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Abstract

Graphics Processing Units (GPUs) are indispensable in modern high-performance
computing (HPC) systems due to their exceptional parallel processing capabilities.
However, their performance is often constrained by the overhead of memory trans-
fers between the CPU and GPU, particularly in memory-bound tasks. This study
investigates two optimization techniques—bit-level data packing and buffer aggrega-
tion—to improve memory transfer efficiency in ExaHyPE2, an open-source framework
for solving hyperbolic partial differential equations.

Experimental results demonstrate that buffer aggregation is the most effective strategy
for optimizing GPU kernel execution in ExaHyPE2, significantly reducing synchroniza-
tion overhead. Multi-threading was also explored to overlap memory transfers and
kernel execution, but it yielded minimal benefits. While data packing alone did not
show substantial performance improvements in ExaHyPE2 kernels, it proved highly
effective for memory-bound tasks and exhibited enhanced performance when combined
with buffer aggregation.

The proposed optimization strategies offer valuable insights into addressing memory
transfer challenges and have broad applicability to HPC applications requiring efficient
GPU offloading.
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1. Introduction

GPUs are specifically designed for parallel processing, making them particularly
well-suited for computationally intensive tasks such as numerical simulations, deep
learning, and large-scale data processing. In the realm of exascale computing, GPUs
play a pivotal role, serving as the primary source of computational power in modern
high-performance computing (HPC) systems. To fully leverage the potential of GPU
acceleration and achieve optimal performance, exascale simulation software must be
carefully optimized for GPU offloading.

To fully leverage the computational power of GPUs, tasks with a high degree of
parallelism should be executed on the GPU whenever possible. This process, referred
to as "GPU offloading" however,is often hindered by the significant overhead associated
with memory transfers between the CPU and GPU. For many memory-bound tasks,
these data transfers constitute a substantial portion of the overall execution time.
Consequently, optimizing the memory layout becomes a critical factor in improving the
performance of GPU-accelerated programs.

We investigate ExaHyPE2 ("An Exascale Hyperbolic PDE Engine") [17], an open-
source software framework designed for solving and simulating systems of first-order
hyperbolic partial differential equations (PDEs). We explore several approaches to
optimize memory layout for efficient data transfer.

The first approach involves packing data at the bit level using a modified LLVM/-
Clang compiler [16]. Packing here just means compressing the data. This technique
aims to minimize the data size, thereby reducing the overhead of memory transfer,
while maintaining the required level of accuracy. Unlike traditional data compression,
this method offers fine-grained control over the degree of compression by operating
directly at the bit level. Unnecessary bits that do not contribute to the required accuracy
are discarded, and the number of compressed bits can be adjusted dynamically to meet
varying precision requirements. Additionally, this approach is significantly faster than
conventional data compression algorithms due to its simplicity, relying primarily on
truncation and bit-level operations. More details on the data packing method can be
found in [15].

The second optimization method is designed to address the issue of excessively
scattered data distribution required for a single kernel invocation in ExaHyPE2. We
copy the all the patches (data that need to be transferred to GPU for one kernel
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1. Introduction

execution) into a large buffer, and then copy this buffer to the GPU in a single operation
using just one API call, rather than copying the smaller patches individually which
ExaHyPE2 originally does. Although this approach incurs some additional time to
copy all the data into the buffer, it significantly reduces the overhead associated with
multiple API calls and synchronization, leading to overall performance improvements.

Our study suggests that the second approach (Buffer Aggregation) is highly effective
for optimizing ExaHyPE2 GPU kernels. While data packing alone did not significantly
impact the ExaHyPE2 GPU kernel benchmark, its effectiveness was notably enhanced
when combined with buffer aggregation. We also explored the use of multi-threading to
handle multiple large buffers, but this approach did not yield expected results, despite
some overlap between memory transfer and kernel execution.

Although motivated by ExaHyPE2, we believe the approaches presented in this paper
are applicable to a broad range of similar HPC applications that require efficient GPU
offloading.

The remainder of this document is organized as follows: Chapter 2 provides the
necessary background knowledge for understanding this paper. Chapter 3 reviews
relevant related works. In Chapter 4, we present the concepts and implementation de-
tails of the proposed optimization methods. Chapter 5 reports the experimental results,
analyzes the effectiveness of these methods, and discusses the factors contributing to
their performance. Chapter 6 summarizes the key findings of this study and explores
potential directions for future research.
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2. Fundamentals

2.1. Hyperbolic PDEs and Finite Volume Method

Hyperbolic PDEs, typically derived from conservation laws in physics, are fundamental
for describing wave phenomena. Examples include electromagnetic waves water waves,
and seismic waves, etc. Hyperbolic PDEs have a tight relationship with our everyday
life and enhancing the simulation speed of hyperbolic PDEs holds significant scientific
and practical importance.

ExaHyPE2 accepts first-order hyperbolic partial differential equations

∂Q
∂t

+∇ · F(Q) +
d

∑
i=1

Bi(Q)
∂Q
∂xi

= S(Q) (2.1)

Here, Q is the state vector representing all physical quantities (such as density,
velocity, energy, etc.); F(Q) is the flux function describing the flow of these quantities;
Bi(Q) represents the dependence on the spatial variable xi (e.g., diffusion terms); and
S(Q) is the source term representing external effects or other influences. The number
of dimensions is denoted by d [10].

The Finite Volume Method (FVM) [11] is a numerical approach designed to solve
PDEs. In FVM, the computational domain is divided into discrete grid cells, and the
method approximates the cell averages of the solution variable by integrating over
each grid cell. The evolution of these cell averages over time is governed by the fluxes
through the edges of the grid cells. The core challenge in FVM lies in determining
accurate numerical flux functions that approximate the true fluxes using the available
cell averages.

Unlike classical finite difference methods, which approximate derivatives at specific
grid points and often fail near discontinuities, FVM is based on the integral form of the
governing equations focusing on accurately approximating solutions that may contain
discontinuities. High-resolution FVMs, in particular, have proven to be highly effective
in capturing discontinuous solutions with minimal numerical oscillations [6].
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2. Fundamentals

2.2. ExaHyPE2

ExaHyPE2 [17, 21] is a computational framework designed to solve hyperbolic par-
tial differential equations (PDEs) with high efficiency and scalability. Built upon
dynamically adaptive Cartesian meshes, it employs explicit time-stepping methods and
adaptive mesh refinement (AMR) to handle complex simulations. The framework is
powered by Peano [20], a project that leverages a spacetree data structure to construct
and manage dynamically adaptive grids. Peano optimizes computational efficiency by
linking grid storage directly with traversal operations and enforces a unique traversal
order through space-filling curves, which improves both memory usage and parallel
performance.

Spatial Discretization ExaHyPE2’s spatial discretization is based on dynamically
adaptive Cartesian meshes, implemented using an octree-based AMR approach. The
computational domain is embedded within a cube and recursively subdivided into
smaller cubes at each refinement level, which can be efficiently refined or coarsened
based on the simulation’s requirements. This grid structure adapts dynamically at each
time step, enabling the framework to handle evolving solutions with precision and
efficiency.

