
Technische Universität München
TUM School of Management

Algorithmic solutions for emerging challenges
in last-mile logistics

Patrick Sean Klein

Vollständiger Abdruck der von der TUM School of Management der Technischen Univer-
sität München zur Erlangung eines Doktors der Wirtschafts- und Sozialwissenschaften
(Dr. rer. pol.) genehmigten Dissertation.

Vorsitz : Prof. Dr. Martin Grunow

Prüfende der Dissertation:

1. Prof. Dr. Maximilian Schiffer

2. Prof. Dr. Claudia Archetti

Die Dissertation wurde am 20.03.2024 bei der Technischen Universität München
eingereicht und durch die TUM School of Management am 15.06.2024 angenommen

Contents

1 Introduction 1
1.1. Background . 1
1.2. Aims and Scope . 3
1.3. Contribution . 4

2 State of the art 7
2.1. Introduction . 7
2.2. Vehicle Routing . 8

2.2.1. Dynamic Vehicle Routing . 8
2.3. Vehicle and charge scheduling . 10

2.3.1. Vehicle Scheduling . 10
2.3.2. Charge Scheduling . 12

2.4. Open Source Software for Vehicle Routing Problems 13
2.5. Conclusion . 14

3 Combinatorial Optimization enriched Machine Learning to solve the Dynamic Vehicle
Routing Problem with Time Windows 19

4 Electric vehicle charge scheduling with flexible service operations 52

5 RoutingBlocks: An open-source Python package for Vehicle Routing Problems with
Intermediate Stops 105

6 Conclusion 121
6.1. Main contributions . 121
6.2. Limitations and Perspectives . 124

ii Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Acknowledgments

I want to express my heartfelt thanks to my supervisor Prof. Maximilian Schiffer, who
has shaped much of my personal and professional growth, not only during my PhD but
throughout my entire academic journey. If it were not for his unwavering support, insight-
ful guidance, and the various opportunities he provided, I would not be in the position to
write a thesis in the first place. I am also immensely thankful to my research group for
the enriching discussions that broadened my perspectives, particularly when my research
was all-consuming. Beyond the realm of academia, my group members have made this
journey truly enjoyable, creating a warm and cheerful atmosphere even outside of work.

While I am grateful to everyone in the group, I owe special thanks to Paul for inspiring
me with his unconditional productivity and ability to rapidly learn, to Benedikt for exem-
plifying how to be confident and take pride in one’s work, a lesson that has been invaluable
to me, to Kai for his coolness during the EURO Meets NeurIPS Competition and for the
countless long nights we have shared, and to Gerhard for his valuable methodological
insights and engaging conversations.

On a personal level, I want to thank my family, especially my parents, for their uncon-
ditional support that enabled me to pursue scientific studies. To all my friends, thank
you for bringing joy and light into my days throughout this period.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics iii

Abstract

The logistics sector is experiencing a transformative era characterized by a paradigm
shift in customer service expectations, an unprecedented demand increase, and a pressing
need for sustainable operations. These changes significantly impact the last-mile dis-
tribution sector, raising new challenges that compel logistics service providers to adjust
their operations. This thesis aims to provide tools and algorithms necessary to address
complex optimization challenges arising in this new environment, requiring not only the
development of appropriate algorithms but also making them accessible to practitioners.

This thesis includes an introduction, a literature review, three methodological chapters,
and a conclusion. The introduction outlines the transformative changes currently reshap-
ing the logistics landscape and details the specific challenges logistics service providers
face, especially in the context of last-mile delivery. The literature review connects these
challenges to relevant streams of literature. It provides a comprehensive overview of the
current state-of-the-art, highlighting potential research gaps and positioning the contri-
butions of this thesis within a broader methodological context. The three methodological
chapters are the main contributions of this thesis.

The first methodological chapter considers a dynamic routing and dispatching problem
where requests are gradually revealed over the span of the planning horizon, requiring
operators to dispatch vehicles in an online fashion. The chapter develops a novel inte-
grated approach that embeds combinatorial optimization and machine learning in a single
machine learning pipeline, allowing the machine learning model to leverage the combi-
natorial structure in the routing problem. The algorithm was submitted to the EURO
Meets NeurIPS 2022 Vehicle Routing Competition, where it won first prize, outperforming
state-of-the-art Monte Carlo, reinforcement learning, and supervised learning approaches.

The second methodological chapter deals with an integrated charging and service op-
eration scheduling problem for fleets of electric vehicles. The chapter develops a Branch-
and-Price algorithm relying on a novel label-setting shortest-path algorithm, a problem-
specific branching rule, a primal heuristic, and partial pricing. The individual contribution
of each of these enhancements to the performance of the algorithm is shown and validated
in an ablation study. The chapter further generates managerial insights on the impact of
jointly scheduling charging and service operations, the impact of infrastructure capacity
on operational costs, and the impact of considering time-of-use pricing.

The third methodological chapter introduces RoutingBlocks, an open-source software
package for Vehicle Routing Problems. The package aims to make advanced routing
algorithms accessible to practitioners and researchers. It provides a modular framework
that separates problem-specific logic from core optimization, allowing to easily apply
existing algorithms to bespoke problem settings.

The thesis concludes with a detailed summary and critical discussion of its managerial
and methodological contributions. This discussion includes opportunities for future re-
search made available through the contributions of this thesis, highlighting how to leverage
the developed methodology for this purpose.

1 Introduction

Author: Patrick Sean Klein

1.1. Background

As we progress further into the digital era, industries across the globe are experiencing a
myriad of transformative changes. The logistics sector, a pivotal driver of the global supply
chain, is no exception. Here, a confluence of factors significantly reshapes the logistics
landscape: first, technological advancements, particularly in terms of digitalization, have
lowered entry barriers into the logistics sector, creating a highly competitive market where
logistics service providers (LSPs) face customers demanding faster, more flexible, and more
reliable deliveries (Placek, 2022). Second, population growth contributes to a substantial
increase in logistic volume, such that the demand for freight transportation is projected
to double by 2050 (ITF, 2023). Third, the logistics sector, being considered one of the
main contributors to greenhouse gas emissions, faces increasing pressure to adopt more
sustainable practices (McKinnon et al., 2015).

These developments present various challenges for LSPs. They not only need to im-
prove their service quality, offering tighter delivery windows and drastically shortened
lead times but also concurrently have to meet an expanded volume of deliveries, all while
realizing sustainable operations. These challenges have a particularly profound impact
on last-mile distribution, where the complexities of heightened customer expectations,
increased delivery volumes, and sustainability occur on a single operational stage. Facing
these challenges, the logistics sector’s reliance on efficient planning becomes even more
critical. Operating on typically low-profit margins, logistics companies must optimize
every aspect of their operations, especially on the last mile, to stay competitive and prof-
itable. However, existing planning methodologies fail to address the challenges arising in
this new logistics landscape.

First, conventional day-ahead planning models struggle to meet the current market
demands, particularly the growing expectation for shorter lead times and more flexible
delivery options like same-day delivery (Placek, 2022). These flexible deliveries lead the
concept of day-ahead planning, which has been the status quo in last-mile logistics for
decades, ad absurdum, as orders often arrive only when vehicles have already been dis-

2 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

patched. To meet the demands of this evolving market, LSPs instead need to adopt
dynamic planning approaches capable of responding to customer requests in real time.

Second, many LSPs are transitioning to electric commercial vehicles (ECVs) to realize
sustainable transportation. ECVs, however, are limited in their driving range by battery
capacity. While en-route charging is an option, LSPs often prefer recharging the fleet
during off-shift hours to avoid inefficient use of drivers’ time and uncertainty around sta-
tion availability. This approach becomes problematic in large-scale operations, where the
collective charging demand of a fleet may surpass the capacity of the charging infrastruc-
ture available at the depot. In such settings, charging operations must be strategically
scheduled to ensure that all vehicles are sufficiently charged for next-day operations. Be-
sides avoiding bottlenecks in charger capacity, this scheduling problem must also align
the charging strategy with other operational objectives, such as energy cost minimization
and battery life considerations.

Although research often addresses many of the planning problems faced by the logistics
sector well before they emerge in practice, actual adoption of the developed solutions
often occurs years or even decades after the problems become relevant. A key reason
for this gap between theory and practice is a lack of accessibility: academic papers often
propose innovative algorithms and sophisticated models but rarely provide the underlying
code. This lack of high-quality, generalizable implementations creates a significant barrier
for practitioners who aim to evaluate and apply these theoretical contributions to their
specific operational context. Without accessible code, reproducing academic findings be-
comes daunting, necessitating considerable time and expertise to implement algorithms
based only on paper descriptions. Consequently, a substantial sunk cost is associated
with assessing theoretical findings’ applicability to an operator’s specific operational con-
text, leading to practitioners’ reluctance to test and potentially adopt recently developed
methodology.

Researchers can address this issue by open-sourcing implementations alongside aca-
demic papers. This promises to lower the barriers for practitioners interested in applying
and evaluating new algorithms and planning methodologies, potentially resulting in faster
adoption of research findings in practice. It may also encourage more direct and effective
collaboration between theoretical research and practical application. Moreover, open-
source implementations are crucial for ethical and reproducible science as they enable
the academic community to build upon past research, fostering future contributions and
ultimately advancing the state-of-the-art.

In conclusion, the logistics sector experiences significant transformations driven by in-
creased demand, technological advancements, and pressure to realize sustainable opera-
tions. These changes present a series of complex challenges, especially in the context of

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 3

last-mile distribution:

Technological advancements have created a competitive market where customers de-
mand fast, flexible, and reliable deliveries. These demands challenge traditional
day-ahead planning methodologies unsuited to deal with the dynamic nature of
short delivery lead times. Realizing these demands cost-efficiently requires a shift
towards real-time, reactive planning approaches.

Increased demand and pressure to realize sustainable operations raise novel plan-
ning problems, particularly in transitioning to ECVs. Specifically, LSPs not only
have to adjust their route planning to account for the range restrictions of ECV
but also need to design charging schedules strategically to ensure that all vehicles
are adequately charged for next-day operations. This strategic charge scheduling
involves careful planning to align with time-of-use (TOU) energy tariffs, reduce
battery degradation, and adhere to infrastructure capacity constraints.

1.2. Aims and Scope

Against this background, this thesis aims to provide tools and algorithms necessary to ad-
dress the complex optimization challenges faced by LSPs in this new logistics landscape.
Addressing these challenges requires not only to develop the respective planning algo-
rithms but also to make them accessible to practitioners, i.e., by making them available
as well-maintained open-source implementations. To achieve this, the thesis establishes a
bridge between theory and practice by offering theoretical contributions, generating man-
agerial insights, and developing a comprehensive software library. Specifically, this thesis
tackles the following challenges:

Dynamic route planning and dispatching: The traditional approach of day-ahead plan-
ning, which backs many last-mile operations in practice, struggles with the dynamic
environment introduced by short delivery lead times. This thesis aims to address
this issue by developing adaptive solution methodology that can effectively optimize
last-mile deliveries within this dynamic and uncertain context.

Charge scheduling for electric vehicles: The transition to large fleets of electric vehi-
cles introduces complex optimization challenges not encountered in smaller-scale
operations. Key issues such as efficient charger allocation, effective charge schedul-
ing, and battery life management become critical in ensuring operational efficiency
and sustainability. This thesis extends traditional planning frameworks with inno-
vative algorithms designed to address these complexities.

4 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Open-sourcing advanced optimization algorithms: Theoretical contributions, e.g., al-
gorithms, are often not readily accessible in practical settings. This lack of acces-
sibility disconnects research from practical application and threatens ethical and
reproducible science. This thesis aims to enable researchers and practitioners to
leverage advanced algorithmic solutions by providing practical open-source software
contributions.

1.3. Contribution

The reminder of this thesis is organized as follows:
Chapter 2 reviews fundamental literature on Vehicle Routing Problems (VRPs), Dy-

namic Vehicle Routing Problems (DVRPs), Electric Vehicle Scheduling Problems (EVSPs),
and Charge Scheduling Problems (CSPs), covering foundational works and recent ad-
vancements in these fields. It further provides an overview of recent developments in
open-source software tailored for last-mile logistics and highlights pivotal open-source
contributions in vehicle routing.

Chapter 3 addresses the challenge of dynamic route planning and dispatching. Specif-
ically, it considers a dynamic routing and dispatching problem where customer requests
are not known in advance but are gradually revealed over the span of the planning horizon.
This setting requires operators to dispatch vehicles in waves, i.e., when new orders arrive,
carefully balancing between future optimization potential of so-far unrevealed requests,
robustness, and current solution quality. This dynamic dispatching entails solving two
challenging problems: First, to balance the benefit of serving a request at the current
time versus the cost of postponing it, and second, to assemble served requests to efficient
routes. The first problem is a classical Machine Learning (ML) task, while the second
problem is a classical Combinatorial Optimization (CO) task. These tasks are interre-
lated, e.g., the cost of postponing a request depends on the downstream routing decision.
The chapter develops a novel approach that integrates these ML and CO tasks in a sin-
gle Machine Learning enriched Combinatorial Optimization (ML-CO) pipeline, allowing
the ML model to leverage the combinatorial structure present in the CO problem. For
this purpose, it reformulates the VRP of the CO layer as a prize-collecting VRP. This
transformation allows the computation of loss gradients for the CO layer, thus enabling
end-to-end learning. While this novel approach already advances the state-of-the-art in
dynamic route planning and dispatching problems, it also contributes to the ML-CO
literature in general. Specifically, it is the first ML-CO pipeline that leverages a meta-
heuristic component in the CO layer, showcasing how to carefully design a metaheuristic
that allows approximating gradients with sufficient accuracy to enable end-to-end learning

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 5

in integrated pipelines. Extensive numerical experiments demonstrate the performance
of this approach: it outperforms monte-carlo and rolling-horizon policies by 1.57% and
7.12% in terms of objective value while only taking 1.67% and 15.00% of the runtime,
respectively. The approach outperformed state-of-the-art reinforcement- and supervised
learning approaches, managing to win first prize in the EURO Meets NeurIPS 2022 Ve-
hicle Routing Competition (Kool et al., 2022), despite being trained on only 20 of 250
instances available in the training set.

Chapter 4 deals with an integrated charging and service operation scheduling prob-
lem for electric vehicle fleets. It enhances the state of the art by integrating charging and
service operation scheduling and accounting for realistic battery behavior, i.e., non-linear
charging and battery deterioration, variable energy prices, and charging infrastructure
capacity constraints. Methodologically, it develops a column-generation-based approach
embedded in a Branch and Price (B&P) algorithm. The major methodological challenges
tackled by this algorithm are twofold: first, it needs to account for non-linear trade-
offs between battery deterioration, charging cost, charger capacity, and service operation
scheduling. Second, capacity constraints cause a large fan-out of the branch-and-bound
tree, requiring the development of efficient branching and pruning strategies to maintain
scalability. The chapter develops a novel label-setting shortest-path algorithm that cap-
tures non-linear tradeoffs using a function-based label representation, allowing optimal
decisions even in continuous-time settings. This label-setting algorithm readily applies to
problem settings beyond charge scheduling, advancing the state-of-the-art in related re-
search areas. The branch-and-price algorithm relies on a problem-specific branching rule,
a primal heuristic, and partial pricing to effectively reduce the fan-out of the branch-and-
bound tree. A comprehensive numerical study shows the efficiency of these enhancements
on large-scale instances and validates the benefit of the developed components in an ab-
lation study. Beyond these theoretical findings, the chapter analyses the impact of jointly
scheduling charging and service operations, generating managerial insights on i) the bene-
fit of an integrated approach to charge and service operation scheduling, ii) the impact of
infrastructure capacity on operational costs, and iii) the impact of considering TOU pric-
ing. Specifically, integrating charging and service operation scheduling lowers the amount
of charging infrastructure required by up to 57% and reduces operational costs by up to
5%. Here, both the degree of service schedule flexibility and the energy price distribution
play a crucial role in realizing these benefits.

Chapter 5 introduces RoutingBlocks, an extensive Python package designed for im-
plementing VRPs. Released under a permissive open-source license, it democratizes access
to advanced routing algorithms, encouraging a collaborative academic environment where
enhancements can be openly shared. This aspect particularly benefits researchers, en-

6 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

abling them to conduct thorough evaluations and comparisons between their approaches
and established algorithms. The package further helps to bridge the gap between the-
ory and practice by making state-of-the-art research in VRPs available to practitioners.
The major challenge of designing such a library lies in the diversity of VRPs: especially
in practice, problem settings often involve a lot of unique, case-specific constraints not
addressed in pure, academic problem settings. The chapter tackles this challenge by pro-
viding a modular algorithmic framework that allows the composition of tailored solution
methods based on optimized, state-of-the-art algorithmic components and data structures.
By employing a unified solution and instance representation, RoutingBlocks separates
algorithmic components from specific problem configurations. This separation allows ab-
stracting problem-specific behavior, e.g., constraint checking, move evaluation, and cost
computation, such that the same algorithm can be applied to various problem settings.
The chapter outlines the architecture of RoutingBlocks. It explains how its design,
particularly using a native C++ implementation exposed in Python, balances modularity,
user-friendliness, and high performance. The chapter includes a numerical benchmark
against two monolithic state-of-the-art algorithms implemented in native code. Here,
RoutingBlocks achieves comparable performance, maintaining a gap of 0.44% w.r.t. ob-
jective value, while being only 14.86% slower than the state-of-the-art native implementa-
tion. This is well within the bounds expected for a generic library exposed in a high-level
dynamic language like Python.

Chapter 6 offers a comprehensive summary of this thesis’s key managerial and method-
ological contributions. It highlights future research perspectives and discusses avenues for
further development of the software developed as part of this thesis.

Bibliography

ITF (May 2023). Transport Outlook 2023. Tech. rep. doi: 10.1787/b6cc9ad5-en.
Kool, Wouter et al. (2022). The EURO Meets NeurIPS 2022 Vehicle Routing Competition.
McKinnon, Alan C. et al., eds. (2015). Green logistics. Improving the environmental sus-

tainability of logistics. Third edition. Includes bibliographical references and index. Ko-
gan Page Limited: London. 1 p. isbn: 9781523103744.

Placek, Martin (Sept. 2022). Same-day delivery market size in U.S. 2019-2024. url:
%7Bhttps://www.statista.com/statistics/1068886/us-same-day-delivery-

market-size/%7D.

2 State of the art

Author: Patrick Sean Klein

2.1. Introduction

The logistics sector is experiencing a transformative era characterized by an unprecedented
increase in demand, a paradigm shift in customer service expectations, and a pressing
need for sustainable operations. These changes are reshaping the logistics landscape,
especially the last-mile distribution sector, raising new challenges that compel logistics
service providers (LSPs) to adjust their operations.

This dissertation introduces innovative tools and algorithmic approaches to help LSPs
tackle these novel operational challenges. Specifically, it i) develops methodology to strate-
gically schedule charging operations for large fleets of electric vehicles, ii) designs algo-
rithms to realize cost-efficient dynamic route planning, and iii) designs an innovative
software package that eases the implementation of advanced vehicle routing algorithms.

Accordingly, the individual contributions of this work touch various methodological ar-
eas, ranging from data-driven Machine Learning (ML) approaches, over metaheuristics,
to exact algorithms, and belong to several different research streams. This chapter aims
to provide a concise review of these research streams. For this purpose, it comprises
three distinct sections that align with the three main contributions of this thesis. The
first section reviews literature related to dynamic route planning and dispatching, start-
ing with a summary of conventional, i.e., static, Vehicle Routing Problems (VRPs) and
gradually moving to Dynamic Vehicle Routing Problems (DVRPs). The second section
reviews the literature on planning problems in the context of scheduling large fleets of
electric commercial vehicles (ECVs), i.e., Charge Scheduling Problems (CSPs) and Vehicle
Scheduling Problems (VSPs). The third section offers an overview of recent efforts within
the operations research community to promote the development of high-quality software
solutions, highlighting state-of-the-art open-source contributions in vehicle routing. The
review concludes with a summary of all related fields, detailing how this thesis contributes
to the existing body of research.

8 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

2.2. Vehicle Routing

The fundamental planning problem faced in last-mile distribution is designing least-cost
delivery routes from a central depot to a set of geographically scattered customers. Several
variants of this problem exist as real-life applications often entail operator- and scenario-
specific rules and constraints. Consequently, a vast body of literature exists on this class
of problems, generally referred to as VRPs. Among the most common variants are the
Capacitated Vehicle Routing Problem (CVRP), where vehicles have a finite capacity that
limits the maximum number of customers served on a single route, the Vehicle Routing
Problem With Time Windows (VRPTW), where customers can only be served during a
customer-specific time window, and Pick-up and Delivery Problems, which involve deliv-
ery and pick-up of goods at customer locations. These variants are often further extended
with variant-specific enhancements, such as split deliveries allowing a single customer’s
demand to be met in multiple deliveries, or variant-independent features, such as incorpo-
rating demand- and other uncertainties. This review aligns with the operational problems
considered in this thesis. It focuses specifically on VRPs that account for uncertainty in
the planning process, as is required in the context of short delivery lead times. Interested
readers can find information on classic and emerging variants of VRPs not covered in
this review in various survey books and articles, see, e.g., Golden, Raghavan, and Wasil
(2008), Gilbert Laporte (2009), Toth and Vigo (2014), and Vidal, Gilbert Laporte, and
Matl (2020).

2.2.1. Dynamic Vehicle Routing

Real-world VRPs often bear much uncertainty. Specifically, problem data, such as cus-
tomers to serve, their demand, or the travel time between them, is often not known in
advance. This requires operators to revise existing or make new decisions during op-
eration, which increases the problem’s complexity significantly: operators must strike a
balance between future optimization potential of so-far unrevealed data, robustness, and
current solution quality.

VRPs that address this uncertainty are commonly referred to as DVRPs. More pre-
cisely, DVRPs encompass problem settings where information about the routing problem
is revealed in real-time, often when the vehicles have already been dispatched. Con-
sequently, LSPs must make decisions reactively, adapting to the new information as it
becomes available. This broad definition comprises a wide range of problem settings,
each differing in several key dimensions (cf. Ojeda Rios et al., 2021):

Responsiveness: DVRPs vary in the their responsiveness to new information. While
some are fully reactive, responding to new information immediately, others may

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 9

generate decisions on an hourly basis, as is typical in dispatching problems, or even
in alignment with driver shifts, common in, e.g., e-grocery settings.

Dynamicity: Some DVRPs allow to re-route vehicles in response to new information,
while others consider less dynamic settings, where decisions may not be revised at
a later point in time.

Characteristics of the dynamic element: DVRPs vary in the problem characteristic
that is considered uncertain. Common sources of uncertainty are customer requests,
travel and service times, vehicle availability, and customer demand.

