
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Neural Radiance Fields for Ultrasound
Imaging

Magdalena Wysocki



SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Neural Radiance Fields for Ultrasound
Imaging

Neuronale Strahlungsfelder für die
Ultraschallbildgebung

Author: Magdalena Wysocki
Supervisor: Nassir Navab, Prof. Dr.
Advisors: Mohammad Farid Azampour, M.Sc.
aaaaa Mehrdad Salehi, M.Sc.
aaaaa Benjamin Busam, Dr.
Submission Date: 15.08.2023



I confirm that this master’s thesis in robotics, cognition, intelligence is my own work
and I have documented all sources and material used.

Munich, 15.08.2023 Magdalena Wysocki



Acknowledgments

I would like to express my deepest gratitude to my supervisor, Mohammad Farid
Azampour, for his inexhaustible guidance, valuable feedback, and constant encourage-
ment throughout this thesis. His expertise and support were instrumental in shaping
this work. Thanks to his mentorship, I have expanded my intellectual horizons. I am
also thankful to Mehrdad Salehi, Benjamin Busam, Christine Eliers, Oliver Zettinig,
and Walter Simson for their contributions and fruitful discussions that enriched the
research process.

Furthermore, I extend my heartfelt gratitude to Prof. Nassir Navab and the Interdis-
ciplinary Research Laboratory (IFL) members at Klinikum rechts der Isar for creating
an environment that fosters collaboration and research excellence. I cannot express my
gratitude enough for the support I received from everyone along this journey.

My appreciation also goes to my friend, Matan Atad, with whom I have enjoyed
sharing the experience since our first day of Master’s studies. I am truly grateful for
your presence and camaraderie throughout this fulfilling adventure.

I am immensely grateful to my family for making it all possible. Especially to
my sister, Edyta Zugaj, for always being my role model. Your belief in me kept me
motivated.

Finally, my heartfelt gratitude goes to Olaf Wysocki, who provided academic guid-
ance, tremendous editorial assistance, and the emotional comfort essential to complete
this significant milestone. Your company and encouragement to pursue my passions
allowed me to thrive. Your love has made all the difference.



Abstract

Ultrasound imaging plays a critical role in clinical practice as a valuable tool for visual-
izing patient anatomy. However, conventional 2D ultrasound scans present a significant
limitation by lacking spatial context, which hinders the accurate identification and
localization of structures within the scanned region. To improve spatial understanding,
a popular solution for 3D reconstruction and visualization of anatomy is freehand
3D ultrasound. Yet, existing methods for 3D ultrasound reconstruction commonly
average over multiple observations for a region of interest, leading to the loss of crucial
directional information essential for understanding acoustic phenomena. After the
volume is reconstructed, it becomes infeasible to render a B-mode image that repre-
sents view-dependent information in a way that simulates how an ultrasound system
captures a frame.

This thesis addresses the challenge of view-dependent rendering and presents a new
approach called neural radiance fields for ultrasound imaging (Ultra-NeRF). Through
the application of deep learning techniques and incorporating a ray-based rendering
method for ultrasound, a novel 3D ultrasound representation is introduced. This repre-
sentation allows for the regression of anisotropic acoustic tissue properties, enabling
the view-dependent rendering of B-mode images. However, estimating rendering
parameters is a highly unconstrained task leading to ambiguity in representing a B-
mode image in the parameter space. This thesis proposes regularization based on the
relationship between tissue properties, which constrains the regression space of ren-
dering parameters, enhancing the accuracy and reliability of the regressed parameters.
The proposed method’s ability to render view-dependent B-mode images is validated
through experimental evaluations. These evaluations utilize simulated B-mode images
of a liver and real B-mode images of a synthetic and exvivo phantom of a spine. It
is experimentally demonstrated, that the method excels in rendering regions with
ambiguous representation caused by view-dependent differences in B-mode images of
the same region of interest.

To the best of my knowledge, this work is the first to tackle the challenge of view-
dependent ultrasound image synthesis using neural radiance fields. By accurately pre-
serving view-directional information, the approach offers several advantages, including
the examination of missed cross-sectional planes, flexibility in scanning protocols, and
potential automation of scanning protocols and image analysis.
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1. Introduction

1.1. Motivation

Imaging of patient anatomy is an indispensable aspect of clinical practice, and ul-
trasound imaging plays a crucial role in providing valuable anatomical information
invisible to a naked eye. Ultrasound has several advantages over other imaging modali-
ties such as computed tomography (CT) or magnetic resonance imaging (MRI): (1) It
does not use ionizing radiation which makes it a safer option for repeated or prolonged
use for clinicians and patients alike; (2) It is more cost-effective compared to these other
imaging modalities; (3) Ultrasound devices are typically more portable, making them
more accessible in remote areas or in situations where mobility is a concern.

Proficiency in anatomy, physiology, and pathology is essential for operators to
produce accurate and reliable ultrasound images, and acquiring such expertise de-
mands considerable effort. The extensive training requirements for clinicians may lead
to increased costs, potentially limiting access to ultrasound in regions with limited
availability of skilled medical professionals. Despite the significant research focus
on automatic scanning protocols in clinical practice, such as those utilizing robotic
ultrasound acquisition [14, 20, 21, 22], the majority of ultrasound acquisitions are
performed manually by clinicians using handheld probes. Consequently, the accuracy
and reliability of ultrasound imaging heavily rely on the operator’s expertise.

A fundamental challenge of ultrasound examination is that two-dimensional (2D)
ultrasound scans lack spatial context presenting only a 2D cross-sectional view of the
region of interest (ROI). This limited perspective makes it challenging for operators to
accurately identify and locate structures within the ROI. Operators of ultrasound face
two primary challenges in this regard. Firstly, they must rely on hand-eye coordination
to navigate through the three-dimensional (3D) space using only 2D observations. This
is a challenging task, as the limited perspective of 2D scans can make it difficult to accu-
rately identify and locate structures within the ROI. Secondly, operators must mentally
reconstruct the 3D volume of the scanned area to determine the location of a 2D plane
within the structure, which requires a high degree of spatial visualization ability and
cognitive effort, and is particularly challenging for less experienced operators.

3D ultrasound technology constitutes an effort to address and alleviate the previously
mentioned challenges that arise during the application of conventional 2D ultrasound.
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1. Introduction

To enhance the clinician’s comprehension of the spatial relationships between anatomi-
cal structures, 3D ultrasound provides an intuitive visualization of the patient’s internal
anatomy. This improvement in spatial understanding increases diagnostic accuracy
and enhances the precision of imaging guidance. 3D ultrasound can be obtained using
different acquisition techniques which could be divided into two categories: specialized
probes directly providing volumetric image, such as 2D array transducer systems, 3D
mechanical systems, and conventionally used freehand scanners along with 3D recon-
struction techniques [17]. While dedicated hardware-based 3D acquisition methods
provide a real-time 3D information and allow direct flow of visualization, the probes
are expensive and the acquired ROI at each time step is limited to the array size. The
adoption of 3D ultrasound technology addresses and mitigates the aforementioned
challenges encountered when using conventional 2D ultrasound.

A typical approach to achieving freehand 3D ultrasound is commonly divided
into two steps: data acquisition and 3D reconstruction. Data acquisition involves
the simultaneous capture of both 2D frames and their respective positions by using
specialized tracking technology [5]. This data is subsequently utilized to construct a 3D
volume from multiple 2D slices. In recent years, several methods have been developed
to improve the quality of 3D reconstruction by refining relative position of images.
These methods involve the implementation of sensorless 3D ultrasound [35] and the
use of advanced image formation techniques based on deep learning [42].

Reconstruction technique, commonly referred to as volume compounding, has become
an established approach to generating high-quality 3D volumes of 3D ultrasound. A
common framework involves processing multiple 2D frames to create a 3D description
of the imaged anatomy and relies on a accurate fusion of multiple views of the same
ROI [52]. However, ultrasound images acquired from different probe orientations
exhibit varying tissue features due to speckles and artifacts. For example, acoustic
shadows are heavily influenced by the probe orientation, with each view providing
only a partial representation of the anatomy relative to the probe’s orientation. When
multiple observations of the same ROI are fused, an interpolation is performed to
reconcile potentially conflicting information visible in ultrasound. Although this
approach can produce a high-quality 3D representation of the imaged anatomy, it is
infeasible to reconstruct a view-dependent ultrasound image from such a representation.
This is because the interpolation process effectively blends information from multiple
views, resulting in a loss of the unique details that are visible in each individual image.

Recently, computational sonography has introduced a novel 3D representation that
preserves both the anatomical details of the imaged ROI and its directional informa-
tion [13]. This paradigm offers a novel approach to retrieving a scalar intensity field
dependent on the viewing direction and has been effectively applied to the direction-
preserving 3D reconstruction [11]. Such a technique preserves direction-dependent
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1. Introduction

intensities, allowing for the recovery of a detailed ultrasound image from any viewing
angle. By preserving this information, this approach offers a more comprehensive
representation of the underlying anatomy compared to traditional 3D reconstruction
methods.

Preserving directional information represents a key advantage, as it allows for
the retrieval of any 2D cross-sectional plane, as if it had been directly acquired by
an ultrasound system. Therefore, a view-dependent 3D representation permits the
examination of cross-sectional planes that may have been missed during the initial
acquisition phase, facilitates the implementation of more flexible scanning protocols,
and has the potential to enable automated scanning protocols and image analysis.

1.2. Research Scope

The primary goal of this thesis is to introduce a novel 3D ultrasound representation
that effectively retains view-directional information of the imaged anatomy. In pursuit
of this objective, the study presented in this thesis addresses the following research
questions:

• Can applying deep learning techniques facilitate the acquisition of a 3D ul-
trasound representation that accurately preserves viewing-direction-dependent
intensities?

• What advantages can be derived from using a 3D ultrasound representation
that accurately preserves viewing-direction-dependent information, compared to
traditional techniques?

• To what extent do the regressed tissue characteristics accurately represent actual
tissue properties?

1.3. Approach

In this thesis introducea a new paradigm of 3D ultrasound representation called neural
radiance fields for ultrasound imaging (Ultra-NeRF). The proposed approach entails
learning a scalar field over a volume to accurately represent the imaged anatomy
derived from a set of 2D ultrasound frames while preserving directional information.
This type of representation draws inspiration from computational sonography and
the concept of implicit neural representation, as described by Sitzmann et al. [45]. To
accomplish this objective, the method leverage a recent development in computer vision
known as neural radiance fields (NeRF) [31], which divides the task into two distinct

3



1. Introduction

components. The first component involves a network representing a 3D volume by
a set of parameters. The second component entails a volumetric rendering function
that maps regressed parameters to radiance. We propose an ultrasound-specific, ray-
casting-based volume rendering approach that effectively accommodates anisotropic
tissue properties regressed from a set of 2D B-modes and maps them to corresponding
view-dependent intensities.

1.4. Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents essential
concepts of medical ultrasound imaging, starting with the underlying ray-physics
of ultrasound. Then, it introduces the characteristics of medical ultrasound and the
imaging artifacts that can pose significant challenges for 3D ultrasound representation.
Subsequently, it discusses volume compounding, a common approach to representing
3D ultrasound images. Lastly, it illustrates the concept of confidence maps, which
provide valuable insights into the quality and reliability of ultrasound images.

Chapter 3, provides an in-depth analysis of NeRF, including its fundamental concepts.
It introduces various 3D representations to demonstrate the difference between implicit
neural representation, the cornerstone of NeRF, and other methods. Next, it explores
the concept of ray tracing and its application in differentiable volume rendering, a
crucial component of NeRF. Then, it discusses using NeRF in computer vision. It
concludes by presenting the application of NeRF in ultrasound imaging.

Chapter 4 offers an overview of state-of the art of implict representation and neural
radiance fields in medical imaging.

Chapter 5 presents the approach to addressing the challenges in view-dependent 3D
ultrasound reconstruction. Before introducing the method, it discusses the setup and
assumptions to provide context for the final approach. Next, it introduces Ultra-NeRF,
a modified version of NeRF that incorporates specific features tailored for medical
ultrasound imaging.