Solvers While ExaHyPE2 supports various numerical discretization methods, includ-
ing Finite Volume (FV), Runge-Kutta Discontinuous Galerkin (RKDG), and ADER-DG
methods [22], we focus on Finite Volume, with a Rusanov solver [14] for handling the
flux calculations. The solver can operate with 2D and 3D regular Cartesian meshes,
referred to as "patches," embedded within each cube. This approach, combining tree
structure for mesh management and patch-based discretization, allows for a reasonable
arithmetic load relative to the mesh management overhead. [7] This balance is crucial
for efficient computation, especially when scaling to large numbers of processing units.

The update for each patch is computed based on the source term and the fluxes
across the volume faces, as described in the equation (2.1). These updates are handled
through a callback mechanism, where users can inject their domain knowledge into
the simulation. This modular design hides all other program logic, including mesh
traversal, data storage, and parallelization, from the user, aligning with the Hollywood
principle – "don’t call us, we’ll call you" [21].

GPU Acceleration The inherently parallelizable nature of its numerical methods –
such as FV, RKDG, and ADER-DG – makes the framework well suited for utilizing
GPUs as accelerators, enabling significant speedup in simulations. ExaHyPE2 utilizes
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2. Fundamentals

a sophisticated GPU offloading strategy to further enhance performance. Tasks are
pooled into a separate queue, and once the queue reaches a threshold, the tasks are
offloaded to the GPU in a batch. This approach ensures that the GPU can handle a
large number of tasks simultaneously, maximizing its parallel computational potential.
The pooling or batching of tasks allows for the execution of high-concurrency GPU
compute kernels, making it possible to handle even small enclaves scattered across
subdomains. The batch size is well chosen to optimize GPU utilization, striking a
balance between GPU load and task overlap, ensuring efficient computation across all
available processing units.

2.3. OpenMP GPU offloading

OpenMP provides a high-level, pragma-based approach to parallel programming.
Starting from OpenMP 4.0, support for GPU offloading was introduced, allowing
developers to annotate specific regions of code to be executed on GPUs. OpenMP
enables a unified programming experience across CPUs and GPUs with minimal code
modification.

OpenMP offloading adopts a host-centric execution model, where the host manages
the scheduling, synchronization, and memory management for tasks executed on target
devices. On the device side, execution begins with the main thread of a team . The
teams directive in OpenMP enables the creation of a league of teams, where each
team starts with a single main thread. The distribute directive assigns tasks across
teams. Additional threads within a team can be spawned using the parallel directive.
The for directive schedules loop iterations among threads within a team.

This hierarchical organization aligns closely with GPU execution models. GPUs
consist of multiple streaming multiprocessors (SMs), each capable of running numerous
threads grouped into execution units such as warps (on NVIDIA GPUs) or wavefronts
(on AMD GPUs). In practice, OpenMP maps teams to SMs and threads within a team
to hardware threads inside the SM. This mapping mirrors the hierarchical structure of
GPU execution, optimizing the utilization of computational resources.

OpenMP also provides a series of control clauses to manage memory transfer between
host and device. For example, we can use target enter data and target exit data
clause to transfer data between host and device.

Code 2.1 shows an example of a simple OpenMP GPU offloading program containing
the basic syntax of OpenMP GPU offloading.
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2. Fundamentals

1 // X, Y are two arrays with N doubles in it. a is a double scalar.
2 // We want to use GPU to parallelize Z = a * X + Y
3

4 #pragma omp target enter data map(to: X[0 : N], Y[0 : N])
5 #pragma omp target enter data map(alloc: Z[0 : N])
6

7 #pragma omp target distribute parallel for simd
8 for (int i = 0; i < N; ++i) {
9 Z[i] = a * X[i] + Y[i];

10 }
11

12 #pragma omp target exit data map(from : Z[0 : N])
13 #pragma omp target exit data map(delete: X[0 : N], Y[0 : N])

Listing 2.1: A simple GPU offloading program
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3. Related Work

There has been significant progress in making OpenMP GPU offloading increasingly
efficient. Carlo B. et al. [2] Samuel F. et al. [1] integrated GPU support for OpenMP
Offloading Directives into Clang, allowing GPU offloading through simple OpenMP
directives without needing torewrite the whole program using CUDA or SYCL. What’s
more, it allows adding more functions based on the clang compiler with OpenMP
GPU offloading function. Alok M. et al. [13] points out that in many cases the
OpenMP USM model can cause bad performance. Several guidelines for programmers
to achieve better performance are also given. Artem C. et al. [4] presents ideas that
focus on improving the execution of high-level parallel code in GPUs, including a
code transformation that sets up a pipeline of kernel execution and asynchronous data
transfer. This transformation enables the overlap of communication and computation.
With overlap between data transfer and kernel execution, the total kernel time may be
reduced further in multi-threading case.

Lossy data compression techniques have been applied on high-performance comput-
ing (HPC) applications. Calhoun et al. [3] explored the feasibility of lossy compression
in checkpoint-restart workflows for PDE simulations, demonstrating that compression
errors can be masked by numerical truncation errors, enabling effective restarts without
compromising simulation accuracy. Lindstrom and Isenburg [12] focused on fast and
efficient compression methods for floating-point data, emphasizing online and lossless
compression schemes to mitigate I/O bottlenecks in large-scale simulations, while
maintaining high throughput and effective bandwidth. Building on these efforts, Tao et
al. [18] introduced a multidimensional prediction-based lossy compression algorithm,
significantly improving prediction accuracy and compression factors for irregular scien-
tific datasets while ensuring strict error control. These works collectively underscore
the potential of advanced compression techniques to address the challenges of data
size and I/O in modern HPC environments.

Pawel L. et al. [15] implemented a language extension based on C++, compressing
the data in bit-level, which to some extent overcome a shortage in C++ that fixed-
size built-in type cannot control the bits they use to represent data with all kinds
of value ranges or precision. Thomas G. et al. [8] introduces a wrapper of data in
C++ named "memory accessor" which hides the data compression behind the memroy
access. It breaks up the tight coupling between the precision format used for arithmetic
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3. Related Work

operations and the storage format employed for memory operations. Mario W. et al.
[21] proposed a method to effectively manage GPU memory for multi-threading cases,
in order to overcome an OpenMP bottleneck in the administration of GPU memory.
Although small data patches are batched together for kernel execution, the data still
stays on different locations in memory and they are accessed with pointers. This causes
unnecessary overhead when the data is transferred onto GPU as smalls chunks.
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4. Methods and Implementation

To optimize the memory layout of ExaHyPE2 GPU offloading, we need to identify what
is really necessary for the memory transfer and what can be optimized. The objective is
to ensure that we only pay the computational and memory costs for what is essential.
This leads to two key questions:

1. Can the size of the data being transferred be further reduced while ensuring that
the computation remains unaffected and the results remain accurate?

