ code. They can then choose from different solvers and optimizations for the
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1. Introduction

generated code. Since this generated code often relies on matrix multiplications, this is
one area where optimizations are well fit. For these matrix multiplications, there are
currently two options to choose from: One of them is a naïve implementation, without
the use of any frameworks/libraries, whilst the other one utilizes Intel’s libxsmm, more
specifically the libxsmm code generator driver, which creates platform-specific C code
that performs matrix multiplications. The problem we are facing with that is that this
part of libxsmm is deprecated [46][53][35][39].
To avoid future problems, we want to explore the use of another external framework
in the ExaHyPE 2 ADER-DG-solver: BLIS ("BLAS-like Library Instantiation Software"
[3]). It is a framework for dense linear algebra operations, which are BLAS-like. More
on the specific BLAS operations we use is explained in section 1.2. BLIS offers matrix
multiplication kernels for a range of different microarchitectures [6][7][3].
We want to use BLIS since it promises to provide high performance. In the following,
we are going to explore the performance challenges we had with that framework and
two examples, as well as the reason for them and some alternative implementations
that could be used instead [3].

1.2. The Notation for the Matrix Multiplications

In the following two sections, we want to establish the terminology/conventions used
throughout the thesis. The goal is to perform BLAS-like general matrix multiplications
of the form 1.1 [5].

C := β · C + α · A · B (1.1)

BLAS ("Basic Linear Algebra Subprograms" [51]) provide an interface for linear algebra
operations, that are structured into three "levels". Vector-vector operations are included
via level-1, level-2 provides matrix-vector operations and level-3 consists of matrix-
matrix operations. Since we are working with dense matrix multiplications, we will be
using level-3 operations [51].
In Equation 1.1, A is a matrix of size m × k, B of k × n and C is of size m × n. A little
visualization for easy reference follows [5]:

A :=

 a1,1 . . . a1,k
...

. . .
...

am,1 . . . am,k


︸ ︷︷ ︸

k columns

m rows (1.2)

2



1. Introduction

B :=

b1,1 . . . b1,n
...

. . .
...

bk,1 . . . bk,n


︸ ︷︷ ︸

n columns

 k rows (1.3)

C :=

 c1,1 . . . c1,n
...

. . .
...

cm,1 . . . cm,n


︸ ︷︷ ︸

n columns

m rows (1.4)

1.3. The Matrix Storage

Matrixes need to be stored in memory. Since we are dealing with general (not sparse)
matrix multiplications, they are best stored consecutively in memory as one single
vector. There are different ways to store matrixes in random access memory, we use a
column-major format. A "matrix is stored in column-major order if it is stored column
by column, starting with the entire first column, followed by the entire second column"
[16]. One metric we have to keep in mind in this regard is the leading dimension. "The
leading dimension for a two-dimensional array is an increment that is used to find
the starting point for the matrix elements in each successive column of the array." [30]
In our case, that is the number of rows in a matrix plus some padding we may want
to put between the end of a column and the beginning of the next one, for example
for alignment purposes. Figure 1.1 shows that graphically. In BLIS, this concept is
called column-stride which we will discuss more later. The same concept, but with
rows (row-major matrix storage) is also offered by BLIS, however, we will not be using
that [7].

1.4. The Parameters for the BLIS General Matrix Multiplication
Call

Here, we want to introduce the parameters required for the BLIS matrix multiplication
function calls (see Figure 1.2). The first two parameters (transa and transb) determine
whether A or B should be transposed and/or conjugated. m, n, and k are the matrix
sizes that were discussed in section 1.2, just like alpha and beta, which correspond
to the scalars α and β from Equation 1.1. The currently used libxsmm code generator
driver only supports α = 1 and β ∈ {0, 1} so that is all we need to support. The
pointers to A, B, and C’s buffers are a, b, and c. As mentioned, BLIS refers to the

3



1. Introduction

leading dimension as column-stride, as it also offers operations on row-major matrixes.
That is why we have the row-stride parameters (rsa, rsb, and rsc, which we set to 1
for use with column-major matrix storage) in addition to the column-stride ones (csa,
csb, and csc) [5][39].

A[0]
c1,1

A[1]
c2,1

A[2]
c3,1

A[3]
c4,1

A[4]
—

A[5]
—

A[6]
—

A[7]
—

A[8]
c1,2

A[9]
c2,2

A[10]
c3,2

A[11]
c4,2

A[12]
—

A[13]
—

A[14]
—

A[15]
—

A[16]
c1,3

A[17]
c2,3

A[18]
c3,3

A[19]
c4,3

A[20]
—

A[21]
—

A[22]
—

A[23]
—

A[24]
c1,4

A[25]
c2,4

A[26]
c3,4

A[27]
c4,4

A[28]
—

A[29]
—

A[30]
—

A[31]
—

m = 4

ld = 8

n = 4

Figure 1.1.: Example of a column-major 4 × 4 matrix C stored in the 32-byte array A; In
this case m = n = 4 holds and the leading dimension (ld) is 8, so not all
entries of A are used for C’s elements
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1. Introduction

1 void bli_dgemm
2 (
3 trans_t transa,
4 trans_t transb,
5 dim_t m,
6 dim_t n,
7 dim_t k,
8 double* alpha,
9 double* a, inc_t rsa, inc_t csa,

10 double* b, inc_t rsb, inc_t csb,
11 double* beta,
12 double* c, inc_t rsc, inc_t csc
13 );

Figure 1.2.: A BLIS double precision general matrix multiplication function interface,
showing the required arguments (adapted from [5])

5



2. Testing the Application of BLIS With
Two Examples

2.1. Replacing the Matrix Multiplications in the Shallow Water
Equations Example

We want to optimize the shallow water equations example using BLIS. The idea is to
have ExaHyPE 2 generate C++ code for this example with the libxsmm optimizations
enabled. We then look at the interfaces/matrix multiplication calls for the generated
functions and swap in calls to BLIS versions of corresponding matrix multiplications.
Then we can compare the implementations regarding performance and equivalence of
results, to see if optimizing with BLIS is a viable choice here [39][35][3].
To conduct the experiment, we generate code for the shallow water equations example
with bathymetry provided at applications/exahype2/aderdg/SWE/w_bathimetry/ in
the Peano repository. After configuring Peano with --enable-exahype --enable-
blockstructured --enable-loadbalancing --with-libxsmm, we add use_libxsmm=
True to the kernel optimizations in SWE.py to enable the use of libxsmm in the generated
code. The generated code can be found in generated/kernels/aderdg/nonlinear
(starting from the SWE base directory). From there, we can identify the libxsmm
matrix multiplications used in fusedSpaceTimePredictorVolumeIntegral.cpp. The
libxsmm-generated code itself is located inside asm_fstpvi.c.
When looking at a particular matrix multiplication, we can tell which arguments the
libxsmm-generated code utilizes for the matrix multiplications.
One example: The statement