Characteristics of the routing problem: The diversity of different variants of VRPs is
reflected in the DVRP. Commonly considered variants include the VRPTW, fleet
size and mix problems, and the team orienteering problem.

Despite the apparent structural differences among problem settings, they all bear the
same core challenge inherent in DVRPs: the need to balance the potential of future
rewards against the immediate cost savings achievable through decisions based on the
current problem state. Two distinct methodologies, based on ML and classic Combi-
natorial Optimization (CO), respectively, have emerged as prominent solutions to this
fundamental challenge.

CO-based approaches often amend solution methods developed for static VRPs to suit
dynamic scenarios. Here, various strategies exist that mainly differ in the extent to
which they consider unrevealed data: Myopic approaches (see, e.g., Gendreau et al., 1999;
Steever, Karwan, and Murray, 2019) focus solely on the current problem state. They typi-
cally embed (meta-)heuristics into rolling horizon frameworks, i.e., solve a static variant of
the considered problem each time new information enters the system (see, e.g., Ritzinger,
Puchinger, and Hartl, 2016; Ojeda Rios et al., 2021). More computationally expensive
look-ahead approaches (e.g., Bent and Van Hentenryck, 2004; Flatberg et al., 2007) con-
sider potential future scenarios. For this purpose, they often extend the static problem
setting given by the current state with samples of potential future observations.

Conversely, ML-based approaches predict the expected reward of decisions taken at
the current time based on historical observations. These approaches often model the dy-
namic problem as a Markov Decision Process solved with either approximate dynamic
programming methods (see, e.g., Ulmer, Soeffker, and Mattfeld, 2018) or reinforcement
learning (see, e.g., Nazari et al., 2018; Kool, Hoof, and Welling, 2019; Joe and Lau, 2020).
Raza, Sajid, and Singh (2022) and Hildebrandt, Thomas, and Ulmer (2023) provide ex-
tensive reviews of these approaches.

The primary advantage of CO-based approaches is their efficiency in providing solu-
tions that are close to optimal for static VRPs. However, their ability to leverage future

10 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

anticipations remains limited. On the other hand, ML-based approaches excel in making
accurate predictions in dynamic environments but often fall short in solution quality, as
they tend to disregard the combinatorial nature of the problem. Clearly, an integrated
approach that synergizes the strengths of CO and ML by utilizing the problem’s combi-
natorial structure while leveraging the predictive power of ML promises to improve on the
state-of-the-art in DVRPs. However, such an approach has yet to be developed specifically
for DVRPs.

2.3. Vehicle and charge scheduling

Large-scale fleet electrification represents a paradigm shift in the logistics and trans-
portation industries, introducing complex operational challenges that demand innovative
solutions. Specifically, as fleets of ECVs become more prevalent, the need to manage their
charging schedules efficiently becomes critical. The resulting planning problem joins two
streams of literature, namely VSPs and CSPs.

2.3.1. Vehicle Scheduling

VSPs aim to find the optimal assignment and scheduling of tasks to vehicles. These tasks
occur at different geographical locations, requiring vehicles to relocate before servicing
any given task. While this problem setting, at first glance, appears similar to VRPs,
the two problems consider service operations of different levels of granularity. Specifi-
cally, in VRPs, a task generally corresponds to a single customer, while in VSPs, a task
usually involves servicing an entire route. These aggregated tasks typically make VSPs
more scalable than their VRP counterparts (cf. Parmentier, Martinelli, and Vidal, 2023).
In fact, VSPs can often be solved optimally, even in practice, typically by relying on
decomposition techniques such as column generation (Klabjan, 2005). This specific tech-
nique works particularly well for VSPs, where the Resource Constrained Shortest Path
Problem (RCPSPP) solved in the pricing problem is often non-elementary. Specifically,
task granularity allows establishing a total order in the pricing problem’s network, mak-
ing cycles impossible and thus eliminating the need to enforce path elementary (Irnich
and Desaulniers, 2005). As a result, VSPs usually consider longer planning horizons
than their VRP counterparts and often integrate other scheduling problems, such as crew
rostering (Raff, 1983; Bazargan, 2016; Bunte and Kliewer, 2009; Perumal, Lusby, and
Larsen, 2022), vehicle loading (Pollaris et al., 2015), or charge scheduling (van Kooten
Niekerk, van den Akker, and Hoogeveen, 2017; Parmentier, Martinelli, and Vidal, 2023).
The remainder of this section focuses on VSPs that integrate charge scheduling, which are
commonly referred to as Electric Vehicle Scheduling Problems (EVSPs), as this problem

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 11

setting aligns most closely with the charge scheduling problem discussed in Chapter 4.
Interested readers are referred to Raff (1983), Desrosiers et al. (1995), and Bunte and
Kliewer (2009) for a more general discussion of VSPs.

Adler and Mirchandani (2017) are the first to address EVSPs. They consider a network
with multiple depots and refueling stations, the latter allowing the replenishment of energy
lost by servicing a trip or moving between network nodes. They assume instantaneous
refueling, such that the penalty incurred by recharging corresponds to the time lost de-
touring to the station. Li (2014) consider a similar problem setting. As in Adler and Mir-
chandani (2017), their network comprises multiple depots and refueling stations, but they
additionally penalize recharging operations with a constant waiting time. Li (2014) and
Adler and Mirchandani (2017) both propose Branch and Price (B&P) algorithms, which
are particularly amendable to this constant time charging model as the pricing problems
reduce to the well-known weight-constrained shortest path problem with replenishment
arcs (cf. Smith, Boland, and Waterer, 2012; Bolívar, Lozano, and Medaglia, 2014). While
this modeling approach is accurate in battery-swapping applications, it is ill-suited to cap-
ture the general charging behavior of ECVs. Consequently, Wen et al. (2016) extend this
problem setting with a more accurate battery model. Specifically, in Wen et al. (2016),
charging stations replenish energy according to a fixed charging rate, which introduces a
tradeoff between the time spent charging and the energy replenished. Furthermore, under
this assumption, stopping charging before the battery is full may be advantageous, which
increases the problem’s complexity significantly. Wen et al. (2016) tackle this complexity
by minimizing the overall distance traveled instead of the completion time, such that
charging, besides requiring to detour to the selected charging station, does not negatively
impact the objective value. van Kooten Niekerk, van den Akker, and Hoogeveen (2017)
further extend the problem setting defined in Wen et al. (2016) and consider time-of-
use (TOU) pricing, charging station capacity, non-linear battery behavior, and battery
degradation. While modeling non-linear charging, where the charging rate depends on the
battery’s residual charge, significantly improves the accuracy of the underlying battery
model, it comes at the price of increased complexity. As a remedy, they discretize the
battery’s state of charge, which allows solving the problem with off-the-shelf commercial
solvers. Parmentier, Martinelli, and Vidal (2023) are the first to consider a non-linear
battery model with continuous-time charging. They propose a B&P algorithm that mod-
els the pricing problem as a RCPSPP with non-linear resource constraints. Parmentier,
Martinelli, and Vidal rely on the algorithm developed in Parmentier (2019) to solve this
difficult optimization problem. In contrast to van Kooten Niekerk, van den Akker, and
Hoogeveen (2017), they do not consider battery degradation, station capacity, or TOU
pricing.

12 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

In conclusion, work on EVSPs differs mainly in the accuracy of the battery model and
the extent to which charge scheduling constraints, such as infrastructure capacity, are
considered. In both of these dimensions, existing work either remains limited to sim-
ple battery models, compromises accuracy for computational performance or disregards
charge scheduling.

2.3.2. Charge Scheduling

CSPs focus on optimizing the charging schedule of fleets of ECVs, aiming to capitalize on
potential short-term and long-term cost savings of battery degradation aware charging,
TOU energy pricing, and increased charging infrastructure utilization. Unlike VSPs,
CSPs typically operates under the assumption of fixed vehicle schedules. Hence, they
do not alter the assignment of trips to vehicles or modify service schedules. Despite this
fundamental difference, research in the field of CSPs has followed a trajectory similar to
that of VSP literature, gradually improving the accuracy of the considered battery model
and progressively introducing a more comprehensive range of scheduling constraints.

Early publications assume linear charging operations and focus on single vehicles (Sassi
and Oulamara, 2014; Sassi and Oulamara, 2016). Hence, they do not consider fleet-level
issues, such as charging station capacity. Advancements in the field have addressed these
issues to a certain extent. Abdelwahed et al. (2020), for instance, focus on the role of
charging infrastructure in EVSPs. In their work, charging stations differ concerning their
capacity and charging speed. Methodologically, they approach their problem with mixed-
integer programming, utilizing a commercial solver in their case study. They further
benchmark discrete-time against discrete-event-based formulations of their Mixed Integer
Program in a numerical study. Their work, however, does not consider non-linear charging
dynamics, the effects of battery wear, or potential cost savings from TOU rates. To
address these issues, Pelletier, Jabali, and G. Laporte (2018) extend the problem setting
considered in Abdelwahed et al. (2020). Their comprehensive case study evaluates the
impact of battery degradation, TOU pricing, and grid capacity constraints on charge
scheduling. They propose a Mixed Integer Program solved with off-the-shelf commercial
software. This may limit the scalability of their approach, such that existing literature
remains limited in either level of detail or may struggle to scale with increasing fleet size.
Moreover, no publication explores the benefit of integrating vehicle and charge scheduling
decisions, i.e., by allowing the modification of vehicle schedules, potentially enabling more
efficient charge scheduling.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 13

2.4. Open Source Software for Vehicle Routing

Problems

One of the longstanding challenges in the academic world has been translating research
findings into formats more accessible to industry professionals. Open source software cat-
alyzes this, offering a repository of readily accessible and modifiable tools and algorithms.
While fields adjacent to operations research, such as computer science, already recognize
the importance of open source, the concept only recently gained traction in the operations
research community.

Here, some journals now accept works that contribute primarily software implementa-
tions. For instance, the INFORMS Journal on Computing has established a dedicated edi-
torial area, titled Software Tools, specifically for software contributions (cf. Ralphs, 2023).
This editorial area accommodates submissions that contribute novel software to the re-
search community, where novelty may lie in advanced implementation techniques, inno-
vative abstractions, or robust versions of existing algorithms. Even outside academic
journals, the community made efforts to develop efficient tooling, especially in popular
areas such as vehicle routing. Initiatives, such as the DIMACS Implementation Chal-
lenge (DIMACS, 2022), the Amazon Last Mile Routing Research Challenge (Merchán
et al., 2022), and the EURO Meets NeurIPS 2022 Vehicle Routing Competition (Kool,
Bilek, et al., 2022), have been pivotal in further supporting this development, encour-
aging participants to open-source their contributions. As a result, there has been steep
progress on developing state-of-the-art open-source meta-heuristics and exact frameworks
specifically for VRPs: Vidal (2022) open-sourced their Hybrid Genetic Search algorithm,
Accorsi and Vigo (2021) and Accorsi and Vigo (2023) contributed FILO, a metaheuristic
algorithm for large-scale capacitated vehicle routing problems, and Errami et al. (2023)
proposed VRPSolverEasy, a python interface for the popular exact VRPSolver (cf. Pessoa
et al., 2020).

While these open-source contributions represent significant strides in the field, they
often remain confined to specific problem settings, particularly in the case of metaheuris-
tic contributions. Specifically, existing open-sourced metaheuristics are implemented as
monolithic algorithms and, as such, lack modularity. Thus, reusing their components
in other algorithms or adapting them to other problem settings remains challenging. In
fact, existing tooling lacks a modular, easy-to-use, state-of-the-art software package that
eases the implementation of advanced vehicle routing algorithms for applications beyond
traditionally considered variants of the VRP.

14 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

2.5. Conclusion

This thesis contributes to the research fields outlined in the preceding subsections by
closing the following research gaps.

Integrated CO and ML: Methodologically, DVRP are either approached by amending
CO algorithms to dynamic problem settings, i.e. by sampling future scenarios, or
with ML, i.e., by predicting future rewards. These existing approaches either do
not fully capitalize on the potential insights from anticipating future demand or
disregard the combinatorial structure inherent in the underlying routing problem.
This thesis closes this gap by developing a truly integrated approach that synergizes
the strengths of CO and ML.

Integrated charge and scheduling problems: Work on VSP and CSP remains limited
in at least one of two domains: it either approximates battery behavior or does
not fully address either vehicle scheduling or charge scheduling constraints. This
thesis closes this gap by contributing an integrated charging and service operation
scheduling problem for fleets of electric vehicles that accounts for charge scheduling
constraints, such as realistic battery behavior, variable energy prices, and charging
infrastructure availability, while allowing to reschedule service operations.

Accessible vehicle routing algorithms: Regarding software contributions, there has been
a significant shift towards open-sourcing research outputs driven by initiatives from
academic journals and community challenges. However, these contributions often
lack modularity, focusing on specific problem settings. This hinders their broader
reuse in related research areas and limits their practical applicability in diverse
real-world scenarios. This thesis closes this gap by developing a software package
that provides modular algorithmic components that are easily adaptable to custom
problem settings.

Bibliography

Abdelwahed, Ayman et al. (Nov. 2020). “Evaluating and Optimizing Opportunity Fast-
Charging Schedules in Transit Battery Electric Bus Networks”. In: Transportation Sci-
ence 54(6), pp. 1601–1615. issn: 0041-1655. (Visited on 01/01/2022).

Accorsi, Luca and Daniele Vigo (July 2021). “A Fast and Scalable Heuristic for the Solu-
tion of Large-Scale Capacitated Vehicle Routing Problems”. In: Transportation Science
55(4), pp. 832–856. issn: 0041-1655. doi: 10.1287/trsc.2021.1059. (Visited on
01/20/2023).

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 15

Accorsi, Luca and Daniele Vigo (June 2023). Routing One Million Customers in a Handful
of Minutes. Tech. rep. arXiv:2306.14205 [cs] type: article. arXiv. doi: 10.48550/arXiv.
2306.14205. url: http://arxiv.org/abs/2306.14205 (visited on 12/31/2023).

Adler, Jonathan D. and Pitu B. Mirchandani (May 2017). “The Vehicle Scheduling Prob-
lem for Fleets with Alternative-Fuel Vehicles”. In: Transportation Science 51(2), pp. 441–
456. doi: 10.1287/trsc.2015.0615.

Bazargan, Massoud (Mar. 2016). Airline Operations and Scheduling. Routledge. doi: 10.
4324/9781315566474.

Bent, Russell W. and Pascal Van Hentenryck (2004). “Scenario-Based Planning for Par-
tially Dynamic Vehicle Routing with Stochastic Customers”. In: Operations Research
52(6), pp. 977–987.

Bolívar, Manuel A., Leonardo Lozano, and Andrés L. Medaglia (Dec. 2014). “Acceleration
strategies for the weight constrained shortest path problem with replenishment”. en. In:
Optimization Letters 8(8), pp. 2155–2172. issn: 1862-4480. doi: 10.1007/s11590-
014-0742-x. url: https://doi.org/10.1007/s11590-014-0742-x (visited on
11/12/2023).

Bunte, Stefan and Natalia Kliewer (Nov. 2009). “An overview on vehicle scheduling mod-
els”. In: Public Transport 1(4), pp. 299–317. doi: 10.1007/s12469-010-0018-5.

Desrosiers, J. et al. (1995). “Time Constrained Routing and Scheduling”. English. In:
Handbooks in Operations Research and Management Science 8(C), pp. 35–139. issn:
0927-0507. doi: 10.1016/S0927-0507(05)80106-9.

DIMACS (Apr. 2022). 12th DIMACS Implementation Challenge: Vehicle Routing. url:
http://dimacs.rutgers.edu/programs/challenge/vrp/.

Errami, Najib et al. (Apr. 2023). “VRPSolverEasy: a Python library for the exact solution
of a rich vehicle routing problem”. url: https://inria.hal.science/hal-04057985.

Flatberg, Truls et al. (2007). “Dynamic And Stochastic Vehicle Routing In Practice”. In:
Dynamic Fleet Management: Concepts, Systems, Algorithms & Case Studies. Ed. by
Vasileios Zeimpekis et al. Springer US: Boston, MA, pp. 41–63.

Gendreau, Michel et al. (1999). “Parallel Tabu Search for Real-Time Vehicle Routing and
Dispatching”. In: Transportation Science 33(4), pp. 381–390.

Golden, Bruce, S. Raghavan, and Edward Wasil, eds. (2008). The Vehicle Routing Prob-
lem: Latest Advances and New Challenges. Springer US. doi: 10.1007/978-0-387-
77778-8.

Hildebrandt, Florentin D., Barrett W. Thomas, and Marlin W. Ulmer (2023). “Opportu-
nities for reinforcement learning in stochastic dynamic vehicle routing”. In: Computers
& Operations Research 150, p. 106071.

16 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Irnich, Stefan and Guy Desaulniers (2005). “Shortest Path Problems with Resource Con-
straints”. en. In: ed. by Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon.
Springer US: Boston, MA, pp. 33–65. isbn: 9780387254869. doi: 10.1007/0-387-
25486- 2_2. url: https://doi.org/10.1007/0- 387- 25486- 2_2 (visited on
12/18/2023).

Joe, Waldy and Hoong Chuin Lau (June 2020). “Deep Reinforcement Learning Approach
to Solve Dynamic Vehicle Routing Problem with Stochastic Customers”. In: Proceedings
of the International Conference on Automated Planning and Scheduling 30(1), pp. 394–
402.

Klabjan, Diego (2005). “Large-Scale Models in the Airline Industry”. en. In: ed. by Guy
Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Springer US: Boston, MA,
pp. 163–195. isbn: 9780387254869. doi: 10.1007/0-387-25486-2_6. url: https:
//doi.org/10.1007/0-387-25486-2_6 (visited on 12/18/2023).

Kool, Wouter, Laurens Bilek, et al. (2022). The EURO Meets NeurIPS 2022 Vehicle
Routing Competition.

Kool, Wouter, Herke van Hoof, and Max Welling (2019). “Attention, Learn to Solve Rout-
ing Problems!” In: International Conference on Learning Representations.

Laporte, Gilbert (Nov. 2009). “Fifty Years of Vehicle Routing”. In: Transportation Sci-
ence 43(4), pp. 408–416. issn: 0041-1655. doi: 10 . 1287 / trsc . 1090 . 0301. url:
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1090.0301 (visited
on 11/05/2023).

Li, Jing-Quan (Nov. 2014). “Transit Bus Scheduling with Limited Energy”. In: Trans-
portation Science 48(4), pp. 521–539. doi: 10.1287/trsc.2013.0468.

Merchán, Daniel et al. (Sept. 2022). “2021 Amazon Last Mile Routing Research Challenge:
Data Set”. In: Transportation Science. issn: 0041-1655. doi: 10.1287/trsc.2022.1173.
url: https://pubsonline.informs.org/doi/10.1287/trsc.2022.1173 (visited on
12/18/2023).

Nazari, MohammadReza et al. (2018). “Reinforcement Learning for Solving the Vehicle
Routing Problem”. In: Advances in Neural Information Processing Systems. Ed. by S.
Bengio et al. Vol. 31. Curran Associates, Inc.

Ojeda Rios, Brenner Humberto et al. (2021). “Recent dynamic vehicle routing problems:
A survey”. In: Computers & Industrial Engineering 160, p. 107604.

Parmentier, Axel (Apr. 2019). “Algorithms for non-linear and stochastic resource con-
strained shortest path”. en. In: Mathematical Methods of Operations Research 89(2),
pp. 281–317. issn: 1432-5217. doi: 10 .1007 /s00186 - 018 - 0649- x. url: https:

//doi.org/10.1007/s00186-018-0649-x (visited on 11/12/2023).

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 17

Parmentier, Axel, Rafael Martinelli, and Thibaut Vidal (May 2023). “Electric Vehicle
Fleets: Scalable Route and Recharge Scheduling Through Column Generation”. In:
Transportation Science 57(3), pp. 631–646. doi: 10.1287/trsc.2023.1199.

Pelletier, S., O. Jabali, and G. Laporte (2018). “Charge scheduling for electric freight
vehicles”. In: Transportation Research Part B: Methodological 115(115), pp. 246–269.

Perumal, Shyam S.G., Richard M. Lusby, and Jesper Larsen (Sept. 2022). “Electric bus
planning & scheduling: A review of related problems and methodologies”. In: European
Journal of Operational Research 301(2), pp. 395–413. doi: 10.1016/j.ejor.2021.10.
058.

Pessoa, Artur et al. (Sept. 2020). “A generic exact solver for vehicle routing and related
problems”. en. In: Mathematical Programming 183(1), pp. 483–523. issn: 1436-4646.
doi: 10.1007/s10107-020-01523-z. url: https://doi.org/10.1007/s10107-020-
01523-z (visited on 12/18/2023).

Pollaris, Hanne et al. (Mar. 2015). “Vehicle routing problems with loading constraints:
state-of-the-art and future directions”. en. In: OR Spectrum 37(2), pp. 297–330. issn:
1436-6304. doi: 10.1007/s00291-014-0386-3. url: https://doi.org/10.1007/
s00291-014-0386-3 (visited on 12/18/2023).

Raff, S. (1983). “Routing and scheduling of vehicles and crews. The state of the art”.
English. In: Computers and Operations Research 10(2), pp. 63–67, 69–115, 117–147,
149–193, 195–211. issn: 0305-0548. doi: 10.1016/0305-0548(83)90030-8.

Ralphs, Ted (Dec. 2023). INFORMS Journal on Computing - Software Tools Area Edito-
rial Statement. Online, last accessed: 01.12.2023. url: https://pubsonline.informs.
org/page/ijoc/editorial-statement#Software%20Tools.

Raza, Syed Mohib, Mohammad Sajid, and Jagendra Singh (2022). “Vehicle Routing Prob-
lem Using Reinforcement Learning: Recent Advancements”. In: Advanced Machine In-
telligence and Signal Processing. Ed. by Deepak Gupta et al. Springer Nature Singapore:
Singapore, pp. 269–280.

Ritzinger, Ulrike, Jakob Puchinger, and Richard F. Hartl (2016). “A survey on dynamic
and stochastic vehicle routing problems”. In: International Journal of Production Re-
search 54(1), pp. 215–231.

Sassi, O. and A. Oulamara (Jan. 2014). “Simultaneous Electric Vehicles Scheduling and
Optimal Charging in the Business Context: Case Study”. English. In: IET Conference
Proceedings. Vol. 5. 5. Institution of Engineering and Technology, 6.3–6.3(1).

Sassi, O. and A. Oulamara (June 2016). “Electric vehicle scheduling and optimal charg-
ing problem: complexity, exact and heuristic approaches”. In: International Journal of
Production Research 55(2), pp. 519–535.

