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Abstract

ExaHype2 is an open-source engine to solve hyperbolic partial differential equations. It
is built on top of Peano 4, which provides the storage and traversal of the simulated
domain in the form of a space tree.

One of the most essential applications for ExaHype2 is the simulation of waves,
which can be used for studying electromagnetism, earthquakes, and tsunamis. As the
latter two often go hand in hand, it is useful to simulate them together to achieve a
more accurate representation of the event. Since earthquakes are modeled as elastic
waves, whereas tsunamis are modeled as acoustic waves, the need for solvers that can
correctly model the interaction between the two mediums arises.

In the paper "A high-order discontinuous Galerkin method for wave propagation
through coupled elastic–acoustic media"[15] such a solver was derived.

The goal of this paper is to implement the solver in ExaHype2 and demonstrate its
correctness with multiple test scenarios.
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1 Related Work

1.1 ExaHype2

The implementation discussed in this paper is in the context of the ExaHype2 project[9],
an open-source engine to solve hyperbolic partial differential equations of the form:

∂Q
∂t

+ F(Q,∇Q) + B(Q) · ∇Q = S(Q) +
nps

∑
i=1

δi (1.1)

where Q is a vector of conserved quantity, S the source, and F being the flux function,
B being the non-conservative flux function, and δi the discrete point sources.

The solution is computed numerically by discretizing the problem in space and time.
The space discretization is handled by the Peano4 adaptive mesh refinement frame-

work, which adaptively divides the domain by tri-partitioning, meaning each cell can
be subdivided into 3 · dimension cells independently from its neighbors[14]. The storage
and retrieval of these cells are also handled in Peano4 by linearizing the domain with
space-filling Peano trees, seen in Figure 1.1.

The time discretization is handled directly through the solver, here the so-called
ADER method is used[1].

When using ExaHype2, most of the configuration is done in a single specification
file, here named Elastic.py, which defines[9]:

• Project parameters like name, simulation time, and size of the computational
domain

• Solver declaration with ADER-DG, DG, Finite Volumes or Finite Difference as the
base. On top of these, the length of the Unknown vector Q has to be specified.
Key components of the solver like flux function and eigenvalue computation can
be chosen here, alongside with the postprocessing of the solution. Solver specific
options e.g. polynomial order in ADER-DG can also be set.

• Peano4 optimization options for example distributed or shared memory paralleli-
sation

• Makefile options like compile flags and included files

1



1 Related Work

Figure 1.1: Linearization of the domain using Space-filling Peano curves

Executing this configuration file generates several implementation files, including
a C++ file, and some C++ template functions, which the user must fill to define the
scenario and hyperbolic equation they are simulating.

The implementation is distributed among many files and contains all parts of the
numerical solver that are not problem-specific. This includes derivation, integration,
updating of the solution, and timestepping of the solver. These files are generated from
templates with necessary information about the scenario provided by the specification
file.

Any problem-specific handling of the Unknown variables is done in the implementa-
tion C++ file, here named elastic.cpp, where the flux function, initial state, boundary
condition, and source terms are described.

The main C++ file handles the instantiation of the Peano4 space-tree with the domain
of specified size and triggers its traversal.

During traversal, the Peano4 sweeps across the entirety of the space-tree, including
faces and vertices of all cells, while triggering observers on every move. This is where
the generated implementation hooks in, as it is called by these observers, linking Peano4
and the implementation code.

1.2 ADER-DG

As ADER-DG will be used as the base of the solver, the basics of these types of
numerical PDE solvers are explained.

Arbitrary high-order DERivatives Discontinuous Galerkin, abbreviated to ADER-DG,

2



1 Related Work

is a method for solving partial differential equations computationally. It combines
concepts of the finite elements method and finite volumes method to offer high-order
accuracy while being able to model complex geometry[4].

In ADER-DG, each cell is comprised of (Order + 1)d degrees of freedom, with Order
being the polynomial order specified in the specification file and d ∈ 2/3(dimensions).
Each of these DOFs holds as many values as there are Unknowns Q. These values
correspond to the values of the underlying polynomial at pre-defined support points
within each cell. They can be interpolated to represent the state at any other point in
the cell.

As in classic discontinuous Galerkin methods, the interpolated values at the boundary
between two cells do not need to be continuous.

ADER-DG in ExaHype2 follows three core algorithmic steps performed in two
Peano4 sweeps over the spacetree[2]:

• Prediction

• Riemann Solve

• Correction

These three steps in computing one timestep are reflected in the Actionsets observers.
There are a total of eight of these observers, each attached to the Peano4 traversal and
assigned specific jobs necessary for the computation of a new timestep. Relevant for
ADER-DG are:

observers/TimeStep2exahype2_solvers_aderdg_actionsets_Prediction3.cpp
observers/TimeStep2exahype2_solvers_aderdg_actionsets_Correction6.cpp

In the Prediction step, each cell is looked at in isolation from its neighbors. Since
the basis functions of the polynomial are known at compile time, mass matrices for
derivation and integration can be precomputed. Appropriate support nodes for the
polynomial are chosen so that Gaussian quadrature can provide efficient and accurate
integrations over the cell. Using these matrices and the user-defined flux function, each
cells local solution can be advanced by one timestep.

Since, in the previou step, each cell was solved by itself, the interpolated function
is discontinuous when connected at the interface between two cells. To resolve this, a
second traversal is triggered. During this sweep, every time a new cell is entered, the
shape function is evaluated at the boundary by using a precomputed linear combination
of the values stored in the DOF. By solving the Riemann problem for these projected
values, the numerical flux between cells is computed.

