
Pre
pri
nt

SAST-Guided Grey-Box Fuzzing
Stephan Lipp

Technical University of Munich
Germany

Severin Kacianka
Technical University of Munich

Germany

Alexander Pretschner
Technical University of Munich

Germany

Marcel Böhme
MPI-SP, Germany

Monash University, Australia

ABSTRACT

Fuzzing is an automated testing technique that generates random
inputs to provoke program crashes, indicating security vulnera-
bilities. While coverage-based fuzzing is most widespread in the
field, it becomes exponentially and thus prohibitively expensive
when searching for new security bugs; valuable fuzzing resources
are wasted on non-security-critical code regions as code cover-
age treats all regions as equally important/vulnerable. Moreover,
existing defect-guided fuzzing approaches struggle to accurately
pinpoint problematic regions, flagging too many locations to be
considered during fuzzing and thus run into similar issues.

In this paper, we leverage static application security testing
(SAST) tools to direct fuzzing toward potentially vulnerable re-
gions, effectively reducing the code scope to be tested. Further, we
introduce a target scheduling mechanism that dynamically disables
likely false-positive and unreachable SAST findings/fuzzing targets
to mitigate their impact on fuzzing performance. We implement our
approach in the fuzzer SASTFuzz and evaluate it on 19 open-source
programs against the coverage-based fuzzer AFL as well as two
defect-guided fuzzers, TortoiseFuzz and ParmeSan (4.6 CPU-years
worth of fuzzing). The results show that SASTFuzz outperforms
the three fuzzers, finding three times more distinct bugs than AFL
and TortoiseFuzz, the best-performing defect-guided fuzzer in our
study. Thereby, SASTFuzz exclusively detects 10 of the 80 newly
discovered bugs, twice as many as AFL and TortoiseFuzz. More-
over, during the 48-hour campaigns, SASTFuzz discovers bugs on
average 2.2 to 5 hours faster than TortoiseFuzz, with slightly less
time savings when compared to AFL.

1 INTRODUCTION

Context. Fuzz testing, aka fuzzing [42, 46], is an automated testing
technique that has proven extremely effective in detecting software
bugs [50], especially in C/C++ programs. Fuzzing is straightfor-
ward: Generate millions of random inputs (mechanized by fuzzers),
feed them into the system under test, and then monitor the pro-
gram execution for crashes. Crashes that enable malicious code
execution, data leakage, or trigger denial-of-service are considered
security vulnerabilities. For instance, Google uses fuzzing exten-
sively, utilizing massive compute resources (over 100 k CPU cores)
on its OSS-Fuzz platform [56] to enhance the security of major
open-source projects. Over eight years, OSS-Fuzz has identified
over 46 k bugs in more than 1,000 codebases [7].
State-of-Practice and Problem. The most widely used fuzzing ap-
proach is coverage-based fuzzing [31, 42, 45, 56], as implemented in
the well-known fuzzer AFL [1]. There, the goal is to cover as much

code as possible, as a faulty line must be reached in the first place
(with the correct input data) to trigger the underlying (security)
bug. However, regular code coverage considers all code regions
as equally important/vulnerable [65], wasting valuable fuzzing re-
sources on non-security-critical regions due to the sparsity of soft-
ware bugs [40, 47, 75]. This is also shown by an empirical study by
Böhme and Falk [12], highlighting a worrying trend: An exponen-
tial increase in resources (CPUs or time, respectively) is required
by state-of-the-art (coverage-based) grey-box fuzzers to achieve
only linear growth in vulnerability discovery. This makes coverage-
based fuzzing prohibitively expensive to find more complex bugs,
thus motivating the need for more effective fuzzing approaches
that counteract this exponential trend.

Recent defect-guided approaches like in AFLChurn [73], Tor-
toiseFuzz [65], and ParmeSan [49] focus—instead of all—only on
specific, likely vulnerable code regions, such as regions recently or
frequently changed, containing memory-modifying instructions, or
instrumented by sanitizers [60] likeAddressSanitizer (ASan) [57].
For AFLChurn, however, this means it is bound to incremental
fuzzing of programs with access to the version control system his-
tory. TortoiseFuzz and ParmeSan, on the other hand, run into
similar issues as coverage-based fuzzing because their imprecise1

defect heuristics still require extensive code coverage. Therefore,
more accurate identification of potentially vulnerable code is re-
quired for defect-guided fuzzing to work effectively.
Solution Approach. To address the above limitations, we combine
static application security testing (SAST) [11] and directed grey-box
fuzzing [13] by utilizing multiple static analyzers whose findings
(i.e., flagged lines) steer the fuzzing process towards the problematic
code locations. In our experiments, we found that state-of-the-art
SAST tools quickly (in under 10 minutes on the median) locate~75%
of the (potentially) vulnerable functions while flagging only 30% of
the functions2 (half the rate issued by ASan), thus effectively reduc-
ing the code scope to be targeted during fuzzing. Furthermore, our
approach includes a target scheduling mechanism that dynamically
disables likely false-positive and unreachable SAST findings/fuzzing
targets from the distance computations3 performed during directed
fuzzing. This mitigates their impact on the fuzzing performance,
as the fuzzer shifts execution more quickly to other, more likely

1In a case study with nine open-source programs [38], we found that ASan instru-
ments/flags on average more than 75% of the functions (with only 1% of them vulnera-
ble). This number is even larger when considering all memory-modifying instructions
as in TortoiseFuzz.
2Our experiments confirm similar results in related studies [20, 21, 37]
3Most directed fuzzers use the distance (i.e., the average number of control-flow edges)
between the fuzz input’s execution trace and the target code locations to evaluate its
proximity, thereby keeping distance-reducing inputs in the queue for further mutation.

Pre
pri
nt

Stephan Lipp, Severin Kacianka, Alexander Pretschner, and Marcel Böhme

vulnerable/reachable target locations. Additionally, we dynamically
switch between directed and coverage-based fuzzing depending
on the reachability of the enabled targets, thereby allowing the
fuzzer to discover vulnerable code overlooked by the analyzers
(false negatives).
Empirical Evaluation.We implemented our SAST-guided fuzzing
approach in a grey-box fuzzer called SASTFuzz. In a comprehensive
empirical evaluation, we assess SASTFuzz’s performance relative
to that of the popular coverage-based fuzzer AFL and two state-of-
the-art defect-guided fuzzers, TortoiseFuzz and ParmeSan. This
evaluation comprises ~4.6 CPU-years worth of fuzzing across 19
open-source programs (in total 11.5 k+ functions) from various
application domains, revealing 80 previously unknown (security)
bugs that we confidentially reported to corresponding developers.
Our comparison thereby focuses on the total/distinct number of
new bugs found and the time the fuzzers require to catch them.
Furthermore, in a post-bug analysis, we investigate whether the
bugs exclusively detected by SASTFuzz result from our SAST-based
approach and are thus no mere random discoveries.
Contributions. This paper presents the following contributions:

⋆ We propose and implement a methodology for combining SAST
and (directed) fuzzing, thereby compensating for false-positive
and unreachable SAST findings via a novel dynamic target
scheduling mechanism (see § 3).

⋆ We perform an in-depth analysis, showing that our scheduling
mechanism leads to more target locations being reached than
directed fuzzing with static targets (see § 4.2.2).

⋆ We show in a large-scale empirical evaluation that our SAST-
based fuzzing approach detects more and different previously
unknown (security) bugs than coverage-based fuzzing and
existing defect-guided approaches (see §§ 5.2.1 and 5.2.2). Also,
compared to the latter, our approach finds the bugs several
hours faster (see § 5.2.3).

⋆ We will release our SAST-guided grey-box fuzzer SASTFuzz as
open-source software (OSS), as well as all evaluation data and
analysis scripts upon acceptance to foster open science.

⋆ We found and reported 80 new (security) bugs, helping to im-
prove the state of OSS security.

2 MOTIVATION

Unlike coverage-based fuzzing, current defect-guided approaches
focus on certain code locations considered more bug-prone than
others. However, they rely on imprecise defect heuristics that often
produce many fuzzing targets, potentially resulting in ineffective
campaigns. Therefore, we advocate using SAST tools to accurately
identify targets, presenting hereafter insights into their runtime
overhead and bug-finding effectiveness.
Runtime Overhead. Figure 1 shows the SAST durations on 24
subject programs when running the five static analyzers from Ta-
ble 2 in parallel. The analysis takes less than 15 minutes on most
subjects, with somewhat longer durations of about 27 to 45 min-
utes on Pocketlang, Libxml2, and libsodium. The biggest outlier is
OpenSSL, one of our largest benchmark programs, where Infer

10m 30m 100m 300m

SAST Runtime Length

Figure 1: SAST runtimes (in minutes) for 24 subject programs

when running five state-of-the-art analyzers in parallel. The

diamond (⋄) indicates the arithmetic mean.

Table 1: SAST detection rates.

Subject Marked Funcs. Recall Precision

Libpng 0.256 0.778 0.064
Libsndfile 0.364 0.929 0.029
LibTIFF 0.238 0.385 0.025
Libxml2 0.389 0.857 0.011
OpenSSL 0.218 0.682 0.005

Mean 0.293 0.726 0.027

takes ~5 hours to examine the 166,814 lines of code (LoC)4, an
unusually long duration given that Infer requires considerably less
time for other subjects with similar LoC. Nonetheless, the median
duration is less than 10 minutes, suggesting minimal additional
time overhead for our SAST-guided fuzzing approach.
Bug-Finding Effectiveness.Table 1 shows the SAST performance5
on the five programs from Table 3, where a vulnerable function is
considered detected (true positive) if the analyzers flag one or more
of its lines. On Libpng, Libsndfile, and Libxml2, the SAST tools reli-
ably identify problematic functions, with detection rates ranging
from 0.78 to 0.93. There, they flag between 26% and 39% of the func-
tions, thus significantly reducing the amount of code to be fuzzed.
ForOpenSSL, the detection rate slightly drops to 0.68 while flagging
only 22% of the functions. In the case of LibTIFF, the analyzers over-
looked more than half of the vulnerable functions, deviating from
the otherwise high detection rates. To mitigate the impact of such
false negatives, we cleverly switch between coverage-based and
directed fuzzing (see § 3.2.4). Furthermore, to address the high false-
positive incidence (average precision of 0.027), we systematically
deactivate SAST findings/fuzzing targets (see § 3.2.2).