1 gemm_4_4_4_rhs_y(lFi+((t*1+z)*16+x)*4+256, coeffRhsY, rhs+((t*1+z)*16+
x)*4);

calls the function shown in Figure 2.1.
Since the libxsmm code generator driver gets the arguments at generation time, we
cannot see them in the call directly, they have already been included in the source code.
Therefore, we look at the generated code to determine the parameters used for the
matrix multiplications to use them for the BLIS calls [39].
We can tell that m = n = k = 4 since the counting indices for them (l_n, l_m, l_k)

6



2. Testing the Application of BLIS With Two Examples

1 void generated::kernels::AderDG::nonlinear::gemm_4_4_4_rhs_y(const
double* A, const double* B, double* C) {

2 [...]
3 for ( l_n = 0; l_n < 4; l_n++ ) {
4 for ( l_k = 0; l_k < 4; l_k++ ) {
5 #pragma simd
6 for ( l_m = 0; l_m < 4; l_m++ ) {
7 C[(l_n*16)+l_m] += A[(l_k*16)+l_m] * B[(l_n*4)+l_k];
8 }
9 }

10 }
11 [...]
12 }

Figure 2.1.: A matrix multiplication located in asm_fstpvi.c, generated by the libxsmm
generator driver [39] (shortened); Since we are working with an AMD
Zen 2 CPU and libxsmm does not have specific optimizations for that
microarchitecture in the generator driver, the target architecture is noarch
(no architecture), resulting in no platform-specific optimizations being
present in the raw code, the compiler may later apply such optimizations
[1][39]

are kept within the range (0, 3). For m that is the case, as the number of variables for
this SWE model is four. The number is made up of height, velocity in the x and y
directions, and bathymetry. As a result of the number of degrees of freedom being four,
which is the order (three in this case) plus one, n and k are also four. The matrixes
are accessed in column-major order, with a column-stride of 16 for A and C (csa and
csc) and 4 for B (csb). E.g. for C, this can be seen, as the column index (l_n) is
multiplied by 16, indicating that the next column begins 16*sizeof(double) after the
previous one. Since the entries in C are not set to/multiplied by anything beforehand
and there is no scaling of entries before adding them, we can tell that alpha=beta=1.
Lastly, no transpositions or conjugations are done here, so transa and transb will be
BLIS_NO_TRANSPOSE [52][5][3].
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2. Testing the Application of BLIS With Two Examples

2.2. BLIS: Typed vs. Object API

2.2.1. The Typed and Object APIs

After getting the required function arguments for the BLIS call, we need to plug them
in. BLIS offers two different Application Programming Interfaces (APIs), we need to
decide on which one to use [43][3].
The so-called typed and object APIs both allow the user to access the available functions
(e.g. general matrix multiplications). As the name suggests, the object API uses objects
(structs named obj_t) to "[abstract] away properties of vectors and [matrixes] [...], [to]
be queried with accessor functions." [3] Among other things, these structs contain
a reference to the matrix buffer and information about the matrix size. The typed
Application Programming Interface (with the general matrix multiplication function
signature shown in Figure 1.2) gets all the information required via a single function
call, removing the need to keep track of any structs. Generally, both APIs perform the
same operations with similar arguments, just passed at different points in time [3][4].

2.2.2. Considerations As to Why We Chose the Typed API for This
Experiment

Both APIs can have sensible applications, in the following we want to provide two
points that were considered when choosing the typed API:

Lower (Implementation) Overhead

For the typed API, we don’t need to create the structs (of type obj_t) to represent the
matrixes. Since we are working with an existing project, creating them would be more
of an afterthought than how the program is designed. Furthermore, when looking at
the libxsmm calls, they are often done multiple times in a row with pointers to different
matrixes. Recreating this would require us to reassign a pointer to, or redefine some
obj_t each time beforehand. These operations can be avoided by utilizing the typed
API.

Performance

Going hand in hand with the previous point, one would expect more function calls, as
we would have with the object API, to likely not be beneficial for the code’s performance.
However, it may also be possible that calling the object API implementation of the
general matrix multiplication a lot amortizes the overhead from creating the structs,
as they already contain the information passed to the typed API each call and can

8



2. Testing the Application of BLIS With Two Examples

repeatedly access it. We suppose that big amortization does not take place here, due to
the frequent switching of matrixes worked with. To confirm or deny this hypothesis,
we run performance tests for model matrix multiplications with both versions of the
BLIS Application Programming Interfaces used, respectively. The example we use is
a general matrix multiplication with m = n = k = 4, where all matrixes are tightly
packed column-major matrixes, which leads the column-strides (csa, csb, csc) to be 4,
as well as the row-strides (csa, csb, csc) to be 1. alpha and beta are 1 and the matrixes
are not transposed. The appropriate calls for the typed and object APIs can be seen
in Figure 2.2. Each implementation is run five million times and the average time per
matrix multiplication is calculated. The program is compiled with -O3, BLIS for Zen 2
statically linked and the header provided by it is included. The POSIX threads library
is linked to as well, as BLIS requires that [3][50][6][18].
We run the program on the local machine from subsection 3.3.1. This results in the
object API calls (574 ns on average per matrix multiplication) being just a little bit faster
than the typed calls (585 ns on average per matrix multiplication).

Concluding the Comparison

For this manually performed experiment, we feel like the performance benefit of about
1.9% does not justify the implementation overhead of more function calls, as well as
the memory overhead that comes with the structs that have to be stored. It is also
possible that the five million iterations exaggerate the amortization since the matrix
multiplications are not called as often in a row in the actual example. However, this
decision can be reversed pretty easily later on, should one decide to do so.

9



2. Testing the Application of BLIS With Two Examples

1 [...]
2 // typed API
3 for(int i = 0; i < 5000000; ++i) {
4 bli_dgemm(BLIS_NO_TRANSPOSE, BLIS_NO_TRANSPOSE, 4, 4, 4, &one, A,

1, 4, B, 1, 4, &one, CBLIStyped, 1, 4);
5 }
6 [...]
7 // object API
8 obj_t a, b, c;
9 bli_obj_create_without_buffer(BLIS_DOUBLE, 4, 4, &a);

10 bli_obj_create_without_buffer(BLIS_DOUBLE, 4, 4, &b);
11 bli_obj_create_without_buffer(BLIS_DOUBLE, 4, 4, &c);
12
13 for(int i = 0; i < 5000000; ++i) {
14 bli_obj_attach_buffer(A, 1, 4, 1, &a);
15 bli_obj_attach_buffer(B, 1, 4, 1, &b);
16 bli_obj_attach_buffer(CBLISobj, 1, 4, 1, &c);
17 bli_gemm(&BLIS_ONE, &a, &b, &BLIS_ONE, &c);
18 }
19 [...]

