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Abstract

This thesis is about advancements in the development of the partial safety factor concept
which is the basis of most modern structural design codes. Three adaptation ideas are
formalized, including the explicit inclusion of the effects of hidden safeties, the inclusion
of system effects, and the consideration of non-linear effects. The first adaptation idea
about hidden safeties becomes necessary if standard models get replaced by more advanced
models. This can have two counteracting effects on structural reliability that need to be
balanced out. The second adaptation idea regarding the inclusion of system effects aims
at an extension of the partial safety factor concept to system-level. This is achieved by
establishing a link between general structural systems and an extended version of the
Daniels system. The third adaptation idea investigates non-linear structural response
functions and questions the state-of-the-art approach of considering the maximum of the
design action effect derived via the application of the partial safety factor directly to the
action or to the action effect. For each of the three adaptation ideas, detailed investigations
are conducted at a higher and abstract level in order to establish a generic basis. Moreover,
concrete suggestions for adapting the partial safety factor concept are proposed and various
application examples are presented. The common goal is the homogenization of the level
of safety and a reduction of material consumption without decreasing overall reliability.
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1. Introduction

The word “engineer” is derived from the Latin verb ingeniare (to create, to generate, to
contrive) and the noun ingenium (cleverness) [1]. Hence, an engineer is someone who
manipulates the world in a clever way. This thesis is restricted to the manipulation of
engineering structures. The cleverness of a structural design is assessed in terms of its
structural reliability and its resource efficiency.

In a world of constant growth with limited resources [2–8] and countless ecological [9–12],
economical [12–15], sociological [12, 16–20], and many potential future crises due to this
growth, it is one of the most challenging tasks of our generation to use resources efficiently.
The building sector within the European Union uses 1200 to 1400 million tons of building
materials per year [21]. This means every inhabitant of the European Union consumes
about 3 tons of building materials per year. In general, an inhabitant of an industrialized
country consumes between 10 and 20 tons of materials per year in total (excluding water
and air, as well as indirect material use, e.g., through induced soil erosion) [8]. Hence, the
building sector is responsible for a major percentage of material consumption and plays
a key role when it comes to resource sustainability. However, reducing the consumption
of resources can – but does not have to – conflict with the safety of structures, and an
appropriate balance must be found. When trying to find an optimal solution, typically two
stages are necessary: First, the optimization of each structure and second, the optimization
of design codes, which are the constraints placed on the first [22]. This thesis tackles the
optimization of design codes.

In general, a distinction can be made between three different levels of probabilistic struc-
tural design codes: The risk-informed approach, the reliability-based approach, and the
semi-probabilistic approach.

The risk-informed approach (e.g., [23]) is the most general approach, leading to the most
optimal solution in finding a balance between resource consumption and the safety of
structures. However, it requires a full risk analysis, including knowledge about the proba-
bility of system failure and knowledge about the respective consequences of failure. This
approach is rarely applied.

The reliability-based approach (e.g., [24]) differs from the risk-informed approach in that
it does not require any knowledge of the consequences of structural failure. A reliability
analysis is conducted such that a structural system or elements of a structural system meet
a target reliability. This leads to a less optimal balance between resource consumption
and the safety of structures compared to the risk-informed approach; however, if the
consequences of structural failure of the considered portfolio are within the same order
of magnitude, the difference between the risk-informed and the reliability-based approach
are rather small.
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The semi-probabilistic approach is a further simplification of the reliability-based approach
(e.g., [25]). In this thesis, the semi-probabilistic approach is referred to as the partial
safety factor (PSF) concept. The PSF concept is the most common design concept for
structures. All probabilistic quantities of the reliability-based approach are translated to
deterministic values (i.e., as mean or quantile values). These values are called characteristic
values. In order to achieve sufficient safety, PSFs and combination factors are applied to
the characteristic values, resulting in so-called design values (design action effects and
design resistances). Multiple design values are derived for a set of well-defined failure
modes of structural elements. The system as a whole is typically not analyzed. If all
design resistances are greater or equal to the respective design action effects, a structural
system is considered safe; however, the reliability of individual structural elements/systems
designed following this concept vary. A target reliability is only achieved on average for the
full portfolio of structures. The transition from the reliability-based approach to the semi-
probabilistic approach further reduces the optimality between resource consumption and
the safety of structures. How much the optimality is reduced strongly depends on the level
of detail of the PSF concept, i.e., how case-specific the safety components (characteristic
values, PSFs, and combination factors) are determined. However, a higher level of detail
can be negative regarding the ease-of-use of a standard.

This thesis investigates three possible adaptations of the PSF concept: First, the explicit
inclusion of hidden safety effects within the PSF concept (Sec. 3). This becomes espe-
cially necessary if standard models are replaced by more advanced models. Second, the
extension of the PSF concepts to the system-level by considering the amount of redun-
dancy of a structural system (Sec. 4). Third, possible improvements on how to include
non-linear structural response functions within the PSF concept (Sec. 5). All three pos-
sible adaptations lead to a homogenization of the safety level (decrease the variability of
the reliabilities within the portfolio structures) and improve the resource efficiency. All
three adaptions are analyzed on the reliability level. The risk level is not included within
this thesis. Each of the three sections (Sec. 3-5) can be read independently; however, the
background section (Sec. 2) should be read beforehand.
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2. Background

In this section, the historical (Sec. 2.1) and the philosophical background (Sec. 2.2) are
presented. Sec. 2.3 gives a general introduction to the PSF concept and thus lays the
foundation for the three main parts of this thesis about hidden safeties (Sec. 3), redun-
dancies (Sec. 4), and non-linear effects (Sec. 5). A reader in a hurry may skip Sec. 2.1 and
Sec. 2.2.

2.1. Historical background

The first historical records on structural design stem from ancient Egypt and ancient
Babylonia. In those times, structures were built using the trial and error method, intuition,
and experiments on scale models. No record exists of any theoretical consideration, neither
of the strength of structural members nor of the behavior of structural materials. Through
the trial and error process, more and more empirical knowledge was acquired, which was
passed from generation to generation [26].

With the rise of natural science, the ancient Greeks and later the ancient Romans began
to develop models and theories to understand the phenomena of nature (e.g., Archimedes
(287-212 BC) discovered the principle of the lever). However, these newly discovered laws
of physics were mostly of scientific interest and rarely applied in building practice. E.g.,
the stone in an Ancient Greek temple or the arch ring of an Ancient Roman masonry bridge
was designed at a level one or two orders of magnitude below its crushing strength. Thus,
the shape and not the material strength governed its stability. For this reason all ancient
and medieval writings on buildings are concerned precisely with geometrical rules [27].
Vitruvius (75-15 BC), for example, gives geometric proportions for the construction of
temples: “The distance between columns should be two and a quarter of their diameter
and their length should be nine and a half of the diameter.” If a structure had novel
geometric forms (e.g., Gothic churches), often multiple attempts were needed to achieve a
design that did not collapse [28].

In the Renaissance, great minds like Leonardo da Vinci (1452-1519 AC), Stevin (1548-1620
AC), and Galilei (1564-1641 AC) rediscovered the achievements of ancient civilization,
expanded them, and started to apply them in building practice. With the help of Newton
(1642-1726 AC), Hooke (1635-1702 AC), Bernoulli (1654-1705 AC), Navier (1785-1836
AC), and many more, the classical mechanics and the theory of material strength were
developed such that in the 18th century they became standard in practice [27, 29–31].
With this, a fundamental shift in the building culture took place: The design of structures
became less based on experience and more on physical models and theories.
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The new models were standardized and formed the base of various building codes: To
guarantee the safety of structures – designed according to these new building codes – the
global safety factor format was developed in the 19th century. Structures were designed
such that the resistances were scaled by a single global safety factor to be greater than the
action effects. The values of the resistances and the action effects were either based on
expert knowledge or on the average values of statistical tests. Choosing the value of the
global safety factor was not straightforward. Various authors and different building codes
recommended different values for different materials and their respective resistance types
[32]. Over time, these values were iteratively adapted to achieve a level of safety which
was accepted by society. E.g., in the early 20th century, the safety factor for reinforcing
steel in the UK was 2.0 [33]. In 1939, the British Standards Institution decreased the
safety factor, considering the shortage of steel during world war II. The new safety factor
was 1.6 for members in bending and 1.8 for members in direct tension. After the war, the
lower safety factors were considered to be reasonable and a safety factor of 1.7 for both
bending and direct tension was established [34].

In the 1960s, probabilistic modeling became increasingly popular [35]. However, the full
probabilistic approach was considered to be too complicated to be used in practice [36].
Instead, the semi-probabilistic PSF concept was developed [36–38]. In contrast to the
global safety factor format, multiple PSFs are applied to various actions and various re-
sistances. The PSF concept is the main issue of this thesis. Sec. 2.2 gives a philosophical
foundation and Sec. 2.3 gives a detailed description of the PSF concept.

2.2. Philosophical foundation

As stated in Sec. 2.1, the standard approach to design structures shifted from experience-
based design to model-based design during the Renaissance. This section tries to philo-
sophically describe such models and incorporates this description into a general definition
of the designing process of a structure.

The concept of modeling proves to be fundamental for the scientific description and the
technical manipulation possibilities based on it. Models mediate between the abstract
theory and the concrete phenomenon to be described (i.e., the aspect of reality to be
described) by idealizing certain aspects of the phenomenon and concretizing abstract as-
sumptions of the theory. A model is an interpretation of an empirical phenomenon that
facilitates intellectual access to this phenomenon, e.g., by analogizing, idealizing, and sim-
plifying it [39]. There are many different types of models: scale models represent enlarged
or reduced imitations of the modeled object, analog models (e.g., the planetary model of
the atom) aim at its structure, theoretical models want to describe the essential properties
of an object or system in a bundle of assumptions and equations [40].

An essential characteristic of models is that they always model only a certain aspect of
the empirical phenomenon, i.e., the description is always necessarily partial, while other
aspects that are not relevant to the respective research question are methodically excluded.
The aspects that are addressed in the modeled description are therefore always dependent
on the research interest and the respective research question. In addition, the thematized
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aspects are often addressed in an idealized form that does not occur in reality. This also
leads to different, inconsistent models being used within certain branches of science, which
nevertheless fulfill their purpose for the respective sub-aspects [41].

When it comes to the design of structures, various models and theories are needed to
describe the actions and resistances at hand. The selection process of these models often
leads to questions such as: How precise are these models? or What is the true value of some
phenomenon described via these models?. Such questions cannot be answered satisfactorily
within the field of civil engineering. They are covered by the philosophical research area
of epistemology. In epistemology, various approaches deal with such questions (e.g., [42–
45]). These different approaches would answer such questions differently, and there is no
consensus on which concept is the right one. One possible approach – which is well suited
to structural design – is formulated by Cartwright [46–48]. The approach formalized in
this thesis is inspired by her approach.

Cartwright’s approach focuses on the description of a single phenomenon P of an object
O. She distinguishes between two fundamentally different ways to derive the value V of a
phenomenon. If the value is determined purely empirically, it is called the true value Vtrue

of a phenomenon. Hence, truth is equivalent to empirical adequateness. Alternatively, the
value can be determined by describing the object with a model M that is suitable such
that a theory T can be applied to the model to determine a value. A value that is derived
this way is called nominal value Vnom. Fig. 2.1 gives an overview of the difference in the
determination of the true value and the nominal value of a phenomenon.

Object O Phenomenon P

Model M Theory T Nominal value Vnom

True value Vtrue

Fig. 2.1.: Difference in the determination of the true value and the nominal value of a
phenomenon.

An example of Cartwright’s approach is the determination of the maximal force until
failure of a simple supported beam in bending if the force is applied in the middle of the
beam. A three-point bending test [49] can be performed to determine the value of the
force at failure. Since the three-point bending test is an empirical method, the resulting
value is called the true value. Alternatively, a nominal value of the force at failure can be
determined via a model and a theory. One possible model consists of a simply supported
isotopic cubic mass and an idealized point load. A possible theory is Euler-Bernoulli beam
theory.

In the following, Cartwright’s approach is transferred to structural design methods. How-
ever, the subsequent aspects of the approach should be noted beforehand:

• The nominal value and the true value of a phenomenon generally do not coin-
cide. Hence, nominal values can be wrong to some extent. Or – in the words of
Cartwright – this is “how the laws of physics lie” [46]. This raises the question of
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where – in the chain from the phenomenon of an object to the model and theory to
the value of a phenomenon – this “lie” takes place. Cartwright answers this question
with the so-called simulacrum account of explanation: The simulacrum account of
explanation states that theories are always true within the limits of the model and
the “lying” is due to the model’s incorrect description of the phenomenon. This is
in contrast to the more conventional picture of the deductive-nomological model of
Hempel and Oppenheimer [50] where the “lying” is due to an insufficient theory.

• There is a trade-off by how much the value of a phenomenon is true and how good one
is able to explain the value: Purely empirical values are true in the sense of empirical
adequateness; however, they are purely descriptive and, therefore, do not explain
anything. In contrast, a physical theory can give some explanation of the value of a
phenomenon. E.g., in the above example, the true value derived via the three-point-
bending test does not give any explanation of itself. In contrast, the nominal value
is derived via beam theory, which provides a mathematical relationship between the
variables involved. From this, an engineer can derive some understanding of the
problem and draw conclusions, such as that it is more efficient to adjust the height
of the beam than the width to increase its bending resistance.

• In some cases, it is arguable to what extent the value of a phenomenon can be
derived purely empirically, thus, to what extent the determination of the true value
is possible. This is especially the case if the value of a phenomenon can not be
measured directly, but only indirectly. E.g., in order to determine the Young’s
modulus of a truss member, multiple other quantities are required (cross-section
area, amount of an applied force, and the strain caused by the force). Given these,
the Young’s modulus can be calculated. This calculation can be interpreted as the
application of a model and a theory. In this sense, the determined value of the
Young’s modulus may be interpreted as a nominal value. However, it is based on
empirical measurements only and the phenomenon Young’s modulus can simply be
interpreted as a mathematical combination of these empirical measurements without
any model or theory being involved. Thus, it can also be interpreted as a true value.
In this thesis, the latter interpretation is used.

• Another important aspect of the true value of a phenomenon is that it can only be
determined retrospectively (since it can only be observed empirically). In contrast,
physical theories can also forecast the value of a phenomenon. This is of special
importance in the design of structures, since we want to forecast values of structural
phenomena like the state of failure.

• It should be noted that values of phenomena (nominal or true) can be an input
to models used to derive other nominal or true values of phenomena, leading to a
tree-like structure.

• In the scope of this thesis, statistical models play an important part. Formally, a
statistical model consists of the triplet of a sample space S, an event space A and a
set of probability distributions P on A [51]. Such a model can be used to describe
the – assumed to be possible – values of a phenomenon probabilistically. It is typi-
cally paired with data of true values of phenomena of similar but different objects.
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Probability theory can be applied to determine which probability distribution of the
set P to choose. This includes methods like the methods of moments, maximum
likelihood estimation or Bayesian parameter estimation. The resulting value of the
phenomenon at hand is a random variable. The random variable itself can be in-
terpreted as a nominal value. Alternatively, the random variable can be reduced to
a deterministic value (e.g., the mean or a quantile value). Fig. 2.2 illustrates the
derivation of a nominal value in case of a statistical model being involved.

Probability theory
T

True value Vtrue,1 True value Vtrue,n

Phenomenon P Phenomenon P

Object O1 Object On

Statistical model
M = {S,A,P}

Nominal value
Vnom,n+1

Object
On+1

Phenomenon
P

Fig. 2.2.: Determination of a nominal value via a statistical model.

An example may again be the strength of a beam in bending. A possible statistical
model is given by the sample space S = [0,∞), the event space A defined as the
Borel σ-algebra on S and the set of probability distributions P defined by the log-
normal distribution with undefined parameters. This model can be combined with
data, namely the empirically derived true values of the bending strength of 1, . . . , n
beams which are considered to be the similar, however, not identical. From this, the
parameters of the log-normal distribution can be determined, e.g., through maximum
likelihood estimation. The resulting random variable can be used to predict the
bending strength of a beam n+ 1.

The above mentioned trade-off between the amount of “lying” and the ability to
explain a value can be well observed when it comes to statistical models. Since
statistical models are based on empirically derived data, the amount of “lying” is
rather small. However, almost no explanatory insight is provided.

• As already mentioned, the nominal value and the true value of a phenomenon gener-
ally do not coincide and Cartwright refers to this difference as “lying” of the model.
In the context of this work, the difference between the nominal value and the true
value is described probabilistically and referred to as model uncertainty. It can be
distinguished between two types of uncertainty: Aleatoric and epistemic uncertainty.
Following [52], aleatoric uncertainty is defined as uncertainty that cannot be elim-
inated within the confines of the current state of science. In contrast, epistemic
uncertainty is due to limited knowledge. Epistemic uncertainty could be reduced by
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collecting information, e.g., through tests, improved models, etc.

If the nominal value of a phenomenon is a random variable, the involved epistemic
uncertainty can have the following sources: The choice of the sample space, the
event space, the probability distribution type of the used statistical model, the fit-
ting method of the applied probability theory and limited or wrong data. If all those
sources are eliminated – which is only hypothetically possible – the probability dis-
tribution of the resulting random variable is called a purely aleatoric distribution.
If the derivation of a value of a phenomenon only includes aleatoric uncertainties,
this value is called a purely aleatoric value. This nomenclature is in contrast with
most other authors, who typically refer to it as the true distribution and the true
value, which – in the nomenclature of this thesis – is considered a purely aleatoric
distribution and a purely aleatoric value [53]. This thesis strictly follows the ap-
proach inspired by Cartwright. Therefore, true values are defined as the empirically
and retrospectively observed values. The true distribution of a value is a Dirac delta
distribution at the empirically and retrospectively observed true value; hence, the
true distribution reduces to a deterministic value.

• An important quantity in the context of uncertainty is the probability of failure.
The following three probabilities of failure are distinguished within this thesis: The
nominal probability of failure (including epistemic as well as aleatoric uncertainties),
the purely aleatoric probability of failure (including only aleatoric uncertainties),
and the true probability of failure which – following Cartwrights approach – is a
retrospectively and empirically observed value, namely the value if failure happened
or not. Hence, the true probability of failure is either 1 or 0. In this context, it is
important to distinguish between the probability of failure and the failure rate. The
true failure rate is the retrospectively and empirically observed ratio of a number of
failures to the total number of observations. This number can be between 1 or 0.

Based on Cartwright’s approach to describe models, a structural design method can be
defined via a tree like structure. This tree can typically be split into an action and a
resistance side. Fig. 2.3 illustrates a mask version of such a tree. Each vertex of the tree
represents the determination of a value of a phenomenon. If the vertex consists only of
an object, a phenomenon, and a value, then the determined value is a true value. This
is typically the case for leaves. If the vertex consists only of an object, a phenomenon, a
model, a theory, and a value, then the determined value is a nominal value. The root of the
tree represents the quantity that needs to be verified. If the verification is at the element-
level, the root-object is the associated structural element. If the verification is at the
system-level, the root-object is the whole structure. The root-phenomenon is the failure
mode of the respective element or system. The model of the root vertex consists of the two
quantities of the action effect and the resistance of the considered failure mode. The theory
of the root vertex is either – in case of a deterministic verification – a mathematical metric
comparing the action effect to the resistance or – in case of a probabilistic verification –
probability theory in order to calculate the nominal probability that the action effect is
greater than the resistance. This probability can then be classified as sufficient or not.
Hence, the value assigned to the phenomenon of the root has either the value “verification
fulfilled” or “verification not fulfilled”. Fig. 2.4 shows an example instantiation of the mask
from Fig. 2.3 illustrating the structural design of a beam subjected to snow load.
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i,j,k,l,m,n,o,p,q,r,s,z ∈ N

Oi

Pi

Vi

Resistance side

Fig. 2.3.: Mask version of a tree representing a structural design method.

Remark: In some cases, the resistance model can depend on actions and the structural
model can depend on material properties. Moreover, the resistance model and the struc-
tural model may be combined into a single model. Such cases are not covered within the
scope of this thesis.
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O:
P:
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Beam #1
Bending strength
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O:
P:
V:

Beam #n
Bending strength
75 [N/mm2]

O:
P:
M:
T :
V:

Hypothetical beam in bending
Bending moment
Statistical model
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65 [N/mm2]

O:
P:
M:
T :
V:

Beam #n+1
Maximal bending resistance
Cross-section area with planned dimensions
Euler Bernoulli beam theory
10.8 · 106 [Nmm]

O:
P:
V:

Snow year #1
Maximal snow depth
540 [mm]

O:
P:
V:

Snow year #t
Maximal snow depth
700 [mm]

O:
P:
M:
T :
V:

Snow in year # t+1
Maximal snow depth
Statistical model
Probability theory
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O:
P:
M:
T :
V:

Beam #n+1
Bending moment
Structural model with planned beam length
Newton’s Mechanic
9.5 · 106 [Nmm]

Beam #n+1
Bending failure
Bending moment and maximal bending resistance
Metric for comparison: ≤
Verification fulfilled

O:
P:
M:
T :
V:

Fig. 2.4.: Example of the structural design verification procedure of a beam under snow
load visualized as a tree.

2.3. The Partial safety factor concept

The PSF concept is the most popular concept in modern structural design codes. It is
a semi-probabilistic concept, i.e., it is based on probabilistic models. From these proba-
bilistic models, three different safety components are derived: The characteristic values,
the PSF, and the combination factors. Characteristic values are usually determined from
statistics as lower quantile values of material strengths and higher quantile values of ac-
tions. The PSFs are typically values greater than 1 increasing the actions via multipli-
cation and decreasing resistances via division; hence, they increase the resulting design
resistances. The combination factors are applied multiplicatively to variable actions. Their
values are typically less than 1, hence, they decrease the resulting design resistances. They
are justified by the fact that multiple variable actions may not act simultaneously, hence,
their maxima may occur at different points in time. Both, the PSFs and the combination
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factors are derived via code calibration processes. With the help of these three safety
components, structural design in practice requires deterministic calculations only.

In this thesis, the nomenclature of the PSF concept implemented in Eurocode 0 [25] is
used; however, all investigations and results can be transferred to other semi-probabilis-
tic design codes (e.g., [54–57]). Various points of view of the PSF concept are outlined.
This includes the deterministic view (Sec. 2.3.1), the probabilistic view (Sec. 2.3.2), the
portfolio view (Sec. 2.3.3), the system-level view (Sec. 2.3.4), and the calibration view
(Sec. 2.3.5).

2.3.1. Deterministic view

Verification of an element failure mechanism is typically conducted by proving that the
design resistance against that failure mechanism rd,EC is greater than or equal to the
action effect on that failure mechanism ed,EC :

rd,EC ≥ ed,EC (2.1)

The subscript EC is added to the design values and also to several subsequent values,
functions, and distributions to emphasize that these quantities are nominal quantities,
including epistemic uncertainties of the Eurocode models.

In the derivation of ed,EC and rd,EC , one can identify four different models being involved:
The action models, the material models, the structural model, and the resistance model.
Fig. 2.6 illustrates these models using the nomenclature of Sec. 2.2.

The action models represent permanent and variable actions. This is typically done via
statistical models, which – in a second step – provide deterministic values: The so-called
characteristic actions lk,EC . Those values are the input to a structural model which pro-
vides a function tS,EC to calculate the action effect of the considered element failure
mechanism. Typically, multiple load case combinations need to be checked to find the
ultimately relevant load case combination.

The material models represent various material strengths. This is again typically done via
statistical models, which – in a second step – provide deterministic values: The character-
istic material strengths mk,EC . Those values are the input to a resistance model which
provides a function tR,EC to calculate the resistance against the considered element failure
mechanism.

On the basis of these four models, the design action effect and the design resistance of
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Action #1
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Action model #1
Action theory #1
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P:
M:
T :
V:
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Material #1
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Material model #1
Material theory #1
Characteristic strenght mk,EC,1
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T :
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Material #m
Material phenomenon #m
Material model #m
Material theory #m
Characteristic strenght mk,EC,m
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M:
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O:
P:
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V:

Structural element
Action effect
Structural model
Structural theory
Action effect value

O:
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M:
T :
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Structural element
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Resistance model
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Apply PSFs γf,1...n and
combination factors ψ0, ψ1, ψ2

Apply PSFs γm,1...n

Apply PSF γRdApply PSF γSd

Design action effect ed,EC Design resistance rd,EC

V:

Fig. 2.5.: Illustration of the derivation of the design actions and design resistances following
the nomenclature of Sec. 2.2.
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Eqn. 2.1 can be calculated as

ed,EC = γSd · tS,EC(γf,1 · lk,EC,1, · · · , γf,i · lk,EC,i, Permanent actions (2.2)
γf,i+1 · lk,EC,i+1, Leading variable action
γf,i+2 · ψi+2 · lk,EC,i+2, . . . ,

γf,n · ψn · lk,EC,n)

}
Accompanying variable actions

rd,EC =
tR,EC

(
mk,EC,1

γm,1
, . . . ,

mk,EC,i

γm,i

)
γRd

(2.3)

where γf , γSd, γm, and γRd are PSF accounting for the model uncertainties of the action,
structural, material, and resistance model. ψi are the combination factors considering the
unlikely event of simultaneously high variable loads.

Typically, the design action effect ed,EC is calculated first and then the design parameters of
the resistance model (e.g., the height and width of a beam) are chosen such that the design
resistance rd,EC is greater or equal to ed,EC . If they are equal, this usually corresponds to
the most material-efficient solution. In some cases, the structural model depends on the
resistance model (e.g., cross-section dimensions influence the bending stiffness of beams,
which affects the action effects in the statically overdetermined case). In those cases, the
determination of the design values becomes an iterative process.

Assuming that only a single action is present and only a single material is included in the
resistance calculation, Eqns. 2.2 and 2.3 can be simplified to

ed,EC = γSd · tS,EC(γf · lk,EC) (2.4)

rd,EC =
tR,EC

(
mk,EC

γm

)
γRd

(2.5)

In the following, this simplified case is further illustrated.

To make the application of PSF user-friendly, the Eurocode merges the PSFs of the action
and the resistance side:

γF = γf × γSd (2.6)
γM = γm × γRd (2.7)

Although this merge simplifies the design process, it raises the question if γF and γM

should be applied to the characteristic values lk and mk directly or to tS(lk) and tR(mk).
As long as tS and tR are linear functions through the origin, both options lead to the
same design values; however, if tS and tR are non-linear functions or do not pass through
the origin, the two alternatives result in different design values and, therefore, in different
structural reliabilities. The two respective basic design options regarding the structural
model are

Design option (1) (prior to tS,EC): ed,EC = tS,EC(γF · lk,EC) (2.8)
Design option (2) (posterior to tS,EC): ed,EC = γF · tS,EC(lk,EC) (2.9)
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and analogously for the resistance model

Design option (1) (prior to tR,EC): rd,EC = tR,EC(γM ·mk,EC) (2.10)
Design option (2) (posterior to tR,EC): rd,EC = γM · tR,EC(mk,EC) (2.11)

Eurocode provides simplified rules on how to choose between the two basic design options
when it comes to the structural model. Those rules and their effects on the structural
reliability will be discussed in depth in Sec. 5.

The basic design options of the resistance model are not mentioned/covered by Eurocode.
In practice, design option (1) is typically chosen. This thesis does not further investigate
the two basic design options of the resistance model.

2.3.2. Probabilistic view

The choice of the three safety components – the characteristic values, the PSFs, and the
combination factors – should be based on reliability analysis. A reliability analysis also
includes the four models mentioned above: The action model, the structural model, the
material model, and the resistance model. In fact, these models are typically used twice.
Once in a deterministic manner to determine a design and a second time in a probabilistic
manner to determine the probability of failure given the design. The models used to
determine the design and the models used to calculate the probability of failure can differ.
The following sections illustrate the application of the various models within a structural
reliability analysis of codified design structures.

2.3.2.1. Simplified probabilistic view

Fig. 2.6 illustrates the common probabilistic view of the resistance model and the action
effect model. The material model and the action model are only implicitly included as
inputs to the resistance model and the action effect model. Eurocode itself does not provide
the distributions REC and EEC corresponding to the resistance model and the action effect
model but only the corresponding characteristic values and the PSFs. The distribution
can be implicitly inferred from background documentations (e.g., [58–60]) and from the
distributions used in the calibration of the Eurocode safety components (e.g., [61]).
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fE,EC(e)
fR,EC(r)

γMγF

Fig. 2.6.: Basic reliability problem according to Eurocode models.

To calculate the nominal probability of failure according to Eurocode models given a
Eurocode design, the following limit state function (LSF) can be formulated:

g = REC − EEC (2.12)

The corresponding nominal probability of failure is calculated as

Pr(F ; DEC ,REC) =
∫

{g<0}
fRECEEC

(r,e) dr de (2.13)

where fRECEEC
is the joint PDF of REC and EEC , DEC represents the design choices

according to Eurocode and REC represents the probabilistic choices within the reliability
analysis according to Eurocode. Hence, as mentioned above, the probability of failure is
conditional on the models used in the design and in the reliability analysis. Unless it is
important for the context, this condition is omitted in the rest of this thesis.

Given the probability of failure, the corresponding reliability index β is calculated as

β = −Φ−1 (Pr(F )) (2.14)

where Φ−1 is the inverse cumulative distribution function (CDF) of the standard normal
distribution.

The integral of Eqn. 2.13 can not always be solved analytically. Within this thesis,
non-analytically solvable cases are covered by estimating the probability of failure either
through numerical integration methods, crude Monte Carlo estimation (MC) [62,63], Sub-
set Simulation (SuS) [64–66] or the First Order Reliability Method (FORM) [38, 67–69].
MC is a sampling-based method suitable for high dimensional LSFs; however, it is only
applicable for high or medium probabilities of failure. SuS is an adaptive sampling method
that is suitable for high-dimensional LSFs and small probabilities of failure. FORM is the
method that forms the historical basis of the PSF concept. FORM transforms the limit
state surface into standard normal space and approximates it by its tangent hyperplane at
the point closest to the origin (called the FORM design point). The design point resulting
from a PSF design (ed, rd) is ideally close to the FORM design point [38]. The definition of
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the reliability index is closely related to the FORM method: The reliability index is equal
to the distance of the FORM design point from the origin in case of uncorrelated standard
normal random variables and a linear LSF; however, in other cases, the reliability index
may differ from this distance depending on the non-linearity of the limit state surface in
standard normal space. If multiple LSFs are investigated, representing multiple failure
modes of one structure, FORM for series systems can be applied to estimate the system
reliability index [70].

2.3.2.2. Detailed probabilistic view

A more in-depth view (compared to the classic view illustrated in Fig. 2.6) is illustrated
in Fig. 2.7. This illustration explicitly includes all four models within a structural design:
The action model and the material model are included via PDFs of the action fL,EC and
the material strength fm,EC , the structural model and the resistance model are represented
via functions tS,EC and tR,EC which transform actions and material strength into action
effects and resistances.
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Fig. 2.7.: Illustration of the basic reliability problem and its relation to Eurocode models.

In the context of this in-depth consideration, the LSF of Eqn. 2.12 can be reformulated
with explicit consideration of all four models:

g = tR,EC(MEC ,DEC) − tS,EC(LEC) (2.15)

where DEC represents the design choices within the resistance model (e.g., cross-section
dimensions or positioning of steel reinforcements). The space of possible DEC follows from
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the requirement that the design resistance is greater or equal to the design action effect
(see Eqn. 2.1):

rd,EC

!
≥ ed,EC (2.16)

⇔ 1
γRd

· tR,EC

(
mk,EC

γm
,DEC

)
≥ γSd · tS,EC (γf · lk,EC)

A design can be considered optimal (in the sense of the PSF concept) if equality holds
in Eqn. 2.16. Assuming such an optimal choice and further assuming that DEC can be
expressed through a single design parameter PEC (e.g., the cross-section area), it follows
that

PEC = t−1
R,EC

(
mk,EC

γm
,γRd · γSd · tS,EC (γf · lk,EC)

)
(2.17)

where t−1
R,EC is the inverse function of tR,EC with respect to its second variable (design

parameter). This inverse function only exists if tR,EC is a strictly monotone function with
respect to its second variable; however, this is a reasonable assumption since the resistance
typically increases with increasing design parameters. Thus, the LSF of Eqn. 2.15 can be
reformulated as

g = tR,EC

(
MEC ,t

−1
R,EC

(
mk,EC

γm
,γRd · γSd · tS,EC (γf · lk,EC)

))
− tS,EC(LEC) (2.18)

Given this LSF, the nominal probability of failure according to Eurocode given an Eu-
rocode design can be determined. This includes the epistemic uncertainties associated
with the Eurocode models. To calculate purely aleatoric values and the purely aleatoric
probability of failure, the purely aleatoric models need to be known. Fig. 2.8 re-illustrates
Fig. 2.7 including the aleatoric distribution of the load L and the material property M and
the functions tE (aleatoric relationship between action and action effect) and tR (aleatoric
relationship between material property and resistance). From L and M , the corresponding
characteristic values lk and mk can be obtained, and, by applying the PSFs, the design
values ld and md are obtained. Using the functions tS and tR, the characteristic values
ek and rk, and the associated design values ed and rd are derived. These are the values
to which the respective Eurocode values converge when all epistemic uncertainties vanish.
In this sense, they can be interpreted as target values of the Eurocode models.
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Applying the purely aleatoric models, the following LSF can be formalized

g = tR(M,DEC) − tS(L) (2.19)

Following Eqn. 2.17, this can be rewritten as

g = tR

(
M,t−1

R,EC

(
mk,EC

γm
,γRd · γSd · tS,EC (γf · lk,EC)

))
− tS(L) (2.20)

Given this LSF, the purely aleatoric probability of failure given a Eurocode design can be
calculated.