Chapter 6 presents validation of the proposed method by showing the results of
experiments contacted on various tasks. First, it introduces the datasets used in the
experiments and the evaluation methods employed, including qualitative and quantita-
tive measures. Then, shows and discusses the results of experiments, including B-mode
rendering, volume compounding, confidence maps, and evaluation of rendering pa-
rameters. Finally, it presents the limitations of the method.

Chapter 7 provides an outlook for feature research directions.
Chapter 8 concludes the thesis by summarizing the key findings and contributions.

4



2. Principles of Medical Ultrasound
Imaging

A comprehensive understanding of the principles of ultrasound imaging and its under-
lying physics is crucial for successfully implementing a 3D ultrasound reconstruction
method. This chapter introduces important aspects of medical ultrasound imaging
and highlights the physical processes involved in the formation of ultrasound images.
The primary sources for this chapter include the seminal book on diagnostic ultra-
sound imaging by Szabo [46], which provides a clear overview of the fundamental
principles of medical ultrasound, as well as two important references by Allisy-Roberts
and Williams [2], and Hoskins et al. [16] that offer in-depth knowledge of medical
ultrasound physics.

2.1. Medical Ultrasound

Medical ultrasound imaging is a non-invasive technique that utilizes high-frequency
sound waves to generate cross-sectional images of internal structures within the body.
A conventional ultrasound system typically produces images in a brightness mode
(B-mode), where the brightness at each point corresponds to the amplitude of the echo
generated by the reflection of the ultrasound wave. The most prominent reflections
attribute to tissue interfaces. Additionally, the texture of the image is influenced by
the scattering of the sound waves, which arises from small inhomogeneities (scatter-
ers) embedded in homogeneous tissues. Figure 2.1 illustrates a B-mode ultrasound
image, which captures variations in brightness attributed to tissue interfaces and scat-
terers. B-mode ultrasound images are formed from multiple B-mode scanlines, each
corresponding to a single ultrasound pulse transmitted from and then received by a
transducer. The imaging geometry of B-mode ultrasound images varies depending on
the type of transducer used. Therefore, transducers can be categorized based on the
B-mode image type they produce. Two main types of transducers exist for external us-
age: linear and curvilinear probes. Linear probes consist of many transducer elements
arranged in a straight line. Such a probe produces B-mode scan lines perpendicular to
the transducer array and parallel to one another, resulting in a rectangular field. On the
other hand, curvilinear probes have transducer elements arranged in a rounded array,
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2. Principles of Medical Ultrasound Imaging

Figure 2.1.: A B-mode image of a thyroid phantom showcasing tissue interfaces appear-
ing bright due to strong reflection of an acoustic wave. The presence of
tissue inhomogeneities is depicted by a noisy pattern.

and the field of view in this type of transducer depends on the radius of the curvature.
Figure 2.2 shows geometrical representations of B-mode images captured with linear
and curvilinear transducer.

2.2. Ultrasound Physics

2.2.1. Basics of Ultrasound Ray Physics

Ultrasound waves are high-frequency longitudinal waves, which propagate through a
physical medium, in the context of medical imaging the medium comprises different
tissue types. As ultrasound waves move through the medium, they transport energy
from the source into the tissue, and their propagation depends on the properties of the
tissue itself. While the wave equation [19] can be used to model ultrasound waves, this
thesis employs a geometrical approximation that treats the waves as rays.

The reflection of sound waves is a fundamental process in ultrasound imaging. Such
reflections occur at the boundaries where there is a variation in the acoustic properties
of the tissue. The primary property responsible for these reflections is the acoustic
impedance (Z), which characterizes the medium’s response to the wave and is a function

6



2. Principles of Medical Ultrasound Imaging

Figure 2.2.: Visualisation of the linear (a) and curvilinear (b) probe.

of the local pressure and particle velocity values in the medium. When acoustic waves
encounter a boundary between two tissues with different impedance (Z1 and Z2), some
of the energy from the sound wave reflects to its source, creating an echo that can be
detected. This process also causes a loss of energy at the tissue boundary. The residual
energy transmits to the subsequent medium as the wave propagates further into the
tissue. The proportion of the reflected wave is represented by the intensity reflection
coefficient (R), which denotes the ratio of the intensity of the reflected Ir and incident Ii
waves. R is expressed in terms of acoustic impedance using the following formula:

R =
(Z1 − Z2)2

(Z1 + Z2)2 (2.1)

Using the intensity reflection coefficient we can calculate the reflected intensity as
follows:

Ir = RIi (2.2)

Equations 2.1 and 2.3 demonstrate that the observed intensity attributable to reflection
becomes higher as the reflection coefficient increases with the difference in acoustic
impedance between tissue types. As the total intensity remains constant, one can define
the transmitted intensity It in terms of the intensity reflection coefficient as:

It = (1 − R)Ii (2.3)

Figure 6.12 demonstrates how the incident wave behaves at the tissue boundary of
tissue types admitting a different acoustic impedance.

7



2. Principles of Medical Ultrasound Imaging

Figure 2.3.: (a) At an interface between two media a portion of the acoustic beam is
reflected back towards the source while the remaining portion is transmitted
further into the tissue. (b) The strength of the reflected signal captured
by the source at a tissue interface depends on the incidence angle, which
defines the amount of energy that is reflected back to the source, while the
strength of the echo at a scattering point does not depend on the incidence
angle due to diffuse scattering.

The presented model of reflection and transmission of ultrasound waves fails to
consider the impact of the incidence angle on the amplitude of the reflected wave.
According to the law of reflection, at a tissue interface, the strength of the reflected
signal captured by the source depends on the incidence angle between the tissue
interface and the acoustic beam, as shown in Figure 6.12. In order to accurately
calculate the reflection coefficient, which incorporates the incidence angle, Fresnel’s
equations must be employed. Fresnel’s equations describe the behavior of light at the
boundary between two media with different refractive indices and is applicable to
ultrasound waves. By taking into account the incidence angle, the reflection coefficient
can be calculated more accurately as follows:

R =

(
Z1 cos θi − Z2 cos θt

Z1 cos θi + Z2 cos θt

)2

(2.4)

Equation 2.1 is a special case where θi = θt = 0, which is in the case when the incident
wave is perpendicular to the boundary between two media. In ultrasound imaging,
Lambert’s cosine law is commonly used to approximate the relation resulting from

8



2. Principles of Medical Ultrasound Imaging

Equation 2.4 giving the final formula for R

R = cos θi ·
(Z1 − Z2)2

(Z1 + Z2)2 (2.5)

Note, that Equation 2.5 considers only specular reflection, while diffuse reflection is
neglected.

Acoustic scattering is another source of observed acoustic echo, and it occurs due to
small inhomogeneities in the tissue characteristics at a scale smaller than a wavelength.
A unique echogenicity and speckle pattern characterize each tissue type. Therefore,
how tissue scatter is distributed significantly impacts its appearance in the B-mode
image [50]. A scattering point is characterized by a diffuse reflection, which means
that the strength of the echo does not depend on the incidence angle. This is because
the energy of the acoustic wave is scattered in many different directions. Therefore, its
appearance does not change depending on the angle of incidence. The scattering pattern
observed in B-mode images, known as speckle, can be modeled by a convolutional
model of backscattering [29]. This model assumes that the scatterers within the tissue
are distributed randomly, and the backscattered waves from each scatterer interfere
randomly. Specifically, it can be expressed as a 2D convolution (⊗) between a pulse
function P(x, y) realized by a 2D point spread function (PSF), and - a response function
of the tissue T(x, y), as shown below:

I(x, y) = T(x, y)⊗ P(x, y) (2.6)

P(x, y) = exp [−1
2
(

x2

σ2
x
+

y2

σ2
y
)] cos(2π f x)

In this model, a PSF is approximated with a cosine-modulated 2D Gaussian kernel,
where f is the frequency of the ultrasound wave, and σx and σy modulate the shape
of the Gaussian kernel along the lateral and axial directions, respectively [4]. Echoes,
arising from scattered and reflected energy, are a fundamental component of ultrasound
imaging. However, the intensity of the echo depends on the incident wave’s strength. As
an acoustic wave propagates through tissue, it experiences energy loss, mainly owing
to the attenuation mechanism. Attenuation describes the reduction in ultrasound
intensity with distance and is determined by the tissue’s properties and the depth
at which attenuation occurs. Attenuation declines as an acoustic wave propagates
through tissue. In homogeneous tissue, this decline can be approximated using an
exponential function, reflecting the attenuation rate as a function of depth. Furthermore,
attenuation is frequency-dependent, with higher frequencies experiencing stronger
attenuation. With this attenuation model, the intensity of an incident acoustic wave in a

9



2. Principles of Medical Ultrasound Imaging

homogeneous tissue at depth x, dependent on the wave frequency f , can be estimated
using the attenuation coefficient α and initial intensity I0 as:

I(x) = I0e− f xα (2.7)

2.3. Imaging Artifacts

In medical ultrasound imaging, it is essential to distinguish between two types of
imaging artifacts. The first type is contingent on the imaging system and is, therefore,
considered a limitation of its performance. This includes imaging resolution and
signal-to-noise ratio, key factors in determining image quality. The second type of
artifact occurs due to properties inherent to the target tissue, such as strong shadows
or reverberations. These artifacts may emerge when there is a significant difference in
characteristics between two tissue types or when multiple reflections transpire between
tissue types. This paragraph concentrates on the most prominent artifacts directly
related to the propagation of the ultrasound in an inhomogeneous tissue.

2.3.1. Shadowing artifacts

Acoustic shadow is a phenomenon that can both provide informative features for
diagnosis [9] and hinder various imaging tasks, such as segmentation, registration and
3D reconstruction [12, 25]. It appears at tissue interfaces with a significant difference in
acoustic impedance, such as at a bone-tissue interface. Acoustic shadow is characterized
by a rapid loss of brightness at the tissue interface caused by a strong reflection. At
such interfaces, acoustic waves experience a high loss of energy due to reflectance,
with the loss of brightness being stronger the higher the intensity reflection coefficient
at the tissue interface. The reduction of wave transmission is anisotropic, meaning
that the observation direction will impact the direction of the acoustic shadow, as
presented in Figure 2.4. Different tissue regions may be occluded and impossible to
observe depending on the observation direction due to acoustic shadow. As illustrated
in Figure 2.4, the intersection of ROI from multiple observation directions will exhibit
distinct appearances in acoustic shadow. This phenomenon is significant for algorithms
that rely on averaging repeated observations from various viewpoints.

2.3.2. Attenuation artifacts

The phenomenon of attenuation artifacts in ultrasound imaging is similar to the
shadowing artifacts, and occurs due to the presence of strongly attenuating tissues
on the acoustic wave path. Such tissues absorb wave energy and cause a drop in

10



2. Principles of Medical Ultrasound Imaging

Figure 2.4.: The anisotropic nature of acoustic shadow. The extent of acoustic shadow
varies depending on the observation direction, resulting in the occlusion of
different tissue regions.

the transmitted energy towards the tissue, resulting in darker images of the tissues
following a strongly attenuating structure compared to the image that would be
obtained if the structure had been removed. As a result, the intensity of the same
imaged ROI may differ when viewed from different viewpoints.

2.3.3. Reverberation artifacts

Reverberations are a common artifact observed in B-mode images during medical
ultrasound imaging. These artifacts occur due to the assumption that "the ultrasound
pulse travels only to targets that are on the beam axis and back to the transducer" [16].
However, the ultrasound pulse can become trapped between tissue at specific interfaces,
leading to multiple reflections. The source detects these reflections after a delay and, as
a result, appears in the image deeper than the tissue interface with a weaker amplitude.
Reverberations are an anisotropic artifact highly dependent on the angle of incidence
between the tissue interface and the acoustic wave, the number of reflections, and the
strength of the signal. Consequently, even if the source of the reverberation is the same,
it can appear at different ROIs.

2.3.4. Motion Artifacts

Motion artifacts are distortions in the imaged ROI in ultrasound imaging that result
from the movement of either the probe or the patient. These artifacts can also arise due
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2. Principles of Medical Ultrasound Imaging

to respiration or cardiac motion. The presence of motion artifacts in ultrasound imaging
can lead to blurring and loss of image resolutions. Furthermore, motion artifacts can
cause the ROI to appear at a different position, making it difficult to compare images
taken at different times or from different viewpoints.