Figure 2.2.: Matrix multiplication calls doing the same thing using the BLIS typed (top)
and object (bottom) APIs; Time is also measured (not shown here); For the
object calls we create the structs only once, as we reuse them; We reattach
the buffers to the structs each iteration to simulate the matrix locations
changing and not omit that overhead, even though they are always assigned
to the same matrix in this case

2.3. Creating the New API Calls

After deciding on the typed API, we can plug in the parameters to create the call for
the example matrix multiplication from section 2.1:

1 bli_dgemm(BLIS_NO_TRANSPOSE, BLIS_NO_TRANSPOSE, 4, 4, 4, &one, lFi+((t
*1+z)*16+x)*4+256, 1, 16, coeffRhsY, 1, 4, &one, rhs+((t*1+z)*16+x
)*4, 1, 16);

Since BLIS requires alpha and beta to be passed as a pointer, the one constant was
previously defined as

10



2. Testing the Application of BLIS With Two Examples

1 double one = 1.0;

The same process can be done with the remaining matrix multiplications. Replacing
them all yields the BLIS version of the code. We include the BLIS-header ("blis.h")
and modify the Makefile to link to the BLIS static library (libblis.a) and the POSIX
threads library (-lpthread), while also including the BLIS include/zen2 directory.
The program can then be recompiled and executed [6][50].

2.4. Checking the Validity of the Results

Changing the implementation of the matrix multiplications should only be done if,
given the same input, both versions produce the same output. In the SWE example,
we verify this in two ways: optically and data-driven. We first look at the animations
rendered from the solution files of the BLIS and libxsmm versions of the program
and compare them (see Figure 2.3). We also introduce a small program to test both
implementations with many different values. It has a doctest test case for each of the
libxsmm-generated matrix multiplications we replace. Inside the test case, we perform
100 iterations where we create four buffers A, B, Cxsmm, and CBLIS. The Cxsmm/CBLIS
buffers are filled with zeros in case β = 1 and ones for β = 0 (to test that both
implementations set C to zero). A and B are packed with random numbers. We then
let the libxsmm-generated function and the corresponding BLIS call (with the same
arguments we use inside the experiment, except for the matrix locations) perform a
matrix multiplication. Both implementations use the same A and B to compute the
results for their target buffers (Cxsmm and CBLIS). The doctest CHECK macro is used to
test if each entry of the target buffers is equal for both implementations. For the example
call from section 2.3, the test case is shown in Figure 2.4. A repository containing all
test cases is available at https://gitlab.lrz.de/landojahn/blis-verification. The
test environment is the same one as described in subsubsection 2.2.2 [10].
Both methods of verification indicate the desired outcome: equivalence of the results of
the calculations made by the BLIS and the libxsmm-generated versions.

11
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2. Testing the Application of BLIS With Two Examples

Figure 2.3.: The SWE example with bathymetry computed using BLIS (left) and
libxsmm-generated code (right) after a time of t = 0.0503095 seconds,
rendered with the render script provided by Peano [52] and visualized with
ParaView [31]

2.5. The Performance Problem

Even though the results are the same, one thing stands out: the performance. While the
libxsmm version of the SWE solver takes 16 seconds to complete, the version with the
BLIS typed matrix multiplications completes in 55 seconds. We got these results on the
same local machine as described in 3.3.1. This is a problem since we cannot optimize
the performance of the program with it becoming about 244% slower with BLIS.
Another example in the same environment, the elastic example, also provided in the
Peano repository (at applications/exahype2/aderdg/Elastic) shows results hinting
in a similar direction: While the libxsmm version takes just four seconds to execute, the
BLIS version completes the computations in seven seconds, a performance decrease of
75%.
We want to answer the question: Why is it slower? We are going to explore that along
with the performance of some alternatives to BLIS in the next chapter [52].
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2. Testing the Application of BLIS With Two Examples

1 TEST_CASE("gemm_4_4_4_rhs_y") {
2 for (int y = 0; y < 100; ++y) { // test 100 different scenarios
3 double A[64], B[16], Cxsmm[64], CBLIS[64];
4
5 [...] // Fill buffers with 0 (for C) and random values (for A and

B)
6
7 gemm_4_4_4_rhs_y(A, B, Cxsmm);
8
9 bli_dgemm(BLIS_NO_TRANSPOSE, BLIS_NO_TRANSPOSE, 4, 4, 4, &one, A,

1, 16, B, 1, 4, &one, CBLIS, 1, 16);
10
11 for (int i = 0; i < 64; ++i) {
12 CHECK(CBLIS[i] == Cxsmm[i]);
13 }
14 }
15 }

Figure 2.4.: A test case for the example from section 2.3, verifying equivalence be-
tween the libxsmm-generated code and the BLIS version, using doctest [10]
(shortened)

Figure 2.5.: The elastic example computed using BLIS (left) and libxsmm-generated
code (right) after a time of t = 0.03 seconds, rendered with the render script
provided by Peano [52] and visualized with ParaView [31]
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3. Evaluating the Performance of Different
Matrix Multiplication Implementations

3.1. The Hypothesis: BLIS Is Only Competitive for Bigger
Matrix Sizes

One possible hypothesis suggesting why the performance is worse is that BLIS is
designed for bigger matrixes, which are not present in the ExaHyPE 2 shallow water
equations solver. A result we have seen before hints at this conclusion: The elastic
example only takes about 75% longer with BLIS than with the libxsmm-generated code,
compared to the 244% increase we saw with the shallow water equations. This may be
the case, as the matrixes are larger than in the SWE example. While the shallow water
equations work with m = n = k = 4, the elastic example uses m = 9 and n = k = 6
[52].
One possible explanation for this behavior is that BLIS has more initial overhead, with
lower computation times afterward, which could make it more performant on bigger
matrixes, as the relation of initial overhead to computation time afterward might be
smaller. In the following, we want to test whether the hypothesis holds, and if so, what
counts as a large enough matrix for BLIS to be viable and competitive.