2. How efficient is the memory transfer? Is there room for further optimization? Are
there additional unnecessary overheads that can be eliminated or optimized?

These questions guide us toward the optimization methods introduced in this section.
ExaHyPE2 still faces several challenges that need to be addressed to improve its

performance.
In order to increase the GPU utilization, ExaHyPE2 does not transfer patch data,

which is generated on the host device, onto the GPU immediately. Instead it waits until
a sufficient number of patches are generated and transfers all of them at once via one
kernel execution. This strategy can potentially increase the GPU usage efficiency.

Currently, ExaHyPE2 uses OpenMP’s target enter data constructs [19, 9] to trans-
fer patches one by one for one kernel execution. However, this approach is inefficient
because multiple small patches, scattered across different memory locations, need to
be transferred. As a result, the number of memory transfers significantly exceeds
the number of kernel executions, often by several orders of magnitude. This creates
substantial overhead due to API calls and synchronization.

Another major challenge arises from the disparity between memory bandwidth and
processor computation power. Over the years, the arithmetic performance of processors
has grown much faster than memory bandwidth. Unless there is a revolutionary
breakthrough in chip technology, this trend is expected to persist. Consequently,
memory-bound programs often achieve lower performance in terms of floating-point
operations per second (FLOPS) compared to compute-bound programs.

This phenomenon is well captured by the roofline model [5], as illustrated in Figure
4.1. The roofline model shows that for some algorithms, performance can be severely
constrained by low memory bandwidth. Moreover, an algorithm that is compute-bound
on one machine may become memory-bound on another with a different hardware
configuration. This means the algorithm cannot achieve its peak potential speed and is
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4. Methods and Implementation

instead limited by the memory bandwidth of the system.
The same issue affects ExaHyPE2, where the performance of simulations can be

heavily constrained by the bandwidth of CPU-GPU data transfers. Even on systems
with high CPU-GPU bandwidth, this limitation could become more prominent in the
future as computational power continues to grow. To address this, we aim to improve
the efficiency of memory transfers in ExaHyPE2, effectively raising the bandwidth limit
as described by the roofline model (see Figure 4.1) and enabling programs to run closer
to their peak performance.

Figure 4.1.: Roofline model predicting the performance of an algorithm in two different
machines. The algorithm is compute bound in machine 1 and memory
bound in machine 2. Through optimized memory layouts the bandwidth
limit will move upwards, allowing the algorithm to achieve higher perfor-
mance in machine 2.

To address the challenges outlined above, we explore several optimization approaches,
which can be combined to achieve a more significant overall performance improvement.

10



4. Methods and Implementation

4.1. Data structure and Baseline

Before delving into the details of the optimization methods, it is important to first
understand the data structure of patches in ExaHyPE2 and the mechanics of GPU
offloading.

Each patch contains data, denoted as Q, which resides in the heap memory and is
represented by a pointer to a double (double∗). As previously mentioned, multiple
patches can be grouped into batches to enable more efficient computations. Additionally,
there is a data structure called "CellData," which is responsible for managing a batch of
patches. The structure of "CellData" is as follows:

1 struct CellData {
2 int numberOfCells;
3 double** QIn;
4 double** QOut;
5 // some other data members ...
6 };

Listing 4.1: Shortened implementation of the CellData class

Here, numberOfCells specifies the batch size, QIn points to an array of pointers, where
each pointer refers to an input patch data Q located in the heap memory. Similarly,
QOut points to an array of pointers, where each pointer refers to a pre-allocated patch
data buffer into which the updated Q will be copied.

The original GPU offloading algorithm, referred to as the "baseline," is presented
in Algorithm 1. In this approach, patches are transferred to the GPU one by one,
computations are performed, and the resulting patch data is then copied back to the
CPU one at a time.

11



4. Methods and Implementation

Algorithm 1 Algorithm GPU kernel invocation baseline

1: Input: QIn, N (number of patches, batch size)
2: Output: QOut
3:

4: for i← 0 to N do
5: copy QIn[i] onto GPU in QInGPU[i]
6: end for
7:

8: Do computations on QInGPU
9: QOutGPU ← Result

10:

11: for i← 0 to N do
12: copy QOutGPU[i] onto CPU in QOut[i]
13: end for

4.1.1. Implementation

A simplified implementation of the Baseline method is provided below, with non-
essential code omitted for clarity and conciseness. Refer to Code 4.2.

Note that we use mappedQIn and mappedQOut to represent pointers to the data patches
on the GPU. After transferring all the data to the GPU, it is necessary to transfer
mappedQIn and mappedQOut separately as well.

Lines 5–14 transfer the patches to the GPU one by one. Lines 16 perform computations
through a GPU kernel invocation. Finally, lines 19–26 copy the necessary results from
the GPU to the CPU and release resources on the GPU.

4.2. Data Packing

The first optimization method is data packing. This approach involves compressing the
data on the CPU before transferring it to the GPU and decompressing it on the GPU
prior to performing the actual computations. Similarly, when transferring the results
from the GPU back to the CPU, the data is compressed on the GPU and subsequently
decompressed on the CPU before further use.

4.2.1. Bit level compression

Before delving into the details of the method, it is essential to understand how bit-level
compression works. Since ExaHyPE2 uses double as the floating-point number type,

12



4. Methods and Implementation

1 double** mappedQIn = new double*[numPatches];
2 double** mappedQOut = new double*[numPatches];
3

4 // copy patches (QIn) to GPU one by one
5 for (int o = 0; o < numPatches; ++i) {
6 const double* currentQIn = patchData.QIn[i];
7 double* currentQOut = patchData.QOut[i];
8 #pragma omp target enter data map(to: currentQIn[0:InSize])
9 #pragma omp target enter data map(alloc: currentQOut[0:OutSize])

10 mappedQIn[i] = omp_get_mapped_ptr(currentQIn, targetDevice);
11 mappedQOut[i] = omp_get_mapped_ptr(currentQOut, targetDevice);
12 }
13 #pragma omp target enter data map(to: mappedQIn[0:numPatches])
14 #pragma omp target enter data map(to: mappedQOut[0:numPatches])
15

16 // gpu kernel (omp target clause) ...
17

18 // copy the result patches (QOut) on CPU one by one
19 #pragma omp target exit data map(delete: mappedQOIn[0:numPatches])
20 #pragma omp target exit data map(delete: mappedQOut[0:numPatches])
21 for (int i = 0; i < numPatches; i++) {
22 const double* currentQIn = patchData.QIn[i];
23 double* currentQOut = patchData.QOut[i];
24 #pragma omp target exit data map(delete: currentQIn[0:InSize])
25 #pragma omp target exit data map(from: currentQOut[0:OutSize])
26 }
27

28 delete[] mappedQIn;
29 delete[] mappedQOut;

Listing 4.2: Shortened code of GPU offloading in ExaHyPE2

13



4. Methods and Implementation

this discussion focuses exclusively on the compression of variables with the double
type. For compression techniques applied to other data types, please refer to [15].