In summary, multiple SAST tools in combination effectively lo-
cate (potentially) vulnerable functions with an average recall of
0.73 while flagging less than 30% of the functions. This narrows
down the fuzzing efforts to roughly one-third of the functions (com-
pared to coverage-based fuzzing) and more than half of the ~75% of
ASan-instrumented/flagged functions targeted by sanitizer-guided
fuzzing.

4We recommend performing an entire scan of the codebase once for larger programs,
followed by incremental SAST runs focusing on the code changes.
5The precision values must be interpreted cautiously, as it is unclear whether undis-
covered vulnerabilities still exist in these programs.

Pre
pri
nt

SAST-Guided Grey-Box Fuzzing

Table 2: Selected SAST tools.

Tool Version Techniques Checks

Flawfinder 2.0.19 Code-pattern matching Fixed rule-set

Semgrep 1.24.0 Code & AST-pattern
matching; data-flow analysis YAML-based rules

Infer 1.1.0 (Semi-)Formal reasoning Fixed rule-set

CodeQL 2.12.0 Control & data-flow analysis;
AST-based analysis

Datalog-based
queries

Clang-SA 12.0.0 Symbolic execution C++-based checkers

3 APPROACH

3.1 SAST-Based Target Acquisition

3.1.1 Selected SAST Tools. We employ five diverse and freely avail-
able C/C++ SAST tools (see Table 2) to (1) maximize bug-finding
effectiveness, (2) support multiple different vulnerability types, and
(3) discern the likelihood of code vulnerability via analyzer con-
sensus (see § 3.1.3). Our selection ranges from code and abstract
syntax tree (AST) pattern-matching analyzers (Flawfinder [5] and
Semgrep [8]) over more complex tools that utilize comprehensive
control and data-flow analyses (Infer [6] and CodeQL [4]) up to
Clang-SA [2] which symbolically executes the system under test
(SUT) to uncover bugs. These SAST tools are popular in the field
(cf. their GitHub stars [15]) and have also been shown effective in
finding vulnerabilities in prior research [20, 21, 37].

3.1.2 SAST Findings Grouping. We group the SAST-tool findings
at the basic blocks (BBs) level. Specifically, all flagged lines within
the same BB are considered a single target location (the block’s
starting line number). This is a valid reduction as all (flagged) lines
will be executed as soon as the target BB is reached.

Definition 1 (Target BB Set). We define the set of target basic
blocks 𝐵𝑡 as those blocks in the SUT’s inter-procedural control-flow
graph, which contain at least one code line flagged as (potentially)
vulnerable by the SAST tools.

Unlike most existing work [13, 19, 33, 64], which aggregate target
locations during instrumentation, we initiate this process in an
earlier static analysis phase. This way, we markedly accelerate the
subsequent distance calculations, a known bottleneck in current
directed fuzzing [41].

3.1.3 Target Basic Block Weighting. In addition to grouping, we
weight the identified basic blocks based on their vulnerability proba-
bility. The intuition is that a higher weight, later called vulnerability
score, correlates with a higher likelihood of the target containing
a vulnerability. This then enables (1) an enhanced target prioriti-
zation that selects target blocks with elevated vulnerability scores
first, and (2) a systematic resource allocation that dedicates more
fuzzing time to targets with higher scores.
Code Granularity.We use function-level SAST information for
weighting the target BBs. This is because the available ground-
truth datasets, essential for assessing the weighting’s validity in
§ 4.2.1, only include code locations where vulnerabilities origi-
nate but not where they manifest, which is typically where SAST
tools flag them [37]. However, since these locations typically occur
within the same function [37], we consider the function level a

valid granularity for approximating SAST vulnerability detection.
Accordingly, all target blocks within the same function receive the
same vulnerability score.
SAST-Based Defect Heuristics. Inspired by the references [39, 52]
that use SAST-based machine-learning features in their defect pre-
diction models, we utilize the following defect heuristics to deter-
mine the vulnerability scores.
Heuristic 1 (SAST-Tool Consensus). For a target basic block 𝑏𝑡 ∈
𝐵𝑡 in function func, we define SAST-tool consensus as the ratio of
analyzers that flag func, i.e., the number of SAST-tools that flag
one or more lines in func divided by the number of all tools that
analyzed func.

Our first heuristic operates on the premise that—similar to the
majority voting principle—consensus among various static analyz-
ers regarding a flagged function increases the possibility that the
function is vulnerable.
Heuristic 2 (SAST-Flag Density). For a target basic block 𝑏𝑡 ∈ 𝐵𝑡
in function func, we define SAST-flag density as the ratio of lines
flagged by one or more analyzers in func, i.e., the number of flagged
lines in func divided by the lines of code in func.

Our second heuristic is based on the hypothesis that a higher
number of flagged lines within a function indicates a higher density
of security-critical statements and thus increases the probability
that the function contains a vulnerability.

3.2 Directed Fuzzing with Dynamic Targets

Existing directed fuzzers keep all target blocks active during the
entire campaign without fully deactivating targets, even after being
thoroughly fuzzed. However, targets sourced from SAST tools con-
tain false positives that would then still be targeted during directed
fuzzing, negatively affecting the fuzzer’s directedness. To address
this, we introduce a dynamic target scheduling mechanism in our
SAST-guided fuzzer SASTFuzz, which disables targets (from the
distance computations) once they are deemed irrelevant.

3.2.1 Distance Measure. Generally, the distance serves as a fitness
function, quantifying how far a fuzz input is from reaching the tar-
gets. SASTFuzz is built uponWindRanger [19], which improves
AFLGo [13] by leveraging (1) data-flow information, as well as
(2) more accurate control-flow information. For (1), WindRanger
accounts for the complexity of the target-path conditions, i.e., it mu-
tates inputs that execute less complex conditions more frequently
than those with a shorter overall distance value (to the same path)
but a more complex path. For (2),WindRanger implements a more
precise distance metric that relies on so-called deviation basic blocks,
statically identified before fuzzing.

Definition 2 (Deviation BB Set). For a set of target basic blocks
(BBs) 𝐵𝑡 , Du et al. [19] define the set of deviation BBs 𝐵𝑑 in the
SUT’s inter-procedural control-flow graph (iCFG) as the first blocks
in the program execution paths where one or more potential sub-
paths deviate from reaching any 𝑏𝑡 ∈ 𝐵𝑡 .

Pre
pri
nt

Stephan Lipp, Severin Kacianka, Alexander Pretschner, and Marcel Böhme

Algorithm 1: Dynamic target BB scheduling.
Data: 𝐵𝑡 , numIvalInputs ∈ N
Result: Updated 𝐵𝑡

1 foreach 𝑏𝑡 ∈ 𝐵𝑡 do

2 if 𝑏𝑡 .state ∈ {active, paused} then
3 reqTargetBBInputHits← calcReqTargetBBInputHits(𝑏𝑡 ,

𝐵𝑡 , numIvalInputs);
4 if (reqTargetBBInputHits − 𝑏𝑡 .inputHits) ≤ 0 then
5 𝑏𝑡 .state← finished;
6 else

7 if coveredInPrevInterval(𝑏𝑡) then
8 𝑏𝑡 .state← active;
9 𝑏𝑡 .ivalSkips← 0;
10 𝑏𝑡 .ivalSkipsPrev← 1;
11 else

12 if 𝑏𝑡 .ivalSkips = 0 then
13 𝑏𝑡 .state← paused;
14 𝑏𝑡 .ivalSkips← 𝑏𝑡 .ivalSkipsPrev;
15 𝑏𝑡 .ivalSkipsPrev← 𝑏𝑡 .ivalSkipsPrev + 1;
16 else if (𝑏𝑡 .ivalSkips − 1) = 0 then
17 𝑏𝑡 .state← active;
18 𝑏𝑡 .ivalSkips← 0;
19 else

20 𝑏𝑡 .ivalSkips← 𝑏𝑡 .ivalSkips − 1;

Formally, the refined distance measure can be described via the
function distance : 𝐵𝑑 × 𝐵𝑡 → N ∪ {-1} as follows:

distance(𝑏𝑑 , 𝑏𝑡) B


Shortest if 𝑏𝑡 is statically reach-
#iCFG-path, able from 𝑏𝑑 ,

-1, otherwise.
(1)

Equation (1) better reflects the likelihood of a fuzz input reaching
the target BBs, resulting in a less biased prioritization: Inputs with
longer (average) distances can still get prioritized as long as they
get closer to the targets.