3.2. Testing the Hypothesis

To test this assumption, we want to compare BLIS’ performance when multiplying
varying-size matrixes. To have a sensible comparison with fitting categorization and
also get information on which implementations would be worth it to integrate into the
existing code, we supply results of multiple other implementations’ performance on
the same problems. This allows us to not only look at the results in an absolute way
but also relative to other implementations to see in which scenarios BLIS is competitive
and where the other ones are best used.
To represent the current implementation, we use C code generated by the libxsmm
code generator driver version included in Peano. Since that is deprecated, we also add
the regular version of libxsmm. It does not generate code beforehand, but rather "JIT
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(Just-In-Time)" [39] (right when it is needed) during runtime. This allows it to adapt to
the microarchitecture used during runtime [39][21].
The last implementation we want to include is Eigen, described by the authors as a
"C++ template library for linear algebra: [matrixes], vectors, numerical solvers, and
related algorithms." [14]
Since we want to compare the different implementations’ performances on various
matrix sizes, we need different test cases for the matrix sizes. The libxsmm-generated
code distinguishes between them, not by use of function arguments, but rather by
the function name, so we need to make a new block of code for each test case or use
function pointers. To be as close as possible to the real implementation and not slow the
tests down artificially, we decided on the former method. This is reliably accomplished
using a Python script, that generates the test code using Jinja2, a template engine that
creates code by replacing variables in the provided template. The script also invokes
the commands for the libxsmm generator driver to create the matrix multiplication
functions appropriate for the target microarchitecture, which is specified beforehand
[42].
The generated code then goes through previously defined problem sizes, performs
double precision matrix multiplications with each implementation a predefined amount
of times (10000 in these experiments), and calculates the average completion time per
matrix multiplication. In the final step (for every test case), each implementation’s
result matrix (C) is compared for equality. The performance results are then plotted
using another Python script and Matplotlib. The test cases can be found in the
generated directory of the repository located at https://gitlab.lrz.de/landojahn/
blis-performance [49].

3.3. The Test Setups

We run the tests on three different setups with the specifications we describe here.

3.3.1. Local

The local machine we use is running Fedora Linux 37 on an AMD Ryzen 5 5500U with
16 GB of DDR4. As a compiler we use g++ (GCC)12.2.1 [45][1][20].

3.3.2. CoolMuc-2

We use the CoolMuc-2 cluster of the Leibniz-Rechenzentrum. The programs are exe-
cuted on an interactive compute node (single-node), which runs SUSE Linux Enterprise
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3. Evaluating the Performance of Different Matrix Multiplication Implementations

Server 15 SP1 on an Intel® Xeon® E5-2697 v3 with 64 GB of DDR4. Programs are
compiled with icpc (ICC)2021.7.0 [25][33][48][27].

3.3.3. CoolMuc-3

Another cluster of the Leibniz-Rechenzentrum we use is the CoolMuc-3. Again, pro-
grams are run on an interactive compute node (single-node) that uses an Intel® Xeon
Phi™ 7210F processor with 96 GB of DDR4 and 16 GB of High Bandwidth Memory. As
an operating system, SUSE Linux Enterprise Server 12 SP5 is used. Due to the outdated
state of the icpc C++ compiler on CoolMuc-3, we compile programs on CoolMuc-2
with icpc (ICC)2021.7.0 to run here [34][26][47][25].

3.4. The Test Results

We generate test cases for the test setups from section 3.3 and compile them with the
-O3 and -DNDEBUG flags. The plotted performance results can be seen in Figures 3.1
through 3.5. The problem sizes are ordered according to m · n · k in ascending order, to
approximate the complexity of the problem [18][19][24][23].
In the following, we want to describe and interpret some patterns visible throughout.
We begin with the three examples, where the libxsmm generator driver did not perform
target-specific optimizations (noarch).
Figure 3.1 shows the test results on the local machine (see subsection 3.3.1). We
can see BLIS consistently being the slowest implementation tested, up to a problem
size of m = n = k = 16. Afterward, BLIS performance starts to get competitive,
getting closer to the Just-In-Time libxsmm kernel, finally beating it by a tiny margin at
m = n = k = 128. For smaller problem sizes, we can see that first Eigen and then the
JIT libxsmm kernel mostly prevail.
Looking at CoolMuc-2 (see subsection 3.3.2) with general (noarch) libxsmm-generated
code (see Figure 3.2), we can again see BLIS becoming competitive only at m = n =

k = 16 and then getting very close to the JIT libxsmm code. In the smaller problem
sizes, Eigen again mostly prevails, while the JIT libxsmm kernel becomes competitive
for slightly bigger m, n, and k.
As with the previous examples where the libxsmm-generated code was not target-
specific, in the CoolMuc-3 example in Figure 3.3, BLIS again gets competitive at a
problem size of m = n = k = 16, however this time, Eigen is almost always the fastest
before this point.
Looking at the two sets of tests, where the libxsmm generator driver optimized the code
for a specific target microarchitecture like Haswell (Figure 3.4), or Knights Landing
(Figure 3.5), the results are clear: the libxsmm-generated code is the fastest for every
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tested problem size, without exceptions, while BLIS again only begins to become
competitive regarding the other implementations at a larger problem size. The case
between Eigen and the libxsmm JIT kernel is like in the other CoolMuc-2/-3 examples
before, as expected [28][29].
Overall, we can conclude the experiment: the hypothesis from section 3.1 holds in our
cases, BLIS only performs competitively with larger matrix multiplication problems,
which are not very prevalent in the ADER-DG-solver we are working on. However, by
comparing multiple different implementations offering matrix multiplication, we got to
see that there are cases in which the code generated by the libxsmm generator driver
does not offer optimal performance. This is generally the case when the generated
code is not optimized for the specific platform we are working on (Figures 3.1 through
3.3). While not a realistic scenario in itself on CoolMuc-2 and -3, the comparison is still
interesting, since there are modern microarchitectures that the libxsmm code generator
driver does not support, like AMD Zen 2 (on the local machine from subsection 3.3.1)
or newer Intel microarchitectures [39].
This shows potential for improvement on some microarchitectures, especially with
Eigen and the JIT libxsmm version. BLIS does not offer competitive performance for the
matrix sizes typically used in the solver, however, it might implement faster algorithms
for smaller matrixes in the future.