The LSF of Eqn. 2.20 can be simplified if certain assumptions about the functions tR,
tR,EC , tS and tS,EC can be made. In the following, various possible assumptions are
demonstrated:

• One possible assumption regarding the resistance side is that tR and tR,EC are mul-
tiplicatively separable functions, hence, can be written as

tR(m,p) = tR,m(m) · tR,p(p) (2.21)
tR,EC(m,p) = tR,EC,m(m) · tR,EC,p(p) (2.22)

where tR,p and tR,EC,p are functions of the design choices and tR,m and tR,EC,m are
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functions of the material strength. This simplifies Eqn. 2.20 to

g = tR,p

t−1
R,EC,p

γRd · γSd · tS,EC (γf · lk,EC)
tR,EC,m

(
mk,EC

γm

)
 · tR,m (M) − tS(L) (2.23)

If one additionally assumes that the functions tR,p and tR,EC,p are the same, the LSF
can be further simplified to

g = γRd · γSd · tS,EC (γf · lk,EC)
tR,EC,m

(
mk,EC

γm

) · tR,m (M) − tS(L) (2.24)

• A special case of the multiplicative separability is the assumption that tR and tR,EC

are linear with respect to p and go through the origin, hence, can be written as

tR(m,p) = tR,m(m) · p · c c ∈ R+ (2.25)
tR,EC(m,p) = tR,EC,m(m) · p · cEC cEC ∈ R+ (2.26)

This simplifies Eqn. 2.20 to

g = γRd · γSd · tS,EC (γf · lk,EC) · c
tR,EC,m

(
mk,EC

γm

)
· cEC

· tR,m (M) − tS(L) (2.27)

If one additionally assumes that c = cEC , the LSF can be further simplified to

g = γRd · γSd · tS,EC (γf · lk,EC)
tR,EC,m

(
mk,EC

γm

) · tR,m (M) − tS(L) (2.28)

• Another special case of the multiplicative separability is the assumption that tR and
tR,EC are linear with respect to m and through the origin:

tR(m,p) = tR,p(p) ·m · c c ∈ R+ (2.29)
tR,EC(m,p) = tR,EC,p(p) ·m · cEC cEC ∈ R+ (2.30)

This simplifies Eqn. 2.20 to

g = tR,p

(
t−1
R,EC,p

(
γm · γRd · γSd · tS,EC (γf · lk,EC)

mk,EC · cEC

))
·M · c− tS(L) (2.31)

If one additionally assumes that the functions tR,p and tR,EC,p are the same, the LSF
can be further simplified to

g = γm · γRd · γSd · tS,EC (γf · lk,EC)
mk,EC

·M − tS(L) (2.32)
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• A possible assumption regarding the action side is that tS and tS,EC are linear:

tS(l) = c1 · l + c2 c1,c2 ∈ R+ (2.33)
tS,EC(l) = c1,EC · l + c2,EC c1,EC ,c2,EC ∈ R+ (2.34)

This simplifies Eqn. 2.20 to be

g = tR

(
M,t−1

R,EC

(
mk,EC

γm
,γRd · γSd · (c1,EC · γf · lk,EC + c2,EC)

))
− (c1 · L+ c2)

(2.35)

• A common form of the LSF follows from the combination of the assumptions that
tR = tR,EC is linear with respect to m and goes through the origin as well as
tS = tS,EC is linear and goes trough the origin. From this Eqn. 2.20 can be written
as

g = γm · γRd · γSd · γf · lk,EC

mk,EC
·M − L (2.36)

Applying the merge of the PSF according to Eqn. 2.6 and 2.7, the LSF can be
rewritten as

g = γM · γF · lk,EC

mk,EC
·M − L (2.37)

This LSF is often used in code (re)calibrations to represent design situations of the
PSF concept in a general way (e.g., in [61]). It can also be found in Eurocode 0 [25].
However, if this LSF is used, one should be aware of the numerous assumptions that
are necessary to reach this simplified form.

It should be noted that – under specific assumptions – the probability of failure is invariant
to scaling of tS , tS,EC , tR or tR,EC . This signifies that tS and tS,EC or tR and tR,EC can
be redefined and replaced without effecting the resulting probability of failure as follows

t̃S(x) := c · tS(x)
c ∈ R (2.38)

t̃S,EC(x) := c · tS,EC(x) (2.39)

or

t̃R(x) := c · tR(x)
c ∈ R (2.40)

t̃R,EC(x) := c · tR,EC(x) (2.41)

The assumptions necessary for such a replacement are those needed in the formulation
of the LSFs 2.24, 2.27, 2.28, 2.32, and 2.37. The invariance to scaling is the reason why
normalized random variables (random variables with a mean of 1) can be used in numerous
investigations of the PSF concept (e.g., [61, 71,72]).
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2.3.3. Portfolio view

The previous sections (Sec. 2.3.1, 2.3.2.1, and 2.3.2.2) focus on a single design situation;
however, the PSF is developed to be applicable in a wide range of design situations. Hence,
LSFs like Eqn. 2.12 to Eqn. 2.37 slightly differ for different application cases of the same
models. The portfolio view tries to capture this variability. A portfolio can, in principle,
be formalized in two different ways:

The first approach covers the variability of the portfolio via multiple LSFs representing the
full spectrum of the considered portfolio. The LSFs can be combined with weighting factors
to cover their respective relative occurrence rates within the portfolio. This approach is
applied in Sec. 3.4.1 to formalize a portfolio of road bridges.

The second approach uses a single but generic LSF. Such a generic LSF can be derived
by generalizing one variation of the LSFs of Sec. 2.3.2.2. Such a generalization should
distinguish between aleatoric quantities and nominal quantities. The generalization of the
aleatoric quantities modifies tS , tR, M , and L. The generalization of the nominal quantities
modifies tS,EC , tR,EC , mk,EC , and lk,EC . How these modifications can be conducted is
discussed in the following:

• The random variables M and L can be modified such that they cover not only
the material strength and the action of a specific design situation but the material
strength and the action of the full spectrum of the portfolio. E.g., the distribution of
the strengths of a certain type of timber can be generalized to cover various types of
timber or the distribution of the wind load of a specific location can be generalized
to represent the wind load of a larger area.

• The characteristic material strength mk,EC and the characteristic action lk,EC can be
represented probabilistically within a generic LSF. This seems to be counter-intuitive
since structural design codes require the same characteristic values for various design
situations within a portfolio, hence, those values are deterministic. However, the
relationship of the nominal characteristic value to the purely aleatoric distributions
M and L per design situation may differ in the sense that they represent different
quantile values of their respective purely aleatoric distributions. The distributions of
mk,EC and lk,EC can be included by studying the relationship between the nominal
characteristic values according to the code and the purely aleatoric characteristic
value. The relationship is typically represented by the following relative error:

Θ−1 = Nominal characteristic value
Aleatoric characteristic value (2.42)

In literature, this error is typically defined the other way around, namely, as the
error of the aleatoric value relative to the nominal value. To be consistent with
literature, Eqn. 2.42 denotes the error as an inverse relative error.

If the distribution of Θ−1 and the distribution of the aleatoric characteristic value
are determined, Eqn. 2.42 can be rearranged to determine the distribution of the
nominal characteristic value.
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The issue of a probabilistic representation of mk,EC and lk,EC is especially important
when it comes to investigations of hidden safeties. An example is given in Sec. 3.3.3.1
and Sec. 3.3.3.2 for the case of the characteristic values of the Eurocode wind load
model and advanced wind load modeling techniques.

• If the structural model or the resistance model differ over the domain of all possible
design situations, the functions tS , tR, tS,EC or tR,EC can be modified. They are
either replaced by a functional that covers each design situation of the considered
portfolio individually or a probabilistic component is added (e.g., a multiplicative
model uncertainty) that covers the variability of the models within the portfolio.
The structural and resistance models on portfolio-level are denoted by TS and TR,
respectively.

In some cases, the two above approaches to represent a portfolio of design situations (either
via multiple LSFs or via a single generic LSF) can be combined, meaning that a portfolio
may be represented via multiple generic LSFs, each representing a subset of the portfolio.
One example is the portfolio utilized in the revision of the Eurocode [61]. This portfolio
is summarized in Annex A and applied in Sec. 3.3.5 and Sec. 4.5.

2.3.4. System-level view

In general, the PSF concept verifies structural safety at the element-level. For each struc-
ture, various element failure mechanisms (e.g., bending failure of a beam, punching shear
of a column or maximum tensile strength of a membrane) need to be taken into account.
Some elements require multiple verifications (e.g., a beam may be verified against bending
failure, shear failure, and failure due to stability reasons). A verification at the system-
level is not conducted. However, in some cases, the failure of an element directly leads to
the failure of the system; therefore, the system reliability can be lower than the one at
the element-level. In other cases, element failure does not directly lead to system failure
because of redundancies. The system reliability can therefore be higher than the reliability
at the element-level. Back when the PSF concept was introduced, the research commu-
nity was aware of this issue: "Since the knowledge of system reliability is incomplete and
not sufficiently documented for practice, a quantitative assessment of different structural
systems is not intended" [36]. Therefore, a system-level view of the PSF concept does not
exist.

Today, system reliability is well studied and applicable outside the scope of the PSF
concept. Various methods exist to evaluate system reliability and determine a robust
structural design [38, 73–75]. However, none of these methods can be transferred to be
applicable within the PSF concept. Sec. 4 addresses this problem and derives an additional
PSF to include system effects within the PSF concept.
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2.3.5. Calibration view

There are many different reasons for the calibration of the PSF concept, including new
modeling approaches, changes in safety requirements, the incorporation of experience
gained since the last calibration, changes on the load side or the development of new types
of construction materials. In general, two calibration approaches of the PSF concept can
be distinguished: The risk-based approach and the reliability-based approach [76].

Out of the two, the risk-based approach is the higher-level approach. A full risk analysis
includes the reliability of a structure and the consequences of its failure to minimize
the overall risk. ISO 2394:2015 [23] provides principles for performing such an analysis.
A risk-based code calibration of the PSF concept adapts the safety components of the
PSF concept such that the overall risk of a portfolio of considered design situations is
minimized [77]. A generic framework of risk-based code calibration is given in [78]. Overall,
the consideration of consequences makes the risk-based code calibrations rather complex;
therefore, applications are limited. Examples can be found in [79–81]. In this thesis,
risk-based code calibration is not considered.

The reliability-based calibration approach ensures that a certain target reliability is – on
average – achieved within a portfolio of considered design situations [82–84]. Applications
can be found in [71, 72, 85–88]. A reliability-based code calibration can be divided into
two main steps. In the first step, a target value needs to be defined. In the second step,
the safety components of the PSF concept need to be adjusted to match this target value.
Both steps are described in the following two sections.

2.3.5.1. Defining a target reliability for reliability-based code calibration

Typically, a target reliability is defined as the average reliability of the status quo (e.g.,
[61, 84]). This value is found by investigating the reliability of the current design choices
(if no calibration has been conducted yet) within a representative portfolio of design
situations. If the portfolio is described via a set of multiple LSFs, the target probability
of failure can be defined as the weighted average of the aleatoric probability of failure

Pr(F )T RG = 1∑
iwi

·
∑

i

wi · Pr (F ; DEC,i,Ri) (2.43)

where Pr (F ; DEC,i,Ri) is the aleatoric probability of failure given the design choices DEC,i

of the i-th limit state according to the current code and derived via a purely aleatoric
reliability analysis Ri. wi are the weights of the i-th design situation. Similarly, a target
reliability index can be defined as

βT RG = 1∑
iwi

·
∑

i

wi ·
(
−Φ−1 (Pr (F ; DEC,i,Ri))

)
(2.44)

Note that the target probability of failure derived via Eqn. 2.43 transformed to the re-
liability index is unequal to the target reliability index derived via Eqn. 2.44 (βT RG ̸=
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−Φ−1 (Pr(F )T RG)). Both approaches are viable as long as the respective subsequent cali-
bration is conducted using the same approach. If this is the case, the results in calibration
differ only marginally.

Remark: If the portfolio is represented by a single but general LSF, the calculation of the
weighted average is not necessary and the target values are obtained directly.

2.3.5.2. Performing the calibration to match the target reliability

Given a target reliability, the calibration can be performed in various ways. The most
straightforward way follows from the requirement to preserve the same level of safety as
prior to the calibration, hence, to fulfill the following equation:

1∑
iwi

·
∑

i

wi · Pr (F ; DADP,i,Ri)
!= Pr(F )T RG (2.45)

or – in case of a target reliability index – to fulfill

1∑
iwi

·
∑

i

wi ·
(
−Φ−1 (Pr (F ; DADP,i,Ri))

) != βT RG (2.46)

where DADP,i represents the design choices following the adapted PSF concept.

Eqns. 2.45 and 2.46 can be fulfilled by solving the following minimization problems:

vADP = min
vADP

{∣∣∣∣∣
[

1∑
iwi

·
∑

i

wi · Pr (F ; DADP,i,Ri)
]

− Pr(F )T RG

∣∣∣∣∣
}

(2.47)

or

vADP = min
vADP

{∣∣∣∣∣
[

1∑
iwi

·
∑

i

wi ·
(
−Φ−1 (Pr (F ; DADP,i,Ri))

)]
− βT RG

∣∣∣∣∣
}

(2.48)

where vADP is the safety component of the PSF that is adjusted and enters DADP,i. This
can, e.g., be a quantile value defining a characteristic value or the value of a PSF. In
practice it may be numerically convenient to reformulate this minimization problem as a
root finding problem (by deleting the absolute values).

vADP could also be a set of multiple values that are calibrated simultaneously (e.g., mul-
tiple PSFs). In this case the solution of Eqns. 2.47 and 2.48 will not be uniquely defined
anymore. Some of the solutions might be very suboptimal with respect to the homoge-
nization of the level of safety. This issue can be overcome by shifting the absolute value
function to the inner of the sum.

vADP = min
ADP

{
1∑
iwi

· wi ·
∑

i

|Pr (F ; DADP,i,Ri) − Pr(F )T RG|
}

(2.49)
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or

vADP = min
ADP

{
1∑
iwi

· wi ·
∑

i

∣∣∣−Φ−1 (Pr (F ; DADP,i,Ri)) − βT RG

∣∣∣} (2.50)

Eqns. 2.49 and 2.50 lead to slightly different result than Eqns. 2.47 and 2.48. As a
consequence, the achieved probabilities of failure or reliability indices do not match the
target values on average (Eqns. 2.45 and 2.46 are not fulfilled).

The difference between the approach of Eqns. 2.49 and 2.50, and Eqns. 2.47 and 2.48
can be understood from the following interpretation: Eqns. 2.47 and 2.48 ensure that
the difference of the average of the whole portfolio to the target value is minimized;
hence, they optimize the adaptation from a macro perspective. Eqns. 2.49 and 2.50 ensure
that the average of the difference of the individual limit states to the target value is
minimized; hence, they optimize the adaptation from a micro perspective. In the case of
code calibration, the macro perspective may be more meaningful. However, Eqns. 2.49
and 2.50 have the advantage of being easily adjustable in order to give more weight to
values further away from the target values, e.g., by replacing the absolute value function
with a quadratic function, as follows:

vADP = min
ADP

{
1∑
iwi

· wi ·
∑

i

(Pr (F ; DEC,ADP,i,Ri) − Pr(F )T RG)2
}

(2.51)

or

vADP = min
ADP

{
1∑
iwi

· wi ·
∑

i

(
−Φ−1 (Pr (F ; DADP,i,Ri)) − βT RG

)2
}

(2.52)

The approach of Eqn. 2.52 is commonly applied in code calibration (e.g. [61, 84]).

The approach of Eqns. 2.51 and 2.52 can be interpreted as an approach that minimizes
the variance of the probability of failure/reliability within the portfolio. Similarly, the
approach of Eqns. 2.47 and 2.48 may be interpreted as the minimization of the mean error
(bias) within the portfolio. Both is desirable and may possibly be combined in the case
where vADP is a set of multiple values that are calibrated simultaneously.

Eventually, the difference between the various approaches differs only marginally and the
resulting calibrated values hardly differ. Within this thesis, the approach of Eqn. 2.47 is
applied in Sec. 3.3.5 and the approach of Eqn. 2.48 is applied in Sec. 4.5.
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3. Hidden safety in structural design codes

“Hidden safety” is a term that most engineers have a rough idea of but usually lack detailed
knowledge of. The idea is typically related to the conservatism of models and the effect of
this conservatism on design and structural safety. This already points in the right direction,
and, in fact, a deeper understanding of the effects of hidden safety is not necessary as long
as the design choices only follow the standard models provided by a structural design code
(e.g. the Eurocode). In this case, hidden safety is an implicit safety component that can
remain hidden from the user. This, however, changes if standard models get replaced by
different – presumably more advanced and less conservative – models. Then hidden safety
needs to be treated explicitly and the PSF concept needs to be adapted. This section is
about the explicit inclusion of hidden safety within the PSF concept.

The challenges related to hidden safety have not received much attention in the scientific
literature. Only a small number of publications explicitly mention the challenges related
to hidden safety. These include Byfield and Nethercot [89], who examined various con-
structional steelwork resistance models (e.g., the bending resistance of restrained beams or
the shear-buckling resistance of plate girders) and adapted the respective PSFs in order to
homogenize the safety level. Milan et al. [90] investigated the influence of different proba-
bilistic models (distribution choices and distribution fitting techniques) of the time-variant
and time-invariant wind load model components on the probability of failure. Nowak et
al. [91] calculated the probability of failure of bridges and compared it to the probability
of failure including measurements of inner forces. Gomes and Beck [92] proposed a con-
servatism index to classify structural models. Other publications involving hidden safety
include Toft et al. [93], Hanninen et al. [94], and Gazetas et al. [95]. However, none of
these publications provides a general framework on how to consider hidden safety in the
PSF concept.

A general framework to investigate the effects of hidden safety and how to adapt the PSF
concept is given by Teichgräber et al. [96]. The framework is exemplarily applied to the
wind action model of the Eurocode replacing several components of the model with more
advanced modeling approaches by Teichgräber et al. [96–98]. Moreover, the framework
is applied to the traffic action model LM1 of the Eurocode which is replaced by a traffic
action simulation by Teichgräber et al. [99–101]. In the following, these publications are
summarized (which partly includes direct copies) and reformulated to be consistent with
the theoretical background of Sec. 2.3.
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3.1. General framework to investigate the effects of hidden
safety and to adapt the partial safety factor concept

The general framework to investigate the effects of hidden safeties and to adapt the PSF
concept is based on the LSF of Eqn. 2.18 and Eqn. 2.20. It is separated into three
main steps: The first step deals with the effects of hidden safety on the structural design
(Sec. 3.1.1), the second step is about the effects of hidden safety on structural reliability
(Sec. 3.1.2), and the third step performs the adaptation of the PSF concept (Sec. 3.1.3).

The first two steps can, in principle, be performed on individual design situations. How-
ever, the third step is only meaningful when a representative portfolio of design situations
is considered. Therefore, the first two steps are considered at the portfolio level as well.

A special case in the investigation of hidden safeties are existing structures. In these cases,
it is no longer possible to adjust the design decisions because they have already been made.
Rather, the issue is the classification of a particular design and whether hidden safeties
can be exploited to classify a particular design as sufficient. This issue is investigated in
Sec 3.1.4.

3.1.1. Effects of hidden safety to the structural design

Following Eqn. 2.17 the design choices according to Eurocode can be represented via

PEC = t−1
R,EC

(
mk,EC

γm
,γRd · γSd · tS,EC (γf · lk,EC)

)
(3.1)

If – instead of the Eurocode – the purely aleatoric models would be used the following
purely aleatoric design choices would be obtained

P = t−1
R

(
mk

γm
,γRd · γSd · tS (γf · lk)

)
(3.2)

The purely aleatoric design is of interest for the following reason: More advanced models
typically reduce the amount of epistemic uncertainty compared to standard models. Hence,
if Eurocode models get replaced by more advanced models, the resulting design choices
changes presumably into the direction of the purely aleatoric design choices. Hence, the
purely aleatoric design can be interpreted as a converging value of a process eliminating
epistemic uncertainties.

A replacement of a Eurocode model with a more advanced model can be done for the
material model, the action model, the structural model, and the resistance model, resulting
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in one of the following advanced design choices:

Padv =



t−1
R,EC

(
mk,adv

γm
,γRd · γSd · tS,EC (γf · lk,EC)

)
advanced material model

t−1
R,EC

(
mk,EC

γm
,γRd · γSd · tS,EC (γf · lk,adv)

)
advanced action model

t−1
R,EC

(
mk,EC

γm
,γRd · γSd · tS,adv (γf · lk,EC)

)
advanced structural model

t−1
R,adv

(
mk,EC

γm
,γRd · γSd · tS,EC (γf · lk,EC)

)
advanced resistance model

(3.3)

Eqns. 3.1, 3.2, and 3.3 each cover an individual design situations and, therefore, are de-
terministic values. If, instead of individual design situation, a full portfolio of design
situations is investigated (see Sec. 2.3.3), PEC , P, and Padv are either represented via
multiple deterministic values representative of different design situations within the port-
folio, or PEC , P, and Padv become random variables representing the variability of design
choices within the considered portfolio. In the second case Eqns. 3.1, 3.2, and 3.3 can be
rewritten as

PEC = T−1
R,EC

(
Mk,EC

γm
,γRd · γSd · TS,EC (γf · Lk,EC)

)
(3.4)

P = T−1
R

(
Mk

γm
,γRd · γSd · TS (γf · Lk)

)
(3.5)

Padv =



T−1
R,EC

(
Mk,adv

γm
,γRd · γSd · TS,EC (γf · Lk,EC)

)
advanced material model

T−1
R,EC

(
Mk,EC

γm
,γRd · γSd · TS,EC (γf · Lk,adv)

)
advanced action model

T−1
R,EC

(
Mk,EC

γm
,γRd · γSd · TS,adv (γf · Lk,EC)

)
advanced structural model

T−1
R,adv

(
Mk,EC

γm
,γRd · γSd · TS,EC (γf · Lk,EC)

)
advanced resistance model

(3.6)

where TR,EC , TS,EC , TR, TS , Mk,EC , Lk,EC , Mk, and Lk are the extensions to portfolio level
of tR,EC , tS,EC , tR, tS , mk,EC , lk,EC , mk, and lk, following the approach of Sec. 2.3.3.

Eqns. 3.4, 3.5, and 3.6 are formalized such that the individual design situations of Eqns. 3.1,
3.2, and 3.3 are expanded to portfolio level with respect to the material model, the action
model, the structural model, and the resistance model. Alternatively, the expansion to
portfolio level can also be done with respect to just one of the models. Moreover, various
assumptions can be made to simplify those generic representations of the design choices at
the portfolio level. Those assumptions closely follow the assumptions made in Sec. 2.3.2.2
to simplify the representation of the LSF and the design choices. This includes assumptions
about the linearity of the structural and the resistance model and the assumption that
nominal models are equal to purely aleatoric models. Typically, it is not critical to apply
those assumptions to the models that are not replaced by advanced models. E.g., if
the Eurocode action model is replaced by a more advanced model, assumptions about the
material model, the structural model, and the resistance model are not critical. The reason
for this is that those assumptions enter the calculation of PEC , P, and Padv equally. This
makes a relative comparison of those quantities still valid. In contrast, assumptions about
the model that is replaced by a more advanced model should be introduced carefully.

After PEC , P, and Padv are derived, they can be compared in order to estimate the effect
of the respective models on the design choices. The ratios PEC

P , and Padv
P indicate how

much the epistemic uncertainties of the applied models lead to a deviation of a more
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ideal design choice purely based on aleatoric uncertainties. In case PEC , P, and Padv are
random variables derived via a portfolio, the ratio of the respective means E[PEC ]

E[P] , and
E[Padv ]

E[P] can be derived.

In this context, the term conservative model is defined as follows: A model is conservative
in a specific design situation if it leads to a larger design resistance than the design resis-
tance one would obtain with purely aleatoric models; hence, if the ratios PEC

P and Padv
P

are greater 1.

It can be challenging to derive P. If this is the case, the ratios Padv
PEC

and E[Padv ]
E[PEC ] can be

calculated instead to indicate how much the advanced model changes the design choices
compared to the Eurocode model.

The ratios of the design choices indicate the material consumption of the respective models.
However, it should be noted that the relationship between the design choices and the
material consumption is not necessarily linear. Moreover, serviceability limit states are
not considered in this comparison.

3.1.2. Effects of hidden safety on the structural reliability

Given a design choice (see Sec. 3.1.1) the aleatoric probabilities of failure can be calculated
via a reliability analysis R that only uses purely aleatoric distributions. The nominal
probability of failure according to Eurocode can be calculated via a reliability analysis
REC using the probabilistic bases of Eurocode models. The nominal probability of failure
according to advanced models can be calculated via a reliability analysis Radv using the
probabilistic bases of the advanced models. Tab. 3.1 summarizes the various combinations
of design choices and choices within the reliability analysis to calculate the aleatoric and
nominal probability of failure.

Design choice following
aleatoric models Eurocode advanced models

Reliability
analysis

following

aleatoric models Pr(F ; P,R) Pr(F ; PEC ,R) Pr(F ; Padv,R)
Eurocode Pr(F ; P,REC) Pr(F ; PEC ,REC) Pr(F ; Padv,REC)
advanced models Pr(F ; P,Radv) Pr(F ; PEC ,Radv) Pr(F ; Padv,Radv)

Tab. 3.1.: Possible combinations of design choices and choices within the reliability analysis
to calculate the probability of failure.

If a portfolio of design situations is considered, the probability of failure can either be
calculated conditionally on the design choices, resulting in a distribution of the probability
of failure or the variability of the portfolio can be included, resulting in the mean of the
conditional version.

To investigate the effects of various design choices, the different probabilities of failure
of Tab. 3.1 can be compared. Alternatively, the respective reliability indies can be cal-
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culated (see Eqn. 2.14) and compared. A comparison of reliability indices is often more
meaningful because failure probabilities can differ by several orders of magnitude, mak-
ing a comparison difficult to interpret. This is not the case for reliability indices. The
reason for this is the non-linear transformation via the standard normal CDF. However,
exactly this non-linear transformation should be kept in mind when comparing reliability
indices.

When it comes to the subsequent adaptation of the PSF concept with respect to hidden
safeties (see Sec. 3.1.3) the aleatoric probabilities of failure given design choices following
Eurocode and following advanced modeling techniques Pr(F ; PEC ,R) and Pr(F ; Padv,R)
are of special interest. The difference between those two probabilities of failure is caused
by two counteracting effects:

• Standard models typically include conservative assumptions and parameter specifi-
cations.1 This adds a conservative bias of PEC in comparison to P. More advanced
models may be less conservative. Hence, if standard models are replaced by more
advanced models, the decrease in bias increases the probability of failure.

• Standard models typically include larger epistemic uncertainties than more advanced
models. If standard models get replaced by more advanced models, the reduction of
model uncertainty decreases the probability of failure.

Depending on which of these effects dominates, structural reliability can either increase or
decrease. In order to preserve the same level of safety, an adaptation of the PSF concept
is needed.

Similar to the purely aleatoric design choices, it can be challenging to find the purely
aleatoric models to perform a purely aleatoric reliability analysis R. Typically, simpli-
fying assumptions must be made, which add epistemic uncertainty; hence, the purely
aleatoric reliability analysis R is not purely aleatoric anymore. Nevertheless, such a reli-
ability analysis is called to be purely aleatoric within this thesis. As already stated, such
simplifying assumptions are not critical when it comes to the comparison of the aleatoric
probabilities of failure (in particular the comparison of Pr(F ; PEC ,R) and Pr(F ; Padv,R)
used within the subsequent adaption of the PSF concept), since those assumptions enter
the respective reliability analyses equally, hence, making a relative comparison valid.

3.1.3. Adaptation of the partial safety factor concept with respect to hidden
safeties

The adaptation of the PSF concept with respect to hidden safeties follows Sec. 2.3.5.
Thereby, the target probability of failure or the target reliability index follow from the
design choices made by Eurocode (see Eqn. 2.43 and 2.44). The adaptation can either
be performed by introducing an additional PSF that is applied to the quantity resulting
from the advanced model or – in case of an advanced material model or an advanced
action model – by adapting the quantile value used to define the characteristic value. The

1For a formal definition of the term conservative model see Sec.3.1.1
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adaptation follows Eqns. 2.47-2.52. This ensures that the application of advanced models
leads – on portfolio level – to the same level of safety as the Eurocode models.

Depending on which of the two counteracting effects (the elimination of a conservative
bias vs. the decrease of model uncertainty as described in Sec. 3.1.2) is stronger, the
adapted safety components increase or decrease the design choices. I.e., if the effect of the
elimination of a conservative bias dominates, an additional partial is greater than 1 and
an adapted quantile value to define the characteristic value is smaller than the previous
one in the case of a material model and greater than the previous one in the case of an
action model. If the effect of the decreased model uncertainty dominates, then the opposite
follows.

Once the adaptation is conducted, the first step to investigate the effect of the design
choices (Sec. 3.1.1) can be repeated, including the adaptation within the design choices
and compared to the design choices without the adaptation. Moreover, the second step
to investigate the effects on structural reliability (Sec. 3.1.2) can be repeated with respect
to the adapted design choices. However, this is not very meaningful, since the resulting
level of safety is already known from the adaptation procedure, namely, the utilized target
reliability. It may only differ slightly, depending on the exact recalibration procedure
(Sec. 2.3.5). Nevertheless, it may be useful to perform such a calculation to check whether
the recalibration has been performed correctly.

3.1.4. Hidden safeties in the context of existing structures

Hidden safeties are important not only in the context of the application of advanced models
to design new structures but also in the context of the application of advanced models
to reassess existing structures. In many instances, the safety of existing structures can
no longer be demonstrated by standard code-based assessments. Reasons for this include
changes in the code, changes in the demands on the structures and deterioration. This
issue is formalized as follows: Let Pexist be the design choice of an existing structure and
let PEC be the design choice one would obtain if one would redesign the structure following
the current standard code (see Eqn. 3.1). Then the existing structure is in compliance with
the current standard if Pexist ≥ PEC and not in compliance with the current standard if
Pexist ≤ PEC .

If an existing structure is not in compliance with the current standard, it is common
practice to perform a more detailed assessment utilizing advanced models. Let Padv be the
design choice one would obtain if one would redesign the structure following the advanced
model (see Eqn. 3.3). If Pexist ≥ Padv the existing design is sufficient according to the
advanced model and if Pexist ≤ Padv the existing design is not sufficient according to
the advanced model. In this way, many structures can be shown to comply with safety
requirements, even if they cannot be verified by standard assessments.

Such an application of advanced models in replacement of standard models leads to the
same two effects on reliability as the application within the design of new structures (see
Sec. 3.1.2):
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• Standard models typically include more conservative assumptions and parameter
specifications in comparison to advanced models; hence, PEC > Padv on average.
Therefore, the application of advanced models accepts – on average – more existing
design choices. Hence, if standard models get replaced by more advanced models, the
decrease in bias increases the average probability of failure of the accepted existing
structures.

• Standard models typically include larger epistemic uncertainties than more advanced
models. Hence, the uncertainty of PEC is larger than the uncertainty of Padv. This
decreases the average probability of failure of the accepted design choices.

Similar to the case of new structures, these two effects counteract each other in their effect
on structural reliability and should be balanced out via an adaptation of the PSF concept.
The adapted PSF concept would – obviously – not be used in a design of an actual new
structure, but only to derive the design value one would obtain using the advanced model
Padv if one would redesign the existing structure. Padv is then compared to PEC . The
choice of a target probability of failure or the target reliability to perform such an adap-
tation is not as straightforward as in the case of new structures for the following reason:
Increasing the resistance of existing structures is often associated with high construction
costs, as this usually includes modification or even partly deconstruction of the existing
building. The increase of resistances of new structures typically only includes the increase
of materials costs. This difference in cost to increase resistance should justify a slightly
lower target reliability [102]. However, the determination of such a target reliability should
include the cost associated to failure. This basically leads to a risk based code calibration,
which is not part of this thesis.