2.3.5. Deformation Artifacts

Deformation artifacts are a type of artifact in ultrasound imaging that results from
physical deformations of a tissue. These deformations can occur due to internal or
external forces applied to a tissue, such as pressure from the ultrasound probe or
compression from surrounding tissues. As a result, the tissue can change its shape
and position, causing the ROI to be misplaced with respect to B-mode images taken at
different time steps.

2.4. Freehand 3D Ultrasound

Figure 2.5.: Freehand 3D ultrasound: The ultrasound images are acquired using an
ultrasound probe equipped with a position sensor that tracks its pose. This
allows for freehand scanning, where the probe is manually moved by the
operator over the region of interest. The position sensor provides real-time
information about the position and orientation of the probe during the
scanning process. Figure source: [39]

.
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Figure 2.6.: Volume compounding: This illustration depicts the process of compounding
B-mode images. After registration, the intensity of each pixel (or voxel)
in the compounded volume is calculated by, for example, averaging the
intensities from multiple observations. This method combines information
from different images to create a final representation. Figure source: [39]

.

Freehand 3D ultrasound is a technique in ultrasound imaging that allows for the
presentation of imaged tissue in three dimensions. Unlike 3D ultrasound systems that
rely on specialized hardware solutions, freehand 3D ultrasound uses a conventional
ultrasound transducer supported by a tracking device that measures its six degrees
of freedom (6DoF) pose, including its rotation and translation in space. In this type
of system, a set of 2D ultrasound frames is acquired along with tracking information,
as presented in Figure 2.5. The resulting 3D dataset, also known as an ultrasound
sweep, is then processed to form a 3D ultrasound volume through a process known
as 3D ultrasound reconstruction. In medical ultrasound imaging, this reconstruction
process is commonly referred to as volume compounding. This method combines
multiple ultrasound sweeps or images into a 3D ultrasound volume. Each individual
sweep provides a partial view of the target region, but by compounding or merging
these sweeps, a more complete and comprehensive representation of the volume can
be obtained. The compounding process involves spatially aligning and registering
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2. Principles of Medical Ultrasound Imaging

the sweeps, accounting for any variations in probe position or patient movement.
This alignment ensures that corresponding structures in different sweeps are correctly
aligned in the compounded volume. Once the volume is compounded, it can be further
processed or manipulated for various purposes, such as generating additional sweeps
or slices at different orientations, enabling multi-planar visualization, performing
measurements, or extracting quantitative information. A schematic illustration of this
process is presented in Figure 2.6.

2.5. Confidence Maps

Figure 2.7.: Examples of confidence maps (bottom) generated from B-mode images
(top) using a random walk algorithm; adapted from [23]

.

Medical ultrasound imaging acoustic artifacts ,presented in Section 2.3, significantly
impact the acquired data’s quality and reliability. Moreover, such artifacts can pro-
foundly affect the accuracy and robustness of algorithms that rely on the fidelity of
observed information. Consequently, numerous ultrasound techniques have been de-
veloped that provide uncertainty estimation to identify potentially unreliable regions.
One widely-used method involves the calculation of confidence maps C : Ω− > [0, 1].
These maps provide a per-pixel p ∈ Ω measure of uncertainty C(p) in imaging infor-
mation represented by the image intensity I(p), where the value directly corresponds
to the probability that the signal emanating from a particular pixel’s location reaches
the transducer [23]. Multiple studies have shown that confidence maps enhance the
performance of various algorithms. For instance, in a study by Chatelain et al.[6], the
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2. Principles of Medical Ultrasound Imaging

authors demonstrate that confidence maps can enhance the design of a control law and
improve the quality of B-mode images in a robotic ultrasound acquisition. Similarly,
another study by Jiang et al.[20] shows that uncertainty quantification improves the
quality of robotic ultrasound imaging by enhancing the estimation of probe alignment
with respect to the surface normal. In another study, Villa et al. [49] use confidence
maps as an additional input channel to enhance the automatic segmentation of bone
surfaces using a fully convolutional neural network (FCN).
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3. An Introduction to Neural Radiance
Fields

A core aspect of this thesis is the fundamental concept of NeRF. This chapter covers
essential concepts from computer vision and computer graphics that have contributed
to the development of NeRF, alongside an overview of the state-of-the-art. This chapter
begins with an overview of 3D representations commonly used in neural rendering,
focusing on implicit neural representations. It then proceeds to introduce the concept
of neural rendering, which refers to a set of techniques that employ neural networks to
generate realistic images or videos from a given 3D scene or object before delving into
the details of NeRF.

3.1. 3D Representations

Representing the structure of a 3D scene is a crucial aspect of 3D computer vision. Over
the years, various concepts have emerged, and the choice of a particular representation
that is most suitable for a given task is determined by the specific application and the
available data. This section presents an overview of 3D representations used in neural
rendering and provide a rationale for employing a 3D implicit neural representation
for representing a 3D scene.

3.1.1. 3D Representations in Neural Rendering

In the realm of 3D representations, explicit representations typically refer to discrete
representations, whereas implicit representations pertain to continuous representations.
Each of these groups can be further classified into surface and volumetric representa-
tions. Volumetric representations are capable of storing volumetric principles such as
densities, and also facilitate the representation of multidimensional features such as
colors. In contrast, surface representations are limited to the representation of surface
properties alone, and are therefore unable to encapsulate volumetric features. Figure 3.1
shows examples of 3D representations with their classification as proposed by Tewari
et al. [48].
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Figure 3.1.: Classification of surface and volume representations. Source [48].

Recent research has indicated that both explicit and implicit representations can
be utilized in neural rendering. For example, Sitzmann et al.[44] employ voxel grids
to encode a 3D scene, which allows for view-dependent appearance representation
in their DeepVoxel approach. Park et al.[33] propose using a continuous signed
distance function (SDF) as a means of shape representation in DeepSDF. In Free View
Synthesis [38], the authors employ a mesh surface representation as a proxy for 3D
scene representation from which they derive views. Furthermore, in Neural Point-Based
Graphics [1], the authors utilize point clouds as a means of scene representation, which
enables the rendering of new views.

3.1.2. Implicit Neural Representations

As presented in the previous section implicit representations can refer both to surface
and volumetric representation. Following [47], the surface Si using an implicit surface
function fimplicit(·) ∈ R is defined as the zero-level set:

Si = {x ∈ R3 : fimplicit(x) = 0} (3.1)

Whereas, the volume Vi is defined by a function fvol(·) ∈ R:

Vi = { fvol(x) : x ∈ R3} (3.2)

The Equations 3.1 and 3.2 can be restricted to the domain in which a 3D scene is defined
and extended to provide additional information. Moreover, both representations can
be approximated by a variety of functions or a mixture thereof that can express the
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respective representation. Notably, neural networks, particularly Multilayer Perceptron
(MLP), which can be viewed as universal function approximators [15], can approximate
both implicit representations. In this context, an implicit neural representation is a
representation that is approximated by a neural network.

Implicit surface representations are widely adopted in many applications because
they compactly encode complex shapes. Signed-distance functions (SDFs) are the most
common form of implicit surface representation. In 1996, Curless and Levoy proposed
a weighted SDF to represent surfaces. Following this idea, truncated SDFs (TSDFs) are
used for real-time surface reconstruction [32]. More recently, Michalkiewicz et al. pro-
posed incorporating an SDF as an individual layer in neural network architecture [30].
Other works have proposed alternative neural representations, such as continuous
neural scene representations compatible with multiview geometry and represented as
a MLP [43], or using periodic activation functions to represent natural signals[45].

3.2. Volume Rendering

Volume rendering is a set of techniques for visualizing volumetric data on a 2D plane.
The most commonly used approaches to rendering are rasterization and ray-casting.
In this thesis, we focus on ray-casting, a type of direct volume rendering, and then
introduce neural rendering based on this technique.

3.2.1. Ray Casting

Figure 3.2.: Comparison between optical ray casting and ultrasound ray casting: (a)
depicts a ray cast from a camera into a volume, passing through an image
plane. (b) illustrates a ray cast from an ultrasound probe, passing through
a volume and an image plane.
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Ray casting is a widely employed technique in volume rendering, whereby the
properties of the scene are integrated along a ray to create a projected image of
volumetric data [26]. This technique involves casting rays from the image plane into
the scene geometry. An optical alongside a pinhole camera model is commonly utilized
in computer vision to define ray casting, whereby the intersection of each ray with
the scene geometry is determined to obtain a color value for a particular pixel in the
image plane. This fundamental principle is illustrated in Figure 3.2(a). To compute the
color value for a specific pixel, we compute the volume rendering integral along a ray,
defined as:

C(x) =
∫ smax

0
σ(x + sd)C′(x + sd), ds, (3.3)

where C(x) is the final color value at position x, σ(x) is the volume’s opacity at
position x, C′(x) is the volume’s color at position x, s is the distance along the ray, d
is the ray direction, and smax is the maximum distance to traverse along the ray. In
practical applications, this integral is evaluated solely for the subspace existing in the
volume. It is essential to acknowledge that more than the optical model of ray casting
is needed to fully capture the intricacies of ultrasound ray casting. As illustrated in
Figure 3.2, an ultrasound ray cast from an ultrasound probe into a volume traverses
through both the image plane and the volume itself. This distinction requires adjusting
the volume rendering integral to incorporate this difference and accurately capture
volumetric data from ultrasound scans.

3.2.2. Neural Rendering

Figure 3.3.: Illustration of rendering process (from right to left): an unstructured set of
pose annotated images of a scene; optimized neural network representing
the scene; rendering of a 2D projection based as seen from a new viewing
point. Source: [31]

Volume rendering techniques, such as ray-casting, rely on having complete knowl-
edge of all physical parameters of the scene, including the scene geometry, to facilitate
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rendering and provide inputs to the rendering process. These parameters can be
estimated from existing observations in situations where they are not known. Recently,
the field of neural rendering has emerged, aiming to learn the rendering process of a
scene from a set of observations using neural networks. The state-of-the-art research in
neural rendering defines it as "deep image or video generation approaches that enable explicit
or implicit control of scene properties such as illumination, camera parameters, pose, geometry,
appearance, and semantic structure." [48]. Typically, a neural rendering process follows a
specific set of steps:

1. A set of images representing a 3D scene is provided as input to the process.

2. The process builds a neural representation of the scene.

3. The scene is rendered, and a new image is generated based on the specified scene
properties.

These steps are illustrated in Figure 3.3 based on an example of NeRF.

3.3. Neural Radiance Fields

Figure 3.4.: Illustration of the NeRF scene representation and rendering procedure.
Images are synthesized by sampling 5D coordinates, encompassing location
and viewing direction, along camera rays. These coordinates are then
inputted into a MLP to generate color and volume density information.
Finally, volume rendering techniques are employed to combine these values
into a cohesive image. Adapted from: [31]

The application of neural networks and neural rendering techniques to achieve
photorealistic novel view synthesis has sparked considerable interest in continuous
shape representation. Notably, a significant breakthrough in this area emerged with
the introduction of NeRF [31]. NeRF introduces a framework that combines a neural
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representation of a scene with fully differentiable volumetric rendering, allowing for
the generation of 2D projections of a 3D scene from any conceivable viewing point.
NeRF exhibits several key features that contribute to its success in photorealistic novel
view synthesis:

• Dataset Collection: To learn a scene representation, NeRF requires a dataset of
unstructured, densely located images capturing a scene from various viewing
points, as depicted in Figure 3.3.

• Pose Estimation: Accurate pose estimation is necessary for NeRF to understand
the viewing positions of the input images.

• Physically Meaningful Representation: NeRF learns physically meaningful color
and density values in 3D space.

• Ray Casting and Volume Integral: NeRF utilizes ray casting and volume integra-
tion techniques to render novel views consistent with the 3D scene observed in
the training data.