Figure 3.1.: Comparison of computation times [y-axis, logarithmic scale] of different
implementations performing matrix multiplications with different sized
matrixes [x-axis]; On the local environment (see subsection 3.3.1); The
libxsmm-generated code is optimized for noarch (no target specific opti-
mizations performed by the generator, but possibly done by the compiler)
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Figure 3.2.: Comparison of computation times [y-axis, logarithmic scale] of different
implementations performing matrix multiplications with different sized
matrixes [x-axis]; On the CoolMuc-2 environment (see subsection 3.3.2);
The libxsmm-generated code is optimized for noarch (no target specific op-
timizations performed by the generator, but possibly done by the compiler)

Figure 3.3.: Comparison of computation times [y-axis, logarithmic scale] of different
implementations performing matrix multiplications with different sized
matrixes [x-axis]; On the CoolMuc-3 environment (see subsection 3.3.3);
The libxsmm-generated code is optimized for noarch (no target specific op-
timizations performed by the generator, but possibly done by the compiler)
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Figure 3.4.: Comparison of computation times [y-axis, logarithmic scale] of different
implementations performing matrix multiplications with different sized
matrixes [x-axis]; On the CoolMuc-2 environment (see subsection 3.3.2);
The libxsmm-generated code is optimized for Haswell [28]

Figure 3.5.: Comparison of computation times [y-axis, logarithmic scale] of different
implementations performing matrix multiplications with different sized
matrixes [x-axis]; On the CoolMuc-3 environment (see subsection 3.3.3);
The libxsmm-generated code is optimized for Knights Landing [29]
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3.5. Reasons for the Observed Behavior

We compare the performance profiling for a matrix multiplication problem with
m = n = k = 4, iterated 10 million times, on the local machine (see subsection 3.3.1,
with the -O3 and -DNDEBUG compiler options enabled [18][19]), using either BLIS or
libxsmm-generated code to get an idea as to why BLIS has a relatively lower perfor-
mance for smaller matrix multiplication problems. We can see that the version of the
code using the libxsmm-generated matrix multiplications (Figure 3.6) spends almost
99% of its computation time on the core matrix multiplication function (gemm_4_4_4)
according to the samples taken by the profiler. Contrary to that, the BLIS version (Fig-
ure 3.7) spends a lot of computation time on different functions. This may show that
BLIS has more initial overhead compared to other implementations, which can make it
slower for smaller matrix multiplication problems. That initial overhead seems to be
amortized by faster computation times afterward for larger matrix multiplication prob-
lems, as indicated by the performance test results in Figures 3.1 through 3.5. We again
use a performance profiler to show this in a similar test case with m = n = k = 128
and 100000 iterations. The results (see Figure 3.8) strongly indicate superior utilization
at that size compared to the smaller size.
We can explain the performance differences between Eigen/the JIT version of libxsmm
and the libxsmm-generated code because, without microarchitecture-specific optimiza-
tions enabled at generation-time, the libxsmm-generated code essentially is a default
matrix multiplication implementation (see Figure 2.1) only optimized by the compiler.
Contrary to that, in case the libxsmm code generator driver does optimize for the
platform, we see it beat Eigen/the JIT version of libxsmm, presumably because it can
generate highly optimized platform-specific assembly instructions.
We observe the libxsmm JIT code often beat Eigen at higher matrix sizes, likely be-
cause the Just-In-Time kernel generation allows it to better adapt to the underlying
microarchitecture, however, comes with some initial performance overhead that is not
amortized in smaller cases.
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1 98,61% gemm_4_4_4
2 1,09% main
3 0,13% do_lookup_x
4 [...]

Figure 3.6.: Results of the performance profiling (using perf [40]) of the libxsmm-
generated matrix multiplication called ten million times with m = n = k =

4; compiled with -fno-inline [18] for more precise results; both rows and
columns have been shortened to give a rough overview

1 16,36% bli_thrinfo_split
2 10,06% bli_dgemm_ex
3 9,59% bli_pool_checkin_block
4 8,84% bli_gemmsup_ref_var2m
5 4,68% bli_l3_basic_check
6 2,79% bli_dgemmsup_rv_haswell_asm_4x4
7 2,31% bli_thrinfo_free
8 2,30% bli_pool_checkout_block
9 2,19% bli_pthread_switch_on

10 2,09% pthread_mutex_lock@@GLIBC_2.2.5
11 1,82% bli_l3_sup_thrinfo_create
12 1,78% bli_dgemmsup_rv_haswell_asm_6x4m
13 [...]

Figure 3.7.: Results of the performance profiling (using perf [40]) of the BLIS matrix
multiplication called ten million times with m = n = k = 4; both rows and
columns have been shortened to give a rough overview

1 95,42% bli_dgemmsup_rv_haswell_asm_6x8m
2 3,58% bli_dgemmsup_rv_haswell_asm_2x8
3 0,18% bli_gemmsup_ref_var2m
4 [...]

Figure 3.8.: Results of the performance profiling (using perf [40]) of the BLIS matrix
multiplication called 100000 times with m = n = k = 128; both rows and
columns have been shortened to give a rough overview
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4. Including the New Implementations in
the ExaHyPE 2 ADER-DG-Solver

In the performance tests, we compared Eigen, the JIT version of libxsmm, and BLIS
to the (already utilized) libxsmm code generator driver. We have seen that it can be
beneficial to performance in some cases to have one of the newer implementations
handle the matrix multiplications. Consequently, all three of them are included as
options in the code-generation procedures for the ADER-DG-solver. That way, the user
can choose the best implementation to perform their computations even when working
on a microarchitecture where the newer implementations show more potential than the
libxsmm-generated matrix multiplications. However, since there are a lot of situations
where the existing implementation performs better, we will also leave it as an option.
As discussed, ExaHyPE 2 is part of the Peano project and generates C++ code. In
our case, that code is generated by the ExaHyPE 2 ADER-DG kernel generator. It
uses Jinja2, a template engine to generate the user-specific code and surrounding files.
The driver code, which for example determines what is plugged into the templates is
written in Python. Some steps need to be taken to get the code generator to utilize the
new implementations [42].
We begin by introducing an optimization option for each new implementation we
add. They allow the users to have the resulting program optimized to their choosing.
The options are first added to the ADERDG class as variables that can be set using the
add_kernel_optimizations function. These attributes then get passed on to the Ex-
aHyPE 2 ADER-DG kernel generator, more specifically the generate_aderdg_kernels
function located inside generator.py. From thereon, it is packed into the input con-
figuration dictionary (InputConfig). In Python, a dictionary is an associative array
storing key-value pairs. That makes it a suitable choice for storing options passed to
the generator in an easily accessible form, while still making it simple to transfer them
onward to other functions or classes [52][44].
Afterward, the dictionary containing the configuration is passed on to the Controller.
It uses these values and those obtained from the Configuration (which also has options
for BLIS, Eigen, and libxsmm JIT added to it) to create the configuration passed to
the actual models. These models (derived from AbstractModelBaseClass) implement
the generateCode method to instantiate the Jinja2-templates using the configuration
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provided [52].
A relevant example of this is the FusedSpaceTimePredictorVolumeIntegralModel.
Given the configuration, it selects among multiple Jinja2-templates and then renders
one of them into C++ code. Jinja2 has access to the configuration inside these templates,
allowing it to adjust the code to the requested options. Among other models, the
FusedSpaceTimePredictorVolumeIntegralModel’s templates use the matrix multipli-
cation macro (in macros.template and matmul.template) [52].
Inside the macro, we add multiple implementations for the different frameworks/li-
braries, in addition to the existing ones (using the libxsmm code generator driver and
without the use of any frameworks/libraries) to perform the matrix multiplication.
Jinja2 selects the implementation according to the configuration. For example, when the
configuration has the useBLIS option set to True, the BLIS implementation is chosen.
The matmulkey, a key for a dictionary of matrix multiplication configurations has to be
passed along with the locations of the matrixes A, B, and C, some additional and some
optional arguments each time the macro is used. The entry (which is a MatmulConfig)
in the dictionary corresponding to the key contains more information for the specific
matrix multiplication operation that shall be performed with the use of the macro. This
information includes α, β, matrix sizes, and leading dimensions. The dictionary has
to be generated beforehand, which is done in the buildGemmsConfig function of every
model class that uses matrix multiplications in the respective template [52].