According to the IEEE standard, a double-precision floating-point number consists
of 64 bits, where 1 bit represents the sign, 11 bits represent the exponent, and 52 bits
represent the mantissa (fraction). The structure of a 64-bit double-precision floating-
point number is illustrated in Figure 4.2.

Figure 4.2.: Bit structure of a 64-bit double floating-point number

The real value represented by a 64 bit double is calculated in following formula

(−1)sign(1.b51b50...b0)2 × 2e−1023

or

(−1)sign(1 +
52

∑
i=1

b52−i2−i)× 2e−1023

In many cases, the full precision of the mantissa is not required to represent a floating-
point number. The modified LLVM compiler [15] provides a method to truncate
certain bits of the mantissa, enabling lossy compression. By using the annotation
[[clang::truncate_mantissa(BITS)]], the mantissa can be stored with only BITS
bits, while the exponent and the sign bit retain their original precision. For performance
reasons, computations must adhere to the built-in data formats, and all operations are
automatically handled by the compiler.

Since this is a lossy compression method, the final accuracy of the results must be
evaluated to determine the appropriate number of mantissa bits for the GPU kernel in
ExaHyPE2.

4.2.2. Implementation

The pseudo-code in Algorithm 2 illustrates the process of GPU offloading and kernel
invocation with data packing.

14



4. Methods and Implementation

Algorithm 2 Algithm GPU kernel inovocation with packing

1: Input: QIn, N (number of patches, batch size)
2: Output: QOut
3:

4: for i← 0 to N do
5: pack QIn[i] into QInPacked[i]
6: end for
7:

8: for i← 0 to N do
9: copy QInPacked[i] into QInPackedGPU[i]

10: end for
11:

12: // GPU kernel
13: for i← 0 to N do
14: unpack QInPackedGPU[i] into QInGPU[i]
15: end for
16:

17: // GPU kernel
18: Do computations based on QInGPU on GPU and store the result on GPU in

QOutGPU...
19:

20: // GPU kernel
21: for i← 0 to N do
22: pack QOutGPU[i] into QOutPackedGPU[i]
23: end for
24:

25: for i← 0 to N do
26: copy QOutPackedGPU[i] onto CPU into QOutPacked[i]
27: end for
28:

29: for i← 0 to N do
30: unpack QOutPacked[i] into QOut[i]
31: end for

We use a wrapper class PackedDouble to implement the compression of a double
scalar. See code 4.3.
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4. Methods and Implementation

1 struct PackedDouble {
2 [[clang::truncate_mantissa(20)]]
3 double _d;
4

5 PackedDouble() : _d(0.0) {}
6 PackedDouble(double other)
7 {
8 _d = other;
9 }

10 operator double() const
11 {
12 return _d;
13 }
14 PackedDouble& operator=(double other)
15 {
16 _d = other;
17 return *this;
18 }
19 };

Listing 4.3: Shortened implementation of the PackedDouble class for data packing

The only member of PackedDouble is a double, which contains the entire 64 bits of
data. During memory transfer operations, some bits may be automatically truncated.
We also provide user-defined conversion functions to ensure a smooth transition
between PackedDouble and double.

Additionally, we need some simple code to pack and unpack the data on both the
CPU and GPU.

1 // unpack QIn on GPU
2 #pragma omp target teams distribute parallel for simd collapse(2)
3 for (int patch = 0; patch < numPatches; ++patch) {
4 for (int i = 0; i < InSize; ++i) {
5 mappedQIn[patch][i] =
6 mappedQInPacked[patch][i]._d;
7 }
8 }

Listing 4.4: GPU kernel for unpacking
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1 // pack QOut on GPU
2 #pragma omp target teams distribute parallel for simd collapse(2)
3 for (int patch = 0; patch < numPatches; ++patch) {
4 for (int i = 0; i < OutSize; ++i) {
5 mappedQOutPacked[patch][i]._d =
6 mappedQOut[patch][i];
7 }
8 }

Listing 4.5: GPU kernel for packing

In fact, if we do not add additional unpacking code, the PackedDouble can be
directly used as a double during computation (the runtime will handle the unpacking
automatically), and the code will still execute correctly. However, for certain kernels,
the same data may be accessed multiple times, leading to repeated decompression.
This can result in unnecessary overhead and slow down execution.

Additionally, the strategy of automatically unpacking at runtime leads to interface
inconsistencies, requiring extensive modifications to the computation functions in
ExaHyPE2. A more compatible interface (possibly using templates or the auto keyword)
may be designed in the future to increase the extensibility of the program.

4.3. Buffer Aggregation

As discussed previously, the original method of managing data is not optimal. Too
many small data chunks introduce repeated overhead, slowing down data transfer and
access.

The optimization strategy "Buffer Aggregation" involves first copying all the small
data chunks into one large buffer before transferring the entire buffer to the GPU in a
single operation. This strategy leaves the content of the data untouched but requires
only one invocation of the memcpy API. By reducing the overhead from multiple API
calls and synchronization, this approach can significantly improve performance. The
process of buffer aggregation is shown in Algorithm 3.
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Algorithm 3 Algithm GPU kernel inovocation with buffer aggregation

1: Input: QIn, N (number of patches, batch size)
2: Output: QOut
3:

4: allocate a huge buffer QInHuge
5:

6: for i← 0 to N do
7: copy QIn[i] into the place QInHuge[i ∗ patchSize] (in a sequence)
8: end for
9:

10: copy QInHuge onto GPU as QInHugeGPU
11:

12: // GPU kernel
13: for i← 0 to N do
14: point QInGPU[i] to QInHugeGPU[i ∗ patchSize]
15: point QOutGPU[i] to QOutHugeGPU[i ∗ patchSize]
16: end for
17:

18: // GPU kernel
19: Do computations based on QInGPU on GPU and store the result on GPU in

QOutGPU...
20:

21: copy QOutHugeGPU onto CPU into QOutHuge
22:

23: for i← 0 to N do
24: point QOut[i] to QOutHuge[i ∗ patchSize]
25: end for

4.3.1. Implementation

We designed a wrapper class GPUCellData to wrap the original data structure CellData
in order to apply the buffer aggregation operation on the data. It automatically
handles buffer aggregation and GPU offloading, hiding the implementation details in
the constructor and member functions, while leaving the caller-side code clear and
minimally modified.
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1 struct GPUCellData {
2 int numberOfCells;
3 // Points to a huge buffer that stores all the data
4 double* QInCopyInOneHugeBuffer;
5 double* QOutCopyInOneHugeBuffer;
6 // QIn and QOut contain pointers that point to the positions
7 // of patches in the huge buffer
8 double** QIn;
9 double** QOut;

10

11 // allocate memory on gpu and
12 // copy the data from cpu (hostCellData object) onto gpu
13 GPUCellData(const CellData& hostCellData);
14

15 // Copying GPU Data is forbidden.
16 GPUCellData(const GPUCellData&) = delete;
17 GPUCellData& operator=(const GPUCellData&) = delete;
18

19 // release the resources
20 ~GPUCellData();
21

22 // copy the data from gpu back to cpu into the hostCellData object
23 void copyToHost(CellData& hostCellData);
24 };

Listing 4.6: Shortened implementation of the wrapper class GPUCellData

When a GPUCellData is constructed from a CellData, it automatically allocates the
relevant memory on the GPU and performs the following operations: 1) copies all
the patches into a large buffer on the CPU, and 2) transfers the large buffer to the
GPU. Furthermore, it retains the interface of QIn and QOut with type double**, so
the calculation code remains unmodified. After the computation, we only need to
call copyToHost() once to copy the data back from the GPU. When the lifetime of the
GPUCellData object ends, the memory on the GPU is automatically released through
the destructor. Thanks to the wrapper, the code for GPU offloading is clearer and more
elegant compared to before (see 4.2 and 4.7).