In addition to these key features, the fundamental concept of NeRF involves expressing
the representation of a scene through a fully-connected neural network. This network
maps a 5D vector, comprising both spatial location x and viewing direction d, to volume
density σ and radiance c. To achieve this, NeRF defines a per-pixel camera ray denoted
as r(t) = o + td, where o represents the camera origin situated at the center of the
pixel defining the near plane. This formulation enables NeRF to capture intricate
scene details and accurately model the interplay between spatial location, viewing
direction, volume density, and radiance. Ultimately, the computation of the color value
for each pixel involves applying the volume rendering integral, which derives from the
Equation 3.3:

C(r) =
∫ t f

tn

T(t)σ(t)c(t)dt (3.4)

where T(t) = exp−
∫ t f

tn

σ(r(s))ds (3.5)

The volume rendering integral, as depicted in Equation 3.4, plays a crucial role in
accumulating the ray-traced radiance field along the camera ray, ranging from the
near plane (tn) to the far plane (t f ). At each position along the ray, the contribution
adds up to determine the final pixel color. The transmittance factor T(t), outlined in
Equation 3.5, governs the influence of each sample in the overall rendering process.
Figure 3.4 provides a comprehensive visualization of the entire process, encompassing
coordinate space sampling, neural representation construction, and culminating in
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volume rendering. This figure effectively captures the key steps involved in the NeRF
framework, offering a clear overview of the entire pipeline. While the presented
formulation of NeRF demonstrates impressive capabilities in photorealistic novel view
synthesis, it is important to acknowledge that it also has certain limitations and
challenges:

• Data Requirements: NeRF relies on a large dataset of densely captured, unstruc-
tured images, making data collection time-consuming and resource-intensive.

• Computational Complexity: Training NeRF can be computationally expensive,
especially for high-resolution images and complex scenes.

• Limited Viewpoints: NeRF may struggle to generalize to novel or unseen view-
points if there are limited viewpoints in the training data.

• Opaque Scenes: NeRF’s design assumes scenes with opaque objects, posing
challenges for scenes with transparency or complex occlusions.

• Scalability: Scaling NeRF to larger and more complex scenes requires significant
computational resources and memory.

• Noise and Artifacts: NeRF is sensitive to noise, and noisy images can introduce
artifacts, affecting the quality of rendered results.

• Limited Generalization: NeRF may struggle to generalize to viewpoints signifi-
cantly different from the training data.

Many of these challenges have been addressed by subsequent works, as outlined in
several comprehensive reviews [10, 47, 48]. These works have made significant progress
in mitigating the limitations and improving the performance of NeRF. However, it is
essential to acknowledge the specific challenges when employing NeRF in the medical
field, as the imaging technology used in this domain significantly differs from con-
ventional cameras. The original NeRF framework is designed to work with a set of
unstructured images capturing a scene centered around opaque objects. In contrast,
medical ultrasound imaging involves capturing images that pierce through objects, mak-
ing the definition of surfaces more challenging compared to natural images. Therefore,
the capturing process and ray-tracing methodology differ significantly between tradi-
tional and medical imaging techniques. Moreover, the observation angles in medical
ultrasound imaging are limited due to the physical constraints of the scanning device.
At the same time, an object captured by a traditional camera can be observed from less
restricted viewing angles. Additionally, in medical ultrasound imaging, the acquired
images tend to be noisy, and the noise exhibits a statistical distribution. As a result,
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maintaining precise correspondence and consistency in terms of pixel intensities and
appearances becomes more complex compared to traditional imaging modalities. These
limitations impose additional complexities when applying NeRF to medical ultrasound
imaging and necessitate careful consideration and adaptation of the framework to
account for the unique characteristics and constraints of the medical imaging domain.
In the next chapter, we will explore the application of NeRF in the context of medical
imaging.
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While the previous chapter presents the literature related to NeRF in computer vision,
this chapter specifically focuses on recent developments concerning NeRF in medical
imaging. It begins by introducing recent research in implicit neural representation in
the context of medical imaging, followed by a selection of relevant papers that explore
the application of NeRF in this domain.

4.1. Implicit Neural Representation in Medical Imaging

Implicit neural representations have emerged as a promising approach to representing
3D medical imaging data as continuous functions encoded within the weights of neural
networks. Several important papers have contributed to advancing this representation
in medical imaging, leading to a wide range of applications. These methods can be
divided into two main categories. For different medical imaging tasks, the first category
involves using implicit neural representations, such as SIREN [45]. This approach
focuses on leveraging the expressive power of implicit neural representations for the
following tasks:

• 3D Reconstruction: ImplicitVol [55] presents a sensorless 3D reconstruction
method. An essential part of its framework is a novel approach for representing 3D
reconstruction from ultrasound images as a continuous implicit neural function.
In this approach, a neural network maps 3D Cartesian coordinates to intensities in
B-mode images. Hence, a neural network represents the 3D volume implicitly as
a continuous volumetric function parametrized by the weight of a neural network.

• Segmentation: Khan et al. [24] propose use implicit neural representation to
represent segmentation as a continuous function instead of discrete segmentation
maps. In this approach, a neural network parameterizes segmentation map as a
continuous function that maps a coordinate in a volume to occupancy value to
indicate whether it belongs to an organ.

• Registration: Wolterink et al. [51] utilize differentiability of implicit neural rep-
resentation to represent a transformation function in deformable medical image
registration. This work defines each transformation between an image pair as a
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parametrized neural network. Since finding unique parameters to represent defor-
mation is an ill-posed task, the authors propose directly imposing regularization
on the weights of neural networks representing the deformation function.

• High-Resolution Reconstruction: IREM [53] leverages the continuity of implicitly
learned neural representations to achieve super-resolution reconstruction of brain
MRI images. In this work, a fully-connected neural network is trained to represent
a high-resolution MRI of an entire anatomy from which one can sample a 2D
slice by mapping 3D coordinates in the volume to image intensities.

The second category combines simple implicit neural representations with complex
medical imaging acquisition models and aims to improve representation accuracy by
combining the flexibility of implicit neural representations. These methods consider
unique features of medical imaging. For example, Reed et al. [37] explore the physical
principles of the acquisition process behind CT to use implicit neural representation in
their 4D-CT reconstruction pipeline. In this work, the implicit neural representation
serves as a fixed prior for the 3D scene and is combined with a parametric motion field
that accurately estimates the temporal evolution of the scene in question. Xu et al. [54]
proposes using multiple fully-connected neural network to represent implicit neural
representation of bias field, noise variance and volume intensities. These representations
are then fused to enhance 3D magnetic resonance (MR) reconstruction from motion
corrupted 2D slices.

4.2. NeRF in Medical Imaging

While there is a significant body of work on implicit neural representation in medical
imaging, the application of NeRF in the medical domain is still an emerging research
direction. However, several papers have addressed some of the domain differences
between medical and conventional images to allow the application of NeRF for medical
imaging. The majority of available literature, however, focuses on reconstruction
from CT or MRI. For instance, MedNeRF [7] presents a NeRF framework designed
explicitly for reconstructing CT projections from X-ray data. The authors harness the
power of NeRF to generate high-quality volumetric representations of CT scans using a
collection of 2D X-ray projections. MedNeRF showcases promising results in accurately
reconstructing the volumetric structure of organs and tissues from X-ray images. Idrissu
et al. [18] extend the idea presented in MedNeRF to enable the reconstruction from brain
MRI scans. To this end, they propose incorporating a radiation attenuation response
from MRI in the generative radiance field. However, more than direct application of
these methods to medical ultrasound is needed due to the distinct characteristics of
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CT, MRI, and ultrasound imaging, specifically in their respective image formation
models. Despite the potential advantages of employing neural radiance fields (NeRF) in
medical ultrasound, to the best of my knowledge, the application of NeRF to ultrasound
imaging has been addressed in only one study by Li et al. [27]. The authors employ the
NeRF algorithm to reconstruct 3D ultrasound spine data and evaluate spinal curvature
measurements based on the reconstructed results. However, it is essential to note that
the authors do not address ultrasound imaging’s physical properties. Specifically, a
volumetric rendering method that respects the physics of ultrasound has yet to be
addressed.
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5. Methodology

This chapter starts by explaining the problem setting and the underlying assumptions.
Then offers a detailed description of the proposed solution for novel view synthesis in
ultrasound imaging using the NeRF framework. In particular, it presents critical aspects
of novel view rendering for ultrasound. Firstly, a general two-step framework and
a network architecture are introduced. Secondly, a differential volumetric rendering
process tailored explicitly for ultrasound is defined. Lastly, the focus shifts to the
regularization of the parameters space.

5.1. Problem Setting

Figure 5.1.: Visualization of probe orientation and its impact on the scanned ROI. Tilting
the probe not only alters the observation angle but also modifies the path
that an acoustic wave must travel to reach the ROI.

To address the novel view rendering for ultrasound, the focus of this study is to
propose an implicit neural representation of the 3D ROI, allowing for view-dependent
rendering. The challenge involves limited information about the imaged ROI, primarily
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derived from B-mode sweeps. Notably, the observation of the ROI occurs from multiple
viewing points, depending on the probe orientation, as depicted in Figure 5.1. The
assumptions relevant to this study are presented in the following section.

5.2. Assumptions

The work presented in this thesis assumes:

• the scene observed is static, and there are no deformations present;

• the tracking of a probe is accurate and that the tracing error is negligible;

• any point rendered from a novel observation point has been observed in the
training data from at least one, different observation point;

• tissue characteristics are unknown a priori, which presents a challenge for this
task;

• it is possible to estimate the number of tissue types by categorizing them based
on similar tissue characteristics.

5.3. Neural Radiance Fields for Ultrasound Imaging

Similar to the original NeRF framework, the method comprises two modules: a neural
network that maps coordinates to a multidimensional parameter vector representing
a 3D scene and a volumetric rendering function that takes the parameters for each
position along a ray and produces the corresponding intensity for the B-mode image.
Figure 5.2 provides an overview of the complete pipeline. The method builds upon
ray-based ultrasound models commonly employed in ultrasound simulation. These
models typically assume that prior knowledge of physical parameters and semantic
tissue segmentation is available for rendering.

However, in general, the need for per-pixel tissue labels and information about tissue
characteristics poses a difficulty. Tissue characteristics are approximated from other
modalities or general parameter estimations for a specific tissue type, and detailed
tissue labeling requires additional modalities. This thesis addresses these challenges
by training a neural network to restore an intermediate physical parameter space
for ray-based ultrasound modeling. Regressing continuous space of physical tissue
parameters allows for the prediction of parameters for infinitesimal probe movements
during rendering.
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Figure 5.2.: Overview of the complete method. The method consists of two modules:
a neural network and a continuous volumetric rendering function. At
each sampled point, the neural network generates a vector of rendering
parameters, which are subsequently mapped by the rendering function to
pixel intensities.

Furthermore, the goal is to obtain a coherent physical parameter space by assuming
spatial continuity of these parameters, ensuring a smooth transition between neighbor-
ing regions. The following sections provide a detailed discussion of the method and
implementation.

Network Architecture

x4 x1 x2x

Fully-connected layer
with ReLU activation

x1
Fully-connected layer

without activation

Activation Function

Figure 5.3.: Schematic visualization of the neural network module.

Figure 5.3 depicts the network architecture utilized to represent a 3D scene. The
MLP network approximates the complex and nonlinear function that maps 3D po-
sitions to parameter values, enabling the rendering of realistic B-mode images. By
stacking multiple layers of nonlinear functions, utilizing Rectified Linear Unit (ReLU)
activations, the MLP can capture an increasingly intricate and complex mapping from
Cartesian coordinates to the parameter space. Increasing the number of layers in a
neural network can enhance its ability to approximate increasingly complex functions.
However, deeper models may suffer from computational inefficiencies and overfit-
ting. Conversely, shallower models may be insufficiently expressive to capture the
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complexity of the radiance field. To strike a balance between model capacity and
computational efficiency, a recommended approach, as proposed in DeepSDF [33], is to
utilize an eight-layer architecture. Such an architecture provides a judicious trade-off
between model capacity and computational resources. Following NeRF, the network
incorporates a skip connection that concatenates the input with the activation of the
fifth layer. However, unlike the original NeRF architecture, no additional layers are
included to account for viewing direction. Instead, the rendering module handles the
viewing direction dependency of the final B-modes. The sigmoid activation function is
employed to ensure that the final output parameters fall within the range of 0 and 1,
except for the attenuation coefficient, which may take any positive value. The absolute
value activation function is applied to the attenuation coefficient to accommodate this
requirement.

