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Abstract

Hyperbolic partial differential equations (PDEs) govern many processes in various
application fields. ADER-DG is one type of numerical solver for such PDEs. This
thesis aims to assess the quality of the ADER-DG solver in the context of tsunami
simulations. The so-called shallow water equations (SWE) describe such tsunami
scenarios. The simulations are generated with the newly developed SWE API, which
offers a straightforward configuration of shallow water scenarios. The SWE API is built
on top of the ExaHyPE 2 engine for solving hyperbolic PDEs, which, in turn, is an
extension of the Peano 4 framework. Peano 4 offers a parallelized, efficient traversal of
the simulation space, the means to store data in that space, and the ability to specify the
processing stack for the data. The experiments in this thesis show that while ADER-DG
has the potential to produce high-quality results, the simulations are unstable in dry
regions. Conveniently, the SWE API is built in an easily extensible way, so implementing
future approaches on that topic is straightforward.
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Kurzfassung

Hyperbolische partielle Differentialgleichungen (PDEs) steuern zahlreiche Prozesse
in verschiedenen Anwendungsbereichen. ADER-DG ist ein numerischer Löser für
solche PDEs. Ziel dieser Arbeit ist es, zu bewerten, wie sehr sich der Einsatz von
ADER-DG für Tsunami-Simulationen eignet. Die sogenannten Flachwassergleichungen
(im Englischen: "shallow water equations", kurz SWEs) beschreiben solche Tsunami-
Szenarien. Die Simulationen werden mithilfe der neu entwickelten SWE-API generiert,
die eine einfache Konfiguration von Flachwasserszenarien ermöglicht. Die SWE-API
basiert auf der ExaHyPE 2-Engine zum Lösen hyperbolischer PDEs, welche wiederum
eine Erweiterung des Peano 4-Frameworks ist. Peano 4 bietet eine parallelisierte,
effiziente Durchquerung des Simulationsraums, und die Möglichkeit, Daten, sowie ihre
Verarbeitung, zu spezifizieren. Die Experimente dieser Arbeit zeigen, dass ADER-DG
zwar das Potenzial hat, qualitativ hochwertige Ergebnisse zu liefern, die Simulationen
jedoch in trockenen Regionen instabil sind. Praktischerweise ist die SWE API leicht
erweiterbar aufgebaut, um die Implementierung zukünftiger Ansätze zu diesem Thema
zu vereinfachen.
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Part I.

Introduction
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Hyperbolic differential equations govern many physics, engineering, and computational
science processes, ranging from fluid dynamics to electromagnetic wave propagation.
Solving them efficiently and accurately is essential to understanding and predicting
complex phenomena. In this context, numerical solvers have become an essential
tool.

The ADER-DG method is one such solver and will be analyzed in-depth to present
its design, implementation, and quality under various conditions. ADER-DG stands
for Arbitrary high-order DERivatives Discontinuous Galerkin [bib:ader_dg]. It focuses
on solving the differential equations in discrete cells of the simulation domain with
polynomial interpolation while allowing discontinuities in the unknowns between
neighboring cells. This aims to maintain the high accuracy of classical discontinuous
Galerkin schemes in time and space while improving overall performance by reducing
the required communication overhead of the algorithm. However, the results of the
benchmarks in chapter IV show that finding a solver configuration for a stable simulation
of certain scenarios can be quite challenging. The overall quality of the simulation results
heavily depends on the exact initial conditions of the scenario, potentially stopping the
simulation from progressing in time or breaking the calculation entirely.

One specific phenomenon explained by hyperbolic differential equations is fluid dy-
namics in the form of tsunamis. This presents an excellent opportunity to look at the
ADER-DG solver as it solves those so-called "shallow water equations" (SWEs).

These are implemented with the help of the Peano 4 framework [bib:peano], together
with its extension ExaHyPE 2 [bib:exahype_swe]. Additionally, an API explicitly tai-
lored to the shallow water equations is built on top of ExaHyPE 2, called simply the
"SWE API" [bib:swe_api]. It significantly simplifies the configuration pipeline of Peano
4 and ExaHyPE 2 for shallow water simulations.

The simulation of tsunamis has become increasingly relevant to minimize the damage
created by these natural disasters. By combining the advancements in geology and
computational science, researchers aim to develop early warning systems, enhance
coastal infrastructure resilience, and find effective response strategies.

This thesis explores the ADER-DG method as it is confronted with increasingly more
complex shallow water simulation scenarios. The experiments culminate in the simula-
tion of a tsunami hitting the landmass of Japan with ADER-DG. Such a tsunami was
responsible for widespread devastation of the land and civil infrastructure, as well as a
meltdown of a nuclear power plant with subsequent atomic fallout, as it hit the eastern
coast of Japan in 2011 [bib:tohoku].

First, the theory behind the ADER-DG solver and the governing differential equations
is introduced in part II. Then, part III explains how the solver and the simulation
scenarios are realized in software. In part IV, the quality of the simulations, as well as
the performance of the software, is assessed. Lastly, a conclusion to the endeavor is
given in part V.
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Part II.

Theory

5





1. Shallow water equations

The tsunami simulations in this thesis are based on the so-called shallow water equations
(SWEs) [bib:exahype_swe]. SWEs are differential equations defining the rules for the
temporal development of the state of a fluid at any point in space, given the assumption
that the horizontal width of the fluid is much larger than its depth.

Since the simulations will inevitably run on hardware with limited computing power
and memory capacity, the problem has to be spatially and temporally discretized. The
spatial discretization is done by splitting the domain into cells and solving the SWEs
individually for all of them, considering the interaction between adjacent cells. Temporal
discretization is achieved by iteratively computing finite time steps T of size ∆t.

For the sake of simplicity, and until the introduction of the ADER-DG solver in section
2.3, each cell represents a volume of the simulation space within which all simulated
variables are assumed to be constant. This is precisely the working principle of the finite
volumes method, which will also be explained in section 2.2. Every cell is represented
by a vector Q, which holds the unknowns of the differential equations. Following the
SWE definition provided by [bib:exahype_swe], the Q is defined as

Q =


h

hvx

hvy

b

 (1.1)

with

• x, y: Spatial (surface) coordinates

• h: Height of the water column

• vx, vy: Fluid velocities in x and y directions, respectively

• b: Bathymetry, i.e., the depth of the terrain compared to some base level

To advance the simulation in time, the goal is to calculate the gradient ∂
∂t Q and add it to

the existing QT (at time step T ), yielding the cells’ new values QT +1 for the next time
step T + 1, corresponding to t + ∆t:

QT +1 = QT + ∆t · ∂

∂t
Q(t) (1.2)
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1. Shallow water equations

Afterward, the interaction between neighboring cells is modeled with a Riemann flux R,
resulting in the actual values QT +1 for the next time step.

The time-stepping process is explained in detail in section 2.1.

ExaHyPE 2, the simulation engine used in this thesis, which will be explored in detail in
chapter 4.2, requires the differential equations to be of the following form:

∂

∂t
Q +∇ · F(Q) + N(Q)∇Q = 0⃗ (1.3)

Here, ∇ · F is the divergence operator consisting of the fluxes Fx and Fy in the x and y
directions, respectively:

∇ · F(Q) =
∂

∂x
Fx(Q) +

∂

∂y
Fy(Q) (1.4)

The fluxes are defined as:

Fx(Q) = h


vx

vxvx

vxvy

0

 = hvx


1
vx

vy

0

 Fy(Q) = h


vy

vyvx

vyvy

0

 = hvy


1
vx

vy

0

 (1.5)

N(Q)∇Q is the so-called non-conservative product (NCP) that models the effects that
do not, as the name suggests, conserve the quantities of the components of Q. Due to its
dependence on the gradients ∇Q, the NCP is N(Q)∇Q = 0 within the cells. While it
is ill-defined between the cells due to the discontinuity, it can be integrated within the
computation of the Riemann fluxes. A detailed explanation can be found in [bib:ncp].
It is defined by the following equation, in which g ≈ 9.81ms−2 is the gravitational
acceleration on Earth at sea level:

N(Q)∇Q = gh


0

∂
∂x (h + b)
∂

∂y (h + b)
0

 = gh


0

∂
∂x H
∂

∂y H
0

 (1.6)

This SWE definition with equations 1.5 and 1.6 has been adapted from [bib:exahype_swe].
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2. Solvers

The discretized SWE problem can be simulated numerically with multiple methods.
This is done by defining a solver, which iteratively computes the SWE on the simulation
domain, thus progressing the simulation further in time. This solver is also responsible
for modeling the interactions between neighboring cells. Two kinds of solvers are studied
in this thesis: Finite volumes [bib:fv] and ADER-DG [bib:ader_dg] solvers.

2.1. Time step size

The temporal progression of the simulation is represented by the time step size ∆t,
which is added to the total simulated time t after each iteration.