18 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Smith, Olivia J., Natashia Boland, and Hamish Waterer (May 2012). “Solving short-
est path problems with a weight constraint and replenishment arcs”. In: Computers
& Operations Research 39(5), pp. 964–984. issn: 0305-0548. doi: 10.1016/j.cor.
2011.07.017. url: https://www.sciencedirect.com/science/article/pii/
S0305054811002103 (visited on 11/12/2023).

Steever, Zachary, Mark Karwan, and Chase Murray (July 2019). “Dynamic courier routing
for a food delivery service”. In: Computers & Operations Research 107, pp. 173–188.
issn: 0305-0548. doi: 10.1016/j.cor.2019.03.008.

Toth, Paolo and Daniele Vigo, eds. (2014). Vehicle routing. Problems, methods, and ap-
plications. Second edition. MOS-SIAM series on optimization 18. Literaturangaben.
Mathematical Optimization Society: Philadelphia. 463 pp. isbn: 9781611973587.

Ulmer, Marlin W., Ninja Soeffker, and Dirk C. Mattfeld (2018). “Value function approxi-
mation for dynamic multi-period vehicle routing”. In: European Journal of Operational
Research 269(3), pp. 883–899.

van Kooten Niekerk, M. E., J. M. van den Akker, and J. A. Hoogeveen (June 2017).
“Scheduling electric vehicles”. In: Public Transport 9(1-2), pp. 155–176. doi: 10.1007/
s12469-017-0164-0.

Vidal, Thibaut (Apr. 2022). “Hybrid genetic search for the CVRP: Open-source im-
plementation and SWAP* neighborhood”. en. In: Computers & Operations Research
140, p. 105643. issn: 0305-0548. doi: 10.1016/j.cor.2021.105643. (Visited on
01/20/2023).

Vidal, Thibaut, Gilbert Laporte, and Piotr Matl (Oct. 2020). “A concise guide to existing
and emerging vehicle routing problem variants”. In: European Journal of Operational
Research 286(2), pp. 401–416. doi: 10.1016/j.ejor.2019.10.010.

Wen, M. et al. (Dec. 2016). “An adaptive large neighborhood search heuristic for the
Electric Vehicle Scheduling Problem”. In: Computers & Operations Research 76, pp. 73–
83. doi: 10.1016/j.cor.2016.06.013.

3 Combinatorial Optimization
enriched Machine Learning to
solve the Dynamic Vehicle Routing
Problem with Time Windows

This chapter is based on an article published as:

Léo Baty, Kai Jungel, Patrick S. Klein, Axel Parmentier, Maximilian Schiffer (2024).
Combinatorial Optimization-Enriched Machine Learning to Solve the Dynamic Vehicle
Routing Problem with Time Windows. Transportation Science (Articles in advance).

Léo Baty*
CERMICS, École des Ponts, Champs sur Marne, France,

leo.baty@enpc.fr

Kai Jungel*
School of Management, Technical University of Munich, Munich, Germany,

kai.jungel@tum.de

Patrick S. Klein*
School of Management, Technical University of Munich, Munich, Germany,

patrick.sean.klein@tum.de

Axel Parmentier
CERMICS, École des Ponts, Champs sur Marne, France,

axel.parmentier@enpc.fr

Maximilian Schiffer
School of Management and Munich Data Science Institute, Technical University of Munich, Munich, Germany,

schiffer@tum.de

With the rise of e-commerce and increasing customer requirements, logistics service providers face a new
complexity in their daily planning, mainly due to efficiently handling same-day deliveries. Existing multi-
stage stochastic optimization approaches that allow to solve the underlying dynamic vehicle routing problem
are either computationally too expensive for an application in online settings, or – in the case of reinforce-
ment learning – struggle to perform well on high-dimensional combinatorial problems. To mitigate these
drawbacks, we propose a novel machine learning pipeline that incorporates a combinatorial optimization
layer. We apply this general pipeline to a dynamic vehicle routing problem with dispatching waves, which
was recently promoted in the EURO Meets NeurIPS Vehicle Routing Competition at NeurIPS 2022. Our
methodology ranked first in this competition, outperforming all other approaches in solving the proposed
dynamic vehicle routing problem. With this work, we provide a comprehensive numerical study that further
highlights the efficacy and benefits of the proposed pipeline beyond the results achieved in the competition,
e.g., by showcasing the robustness of the encoded policy against unseen instances and scenarios.

Key words : vehicle routing, structured learning, multi-stage stochastic optimization, combinatorial
optimization, machine learning

3.1. Introduction
With the rise of e-commerce during the last decade, logistics service providers (LSPs) were exposed
to increasing customer requirements, particularly with respect to (fast) delivery times. Accordingly,
the concept of same-day deliveries, where LSPs guarantee to fulfill an order on the day on which

* The first three authors contributed equally to this work.

20

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 21

they receive it, became a key element in the B2C sector. In fact, the same-day delivery market size
in the U.S. is expected to increase from $5.87B in 2019 to $15.6B in 2024, and grew from $7.14B to
$8.68B solely in 2021 (Placek 2022). As e-commerce and B2C deliveries remain competitive markets
with several major players, retailers and LSPs continuously aim to outbid each other, which led to
continuously shortened lead times, offering delivery within as little as two hours for certain product
types in selected cities (Nicolai 2016).

Realizing last-mile deliveries within such short planning horizons remains inherently challenging
from an efficiency perspective as LSPs generally trade off short lead times against oversized resources,
e.g., by maintaining an oversized fleet to always be able to immediately react to incoming orders. In
fact, the concept of same-day deliveries leads the concept of day-ahead planning, which has been the
status quo in last-mile logistics for decades, ad absurdum. Instead of solving a combinatorially complex
but static planning problem to determine cost-efficient delivery routes, LSPs have to dynamically
dispatch orders to vehicles and route these vehicles in an online problem setting. Taking decisions in
such a setting requires anticipating the benefit of dispatching or delaying an order while still inheriting
the combinatorial complexity of the corresponding static planning problem and handling uncertainty
with respect to future incoming orders.

The challenges that arise in such planning problems in practice invigorate the interest in
dynamic vehicle routing problem (VRP) variants from a scientific perspective. State-of-the-art
methodologies to solve such problems model the underlying planning task as a multi-stage stochas-
tic optimization problem solved either directly (Pillac et al. 2013, Soeffker, Ulmer, and Mattfeld
2022) or via reinforcement learning (Nazari et al. 2018, Hildebrandt, Thomas, and Ulmer 2023, Basso
et al. 2022). However, both of these approaches bear a major drawback. Reinforcement learning
based algorithms succeed in taking anticipating decisions but often struggle when being applied to
high-dimensional combinatorial problems. Contrarily, stochastic optimization techniques are gener-
ally amenable to combinatorial problem settings but struggle with respect to computational efficiency
in high-dimensional problems, which makes them impracticable to use in a dynamic setting (Pflug
and Pichler 2014, Carpentier et al. 2015).

Against this background, we propose a new methodological approach that mitigates the aforemen-
tioned shortcomings. Specifically, we develop a machine learning (ML) pipeline with an integrated
combinatorial optimization (CO)-layer that allows to efficiently solve the dynamic VRP. This pipeline
mitigates the challenges of multi-stage stochastic optimization problems by design: its ML-layer allows
to incorporate uncertainty by adequately parameterizing an instance of the underlying deterministic
CO problem, which can then be efficiently solved within the CO-layer. We used this pipeline in the
EURO Meets NeurIPS Vehicle Routing Competition at NeurIPS 2022 (Kool et al. 2022a), where it
outperformed all other approaches.

22 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

3.1.1. Related work
Our work contributes to two different streams of research: from an application perspective it relates
to dynamic VRPs and from a methodological perspective it relates to CO-enriched ML. We provide
an overview of both related research streams in the following. For a general overview of VRPs we
refer to Vidal, Laporte, and Matl (2020) and for a general overview of CO-enriched ML we refer to
Bengio, Lodi, and Prouvost (2021), and Kotary et al. (2021).

Dynamic Vehicle Routing Problems: Dynamic VRPs account for the dynamic nature of
real-world processes where some problem data, such as the customers to serve, their demand, or the
travel time between them, is not known in advance but revealed over time. Dynamic VRPs hence
have a diverse field of applications ranging from ride-hailing (Jungel et al. 2023) over grocery delivery
(Fikar 2018) to emergency services (Alinaghian, Aghaie, and Sabbagh 2019). To keep this literature
review concise, we focus on dynamic VRPs in the context of dynamic dispatching problems in the
following and refer to Pillac et al. (2013), Ojeda Rios et al. (2021) , and Ulmer, Soeffker, and Mattfeld
(2018) for comprehensive reviews of the field. Approaches to solve dynamic VRPs can be broadly
categorized into CO-based approaches, which leverage the combinatorial structure of the underlying
problem, and ML-based approaches, which learn prescient policies accounting for the uncertainty of
future customers.

Pure CO approaches generally amend solution methods developed for static VRPs to the dynamic
case. Specifically, these CO approaches embed (meta-)heuristics into rolling horizon frameworks, i.e.,
solve a static variant of the considered problem each time new information enters the system (see,
e.g., Ritzinger, Puchinger, and Hartl 2016, Ojeda Rios et al. 2021). Here, myopic approaches (see,
e.g., Gendreau et al. 1999, Steever, Karwan, and Murray 2019) utilize only the current problem state,
while look-ahead approaches (e.g., Flatberg et al. 2007, Bent and Van Hentenryck 2004) take into
account potential realizations of future periods, e.g., via sampling.

ML approaches learn policies which account for the uncertainty of future observations. Accordingly,
they model the underlying dynamic problem as a markov decision process solved with either approx-
imate dynamic programming methods (see, e.g., Ulmer, Soeffker, and Mattfeld 2018), i.e., policy- or
value function approximation, or reinforcement learning (see, e.g., Nazari et al. 2018, Kool, van Hoof,
and Welling 2019, Joe and Lau 2020). We refer to Raza, Sajid, and Singh (2022) and Hildebrandt,
Thomas, and Ulmer (2023) for a review on reinforcement learning applied to dynamic VRPs.

As can be seen, various works exist that solve dynamic VRPs. Here, most approaches either utilize
classical CO algorithms by sampling future scenarios or apply ML to approximate decision values
which account for future expected rewards. All of these approaches contain at minimum one of the

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 23

following shortcomings: classical CO-based algorithms struggle to amend to real-time requirements of
dynamic problem settings, while ML-based approaches often lack solution quality as they do not take
the problem’s combinatorial structure into account. A truly integrated approach which combines CO
and ML, thus leveraging the advantage of ML in dynamic settings without disregarding the problem’s
combinatorial structure, has so far not been proposed for dynamic VRPs.

Combinatorial Optimization enriched Machine Learning: Many real-world combinato-
rial dispatching problems are subject to uncertain future events. To find combinatorial solutions
which account for these uncertain events, one can integrate CO-layers into ML-based pipelines. These
pipelines leverage an ML-layer to predict uncertain events which are then used to solve the com-
binatorial dispatching problem in the CO-layer. Classical pipelines follow the predict-then-optimize
paradigm and train the ML-layer in isloation (Bent and Van Hentenryck 2004, Alonso-Mora, Wallar,
and Rus 2017, Wallar et al. 2018, Liu, He, and Max Shen 2021). This strict separation of ML- and
CO-layers during training however may result in an ML-layer which does not account for the influence
of the prediction error on the decision error of the downstream CO-problem.

More recent approaches mitigate this issue by training the ML-layer based on the decision error
incurred after applying the CO-layer instead of evaluating the prediction error of the ML-layer in
isolation (cf. Elmachtoub and Grigas 2022). This so called smart predict-then-optimize framework has
been applied successfully to several optimization problems, e.g., to leverage travel time predictions
in shortest path and last-mile distribution problems (cf. Elmachtoub, Liang, and McNellis 2020, Chu
et al. 2021, Elmachtoub and Grigas 2022). This framework is however limited to linear cost functions
in the CO-layer, and requires target solutions for the ML-layer.

For problems with complex CO-layers or when target solutions are costly to obtain, learning by
experience techniques are often used. One example in this domain is the use of reinforcement learning
techniques for (contextual) multi-stage stochastic optimization problems. Here, integrated ML-CO
pipelines help to factorize combinatorial action spaces that are intractable for standard reinforcement
learning techniques. Such approaches have been successfully applied to vehicle-dispatching problems
(Zhou et al. 2019, Tang et al. 2019, Liang et al. 2022, Enders et al. 2023) or inventory management
(Akkerman et al. 2023). Other, i.e., non reinforcement-learning-based, techniques in learning by expe-
rience settings have been applied to a wider range of problems, but remain limited to non-dynamic
problems (Dalle et al. 2022).

A trade-off between smart predict-then-optimize and learning by experience is learning by imitation,
which bases the learning process on target decisions of the CO-layer. This allows to train the ML-
layer solely on the output of the CO-layer, mitigating the need for specially labelled data to train the

24 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

ML-layer, which would be necessary in the smart predict-then-optimize framework.CO-enriched ML
pipelines have already been applied to combinatorial problems such as the stochastic vehicle schedul-
ing problem (Parmentier 2021, 2022), demonstrating good performance, especially with respect to
generalization on large, unseen instances. Further research in this area extended the approach to
multi-stage optimization problems, such as the two-stage stochastic minimum spanning tree prob-
lem (Dalle et al. 2022), and online vehicle dispatching and re-balancing in dynamic autonomous
mobility-on-demand systems (Jungel et al. 2023). These works however remain limited in several fun-
damental aspects: first, the downstream CO-problem of their proposed CO-enriched ML pipelines is
solveable in polynominal time. Second, the ML-layer used in Jungel et al. (2023) is, as a generalized
linear model, relatively simple and does not utilize potential performance gains promised of a deep
learning based ML-layer.

All these CO-ML approaches learn the ML predictor in an integrated way by directly backprop-
agating the output gradient of the CO-layer to the ML-layer. A major challenge of these so called
CO-enriched ML pipelines is therefore the piecewise constant nature of most CO problems. Specif-
ically, gradients are zero almost everywhere, and thus uninformative in such settings, rendering
straightforward backpropagation ineffective. State-of-the-art methods address this issue and introduce
regularization techniques that smoothen CO-layers to enable meaningful gradient computation, allow-
ing their usage in ML-based pipelines. Both additive (Berthet et al. 2020) and multiplicative (Dalle
et al. 2022) regularization approaches have been applied successfully to CO-enriched ML pipelines in
learning by imitation settings with Fenchel-Young losses (Blondel, Martins, and Niculae 2020).

Concluding, CO-enriched ML pipelines have been successfully utilized to solve a variety of (real-
world) stochastic optimization problems, but so far either train ML-layers in isolation, or remain
limited to relatively simple CO-layers, which assumes CO-layers with linear objective functions of the
form y 7→ θ⊤y where the predicted objective costs θ have the same dimension as the decision variables
y.

3.1.2. Contributions
To close the research gap outlined above, we propose a novel ML-based pipeline enriched with a
CO-layer, and apply it to a novel class of dynamic VRPs introduced in the EURO Meets NeurIPS
Vehicle Routing Competition that is highly interesting for academia and practice. Specifically, our
work contains several contributions. From a methodological perspective, we generalize the CO-layer
of CO-enriched ML pipelines to a more general and potentially non-linear class of objective functions
in the CO-layer. Note that in this context, we also extend the open source library InferOpt.jl

to such non-linear settings. Moreover, we present the first CO-enriched ML pipeline that utilizes

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 25

a metaheuristic component to solve the CO-layer. By so doing, we show that our general ML-CO
paradigm, which formally requires optimal solutions to derive true gradients, can work well with
heuristic solutions in practice. In this context, we detail how to carefully design a metaheuristic
that allows to derive heuristic solutions, i.e., approximate gradients, which enable convergence in
the ML-layer of our pipeline. We show how to train the ML-layer of this pipeline in a supervised
learning setting, i.e., based on a training set derived from an anticipative strategy. We present a
comprehensive numerical study to show the efficacy of our methodology in a benchmark against
state-of-the-art approaches. Beyond this, our study validates that our learning approach generalizes
well to unseen scenarios. Interestingly, our results point at the fact that, counterintuitive to common
practice, imitating an anticipative strategy can work well for high-dimensional multi-stage stochastic
optimization problems.

We refer to our git repository (https://github.com/tumBAIS/euro-meets-neurips-2022) for
instructions and all material necessary to reproduce the results outlined in this paper.

3.1.3. Outline
The remainder of this paper is organized as follows. Section 3.2 provides a formal definition of our
problem setting before Section 3.3 introduces our CO-enriched ML pipeline. We then detail the
individual layers of our pipeline. Specifically, Section 3.4 details the algorithmic framework used in
the CO-layer, while Section 3.5 details the learning methodology for the ML-layer. Section 3.6 details
the design of our computational study and its results. Finally, Section 3.7 concludes the paper.

3.2. Problem setting
Our problem setting focuses on a variant of the dynamic vehicle routing problem with time windows
(VRPTW) introduced in the EURO Meets NeurIPS Vehicle Routing Competition (see Kool et al.
2022a). In this dynamic VRPTW, we aim to find a cost-minimal set of routes that start and end at a
central depot d and allow a fleet of vehicles to serve a set of requests R within a finite planning horizon
[0, Tmax]. We focus on an online problem setting in which the request set R is initially unknown and
requests continuously arrive over [0, Tmax]. While the specifics of the request set are unknown, we
assume knowledge of its distribution and refer to Paragraph 3.2.6 for a critical discussion. Within
this planning horizon, the fleet operator needs to serve all arriving requests and makes dispatching
decisions at (equidistant) time steps τ ∈ [0, Tmax]. These dispatching decisions are immutable such
that vehicles cannot be rerouted to serve additional requests after being dispatched. We discretize
the planning horizon into a set of n epochs E = {[τ0, τ1], [τ1, τ2], . . . , [τn−1, τn]} and denote the start
time of an epoch e as τe.

26 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

In each epoch, the fleet operator solves a dispatching and vehicle routing problem for the epoch
dependent request set Re. Each request r ∈ Re has a certain demand qr, and vehicles have a homoge-
neous vehicle capacity Q, which limits the maximum number of requests serviceable on a single route.
Serving a request r takes sr time units, and a request must be served within a request-specific time
window [ℓr, ur]. Traveling from the delivery location of request i to the delivery location of another
request j takes tij time units and incurs cost cij . We can straightforwardly encode an instance of an
epoch’s planning problem on a fully-connected digraph De = (Ve,Ae) with a vertex set Ve = Re∪{d}
where d is the depot, and an arc set Ae.

3.2.1. System state: We describe a system state at decision time τe as xe = Re, where e is the epoch
starting at time τe. Here, Re contains all requests revealed but not yet dispatched. In our specific
setting no further information is required to describe the system state as there is no fleet limit. Note
that we use redundant notation xe = Re to adhere to conventions commonly used in the domains of
ML and vehicle routing, respectively. We can distinguish requests contained in Re into two disjoint
categories: must-dispatch requests need to be dispatched in e as dispatching these in a later epoch
would violate the requests’ time window upon delivery; postponable requests can but do not have to
be dispatched in e.

3.2.2. Feasible decisions: Given the current state of the system xe, the fleet operator chooses a
subset of Re that will be served by vehicles leaving the depot in this epoch, and computes the
respective routes that allow for vehicle dispatching. Vehicles dispatched in epoch e leave the depot
at time τe + ∆τ and their routes cannot be modified once they have been dispatched, i.e., vehicles
dispatched in epoch e cannot serve requests revealed in epoch e′, with τe′ > τe. In this context, a
feasible decision ye ∈ Y(xe) in state xe corresponds to a set of routes that

(i) contains all must-dispatch requests,
(ii) allows each route to visit all contained requests within their respective time windows, and
(iii) the cumulative customer demand on each route does not exceed the vehicle capacity Q.

We can encode a feasible decision ye ∈ Y(xe) with a vector (yei,j)(i,j)∈Ae where

yei,j =
{

1 if (i, j) is in a route of the solution
0 otherwise.

3.2.3. System evolution: The system transitions into the next epoch e′ once the fleet operator
decides on ye ∈ Y(xe). To describe xe′ , we derive Re′ by removing all requests contained in ye from
Re, and adding all requests that enter the system between τe and τe′ .

3.2.4. Policy: Let X denote the set of potential system states. Then, a (deterministic) policy π :
X → Y is a mapping that assigns a decision ye ∈ Y(xe) to any system state xe ∈ X .

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 27

3.2.5. Objective: We aim to find a policy that minimizes the expected cost of serving all requests

R over the planning horizon [0, Tmax]. Formally,

min
π

E
[∑

e∈E
c(π(xe))

]
, (1)

where c : Y →R gives the cost of routes y ∈ Y .

3.2.6. Discussion: The problem setting defined and formalized above contains various assumptions

that might be questioned from a practitioner’s perspective. In particular, assuming an unlimited fleet

size and full knowledge of the request distribution appears to be rather unrealistic. As this paper

focuses on the methodology used to win the EURO Meets NeurIPS Vehicle Routing Competition,

we decided to keep these assumptions without further questioning for the sake of consistency and

reproducibility. However, we like to emphasize that the methodological pipeline presented in this

paper is readily applicable to problem settings with limited fleet sizes and incomplete knowledge of

the underlying request distribution as long as some historical data is available.

3.3. ML pipeline with CO-layer
To explain the rationale of our CO-enriched ML pipeline, we recall that a policy π maps a system

state xe to a feasible decision ye in Y(xe). The state xe is a set of requests Re, and the solution ye is a

set of feasible decisions which encode the routes covering a subset of Re. The set of feasible decisions

Y(xe) hence coincides with the set of feasible solutions of a prize-collecting VRPTW, a variant of the

(static) VRPTW where it is not mandatory to serve all requests, but a prize θej is collected if request

j is served. In this section, we show that any decision ye derived from an optimal policy in a dynamic

problem setting corresponds to an optimal solution of a prize-collecting VRPTW for a well chosen

prize vector θe = (θej)j∈Re . However, finding prizes θej is non-trivial, such that we resort to ML for this

purpose. Specifically, we introduce a family of policies (πw)w encoded by the CO-enriched ML pipeline

illustrated in Figure 1: in the ML-layer, a statistical model φw predicts θe based on the given system

state xe. This yields a prize-collecting VRPTW instance (xe, θe) which we solve in the CO-layer with

a dedicated algorithm f . The algorithm’s output ye then corresponds to our dispatching and routing

decision.

In what follows, we first formally introduce the prize-collecting VRPTW and proof that we can

represent every optimal decision in epoch e as a solution of a specially constructed prize-collecting

VRPTW instance. We then detail how we design our pipeline to leverage this observation for finding

dispatching and routing decisions.

28 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

�

�
	Statistical model

φw

Combinatorial Optimizer
f

System state

xe

Request prizes

θe
Epoch routes

ye

10

5

2

−1

50

7

Figure 1 Our CO-enriched ML pipeline.