5.3.1. Ultrasound Volumetric Rendering

The ultrasound volume rendering model presented in this thesis expands upon a ray-
tracing-based formulation that has been previously discussed in the relevant literature,
such as the study conducted by Salehi et al. [40] that employ this formulation
for simulating patient-specific B-mode images for known anatomy and pre-defined
tissue characteristics. Additionally, this model considers the ultrasound ray physics
outlined in Section 2.2.1. A key strength of this model is its inherent flexibility, which
enables it to accurately depict B-mode intensities arising from both reflection and
scattering phenomena. It differentiates between view-dependent ultrasonic effects such
as occlusions, large-scale reflections, and attenuation combined with speckle patterns.
This flexibility makes it particularly advantageous for neural rendering for ultrasound.
Following, we provide a formal definition for a ray-based rendering used in this thesis.

For each scan-line r, Equation 5.1 defines a recorded ultrasound echo E(r, t), mea-
sured at distance t from the transducer, as a sum of reflected R(r, t) and backscattered
B(r, t) echo intensity:

E(r, t) = R(r, t) + B(r, t) (5.1)

Additionally, log compression is employed to enhance the reflected part, effectively
representing the dynamic range of the original image:

R(r, t) = ln(1 + γ · R′(r, t)) · ln(1 + γ) (5.2)

The reflected energy before the log compression is defined by:

R(r, t) = |I(r, t) · β(r, t)| · PSF(r)⊗ G(r′, t′) (5.3)

30



5. Methodology

Where I(r, t) is the remaining intensity at the distance t, β(r, t) denotes the reflection
coefficient, and PSF(r) signifies a predefined 2D point-spread function. G(r, t) admits
the value 1 for points at the boundary and 0 otherwise. In the model employed in this
thesis, a constant value of 1 is assumed, simplifying the equation to solely involve the
intensity reflection coefficient for computing the reflection:

R(r, t) = |I(r, t) · β(r, t)| (5.4)

The propagation of intensity is tracked along each scan-line, and the residual energy
I(r, t) is modeled by considering the intensity loss attributed to reflection β at the
boundaries, as well as the attenuation compensated through the application of an
undisclosed time-gain compensation (TGC) function. The final formulation for I(r, t)
assumes an initial unit intensity I0(r, 0) and accounts for the intensity loss occurring at
each incremental step dt.

The resulting equation can be further simplified by representing the compensated
attenuation α with a single parameter, considering that the TCG acts as a scaling factor

I(r, t) = I0 ·
t−1

∏
n=0

[(1 − rcoe f f (r, n))] · exp(−
∫ t−1

n=0 (α· f ·dt)) (5.5)

Consequently, the values of α correspond to the physical attenuation up to an
unknown scaling factor.

The backscattered energy B(r, t) originating from the scattering medium is influenced
by the remaining energy I(r, t) and a2D map of scattering points T(r, t):

B(r, t) = I(r, t) · PSF(r)⊗ T(r′, t′) (5.6)

The map T(r, t) is learnt using a generative model inspired by [56]:

T(r, t) = H(r, t) · ϕ(r, t) (5.7)

Within this model, the function H(r, t) assumes a value of 1 when the query point
corresponds to a scattering point, and 0 otherwise. This function is sampled from the
Bernoulli distribution, with the scattering density ρs as its parameter. It encapsulates the
inherent uncertainty regarding the observance of the scattering effect of each scattering
point. The intensity associated with a scattering point is determined by its amplitude
ϕ, which is sampled from a normal distribution with a mean of ϕ and a unit variance,
effectively capturing the variability in intensity levels.

This model is not fully differentiable due to the sampling process from a Bernoulli
distribution. However, despite this limitation, the loss can still be back-propagated,
even though the sampled variables do not directly contribute to updating the network
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weights. In order to achieve full differentiability across the entire model, one approach
is to approximate the Bernoulli distribution with smooth relaxation. One such technique
is Relaxed Bernoulli [28], where a low temperature value can substitute the original
discrete distribution, ensuring differentiability throughout the rendering process.

5.3.2. Ray Sampling

Without loss of generality, the presented ray sampling here primarily focuses on a linear
probe; however, the sampling method can also be extended to a curvilinear probe. T
he first step involves defining a ray to sample a position within the ultrasound image.
The ray, denoted as r, is characterized by its origin o and direction vector d. Each ray
corresponds to a single scan line in the ultrasound image. The ray origin is positioned
at the contact point of the probe with the surface for the respective scan line. The
direction vector aligns with the elevation and coincides with the scan line. With the
origin and direction of each ray determined, it becomes possible to sample points along
the ray using a step t. Consequently, a ray can be defined as r(t) = o + td. This thesis
assumes equidistant sampling, as depicted in Figure 5.4.

Figure 5.4.: Visualization of the rays definition and ray sampling. For a ray defined
as r(t) = o + td points are sampled equidistantly and coincide with pixel
positions in the 3D space.

5.3.3. Parameters Space Regularization

The problem of finding a set of parameters for the rendering function that best fits
the observed data is a classical inverse problem. However, the formulation presented
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in the previous section allows for degenerate solutions, primarily stemming from the
inherent ambiguity in representing the final pixel intensity within the parameter space.
In machine learning, regularization is a popular method used to constrain the problem
and improve the search space of possible solutions. Regularization helps to avoid
overfitting and encourages models to find simpler solutions that generalize well. This
thesis proposes a method of regularizing the parameters space based on the physical
characteristics of the rendering parameters. The proposed method aims to improve
the accuracy of the rendering function considering the representation of underlying
topology by incorporating physical constraints on the estimated parameters.

Correlation between attenuation and scattering

Based on the underlying physics, a correlation between the physical properties of the
tissue exists. For instance, the Pearson correlation coefficient indicates that attenuation
and scattering are highly correlated. To exploit this relationship, we propose using a
correlation measure on the maps of the regressed parameters to constrain the network to
maximize the correlation between the attenuation and scattering amplitude. Specifically,
using Local Normalized Cross Correlation (LNCC) to measure the correlation between
the attenuation and scattering amplitude maps. The formula for this measurement is
defined as follows:

LNCC(x, y) =
∑i,j w(i, j)[I(x + i, y + j)− µ(x, y)][J(x + i, y + j)− ν(x, y)]√

∑i,j w(i, j)[I(x + i, y + j)− µ(x, y)]2 ∑i,j w(i, j)[J(x + i, y + j)− ν(x, y)]2

In this formula, I(x, y) and J(x, y) are the intensity values of the two images being
compared at pixel location (x, y), and w(i, j) is the weighting function applied to each
pixel location within a local window centered at (x, y). The mean values of I and J
within the local window are denoted by µ(x, y) and ν(x, y), respectively. -

Local smoothness of attenuation and scattering

In ultrasound imaging, it is common to assume that tissues are locally homogeneous.
This assumption suggests that one can expect a low local variation in tissue charac-
teristics and, therefore, in the rendering parameters. Specifically, it is reasonable to
anticipate a minimal gradient in both the attenuation and scattering maps, given that
the physical properties of the tissue remain relatively constant in a particular area.
To exploit this attribute and further constrain the solution space, we propose using
Total Variation (TV) regularization on the scattering map. However, traditional TV
regularization does not account for abrupt changes in the underlying tissue properties
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that arise from imaging multiple tissue types. To address this limitation, we introduce
a weighted version of TV regularization, which presents as follows:

TV(ϕs) = ∑
i,j

γi,j(|ϕsi+1,j − ϕsi,j |+ |ϕsi,j+1 − ϕsi,j |) (5.8)

where γi,j = rmax − ri,j

In this equation, the penalty function incorporates a weight factor, denoted as γ(i, j),
contributing to the optimization process two-fold. On the one hand, it relaxes the
constraint imposed by the regressed reflection coefficient, allowing for some degree
of flexibility in the reconstruction. On the other hand, it imposes a constraint on the
value of the reflection coefficient based on the variability observed in the scattering
attenuation map. The correlation between attenuation and scattering indicates that
enforcing a low total variation on the scattering map results in a similar outcome on the
attenuation map due to the bidirectional correlation between the physical properties
that underlie these maps.

Tissue clustering

The assumption underlying the estimation of rendering parameters is that they reflect
the physical characteristics of the tissue. It is reasonable to expect that it is possible
to cluster tissue types in the parameter space. This clustering is further used to
globally constrain the variation in the parameter space, specifically in the attenuation
map. To achieve this, we propose a two-step approach. This approach is presented in
Algorithm 1.

Algorithm 1 Attenuation Clustering Penalty

1: Step 1: Cluster Attenuation
2: Choose the number of clusters, k
3: Cluster attenuation
4: Step 2: Penalize Distance to the centroids
5: for each pixel (i, j) in attenuation map do
6: Calculate the penalty factor, γi,j as a distance between the attenuation value and

the centroid
7: end for

In the first step, attenuation is clustered using a method such as k-means. This thesis
uses k-means clustering to group similar attenuation values. In this step, we must
decide on the number of expected clusters, denoted as k, which is a hyper-parameter.
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In the second step, the obtained centroids are used to calculate a penalty factor that
penalizes distance from the centroid.

One limitation of the clustering-based penalty is that it may result in a trivial solution
where attenuation values are equal to zero. Furthermore, allowing for sufficient
variation in cluster centroids can facilitate the network’s ability to learn distinct tissue
characteristics. We introduce an additional penalty factor that penalizes the distance
between cluster centroids to address these issues. However, directly computing the
distances between centroids would prevent gradient propagation, so we compute new
centroid values based on the labeled attenuation map. Then, we calculate the pairwise
distances between the centroids obtained from clustering and the re-computed centroids
and use them in the final penalty. The tissue clustering penalty function is as follows:

Lc =
1
N

N

∑
i=1

(αi − centroids)2 (5.9)

5.3.4. Training Details

Loss Function

A combination of a primary loss function and supporting regularization terms are
utilized for training. The primary loss function employed is the Structural Similarity
Index Metric (SSIM), a perceptual loss that considers differences in luminance, contrast,
and structure between two images. However, during the initial stages of training, it is
observed that using the pure SSIM loss was challenging since the training commenced
with no prior knowledge of the final intensity values. A warm-up stage is introduced
to address this, during which a simple photogrammetric loss, specifically the L2 loss
measuring pixel-wise intensity differences, is utilized. Following the warm-up phase,
the L2 loss acts as an auxiliary loss that encourages rendering images with intensities
closer to the ground truth B-mode images. After the warm-up stage, regularization
terms are incorporated. During the early stages of training, clustering regularization is
not employed as it requires considerable time for the clustering method to establish
clusters. The clustering penalty is first introduced during the final stages of training to
refine the results and maintain global consistency among the regressed parameters for
the same tissue types. The final loss function is defined by a combination of the SSIM
loss, the L2 auxiliary loss, and additional regularization terms as follows:

L = wSSIMLSSIM + wL2LL2 + wLCCLLCC + wTVLTV + wCLC (5.10)
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Where,

LSSIM := Structural Similarity Index Metric

LL2 := L2 Loss

LLCC := LCC Penalty Factor

LTV := Total Variation Penalty Factor

LC := Clustering Penalty Factor

wSSIM := Weight for SSIM component

wL2 := Weight for L2 component

wLCC := Weight for LCC component

wTV := Weight for TV component

wC := Weight for Clustering component

Table 5.1 presents weights used for the training.

Table 5.1.: Weights per loss component
wSSIM wL2 wLCC wTV wC

1.0 1e-1 1e-2 1e-6 1e-2

Positional Encoding

The positional encoding function denoted as γ in Figure 5.3 maps from a lower
dimensional space to a higher dimensional space. A recent study by Rahaman et
al. [36] reveals that deep neural networks are often biased towards learning lower
frequency functions. However, the researchers also demonstrate that the input data can
be preprocessed by mapping it to a higher-dimensional space using high-frequency
functions before feeding it into the network. This preprocessing technique improves the
model’s ability to fit high-frequency variations data. It suggests that careful selection of
preprocessing techniques can mitigate the limitations of deep networks and enhance
their performance in dealing with high-frequency variations. In NeRF, it has been
shown that using positional encoding can improve the quality of the rendered images.
Following NeRF, the positional encoding function is defined as:

γ(p) = (sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)) (5.11)

In this thesis, an embedding size of L=10 is used.