This numerical flux is used in the third algorithmic step to correct the cell-local
solution from step one.
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1 Related Work

1.3 Parent paper

The implementation done in this thesis is based on results attained in "A high-order
discontinuous Galerkin method for wave propagation through coupled elastic–acoustic
media"[15].

There, a high-order discontinuous Galerkin scheme for solving wave equations capa-
ble of handling material discontinuities, including acoustic-elastic ones, is presented.
This scheme was tested using scenarios simulating a variety of waves.

The following chapters detail how these results were reproduced in ExaHype2.
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2 Implementation

This chapter details the implementation of the flux() and riemannSolver() functions in
the C++ implementation files mentioned in Chapter 1.1.

In the following, some mathematics needed to understand the later implemented
functions and scenarios are explained.

2.1 Prerequisites

The state of the domain is represented in a vector of nine Unknowns consisting of:

• σ = (σxx, σyy, σzz, σxy, σyz, σxz)T to describe the deformation the wave causes.

• v = (vx, vy, vz)T to describe the speed at which the particles are traveling at.

Augmented by three Auxiliary Variables:

• cp, cs, ρ to describe the physical property the medium, the wave is traveling on.

The Lamé parameters λ, µ together with ρ are an alternative representation to cp, cs, ρ

for characterizing the medium. They are related by

cp =

√
λ + 2µ

ρ
, cs =

√
µ

ρ
(2.1)

The deformation σ can expressed either as the Cauchy stress tensor S or the strain
tensor E. Due to the inherent symmetry of these deformation tensors, which generally
consist of nine elements in 3D, they can be simplified to six elements without loss of
information.

They are related by

S = λtr(E)I + 2µE (2.2)

This conversion can also be expressed by the fourth-order constitutive tensor C,
which will not be further explained here.

5



2 Implementation

S = CE (2.3)

However, in the context of this paper, the conversion (2.3) is equivalent to (2.2) and
often easier to write out.

It should be noted that in this thesis and all of the implemented code, the order
of iterating over the sigmas σ from [15] was taken in favor of the default iteration
used in other projects of ExaHype2. This change is of a purely cosmetic nature to be
consistent with the paper that is reproduced here. As Exahype2 itself does not treat
these Unknowns differently from each other, changes outside the working directory
were not necessary. Problem-specific handling of these Unknowns only comes into effect
through the user implementation of the flux() and riemannSolver() functions found in
elastic.cpp.

In the following, the derivation of these two functions and their implementation is
explained.

2.2 Flux

The foundation for the flux function is based on the formulas for linear elasticity that
describe the relationship between the strain tensor E and the velocity v. [10][15]

∂E
∂t

=
1
2
(∇v +∇vT), ρ

∂v
∂t

= ∇ · CE (2.4)

As the choice has been made to represent deformations σ with the Cauchy stress
tensor S (2.3), the formulation changes to

∂S
∂t

= C · 1
2
(∇v +∇vT), ρ

∂v
∂t

= ∇ · S (2.5)

This is done to conform with the later defined riemannSolver().
These equations can then be brought into the the conservative form [11]:

∂Q
∂t

+∇ · FQ = 0 (2.6)

for a conserved quantity Q. In this case these are the Unknowns (S, v)T ∈ (R3×3
sym , R3)T

and F being the flux() function.
The resulting flux function F can be written as

(FQ)i =

(
− 1

2 · C · (v ⊗ ni + ni ⊗ v)

− S·ni
ρ

)
f or i = 1, 2, 3 (2.7)
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or if Unknows are simplified to a vector

(S, v)T = (σxx, σyy, σzz, σxy, σyz, σxz, vx, vy, vz)
T

F = −



0 0 0 0 0 0 (λ + 2µ) · n1 λ · n2 λ · n3

0 0 0 0 0 0 λ · n1 (λ + 2µ) · n2 λ · n3

0 0 0 0 0 0 λ · n1 λ · n2 (λ + 2µ) · n3

0 0 0 0 0 0 µ · n2 µ · n1 0
0 0 0 0 0 0 0 µ · n3 µ · n2

0 0 0 0 0 0 µ · n3 0 µ · n1
n1
ρ 0 0 n2

ρ 0 n2
ρ 0 0 0

0 n2
ρ 0 n1

ρ
n3
ρ 0 0 0 0

0 0 n3
ρ 0 n2

ρ
n3
ρ 0 0 0


(2.8)

with n1, n2, n3 denoting the three dimensions the flux can be computed for.

n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1


Although this looks very different from Equation (7) and (10) from [15] respectively,

most of these discrepancies stem from the choice to convert E to S when computing
the deformations σ instead of the velocities v.

Notably different from the flux function derived [15], on the other hand, is the factor
of 1

ρ in the calculation of the velocity flux. This is because the parent paper[15] does
not account for ρ in (2.5) when deriving their flux function.

It is demonstrated later in chapter 3.1.1 that this modified flux yields correct numerical
results in ExaHype2.

2.3 Riemann Solver

The Riemann solver derived in the parent paper[15] computes the upwind numerical
flux using the exact solution of the Riemann problem. In contrast to other Riemann
solvers[12][5], this Riemann solver takes material parameters from both sides of the
discontinuity into consideration.

As this paper focuses on the implementation in ExaHype2, the lengthy derivation of
the Riemann solver will be omitted. The techniques used can be found[15][4].