3.2.2 Dynamic Target Scheduling. To mitigate the impact of false-
positive and unreachable fuzzing targets, we suggest to (1) perma-
nently deactivate targets from the distance computations (and thus
from being targeted again) once the fuzz inputs have sufficiently
often covered them and (2) temporarily suspend targets that re-
main unreached for increasingly longer periods. Concretely, during
fuzzing, each target basic block 𝑏𝑡 ∈ 𝐵𝑡 is either activated (included
in the distance computations; initial state), paused (temporarily
suspended), or finished (permanently excluded), stored in the vari-
able 𝑏𝑡 .state. To temporarily suspend targets, we use a scheduling
mechanism that en- and disables unreached target blocks using
𝑏𝑡 .{ivalSkips, ivalSkipsPrev}. To permanently exclude targets, we
compute a hit-count threshold, derived from the target BB’s (relative)
vulnerability score (𝑏𝑡 .score) and its input hit-count (𝑏𝑡 .inputHits),
which must be exceeded.
Target Deactivation& Scheduling.Algorithm 1 details our sched-
uling strategy, which is executed in intervals during fuzzing to (re-
)evaluate the state of the non-finished targets. As parameters, it

Algorithm 2: Computation of required target BB hits.
1 Function calcReqTargetBBInputHits(targetBB ∈ 𝐵𝑡 , 𝐵𝑡 ,

numIvalInputs ∈ N)
2 relTargetBBScore← targetBB.score /

sum

(
{𝑏𝑡 .score | 𝑏𝑡 ∈ 𝐵𝑡 ∧ 𝑏𝑡 .state ≠ finished}

)
;

3 return numIvalInputs ∗ relTargetBBScore;

Algorithm 3: Distance computation to target BBs.
1 Function calcTargetBBsDistance(𝑏𝑑 ∈ 𝐵𝑑 , 𝐵𝑡)
2 distance, n← 0;
3 foreach 𝑏𝑡 ∈ 𝐵𝑡 do

4 targetDist← distance(𝑏𝑑 , 𝑏𝑡);
5 if 𝑏𝑡 .state = active and targetDist > 0 then
6 distance← distance + (1/targetDist) ;
7 n← n + 1;

8 return (n/distance) if n > 0 else -1;

takes the target BB set 𝐵𝑡 and the number of fuzz inputs generated
during the last interval numIvalInputs. The algorithm itself consists
of two parts: the first part is associated with deactivating suffi-
ciently fuzzed targets (Lines 3–5) and the second with scheduling
potentially unreachable ones (Lines 7–20).

Part 1: While iterating over all non-finished target blocks 𝑏𝑡 ,
Line 3 employs the function calcReqTargetBBInputHits from
Algorithm 2 to establish the hit-count threshold (i.e., 𝑏𝑡 ’s required
input hits before marked finished). In that function, Line 2 computes
𝑏𝑡 ’s vulnerability score relative to all active/paused targets. Line 3
then determines the threshold value by multiplying the computed
score with the total number of generated interval fuzz inputs. So the
higher a target BB’s vulnerability score, the more input executions
are required to finish it (i.e., more thorough fuzzing).

Back to Algorithm 1: In case 𝑏𝑡 has been sufficiently often cov-
ered, i.e., the if-condition in Line 4 is satisfied, 𝑏𝑡 will be deactivated
by shifting it from a paused or active state to the finished. For-
mally, this transition looks in our target scheduling as Φ(𝑏𝑡) =
⟨. . . , a or p→ f , . . . , f ⟩, where Φ(·) denotes the state trace of a
target block across the intervals.

Part 2: Should 𝑏𝑡 remain insufficiently fuzzed yet was covered
by at least one input in the last interval (indicated by the function
coveredInPrevInterval), we directly active it for the next inter-
val in Line 8, i.e., Φ(𝑏𝑡) = ⟨. . . , a or p→ a, . . .⟩. Furthermore, we
reset the variables involved in pausing targets due to 𝑏𝑡 ’s current
reachability. However, if 𝑏𝑡 remains uncovered for several inter-
vals (or throughout the fuzzing campaign), the scheduling in Lines
12–20 looks as follows: Φ(𝑏𝑡) = ⟨a, p, a, p, p, a, p, p, p, a, . . .⟩—we al-
ternatively activate and pause 𝑏𝑡 , thereby incrementing the number
of pausing intervals. This way, we account for likely unreachable
target blocks by gradually reducing their impact on the distance
calculation until they are reached by chance or the campaign ends.
Target Distance Calculation & Prioritization. We use the func-
tion in Algorithm 3 to compute the harmonic mean distance6 of a
6Using the harmonic mean mitigates the impact of large outlier distances.

Pre
pri
nt

SAST-Guided Grey-Box Fuzzing

SUT
Target
BBs

SAST Runner Instr. Tool SASTFuzz

Inspector – Fuzz Binary

– Target Distances

– Condition Information

2

3 4 5

LLVM Bitcode Code
Properties

Source
Code

 LLVM Bitcode

Static Code Analysis Instrumentation Fuzzing

Seeds

Crash Inputs

1

Figure 2: High-level system architecture of SASTFuzz.

given deviation basic block to all active target blocks. The mean
distances for all deviation blocks are thereby stored in a look-up
table, which is then used to calculate the distance achieved for
an executed fuzz input (arithmetic mean over the covered devi-
ation BBs). To maintain low computational overhead, this table
is updated only after intervals that alter the state of one or more
targets. Furthermore, after each distance update, we sort the fuzzer
queue so that inputs with shorter distances are fuzzed first, further
enhancing the chances of reaching targets.

3.2.3 Increasing Interval Length. Starting with a user-specified ini-
tial interval length, we increase the interval logarithmically through-
out the fuzzing campaign. Hence, progressively more fuzzing time
will be spent on hard-to-reach target blocks deeply located in the
SUT. Furthermore, since deeper targets typically correspond to
more intricate vulnerabilities [10], extended intervals lead to more
input hits required to mark such targets as finished, thereby en-
hancing the chances of triggering complex vulnerabilities.

Generally, the length of the (initial) interval significantly in-
fluences the fuzzing performance. Longer intervals lead to more
thorough fuzzing of single target blocks butmay cover fewer overall,
whereas shorter intervals cover more targets at the risk of over-
looking bugs due to premature target deactivation. Section 4.2.2
explores this trade-off in more detail to establish an optimal initial
interval length.

3.2.4 Dynamic Exploration& Exploitation Switching. Directed grey-
box fuzzing involves two phases, exploration and exploitation [13].
The exploration phase aims to maximize the overall code coverage
to expand the seed corpus and avoid local optima. In contrast, the
exploitation phase steers the fuzzing process toward the specified
target basic block. WindRanger thereby further improves AFLGo
by introducing a dynamic switching strategy based on the execu-
tion frequency of the deviation blocks. Building upon this concept,
SASTFuzz switches into exploration mode when all targets are
finished or paused, enabling the discovery of new and/or vulnera-
ble code locations missed by the SAST tools. The process returns
to exploitation intervals when a new target block is reached or a
previously paused one resumes activity. Once all targets are marked
finished, SASTFuzz reactivates those with a vulnerability score of
at least 0.5, focusing again on the more critical ones.

Table 3: Subjects for SASTFuzz investigation.

Subject Commit LoC # Functions # Vuln. Funcs.

Libpng a37d483 9,860 430 9
Libsndfile 86c9f9e 27,037 1,224 14
LibTIFF c145a6c 19,234 844 13
Libxml2 ec6e3ef 81,360 2,863 14
OpenSSL 3bd5319 166,814 13,724 22

Total 304,305 19,085 72

3.3 Application in Practice

Figure 2 shows the system architecture and execution steps of
SASTFuzz, spanning three phases: static code analysis, program
instrumentation, and (directed) fuzzing.

Step 1 involves extracting the LLVM bitcode file from the sys-
tem under test (SUT). Step 2 utilizes this extracted program rep-
resentation via the Inspector component to perform a whole-
program analysis, identifying code properties such as the line
ranges of all contained functions and basic blocks (BBs). Following
this, step 3 launches the SAST Runner, which runs the static
analyzers (in parallel) on the SUT to identify potentially vulnerable
code locations. Moreover, it uses the provided code properties to
group the SAST findings into target blocks, which then receive
the determined vulnerability score. Step 4 shifts from static code
analysis to program instrumentation, turning the bitcode file into a
coverage-instrumented and thus fuzzable binary. Additionally, it
outputs the deviation-to-target BB distances, as well as the path
complexity information, both required to fuzz the instrumented
SUT in step 5 .

4 SASTFUZZ CONFIGURATION

This section empirically examines (1) the validity of our SAST-based
defect heuristic for assigning vulnerability scores and (2) the effec-
tiveness of varying (initial) interval lengths in our target scheduling
mechanism versus directed fuzzing with static targets. The insights
will then guide the configuration of SASTFuzz for its comparative
evaluation with other fuzzers in § 5.

4.1 Setup

4.1.1 Subject Programs. For this investigation, we randomly se-
lected five subject programs, with a total of 72 vulnerable func-
tions, from the Magma ground-truth benchmark [24] (see Table 3).
Magma is characterized by a diverse collection of well-documented
vulnerabilities, utilizing a technique called bug front-porting, by
which previously found vulnerabilities (i.e., validated CVE reports)
are reinserted into newer versions of the same program.

4.1.2 Seeds & Campaign Length. All fuzzing-related experiments
were conducted with a non-empty seed corpus provided byMagma.
Each fuzzing campaign was carried out over 24 hours and repeated
five times to mitigate the effects of the inherent randomness in
fuzzing, which we believe is sufficient to depict the impact of the
studied parameters.