36
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This chapter presents the results of experiments validating the method proposed in
this thesis. It begins with a description of the datasets utilized in these experiments,
emphasizing their relevance and distinctive features. Subsequently, it explicates the
quantitative metrics and qualitative validation methods employed to evaluate the
effectiveness of the proposed approach. Afterward, it presents the experimental setup
and procedure, providing a detailed account of the steps taken to evaluate the methods.
Finally, it presents the outcomes of these experiments and an analysis of the results.
The chapter concludes with a discussion of the limitations of the method.

6.1. Dataset

In this thesis, experiments were conducted using datasets collected explicitly for the
purpose of novel view synthesis of B-mode images that consist of B-mode images with
respective pose annotations. These datasets were designed to support the assumption
of multiple observations per ROI from various viewing perspectives. Each ROI was
observed from a set of positions that varied in both position and orientation of the
probe, as illustrated in Figure 6.1. The collected datasets consist of multiple sweeps
and Table 6.1 provides information regarding the number of sweeps and the test-train
split. Each sweep differed in the angle between the acquisition direction and the probe
orientation, with the probe being tilted from left to right during the acquisitions. Each
sweep was tracked using robotic tracking to ensure accurate pose estimations. Further
details regarding each dataset are explained in their respective sections.

Table 6.1.: Test-train split per dataset type
Dataset Type Train Test Total

Sweeps B-mode Sweeps B-mode Sweeps B-mode
Synthetic Liver 4 800 3 600 7 1200
Spine Phantom 8 1200 4 600 12 1800
Exvivo Spine 4 3400 1 800 5 4200
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Figure 6.1.: Illustration of various viewing points with respect to a ROI. In this illus-
tration, two probes are moved along a trajectory parallel to the surface,
scanning the vertebra from different sides. During the acquisitions, the
probes was tilted tilted relative to the trajectory, allowing for variations in
viewing angles. In the experiments, the viewing angles have been fixed
within a sweep and adjusted for different sweeps.

6.1.1. Synthetic Dataset

Figure 6.2.: Illustration of the labels utilized for simulating B-mode images and simu-
lated B-mode sweeps. The highlighted region represents the area captured
during the simulation, with stronger intensities indicating greater overlap
between sweeps. In the bottom right corner, all simulated sweeps are
displayed, incorporating ribs that contribute to the presence of acoustic
shadows.
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The synthetic dataset utilized in this study is a simulated collection of B-mode images.
These images were generated using specialized software available within the ImFusion
Suite 3. The software employed labels derived from CT scans to simulate the B-mode
images. The method used for simulation requires known properties of simulated tissue.
The respective values for acoustic tissue parameters are shown in Table 6.2. The virtual
scanning process covered the liver region, as depicted in Figure 6.2. Notably, the
simulation also accounted for the presence of ribs, resulting in bone reflections and
acoustic shadows. Each simulated sweep varies in terms of the acquisition orientation.
The simulated images have a depth of 140 mm, and the virtual probe has a width of 80
mm. With a resolution of 256x512 pixels, the B-mode images offer an axial resolution
of 0.31 mm, an elevational resolution of 0.27 mm, and a lateral resolution of 0.5 mm.
The dataset encompasses a specific number of B-mode images, sweeps, and a test-train
split, detailed in Table 6.1.

Table 6.2.: Tissue properties used in simulations
Tissue Type Attenuation

Coefficient
(dB/cm/MHz)

Acoustic
Impedance
(MRayls)

Scattering
Density
(cm−1)

Scattering
Amplitude
(unitless)

Lung 1.64 0.2 0.5 0.5
Fat 0.48 1.38 0.8 0.5
Water 0.18 1.61 0.001 0.0
Kidney 0.2 1.62 0.4 0.6
Muscle 0.49 1.62 0.53 0.51
Background 0.54 0.3 0.3 0.2
Liver 0.4 1.65 0.2 0.4
Soft Tissue 0.54 1.63 0.64 0.64
Bone 2.0 7.8 1.0 0.8

6.1.2. Phantom Dataset

The lumbar spine phantom dataset was collected on a gelatine-based phantom. This
phantom is a synthetic model of a bone connected by a soft material simulating discs.
In our dataset, we defined trajectories that support capturing the region encompassing
two vertebrae. Like the synthetic dataset, the probe’s orientation varies between sweeps

3ImFusion GmbH, Munich, Germany, software version 2.42
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Figure 6.3.: Visualization of the phantom dataset. In the top row, white intensities
are displayed, representing the max-value compounding of all-angle im-
ages. The middle row provides a visual representation of the observation
directions with respect to the anatomy of the lumbar spine phantom. In
the bottom row, the red, blue, and green intensities compose the white
intensities based on the view angle.

to capture the ROI from different viewing positions. The sweeps were acquired using a
linear probe (Cephasonics Cicada LX ultrasound machine and Piezo Composite Linear
probe) connected to a robotic manipulator (KUKA LBR iiwa 7 R800). Real-time tracking
information was captured using ImFusion Suite 3.

The acquired phantom data consists of B-mode images of the lumbar spine phantom.
The B-mode images were captured in a paramedian sagittal orientation, resulting in
occlusions from the spinous process on both sides of the vertebrae, depending on the
acquisition orientation, similar to the illustration in Figure 6.1. The B-mode images
have a depth of 100 mm and a width of 38 mm. With a resolution of 164x1300 pixels,
the B-mode images offer an axial resolution of 0.22 mm, an elevational resolution of
0.07 mm, and a lateral resolution of 0.5 mm. The dataset include a specific number of
B-mode images, sweeps, and a test-train split, further detailed in Table 6.1. Figure 6.3
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shows an example of the acquired sweeps of the lumbar spine phantom. The figure
provides a visual representation of the captured ultrasound sweeps, showcasing the
details and structures of the lumbar spine phantom.

6.1.3. Ex-vivo Dataset

Figure 6.4.: Exvivo data: The figure displays overlaid ultrasound sweeps acquired from
the ex-vivo experiment. The phantom used in this study consists of multiple
tissue types, such as bone, fat, and muscle, each possessing distinct acoustic
properties. The sweeps were obtained using a tilted probe, similarly to the
spine phantom, and the resulting effect is visualized in the bottom image.

An animal meat phantom was utilized for the experiments involving ex-vivo B-mode
images. The phantom was a lamb spine surrounded by tissues. Lamb phantoms
have been widely acknowledged in the literature as effective models for training in
needle insertion due to their similarity to human tissues in echogenicity [41]. The
spine was placed in a container filled with water to ensure proper probe connection
to the surface while tilting the probe. This arrangement avoided any issues arising
during imaging due to the lack of contact between the probe and the phantom surface.
The ultrasound sweeps were acquired using the same hardware and software setup
described in Section 6.1.2. Similar to the spine phantom, the B-mode images were
captured in a paramedian sagittal orientation to capture the effect of occlusions caused
by vertebrae. The B-mode images had a depth of 60 mm, while the probe itself had
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a width of 38 mm. With a resolution of 164x780 pixels, these B-mode images offered
an axial resolution of 0.22 mm, an elevational resolution of 0.07 mm, and a lateral
resolution of 0.5 mm. Details about the number of sweeps and train-test split can
be found in Table 6.1. Figure 6.4 shows example of images acquired on the exvivo
phantom.

6.2. Evaluation Methods

6.2.1. Baseline Setup

Figure 6.5.: ImplicitVol pipeline. The method uses a direct mapping from 3D coordi-
nates to intensity values for 3D ultrasound reconstruction.

A novel view synthesis is an emerging field in medical ultrasound imaging. To
the best of our knowledge, there is currently no benchmark method available for
evaluating the performance of such methods. Therefore, in this thesis, we propose
evaluating the method’s performance by comparing it to two existing methods that
can generate new B-mode images of a ROI based on multiple ultrasound sweeps of
the same ROI. The first method, in the thesis referred to as the "method without
rendering," is adapted from the ImplicitVol framework proposed by Yeung et al. in their
work on volume reconstruction [55]. This method employs the MLP network for the
task of coordinate-to-intensity mapping and has been used by the authors for volume
reconstruction as presented in Figure 6.5. To obtain the baseline, we trained the MLP
network introduced in Section 5.3 on coordinate-to-intensity mapping for the same
number of epochs as the complete model with the rendering method presented in this
thesis. The second baseline method adopted in this thesis involves B-mode generation
through the compounding of ultrasound sweeps. Firstly, a volume is compounded
using all training sweeps, resulting in a compounded volume (Figure 6.6). Subsequently,
the compounded volume is resliced to simulate ultrasound sweeps using the tracking
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information from testing sweeps. The ImFusion Suite 3, facilitates the compounding
and reslicing steps.

Figure 6.6.: Volume compounding visualization: The figure illustrates the compounded
volume, where multiple ultrasound sweeps are combined to create a volume.
This compounded volume serves as a basis for reslicing and generating
new sweeps using tracking information. The bottom right image displays
the compounded volume itself, while the remaining images depict axial,
sagittal, and coronal views of the volume, showcasing an effect of multiple
sweeps on the final volume.

6.2.2. Evaluation on Downstream Tasks

Volume Compounding

As discussed in Section 2.4, volume compounding is a significant method for recon-
structing and visualizing anatomical 3D structures. An essential aspect of the novel
views generated using the method proposed in this thesis is the ability to create a
compounded volume from the rendered B-mode images of the same quality as real
B-mode frames. Therefore, evaluating the rendered sweeps on this task becomes crucial
to understand whether rendered B-mode images represent the anatomy in the same way
as a real ultrasound system observes it. We compare compounding from real B-mode
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images and rendered B-mode images to analyze rendering quality for representing the
real anatomy. First, we render sweeps from the novel views using tracking information
derived from the training sweeps. Subsequently, we create per-sweep compounded
volumes from the rendered B-mode images and the corresponding sweeps for real
B-mode images. The evaluation methods employed for assessing the performance of
the generated compounded volumes will be further discussed in subsequent sections
of this thesis.

Confidence Maps

Confidence maps discussed in Section 2.5 are significant measures in quantifying the
uncertainty associated with the information in B-mode images. This uncertainty is often
linked to acoustical phenomena, such as acoustic shadows, which the method presented
in this thesis aims to preserve. Preserving the uncertainty becomes crucial in rendered
images as we expect the rendered images to represent the same information as images
captured with an ultrasound device. Therefore, it is essential for the rendered views
to accurately capture and retain the inherent uncertainty of the underlying acoustical
phenomena. To evaluate the performance of the rendered views in terms of confidence
map calculation, we compute confidence maps for each rendered testing sweep. These
computed confidence maps are then compared to the ground truth confidence maps,
enabling a thorough assessment of the accuracy of the rendered images in preserving
the uncertainty associated with the acoustical observations. Detailed discussions
regarding the evaluation methodology and results will be presented in subsequent
sections of this thesis.

6.2.3. Quantitative Metrics

Jaccarrd Index

The Jaccard Index (J) is a widely used metric for evaluating segmentation tasks in
medical imaging [3]. Formally it is defined as:

J(A, B) =
|A ∩ B|
|A ∪ B| (6.1)

where A and B are two sets, and |A| and |B| represent the cardinality of the sets A and
B, respectively. In this thesis, we apply this metric to evaluate the quality of confidence
maps computed for rendered images. To compute the J, each confidence map is first
transformed into a binary segmentation map, where 0 indicates low certainty and 1
represents high certainty. The binary confidence map is then computed at multiple
thresholds j = 0.1, 0.2, ..., 0.9. For the evaluation, we report both median and mean
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Jaccard similarity scores over all possible threshold values. Formally the evaluation
metrics are defined as follows:

Let S be a set of n Jaccard Indices, i.e., S = J(Y1, Y′
1), J(Y2, Y′

2), ..., J(Yn, Y′
n). Then, the

mean J over S is:

J̄(S) =
1

nm

m

∑
j=1

n

∑
i=1

J(Yij, Y′
ij) (6.2)

where j(Yi, Y′
i ) is the J between a binary confidence map of a target B-mode (Yi) and

a confidence map of a rendered B-mode (Y′
i ) a a threshold j .

Let S’ be a set of nm Jaccard Indices, i.e., S′ = J(Y11, Y′
11), J(Y12, Y′

12), ..., J(Ymn, Y′
mn).

