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Abstract—We analyze the block error probability of linear
block codes when used to transmit over a finite-state Markov
erasure channel (FSMEC). We introduce a density evolution
analysis that allows to derive the distribution of the number
of erasures over a finite number of uses of the FSMEC. The DE
result is used to derive upper and lower bounds on the block
error probability achievable by the best (n, k) linear block code.
We show that the upper bound can be generalized to specific
codes (and code ensembles) for which the distance spectrum
is known. An example of application to a three-state Markov
erasure channel (MEC) is presented, for which the upper and the
lower bounds show to be very close, hence proving an accurate
estimate of the performance achievable by optimum erasure
codes.

I. INTRODUCTION

Due to their simplicity and accuracy, finite-state Markov
channel (FSMC) models gained a lot of popularity to model
data losses in digital (wired/wireless/satellite) networks [1]–
[8]. FSMC models are particularly suitable to capture salient
features of mobile communication systems working at high
frequency bands, where objects obstructing the line-of-sight
between the base station and the mobile user terminal may
cause long signal outages. The duration of the outages can
be in order of several tens of milliseconds. This fact, coupled
with the high data rates that are typically targeted at high
frequency bands, yields, from the physical layer channel
coding viewpoint, to a nonergodic behavior: Bursts of physical
layer packets may fit in the duration of a blockage event,
calling for the introduction of some form of time diversity.
Besides the use of long channel interleavers, an option that
has been gaining popularity during the past decade is the
use of a packet-level erasure correcting code to be applied
on top of the physical layer error correcting code protecting
individual packets [9]–[12]. In this case, the physical layer
error correcting code is responsible of counteracting channel
noise and fast-fading effects, eventually delivering an error
flag when a packet cannot be decoded, whereas the erasure
code task is to recover packets that are lost after physical
layer decoding. Note that the symbols over which the erasure
code operates are the physical layer packets. Assuming for
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simplicity packets of constant size equal to L bits, an (n, k)
packet erasure code encodes k information packets of L bits
each into n codeword packets of L bits each. Powerful classes
of erasure codes that have been adopted in concatenation
with physical layer codes to recover lost packets are Reed-
Solomon, low-density parity-check (LDPC), and Raptor codes
[13]–[15]. In particular, LDPC and Raptor codes are capable
of approaching the theoretical limits on the maximum erasure
correction capability over a wide range of blocklengths n
[16]–[18] under a low-complexity maximum likelihood (ML)
erasure decoding algorithm known as inactivation decoding
[19]–[22].

When the underlying channel model is a FSMC model,
the process describing packet erasures at the input of the
packet-level erasure correcting code decoder can be modelled
through a finite-state Markov erasure channel (FSMEC) [23].
Here, a specific packet erasure probability is associated with
each state in the FSMC. The simplest example of FSMEC is
the Gilbert erasure channel [1], [24], comprising two states:
a good state, where the erasure probability is zero, and a
bad state where the erasure probability is one. Lower bounds
on the error probability achievable by (n, k) erasure code
over Gilbert erasure channels where derived in [24], where
it was shown how LDPC codes under inactivation decoding
can tightly approach the bounds.

In this paper, we extend the analysis of [24] to general
FSMECs. We introduce a density evolution (DE) analysis that
allows to efficiently track the distribution of the number of
erasures over n uses of the FSMEC. We then derive two
bounds on the block error probability achievable by the best
(n, k) linear block code. The first bound is a generalization of
the lower bound introduced in [24]. The second bound yields
an upper bound on the block error probability of random linear
block codes, and it can be generalized to specific codes for
which the distance spectrum is known. We show an example
of application to a three-state MEC, where besides a good and
a bad sate, a mixed state with a moderate erasure probability
is present. The upper and the lower bounds show to be very
close, hence proving an accurate estimate of the performance
achievable by optimum erasure codes. Upper bounds on the
block error probability of binary linear block codes and and
binary linear block ensembles are derived and compared to the
bounds on the performance of the best (n, k) code.



The rest of paper is organized as follows. Section II contains
preliminary definitions. The DE analysis and the derivation of
the bounds is provided in Section III. The application example
is given in Section IV. Conclusions follow in Section V.

II. PRELIMINARIES

We consider transmission over a FSMEC with a (n, k)
binary linear block code C. The code rate is denoted as
R = k/n. Each step of the Markov chain underlying the
channel corresponds to the transmission of a codeword bit1

over a binary erasure channel (BEC), where the erasure
probability depends on the channel state, and within each
state erasures are independent. The attention is on FSMCs
defined by M states labelled from 1 to M , i.e., the state
space is S = {1, . . . ,M}. We denote the state at step ℓ as
sℓ, and the corresponding random variable (r.v.) as Sℓ. The
state transition probabilities are summarized by the M × M
right stochastic matrix P. We assume the Markov chain to be
ergodic with stationary distribution π. We associate to the ith
state an erasure probability ϵi.