To ensure numerical stability, the so-called CFL (Courant-Friedrichs-Lewy) condition
[bib:cfl] must be satisfied. It gives an upper bound to the time step size ∆t, based on the
CFL number C, the cell width wcell , and the maximum eigenvalue λmax. The admissible
time step size ∆t is defined as:

∆t ≤ C · wcell

λmax
(2.1)

For finite volumes, C ≤ 1 must hold. For ADER-DG, on the other hand, the CFL number
depends on the order ω, denoted as Cω. Additionally, the upper bound for ∆t is scaled
by the factor 1

2ω+1 :

∆t ≤ Cω

2ω + 1
· wcell

λmax
(2.2)

For the shallow water equations, the following definition of λmax was constructed with
the individual eigenvalues λi from equation 2.55 of [bib:leo]:

λmax = max
i

{|λi|} = max{|vx +
√

gh|, |vx −
√

gh|, |vy +
√

gh|, |vy −
√

gh|} (2.3)

Generally speaking, the quality of a simulation is reflected in a consistently stable
progression in time. This means that it is vital to keep the eigenvalue under control.
To achieve this, however, especially with ADER-DG, one has to overcome complex
challenges, as presented in section 2.4.
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2. Solvers

Figure 2.1.: Cell arrangement and indexing.

2.2. Finite volumes

A basic solver for hyperbolic partial differential equations is the finite volumes (FV)
method. Looking at the mesh resulting from the spatial discretization, each cell repre-
sents a volume of constant value defined by the vector QT . The superscript T denotes
the time step corresponding to the simulation time t.

The update of the state QT
i of cell i to the next time step QT +1

i , corresponding to
time t + ∆t, is done by solving interactions between cell i and its neighbors. These
interactions are described by the flux between neighboring cells, which corresponds to
a so-called Riemann problem. Let Qi,j be an FV cell, and Qi−1,j and Qi+1,j its left and
right neighbors, respectively. Analogously, Qi,j−1 and Qi,j+1 are the cells to the bottom
and top, respectively. Figure 2.1 demonstrates this cell arrangement.

The Riemann problem describes an initial discontinuity between the cell-wise constant
Qi and Qi±1,j±1:

Qi ̸= Qi±1,j±1 (2.4)

It is visualized in figure 2.2 for two arbitrary cells QL and QR.

For the sake of simplicity, the following explanation considers only the x dimension, as
the concept is analogous for the y dimension. Therefore, the notation for the y dimension
is omitted for the following terms. To simplify further, the non-conservative part of the
SWE is omitted.

10



2.3. ADER-DG

Figure 2.2.: Riemann problem at the interface between two cells due to discontinuity of
QL and QR shown in red.

The solution to the Riemann problem can be approximated by modeling the numerical
fluxes F (Qi, Qi−1) and F (Qi, Qi+1) through the left and right cell interfaces, respectively.
Let the cells be squares of width wcell , as set by the SWE API (see chapter 5), which
generates the simulations in this thesis. The following equation then describes the cell
update:

QT +1
i = QT

i − ∆t
wcell

(F (Qi, Qi−1) +F (Qi, Qi+1)) (2.5)

For this thesis, the so-called Rusanov flux FRus(QL, QR) [bib:rusanov_flux] is chosen
for the numerical flux. It is known to cause artificial numerical diffusion, but is rather
stable and does not tend to cause oscillations [bib:rusanov_marc]. With QL and QR

denoting the states of the cells to the left and the right of the interface, respectively.
FRus(QL, QR) is defined as:

FRus(QL, QR) =
1
2
(F(QL) + F(QR)− λmax(QR − QL)) (2.6)

2.3. ADER-DG

ADER-DG, which stands for Arbitrary high-order DERivatives Discontinuous Galerkin
[bib:ader_dg], is another type of solver for differential equations. It offers higher

11



2. Solvers

accuracy than conventional methods such as FV while remaining computationally
efficient.

Let ω be the order of the ADER-DG solver. Instead of using one data point per cell like
the finite volumes method, it discretizes the cells into a grid of n = n̄2 = (ω + 1)2 nodes,
i.e., n̄ = ω + 1 nodes per side.

With ADER-DG, the calculation of a single time step is divided into two phases: The
evolution of the nodal values is first computed locally, within a single cell, in the
so-called prediction phase. Afterward, these cell-local evolutions are projected to the
boundary between cells and used to compute fluxes between those cells in the correction
phase. The following sections explain both phases in detail.

2.3.1. Prediction phase

The prediction phase calculates the cell’s local time step solution. It does this by
multiplying equation 1.3 by test functions ϕ, and then by integrating it over the cell
volume V in space x̄ to obtain the so-called weak solution:

∫
V

∂

∂t
Qϕ dx̄ +

∫
V
∇ · Fϕ dx̄ +

∫
V

N∇Qϕ dx̄ = 0⃗ (2.7)

Additionally, this will later be integrated over time to advance the equation in time.

For simplicity, the non-conservative term
∫

V N∇Qϕ dx̄ is omitted in the following steps.
A detailed explanation of the NCP can be found in [bib:ncp] and its incorporation into
ADER-DG in [bib:ader_dg_ncp]. With this in mind, equation 2.8 can be simplified:

∫
V

∂

∂t
Qϕ dx̄ +

∫
V
∇ · Fϕ dx̄ = 0⃗ (2.8)

The product rule, when applied to the divergence term, states:

∇ · (Fϕ) = ∇ · Fϕ + F∇ · ϕ ⇔ ∇ · Fϕ = ∇ · (Fϕ)− F∇ · ϕ (2.9)

The so-called divergence theorem [bib:divergence_theorem] is used to express the
volume integral of the divergence

∫
V ∇ · Fϕ dx̄ by the integral of the face over the

surface S with the normal s⃗:

∫
V
∇ · Fϕ dx̄ =

∮
∂V

Fϕ⃗sdS (2.10)

Inserting this into equation 2.8 yields:

12



2.3. ADER-DG

∫
V

∂

∂t
Qϕ dx̄ +

∮
∂V

Fϕ⃗sdS −
∫

V
F∇ · ϕ dx̄ = 0⃗ (2.11)

The surface integral will be solved only in the correction phase and is therefore omitted
in this phase, yielding the following purely cell-local form:

∫
V

∂

∂t
Qϕ dx̄ −

∫
V

F∇ · ϕ dx̄ = 0⃗ (2.12)

Rearranging the terms gives:

∫
V

∂

∂t
Qϕ dx̄ =

∫
V

F∇ · ϕ dx̄ (2.13)

For a polynomial representation, Lagrange polynomials are chosen using Gauss-Lobatto
quadrature nodes [bib:gauss_lobatto]. They were chosen over the common alternative
of Gauss-Legendre nodes because they yielded more stable results. These quadra-
ture nodes allow the approximation of volume integrals using Gaussian quadrature
[bib:gauss_quad].

With the nodes x̄i and weights wi, the Gaussian quadrature for x̄ in the interval [−1, 1]
in one dimension is:

∫ 1

−1
f (x̄) dx̄ ≈

n̄

∑
i=1

wi f (x̄i) (2.14)

For an arbitrary interval [a, b], x̄ is transformed into x:

x =
b − a

2
x̄ +

a + b
2

(2.15)

This yields the quadrature:

∫ b

a
f (x) dx =

∫ 1

−1
f (x)

dx
dx̄

dx̄

=
∫ 1

−1
f (

b − a
2

x̄ +
a + b

2
)

b − a
2

dx̄

=
b − a

2

∫ 1

−1
f (

b − a
2

x̄ +
a + b

2
) dx̄

≈ b − a
2

n̄

∑
i=1

wi f (
b − a

2
x̄i +

a + b
2

)

(2.16)
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2. Solvers

Let the approximations of the volume integrals with the Gaussian quadrature be denoted
as:

∫
V

∂

∂t
Qϕ dx̄ ≈ [

∂

∂t
Qϕ]G∫

V
F∇ · ϕ dx̄ ≈ [F∇ · ϕ]G

(2.17)

For the complete prediction of the time step, the weak solution is integrated over one
time step ∆t for a given time t:

∫ t+∆t

t
[

∂

∂t
Qϕ]G dt =

∫ t+∆t

t
[F∇ · ϕ]G dt (2.18)

This yields a fixed-point problem that can be solved in several ways. The PDE engine
ExaHyPE2 uses so-called Picard iterations [bib:picard]. Again, without going into detail,
let the time step solution for Q and F be denoted by:

∫ t+∆t

t
[

∂

∂t
Qϕ]G dt ≈ [[

∂

∂t
Qϕ]G]P∫ t+∆t

t
[F∇ · ϕ]G dt ≈ [[F∇ · ϕ]G]P

(2.19)

With the aforementioned numerical solutions to the integrals, the prediction for the local
time step solution Q̂ can be obtained.