Prize-collecting VRPTW: Recall that De = (Ve,Ae) is a fully-connected digraph with vertex set
Ve = Re ∪ {d}, comprising epoch requests Re and the depot d, and that a feasible solution of the
prize-collecting VRPTW ye ∈ Y(xe) can be encoded by the vector (yei,j)(i,j)∈Ae where

yei,j =
{

1 if (i, j) is in a route of the solution
0 otherwise.

We further consider costs (ci,j)(i,j)∈Ae on each arc, and prizes (θej)j∈Re on each vertex. Then, we can
state the objective of the prize-collecting VRPTW as follows,

max
y∈Y(xe)

∑

(i,j)∈Ae
j ̸=d

θejyi,j

︸ ︷︷ ︸
total profit

−
∑

(i,j)∈Ae
j

ci,jyi,j

︸ ︷︷ ︸
total routing cost

. (2)

Proposition 1. For any xe, there exists a θ ∈ R|Re| such that any optimal solution of (2) is an
optimal decision with respect to (1).

Proof Since the horizon is finite and the set of feasible decisions at each step is also finite, there
exists an optimal decision y⋆ for xe. Let R̄e be the subset of requests of Re that are dispatched in
y⋆. Then any solution y which has lower or equally low routing costs and covers R̄e exactly is also
optimal. This follows from the Bellman equation since the routes have no impact on the evolution of
the state. We can construct y by solving a prize-collecting VRPTW on Re with request prizes

θ̄j =
{
M if j ∈ R̄e

−M otherwise,
(3)

where M =
(

|Re| · max
(i,j)∈Ae

ci,j

)
is a large constant. The corresponding prize-collecting VRPTW solu-

tion y clearly covers R̄e exactly and has at most the routing cost of y⋆. □

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 29

CO-layer: We embed the prize-collecting VRPTW as a layer in our CO-enriched ML pipeline.

Hence, this CO-layer must support forward and backward passes to assure compatibility with the

ML-layer.

The forward pass simply solves the prize-collecting VRPTW instance defined by (xe, θe) using a

metaheuristic algorithm f detailed in Section 3.4. The backward pass backpropagates the gradient

of the loss used in the learning algorithm through this layer. Section 3.5 introduces this loss and its

gradient. To make their statement easier, we reformulate (2) as

f : θe 7→ arg max
y∈Y(xe)

θe⊤g(y) +h(y) where g(y) =
(∑

i∈Ve
yi,j

)

j∈Re

and h(y) =
∑

(i,j)∈Ae
ci,jyi,j . (4)

ML-layer: Finding the optimal prizes θe of Proposition 1 is non-trivial. We therefore use a statistical

model φw to predict a vector of prizes θe = φw (xe) ∈ R|Re| given the system state xe. The only

technical aspect from the ML perspective is that the dimensions of the input and the output are

not fixed. Indeed, the number of requests may change from one state to another, and also differs

across instances. We benchmark different choices for commonly used statistical models φw in our

computational study (cf. Section 3.6).

Alternative ML-based methods: Alternative ML-based solution approaches presented in the EURO

Meets NeurIPS Vehicle Routing Competition (e.g., van Doorn et al. 2022) generally proceed in two

steps. They first apply a binary classifier, to decide on which requests to dispatch and postpone,

respectively. They then construct routes covering these dispatched requests in a second step, essen-

tially decoupling request dispatching from route construction. A major difficulty in this approach is

to learn a statistical model which implicitly balances the current route costs and future route costs

to find optimal dispatching decisions. We bypass this difficulty by taking dispatching and routing

decisions simultaneously in our CO-layer (4), which allows us to train our statistical model based on

the routing rather than the dispatching decision.

Generalization to other CO problems: The ML-CO pipeline methodology presented in this section

can be used for a wider range of combinatorial problems. Indeed, our methodology can more generally

be applied to any problem that can be modeled as a markov decision process. In practice, it is useful

when the action space is combinatorial, which gives sense to using a CO-layer. For instance, we could

handle the fixed fleet size variant of the Dynamic VRPTW by adding a constraint to the feasible set

Y of the CO-layer. One can also use more different CO-layers in order to tackle other combinatorial

and routing problems variants such as pick-up and delivery or scheduling.

30 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

3.4. Combinatorial optimization algorithm
To derive solutions of the prize-collecting VRPTW within our CO-layer, we propose a metaheuristic
algorithm based on hybrid genetic search (HGS). Our algorithm extends the implementation of the
HGS algorithm introduced by Kool et al. (2022b), which adapts the original HGS of Vidal (2022) to
the VRPTW.

Tailoring the work of Kool et al. (2022b) to our problem setting requires various modifications to
support optional requests, e.g., adaptions of the local search, initialization, and crossover procedures.
We further introduce new mutation mechanisms, implement prize-collecting VRPTW specific neigh-
borhoods, and allow to warm-start the population. In what follows, we summarize the core concepts
of the HGS algorithm before detailing our prize-collecting VRPTW-specific modifications.

Hybrid Genetic Search for the Vehicle Routing Problem With Time Windows: The HGS algorithm
is an evolutionary algorithm that maintains a population of solutions, organized in two disjoint sub-
populations that contain feasible and infeasible solutions, respectively. The algorithm makes this
population evolve over time, generating offspring solutions by combining promising parent solutions
selected from the population in a randomized binary tournament. The algorithm then improves the
generated offspring solution in a local search procedure. Note that it uses a penalty-based approach
to explore infeasible regions of the solution space. The local search procedure yields a locally optimal
solution, which is then added to the population. This may trigger a survivor selection procedure
if the population size exceeds a certain threshold. This procedure eliminates a subset of solutions
from the population. Survivor and parent selection are based on the fitness of a solution, a metric
which captures the quality, i.e., objective value, of a solution and it’s contribution to the population’s
diversity. This ensures a sufficiently diverse population, balancing diversification and intensification
in the genetic algorithm. To utilize this algorithmic structure for our problem setting, i.e., the prize-
collecting VRPTW, we applied the following adaptions and extensions, leading to the algorithm
outlined in Figure 2.

Solution representation: We represent decisions on which requests to serve and which to ignore in
our solution representation implicitly. Specifically, we use the same giant-tour representation as in
Vidal (2022), but allow incomplete giant-tours. Here, requests deemed unprofitable are absent from
the giant-tour and thus not considered by traditional local search operators.

Accounting for optional requests during crossover: The HGS proposed in Kool et al. (2022b) gen-
erates offspring solutions using two crossover operators: Ordered Crossover (OX) (Oliver, Smith, and
Holland 2013) and Selective Route Exchange (SREX) (Nagata and Kobayashi 2010). As a first modifi-
cation, we remove the OX operator as our benchmarking experiments indicate that it has no substantial

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 31

Generation
Parent
selection

Crossover
SREX

Mutation
random remove

random insert

Local search

Intensification
optimize requests

Initial population
Best solutions from

previous learning epochs

+

individuals

parent
b

parent a
offspring

Initialization

Main algorithm

Figure 2 General structure of our metaheuristic algorithm.
Note. Round nodes indicate populations, square nodes indicate algorithmic components.

impact on the algorithm’s performance for our problem variant. Our second modification amends the

SREX operator to the prize-collecting VRPTW. Specifically, we preserve the set of requests served by

the first parent in any generated offspring by re-inserting requests that are currently not served as in

regular SREX, i.e., one at a time.

Additional diversification and intensification mechanisms: We further introduce two new mutation

operators that diversify and intensify solutions based on the set of served requests. The first operator

(random remove/insert), based on the result of a coin toss, either removes ν · |Rσ| of the requests

currently served, or inserts η · |C \Rσ| of the currently unserved requests. This mutation occurs with

a probability of ρ right after offspring generation.

The second operator (optimize_request_set) optimizes the set of requests served by a given

solution. Specifically, this operator first removes any requests from the solution that cause a detour

whose cost is higher than the request’s profit, and re-inserts any profitable requests that are not

part of the current solution. The operator perturbs insertion and removal costs with a random factor

drawn uniformly from the interval [ζ−, ζ+]. In contrast to the first operator, we delay evaluating the

second operator until the LS converges to avoid removing an excessive amount of requests due to

poor solution quality. We run this operator with probability µ. To intensify our search in regions

around promising solutions, we further run this operator (without perturbation) on any solution that

improves on the current best solution.

32 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Type Name Description
Traditional
(Small)

relocate removes a single request from it’s route and re-inserts it at a different position
in the solution

relocate pair removes a pair of consecutive requests from their route and re-inserts them
at a different position in the solution

relocate reversed
pair

removes a pair of consecutive requests from their route and re-inserts them
in reverse order at a different position in the solution

swap exchanges the position of two requests in the solution
swap pair exchanges the positions of two pairs of consecutive requests in the solution
swap pair with
single

exchanges the positions of a pair of consecutive requests with a single request
in the solution

2-opt reverses a route segment
2-opt* splits two routes into two segments each, swapping a segment from the first

with a segment from the second route
Traditional
(Large)

relocate* removes a request from it’s route and inserts it at the best possible position
in any spatially overlapping route

swap* removes requests a and b from routes ra and rb with spatial overlap, inserting
a and b at the best position in rb and ra, respectively

PC-VRPTW serve request inserts a currently unserved request into the solution
remove request removes a request from the solution

Table 1 Local search operators

Local Search: Table 1 shows the local search operators used in our algorithm. We consider tradi-
tional and prize-collecting VRPTW specific operators. Specifically, traditional operators refer to those
defined for the VRPTW (see Kool et al. 2022b, Vidal 2022). These traditionally explore neighbor-
hoods by exchanging arcs within a solution, i.e., by changing the position of one or several requests in
the current solution. Hence, they preserve the set of requests that receive service in a given solution.
Prize-collecting VRPTW specific operators on the other hand work with the request set exclusively,
that is, they remove or insert a request from a given solution. We evaluate these after evaluating
traditional VRPTW operators to avoid removing profitable requests prematurely, i.e., due to bad
routing decisions. As in Vidal (2022), we further distinguish between small and large neighborhood
operators: small neighborhoods consider only those moves that involve requests which are geographi-
cally close and compatible w.r.t. their time windows. Large neighborhoods on the other hand remain
unrestricted.

Initialization: We apply a pre-processing technique to account for extreme weights encountered
during the learning procedure. Specifically, we maintain a set of certainly profitable and certainly
unprofitable requests based on the maximum and minimum detour required, respectively. We impose
constraints on our operators to avoid removing and including these profitable and unprofitable
requests, respectively. We determine certainly unprofitable requests based on the following observa-
tion: if minj∈Re∪{d} cjr + minj∈Re∪{d} crj − θr ≥ maxi,j∈(Re∪{d})2 ci,j holds for some request r ∈ Re,
then for any route σ that includes r, a cheaper route σ′ exists. To see this, let u, v ∈ Re ∪ {d} such
that (u, r), (r, v) ∈ σ. Then cu,r + cr,v − θr ≥ maxi,j∈(Re∪{d})2 ci,j ≥ cu,v, such that removing r from σ

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 33

yields a cheaper route. Analogously, we force the inclusion of a request r ∈ Re if cd,r + cr,d < θr holds.
This procedure further allows to account for must-dispatch customers during the evaluation phase by
setting θr accordingly.

The magnitude of changes in customer prices decreases as the learning procedure converges. We
exploit this behaviour in our algorithm and seed the initial population, generated as in Kool et al.
(2022b), with solutions of previous learning epochs. Specifically, we generate promising solutions in
a new construction heuristic which first applies our optimize_customers operator to the solution to
account for changed request prizes, and then optimizes the routing decisions using the local search
procedure. Note that this is only possible while training the pipeline. When evaluating the pipeline,
we use starting solutions generated as in Kool et al. (2022b) exclusively.

Discussion: Focusing on our algorithmic design decisions, we note that we have tailored our algo-
rithm to the unique challenges of our learning methodology and training environment. Specifically,
successfully computing approximate gradients that ensure convergence during training requires solu-
tions with low variance. Here, the algorithm needs to generalize well to the different prize distributions
observed during training. Beyond this, it must be capable of providing such solutions within tight
time constraints to allow training within a reasonable amount of time.

We have tackled these challenges with a design that focuses on guiding the population towards
promising regions of the search space through aggressive diversification (e.g., randomized insertion and
deletion of requests) and intensification (optimize_request_set) operators, explicit request inser-
tion and deletion neighborhoods, and warmstarting. The resulting algorithm behaves more greedily
than implicit approaches (e.g. Vidal et al. 2016), but converges reliably within the tight time con-
straints imposed during training. We further cope with extreme prizes observed during training in a
preprocessing step.

3.5. Learning approach
The objective of our learning problem is to find parameters w such that the statistical model φw
predicts a prize vector θ that leads to “good” decisions in the CO-layer. To reach this objective,
we train our CO-enriched ML pipeline to imitate a good policy. To do so, we follow a supervised
learning setting and therefore build a dataset D = {(x1, ȳ1), . . . , (xn, ȳn)} of state instances xi with
the decisions ȳi taken by the imitated policy. In this supervised learning setting, we define a loss
L(θ, ȳ) which quantifies the error when we predict f(θ) instead of ȳ. Then, we formulate the learning
problem as finding the parameter ŵD that minimizes the empirical risk, i.e., the average loss on the
training dataset,

ŵD = arg min
w

n∑

i=1
L(φw(xi), ȳi). (5)

34 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

The rest of this section introduces the imitated policy, the training set, the loss, and our algorithm
to solve learning problem (5).

3.5.1. Anticipative decisions in the training set
The dynamic VRPTW is difficult because future requests are unknown when taking decisions. If
we know the future, i.e., if we knew all the requests at the beginning of the horizon, we would
just have to solve the corresponding static VRPTW at the beginning of the horizon, and then take
the corresponding dispatching decisions at each epoch. This procedure would give us the optimal
anticipative policy. However, such an anticipative policy can of course not be used in practice because
it relies on unavailable information. Nonetheless, we can rebuild the decisions taken by the anticipative
policy a posteriori, when all information has been revealed, i.e., on historical data. We therefore
can learn to imitate an anticipative policy, which we gained from historical data, in our learning
problem (5).

Practically, we rebuild the decision of the anticipative policy as follows. We know all the requests
of an historical VRPTW instance. Then, we associate a release time to each request i, which is equal
to the time τi at which the request would be revealed in a dynamic setting, so the earliest point in
time at which request i can be served. We then seek routes to serve all these requests at minimum
cost while respecting the release times and the time windows. We use the adapted HGS of Kool et al.
(2022b) to solve this variant of the static VRPTW. This yields a set of routes P from which we
reconstruct the decisions taken in each epoch as follows. For route p ∈ P , let τp = maxr∈p τr be the
latest release time of any request route p serves. The anticipative policy dispatches route p in the first
epoch e where τe ≥ τp, i.e., the first epoch where all served requests have been revealed.

Instead, one could also derive an anticipative decision by dispatching a route at the latest possible
epoch, such that the route is still feasible with respect to the requests’ time windows. This may increase
the degree of freedom for decisions in subsequent periods. However, in the environment studied, there
is no leeway in the time windows to do so, such that early dispatching and late dispatching lead to
almost identical decisions. While we accordingly excluded such a strategy from this study, it may
prove worthwhile to consider a delayed anticipative decision when working in a different problem
setting.

3.5.2. Loss function
We recall that the objective of our learning problem is to find parameter values w of a statistical
model φw such that for any state x, the CO-layer predicts a good decision y = f(θ) for the prize-
collecting VRPTW instance (x, θ = φw(x)). More precisely, for each state-decision pair (x, ȳ) in the
data set, we want the target decision ȳ to be as close as possible to the optimal solution of the

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 35

prize-collecting VRPTW (2). Hence, it is natural to take the non-optimality of ȳ as a solution of f(θ)
as loss function:

L(θ, ȳ) = max
y∈Y(x)

{θ⊤g(y) +h(y)} − (θ⊤g(ȳ) +h(ȳ)), (6)

with g and h defined in (4). Note that what follows in this subsection is valid for any CO-layer of the
form f : θ 7→ arg maxy θ⊤g(y) +h(y), for any g and h.

We clearly have L(θ, ȳ) ≥ 0 in general, and L(θ, ȳ) = 0 only if y is an optimal solution of (4). Unfor-
tunately, the polyhedron P(ȳ) = {θ ∈ R|x| | θ⊤g(ȳ) + h(ȳ) ≥ θ⊤g(y) + h(y), ∀y ∈ Y(x)} is generally
highly degenerate. For instance, if h= 0, then θ= 0 belongs to P(y) for all y in Y . This implies that
θ = 0 would be an optimum of our learning problem, which is a problem because such a θ allows
our CO-layer to return any solution in Y(x). This degeneracy can be removed by considering the
perturbed loss

Lε(θ, ȳ) =E
[

max
y∈Y(x)

{(θ+ εZ)⊤g(y) +h(y)}
]

− (θ⊤g(ȳ) +h(ȳ)). (7)

where ε > 0 and Z ∼ N (0, I|x|) is a Gaussian perturbation. The perturbed loss Lε has been considered
in the literature only in the case where g(y) = y and h(y) = 0 (cf. Berthet et al. 2020). Due to non-zero
h, the geometry of the loss changes. Notably, while the size of ε does not matter when h = 0 (cf.
Parmentier and T’Kindt 2021), it does matter when h is non-zero: the larger ε, the smaller the impact
of h on the prediction. Proposition 2 summarizes the geometry of these losses in our more general
context.

Proposition 2. Let x ∈ X , ȳ ∈ Y(x). Let C(ȳ) = {θ ∈ R|x| : θ⊤g(ȳ) ≥ θ⊤g(y), ∀y ∈ Y(x)} be the
normal cone associated to g(ȳ).

1. θ 7→ L(θ, ȳ) is piecewise linear and convex, with subgradient

g
(

arg max
y∈Y(x)

θ⊤g(y) +h(y)
)

︸ ︷︷ ︸
=g(f(θ))

−g(ȳ) ∈ ∂θL(θ, ȳ).

2. θ 7→ Lε(θ, ȳ) is C∞ and convex with gradient

∇θLε(θ, ȳ) =E
[
g

(
arg max
y∈Y(x)

(θ+ εZ)⊤g(y) +h(y)
)]

− g(ȳ) =E[g(f(θ+ εZ))] − g(ȳ).

3. Lε(θ, ȳ) ≥ L(θ, ȳ).
4. C(ȳ) is the recession cone of P(ȳ).
5. Let θ ∈ R|x|. If η is in C(ȳ)\{0}, then λ 7→ L(θ+ λη, ȳ) is non increasing. If in addition C(ȳ) ̸=

R|x|, then λ 7→ Lε(θ+λη, ȳ) is decreasing.
6. Let θ ∈R|x|. If η is in the interior C̊(ȳ) of C(ȳ), then lim

λ→∞
L(θ+λη, ȳ) = lim

λ→∞
Lε(θ+λη, ȳ) = 0.

36 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Proof 1. θ 7→ L(θ, ȳ) is linear and convex as it is the maximum of mappings that are linear in θ.
Let (θ, θ̃) ∈R|x| ×R|x|. Let y∗ be in arg maxy∈Y(x) θ

⊤g(y)+h(y) and ỹ in arg maxy∈Y(x) θ̃
⊤g(y)+h(y).

By definition of ỹ, we have θ̃⊤g(ỹ) + h(ỹ) ≥ θ̃⊤g(y∗) + h(y∗), which gives L(θ̃, ȳ) ≥ L(θ∗, ȳ) + (θ̃ −
θ∗)⊤(g(y∗) − g(ȳ)

)
and the subgradient in ∂θL(θ, ȳ).

2. Since Lε(θ, y) = E[L(θ + εZ, y)], we obtain that θ 7→ Lε(θ, y) is C∞ as a convolution product
of θ 7→ L(θ, ȳ) with a Gaussian density (which is C∞), and is convex as an expectation of a convex
function. The gradient follows from the subgradient of L(θ, y).

3. Let θ ∈R|x|. For all ỹ in Y(x), we have

for all z ∈R|x|, max
y

(θ+ εz)⊤g(y) +h(y) ≥ (θ+ εZ)⊤g(ỹ) +h(ỹ)

hence, E[max
y

(θ+ εZ)⊤g(y) +h(y)] ≥ θ⊤g(ỹ) +h(ỹ) (since E[Z] = 0)

and, E[max
y

(θ+ εZ)⊤g(y) +h(y)] − (θ⊤g(ȳ) +h(ȳ)) ≥ θ⊤g(ỹ) +h(ỹ) − (θ⊤g(ȳ) +h(ȳ)).

Finally: E[maxy(θ+εZ)⊤g(y)+h(y)]− (θ⊤g(ȳ)+h(ȳ)) ≥ maxy{θ⊤g(y)+h(y)}− (θ⊤g(ȳ)+h(ȳ)), i.e.
Lε(θ, ȳ) ≥ L(θ, ȳ) .

4. Let θ ∈ P(ȳ). We have ∀y, (θ+ λη)⊤g(ȳ) + h(ȳ) ≥ (θ+ λη)⊤g(y) + h(y) ⇔ ∀y, θ⊤g(ȳ) + h(ȳ) +
λη⊤(g(ȳ) − g(y)

)≥ θ⊤g(y) +h(y). If η is in C(ȳ), then η⊤(g(ȳ) − g(y)
)≥ 0, and θ+λη is in P(ȳ) for

any λ > 0. If η is not in C(ȳ), then η⊤(g(ȳ) − g(y)
)
< 0 and there exists a λ > 0 such that θ+ λη is

not in P(ȳ).
5. Let η ∈ C(ȳ). Let us denote by ŷ = arg maxy(θ+λη)⊤g(y) +h(y). We have

for all λ, L(θ+λη, ȳ) = (θ+λη)⊤g(ŷ) +h(ŷ) − [(θ+λη)⊤g(ȳ) +h(ȳ)]

By taking the derivative with respect to λ, we obtain: η⊤(g(ŷ) − g(ȳ)) which is negative by definition
of η. This gives us the non increasing-property of λ 7→ L(θ+λη, ȳ).

Similarly, by denoting ŷε(Z) = arg maxy(θ+λη+εZ)⊤g(y)+h(y) for all Z, we obtain the derivative
of λ 7→ Lε(θ + λη): η⊤(E[g(ŷε(Z))] − g(ȳ)). If C(ȳ) ̸= R|x|, then P(θ + λη + εZ /∈ C(ȳ)) > 0. Hence,
E[g(ŷε(Z)] ̸= g(ȳ), η⊤(E[g(ŷε(Z)] − g(ȳ))< 0, and therefore λ 7→ Lε(θ+λη) is decreasing.