4.1. The Matrix Multiplication Template Macro

We now want to address the specific implementations inside the macro further, since
they set the options apart. As mentioned, we want to add support for the BLIS, Eigen,
and libxsmm JIT matrix multiplications, while keeping the two existing options. When
the user has chosen an implementation via the configuration, a specific block of code is
generated. We want to explore the particular actions taken for each one more closely.
For all options, the locations of A, B, and C are determined using the parameters of
the macro, in the way that was already implemented with the libxsmm code generator
driver [52].

4.1.1. Using BLIS

As before, we choose the typed API for BLIS. This makes it simple to adapt the macro.
Since the floating point precision can vary, we have to determine it beforehand. That
is done by reading the information inside the MatmulConfig corresponding to the
given key. Depending on that, we choose the name of the BLIS gemm function to call:
bli_dgemm for double and bli_sgemm for single precision matrix multiplications. The
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arguments are similar to what we described in section 2.1. We do not transpose the
matrixes, so transa and transb are set to BLIS_NO_TRANSPOSE. We obtain m, n, and
k from the appropriate matrix multiplication configuration, just like alpha and beta.
Since BLIS requires alpha and beta to be passed as a pointer, we declare constants
for zero and one (the only valid options for α and β), from which we (depending on
α and β) pass the addresses to the function. As in the experiment, the column-stride
parameters (csa, csb, and csc) are set to the according leading dimensions fetched
from the configuration. Row-strides (rsa, rsb, and rsc) are always 1, as before [5].

4.1.2. Using Eigen

For Eigen, the macro is a little more extensive. We declare a Map for each of the three
operand matrixes. Maps are a feature of Eigen, which allow for an existing C-style array
to be used with Eigen. Since the raw buffers we use here are also just pointers, they
are compatible. To create the Maps, we need to pass a Matrix template parameter. The
Matrix itself also requires template arguments, which we provide after getting them
from the configuration: the precision type (double or float) and the size. Next, we
set the alignment to Unaligned, even though information on alignment is partially
provided by the configuration (for matrixes A and C). This is done because using
it according to the configuration caused errors due to aligned access on unaligned
memory for us. Information about the memory layout of the matrixes also has to be
included, we use the Stride class for that. It allows us to pass the inner- and outer
stride. For a column-major matrix (which is the default for Eigen) the inner stride "is
the pointer increment between two consecutive entries" [12], while the outer stride
"is the pointer increment between two consecutive [...] columns" [12]. That means
the inner stride is 1 and the outer stride is the leading dimension, which we obtain
from the matrix multiplication configuration. The only non-template argument the Map
instantiation takes is the pointer to the buffer. We get that from the macro parameters.
Afterward, we need to perform the actual matrix multiplication using the * operator.
Since using operators is not BLAS-like we need to find another way to incorporate α and
β. We obtain alpha and beta from the configuration and generate the code depending
on the values. In case alpha is one, we don’t multiply A*B by any scalar. Otherwise,
we multiply the result of A*B by alpha. In case beta is zero, we use the = operator to
assign the result of A*B to C, otherwise, we use += to add it to C [12][13][17][12][15].

4.1.3. Using libxsmm JIT

The libxsmm JIT matrix multiplication calls themselves are the same as before with the
libxsmm-generated code, hence we use the same code for the macro. However, some
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changes in other places need to be made. The macro chooses the matrix multiplication
function name based on the baseroutinename of the configuration. There it plugs in the
pointers to the buffers for A, B, and C, which are obtained from the macro parameters
[52].

4.2. Adjusting the Preamble of the Templates

The files that use the new implementations for matrix multiplications need to have
some additional code at the beginning, e.g. to include header files.
For BLIS that means adding #include "blis.h" and the two possible options for alpha
and beta (zero or one), since they have to be passed as a pointer. We declare two pairs
of them, one of them as doubles and the other one as floats. They are marked with the
appropriate suffix _d and _s and chosen by the matrix multiplication macro according
to the floating point precision of the operation.
For Eigen, we just need to include the header (#include <Eigen/Dense>).
To increase performance with the libxsmm JIT version, we have it generate all the
kernels in the beginning (during runtime) and reuse them every time we need them.
To do that, we iterate through all the matrix multiplication configurations used. Based
on the information obtained for each configuration we declare three variables for the
leading dimensions and one for the flags (this information needs to be passed as a
pointer). The relevant flag we use is for β. In case it is zero, we set the value of the flags
to four, otherwise, we set it to zero. α = 1 is the only case supported by the libxsmm JIT
kernels, hence α = 1 is assumed and not included as a flag. However, that is not a big
problem since the currently used libxsmm code generator driver has the same restriction,
and setting α to zero would not make sense in most cases, performing C := β · C. We
use these variables and the matrix sizes to get a libxsmm matrix multiplication kernel
(libxsmm_dmmfunction or libxsmm_smmfunction, depending on the precision) from
the libxsmm_dmmdispatch_v2 or libxsmm_smmdispatch_v2 functions, respectively. The
kernels are named after the baseroutinename from the configuration. This functionality
is outsourced to a macro. In addition to that, we include the corresponding header
(#include <libxsmm.h>) [37][38][35][39].