4.1.3 Infrastructure. All experiments in this work were performed
on a machine equipped with an AMD EPYC(TM) 7742 processor,

https://github.com/glennrp/libpng/commit/a37d4836519517bdce6cb9d956092321eca3e73b
https://github.com/libsndfile/libsndfile/commit/86c9f9eb7022d186ad4d0689487e7d4f04ce2b29
https://gitlab.com/libtiff/libtiff/commit/c145a6c14978f73bb484c955eb9f84203efcb12e
https://gitlab.gnome.org/GNOME/libxml2/commit/ec6e3efb06d7b15cf5a2328fabd3845acea4c815
https://github.com/openssl/openssl/commit/3bd5319b5d0df9ecf05c8baba2c401ad8e3ba130

Pre
pri
nt

Stephan Lipp, Severin Kacianka, Alexander Pretschner, and Marcel Böhme

ρ = 0.157 ρ = 0.789 ρ = 0.083 ρ = 0.772 ρ = 0.263

libpng libsndfile LibTIFF Libxml2 OpenSSL

1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5

0.00

0.01

0.02

0.03

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.0

0.1

0.2

0.3

Number of SAST Tools (N)

P
(V

u
ln

.
|
#

T
o

o
ls

 =
 N

)

Figure 3: Relationship (Pearson correlation 𝜌) between the number of different SAST tools flagging a function and the

(conditional) probability of this function being vulnerable (SAST-tool consensus heuristic).

which features 128 logical cores operating at a speed of 3.4 GHz.
The system contains 995GB of main memory and uses Ubuntu
20.04 (64-bit). Moreover, to measure the SAST-tool overhead in § 2
under realistic conditions, we restricted the analyzers’ hardware
access to 24 cores and 64GB of memory.

4.2 Results

4.2.1 Validity of SAST-Based Defect Heuristics. To assess the valid-
ity of Heuristics 1 and 2, we calculated the (conditional) probability
of a function being vulnerable based on different degrees of SAST-
tool consensus and flag density observed in our subject programs.
We hypothesize that a higher heuristic value correlates with an
increased detection probability, measured by Pearson’s 𝜌 [55].

For Heuristic 1, Fig. 3 shows a positive trend line for almost
all subjects, indicating that a function is more likely vulnerable if
multiple analyzers flag it. In particular, we observe a strong positive
correlation (𝜌 = ~0.8) in Libsndfile and Libxml2. In the remaining
programs, we see a sharp positive trend up to𝑁 = 3, 4, followed by a
decline due to zero probabilities in the last 𝑁 values. Consequently,
this results in a weak to moderate correlation (𝜌 = 0.16, 0.26) in
OpenSSL and Libpng, and a negligible one (𝜌 = 0.08) in LibTIFF,
despite strong positive trends up to 𝑁 = 3.

In contrast, the same analysis Heuristic 2 revealed no positive
correlation between the density of flagged lines in a function and
the likelihood of this function being vulnerable in all five programs.
This renders the SAST-flag density heuristic invalid, at least at the
function level.

Summary (SAST-Based Defect Heuristics). Functions flagged
by multiple static analyzers (irrespective of the density of
flagged lines) tend to be more likely vulnerable, making us
exclusively use the SAST-tool consensus heuristic to determine
the vulnerability score of fuzzing target blocks.

4.2.2 Optimal Initial Interval Length. We start SASTFuzz with dif-
ferent initial interval lengths between 15 minutes and 8 hours and
then measure the number of target blocks (as identified by the SAST
tools) covered in our subject programs (see Fig. 4a). Furthermore,
we record the number of unique bugs triggered to assess the per-
formance gain in terms of both target coverage (Vargha-Delaney
𝐴12 [9])7 and additional bugs found (∆𝐵; see Fig. 4b)

7For instance, �̂�12 = 0.5 implies no performance difference between our approach and
WindRanger’s, while deviations from 0.5 indicate varying effect sizes.

The table shows that shorter initial intervals typically lead to
an enhanced target coverage. However, while the campaigns with
15-minute starting intervals achieve the largest performance gain
(𝐴12 = 0.9), they result in less thorough fuzzing (due to early target
deactivation). Specifically, they find only one bug (in Libsndfile),
also discovered byWindRanger (∆𝐵 = 0). Also, campaigns with
4- and 8-hour initial interval lengths detect no additional bugs be-
cause they reach fewer flagged, vulnerable code regions. In contrast,
starting SASTFuzz with 30-minute, 1-hour, and 2-hour intervals
results in three unique bugs found in Libsndfile, two more than
WindRanger (∆𝐵 = + 2).

Summary (Initial Interval Length). An initial interval length
of one hour provides the best balance between target coverage
and bug exploitation. Using this configuration, SASTFuzz covers
significantly more target basic block than WindRanger while
also finding more distinct (security) bugs.

4.3 Discussion

SAST incurs a relatively low overhead, about 15 minutes, which can
be further decreased by running analyzers incrementally on code
changes, relevant, e.g., for continuous integration (CI) pipelines
with tight time constraints. The selected SAST tools thereby effec-
tively identify (potentially) vulnerable functions while, on average,
flagging less than one-third of the functions. This rate drops even
further at the basic block level, the granularity of our fuzzing tar-
gets, thus greatly reducing the code scope for fuzzing. Additionally,
our SAST-tool consensus heuristic enables assessing the vulnera-
bility probability of the target blocks, which in turn enhances the
target prioritization and resource allocation during fuzzing.

Regarding directed fuzzing, our dynamic target scheduling mech-
anism surpasses prevailing static-target directed fuzzing, like that
used in WindRanger, in effectively reaching the target blocks.
Here, we discovered that a one-hour initial interval length strikes
an optimal balance (number of targets reached versus bugs trig-
gered). However, for CI environments, shorter intervals (e.g., 5 to
15 minutes) might be better suited to maximize target coverage for
the limited time budget.

5 EVALUATION

Using the configuration identified in the previous section, we em-
pirically evaluate SASTFuzz’s bug-finding performance compared
to common coverage-based and defect-guided fuzzers.

Pre
pri
nt

SAST-Guided Grey-Box Fuzzing

Libxml2 OpenSSL

libpng libsndfile LibTIFF

0h 6h 12h 18h 24h 0h 6h 12h 18h 24h

0h 6h 12h 18h 24h

0

250

500

750

200

250

600

800

1000

70

80

90

100

300

350

400

450

500

550

Fuzzing Campaign Length

N
u

m
b

e
r

o
f

C
o

v
e

re
d

 T
a

rg
e

t
B

B
s

Initial Interval Length:

15 min

30 min

1 hr

2 hr

4 hr

8 hr

WindRanger

(a) Target coverage of SASTFuzz (with different initial intervals) andWindRanger; the error bands
show the standard deviation around the arithmetic mean (solid lines).

Rank Init. Length �̂�12 ∆𝐵

1 15min 0.900 0
2 1 hr 0.692 + 2
3 30min 0.635 + 2
4 2 hr 0.598 0
5 4 hr 0.590 0
6 8 hr 0.515 0

(b) Performance gain(s) in target (�̂�12) and bug cov-
erage (∆𝐵) across the studied initial intervals.

Figure 4: Performance difference between SASTFuzz andWindRanger when using different initial intervals.

Table 4: Subset of evaluation subjects where bugs could be

found by at least one of the four fuzzers.

Subject Commit LoC # BBs # Crashes # Bugs

Discount a096c1a 3,329 3,210 1,488 1
MIR 928e28f 17,496 13,668 9,731 44
MyHTML 4f98bb1 6,933 4,203 818 2
Parson b800e9d 1,739 1,369 667 6
Pocketlang e316d53 8,110 6,014 10,261 26
raylib 557aeff 19,840 10,655 10 1

Total 57,447 39,119 22,975 80

5.1 Setup

5.1.1 Research Questions. To assess if our SAST-based fuzzing
approach surpasses coverage-based and other defect-guided ap-
proaches, we ask the following research questions:
RQ.1 Bug-Finding Effectiveness.Howmany new (security-critical)

software bugs does SASTFuzz find compared to the base-
line fuzzers?

RQ.2 Different Bugs Found. What is the overlap/difference be-
tween the bugs exclusively found by SASTFuzz and those
only detected by the baseline fuzzers?

RQ.3 Bug-Finding Efficiency. How fast does SASTFuzz discover
the same bugs also detected by the baseline fuzzers?

RQ.4 Post-Bug Analysis. To what extent is our SAST-based ap-
proach responsible for the exclusively detected/missed
bugs by SASTFuzz?

5.1.2 Subject Programs. We evaluate the fuzzers on the latest ver-
sions (as of August 2023) of 19 diverse open-source programs with
unknown bugs. This prevents overfitting (adapting tools to bench-
mark bugs) and survivorship bias (under/overrating tools that found
the original bugs), thus offering a more realistic assessment of
the fuzzers’ bug-finding effectiveness [14, 28]. The subjects were
thereby randomly selected from various application domains:
• Data Parsing:Discount, Jansson, jq,MyHTML, Parson, PDFio,

MDB Tools

• Multimedia Processing: FLAC,Gifsicle, LibGD, libwebp,Open-
JPEG, Opus

• Network & Security: libmodbus, libsodium
• Programming:MIR, Pocketlang, Zydis
• Gaming: raylib

Table 4 summarizes the programs in which bugs were found by
at least one of the employed fuzzers. Each discovery is a strong
indicator of a new security-critical bug and has been confidentially
reported to the corresponding developers, with some bugs already
confirmed as security vulnerabilities.

5.1.3 Baseline Fuzzers. We select AFL [1] (version 2.56b) as our
baseline coverage-based fuzzer, which Google, among others, has
used for years to find thousands of security vulnerabilities in criti-
cal open-source software. As SASTFuzz (over WindRanger and
AFLGo) is based on AFL, it allows us to compare methodologies
rather than technical implementations [54] and, hence, how SAST-
guided (directed) fuzzing generally performs against coverage-
based fuzzing. Furthermore, we compare SASTFuzz against two
other defect-guided fuzzers, TortoiseFuzz [65] (v0.1) and Parme-
San [49] (no version specified), both published in top-tier research
conferences, with their source code—unlike most directed fuzzers—
available on GitHub. Both fuzzers have demonstrated superior bug-
finding capabilities over many state-of-the-art fuzzers [49, 65], mak-
ing them ideal baseline candidates.

5.1.4 Seeds & Campaign Length. For the fuzzer evaluation, we
use non-empty seed corpora provided by various GitHub reposito-
ries8. We run each fuzzing campaign for 48 hours and repeat it ten
times, allowing us to compute average scores that account for the
randomness in fuzzing [28].