3.2. Formal definition of hidden safety

The framework of Sec. 3.1 does not include a formal definition of the term “hidden safety”,
but only covers the effects arising from hidden safety and how to compensate those effects
via adaptations of the PSF concept. In fact, a definition is not needed in practice; however,
it is of philosophical/theoretical interest. In the following, a more formal definition is
attempted.

In literature, the words “hidden safety” occur in different contexts with slightly different
meanings, e.g., in [89–95]. In these publications, hidden safety is usually understood as a
conservative bias of a model. While this points in the right direction, it does not cover
the full complexity of hidden safety for the following reasons:

The word “safety” in the term “hidden safety” indicates that the term should be expressed
by a measure of safety, such as the probability of failure. The bias of a model itself
cannot be directly expressed by such a measure, but only its effect. Moreover, the bias
only captures the mean error of a model. Higher order moments (variance, skewness,
etc.) are not considered, however, should be included. The word “hidden” in the term
“hidden safety” indicates that this part of the safety is not visible from the perspective
of the model that contains the hidden safety. To determine which part of the safety
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is hidden, the safety according to the model that includes the hidden safety should be
compared to the model excluding the hidden safety. From a prospective point of view,
the purely aleatory model is suitable for this purpose. The following failure probabilities
from Tab. 3.1 should therefore be compared to determine the hidden safety of a standard
model: Pr(F ; PEC ,REC) versus Pr(F ; PEC ,R). Note that these values can be different
for different given design choices PEC resulting from different design situations. Hence,
hidden safety is not just a property of a model but also depends on the design situation
the model is applied to. This dependency can be overcome via the portfolio perspective.

3.3. Case study 1: Hidden safety in the Wind load model of the
Eurocode

This case study investigates the effects of hidden safety in the wind load model of Eurocode
1 [103]. An exchange of the Eurocode wind load model with more advanced modeling
techniques is considered. The case study follows the three steps of Sec. 3.1.1, 3.1.2, and
3.1.3: First, the effect on the design choices and the material usage are studied. Second,
the effect on structural reliability is derived. Third, an adaptation of the PSF concept is
conducted. Considering this adaptation, the design choices are re-evaluated.

The case study uses the portfolio defined in Annex A, excluding snow actions and imposed
actions, only considering wind actions according to Eurocode and the advanced wind action
modeling techniques as follows. The case study is only valid under the assumptions of this
portfolio.

3.3.1. Wind load model of the Eurocode

The wind load model of the Eurocode is based on five components [58, 104]: The wind
climate, the terrain, the aerodynamic response, the mechanical response, and the design
criteria. Accordingly, Eurocode 1 [103] and its background documentations (e.g., [105])
define the characteristic wind load pressure qk,EC as:

qk,EC = qb,k,EC · ce,k,EC · cf,k,EC · cs,k,EC · cd,k,EC (3.7)

These coefficients are characteristic values of the wind load components:

• qb,k,EC is the characteristic value of the wind velocity pressure: It is defined as the
10-minute mean velocity pressure at a height of 10 m above ground with a roughness
length of 0.05 m and a return period of 50 years.

• ce,k,EC is the characteristic value of the exposure coefficient: It considers the rough-
ness of the terrain and the height of the structure and is based on empirically deter-
mined formulas. Eurocode assumes that these formulas are unbiased estimators of
the expected exposure coefficient and thus the characteristic value is the mean.
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• cf,k,EC is the characteristic value of the force coefficient: It addresses the geometry
of the structure. Its values are based on investigations of [59] and obtained as the
78 % quantile of the yearly maxima of the force coefficient, which are assumed to
follow a Gumbel distribution [106].

• csd,k,EC = cs,k,EC · cd,k,EC is the characteristic value of the structural factor: It ac-
counts for the fact that wind peak pressures do not occur simultaneously on the total
surface of the structure (represented through cs,k,EC) and for the dynamical effect
caused by wind turbulences exciting the structure at its eigenfrequencies (represented
through cd,k,EC). Eurocode assumes that these formulas are unbiased estimators of
the expected structural factor and thus the characteristic value is the mean.

In summary, the characteristic values are defined as

qb,k,EC = F−1
Qb,EC

(0.98) (3.8)
ce,k,EC = E[Ce,EC ] (3.9)
cf,k,EC = F−1

Cf,EC
(0.78) (3.10)

csd,k,EC = E[Csd,EC ] (3.11)

where Qb,EC , Ce,EC , Cf,EC , and Csd,EC represent the respective random variables ac-
cording to Eurocode. The distributions of these random variables are not given by Eu-
rocode and background documents are mostly opaque. However, these distributions are
not needed in the following, but only the respective purely aleatoric distributions are
defined and used in the subsequent reliability analysis (see Sec. 3.3.4). qb,k,EC , ce,k,EC ,
cf,k,EC , csd,k,EC are intended to be estimates of the receptive purely aleatoric character-
istic values. The uncertainty within this estimation is induced by representing qb,k,EC ,
ce,k,EC , cf,k,EC , csd,k,EC as random variables. The distribution of those random variables
is determined in Sec. 3.3.3.1.

3.3.2. Advanced wind load model

The advanced wind load model consists of the same wind load model components as the
Eurocode model. The characteristic wind load pressure is defined as

qk,adv = qb,k,adv · ce,k,adv · cf,k,adv · csd,k,adv (3.12)

where qb,k,adv, ce,k,adv, cf,k,adv, and csd,k,adv are the advanced counterparts of the respective
Eurocode characteristic values. In accordance with the Eurocode, these are defined similar
to the Eurocode model as

qb,k,adv = F−1
Qb,adv

(0.98) (3.13)
ce,k,adv = E[Ce,adv] (3.14)
cf,k,adv = F−1

Cf,adv
(0.78) (3.15)

csd,k,adv = E[Csd,adv] (3.16)
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It is assumed that the distributions Qb,adv, Ce,adv, Cf,adv, and Csd,adv are derived using
long-term on-site wind data and wind tunnel tests on scale models of the structure. A more
detailed description of these advanced models is given in the subsequent Sec. 3.3.3.2.

Similar to the Eurocode model, the distributions of Qb,adv, Ce,adv, Cf,adv, and Csd,adv are
not given; however, they are also not needed. Instead, the distributions of qb,k,adv, ce,k,adv,
cf,k,adv, and csd,k,adv representing the uncertainty in the determination of the advanced
characteristic values are derived in Sec.3.3.3.2.

3.3.3. Effects of the wind load model to design choice

Adopting the portfolio of Annex A, the design choices of a given material i following
Eurocode are

Pi,EC = γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+

+ aQ,i · γQ ·Qb,k,EC · Ce,k,EC · Cf,k,EC · Csd,k,EC ] (3.17)

where γRi is the PSF of the resistance side, γS is the PSF of the self weight, γP is the
PSF of the permanent action, γQ is the PSF of wind action, ri,k is the characteristic
material strength, θRi,k is the model uncertainty in the estimation of the characteristic
material strength, gSi,k is the characteristic self weight, gP,k is the characteristic permanent
action, and aQ,i and aG are action proportion factors. The respective values are listed in
Annex A.

Qb,k,EC , Ce,k,EC , Cf,k,EC , Csd,k,EC are random variables representing the characteristic
values of the wind action model components according to Eurocode. Technically, the char-
acteristic values are deterministic values estimating the mean or certain quantile values
of the respective underling purely aleatoric distributions. Following Sec. 2.3.3, a prob-
abilistic description is used taking its relative error into account. Following Eqn. 2.42,
the distribution of the characteristic values is derived via the distribution of the relative
error in the estimation of the characteristic values. A detailed derivation of the respective
distributions is skipped here and described in detail in Sec. 3.3.3.1.

Analogously, the design choices of a given material i following advanced wind action mod-
eling techniques are

Pi,adv = γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+

+ aQ,i · γQ ·Qb,k,adv · Ce,k,adv · Cf,k,adv · Csd,k,adv] (3.18)

where Qb,k,adv, Ce,k,adv, Cf,k,adv, Csd,k,adv are random variables representing the charac-
teristic values of the wind action model components according to advanced wind action
modeling techniques. The detailed derivation of their distribution is again skipped and
described in detail in Sec. 3.3.3.2.

Additionally, four more cases Pi,Qb,k,adv
, Pi,Ce,k,adv

, Pi,Cf,k,adv
, and Pi,Csd,k,adv

are considered
where only one of the wind action components is replaced with advanced wind action
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modeling techniques:

Pi,Qb,k,adv
= γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+ (3.19)

+ aQ,i · γQ ·Qb,k,adv · Ce,k,EC · Cf,k,EC · Csd,k,EC ]

Pi,Ce,k,adv
= γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+ (3.20)

+ aQ,i · γQ ·Qb,k,EC · Ce,k,adv · Cf,k,EC · Csd,k,EC ]

Pi,Cf,k,adv
= γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+ (3.21)

+ aQ,i · γQ ·Qb,k,EC · Ce,k,EC · Cf,k,adv · Csd,k,EC ]

Pi,Csd,k,adv
= γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+ (3.22)

+ aQ,i · γQ ·Qb,k,EC · Ce,k,EC · Cf,k,EC · Csd,k,adv]

Fig. 3.1 shows violin plots of the distributions of the design choices. Those distributions
take the relative frequency of the different materials and load compositions of the consid-
ered portfolio into account, as well as the uncertainty in the estimation of the characteristic
wind action values. Ratios of the expected values of the design choices according to the
advanced model cases to the Eurocode model case are reported in Tab. 3.2.
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Fig. 3.1.: Violin plots showing the distribution of design values obtained with Eurocode
models (blue) and advanced models (red).

3.3.3.1. Distributions of the characteristic wind load model components according to
Eurocode

The characteristic values in the Eurocode are estimates of the quantile values of the re-
spective underlying aleatoric distributions. However, the underlying aleatoric distributions
vary from case to case. E.g. Fig. 3.2 illustrates this for the wind velocity pressure. Similar
holds for the other wind load model components.

The derivation of the characteristic wind load model components according to Eurocode
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Material i 1 2 3 4 5 6 1-6
Wind velocity pressure 0.79 0.81 0.81 0.79 0.79 0.81 0.80
Exposure coefficient 0.83 0.84 0.84 0.83 0.83 0.84 0.84
Force coefficient 0.91 0.92 0.92 0.91 0.91 0.92 0.92
Structural factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Combined case 0.60 0.63 0.62 0.60 0.60 0.63 0.62

Tab. 3.2.: Average design values obtained with the use of advanced modeling techniques
relative to those obtained with Eurocode models, calculated as E[Pi,x,adv]

E[Pi,EC ] with
x representing the respective advanced model case. Results are listed for the
six material properties separately and for the full portfolio.

qb,k,EC

qb,k = F−1
Qb

(0.98)

E[Qb]

Qb,k

Location

qb qb

Fig. 3.2.: Derivation of the distribution of the characteristic value Qb,k resulting from the
aleatoric distribution of the wind velocity pressure Qb (green) and its relationship
to the characteristic value according to Eurocode qb,k,EC (blue).

is based on the relative errors of the Eurocode characteristic value qk,EC relative to the
aleatoric characteristic value qk. Fig. 3.3 illustrates the situation in the case of wind
velocity pressure. In contrast to Fig. 3.2, the perspective is changed by standardizing
every quantity relative to qb,k. Mathematically, this new perspective is equivalent to the
previous one, however, it more clearly reflects how advanced modeling techniques affect
the design process. Fig. 3.3 additionally includes the characteristic wind velocity pressure
according to advanced modeling techniques qb,k,adv, which is needed in the subsequent
Sec. 3.3.3.2.

qb,k,EC

qb,k

qb,k

qb,k

E[Qb]
qb,k

Location

qb

qb,k

qb

qb,k

qb,k,adv

qb,k

qb,k,EC

Qb,k

qb,k,adv

Qb,k

Fig. 3.3.: Re-illustration of Fig. 3.2, whereby the wind velocity pressure Qb (green) and
the characteristic value according to Eurocode qb,k,EC (blue) are standardized
by the characteristic value of the aleatoric distribution. The characteristic value
according to advanced modeling techniques qb,k,adv is added in red.
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Hence, the relative error in the estimation of the characteristic values are defined as

Θqb,k,EC
= qb,k,EC

Qb,k
(3.23)

Θce,k,EC
= ce,k,EC

Ce,k
(3.24)

Θcf,k,EC
= cf,k,EC

Cf,k
(3.25)

Θcsd,k,EC
= csd,k,EC

Csd,k
(3.26)

In literature, typically the inverse of this error, Θ−1
qb,k,EC

, is specified. Tab. 3.3 summarizes
the distributions of these inverse relative errors. Following Davenport [107] and the JCSS
probabilistic modeling code [108], they follow a log-normal distribution. The distribution
parameters are based on [107] and justified as follows:

Mean c. o. v.
Θ−1

qb,k,EC
∼ LN 0.8 0.30

Θ−1
ce,k,EC

∼ LN 0.8 0.15
Θ−1

cf,k,EC
∼ LN 0.9 0.20

Θ−1
csd,k,EC

∼ LN 1.0 0.15

Tab. 3.3.: Distribution of the relative errors Characteristic value of aleatoric distribution
Characteristic value of EC .

• Θ−1
qb,k,EC

: Davenport [107] suggests a mean value of 0.8 and a coefficient of variation
of 0.2–0.3. To verify these numbers, the wind velocity vb at 10 [m] above ground
is investigated at 265 meteorological stations of the German Meteorological Service
[109]. Each of the stations is located in open space. Only stations between 0–1100 [m]
above sea level (range of validity of the Eurocode) and only stations with at least
20 years of recording are considered. The wind velocity is converted to the wind
velocity pressure via

qb = 1
2 · ρ · v2

b (3.27)

where ρ = 1.25
[

kg
m3

]
is the air density. From the time histories of qb, the yearly

maxima at all stations are obtained and used to fit a Gumbel distribution through
a maximum likelihood estimator. Moreover, the statistical uncertainty is accounted
for via a normal approximation of the posterior [110]. Finally, qb,k,Data is obtained
as the 98 [%] quantiles of each Gumbel distribution and divided by the characteristic
values of the respective location specified in the Eurocode. The resulting ratios are
shown in Fig. 3.4. The sample mean of these ratios is 0.82, which confirms the
choice of E[Θ−1

qb,k,EC
] = 0.8. The sample coefficient of variation is 0.36, hence the

upper bound of the values suggested by Davenport is choosen [107].

• Θ−1
ce,k,EC

: Davenport [107] suggests a mean of 0.8 and a coefficient of variation of
0.1-0.2. No data could be found to justify these numbers.
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Fig. 3.4.: Histogram of the ratios of the characteristic values qb,k,Data obtained from data
of the German Meteorological Service [109] and the characteristic values qb,k,EC

of the respective location specified in the Eurocode [103].

• Θ−1
cf,k,EC

: Davenport [107] suggests a mean of 0.9 and a coefficient of variation of 0.1-
0.2. Measurements done by Svend Ole Hansen et al. [111] on a benchmark model
of a tall building [112] confirmed these values with a tendency towards the upper
bound.

• Θ−1
csd,k,EC

: Davenport [107] suggests a mean of 1.0 and a coefficient of variation of
0.1-0.2. No data could be found to justify these numbers.

Solving the Eqns. 3.23-3.26 for the characteristic values, the distribution of Qb,k,EC ,
Ce,k,EC , Cf,k,EC , Csd,k,EC can be derived. This requires the aleatoric characteristic values.
These are taken as the respective mean values and the respective quantile values of the
purely aleatoric distributions defined in the subsequent Sec. 3.3.4. Tab. 3.4 shows the
resulting distributions.

Mean c. o. v.
Qb,k,EC ∼ LN 2.56 0.30
Ce,k,EC ∼ LN 1.28 0.15
Cf,k,EC ∼ LN 1.23 0.20
Csd,k,EC ∼ LN 1.02 0.15

Tab. 3.4.: Distributions of the characteristic wind load model components according to
Eurocode.

3.3.3.2. Distributions of the characteristic wind load model components according to
advanced modeling techniques

By analogy with Sec. 3.3.3.1, the distributions of the characteristic wind load model com-
ponents according to advanced modeling techniques are described through the distribu-
tions of the respective inverse relative errors. Tab. 3.5 summarizes these distributions.
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Mean c. o. v.
Θ−1

qb,k,adv
∼ LN 1.0 0.10

Θ−1
ce,k,adv

∼ LN 1.0 0.05
Θ−1

cf,k,adv
∼ LN 1.0 0.15

Θ−1
csd,k,adv

∼ LN 1.0 0.10

Tab. 3.5.: Distribution of the relative errors Characteristic value of aleatoric distribution
Characteristic value of Adv .

The advanced models are presumed to be the most accurate state-of-the-art models.
Hence, no reference model serving as a reference truth is available. Instead, measure-
ment data has to be evaluated to justify the parameters of the error distributions. This is
conducted following the ISO/IEC guide [113]:

• Θ−1
qb,k,adv

: It is assumed that advanced wind load modeling techniques utilize on-site
wind data to estimate the characteristic wind velocity pressure. It is postulated that
such an analysis leads to an unbiased estimator. Based on the data from the German
Meteorological Service [109] described in Sec. 3.3.3.1, the coefficient of variation of
Θ−1

qb,k,adv
is estimated as 0.1. This estimate is based on the assumption that extreme

wind pressures follow a Gumbel distribution.

• Θ−1
ce,k,adv

: It is presumed that advanced wind modeling techniques utilize on-site wind
data to predict ce(z) [114, 115]. According to Eurocode 1 [103] the characteristic
exposure coefficient is calculated as

ce(z) = 0.19 ·
(
z0

0.05

)0.07
· ln

(
z

z0

)
(3.28)

where z is the height above ground and z0 is the roughness length of the terrain.
Kelly and Jørgensen [116] determine the uncertainty in the prediction of z0 through
on-site data. They find that z0 can be estimated with a coefficient of variation 5 [%],
given one year of on-site wind data. This leads to an uncertainty in the order of
2 [%] in the estimate of ce(z). Considering the inherent uncertainty of Eqn. 3.28, it
is assumed that the advanced modeling technique results in a coefficient of variation
of 5 [%] on the ce(z) estimate.

• Θ−1
cf,k,adv

: It is presumed that advanced wind modeling techniques utilize wind tunnel
tests to predict the force coefficient. Wind tunnels can be calibrated such that they
lead to unbiased results [117], hence E[Θ−1

cf,k,adv
] = 1. The coefficient of variation of

Θ−1
cf,k,adv

is deduced from calculations done by Long [118], who evaluates wind tunnel
data of a simple rectangular building and compares it with results from the full scale
test reported in [119, 120]. From the results of [118], a coefficient of variation of
Θ−1

cf,k,adv
equal to 0.15 is derived.

• Θ−1
csd,k,adv

: No data could be found to estimate the distribution of the relative error
in the estimation of the characteristic structural factor following advanced wind
load modeling techniques. Since the estimation of the structural factor according
to Eurocode is already unbiased, the estimation according to advanced wind load
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modeling techniques is also assumed to be unbiased. Hence, E[Θ−1
csd,k,adv

] = 1. The
coefficient of variation of Θ−1

csd,k,adv
is presumed to be 0.1.

By analogy with Sec. 3.3.3.1, the distributions of Qb,k,adv, Ce,k,adv, Cf,k,adv, Csd,k,adv are
derived. Tab. 3.6 shows the resulting distributions.

Mean c. o. v.
Qb,k,adv ∼ LN 1.90 0.10
Ce,k,adv ∼ LN 1.00 0.05
Cf,k,adv ∼ LN 1.09 0.15
Csd,k,adv ∼ LN 1.01 0.10

Tab. 3.6.: Distributions of the characteristic wind load model components according to
advanced wind load modeling techniques.

3.3.4. Effects of the wind load model to the reliability

Given the distributions of the design values (see Sec. 3.1.1), it can be investigated how the
aleatoric probability of failure changes when moving from Eurocode models to advanced
models. Following the portfolio of Annex A, the LSF given material i is defined as

g(P,ΘRi ,Ri,GS,i,GP ,Q,aQ,i,aG) =P · ΘRi ·Ri−
− (1 − aQ,i) · [aG ·GS,i + (1 − aG) ·GP ] −
− aQ,i ·Qb · Ce · Cf · Csd (3.29)

where P ∈
{

Pi,EC ,Pi,adv,Pi,Qb,k,adv
,Pi,Ce,k,adv

,Pi,Cf,k,adv
,Pi,Csd,k,adv

}
, ΘRi is the resistance

model uncertainty, Ri is the material strength, GS,i is the self-weight, and GP is the
permanent load. The respective distributions are listed in Annex A.

Qb, Ce, Cf , and Csd are the assumed aleatoric distributions of the wind action model
components. The respective distributions follow [108] and [61] and are listed in Tab. 3.7.

Mean c. o. v.
Qb ∼ G 1 0.25
Ce ∼ LN 1 0.15
Cf ∼ G 1 0.10
Csd ∼ LN 1 0.10

Tab. 3.7.: Standardized aleatoric distributions of wind load model components. The max-
imum wind velocity pressure Qb refers to an annual reference period.

The aleatoric probability of failure is calculated with the first-order reliability method
(FORM) [68]. Fig. 3.5 shows box plots of the resulting reliability indices. Ratios of the
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expected values of the aleatoric probabilities of failure of the advanced model cases to the
ones of the Eurocode model case are reported in Tab. 3.8.
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Fig. 3.5.: Boxplots of the annual reliability indices according to Eurocode (blue) and ad-
vanced modeling techniques (red).

Wind velocity pressure 1.08
Exposure coefficient 3.05
Force coefficient 1.50
Structural factor 0.80
Combined case 4.22

Tab. 3.8.: Ratios of the weighted average annual probabilities of failure of the design fol-
lowing Eurocode and advanced modeling techniques.

3.3.5. Adaptation of the partial safety factor concept with respect to
advanced wind load modeling

To compensate for the lost hidden safety through the application of advanced modeling
techniques, the PSF concept needs to be adjusted. Two possible adjustments are demon-
strated in the following: The adjustment of the PSF of the wind action via an additional
PSF γQ,add (applied additionally to γQ) and the adjustment of the characteristic values
of the wind action model component; however, the latter is only demonstrated for the
characteristic wind velocity pressure.

Following Eqn. 2.43 an annual target probability of failure is calculated as

Pr(F )T RG = 1∑
iwi

·
∑

i

wi · Pr(F ; Padv(γQ,add),Ri) = 3 · 10−5 (3.30)

where wi are the weights given in Annex A considering the relative frequencies of the
different materials and action compositions of the considered portfolio.
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The additional PSF γQ,add is found following Eqn. 2.47

γQ,add = min
γQ,add

{∣∣∣∣∣ 1∑
iwi

·
∑

i

wi · Pr (F ; Pi,adv(γQ,add),Ri) − Pr(F )T RG

∣∣∣∣∣
}

(3.31)

where Pi,adv(γQ,add) represents the advanced design choice including γQ,add defined as

Pi,adv(γQ,add) = γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+

+ aQ,i · γQ,add · γQ ·Qb,k,adv · Ce,k,adv · Cf,k,adv · Csd,k,adv] (3.32)

Analogously, values of γQ,add are derived for the four design variations of Eqns. 3.19-3.22
where only one of the wind action components is replaced with advanced wind action
modeling techniques. Tab. 3.9 shows the resulting additional PSFs. Values above 1 result
in an increase of γQ, values below 1 decrease γQ.

Wind velocity pressure: 1.01
Exposure coefficient: 1.19
Force coefficient: 1.06
Structural factor: 0.97
Combined case: 1.20

Tab. 3.9.: Additional PSF γQ,add regarding each advanced wind load modeling technique
and the combined case.

The adaptation of the quantile value defining the characteristic wind velocity pressure
vQb,k,adv

again follows Eqn. 2.47 and is calculated as

vQb,k,adv
= min

γQ,add

{∣∣∣∣∣ 1∑
iwi

·
∑

i

wi · Pr
(
F ; Pi,Qb,k,adv

(vQb,k,adv
),Ri

)
− Pr(F )T RG

∣∣∣∣∣
}

(3.33)

where Pi,Qb,k,adv
(vQb,k,adv

) represents the design choice including advanced wind velocity
pressure modeling defined as

Pi,Qb,k,adv
(vQb,k,adv

) = γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k)+

+ aQ,i · γQ ·Q−1
b,adv(vQb,k,adv

) · Ce,k,EC · Cf,k,EC · Csd,k,EC ]
(3.34)

The resulting quantile value is vQb,k,adv
= 0.9817 which is a slight increase from the original

quantile value of 0.98.

3.3.6. Effects of the adaptation to the design choices

The adaptation of the safety factors is introduced in order to ensure that the overall reli-
ability achieved with the advanced model is the same as that achieved with the Eurocode
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model. Here, the effect of this adaptation on the material usage achieved with advanced
models is investigated.

Tab. 3.10 shows the ratio of weighted averaged expected values of design values with
an adapted PSF. Comparing these values to the ratios without adaptation (last row in
Tab. 3.2), it can be seen that the adaptation leads to a (albeit limited) reduction of the
material savings from the use of advanced wind load modeling techniques.

Wind velocity pressure 0.81
Exposure coefficient 0.95
Force coefficient 0.95
Structural factor 0.97
Combined case 0.70

Tab. 3.10.: Average design values obtained with the use of advanced modeling techniques
relative to those obtained with Eurocode models with adapted PSFs, calculated
as E[Pi,x,adv]

E[Pi,EC ] with x representing the respective advanced model case. Results
are listed for the full portfolio only.

If the quantile value that defines the characteristic wind velocity pressure is adapted,
the material saving potential is marginally better than in the case of an additional PSF
with respect to an advanced model regarding the wind velocity pressure: The ratio of the
averaged design values decreases from 0.81 to 0.80.

3.4. Case study 2: Hidden safety in the traffic load model of the
Eurocode

This case study investigates the hidden safety associated with the traffic load model LM1
of road bridges defined in the Eurocode [103]. The Eurocode model is compared to a
direct simulation of the traffic load. Hidden safety is investigated within the domain
of reinforced concrete T-beam bridges. The case study investigates the effect on the
design choices (following Sec. 3.1.1) and the effect on the probability of failure (following
Sec. 3.1.2). Moreover, the effects of hidden safeties within the traffic load model are
investigated regarding existing bridges assuming a hypothetical increase in traffic loads
(following Sec. 3.1.4).

This case study differs from case study 1 in several ways: The structural model tS and the
resistance model tR are not assumed to be linear but are explicitly modeled, which allows
for a much higher level of detail. The portfolio is not represented via a generic LSF but
through multiple LSF representing various bridges. Furthermore, in contrast to the first
case study, no adaptation of the PSF concept is conducted.
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3.4.1. Considered portfolio of road bridges

The portfolio of road bridges considered within this case study is the domain of two-lane
reinforced concrete highway bridges. Both lanes have the same direction of travel. Fig. 3.6
shows the cross-section of the bridge.

Fig. 3.6.: Cross-section of the bridges considered within the portfolio.

The portfolio of bridges consists of combinations of the following three parameters:

• The number of spans nfields ∈ {1, 2, 3}.

• The length of the spans lspan ∈ {15, 20, 25} [m]. This corresponds to the cost-efficient
range of span-lengths of reinforced concrete bridges. For simplicity, the lengths of
all spans are assumed to be equal.

• The traffic load intensity on the bridge is either light, medium or heavy. The different
intensities of the traffic load are based on the simulation model described in Sec. 3.4.2
using data from three different highway sections with light, medium, and heavy traffic
load intensities.

Thus, a total of 3 · 3 · 3 = 27 variants of bridges are considered within the portfolio.

3.4.2. Traffic load model of the Eurocode

The traffic load model of the Eurocode consists of four parts LM1-LM4 [103]. However,
only LM1 (axle loads and uniformly distributed loads) is considered within this case study.
LM2 (verification of single-axle loads) and LM3 (special vehicle loads) are excluded by
NA of Germany [121]. LM4 (crowd loading) is not considered in this case study.

LM1 gives multiple characteristic values covering the surface loads per traffic lane qi,k,
surface loads on the remaining areas qr,k, and point loads of two double axles of a heavy
truck per traffic lane Qi. In the case of the bridges within the considered portfolio, the

45



following values are given:

q1,k = 27.00
[kN

m

]
(3.35)

q2,k = 7.5
[kN

m

]
(3.36)

qr,k = 8.75
[kN

m

]
(3.37)

Q1,k = 600 [kN] (3.38)
Q2,k = 400 [kN] (3.39)

The characteristic loads are increased with adjustment factors α. The adjustment factors
are taken from the German national annex of the Eurocode [121]. Other countries have
different values.

αq1,k
= 1.33 (3.40)

αq2,k
= 2.4 (3.41)

αqr,k
= 1.2 (3.42)

αQ1,k
= 1 (3.43)

αQ2,k
= 1 (3.44)

The LM1 model was calibrated by traffic load measurements on European bridges. The
magnitude of the uniform and concentrated loads of LM1 were adjusted so that the
internal forces produced by LM1 correspond to the 99.9 [%] quantile of the internal forces
produced by the measured traffic load [122,123]. The resulting uniform and concentrated
loads were chosen as characteristic loads.

3.4.3. Simulation of traffic load

The simulation Sim of the traffic load is carried out in collaboration with the chair of
concrete structures of the Technical University of Munich [124]. The simulation is based
on measurement data of the traffic on the A92 at a lightly trafficked location, the A92 at
a normally trafficked location, and the A61 at a heavily trafficked location are statistically
evaluated and probability distributions of various traffic parameters are fitted. Those
distributions are used to simulate 100 years of traffic flow on the bridges of the considered
portfolio. The internal forces at the critical cross-section of each bridge are evaluated every
second. The structural model representing the bridge is a multi-span Euler-Bernoulli
beam. A general extreme value distribution of the annual maxima is fitted from the
time histories of the internal forces using the maximum likelihood method. The 99.9 [%]
quantiles of the fitted extreme value distributions are chosen as the characteristic loads.

The determined characteristic values are increased by a factor αSim, which corresponds to
the increase due to the fitting factors of the LM1 model. αsim is determined separately for
each load-effect. Its value is determined as the quotient of the respective load-effect due to
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the characteristic traffic loads of the LM1 model increased with and without adjustment
factors.

3.4.4. Effects of the traffic model on the design choice

The bridge is designed with respect to bending failure in the support area and in the
field area and with respect to shear failure next to the supports. Following Eqn. 2.2 the
design action effect ed,EC per considered element failure mechanism following Eurocode is
calculated as

ed,EC = tS,EC(γG · (lk,EC,1 + · · · + lk,EC,6) , (3.45)

γQ ·
(
αq1,k

· q1,k + αq2,k
· q2,k + αqr,k

· qr,k

)
,

γQ ·
(
αQ1,k

·Q1,k + αQ2,k
·Q2,k

))
where tS,EC is the structural model representing a single/two/three-span beam calculated
with Euler-Bernoulli beam theory. γG = 1.35 is the PSF with respect to permanent loads,
lk,EC,1−6 are the characteristic values of the permanents defined as

lk,EC,1 = 132.5
[kN

m

]
Dead weight of the supporting structure (3.46)

lk,EC,2 = 0.002
[kN

m

]
Double layer of bitumen (3.47)

lk,EC,3 = 13.48
[kN

m

]
Asphalt (3.48)

lk,EC,4 = 17.87
[kN

m

]
Bridge caps (3.49)

lk,EC,5 = 0.08
[kN

m

]
Guardrails (3.50)

lk,EC,6 = 0.02
[kN

m

]
Railing (3.51)

γQ = 1.35 is the PSF regarding traffic loads. Different load case combinations regarding
the application of q1,k, q2,k, qr,k, Q1,k, and Q2,k on the different fields of the multi-span
bridge are considered.

The design action effects ed,Sim following the simulation model are calculated as

ed,Sim = tS,EC (γG · (lk,EC,1 + · · · + lk,EC,6)) + γQ · ek,Sim (3.52)

where ek,Sim are the inner forces of the respective failure mechanism directly resulting
from the simulation of the traffic (see Sec. 3.4.3). The simulation used the same structural
model tS,EC as the Eurocode design. Hence, the effects on the design and subsequently
on reliability only arise from the difference in traffic load modeling and not from different
structural models being used.