2.3.2. Correction phase

The correction phase uses the predicted time step solution Q̂ to model the interactions
between adjacent cells. This is done by extrapolating Q̂ onto the cell boundaries B,
yielding Q̂B. The extrapolated values are then used to calculate the surface integral term
derived in equation 2.10, which was so far left out. The surface integral is the sum of
the integrals over the cell’s boundaries B:

∮
∂V

Fϕ⃗sdS = ∑
B

∫
Fϕ⃗sdS (2.20)

Let Q̂B, L and Q̂B, R be the extrapolated values of arbitrary cells to the left and right of
their common interface, respectively. The Rusanov flux FRus(Q̂B,L, Q̂B,R) [bib:rusanov_flux]
is used again for the numerical flux F . Recall figure 2.1 for the arrangement and index-
ing of the cells. In this context, Q̂B,L is the local prediction Q̂B,i,j. The neighboring cells

14



2.4. Potential problems of ADER-DG

at the boundaries B of Q̂i,j provide their analogously extrapolated values Q̂B,i±1,j±1 as
the other argument Q̂B,R for the Rusanov flux. This results in:

∑
B

∫
Fϕ⃗s dS = ∑

I∈{−1,1}
∑

J∈{−1,1}

∫
FRus(Q̂i,j, Q̂i+I,j+J)ϕ dS (2.21)

This integral can again be approximated with the Gaussian quadrature:

∑
I∈{−1,1}

∑
J∈{−1,1}

∫
FRus(Q̂i,j, Q̂i+I,j+J)ϕ dS

≈ ∑
I∈{−1,1}

∑
J∈{−1,1}

[FRus(Q̂i,j, Q̂i+I,j+J)ϕ]G
(2.22)

Like the other terms of equation 2.19, this one also needs to be integrated over time with
the Picard iterations:

∫ t+∆t

t
∑

I∈{−1,1}
∑

J∈{−1,1}
[FRus(Q̂i,j, Q̂i+I,j+J)ϕ]G ≈ [ ∑

I∈{−1,1}
∑

J∈{−1,1}
[FRus(Q̂i,j, Q̂i+I,j+J)ϕ]G]P

(2.23)

Combining the prediction and the correction phases, the overall solution for the time
step is:

[[
∂

∂t
Qϕ]G]P = [[F(Q̂)∇ · ϕ]G]P − [ ∑

I∈{−1,1}
∑

J∈{−1,1}
[FRus(Q̂i,j, Q̂i+I,j+J)ϕ]G]P (2.24)

2.4. Potential problems of ADER-DG

2.4.1. Inaccurate cell boundaries

ADER-DG should produce high-order representations of the underlying solution within
a cell. In the case of strong discontinuities, however, the interpolation polynomials
cannot follow the desired values without inevitably producing oscillations of the water
height h, as seen in figure 2.3. The figure shows a polynomial interpolation of two flat
water regions of different heights. It can be seen that while the values at the nodes
are accurately represented, the values outside of these data points can differ from
the real solution. These inaccurate values are projected onto the cell boundaries and
arrive in neighboring cells, where they are handled as a regular water movement. This
significantly reduces the accuracy of the simulation. When the oscillations become
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2. Solvers

Figure 2.3.: Sharp changes in h values (blue) produce oscillations during polynomial
interpolation (green).

sufficiently strong in amplitude, they cannot be numerically represented, and the
algorithm produces "NaN" ("not a number") values. When NaNs are computed once,
they propagate across the whole domain, breaking the simulation entirely.

2.4.2. Numerical inaccuracies

Intuitively, a body of water with a constant water level and vx = vy = 0 should stay at
rest. Mathematically, the divergence of the fluxes ∇ · F should fully cancel out the NCP
N∇Q in this case:

∇ · F = −N∇Q (2.25)

Using equation 1.3, this results in no change in the water state over time:

∂

∂t
Q = 0⃗ (2.26)

One common issue in numerical solvers, including ADER-DG, is that those terms do
not entirely cancel each other out numerically due to rounding errors and the not
fully accurate projection of interpolation polynomials onto the cell boundaries. This
produces oscillations of the water level, which are then propagated across the domain,
as explained in section 2.4.1.

2.4.3. Dry data points

Both finite volumes and ADER-DG SWE solvers have one problem in common. The
numerical solution of the SWE can sometimes lead to negative values of h in shoreline
regions. This, however, is mathematically impossible, assuming no groundwater and
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2.4. Potential problems of ADER-DG

similar details, because the minimum water height is, by definition, h = 0 when the
region is dry.

As explained in section 2.4.2, however, an initially constant water level does not mean it
will stay constant throughout the numerical simulation. Since the dry regions should not
contribute fluxes to their neighbors anyway, the SWE must be bypassed there to prevent
them from doing so due to numerical inaccuracies. For that, the wetness threshold Twet

is introduced as a hyperparameter. The data point is considered dry if h < Twet. When
this happens, the flux F and the non-conservative term N are set to 0⃗:

F = N = 0⃗. (2.27)

Recall that the definition of the maximum eigenvalue λmax for calculation of the time
step size ∆t (equation 2.3). There, the velocities vx and vy are used. However, ExaHyPE
2 requires the calculation of λmax from Q alone. The definition of Q (equation 1.1) stores
the velocities as hvx and hvy. This leads to the following extraction step:

vx =
hvx

h

vy =
hvy

h

(2.28)

Now, a problem arises with dry cells, i.e., h = 0:

vx =
hvx

h
=

0
0

vy =
hvy

h
=

0
0

(2.29)

This division by 0 breaks the calculation of the time step size ∆t and, with it, the whole
simulation. To prevent this, the maximum eigenvalue is also set to 0 in dry cells, i.e.,
when h < Twet:

λmax = 0 (2.30)

Together with the zeroing out of the flux and the NCP (equation 2.27), this workaround
consistently stabilizes fully dry regions.

Still, it sometimes helps to apply another safety mechanism: The introduction of a lower
bound of 0 to the water height h during time step postprocessing. This is a dedicated
processing step for the QT +1 vector after the time step solution for T + 1 has been
computed, yielding a new vector QT +1

P . This new vector QT +1
P is then used as the input
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2. Solvers

Figure 2.4.: Non-negativity postprocessing, resulting in HP = max{b, H}.

for the next iteration. With the lower bound of 0, the water height hP, and consequently
the water level HP, are thus:

hP = max{0, h} ⇔ HP = max{b, H} (2.31)

Recall the Q vector definition from equation 1.1. There, all components, including the
velocities vx and vy, also depend on h. Taking this into account, the new vector QT +1

must therefore be

QT +1 =


hP

hPvx

hPvy

b

 =


0
0
0
b

 (2.32)

Figure 2.4 demonstrates the effect of the non-negativity postprocessing on the water
level H with the new water level HP in a one-dimensional context. There, H is initially
constant, so the bathymetry would produce a negative h when b ≥ H, which is fixed by
the postprocessing yielding HP = b in this region.
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3. Peano curve

Since the simulation domain comprises discrete cells, a method of accessing and evaluat-
ing all the cells must be implemented. Enter the space-filling curves. Space-filling curves
(SFC) aim to traverse a multidimensional domain efficiently while reaching every point
in that space. SFCs realize this by recursively subdividing the domain and constructing
an efficient path in a predefined pattern through the resulting subdomains.

One of the main advantages of space-filling curves is their parallelizability. The available
compute units (i.e., threads or CPU cores) can traverse disjoint sets of the subdomains
concurrently, yielding significant speedup. This is why they are a convenient choice for
the traversal of the SWE simulation domain.

A simple space-filling curve is the so-called Peano curve. Peano 4, the software frame-
work used for this thesis, as described in section 4.1, uses this specific SFC, hence the
name. For the sake of simplicity, the domain is assumed to be square. The Peano
curve recursively subdivides the domain into a 3 by 3 grid of square subdomains. Each
subdomain is traversed column by column, as seen in the left part of figure 3.1. The
individual paths through the subdomains can be stitched together to traverse the whole
domain in one efficient path. Figure 3.1 shows the resulting SFCs for recursion depths
d = 2 and d = 3.
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3. Peano curve

Figure 3.1.: Subdivision of the domain with a recursion depth of 1, 2, and 3
[bib:peano_wikipedia].
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Implementation
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4. Peano 4 and the ExaHyPE 2 extension

The simulation framework used for this thesis is called Peano 4 [bib:peano], together
with the built-in ExaHyPE 2 [bib:exahype_swe] extension. While Peano 4 lays the foun-
dation for the data structures and low-level data processing, the ExaHyPE 2 extension
provides the means to specify the concrete data processing needed for SWE simulations.
This part of the thesis explores their workings and how they are applied to the shallow
water simulation use case.