5.1.5 Bug Deduplication. In total, the launched fuzzing campaigns
triggered 22,975 program crashes. As manual deduplication of these
many crashes is impractical, we employ ClusterFuzz’s method [3]
to approximate unique (security) bugs: Two crashes are deemed to
8https://github.com/google/oss-fuzz
https://github.com/dvyukov/go-fuzz-corpus
https://github.com/strongcourage/fuzzing-corpus

https://github.com/Orc/discount/commit/a096c1a3aa0727791aefa52e3ed982cfae9fb5ba
https://github.com/vnmakarov/mir/commit/928e28fb3acaa50d051a906e76a55cc48a556574
https://github.com/lexborisov/myhtml/commit/4f98bb1562c10b6e196dc358c83347eb33fe53f1
https://github.com/kgabis/parson/commit/b800e9db079fa0ed7669344502c0516e47caec94
https://github.com/ThakeeNathees/pocketlang/commit/e316d53fa73509a6c647b355273b1c5be1ed5ecb
https://github.com/raysan5/raylib/commit/557aeff253255a7ce2aac3b1872aeefba6ff2a51
https://github.com/google/oss-fuzz
https://github.com/dvyukov/go-fuzz-corpus
https://github.com/strongcourage/fuzzing-corpus

Pre
pri
nt

Stephan Lipp, Severin Kacianka, Alexander Pretschner, and Marcel Böhme

Table 5: Arithmetic means 𝜇 with standard deviations (in

grey) and total bug counts Σ achieved by SASTFuzz and the

baseline fuzzers.

SASTFuzz AFL TortoiseFuzz ParmeSan

Subject 𝜇 Σ 𝜇 Σ 𝜇 Σ 𝜇 Σ

Discount 1.0 ± 0.0 1 0.8 ± 0.4 1 1.0 ± 0.0 1 0.0 ± 0.0 0
MIR∗ 21.0 ± 2.9 37 19.6 ± 2.6 32 19.2 ± 3.0 33 – –
MyHTML 1.1 ± 0.3 2 1.0 ± 0.0 1 1.2 ± 0.4 2 0.0 ± 0.0 0
Parson 5.8 ± 0.4 6 6.0 ± 0.0 6 5.9 ± 0.3 6 0.0 ± 0.0 0
Pocketlang 12.1 ± 2.0 23 11.0 ± 1.4 19 10.4 ± 1.1 16 3.6 ± 1.0 7
raylib 0.3 ± 0.5 1 0.7 ± 0.5 1 0.0 ± 0.0 0 0.0 ± 0.0 0

Total 70 60 58 7
∗ ParmeSan aborts prematurely when executed on this program.

expose the same vulnerability if they share the same vulnerability
type (issued by ASan) and the identical top five stack frames in
their execution trace. Ultimately, this process yielded 80 unique,
previously unknown bugs (see Table 4), which we inspected again
to confirm the validity of this approximation.

5.2 Results

Despite troubleshooting efforts, ParmeSan aborts prematurelywhen
executed on MIR, so we have no evaluation results for this subject.

5.2.1 RQ.1: Bug-Finding Effectiveness. Table 5 presents both the
arithmetic means (including the standard deviations) and the total
number of newly detected (security) bugs (over 10 fuzzing campaign
repetitions) by SASTFuzz and the baseline fuzzers AFL, Tortoise-
Fuzz, and ParmeSan. Regarding the total bug count, SASTFuzz
consistently uncovers more unique bugs than the baseline fuzzers,
never performing less effectively than the next-best fuzzer. For in-
stance, on Pocketlang, our fuzzer finds four more bugs than AFL,
seven more than TortoiseFuzz, and sixteen more than Parme-
San. Concerning the arithmetic means, SASTFuzz shows an equal
or superior average performance in Discount, MIR, and Pocket-
lang. However, on MyHTML, Parson, and raylib, SASTFuzz shows
marginally lower means than the most effective baseline fuzzer
despite identifying the same number of unique bugs. This indicates
a slightly larger variation/fluctuation in SASTFuzz’s performance
between the campaign repetitions.

Answer (RQ.1). SASTFuzz is more effective than the selected
baseline fuzzers, detecting across all subject programs 10 more
unique, previously unknown (security) bugs than AFL, 12 more
than TortoiseFuzz, and 63 more than ParmeSan, despite
slightly larger performance fluctuations between the fuzzing
campaign repetitions.

5.2.2 RQ.2: Different Bugs Found. Figure 5 illustrates the over-
lap/differences in unique (security) bugs found by SASTFuzz, AFL,
TortoiseFuzz, and ParmeSan. The Venn diagram reveals that SAST-
Fuzz discovers 10 distinct bugs that all baseline fuzzers miss, while
AFL and TortoiseFuzz exclusively detect only 4 and 5, i.e., 2.5 and 2
times fewer bugs, respectively; ParmeSan fails to identify any bugs

Figure 5: Intersection/divergence of the unique (security)

bugs found by the four different fuzzers.

-5h

0h

5h

10h

15h

Discount MIR MyHTML Parson Pocketlang raylib

M
e

a
n

 T
im

e
-t

o
-E

rr
o

r
(μ

T
T

E
)

D
e

c
re

a
s
e

 /
 I

n
c
re

a
s
e

μTTEAFL − μTTESASTFuzz μTTETortoiseFuzz − μTTESASTFuzz μTTEParmeSan − μTTESASTFuz

Figure 6: Difference inmean time-to-error (𝜇TTE) per unique

(security) bug between SASTFuzz and the baseline fuzzers.

The diamonds (⋄) indicate the arithmetic means.

not found by the other fuzzers. Compared to AFL, SASTFuzz exclu-
sively identifies 15 bugs, three times more than those solely found
by AFL (5 bugs); relative to TortoiseFuzz, 18 unique bugs, again a
threefold increase compared to the 6 only found by TortoiseFuzz.
Also note that SASTFuzz and TortoiseFuzz jointly detect 76 out
of 80 bugs, which accounts for 95% of all bugs found.

Answer (RQ.2). SASTFuzz effectively detects different (security)
bugs, uncovering 10 distinct bugs missed byAFL, TortoiseFuzz,
and ParmeSan. Also, SASTFuzz outperforms bothAFL and Tor-
toiseFuzz, exclusively detecting 15 and 18 bugs, respectively,
three times as many as either fuzzer. Compared to ParmeSan,
our fuzzer identifies 63 additional bugs.

5.2.3 RQ.3: Bug-Finding Efficiency. Figure 6 displays the difference
in mean time-to-error (𝜇TTE) per identified (security) bug between
SASTFuzz and the baseline fuzzers, with campaigns that miss the
respective bugs receiving a 48-hour TTE (i.e., the maximum cam-
paign duration). Hence, positive values indicate faster bug detection
by SASTFuzz, while negative values signify faster discovery by the
respective baseline fuzzer. Compared with AFL, SASTFuzz finds
bugs faster in Discount, MyHTML, and Pocketlang by averages of
10.5, 1.8, and 3 hours, respectively. However, the opposite holds
on Parson and raylib, where AFL requires 3.8 and 4.4 hours less
for bug detection. Against the defect-guided fuzzers, SASTFuzz’s

Pre
pri
nt

SAST-Guided Grey-Box Fuzzing

MIR Pocketlang

BM5 BM6 BM7 BM14 BM21 BM32 BP15 BP17 BP21 BP24

#0

#1

#2

#3

#4

Unique Bugs

S
ta

c
k
 F

ra
m

e
 I
D

Flagged Not Flagged SUT glibc/ASan

Figure 7: Flagged stack frames of the bugs exclusively found

by SASTFuzz. Frame #0 indicates the last execution point

where the bug manifests, which can be outside the system

under test (red frames).

time savings become more apparent. Here, SASTFuzz is in five of
the six subjects 2.2 to 5 hours faster than TortoiseFuzz but lags
by about 2 hours on Parson. Moreover, SASTFuzz is significantly
faster than ParmeSan, with 13.2 hours faster bug detection on Pock-
etlang. For the other programs, the time differences are even higher
(over 20 hours; not shown in the zoomed boxplot) due to the many
overlooked bugs by ParmeSan.

Answer (RQ.3). SASTFuzz surpasses AFL in bug-detection
speed in half of the programs by 1.8 to 10.5 hours (during 48-
hour fuzzing campaigns) but takes in two subjects about 4 hours
longer on average. Compared to the defect-guided fuzzers, SAST-
Fuzz consistently shows higher efficiency, detecting bugs 2.2
to 5 hours faster than TortoiseFuzz and more than 13 hours
faster in most subjects than ParmeSan.

5.2.4 RQ.4: Post-Bug Analysis. This research question investigates
(1) whether the bugs exclusively identified by SASTFuzz are due to
the SAST-provided targets, and (2) why SASTFuzz fails to detect
certain bugs found by the baseline fuzzers.
Exclusive SASTFuzzBugs. Figure 7 shows the stack frames flagged
by the SAST tools for the bugs solely discovered by SASTFuzz. In
MIR, almost all bugs had four of the top five functions/frames
flagged, effectively guiding our fuzzer. These bugs, primarily seg-
mentation violations (segv), exhibit different execution traces but
manifest at adjacent code locations in frame #0 (missed by the an-
alyzers). The same high proportion of SAST-flagged frames can
be seen for the segmentation bug 𝐵 P21 in Pocketlang. Moreover,
bugs 𝐵 P15 and 𝐵 P17 show a pattern where three out of four frames
(maximum trace length) were flagged. For the stack-overflow 𝐵 P24,
where frame #0 is outside the analyzers’ scope, three of the four
frames on the corresponding trace were again flagged.
Exclusive Baseline Fuzzer Bugs. Among the ten bugs not de-
tected by our fuzzer, the SAST tools failed to flag any of the top
five frames only of 𝐵 P23, causing SASTFuzz to ignore this false-
negative target during execution. For the other bugs, the static
analyzers flagged many frames in their stack traces, though fewer
than those of the bugs detected by SASTFuzz. However, replaying
the stored fuzz inputs from SASTFuzz’s queue of the respective

Table 6: Bug-finding performance of SASTFuzz, including

time-to-first-error differences (∆TTFE) compared to the

fastest baseline fuzzer, when using the stack frame locations

of previously missed bugs as targets.