The design resistances rd,EC,B against bending and rd,EC,S against shear failure are chosen
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such that they are equal to the respective design action effects. The determination of the
resistances follows Eqn. 2.2, where the resistance models regarding bending and shear
failure from which tR,EC results follow Eurocode 2 [125]. The underlying models are
visualized in Fig. 3.7 and 3.8. From this, the rd,EC,B and rd,EC,S are calculated following

rd,B =As1 · fy

γS
· (h− d1) ·

1 −
ka ·

(
As1 · fy

γS
−As2 · fy

γS

)
αR · αcc · fc

γC
· b · (h− d1)

+ (3.53)

+As2 · fy2
γS

·

ka ·
(
As1 · fy

γS
−As2 · fy

γS

)
αR · αcc · fc

γC
· b

− d2


and

rd,S = min {VRd,sy,Rd,max } (3.54)

where VRd,sy is the tensile strength defined as

VRd,sy = AS

SW
· fy

γS
· z · (cot(θ) + cot(α)) · sin(α) (3.55)

and VRd,max is the compression strength defined as

VRd,max = b · z · ν1 · αcc · fc

γC
· cot(θ) + cot(α)

1 + cot2(α) (3.56)

The respective variables are defined as follows:

AS1 and AS2 Steel cross-section area of the longitudinal reinforcement
AS Steel cross-section area of the shear reinforcement
fy Characteristic steel tensile strength
fc Characteristic concrete compression strength
SW Distance of the shear reinforcements
γS = 1.15 PSF steel tension
γC = 1.5 PSF concrete compression
ka = 0.416
αR = 0.8095
αcc = 0.85
z = 0.9 · (h− d1)

ν1 = 0.75 ·
(

1.1 − fc

500

)
h Heigh
b Effective width of the pressure zone
d1 and d2 Effective height of tension or compression reinforcement
α Tension angle
θ Compression angle
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The compression angle can be calculated by solving the following inequality

1 ≤ cot(θ) = 1.2(
1 − 0.24·f1/3

c ·b·z
ed

) ≤ 3 (3.57)

d2

d1

dh

b

As1

As2

εs1

εc2
εs2

fc

x
Fs2

Fs1

Cross-section Longitudinal strain Longitudinal forces

Fig. 3.7.: Bending resistance model of the Eurocode.

fc

x
Fs2

Fs1

Longitudinal forces

Bearing force

VR
d,

sy

V
R

d,m
ax

θ α

Fig. 3.8.: Shear resistance model of the Eurocode.

The design selection (steel reinforcement cross-section areas) is determined by calculating
the design effects of the actions and the design resistances. Tab. 3.11 shows the resulting
design choices. On average, the replacement of LM1 with Sim results in 29 [%] less steel
volume.

nfields lspan

Traffic load
model used
to design

AS,1 [cm2] AS,2 [cm2] AS [cm2]

1

15

LM1 112.93 − 28.14
Simlight 78.56 − 20.10
Simmedium 83.47 − 20.10
Simheavy 108.02 − 24.12

20

LM1 181.67 − 31.67
Simlight 132.57 − 24.12
Simmedium 137.48 − 28.14
Simheavy 152.21 − 28.14
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25

LM1 265.14 − 40.20
Simlight 201.31 − 32.16
Simmedium 206.22 − 32.16
Simheavy 216.04 − 32.16

2

15

LM1
[
73.65 73.65

]
88.38 32.16

Simlight

[
49.10 49.10

]
63.83 24.12

Simmedium

[
54.01 54.01

]
63.83 24.12

Simheavy

[
63.83 68.74

]
63.83 28.14

20

LM1
[
117.84 117.84

]
157.12 40.20

Simlight

[
83.47 83.47

]
112.93 32.16

Simmedium

[
88.38 88.38

]
117.84 32.16

Simheavy

[
98.20 98.20

]
117.84 32.16

25

LM1
[
166.94 166.94

]
265.14 44.22

Simlight

[
112.93 112.93

]
171.85 36.18

Simmedium

[
127.66 132.57

]
186.58 36.18

Simheavy

[
142.39 137.48

]
191.49 40.20

3

15

LM1
[
78.56 49.10 78.56

] [
78.56 78.56

]
32.16

Simlight

[
54.01 34.37 54.01

] [
54.01 54.01

]
24.12

Simmedium

[
58.92 34.37 58.92

] [
58.92 58.92

]
24.12

Simheavy

[
54.01 34.37 54.01

] [
54.01 54.01

]
24.12

20

LM1
[
127.66 78.56 7127.66

] [
137.48 137.48

]
40.20

Simlight

[
93.29 49.10 93.29

] [
88.38 88.38

]
28.14

Simmedium

[
93.29 49.10 93.29

] [
93.29 93.29

]
32.16

Simheavy

[
98.20 54.01 98.20

] [
93.29 93.29

]
32.16

25

LM1
[
181.67 108.02 181.67

] [
220.95 220.95

]
48.24

Simlight

[
147.8 44.19 147.8

] [
152.21 152.21

]
40.20

Simmedium

[
147.8 49.10 147.8

] [
157.12 157.12

]
40.20

Simheavy

[
152.21 49.10 152.21

] [
162.03 162.03

]
48.24
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Tab. 3.11.: Reinforcement cross-sectional areas of all bridges within the considered port-
folio.

3.4.5. Effects of the traffic model to the probability of failure

The effect of the traffic model LM1 and Sim to the system probability of failure is in-
vestigated. System failure is defined as a combination of bending or shear failures such
that the system becomes kinematic. Only failure mechanisms with negative virtual work
regarding the action side are considered. Fig. 3.9 exemplary illustrates the 10 considered
system failure mechanisms in the case of the three-span bridge.

1 2 3 4

5 6 7 8

9 10

Fig. 3.9.: System failure mechanisms 1-10 of the three span version of the bridge.

For each failure mechanism, a LSF can be determined using the principle of virtual work.
E.g., the LSF of the first failure mechanism is

gSys1,1(x) =1
6 ·Rd,S,F 1 · UB + 1

15 ·Rd,S,S1 · UB+ (3.58)

+ (−LC1 − 12,5 · L1 · U1 − 12.5 ·
6∑

i=2
Li · U2−6) · US

where Rd,S,F 1 and Rd,S,S1 are the bending resistance in the middle of the first field and
at the first inner support following Eqn. 3.53 including all its parameters as random
variables and applying respective model uncertainties. UB, U1, U2−6, US are the model
uncertainties of the bending resistance model, the permanent self-weight, the variable self-
weight, and the structural model. L1-L6 are random variables representing the actions
defined in Eqn. 3.46-3.51. Their respective distributions are listed in Tab. 3.12. LC1
represents the traffic load following the traffic load simulation, which is acting towards
the first failure mechanism. It is derived as follows: The time series of the internal forces
involved in the respective failure mechanism are weighted and summed with respect to the
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factors of virtual work (in the case of the first failure mechanism, this is the sum of the
first rock moment and the first support moment weighted by 1/6 and 1/15). A general
extreme value distribution is fitted to the yearly maxima of the resulting time series. The
statistical uncertainty is included via a multivariate normal distribution of the distribution
parameters of the general extreme value distribution derived by means of the curvature
of the profile log-likelihood evaluated at the parameter estimators of the general extreme
value distribution [110]. This results in the following:

(ξLC1 , σLC1 , µLC1) ∼ N


−0,22

29,73
674,11

 ,
 1 −0,49 −0,32

−0,49 1 0,04
−0,32 0,04 1


 [kN] (3.59)

where ξLC1 is the shape parameter, σLC1 is the sale parameter and µLC1 is the location
parameter. Finally, LC1 is defined via the inverse CDF of the general extreme value
distribution as

LC1 = GEV −1 (xLC1 ; ξLC1 ,σLC1 ,µLC1) (3.60)

where xLC1 is the function parameter following a uniform distribution between 0 and 1.

Some traffic load situations act in the direction of multiple failure mechanisms, which
makes the various failure mechanisms statistically dependent. This dependence is included
via the correlation matrix of the function parameters xLC1 − xLC10 which is numerically
determined as

Σxx =



1 0,94 0,86 0,73 0,71 0,79 0,27 0,72 0,80 0,73
0,94 1 0,92 0,63 0,75 0,69 0,32 0,76 0,70 0,77
0,86 0,92 1 0,51 0,84 0,58 0,33 0,85 0,59 0,84
0,73 0,63 0,51 1 0,43 0,98 0,15 0,43 0,96 0,44
0,71 0,75 0,84 0,43 1 0,49 0,32 0,99 0,51 0,97
0,79 0,69 0,58 0,98 0,49 1 0,20 0,50 0,98 0,50
0,27 0,32 0,33 0,15 0,32 0,20 1 0,32 0,23 0,27
0,72 0,76 0,85 0,43 0,99 0,50 0,32 1 0,51 0,98
0,80 0,70 0,59 0,96 0,51 0,98 0,23 0,51 1 0,51
0,73 0,77 0,84 0,44 0,97 0,50 0,27 0,98 0,51 1


(3.61)

A reliability analysis using FORM results in the probabilities of failure listed in Tab. 3.13.
On average, the probability of system failure of bridges designed following LM1 is 6.8 or-
ders of magnitude lower than the probability of system failure of bridges designed following
Sim.
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nfields lspan

Traffic load model
used in the reliability

analysis

Traffic load model used to
design P (F )

1

15

Simlow

LM1 10−17

Simlow 10−9

Simmid

LM1 10−17

Simmid 10−9

Simheavy

LM1 10−17

Simheavy 10−11

20

Simlow

LM1 10−14

Simlow 10−8

Simmid

LM1 10−14

Simmid 10−9

Simheavy

LM1 10−14

Simheavy 10−10

25

Simlow

LM1 10−15

Simlow 10−10

Simmid

LM1 10−15

Simmid 10−10

Simheavy

LM1 10−15

Simheavy 10−10

2

15

Simlow

LM1 10−17

Simlow 10−8

Simmid

LM1 10−16

Simmid 10−10

Simheavy

LM1 10−16

Simheavy 10−9

20

Simlow

LM1 10−17

Simlow 10−9

Simmid

LM1 10−17

Simmid 10−9

Simheavy

LM1 10−16

Simheavy 10−10

25

Simlow

LM1 10−16

Simlow 10−7
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Simmid

LM1 10−16

Simmid 10−9

Simheavy

LM1 10−15

Simheavy 10−9

3

15

Simlow

LM1 10−17

Simlow 10−9

Simmid

LM1 10−17

Simmid 10−8

Simheavy

LM1 10−16

Simheavy 10−9

20

Simlow

LM1 10−16

Simlow 10−8

Simmid

LM1 10−16

Simmid 10−8

Simheavy

LM1 10−16

Simheavy 10−9

25

Simlow

LM1 10−15

Simlow 10−10

Simmid

LM1 10−15

Simmid 10−10

Simheavy

LM1 10−15

Simheavy 10−10

Tab. 3.13.: Probability of failure of all bridges within the considered portfolio.

3.4.6. Effects of hidden safeties within the traffic load model in the context
of existing bridges

In this section, the studies from the previous section are adapted and applied to a hypo-
thetical portfolio of existing bridges whose traffic loads have increased since the bridges
were built. For this purpose, the structural and resistance models are no longer presented
in detail as in Eqn. 3.53 and 3.54, but simplified assuming that the structural and re-
sistance models according to Eurocode tS,EC and tR,EC are both linear and through the
origin and equal to the true structural models tS and tR. This simplifies the calculations
and allows more general results. The LSF can be formalized following Eqn. 2.37 as

g = PEC ·M − finc · L (3.62)
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with

PEC = γF · γM · Lk,EC

mk,EC
(3.63)

Following Eurocode [126] γF is 1.35. Further, γM is set to be 1.1. mk,EC is set to be
the 5% quantile of M and assumed to be equal to the purely aleatoric value. The traffic
load increase since the construction day is assumed to be 30% and included via the load
increase factor finc = 1.3. This value is not based on any data and should be interpreted
as a hypothetical increase. In an actual application case, finc must be derived respectively.
finc is varied between 1 and 2 in a subsequent sensitivity analysis. M , L and Lk,EC are
random variables representing the material strength, the traffic load and characteristic
value of the traffic load.

The distribution of M is chosen to be follow a log-normal distribution with E[M ] = 1
and c. o. v.[M ] = 0.1. c. o. v.[M ] is varied between 0.05 and 0.3 in a subsequent sensitivity
analysis to cover the full range of various materials. The distribution of L to be follow
a Gumbel distribution with E[L] = 1 and c. o. v.[L] = 0.08. The choice is based on the
simulated traffic load model of the previous sections as follows: Generalized extreme value
distributions are fitted to the action effects of the bridges of the portfolio described in
Sec. 3.4.1 similar to Eqn. 3.59; however, this was done on element-level and not – as in the
previous sections – on system-level. The resulting extreme value distributions have shape
parameters that are close to 0, in which case the generalized extreme value distribution
converges to the Gumbel distribution. The sample mean of the coefficient of variation of
the field moments is 0.06, of the supporting moments is 0.08 and of the shear forces at the
supports is 0.08. This justifies the choice of c. o. v.[L] = 0.08.

The distribution of Lk,EC is found following the approach of Eqn. 2.42 by defining the
relative error in the estimation of the characteristic value as

ΘEC = lk
lk,EC

(3.64)

where lk is the characteristic value of the purely aleatoric traffic load. Equivalently, the
error in the estimation of the characteristic value following the simulation model is defined
as

Θadv = lk
lk,adv

(3.65)

Θadv is required in the later selection procedure to determine whether a bridge can with-
stand the increased load. Θadv and ΘEC are chosen to follow a log-normal distributions
with E[Θadv] = 1, c. o. v.[Θadv] = 0.1, E[ΘEC ] = 0.7 and c. o. v.[ΘEC ] = 0.2. The choices
of the distribution parameters are justified as follows:

• E[Θadv] = 1: Since the simulation is based on real data, it is reasonable to assume
that it estimates the characteristic value without bias.

• c. o. v.[Θadv] = 0.1: The coefficient of variation comprises three different uncertain-
ties: The statistical uncertainty due to a limited simulation time, the uncertainty of
the chosen distribution type and the uncertainty of incomplete modeling (e.g. con-
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struction sites on the highway may change the traffic load but are not included in
the simulation). The statistical uncertainty is included via the multivariate normal
distribution of the parameter estimates of the fitted extreme value distributions of
the inner forces [110]. The resulting coefficients of variation due to statistical uncer-
tainty are in the range of 0.02-0.04. Unfortunately, no data is available to estimate
the two other sources; hence, the overall uncertainty of c. o. v.[Θadv] = 0.1 is based on
a subjective assessment. c. o. v.[Θadv] is altered between 0.05 and 0.2 in a subsequent
sensitivity analysis.

• E[ΘEC ] = 0.7: Within the portfolio of bridge structures, the sample mean of the
relative error is 0.76 regarding field moments, 0.70 regarding supporting moments,
and 0.79 regarding the shear forces at the supports. A value of 0.7 is applied and
altered between 0.4 and 1.0 in a subsequent sensitivity analysis.

• c. o. v.[ΘEC ] = 0.2: ΘEC can be rewritten as ΘEC = lk
lk,adv

· lk,adv

lk,EC
= Θadv · lk,adv

lk,EC
. The

distribution parameters of Θadv is already known/estimated. The distribution of
lk,adv

lk,EC
is also log-normal. The mean coefficient of variation of lk,adv

lk,EC
is 0.17 regarding

field moments, 0.13 regarding supporting moments and 0.14 regarding the shear
forces at the supports. Taking the highest value of 0.17 into account, a coefficient
of variation of ΘEC of approximately 0.2 is derived. c. o. v.[ΘEC ] is altered between
0.1 and 0.3 in the subsequent sensitivity analysis.

Eventually, the distributions of Lk,EC and Lk,adv are

Lk,EC ∼ LN µln Lk,EC
= ln(lk) − µln ΘEC

σln Lk,EC
= σln ΘEC

(3.66)
Lk,adv ∼ LN µln Lk,adv

= ln(finc · lk) − µln Θadv

σln Lk,adv
= σln ΘEC

(3.67)

where µln and σln are the location and the scale parameter of the respective log-normal
distribution.

From Lk,EC and Lk,adv n = 10 000 samples lk,EC,i and lk,adv,i are drawn. This is needed,
since some of the subsequent calculations are sample-based. Apart from the statistical
error originating from the sampling, the results are not effected by n.

Fig. 3.10 shows the probabilities of failure (annual reference period) of the bridges de-
signed by Eurocode loaded with the original traffic load (finc = 1). The mean annual
probability of failure is E[Pr(F | EC-Design, finc = 1)] = 4.9 · 10−8. Following Sec. 2.3.5,
this probability can be interpreted as the target probability of failure.

Fig. 3.11 shows how the probabilities of failure of the bridges designed according to Eu-
rocode change if the traffic load is increased by 30 % (finc = 1.3). The increased traffic
load raises the mean probability of failure from 4.9 · 10−8 to 1.1 · 10−5.

To decide whether a bridge is still in compliance with the standard, even if the traffic load
is increased, the following procedure is performed: Given a sample-pair lk,EC,i and lk,adv,i
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E[Pr(F | EC-Design, finc = 1)] = 4.9 · 10−8

Fig. 3.10.: Histogram of the probability of failure Pr(F | EC-Design, finc = 1) of bridge
structures designed following Eurocode.
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Fig. 3.11.: Histogram of the probability of failure Pr(F | EC-Design, finc = 1.3) of bridge
structures designed following Eurocode loaded by a 30 % higher traffic load.

a bridge is accepted/rejected if:

lk,adv,i ≤ lk,EC,i ⇒ accept (3.68)
lk,adv,i > lk,EC,i ⇒ reject (3.69)

This acceptance/rejection rule is based on the following train of thought: Advanced traffic
load modeling may estimate a characteristic traffic load that is lower than the characteristic
traffic load according to Eurocode (even when an increased traffic load is present). If this
lower characteristic value would be used to design the bridge, it would result in smaller
resistances; therefore, the reassessment according to advanced traffic load modeling would
deem the existing Eurocode design to be sufficient.

Fig. 3.12 subdivides the histogram of Fig. 3.11 into accepted/rejected cases. 68.8 % of
the bridge structures are accepted and 31.1 % are rejected. The mean probability of
failure of the accepted bridges is E[Pr(F | EC-Design, finc = 1.3), accepted] = 1.7 · 10−8 is
smaller than the target probability of failure of 4.87 · 10−8; hence, the reassessment leads
to sufficiently safe structures.
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E[Pr(F | EC-Design, finc = 1.3), rejected]
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Fig. 3.12.: Histogram of the probability of failure Pr(F | EC-Design, finc = 1.3) of bridge
structures designed following Eurocode loaded by a 30% increased traffic load
divided into accepted (green) and rejected (red) bridges according to advanced
traffic load modeling.

To illustrate the difference between the effect of advanced modeling in the evaluation of
existing structures and the design of new structures, the traffic load simulation is also
used to design the bridges loaded with the original traffic load finc = 12. Fig. 3.13
shows the resulting probabilities of failure. The mean probability of failure E[Pr(F |
adv-Design, finc = 1)] = 3.1 · 10−7 is below the target of 4.9 · 10−8. This shows, that the
negative effect on the structural reliability of the lost conservative bias is stronger than
the positive effect of the reduced model uncertainty. An additional safety factor would
be needed if advanced traffic load models were to be used for bridge design. Here, such a
calibration is not performed.
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E[Pr(F | Adv-Design, finc = 1)] = 3.1 · 10−7

Fig. 3.13.: Histogram of the probability of failure Pr(F | Adv-Design, finc = 1) of bridge
structures designed following advanced traffic load modeling.

2Remark: The resulting probabilities of failure of the advanced designs with an increased load (finc > 1)
would be exactly the same as in Fig. 3.13, as long as the load increase is also considered within the
design. finc would appear twice and cancel each other out: Once within the design (a factor applied
on lk,adv,i) and once as a factor applied on the load L.
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In conclusion, the use of advanced models for the reassessment of existing structures ap-
pears justified without further adjustment of the safety factors within this hypothetical
setup. This is in contrast to the design of new structures. The difference can be understood
by comparing the histogram of the probability of failure of the accepted bridge structures
(green histogram in Fig. 3.12) to the histogram of the probability of failure of bridge struc-
tures designed by advanced traffic load modeling (blue histogram in Fig. 3.13): Following
Fig. 3.68, a structure is accepted if Lk,adv ≤ Lk,EC . If equality holds, the accepted Eu-
rocode design and the advanced design are equal; hence, both histograms coincide. The
greater the difference Lk,EC −Lk,adv, the more hidden safety remains, which decreases the
probability of failure in the reassessment case.

The setup of this study is, of course, only one possible setup. Other setups obviously lead
to different results. Therefore, an additional sensitivity analysis is performed. Fig. 3.14
shows the resulting probabilities of failure and the resulting acceptance rates, when altering
selected parameters of the case study one at a time.

The potentially critical cases of the sensitivity analysis carried out – which should be
identified – are the cases in which the mean probability of failure of the assumed structures
is greater than the mean probability of failure of the bridge structures under the original
load (target probability of failure). The results show that this is the case when

• the load strongly increases (finc > 1.6). However, this case is not critical, since
the target probability of failure is not exceeded by much and the acceptance rate
simultaneously drops to a very low level.

• the coefficient of variation of the material property is rather large (c. o. v.[M ] > 0.2).
This is also not critical since the target probability of failure is only marginally
exceeded.

• the coefficient of variation of the traffic load is rather large (c. o. v.[M ] > 0.15).
Again, this is not critical, since the target probability of failure is only marginally
exceeded.

• the estimation of the characteristic traffic load according to Eurocode is very biased
(E[ΘEC ] < 0.65). This is also not concerning since, in this case, the Eurocode
design includes high amounts of hidden safety, which leads to very low probabilities
of failure. This hidden safety can serve as a reserve against increased traffic loads.

• the estimation of the characteristic traffic load according to Eurocode is associated
with low uncertainty (c. o. v.[ΘEC ] < 0.18). In this case, the coefficient of variation
in the estimation of the characteristic value of the Eurocode model and the advanced
traffic load model match closely. Hence, the reassessment does not reduce the un-
certainty significantly but reduces the bias (hidden safety). This case can be critical
and should be prevented; however, this case is rare since the uncertainty of advanced
models is typically much smaller than the uncertainty of standard models.

• the estimation of the characteristic traffic load according to advanced models is
relatively uncertain (c. o. v.[Θadv] > 0.18). As in the previous bullet point, the
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coefficient of variation in the estimation of the characteristic value of the Eurocode
model and the advanced traffic load model are close. This case can also be critical
and should be prevented; however, it is again rather rare.

Overall, the reassessment of bridges through advanced modeling in most cases leads to
sufficiently safe structures. It is only critical if c. o. v.[ΘEC ] and c. o. v.[Θadv] are very
similar. However, the conducted sensitivity analysis only varies one parameter at a time.
A case in which multiple parameters are varied simultaneously may lead to a more critical
outcome.
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Fig. 3.14.: Mean probability of failure (left) and acceptance rate (right) of bridge structures
altering setup parameters one at a time. The blue lines represent the mean
probability of failure when the original load is applied (target probability of
failure), the teal dashed lines represent the mean probability of failure when the
increased load is applied and the dash doted green and red lines represent the
mean probability of failure of the accepted and the rejected bridge structures.
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3.5. Discussion

The proposed framework can be used to account for hidden safety within the partial
safety concept when advanced modeling techniques replace standard models. This will
typically result in – on average – lower design values while still achieving the same level
of safety. It may seem counter-intuitive that the average reliability remains unchanged if
the resistances are reduced on average; however, this is due to the more targeted designs
(i.e., the design is strengthened where it is needed and relaxed where it is not). This
translates into a higher material efficiency. The results are more sustainable and economic
structures. Since the building industry is one of the main material and energy consumers
and is responsible for a high amount of greenhouse gas emissions, it is crucial to exploit
this material saving potential [127].

The decrease of the average design value does not directly correspond to the same reduction
of the material effort for two reasons: First, the relationship between the design value and
the material effort depends on the design situation (e.g., for trusses under pure tension,
the relationship is a one-to-one mapping, but the bending resistance of a rectangular beam
has a quadratic relationship with the material effort). Second, the design values within
the framework are calculated only with respect to ultimate limit states. Serviceability
limit states are not included, but are often decisive for the design.

The application of the proposed framework ideally uses only purely aleatoric models. This,
however, is unrealistic in most cases and certain model assumptions have to be made.
These assumptions might not be fully correct; hence, the resulting calibration may not be
perfect. However, it is still a step in the right direction and preferable to the applications
of advanced models without a calibration through the proposed framework.

The most challenging model assumptions that have to be made are the accuracy of the
standard and advanced models. The probabilistic description of these accuracies is chal-
lenging because they characterize the model prediction relative to the “truth”. However,
the truth is unknown. Empirical data and expert knowledge must be taken into account
carefully. The quantification of the effect of hidden safety and the calibration of the PSF
concept are sensitive to the probability distributions describing model accuracies.

The choice of a representative portfolio of design situations and an adequate probabilistic
description of all random variables within the portfolio may seem to be another critical
point. However, the calibration of safety components is not sensitive to the portfolio
choices. This is because the portfolio is used for the investigation of both the standard
model and the advanced model. This validates a relative comparison – which is the basis
of the calibration – of the two models, even if the portfolio is not perfectly accurate.

Overall, adapting the PSF concept using the proposed framework is not a trivial task and
probably not worth the effort in most individual design cases. However, it is also not
intended to be used in individual design cases but is aimed at code writers or developers
of advanced models who perform this work once. The resulting adaptation of the PSF
concept can then be applied by every engineer who wants to use the respective advanced
model.
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3.6. Conclusion

Structural design codes are the result of a long evolutionary adaptation process (see.
Sec. 2.1). This adaptation is partly empirical (through the inclusion of new experience)
and partly deductive (through the use of new and advanced models). The empirical
adaptation of design codes mostly retains the hidden safety arising from conservative
choices in model parameters. In contrast, a deductive adaptation typically changes the
amount of hidden safety. The proposed framework compensates for this and ensures a
consistent overall safety level.

Investigations of the effects of hidden safety are necessary if advanced models – which are
not covered by the codes – are applied. With the rapid developments in computational
engineering, such use is becoming increasingly frequent. Engineers who use these newly
developed models may have the impression that their designs have increased reliability
because the advanced models are more precise. However, because of hidden safety, this
is not necessarily the case. The exchange of existing standard models with advanced and
potentially more accurate models can have two counteractive effects on structural reliabil-
ity: On the one hand, existing models typically include hidden safety due to conservative
assumptions and parameter specifications. More advanced models may be less conserva-
tive; hence, (hidden) safety might get lost. On the other hand, more advanced models
typically include less model uncertainty, which increases structural reliability.

If one of the two effects on the reliability of structures is dominant, the safety concept
should be calibrated accordingly. This can be done via the proposed framework. The
framework ensures that the advanced models and the established models lead to the same
level of safety. The higher accuracy of advanced models is still utilized, which translates
into higher material efficiency. This results in more sustainable and economical structures
that are just as safe as the current status quo, which follows standard models.
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4. System effects in codified design

The PSF concept in structural design codes has been developed and is applied at the
level of structural elements. Safety factors are calibrated such that a target reliability
is – on average – achieved for each element failure mechanism. System effects are not
taken into account. Resulting system reliabilities can be below as well as above the target
reliability, depending on the system. This section addresses this problem and derives an
additional PSF that decreases the resistance of systems with high system reliability and
increases the resistance of systems with low system reliability. The values of the additional
PSF γSys are derived via a link to a generalized version of the Daniels system. The
generalization includes probabilistic action modeling, material models, correlation among
members, and non-equal load-sharing among members. For each generalization, efficient
reliability evaluation methods are proposed and numerical investigations are conducted.

The proposed principle behind the use of the Daniels system for deriving γSys is, in a
nutshell, the following: First, a link between general structural systems and the generalized
version of the Daniels system is established, such that one is able to approximate the
reliability of any structural system in terms of the reliability of a generalized Daniels
system. Second, a recalibration of the PSF concept is performed with respect to the design
of different variations of the Daniels system. This homogenizes the reliability level of the
Daniels system with respect to system effects. Third, γSys can be translated back and
applied to general structural systems. Due to the necessary simplifications, the derived
PSF does not completely homogenize the reliability level of general structural systems,
however, it is a step in the right direction.

Within this section, it is assumed that the nominal structural model and the nominal
resistance model are equal to the respective purely aleatoric models; hence, tS,EC = tS and
tR,EC = tR. Moreover, it is assumed that the nominal material models and the nominal
action models are equal to the respective purely aleatoric models; hence, MEC = M and
LEC = L and, therefore, mk,EC = mk and lk,EC = lk.

Parts of this section are taken from Teichgräber et al. [128].

4.1. Motivating example

The following example illustrates two aspects and potential improvements regarding these
aspects when designing structural systems according to the PSF concept. The first aspect
is resource efficiency, i.e., that the same level of safety could be achieved with fewer
resources. The second aspect is the homogenization of the safety level, i.e., that the
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element-based design can lead to both too high and too low safety and how this can be
homogenized. In this example, both aspects will be illustrated and two ideas will be
introduced on how to tackle those aspects; however, only the second idea is feasible within
the PSF concept, so only this idea will be pursued.

Fig. 4.1 (left) illustrates the example structure. It is a L-shaped frame structure with a
horizontal force H and a vertical force V . For the sake of simplicity, only bending failure is
considered. Following the PSF concept, the design bending resistances M1,Rd

and M2,Rd

of the horizontal and vertical members result from the maximum bending moment per
member at the design load level (see Fig. 4.1 (right)). Numerical values of the characteristic
and the design actions/ resistances, as well as the respective distributions, are omitted in
the following example as they do not contribute to the understanding of the problem at
hand.
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M1,Ek
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M2,Ek

Fig. 4.1.: Example structure (left) and the bending moments due to the actions V and H
at characteristic (cyan) and design (blue) load level (right).

To illustrate the effects of element-based design, a reliability analysis at the system-level
needs to be conducted. This requires the analysis of the failure mechanisms of the sys-
tem. The failure mechanisms are obtained by iteratively adding joints at the locations
of maximum bending moment per element until the system becomes kinematic. Fig. 4.2
illustrates this procedure. This results in three failure mechanisms FM1, FM2 and FM3.

When determining the failure mechanisms in the general case (this example only considers
bending failure), failure in tension, compression, shear force, etc. have to be considered
too. For larger systems with numerous element failure mechanisms, finding the failure
mechanisms can become a non-trivial combinatorial problem. Methods for effectively
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Fig. 4.2.: Illustration of the determination of failure mechanisms with respect to bending
failure by iteratively adding joints at the locations of maximum moments per
element.

finding all (relevant) failure mechanisms are described, e.g., in [69].

Once the failure mechanisms have been determined, a LSF can be obtained for each failure
mechanism using the principle of virtual work (assuming ideal plastic material behavior).
Fig. 4.3 illustrates this for the second failure mechanism FM2. This results in the following
three LSFs, each of which describes a system failure mechanism:

g1 = 9
2 ·R1 + 3

2 · min (R1,R2) − V (4.1)

g2 = 9
2 ·R1 + 12

4 ·R2 − V −H (4.2)

g3 = 3
2 · min (R1,R2) + 12

4 ·R2 −H (4.3)

The location parameters of the distributions of R1 and R2 directly follow from the chosen
design values (M1,Rd

and M2,Rd
). Hence, different design choices will result in different
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limit state functions and, therefore, different reliabilities. The system reliability can be
obtained by considering the series system of failure events {g1 < 0}, {g2 < 0} and {g3 < 0}.
The application of FORM for series systems results in a system reliability of βSys = 4.9.

δϕ1
δϕ2

δϕ3

δw1

δw2

V

H

δϕ1 = 3
δw1 = δw2 = 1

δϕ2 = 3
2

δϕ3 = 3
4

Fig. 4.3.: Virtual displacement figure of the second failure mechanism FM2.

Fig. 4.4 plots potential design choices (including the above design choices of M1,Rd
and

M2,Rd
) and the isolines of their respective system reliability indices. The green area

indicates design choices that are valid according to the PSF concept and the red area
indicates design choices that are not valid according to the PSF concept. The questions to
be answered in this context are: Should the range of valid design resistances be changed
and is such a change possible within the PSF concept? Two different ideas of how the
ranges of valid design values could be adjusted are illustrated in Fig. 4.5.

The first idea (left illustration of Fig. 4.5) is to allow certain design resistances to be
below the threshold set by the PSF concept as long as this is compensated through other
design resistances that are above their respective threshold, resulting in the overall same
level of safety. This may be desirable since some design resistances can only be achieved
with a greater use of resources than others. Hence, this idea tackles the above-mentioned
aspect of resource efficiency. The other above-mentioned aspect of homogenizing the safety
level is not addressed by this idea. In practice, the implementation of this idea requires
a system reliability analysis of the structure to ensure that the level of safety remains
unchanged. However, this idea can not be implemented within the PSF concept. Instead,
a full probabilistic design must be conducted. Since this work focuses on adjustments of
the PSF concept, this idea is not further investigated.