III. FINITE-LENGTH ANALYSIS

We are interested in deriving upper and lower bounds on
the performance achievable by an (n, k) binary linear block
code C over FSMECs. To do so, we first derive the distribution
of the number of erasures after observing the FSMEC output
for n consecutive channel uses. The analysis is based on a
DE technique [27, Chapter 4], and it is developed in Section
III-A. Note that a derivation of the distribution of the number
of erasures was already provided in [23]. The derivation of
[23] is based on matrix generating functions, whereas here
we provided direct recursions – the two approaches can be
shown to be equivalent. We then employ the derived erasure
distribution to obtain the bounds on the error probability in
Section III-B

A. Density Evolution

Denote by e the number of erasures observed at the channel
output after n channel uses, and by E the corresponding
r.v.. We are interested in deriving the distribution PE of the
number of erasures after observing the output of the FSMEC
for n consecutive channel uses. Let us denote by Eℓ the r.v.
associated to the number of erasures observed up to time ℓ,
and by

qℓ(e, i) := P (Eℓ = e, Sℓ = i) (1)

the joint probability distribution of the number of erasures and
of the channel state at the ℓth channel use. We can obtain PE

as

PE(e) =

M∑
i=1

qn(e, i).

1The model and the results derived in this paper trivially generalizes to the
case where a symbol of the (n, k) linear block code C is a vector of L bits
(i.e., a packet), and where at each step an L-bit symbol is transmitted over an
erasure channel [25], [26]. Each L-bit vector is either correctly received, or
it is completely erased with a probability that depends on the channel state.

It follows that, to compute PE , we need to compute (1) for
ℓ = n. The result can be achieved recursively by noting that

qℓ(e, i) = ϵi

M∑
j=1

Pjiqℓ−1(e− 1, j) + (1−ϵi)

M∑
j=1

Pjiqℓ−1(e, j)

where the calculation is initialized as

q1(e, i) =

 (1− ϵi)πi if e = 0
ϵiπi if e = 1
0 otherwise.

B. Bounds on the Block Error Probability

We analyze next the block error probability that an (n, k)
code C can achieve over a FSMEC. In particular, we are
interested in deriving the performance achievable by the best
binary linear block code C⋆. We assume a decoder that outputs
all the codewords that are compatible with the channel output,
i.e., all the codewords that coincide with the channel output
in all coordinates where the channel output is not erased. If
the decoder outputs a single codeword, we declare a decoding
success. If the decoder outputs multiple solutions, we declare
a decoding error. With a slight abuse of notation, we refer
to this rule as the ML decoding rule. Note that over erasure
channel, for the special class of binary linear block codes, ML
decoding entails a complexity that grows polynomially in n.
For example, Gaussian elimination can provide the solution
with a complexity order of n3.

Let us denote by e the number of erasures affecting a
codeword at the channel output. We make use of the following
two observations:

i. Decoding fails whenever the number of erasures exceeds
the number of equations, i.e., whenever e > n− k;

ii. If the code parity-check matrix is drawn randomly with
entries that are independent and uniformly-distributed in
{0, 1}, then the probability of decoding failure is tightly
upper bounded by 2−(n−k−e) [28]–[30].

The first observation allows to derive a lower bound on the
block error probability achievable by C⋆ as BEP (C⋆) ≥ PS

where

PS :=

n∑
e=n−k+1

PE(e). (2)

The bound in (2) has a form that is reminiscent of the
Singleton bound for the memoryless BEC [30], [31]. We hence
refer to it as Singleton lower bound. Observation ii. proves
to be useful to derive an upper bound on the block error
probability achievable by C⋆. In fact, by a standard random
coding argument we can state that BEP (C⋆) is upper bounded
by the average error probability of binary random linear block
codes. We have that C⋆ as BEP (C⋆) ≤ E[BEP (C)] where
E[BEP (C)] is tightly upper bounded by

PB :=

n∑
e=1

PE(e)min
(
1, 2−(n−k−e)

)
. (3)



As (3) follows closely the principles underlying the derivation
of the Berlekamp random coding bound [28], [32], we will
refer to it as Berlekamp upper bound. Note that a similar
bound was derived in [23], where the actual probability of
decoding failure was used in place of the tight bound given
by 2−(n−k−e).

Thanks to (2) and (3), we have that

PS ≤ BEP (C⋆) < PB.

As we will see, the two bounds are typically sufficiently
close, yielding precise estimates on the block error probability
achievable by the best (n, k) binary linear block code C⋆.
Before moving to an illustrative example, we should observe
that an upper bound on the block error probability achievable
under ML decoding by a specific binary linear block code C
could be obtained if the distance spectrum Aw(C) of the code
is known. In that case, we have

BEP (C) ≤
n∑

e=1

PE(e)min

(
1,

e∑
w=1

(
e

w

)
Aw(C)(

n
w

) .