Subject Bug ID Vuln. Type Detected ∆TTFE

MIR

𝐵 M4 Segv ✓ 13 hr 32min
𝐵 M16

∗ Segv ✓ 31 hr 09min
𝐵 M25 Segv ✓ 18 hr 04min
𝐵 M31 Segv ✓ + 4 hr 33min
𝐵 M36 Segv ✓ 16 hr 41min
𝐵 M40 Segv ✓ 0 hr 53min
𝐵 M41

∗ Segv ✓ 30 hr 52min

Pocketlang
𝐵 P12 Segv ✓ + 2 hr 23min
𝐵 P16 Segv ✗ –
𝐵 P23 Stack-overflow ✗ –

∗ Unlike the baseline fuzzer crashes, SASTFuzz’s were intercepted at stack frame #0 by
ASan instead of the operating system. However, as all other frames match, including
the vulnerability type, we consider them detected by SASTFuzz.

campaigns reveals that the functions where these bugs manifest
could not be reached. Here, the many specified (false-positive) SAST
findings/fuzzing targets specified forced SASTFuzz to limit the exe-
cutions per target to still maximize target coverage, thereby shifting
direction before the bugs could be reached or triggered.

This is also evidenced by the results in Table 6, showing that
when filtering out the false positive targets by steering SASTFuzz
directly towards the functions in the crashing execution traces, 8
of the 10 previously missed bugs could be detected. Furthermore,
except for 𝐵 M31 and 𝐵 P12, SASTFuzz finds these bugs on average
~13 hours earlier than the fastest baseline fuzzer. This not only
indicates the impact of false positives on our approach but also
SASTFuzz’s potential performance increase as the accuracy of static
analyzers improves over time.

Answer (RQ.4). For the bugs exclusively found by SASTFuzz,
most of the top five functions on the execution trace towards
the corresponding bug locations were flagged by the analyzers,
pointing our fuzzer in the right direction. In contrast, the missed
bugs result from too many (false-positive) targets specified,
forcing SASTFuzz into less exhaustive fuzzing. Yet, they are
likely detectable with more accurate analyzers.

5.3 Discussion

SASTFuzz detects previously undiscovered (security) bugs more
effectively than the widespread baseline fuzzers. Our post-bug anal-
ysis shows that this performance gain largely stems from the SAST
tools that direct our fuzzer to potentially vulnerable code regions.
Besides, as static analyzers improve over time, SASTFuzz auto-
matically becomes more effective. With the currently employed
analyzers, SASTFuzz finds twice as many distinct bugs as the best-
performing baseline fuzzer, making it a valuable addition to existing
fuzzer ensembles. We consider this a major achievement, given that
oftentimes, a single new vulnerability can have wide-ranging con-
sequences, as illustrated by a recent high-severity vulnerability

Pre
pri
nt

Stephan Lipp, Severin Kacianka, Alexander Pretschner, and Marcel Böhme

in libwebp (CVE-2023-4863), affecting millions of devices. How-
ever, while SASTFuzz detects bugs faster than other defect-guided
fuzzers, its time-savings over AFL are marginal. This can be attrib-
uted to AFL’s higher throughput of fuzz inputs, which is slowed
down by SASTFuzz’s complex distance computations. Further en-
gineering to optimize these computations could thereby enhance
SASTFuzz’s efficiency.

6 THREATS TO VALIDITY

External Validity. To minimize the risk of non-generalizable re-
sults, we conduct a large-scale empirical evaluation that compares
SASTFuzz against one coverage-based (AFL) and two defect-guided
fuzzers (ParmeSan and TortoiseFuzz). Moreover, we employ 19
diverse open-source programs with previously unknown (security)
bugs, which also prevents survivorship bias and potential overfit-
ting of the fuzzers and analyzers.
Internal Validity. This threat category concerns the extent to
which our study minimizes potential methodological mistakes.

The many program crashes triggered in our fuzzing experiments
forced us to mechanize the process of deduplicating crashes into
unique bugs. Here, we utilized a well-established heuristic from the
fuzzing domain in which crashes that share the same vulnerability
type and the top 𝑁 stack frames are considered to have the same
underlying vulnerability. Bymanually examining the deduplicating
results for different frame lengths, we found that 𝑁 = 5 yields the
most precise approximation.

Furthermore, due to the substantial time and hardware costs
involved in fuzzing, we compromised in our evaluation on the
number of experiment repetitions (10 instead of 20 or 30) in favor
of longer fuzzing campaigns (48 instead of 24 hours). We consider
this a reasonable compromise, as new and, thus, more complex
bugs can often only be found with fuzzing efforts longer than the
recommended 24 hours.

7 RELATEDWORK

Improving Fuzzing Directedness. Böhme et al. [13] pioneered
directed grey-box fuzzing with their directed AFL-variant AFLGo,
building the basis [63] for sophisticated seed prioritization strate-
gies [16, 19, 23, 27, 29, 33, 35, 36, 41, 48, 58, 62, 64, 66]. Also, new
mutation strategies emerged that, for instance, dynamically adjust
the mutation granularity [10, 16, 59, 70] or apply data-flow/taint-
analysis techniques [19, 26, 62, 69, 70] to further improve fuzzing
directedness. To speed up directed fuzzing, recent works suggest
filtering out inputs unlikely to reach any target locations by pre-
dicting their target reachability via deep learning [76], pruning un-
reachable program paths by discarding executions deviating from
target-reachable paths [25, 61], and/or selective path exploration
using static control-/data-flow analysis methods [41].

To reach targets more effectively, we dynamically disable them
during fuzzing, an approach used only by Zheng et al. [23] so far.
Their fuzzer focuses on the 20% of targets with the lowest execu-
tion frequency while excluding unreached targets entirely from the
exploitation phase. In contrast, our target scheduling (1) fully deac-
tivates apparent false-positive targets, allowing SASTFuzz to focus
on more likely vulnerable targets and (2) systematically includes
unreached targets during exploitation to increase their coverage

chances. However, most of the optimizations mentioned above are
complementary to ours.
Automated Fuzzing Target Identification. Directed fuzzing of-
ten integrates with defect prediction techniques or tools for auto-
mated target acquisition. Early studies in this direction focused on
methods targeting one specific vulnerability type, e.g., use-after-
free [48, 62], buffer and integer overflow [22, 26, 44], and denial-
of-service [30, 32, 53, 67]. By utilizing multiple advanced SAST
tools that support various vulnerability types [37], we can iden-
tify different types of vulnerabilities with a single fuzzer, thereby
significantly reducing the associated execution costs.

Recent defect-guided fuzzing works address a wider range of vul-
nerabilities at both binary and source code levels. Binary-level meth-
ods primarily utilize static analysis [27, 48, 51] or machine/deep
learning techniques [34, 72] on the reverse-engineered system un-
der test (SUT) to identify interesting fuzzing target, contrastingwith
our approach that operates on the source code level. Approaches
that require access to the SUT’s source code either leverage code
churn metrics [71, 73], software patches [43, 70], and/or bug tracker
data [65, 70] to guide fuzzing toward bug-prone code locations. In
contrast, our approach involves running multiple SAST tools on
the SUT before fuzzing to instantly provide the targets without
depending on pre-existing data.

For instant target identification, related approaches employ deep
learning [74] or analyze the control/data flow [35, 68], the instruc-
tion semantics [59, 65], and/or the code complexity [18] of the
SUT. Moreover, existing studies guided fuzzing towards sanitizer-
instrumented lines [23, 49, 58] or sanity checks [17]. Unlike these
methods, SASTFuzz uses SAST tools for automated target acquisi-
tion, a new direction that has not been explored until now. In our
evaluation, SASTFuzz shows superior bug-finding performance
than TortoiseFuzz [65], which focuses on memory-modifying
instructions, and the sanitizer-guided fuzzer ParmeSan, demon-
strating the effectiveness of our approach.

8 CONCLUSION

Coverage-based fuzzing, commonly used for detecting security
bugs, inefficiently allocates resources by treating all code regions as
equally important/vulnerable. Therefore, we suggest using static
application security testing (SAST) tools to direct fuzzing towards
potentially vulnerable regions, thus improving bug-finding effec-
tiveness and efficiency by reducing the code scope to be fuzzed.
Our approach also includes a target scheduling mechanism (imple-
mented in our SAST-guided fuzzer SASTFuzz) that mitigates the
impact of false-positive and unreachable SAST findings/fuzzing
targets on the fuzzing performance. Furthermore, SASTFuzz dy-
namically alternates between directed and coverage-based fuzzing,
helping to find bugs missed by the static analyzers (false negatives).
Through large-scale empirical experiments, we show that (1) our
target scheduling strategy surpasses prevailing directed fuzzing in
terms of target locations reached and that (2) SASTFuzz not only
finds more and different previously unknown (security) bugs but
also detects bugs generally several hours earlier than the selected
baseline fuzzers (AFL, TortoiseFuzz, and ParmeSan). Hence, SAST-
Fuzz can decisively contribute to counteracting the escalating costs
of current grey-box fuzzing.

Pre
pri
nt

SAST-Guided Grey-Box Fuzzing

REFERENCES

[1] 2023. American Fuzzy Lop (AFL). https://lcamtuf.coredump.cx/afl/. Accessed:
2023-12-09.