The second idea (right illustration of Fig. 4.5) is to adjust the design resistances via
the application of an additional PSF γSys. The value of γSys can be above or below 1,
thereby either increasing or decreasing the threshold of possible design resistances set by
the PSF concept. γSys is – ideally – below 1 if the respective system reliability is above
the target reliability and vice versa. This idea mainly tackles the aspect of homogenizing
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Fig. 4.4.: Valid (green area) and non-valid design values (red area) for a design of the
example system following the PSF concept. Isolines of the system reliability are
in blue.
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Fig. 4.5.: Two possible adjustments of the ranges of valid design resistances (green areas).
The left figure allows one of the design resistances to be below the valid threshold
according to the PSF concept if this is compensated for by the other design
resistance above the respective threshold. In the right figure, the valid ranges
of the design resistances are adjusted via an additional PSF γSys, resulting in a
different safety level, ideally closer to a certain target safety level.

the safety level. The aspect of resource efficiency may also be addressed since the rela-
tionship between design resistance and probability of failure is not linear (doubling the
design resistance typically reduces the failure probability by more than half), and thus
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homogenization of the safety level can have a positive effect on resource efficiency.

In the following, the second idea is realized. The values of γSys are derived in dependence
on various system properties of general structural systems. Within this derivation, the
Daniels system plays a key role, which is introduced in the next section.

4.2. Original Daniels system

The Daniels system (Fig. 4.6) is named after Henry Ellis Daniels. His Ph.D., which was
founded by the Wool Industries Research Association, investigates the strength of a bundle
of textile threads [129]. He derived analytical expressions for the probability distribution
of the strength of such bundles under deterministic load. His findings were later applied
to study the system effects of structural systems (e.g. [130–132]). The key characteristic
of the Daniels system is that all members are subjected to the same action. If one or more
members fail, the load is redistributed evenly among the remaining members.

s

1 n

EI → ∞
∆l

Fig. 4.6.: Daniels system.

The original formulation of the Daniels system (Fig. 4.6) has the following properties:

• Deterministic and equal cross-sections Ai.

• Deterministic and equal Young’s modulus Ei.

• Deterministic action s. The horizontal bar distributes the action equally among all
members that have not failed.

• The ultimate strengths σmax,i (i = 1, . . . ,n) of the members are random variables.
All σmax,i are independent and identically distributed.

• Members exhibit linear-elastic brittle material behavior according to Fig. 4.7.

For simplification purposes and without loss of generality, all cross-sections are here set
to one: Ai := 1 (i = 1, . . . ,n). Consequently, the maximal resistance Ri of the ith bar is
equal to σmax,i.
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ε

σ

E

ri

Fig. 4.7.: Brittle material behavior of one member of the Daniels system: Linear-elastic
material behavior until element strength σmax,i = ri is reached. Once ri is
exceeded, the resistance drops to zero.

The resistance of the Daniels system is determined from the following train of thought:
The system resistance until the first member fails is n times the resistance of the weakest
member. The system resistance until the second member fails is n−1 times the resistance
of the second-weakest member. And so on. It follows that the system resistance RSys,n of
a Daniels system with n members is

RSys,n = nmax
i=1

{
(n− i+ 1) ·R(i)

}
(4.4)

where R(i) is the resistance of the ith strongest member, i.e., it is the ith order statistic
of Ri. Fig. 4.8 illustrates the principle behind Eqn. 4.4 for a Daniels system with 3
members.

ε

σ

∑3
i=1 σi

rSys,3

E

3E

2E

r(1)

r(2)

r(3)

Fig. 4.8.: Illustration of the system resistance RSys,3 of a Daniels system with three mem-
bers. The maximum system resistance is reached before failure of the second-
weakest member rSys,3 = 2 · r(2).

For a Daniels system with three members (as in Fig. 4.8) the probability of system failure
Pr(FSys,3) can be calculated as

Pr(FSys,3) =
3∑

i=1

3∑
j=1
j ̸=i

3∑
k=1

k ̸=i,j

Pr
(
Ri <

s

3 ∩Ri < Rj <
s

2 ∩Rj < Rk < s

)
= (4.5)

=3! ·
∫ s

3

0
fR(r3)

∫ s
2

r3
fR(r2)

∫ s

r2
fR(r1)dr1 dr2 dr3
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where fR is the PSF of the member resistance R. Hence, the probability of failure is
calculated by solving a three-dimensional integral. In the general case of a Daniels system
with n members, the probability of failure is calculated as

Pr(FSys,n) = n! ·
∫ s

n

0

∫ s
n−1

rn

· · ·
∫ s

r2
fR(rn) · fR(rn−1) . . . fR(r1) dr1 . . . drn−1 drn (4.6)

Daniels [129] found multiple analytical expressions to calculate this integral. The most
well-known one is derived via a Taylor series expansion of the multidimensional integral
in terms of the lower bound of the first integral and via a recursive relation of the n-folded
integral and its derivative. From this, the following recursive formula of the CDF of the
system resistance can be derived [130,132]:

FRSys,n
(s) =(−1)n+1 · Fn

R

(
s

n

)
−

n−1∑
i=1

[
(−1)i ·

(
n

i

)
· F i

R

(
s

n

)
· FRSys,n−i

(s)
]

(4.7)

where FR is the CDF of the resistance of a single member.

For an intuitive understanding of Eqn. 4.7, one can interpret the formula as a sophisticated
application of the principle of inclusion and exclusion, which exploits the symmetry of the
failure domain. Fig. 4.9 illustrates this for the case of n = 2. The failure domain is the
union of two rectangles.

r1

r2

ss
2

s

s
2

= FR(s) · FR( s
2 ) + FR( s

2 ) · FR(s) − FR( s
2 ) · FR( s

2 )

Pr(FSys,2) =

= −F 2
R( s

2 ) + 2 · FR( s
2 ) · FR(s)

Fig. 4.9.: Illustration of the failure domain of a Daniels system with two bars (left) and
the calculation of the probability of system failure via the principle of inclusion
and exclusion.

In the general case, the union of n! hypercubes defines the failure domain. Their edge
lengths are defined via all possible permutations of s, s

2 , . . . s
n . Since the resistances

of the members are independent, the evaluation of the probability of each hypercube and
their respective intersections is possible via evaluations of the member resistances’ CDF.

Besides the exact formula to calculate the probability of failure, Daniels also found that
RSys,n is asymptotically normally distributed [129]. This finding was improved in [133] and
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extended, such that correlation among members [130,134], more general force-deformation
curves [135], local load-sharing (stress concentrations of members next to failed mem-
bers) [136–138] and time-dependent deterioration [139] can be considered. Different, and
not necessarily Gaussian, asymptotic behavior was deduced for these different extensions.
However, the convergence to the asymptotic result is slow; this holds for the original for-
mulation as well as for all extensions [140]. This means that the limiting distribution of
the system resistance is only suitable for systems with a large number of members n.

If the number of members n is smaller, a more exact evaluation of the system resistance
is necessary. In this regard, the author is not aware of any research other than the
works of Gollwitzer, Hohenbichler, and Rackwitz [70, 131, 132, 141]. They utilized an
order-statistics approach and reinterpreted system failure as the intersection of failure
events [141]. The probability of this intersection can be approximated via FORM for
parallel systems [70]. The approximation error of this approach is not negligible but
represents a major improvement over the asymptotic approach. This approach allows the
relaxation of some of Daniel’s original assumptions. Gollwitzer and Rackwitz utilized this
to carry out numerous numerical studies covering probabilistic action modeling, material
modeling, and correlation [131,132].

Inspired by the works of Gollwitzer et al., the subsequent Sec. 4.3 extends the Daniels sys-
tem with respect to four aspects: probabilistic action modeling, material modeling of the
members, correlation among members, and non-equal load-sharing among members. For
all extensions, efficient algorithms for reliability evaluations are developed and numerical
studies are provided.

Three of these four extensions of the Daniels system coincide with the extensions of Goll-
witzer et al., namely, action modeling, material modeling, and correlation. However, the
approaches within this work differ fundamentally: They are not based on FORM for par-
allel systems, but either analytical, based on standard FORM, or sampling methods. The
proposed material model is simpler than the one of Gollwitzer [132] which is based on a
material model for timber with multiple parameters to calibrate. The proposed model is
less specialized and therefore possibly less accurate, but it is more generally applicable.
Moreover, the proposed approach to include correlation is more general.

4.2.1. Relation to parallel and series system

When it comes to the reliability of structural systems, the two most extreme cases of
structural behavior are represented by the ideal parallel and the ideal series systems.
These two systems form a lower bound (ideal series system) and an upper bound (ideal
parallel system) of the system reliability of any general structural system, including the
Daniels system. For this reason, they are important in the classification of the subsequent
investigations. Fig. 4.10 shows a mechanical interpretation of an ideal parallel system and
an ideal series system.

System failure of the ideal parallel system is defined as the state where all members fail.
In most application cases, the definition of system failure of the parallel system is not
very meaningful. The ideal series system fails if at least one of the members fails. The
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Fig. 4.10.: Mechanical representation of an ideal parallel system (left) and an ideal series
system (right).

respective probabilities of system failure are

Pr(FSys,n;Parallel) =
[
FR

(
s

n

)]n

(4.8)

Pr(FSys,n;Series) = 1 − [1 − FR (s)]n (4.9)

where s is the action, n is the number of independent and identical distributed members,
and FR is the CDF of the member resistances.

4.2.2. Numerical investigations with the original Daniels system

Numerous numerical investigations of the original Daniels system exist in literature (e.g.,
[70, 129, 131, 132, 141]); however, for the sake of completeness and to improve the under-
standing of the subsequent extensions of the Daniels system, this section performs some
numerical investigations.

The resistances Ri of the Daniels system are assumed to be independent and follow a
log-normal distribution (E[Ri] = 1 and c. o. v.[Ri] = 0.1). The load s is deterministically
chosen such that a certain target reliability index βT RG is met for the case of a Daniels
system with just one member. In the case of the Daniels systems with n > 1, s is scaled
proportionally to the number of members n, such that the load per member (if no member
fails) is the same for any investigated Daniels system.

Fig. 4.11 shows the reliability index with an increasing number of members for different
target reliability indices. The number of members for which the minimum reliability index
is obtained depends on the value of βT RG. If βT RG is small, the minimum is obtained for
large n and the reliability behavior of the Daniels system is similar to the reliability
behavior of the ideal series system. For larger βT RG, the minimum is reached for smaller
n. For the rest of this section, βT RG is fixed at = 4.3, as this is in the common range
of the nominal reliability index required for structural systems [61, 108]. All subsequent
results are not sensitive to minor changes of the chosen target reliability index. However,
if βT RG deviates more strongly from 4.3 the subsequent results should be considered with
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caution.
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Fig. 4.11.: Reliability index of the Daniels system (green) and the ideal parallel/series
system (dashed red) with 1 to 10 members for different target reliability indices
βT RG of 2, 3, 4, and 5.

Fig. 4.12 plots the reliability index for different coefficients of variation ofR. The coefficient
of variation of the member resistance R has a strong impact on the reliability behavior
of the Daniels system. If c. o. v.[R] is small, the reliability index of the Daniels system
is closer to the one of a series system. For larger c. o. v.[R], the reliability index of the
Daniels system behaves more like a parallel system. The reliability indices of the ideal
parallel/series system are independent of c. o. v.[R].
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Fig. 4.12.: Reliability index of the Daniels system (green) and the ideal parallel/series
system (upper/lower dashed red) with 1 to 10 members with different c. o. v. of
R of 0.05, 0.1, 0.15, and 0.2.

4.3. Generalized Daniels system

In the following, the original formulation of Daniels is generalized in four directions to
consider probabilistic load modeling, plastic and semi-plastic material modeling (however,
without material mixing), modeling of correlation among members, and non-equal load-
sharing among members. For all extensions, efficient algorithms for reliability evaluations
are developed that are fast and accurate. The four extensions are presented separately,
but they can partly be combined.

4.3.1. Probabilistic load modeling

Let tS(S) be a function modeling the resulting action effect on the Daniels System. S
is a vector of action phenomena applied simultaneously (e.g., wind and snow), and the
function tS represents their combined effect. Assuming independence of the resistances
and the action, the probability of system failure can be calculated by applying the total
probability theorem:

Pr(FSys,n) =
∫

ΩS

FRSys,n
(tS(S)) · fS(s)ds (4.10)

where ΩS is the sample space of S and fS is the joint PDF of S.

As an alternative to direct numerical evaluation of the integral of Eqn. 4.10, FORM can
be used. The way the LSF is formulated plays a crucial role here. An advantageous
formulation is to represent the LSF as a one-component reliability problem [142,143]:

g(P,S) = P − Pr(FSys,n) (4.11)

where P is a random variable following a standard uniform distribution, and Pr(FSys,n)
can be calculated via the recursive formula of Eqn. 4.7. Transformation to standard normal
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space results in

G(uP ,uS) = uP − Φ−1
(
FRSys,n

(l(TU2X (uS)))
)

(4.12)

where UP is standard normally distributed, uS is multivariate standard normally dis-
tributed, and TU2X is the transformation from the standard normal space to the original
space. G(uP ,uS) is suitable for application within FORM.

Alternatively, the LSF can be formulated as

g(RSys,n,S) = RSys,n − l(S) (4.13)

and transformed to the standard normal space as

G(uR,uS) = F−1
RSys,n

(Φ(uR)) − l (TU2X (uS)) (4.14)

This LSF is also suitable for application within FORM, however, it requires the numerical
evaluation of F−1

RSys,n
, which is not available in closed form.

Remark: FORM should not be applied if the system resistance is formulated as in Eqn. 4.4.
The LSF would be:

g(RSys,n,S) = nmax
i=1

{
(n− i+ 1) ·R(i)

}
− l(S) (4.15)

Applying FORM to this formulation of the LSF leads to incorrect results because the
corresponding limit-state surface is highly non-linear.

4.3.1.1. Numerical investigations of the probabilistic load modeling

Numerical investigations are performed with a log-normally distributed resistance (E[R] =
1 and c. o. v.[R] = 0.1) and a one-dimensional action following a Gumbel distribution with
c. o. v.[S] ∈ {0.01, 0.02, . . . , 0.05, 0.1, 0.2, . . . , 0.5}. E[S] is chosen such that a target
reliability index βT RG = 4.3 is achieved in the case of a Daniels system with only one
member.

Fig 4.13 illustrates how the reliability index changes in the case of n > 1 for different
values of c. o. v.[S]. With increasing c. o. v.[S], the reliability index of the Daniels system
is less sensitive to n. Changes of c. o. v.[S] in low ranges (0.01 to 0.05) have a stronger
effect on the reliability index of the Daniels system. Values of c. o. v.[S] in the range of
(0.1 to 0.5) lead to similar reliability curves. In this range, the reliability of the Daniels
system keeps decreasing with increasing n.
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Fig. 4.13.: Reliability index of the Daniels system with 1 to 10 members with different
c. o. v. of S of 0.01, 0.02, . . . , 0.05 and 0.1, 0.2, . . . , 0.5.

4.3.2. Material models

The original formulation of the Daniels system assumes brittle material behavior. In
this section, an alternative, idealized material model is introduced that can also model
plastic and semi-plastic material behavior. Two versions of this model are proposed and
algorithms for the computation of the reliability index with these models are derived.

The stress-strain relationship of the considered material model is shown in Fig. 4.14. It is
linear until a maximum stress σmax is reached. If the strain increases further, the stress
drops to a constant residual stress σplast [69].

ε

σ

ideal plastic

brittle

semi-plastic

σmax

σplast

Fig. 4.14.: Stress-strain relationship for new material models.

The two different versions of the material models follow from different definitions of σplast.
Either σplast is defined as a deterministic value:

Material model 1: σplast,1 = fres · E[σmax] fres ∈ [0; 1] (4.16)

or probabilistically depending on σmax:

Material model 2: σplast,2 = fres · σmax fres ∈ [0; 1] (4.17)
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where fres is a factor that quantifies the residual strength. If fres = 0, both material models
represent brittle material behavior. If fres = 1, the second material model represents ideal
plastic material behavior.

Both material models could be extended by also considering a probabilistic strain ϵ. For
the sake of simplicity, this is included in this thesis.

The first material model can be “unrealistic” in the sense that σplast,1 can be greater than
small instantiations of σmax so that the stress-strain relationship would have an upward
jump. However, this model has the advantage that Daniels’ formula (Eqn. 4.7) can be
adapted such that the probability of failure can still be calculated analytically. Thus, if a
fast evaluation of the system resistance is needed and if fres is sufficiently small, material
model 1 may be advantageous.

The reason why the findings of the original Daniels system can be applied in case of the
first version of the material model is illustrated in Fig. 4.15. It shows the failure domain
of a Daniels system with two members modeled via material models 1 and 2. The failure
domain of material model 1 is a union of two rectangles (as the failure domain of the
original Daniels system is shown in Fig. 4.9). This form allows for the application of the
findings of the original Daniels system. This is not the case for material model 2, since
the failure domain is no longer a union of rectangles.

r1

r2

s− σplast,1

s
2

s− σplast,1
s
2 R1

R2

s
2

s
2

s

s

s
2 · fres

s
2 · fres

Fig. 4.15.: Failure domain of a Daniels system with two members of material model 1 (left)
and material model 2 (right).

The adaptation of Daniels’ formula (Eqn. 4.7) to make it suitable for material model 1 is as
follows: The plastic resistance of the failed members can be reinterpreted as an additional
negative action. Hence, the recursive formula to evaluate the CDF of the system resistance
can be adapted to calculate the probability of system failure under a deterministic action
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s as

FRSys,m
(s) =(−1)m+1 · Fm

R

(
s− (n−m) · σplast,1

m

)
(4.18)

−
m−1∑
j=1

[
(−1)j ·

(
m

j

)
· F j

R

(
s− (n−m) · σplast,1

m

)
·

FRSys,m−j
(s− (n−m) · σplast,1)

]
where m is an auxiliary variable of the recursion. The recursion has to be conducted for
m = 1, . . . ,n.

Eqn. 4.18 only calculates the probability of system failure if the plastic resistance of the
system is smaller than the action σplast,1 · n < s. If σplast,1 · n > s, the probability of
system failure Pr(FSys,n) is zero.

In the case of material model 2, the probability of failure can be calculated via the following
n-fold parameter integral:

Pr(FSys,n) = n! ·
∫ s

n

0

∫ s
n−1 −fres·rn

rn

· · ·
∫ s−

∑n−1
i=1 fres·ri

r2
(4.19)

fR(rn) · fR(rn−1) . . . fR(r1) dr1 . . . drn−1 drn

For larger n, it is not feasible to evaluate the integral with classic numerical integration
methods. Furthermore, FORM is not suitable because of the shape of the failure domain.
Instead, MC [62, 63] or advanced sampling-based methods, such as SuS [64–66], can be
applied to estimate Pr(FSys,n).

In the special case of the full plastic material behavior (material model 2 with fres = 1),
the system resistance is the sum of the member resistances. The limit-state function is

g =
n∑

i=1
Ri − s (4.20)

The corresponding limit-state surface is linear in the original space; hence, the application
of FORM is suitable.

Remark: A sampling-based solution approach for material model 2 can also be combined
with the analytic solutions provided in Eqn. 4.18. E.g., in the case of a Daniels system
with two members of material 2, the probability of system failure can be calculated as

Pr(FSys,n) =2! ·
∫ s

2

0

∫ s−fres·r2

r2
fR(r1) · fR(r2)dr1dr2 (4.21)
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This integral can be split as

Pr(FSys,n) =2! ·
[∫ s

2

0

∫ s−fres· s
2

r2
fR(r1) · fR(r2)dr1dr2+ (4.22)

+
∫ s

2

0

∫ s−fres·r2

s−r· s
2

fR(r1) · fR(r2)dr1dr2︸ ︷︷ ︸
=:I+


The first integral of Eqn. 4.22 can be calculated analytically by applying Eqn. 4.18. Hence,
only the error in the estimation of I+ due to sampling-based integration remains. Since
I+ < Pr(FSys,n), Eqn. 4.22 leads to a variance reduction of the estimator compared to
a direct application of sampling based integration to Eqn. 4.21. This approach can be
generalized to the case of a Daniels system with n members.

4.3.2.1. Numerical investigations with the alternative material model

Numerical investigations are performed with the same setup as in 4.3.1.1. Fig. 4.16 shows
the reliability indices of Daniels systems with members modeled with material models 1
and 2 for different degrees of plasticity (fres = 0, 0.2, 0.4, 0.6, 0.8, 1.0). For low values
of fres, the two material models lead to similar results. For larger fres, the first material
model leads to much larger reliability indices than the second material model. For this
first material model, β eventually becomes infinite as σplast,1 ·n > s. The reliability indices
resulting from material model 2 are bounded by the ideal parallel system.
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Fig. 4.16.: Reliability index of the Daniels system with members modeled with mate-
rial models 1 (left) and 2 (right) for different degrees of plasticity fres (blue
dash-dotted) and ideal series and parallel systems (red dashed). The relia-
bility indices associated with material model 2 were calculated with the SuS-
implementation of [144] with an intermediate probability per level of 0.1 and
104 samples per level.
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4.3.3. Correlation among members

Daniels’ original formulation assumed uncorrelated members. However, dependence among
members is common, e.g., because of common manufacturing and environmental condi-
tions. In this work, only equicorrelation is considered. This is reasonable since all members
are typically dependent on the same phenomena. However, the approach can be general-
ized to unequal correlation among members.

The Daniels system is generalized to include equicorrelated members by means of a hier-
archical model [73,145,146]. In the case of equicorrelation, a hierarchical model with only
one hyperparameter α is required to represent the dependence structure (see Fig. 4.17).
The approach can be extended to unequal correlation among members, as discussed further
below.

α

Y1 Y2 Yn

R1 R2 Rn

Fig. 4.17.: Hierarchical Bayesian network with hyperparameter α to model equicorrelation
among member resistances.

It is mathematically convenient to choose a hyperparameter α that follows a standard nor-
mal distribution. Additionally, n standard normally distributed auxiliary random variables
Yi are introduced. The Yi are equicorrelated jointly normal with a correlation coefficient
ρY , which follows from the correlation of the Ri transformed into the standard normal
space [147,148].

The conditional CDF FR|α is given as [145]

FR|α (x | α) = Φ
(

Φ−1 (FR(x)) − √
ρY · α√

1 − ρY

)
(4.23)

The correlation model can be extended to resistances Ri with differing marginal distribu-
tions and varying mutual correlation coefficients. The only restriction is that the correla-
tion matrix in standard normal space has to be of the Dunnett-Sobel class [73,149].

The probability of failure is calculated via the total probability theorem as

Pr(FSys,n) =
∫ ∞

−∞
φ(α) · Pr(FSys,n | α)dα (4.24)

where φ is the standard normal PDF. Pr(FSys,n | α) is calculated with the original for-
mula of Daniels (Eqn. 4.7), whereby the CDF of the member resistances is FRi|α defined
via Eqn. 4.23. The integral in Eqn. 4.24 can be evaluated numerically. Alternatively,
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Pr(FSys,n) can be approximated by FORM. By analogy with Eqn. 4.11-4.12 FORM is
applied to the following LSF:

G(UP ,α) = UP − Φ−1
(
FRSys,n|α(s)

)
(4.25)

where UP and α follow a standard normal distribution and FRSys,n|α is the CDF of the
system resistance following Eqn. 4.7, whereby the CDF of the member resistances is FRi|α
defined via Eqn. 4.23.

4.3.3.1. Numerical investigations of the correlation model

Numerical investigations are performed with the same setup as in Sec. 4.3.1.1. Fig. 4.18
shows the influence of the correlation between member resistances of the Daniels system
with ideal plastic, ideal brittle, and semi-plastic material modeled with material model 2
with fres = 0.5. With increasing correlation, an increase in the number of members has less
effect on reliability. If the members are fully correlated, the Daniels system degenerates
into a single component system.

4.3.4. Modified load-sharing properties among members

The original Daniels system has the property of equal load-sharing among non-failed mem-
bers. This property can mathematically be described via the following equation:

∀i,j∈{1,...,n}∀Λ⊆{1,...,n}\{i,j} : si,Λ = sj,Λ (4.26)

where si,Λ i ∈ {1, . . . ,n} is the share of the total action s acting on the ith member
of the Daniels system with failed members Λ ⊆ {1, . . . ,n} \ i (the undamaged Daniels
system is represented via Λ = ∅). The equal load-sharing property is a consequence of
two assumptions of the original Daniels system: first, the postulate of equal cross-sections
and Young’s modulus, i.e., equal stiffnesses among all members. Second, the original
Daniels system is modeled with a horizontal bar with infinite bending stiffness that is
blocked against rotation on both sides. Altering any of these properties leads to non-equal
load-sharing.

Fig. 4.19 shows three modifications of the Daniels system leading to different load-sharing
properties.

Fig. 4.19 a): This modification includes varying cross-section areas per member. In this
case Eqn. 4.26 does not hold anymore; however, another – slightly weaker – load-sharing
property holds: The action is distributed proportional to the member stiffnesses:

∀i,j∈{1,...,n}∀Λ⊆{1,...,n}\{i,j} : si,Λ
Ai · E

= sj,Λ
Aj · E

(4.27)

where E is the Young’s modulus and Ai is the cross-section area of member i.
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Fig. 4.18.: Reliability index of the ideal parallel and series system (dashed red) and the
Daniels system with brittle material (fres = 0, green), ideal plastic and semi-
plastic material modeled with material model 2 (fres = 1, 0.5, dash-doted blue).
The members are uncorrelated (top left), equicorrelated with a correlation co-
efficient of 0.3 (top right), 0.6 (bottom left) and 0.9 (bottom right).
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Fig. 4.19.: Modifications of the Daniels system that lead to different load-sharing proper-
ties.
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Fig. 4.19 b): This modified Daniels system has a rotatable horizontal bar that is fixed
at one end only. In this case Eqns. 4.26 and 4.27 do not hold; however, another – again
slightly weaker – load-sharing property holds: After the failure of member k, the action
redistributes proportionally:

∀i,j∈{1,...,n}∀Λ⊆{1,...,n}\{i,j}∀k∈{1,...,n}\(Λ∪{i,j}) : si,Λ
sj,Λ

= si,Λ∪k

sj,Λ∪k
(4.28)

Fig. 4.19 c): This modified Daniels system has a horizontal bar with a finite bending
stiffness. In this case, none of the properties (Eqns. 4.26-4.28) hold.

The three above-mentioned load-sharing properties (Eqns. 4.26-4.28) are logically related
to each other as follows: Eqn.4.26 ⇒ Eqn.4.27 ⇒ Eqn.4.28; hence, they can be interpreted
as three levels of load-sharing.

In order to derive a formula to calculate the system reliability of modified Daniels systems,
it is helpful to compare the failure domains of the original Daniels system and the modified
Daniels system. Fig. 4.20 visualizes this for the case of three members. The failure domain
of the original Daniels system is the union of 6 cubes whose edge lengths are all possible
combinations of s, s

2 , and s
3 . The recursive formula from Daniels (Eqn. 4.7) makes use of

the symmetric shape of the failure domain and the fact that the member resistances are
independent and identical distributed. The failure domain of modified Daniels systems
also consists of 6 cubes; however, these are not necessarily symmetric anymore, and the
member resistances are not necessarily identically distributed random variables.

R1

R2R3

s
s
2s

3

R1

R2
R3

Fig. 4.20.: Failure domain of the original Daniels system (left) and a modified Daniels
system (right) with 3 members.

In the general case of a Daniels system with modified load-sharing, the failure domain
is described by n! hypercubes Hj (j = 1, . . . ,n!). Each hypercube describes one possible
ordering of member failures leading to system failure. The edge lengths of a hypercube
are equal to the actionshare si,Λ where i is the next member to fail and Λ are members
that have already failed. In the case of a proportional redistribution after member failure
(Eqn. 4.28), the calculation of all si,Λ is straightforward. If Eqn. 4.28 does not hold, the
calculation of each si,Λ requires a structural analysis.

In the following, two analytical approaches to calculate the probability of failure of Daniels
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systems with modified load-sharing are presented. The first approach is via the application
of the principle of inclusion and exclusion. The second approach meshes the failure domain
with disjoint hypercubes and sums up their respective probabilities. Both approaches are
reasonable for moderately small numbers of members n. For larger n, MC [62, 63] or
advanced sampling methods such as SuS [64–66] should be applied.

The first approach is based on the principle of inclusion and exclusion. The probability of
system failure FSys,n can be evaluated as

Pr(FSys,n) =
n!∑

k=1
(−1)k−1 ∑

I⊆{1,...,n!}
|I|=k

Pr

⋂
j∈I

Hj

 (4.29)

where the second summation is with respect to all possible index sets I of numbers from
1 to n! and cardinality k.

With an increasing number of members n, the evaluation of Eqn. 4.29 becomes numerically
infeasible, even for moderate n. This is not only because the number of hypercubes
Hj grows with O(n!), but in particular since the number of m-tuples to describe the
intersections grows with O(n!!). The largest numerically reasonable number of elements
for applying the principle of inclusion and exclusion is n = 4. In this case, 4! = 24
hypercubes Hj exist. This leads to

(24
2
)

= 276 intersection pairs,
(24

3
)

= 2024 intersection
triplets, etc. Reaching the maximum at

(24
12
)

= 2 704 156 intersection 12-tuples. If the
system consists of 5 members, 5! = 120 hypercubes Hj exist. The number of intersection
tuples is already 1036.

A numerically preferable alternative to the principle of inclusion and exclusion is the
following meshing approach: First, the failure domain is divided into non-overlapping
hypercubes. Then the probability of system failure is calculated as the sum of the proba-
bilities of all events defined via these hypercubes. One possibility to define the hypercubes
and calculate their respective probabilities is to envelop the system failure domain with
the hypercube [0,s] × [0,s] × · · · × [0,s] and mesh it per direction (=̂member) i with the
grid si,Λ (=̂ actionshare of member i regarding system state with failed members Λ). If
all si,Λ for all Λ differ, the meshing defines a maximum of n!n sub-hypercubes hj .

Summing over the probability of all sub-hypercubes within the failure domain ΩFSys,n
gives

the probability of system failure

Pr(FSys,n) =
∑

hj⊆ΩFSys,n

Pr(hj) (4.30)

This approach has complexity O (n!n), hence, is more feasible than the application of the
principle of inclusion and exclusion.
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4.3.4.1. Numerical investigations of modified load-sharing among members

In the following, the meshing approach is applied to the modified Daniels systems a) and
b) of Fig. 4.19. As for the original Daniels system, equal Young’s modulus per member ,
deterministic action s (chosen such that the target reliability of βT = 4.3 is met for n = 1),
independent and identical distributed ultimate member strength σmax,i and linear-elastic
brittle material behavior are assumed.

System a) of Fig. 4.19
The member strength σmax,i is assumed to be log-normally distributed with E[σmax,i] = 1
and c. o. v.[σmax,i] = 0.1. The cross-section areas are varied linearly:

Ai =

1 n = 1
1 − fs ·

(
2 · i−1

n−1 − 1
)

n ≥ 2
(4.31)

where n is the number of members of the modified Daniels system and fs ∈ [0,1) is a
factor controlling the non-equality of the cross-section areas. The cross-section area of the
first member is A1 = 1 − fs and the cross-section area of the last member is An = 1 + fs.
The cross-section area of all other members is linearly interpolated between A1 and An. If
fs = 0, the original Daniels system is obtained. The larger fs, the more the cross-section
areas differ, with a maximum inequality for fs = 1.

Fig. 4.21 illustrates the resulting system reliability indices for a Daniels system with n = 5
members. The reliability index is not significantly influenced by the factor fs. Similar
results are obtained for other numbers of members n or different setups of the modified
Daniels system (e.g., different c. o. v.[σmax,i] or semi-plastic material behavior). This indi-
cates that, in general, the reliability index may not be sensitive to non-equal load-sharing
if the load-sharing property of Eqn. 4.27 is fulfilled (proportionality to the mean member
resistances).

4.0

β

4.5

5.0

0.25 0.750 0.5 1 fs

Fig. 4.21.: System reliability index of the modified Daniels system a) with n = 5 brittle
members and different levels of non-equal load-sharing controlled via fs (the
original Daniels system corresponds to fs = 0).

System b) of Fig. 4.19
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The member strength σmax,i is again assumed to be log-normally distributed with E[σmax,i] =
1 and c. o. v.[σmax,i] ∈ {0.1, 0.2, 0.3}. All distances between members are assumed to be
equal. Therefore, the action is linearly distributed among members. The inequality of
load-sharing is described via the ratio of the deformation of the first member to the last
member ∆l1

∆ln
. If ∆l1

∆ln
= 1, the support of the horizontal bar is infinitely far away from the

first member of the modified Daniels system b). This is equivalent to the original Daniels
system. With decreasing ∆l1

∆ln
< 1, the support moves closer to the first member, and the

load-sharing becomes increasingly unequal. The maximum inequality in load-sharing is
reached for ∆l1

∆ln
= 0.