As the implementations of the member functions is too long to put here, more details
can be referred in appendix A.
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1 GPUCellData gpuPatchData(patchData);
2

3 // GPU kernel ...
4

5 gpuPatchData.copyToHost(patchData);

Listing 4.7: Shortened code of GPU offloading in ExaHyPE2 with Buffer Aggregation

4.3.2. Several huge buffers and Multi-threads

Based on Buffer Aggregation, we could use several large buffers instead of just one,
where each buffer contains multiple data patches. We can then use multi-threading on
the CPU to handle data transfer and kernel execution simultaneously for each buffer.
Since each patch can be transferred and computed independently, we may overlap the
data transfer of one large buffer with the kernel execution of another, thereby increasing
GPU utilization efficiency.

We slightly change the data structure from GPUCellData to GPUCellDataAsync (See
code 4.6 and 4.8).

1 struct GPUCellDataAsync {
2 int numberOfCells;
3 // Points to a huge buffer that stores all the data
4 double* QInCopyInOneHugeBuffer;
5 double* QOutCopyInOneHugeBuffer;
6 // QIn and QOut contain pointers
7 // that point to different positions in the huge buffer
8 double** QIn;
9 double** QOut;

10

11 GPUCellDataAsync(
12 int _targetDevice,
13 int _numberOfCells,
14 double** _QIn,
15 double** _QOut,
16 ... // other parameters
17 );
18 // ... other member variables and functions
19 };

Listing 4.8: Shortened structure of GPUCellDataAsync
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We accept double** QIn and double** QOut as parameters in the constructor, instead
of a CellData object. This allows us to construct multiple GPUCellDataAsync objects,
rather than just one, from a CellData object. We then assign OpenMP tasks, with each
task responsible for the GPU offloading of one GPUCellDataAsync object (constructed
from a subset of patches). These tasks are automatically executed simultaneously by
the OpenMP task mechanism (see code 4.9).

1 int nThreads = 8;
2 int numberOfCellsPerThread = patchData.numberOfCells / nThreads;
3

4 #pragma omp parallel
5 #pragma omp single
6 for (int threadId = 0; threadId < nThreads; ++threadId) {
7 #pragma omp task
8 {
9 auto gpuPatchData = GPUCellDataAsync(

10 targetDevice,
11 numberOfCellsPerThread,
12 patchData.QIn + threadId * numberOfCellsPerThread,
13 patchData.QOut + threadId * numberOfCellsPerThread,
14 ... // other parameters
15 )
16

17 // GPU kernel ...
18

19 gpuPatchData.copyToHost();
20 }
21 }

Listing 4.9: Shortened code of GPU offloading with several huge buffers and multi-
threads

4.4. Combination

4.4.1. Implementation

We used a structure GPUCellDataPacked to implement the combination of the two
methods. Most of the implementation is similar to that of GPUCellData (see 4.6), except
that we use PackedDouble* instead of double* for the buffer on the GPU.
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1 struct GPUCellDataPacked {
2 int numberOfCells;
3 // Points to a huge buffer that stores all the data
4 PackedDouble* QInCopyInOneHugeBufferPacked;
5 PackedDouble* QOutCopyInOneHugeBufferPacked;
6 double* QInCopyInOneHugeBuffer;
7 double* QOutCopyInOneHugeBuffer;
8 // QIn and QOut contain pointers that point to the positions
9 // of patches in the huge buffer

10 double** QIn;
11 double** QOut;
12 };

Listing 4.10: Shortened code of GPU offloading in ExaHyPE2 with Buffer Aggregation

4.5. Controlling number of memory transfer and computation

Another effective way to reduce the overhead caused by memory transfer is by decreas-
ing the number of memory transfers relative to the number of computations (kernel
calls).

The original algorithm transfers data back from the GPU to the CPU immediately
after the calculation on the GPU is done. This means the number of memory transfers
(back and forth) is equal to the number of computations. While transferring the data
back to the CPU is necessary for certain operations, such as saving the results, it is
unnecessary if we only need the final result at the end of the time period and do not
care about the intermediate values. In some cases, we may only want the result data at
specific time steps, rather than at every time step. In such cases, frequent data transfer
between the CPU and GPU is unnecessary.

We can introduce a new parameter to control the ratio between computation steps
and memory transfer steps. For example, if we set the ratio to 5, this means the data
stays on the GPU for five kernel execution steps before being transferred to the CPU
for other purposes, such as plotting. This can ideally reduce the time consumed by
data transfer to 1/5 of the original time.

4.5.1. Implementation

We add a template parameter IterationPerTransfer to the function signature for GPU
offloading and loop the GPU kernel call for IterationsPerTransfer times. As all
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allocation, data transfer and release are done before or after kernel call, this way the
result will iterate IterationsPerTransfer steps before finally transferred back to CPU.

1 void timeStepWithRusanovPatchwiseHeapStateless<
2 ..., // other tempate parameters
3 IterationsPerTransfer>
4 (int targetDevice, CellData& patchData)
5 {
6 // ... other codes
7 for (int i = 0; i < IterationsPerTransfer; ++i) {
8 internal::timeStepWithRusanovPatchwiseStateless(
9 ... // parameters

10 );
11 }
12 // ... other codes
13 }

Listing 4.11: Shortened code of GPU offloading in ExaHyPE2
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Experimental Setup In order to validate the effectiveness of these methods, we
isolated the GPU kernel from the rest of the project as much as possible to minimize
unrelated interference and focus primarily on the analysis of GPU offloading. We
varied the number of patches (batch size) Npatches, the number of threads Nthreads used
to offload parts of the data to the GPU simultaneously, and the patch size S, which
determines the size of each patch. We measured the total runtime of the kernel
invocations and repeated the experiments multiple times to reduce random errors.
These experiments were conducted on a set of equations, including the Euler equation,
acoustic-wave equation, and elastic-wave equation, with similar results obtained across
all cases. We used NVIDIA Nsight Systems as the performance optimization tool.