4.1. Peano 4

Peano 4 is a framework for the efficient discretization and traversal of multidimensional
simulation domains. In the case of SWEs, the domains are two-dimensional. They are
split up into grids of rectangular cells. To these cells, actual data and its processing
methods can be attached.

4.1.1. Domain traversal

The cells in such a grid are traversed along the Peano curve, as described in chapter 3. To
do that, the Peano curve is split into segments, which are mapped onto compute units,
i.e., processor cores. Each core then computes the time step solution for its segment of
the Peano curve and then synchronizes the boundaries with the cores responsible for
the neighboring segments. The parallelizability of the Peano curve traversal enables the
simulation to be run on powerful hardware, such as supercomputers, improving the
runtime significantly. This is demonstrated in figure 4.1, where the different colors of
the path show a potential mapping of the path segments to CPU cores. To consider the
interaction between the segments, however, the data has to be synchronized across the
cores, resulting in overhead.

Peano 4 supports multiple interfaces for parallelization, including OpenMP [bib:openmp],
MPI [bib:mpi], as well as GPU offloading.

4.1.2. Low-level configuration

The simulation can be set up on a low level by creating a Peano 4 project in Python. It
takes all hyperparameters needed for the complete definition of the simulation domain
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4. Peano 4 and the ExaHyPE 2 extension

Figure 4.1.: Traversal of the 9 by 9 cells simulation domain (gray) following the Peano
curve with recursion depth d = 2. The colors along the path show a
potential segmentation for individual CPU cores. ExaHyPE 2’s boundary
halo is shown in orange.

and its discretization and subsequent traversal, apart from the actual processing of the
cells. These hyperparameters include:

• Load balancing type

• Domain size

• Cell size

• User-defined constants

The user has to fill those stubs with code corresponding to the specific differential
equation.

4.2. ExaHyPE 2

To realize the simulation of shallow water equations, an engine for solving hyperbolic
PDEs is used on top of the low-level Peano 4 configuration. This engine is called
ExaHype 2 [bib:exahype_swe] and is an extension of the Peano 4 framework. It presents
an API to define the specific processing of the cell data across its internal nodes and the
faces toward neighboring cells.
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4.2. ExaHyPE 2

4.2.1. Solvers

One of the main components of the ExaHyPE 2 setup is the solver. The user can
choose between numerous solver types, including, but not limited to, finite volumes and
ADER-DG. The solvers can be configured extensively. Apart from the necessary hyper-
parameters, such as the cell width wcell , or the ADER-DG order, optional specifications
can be added, for example, time step postprocessing.

The setup is performed by creating an ExaHyPE 2 project, which extends the Peano
4 project from section 4.1.2. After building the project, the user is presented with
generated C++ callback function stubs. They represent the differential equation problem
and follow the form of equation 1.3. These functions are:

• Initial condition

• Boundary conditions

• Flux

• Non-conservative product

Additionally, there is a function for the maximum eigenvalue of the problem, which is
used to control the time step size of the simulation when the solver type implements
adaptive time stepping.

4.2.2. Boundary conditions

During the time step computation, the cells’ interaction with their neighbors has to be
considered. However, if a cell is on the boundary, there is no adjacent cell to interact with
in that direction. ExaHyPE 2 solves this problem with a halo of virtual cell faces around
the domain, which is then used for the flux calculation of the boundary cells within
the domain. Intuitively, one can view those virtual faces as projections of imaginary
cells around the domain, shown in figure 4.1 in orange. The values of the virtual faces
(Qoutside) can be calculated from the values of the boundary cells themselves (Qinside). A
more detailed explanation of the boundary conditions in the context of SWEs will be
explained in section 5.5.
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5. SWE API

Since this thesis revolves around one single differential equation, namely the SWE
from chapter 1, it makes sense to create another level of convenience on top of Ex-
aHyPE 2, which builds the complete SWE simulation after providing all necessary
hyperparameters.

Usually, the user has to manually use a plethora of Peano 4 and ExaHyPE 2 API calls
to configure a simulation fully. However, the different SWE scenarios explored in this
thesis, or the future (see part V), differ in only the hyperparameters and the initial
conditions. This paves the way for significant simplification of the configuration pipeline
and is realized by an API called the "SWE API" [bib:swe_api].

5.1. Python configuration code

The goal of the Python configuration code is to provide an API with which the user
can specify the complete set of hyperparameters for the simulation. These are used to
construct a SweBuilder object.

An SweBuilder object has a single method build(), which handles all data passing
and building of the Peano 4 project, as well as setting up all C++ code that is not
scenario-specific.

5.2. Solver definition

As already mentioned, ExaHyPE 2 offers multiple solver types, such as FV and ADER-
DG. From the user’s perspective, each has its own interface, decreasing its interchange-
ability with other types. The SWE API minimizes the differences between the different
solver types. Additionally, it removes the need to understand the technical intricacies of
the ExaHyPE 2 solvers.

The user now only needs to input the scenario-specific parameters to a Solver object pro-
vided by the SWE API. This Solver object is then used by the SweBuilder to instantiate
an appropriately configured ExaHyPE 2 solver object.

The SWE API also features different postprocessing algorithms, which can be given to
the Solver objects, potentially improving the stability of the simulation. One example is
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5. SWE API

the water height non-negativity postprocessing, as explained in section 2.4.3. Multiple
postprocessing algorithms can be specified at once in the desired order of application.
The postprocessing can be applied to the whole domain or selectively to the boundary or
corner cells. The Postprocessing interface, which the different algorithms implement,
can also be easily extended, allowing for more sophisticated postprocessing approaches
in the future.

5.3. SWE implementation

As previously stated in section 4.1, the user has to manually fill in the C++ code stubs for
each simulation scenario. Since the SWE code stays consistent across different scenarios,
this can be worked around by filling the stubs once and saving the resulting file as a
template for future builds. In subsequent builds of the ExaHyPE 2 project, this template
file replaces the C++ file in the build directory that would typically contain the code
stubs. When the build completes, the resulting simulation is configured to solve the
SWEs. Since every solver type generates a different stub code, each one needs one such
template file.

Another thing to consider is that the signature of the code stubs can vary slightly from
one solver type to another. This is solved by having solver-specific template files that
all implement the same SWEs and replacing the stub-containing file with the template
for the desired solver. To mitigate the resulting problem that each template has to
implement the SWEs from scratch, the whole SWE logic is extracted into its centralized
implementation. The templates then call this single source of truth during the actual
calculation. This is good practice in programming and makes maintaining and updating
the SWE code significantly more accessible.

5.4. Scenario definition

For a complete description of the initial conditions of the SWE scenario, the bathymetry
and the initial water height need to be specified for the whole domain. This is realized
by the SweScenario interface. By implementing this interface for a specific scenario, the
user can provide definitions of the required initial conditions.

5.4.1. Domain and cell sizes

Since the SWE API sets both the domain and the cells to be square, defining them by
their widths makes sense. Recall that the traversal of the cells follows the Peano curve
(see section 3, which recursively subdivides the (sub-)domain into a 3 by 3 grid. At this
point, the SWE API does not support adaptive mesh refinement (AMR) Therefore, the
whole domain is a grid of 3d by 3d square cells for a recursion depth d. To express the
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desired cell width wcell in a compact way, the d is used together with the domain width
hyperparameter wdomain:

wcell =
wdomain

3d (5.1)

5.4.2. Bathymetry definition

One prominent feature of the SWE API is the ability to import arbitrary bathymetry
for the simulation in the form of NetCDF files with the help of NetCDF C++ library
[bib:netcdf]. This allows for simulations of real-world scenarios, such as the tsunami
that hit the coast of Japan in 2011, which was one of the causes of the Fukushima nuclear
reactor meltdown [bib:tohoku], which made news across the globe. The simulation,
which uses this real-world data, is explored in section 6.4.

Often, it is needed to define the bathymetry programmatically, depending on the position
(x, y) in the simulation domain. An example use case is the "sloped beach" scenario, as
studied in section 6.3. There, the bathymetry follows the equation b = −0.1x. This, too,
is implemented in the SWE API, with the coordinates x and y being provided as the
parameters for the bathymetry calculation.

Both methods of bathymetry definition are interchangeable in the SWE API. However,
when using the NetCDF bathymetry definition, the interface SweScenarioNetcdf needs
to be implemented instead of SweScenario. This is there to relieve the user of the need
to implement the bathymetry manually since the NetCDF file already defines it.

5.4.3. Initial conditions

Recall the definition of the vector of unknowns Q = (h, hvx, hvy, b)T (see equation
1.1).