The unified numerical flux in direction n for all material interfaces written in the
velocity stress formulation is

7



2 Implementation

n ·
((

F
(

S
v

))∗

− F−
(

S−

v−

))
=k0(n · JSK+ ρ+c+p JvK)

(
λ− I + 2µ−n ⊗ n

ρ−c−p n

)

−k1

(
2µ−sym(n ⊗ (n × (n × JSK)))

ρ−c−s n × (n × JSK)

)

−k1ρ+c+s

(
2µ−sym(n ⊗ (n × (n × [v])))

ρ−c−s n × (n × [v])

)
(2.9)

With k0, k1 defined as

k0 =
1

ρ−c−p + ρ+c+p
, k1 =

{
1

ρ−c−s +ρ+c+s
µ− ̸= 0

0 µ− = 0
(2.10)

and

JSK = S− · n− + S+ · n+, JvK = v− · n+ + v+ · n+, [v] = v− − v+

n denotes the direction of the interface that is being processed and can be one of1
0
0

 ,

0
1
0

 ,

0
0
1


while sym() is defined as

sym(x) =
1
2
(x + xT), sym(x) =

1
2
(x + xT

) (2.11)

The original flux function was designed to compute ρv, which was modified to
calculate ρ instead. For this reason, it has been assumed that the Riemann solver also
outputs ρv as the formulation of the numerical flux is derived from the flux function.

Therefore every term that makes up the particle speed in the resulting numerical flux
has the ρ− factor removed compared to the Riemann solver presented in [15].

n ·
((

F
(

S
v

))∗

− F−
(

S−

v−

))
=k0(n · JSK+ ρ+c+p JvK)

(
λ− I + 2µ−n ⊗ n

c−p n

)

−k1

(
2µ−sym(n ⊗ (n × (n × JSK)))

c−s n × (n × JSK)

)

−k1ρ+c+s

(
2µ−sym(n ⊗ (n × (n × [v])))

c−s n × (n × [v])

)
(2.12)
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It should be noted that this has not been verified with a formal rederivation. The
correctness of this modification is discussed in chapter 2.6 and demonstrated in chapter
3.4.1.

2.4 Split Riemann solver

When using acoustic equations to model the domain, the medium is characterized
by µ = 0, which is equivalent to cs = 0. This enables the Riemann solver (2.12) to
be simplified in cases where the interface borders an acoustic cell since many terms
evaluate to zero.

In the case of an acoustic-acoustic or acoustic-elastic interface, (2.12) becomes

n ·
((

F
(

S
v

))∗

− F−
(

S−

v−

))
=k0(n · JSK+ ρ+c+p JvK)

(
λ− I + 2µ−n ⊗ n

c−p n

)
(2.13)

And for elastic-acoustic interfaces (2.12) becomes

n ·
((

F
(

S
v

))∗

− F−
(

S−

v−

))
=k0(n · JSK+ ρ+c+p JvK)

(
λ− I + 2µ−n ⊗ n

c−p n

)

− 1
ρ−c−s

(
2µ−sym(n ⊗ (n × (n × JSK)))

c−s n × (n × JSK)

) (2.14)

2.5 Implementation in Code

The implemented Riemann Solver and flux function can be found in riemann.cpp and
flux.cpp respectively and are designed to be called from implementation C++ file
elastic.cpp.

• riemann.cpp:
riemann_unified(Flux,QL,QR,direction,n);
riemann_split(Flux,QL,QR,direction,n);
riemann_paper(Flux,QL,QR,direction,n);

• flux.cpp flux(Q,direction,Flux);
flux_paper(Q,direction,Flux);

9



2 Implementation

#if Dimensions == 2
const int end = (Order+1);

#elif Dimensions == 3
const int end = (Order+1)*(Order+1);

#endif
for(int i = 0; i < end; i++){

riemann_unified(FL+9*i, QL+12*i, QR+12*i, direction, 1);
riemann_unified(FR+9*i, QR+12*i, QL+12*i, direction, -1);

}

Figure 2.1: Code in elastic.cpp to call the Riemann solver

The functions with _paper suffix use the equations derived in the parent paper[15,
(7)(22)], while all the others use the modified flux and Riemann solver mentioned here
(2.7)(2.12).

Two methods of coupling the acoustic and elastic domains are suggested in ExaHype2.
The first is to create two different solvers that traverse separate domains overlapping in
a boundary domain that couples the two domains together.

The other method is to create a single unified solver for the entire domain and store
all the Unknowns, needed for both the acoustic and elastic domain, in every cell.

Although some of the data stored in the second approach might be unnecessary, it is
generally faster since only one mesh traversal is needed[6].

Coupling of acoustic-elastic domains using a unified solver is especially efficient
since the Unknowns needed for the acoustic equation are a subset of the Unknowns of
the elastic equation.

The implemented riemann_unified() uses the unified equation applicable to any ma-
terial interface(2.12), while riemann_split() chooses the most suitable equation out of
(2.12)(2.13)(2.14), depending on the material parameters at the interface.

The implemented Riemann solvers compute the numerical Flux for two states QL, QR
in direction · n. To get the corresponding Flux in the reverse direction, the function has to
be called again with QL and QR swapped and direction · 1 reversed to direction · −1. Due
to the nature of ExaHype2, this procedure has to be repeated along the entire interface
that is being processed. This means for any polynomial order N, the computation of
the numerical flux has to be repeated for N + 1 pairs of QL and QR if using 2D. When
simulating in 3D, the number of pairs grows to (N + 1)2.

10
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2.6 Correctness of the modified Riemann Solver

Having removed the ρ− factor in the Riemann solver without formal justification, new
questions arise:

Does the modified Riemann solver (2.12) still correctly account for material parame-
ters on both sides of the discontinuity? What if the correct change would have been to
leave the ρ− factor in and instead to divide by ρ+?

The thought process behind dividing by ρ− instead of ρ+ is the following:
Under the assumption that the original Riemann solver (2.9) computed ρv− in the

flux affecting Q−, in order to calculate v− the solver should divide by ρ−, the density
value of Q− itself.