6. Let η ∈ C̊(ȳ). By definition of C̊(ȳ), we have η⊤(ȳ−y)> 0 for all y ̸= ȳ. Hence, there exists M > 0
such that for all λ≥M and y ̸= ȳ, we have (θ+λη)⊤ȳ+ ≥ (θ+λη)⊤y. That is, for all λ≥M we have
θ+λη ∈ P(ȳ), i.e. L(θ+λη, ȳ) = 0. Hence lim

λ→∞
L(θ+λη, ȳ) = 0 .

If C(ȳ) ̸=R|x|, from point 5 and the previous limit, we get that λ 7→ L(θ+εz+λη, ȳ) monotonically
decreases to zero for any z. The monotone convergence theorem therefore gives lim

λ→∞
Lε(θ+λη, ȳ) = 0 .

If C(ȳ) =R|x|, the result is immediate. □

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 37

The perturbed loss Lε has properties that make it very suitable for a learning problem. Indeed, it
is convex and smooth, and while the expectation in its gradient is intractable, sampling Z gives a
stochastic gradient. The learning problem (5) with loss Lε can therefore be solved using stochastic
gradient descent. Furthermore, θ 7→ Lε(θ, ȳ) tends to 0 only if θ is far in the interior of C(ȳ), which
means that there is no ambiguity on the fact that ȳ is an optimal solution of (4) for θ, and removes the
degeneracy issue of θ 7→ L(θ, ȳ). This situation is illustrated in two dimensions in Figure 3. Figure 3a
represents the polytope corresponding to the convex envelope Conv(g(Y))) = Conv({g(y), ∀y ∈ Y}).
The algorithm f necessarily outputs a vertex of this polytope (red square) as the objective function of
the CO-layer is linear in g(y). The dark blue hexagon is the output E[g(f(θ+ εZ))] of the perturbed
CO-layer, which can be seen as the expectation over a distribution (blue circles) on the vertices of
the polytope. On Figure 3b, with h= 0 and no perturbation, we can see that the loss L(θ, ȳ) is 0 for
any θ in the normal cone of ȳ (with g(ȳ) being the red square), and that the origin belongs to the
normal cone of any vertex y. On Figure 3c, the perturbation has been added and we can see that
L(θ, ȳ) goes to zero only when we are safely inside the cone, which means that the output of the
combinatorial optimization layer is non-ambiguous. Finally, on Figure 3d and 3e, we can see that a
non-zero h changes the geometry for small θ values but not for large θ values.

Non-optimal CO-layer: Note that our CO-layer f is a (meta)-heuristic algorithm and thus does not
guarantee an optimal solution, which is not in line with the assumptions of the theory reviewed in
this section. However, we observe that this is not a problem in practice as f outputs solutions close
enough to optimal ones.

Generalization to other CO problems: As mentioned at the beginning of this subsection, this learn-
ing approach works for any CO-layer of the form (4) for any g, h, and feasible set Y . Additionally, at
the end of Section 3.3 we explain that we can build a pipeline for any problem modeled as markov
decision process, the only requirement in practice being able to compute f(θ). However, for being
able to learn this pipeline, we need an additional assumption: the dynamic of the system needs to
be of the form xt+1 = f(xt, yt, ψt), with ψt an exogeneous noise independent of decision yt. This is
needed in order to derive the anticipative policy to imitate.

Perturbed loss and Fenchel-Young loss: The perturbed loss Lε defined in (7) is a generalized version
the Fenchel-Young loss defined in Berthet et al. (2020). It has a missing term C(ŷ), a constant
depending on the target solution only, and therefore not affecting the gradient with respect to θ.

3.6. Computational study
The aim of our computational study is twofold. First, we validate the performance of our CO-enriched
ML pipeline in a benchmark against several state-of-the-art approaches. Second, we conduct extensive

38 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

numerical experiments to assess the impact of different training settings on the performance of our
CO-enriched ML pipeline. Specifically, we investigate the impact of i) the feature set, ii) the size of

(a) Polytope Conv(g(Y)) (b) θ 7→ L(θ, ȳ) for h= 0

(c) θ 7→ Lε(θ, ȳ) for h= 0 (d) θ 7→ L(θ, ȳ) for h ̸= 0

(e) θ 7→ Lε(θ, ȳ) for h ̸= 0
Figure 3 Example with two-dimensional θ and its respective polytope 3a. Contour plots of the loss L(·, ȳ) and its

perturbed version Lε(·, ȳ) for two different values of h. Thick lines on 3b and 3c represent the normal
fan associated to the polytope. We can see the perturbed regularization “pushing” the loss inside the
normal cone C(ȳ).

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 39

instances in the training set, iii) the training set size, iv) the imitated target strategy, and v) the type
of statistical model used.

For this purpose, we first detail the design of our computational study in Section 3.6.1, and the
different benchmarks in Section 3.6.2. We then present the results of our benchmark study in Sec-
tion 3.6.4, and discuss the results of our experiments on different training settings in Section 3.6.5.

3.6.1. Design of experiments
We design our computational study in line with the problem setting presented in the EURO Meets
NeurIPS Vehicle Routing Competition (Kool et al. 2022a). We consider a set of VRPTW instances
derived from real-world data of a US-based grocery delivery service. We refer to these instances as
static instances. A static instance contains a set of requests, each with a specific location, a service
time, a demand, and a time window. Hence, each instance implicitly defines a distribution of request
locations, service times, demands, and time windows. We generate an instance of the dynamic problem
from a static instance as follows: we first discretize the planning horizon of the static instance, which
is between 5 and 9 hours, into one hour epochs. Then, for each epoch e, we sample m requests
randomly, constructed by drawing from the static instance’s location, demand, service time, and
time window distributions independently. We refer to m as the sample size in the remainder of this
section. We discard requests that are infeasible with respect to the starting time of the current epoch
and the chosen time window. The remaining requests form the set of requests revealed in epoch e.
This sampling approach has two implications: First, the expected number of requests arriving in
each epoch decreases with advancing epochs as the probability of sampling a feasible time window
decreases. Second, time windows that end closer to the end of the planning horizon are more likely
to appear, as these time windows have a higher probability to be feasible. In line with the challenge’s
problem setting, we minimize travel time only, such that the number of vehicles, service times, and
waiting times are not part of the objective. Furthermore, we do not limit the number of vehicles
and assume knowledge over the static instance’s request distribution. Finally, we note that we can
generate several dynamic instances from one static instance by varying the seed used to sample from
the request distribution. In what follows, we refer to this seed as the instance seed.

While we already discussed shortcomings of the problem setting in Section 3.2, a few comments
on the problem setting, especially with respect to the epoch length and unlimited vehicle fleet are
in order: When interpreting our results, one should be aware of the fact that the epoch length of
one hour limits the responsiveness of the system to new requests. However, our methodology is not
dependent on the epoch length. We can vary the epoch length between a dynamic epoch length, which
defines the time between two requests entering the system, or a rather long static epoch length, as

40 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

considered in this experimental design, as long as we can state the underlying problem as a markov
decision process. A dynamic short epoch length leads to an immediate response to new requests when
entering the system. The unlimited vehicle fleet size is also no methodological limitation in practice,
as we can introduce a limited fleet size by adapting the constraints in the CO-layer. In parallel works,
we provide evidence that our methodology is not only in theory applicable to such settings but also
provides a competitive performance. For details, we refer the interested reader to Jungel et al. (2023)
where we study a mobility-on-demand problem setting with a limited fleet size in which we use a point
process to model requests entering the system, leading to a short response time of one minute. In
this setting, our methodological paradigm improves upon existing benchmarks and allows to provide
a new state-of-the-art.

3.6.2. Benchmark policies
We evaluate the performance of our CO-enriched ML pipeline against a set of benchmark policies.
These policies follow a two-stage approach by first deciding on the set of requests to dispatch and
then form covering routes in a second step by solving a VRPTW on the dispatched requests using
the HGS algorithm (cf. Kool et al. 2022b, Vidal 2022). For each benchmark policy, we allow a time
limit for finding decisions of 90 seconds per epoch, if not stated differently. In what follows, we briefly
introduce the benchmark policies considered in this computational study.

Greedy policy: The greedy policy dispatches all requests as soon as they enter the system.
Lazy policy: The lazy policy delays dispatching a request as long as possible, i.e., to the epoch

where it becomes must-dispatch.
Random policy: The random policy dispatches postponable requests with a probability of 50%.

It further dispatches all must-dispatch requests.
Rolling-horizon policy: The rolling-horizon policy samples a scenario for the remaining epochs,

and applies the HGS in a similar way as the anticipative strategy assuming that the sampled scenario
represents the true scenario. This yields a set of routes based on which it decides which requests to
dispatch. Specifically, it dispatches a request of the current epoch if and only if that request shares
a route with a must dispatch request of the current epoch. We assign a time limit of 600 seconds to
ensure convergence of the HGS since this policy entails solving a VRPTW on a complete scenario.
Note that this extends the 90 second time limit allowed to the other benchmark policies by 510
seconds.

Monte-carlo policy: The monte-carlo policy samples nine scenarios for the remaining epochs,
solved individually as in the rolling-horizon policy. It dispatches a request based on a majority decision,
i.e., if and only if the rolling-horizon policy dispatches the request in at least 50% of the sampled
scenarios. We raise the time-limit accordingly, i.e., allow a total of 5400 seconds.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 41

ML-CO policy: The ML-CO policy is encoded in the CO-enriched ML pipeline introduced in
Section 3.3. Unless specified otherwise, we train our ML-CO policy on a set of 15 training instances
using a sample size of 50 requests per epoch, derived using the anticipative strategy as detailed in
Section 3.5.1. Remark that we train on some instances and generalizes on others to stick to the
challenge practice. Note that a firm that would use such a policy in practice may have one single
instance corresponding to a city. It would use a training set with some scenarios and generalize on a
test set with different scenarios. Such a setting enables to overfit the instance and get performance
on it. We limit the runtime of the HGS used to derive the anticipative solutions to 3600 seconds. Our
ML-layer uses a feedforward neural network with four hidden layers, each comprising ten neurons.
For the ML-CO policy, we set the time limit for finding decisions to 90 seconds per epoch. Table 2
indicates that this time limit does not impact the performance of our ML-CO policy significantly.

Decision time limit during evaluation [seconds]
30 60 90 120 180 240

Relative distance to anticipative baseline 5.66% 5.18% 5.15% 5.01% 4.89% 4.87%
Table 2 Performance of our ML-CO policy for different time limits that we allow for the PC-HGS during

evaluation.

We note that the greedy, lazy, and random policies are the baseline heuristics used in the EURO
Meets NeurIPS Vehicle Routing Competition and refer the interested reader to Kool et al. (2022a)
for more details.

We additionally include the anticipative strategy used during training (cf. Section 3.5.1) as a
baseline. To derive the anticipative baseline, we solve the offline VRPTW using the HGS algorithm
proposed in Kool et al. (2022b) with a time limit of 3600 seconds. Note that the HGS algorithm
is a heuristic which implies that it is possible to find a solution which outperforms the anticipative
baseline.

3.6.3. Study Setup
We evaluate the performance of the benchmark policies on a total of 500 dynamic instances generated
from 25 different request distributions, i.e., static instances (cf. Section 3.6.1). Our results base on
aggregated objective values for each considered static instance, i.e., the average over the 20 differ-
ent dynamic instances generated from each request distribution. We generate dynamic instances as
detailed in Section 3.6.1 using a sample size of m= 100 requests per epoch. We note that evaluation
instances do not correspond to those used to train individual models and particularly point out that
we, unless noted otherwise, generate training instances for the ML-CO policy using a lower sample
size (m= 50). All experiments limit the runtime of the ML-CO policy to 90 seconds per epoch.

42 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

3.6.4. Performance Analysis
Figure 4a compares the performances of the introduced benchmarks. The figure shows the gap of
the policy’s objective value relative to the anticipative baseline (ant. b.). In general, we can see that
benchmark policies which consider information about the uncertain appearance of future requests, i.e.,
rolling-horizon, monte-carlo, ML-CO, and the anticipative baseline, outperform benchmarks which
make dispatching decision based on the current epoch only, i.e., lazy, random, and greedy. Specifically,
these perform on average 74.05%, 36.29%, and 20.99% worse than the anticipative baseline. The
rolling-horizon policy performs 7.12% worse than the anticipative baseline. We see that considering
the future impact of our dispatching decision based on only a single scenario already improves the
performance in comparison to the greedy policy significantly. This is surprising as the scenario drawn
is often only a poor representation of the requests actually observed in later epochs due to the size
of the sample space. However, the distance between the drawn scenario and the correct scenario
might be outweighed by the benefit of combining future requests with actual requests in low-cost
routes. The monte-carlo policy outperforms the rolling-horizon policy and only has a gap of 6.97%
to the anticipative baseline. This shows that a better approximation of future uncertainties, achieved
through a higher number of sampled scenarios, leads to better dispatching decisions, thus improving

ML-CO monte-carlo rolling-horizon greedy random lazy

0

20

40

60

80

R
el

at
iv

e
di

st
an

ce
to

an
t.

b.
[%

]

(a) Performance relative to anticipative baseline solution.

monte-carlo rolling-horizon ML-CO greedy anticipative
baseline

random lazy
0

2

4

6

8

·108

Va
ria

nc
e

of
ob

j.
va

lu
e

ac
ro

ss
in

st
an

ce
se

ed
s

(b) Variance of objective value with respect to instance seeds.
Figure 4 Performance of benchmark policies.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 43

performance. Yet, the improvement with respect to the rolling-horizon benchmark is rather small in
comparison to the improvement from the greedy policy to the rolling-horizon policy. Our ML-CO
policy outperforms all other online policies and is only 5.15% worse than the anticipative baseline.
This is surprising as the general consensus in literature on multi-stage stochastic problems indicates
the contrary, i.e., that imitating an anticipative strategy does not generalize well. In our extended
analysis we point to some signals in our results, which indicate that one may achieve improved
performance by imitating a better policy.

Result 1. Our ML-CO policy performs best across all online benchmark policies and outperforms
the monte-carlo policy by 1.57%. This indicates that learning a policy by imitating an anticipative
strategy yields good performances in this problem setting.

Figure 4b shows the variance of the objective value over several instance seeds for the considered
benchmark policies. Comparing Figures 4a and 4b shows a clear trend: policies with low variance
outperform policies with high variance. This trend results from finding more robust solutions that
generalize well over uncertain future observations. Note, that, although performing worse, the monte-
carlo policy has less variance than our ML-CO policy. This relates to the sampling approach the
monte-carlo policy bases on, which yields a robust solution that performs well over all sampled
scenarios and therefore focuses too much on variance minimization. Our ML-CO policy on the other
hand balances the trade-off between robustness and solution quality.

Result 2. The monte-carlo policy and our ML-CO policy generalize well over uncertain future
observations. The learning component in the ML-CO policy balances the trade-off between robustness
and solution quality, leading to a superior performance.

3.6.5. Extended analysis
This analysis assesses the impact of different training settings on the performance of our ML-CO
policy. Specifically, we investigate the impact of i) the feature set, ii) the size of each training instance,
iii) the training set size, iv) the imitated target strategy, and v) the type of statistical model used.
We evaluate each model’s performance as detailed in Section 3.6.2 and report the relative gap to the
anticipative baseline.

Feature sets
complete model-aware model-free
(baseline)

Relative distance to ant. b.: 5.15% 13.83% 6.78%
Table 3 Performance of ML-CO policy using different feature sets.

Different feature sets: Table 3 compares the performance of our ML-CO policy on three feature
sets (i.e., complete, model-aware, and model-free). Table 4 details the features each set comprises.

44 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

model-free model-aware
x coordinate of location xr Quantiles from distribution of travel time to all locations:
y coordinate of location yr 1% quantile Pr[X <x] ≤ 0.01,X ∼ tr,:
demand qr 5% quantile Pr[X <x] ≤ 0.05,X ∼ tr,:
service time sr 10% quantile Pr[X <x] ≤ 0.1,X ∼ tr,:
time window start lr 50% quantile Pr[X <x] ≤ 0.5,X ∼ tr,:
time window end ur Quantiles from distribution of slack time to all time windows:
time from depot to request td,r 0% quantile Pr[X <x] ≤ 0,X ∼ u: − (lr + sr + tr,:)
relative time depot to request td,r/(ur − sr) 1% quantile Pr[X <x] ≤ 0.01,X ∼ u: − (lr + sr + tr,:)
time window start / rem. time lr/(Tmax − τe) 5% quantile Pr[X <x] ≤ 0.05,X ∼ u: − (lr + sr + tr,:)
time window end / rem. time ur/(Tmax − τe) 10% quantile Pr[X <x] ≤ 0.1,X ∼ u: − (lr + sr + tr,:)
is must dispatch 1τe+∆τ+td,r>ur 50% quantile Pr[X <x] ≤ 0.5,X ∼ u: − (lr + sr + tr,:)

Table 4 Different feature sets.

Specifically, the model-free feature set contains features computable from the current state xe, while
the model-aware feature set only contains features which include distributional information from the
static instance. We further include the complete feature set which combines the features from the
model-aware and model-free feature sets. The complete feature set was used in the model submitted to
the challenge, i.e., our baseline. Our results show that the performance of our ML-CO policy does not
rely solely on model-aware information not available in real-world scenarios. Specifically, considering
model-aware features derived from the static instance decreases the gap of our ML-CO policy to the
anticipative baseline by only 1.63 percentage points on average.

Result 3. Our ML-CO policy performs well without considering model-aware features derived
from the static instance.

Sample size of training instances
10 25 50 75 100

Relative distance to ant. b.: 8.71% 6.31% 5.15% 7.41% 13.08%
Table 5 Performance of ML-CO policy when trained on different sized training instances.

Different sample size of training instances: Table 5 shows the performance of the ML-CO policy
relative to the performance of the anticipative baseline when training the ML-CO policy on training
instances derived from different sample sizes. Note that we evaluate the trained models on instances
generated with a sample size of 100 regardless of the sample size used during training. Our results,
indicate that there exists a trade-off between different sample sizes. Specifically, our pipeline performs
best when training on instances with a sample size of 50, reaching an average gap of 5.15% to the
anticipative baseline. Increasing or decreasing the sample size reduces the performance. It is not
surprising to see the performance decrease when the sample size is small: The policy overfits the
training set in that case and generalizes poorly. The decrease of performance on large sample sizes is
more unexpected. It might be due to the fact that we overfit the portion of the state space visited

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 45

by the anticipative policy on the training instances, which may be different from those visited by our
non-anticipative policy on the test instances.

Result 4. It is crucial to balance learning accuracy and model generalization when training the
ML-CO policy.

Num. of training instances
1 2 5 10 15 20 25 30

Relative distance to ant. b.: 10.19% 7.77% 7.26% 5.89% 5.15% 5.23% 4.50% 4.94%
Table 6 Performance of ML-CO policy when training on different numbers of training instances.

Different numbers of training instances: Table 6 shows the performance of the ML-CO policy
relative to the performance of the anticipative baseline when training the ML-CO policy on different
training set sizes. Recall that the policy is fitted on a set of training instances and tested on a test
of different instances. And that for each instance, we solve 15 anticipative scenarios. The size of the
traning set therefore increases with the number of training instances. Our results convey that the
performance our ML-CO policy improves with the training set size. This is unsurprising, because
first, a larger training set enables to reduce single decisions overfitting (independently on the number
instances), and second a more diverse training set enables to improve cross-instances generalization.
The marginal improvement decreases with the training set size. Specifically, performance saturates at
a training set size of 10 instances, which shows that our ML-CO policy learns to generalize well even
from small training sets. This indicates that our approach requires only a few instances to extract
most of the structural information contained in the problem setting, which is a stark contrast to
findings from classic supervised learning, which generally requires significantly larger training sets.

Result 5. The ML-CO policy only needs few training instances to learn a general policy.

Imitated anticipative strategies
best seed 3600 sec 900 sec 300 sec 240 sec 180 sec 120 sec 60 sec

Relative distance to ant. b.: 6.18% 5.15% 4.79% 7.61% 6.01% 5.25% 5.33% 5.81%
Average objective value [×10000]: 20.49 20.56 20.70 20.78 20.80 20.87 20.97 21.21

Table 7 Performance of ML-CO policy for different target strategies.

Varying target strategies: To investigate the impact of the quality of the solutions imitated by our
ML-CO policy, we vary the time limit allocated to the HGS used to derive the underlying anticipative
solutions. Here the intuition is as follows: solutions derived with a low time limit should be of lower
quality than solutions derived with a high time limit. As the HGS algorithm is subject to random
decisions, we further include a training set derived from the best solutions found across 10 runs with
a time limit of 3600 seconds each. Table 7 shows the performance of the ML-CO policy relative to the

46 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

performance of the anticipative baseline when training the ML-CO policy on different target solutions
with different solution qualities. Surprisingly, there is no clear trend between the solution quality of
the respective training set and the performance of the ML-CO policy. This leads to the assumption
that an improved quality of the anticipative target solution does not increase the performance of the
trained ML-CO policy and therefore the anticipative strategy might not be the best policy to imitate.

Result 6. The anticipative strategy might not be the best policy to imitate and there might exist
a target solution which yields better performances.

Graph Neural
Network (sparse)

Neural Network Graph Neural
Network

Linear

−5

0

5

10

R
el

at
iv

e
di

st
an

ce
to

an
t.

b.
[%

]

Figure 5 Performance of ML-CO policy using different statistical models.

Different statistical models: Figure 5 compares the performance of our ML-CO policy when using
different statistical models φw. All statistical models rely on a feature mapping ϕ that maps a state xe

and a request i of this state to a feature vector ϕ(i, xe) in R|ϕ|. Our linear model φw(xe) = (w⊤ϕ(i, x))i
manages to handle variable size inputs and outputs by applying the same linear model ϕ 7→ w⊤ϕ

independently to each dimension i. Similarly, our neural network φw(xe) =
(
gw(ϕ(i, x))

)
i

applies an
auxiliary neural network gw independently for each dimension i. Finally, we propose two graph neural
networks. Both graph neural networks consider requests as nodes and the connection between requests
as edges. We include a regular and a sparsified graph neural network, the latter contains only those
edges which are feasible with respect to request time windows and travel times. Both graph neural
networks receive an input vector ϕ(i, x) for each node i, such that φw(xe) =

(
hw(ϕ(i, x)i∈I)

)
.

The linear model performs worst with an average gap of 6.85% to the anticipative baseline while
the sparsified graph neural network performs best with a 5.04% gap to the anticipative baseline.
Comparing the performance of the linear model to the neural networks’ performance indicates the
importance of a feature generator. In fact, using a simple neural network already lowers the gap
to the anticipative baseline to 5.15%. As expected, using a graph neural network that calculates
structural features further improves the performance of the ML-CO policy. However, the improvement
is rather small in comparison to the performance of the neural network. This suggests that most of
the structural information is already included in the structured learning approach.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 47

Result 7. Feature-generating statistical models yield the best performing ML-CO policies.