4.3. Adapting the Environment

For the resulting program to compile, we need to have the appropriate libraries available
to include/link to. This is why we create new configuration options (--with-BLIS,
--with-Eigen, and --with-libxsmmJIT) in the Peano configure.ac script, which can
be invoked from the ./configure command. For each of these options, we clone the
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1 bli_{{precisionPrefix}}gemm(BLIS_NO_TRANSPOSE, BLIS_NO_TRANSPOSE, {{M
}}, {{N}}, {{K}}, {% if alpha == 1 %}&one_{{precisionPrefix}}{%
elif alpha == 0 %}&zero_{{precisionPrefix}}{% endif %}, {{A}}{% if
A_shift != ’0’ %}+{{A_shift}}{% endif %}, 1, {{LDA}}, {{B}}{% if

B_shift != ’0’ %}+{{B_shift}}{% endif %}, 1, {{LDB}}, {% if beta
== 1 %}&one_{{precisionPrefix}}{% elif beta == 0 %}&zero_{{
precisionPrefix}}{% endif %}, {{C}}{% if C_shift != ’0’ %}+{{
C_shift}}{% endif %}, 1, {{LDC}});

Figure 4.1.: The templated BLIS matrix multiplication call; precisionPrefix is either d
or f for double or float

1 Eigen::Map<Eigen::Matrix<{{precisionType}}, {{M}}, {{K}}>, Eigen::
Unaligned, Eigen::Stride<{{LDA}}, 1>> A({{A}}{% if A_shift != ’0’
%}+{{A_shift}}{% endif %});

2 Eigen::Map<Eigen::Matrix<{{precisionType}}, {{K}}, {{N}}>, Eigen::
Unaligned, Eigen::Stride<{{LDB}}, 1>> B({{B}}{% if B_shift != ’0’
%}+{{B_shift}}{% endif %});

3 Eigen::Map<Eigen::Matrix<{{precisionType}}, {{M}}, {{N}}>, Eigen::
Unaligned, Eigen::Stride<{{LDC}}, 1>> C({{C}}{% if C_shift != ’0’
%}+{{C_shift}}{% endif %});

4 C {{eigenOp}} {% if alpha != 1%}{{alpha}} * (A * B){% else %}A * B{%
endif %};

Figure 4.2.: The templated Eigen matrix multiplication call; precisionType is either
double or float; eigenOp is either += or =, according to beta

1 {{conf.baseroutinename}}({{A}}{% if A_shift != ’0’ %}+{{A_shift}}{%
endif %}, {{B}}{% if B_shift != ’0’ %}+{{B_shift}}{% endif %}, {{C
}}{% if C_shift != ’0’ %}+{{C_shift}}{% endif %});

Figure 4.3.: The templated libxsmm JIT matrix multiplication call, which is equal to the
existing call for the libxsmm-generated code [52]
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1 {% for config in matmulConfigs %}
2 [...]
3 const int flags_{{matmulConfig.baseroutinename}}({% if matmulConfig.

beta == 1 %}0{% else %}4{% endif %}); // 0 for beta = 1, 4 for
beta = 0

4 libxsmm_{{precisionPrefix}}mmfunction {{matmulConfig.baseroutinename}}
= libxsmm_{{precisionPrefix}}mmdispatch_v2({{matmulConfig.M}}, {{

matmulConfig.N}}, {{matmulConfig.K}}, &lda_{{matmulConfig.
baseroutinename}}, &ldb_{{matmulConfig.baseroutinename}}, &ldc_{{
matmulConfig.baseroutinename}}, &flags_{{matmulConfig.
baseroutinename}});

5 {% endfor %}

Figure 4.4.: Part of the templated libxsmm JIT preamble macro (shortened)

appropriate repository into the Peano submodules folder. For BLIS and Eigen that
is just their source repository (see [3] and [14]). BLIS also needs to be configured
(automatically by invoking ./configure auto) and built using make. We also test BLIS’
functionality using make check, notifying the user in case something went wrong. Since
the JIT version of libxsmm may fall back to a BLAS implementation for certain matrix
multiplication cases, we need to provide a BLAS interface in addition to the libxsmm
source repository (see [35]). We choose OpenBLAS (see [41]) since it automatically
adapts the compilation process to the environment it is run on, simply requiring an
invocation of the make command. For comparison: LAPACK, which also offers a BLAS
interface, demands the specification of a configuration beforehand. We also need to
build libxsmm using make. As a side note: We cannot reuse the libxsmm version cloned
by the other libxsmm option (used for the code generator driver) as it is older than the
one we are using here. Everything we described in this section up to this point is done
automatically by the configure.ac script [3][32][41][35][36].
The Makefile for compiling the program also needs to be adapted to include/link
to the appropriate resources, which we placed inside the submodules directory while
performing the configuration. Using the Makefile class, we can modify it. The class
provides suitable methods, such as one to add a search path for header files. We call
these methods from the ExaHyPE 2 Project class, where we have access to the solvers
used. In case one of them is an ADER-DG-solver, we take actions according to the
selected optimizations: With BLIS, we need to add the path to the BLIS include directory
as a header search path, link to libblis.a and add -lpthread (see Figure 4.5). Eigen
only requires adding the repository as a header search path, while the libxsmm JIT
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version needs to have its include directory added as a header search path, libxsmm.a
and libopenblas.a (from OpenBLAS) linked to, as well as having -lpthread added
[52][39].

1 self._project.output.makefile.add_header_search_path("␣" +
pathToExaHyPERoot + "/submodules/blis/include/" + archname)

2 self._project.output.makefile.add_linker_flag(pathToExaHyPERoot + "/
submodules/blis/lib/" + archname + "/libblis.a")

3 self._project.output.makefile.add_library("-lpthread")

Figure 4.5.: Adding the required options to the Makefile in the BLIS case

4.4. Performance Results for the New Implementation

For some concrete comparisons between the final generated versions with the different
matrix multiplication implementations, we again run some examples (without target-
specific optimizations enabled, architecture="noarch") on the local and CoolMuc-2
machines (see subsection 3.3.1 and 3.3.2) and interpret the results based on the ranking
of the computation times. We do not expect as much of a difference between the various
implementations as we saw in section 3.4 because the final program consists of more
than just matrix multiplications. The results are prepared in Tables 4.1 and 4.2. We
begin with the SWE example (with matrix sizes m = n = k = 4) from section 2.5. The
results for that example are in line with our expectations, as the way they are ranked is
equal to Figures 3.1 and 3.2, considering the matrix sizes.
For the elastic example, working with matrix sizes of m = 9 and n = k = 6, the results
also mostly fit in with the performance results from Figures 3.1 and 3.2.
As one final comparison, we use the computation times for the ADER-DG Acoustic
example (with m = n = k = 4, located at applications/exahype2/aderdg/Acoustic),
with the end time extended to 0.015 seconds. Again, the performance order of these
implementations is as expected (regarding Figures 3.1 and 3.2).
A version target-optimized for Haswell (by passing the architecture="hsw" option
to add_kernel_optimizations) is also run in the same CoolMuc-2 environment (see
Table 4.3). It yields results that partially contradict the ones we got in section 3.4. While
we expect the libxsmm-generated code to outperform all other implementations in cases
where it is optimized for the underlying microarchitecture (indicated by Figure 3.4),
we see Eigen outperform it in the SWE and Acoustic example. The elastic example
is the only one where the results are as expected: a substantial performance increase
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from the general to the target-specific version. Since individual matrix multiplication
performance improves drastically with target-specific optimizations enabled for the
libxsmm code generator driver, we do not know how to attribute this inconsistency.
The fact that turning on these target-specific optimizations also changes other aspects
of the program apart from the matrix multiplications may contribute to the observed
results. In this regard, it should also be noted that many of the performance results for
the other implementations also became slightly worse when compared to Table 4.2.
Appendix A describes how these examples can be recreated.