When computing the flux in the reverse direction for Q+ the same is done for
v+ because of the interchanging of parameters during the call, seen in Figure 2.1.
Therefore, both densities ρ−, ρ+ from both sides have an effect on the resulting flux for
their respective cells.

A test supporting this decision can be found in Chapter 3.4.1.

2.6.1 Boundary Conditions

For the well posedness of the system, boundary conditions are needed to define the
behavior at the edge of the computational domain. There are three types of boundaries
which will be used in this work:

• The periodic boundary is a feature of ExaHype2 and is set in the Python specifi-
cation file Elastic.py. It works by connecting the two ends of the computational
domain together to create a circular domain.

• The analytical boundary only works for scenarios for which the exact solution
is known, such as the scenarios implemented in Chapter 3. It sets the value
of the boundary to the correct analytical solution of the wave at that position
and time. This simulates a domain that extends infinitely in the direction of the
boundary. However, even small inaccuracies or deviations of the simulation from
the analytical solution can lead to reflections and instability at the boundary.

• The traction-free boundary simulates an interface with a vacuum on the other
side. Since vacuum is incapable of transferring stresses σ, these have to be zero
at the boundary. To achieve this, the stresses σ of the boundary are set to be the
negative of the σ of the neighboring cell.

11



3 Scenarios

To demonstrate the correctness of the implementation, scenarios with well-known
analytical solutions were implemented. These are chosen to cover all parts of the solver
while only featuring displacements along two of the three axes in order to work in both
2D and 3D.

All scenarios share a common interface in scenario.h:

boundary(Qinside,Qoutside,position,t,normal);
initial(Q,position,with_params,t);

This interface is called from elastic.cpp and currently has four working implementa-
tions in plane_scenario.cpp, rayleigh_scenario.cpp, lamb_scenario.cpp and scholte_scenario.cpp.
The boundary() function is called by elastic::boundaryConditions(), while initial() returns
the analytically computed state at any position x and time t in the Q parameter and
is called by elastic::initialCondition() and elastic::analyticalSolution(). The with_params
parameter controls whether the material parameters cp, cs, ρ should be included in Q
as these do not change over time. Therefore elastic::analyticalSolution() does not need
them and also has no memory allocated to store these parameters.

The scenario can be set in the Elastic.py file by changing the Scenario Enum. This
handles the inclusion of the correct required file and sets the offset and boundaries to
the values needed for the scenarios to work.

Scenarios are defined in terms of their analytically calculated displacement in time t
and space x = {x, y, z}T: ux(x, t), uy(x, t) and material parameters ρ(x), cp(x), cs(x)
which are constant within a cell and do not change in time. Derivating ux, uy in time
gets us the velocities vx, vy.

The strain tensor E is defined by

E =
1
2
(∇u +∇uT)

This can then be converted into the Cauchy Stress Tensor S using Lamé parameters
λ, µ

S = 2µE + λtr(E)I

12



3 Scenarios

length = k
2π

Figure 3.1: Wavelength in relation to the wavenumber k

The state vector Q can then be expressed as

σxx(x, t) = (λ + 2µ)
∂ux

∂x
+ λ

∂uy

∂y
, σyy(x, t) = (λ + 2µ)

∂uy

∂y
+ λ

∂ux

∂x

σzz(x, t) = λ(
∂uy

∂y
+

∂ux

∂x
), σxy(x, t) = µ(

∂ux

∂y
+

∂uy

∂x
)

σyz(x, t) = 0, σxz(x, t) = 0

vx(x, t) =
∂ux

∂t
, vy(x, t) =

∂uy

∂t
, vz(x, t) = 0

In all scenarios, the wavenumber k = 2π is chosen. This way, the wavelength, the
distance after the wave returns to its starting state, is exactly one, see Figure 3.1. When
periodic boundaries are applied in the direction the wave travels on a domain of
length = 1 in that direction, a periodic wave is achieved. This wave behaves as if the
same wave is repeated on an infinite domain.

In scenarios where the domain is divided into two areas of different material parame-
ters, it is split at y = 2

3 , as this is a cell boundary shared by all refinement levels, which
guarantees that material parameters remain constant within each cell. This is necessary
because only the Riemann solver is capable of solving at material discontinuities.

3.1 Plane Wave

Plane waves consist of longitudinal and transverse waves that travel in a fully periodic
elastic domain. A sketch of the scenario can be seen in Figure 3.2a. This scenario has
been implemented to test the correctness of the flux function and, later, the Riemann
solver. It was chosen because it is described with very simple displacements:

ux(x, t) = cos(k · (x0 − cpt)) uy(x, t) = cos(k · (x0 − cst))

13



3 Scenarios

x

y

elastic

(1,1)

(a) Sketch of Plane wave scenario
(b) Initial condition of σyy visualized in Par-

aview

Figure 3.2: Plane wave scenario

The material parameters used are λ = 2.2, µ = 1.3, ρ = 1.2. The domain spans
[0, 1]× [0, 1] in [x]× [y] dimension split in 9 × 9 cells with periodic boundaries in all
dimension.

3.1.1 L2-Errors of different solvers

Using this exact basic scenario as a test, the differences between the solvers of the
parent paper[15] and their modified versions implemented here(2.12)(2.7) are shown.

The two solver components, the Riemann solver and the flux function, are tested
independently. The riemann_split() function has been left out since it is functionally the
same as riemann_unified(). The remaining components have been combined to create
four solvers:

• flux_paper() + riemann_paper()

• flux_paper() + riemann_unified()

• flux() + riemann_paper()

• flux() + riemann_unified()

In Figure 3.3 the L2-Error is plotted as the polynomial order of the simulation is
increased. It can be seen that the L2-Error in this test case is mainly influenced by the
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Figure 3.3: L2 Error integrated over the domain of different solvers as the order of the
polynomial is increased, Plane wave scenario at t=1, 9 × 9 Domain

choice of the flux function. Between the two flux functions, the errors of the solvers
using the flux from the parent paper do not converge toward the correct solution.