3.7. Conclusion
We presented a novel CO-enriched ML pipeline for a dynamic VRP that was introduced in the EURO
Meets NeurIPS Vehicle Routing Competition. Specifically, our work contains several methodological
contributions and an extensive computational study. From a methodological perspective, we extend
ML-based pipelines to objective functions where the dimension of the predicted objective costs does
not match the dimension of the decision variables. These objective functions amend to other problem
settings such that we have made them available in the open source library InferOpt.jl. Moreover,
we presented the first pipeline that utilizes a metaheuristic component to solve the CO-layer and
showed how to carefully design a metaheuristic that finds heuristic solutions which allow to com-
pute approximate gradients. We showed how to train the ML-layer of this pipeline in a supervised
learning fashion, i.e., based on a training set derived from an anticipative strategy. We presented a
comprehensive numerical study and show that our policy encoded via the CO-enriched ML pipeline
outperforms greedy policies by 13.18% and even monte-carlo policies, which were granted a longer
runtime, by 1.57% in terms of travel time on average. Interestingly, our results point at the fact
that counterintuitive to common practice, imitating anticipative strategies can work well for high-
dimensional multi-stage stochastic optimization problems, even if the anticipative strategy might not
be the best strategy to imitate.

In this work, we limited the evaluation of the presented CO-enriched ML pipeline to the problem
setting provided in the EURO Meets NeurIPS Vehicle Routing Competition. This problem setting
was tailored to the competition and therefore had some shortcomings in comparison with general
real-world practices, e.g., an unlimited vehicle fleet and long epoch durations of one hour. To which
extent the performance of our proposed CO-enriched ML pipeline and CO-enriched ML pipelines in
general transfers to other problem settings hence remains an open question. While some early works
point into this direction (see, e.g., Jungel et al. 2023), answering this question requires future research
on the added value of these pipelines in the context of more general dynamic problem settings, e.g., in
the areas of mobility-on-demand, freight and food delivery, and inventory management. Furthermore,
although the use of CO-enriched ML to encode policies seems very promising, stochastic optimization
experience and artifacts in our results indicate that imitating the anticipative strategy might not be
the best learning approach. Improving the learning algorithm may therefore be a fruitful research
direction. Contrarily, if imitating a “bad” anticipative policy does work on other applications, it would
be interesting to understand this phenomenon from a theoretical lens. Finally, we believe that explor-
ing applications with shorter, possibly fully dynamic epoch durations and problem settings that allow

48 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

dynamic adaption of routes after initial dispatch could reveal areas where CO-enriched ML pipelines
provide added value over existing approaches, and thus lead to a more profound understanding on
when CO-enriched ML pipelines in general perform well.

Acknowledgments
This work has partially been supported by the German Research Foundation (DFG) under grant no.
449261765.

We thank Wouter Kool and the organizational committee of the EURO Meets NeurIPS 2022 Vehicle
Routing Competition for providing the problem setting studied in this paper.

References
Akkerman F, Luy J, van Heeswijk W, Schiffer M, 2023 Handling large discrete action spaces via dynamic

neighborhood construction ArXiv:2305.19891.

Alinaghian M, Aghaie M, Sabbagh MS, 2019 A mathematical model for location of temporary relief centers
and dynamic routing of aerial rescue vehicles. Computers & Industrial Engineering 131:227–241.

Alonso-Mora J, Wallar A, Rus D, 2017 Predictive routing for autonomous mobility-on-demand systems with
ride-sharing. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
3583–3590, URL http://dx.doi.org/10.1109/IROS.2017.8206203.

Basso R, Kulcsár B, Sanchez-Diaz I, Qu X, 2022 Dynamic stochastic electric vehicle routing with safe rein-
forcement learning. Transportation Research Part E: Logistics and Transportation Review 157:102496.

Bengio Y, Lodi A, Prouvost A, 2021 Machine learning for combinatorial optimization: A methodological tour
d’horizon. European Journal of Operational Research 290(2):405–421.

Bent RW, Van Hentenryck P, 2004 Scenario-based planning for partially dynamic vehicle routing with stochas-
tic customers. Operations Research 52(6):977–987.

Berthet Q, Blondel M, Teboul O, Cuturi M, Vert JP, Bach F, 2020 Learning with differentiable pertubed
optimizers. Advances in neural information processing systems 33:9508–9519.

Blondel M, Martins AF, Niculae V, 2020 Learning with fenchel-young losses. The Journal of Machine Learning
Research 21(1):1314–1382.

Carpentier P, Chancelier JP, Cohen G, De Lara M, 2015 Stochastic multi-stage optimization. Probability
Theory and Stochastic Modelling 75.

Chu H, Zhang W, Bai P, Chen Y, 2021 Data-driven optimization for last-mile delivery. Complex & Intelligent
Systems 1–14.

Dalle G, Baty L, Bouvier L, Parmentier A, 2022 Learning with Combinatorial Optimization Layers: a Prob-
abilistic Approach. ArXiv:2207.13513.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 49

Elmachtoub AN, Grigas P, 2022 Smart “predict, then optimize”. Management Science 68(1):9–26.

Elmachtoub AN, Liang JCN, McNellis R, 2020 Decision trees for decision-making under the predict-then-
optimize framework. International Conference on Machine Learning, 2858–2867 (PMLR).

Enders T, Harrison J, Pavone M, Schiffer M, 2023 Hybrid Multi-agent Deep Reinforcement Learning for
Autonomous Mobility on Demand Systems .

Fikar C, 2018 A decision support system to investigate food losses in e-grocery deliveries. Computers &
Industrial Engineering 117:282–290.

Flatberg T, Hasle G, Kloster O, Nilssen EJ, Riise A, 2007 Dynamic And Stochastic Vehicle Routing In
Practice, 41–63 (Boston, MA: Springer US).

Gendreau M, Guertin F, Potvin JY, Taillard E, 1999 Parallel tabu search for real-time vehicle routing and
dispatching. Transportation Science 33(4):381–390.

Hildebrandt FD, Thomas BW, Ulmer MW, 2023 Opportunities for reinforcement learning in stochastic
dynamic vehicle routing. Computers & Operations Research 150:106071.

Joe W, Lau HC, 2020 Deep reinforcement learning approach to solve dynamic vehicle routing problem with
stochastic customers. Proceedings of the International Conference on Automated Planning and Schedul-
ing 30(1):394–402.

Jungel K, Parmentier A, Schiffer M, Vidal T, 2023 Learning-based online optimization for autonomous
mobility-on-demand fleet control. ArXiv:2302.03963.

Kool W, Bliek L, Numeroso D, Reijnen R, Afshar RR, Zhang Y, Catshoek T, Tierney K, Uchoa E, Vidal T,
Gromicho J, 2022a The EURO meets NeurIPS 2022 vehicle routing competition.

Kool W, Juninck JO, Roos E, Cornelissen K, Agterberg P, van Hoorn J, Visser T, 2022b Hybrid Genetic
Search for the Vehicle Routing Problem with Time Windows: a High-Performance Implementation.

Kool W, van Hoof H, Welling M, 2019 Attention, learn to solve routing problems! International Conference
on Learning Representations.

Kotary J, Fioretto F, Van Hentenryck P, Wilder B, 2021 End-to-End Constrained Optimization Learning: A
Survey. ArXiv:2103.16378.

Liang E, Wen K, Lam WHK, Sumalee A, Zhong R, 2022 An integrated reinforcement learning and centralized
programming approach for online taxi dispatching. IEEE Transactions on Neural Networks and Learning
Systems 33(9):4742–4756, URL http://dx.doi.org/10.1109/TNNLS.2021.3060187.

Liu S, He L, Max Shen ZJ, 2021 On-time last-mile delivery: Order assignment with travel-time predictors.
Management Science 67(7):4095–4119, URL http://dx.doi.org/10.1287/mnsc.2020.3741.

Nagata Y, Kobayashi S, 2010 A memetic algorithm for the pickup and delivery problem with time windows
using selective route exchange crossover. Parallel Problem Solving from Nature, PPSN XI, 536–545
(Springer Berlin Heidelberg).

50 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Nazari M, Oroojlooy A, Snyder L, Takac M, 2018 Reinforcement learning for solving the vehicle routing
problem. Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, eds., Advances
in Neural Information Processing Systems, volume 31 (Curran Associates, Inc.).

Nicolai B, 2016 Amazon liefert pakete innerhalb von zwei stunden. URL https://www.welt.de/wirtschaft/

article153690106/Amazon-liefert-Pakete-innerhalb-von-zwei-Stunden.html.

Ojeda Rios BH, Xavier EC, Miyazawa FK, Amorim P, Curcio E, Santos MJ, 2021 Recent dynamic vehicle
routing problems: A survey. Computers & Industrial Engineering 160:107604.

Oliver I, Smith D, Holland JR, 2013 A study of permutation crossover operators on the traveling salesman
problem. Genetic Algorithms and their Applications, 224–230 (Psychology Press).

Parmentier A, 2021 Learning structured approximations of operations research problems. ArXiv:2107.04323.

Parmentier A, 2022 Learning to approximate industrial problems by operations research classic problems.
Operations Research 70(1):606–623.

Parmentier A, T’Kindt V, 2021 Learning to solve the single machine scheduling problem with release times
and sum of completion times. ArXiv:2101.01082.

Pflug GC, Pichler A, 2014 Multistage stochastic optimization, volume 1104 (Springer).

Pillac V, Gendreau M, Guéret C, Medaglia AL, 2013 A review of dynamic vehicle routing problems. European
Journal of Operational Research 225(1):1–11.

Placek M, 2022 Same-day delivery market size in u.s. 2019-2024. URL https://www.statista.com/

statistics/1068886/us-same-day-delivery-market-size/.

Raza SM, Sajid M, Singh J, 2022 Vehicle routing problem using reinforcement learning: Recent advancements.
Gupta D, Sambyo K, Prasad M, Agarwal S, eds., Advanced Machine Intelligence and Signal Processing,
269–280 (Singapore: Springer Nature Singapore).

Ritzinger U, Puchinger J, Hartl RF, 2016 A survey on dynamic and stochastic vehicle routing problems.
International Journal of Production Research 54(1):215–231.

Soeffker N, Ulmer MW, Mattfeld DC, 2022 Stochastic dynamic vehicle routing in the light of prescriptive
analytics: A review. European Journal of Operational Research 298(3):801–820.

Steever Z, Karwan M, Murray C, 2019 Dynamic courier routing for a food delivery service. Computers &
Operations Research 107:173–188.

Tang X, Qin Z, Zhang F, Wang Z, Xu Z, Ma Y, Zhu H, Ye J, 2019 A deep value-network based approach
for multi-driver order dispatching. Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining URL https://api.semanticscholar.org/CorpusID:196194675.

Ulmer MW, Soeffker N, Mattfeld DC, 2018 Value function approximation for dynamic multi-period vehicle
routing. European Journal of Operational Research 269(3):883–899.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 51

van Doorn J, Lan L, Pentinga L, Wouda N, 2022 Solving a static and dynamic vrp with time windows
using hybrid genetic search and simulation. EURO Meets NeurIPS Vehicle Routing Competition URL
https://github.com/ortec/euro-neurips-vrp-2022-quickstart/blob/main/papers/OptiML.pdf.

Vidal T, 2022 Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood.
Computers & Operations Research 140:105643.

Vidal T, Laporte G, Matl P, 2020 A concise guide to existing and emerging vehicle routing problem variants.
European Journal of Operational Research 286(2):401–416.

Vidal T, Maculan N, Ochi LS, Vaz Penna PH, 2016 Large neighborhoods with implicit customer selection for
vehicle routing problems with profits. Transportation Science 50(2):720–734.

Wallar A, Van Der Zee M, Alonso-Mora J, Rus D, 2018 Vehicle rebalancing for mobility-on-demand systems
with ride-sharing. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
4539–4546, URL http://dx.doi.org/10.1109/IROS.2018.8593743.

Zhou M, Jin J, Zhang W, Qin Z, Jiao Y, Wang C, Wu G, Yu Y, Ye J, 2019 Multi-agent reinforce-
ment learning for order-dispatching via order-vehicle distribution matching. Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, 2645–2653, CIKM ’19
(New York, NY, USA: Association for Computing Machinery), ISBN 9781450369763, URL http:

//dx.doi.org/10.1145/3357384.3357799.

4 Electric vehicle charge scheduling
with flexible service operations

This chapter is based on an article published as:

Klein P. S., Schiffer M. (2023). Electric vehicle charge scheduling with flexible service
operations. Transportation Science 57(6):1605-1626.

Patrick Sean Klein
TUM School of Management, Technical University of Munich, 80333 Munich, Germany, patrick.sean.klein@tum.de

Maximilian Schiffer
TUM School of Management & Munich Data Science Institute, Technical University of Munich, 80333 Munich, Germany,

schiffer@tum.de

Operators who deploy large fleets of electric vehicles often face a challenging charge scheduling problem.
Specifically, time-ineffective recharging operations limit the profitability of charging during service operations
such that operators recharge vehicles off-duty at a central depot. Here, high investment cost and grid capacity
limit available charging infrastructure such that operators need to schedule charging operations to keep
the fleet operational. In this context, flexible service operations, i.e. allowing to delay or expedite vehicle
departures, can potentially increase charger utilization. Beyond this, jointly scheduling charging and service
operations promises operational cost savings through better utilization of time-of-use energy tariffs and
carefully crafted charging schedules designed to minimize battery wear. Against this background, we study
the resulting joint charging and service operations scheduling problem accounting for battery degradation,
non-linear charging, and time-of-use energy tariffs. We propose an exact Branch & Price algorithm, leveraging
a custom branching rule and a primal heuristic to remain efficient during the Branch & Bound phase. Moreover,
we develop an exact labeling algorithm for our pricing problem, constituting a resource-constrained shortest
path problem that considers variable energy prices and non-linear charging operations. We benchmark our
algorithm in a comprehensive numerical study and show that it can solve problem instances of realistic size
with computational times below one hour, thus enabling its application in practice. Additionally, we analyze
the benefit of jointly scheduling charging and service operations. We find that our integrated approach lowers
the amount of charging infrastructure required by up to 57% besides enabling operational cost savings of up
to 5%.

Key words : charge scheduling; branch and price; flexible service

4.1. Introduction
Increasing societal and political environmental awareness resulting from climate change and local
and global emission problems call for a paradigm change towards sustainable transportation systems.
Herein, electric commercial vehicles (ECVs) are seen as a promising alternative to internal combustion
engine vehicles (ICEVs), allowing up to 20% reduction in life-cycle greenhouse gas emissions when
considering the current European energy mix (cf. EEA 2018). Moreover, ECVs may provide an
economic advantage due to lower operational costs (Taefi 2016, Schiffer et al. 2021). Accordingly, major
players in the freight and passenger transportation sectors started to electrify their fleets. Seminal

53

54 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

examples of this development include the Deutsche Post DHL Group (DPDHL), UPS, FedEx, General
Electric, Hertz, and Amazon in the freight transportation sector, as well as Uber, Lyft, and Addison
Lee in the passenger transportation sector (cf. DPDHL 2017, Clark 2019, Juan et al. 2016, Rodriguez,
Hildermeier, and Jahn 2020, Lyft 2021, Griffin 2021).

A central challenge in all of these applications is the efficient scheduling of charging operations,
which are often conducted during off-service periods using private charging infrastructure installed at a
central depot to avoid inefficient use of drivers’ time. Here, grid constraints and high investment costs
limit the availability of dedicated charging infrastructure, such that there are generally fewer (fast)
chargers than vehicles. Accordingly, operators must synchronize the fleet’s charging operations to avoid
charger capacity bottlenecks. Moreover, time-of-use (TOU) energy tariffs, which charge different prices
depending on the time of consumption, further complicate this scheduling problem: with on-peak
prices up to three times as high as off-peak prices (OpenEI 2022), it becomes economically worthwhile
to consider energy prices when planning charging operations. Generally, charger capacity and TOU
pricing favor schedules where a vehicle’s state of charge (SoC) peaks at certain times, e.g., when a fast
charger becomes available or energy is cheap (cf. Pelletier, Jabali, and Laporte 2018). However, these
schedules impose considerable stress on an ECV’s battery, such that the long-term effects of battery
degradation may mitigate short-term energy cost savings (see Appendix C). Operators who want to
utilize this trade-off between charger utilization, off-peak energy prices, and battery degradation must
consider an accurate (non-linear) charging model as simple (e.g., linear) approximations may over-
or underestimate charging rates, which potentially distorts the cost savings attainable through the
trade-off mentioned above (cf. Montoya et al. 2017, Pelletier, Jabali, and Laporte 2018).

In practice, operators often determine service schedules in an upstream planning problem, e.g., by
solving a respective vehicle routing problem (VRP) or vehicle scheduling problem (VSP), and schedule
charging operations for the resulting fixed service schedule and vehicle assignment subsequently. This
hierarchical decomposition often stems from applications with complex rostering constraints, when
operators value consistent service (Stavropoulou 2022), or when compatibility dependencies between
service operations and vehicles or drivers exist (Batsyn et al. 2021). Examples of such applications are
abundant: in city logistics, narrow or particularly congested roads may limit vehicle length, height, or
weight. In law enforcement and military applications, access clearance may constrain the driver pool.
Maintenance problems may place requirements on vehicle equipment or crew skill, while continuity of
care may be a hard constraint in health care applications. These predetermined service schedules often
have some (unavoidable) slack due to, e.g., driver service regulations and restrictive time windows (cf.
Kok, Hans, and Schutten 2011), such that individual service operations are flexible, i.e., can be shifted

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 55

in time to a limited extent without violating upstream scheduling constraints. Operators may benefit
from this flexibility and delay or expedite a service operation to allow charging at a slower charger,
e.g., to make a faster charger available to another vehicle of the fleet, to charge during cheap off-peak
periods, or to balance charging operations across the planning horizon to avoid charging patterns with
high impact on battery health.

Concluding, operators who deploy (large) fleets of ECVs face an inherently complex planning
problem comprising decisions on charging and service operation schedules, which may significantly
impact the viability and practicability of an ECV fleet. Here, they need to account for i) capacity
restrictions of available charging infrastructure, ii) battery degradation effects, iii) TOU energy tariffs,
iv) non-linear battery behavior, and v) flexible service operations. We study the resulting planning
problem in the remainder of this paper. In the following, we first review related work in Section 4.1.1
before we state our aims and scope in Section 4.1.2 and outline the paper’s structure in Section 4.1.3.

4.1.1. State-of-the-Art
We concisely review the state-of-the-art of related research areas, namely electric vehicle routing
problems (EVRPs), vehicle scheduling problems (VSPs), and charge scheduling problems (CSPs). For
in-depth reviews of these research fields, we refer to Schiffer et al. (2019) and Olsen (2020).

Most publications in the context of EVRPs focus on routing decisions and simplify charging-
related issues such as battery degradation, variable energy prices, and non-linear battery behavior.
Traditionally, most publications in the context of EVRPs have simplified charging behavior and focused
on routing decisions. Specifically, charging operations were either modeled as a fixed time penalty
(Conrad and Figliozzi 2011, Erdoǧan and Miller-Hooks 2012) or were considered to be linear with
respect to time and residual battery capacity (Schneider, Stenger, and Goeke 2014, Desaulniers et al.
2016, Schiffer and Walther 2018). More recent works extend on these simplified models and assume
non-linear charging (Montoya et al. 2017, Lee 2020, Liang, Dabia, and Luo 2021, Lam, Desaulniers, and
Stuckey 2022). Overall, the current trend in literature on EVRP increasingly considers charging-related
concerns. This includes issues such as battery degradation (Guo et al. 2022, Zang, Wang, and Qi 2022),
variable energy prices (Lin, Ghaddar, and Nathwani 2021), and charger capacity constraints (Froger
et al. 2022, Bruglieri, Mancini, and Pisacane 2019, Lam, Desaulniers, and Stuckey 2022). However,
these works tend to isolate individual charging-related challenges and thus do not address potential
trade-offs.

VSPs, which focus on assigning a set of (fixed) trips to a fleet of vehicles, have been limited similarly.
Here, most publications focused on conventional vehicles and did not consider charging operations.
Electric vehicle scheduling problems (EVSPs) assumed either instantaneous (Adler and Mirchandani

56 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

[1] [2] [3] [4] [5] [6] Our work

Service scheduling
Vehicle assignment
Continuous charging
Non-linear charging
Battery degradation
Energy price
Heterogeneous chargers
Station capacity
Exact
Scalable
Indices [1] to [6] signify publications as follows: [1] Sassi and Oulamara (2016), [2] Sassi and Oulamara (2014), [3] van

Kooten Niekerk, van den Akker, and Hoogeveen (2017), [4] Pelletier, Jabali, and Laporte (2018), [5] Parmentier, Martinelli, and
Vidal (2021), [6] Abdelwahed et al. (2020).

Table 1: Related publications.
2016, Yao et al. 2020), linear (Wen et al. 2016, Alvo, Angulo, and Klapp 2021, Parmentier, Martinelli,
and Vidal 2021), or non-linear charging (van Kooten Niekerk, van den Akker, and Hoogeveen 2017).

CSPs differ from EVSPs by assuming a fixed assignment of trips to vehicles, which reduces the
problem’s complexity to scheduling charging operations in-between trips. In the realm of CSPs, early
publications have assumed linear charging operations and did not consider station capacity constraints
or heterogeneous chargers (Sassi and Oulamara 2014, 2016). More recent work on charge-scheduling
problems alleviated some of these shortcomings. Specifically, Abdelwahed et al. (2020) consider
station capacity and heterogeneous chargers but do not account for non-linear battery charging and
degradation. They derive and compare discrete-time and discrete-event mixed-integer formulations
using a commercial solver. Pelletier, Jabali, and Laporte (2018) contribute a mixed integer program
(MIP) that models realistic battery behavior, accounting for non-linear battery degradation and
charging. They conduct an extensive case study using a commercial solver to assess the influence of
battery aging, energy price, and grid restrictions in several city logistics scenarios.