All tests were run on a local machine equipped with an Intel i7-14650HX CPU
(16 cores) and an NVIDIA RTX 4060 Laptop GPU. The C++ compiler used was a
modified LLVM/Clang compiler (designed to support bit-level data compression
at the language level), based on the official Clang 18 [16]. The source code of the
modified LLVM/Clang compiler is available at github.com/pradt2/llvm-project/
tree/hpc-ext. Our experiment utilized Compute Unified Device Architecture (CUDA)
version 12.4 as the underlying software stack. The meaningful test results are presented
and explained in this section.

5.1. Data Packing

We studied data packing not only in the ExaHyPE2 GPU kernel but also in two other
simpler cases: SAXPY and Matrix Multiplication (MM). These represent two typical
types of HPC programs — memory-bound and compute-bound, respectively. In
contrast, ExaHyPE2 is a more complex case, where the effects of optimization may
depend on the specific equation and a variety of other parameters. The effects of data
packing were studied in all three cases.

5.1.1. SAXPY

The algorithm of SAXPY is shown in Algorithm 4.
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Algorithm 4 SAXPY Algorithm

Require: Vectors X, Y of size n, scalar a
Ensure: Updated vector Y

1: for i = 1 to n do
2: Y[i]← a · X[i] + Y[i]
3: end for
4: return Y

SAXPY is a memory-bound program, meaning that most of the time is spent on data
transfer between the CPU and GPU. This is confirmed by the GPU time summary from
Nsight Systems, shown in Table 5.1. The program spent 98.3% of the GPU hardware
time on data transfer, leaving only 1.7% for kernel execution.

Time Percentage Total Time Operation
68.7% 284.477 ms memcpy Host to Device
29.5% 122.229 ms memcpy Device to Host
1.7% 7.174 ms kernel (compute)

Table 5.1.: saxpy GPU time summary without packing. The size of the vectors is 222.
The offloading and calculation is repeated for 20 times.

Programs where the bottleneck is caused by the large size of data to be transferred
can benefit the most from data compression. We conducted experiments with packing
mantissa = 20, which means that the packed double now has only 32 bits of data. As
expected, the transfer size was reduced by half. This is confirmed by the profiling
results shown in Tables 5.2 and 5.3.

Total Size Operation
1.25 GB memcpy Host to Device

640.00 MB memcpy Device to Host

Table 5.2.: saxpy total size of data transferred without Packing. The size of the vectors
is 222. The offloading and calculation are for 20 times.
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Total Size Operation
640.00 MB memcpy Host to Device
320.00 MB memcpy Device to Host

Table 5.3.: saxpy total size of data transferred with Packing, 20 bits of mantissa. The
size of the vectors is 222. The offloading and calculation are for 20 times.

As a result, the total time consumed was significantly reduced, as shown in Figure
5.4. Although there is some additional kernel time introduced by the packing and
unpacking process, it is negligible compared to the reduction in data transfer time —
from 284.47ms / 122.23ms to 79.59ms / 40.17ms.

Time Percentage Total Time Operation
56.2% 79.593 ms memcpy Host to Device
28.3% 40.174 ms memcpy Device to Host
6.5% 9.175 ms kernel (compute)
3.1% 4.460 ms kernel (packing or unpacking)
3.1% 4.412 ms kernel (packing or unpacking)
2.8% 3.922 ms kernel (packing or unpacking)

Table 5.4.: saxpy GPU time summary with packing, 20 bits of mantissa. The size of the
vectors is 222. The offloading and calculation are for 20 times.

We use Mean Absolute Error (MAE, also known as L1 loss) to estimate the precision
of the result. It is calculated with the formula

MAE =
1
N

N

∑
i=1
|yi − xi|

The MAE of the results with different numbers of mantissa bits is shown in Table 5.5.
A mantissa of 20 indicates that the packed double is reduced to half of its original size,
while a mantissa of 52 means no compression is applied.
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mantissa MAE
20 2.54e-4
28 1.01e-6
36 3.87e-9
44 1.56e-11
52 1.36e-14

Table 5.5.: The precision of result with different bits of mantissa by Dense Matrix
Multiplication.

In conclusion, simple memory-bound programs, where data transfer consumes most
of the time, can benefit greatly from data compression.

5.1.2. Matrix Multiplication

Dense Matrix Multiplication (MM) is a typical example for compute bound programs.
We use the naive algorithm for the calculation to ensure that it is compute-bound,
allowing us to compare the results with those of SAXPY.

Algorithm 5 Naive Matrix Multiplication

Require: Matrices A of size M× K, B of size K× N
Ensure: Matrix C of size M× N, where C = AB

1: Initialize C[i][j]← 0 for i = 1, . . . , N and j = 1, . . . , P
2: for i = 1 to M do
3: for j = 1 to N do
4: for k = 1 to K do
5: C[i][j]← C[i][j] + A[i][k]× B[k][j]
6: end for
7: end for
8: end for

Figure 5.6 shows the GPU time summary for a Matrix Multiplication (MM) program.
The kernel time accounts for 75.2% of the total time.
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Time Percentage Total Time Operation
75.2% 954.103 ms kernel (compute)
16.4% 205.666 ms memcpy Host to Device
8.4% 106.167 ms memcpy Device to Host

Table 5.6.: Matrix multiplication GPU time summary without packing. The size of
matrices are 210 × 210. The offloading and calculation are for 100 times.

Although Dense MM is compute-bound, some acceleration can still be gained from
data packing. From Tables 5.6 and 5.7, we can see that the percentage of time spent on
data transfer decreases from 24.8% to 13.9%, while the kernel time remains unchanged
(the additional kernel time for data packing and unpacking is negligible). The benefits
of optimization are less significant than in memory-bound programs like SAXPY, but
they are not insignificant. On one hand, it does reduce the total runtime of the program.
On the other hand, compute-bound programs are likely to become memory-bound in
the future due to the rapid growth in processor computing power. As a result, this
optimization will become increasingly beneficial moving forward.

Time Percentage Total Time Operation
85.7% 951.820 ms kernel (compute)
0.2% 1.944 ms kernel (packing or unpacking)
0.1% 1.779 ms kernel (packing or unpacking)
0.1% 1.470 ms kernel (packing or unpacking)
8.9% 98.491 ms memcpy Host to Device
5.0% 55.292 ms memcpy Device to Host

Table 5.7.: Matrix multiplication GPU time summary with packing, 20 bits of mantissa.
The size of matrices are 210 × 210. The offloading and calculation are for 100
times.

The precision of the results with different numbers of mantissa bits is shown in Table
5.5. A mantissa of 20 indicates that the packed double is reduced to half of its original
size, while a mantissa of 52 means no compression is applied.
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mantissa MAE
20 1.03e-6
28 4.07e-9
36 1.57e-11
44 6.12e-14
52 4.55e-17

Table 5.8.: The precision of result with different bits of mantissa by SAXPY.

When compared to the precision of Dense MM (see Table 5.5), SAXPY achieves more
accurate results with the same number of mantissa bits. This suggests that for programs
involving simpler computations (often memory-bound), the data packing method is
more suitable and effective.