To determine which Riemann solver implementation is correct, the level of refinement
is increased to create domains of 27 × 27 cells, to increase the influence of the Riemann
solvers. Since the difference between the two solvers is how the density ρ is treated,
instead of plotting the L2-Error against polynomial order, the error as the density
increases is visualized in Figure 3.4

As can be seen, the L2-Error of the solver using the modified Riemann solver stays
constant as the density is increased, whereas the error of the other solver increases
steadily until it spikes. At ρ = 1.7 it already increases to 1.55112e + 298. The sudden
jump is due to the error introduced into each cell from the Riemann solver through
the numerical flux, reaching a magnitude that significantly affects the interface on the
opposite side of the cell. This then gets amplified in the next timestep, resulting in
escalation of the error.

In the following, the solver used will always be the modified flux()+riemann_unified().
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Figure 3.4: L2-Error integrated over the domain of the Plane wave scenario as density ρ

is increased at t = 1 with Order=5, 27 × 27 cells comparing riemann_unified
and riemann_paper 2.5

Figure 3.5: Error spreading from the cell interfaces in Plane wave scenario Order=5,
27 × 27 cells starting at density ρ = 1.6 when using riemann_paper 2.5
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3 Scenarios

3.2 Rayleigh Wave

The Rayleigh waves are surface waves traveling along the boundary between an elastic
medium and a vacuum. They find wide application in seismology in modeling earth-
quakes. This scenario is included to show the correctness of the traction-free boundary
alongside the elastic-elastic Riemann solver. Similar scenarios have been implemented
in [3, Section 4.4.1][15, Section 6.3]. The displacement of the wave is described as

ux(x, t) = [A1eb1x3 + A2eb2x3 ]cos(k(x1 − crt))

uy(x, t) = [
b1

k
A1eb1x3 +

k
b2

A2eb2x3 ]sin(k(x1 − crt))

with ρ = λ = µ = 1
c depends on the chosen material parameters and satisfies

(2 − c2

c2
s
)2 − 4(1 − c2

c2
p
)

1
2 (1 − c2

c2
s
)

1
2

It was computed to be c =
√

2 − 2√
3
.

The relation between A1 and A2 is described by

(2 − c2

c2
s
)A1 + 2A2 = 0

A2 = 1 sets A1 = −
√

3
b1, b2 are driven by

b1 = k(1 − c2
r

c2
p
)

1
2 , b2 = k(1 − c2

r
c2

s
)

1
2

The computational domain is [0, 1] × [−1, 0] in x × y divided into 9 × 9 cells of
equal size. A sketch of it can be seen in Figure 3.6a. The top boundary at y = 0 is
implemented as a traction-free boundary to simulate the vacuum, while the bottom
boundary at y = −1 is set as an analytical boundary. This does not noticeably impact
the accuracy of the simulation because the magnitude of the wave decays away from
y = 0.

The L2-Error of the simulation at t = 1 is measured. As can be seen in Figure 3.6b
the error decreases exponentially as the poynomial order of the solver is increased.
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Domain

Figure 3.6: Rayleigh wave scenario

3.3 Lamb Wave

Lamb waves propagate along an infinite plane of elastic medium of finite thickness 2d
surrounded by a vacuum. This scenario is similar to the Rayleigh one and demonstrates
the vacuum boundary together with the elastic-elastic Riemann solver in the absence of
a boundary that enforces the analytical solution upon the computational domain. A
sketch can be seen in Figure 3.7a

The Lamb Wave is described in [15, Section 6.4]

ux(x, t) = (−kAcos(py)− qBcos(qy))sin(kx − ωt)

uy(x, t) = (−kAsin(py) + qBsin(qy))cos(kx − ωt)

with ω driven by the chosen material parameters and wavenumber k

tan(qd)
tan(pd)

=
4k2 pq

(q2 − k2)2

and

p2 =
ω2

c2
p
− k2, p2 =

ω2

c2
s
− k2

ω = 13.13706319723 has been taken from [15]
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Figure 3.7: Lamb wave scenario

and A and B can be computed with

A = 2µkq · cos(qd), B = (λk2 + (λ + wµ)p2)cos(pd)

here λ = 2, µ = ρ = 1, ω = 13.13706319723, A = 126.1992721468, B = 53.88807700007
were used.

The domain spans [−0.5, 0.5]× [−0.5, 0.5] and is refined two times into a 9 × 9 cell
grid.

Both the top and bottom are implemented as traction-free boundaries, while all the
other sides are periodic boundaries to act like an infinite repeating plane.

As can be seen in Figure 3.7b, the Lamb scenario starts with a very high L2 error
compared to the Rayleigh one. This can be attributed to the high range of values that
need to be represented within one cell. This error decreases exponentially as the order
is increased.

3.4 Scholte Wave

Scholte waves propagate along the boundary between acoustic and elastic domains.
They are especially interesting as they occur in underwater seismology at the boundary
between water and seabed[13]. This scenario is implemented to highlight the Riemann
solver’s capabilities to handle acoustic-elastic boundaries.