Concluding, Table 1 categorizes the most-related publications in the realm of EVSPs and CSPs. As
can be seen, related publications do not consider the charging process in sufficient detail, particularly
with respect to non-linear charging and, with the exception of van Kooten Niekerk, van den Akker,
and Hoogeveen (2017), charger capacity constraints. The work of Pelletier, Jabali, and Laporte (2018)
and Abdelwahed et al. (2020) does not consider service scheduling and relies on a standard MIP,
solved with commercial solvers, such that it remains limited in its computational scalability. To the
best of our knowledge, a comprehensive, integrated approach for joint charging and service operation
scheduling of ECVs has not been studied so far.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 57

4.1.2. Contribution
This paper proposes a joint charging and service operation scheduling problem that accounts for a
realistic battery behavior model with i) limited charger capacity, ii) non-linear charging operations,
iii) battery degradation, and iv) variable energy prices. Here, our contribution is twofold:

from a methodological perspective, we develop an efficient branch and price (B&P) algorithm that
significantly outperforms commercial solvers and allows to solve problem sizes encountered in practice.
This algorithm relies on a problem-specific branching rule adopted from Foster and Ryan (1976), a
primal heuristic, and partial pricing to remain scaleable. Our pricing problem constitutes a so-far
unconsidered extension to the fixed-route vehicle charging problem (FRVCP) (cf. Baum et al. 2019,
Froger et al. 2019, Kullman et al. 2021). Specifically, we consider time-constrained charging operations.
We develop a label-setting algorithm that utilizes a continuous label representation and relies on a
set-based dominance rule to solve this pricing subproblem efficiently. A comprehensive numerical study
shows the efficiency of our approach and asserts its scalability to large problem sizes.

From a managerial perspective, we analyze the impact of jointly scheduling charging and service
operations on the amount of charging infrastructure required and the benefit of accounting for variable
energy prices and battery degradation. Specifically, our computational study shows that integrated
planning of charging and service operations improves the utilization of variable energy prices, lowers
the cost incurred from battery degradation, and allows charging infrastructure savings. Specifically,
our integrated approach lowers the amount of charging infrastructure required by up to 57% and
reduces operational costs by up to 5%. We further reveal that both the degree of service schedule
flexibility and the energy price distribution significantly impact these savings.

4.1.3. Outline
The remainder of this paper is as follows. Section 4.2 provides a formal definition of our problem
setting and derives a set-covering-based integer program (IP) before Section 4.3 develops a column
generation procedure. Section 4.4 embeds this column generation procedure into a branch and bound
(B&B) algorithm, leveraging a primal heuristic and problem-specific branching- and node-selection
rules. Section 4.5 details the design of our computational and managerial studies, the results of which
we discuss in Section 4.6. Finally, Section 4.7 concludes this paper with a summary and an outlook on
future research.

4.2. Problem definition
We consider a set of vehicles k ∈ K, each required to service a set of operations ϑ ∈ Θk. These
vehicles operate from a central depot, where each operation starts and ends. Servicing an operation

58 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

ϑ∈Θ,Θ =∪k∈KΘk, consumes a certain amount of energy ∆SoCϑ, takes a certain amount of time ∆τϑ,
and is restricted to an operation-specific time window, such that vehicle k must depart between aϑ

and dϑ to serve ϑ. Two comments on this setting are in order. First, we assume a fixed assignment
of vehicles to service operations, determined in an upstream planning problem. This assumption
is realistic in applications where compatibility constraints between service operations and vehicles
or drivers exist, or where operators value consistent service (cf. Batsyn et al. 2021, Stavropoulou
2022). We nevertheless outline how our algorithm can be extended to a problem setting that relaxes
this assumption in Section 4.4.5. Second, we specify that we do not assume any ordering of service
operations such that any two operations ϑi, ϑj ∈Θk assigned to the same vehicle k ∈K may be served
in arbitrary order if their departure time windows allow. We note that our solution methodology can
be extended straightforwardly to account for such precedence constraints.

We schedule operations on a finite time horizon, discretized with a time step width of ξ minutes,
given as an ordered set P . This discretization is conservative with respect to operation time windows
as it shifts departure and arrival times to the beginning and end of the respective periods. We denote
the ith period as Pi and assign to each period p∈P an energy price ep.

Vehicles can be recharged using a set of (heterogeneous) charging stations f ∈F available at the
depot, each capable of simultaneously charging up to Cf vehicles. To avoid charging more energy
than necessary, we allow partial charging operations independent of the time discretization, such that
charging may be started or interrupted at any time. However, our discretization remains conservative
concerning charger capacity, such that vehicles charging in some period p∈P , occupy the respective
charger for the entire period. This assumption is common in CSP literature (see, e.g., Pelletier,
Jabali, and Laporte 2018, Abdelwahed et al. 2020) and necessary to efficiently model station capacity
constraints while accounting for variable energy prices. Specifically, alternative, i.e., time-continuous,
formulations are advantageous in problem settings where only few conflicts occur or where it is
relatively easy to resolve capacity conflicts, e.g., by cutting involved routes from the solution space.
This is the case in some vehicle routing problems (Froger et al. 2022, Lam, Desaulniers, and Stuckey
2022), but does not apply to the CSP studied in this paper. We direct readers to Boland et al. (2019)
and Boland et al. (2020) for a more comprehensive exploration of the trade-off between continuous
and discrete time formulations.

Finally, in contrast to Pelletier, Jabali, and Laporte (2018) and Sassi and Oulamara (2014), we do
not limit the number of uninterrupted charging operations but note that including such constraints is
straightforward in our solution methodology.

We model non-linear charging behavior with charger-specific piecewise linear charging functions Φf :
Time 7→ SoC, which capture a vehicle’s SoC evolution over time when charging with an initially empty

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 59

battery. We assume concave charging functions Φf in line with Montoya et al. (2017) and Pelletier et al.
(2017). We note that Φ−1

f (β) is well defined on [SoCmin,SoCmax]. We let Φ−1
f (β) = 0 for β <Φf (SoCmin)

and Φf (β) = τmax for β >Φf (SoCmax), such that we can use bivariate Φf (β, τ) := Φf (Φ−1
f (β) + τ) to

denote the SoC after charging for time τ with an initial SoC of β.
We quantify the charging cost attributed to battery deterioration in a (cumulative) wear density

function, denoted by Υ : SoC 7→ cost. This function is piecewise linear and convex on the battery’s
operational range, [SoCmin,SoCmax], and maps SoC q to the total cost of charging an initially empty
battery up to q. We define a bivariate Υ(q, qt) := Υ(qt)−Υ(q), which describes the battery degradation
related cost of charging from an initial SoC q to a target SoC qt. We refer to Appendix C for a formal
definition of our charging functions Φf and WDF Υ. Finally, we denote the set of breakpoints of some
piecewise linear function g by B(g) and use ̸ g(x) to refer to its right derivative, i.e., the slope at x.

With this setting and notation, we state the objective of our optimization problem: Given a fleet of
vehicles k ∈K, each assigned operations ϑ∈Θk with energy consumption ∆SoCϑ, duration ∆τϑ, and
departure time window [aϑ, dϑ], we aim to find a cost-minimal, feasible fleet schedule. We consider
a fleet schedule feasible if it respects charger capacity constraints in each period and each vehicle
schedule satisfies the following constraints: i) the vehicle’s SoC remains within its operational limits
[SoCmin,SoCmax] at all times, ii) the vehicle provides service to all assigned operations, and iii) the
vehicle meets each operation’s departure time window. Formally, we represent a vehicle schedule ω as
a two-tuple with components
Aω ∈B|P|×(F∪Θk): a binary matrix indicating scheduled operations. Here, Aω

i,η, η ∈F ∪Θk indicates
that the vehicle uses period Pi to charge at charger f ∈F if Aω

i,f = 1, services operation ϑ∈Θk

if Aω
i,ϑ = 1, or remains idle if Aω

i,η = 0 ∀η ∈F ∪Θk. We note that feasible schedules satisfy
∑

∀η∈F∪Θk A
ω
i,η ≤ 1 ∀i∈ [1, |P|].

Bω ∈R|P|: a vector that holds the amount of charge replenished in each period p∈P . Here, negative
values Bω

i < 0 indicate consumption. We allocate the consumption of operations that span
multiple periods to the departure period.

With this notation, we state the cost of a vehicle schedule ω as the sum of energy and battery
degradation related costs incurred in each period:

c(ω) :=
|P|∑

i=1
max(0, ePi ·Bω

i + Υ(
i−1∑

j=1
Bω
j ,

i−1∑

j=1
Bω
j +Bω

i)). (1)

Here, energy costs result from the amount of charge replenished in each period multiplied by the
respective period’s energy price. Degradation costs result from the WDF. Note that periods Pi that
consume energy, i.e., where Bω

i < 0, do not incur cost as Υ is increasing. We model this optimization

60 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

problem as a set-covering problem over the set of vehicle schedules. For this purpose, we refer to the
set of feasible schedules for vehicle k ∈ K as Ak and let A= ∪k∈KAk denote the set of all feasible
vehicle schedules. Using binary variables xkω, which indicate the inclusion of a schedule in the final
solution (xkω = 1), we propose the following IP.

min
∑

k∈K

∑

ω∈Ak
xkωc(ω) (2a)

∑

k∈K

∑

ω∈Ak
xkω ·Aω

p,f ≤Cf f ∈F , p∈P (2b)
∑

ω∈Ak
xkω ≥ 1 k ∈K (2c)

xkω ∈ {0,1} ω ∈Ak (2d)
Objective (2a) minimizes overall scheduling costs. Linking Constraints (2b) enforce charger capacity

limitations, while Convexity Constraints (2c) ensure that each vehicle is assigned a schedule. Finally,
Constraints (2d) state our decision variables’ domain.

4.3. Column generation
The proposed set covering formulation comprises a variable for each feasible schedule, such that solving
IP 2 using standard integer programming techniques remains intractable even for small instances.
As a remedy, we approach IP 2 with column generation (CG). The fundamental idea of CG is to
consider only a small subset of variables (columns) in a restricted master problem (RMP), which we
obtain by relaxing IP 2 and substituting each Ak with some subset Ãk ⊆Ak. The CG procedure then
iteratively extends Ãk with schedules that improve the RMP’s objective value until no such schedules
can be identified. For this purpose, CG solves the current RMP to obtain dual prices π(2b)

p,f and π(2c)
k of

Constraints (2b) and (2c), respectively. With these, we state the reduced cost of a schedule ω ∈Ak as:

rc(ω) := c(ω)− π(2c)
k −

∑

p∈P

∑

f∈F
Aω
p,f · π(2b)

p,f . (3)

Then, improving columns correspond to schedules ω ∈ A with negative reduced costs, which we
generate in a so-called pricing problem by solving |K| shortest path problems with resource constraints
(SPPRCs) on vehicle specific time-expanded networks Gk.

In the following, we first detail the construction of these time-expanded networks in Section 4.3.1
and give an overview of our labeling algorithm in Section 4.3.2. We then detail each central algorithmic
component, namely label representation (4.3.3), label dominance (4.3.4), label propagation (4.3.5), and
non-dominated charging decisions (4.3.6) in separate sections (4.3.3-4.3.6). Section 4.3.7 provides a
detailed example that applies our algorithm to a simplified pricing network. Finally, we outline speedup
techniques used to establish the computational efficiency of our labeling algorithm in Section 4.3.8.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 61

4.3.1. Pricing networks
For each vehicle k ∈K, we model the pricing problem as a SPPRC defined on a time-expanded network
Gk = (Vk,Ek). Here, vertices v ∈ Vk represent the vehicle’s location in time and space. More precisely,
for each period p∈P , Gk comprises a set of station vertices and a single garage vertex. Station vertices
correspond to the chargers available in p∈P , while garage vertices represent locations where vehicles
can idle without occupying a charger. Additionally, we add (dummy) source and sink vertices s− and
s+, which serve as network entry and exit points to virtual periods P0 and Pn+1, respectively. These
dummy periods correspond intuitively to the first period before and after the planning horizon. We
use functions p(v) and f(v) to denote the period and charger associated with some vertex v ∈ Vk.

Arcs (i, j)∈ Ek correspond to actions that a vehicle performs in period p(i) and allow a vehicle to
move in time and space. Traversing an arc incurs a certain (fixed) cost ci,j and consumes qi,j units of
energy. Our network comprises three types of arcs:
Charging arcs (i, j)∈ EkF represent charging at f(i) and incur fixed costs according to the station’s

dual multiplier (ci,j := π
(2b)
p(i),f(i)) without consuming energy (qi,j := 0). Charging with arrival SoC q

replenishes ∆q SoC at a price of c(q,∆q) := ep(i) ·∆q + Υ(q, q + ∆q), such that traversing a
charging arc incurs a total cost of ci,j + c(q,∆q). Here, ∆q is variable and bounded implicitly by
the period length ξ, such that 0<∆q≤Φf(i)(q, ξ). Charging arcs connect station vertices to all
vertices of the following period.

Idle arcs (i, j)∈ EkI model a vehicle idling at the depot. Idling is possible at zero cost (ci,j := 0) and
does not consume energy (qi,j := 0). Analogous to charging arcs, idling arcs connect garage vertices
to all vertices of the following period.

Service arcs (i, j) ∈ EkΘk model a vehicle’s departure in period p(i) to service an operation ϑ ∈Θk.
This consumes energy according to the operation’s consumption (qi,j := ∆SoCϑ) but incurs no
additional costs (ci,j := 0). For each ϑ∈Θk, service arcs connect all garage vertices that lie within
the departure time window of ϑ to garage vertices in the respective arrival period. We denote the
operation serviced by arc (i, j) with ϑi,j := {ϑ}, and let ϑi,j := ∅ for non-service arcs.

Finally, we add dummy arcs (i, j) connecting the source vertex with all vertices of the first period
at a cost according to the coverage dual (ci,j := π

(2c)
k). Figure 1 shows an example of a time-expanded

network with a single charger (f1) and a single service operation.

4.3.2. Labeling algorithm
By construction, each source-sink path ρ in the pricing network Gk corresponds to a vehicle schedule ω.
Moreover, the cost of ρ in Gk matches the reduced cost of schedule ω. Consequently, by defining
resource constraints that establish the feasibility of the corresponding schedule ω (cf. Section 4.2),

62 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

P0 P1 P2 P3 P4 P5 P6 P7 P8 Pn+1

s− s+

f1 f1 f1 f1 f1 f1 f1 f1

π P 1
,f

1

πP1,f1

π P 2
,f

1

πP2,f1

π P 3
,f

1

πP3,f1

π P 4
,f

1

πP4,f1

π P 5
,f

1

πP5,f1

π P 6
,f

1

πP6,f1

π P 7
,f

1

πP7,f1

π

π

πP 8
,f

1

Source/Sink

Garage

Station

Charging

Idling

Service

Note. This example time-expanded network models the scheduling decisions of some vehicle k ∈ K that is assigned
a single service operation with a departure time window of [P2,P5] and duration ∆τ = 2. Solid triangles and black
squares represent station and garage vertices, respectively. Diamonds illustrate source and sink vertices. Solid black,
dashed green, and dotted blue arcs represent charging, idle, and service arcs. We denote π(2b)

p,f and π(2c)
k as πp,f and π,

respectively.
Figure 1: An example time-expanded network.

we can express the pricing subproblem of vehicle k ∈ K as a SPPRC on Gk. Specifically, we treat
SoC and serviced operations as constrained resources, i.e., restrict the SoC at non-source vertices to
[SoCmin,SoCmax] (energy feasibility), and require that all operations have been serviced when reaching
the sink (service feasibility).

We obtain a solution to these SPPRCs using a problem-specific label-setting algorithm. The design
of this algorithm remains challenging as continuous (non-linear) charging raises a trade-off between
cost and SoC at charging stations. Specifically, charging any 0<∆q≤Φf (q, ξ) with arrival SoC q

results in a potentially optimal pair of cost and SoC, such that visits to charging stations may generate
an unbounded number of labels. While this is so far unconsidered in previous work on EVSP and
CSP, we note that recent work on vehicle routing (Baum et al. 2019, Froger et al. 2019) faced a
similar challenge: here, charging operations raise a trade-off between arrival time and SoC. To resolve
this issue, these works proposed a function-based label representation, which allows capturing all
time-SoC trade-offs at the last visited station in a single label. This effectively delays the charging
decision at the respective station until a finite subset of potentially optimal charging decisions can be
identified. Although related, the methodology developed in these works is insufficient for our problem
setting. The reason for this relates to variable energy prices in combination with implicit bounds on
the SoC rechargeable at station vertices imposed by the time discretization. This violates a central
assumption of the methodology developed in Baum et al. (2019) and Froger et al. (2019), such that
their algorithms fail to find an optimal solution if energy prices vary across periods. We give proof to
this issue in Appendix A and note that these additional challenges are not unique to charge scheduling
but may occur in other problem settings. For example, in time-dependent routing, travel times vary
over time analogously to how energy prices vary in our CSP and can hence raise a similar issue.
Accordingly, we contribute to the state of the art by presenting a new label-setting algorithm that

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 63

accounts for such bounded charging operations. Moreover, we present speed-up and preprocessing
techniques specifically tailored to the challenges of this new label-setting algorithm.

The following outlines our algorithm and introduces core algorithmic components before we detail
each component separately in Sections 4.3.3-4.3.8. We refer to Appendix D for an in-depth technical
description of our algorithm.

Our algorithm iteratively explores pricing networks Gk, starting with an empty path at the source
vertex s−. We extract the, w.r.t. cost, currently cheapest path in each iteration and extend it to all
neighboring vertices, thus creating new paths. The algorithm terminates when extracting a path at
the sink or when no unsettled paths remain. We capture path resources (operations serviced, SoC,
and cost) in labels ℓ∈Lv to ensure that paths ρ := (s−, . . . , v) are feasible. As in Baum et al. (2019),
and Dabia et al. (2013), we use a function-based label representation for this purpose. Specifically,
our labels encode the parameters of a function that maps the SoC on arrival at the last node of the
corresponding path to the total path cost. In contrast to Baum et al. (2019), our labels are not limited
to capturing only the last visited charging station but instead capture charging decisions at several
previously visited charging stations instead (see Section 4.3.3).

When extending paths along arc (i, j), we thus need to create new labels at j to capture the
extended path’s state. We derive these in so-called propagation functions, which generate a set of new
labels at vertex j according to arc resources and charging decisions based on the label of the current
path ρ := (s−, . . . , i) and the newly extended arc (i, j) (Section 4.3.5). Here, our algorithm considers
already generated labels at vertex j to avoid exploring dominated paths. Specifically, it discards labels
that do not improve on the set of labels already developed at j using a set-based dominance criterion
(Section 4.3.4).

4.3.3. Label representation
Our labels ℓ ∈ Lj store path cost and SoC in cost profiles ψℓ(c), which map the total cost c of the
labeled path to the resulting (arrival) SoC at vertex j (cf. Figure 2). Formally, we represent labels as
tuples with components:
ψℓ(c) :R 7→ [SoCmin,SoCmax]∪{−∞} denoting the vehicle’s SoC at a total cost of c, and
Oℓ ∈ P(Θk) denoting the operations serviced so far.

We call a label energy feasible if there exists some c∈R such that ψℓ(c) ̸=−∞ and denote the first
and last breakpoints of ψℓ with (cmin(ψℓ), qmin(ψℓ)) and (cmax(ψℓ), qmax(ψℓ)), respectively. We further
note that ψℓ(c) is not well defined on R and hence define ψ−1

ℓ (q), preserving piecewise-linearity, as
follows:

ψ−1
ℓ (q) :=

−∞ if q≤ qmin(ψℓ)
cmax(ψℓ) if q≥ qmax(ψℓ)
arg min
c∈R

{c | ψℓ(c) = q} otherwise.
(4)

64 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Cost

SoC

−∞
0
1
2
3
4
5
6
7
8 SoCmax

1 2 3 4 5 6 7 8

. . . i . . . j

Note. In this example, the lowest cost of the corresponding
path is c= 2, at which we reach v with a SoC of 1. Spend-
ing less than c = 2 is infeasible, which we indicate with
a SoC of −∞. We reach a SoC of 5 at a cost of 4.5, i.e.,
when spending ∆c := 4.5 − 2 = 2.5 to charge at i. The max-
imum reachable SoC is 7, which corresponds to spending
∆c := 7.5 − 2 = 5.5 at j. Any c > 7.5 does not increase the
SoC further. This upper bound on the SoC can be caused
by either the battery capacity or the period length, which
limits the time spent charging at the tracked station. The
example illustrates the latter case.

Figure 2: Example of a cost profile tracking the cost-SoC trade-off of path ρ= (s−, . . . , i, . . . , j).

Note that this extended label representation remains efficient as ψℓ is piecewise linear and can thus be
represented as a finite sequence of breakpoints. Lastly, we define the label corresponding to the empty
path used to initialize the algorithm at the source as ℓs− := (ψℓ

s− (c),∅), with ψℓ
s− (c) as follows:

ψℓ
s− (c) :=

{
0 if c≥ 0
−∞ otherwise. (5)

Intuitively, the source represents a (dummy) station with a charging rate 0.

4.3.4. Dominance
We use two dominance rules to discard sub-optimal labels early and thus reduce the number of
explored paths. The first rule extends standard pairwise Pareto-dominance of scalar-valued labels to
our function-based representation. The second rule is unique to function-based label representations
and defines a set-based dominance relationship to capture cases where the union of a set of labels
dominates a single label. We note that a similar logic has been applied successfully to time-dependent
VRPs and VRPs with weight-related costs (cf. Dabia et al. 2013, Luo et al. 2017).

Definition 1. Pairwise dominance.
Let there be labels ℓa, ℓb ∈Lv for some v ∈ Vk. Then label ℓa ∈L dominates label ℓb, denoted ℓa ⪰ ℓb,
if and only if

ψℓa(c)≥ ψℓb(c) ∀c∈R and Oℓa ⊇Oℓb .

Definition 1 states that a label ℓa dominates another label ℓb if ℓa achieves i) a higher or equally high
SoC at any given cost c and ii) schedules a superset of operations. Accordingly, we do not define
a dominance relationship between labels of paths ending at different vertices. Note that as ψℓ are
piecewise linear, it suffices to check ψℓa(c)≥ ψℓb(c) at breakpoints c∈B(ψℓa)∪B(ψℓb) such that the
dominance check’s complexity remains linear. Unfortunately pairwise dominance remains relatively

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 65

weak in cases where the images of ψℓa and ψℓb are not equal. To mitigate this issue, we extend pairwise
dominance to sets of labels as follows.

Definition 2. Set-based dominance.
A set of labels L′ ⊆Lv at some vertex v dominates label ℓ∈Lv \L′, denoted L′ ⪰ ℓ, if and only if

max
ℓ′∈L′
{ψℓ′(c)} ≥ ψℓ(c) ∀c∈R and

⋂

ℓ′∈L′
Oℓ′ ⊇Oℓ.

Essentially, set-based dominance occurs if, for any given cost, at least one label in L′ achieves a higher
SoC than label ℓ, and each ℓ′ ∈L′ schedules a superset of operations.

4.3.5. Label propagation
We distinguish propagating a label ℓ ∈ Li along a service or idling arc from propagating along a
charging arc as the latter constitutes a station visit and thus allows to replenish additional energy. We
detail our propagation methodology for both arc types separately in Sections 4.3.1 and 4.3.2.