The specification of the initial water height h is done programmatically. Similar to
the bathymetry definition, the coordinates x and y are provided. Additionally, the
bathymetry b at the point (x, y) is given. Amongst other potential use cases, this allows
for a more straightforward definition of the initial water height in terms of the water
level H0. The initial water height h0 can now be calculated from the water level:

h0 = H0 − b (5.2)

Having covered two of the four components of the vector Q, only the water velocities
(times h), hvx, and hvy remain. They are set to zero, which represents an initially static
water volume that the shallow water equations take over at t = 0:
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hvx = hvy = 0 (5.3)

5.5. Boundary conditions

As briefly stated in section 4.1, the boundary conditions are realized by a halo of virtual
cell faces around the simulation domain, which is then used for the flux computation.
The Peano framework provides a callback function stub with the value of the cell inside
the domain Qinside next to the boundary and a pointer in which to store the value of the
corresponding outside cell face Qoutside.

The type of boundary conditions chosen for the SWE API are the so-called "reflecting"
boundary conditions. Intuitively, this means that the domain with all its water is a
closed system and that waves hitting the boundaries are reflected into the domain. This
is implemented by setting the water height houtside, as well as the bathymetry boutside of
the virtual cell face to the values of the neighboring cell inside the domain (hinside, binside)
and inverting the velocities (hvx,inside, hvy,inside) in the corresponding direction:

Qoutside =


houtside

hvx,outside
hvy,outside

boutside

 =


hinside

−hvx,inside
−hvy,inside

binside

 (5.4)

This might lead to a problem, however. When the bathymetry is a slope near the
boundary, and the bathymetry of the outside cell is set to the same value as the inside
cell, there is a sharp change in the gradient between the cells. Figure 5.1a highlights this
gradient change with a right red cross in a cross-section of the domain. The green line
represents the bathymetry b, and the blue line the water level H. The orange region is
the emulated cell outside the simulation boundary. For numerical PDE solvers, such
situations on the boundary might lead to instability.

To mitigate this problem, the SWE API can extend the simulation domain by a halo of
flat bathymetry of width whalo, as demonstrated by figure 5.1b. This is equivalent to
shifting the problem from the boundary into the actual simulation domain, where the
computation is more stable.

The new domain width w′
domain is thus

w′
domain = wdomain + 2 · whalo (5.5)

The main downside of this approach is the enlargement of the domain size. Recall that
the resolution of the simulation is anti-proportional to the cell width (see equation 5.1).
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5.6. Complete definition of a simulation

(a) A sharp change in the bathymetry gradi-
ent at the domain boundary might lead
to instability.

(b) The domain is extended by whalo to shift
the sharp change in the bathymetry into
the simulation domain. The dashed gray
line is where the domain boundary orig-
inally was. This may increase the stabil-
ity.

Figure 5.1.: Cross-section of the bathymetry and water level at the domain boundary.
The red crosses highlight sharp changes in the bathymetry gradient. The
black vertical line represents the boundary, and the orange region is Peano’s
emulated boundary cell.

Since the cell width wcell , is defined via the subdivision depth of the domain, an increase
of the domain size also increases the cell width to w′

cell :

w′
cell =

w′
domain
3d

=
wdomain + 2 · whalo

3d

=
wdomain

3d +
2 · whalo

3d

= wcell +
2 · whalo

3d

(5.6)

This, in turn, decreases the resolution. Since the halos are generally kept small compared
to the total domain size, this decrease in resolution is negligible in most cases.

This flat bathymetry halo, which the SWE API provides, must not be confused with
ExaHyPE 2’s realization of the general boundary conditions (see section 4.2.2) using a
halo of virtual cell faces around the simulation domain.

5.6. Complete definition of a simulation

Building all the previous components together, a complete simulation definition would
look like this:
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• Solver

– Solver-specific properties

– Postprocessing

• Domain width wdomain

• Subdivision depth d

• Bathymetry b

• Initial water height h0

• Wetness threshold Twet

• Halo width whalo

The SWE API still needs some auxiliary technical parameters, but they are irrelevant to
the overall simulation outcome and are thus left out in this thesis.

Figure 5.2 summarizes a simulation’s configuration data flow by the SWE API and its
underlying frameworks ExaHyPE 2 and Peano 4. The orange elements represent Python
code, and the blue ones represent C++ code.

5.7. Additional features

5.7.1. Analysis tools

Independently of the simulation configuration, the SWE API ships with Python tools
to analyze the performance of the simulations. The so-called trackers hook into the
simulation output and capture the time step data t and ∆t per iteration. The timestamps
τ of the individual iterations can also be tracked. This data is then saved into CSV
(comma-separated values) files. The included CSV parsers and plotters can then visualize
the recorded data. The figures and tables in chapter 7 were generated using these analysis
tools.

5.7.2. Bash scripts

Several shell commands are included to control the SWE API from the command line
easily. They are a convenient way to build, run, and render (for the visualization with
ParaView [bib:paraview]) the simulations:

• swebuild: Executes the SWE API building pipeline to create an executable for the
simulation

• swesim: Runs the simulation
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5.7. Additional features

Figure 5.2.: Configuration data flow of the SWE API and its underlying frameworks
Peano 4 and ExaHyPE 2, which yields an executable for the simulation. The
orange elements represent Python code, and the blue ones represent C++
code.
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• swerender: Renders the results of the simulation for the visualization with Par-
aview

• swefull: Subsequently executes the commands swebuild, swesim, and swerender

• sweperf: Runs the simulation with swesim and tracks the iteration data (see section
5.7.1)

For these commands to function correctly, multiple system setup steps have to be
performed:

1. The commands must be made available to the environment variable PATH

2. The environment variable SWE_API_PATH must be set to the directory containing
the SWE API

3. The environment variable PEANO_PATH must be set to the directory containing the
Peano 4 implementation

4. The environment variable PYTHONPATH must be extended by $SWE_API_PATH/python
and $PEANO_PATH/python
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Benchmarking
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The following factors are used to assess the quality of the simulations computed with
an ADER-DG solver:

1. Stability of the computation

2. Shape of the resulting volumes of water

3. Performance

To evaluate the stability of the simulations, it is most interesting to look at the parts of
the solver which induce the most instability. Recalling the previous sections, several
limitations of ADER-DG were mentioned. This part explores multiple shallow water
scenarios built to showcase these limitations and evaluates how significant they are for
general applications. For comparison, some of the following scenarios are simulated
with both the FV and the ADER-DG solvers provided by the SWE API.

All visualizations of the simulations were created with the software ParaView [bib:paraview].
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It is essential to mention that all the following scenarios use reflecting boundary condi-
tions, as stated in 5.4. Recalling section 5.4.3, the initial water velocities are always set to
vx,0 = vy,0 = 0.

6.1. Resting lake

One of the most trivial scenarios imaginable is a volume of water without any water
movement. In the context of this thesis, this is called a "resting lake."

The main goal of this scenario is to verify whether the flux and NCP terms cancel each
other out, as explained in section 2.4.2. Mathematically, they should do this when the
overall water level H is constant, and all velocities are vx = vy = 0.

Multiple stages of the resting lake scenario are defined to investigate this.

6.1.1. Fully dry

The most trivial scenario is the one with no water, i.e., h0 = 0. Together with a
bathymetry b = 0, the initial configuration Q0 is therefore:

Q0 =


h0

vx,0

vy,0

b

 =


0
0
0
0

 = 0⃗

The domain width wdomain, the cell width wcell (defined by subdivision depth d), and the
wetness threshold Twet are chosen as the following:

wdomain = 1m

d = 4 ⇔ wcell =
wdomain

3d =
1m
34 =

1
81

m

Twet = 0.01m

(6.1)

The complete simulation configuration, therefore, looks like this:
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• ADER-DG solver

– Order ω = 3

• Domain width wdomain = 1m

• Subdivision depth d = 4

• Bathymetry b = 0

• Initial water height h0 = 0

• Wetness threshold Twet = 0.01m

Note that this data representation matches the structure of the inputs for the SWE API,
which allows for future reconstruction of the same scenario.

The result is, unsurprisingly, that the fluid dynamics simulation immediately reaches a
time step size of ∆t = 0 due to the absence of fluid.

6.1.2. Fully wet

The next step is to fully flood the terrain with still water. From now on, it makes more
sense to refer to the terrain as bathymetry. The full scenario is defined as follows:

• ADER-DG solver

– Order ω = 3

• Domain width wdomain = 1m

• Subdivision depth d = 4

• Bathymetry b = sin(5x) · sin(5y) · 1m

• Initial water height h0 = 3m − b

• Wetness threshold Twet = 0.01m

A lake at rest should, without external forces, stay at rest. This is expressed mathemati-
cally by the mutual cancellation of the flux and NCP terms (see equation 2.25).

Figure 6.1 examines those oscillations. They are of such a low magnitude compared
to the overall water height that they can be safely neglected. The SWE API can thus
successfully simulate a lake at rest with ADER-DG.