5.1.3. ExaHyPE2 GPU kernel

The GPU kernel in ExaHyPE2 is much more complex than those in SAXPY and MM.
Table 5.9 shows the GPU time summary for the baseline (without data packing). We

can observe that the time spent on data transfer and kernel execution are nearly the
same. The parameters used were: patch size = 16, number of patches = 2048, and the
experiment was repeated 10 times.

Time Percentage Total Time Operation
45.0% 47.282 ms kernel (compute)
27.7% 29.152 ms memcpy Host to Device
27.3% 28.723 ms memcpy Device to Host

Table 5.9.: GPU time summary of calling ExaHype2 kernel with FV Rusanov solver
without packing. The patch size is 16 and the number of patches is 2048.
The offloading and calculation are for 10 times.

After adding data packing, the results are shown in Table 5.10.

29



5. Results

Time Percentage Total Time Operation
46.7% 47.347 ms kernel (compute)
21.7% 21.943 ms memcpy Device to Host
18.4% 18.598 ms memcpy Host to Device
6.7% 6.780 ms kernel (packing or unpacking)
6.6% 6.643 ms kernel (packing or unpacking)

Table 5.10.: GPU time summary of calling ExaHype2 kernel with FV Rusanov solver
with packing. The bits of mantissa is 20. The patch size is 16 and the
number of patches is 2048. The offloading and calculation are for 10 times.

We use a mantissa of 20 bits so that the total size of the data is compressed by half.
While the data transfer time is reduced, the additional kernel time for data packing and
unpacking is not negligible. As a result, although the pure data transfer time decreases,
the total runtime of the program does not decrease significantly. In fact, with different
patch sizes, the total runtime may even increase. This can be observed in Figures 5.1
and 5.2, where the runtimes for different patch sizes are compared.

Figure 5.1.: Total run time of calling ExaHype2 kernel with FV Rusanov solver with
different number of patches. The patch size is 16.

30



5. Results

Figure 5.2.: Total run time of calling ExaHype2 kernel with FV Rusanov solver with
different number of patches. The patch size is 32.

One possible reason for the poor performance is that there are too many small
data chunks to transfer. For each small data chunk, a CUDA API call needs to be
invoked, which introduces overhead in addition to the actual GPU time for copying
data. Furthermore, the synchronization of these data transfers also consumes significant
time. Figure 5.3 shows the timeline graph from Nsight System. The two small red
blocks represent the GPU hardware time for two data copies. The red and yellow blocks
below represent API times. We can observe that most of the time is wasted on API
overhead and synchronization. This is the issue we address with Buffer Aggregation.

Figure 5.3.: Data transfer graph between two small data chunks. The two small red
blocks represent the GPU time used for two data copies. The block below
are API times.
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5.2. Buffer Aggregation

Experiments prove that using buffer aggregation yields excellent results. Figures 5.4
and 5.5 show the comparison between the baseline and buffer aggregation. With a
patch size of 4, we achieved a speedup of about 15x. Even with a patch size of 32, we
achieved a speedup of about 2.5x. It is also easy to understand why buffer aggregation
achieves more significant results when the patch size is small.

Experiments proves that that using buffer aggregation yields excellent results. Figure
5.4 and 5.5 show the comparison between the baseline and buffer aggregation. By patch
size = 4, we got a speedup about 15x. Even by patch size = 32, we got a speedup about
2.5x.

Figure 5.4.: Total run time of calling ExaHype2 kernel with FV Rusanov solver with
different number of patches. The patch size is 4.
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Figure 5.5.: Total run time of calling ExaHype2 kernel with FV Rusanov solver with
different number of patches. The patch size is 32.

Several huge buffers

However, things do not always go smoothly. We implemented this idea using OpenMP
tasks, and experiments show that breaking one huge buffer into several does not reduce
the total runtime at all; in fact, it even slows down the execution speed. Figures 5.6 and
5.7 show the execution graphs from Nsight System. These graphs indicate that overlap
did occur, but the efficiency of the overlap is not high enough. On the other hand, more
buffers to transfer and more kernels to execute result in additional overhead, lowering
efficiency. As a result, the total runtime increases. This is counterintuitive.

Due to the complexity of the program, the time saved may not compensate for the
extra time consumed by synchronization among threads. However, multi-threading
may still be valuable in multi-GPU cases.

Figure 5.6.: The execution graph from Nsight System with several huge buffers
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Figure 5.7.: Total run time of calling ExaHype2 kernel with FV Rusanov solver with
different number of patches. The patch size is 32.

However, using several huge buffers may still work with multiple GPUs. Since data
transfer and kernel execution can be completely independent for each GPU, paralleliz-
ing with multiple GPUs is theoretically efficient. However, relevant experiments have
not been conducted yet due to time constraints and the lack of GPUs. Further research
can be done in this area.

5.3. Combination

In this section, we combine the two optimization strategies discussed above. These
two methods are not conflicting; instead, they can enhance each other’s effectiveness.
Without buffer aggregation, the impact of data packing is not very significant because
the actual hardware memory transfer time is overshadowed by the additional overhead
of the API and synchronization (see section 4.2). Now that buffer aggregation can, to
some extent, eliminate the impact of this overhead, the effectiveness of data packing
becomes more apparent.

Figures 5.8 and 5.9 show the results of combining data packing and buffer aggregation.
We can observe that when the patch size is small, such as 4, data packing does not
provide further optimization beyond buffer aggregation. However, as the patch size
increases, the effect of data packing becomes more significant. For example, when the
patch size grows to 36, data packing can provide an additional 15% performance gain.
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Figure 5.8.: Total run time of calling ExaHype2 kernel with FV Rusanov solver with
different number of patches. The patch size is 4.

Figure 5.9.: Total run time of calling ExaHype2 kernel with FV Rusanov solver with
different number of patches. The patch size is 36.
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6.1. Conclusions

Based on our experimental results, we can draw several conclusions that summarize
the key findings of our work.

Conclusion 1 Buffer aggregation significantly reduces the overhead of API calls and
memory transfer synchronization, leading to substantial performance improvements.

Our results suggest that the synchronization time required for numerous small data
transfers consumes the majority of the memory transfer time. The idea behind buffer
aggregation is to reduce synchronization overhead as much as possible, at the cost of
some additional data copying. This strategy effectively eliminates a significant portion
of the overhead.

Additional optimizations in the handling of the bits can also be considered.

Conclusion 2 Data packing alone does not yield significant improvements but pro-
vides additional optimization when combined with buffer aggregation.

In the baseline approach, synchronization is the most time-consuming part. The
effect of optimizations in other areas becomes noticeable only when the synchronization
overhead is minimized (i.e., well-optimized). This suggests a multi-layered optimization
strategy: optimization should start with addressing the bottleneck. Just because a
strategy or method does not yield immediate results does not mean it is ineffective; its
benefits may be masked by other factors.

Conclusion 3 The impact of using multi-threading to overlap multiple data structures
is limited.