[2] 2023. Clang Static Analyzer. https://clang-analyzer.llvm.org/. Accessed: 2023-
12-09.

[3] 2023. ClusterFuzz. https://google.github.io/clusterfuzz/. Accessed: 2023-12-09.
[4] 2023. CodeQL for Research. https://codeql.github.com/. Accessed: 2023-12-09.
[5] 2023. Flawfinder. https://dwheeler.com/flawfinder/. Accessed: 2023-12-09.
[6] 2023. Infer: A Tool to Detect Bugs in Java and C/C++/Objective-c Code. https:

//fbinfer.com/. Accessed: 2023-12-09.
[7] 2023. OSS-Fuzz: Continuous Fuzzing for Open Source Software. https://github.

com/google/oss-fuzz. Accessed: 2023-12-09.
[8] 2023. Semgrep: Find Bugs and Enforce Code Standards. https://semgrep.dev/.

Accessed: 2023-12-09.
[9] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical

Tests to Assess Randomized Algorithms in Software Engineering. Proceedings of
the International Conference on Software Engineering, 1–10. https://doi.org/10.
1145/1985793.1985795

[10] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.
Ijon: Exploring Deep State Spaces via Fuzzing. Proceedings of the IEEE Symposium
on Security and Privacy 2020-May, 1597–1612. https://doi.org/10.1109/SP40000.
2020.00117

[11] Nathaniel Ayewah, David Hovemeyer, David J. Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Software 25 (2008),
22–29. Issue 5. https://doi.org/10.1109/MS.2008.130

[12] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of
Vulnerability Discovery. Proceedings of the Joint Meeting European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
713–724. https://doi.org/10.1145/3368089.3409729

[13] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. Proceedings of the Conference on Com-
puter and Communications Security, 2329–2344. https://doi.org/10.1145/3133956.
3134020

[14] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Reliabil-
ity of Coverage-based Fuzzer Benchmarking. Proceedings of the International
Conference on Software Engineering, 1621–1633. https://doi.org/10.1145/3510003.
3510230

[15] Hudson Borges and Marco Tulio Valente. 2018. What’s in a Github Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of Sys-
tems and Software 146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.09.016

[16] Hongxu Chen, Bihuan Chen, Yinxing Xue, Xiaofei Xie, Yang Liu, Yuekang Li,
and Xiuheng Wu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer.
Proceedings of the ACM Conference on Computer and Communications Security,
2095–2108. https://doi.org/10.1145/3243734.3243849

[17] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing.
Proceedings of the IEEE Symposium on Security and Privacy 2020-May, 1580–1596.
https://doi.org/10.1109/SP40000.2020.00002

[18] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu,
and Yu Jiang. 2019. Leopard: Identifying Vulnerable Code for Vulnerability
Assessment Through ProgramMetrics. Proceedings of the International Conference
on Software Engineering 2019-May, 60–71. https://doi.org/10.1109/ICSE.2019.
00024

[19] Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao. 2022. WindRanger: A Directed
Greybox Fuzzer Driven by Deviation Basic Blocks. Proceedings of the International
Conference on Software Engineering 2022-May. https://doi.org/10.1145/3510003.
3510197

[20] Christoph Gentsch. 2020. Evaluation of Open Source Static Analysis Security
Testing (SAST) Tools for C. , 37 pages. https://elib.dlr.de/133945/

[21] Katerina Goseva-Popstojanova and Andrei Perhinschi. 2015. On the Capability of
Static Code Analysis to Detect Security Vulnerabilities. Information and Software
Technology 68 (12 2015), 18–33. https://doi.org/10.1016/j.infsof.2015.08.002

[22] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos.
2013. Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities. The
magazine of USENIX and SAGE 38, 16–19. Issue 6.

[23] Han, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, He Wang, Chunjie Cao,
Yuqing Zhang, Flavio Toffalini, and Mathias Zheng Payer. 2023. FishFuzz: Catch
Deeper Bugs by Throwing Larger Nets. Proceedings of the USENIX Security
Symposium.

[24] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2021. Magma: A Ground-
Truth Fuzzing Benchmark. Proceedings of the International Conference on
Measurement and Modeling of Computer Systems 4 (2021), 81–82. Issue 3.
https://doi.org/10.1145/3410220.3456276

[25] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles
Zhang. 2022. BEACON: Directed Grey-Box Fuzzing With Provable Path Pruning.
Proceedings of the IEEE Symposium on Security and Privacy 2022-May. https:
//doi.org/10.1109/SP46214.2022.9833751

[26] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos. 2018. TIFF:
Using Input Type Inference To Improve Fuzzing. ACM International Conference
Proceeding Series 2018-January. https://doi.org/10.1145/3274694.3274746

[27] Tiantian Ji, Zhongru Wang, Zhihong Tian, Binxing Fang, Qiang Ruan, Haichen
Wang, and Wei Shi. 2020. AFLPro: Direction Sensitive Fuzzing. Journal of
Information Security and Applications 54 (2020). https://doi.org/10.1016/j.jisa.
2020.102497

[28] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. Proceedings of the Conference on Computer and Commu-
nications Security, 2123–2138. https://doi.org/10.1145/3243734.3243804

[29] Gwangmu Lee and Byoungyoung Lee. 2021. Constraint-Guided Directed Greybox
Fuzzing. Proceedings of the USENIX Security Symposium.

[30] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. Proceedings of the International
Symposium on Software Testing and Analysis. https://doi.org/10.1145/3213846.
3213874

[31] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: A Survey. Cybersecurity 1
(12 2018), 6. Issue 1. https://doi.org/10.1186/s42400-018-0002-y

[32] Penghui Li, Yinxi Liu, and Wei Meng. 2021. Understanding and Detecting Perfor-
mance Bugs in Markdown Compilers. Proceedings of the International Conference
on Automated Software Engineering. https://doi.org/10.1109/ASE51524.2021.
9678611

[33] Rundong Li, HongLiang Liang, Liming Liu, Xutong Ma, Rong Qu, Jun Yan, and
Jian Zhang. 2020. GTFuzz: Guard Token Directed Grey-Box Fuzzing. Proceedings
of the Pacific Rim International Symposium on Dependable Computing, 160–170.
https://doi.org/10.1109/PRDC50213.2020.00027

[34] Yuwei Li, Shouling Ji, Chenyang Lyu, Yuan Chen, Jianhai Chen, Qinchen Gu,
Chunming Wu, and Raheem Beyah. 2020. V-Fuzz: Vulnerability Prediction-
Assisted Evolutionary Fuzzing for Binary Programs. IEEE Transactions on Cyber-
netics (2020), 1–12. https://doi.org/10.1109/TCYB.2020.3013675

[35] Hongliang Liang, Lin Jiang, Lu Ai, and Jinyi Wei. 2020. Sequence Directed
Hybrid Fuzzing. Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering. https://doi.org/10.1109/SANER48275.2020.9054807

[36] Hongliang Liang, Yini Zhang, Yue Yu, Zhuosi Xie, and Lin Jiang. 2019. Sequence
Coverage Directed Greybox Fuzzing. Proceedings of the International Conference
on Program Comprehension 2019-May. https://doi.org/10.1109/ICPC.2019.00044

[37] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An Empirical
Study on the Effectiveness of Static C Code Analyzers for Vulnerability Detection.
Proceedings of the International Symposium on Software Testing and Analysis, 544–
555. https://doi.org/10.1145/3533767.3534380

[38] Stephan Lipp, Daniel Elsner, Severin Kacianka, Pretschner Alexander, Marcel
Böhme, and Sebastian Banescu. 2023. Artifacts for the Paper: "Green Fuzzing:
A Saturation-Based Stopping Criterion Using Vulnerability Prediction". https:
//doi.org/10.5281/zenodo.7944722

[39] Stephan Lipp, Daniel Elsner, Severin Kacianka, Alexander Pretschner, Marcel
Böhme, and Sebastian Banescu. 2023. Green Fuzzing: A Saturation-Based Stop-
ping Criterion Using Vulnerability Prediction. Proceedings of the International
Symposium on Software Testing and Analysis. https://doi.org/10.1145/3597926.
3598043

[40] Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan
Sun, Wei Huo, Chao Zhang, and Chao Zhang. 2020. A Large-scale Empirical
Study on Vulnerability Distribution Within Projects and the Lessons Learned.
Proceedings of the International Conference on Software Engineering, 1547–1559.
https://doi.org/10.1145/3377811.3380923

[41] Changhua Luo, Wei Meng, and Penghui Li. 2023. SelectFuzz: Efficient Directed
Fuzzing With Selective Path Exploration. Proceedings of the IEEE Symposium on
Security and Privacy 2023-May. https://doi.org/10.1109/SP46215.2023.10179296

[42] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, sang kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2019. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering
(2019), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[43] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-Coverage Testing
of Software Patches. Proceedings of the Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
https://doi.org/10.1145/2491411.2491438

[44] Raveendra Kumar Medicherla, Raghavan Komondoor, and Abhik Roychoudhury.
2020. Fitness Guided Vulnerability Detection with Greybox Fuzzing. Proceedings
of the IEEE/ACM 42nd International Conference on Software EngineeringWorkshops,
513–520. https://doi.org/10.1145/3387940.3391457

[45] Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery, and Ab-
hishek Arya. 2021. FuzzBench: An Open Fuzzer Benchmarking Platform and
Service. Proceedings of the Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, 1393–1403.
https://doi.org/10.1145/3468264.3473932