Then, the median J over S is:

med(J(S′)) =


1
2

(
S′
( nm

2 )
+ S′

( nm
2 +1)

)
if nm is even

S′
( nm+1

2 )
if nm is odd

(6.3)

where S’ is sorted in non-decreasing order.

Mutual Information

Mutual Information (MI) is an important measure of independence between two
random variables [8]. In the field of medical image registration, it is a popular metric
used to assess the similarity or correspondence between images. One of the key
assumptions of MI is that similar tissues in one image will correspond to tissues in
another image, even if the pixel intensities differ in absolute values [34]. Therefore,
MI quantifies the amount of information shared between two images, reflecting their
similarity or dissimilarity. The formula for calculating MI between two discrete images,
or random variables, is as follows:

I(X; Y) = H(X) + H(Y)− H(X, Y) (6.4)

where I(X; Y) represents the mutual information, H(X) is the entropy of variable X,
H(Y) is the entropy of variable Y, and H(X, Y) is the joint entropy of variables X and
Y. Alternatively, the mutual information can be defined using the probability mass
function (PMF) for the discrete random variable:

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
(6.5)

To calculate MI between two images or random variables as defined by the above
euqations, several steps are involved. First, the joint probability distribution needs to be
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estimated by creating a two-dimensional histogram that represents the joint distribution.
Next, the marginal probability distribution of each image is computed by summing
over the corresponding dimensions of the joint distribution. The entropies of each
image are then computed by summing the probabilities and multiplying them by their
logarithms. Finally, the joint entropy is calculated by summing the joint distribution
multiplied by the logarithm of the joint distribution.

Mean Square Error

Mean Square Error (MSE) is a commonly used metric to evaluate the performance
of an estimator or model by measuring the average squared difference between the
predicted values and the true values. It provides a quantitative measure of the overall
deviation between the predicted and actual values.Mathematically, MSE is computed
as the average of the squared differences between each predicted value (ŷ) and its
corresponding true value (y):

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (6.6)

The MSE metric is particularly useful in regression tasks, where the goal is to predict
continuous values.

6.2.4. Qualitative Methods

Qualitative methods in medical imaging involve the subjective assessment of the
performance of a given method through the evaluation of its output. In this thesis, a
qualitative assessment was deployed for both the novel view rendering and the output
of the volume compounding, as described in Section 6.2.2. The primary qualitative
method employed in this thesis is visual inspection.

For the task of novel view rendering, the images were evaluated based on the domain
gap between the rendered images and the ground truth data. Key aspects examined in
the rendered images include image quality, similarity to B-mode images, and accuracy
in representing anatomical structures. The comparative evaluation approach is adopted
during the visual inspection, wherein the rendered images and ground truth data are
displayed side by side. This process allows for the identification of any deviations
between the renderings and the B-mode images, enabling the interpretation of the
utility of the rendered images.

In the case of volume compounding, the compounded volumes are visualized side by
side to evaluate whether the method preserves the topology of anatomical structures
depending on the viewing direction. This qualitative assessment aims to determine the
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accuracy and reliability of the rendering method in preserving the overall anatomical
structure across different viewing angles.

6.3. Results and Discussion

6.3.1. Novel View Rendering

Figure 6.7.: Examples of rendered B-mode images and ground truth B-mode images
from the synthetic dataset.

The primary goal of the method presented in this thesis is to achieve novel view
rendering that preserves view-dependent acoustical phenomena. As described in
Section 6.1, each dataset comprises sweeps that vary in terms of probe orientation. This
variation in probe orientation provides a diverse set of viewing directions for each
respective ROI. The method was tested on the complete sweeps. The method takes
poses from the testing sweeps as input and renders corresponding B-mode images for
each input pose. Figure 6.7 displays a selection of randomly sampled rendered B-mode
images and corresponding ground truth B-mode images from the simulated dataset.
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The visual comparison between real and rendered B-mode images demonstrates that
the renderings accurately preserve anatomical structures, effectively capturing the
boundaries between different tissue types. Furthermore, the rendering process enables
the correct generation of view-dependent acoustic shadows, accurately representing
their presence in the rendered images. However, it is necessary to note that the rendered
images do not perfectly match the ground truth data regarding B-mode appearance.
One notable difference lies in the noise pattern resulting from scattering, which varies
between the rendered images and the ground truth data. Figure 6.8 displays a set of

Figure 6.8.: Examples of rendered B-mode images and ground truth B-mode images
from the phantom dataset

randomly selected rendered B-mode images and their corresponding ground truth
B-mode images obtained from the phantom dataset. Consistent with the findings on
the synthetic dataset, the rendered images accurately preserve the anatomical structure,
maintaining the boundaries between different tissue types; however, the rendered
images do not replicate the appearance observed in real B-mode images. Furthermore,
the rendered images exhibit a tendency towards oversmoothing, resulting in a loss of
fine details and subtle features present in the ground truth images. Additionally, the
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rendered images do not capture complex acoustic phenomena, such as reverberations,
commonly observed in real B-mode images. These acoustic phenomena, which arise
from multiple reflections of sound waves within tissues, contribute to B-mode images’
overall appearance and texture. Therefore in their presence, the domain gap between
real and rendered images increases. The results obtained from the ex-vivo dataset,

Figure 6.9.: Examples of rendered B-mode images and ground truth B-mode images
from the exvivo dataset.

as depicted in Figure 6.9, align with the observations made for both the synthetic
and phantom datasets. Specifically, the method successfully identifies the anatomical
structure within the rendered images but fails to accurately replicate the appearance
observed in real-world ultrasound imaging. This discrepancy is particularly noticeable
in tissues with elongated structures, where the rendered images fail to capture the
fine details and nuances of their appearance. The method’s limitations become more
evident when attempting to represent muscle fibers, as the rendered images lack the
texture associated with fibers.
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Comparison to Baseline Methods

Figure 6.10.: Comparison of B-mode images rendered with physics-inspired rendering
and baseline methods, highlighting the advantage of accurate acoustic
shadow reconstruction.
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Figure 6.10 shows examples of visual comparison of the rendered B-mode images
using the proposed physics-inspired rendering method and those rendered using
baseline methods. This figure demonstrates the advantages of utilizing physics-inspired
rendering for novel view generation. Notably, the baseline methods fail to accurately
reconstruct acoustic shadows due to their approach of averaging pixel intensities from
multiple images of the same ROI. In contrast, the method presented in this thesis
learns to identify the locations of strong reflections and utilizes this knowledge and the
direction of observation to generate accurate shadows. This fundamental distinction
allows the proposed method to outperform the baseline methods in accurately rendering
view-dependent anatomical structures in the B-mode images.

6.3.2. Rendering Parameters Space

The rendering function introduced in Section 5.3.1 relies on input parameters associated
with the physical characteristics of the imaged tissue. Therefore, each B-mode image can
be decomposed into intermediate maps representing this image in the parameter space.
These intermediate parameter maps represent values of respective tissue properties.
However, in real-world scenarios, the exact values of these parameters are typically
unknown, and approximations are commonly used in simulations and rendering
algorithms. As a result, it becomes infeasible to analyze the regressed parameters
in absolute terms when working with acquired B-mode images. The lack of precise
knowledge about the true parameter values limits the ability to accurately interpret and
quantify the regressed parameters. Nevertheless, in the case of the synthetic dataset,
the values of these rendering input parameters are known. This is because they have
been utilized in the simulation process to generate the synthetic dataset. Knowing
their parameters, it becomes possible to evaluate and analyze the performance of the
rendering input parameters on the synthetic dataset. An example of the decomposition
of a rendered B-mode image in parameter space with respective ground truth values
is shown in Figure 6.11. The following sections present an analysis of the regressed
rendering parameters and their correspondence to the actual tissue characteristics in
the example of synthetic B-mode images.

Attenuation Evaluation

The primary objective of the evaluation is to quantitatively compare the regressed ren-
dering parameters with the corresponding ground truth data. However, it is essential
to note that the scattering density model employed in the simulations differs from
the model proposed in this thesis. As a result, the evaluation primarily emphasizes
the assessment of the attenuation coefficient. For the analysis, four types of models

51



6. Experiments and Results

Figure 6.11.: Visualization of rendering parameters for rendering after training with
and without regularization.

are considered: A model without any regularization, a model with LNCC as the reg-
ularization term, a model with TV regularization, and a model incorporating all the
regularization terms discussed in the thesis. Section 5.3.1 explains that exact regression
of the attenuation coefficient is infeasible due to the post-processing of B-mode images,
which intensifies the image in strongly attenuated regions. the regressed and ground
truth attenuation coefficients are normalized for the analysis for each testing sweep.
As a result, a method of evaluating the normalized attenuation coefficient is employed.
The evaluation uses two metrics: MI and MSE. Although it would be possible to
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vs. GT

regularization type med(MI(S′)) ↑ M̄I(S) ↑ med(MSE(S′)) ↓ ¯MSE(S) ↓

w/o regularization 0.05 0.06 0.03 0.04
TV 0.26 0.21 0.03 0.04
LNCC 0.60 0.61 0.02 0.02
all penalties 0.63 0.63 0.02 0.02

Table 6.3.: MI and MSE between ground truth attenuation coefficient and learned
attenuation coefficient for different regularization types

treat the estimation of the rendering coefficient as a typical regression problem, the
normalization does not reverse the effects of post-processing since it might involve non-
linear changes to the acquired acoustic signal. Consequently, evaluating the regressed
coefficients in absolute terms remains infeasible. Therefore, the focus is on comparative
evaluation, enabling a comparison between different regularization techniques. The
results of this evaluation are compiled in Table 6.3. Based on the obtained results,
one can observe that the regressed parameter for attenuation does not align with the
ground truth values without regularization. This lack of correspondence is reflected
in the MI values, which are close to zero, indicating a lack of statistical dependence
between the regressed parameter and its ground truth value. This independence is
visually represented in the attenuation map shown in Figure 6.11. However, when
incorporating simple regularization techniques such as TV to preserve tissue continuity,
there is an increase in MI values. Although the statistical dependence remains relatively
weak, this regularization step contributes to a better alignment between the regressed
parameter and its ground truth value. The most significant improvement in achieving
statistical dependence is observed when employing LNCC as the regularization tech-
nique. This regularization method enhances the relationship between the regressed
parameter and the ground truth value, resulting in a more substantial increase in the
MI. The best overall results are obtained when incorporating all the regularization
penalties discussed in the thesis. Each penalty focuses on different aspects and physical
characteristics in the parameter space. By combining them, the resulting regressed
parameter demonstrates the highest level of statistical dependence with respect to the
ground truth values, indicating a stronger correlation with the ground truth values. A
similar trend is observed in the MSE, where the parameter estimation error decreases
with the addition of regularization. Additional decomposition of the rendered B-modes
for both a method with and without regularization and all datasets is included in
Appendix A.
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Reflection Evaluation

This section concentrates on the evaluation of the regressed reflection coefficient. The
reflection coefficient map, shown in Figure 6.11, represents higher coefficient values
corresponding to tissue boundaries and lower values corresponding to the locally
homogeneous tissue. This is because reflection occurs at the interface of two tissue
types with distinct acoustic properties, encoding the scanned tissue’s geometry. By
sampling the reflection coefficient above a certain threshold, it should be possible to
reconstruct the underlying anatomical structure in 3D. To validate that the reflection
coefficient encodes tissue geometry, we compared the 3D reconstruction derived from
the reflection coefficient with the reconstruction obtained from real B-mode images. As
the spine phantom possesses a simple structure, it was chosen for visualization and is
presented in Figure 6.12. Only a single view is shown to simplify the visualization of
the real B-mode reconstruction. Upon examining the reconstruction generated from
the reflection coefficient, one can observe that the coefficient effectively encodes the
geometry of the scanned tissue.