We aimed to use multi-threading to overlap memory transfers and kernel executions,
but we did not observe any significant optimization. Similar results were reported
by [21]. This is likely due to dynamic memory allocation within the GPU kernel. To
ensure thread-safe memory allocation and kernel execution, synchronization must be
introduced. As a result, complete overlap of memory transfer and kernel execution is
not feasible, explaining why the impact of multi-threading is negligible in this context.
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6.2. Outlook

CUDA and SYCL are two other popular languages for GPU offloading. CUDA has been
developed over many years and is specifically designed for NVIDIA GPUs. Although
it is not multi-platform, it is highly optimized for the hardware, providing fine control
over the program’s behavior (such as shared memory and thread behavior within a
warp), which cannot be easily achieved with OpenMP. SYCL, on the other hand, is a
relatively new language designed for heterogeneous computing. In recent years, the
performance of SYCL programs has improved significantly, and in some cases, it has
even surpassed CUDA in certain applications (see Figure 6.1).

Figure 6.1.: Performance comparison between CUDA and oneAPI on NVIDIA GPUs.
AdaptiveCpp and oneAPI are two implementations of SYCL.

To date, our work has been based on OpenMP GPU offloading. Future work could
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involve implementing the optimization methods using CUDA and SYCL, followed by a
comparison of their performance. Moreover, CUDA and SYCL offer more functionalities
and finer control over program behavior, which may enable further optimizations.

Currently, the data packing methods require an additional kernel to perform data
packing and unpacking on the GPU, introducing extra overhead. A promising approach
for future work would be to allow the runtime to perform data packing and unpack-
ing dynamically when the data is actually used, rather than performing it centrally
beforehand. However, this raises concerns about data reuse, as the same data might be
packed or unpacked multiple times. This is an interesting avenue for further research.

Since we have only tested all the optimization methods on a single-GPU platform, it
would be valuable to investigate whether these results hold on a multi-GPU platform.
In real-world usage, multi-GPU platforms are often preferred. Furthermore, since
there is no need for synchronization between multiple GPUs, the approach using
multi-threading with multiple large buffers may yield better results in such a setup.
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1 struct GPUCellData {
2 int numberOfCells;
3

4 // Points to a huge buffer that stores all the data
5 double* QInCopyInOneHugeBuffer;
6 double* QOutCopyInOneHugeBuffer;
7

8 // QIn and QOut contain pointers
9 // that point to somewhere in the huge buffer

10 double** QIn;
11 double** QOut;
12

13 GPUCellData() = delete;
14

15 // allocate memory on gpu and
16 // copy the data from cpu (hostCellData object) onto gpu
17 GPUCellData(
18 const CellData& hostCellData,
19 const enumerator::AoSLexicographicEnumerator& inEnumerator,
20 const enumerator::AoSLexicographicEnumerator& outEnumerator,
21 int _targetDevice
22 );
23

24 // Copying GPU Data is forbidden.
25 GPUCellData(const GPUCellData&) = delete;
26 GPUCellData& operator=(const GPUCellData&) = delete;
27

28 // For convenience I deleted move constructor and move assignment.
29 // It can be implemented in future if needed.
30 GPUCellData(GPUCellData&&) = delete;
31 GPUCellData& operator=(GPUCellData&&) = delete;
32
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33 ~GPUCellData();
34

35

36 // copy the data from gpu back to cpu into the hostCellData object
37 // and release memory on gpu
38 void copyToHost(
39 CellData& hostCellData,
40 const enumerator::AoSLexicographicEnumerator& outEnumerator,
41 ) const;
42 };
43

44 exahype2::fv::rusanov::omp::GPUCellData::~GPUCellData()
45 {
46 omp_target_free(QIn, targetDevice);
47 omp_target_free(QOut, targetDevice);
48 omp_target_free(QInCopyInOneHugeBuffer, targetDevice);
49 omp_target_free(QOutCopyInOneHugeBuffer, targetDevice);
50 }
51

52 exahype2::fv::rusanov::omp::GPUCellData::GPUCellData(
53 const CellData& hostCellData,
54 const enumerator::AoSLexicographicEnumerator& inEnumerator,
55 const enumerator::AoSLexicographicEnumerator& outEnumerator,
56 int _targetDevice
57 ) : targetDevice(_targetDevice)
58 {
59 numberOfCells = hostCellData.numberOfCells;
60

61 int hostDevice = omp_get_initial_device();
62

63 QIn = (double**)omp_target_alloc(numberOfCells * sizeof(double*),
64 targetDevice);
65 QOut = (double**)omp_target_alloc(numberOfCells * sizeof(double*),
66 targetDevice);
67 QInCopyInOneHugeBuffer = (double*)omp_target_alloc(
68 numberOfCells * inEnumerator.size() * sizeof(double),
69 targetDevice);
70 QOutCopyInOneHugeBuffer = (double*)omp_target_alloc(
71 numberOfCells * outEnumerator.size() * sizeof(double),
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72 targetDevice);
73

74 // copy the host QIn into one huge buffer
75 double* tmpQIn = new double[numberOfCells * inEnumerator.size()];
76 for (int i = 0; i < numberOfCells; ++i) {
77 std::memcpy(&tmpQIn[i * inEnumerator.size()],
78 hostCellData.QIn[i], inEnumerator.size() * sizeof(double));
79 }
80

81 #pragma omp target teams distribute parallel for simd
82 firstprivate(inEnumerator, outEnumerator, QIn, QOut,
83 QInCopyInOneHugeBuffer, QOutCopyInOneHugeBuffer)
84 device(targetDevice)
85 for (int i = 0; i < numberOfCells; ++i) {
86 QIn[i] = &QInCopyInOneHugeBuffer[i * inEnumerator.size()];
87 QOut[i] = &QOutCopyInOneHugeBuffer[i * outEnumerator.size()];
88 }
89

90 omp_target_memcpy(QInCopyInOneHugeBuffer, tmpQIn,
91 numberOfCells * inEnumerator.size() * sizeof(double), 0, 0,
92 targetDevice, hostDevice);
93 delete[] tmpQIn;
94 }
95

96

97 void exahype2::fv::rusanov::omp::GPUCellData::copyToHost(
98 CellData& hostCellData,
99 const enumerator::AoSLexicographicEnumerator& outEnumerator,

100 bool copyMaxEigenvalue
101 ) const
102 {
103 double* tmpQOut = new double[numberOfCells * outEnumerator.size()];
104

105 int hostDevice = omp_get_initial_device();
106

107 omp_target_memcpy(tmpQOut, QOutCopyInOneHugeBuffer,
108 numberOfCells * outEnumerator.size() * sizeof(double), 0, 0,
109 hostDevice, targetDevice);
110
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111 for (int i = 0; i < numberOfCells; ++i) {
112 std::memcpy(hostCellData.QOut[i],
113 &tmpQOut[i * outEnumerator.size()],
114 outEnumerator.size() * sizeof(double));
115 }
116 delete[] tmpQOut;
117 }

Listing A.1: Full implementation of the wrapper class GPUCellData
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