)
(4)

The proof of (4) follows closely the proof of Theorem 4 in
[30], with the additional care that one should consider the
ensemble of codes obtained by all possible permutations of
the coordinates of C (i.e., all the equivalent codes of C). In this
sense, the bound states the existence of an equivalent code of
C whose error probability is upper bounded by the right-hand
side of (4).

The bound in (4) can be extended to general binary linear
block code ensembles. We focus next on the case of LDPC
codes, due to their excellent performance when employed
as erasure correcting codes. The analysis of ML decoding
requires the knowledge of the ensemble average weight enu-
merator Āw [33], [34], while to analyze the less complex belief
propagation (BP) decoder one needs the ensemble average
stopping set enumerator S̄w [35]. The resulting bounds are

E [BEPML (C)] ≤
n∑

e=1

PE(e)min

(
1,

e∑
w=1

(
e

w

)
Āw(C)(

n
w

) )
(5)

and

E [BEPBP (C)] ≤
n∑

e=1

PE(e)min

(
1,

e∑
w=1

(
e

w

)
S̄w(C)(

n
w

) ) (6)

under ML and BP decoding, respectively. We provide next
sketch of the derivation of (5) and (6). Consider an erasure
pattern with e erasures. We are interested in finding the
probability that the all-zero codeword is indistinguishable from
a weight-w codeword, at the channel output. The probability
is given by

(
e
w

)
/
(
n
w

)
for w ≤ e, while it is zero for w > e,

i.e., the probability that the e erasures “cover” the w coordi-
nates where the two codewords differ. By applying the union
bound, one gets the inner sum in (5) where all codewords
with Hamming weight w yield the same contribution. The
derivation is completed by observing that the probability of
error conditioned on the number of erasures is always upper
bounded by 1, and by averaging over the distribution of the

number of erasures. In case of BP decoding, the derivation
is similar – one needs only to compute the probability that
the erasure pattern covers a size-w stopping set, in place
of the probability that the erasure pattern covers a weight-w
codeword.

IV. EXAMPLE OF APPLICATION

Three-state MECs constitute the first, non-trivial generaliza-
tion of the Gilbert erasure channel. Three-state Markov chains
have been used to model, among others, land-mobile satellite
channels in S-band [36], clustering the received signal states as
good (line-of-sight), bad (blockage) and mixed (shadowing).
The model of [36] has been used to design erasure codes as
fading/blockage mitigation technique [10]. As an example, we
analyze a three-state MEC with state transition matrix

P =

 0.85 0.05 0.1
0.1 0.7 0.2
0.2 0.1 0.7


The first state identifies the good state (with ϵ1 = 0), the
second state is the bad state (with ϵ2 = 1), whereas the
third state identified a state of shadowing (mixed state), where
the erasure probability ϵ3 is moderate (see Figure 1). We
computed the bounds (2), (3) for the blocklengths n = 100
and n = 1000, assuming a rate-1/2 code. The bounds were
calculated for various values of ϵ3, reflecting different levels
of robustness of the physical layer receiver in shadowing
conditions. The results are provided in Figure 2 for n = 100,
and in Figure 3 for n = 1000. In both cases, the upper
and the lower bounds are very close to each other, implying
that they both provide accurate estimates of the performance
achievable by the best (n, k) code, which should attain an
error probability within the shaded area between the curves.
Note that in the case of n = 1000, the gap between the
bounds is barely visible. We run some preliminary analysis
on more general FSMECs characterized by a larger number
of states and various erasure probabilities, and in all cases
the results confirm the tightness achieved in the three-state
MECs from the example. On the same charts, we provide the
upper bound on the average performance of expurgated LDPC
code ensembles. In particular, we consider the regular (3, 6)
ensemble under both BP and ML decoding, where expurgation
is obtained as illustrated in [14, Chapter 2.2].

V. CONCLUSIONS

The block error probability of linear block codes over
a finite-state Markov erasure channel (FSMEC) has been
analyzed. The analysis relies on density evolution to obtain
the distribution of the number of erasures over a finite number
of uses of the FSMEC. Given the distribution of the number
of erasures, upper and lower bounds on the block error
probability achievable by the best (n, k) linear block code
have been derived. The upper and lower bounds showed to be
very close in the case of a three-state Markov erasure channel,
providing an accurate estimate of the performance achievable
by optimum erasure codes. We observed a similar behavior
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Fig. 1. Three-state MEC.
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Fig. 2. Block error probability vs. erasure probability ϵ3 of the mixed state
in the three-state MEC of the example. The average block error probability
for the expurgate (3, 6) LDPC code ensemble is provided under ML ( )
and BP ( ) decoding. The block length is n = 100 and the code rate is
R = 1/2.

in a number of other examples, and we conjecture that the
bounds are tight in general. Future works will target the design
of codes with low-complexity erasure decoders capable of
approaching the bounds.
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