19



3 Scenarios

The displacements for the upper acoustic domain y > 0 are:

ux(x, t) = Re((ikB1e−kb2px3 + kb2sB2e−kb2sx3)ei(kx1−ωt))

uy(x, t) = Re((−kb2pB1e−kb2px3 + ikB2e−kb2sx3)ei(kx1−ωt))

and for the lower elastic half y < 0:

ux(x, t) = Re((ikB3ekb2px3 − kb2sB4ekb2sx3)ei(kx1−ωt))

uy(x, t) = Re((kb2pB3ekb2px3 + ikB4ekb2sx3)ei(kx1−ωt))

with λ1 = ρ1 = 1, µ1 = 0, and λ2 = µ2 = ρ2 = 1.
c depends on the chosen material parameters

(
ρ1

ρ2
b2p + b1p)r4 − 4b1pr2 − 4b1p(b2pb2s − 1) = 0

with

b1p = (1 − c2

c2
1p
)

1
2 , b1s = (1 − c2

c2
1s
)

1
2 , b2p = (1 − c2

c2
2p
)

1
2 , b2s = (1 − c2

c2
2s
)

1
2

c1p =

√
λ1 + 2µ1

ρ1
, c1s =

√
µ1

ρ1
, c1p =

√
λ2 + 2µ2

ρ2
, c2s =

√
µ2

ρ2

Here c = 0.7110017230197 has been determined.
A derivation for B1, B2, B3, B4 can be found in [15, Section 6.5]
In this case B1 = −i0.3594499773037, B2 = −i0.8194642725978, B3 = i0.5220044931212, B4 =

−0.9339639688697 were used in the simulation.

3.4.1 Material discontinuities with modified Riemann Solver

Although the Scholte scenario features an acoustic-elastic interface, both domains have
identical density ρ = 1. This leaves one crucial part of the modified Riemann solver
untested: the handling of material interfaces with different densities ρ.

To verify the correctness of the solver for material discontinuities with different
densities ρ, a scenario simulating a Stoneley wave is implemented. This wave is a
generalization of the Scholte wave and represents a wave traveling along the interface
between two domains of arbitrary material parameters.

Unfortunately, as of now, this scenario does not run correctly, as the L2-Error does
not converge to zero for increasing polynomial orders. Nontheless running the scenario
simulates a wave with the aforementioned material interface at y = 2

3 .
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Figure 3.8: Scholte wave scenario

Being a generalization of the Scholte scenario, the computational domain is the same
spanning [0, 1]× [− 2

3 , 1
3 ] divided into 9× 9 cells with polynomial order 5, seen in Figure

3.8a.
Since the scenario is not correctly implemented, a detailed description of the scenarios

is omitted here. A complete definition can be found in [15].
To answer the question posed in chapter 2.6 the Stoneley scenario is run on two

different Riemann solvers. One using the formulation detailed in (2.12), here called
ρ−-solver. The other one is modified by dividing with ρ+ instead of ρ− as discussed in
chapter 2.6, here called ρ+-solver.

Figure 3.9 shows the visual results of these simulations cropped to only show the
top 2

3 portion. As can be seen, both start with the same initial condition. However, the
solution computed with ρ+-solver has strong instabilities expanding alternatingly from
the material discontinuity. This indicates that the ρ value from the wrong side is being
taken when computing the numerical flux, causing an error, which gets repeated in
the next timestep, causing the alternating pattern. The ρ−-solver, on the other hand,
produces sensible output.
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3 Scenarios

(a) ρ− Riemann solver (b) ρ+ Riemann solver

Figure 3.9: Behavior at at elastic-elastic interface between domains of different densities
ρ comparing ρ− and ρ+ Riemann solvers. Visualized using Paraview at t =
0.0, 0.1, 0.3 using Stoneley wave scenario
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3 Scenarios

3.5 Results

To determine the correctness of the flux and Riemann solver four scenarios repre-
senting various waves were implemented. With tests using different densities on
plane_scenario and stoneley_scenario, the modifications to the solver of the parent paper
were justified. L2-Error convergence towards zero has been observed in four scenarios.
Especially proper handling of the acoustic-elastic boundary is demonstrated in the
Scholte Scenario.

One noticeable result that can be seen in the L2-Errors, is different types of conver-
gence towards zero. While the L2-Error in the Lamb and Plane scenarios approach zero
almost exactly exponentially, the other scenarios converge more linearly. These two
scenarios with no analytical boundaries also approaches zero a lot faster. It is possible
that the analytical boundary, by being slightly more accurate, causes reflections that
interfere with the stability of the solution.
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4 Evaluation

4.1 Performance

In this chapter, the performance of the implemented Riemann solvers is measured and
compared against the default Riemann solver of the ExaHype2 project, the Rusanov Rie-
mann solver. This approximate solver computes the numerical flux at the discontinuity
between two cells by taking averages of both sides and applying the flux() function
onto them.

The performance has been measured with perf stat -r10 ./EXECUTABLE on an Intel
i7-14700KF, 32GB RAM, with the executable being compiled with gcc -O3. The writing
of patch files and measurement of errors have been disabled. The performance was
only measured in single-core mode since the Riemann Solver does not transmit any
data nor influences the parallelization of the code.

As can be seen in Figure 4.1, the execution time grows exponentially as the or-
der of the polynomials increases. The computational effort of most actions in the
pipeline, mentioned in chapter 1.2, grows linearly with the number of nodes. Since
NumberO f Nodes = Order2 in 2D, this growth in execution time makes sense. The
plotting of the performance of the Rusanov and Split solver have been omitted, as they
were within 1% of the result of the unified solver.

4.1.1 Profiling

Despite vast differences between the Rusanov solver and the two other solvers, the
execution time of all three Riemann solvers are practically identical. To study this in
more detail, the code has been profiled with

valgrind --tool=callgrind --dump-instr=yes --simulate-cache=yes
--collect-jumps=yes --collect-atstart=no --instr-atstart=no ./EXECUTABLE

and with a set of Macros inserted into the main C++ file as described[8] to only
collect calls made during the timestepping phase of the program execution, see Figure
4.2.