6.1.3. Partially dry

The last stage of the resting lake scenario is the presence of dry cells. This scenario uses
the same bathymetry as the previous one but reduces the water level such that parts of
the bathymetry lie above water. The full scenario is defined as:
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6.1. Resting lake

Figure 6.1.: Unnatural water level oscillations in a fully flooded resting lake scenario.
Scenario parameters: ADER-DG order ω = 3, d = 4.

• ADER-DG solver

– Order ω = 3

• Domain width wdomain = 1m

• Subdivision depth d = 4

• Bathymetry b = sin(5x) · sin(5y) · 1m

• Initial water height h0 = max{0, 0.5m − b}

• Wetness threshold Twet = 0.01m

The simulation runs stably until t ≈ 0.06s, corresponding to about 1200 iterations. Then,
a problem arises, destabilizing the simulation and leading to inconsistent and, more
importantly, dropping time step sizes ∆t. Oscillations of the water height (and thus
water level) occur in partially dry cells. These oscillations increase in amplitude over
time and propagate to nearby wet cells. Eventually, they become so large that the solver
is unable to represent them, turning them into NaNs ("not a number"). The NaNs are
propagated in only a few iterations across the whole simulation domain, after which the
time step size reaches ∆t = 0, breaking the simulation entirely at t ≈ 0.1s after about
3300 iterations. Figure 6.2 shows those water level oscillations at t ≈ 0.09s. The red and
white area in the middle of the figure represents one of the islands, i.e., h = 0.

A closer look reveals that they are the strongest in those cells, where two neighboring
cells are mostly dry, and the other are mostly wet. It is important to note that partially
dry cells always produce stronger oscillations than fully wet ones. Usually, oscillations
from one neighboring dry cell are not sufficient to cause the solver to fail. However,
when the oscillations from two or more sides arrive in one cell at once, they add up
to be strong enough to induce instability in that cell. From then on, the oscillations
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Figure 6.2.: Oscillations at partially dry cells in the resting lake scenario at t ≈ 0.09s.
The red and white area in the middle of the figure represents one of the
islands, i.e., h = 0. Scenario parameters: ADER-DG order ω = 3, d = 4.

increase indefinitely inside that cell until they break the simulation. Note that the cell
where the oscillations from the neighbors meet must already contain water (h > 0m) for
this phenomenon to occur.

The conclusion for this scenario is, unfortunately, that ADER-DG cannot handle water-
containing cells when arranged in such a way that at least two neighbors are mostly
dry.

6.2. Radial outflow

The following two scenarios are designed to isolate the effects of moving water volumes
from the already observed problems of ADER-DG in resting lake scenarios. For that,
radially symmetrical volumes of water are placed onto a domain at rest with a fixed
water height α and flat bathymetry b = 0.

6.2.1. Smooth water volume

The first scenario has no sharp changes of the initial unknowns Q0, especially water
height h0. A vertically flipped sigmoid function is used to represent the smooth slope of
the water volume:
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6.2. Radial outflow

σγ(r) = (1 + exp(r − γ))−1 (6.2)

In this scenario, the argument r is set to the distance from the middle of the domain.
For the sake of simplicity, the middle of the domain is set to the origin of the coordinate
system, in turn yielding the definition of r:

r =
√

x2 + y2 (6.3)

The parameter γ specifies how far away from the center the water height falloff should
happen. The height of the water volume defined by the sigmoid function is controlled
by a factor β. As mentioned, a positive baseline water level is established with α, to
which the sigmoid water volume is then added.

Combining those parameters, the initial water height is

h0 = α + β · σγ(r) (6.4)

This is demonstrated in figure 6.3a.

For this use case, the parameters are α = 1m, β = 1m, and γ = 10m. The complete
scenario definition is:

• ADER-DG solver

– Order ω = 3

• Domain width wdomain = 81m

• Subdivision depth d = 4

• Bathymetry b = 0

• Initial water height h0 = 1m + 1m · σ10m(r)

• Wetness threshold Twet = 0.01m

Figure 6.3a shows the cross-section of the domain’s water volume through the origin
with the smooth water falloffs from the sigmoid.

Observing the simulation during its computation, it is evident that it runs stably with a
constant time step size.

Initially, the water develops in a way that makes physical sense. It is pushing down
on itself and escapes outwards from the origin. At some point, the wave takes the
shape of a near-vertical edge, a so-called shock. In reality, the wave would break in
the next moment. However, the shallow water equations do not consider friction and
are thus incapable of simulating breaking waves. The result is that the wave keeps
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6. Scenarios

(a) Initial water level defined by a sigmoid function.

(b) Water level after 4s producing a sharp edge with oscillations.

(c) Close up of the oscillations of figure 6.3b.

Figure 6.3.: Water level of the smooth water volume scenario plotted along its radius.
Scenario parameters: ADER-DG order ω = 3, d = 4.
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6.2. Radial outflow

Figure 6.4.: A radial wave being reflected towards the domain middle at the boundary.

pushing the shock edge outward, as seen in figure 6.3b. It presents the simulation state
at t ≈ 4s Additionally, there are oscillations of the water level at this edge caused by its
polynomial representation, but they did not destabilize the simulation enough to break
it. Figure 6.3c is a close-up of the shock edge, showing those oscillations.

This simulation also makes the effect of the reflecting boundary conditions visible, which
have been explained in section 5.5. Figure 6.4 shows the radially outflowing wave being
reflected into the domain after t = 10.

In conclusion, ExaHyPE 2, together with the SWE API, is capable of successfully
simulating this scenario.

6.2.2. Dam break

The following experiment is another radial outflow scenario called a "dam break." This
time, a sharply bounded water cylinder is placed on the resting lake. The noticeable
feature of this cylinder is its vertical walls with a flat top, resulting in a discontinuity.
The goal here is to analyze how ADER-DG handles such discontinuities.

Section 3.4 of article [bib:leo] already constructed and analyzed such a scenario. The
simulation by Peano and the SWE API will be compared to those results. There, the base
water level is at α = 4m, and the cylinder is placed in the origin with a height of β = 3m
and a radius of γ = 5m, as demonstrated by figure 6.6a. Note that the figure plots the
water level along the radius of the cylinder to stay consistent with the representation in
[bib:leo].
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6. Scenarios

A normalized water cylinder can be expressed as

cγ(r) =

{
1, if r ≤ γ

0, otherwise
(6.5)

And with that, the complete initial water height analogously to section 6.2.1:

h0 = α + β · cγ(r) (6.6)

As for the previous experiments, here is the complete scenario definition:

• ADER-DG solver

– Order ω = 7

• Domain width wdomain = 20m

• Subdivision depth d = 4

• Bathymetry b = 0

• Initial water height h0 = 4m + 3m · c5m(r)

• Wetness threshold Twet = 0.01m

The reference, figure 3.6 of [bib:leo], shows the water level at t = 0.3s. That figure is
adapted in figure 6.5 for a more straightforward comparison. Comparing this to figure
the SWE API results in 6.6c, it is evident that the shapes of the water level match closely.
This means that the shallow water equations implemented by the SWE API (see section
1) are well suited for accurate simulations.

While the sharp drop in the water level of the initial condition poses no problem for the
ADER-DG solver, the resulting shock front produces oscillations like in section 6.2.1.
They are visible in both figures 6.6c and 6.5.

One consistent way to reduce the oscillations is to reduce the ADER-DG order ω. Figure
6.6b shows the same simulation with an ADER-DG order of 3 instead of 7. The figure
proves the reduction of the oscillations with a lower ADER-DG order. The downside of
this, however, is that the accuracy is reduced.

Overall, this simulation scenario can be regarded as successful, further confirming the
SWE API ADER-DG as a valuable tool for shallow water simulation.

6.3. Single wave on sloped beach

Now to a scenario, which is a combination of [bib:swsb] and [bib:leo]: The single wave
run-up onto a sloped beach. This scenario is one step closer to reality than the previous
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6.3. Single wave on sloped beach

Figure 6.5.: Figure 3.6 of [bib:leo] showing their results of the dam break scenario.

one and is also a test for the dynamics of cells becoming dry and wet.

The sloped beach can be described with

b = −0.1x (6.7)

The initial wave shape is described by an equation similar to the one in section 4 of
[bib:swsb], but with the parameters from equation 3.4 of [bib:leo]:

h0 = max{0, 3m · exp(−0.4444 · ( x
5000m

− 4.1209)2)

− 9m · exp(−4 · ( x
5000m

− 1.6384)2)− b}
(6.8)

Figure 3.4 in [bib:leo] shows the wave development at t1 = 160s, t2 = 175s, and
t3 = 220s. The figure is also included here for simplicity in figure 6.7. The goal is to
replicate these states with ExaHyPE2 and the SWE API. Note that their implementation
uses a different SWE definition. Nevertheless, the overall shape of the plots should
remain similar.