[46] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of Unix Utilities. Commun. ACM 33 (12 1990), 32–44. Issue 12.
https://doi.org/10.1145/96267.96279

https://lcamtuf.coredump.cx/afl/
https://clang-analyzer.llvm.org/
https://google.github.io/clusterfuzz/
https://codeql.github.com/
https://dwheeler.com/flawfinder/
https://fbinfer.com/
https://fbinfer.com/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://semgrep.dev/
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/ICSE.2019.00024
https://doi.org/10.1109/ICSE.2019.00024
https://doi.org/10.1145/3510003.3510197
https://doi.org/10.1145/3510003.3510197
https://elib.dlr.de/133945/
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1145/3410220.3456276
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1016/j.jisa.2020.102497
https://doi.org/10.1016/j.jisa.2020.102497
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/ASE51524.2021.9678611
https://doi.org/10.1109/ASE51524.2021.9678611
https://doi.org/10.1109/PRDC50213.2020.00027
https://doi.org/10.1109/TCYB.2020.3013675
https://doi.org/10.1109/SANER48275.2020.9054807
https://doi.org/10.1109/ICPC.2019.00044
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.5281/zenodo.7944722
https://doi.org/10.5281/zenodo.7944722
https://doi.org/10.1145/3597926.3598043
https://doi.org/10.1145/3597926.3598043
https://doi.org/10.1145/3377811.3380923
https://doi.org/10.1109/SP46215.2023.10179296
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.1145/3387940.3391457
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/96267.96279

Pre
pri
nt

Stephan Lipp, Severin Kacianka, Alexander Pretschner, and Marcel Böhme

[47] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
2007. Predicting Vulnerable Software Components. Proceedings of the 14th
ACM conference on Computer and communications security - CCS ’07, 529. https:
//doi.org/10.1145/1315245.1315311

[48] Manh Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre. 2020. Binary-Level Directed Fuzzing for Use-After-Free
Vulnerabilities. Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses.

[49] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
ParmeSan: Sanitizer-guided Greybox Fuzzing. Proceedings of the USENIX Security
Symposium, 2289–2306.

[50] Mathias Payer. 2019. The Fuzzing Hype-train: How Random Testing Triggers
Thousands of Crashes. IEEE Security and Privacy Magazine 17 (1 2019), 78–82.
Issue 1. https://doi.org/10.1109/MSEC.2018.2889892

[51] Jiaqi Peng, Feng Li, Bingchang Liu, Lili Xu, Binghong Liu, Kai Chen, and Wei
Huo. 2019. 1dVul: Discovering 1-Day Vulnerabilities Through Binary Patches.
Proceedings of the International Conference on Dependable Systems and Networks.
https://doi.org/10.1109/DSN.2019.00066

[52] Jose D.Abruzzo Pereira, Joao R. Campos, and Marco Vieira. 2021. Machine Learn-
ing to Combine Static Analysis Alerts with Software Metrics to Detect Security
Vulnerabilities: An Empirical Study. Proceedings of the European Dependable
Computing Conference. https://doi.org/10.1109/EDCC53658.2021.00008

[53] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017. Slow-
Fuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. Proceedings of the Conference on Computer and Communications
Security. https://doi.org/10.1145/3133956.3134073

[54] Eric F. Rizzi, Sebastian Elbaum, and Matthew B. Dwyer. 2016. On the Techniques
We Create, the Tools We Build, and Their Misalignments: A Study of KLEE.
Proceedings of the International Conference on Software Engineering 14-22-May-
2016. https://doi.org/10.1145/2884781.2884835

[55] Patrick Schober and Lothar A. Schwarte. 2018. Correlation Coefficients: Ap-
propriate Use and Interpretation. Anesthesia and Analgesia 126 (2018). Issue 5.
https://doi.org/10.1213/ANE.0000000000002864

[56] Kostya Serebryany. 2017. OSS-Fuzz: Google’s Continuous Fuzzing Service for
Open-Source Software. USENIX Association, Vancouver, BC.

[57] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2019. AddressSanitizer: A Fast Address Sanity Checker. Proceedings
of the USENIX Annual Technical Conference, 309–318. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/serebryany

[58] Abhishek Shah, Dongdong She, Samanway Sadhu, Krish Singal, Peter Coffman,
and Suman Jana. 2022. MC2: Rigorous and Efficient Directed Greybox Fuzzing.
Proceedings of the Conference on Computer and Communications Security. https:
//doi.org/10.1145/3548606.3560648

[59] Lingyun Situ, Linzhang Wang, Xuandong Li, Le Guan, Wenhui Zhang, and Peng
Liu. 2019. Energy Distribution Matters in Greybox Fuzzing. Proceedings of
the International Conference on Software Engineering (ICSE-Companion). https:
//doi.org/10.1109/ICSE-Companion.2019.00109

[60] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. Proceedings
of the IEEE Symposium on Security and Privacy 2019-May, 1275–1295. https:
//doi.org/10.1109/SP.2019.00010

[61] Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias
Payer. 2022. One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing via Target-
Tailored Program State Restriction. ACM International Conference Proceeding
Series. https://doi.org/10.1145/3564625.3564643

[62] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-Guided Fuzzer for Discovering
Use-After-Free Vulnerabilities. Proceedings of the International Conference on
Software Engineering, 999–1010. https://doi.org/10.1145/3377811.3380386

[63] Pengfei Wang, Xu Zhou, Kai Lu, Tai Yue, and Yingying Liu. 2022. SoK: The
Progress, Challenges, and Perspectives of Directed Greybox Fuzzing. SSRN
Electronic Journal (2022). https://doi.org/10.2139/ssrn.4129684

[64] Shen Wang, Xunzhi Jiang, Xiangzhan Yu, and Shuai Sun. 2021. KCFuzz: Directed
Fuzzing Based on Keypoint Coverage. Proceedings of the Lecture Notes in Computer
Science 12736 LNCS. https://doi.org/10.1007/978-3-030-78609-0_27

[65] YanhaoWang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, DinghaoWu, and
Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization. Proceedings of the Network and Distributed
System Security Symposium. https://doi.org/10.14722/ndss.2020.24422

[66] Zi Wang, Ben Liblit, and Thomas Reps. 2020. TOFU: Target-Oriented Fuzzer. (4
2020).

[67] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. Memlock: Memory
Usage Guided Fuzzing. Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, 765–777. https://doi.org/10.1145/3377811.3380396

[68] Valentin Wüstholz and Maria Christakis. 2020. Targeted Greybox Fuzzing with
Static Lookahead Analysis. Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, 789–800. https://doi.org/10.1145/3377811.
3380388

[69] Jiaxi Ye, Ruilin Li, and Bin Zhang. 2020. RDFuzz: Accelerating Directed Fuzzing
With Intertwined Schedule and Optimized Mutation. Mathematical Problems in
Engineering 2020 (2020). https://doi.org/10.1155/2020/7698916

[70] Wei You, Peiyuan Zong, Kai Chen, Xiao Feng Wang, Xiaojing Liao, Pan Bian, and
Bin Liang. 2017. SemFuzz: Semantics-Based Automatic Generation of Proof-of-
Concept Exploits. Proceedings of the Conference on Computer and Communications
Security. https://doi.org/10.1145/3133956.3134085

[71] Jia Ming Zhang, Zhan Qi Cui, Xiang Chen, Huan Huan Wu, Li Wei Zheng,
and Jian Bin Liu. 2022. DeltaFuzz: Historical Version Information Guided Fuzz
Testing. Journal of Computer Science and Technology 37 (2022). Issue 1. https:
//doi.org/10.1007/s11390-021-1663-7

[72] Yuyue Zhao, Yangyang Li, Tengfei Yang, and Haiyong Xie. 2020. Suzzer: A
Vulnerability-Guided Fuzzer Based on Deep Learning. Proceedings of the Lecture
Notes in Computer Science 12020 LNCS. https://doi.org/10.1007/978-3-030-42921-
8_8

[73] Xiaogang Zhu andMarcel Böhme. 2021. Regression Greybox Fuzzing. Proceedings
of the Conference on Computer and Communications Security, 2169–2182. https:
//doi.org/10.1145/3460120.3484596

[74] Xiaogang Zhu, Shigang Liu, Xian Li, Sheng Wen, Jun Zhang, Camtepe Seyit, and
Yang Xiang. 2020. DeFuzz: Deep Learning Guided Directed Fuzzing. (10 2020).

[75] Thomas Zimmermann, NachiappanNagappan, and LaurieWilliams. 2010. Search-
ing for a Needle in a Haystack: Predicting Security Vulnerabilities for Windows
Vista. Proceedings of the International Conference on Software Testing, Verification
and Validation, 421–428. https://doi.org/10.1109/ICST.2010.32

[76] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: Filtering Out Unreachable Inputs in Directed Grey-Box
Fuzzing Through Deep Learning. Proceedings of the USENIX Security Symposium.

https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1109/MSEC.2018.2889892
https://doi.org/10.1109/DSN.2019.00066
https://doi.org/10.1109/EDCC53658.2021.00008
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/2884781.2884835
https://doi.org/10.1213/ANE.0000000000002864
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3548606.3560648
https://doi.org/10.1145/3548606.3560648
https://doi.org/10.1109/ICSE-Companion.2019.00109
https://doi.org/10.1109/ICSE-Companion.2019.00109
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1145/3564625.3564643
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.2139/ssrn.4129684
https://doi.org/10.1007/978-3-030-78609-0_27
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1155/2020/7698916
https://doi.org/10.1145/3133956.3134085
https://doi.org/10.1007/s11390-021-1663-7
https://doi.org/10.1007/s11390-021-1663-7
https://doi.org/10.1007/978-3-030-42921-8_8
https://doi.org/10.1007/978-3-030-42921-8_8
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1109/ICST.2010.32

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 SAST-Based Target Acquisition
	3.2 Directed Fuzzing with Dynamic Targets
	3.3 Application in Practice

	4 SASTFuzz Configuration
	4.1 Setup
	4.2 Results
	4.3 Discussion

	5 Evaluation
	5.1 Setup
	5.2 Results
	5.3 Discussion

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