example

implemen-
tation BLIS Eigen libxsmm JIT libxsmm (generated for noarch)

SWE 55.3 14.6 17.5 15.7
Elastic 6.2 3.2 3.2 3.7
Acoustic 88.8 65.9 68.3 68.1

Table 4.1.: Computation times in seconds for the SWE, Elastic, and Acoustic examples
run on the local machine (see subsection 3.3.1) with different matrix multi-
plication implementations enabled as optimization options; The code has no
microarchitecture-specific optimizations enabled

example

implemen-
tation BLIS Eigen libxsmm JIT libxsmm (generated for noarch)

SWE 89.1 20.5 24.8 23.0
Elastic 10.0 4.9 4.8 5.6
Acoustic 138.6 100.8 103.9 101.9

Table 4.2.: Computation times in seconds for the SWE, Elastic, and Acoustic examples
run on the CoolMuc-2 machine (see subsection 3.3.2, we use icpx 2022.1.0
instead of icpc [25] and pass CXXFLAGS="-std=c++20" during configuration)
with different matrix multiplication implementations enabled as optimization
options; The code has no microarchitecture-specific optimizations enabled
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example

implemen-
tation BLIS Eigen libxsmm JIT libxsmm (generated for hsw)

SWE 89.2 20.8 24.7 24.1
Elastic 9.9 5.2 5.1 5.0
Acoustic 140.2 101.7 106.3 103.6

Table 4.3.: Computation times in seconds for the SWE, Elastic, and Acoustic examples
run on the CoolMuc-2 machine (see subsection 3.3.2, we use icpx 2022.1.0
instead of icpc [25] and pass CXXFLAGS="-std=c++20" during configuration)
with different matrix multiplication implementations enabled as optimization
options; The code has microarchitecture-specific optimizations for Haswell
enabled
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5. Conclusion

Since we were not able to replace the deprecated libxsmm code generator driver with
BLIS while keeping up performance, we extended our considerations to Eigen and the
JIT version of libxsmm. They showed to be viable optimizations in certain scenarios,
beating the existing implementation’s performance in some cases, while falling behind
in other cases. We consider the expansion a worthwhile improvement for the program,
especially since turning on the specific optimization options in the code generator is as
simple as with the existing libxsmm code generator driver version. The user only has
to pass one flag during configuration and one additional boolean value while selecting
the optimization options for ADER-DG. Considering the performance test results in
section 3.4, we saw outcomes in the real application tests that were better (from the
newer implementations’ point of view) than we expected them to be.
We recommend users who want to try one of the new implementations make an attempt
with the Eigen option in case the matrixes are a little smaller (e.g. m = n = k = 4). We
suggest applying the JIT version of libxsmm for slightly bigger matrixes (e.g. m = 9,
n = k = 6). For really large ones (e.g. m = n = k = 36 or similar), it might be worth it
to use BLIS.
We were able to explore the main goal of this topic, although there certainly are
branches that are worth researching in the future that we did not look into further.
For instance, the tests were run sequentially and the libraries were introduced into the
ExaHyPE 2 ADER-DG-solver in their non-parallelized versions. Since they all offer
multithreaded options it would be interesting to explore how this influences relative
performance between the libraries and overall program execution time. We briefly
tried utilizing the multithreaded version of BLIS for small matrix multiplications (e.g.
m = n = k = 4) however, we experienced even bigger performance setbacks than with
the sequential BLIS version, so we did not pursue this approach further but instead
tested other implementations for these matrix sizes. It would however be interesting to
analyze the reason for the performance decrease and whether there is a way to improve
it. [35][6][11].
Another adaptation we would like to make in the future is extending the CMake
configuration (CMakeLists.txt) to also include options for cloning (and potentially
building) the repositories required by the frameworks/libraries, just like we did with
the configure.ac script. That would make it easier to use the new optimization options
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with CMake [9].
Furthermore, it might be worth trying to determine what causes the alignment issues
with Eigen mentioned in subsection 4.1.2. This could improve the performance of the
Eigen library.
Investigating the reasons for the difference in performance when comparing the isolated
matrix multiplications to the final results will very likely yield interesting results.
One might also want to branch out and look into why the performance of the other
implementations slightly decreased when turning on target-specific optimizations for
Haswell.
Finally, though we were not able to efficiently use BLIS for the matrix sizes mainly
present throughout the ExaHyPE 2 ADER-DG-solver, we very much hope to see BLIS
release some kernels specifically optimized for smaller matrix multiplications. Provided
they use the same API and function signatures, the BLIS-optimized version of the
ExaHyPE 2 ADER-DG-solver would automatically be using them as soon as they are
available in the BLIS git repository.
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A. Running the Examples Provided

We provide the examples we tested in section 4.4 (adapted from the ones included in
Peano [52]) in a fork of the Peano repository. It can be cloned from https://gitlab.
lrz.de/landojahn/Peano. To run them, execute the following commands (starting in
the base folder, some tools may have to be installed first):

1 git checkout DG
2 libtoolize; aclocal; autoconf; autoheader;
3 cp src/config.h.in .;
4 automake --add-missing

The user can then select the optimization options they want to have available by means
of the ./configure command. Add the desired optimizations (--with-BLIS, --with-
Eigen, --with-libxsmmJIT, or --with-libxsmm, there may be multiple options enabled
at the same time) to the base command (./configure --enable-exahype --enable
-blockstructured --enable-loadbalancing). An invocation and subsequent build
may look like this (enabling the use of BLIS):

1 ./configure --enable-exahype --enable-blockstructured --enable-
loadbalancing --with-BLIS

2 make -j8

Then, choose the example from applications/exahype2/aderdg/. There are four
directories with examples that have certain optimizations enabled. They are called
[optimization]_examples. Choose an optimization for which the prerequisites have
been enabled during configuration and subsequently decide on an example. For
instance, choosing BLIS and SWE leads to the following command invocation:

1 cd applications/exahype2/aderdg/
2 cd BLIS_examples/SWE/

From there, set the PYTHONPATH environment variable to ../../../../../python/ and
run the Python script in the directory using python3. For example:

1 export PYTHONPATH=../../../../../python/
2 python3 SWE.py
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A. Running the Examples Provided

The program is then generated and built. For the same example, it is run and the
solution is rendered using:

1 ./SWE
2 pvpython ../../../../../python/peano4/visualisation/render.py solution

-SWE.peano-patch-file

The resulting file with the extension .pvd can then be opened in ParaView.
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