The complete scenario definition is

• ADER-DG solver

– Order ω = 2

– Postprocessing: Non-negativity

• Domain width wdomain = 50400m

• Subdivision depth d = 5
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6. Scenarios

(a) Initial water level of the radial dam break scenario, defined by a cylinder.

(b) ADER-DG order ω = 3 simulation after t = 0.3s.

(c) ADER-DG order ω = 7 simulation after t = 0.3s with stronger oscillations compared to order
ω = 3.

Figure 6.6.: Water level of the radial dam break scenario plotted along its radius. Scenario
parameter: d = 4.
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6.3. Single wave on sloped beach

Figure 6.7.: Figure 3.4 of [bib:leo] showing their results for H and hvx of the sloped
beach scenario. Note that hvx is denoted by hu in their figure. The original
figure also featured plots for vx, which were omitted here.

• Bathymetry b = −0.1x

• Initial water height: See equation 6.8

• Wetness threshold Twet = 0.01m

Note that an ADER-DG order of ω = 2 was used. This is because, for higher polynomial
orders, NaN-values are produced before the final timestamp t3 = 220. The NaNs are
being generated in the fully dry corners of the domain, similarly to section 6.1.3. The
difference to that scenario is, however, that the oscillations do not come from neighboring
partially dry cells but instead from the cells outside of the boundary (see section 4.2.2).
An order of 2 delays the NaN computation until after t3, so the comparison to [bib:leo]
can take place.

Figure 6.8 shows both the water levels H = h + b as well as the velocities (times h) hvx

of the SWE API’s results along the x direction at an arbitrary y coordinate in the same
x interval. This representation is reasonable because the shape of the water and its
temporal development is, by the scenario’s design, independent of y.

It is evident that the shapes of both H and hvx match closely to those of figure 6.7.
However, there are visible differences in hvx, at least for t1 = 160s and t2 = 175, as seen
in figures 6.8d and 6.8e. These differences, however, diminish in the further development
of the water volume. Figure 6.8f shows minimal signs of them, concluding that they
have negligible influence on the overall simulation quality.

One interesting observation is that although this scenario features partially drying cells,
the simulation did not break in those places like in section 6.1.3. This is because, in this
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6. Scenarios

(a) b and H at t1 = 160s. (b) b and H at t2 = 175s. (c) b and H at t3 = 220s.

(d) hvx at t1 = 160s. (e) hvx at t2 = 175s. (f) hvx at t3 = 220s.

Figure 6.8.: Simulation results of a wave run-up onto a sloping beach. H is shown in
blue, b in green, and hvx in red. Scenario parameters: ADER-DG order
ω = 2 with non-negativity postprocessing, d = 5.
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6.4. Real-world bathymetry: Japan

scenario, there are no water-containing cells, where at least two neighbors are mostly
dry.

The verdict of this scenario is that the SWE API can, in principle, accurately simulate
the wave run-up onto a sloping beach with wetting and drying cells. However, fully dry
domain corners are prone to instability, which may result in an early breaking of the
simulation due to NaNs being computed.

6.4. Real-world bathymetry: Japan

As mentioned in section I, the last scenario uses a real-world bathymetry of the Pacific
Ocean east of the coast of Japan. It is inspired by the tsunami from 2011, which was
partly responsible for the reactor meltdown at the Fukushima nuclear power plant and
other severe devastation. For this experiment, another dam break is simulated, where
a β = 400m high and γ = 100000m wide cylinder of water is placed on a base water
level of α = 0 to the east of Japan’s land mass in the region of Tohoku. The bathymetry,
extracted from a NetCDF file, is shown in figure 6.9a. This cylinder is much higher than
the waves in 2011, with a maximum height of at most 40m [bib:tohoku]. This height
was chosen for a clearer visualization of the results. Figure 6.9b shows the initial shape
of the water. Japan’s land mass sticking out of the water is also visible there. The goal
of this scenario is to confirm that the SWE API can handle real-world bathymetry with
all three types of cell states: Fully dry, fully wet, partially dry.

6.4.1. ADER-DG

The simulation with ADER-DG is set up to simulate tmax = 5h = 18000s with the
following configuration:

• ADER-DG solver

– Order ω = 3

– Postprocessing: Non-negativity

• Domain width wdomain = 313 · 1m = 1594323m

• Subdivision depth d = 5

• Bathymetry b taken from the NetCDF file

• Initial water height h0 = max{0, 400m · c100000m(r)− b} with r = 0 at coordinates
(150000m, 0m)

• Wetness threshold Twet = 2.5m

• Halo width whalo = 15000m
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6. Scenarios

(a) Bathymetry of and around Japan ex-
tracted from a NetCDF file.

(b) Initial water level of the scenario. The
land mass of Japan is also visible.

Figure 6.9.: Initial configuration of the Tohoku tsunami scenario simulated with ADER-
DG. The cross icon represents the center of the initial water cylinder. Scenario
parameters: ADER-DG order ω = 3 with non-negativity postprocessing,
d = 5, whalo = 15000m.

However, if no halo is defined, the simulation breaks at t ≈ 230s when NaNs start being
calculated. This time, the NaNs are generated in the partially dry cells. This is due
to the same oscillations, which were responsible for breaking the partially wet resting
lake scenario in section 6.1.2. They are most prominent on the island of Iturup in the
north-east of Japan. Adding a halo of width whalo = 15000m improves the simulation
time to t ≈ 250s, but the NaNs appear nonetheless. Figure 6.10b depicts the water level
around the island, where the oscillations lead to NaNs in subsequent time steps.

The simulation is worth examining at its last valid time t ≈ 250s. Figure 6.10a shows the
entire domain. A visual inspection indicates a realistic development of the water volume,
where the bathymetry in the coastal region deforms the radially outward-flowing water
volume.

6.4.2. Finite Volumes

To further investigate the quality of the shallow water equations themselves, when
implemented by the SWE API, the same scenario is simulated again with a finite
volumes solver. The configuration is now:

• Finite volumes solver

– Postprocessing: Non-negativity
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6.4. Real-world bathymetry: Japan

(a) Full domain shows a realistic spread-
ing of the wave before the simulation
breaks.

(b) Close-up of the island of Iturup, where
the water level oscillations are severe
enough to produce NaNs.

Figure 6.10.: Water level and land mass of the Tohoku tsunami scenario simulated with
ADER-DG at t ≈ 250s. Water level oscillations in partially dry cells lead
to NaNs in subsequent time steps. Scenario parameters: ADER-DG order
ω = 3 with non-negativity postprocessing, d = 5, whalo = 15000m.

• Domain width wdomain = 313 · 1m = 1594323m

• Subdivision depth d = 7

• Bathymetry b taken from the NetCDF file

• Initial water height h0 = max{0, 400m · c100000m(r)− b} with r = 0 at coordinates
(150000m, 0)

• Wetness threshold Twet = 0.01m

• Halo width whalo = 5000m

Instead of ADER-DG, the simulation with the FV solver needs a narrower halo and runs
stable for the whole duration until tmax = 18000s.

Figure 6.11a shows the simulation at t ≈ 30s shortly after the beginning. Since the
water level (apart from the water cylinder) was defined as H0 = 0, one would expect the
water level to stay constant until the actual wave arrives. However, irregularities can
be observed across the whole domain. Recalling the bathymetry (see figure 6.9a), it is
evident that the irregularities happen where the bathymetry sharply changes. This is
most prominent at the Japan Trench, the region of the Pacific Ocean where the Pacific
plate moves under the Okhotsk Plate in a process called subduction. The Japan trench is
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6. Scenarios

(a) d = 7. (b) d = 5.

Figure 6.11.: Snapshots of the FV simulation at t ≈ 30s with different resolutions, i.e.,
domain subdivision depths d. Irregularities of the water level decrease
with higher resolution. Scenario parameters: FV with non-negativity
postprocessing, d = 7, whalo = 5000m.

identifiable as the dark blue region in 6.9a.

The magnitude of the irregularities decreases with increasing resolution, i.e., increasing
subdivision depth in the context of the SWE API. For comparison, figure 6.11b shows
the water level of a simulation with a subdivision depth of d = 5, instead of 7, at the
same time t ≈ 30s. There, the irregularities are much more substantial.

This phenomenon reduces the accuracy of the simulation significantly and is, therefore,
a considerable disadvantage of the finite volumes method to ADER-DG, where it does
not occur. However, this disadvantage is overshadowed by the complete breaking of
the ADER-DG simulations, making the finite volumes method more feasible in such
scenarios until a stable solution for partially dry cells is implemented.

Figure 6.12 shows more simulation snapshots. The snapshots further confirm the
feasibility of SWE, as the water levels look physically and numerically plausible. The
water level does not change much from t ≈ 12000s to tmax = 18000s since the water is
almost entirely at rest by then.