Fig. 4.22 shows the resulting system reliability index with respect to the number of mem-
bers n. The system reliability index first decreases with the increasing number of members,
reaches a minimum and then increases. The smaller ∆l1

∆ln
the lower the system reliability.

The reason for this is the increasingly uneven load sharing between members: More heav-
ily loaded members are more likely to fail, which favors a failure of the system due to
cascading effects.

Fig. 4.23 illustrates the resulting system reliability with respect to different values of ∆l1
∆ln

for systems with n = 5 members and c. o. v.[σmax,i] ∈ {0.1, 0.2, 0.3}. Comparing the case of
c. o. v.[σmax,i] = 0.1 with Fig. 4.21 shows the much stronger effect to the system reliability
of the non-proportional unequal load sharing case compared to the proportional case.

4.5

3.0
2 41 3 5 n

β
∆l1
∆ln

= 0.9

∆l1
∆ln

= 0.7

∆l1
∆ln

= 0.5
∆l1
∆ln

= 0.3
∆l1
∆ln

= 0.1

4.0

3.5

5.0

5.5 c. o. v.[σmax,i] = 0.2

Fig. 4.22.: System reliability index of the modified Daniels system b) with n brittle mem-
bers and different levels of non-equal load-sharing controlled via ∆l1

∆ln
.
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Fig. 4.23.: System reliability index of the modified Daniels system b) with n = 5 brittle
members with varying c. o. v.[σmax,i] ∈ {0.1, 0.2, 0.3} and different levels of non-
equal load-sharing controlled via ∆l1

∆ln
.

4.4. Link between general structural system and the generalized
Daniels system

The PSF concept is a general design concept applicable to various kinds of structures. An
adaptation of the PSF concept needs to take this variety into account. The generalized
Daniels system is able to represent this variety. The link between the generalized Daniels
System and general structural systems is illustrated in the following via an example struc-
ture taken from Madsen et al. [150].

Fig. 4.24 shows the example structure. It is a frame with a horizontal action H and
a vertical action V . V is a log-normally distributed permanent action (E[V ] = 1 and
c. o. v.[V ] = 0.2) and H is a Gumbel distributed variable action (E[H] = 1 and c. o. v.[H] =
0.3). Potential bending failure at the five different locations with the highest action-effects
is considered. For reasons of simplification, other element failure mechanisms are not
considered.

R1

R2 R3 R4

R5

VH

5 [m] 5 [m]

5 [m]

Fig. 4.24.: Example frame structure.

First, the example structure is designed following the standard PSF design, and second,
a reliability analysis is conducted in order to establish a link to the generalized Daniels
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system. This link will be used later (Sec.4.5) to derive the additional PSF γSys.

4.4.1. Determination of the resistances according to the partial safety
concept

The characteristic actions are hk = F−1
H (0.98) = 1.78, where F−1

H is the inverse CDF of H,
and vk = E[V ] = 1. The corresponding PSFs are γH = 1.5 and γV = 1.35. The resulting
design actions are hd = hk · γH = 2.67 and d = vk · γV = 1.35.

Two action cases are considered: V ⊕ H acting simultaneously and V acting alone. The
design resistances rd,i are 3.49, 1.35, 2.03, 3.84, and 4.84 for i = 1, . . . , 5. They result
from the maximum absolute bending moments of the two action cases at the five different
locations.

Choosing the PSF of the resistance as γM = 1.3, the characteristic resistances are calcu-
lated as rk,i = γM ·rd,i. The resistances are considered to be log-normally distributed with
c. o. v.[Ri] = 0.1 and the characteristic values to be defined via the 5[%] quantiles. This
results in the distributions of the resistances Ri shown in Tab. 4.1. The resistances are
chosen to be equicorrelated with a correlation coefficient of ρRi,Rj = 0.3.

Tab. 4.1.: Distributions of the resistances Ri.

V ∼ LN E[V ] = 1 c. o. v.[V ] = 0.2
H ∼ G E[H] = 1 c. o. v.[H] = 0.3
R1 ∼ LN E[R1] = 5.37 c. o. v.[R1] = 0.1
R2 ∼ LN E[R2] = 2.08 c. o. v.[R2] = 0.1
R3 ∼ LN E[R3] = 3.12 c. o. v.[R3] = 0.1
R4 ∼ LN E[R4] = 5.93 c. o. v.[R4] = 0.1
R5 ∼ LN E[R5] = 7.45 c. o. v.[R5] = 0.1

4.4.2. Reliability analysis and link to the Daniels system

All minimal cut sets of bending failures at the five different locations, which lead to a
kinematic system, define the possible system failure modes. The author considers the four
failure modes shown in Fig. 4.25.

The link between the frame and the generalized Daniels system depends on the material
properties of the frame. Two cases are exemplarily investigated: ideal plastic and ideal
brittle material behavior. If the material behavior is semi-plastic, a link to the generalized
Daniels system could also be established; however, the action effects per damage state of
the frame are not as straightforward to calculate, and yield hinge theory is required. This
is not conducted within this example.
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Failure mode 1 Failure mode 2

Failure mode 3 Failure mode 4

Fig. 4.25.: Considered failure modes of the frame.

4.4.2.1. Ideal plastic material behavior case

Utilizing the principle of virtual work (similar to the motivating example of Sec. 4.1), a
LSF per failure mode can be derived. The inner virtual work represents the resistance of
the system against a failure mode, and the outer virtual work represents the action acting
in the direction of a failure mode. This leads to the following LSFs:

g1 = R1 +R2 +R4 +R5 − 5 ·H (4.32)
g2 = R2 +R3 +R4 − 5 · V (4.33)
g3 = R1 + 2 ·R3 + 2 ·R4 +R5 − 5 ·H − 5 · V (4.34)
g4 = R1 + 2 ·R2 + 2 ·R3 +R5 + 5 · V − 5 ·H (4.35)

System failure occurs if at least one failure mode occurs; hence, the system reliability is
determined by means of a series system composed of the four LSFs. The reliability indices
per failure mode are calculated with FORM:

β1,plast = 4.66 (4.36)
β2,plast = 5.01 (4.37)
β3,plast = 5.28 (4.38)
β4,plast = 5.73 (4.39)

and the system reliability with FORM for series systems:

βSys,plast = 4.62 (4.40)

In the case of ideal plastic material behavior, it is possible to deduce a series system of
generalized Daniels systems that is – from a reliability point of view – equivalent to the
frame. The series system of generalized Daniels systems can be established as follows: The
LSFs of Eqns. 4.32 to 4.35 do not only represent the failure mechanisms of the frame but
all failure mechanisms of any structural system that have the same inner and outer virtual
work. This means a generalized Daniels system with the same inner and outer virtual
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work is – from a reliability point of view – equivalent to a failure mode of the frame. It is
always possible to find such a Daniels system.

Fig. 4.26 shows the resulting Daniels systems in the case of the considered example struc-
ture. In contrast to the original Daniels system, the cross-sections areas of the members
are chosen differently, resulting in different member stiffness (see modified Daniels system
a) of Fig. 4.19.

EI → ∞

5H

R
1

R
2

R
4

R
5

EI → ∞

5V

R2
R3
R4

EI → ∞

5H + 5V

R1
2R3
2R4
R5

EI → ∞

5H

R1
2R2
2R3
R5

5V

Fig. 4.26.: Generalized Daniels systems which are equivalent to the four failure modes of
the example frame.

4.4.2.2. Ideal brittle material behavior case

The reliability analysis is carried out via MC as follows: For each sample of the actions, a
structural analysis needs to be performed with respect to both action cases. If a resistance
sample at one of the five locations of the frame is lower than the bending moment – caused
by one of the action cases – a hinge is added at this location.1 If multiple resistance samples
are lower than the respective bending moments, the hinge is added at the location where
the difference between resistance and bending moment is the greatest, whereby cases
that occur in the action case of the permanent action only are added first. If a hinge is
added, another structural analysis of the modified version of the frame is performed to
add another joint. This procedure is repeated until the frame can either resist the actions
or fails (becomes kinematic).

The resulting estimate of the system reliability index is:

βSys,brit = 3.20 (4.41)

1It may seem unrealistic to only add a hinge in case of brittle failure, since brittle failure typically does
not allow transmission of normal forces and shear forces anymore; however, in the example setup
only bending failure is taken into account. In principle, the inclusion of normal force failure or shear
force failure is possible. This would require an example with higher amounts of redundancy to derive
meaningful results.
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The reliability indices per failure mode are estimated as:

β1,brit = 3.99 (4.42)
β2,brit = 3.22 (4.43)
β3,brit = ∞ (4.44)
β4,brit = 4.74 (4.45)

In the case of ideal brittle material behavior, it is not possible to establish a direct one-
to-one equivalence to generalized Daniels systems, as in the case of ideal plastic material
behavior. The main reason for this is the difference in action redistribution after one or
more members fail. In the case of the Daniels system, the ratio between the action effects
at each member and its stiffness is equal for all non-failed members (see Sec. 4.3.4). This
is not the case for general structural systems with brittle members. There are two main
reasons that cause member stiffnesses that are non-proportional to the action effects:

• The redistribution of inner forces after one or more members fail: If a member of
a structural system fails, this may change the stress flow of the structure funda-
mentally. The action effects change while the stiffnesses of the undamaged members
remain the same, leading to non-proportionality. This non-proportional redistribu-
tion of the action is critical since the stiffness of some members may now be lower
than the stiffness that would result from a PSF design of an altered structure, in-
cluding member failure.

• The consideration of multiple action cases: If the stiffnesses per member result from
the maximum design stiffness of different action cases, member stiffnesses may not
be proportional to the action effects caused by one of the action cases. However, this
non-proportionality is not critical since it leads to an increase in stiffness compared
to the cases where only one action case is considered; hence, it increases reliability.

For these reasons, one can only establish an equivalent generalized Daniels system for a
given damage state of a structure. Following a member failure, a different generalized
Daniels system is necessary to represent the new configuration.

First, the case of unequal load-sharing after member failure is illustrated. Therefore, the
example frame is redesigned (analogously to Sec. 4.4.1) considering only the vertical action
case. Since only one action case is considered, this initially leads to equal load-sharing
between the members (see top of Fig. 4.27). After member failure occurs, the load-sharing
becomes non-proportional to the member stiffnesses and the equivalent generalized Daniels
system needs to be adapted. This can be done by modifying the horizontal bar to be
rotatable and fixed against translations at one end (see bottom of Fig. 4.27 for failure
at location 2). The non-proportional load-sharing results from the distance δli of the
members to the fixed end of the horizontal bar for each member. δli is calculated as:

δli =
∣∣∣∣Mi,Λ2(V = vd)
Mi(V = vd)

∣∣∣∣ (4.46)

where Mi(V = vd) and Mi,Λ2(V = vd) are the inner moments at location i caused by
the vertical design action vd, if no failure or failure at location 2 is present. If failure at
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Fig. 4.27.: Example frame considering the action case of V only. The load-sharing is
proportional to the member stiffnesses, as long as no member has failed. After
a member failure occurs, the load-sharing is non-proportional to the member
stiffnesses.

another location occurs, the equivalent generalized Daniels system needs to be adapted
again by recalculating δli with respect to the new damage state of the frame. Hence,
the positioning of the members of the generalized Daniels system keep shifting with each
member failure.

Second, the case of unequal load-sharing due to the consideration of multiple load cases
is illustrated. Therefore, the undamaged example frame is investigated considering both
action cases V and V ⊕H. Because two actions are acting in two different directions, the
generalized Daniels system needs to be modeled with two horizontal bars. The members
are not directly attached to these horizontal bars anymore, but infinitely stiff connections
transfer the action effects accordingly (see Fig. 4.28). δli,V and δli,H are calculated as

δli,V =
∣∣∣∣ Mi(V = vd)
max {Mi(V = vd,h = hd),Mi(V = vd)}

∣∣∣∣ (4.47)

δli,H =
∣∣∣∣ Mi(H = hd)
max {Mi(V = vd,h = hd),Mi(V = vd)}

∣∣∣∣ (4.48)

Some of the action effects do not induce tension but compression on the members of the
Daniels system (modeled with the help of a rocker). This is because the inner moments
caused by V and H at a specific location of the frame have opposing signs. Consequently,
the members of the Daniels system cannot only fail due to tension but also due to com-
pression. If the bending stiffness at a location of the frame is independent of the bending
direction (e.g., for symmetric cross-sections), the resistance against compression of the
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corresponding member of the Daniels system is equally distributed and fully correlated to
their respective resistance against tension. If the bending stiffnesses differ with respect to
the bending direction, the resistance against tension and compression of the correspond-
ing member of the Daniels system also differs accordingly (however, they are still fully
correlated).

R1

R3 R4

R5

V

⇔

δli

R
2

R
1

R2

EI → ∞

H

R
3−

5

V

H

Fig. 4.28.: Undamaged frame loaded by V ⊕H and Daniels system representing the equiv-
alent system behavior until element failure occurs. R1-R5 are determined fol-
lowing the PSF concept, considering both action cases.

Remark: The equivalence of the frame and the generalized Daniels systems of Fig. 4.27
and 4.28 only hold since the relationship between actions and action effects is linear. If a
structure behaves non-linearly, the shape of the horizontal bar needs to be adjusted (e.g.,
parabolic in the case of quadratic non-linearities).

4.4.3. List of entities to establish equivalence of the generalized Daniels
system and general structural systems

The illustrations of the example frame show that it is always possible to define a series
system of generalized Daniels systems (which – in the brittle and semi-plastic case – have
to be adapted to a specific damage state of the structure) that describe the reliability of
any structural system. The following list of entities describes this equivalence between
the generalized Daniels system and general structural systems. The list is complete in the
sense that no further entities need to be known to form generalized Daniels systems, which
– from a reliability point of view – are equivalent to any arbitrary structural system.

1. Number of system failure mechanisms: equal to the number of generalized Daniels
systems needed. These Daniels systems are connected as a series system. Failure of
one Daniels system is equal to the occurrence of a failure mechanism, hence, system
failure.

2. Number of element failures that lead to a system failure mechanism: Number of
members in the corresponding Daniels system.
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3. Resistance of each element of the structure: Directly corresponds to the material
type and the maximal stiffness of the members of the Daniels system. If the material
type is brittle of semi-plastic the corresponding generalized Daniels system needs to
be adapted for each damage state of the general structural system, resulting in a
sequence of generalized Daniels systems.

4. Correlation among the elements of the structure: Determines the correlation among
members of the Daniels system.

5. Actions of the structure: Directly correspond to the action of each Daniels system.

6. Geometry of the structure: From the geometry, the action effects can be calculated,
hence, the relation between actions and resistances of the Daniels system can be
established. This determines the load-sharing properties of the Daniels system.

4.5. Adaptation of the PSF concept with respect to system
effects

The possible combinations of the six entities of the list in Sec. 4.4.3 are endless. In order to
derive the additional PSF γSys, some necessary simplifications and assumptions have to be
made. The derived PSF is only valid on that basis. The simplifications and assumptions
of the six entities are the following:

1. It is assumed that one system failure mechanism is dominant and other system
failure mechanisms can be neglected. No series system of Daniels systems has to be
evaluated, but only a singular Daniels system.

2. Only global failure mechanisms are taken into account. Under this assumption, the
number of element failures that lead to a system failure mechanism is equal to the
static over-determination of the system plus one. Daniels systems with n = 1, . . . ,10
members are investigated; hence, statically determined and 1, . . . ,9 times statically
over-determined systems.

3. The material behavior of each element of the structure is assumed to be of the same
type. No Daniels systems with mixed materials are considered. Further, different di-
mensions of the elements of the structure are neglected; hence, only Daniels systems
with equal stiffnesses per member are investigated. The behavior of ideal plastic ma-
terial (fres = 1), ideal brittle material (fres = 0), and semi plastic material behavior
modeled following material model 2 with fres ∈ {0.25, 0.5, 0.75} is investigated.

4. Only positive equicorrelation among elements is considered.

5. The variability of the action side is taken into account by using the action combina-
tions of the portfolio of Annex A.

6. The geometry of the structure is neglected and it is assumed that the actions evenly

96



distribute among the elements of the structure and also evenly redistribute in case of
element failure. This includes changes in the load sharing due to local deformations.
In the case of plastic material behavior, this assumption is always satisfied as shown
in Sec. 4.4.2.1 (since equal element strength and dimensions is already assumed);
however, in the case of brittle or semi-plastic material behavior, this assumption
is critical (see Sec. 4.4.2.2). In these cases, the derived additional PSF should be
applied with caution.

Given a specific Daniels system, the average reliability index is calculated with respect to
the portfolio of action cases as follows:

β =
∑3

i=1
∑9

j=1 βQi,aQ,j

27 (4.49)

where βQi,aQ,j
is the reliability index of the Daniels system under the action case resulting

from Qi and aQ,j defined in Annex A. Fig. 4.29 shows the resulting average reliability
indices.

To homogenize the reliability of Daniels systems, the additional PSF γSys is introduced.
γSys is applied to the characteristic value of the resistance in addition to γM ; hence, the
design resistance is calculated as rd = rk

γM ·γSys
. The value of γSys depends on the number

of members of the Daniels system n, the plastic residual of the material r, the coefficient
of variation of the member resistances c. o. v.[R], and the correlation among members
ρRiRj . To determine the values of γSys the following equation is solved (in accordace with
Eqn. 2.46):

β(γSys;n,r, c. o. v.[R],ρRiRj ) != βT RG (4.50)

where βT RG = 4.3 is the target reliability defined following Eqn. 2.44 as the average
reliability index if n = 1.

Figuratively speaking, the application of γSys moves all lines in Fig. 4.29 to be constant
at the target reliability index. Note that only the average reliability, β is constant, but
the individual cases of the considered portfolio still scatter; however, this scattering is not
related to system effects anymore.

Tab. 4.2 shows the values of γSys. The vast majority of the derived values are close to
1. The minimum value is γSys = 0.75 (ideal plastic system with c. o. v.[R] = 0.2 and
ρRiRj = 0.0). The maximum value is γSys = 1.10 (c. o. v.[R] = 0.2 and ρRiRj = 0.6).
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Fig. 4.29.: Average reliability indices of Daniels systems with n = 1, . . . ,10 members,
fres ∈ {0, 0.25, 0.5, 0.75, 1}, c. o. v.[Ri] ∈ {0.05, 0.1, 0.15, 0.2} and ρRiRj ∈
{0, 0.3, 0.6, 0.9}.
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[R

]=
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05
ρ

R
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R

j
=

0

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97
Semi-plastic (fres = 0.75) 1.00 1.00 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.04
Semi-plastic (fres = 0.50) 1.00 1.01 1.03 1.03 1.04 1.04 1.04 1.04 1.05 1.05
Semi-plastic (fres = 0.25) 1.00 1.01 1.03 1.04 1.04 1.04 1.04 1.04 1.05 1.06
Ideal brittle (fres = 0.00) 1.00 1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.06
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05
ρ
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0.
3

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
Semi-plastic (fres = 0.75) 1.00 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04 1.04
Semi-plastic (fres = 0.50) 1.00 1.02 1.03 1.03 1.04 1.04 1.04 1.04 1.05 1.05
Semi-plastic (fres = 0.25) 1.00 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.05 1.05

98



Ideal brittle (fres = 0.00) 1.00 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.05 1.05
c.
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ρ
R
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=

0.
6

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Semi-plastic (fres = 0.75) 1.00 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.04
Semi-plastic (fres = 0.50) 1.00 1.01 1.02 1.03 1.03 1.03 1.03 1.04 1.04 1.04
Semi-plastic (fres = 0.25) 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04
Ideal brittle (fres = 0.00) 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04
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n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Semi-plastic (fres = 0.75) 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02
Semi-plastic (fres = 0.50) 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02
Semi-plastic (fres = 0.25) 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02
Ideal brittle (fres = 0.00) 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02

c.
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v.
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]=
0.

1
ρ
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i
R

j
=

0

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.95 0.94 0.93 0.92 0.92 0.92 0.92 0.92 0.92
Semi-plastic (fres = 0.75) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Semi-plastic (fres = 0.50) 1.00 1.01 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
Semi-plastic (fres = 0.25) 1.00 1.02 1.04 1.04 1.04 1.05 1.05 1.05 1.05 1.05
Ideal brittle (fres = 0.00) 1.00 1.03 1.05 1.06 1.07 1.07 1.07 1.08 1.08 1.08
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0.
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3

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.97 0.96 0.95 0.95 0.95 0.94 0.94 0.94 0.94
Semi-plastic (fres = 0.75) 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03
Semi-plastic (fres = 0.50) 1.00 1.02 1.04 1.04 1.05 1.05 1.05 1.05 1.05 1.06
Semi-plastic (fres = 0.25) 1.00 1.02 1.05 1.05 1.06 1.06 1.06 1.06 1.07 1.07
Ideal brittle (fres = 0.00) 1.00 1.03 1.05 1.06 1.06 1.07 1.07 1.08 1.08 1.08
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6

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Semi-plastic (fres = 0.75) 1.00 1.02 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.05
Semi-plastic (fres = 0.50) 1.00 1.02 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.06
Semi-plastic (fres = 0.25) 1.00 1.02 1.04 1.05 1.06 1.06 1.06 1.06 1.06 1.07
Ideal brittle (fres = 0.00) 1.00 1.02 1.04 1.05 1.05 1.06 1.06 1.07 1.07 1.07
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]=
0.
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9

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Semi-plastic (fres = 0.75) 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04
Semi-plastic (fres = 0.50) 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04
Semi-plastic (fres = 0.25) 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04
Ideal brittle (fres = 0.00) 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04
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v.
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0.
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ρ
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n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.91 0.87 0.86 0.85 0.84 0.84 0.84 0.84 0.84
Semi-plastic (fres = 0.75) 1.00 0.95 0.95 0.93 0.93 0.92 0.92 0.92 0.92 0.92
Semi-plastic (fres = 0.50) 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Semi-plastic (fres = 0.25) 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
Ideal brittle (fres = 0.00) 1.00 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06
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]=
0.
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n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.94 0.91 0.90 0.89 0.89 0.89 0.89 0.89 0.89
Semi-plastic (fres = 0.75) 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98
Semi-plastic (fres = 0.50) 1.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03
Semi-plastic (fres = 0.25) 1.00 1.02 1.03 1.04 1.05 1.05 1.05 1.05 1.05 1.06
Ideal brittle (fres = 0.00) 1.00 1.04 1.06 1.06 1.07 1.07 1.08 1.08 1.08 1.08
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n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.96 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94
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Semi-plastic (fres = 0.75) 1.00 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
Semi-plastic (fres = 0.50) 1.00 1.03 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06
Semi-plastic (fres = 0.25) 1.00 1.04 1.06 1.06 1.07 1.07 1.07 1.07 1.07 1.08
Ideal brittle (fres = 0.00) 1.00 1.03 1.05 1.06 1.07 1.08 1.08 1.09 1.09 1.09
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n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
Semi-plastic (fres = 0.75) 1.00 1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.06
Semi-plastic (fres = 0.50) 1.00 1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.06
Semi-plastic (fres = 0.25) 1.00 1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.06
Ideal brittle (fres = 0.00) 1.00 1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.06
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0.
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n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.86 0.81 0.79 0.78 0.77 0.76 0.75 0.75 0.75
Semi-plastic (fres = 0.75) 1.00 0.91 0.89 0.86 0.85 0.84 0.83 0.83 0.83 0.83
Semi-plastic (fres = 0.50) 1.00 0.95 0.95 0.92 0.92 0.91 0.90 0.90 0.90 0.89
Semi-plastic (fres = 0.25) 1.00 0.99 0.98 0.96 0.96 0.94 0.93 0.93 0.93 0.93
Ideal brittle (fres = 0.00) 1.00 1.03 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01

c.
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]=
0.
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n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.91 0.87 0.85 0.85 0.84 0.84 0.83 0.83 0.83
Semi-plastic (fres = 0.75) 1.00 0.96 0.95 0.94 0.94 0.93 0.93 0.93 0.93 0.92
Semi-plastic (fres = 0.50) 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98
Semi-plastic (fres = 0.25) 1.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
Ideal brittle (fres = 0.00) 1.00 1.04 1.05 1.05 1.06 1.06 1.06 1.06 1.06 1.07

c.
o.

v.
[R

]=
0.

2
ρ

R
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j
=

0.
6

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.94 0.93 0.92 0.91 0.91 0.91 0.90 0.90 0.90
Semi-plastic (fres = 0.75) 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
Semi-plastic (fres = 0.50) 1.00 1.02 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06
Semi-plastic (fres = 0.25) 1.00 1.03 1.06 1.06 1.07 1.07 1.07 1.08 1.08 1.08
Ideal brittle (fres = 0.00) 1.00 1.04 1.06 1.07 1.08 1.09 1.09 1.09 1.10 1.10

c.
o.

v.
[R

]=
0.

2
ρ

=
0.

9

n 1 2 3 4 5 6 7 8 9 10

Ideal plastic (fres = 1.00) 1.00 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98
Semi-plastic (fres = 0.75) 1.00 1.03 1.04 1.05 1.06 1.06 1.07 1.07 1.08 1.08
Semi-plastic (fres = 0.50) 1.00 1.03 1.04 1.05 1.06 1.06 1.07 1.07 1.08 1.08
Semi-plastic (fres = 0.25) 1.00 1.03 1.04 1.05 1.06 1.06 1.07 1.07 1.08 1.08
Ideal brittle (fres = 0.00) 1.00 1.03 1.04 1.05 1.06 1.06 1.07 1.07 1.08 1.08

Tab. 4.2.: Values of the additional PSF γSys to take system effects into account within the
PSF concept. γSys needs to be applied to the material strength.

4.5.1. Example application of γSys

To illustrate the application of γSys, it is applied to the example frame of Sec. 4.4.2. The
value of γSys is determined through the following properties of the frame: The frame is
3 times statically overdetermined; therefore, 4 element failures make the frame kinematic
(n = 4). The coefficient of variation of the member resistances is 0.1 and the members are
equicorrelated with a correlation coefficient of 0.3; thus, the values of γSys can be taken
from the fourth column of Tab. 4.2 and the case of c. o. v.[R] = 0.1 and ρRiRj = 0.3. In
the ideal plastic case, γSys is 1.06. In the ideal brittle case, γSys is 0.95.

The frame is redesigned using these values of γSys. The distributions of the member
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resistances R1−5 are determined analogously to Sec. 4.4.1; whereby, γM ·γSys is applied to
the characteristic resistances. The system reliability is re-calculated as in Sec. 4.4.2. The
resulting system reliability indices are:

βSys,plast,γSys
= 4.43 βSys,brittle,γSys

= 3.45 (4.51)

The previously calculated system reliabilities without the application of γSys are βSys,plast =
4.62 and βSys,brittle = 3.20 (see Eqns. 4.40 and 4.41). Hence, both reliability indices are
closer to the target reliability index of 4.3.

4.6. Discussion

As already mentioned, the calibration at hand is not perfect due to necessary simplifying
assumptions; however, it is a step in the right direction. In the following, the most critical
assumptions and their effect on system reliability are discussed. This includes the first,
second, third, and sixth assumptions made in Sec. 4.5 to simplify the list of entities of
equivalence of the generalized Daniels system and general structural systems. For each
assumption, it is discussed whether it is conservative or not and whether the derived values
of the additional PSF γSys should therefore be higher or lower? The two assumptions (four
and five) made in Sec. 4.5 are considered to be reasonable simplifications that do not need
further discussion.

The first assumption (only one dominant failure mechanism is present), can be considered
reasonable in most cases for the following reason: It is rarely the case that two or more
similarly likely failure mechanisms exist. However, in the rare cases where two or more
similarly likely failure mechanisms exist, these failure modes usually partly depend on the
same element failures. Therefore, the respective failure domains overlap and the system
failure probability is only slightly larger than the probability of the individual failure
mechanisms. This is, e.g., the case in the example frame (see sec. 4.4.2.1 and 4.4.2.2).
Hence, this assumption is critical only if two or more similarly likely failure modes exist
that also do not depend on the same element failures. In the author’s experience, this is
rarely the case.

The second assumption (the consideration of global failure mechanisms only) is a con-
servative assumption if the corresponding γSys is greater than 1, which is the case for
predominantly brittle structures. It is a non-conservative assumption if the corresponding
γSys is smaller than 1, which is the case for predominantly plastic structures. This is for
the following reason: Local failure mechanisms include fewer or equal numbers of element
failures than global failure mechanisms. Therefore, the subsystem containing the local
failure mechanism has a smaller or equal n than the whole system. In the case of predom-
inantly brittle structures, γSys is strictly monotonically increasing with increasing n and,
therefore, the value of γSys one would apply to the subsystem is smaller than the value
of γSys that is applied to the whole structure; hence, the subsystem is designed with a
greater γSys than intended. In the case of predominantly plastic structures, γSys is strictly
monotonically decreasing with increasing n. This leads to a design of the subsystem with
a smaller γSys than intended. However, the associated failure is “only” a local failure and
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not a global failure mode of the whole structure.

The combination of the third and sixth assumptions is considered to be the most critical
assumption. These assumptions include the assumption of a load distribution proportional
to the element strength at all damage states of the structural system. When it comes to
plastic material behavior, this assumption is always satisfied, as shown in Sec. 4.4.2.1.
However, when the considered material is brittle or semi-plastic, this is a non-conservative
simplification for the following reason: The PSF concept may lead to a load distribution
that is proportional to the member strength in the undamaged state of the structure,
but after a member fails, the load redistributes non-proportional to the member strength.
This favors cascading failures of the system. The investigated frame structure takes this
into account by making the horizontal bar of the Daniels system rotatable, allowing for
non-proportional load distributions (see Fig. 4.27 and 4.28). However, such a modification
of the Daniels system is not considered within the derivation of γSys. Therefore, the values
of γSys are non-conservative in the case of predominantly brittle structures.

Overall, the values of γSys are non-conservative. How much the values are non-conservative
is difficult to determine. To answer this question, a large amount of real structures would
have to be investigated. The author estimates the values of γSys to be slightly non-
conservative for predominantly plastic structures and slightly more but still not strongly
non-conservative for predominantly brittle structures. For predominantly plastic struc-
tures, this non-conservatism is critical because the values of γSys are below 1, reducing the
system-resistance more than it should be compared to the design without the application
of γSys. For predominantly brittle structures, this non-conservatism is not critical because
the values of γSys are above 1, hence, the system resistance is increased compared to the
standard case; however, it may not be as much as it should be.

4.7. Conclusion

An additional PSF γSys is introduced to take system effects into account without leaving
the framework of the PSF concept. It is derived by means of a generalized Daniels system.
γSys leads to a homogenization of the safety level. Due to necessary simplifications, the
homogenization is not perfect; however, overall, it is a step in the right direction.

γSys depends on the static over-determination of the system, its material behavior, the
coefficient of variation of the material strength, and the correlation of the involved element
failure mechanisms. The last two quantities may not be given within an PSF design and
have to be determined separately. If γSys would be included within a structural code,
recommendations for these quantities for different structural systems need to be derived.

The majority of values of γSys is close to 1. This is a reassuring result, as it shows that the
majority of current PSF designs are not very far from the target reliability due to system
effects. Neither material wastage due to overdesign nor unsafe structures usually occur.
It should be noted, however, that the values of γSys are slightly non-conservative, hence,
the result is not as reassuring as one would wish for.
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Overall, the application of γSys may not be worth the effort in most cases. Exceptions
may be larger or more critical structural systems (e.g., bridges) or structural systems
that are built multiple times (e.g., prefabricated houses). In some cases γSys has rather
low values up to 0.75 (high static overdetermination, high plasticity of the material, high
coefficient of variation of the material strength, and low correlation between element failure
mechanisms). In these cases, a high saving potential of resources could be exploited;
however, the application of γSys is not needed due to safety issues. In other cases γSys

reaches values up to 1.10 (high static overdetermination, low plasticity of the material,
low coefficient of variation of the material strength, and high correlation between element
failure mechanisms). In these cases, the application of γSys is recommended to ensure
sufficient safety of the structure.
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5. Effects of non-linearities in codified design

The PSFs of the Eurocode are intended to be used with linear models. They are calibrated
such that, on average, the desired target reliability is achieved for the case of linear models
[38, 61, 76]. In practice, they are also applied to non-linear models. This is in agreement
with the PSF concept [38,69]. Except for extreme cases of non-linearities, the PSF concept
would result in sufficiently safe structures if each quantity had its own calibrated PSF.
However, in practice, PSFs cover the uncertainty of multiple quantities. In particular,
Eurocode merges the PSFs of the action γf and the structural model γSd and the PSFs
of the material strength γm and the resistance model γRd respectively (see Eqns. 2.6-2.7).
This raises the questions of how these PSFs should be applied in the presence of non-linear
models and if a sufficiently safe design can still be achieved.