When compiled with Order = 5 on 9× 9 domain, Figure 4.3 shows where most of the
time is spent. All "Time spent" values have been taken from KCachegrind "Self" value
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Figure 4.1: Execution time running the Scholte wave scenario as order of the polynomial
is increased, end time = 1, 9 × 9 cells

#include <valgrind/callgrind.h>
int main()
{ CALLGRIND_START_INSTRUMENTATION;
CALLGRIND_TOGGLE_COLLECT;

//Code for computing a TimeStep

CALLGRIND_TOGGLE_COLLECT;
CALLGRIND_STOP_INSTRUMENTATION;}

Figure 4.2: Code used in the main C++ function to capture calls for profiling
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4 Evaluation

with the sole exception of riemannSolver(), where the "Incl." value is taken, since the
solver only calls a single helper function. This way, "Time spent" accurately reflects the
time it took to compute the numerical flux by combining the time of riemannSolver()
and its helper function.

Label Time spent % Function

A 22.01 generated::kernels::AderDG::linear::
fusedSpaceTimePredictorVolumeIntegral()

B 9.86 peano4::datamanagment::FaceMarker::FaceMarker()
C 8.87 _memset_avx2_unaligned_erms
D 3.64 examples::exahype2::elastic::observers::TimeStep::enterCell()
E 3.63 examples::exahype2::elastic::observers::TimeStep::leaveCell()
F 3.08 examples::exahype2::elastic::elastic::flux()
. . . . . . . . .
G 0.57 examples::exahype2::elastic::elastic::riemannSolver()

Figure 4.3: Profiling Order 5 Depth 2

Most of the time is spent in A, which makes sense since this function computes the
per-cell prediction solution, mentioned in chapter 1.2. It is also the only caller of C,
which is used to set large memory areas to zero.

B is called exclusively out of the TimeStep observer and handles the storage and
retrieval of cell values.

Although D and E themselves do not compute much, they are responsible for
managing and calling the whole "Actionset" pipeline. This is reflected in a high "Incl."
value of 51.07% of D, which means a total of 51.07% of the entire runtime is spent in
functions D calls, including itself.

A surprisingly high amount of time is spent in the flux function F. Despite the
computation happening in there being trivially simple, it is being called by A repeatedly
numerous times to compute the flux for all nodes in a cell. It is possible that the
USE_IPO variable could improve the performance here by inlining the call to the flux()
function, which then could be vectorized by the compiler. This, however has not been
profiled.

As expected, when decreasing the order of the polynomials to one, the time spent in
A and its related functions C and F are drastically decreased. Although, as a result, the
other functions gain in percentage, the riemannSolver() function remains very low in
usage time.
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Label Time spent % Function

B 16.95 peano4::datamanagment::FaceMarker::FaceMarker()
D 5.80 examples::exahype2::elastic::observers::TimeStep::enterCell()
E 5.79 examples::exahype2::elastic::observers::TimeStep::leaveCell()
. . . . . . . . .
A 1.08 generated::kernels::AderDG::linear::

fusedSpaceTimePredictorVolumeIntegral()
. . . . . . . . .
G 0.30 examples::exahype2::elastic::elastic::riemannSolver()
. . . . . . . . .
F 0.24 examples::exahype2::elastic::elastic::flux()
. . . . . . . . .
C 0.06 _memset_avx2_unaligned_erms

Figure 4.4: Profiling Order 1 Depth 2

4.1.2 Riemann Solver Performance

To properly measure the performance of the three Riemann solvers, a simple test
function that can be injected into the main function has been written, Figure 4.5a. It
tries to emulate the material parameters found in an actual scenario with an acoustic-
elastic interface at y = 2

3 with acoustic being on top and elastic on the bottom. The
probability at which three types of Riemann discontinuities are chosen to match their
occurencce rate of the aforementioned scenario. Since the type of discontinuity only
depends on QL[cs] and QR[cs], all other values of QL and QR are randomized.

As can be seen in Figure 4.5b, the implemented Riemann solvers outperform the
default Rusanov solver by quite a bit. This is due to the computation in the new solvers
being a lot simpler because they are specially derived for this very Riemann problem.
Additionally, the Split solver is noticeably faster than the Unified solver because it can
save a lot of time when calculating numerical fluxes for acoustic-acoustic Riemann
problems.

Although these improvements in performance are barely measurable when used in
ADER-DG, they are very significant in a finite volume approach. However, it should be
noted that, in contrast to the new Riemann solvers, the Rusanov solver in the state it is
used in ADER-DG can not be used in finite volumes.
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QL = rand();
QR = rand();
for(int i = 0; i < 100000000; i++){

long j = rand();
if(j\%100 < 33){

QL[11] = 0;
QR[11] = 0;

}else if(j\%100 < 40){
QL[11] = 1;
QR[11] = 0;

}else{
QL[11] = 1;
QR[11] = 1;

}
riemannSolver(Ql,QR);

}

(a) Pseudocode used to test the perfor-
mance of the Riemann Solvers
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Split Unified Rusanov

(b) Performance of different Riemann
solvers compared, 100000000 repeated
calls

Figure 4.5: Performance of Riemann Solvers

4.2 Consistency

A noticeable property of the implemented Riemann solver is that it takes material
properties from both sides of the discontinuity when computing the numerical flux.
The correctness of this solver has been proven in [15, Section 4] and demonstrated with
the scenarios in Chapter 3.

Although the Rusanov solver is able to reproduce all scenarios in a meaningful way,
the L2-Error decreases magnitudes slower compared to the other two solvers, see Figure
4.6b. Apart from that, even at Order = 9, there is a "gap" that forms at boundaries and
material interfaces, see Figure 4.6c.