Figure 6.12.: Reconstruction from the reflection coefficient: The geometry of the tissue
is encoded in the reflection coefficient.
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6.3.3. Compounding Evaluation

An essential aspect of the quality of rendered B-mode images is their ability to ac-
curately depict anatomical structures as if they were imaged with a real ultrasound
probe. Therefore a sequence of rendered B-mode images that accurately represent
scanned anatomy must enable the reconstruction of a 3D volume that aligns with
the reconstruction obtained from real B-mode images captured using the same probe
positions. To test this assumption and to assess and emphasize the significance of
physics-based rendering in accurately representing view-dependent changes in imag-
ing the anatomical structure, we compare reconstructions from different rendering
methods and the ground truth data. To this end, we compounded volumes from testing
sweeps from rendered and ground truth data. These compounded volumes were then
exported as meshes for enhanced visualization. Figure 6.13 showcases examples of
compounded volumes derived from the phantom dataset using the methods men-
tioned earlier. In both coronal and transverse views, it is noticeable that the absence
of physics-informed rendering results in the 3D reconstruction that includes areas
not observed in the ground truth reconstruction. This suggests that B-mode images
generated without physic-informed rendering contain intensities not present in real
B-mode images. In the reconstruction from images rendered with Ultra-NeRF one can
observe how physics-informed rendering that leverages information about occlusion
from the reflection coefficient. This information aids in generating B-mode images with
intensities corresponding exclusively to visible anatomical structures.

Figure 6.13.: Comparison of compounded volumes from B-mode images rendered
with Ultra-NeRF and baseline methods. Because of the observation angle
spinous process occludes lamina. This occlusion is reconstructed using
physics-informed rendering in Ultra-NeRF, without it the occluded part of
lamina is visible in a compounding.
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6.3.4. Confidence Maps Evaluation

An essential objective of the rendering method presented in this thesis is that rendered B-
modes accurately depict the artifacts that would be present if they were recorded with an
actual ultrasound probe. These artifacts play a crucial role in altering the confidence of
observations made based on the images. Therefore, assuming an accurate representation
of physical phenomena, the rendered images must exhibit uncertainty equivalent to real
B-mode images captured from a specific probe pose. To this assumption, we evaluate
confidence maps calculated for rendered images by comparing them to respective
confidence maps calculated for ground truth B-modes from the testing sets. In the
experiments, an implementation of confidence maps available in ImFusion software is
utilized. This implementation relies on confidence maps generated using the random
walk algorithm [23]. Table 6.4 showcases an evaluation of confidence maps calculated
for rendered B-mode images compared to confidence maps derived from the ground
truth data of the synthetic dataset. The evaluation was also conducted for baseline

vs. GT

method med(J(S′)) ↑ J̄(S) ↑

reslicing from compounding 0.61 0.60
without rendering 0.90 0.95
Ultra-NeRF 0.92 0.96
Ultra-NeRF with regularization 0.94 0.97

Table 6.4.: Evaluation of confidence maps and comparison with a method without
rendering.

methods to provide a benchmark for comparison. The accuracy of the confidence maps
was quantified using the J metric, and the results are reported. In order to facilitate
this evaluation, the confidence maps are transformed into confidence masks using a
range of thresholds as defined in Section 6.2.3. Between the reslicing from compounded
volumes and the renderings with regularized Ultra-NeRF, we observe a 54% increase in
the median J and between the simple implicit neural representation 4% increase. This
evaluation highlights the benefits of employing a physics-informed rendering technique
since the confidence maps calculated for B-mode images rendered with Ultra-NeRF
represent more similar uncertainty as measured by J metric. The evaluation reveals
that the reslicing method fails to generate B-mode images that closely resemble those
captured with a real ultrasound probe. This discrepancy arises because the resliced
images are a simplistic composition of all the images capturing a specific ROI. Although
a simple implicit neural representation without rendering shows some improvement, it
still generates artifacts inconsistent with natural physical phenomena, as depicted in
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Figure 6.14. The introduction of physics-informed rendering significantly enhances the
consistency of view-dependent artifacts, as exemplified by the improved depiction of
shadows in Figure 6.14.

Figure 6.14.: Confidence maps evaluation: The green bar highlights the width of an
acoustic shadow caused by a rib. It is evident that without the use of
rendering techniques, the width of the shadow is inconsistent with the
ground truth B-mode. Furthermore, the absence of rendering introduces
additional artifacts, as indicated by the red arrow. These artifacts directly
influence the accuracy of uncertainty estimation, as visualized by the
difference in estimated confidence maps.
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6.4. Limitations

The method presented in this thesis serves as a proof-of-concept for utilizing neural
radiance fields in ultrasound. However, it is important to acknowledge the intrinsic lim-
itations of this method, which partially result from assumptions detailed in Section 5.2.
Specifically:

• Since the method assumes the static scene and does not model effects resulting
from deformations, which are unavoidable in clinical practice due to forces from
ultrasound probe pressure or other sources, such as breathing.

• The method assumes perfect tracking, which is difficult to achieve in a clinical
setting. It does not compensate for the error of pose estimation, and therefore, er-
rors in pose estimation will negatively impact the accuracy of regressed rendering
parameters.

• For the clustering method, we need an estimation of the number of scanned tissue
types, which may be unknown and not constant throughout the entire probe
trajectory.

Additional limitations resulting from its formulation apply, particularly:

• The rendered B-mode images do not have the same texture as the real ones. This
discrepancy in noise pattern arises from inherent differences in the rendering
process and the underlying physical characteristics of the imaging system. In
particular, the engineered PSF does not allow for recreating real noise patterns,
which may vary for different tissue types and imaging systems.

• The regularization introduced in this thesis helps couple rendering parameters
and reduces the number of Degrees of Freedom (DoF). However, the rendered
parameters cannot be treated as real physical values due to post-processing. They
can only be interpreted in a relative manner.

• The model does not consider the impact of the incidence angle on the reflection
and assumes the reflection coefficient to be independent of the observation angle.

• Because the reflection coefficient has to be calculated at the tissue boundary and
it is difficult to define a constant size of the tissue boundary in the image space,
the method does not directly model impedance.

• The method assumes integration over a single ray in 2D. However, when working
with volumes, the 2D dimensional dependencies are crucial, for example, to
preserve tissue continuity and consistency of rendering parameter estimation
between neighboring B-modes.
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Presented limitations are essential to consider when to the application of the method in
a real-world setting.
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7. Outlook

The method presented in this thesis is a valuable proof-of-concept for utilizing NeRF in
the ultrasound field, which opens up new avenues for future research and exploration.
Based on the limitations outlined in Section 5.2, several potential directions for future
investigations can be proposed:

• Modeling Deformations: Given that deformations are unavoidable in clinical
practice, future research could focus on incorporating information about defor-
mations into the rendering method. This would involve developing techniques
to account for tissue deformations caused by factors such as ultrasound probe
pressure or patient movement during imaging.

• Pose Estimation Error Compensation: Addressing the challenges associated with
pose estimation in a clinical setting would significantly enhance the accuracy
and robustness of the method. Future studies could explore novel approaches
to compensate for errors in pose estimation and reduce the impact of tracking
inaccuracies.

• Enhancing Realism in Rendered Images: Future work could explore methods to
improve scattering pattern similarity to bridge the gap between rendered and real
B-mode images. This could involve incorporating more realistic noise patterns
and accounting for variations in noise characteristics among different tissue types
and imaging systems, for example, by incorporating appearance embedding.

• Accounting for 2D Dimensional Dependencies and Incidence Angle: Consid-
ering the importance of 3D dependencies when working with volumetric data,
future studies could focus on extending the method to explicitly integrate depen-
dencies between consecutive frames. This would facilitate the preservation of
volumetric tissue continuity. Moreover, the impact of the incidence angle on the
reflection coefficient could be incorporated into the rendering process, allowing
for more comprehensive modeling of ultrasound interactions with tissues.

Exploring these research directions would significantly advance the method, improving
its applicability, accuracy, and clinical relevance.
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8. Conclusion

The primary objective of this thesis was to propose a method that enables novel view
synthesis for a ROI from the views not included in acquired ultrasound B-mode images.
In particular, this study investigated NeRF in the context of ultrasound imaging and
focuses on a rendering method that considers ultrasound physics. The key contributions
of this thesis are as follows:

• It proposes a differentiable rendering method specifically designed to match
the ultrasound image formation model and is grounded in ultrasound physics
principles. This advanced method accurately models the observed echo by
independently considering the contributions of backscattering and reflection
phenomena. Additionally, it incorporates crucial information regarding reflections
and attenuation into the ray transmission process, effectively capturing the loss
of intensity based on the tissue’s echogenicity. By integrating these elements,
this method facilitates the end-to-end training of a deep learning approach,
enabling the synthesis of B-mode images from novel perspectives that accurately
reconstruct view-dependent changes in the representation of the ROI in real
B-mode images.

• The proposed rendering method is incorporated into the NeRF framework, lever-
aging its capabilities for capturing complex scene geometry and appearance.
By combining NeRF with the specific requirements of ultrasound imaging, the
study demonstrates its potential for enhancing ultrasound implicit volumetric
representation.

• Recognizing that the proposed rendering method involves a highly unconstrained
regression problem, this study extends the rendering formulation by introducing
regularization techniques in the rendering parameters space. This regularization
aims to preserve tissue continuity and establish the interdependency between
rendering parameters.

The proposed method has undergone testing on three datasets: simulated liver B-mode
images, real B-mode images of a synthetic lumbar spine phantom, and real B-mode
images of an ex-vivo spine phantom. The study evaluates B-mode images rendered
from probe positions not included in the training dataset to assess the accuracy of
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the rendered B-mode images in representing the anatomy from unobserved viewing
points. The novel views generated by the rendering method demonstrate its capability
to produce view-dependent B-mode images that accurately depict the ROI as if a real
ultrasound probe had captured it. However, it is important to note that a domain gap
still exists between the rendered B-mode images and real B-mode images, particularly
regarding tissue texture. The method was tested on two downstream tasks: confidence
map computation and volume compounding to analyze the utility of the rendered
B-mode images. The experiments revealed that the method generates B-mode images
that convey anatomical information comparable to real ultrasound images, particularly
in accurately depicting acoustical shadows and preserving the geometric details of
anatomical structures. Furthermore, to highlight the advantages of using a physics-
based rendering approach for views that were not captured in the original B-modes, the
study conducted a comparison against two baseline methods: a traditional technique
involving reslicing planes from a compounded volume and a recently proposed method
known as implicit neural representation, which encodes intensities observed in B-mode
images for an entire volume using neural networks. This comparison demonstrated
that, in contrast to the baseline methods, the method proposed in this thesis renderers
view-dependent B-mode images with acoustic shadows that closely resemble those
observed in real B-mode images. These findings underscore the efficacy of the proposed
physics-based rendering method in generating synthetic B-mode images that accurately
represent the underlying anatomy from novel viewing points.

By exploring the domain of physics-based rendering for ultrasound, this study
introduces a novel approach that paves the way for rendering ultrasound views. This
development holds significant potential for enhancing applications that depend on
accurately rendering B-mode images. Specifically, synthesizing novel views offers
the opportunity to render cross-sectional planes that may not have been captured
during the initial ultrasonographic scanning. Consequently, these additional planes
can be thoroughly analyzed even after the scanning procedure, providing healthcare
professionals with invaluable insights and potentially revealing crucial information that
might have been overlooked during the initial examination.
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A. Additional Rendering Parameters

Figure A.1.: Decomposition into rendering parameters for synthetic data and B-mode
rendered using Ultra-NeRF without regularization. Even though the ren-
dered B-mode image accurately represents the anatomy we observe incon-
sistency in the parameter space.

Figure A.2.: Decomposition into rendering parameters for synthetic data and B-mode
rendered using Ultra-NeRF with regularization. We observe that regular-
ization enforces consistency between the parameters space and anatomical
structure such that the different tissues are visible in the intermediate
parameter maps
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A. Additional Rendering Parameters

Figure A.3.: Decomposition into rendering parameters for phantom data and Ultra-
NeRF with regularization. The spine structure is visible in the parameter
maps.

Figure A.4.: Decomposition into rendering parameters for exvivo data and Ultra-NeRF
with regularization. The bone is visible in the reflection map, however the
scattering and attenuation maps do not accurately represent underlying
structure.
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Abbreviations

MRI magnetic resonance imaging

MR magnetic resonance

CT computed tomography

NeRF neural radiance fields

Ultra-NeRF neural radiance fields for ultrasound imaging

3D three-dimensional

2D two-dimensional

ROI region of interest

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

J Jaccard Index

PSF point spread function

MI Mutual Information

MSE Mean Square Error

TV Total Variation
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Abbreviations

LNCC Local Normalized Cross Correlation

SSIM Structural Similarity Index Metric

DoF Degrees of Freedom
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