The application of a PSF to a non-linear model can in principle be done in two different
ways: The PSF can be applied to the argument or to the responses of the non-linear
function. This refers to the two basic design options described in Eqns. 2.8-2.10. Both
basic options can lead to a reliability below and above the target reliability. Structural
design codes typically try to overcome this issue by choosing the more conservative of the
two design options (e.g., [25]). In some cases, this may lead to overdesign. In other cases,
the more conservative of the two options might still lead to insufficient reliability. This
issue is the research question of this section: How do non-linear models affect structural
reliability for the two basic design options? The question is investigated for one- or two-
dimensional structural response functions tS . The resistance model tR is assumed to be
linear and through the origin. Investigations of non-linear resistance models can be found,
e.g., in [151–154].

Previous research on non-linear models applied within the PSF concept focuses mainly
on reinforced concrete structures. The reinforced concrete research community has devel-
oped multiple methods to adapt PSF design and thereby provide alternatives to the two
above-mentioned design options. The most popular method is the estimated coefficient of
variation method (ECOV) [155]. It is based on an estimate of the coefficient of variation
of the resistance via the mean and the characteristic material strength. Other methods
can be found in [57, 151, 156, 157]. These methods are well investigated through various
application studies (e.g., [152, 154, 158, 159]). More abstract and material independent
investigations on the effects of non-linear models on reliability are not known to the au-
thor. Only a paper by Bakeer [160] partly covers this issue. The purpose of this section
is to provide such abstract and material independent investigations. Thereby, the focus
is on the two above-mentioned basic design options. Alternative design options, such as
those offered by the reinforced concrete research community, could be generalized and
investigated as well, but this is beyond the scope of this thesis.

Within this section, it is assumed that the nominal structural model and the nominal
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resistance model are equal to the respective purely aleatoric models; hence, tS,EC = tS and
tR,EC = tR. Moreover, it is assumed that the nominal material models and the nominal
action models are equal to the respective purely aleatoric models; hence, MEC = M and
LEC = L and, therefore, mk,EC = mk and lk,EC = lk.

In summary, the research question of this section focuses on the two LSF (one- and two-
dimensional action cases)

g(M,L) = γM · ed

mk
·M − tS(L1) (5.1)

g(M,L1,L2) = γM · ed

mk
·M − tS(L1,L2) (5.2)

derived following Sec. 2.3.2.2. L, L1, L2 are actions, M is the material strength, γM is the
PSF of the resistance side, mk is the characteristic value of the material strength and ed

is the design action effect.

In the one-dimensional action case, ed is determined following Eqns. 2.8-2.9 as

Design option (1) (prior to tS): ed = tS(γF · lk) (5.3)
Design option (2) (posterior to tS): ed = γF · tS(lk) (5.4)

where γF is the PSF of the action side and lk is the characteristic value of the action.

In the two-dimensional action case, design option (1) directly follows from the one-dimen-
sional case and is defined as

Design option (1) (prior to tS): ed = tS(γF 1 · lk1, γF 2 · lk2) (5.5)

where γF 1 and γF 2 are the PSFs of the action side and lk1 and lk2 are the characteristic
values of the actions. Design option (2) is not as straightforward to be transferred to
the two-dimensional case. Hereby, the German national annex of Eurocode 0 [161] is
used, which applies the PSF of the dominating action to the action effect and applies
the remaining PSFs directly to the action; however, scaled by the PSF of the dominating
action. Hence, design option (2) in the two-dimensional case is defined as

Design option (2) (posterior to tS): (5.6)

ed = max
{
γF 1 · tS

(
lk1,

γF 2
γF 1

· lk2

)
,

γF 2 · tS
(
γF 1
γF 2

· lk1, lk2

)}

To answer the research question of how these design options affect reliability, this section
is structured as follows: First, it is explained how the Eurocode decides between design
options (1) and (2) (Sec. 5.1). Second, existing measures of non-linearities and their effect
on structural reliability are reviewed and a novel measure is introduced (Sec. 5.2). Next,
a generic general parameter study (Sec. 5.3) on the effects of non-linear structural models
is conducted. Eventually, two example applications 5.4 are conducted. The investigations
are mainly based on the following publications of the author: [162–165]. Various proposals
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on how the novel measure of non-linearity could potentially be included in the PSF concept
are given in the conclusions of this section.

5.1. Eurocode approach for non-linear structural models

Eurocode [25] does not give clearly defined mathematical instructions when to use design
option (1) or (2). It only states to use design option (1) if “the action effect increases
more than the action” and option (2) if “the action effect increases less than the action”.
The background document Designers’ Guide to Eurocode: Basis of Structural Design [166]
specifies this mathematically as follows:

use option (1) if: tS(γF · lk) > γF · tS(lk) (5.7)
use option (2) if: tS(γF · lk) < γF · tS(lk) (5.8)

The instructions of Eurocode lead to some open questions when it comes to the classifi-
cation of non-linearities:

One question is how to deal with initial actions such as prestress: The relationship between
actions and their effects might be linear for values of actions above 0; however, under initial
actions, tS is highly non-linear at the origin (see Fig. 5.1). According to Eurocode [25]
this case is interpreted as linear. The background document of Eurocode [166] implies a
non-linearity, leading to design option (2).

L

E

Fig. 5.1.: Relationship between actions and their effects in the presence of an initial action.

Another ambiguity arises if tS has a change of curvature (see Fig. 5.2). This can, e.g.,
be the case when a structure is dominated by softening effects at lower load levels, but is
dominated by hardening effects at higher loads. Here, the Eurocode [25] does not provide
a classification of tS . The background document of Eurocode [166] can lead to both design
options, depending on the value at which the function has the change of curvature.

A third question is how to treat the case of multiple actions. This case is not covered by
Eurocode 0 [25] nor the background document [166]. The German national annex [161]
provides two design options defined analogously to the design option for the 2-dimensional
action case of Eqns. 5.5-5.6 for the 2-dimensional action case. A specific rule for when to
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L

E

Fig. 5.2.: Relationship between actions and their effects in the presence of a change in
curvature.

choose which design option is not given for the multidimensional case. Here, the author
interprets the Eurocode such that the maximum ed following from design options (1) and
(2) should be chosen.

5.2. Proposal of new measures of non-linearity

Two new measures of non-linearity are proposed. The first measure is applicable within
the semi-probabilistic setup of the PSF concept. The second measure is only applicable
within a probabilistic setup and, therefore, not discussed in detail as the PSF concept is
the main focus of this thesis. Existing measures are reviewed beforehand.

5.2.1. Review of existing measures of non-linearity

Multiple measures of the non-linearity of a function can be found in the literature, e.g.,
[167–171]; however, proposals for measures applicable within the PSF concept are sparse.
The author is only aware of two measures: Two measures introduced by Uhlemann [172]
and Bakeer [160].

The measure n introduced by Uhlemann was further investigated by [173] and eventually
included in the background document of the Eurocode Prospect for European Guidance
for the Structural Design of Tensile Membrane Structures [174] as follows:

n = tS(f · lk)
f · tS(lk) (5.9)

Here, f is an arbitrary load increase factor. Based on the value of n different design
options are recommended [174]:

n


= 1 use option (1) or option (2) (linear case)
> 1 use option (1)
< 1 use option (2)

(5.10)
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If f = γF , the rules for which design option to choose are equivalent for the Designers’
Guide (Eqns. 5.7 and 5.8) and Uhlemann (Eqn. 5.9).

The measure nF introduced by Bakeer is called the degree of homogeneity. It is derived
via a first order Taylor series expansion of tS mapped into log-space at the design point.
This results in a measure of the relative change of the effect of action to the relative change
of the action at the design point:

nF = γF · lk
tS(γF · lk) · dtS(γF · lk)

dl (5.11)

which can be approximated via

nF ≈ 1
ln(γF ) · ln

(
tS(γF · lk)
tS(lk)

)
(5.12)

If nF = 1 the measure indicates tS to be linear. If nF > 1 the measure indicates γF ·tS(lk) <
tS(γF · lk) which is linked to design option (1). If 0 < nF < 1 the measure indicates
tS(γF · lk) < γF · tS(lk) which is linked to design option (2).

The measure can analogously be defined on the resistance side to measure the non-linearity
of tR. Moreover, the measure is also applicable in the case of multiple actions, leading to
a measure of the partial degree of homogeneity per applied action.

Both measures struggle with the prediction of reliability. If the measures have the same
value, they can be related to very different reliabilities. To visualize this issue, Fig. 5.3
shows different tS , which share the same measure n and nF respectively. These different tS
may result in very different structural reliabilities. However, in defense of both measures,
it should be noted that it is impossible to fully satisfy this requirement. Why this is the
case can be seen from the parameter studies in Sec. 5.3.

ldlk

tS(l)

γF

γF
tS(γF · lk)

tS(lk)

γF · tS(lk)

l

ld

tS(l)

tS(ld)

l

Fig. 5.3.: Different non-linear tS that share the same measure of non-linearity n (left) and
nF (right). The tS in the left illustration results in the same measure n since
they share the same action effect at characteristic and design actions. The tS in
the right illustration results in the same measure nF since they share the same
action effect and the same gradient at design action.
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5.2.2. Semi-probabilistic measure of non-linearity

The new proposed semi-probabilistic measure of non-linearity is based on the values of
the PSF concept, namely the characteristic actions and design actions and their respective
action effects. The measure is defined in terms of limit states with one or two actions. The
measure is defined such that it can be included in the PSF concept to provide assistance
on what design option to choose. However, an explicit proposal for inclusion is not given,
as this would require an in-depth code calibration that is beyond the scope of this thesis.
Potential future inclusions are indicated in the discussion (Sec. 5.5).

In the case of a single action, the measure consists of two components, the offset measure
y0 and the curvature measure κ (Fig. 5.4 illustrates y0 and κ):

y0 = tS(0)
tS(lk) (5.13)

κ = (tS(ld) − tS(lk)) · lk
(tS(lk) − tS(0)) · (ld − lk) (5.14)

L

E

lk ld

m2 = ed−ek
ld−lk

m1 = ek−e0
lk

ek

ed

e0

κ = m2
m1

y0 = e0
ek

Fig. 5.4.: Measures y0 and κ to classify the non-linearity of tS in the case of one action.

In the case of two actions, the measure consists of six components, the offset measure y0,
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the curvature measures κ1, κ2, κ12, and the ratio measures r1, r2:

y0 = tS(0,0)
tS(l1k,l2k) (5.15)

κ1 = (tS(l1d,0) − tS(l1k,0)) · l1k

(tS(l1k,0) − tS(0,0)) · (l1d − l1k) (5.16)

κ2 = (tS(0,l2d) − tS(0,l2k)) · l2k

(tS(0,l2k) − tS(0,0)) · (l2d − l2k) (5.17)

κ12 = (tS(l1d,l2d) − tS(l1k,l2k))
(tS(l1k,l2k) − tS(0,0)) ·

√
l21k + l22k√

(l1d − l1k)2 + (l2d − l2k)2 (5.18)

r1 = tS(l1k,0) − tS(0,0)
tS(l1k,l2k) − tS(0,0) (5.19)

r2 = tS(0,l2k) − tS(0,0)
tS(l1k,l2k) − tS(0,0) (5.20)

The interpretation of the components of the measures is as follows: y0 is a measure of the
amount of initial actions (e.g., due to prestress). If y0 = 0 no initial action is present. If
y0 = 1 the action effect of the initial action is equal to the action effect of the characteristic
action. κ is a measure of the curvature at the characteristic action. If κ > 1 then tS is
classified to be convex, if κ = 1 then tS is classified to be without curvature and if κ < 1
then tS is classified to be concave. Similar, κ1 and κ2 measures the curvature of tS at
(l1k,0) and (0,l2k) in the direction of the respective action. κ12 measures curvature of tS at
(l1k,l2k) in the directions of the origin and the design point (l1d,l2d), respectively. r1 and
r2 measure the ratio of the action effect if only one characteristic action is applied, relative
to the case where both characteristic actions are applied. If r1 = r2 the action effect of
only action 1 or action 2 applied is the same. If r1 > r2 or r1 < r2 the action effect of
action 1 or action 2 applied solely is greater than the respective other action applied solely.
If r1 + r2 = 1 then tS is approximately linear regarding actions below the characteristic
value. If r1 + r2 > 1 then tS is approximately convex in the perpendicular direction of the
combined action regarding actions below the characteristic action level (the superposition
of both actions is below the linear case). If r1 + r2 < 1 tS is approximately concave in the
perpendicular direction of the combined action regarding actions below the characteristic
action level (the superposition of both actions is above the linear case).

The measure can be extended to more than two actions; however, this is not part of
this thesis. It is rather intended to show that not all components of the two-dimensional
dimension measure and, therefore, only two components of higher-dimensional measures
are of primary interest. These two components are the measure of the initial load and the
measure of the curvature in the direction of all actions. In the two-dimensional case, these
are y0 and κ12. Sec. 5.3.2 investigates if this guess can be confirmed.

The proposed measure is straightforward to apply within the PSF concept for the following
reason: It is exclusively based on evaluations of the structural response function tS at the
characteristic and design actions. Those evaluations are already necessary within a PSF
design.
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It would be desirable that similar structural reliabilities result from different limit states
that share the same measure of non-linearity. However, this desire can unfortunately not
be fulfilled for the proposed measure, as can be seen from the numerical investigations
in Sec. 5.3. The main reason for this is that the probability of failure does not only
depend on tS but also on tS interacting with (semi)-probabilistic properties, i.e., the
choice of characteristic values, the PSFs, and the distributions of the actions and material
strengths. However, one can argue that the proposed measure is a better predictor of
reliability than the measures of Eqns. 5.9 and 5.11 for the following two reasons: First, κ
is based on evaluations of tS at three points (0, lk and ld). This captures the non-linear
behavior of tS more globally than the measure n which is based on evaluations at lk and
ld only and the measure nF which is based on evaluations (including the first derivative)
at ld only. Similar holds for the two-dimensional case. Secondly, y0 accounts for different
starting conditions at zero load level. In contrast, the measure n ignores different starting
conditions and the measure nF includes them only implicitly through the term γF ·lk

tS(γF ·lk) .

5.2.3. Probabilistic measure of non-linearity

The proposed probabilistic measure of non-linearity is defined as the ratio of the ap-
proximated probability of failure calculated via FORM to the exact probability of failure
(Pr(F )F ORM

Pr(F ) ). This measures the effect of non-linearity of the limit state surface in stan-
dard normal space on the probability of failure. The non-linearity of the limit state surface
in standard normal space is influenced by the non-linearity of tS as well as the distribu-
tion type of the load and the material strength. Pr(F )F ORM

Pr(F ) is 0 for linear tS through the
origin and normal distributed actions and material strengths. If Pr(F )F ORM

Pr(F ) < 1, the limit
state surface is dominated by a convex form. If Pr(F )F ORM

Pr(F ) > 1, the limit state surface is
dominated by a concave form.

This measure is not suitable for application within a design following the PSF concept
but is more of a research interest. In contrast to the proposed measure of Sec.5.2.2 and
the measures of Uhlemann [172] and Bakeer [160], non-linearity is not directly measured
with respect to tS but with respect to the limit state surface in standard normal space.
Therefore, also the non-linearity of the resistance model tR and the non-linearity due to
the distribution types of the involved random variables in the original space is considered.
The non-linearity is not measured in terms of function evaluations nor derivatives – as it
is the case for the proposed measure and the measures of Uhlemann and Bakeer – but
measured with respect to the probability mass within the failure domain defined via the
limit state surface. For this reason, it can be argued that this measure is better when the
quantity of interest is the reliability.

It should be noted, that Pr(F )F ORM

Pr(F ) is always equal to 1 if only one action is present. In
this case the limit-state surface is just a point on a 1-dimensional axis. Therefore, the
measure of non-linearity is not very meaningful in the one-dimensional action case.
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5.3. Parameter studies on non-linear structural models

In the following, various studies are conducted to investigate how different amounts of
non-linearity (measured via the newly proposed measure of non-linearity) affect structural
reliability.

All considered studies are calibrated such that a target reliability index of βT RG = 4.3
is achieved in the linear case. The calibration is conducted by adjusting the PSF of the
resistance side γM such that βT RG is met in the linear case. In the one-dimensional action
case, the linear case is defined as any linear function with κ = 1 and y0 = 0. Note that any
linear structural response function leads to the same structural reliability because of the
invariance of the structural reliability to scaling (see Eqn. 2.38-2.39). Therefore, any linear
structural response function can be used for this calibration, resulting in the same γM . In
the two-dimensional action case, the linear structural response function is defined as the
structural response function that forms a plane spanned by two straight lines through the
origin and the points (l1k, 0, tS(l1k, 0)) and (0, l2k, tS(0, l2k)). The six non-linear measures
of this plane are y0 = 0, κ1 = 1, κ2 = 1, κ12 = 1. The values of r1 and r2 depend on the
angle of the plane. Hence, the values of r1 and r2 are not only varying for different non-
linear tS but also for different linear tS . Therefore, γM is chosen differently for different
values of r1 and r2. The reason for this is that – even in the linear case – two actions
applied in various ratios can lead to the same design but different structural reliabilities.
This effect occurs in practice but is filtered out in this work through the calibration of γM

in order to isolate the non-linear effect.

βT RG = 4.3 is in the common range of structural reliability index targets [61, 108]. Fol-
lowing [61] βT RG is defined with respect to a reference period of 1 year. However, the
subsequent parameter studies are not sensitive to the value of βT RG. Similar results
would be obtained, e.g., for the target reliability index following Eurocode 0 [25] of 4.7 (1
year) or 3.8 (50 years).

If the structural response functions tS is non-linear, the resulting structural reliability
can deviate from the target value. This can be the case for both design options (1) and
(2). If the resulting reliability indices are above/below βT RG = 4.3 one can consider the
design to be conservative/non-conservative. The main focus of the subsequent studies is
to investigate systematically under which conditions each design option is conservative or
non-conservative.

5.3.1. One-dimensional action case

In the one-dimensional action case, first a base case is defined and investigated. Afterward,
various other cases are investigated by varying one property of the base case at a time.
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5.3.1.1. Base case

In the base case, a bi-linear functional form of tS is defined with respect to different values
of the curvature measure κ between 0 and 2. The offset measure y0 is set to 0. The
investigated tS are shown in Fig. 5.5. Such bi-linear functional forms can, for example,
occur in structures that are analyzed by first-order plastic hinge theory. In general, non-
linear structural response functions typically have a much more complex functional form.
However, as it will be shown in the subsequent Sec. 5.3.1.2 (where the bi-linear form is
replaced with a quadratic one), the structural reliability is not very sensitive to the exact
functional form. This is also confirmed by [164], where the structural response function of
a membrane is compared to a quadratic approximation of the structural response function.
Hence, it is not critical that the utilized functional forms do not exactly cover the structural
response functions used in practice but only approximate their non-linear behavior.

L

E

lk ld

0

κ =

0.25
0.5
0.75
1
1.25
1.5
1.75
2

Fig. 5.5.: Bi-linear functional form of ts of the base case for κ = 0, 0.25, 0.5, . . . , 2.

In the base case, the material strengthM follows a log-normal distribution with c. o. v.[M ] =
0.1 and the action L follows a Gumbel distribution with c. o. v.[L] = 0.3.1 The character-
istic action lk is chosen as the 98% quantile of L and the PSF of the action side γF is 1.5.
The characteristic material strength mk is chosen as the 5% quantile of M .

Fig. 5.6 shows the reliability indices for the base case designed following design options
(1) or (2). The reliabilities are calculated via LSF of Eqn. 5.1. In the base case, both
design options are conservative for κ < 0 and non-conservative for κ > 0. The approach
of Eurocode 0 [25] chooses the more conservative of the two design options in both cases.
For κ < 0 this would result in strong over-design and for κ > 0 in slight under-design.

Fig. 5.7 shows the limit state surfaces in standard normal space and compares the FORM
design points to the design points implied by the PSF concept for different values of κ.
Values of κ above 1 do not lead to strong non-linearities of the limit state surface. For
values of κ below 1 the limit state surface becomes strongly non-linear.2 The FORM

1The probability of failure is invariant to the choice of the mean values; hence, the mean values can be
chosen arbitrary.

2Although the limit state surface looks linear in the case of κ = 1, it is slightly non-linear in standard
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Fig. 5.6.: Reliability indices for the base case designed following design options (1) (red)
or (2) (green).

design points and the design points implied by the PSF differ significantly in most cases,
including the linear case. This hints at an imperfect choice of PSFs; however, PSFs are
often suboptimal in specific design situations, hence, this is not unrealistic. The case of a
more ideal PSF is studied below in Sec. 5.3.1.6.

5.3.1.2. Effect of the functional form of the structural response function

To investigate the effect of the structural response function, the functional form of tS is
altered from bi-linear to quadratic. Fig. 5.8 shows the resulting functions tS for different
values of κ. For κ < 1 the resulting tS have a maximum and, therefore, drop to zero and
become negative at higher load levels. If κ is only slightly below 1, the decreasing/negative
part of tS is at rather high load levels, which are too unlikely to be of interest. However,
when κ becomes lower, the decreasing/negative part of tS occurs at load levels likely
enough to be of interest. These tS might be unrealistic. However, for the sake of coherence
and comparability with the bi-linear case, these cases are also covered.

Fig. 5.9 shows the resulting reliability indices. For κ < 1 both design options are more
conservative than in the base case with bi-linear tS and for κ > 1 less conservative;
however, the differences are only marginal. Fig. 5.10 shows the limit state surfaces for
different values of κ. The limit state surfaces are again almost linear for κ > 1 and highly
non-linear for κ < 1.

Comparing Fig. 5.6 and 5.9 one can observe that the functional form of tS seems to have
little effect on the structural reliability for given κ and e0 = 0. Similar can be observed
for other functional forms of tS .

normal space. In the original space, this LSF is exactly linear.
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Fig. 5.7.: Limit state surfaces in standard normal space of the base case for different values
of κ following design options (1) (red) or (2) (green). Stars represent the FORM
design points and dots represent the design points implied by the PSF concept.
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Fig. 5.8.: Quadratic functional form of ts for κ = 0, 0.25, 0.5, . . . , 2.
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Fig. 5.9.: Reliability indices in the case of quadratic tS following design options 1 (red) or
2 (green).
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Fig. 5.10.: Limit state surfaces in standard normal space in the case of quadratic tS for κ =
0, 0.25, 0.5, . . . , 2 following design options 1 (red) or 2 (green). Stars represent
the FORM design points and dots represent the design points implied by the
PSF concept.
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5.3.1.3. Effect of initial actions

To evaluate the effect of initial actions, different values of the offset measure y0 = 0.2, 0.4, 0.6
or 0.8 are considered. Initial actions can, for example, be caused by prestressing. More-
over, deterministic permanent actions (e.g., dead weight) can be interpreted as initial ac-
tions. This includes permanent loads deterministically, which is in contrast to Eurocode 0
that includes permanent loads semi-probabilistically; however, since the uncertainties of
permanent loads are typically small, this can be considered a good approximation.

It should be noted that the PSF γL is applied to the action effect when it comes to design
option (2) and thus also to the initial load. In contrast, the γL is not applied to the initial
load when it comes to design option (1).

Fig. 5.11 shows the resulting reliability indices. High values of y0 indicate large initial
actions. With increasing y0, both design options become significantly more conservative,
leading to strong over-design. The only exception occurs with design option (1) when
the value of κ is rather low (κ ≲ 0.5); however, this is only relative to the base case. In
absolute terms, the resulting reliability indices are still conservative. Overall, the amount
of initial actions has a significant effect on reliability. This issue is typically not covered
by PSF codes (e.g., [25, 54]).
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Fig. 5.11.: Reliability indices in case different y0 following design options 1 (red) or 2
(green).

117



5.3.1.4. Effect of the distribution types

In this section, the distribution type of the action L and the material strength M of the
base case are altered from Gumbel and log-normal to both being normal. The resulting
reliability indices shown in Fig. 5.12 strongly differ from the base case. Now, design
option (1) is non-conservative for κ < 1 and conservative for κ > 1. Design option (2) is
still conservative for κ < 1 and non-conservative for κ > 1; however, the conservatism is
significantly less than the base case for κ < 1. In this case, the approach of Eurocode 0 [25]
to respectively choose the more conservative of the two design options is satisfactory.

κ

β

βT RG

0 0.5 1 1.5 23

3.5

4

4.5

5

5.5

6

Fig. 5.12.: Reliability indices in the case of L and M being normally distributed (design
options 1 (red) and 2 (green)).

5.3.1.5. Effect of the uncertainty of action and material

To investigate the uncertainty of action and material, the coefficient of variation of the
action L is altered between 0.1, 0.3, and 0.5 and the coefficient of variation of the material
strength M is altered between 0.05, 0.10, and 0.15. This covers the typical range of
coefficients of variation of the action and resistance side [108]. The resulting reliability
indices are very sensitive to these changes (see Fig. 5.13). In general, the more the design
situation is dominated by the uncertainty of the action side (c. o. v.[L] >> c. o. v.[M ]), the
greater the deviation from target reliability βT RG is.

Especially the reliability resulting from design option (1) shows high sensitivity to the
values of c. o. v.[L] and c. o. v.[M ]: The ranges of κ for which option (1) is conservative or
non-conservative can switch: If the design situation is dominated by the uncertainty of the
action design, option (1) is conservative for κ < 1 and non-conservative for κ > 1. With
less domination of the action (e.g., graph in the left column of Fig. 5.13) this characteristic
switches and design option (1) is non-conservative for κ < 1 and conservative for κ > 1.

Structural design codes typically only provide different PSF for different coefficients of
variation of action and resistance but do not provide different non-linear design procedures
[25,54]. The next section shows the case if the PSF is adjusted.
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Fig. 5.13.: Reliability indices in the case of c. o. v.[L] = 0.1, 0.2, ..., 0.5 and c. o. v.[M ] =
0.05, 0.1, ..., 0.25 (design options 1 (red) and 2 (green)).

5.3.1.6. Effect of the values of the partial safety factors

In this study, the values of the PSFs are altered – without changing the target reliability –
such that the design point and the FORM design point coincide in the linear case; hence,
the dot and the star in the middle row and middle column of Fig. 5.7 lie on top of each
other. This can be interpreted as a more ideal choice of PSFs. The study is repeated
for different combinations of the coefficients of variation of the action and the material
strength, as in Sec. 5.3.1.5. Fig. 5.14 shows the resulting PSFs and the resulting reliability
indices.

The resulting reliability indices of design option (1) differ significantly from those observed
with fixed PSFs (Fig. 5.13). For κ ≲ 0.5 design option (1) is non-conservative in all
considered cases. If κ ≳ 0.5 the resulting reliability indices are very close to the target
reliability index. This “convergence” is more rapid if c. o. v.[L] >> c. o. v.[M ].

The resulting reliability indices of design option (2) are unaffected by the values of the PSFs
compared to the case of less ideal PSFs (Fig. 5.13). This is because only the individual
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Fig. 5.14.: Reliability indices in the case of a PSF chosen such that the FORM design
point and design point implied by the PSF concept coincide in the linear case
(design options 1 (red) and 2 (green)).

values of γM and γL differ but not their product γM · γL; hence, the design resulting from
option (2) is unaffected.

5.3.2. Two-dimensional action case

This section investigates the two-dimensional action case. The material strength M is
chosen to be log-normally distributed with COV[M ] = 0.1 The actions L1 and L2 are
chosen to be Gumbel distributions with COV[L1] = COV[L2] = 0.3. M , L1 and L2 are
assumed to be independent.

Analogously to the one-dimensional action case, the characteristic actions l1k and l2k are
defined as the 98% quantile values of L1 and L2, the characteristic material strength is
defined as the 5% quantile of M and the PSFs associated with the actions are chosen as
γL1 = 1.5 and γL2 = 1.5. The PSF on the material strength is chosen such that a target
reliability of βT RG = 4.3 is achieved in the corresponding linear LSF. The corresponding
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linear LSF is defined by a tS that is a plane spanned by two straight lines through the
origin and the points (l1k, 0, tS(l1k, 0)) and (0, l2k, tS(0, l2k)). The offset measures and the
curvature measures of this plane are y0 = 0, κ1 = 1, κ2 = 1, and κ12 = 1. The values
of r1 and r2 depend on the angle of the plane. Hence, the values of r1 and r2 are not
only varying for different non-linear tS but also for different linear tS . Therefore, γM is
chosen differently for different values of r1 and r2. The reason for this is that – even in
the linear case – two actions applied in various ratios can lead to the same design but
different structural reliabilities. This effect occurs in practice, but is filtered out in this
work through the calibration of γM in order to isolate the non-linear effect.

A portfolio of non-linear structural response functions tS is investigated. The portfolio
is generated through various combinations of the measures of non-linearity as follows:
y0 ∈ {0,0.2, . . . ,0.8}, κ1 ∈ {0,0.25, . . . ,2}, κ2 ∈ {0,0.25, . . . ,2}, κ12 ∈ {0,0.25, . . . ,2}, r1 ∈
{0.1,0.3, . . . ,0.9}, and r2 ∈ {0.1,0.3, . . . ,0.9}. Since r1 < 1 and r2 < 1, only cases in which
the combined action effect is greater than the individual action effect at the characteristic
action level are considered; however, since κ1 and κ2 can be smaller than κ12, the combined
action effect might be lower than the individual action effect at higher action levels.

Given a combination of the measures of non-linearity, tS is defined as a bi-linear func-
tion along each axis of action and the combined direction; hence, tS is defined such
that it forms three straight lines from (0,0,tS(0,0)) towards the characteristic points
(l1k, 0, tS(l1k, 0)), (0, l2k, tS(0,l2k)), and (l1k, l2k, tS(l1k,l2k)), which then change direction
towards (l1d, 0, tS(l1d, 0)), (0, l2d, tS(0,l2d)), and (l1d, l2d, tS(l1d,l2d)). In between those lines
tS is linearly interpolated parallel to the non-dominating action direction. Fig. 5.15 shows
possible variations of tS .

The probability of failure of each structural response function within the considered port-
folio is calculated via the LSF of Eqn. 5.2. Fig. 5.16 shows box-plots of the structural
reliability indices resulting from design options (1) and (2). Moreover, it shows the struc-
tural reliability indices resulting from the maximum design values of options (1) and (2),
which correspond to the design choice of Eurocode. In the majority of cases, Eurocode
follows design option (2).

The smaller the range of a box-plot (i.e., ranges between maximum and minimum value
or between the 25 % and 75 % quantile), the better the resulting structural reliability can
be predicted via the respective measure of non-linearity. Box-plots that only marginally
change with respect to varying values of a non-linearity measure indicate that the resulting
structural reliability is not sensitive to this measure. This is the case for κ1 and κ2.

The influence of y0, κ1, κ2, κ12, r1, and r2 on the reliability index β is studied in detail
via a variance-based global sensitivity analysis. The first-order Sobol indices Si and the
total order Sobol indices ST

i are calculated as

Si = Var [E [β|Xi = xi]]
Var [β] (5.21)

ST
i = Var [E [β|X−i = x−i]]

Var [β] (5.22)

where Xi represents one measure of non-linearity and the vector X−i represents all but
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Fig. 5.15.: Measures y0, κ1, κ2, κ12, r1, and r2 to classify the non-linearity of tS in the
case of two actions.

one measure of non-linearity.

The first-order Sobol indices measure how much of the variance of the structural reliability
is directly caused by each variance of the measures of non-linearity. The total-order Sobol
additionally takes all variance with other measures of non-linearity into account. The
resulting Sobol indices are shown in Tab. 5.1.

The first-order Sobol indices sum up to ∑(Si) = 0.95 and ∑(Si) = 0.84 for design options
(1) and (2), respectively. In general, the first Sobol indices of independent input variables
sum up to a maximum of 1. The difference 1 −

∑(Si) = 0.05 and 1 −
∑(Si) = 0.16 (for

design options (1) and (2), respectively) measures the effect on structural reliability due
to interactions of the measures of non-linearity. These numbers are low, indicating limited
interaction. Which of the measures of non-linearity is responsible for the interaction can
be understood by comparing the first-order Sobol indices to the total-order Sobol indices.
This shows that r1 and r2 are the measures with the highest amount of interaction.

Remark: The uniform discretization of the measures of non-linearity to generate the port-
folio mimics a uniform distribution of the measures of non-linearity. However, uniform
distributions are certainly not a realistic assumption. The considered portfolio should
therefore not be considered representative. Consequently, the box-plots shown in Fig.
5.16 are not representative. The parameter study should rather be understood as a gen-
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Fig. 5.16.: Box-plots of the structural reliability indices within the considered portfolio
of non-linear structural response functions of design option (1) (red), design
option (2) (green) and the design resulting from the maximum of design value
of design option (1) or (2) (blue).

eral investigation of what can happen if non-linear structural models are used within the
design.