To conclude the last scenario, and thus the whole chapter, it can be said that ADER-DG
offers higher accuracy and lower water level distortions caused by the bathymetry
gradients compared to finite volumes. However, the breaking of the simulation at
partially dry cells is a heavy disadvantage. Still, the SWE API generates plausible results,
and the simulations run stably with the FV solver.
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6.4. Real-world bathymetry: Japan

(a) t ≈ 3000. The wave hits and encom-
passes Japan’s land mass. Additionally,
the wave is visibly reflected at the do-
main’s bottom (south) border.

(b) t ≈ 12000s. The wave almost fully dis-
sipated, leading to the transformation
of the simulation into a resting lake sce-
nario.

Figure 6.12.: Snapshots of the FV simulation. Scenario parameters: FV with non-
negativity postprocessing, d = 7, whalo = 5000m.
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7. Performance

In addition to the quality of the simulation results, the assessment of the runtime
performance of the ADER-DG simulations is of interest.

To disambiguate the simulation time t from its actual runtime, the real-world time is
denoted as τ. Note that the runtime performance is independent of the SWE API setup
pipeline.

All following measurements were made on a consumer-grade computer with the follow-
ing hardware specifications:

• CPU: AMD Ryzen 9 7950X with 16 cores at 4500MHz

• RAM: DDR5 at 6200MT/s

Peano 4 was configured to use OpenMP [bib:openmp] for multithreading. The times
were measured over a runtime of τmax = 600s per simulation. The simulation scenario
used to generate the following results is similar to the Tohoku tsunami scenario from
section 6.4:

• ADER-DG solver

– Order ω = 3

– Postprocessing: Non-negativity

• Domain width wdomain = 313 · 1m = 1594323m

• Subdivision depth d = 5

• Bathymetry b taken from the NetCDF file

• Initial water height h0 = max{0, 400m · c100000m(r)− b} with r = 0 at coordinates
(150000m, 0m)

• Wetness threshold Twet = 2.5m

7.1. Parallelization

The first important subject is the parallelizability of the solving process. As explained
in section 4.1.1, the domain is traversed along the Peano curve, and segments of the
curve can be mapped onto different CPU cores. This section analyzes the speedup when
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7. Performance

Figure 7.1.: ADER-DG iterations (time steps) computed in τmax = 600s for different
numbers of cores c.

using an increasing number of CPU cores. The number of cores c is controlled with the
OMP_NUM_THREADS environment variable.

Figure 7.1 depicts, how many iterations, i.e. time steps, the simulation could compute in
τmax = 600s. The different plots represent different numbers of cores c. It can be seen
that the iterations for a set c take a constant time τiter to compute, which is reflected in
the linearity of the plots. Another observation is that the setup time of the simulation, i.e.,
until iteration 0 commences, is τsetup ≈ 0. Even though τsetup includes the parsing of the
NetCDF bathymetry files, as well as the setup of the cell mesh, and is in τsetup ∈ O(3d)

time, the speed of modern computers makes τsetup negligible for a subdivision depth
d = 5.

Table 7.1 lists the total number of iterations computed in τmax = 600s and uses them
to calculate the speedup of using multiple cores compared to a single one. From the
table, it is evident that the parallelization does not yield linear speedup. The simulation
speeds up until c = 9 cores and gets slower with c > 9. Note that this result may vary
for different hardware configurations.

Overall, a benefit of parallelization is present, paving the way for efficient simula-
tions.

7.2. Subdivision depth

Another prominent parameter that influences the runtime is the subdivision depth
d.

Table 7.2 shows the setup times τsetup and the average iteration times τ̃iter calculated in
τmax = 600s, depending on d. The measurements were made with the optimal number
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7.2. Subdivision depth

c Iterations Speedup
1 601 1.0
2 993 1.65
3 1503 2.5
4 1401 2.33
5 1705 2.84
6 1712 2.85
7 1622 2.7
8 1649 2.74
9 2268 3.77
10 2125 3.54
11 1743 2.9
12 1579 2.63
13 1720 2.86
14 1558 2.59
15 1429 2.38
16 1490 2.48

Table 7.1.: Total ADER-DG iterations (time steps) computed in τmax = 600s for different
numbers of cores c and their speedup compared to c = 1.

d τsetup τ̃iter

4 0.864 0.0399
5 5.909 0.266
6 47.232 2.13
7 419.246 18.9

Table 7.2.: Setup times τsetup and average ADER-DG iteration times τ̃iter for different
subdivision depths d. The simulations ran for τmax = 600s.

of cores c = 9.

An exponential increase in both the setup times and the average iteration times can
be observed. This makes sense, as the domain increases in size by 32 = 9 for each
increment of d. With higher values of d, a noticeable amount of time is spent on the cell
mesh setup and the parsing of the bathymetry NetCDF file. While the τsetup ≈ 47s are
still essentially negligible for d = 6, one has to take longer setup times into account for
larger values of d. However, since simulations of high d need a significantly longer time
to compute the desired number of iterations, τsetup will remain only a tiny portion of the
total simulation runtime.

59



7. Performance

Figure 7.2.: ADER-DG iterations (time steps) computed in τmax = 600s for different
orders ω.

7.3. ADER-DG order

The last parameter which has an impact on the runtime is the ADER-DG order. An
order of ω corresponds to n = (ω + 1)2 nodes per cell.

Figure 7.2 shows the number iterations processed in τmax = 600s. It can be seen that the
iteration times stay nearly the same for ω ≤ 4. However, the simulation slows down for
ω > 4, reflected in less computed iterations in τmax = 600s. A possible reason is that
this is due to the data load exceeding the capacity of the processor cache.

Another observation is the slowdown of the simulation with ω = 5 and an early
termination of the simulation for ω = 2. These are the effects of the appearance of
NaNs on the runtime. As soon as the NaNs cover the whole domain, the simulation
terminates. This is why the ω = 2 data does not extend to τmax = 600s. Until that
happens, the NaNs must spread across the domain from their origin, in this case, the
oscillation-prone region from figure 6.10b. This is slower compared to a stable runtime.
While this slowdown is not noticeable for ω = 2, due to the data still fitting inside the
CPU cache, an increase of the iteration time τiter can be observed after the NaNs first
start appearing for ω = 5.
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Part V.

Outlook and conclusion
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As was demonstrated in this thesis, multiple weaknesses of ADER-DG exist. One may
try to mitigate them in the future.

As seen in chapter 6, one of the biggest causes of instability was the handling of partially
dry cells, which broke the simulations due to strong oscillations. In the future, this
problem could be approached with different ideas. An example would be the so-called
FV limiting, i.e., dynamic switching of the solver from ADER-DG to FV in problematic
cells since it solves these regions stably.

To improve the interaction between adjacent cells, custom Riemann solvers can be
implemented. Several types of Riemann solvers have been assessed in [bib:ludwig].
The SWE API offers a way to specify custom Riemann by modifying the appropriate
solver template file.

Currently, the SWE API supports a fixed domain subdivision depth d. ExaHyPE 2
features so-called adaptive mesh refining (AMR). With AMR, subdomains can be further
split or merged during runtime. When a solid AMR algorithm is chosen, it could
be implemented in the centralized simulation logic collection of the SWE API or the
scenario definitions.

In the current state, the SWE API implements reflecting boundary conditions. However,
different and potentially more realistic options exist, for example, the so-called absorbing
boundary conditions. While not mentioned in this thesis, they were tested during the
development process. Unfortunately, they led to significantly less stable simulations. In
the future, one might, therefore, try to implement different types of boundary conditions
while finding a solution to preserve the stability of the simulations.

In this thesis, the only mentioned form of time step postprocessing was the enforce-
ment of water height non-negativity. It is implemented in the SWE API by a gen-
eralized Postprocessing interface. This interface enables the addition of more com-
plex postprocessing approaches in the future. For example, so-called slope limiting
[bib:slope_limiting] promises to reduce oscillations within the ADER-DG cells. One
might follow this idea by implementing such a slope limiter in the SWE API.

To summarize, this thesis explored the finite volumes and ADER-DG solvers in the
context of shallow water equations. ADER-DG, in theory, promises high accuracy and
an adequate overall simulation quality. However, the benchmarking results of part IV
show that it does not entirely fulfill these promises. The instability of ADER-DG in dry
regions make it, at least in its current implementation, inferior to FV. Further extensive
research must be conducted to bring ADER-DG on par with FV.

The ExaHyPE 2 engine lays a solid foundation for developing better numerical solving
approaches. The SWE API provides a convenient and easily extensible way to leverage
this engine to its highest capacity, paving a smooth path for various simulation exper-
iments. In the context of tsunamis, it aims to enhance the valuable simulation tools,
improving the preparations and responses to real-world emergencies.
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