According to [15, Section 4.1], the consistency of a Riemann solver is given, if the
computed numerical flux is zero when applied to a continuous solution. This is the
case if the projected values of the cells are the same on both sides of the discontinuity.
However, different material interfaces put different constraints on which values have to
be continuous.
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for(int i = 0; i < 1000; i++){
QL = rand();
QR = QL;
QL[v+1] = 1; QR[v+2] = 2;
QL[v+1] = 1; QR[v+2] = 2
QL[cs] = 1; QL[cs] = 0;

riemannSolver(Ql,QR);
}

(a) Pseudocode used to test the Correctness
of the Riemann Solvers
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(b) L2 Error integrated over the domian of
Scholte wave scenario at t=1, 9 × 9 Do-
main with Rusanov Solver

Expected result generated using imple-
mented Riemann solver

Result generated by Rusanov Riemann
solver

(c) Differences at acoustic-elastic interface
of Scholte wave scenario

Figure 4.6: Differences between Riemann Solvers

For elastic-elastic interface in direction n:

v+ = v− S+ · n = S− · n

For acoustic-elastic and acoustic-acoustic interfaces in direction n:

n · v+ = n · v− S+ · n = S− · n

Noticeably, it is not required for the tangential component of v to be continuous,
when there is an acoustic cell at the interface.

A test function has been implemented to test this property of the Riemann solvers,
see Figure 4.6a, by calling the Riemann solvers with QL = QR that have different
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4 Evaluation

tangential v[1], v[2] values. An acoustic-elastic interface is simulated by setting one of
the Q[cs] values to zero.

The test verifies the property of consistency for the implemented Riemann solver,
while showing that the Rusanov solver does not have that property.

Strangely, this "gap" appears not only at acoustic-elastic interfaces but also at the
vacuum boundary at the top of the Rayleigh wave scenario, where no differences in
tangential velocities occur. Although the reason for this gap has not been found, it is
suspected that it appears due to the Rusanov solver taking the average of the cell states
when calculating the numerical flux.
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5 Future Work

5.1 Additional scenarios

Out of the six scenarios presented in the parent paper[15], only four are working
correctly in ExaHype2. The missing Stoneley and Snells law scenarios are both very
interesting as they feature an acoustic-elastic boundary with different densities on
each side, which the correctly implemented scenarios lack. This is also very likely the
reason why they do not work, as the modifications to the flux function and Riemann
solver were not made until well into the work. Currently, the two missing scenarios are
implemented but do not work correctly.

5.2 Correctness

As it stands, the modified Riemann solver has only been tested for discontinuities at
mediums with different densities. This could be improved with a formal rederivation
of the Riemann solver from the modified flux function. Additionally, the stability of the
modified Riemann solver has not been proven.

5.3 Comparison

A performance comparison with the same acoustic-elastic solver running on separate
domains would have been interesting. This way, the performance overhead of coupling
two separate solvers and their respective domains could have been analyzed.
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6 Conclusion

During this work on coupled acoustic-elastic solvers, the architecture and workflow of
ExaHype2 and the underlying Peano4 were familiarized.

In order to implement a solver, the ADER-DG method and its implementation within
ExaHype2 was studied.

Using equations derived in the paper "A high-order discontinuous Galerkin method
for wave propagation through coupled elastic–acoustic media"[15] an ADER-DG solver,
capable of handling acoustic-elastic boundaries, was implemented in ExaHype2.

Following the steps for deriving a flux function, the flux function was modified to
achieve correct numerical results in ExaHype2. Since the Riemann solver is derived
from the flux functions according changes were made to how the numerical flux is
calculated. This Riemann solver was split up to handle all interface types, acoustic-
acoustic, acoustic-elastic, and elastic-elastic efficiently.

By implementing scenarios modeling Plane, Rayleigh, Lamb, and Scholte waves the
correctness of the modified acoustic-elastic solver was demonstrated for all material
interfaces.

Using the Plane scenarios with different densities ρ, the changes to the flux were
justified by comparing different combinations of flux functions and Riemann solvers.

Numerical results exponentially converging towards the exact analytical solution
were observed for these four scenarios.

The performance of the entire execution with different parameters was profiled using
valgrind and analyzed.

The performance of the optimized solver was measured and compared against the
standard solver and the default Rusanov Riemann solver.

The consistency of the implemented Riemann solver at material interfaces was
demonstrated and contrasted against the Rusanov solver.
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7 Notes

All the implementation is done on the DG branch of Peano4[7] on commit 17b8979f.
Slight modification to python/exahype2/solvers/aderdg/kernels.py were made on that com-
mit to fix a bug, see Figure 7.1. The implementation is on the basis of the Elastic
example found in applications/exahyp2/aderdg/Elastic.

+++ b/python/exahype2/solvers/aderdg/kernels.py
@@ -1011,8 +1011,8 @@ def add_final_action_for_error_measurement():

repositories::{{SOLVER_INSTANCE}}.Order,
repositories::{{SOLVER_INSTANCE}}.QuadratureWeights,
repositories::{{SOLVER_INSTANCE}}.QuadraturePoints1d,

- repositories::{{SOLVER_INSTANCE}}.NumberOfVariables,
- repositories::{{SOLVER_INSTANCE}}.NumberOfParameters,
+ repositories::{{SOLVER_INSTANCE}}.NumberOfUnknowns,
+ repositories::{{SOLVER_INSTANCE}}.NumberOfAuxiliaryVariables,

fineGridCell{{UNKNOWN_IDENTIFIER}}.value,
errors
);

Figure 7.1: Bugfix in kernels.py
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