Further remark: The two actions applied are symmetric, in the sense that they have the
same mean, the same variance and the same distribution type. If the two actions would be
asymmetrically, smaller Sobol indices for r1 and r2 are expected. Moreover, greater Sobol
indices for κ1 and smaller Sobol indices for κ2 or vice versa are expected. The reason is the
following: Changes in the ratio of the two considered action effects change the resulting
structural reliability. Thereby, the structural reliability is specifically sensitive to changes
of this ratio, if the ratio is close to 1. The symmetrically chosen actions lead to a ratio of 1
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i Si ST
i

Design option (1) y0 0.21 0.25
κ1 0.04 0.04
κ2 0.04 0.04
κ12 0.32 0.32
r1 0.17 0.27
r2 0.17 0.27

Design option (2) y0 0.22 0.24
κ1 0.06 0.10
κ2 0.06 0.10
κ12 0.20 0.26
r1 0.15 0.27
r2 0.15 0.27

Tab. 5.1.: First-order Sobol indices Si and total-order Sobol indices ST
i of the six measures

of non-linearity with respect to the structural reliability.

between the actions and a ratio of 1 between the action effects considering the mean value
of r1 and r2. Therefore, the structural reliability is sensitive to the values of r1 and r2.
By contrast, if the ratio of the two action effects were far from 1, one of the two actions
would be dominating. The action effect in the direction of the dominating action would
be more sensitive to the respective κ-value.

5.3.3. Relation between the semi-probabilistic measure of non-linearity and
the probabilistic measure of non-linearity

This section investigates the relation between the semi-probabilistic measure of non-
linearity κ and the probabilistic measure of non-linearity in the one-dimensional action
case. The offset of tS and thus y0 is set to 0 in this study. The study is performed for the
base case of the parameter study defined in Sec. 5.3.1.1 and the quadratic case defined in
Sec 5.3.1.2. The probability of failure using FORM is calculated to derive the probabilistic
measure of non-linearity Pr(F )F ORM

Pr(F ) . Fig. 5.17 shows the resulting values.

Pr(F )F ORM

Pr(F ) can be interpreted as a superior measure of non-linearity than the semi-proba-
bilistic measure of non-linearity, since it includes the full probabilistic information and is
formalized with respect to the probability of failure – rather than the functional form of
tS – what should be the quantity of interest. If the probabilistic measure of non-linearity
and the semi-probabilistic measure of non-linearity would be equivalent (i.e. would pro-
vide the same amount of information), the graphs in Fig. 5.17 should be monotonously
decreasing. This is not the case. The graphs decrease for small κ-values, then, however,
become approximately constant. This indicates that κ values referring to concave non-
linear behavior provide more complete information about the non-linearity effecting the
probability of failure than κ values referring to convex non-linear behavior.
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Fig. 5.17.: Values of the probabilistic measure of non-linearity Pr(F )F ORM

Pr(F ) . Pulled through
lines represent the bilinear case, dashed lines represent the quadratic case. De-
sign options(1) is red and design option (2) is green.

Overall, the deviation of Pr(F )F ORM

Pr(F ) from 1 is relatively small. This indicates that FORM
is still applicable in non-linear design, although it is based on a linearization of the limit
state surface.

5.4. Example structures

This section applies the newly developed measure of non-linearity to two example struc-
tures: A dome space truss structure and a membrane structure. Both examples were
developed in close collaboration with Martin Fußeder, who deserves a large part of the
credit. Only the core aspects of both examples are given in this thesis. A detailed exami-
nation of the example structures can be found in [164] and [165].

5.4.1. 24-bar dome space truss structure

Dome-like space truss structures are regularly utilized as examples for investigations in the
presence of geometrical non-linearity. The observed 24-bar dome truss (cf. Fig. 5.18) is a
slightly modified version of the structure proposed in [175]. Most of the trusses (indicated
as “truss 1” (solid lines) and “truss 3” (dashed-dotted lines) in Fig. 5.18) are tensioned
and instability of the overall structure can be avoided. It is assumed that local buckling of
the compressed members (indicated as “truss 2” (dashed lines) in Fig. 5.18) is prevented
constructively.

For the ultimate limit state design, the situation is considered in which the maximal stress
in the trusses exceeds the yield strength. Steel S355 with a characteristic yield strength
of fy=355 MPa is chosen. The action L is chosen to follow a Gumbel distribution with
E[L] = 0.0375 MN and c. o. v.[L] = 0.3. The yield strength M is chosen to follow a
log-normal distribution with E[M ] = 412.8 MPa and c. o. v.[M ] = 0.07 [108].
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Fig. 5.18.: Observed 24-bar dome space truss structure shown in side view (left) and top
view (right) with action L acting on the center node. The solid, dashed and
dashed-dotted lines indicate the three different truss types. The dimensions are
given in meters.

5.4.1.1. Partial safety factor design

The design choices follow the rules of Eurocode [25,176]. The PSF of the action is γF = 1.5
and the PSF of resistance is γM0 = 1.0. The characteristic values are chosen based on [61]
as lk = F−1

L (0.98) = 0.0667 MN and mk = fy = E[M ] − 2 · σM = 355.0 MPa with σM

being the standard deviation of M .

Due to the symmetry of the structure and loading, only the cross-section of three trusses
must be designed, which are indicated as “truss 1-3” in Fig. 5.18. Based on the two design
options of Eqns. 5.7 and 5.8, the PSF design choices are

Desing option (1): Ai = γM0 ·Ntruss i (γF · lk, A)
fy

(5.23)

Desing option (2): Ai = γM0 · γF ·Ntruss i (lk, A)
fy

(5.24)

where A = [A1, A2, A3] are the cross-sections of the respective trusses and Ntruss i is the
normal force of the ith truss. For the structure at hand, the PSF design based on option
(2) leads to larger absolute values of the normal forces for each truss.

5.4.1.2. Measure of non-linearity and classification in parameter study

Fig. 5.19 shows the action-effect of action diagrams. The non-linearity of each Ntruss i is
measured via the curvature measure κ. Tab. 5.2 summarizes the values κ. The values of
κ are slightly different when design options (1) or (2) are utilized.

The classification of the truss dome structure within the general parameter study is not
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Fig. 5.19.: Action-effect of action diagrams of the truss dome normal forces Ntruss i (cf.
Fig. 5.18). The red lines correspond to the design based on PSF option (1) and
the green lines are according to design option (2).

κ

Design option truss 1 truss 2 truss 3
(1) 0.727 0.637 0.965
(2) 0.734 0.651 0.964

Tab. 5.2.: κ-values for the three observed truss members designed according to PSF options
(1) and (2).

straightforward, since the parameter study of Sec. 5.3 only covers a finite set of possible
structural designs. For the structure at hand, the following conditions differ from those in
the parameter study: The PSF γM0 was taken from the standard and was not specifically
computed to achieve a target value for the linear case. The truss dome is therefore not
at the same reliability level as the parameter study. Moreover, the characteristic material
strength, the functions Ntruss i and the coefficient of variation of the material strength are
not exactly covered by the parameter study.

The case of the parameter study that comes closest to the truss dome example is the case
of bi-linear tS with log-normally distributed M with c. o. v.[M ] = 0.05 and Gumbel dis-
tributed L with c. o. v.[L] = 0.3 shown in Fig. 5.13 in the first row and the second column.
The Fig. shows that both design options are conservative for κ < 1 compared to the linear
case; hence, the parameter study suggests that all three trusses are conservative compared
to the linear case. This is verified in the reliability analysis of the next Sec. 5.4.1.3.

Moreover, the probabilistic measure of non-linearity Pr(F )F ORM

Pr(F ) is calculated and listed in
Tab. 5.3.
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Pr(F )F ORM

Pr(F )

Design option truss 1 truss 2 truss 3
(1) 1.013 1.019 1.008
(2) 1.016 1.025 1.008

Tab. 5.3.: FORM and analytic probability of failure ratios for the three observed truss
members designed according to PSF options (1) and (2).

5.4.1.3. Reliability Analysis

Based on the cross-sections Ai (Eqns. 5.23 and 5.24), the LSF for the ith structural member
can be formulated following Eqn. 5.1:

gi = Ai ·M −Ntruss i(L) =


γM0·Ntruss i(γF ·lk)

fy
·M −Ntruss i(L) option (1)

γM0·γF ·Ntruss i(lk)
fy

·M −Ntruss i(L) option (2)
(5.25)

Tab. 5.4 shows the resulting reliability indices. The difference between design options
(1) and (2) is larger when the curvature measure κ differs from 1. This can be seen in
particular by comparing the results of trusses 2 and 3. Furthermore, the reliability indices
based on designs determined with PSF option (1) show less sensitivity to a varying degree
of non-linearity than the designs according to option (2).

Design option truss 1 truss 2 truss 3
(1) 3.79 3.83 3.72
(2) 4.18 4.40 3.76

Tab. 5.4.: Reliability indices β for the three observed truss members designed according
to PSF options (1) and (2).

The limit state surface in standard normal space of both design options, together with
the design points implied by the PSF concept and the FORM design points, are shown
in Fig. 5.20. It can be seen that the difference between the limit state surfaces based on
the two design options is higher the more κ differs from 1. Fig. 5.20 indicates also that all
limit state surfaces are only marginally non-linear in standard normal space, despite the
low κ values for trusses 1 and 2.

To verify the classification within the general parameter study (see Sec 5.4.1.2), the reli-
ability analysis is repeated with the hypothetical case of linear functions for the normal
forces. The resultant reliability index is 3.70 for all trusses. Since 3.70 is below all values of
Tab. 5.4, the classification as a conservative design by the parameter study is confirmed.
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Fig. 5.20.: Limit state surface of the truss members 1-3 (cf. Fig. 5.18) designed following
options (1) (red) and (2) (green) in standard normal space. The bullet points
indicate the design points implied by the PSF concept. The stars indicate the
FORM design points.

5.4.2. Membrane structure

The investigated membrane structure is a hyperbolic paraboloid, which is shown in Fig-
ure 5.21. It is a slightly modified version of the hypar presented in the Round Robin
Exercise 4 of [177]. The structure has a base area of 6 × 6 [m] and a height of 2 [m] (cf.
coordinates of edge points in Fig. 5.21) and is subjected to a snow load, which is acting
in the negative z-direction. The membrane and its edge cables are fixed at the low and
high points. The Young’s moduli in warp and fill direction are Ewarp/fill = 600 [kN/m]
(pre-integrated over the thickness), the shear modulus is G = [kN/m] (pre-integrated
over the thickness) and the Poisson’s ratio is ν = 0.4. The edge cables have a Young’s
modulus of 205

[
kN/mm2] and a diameter of 12 [mm]. The membrane is subjected to an

isotropic pre-stress of 3.0 [kN/m] and the edge cables are pre-stressed by 30 [kN].

w

w

w

x xy

y

(0,0,0) (6,0,2)

(6,6,0)(0,6,2)

z f

f

f

Fig. 5.21.: Observed membrane structure with indication of warp (w) and fill (f) direction.

The snow load L is chosen to follow a Gumbel distribution with mean E[L] = 0.34
[
kN/m2]

and c. o. v.[L] = 0.3. The tensile strength M are chosen to follow a log-normal distribution
with mean E[M ] = 1.0

[
kN/m2] and c. o. v.[M ] = 0.1.
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5.4.2.1. Partial safety factor design

The design choices follow the rules of Eurocode [25] and the Technical Specification of CEN
TC250 WG5 [178]. The PSFs of the The characteristic values are defined following [61]
as the 98 [%] and 5 [%] fractile: lk = F−1

L (0.98) = 0.60
[
kN/m2] and mk = F−1

M (0.05) =
0.84

[
kN/m2].

For the ultimate limit state design, the situation is considered in which the maximal
stress exceeds the tensile strength of the membrane. Because the snow load is acting in
the negative z-direction on the membrane, the decisive stress is appearing in the warp
direction. The progress of the maximal stress in warp direction for an increasing snow
load is shown on the left-hand side of Fig. 5.22 (blue line). On the right-hand side of
Fig. 5.22 the stress distribution in the warp direction due to design action ld = γF · lk and
the position of the maximal stress is shown. It can be seen that the membrane is fully
under tension at this stage, i.e., no wrinkling occurs. The final design choices directly
follow from Eqns. 5.7 and 5.8.

ed,(1) = 7.3
7.3

0.0

[kN/m]

x

y

w

w

f

f

Fig. 5.22.: Left: Progress of maximal stress in the warp direction of the membrane due to
increasing action (blue), its tangent at zero action (dashed). Right: Distribu-
tion of stress in the warp direction due to design action ld.

5.4.2.2. Measure of non-linearity and classification in parameter study

The top left illustration in Fig. 5.23 shows the action-effect of action relationship of the
membrane. The offset and the curvature measure of the membrane are y0 = 0.53 and
κ = 1.19.

Similar to the truss dome example of Sec 5.4.1, the membrane cannot be exactly classified
in the parameter study shown in Sec 5.3. The case of the parameter study that is closest
to the membrane example is the case of bi-linear tS , log-normally distributed M with
c. o. v.[M ] = 0.1, Gumbel distributed L with c. o. v.[L] = 0.3, and an initial action of
y0 = 0.6, shown in Fig. 5.11 (bottom left). For the value of κ of the original membrane of
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Fig. 5.23.: Observed options of linear (orange) and non-linear (blue) action - effect of
action relations with and without pre-stress p.

1.19, this figure suggests that both design options are conservative compared to the linear
case (variation 3).

To evaluate the effects of the two non-linearities (offset and curvature) separately, two
more hypothetical cases are considered: In the first case, κ is set to 1 and y0 remains as in
the original membrane (variation 1 in Fig. 5.23). By comparing this case with the original
case, the non-linear effect of the convex form of tS is isolated. The classification within the
general parameter study can be made within Fig. 5.11 (bottom left). The reliability indices
of both design options decrease from κ = 1 to κ = 1.19, therefore, the parameter study
suggests that both design options of the original structure are non-conservative compared
to this hypothetical case. In conclusion, the convex form of tS has a negative effect on
reliability.

Second, the hypothetical case is investigated where κ remains the same as in the original
structure but y0 is set to 0 (variation 2 in Fig. 5.23). By comparing this case with the
original case, the non-linear effect of the prestress can be isolated. The comparison can be
done by comparing Fig. 5.11 (bottom left) to the base case (Fig. 5.6). This shows that both
design options for the original structure are conservative compared to this hypothetical
case. In conclusion, the prestress has a positive effect on reliability.

Overall, the positive effect of the prestress is greater than the negative effect of the convex
form of tS , since the comparison to the linear case showed an overall positive effect of the

131



non-linearity.

Finally, the probabilistic measure of non-linearity of the original membrane is calculated
to be Pr(F )F ORM

Pr(F ) = 1.026 for design option (1) and Pr(F )F ORM

Pr(F ) = 1.044 for design option
(2).

5.4.2.3. Reliability analysis

The LSF is again formalized following Eqn. 5.1. Tab. 5.5 shows the resulting reliability
indices of the original membrane, its two variations and the corresponding linear case.
This confirms the positive effect of the prestress and the negative effect of the convex form
of tS suggested by the parameter study. The limit state surface in the standard normal
space of both design options and the design points according to the PSF concept and
FORM of the original membrane, its two variations and the corresponding linear case are
shown in Fig. 5.24.

Design option Original membrane Variation 1 Variation 2 Linear case
(1) 4.96 5.30 4.46 4.72
(2) 5.56 6.20 4.26 4.72

Tab. 5.5.: Reliability indices of the original membrane, its two variations and the corre-
sponding linear case according to design options (1) and (2).
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Fig. 5.24.: Limit state surface of the membrane designed with options (1) (red) and (2)
(green) in standard normal space of the original membrane, its two variations
and the corresponding linear case. The bullet points indicate the design points
following the PSF concept. The stars indicate the FORM design points.

5.5. Discussion

As mentioned in Sec. 5.1, Eurocode chooses the more conservative alternative from design
options (1) and (2) which, obviously, leads to greater structural reliability. This signifies
that in Figs. 5.6, 5.9, 5.11, 5.12, 5.13 and 5.14 the design corresponding to the upper of
the two curves is chosen. If this upper curve is below/above the linear reference reliability
index βT RG it is unsafe/safe but has low/high resource consumption.3

The question to be disused is how the introduced measure of non-linearity could be in-
cluded in the PSF concept in order to homogenize the level of safety with respect to
non-linearities. The determination of the measure does not complicate the designing pro-
cess by much, since these values can be calculated as a side product of a PSF design. The
values could provide guidance to the engineer in order to classify a design without the
need of a reliability analysis. An engineer could classify its structure within the param-
eter study (see Sec. 5.3) and determine if the design is on the safe side or not, as it is

3In some design situations, this reliability index at the linear level inherently may be too high or too low;
however, the reason for this is not related to the non-linearity of the structural response function but
to something different (e.g., suboptimal PSFs) that should be considered separately.
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done for the investigated example structures (see Sec. 5.4.1.2 and 5.4.2.2). However, such
a classification is not straightforward and requires a deeper understanding of the issue.
Alternatively, the measure could be used to modify design rules within the framework of
the PSF concept. Simple design guidelines could be provided that do not require any un-
derstanding of the issue. Three possible adaptation approaches to provide such guidance
are:

• The rule for choosing design option (1) or (2) could be based on ranges of values
of y0 and κ (in the one-dimensional action case) or κ12 (in the two-dimensional
action case). In the two-dimensional case, κ1, κ2, r1, and r2 maybe also included;
however, for the sake of simplicity, those parts of the two-dimensional measure could
be ignored as those are of less significance (see sensitivity analysis of Sec. 5.3.2).
Analogously, this approach could be transferred to the n-dimensional case, i.e., only
the offset measure and the curvature measure in the direction of all actions combined
could be used. In contrast to the current policy, the design option that leads to a
smaller design value should also be valid in some cases. In particular, design option
(1) can also be preferable for cases of κ < 1 or κ12 < 1. This could avoid drastic
overdesign. Additionally, in extreme ranges of the measure, further analysis or even
a full probabilistic analysis could be recommended or required.

• An additional PSF could be implemented. The value of the PSF could – analogously
to the above approach – depend on the offset measure and the curvature measure in
the direction of all actions combined. The more case-specific this additional PSF is
(the smaller the respective ranges of offset measure and the curvature measure are),
the better the homogenization of the reliability level will be.

• A split of the PSF with respect to the uncertainty of the action and the uncertainty
of the structural response function could be conducted. This would reverse the merge
of Eqn. 2.6 and values of γf and γSd could be determined individually.

In general, the non-linearity of a structure cannot be quantified at system-level, but only
the non-linearity of an action - effect of action relation corresponding to a certain limit
state can be quantified. Hence, separate values of the measure need to be determined for
each limit state. Therefore, each of the above adaptation approaches needs to be applied
to each limit state of a structure separately.

All three adaptation approaches would homogenize the reliability level such that it would
be closer to βT RG. Moreover, all three adaptations would only depend on the values
of the measure of non-linearity. As mentioned, this has the advantage of making the
adaptations straightforward to apply within the PSF concept. A disadvantage is that the
measure only describes the non-linearity of the structural response function directly and
not the interaction of non-linear structural response functions with (semi)-probabilistic
properties. However, those interactions have a great impact on the reliability, as shown in
the parameter studies in Sec.5.3. Hence, all three approaches would only party homogenize
the PSF-concept when it comes to non-linear effects. This, however, would still be a step
in the right direction. A step much further in the right direction seems to be unrealistic
within the PSF concept since the interaction of non-linear structural response functions
with (semi)-probabilistic properties need to be included probabilistically.
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5.6. Conclusion

This section systematically investigated the effects of non-linear structural response func-
tions on the structural reliability of codified design structures. The conducted parameter
studies and the two application examples reveal some of the effects. It is shown that not
only the degree of non-linearity of the structural response function but also the interac-
tion of non-linear structural response functions with (semi)-probabilistic properties has a
strong effect on the structural reliability. For this reason, it is impossible to homogenize
the safety level perfectly with respect to non-linear models without leaving the scope of
the PSF concept. However, there is some potential to homogenize the safety level. This
seems to be especially necessary in case of strongly concave structural response functions
or in cases of large initial force (e.g., prestress), which both can lead to heavy overdesign.
Cases of underdesign are possible if the structural response function is convex; however,
the under-design appears to be acceptable in most cases.
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6. Conclusion and Outlook

In this thesis, three possible adaptations of the PSF concept are analyzed (Sec. 3-5). Each
section includes detailed discussions and conclusions. In this section, the most important
points will be summarized and assessed in a broader context. Moreover, an outlook for
each adaptation is formalized.

• The first proposed adaptation is an explicit inclusion of the effects of hidden safeties
in the PSF concept (Sec. 3). Hidden safeties may be part of standard models of ex-
isting codes. These hidden safeties can remain hidden from the user, as they should
already be taken into account by code-developers when calibrating the respective
safety components. However, if standard models get replaced by other (potentially
more advanced) models, hidden safeties need to be explicitly included via a recali-
bration of the respective safety components. Sec. 3 provides a framework for such
a recalibration. The recalibration ensures that the average reliability of structures
designed using the standard model or the replacement model is the same. The po-
tential for higher accuracy (reduction of epistemic uncertainty) gets translated into
higher material efficiency. In addition, the reliability will be more homogenous at
the portfolio level.

There is a rapid development of new models for structural design. Reasons for this
include the rapid increase in computational performance, advancements in numer-
ical methods, the development of new simulation techniques and the development
of building materials or construction methods. The bureaucratic process of incor-
porating these new models into existing codes can often be lengthy. Therefore, the
advancement of structural design codes is lagging behind the rapid development of
new models. This gap could be closed by the proposed framework which gives de-
velopers/users of new models the opportunity to integrate these models themselves.
This may be unpleasant for code committees, as it reduces their authority. How-
ever, strict and well-defined rules for the application of the proposed framework
could hopefully dispel many of their concerns.

Outlook: In terms of methodology, the proposed framework does not require further
development. Instead, future investigations could/should be conducted on the effects
of the proposed framework on both structural reliability and material consumption.
This could be done either through further application examples (similar to those
in section 3.3 and 3.4) or – more generally – through an analysis from a portfolio
perspective. Such a portfolio analysis could estimate the total amount of material
saving potential and the overall potential in homogenizing the level of safety. How-
ever, this would require not only a representative portfolio of limit states, but also
a representative portfolio of model uncertainties of the respective standard and ad-
vanced models. Another possible task for the future could be the development of a
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step-by-step guide for practical engineers who are not experts in this field.

• The second proposed adaptation is an extension of the PSF concept to the system
level. For this purpose, a link between general structural systems and a generalized
version of the Daniels system has been established. The generalization covers prob-
abilistic load-modeling, material modeling, modeling of correlation among members
and various load sharing properties. For each generalization, effective algorithms
for calculating the system reliability have been developed and detailed numerical
studies have been carried out. The results of these studies can be transferred to
general structural systems by utilizing the link between general structural systems
and the generalized Daniels system and, thus, can provide insight into system effects
when designing new structures. Moreover, the generalized Daniels system is used to
determine the values of an additional PSF, which increases the resistance of struc-
tures with low system reliability and decreases the resistances of structures with high
system reliability. This does not only homogenize reliability at the portfolio level
but also increases material efficiency.

The studies conducted on the Daniel system do provide insights that contribute to a
better understanding of system effects. Moreover, the derived additional PSF reveals
some potential in improving the PSF concept. However, this potential seem to be
rather small in most cases. This suggests that the state of the art (structural design
on element level) is mostly satisfactory and only extreme cases of system behavior
require special treatment. However, the derivation of the additional PSF is based on
numerous simplifications and assumptions; hence, the results should be interpreted
carefully. In case of an actual implementation of the additional PSF within a code,
various details would have to be improved.

Outlook: The author identifies three potential steps for further research. First of
all, the generalizations of the Daniels system could be improved to include non-equal
correlation between members and to include more advanced/mixed material mod-
els. These improvements go hand in hand with the second potential future step: A
more accurate derivation of an additional PSF. Both, the generalization of correla-
tion and the generalization of material models could improve the derived additional
PSF. However, not only enhancements in the generalization of the Daniels system
itself but also enhancements in the mirroring of general structural systems trough
the generalized Daniels system are possible. It is shown that general structural sys-
tems are equivalent to a series system of generalized Daniels systems, however, this
equivalence is not fully exploited due to necessary simplifications (see Sec. 4.5). The
most critical of these assumptions is that actions are evenly distributed among el-
ements and evenly redistribute in case of element failure. This simplification could
be removed and non-proportional load sharing in all damage states of the structure
could be taken into account (e.g., trough a modification of the Daniels system as
shown in Fig. 4.19). However, this would require a representative portfolio of the
load-sharing properties of structural systems, which cannot be easily formalized. A
third potential future step would be the quantification of the resource saving po-
tential and of the potential homogenization of the level of safety. This would again
require a representative portfolio of the load-sharing properties of structural systems.
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• The third proposed adaptation addresses the difficulties arising from non-linear
structural models in the context of the PSF concept. Two design variations are
examined in detail: The application of a PFS directly to the action or the appli-
cation of the PSF to the action effect. The investigations are based on a newly
developed measure of non-linearity, which may also be applicable within the PSF
concept. The investigations show that not only the degree of non-linearity of the
structural response function but also the interaction of non-linear structural response
functions with (semi)-probabilistic properties has a strong effect on the structural
reliability. For this reason, a homogenization of reliability at the portfolio level can
only partly be reached without leaving the framework of the PSF concept. However,
there is some potential for improvement within the framework of the PSF concept.
This seems to be especially necessary in cases of strongly concave structural response
functions or in cases of large initial forces (e.g., prestress), which both can lead to
heavy over-design. Cases of under-design are possible if the structural response func-
tion is convex; however, the under-design appears to be acceptable in most cases.

No specific proposal for an adjustment of the PSF concept has been worked out in
detail when it comes to non-linear structural response functions. However, three
adaptation ideas are indicated (the introduction of non-linearity thresholds, the in-
troduction of an additional PSF and the split of the existing PSF into two PSFs
applied to the action and the action effect, respectively). It appears that all three
of these ideas have potential to homogenize reliability at the portfolio level and,
thereby, increase material efficiency.

Outlook: The next step would/should be the detailed elaboration of the three adap-
tation ideas mentioned above. However, the calibration of these adaptation ideas
would require the formulation of a portfolio of limit states that is representative,
especially with respect to non-linearities. The formulation of such a portfolio would
require an extension of the previous methodology to multidimensional cases (so far
only the one- and two-dimensional case is covered). Finally, the various adaptation
ideas can be compared with each other by considering their respective effect in terms
of resource savings potential and homogenization of the safety level at portfolio level.

Overall, the studies on hidden safeties, system reliability and non-linear structural response
functions aim – among other goals – at an increase in material efficiency. As stated in
the introduction, the efficient use of materials is one of the most challenging tasks of
our generation. This task should be tackled as soon as possible (and probably should
have been tackled earlier in the past). If we do find solutions soon, the reality of finite
building materials will soon catch up and force us to do so [2–8]. A solution under
forced circumstances will most likely be suboptimal and accompanied by many crises.
The solution ideas in this thesis are a small piece of the puzzle. They are all within the
scope of the PSF concept, but try to “sneak in” as much of the reliability-based approach
as possible. The author hopes that in this way, more and more of the “probabilistic
world” can be introduced into the old-fashioned deterministic calculus of current structural
codes. In the author’s opinion, it is imperative that our codes are raised to the next level
of reliability-based design or, ideally, even to the level of risk-based design. The rapid
development within the last decades of new calculation methods and modeling approaches
and the simultaneously increasing performance of computers lead to the fact that such
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a fundamental change is very well possible. We should not continue to hide behind the
well-established methods out of convenience, but leave our comfort zone and dare to take
the next step.
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A. Portfolio of representative design
situations

A portfolio is defined via the following generic LSF g, which was also used in the recent
revision of the Eurocode [61].

g(Pij ,ΘRi ,Ri,GS,i,GP ,Q,aQ,i,aG) =Pij · ΘRi ·Ri−
− (1 − aQ,i) · [aG ·GS,i + (1 − aG) ·GP ] −
− aQ,i ·Qj (A.1)

This LSF is valid for a material i and a variable action j. Ri is the material strength,
ΘRi is the resistance model uncertainty, and GS,i is the self-weight. Qj represents the
variable action, and GP represents the permanent action. In order to account for different
design situations, the weights aQ,i and aG allow representing different action compositions.
Finally, Pij is the design variable (e.g., the area of a truss or the section modulus of a
beam) defined via Eqn. “6.10” of Eurocode 0 [25] as:

Pij = γRi

θRi,k · ri,k
· [(1 − aQ,i) · (aG · γS · gSi,k + (1 − aG) · γP · gP,k) + aQ,i · γQ · qk]

(A.2)

Note that this form of the LSF is equivalent to the LSF derived in Eqn. 2.36; hence, it
requires the same assumptions. Those assumptions that tR = tR,EC is linear with respect
to the material strength and through the origin and tS = tS,EC is linear and through the
origin.

Six different material properties Ri and three different actions Qj are considered and
weighted with wR,i and wQ,j according to their relative frequency. For each material,
different load compositions are investigated via aQ,i and aG (Tab. A.1 and A.2). Ten
equally spaced and equally weighted values of aQ,i and three equally spaced and equally
weighted values of aG are considered. The distributions of each material property Ri,
variable action Qj , the associated resistance uncertainty ΘRi and ΘQj , the self weight
GSi , and the permanent load GP are given in Tab. A.3. The values of the partial safety
factors follow Eurocode 0 [25] (Tab. A.4). The characteristic values are chosen following
Eurocode 1, 2, 3, 5, 6 [103, 125, 176, 179, 180] and the latest revision of the Eurocode [61]
(Tab. A.5).
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i Material wR,i% aQ,i aG

1 Steel yielding strength 40.0 [0.2; 0.8]

[0.6; 1.0]

2 Concrete compression strength 15.0 [0.1; 0.7]
3 Re-bar yielding strength 25.0 [0.1; 0.7]
4 Glulam timber bending strength 7.5 [0.2; 0.8]
5 Solid timber bending strength 2.5 [0.2; 0.8]
6 Masonry compression strength 10.0 [0.1; 0.7]

Tab. A.1.: Material properties Ri, weights wR,i and ranges of aQ,i and aG.

j Action wQ,j%
1 Wind 33.33
2 Snow 33.33
3 Imposed load 33.33

Tab. A.2.: Variable actions Qj and weights wQ,j .

Mean c. o. v.
R1 ∼ LN 1.00 0.070
R2 ∼ LN 1.00 0.150
R3 ∼ LN 1.00 0.070
R4 ∼ LN 1.00 0.150
R5 ∼ LN 1.00 0.200
R6 ∼ LN 1.00 0.160
ΘR1 ∼ LN 1.00 0.050
ΘR2 ∼ LN 1.00 0.100
ΘR3 ∼ LN 1.00 0.100
ΘR4 ∼ LN 1.00 0.100
ΘR5 ∼ LN 1.00 0.100
ΘR6 ∼ LN 1.16 0.175
GS1 ∼ N 1.00 0.040
GS2 ∼ N 1.00 0.050
GS3 ∼ N 1.00 0.050
GS4 ∼ N 1.00 0.100
GS5 ∼ N 1.00 0.100
GS6 ∼ N 1.00 0.065
GP ∼ N 1.00 0.100
Q1 ∼ G 1.00 0.250
Q2 ∼ G 1.00 0.400
Q3 ∼ G 1.00 0.530
ΘQ1 ∼ LN 0.97 0.260
ΘQ2 ∼ LN 1.00 0.300
ΘQ3 ∼ LN 1.00 0.100

Tab. A.3.: Distributions used within the portfolio.
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Material i γR,i γS γP γQj

1 1.00

1.35 1.35 1.5

2 1.50
3 1.15
4 1.25
5 1.30
6 1.50

Tab. A.4.: Partial safety factors.

Material i ri,k θRi,k gSi,k

1 E[R1] − 2 ·
√

Var[R1] E[ΘR1 ] F−1
GS1

(0.5)
2 F−1

R2
(0.05) E[ΘR2 ] F−1

GS2
(0.5)

3 F−1
R3

(0.05) E[ΘR3 ] F−1
GS3

(0.5)
4 F−1

R4
(0.05) E[ΘR4 ] F−1

GS4
(0.5)

5 F−1
R5

(0.05) E[ΘR5 ] F−1
GS5

(0.5)
6 F−1

R6
(0.05) E[ΘR6 ] F−1

GS6
(0.5)

Variable action j qi,k θQj ,k

1 F−1
Q1

(0.98) 1.1
2 F−1

Q2
(0.98) E[ΘQ2 ] +

√
Var[ΘQ2 ]

3 F−1
Q3

(0.98) 1.0

Permanent action gP,k

F−1
GP

(0.5)

Tab. A.5.: Characteristic values.
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