4.3.1. Service and idling arcs Propagating along service and idling arcs, denoted as ℓ′ := ℓ ←
(i,j)

/,
generates a new label at the target vertex j. This requires updating ψℓ according to arc consump-
tion qi,j and cost ci,j, which we obtain from shifting ψℓ on the cost and SoC axes, respectively:
ψℓ′(c) := ψℓ(c− ci,j)− qi,j . Additional modifications are necessary when some charging decisions become
infeasible after propagating ℓ along (i, j). Specifically, we need to maintain ψℓ′(c)∈ [SoCmin,SoCmax]∪
{−∞} for all c∈R such that we derive ψℓ′ as follows:

ψℓ′(c) :=

−∞, if ψℓ(c− ci,j)− qi,j < SoCmin

SoCmax if ψℓ(c− ci,j)− qi,j ≥ SoCmax

ψℓ(c− ci,j)− qi,j otherwise.
(6)

Recall that ϑi,j = {ϑ} if (i, j) serves operation ϑ and ϑi,j = ∅ otherwise, such that ℓ′ := (ψℓ′ ,Oℓ ∪ϑi,j)
yields the propagated label.

4.3.2. Charging arcs Charging arc (i, j) represents a charging opportunity at station f(i) where
it is possible to charge for some duration 0< τ ≤ ξ at a cost resulting from the energy price ep(i),
battery degradation Υ, and fixed cost ci,j . For the sake of conciseness, we will interchangeably refer to
a charging decision at i using the charging time τ and the total cost according to the corresponding
cost profile.

Propagating label ℓ∈Li along (i, j) realizes this charging opportunity such that the newly created
label ℓ′ should capture the arrival SoC at vertex j. Recall that ℓ tracks charging decisions at the last
visited station v such that we are unaware of the actual arrival SoC at i. The resulting label would
thus be ill-defined: the arrival SoC q at vertex j with cost c depends on how we distribute our charging
budget between stations v and i.

66 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Resolving this ambiguity requires a decision at either station. Specifically, we either need to fix a
decision at v and thus the arrival SoC at i, or commit to a decision at i and continue to track decisions
at v. Intuitively, the first decision replaces the currently tracked station v with the new charging
opportunity at i such that we will refer to this operation as station replacement, while the latter
decision entails charging intermediately at i and will be referred to as such. Our propagation function
covers both cases, such that charging arcs generate several labels. In what follows, we describe our
methodology for both cases separately.
Case i): station replacements. We denote this operation with ℓ′ = ℓ

f(i)←
(i,j)

c′. Here, c′ ∈ [cmin(ψℓ), cmax(ψℓ)]
corresponds to a decision on the sunk cost up to vertex i and thus the arrival SoC q′ = ψℓ(c′) at i.
Recall that the generated label ℓ′ should give the arrival SoC at j depending on the charging budget
at i, i.e., c− c′. We compute the according cost profile ψℓ′ based on the charging cost at vertex i, given
as:

∆cp(i),f(i)⟨q′⟩(∆q) := ep(i) ·∆q+ Υ(q′, q′ + ∆q). (7)

Here, q′ and ∆q correspond to the arrival SoC and the SoC recharged at i, respectively. We note
that ∆cp(i),f(i)⟨q′⟩(∆q) is well defined for 0≤ q′ ≤ SoCmax and 0≤∆q≤ SoCmax− q′, such that we can
formally state ψℓ′ using the inverse of Equation (7):

ψℓ′(c) :=

−∞ if c < c′ + ci,j + ∆cp(i),f(i)⟨q′⟩(0)
Φf(i)(q′, ξ) if c≥ c′ + ci,j + ∆cp(i),f(i)⟨q′⟩(Φf(i)(q′, ξ)− q′)
q′ + ∆c−1

p(i),f(i)⟨q′⟩(c− ci,j − c′) otherwise.
(8)

Here, we utilize precomputed station cost profiles to compute Equation (8) efficiently. These give the
arrival SoC at vertex j when spending c on charging at i with an empty battery:

ψi,j(c) :=

−∞ if c < ci,j
SoCmax if c≥ ci,j + ∆cp(i),f(i)⟨SoCmin⟩(SoCmax− SoCmin)
∆c−1

p(i),f(i)⟨SoCmin⟩(c− ci,j) otherwise.
(9)

Station cost profiles allow to compute the replacement profile ψℓ′ in two steps: First, we shift ψi,j by
c′ + ci,j −ψ−1

i,j (q′) on the cost axis to obtain ψ→
i,j . Second, we establish upper and lower bounds on the

SoC and cut-off any unreachable SoC levels. Finally, we get

ψℓ′(c) :=

−∞, if c < (ψ→
i,j)−1(q′)

SoCmax if c≥ (ψ→
i,j)−1(Φf (q′, ξ))

ψ→
i,j(c) otherwise.

(10)

See Figure 3 for an illustration of this procedure.
Case ii): intermediate charging. Deciding to commit to charging for a fixed amount of time 0< τ ≤ ξ at
vertex i while continuing to track decisions at previous station v, denoted ℓ′ := ℓ ←

(i,j)
τ , transforms the

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 67

Cost

SoC

−∞

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7
ci,j

ψ i
,j

q′ ∆c
ci,j

ψ
→
i,
j

(a) Shifting ψi,j according to q′

and fixed cost.

Cost

SoC

−∞

0

1

2

3

4

5

qmax

7

1 2 3 4 5 6 7

ψℓi

q′

ψ
→ i,j

ψ ℓ
j

(b) Cutting off any unreachable
SoC.

Note. The illustrated station replacement operation charges up to a cost of c′ = 2.5, i.e., spends c′ − cmin(ψℓ) = 1.0
on charging at the previous station. The orange (circles) and blue (diamonds) cost profiles correspond to the cost
profile at the origin and target vertices (i, j), respectively. The precomputed (shifted) station cost profile ψi,j (ψ→

i,j) is
illustrated in black (diamonds). q′ denotes the arrival SoC at station i. ∆c= c′ −ψ−1

i,j (q′) offsets the station cost profile
by the path’s fixed cost. qmax = Φf (q′, ξ) corresponds to the maximum reachable SoC at station i.

Figure 3: Geometric interpretation of station replacement.

cost profile non-linearly: decisions on charging at v influence the arrival SoC at i and thus (possibly)
the total energy recharged within timespan τ . This, in turn, impacts the cost incurred from energy
price and battery degradation. Formally, we can state the cost of charging at i such that we arrive
with SoC q at j using Equation (11):

ψ−1
ℓ′ (q) := ψ−1

ℓ (
arrival SoC at i︷ ︸︸ ︷

Φf(i)(Φ−1
f(i)(q)− τ)) +

sunk cost after i︷ ︸︸ ︷
ci,j +ψ−1

i,j (q)−
sunk cost before i︷ ︸︸ ︷

ψ−1
i,j (Φf(i)(Φ−1

f(i)(q)− τ))
︸ ︷︷ ︸

total cost of charging at i

. (11)

We note that the breakpoints of ψℓ′ correspond to the breakpoints of ψ−1
ℓ′ with reversed domain

and co-domain such that we can derive an explicit representation of ψℓ′ by evaluating ψ−1
ℓ′ (q) at

each breakpoint q of ψ−1
ℓ′ , computing segment slopes accordingly. We compute these as stated in

Equation 12, denoting the slope of some function f at x by ̸ f (x):

̸
ψ−1
ℓ′

(q) :=
cost of charging at i︷ ︸︸ ︷

̸
ψ−1
i,j

(q) + ci,j + ̸ Φf(i)(Φ
−1
f(i)(q)− τ) · ̸ Φ−1

f(i)
(q)

︸ ︷︷ ︸
flow of charge from i to v (Term 12.1)

· [̸ ψ−1
ℓ

(Φf(i)(Φ−1
f(i)(q)− τ))

︸ ︷︷ ︸
additional charging cost at v

− ̸
ψ−1
i,j

(Φf(i)(Φ−1
f(i)(q)− τ))

︸ ︷︷ ︸
cost saving by charging less at i

].
(12)

Every value q at which Equation (12) changes is a breakpoint of ψ−1
ℓ′ . Hence, we can compute the

breakpoints of ψ−1
ℓ′ based on the union of the breakpoints of functions ψℓ and ψi,j . We construct ψℓ′

68 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

from all breakpoints that lie within the SoC interval

[Φf(i)(qmin(ψℓ), τ),min{Φf(i)(qmax(ψℓ), τ),
∑

ϑ∈Θk\Oℓ

∆SoCϑ,SoCmax}]

and set qmin(ψℓ), cmin(ψℓ), qmax(ψℓ), and cmax(ψℓ) accordingly. Note that the derived cost profile ψℓ′ is
not necessarily concave or even increasing. However, as we argue in the following, decreasing segments
of such cost profiles are always dominated such that they can be discarded.

Proposition 1. The slope of a cost profile ψℓ′ obtained from ℓ′ := ℓ ←
(i,j)

τ can only be negative at
c∈ [cmin(ψℓ′), cmax(ψℓ′)] if for q′ := Φf(i)(Φ−1

f(i)(ψ−1
ℓ′ (c))− τ), ̸

ψ−1
ℓ

(q′)< ̸
ψ−1
i,j

(q′) holds.

Proof: see Appendix B. □
Intuitively, Proposition 4 concerns cases where charging at v is more expensive than charging at i,
such that it pays off to shift energy recharged at vertex i to the previously tracked vertex v, i.e., use
the charging opportunity captured by ℓ.

Proposition 2. For any c on a decreasing segment [c′, c′ + ϵ] with ϵ > 0 of some cost profile ψℓ′
obtained from ℓ′ := ℓ ←

(i,j)
τ , there exists some ℓ′′ ∈Lj \ {ℓ′} such that ψℓ′′(c)≥ ψℓ′(c).

Proof: see Appendix B. □
With Proposition 5 in mind, we ensure that cost profiles are non-decreasing by replacing non-concave
cost profiles with their upper concave envelope. We argue that this preserves the correctness of our
algorithm. Specifically, Proposition 5 implies that for any c, there exists some label ℓ′′ ∈Lj that reaches
a higher SoC at the same cost c. Hence, modifying ℓ′ accordingly does not lead to the domination of
any optimal labels.

4.3.6. Non-dominated charging decisions
Propagating a label ℓ along a charging arc (i, j) creates new labels according to our propagation
functions ℓ′ := ℓ

f(i)←
(i,j)

c′ (station replacement) and ℓ′ := ℓ ←
(i,j)

τ (intermediate charge). Station replace-
ments require a decision on the cost c′, i.e., the charging budget at the tracked station, and thus the
respective arrival SoC q′ at i. When charging intermediately, we need to decide on the time τ spent
charging at i. In both cases, time-continuous charging operations allow any decision that respects
time and SoC bounds, such that the set of choices for c′ and τ is unbounded in the general case. In
what follows, we argue that in our problem setting only a finite set of values for c′ and τ generates
non-dominated labels, such that it suffices to consider these during propagation. Specifically, we show
that labels L′ := {ℓj , ℓi ←

(i,j)
ξ} ∪ {ℓi

f(i)←
(i,j)

c | ∀c ∈ B(ψℓi)}, with ℓj := ℓ ←
(i,j)

/, at j capture all possibly
optimal charging decisions.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 69

Theorem 1. For any charging arc (i, j) and label ℓi ∈Li, the set of labels

L′ := {ℓj , ℓi ←
(i,j)

ξ}∪ {ℓi
f(i)←
(i,j)

c | ∀c∈B(ψℓi)},

with ℓj := ℓi ←
(i,j)

/ dominates any label

ℓ′ ∈ {ℓi
f(i)←
(i,j)

c | c∈ [cmin(ψℓi), cmax(ψℓi)]}∪ {ℓi ←(i,j) τ | 0≤ τ ≤ ξ} \L
′.

To prove Theorem 2, we assume the contrary, i.e., that there exists some ℓ′ not dominated by L′. We
then show that for each c ∈R there exists some ℓ ∈ L′ with ψℓ(c)≥ ψℓ′(c), hence contradicting the
assumption. Our proof bases on the trade-off between charging at the station captured by ℓ versus
charging at i: for any ∆c spent to charge using the charging opportunity captured by ℓ, it will either
be cheaper to continue charging at the tracked charger, or to utilize the new charging opportunity
for this purpose. In the first case, the label spending ∆c+ ϵ for some ϵ > 0 will dominate ℓ, while
the label spending ∆c− ϵ will prevail in the second case. We can then show our claim using the
piecewise-linearity of our cost profiles. We refer to Appendix B for a full proof.

4.3.7. Example
The following example illustrates the behavior of our labeling algorithm on the example network
illustrated in Figure 4. Figure 5 depicts the labels created at each step of the algorithm. We provide
the data basis for Figures 4 and 5 in Appendix G.
Figure 5a: The algorithm initially extracts the empty path labeled ℓs− ∈Ls− at the source s−. It then

extends this path along the adjacent source arc (s−, vf) at a cost of cs−,vf = 2. Accordingly, we
create a new label ℓvf := ℓs− ←

(s−,vf)
/ with a minimum SoC of one at a total cost of two at vertex

vf . Geometrically, we obtain the new cost profile ψℓf from shifting ψℓ
s− on the SoC axis.

Figure 5b: Our algorithm then continues and extracts ℓvf at vf in the next iteration, propagating it
along charging arc (vf , v2). Here, we can charge up to a maximum SoC of Φvf (q = 0, ξ = 4) = 3
at a cost according to energy price evf = 2.5, battery degradation Υ, and fixed cost c(vf ,v2) = 0.
The algorithm creates a new label ℓv2 := ℓf

f←
(vf ,v2)

2 that captures this trade-off as detailed in
Sections 4.3.5 and 4.3.6. Note that it suffices to create a single label in this special case, as vf is
the first charging opportunity considered such that the arrival SoC at vf is unique. We obtain
the updated cost profile ψℓv2

from shifting ψ(vf ,v2) on the cost axis such that it intersects ψℓvf at
qmin(ψℓvf) = 0, and subsequently cutting off any SoC outside [0,Φf(i)(0, ξ)].

Figure 5c: The next iteration extracts ℓv2 at vertex v2 and propagates it along service arc (v2, v3) such
that ℓv3 := ℓv2 ←(v2,v3)

/. Providing service to the respective operation consumes 1.5 units of energy,

70 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

which renders some charging decisions captured in ψℓv2
infeasible: spending less than c= 6.5 does

not replenish sufficient energy to provide service. Accordingly, we obtain the new cost profile
ψℓv3

from shifting ψℓv2
by q = 1.5 on the SoC axis and subsequently cutting of any value below

SoCmin = 0. Essentially, we (implicitly) commit to charging at least 1.5 units of energy at vf to
maintain feasibility.

Figure 5d: The figure shows two iterations of our labeling algorithm. First, the algorithm propagates
label ℓv3 along idle arc (v3, vg). This neither consumes SoC nor incurs cost, such that ψℓvg = ψℓv3

with ℓvg := ℓv3 ←(v3,vg)
/. The next iteration propagates label ℓvg along charging arc (vg, v5), which

again provides a charging opportunity. Here, in contrast to the previous charging opportunity
(vf , v2), the arrival SoC q at vg is not unique. Our algorithm creates new labels according
to Section 4.3.6 at v5. Specifically, we create labels ℓ1

v5
:= ℓvg

g←
(vg ,v5)

6.5, ℓ2
v5

:= ℓvg ←(vg ,v5)
ξ (4),

ℓ3
v5

:= ℓvg
g←

(vg ,v5)
8, and ℓ4

v5
:= ℓvg

g←
(vg ,v5)

11.7.
We observe two effects: first, some of the created labels are dominated according to Defini-

tions 1 & 2. Second, the cost profiles span segments of different lengths on the cost and SoC
axes. Here, non-linear charging functions Φ and the charging limit imposed by period length ξ

cause mismatches on the SoC domain, while non-linear battery degradation is responsible for
mismatching cost domains.

Figure 5e: The algorithm proceeds to extract the labels in Lv5 in order of least cost. Hence, it first
propagates label ℓ1

v5 along service arc (v5, s
+), which creates a new label ℓ1

s+ := ℓ1
v5 ←

(v5,s+)
/ at s+

accordingly. The algorithm then extracts label ℓ1
s+ at the sink as it has lower costs than label ℓ2

v5 .
This terminates the algorithm and yields a path that reaches the sink. The cost profile of ℓ2

v5 then
gives the total cost of this shortest path as cmin(ψℓ2v5

) = 11.875 with final SoC qmin(ψℓ2v5
) = 0.

Figure 5f: Assuming a consumption of qv5,s+ := 4.25 for service arc (v5, s
+), we observe a slightly

different behavior. In this case, it does not suffice to charge as little as possible at vf such that
label ℓ1

s+ is infeasible. Instead, label ℓ2
s+ now gives the optimal path. This constitutes an example

where considering only station replacements does not yield an optimal solution.

4.3.8. Speedup techniques
A straightforward application of our label-setting algorithm suffers from several phenomena which lead
to the generation of many superfluous labels: first, it detects infeasible charge and service scheduling
decisions only when extending a service arc or reaching the sink. Second, our algorithm is biased
towards schedules that charge late and little, which results in the generation of many infeasible paths
before reaching the sink and further yields schedules with low diversity. Third, redundancy in the
network’s structure creates many (cost-)equivalent labels.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 71

s− vf v2

v3 vg v5 s+

c= 2
q = 1.5

q = 3.5
Source/Sink

Garage

Station

Charging

Idling

Service

(a) The example network.

Cost

SoC

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

ψ (v
g
,v

5
)

ψ (v f
,v

2)

(b) Station cost profiles.

Time

Cost

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Φg
Φf

(c) Charging functions.
Note. The example network corresponds to a simplified time-expanded network as introduced in Section 4.3.1. We
assume a period length of ξ = 4, SoCmin = 0, and SoCmax = 7. Orange profiles with circle markers indicate station f ,
blue profiles with diamond markers station g.

Figure 4: Example network (4a), station cost profiles (4b), and charging functions (4c).

We mitigate the first issue by establishing lower bounds on the SoC and propagating service operation
time windows to station and garage vertices such that we can discard infeasible paths early. We
further derive a potential function for each v ∈ Vk which estimates the remaining cost required to
reach the sink. This potential function then offsets costs of partial paths accordingly to eliminate the
bias towards labels with low SoC. Finally, we reduce symmetry issues caused by network redundancy
through additional checks in our feasibility condition.

SoC bounds: We seek to establish a lower bound on the SoC at vertex v ∈ Vk for each label ℓ∈Lv,
such that we can discard ℓ if qmax(ψℓ) falls below this bound. We express this bound using an auxiliary
function ub(p, p′,Θ′), which gives an upper bound on the maximum SoC rechargeable in the interval
[Pi,Pj], 1≤ i < j ≤ |P|, when servicing operations Θ′ ⊆Θk:

ub(Pi,Pj ,Θ′) :=max
f∈F

̸ Φf · (j− i−
∑

ϑ∈Θ′
(∆τϑ + 1)) · ξ−

∑

ϑ∈Θ′
∆SoCϑ.

In other words, ub(Pi,Pj ,Θ′) corresponds to the SoC reached when charging with the maximum
charging rate max

f∈F
̸ Φf in all non-service periods, accounting for service-related consumption. With

this in mind, the following set of conditions needs to hold for a path labeled with label ℓ to be feasibly
extensible to the sink:

∀ϑ∈Θk \Oℓ :
maximum SoC reachargeable before dϑ︷ ︸︸ ︷

ub(p(v), dϑ,{ϑ′ ∈Θk \Oℓ | ϑ′≫ ϑ}︸ ︷︷ ︸
not yet serviced operations that precede ϑ

)+qmax(ψℓ)≥∆SoCϑ.

Here, ≫ is a precedence relation between operations ϑa, ϑb ∈Θk, i.e., it indicates whether ϑa has to be
served before ϑb, formally, ϑa≫ ϑb⇔ aϑb + ∆τϑb > dϑa . Essentially, for each ϑ∈Θk not yet serviced,

72 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Cost

SoC

−∞

0

1

2

3

4

5

6

1 2 3 4 5 6

ψℓvfψℓ
s−

ci,j = 2

(a) Propagating along source arc
(s−, vf).

Note. Source arc (s−, vf) has a
fixed cost of 2, such that we shift
ψℓ

s− (blue, dashed, diamonds) by
2 on the cost axis to obtain ψℓvf

(orange, solid, circles).

Cost

SoC

−∞

0

1

2

3

4

5

6

2 4 6 8 10 12

ψ (v f
,v2)

ψℓvf

ψℓv2

(b) Propagating along charging
arc (vf , v2).

Note. Propagating profile ψℓvvf

(blue, dashed, diamonds) captures
the charging trade-off at vf in ψℓv2

(orange, solid, circles). The dashed
black profile with triangle markers
corresponds to the station cost pro-
file of arc (vf , v2).

Cost

SoC

−∞

0

1

2

3

4

5

6

2 4 6 8 10 12

ψ ℓ v 2

ψ ℓ v 3
q

(c) Propagating along service
arc (v2, v3).

Note. We shift profile ψℓv2 (blue,
dashed, diamonds) according to the
consumption of service arc (v2, v3),
specifically by q = 1.5, on the SoC
axis. The dashed part of profile ψℓv3

(orange, solid, circles) is cut off.

Cost

SoC

−∞

0

1

2

3

4

5

6

6 9 12 15 18 21 24

ψℓv3

ψℓvg

ψ
ℓ

1 v 5 ψ
ℓ

3 v 5

ψ
ℓ

4 v 5

ψ ℓ
2
v 5

(d) Propagating along idle and
charging arcs (v3, vg), (vg, v5).

Note. Labels ℓ1
v5 , ℓ

3
v5 , and ℓ5

v5 (red,
squares) settle on charging 1.5, 2,
and 3 units of energy at vf , such
that the arrival SoC at vg equals 0,
0.5, and 1.5 respectively. Label ℓ2

v5

(green, triangles) commits to charge
for τ = ξ at vg. Together, the solid
red and green profiles dominate the
dashed red profiles as they provide
higher SoC at a lower cost. The pro-
file of label ℓ3

v5 would not be domi-
nated by the profile of label ℓ1

v5 or
ℓ2
v5 alone.

Cost

SoC

−∞

0

1

2

3

4

5

6

6 9 12 15 18 21 24

ψ
ℓ

1 v 5

ψ ℓ
2
v 5

ψ ℓ
2
s
+

ψℓ1
s+

(e) Propagating along service
arc (v5, s

+) with qv5,s+ = 3.5.
Note. The optimal path reaches the
sink at a cost of cmin(ψℓ) = 11.875,
charging 1.5 and 3.5 units of energy
at vf and vg, respectively. Note that
the algorithm terminates after prop-
agating ℓ1

v5 (blue, dashed, squares)
as label ℓ1

v
s+ (orange, squares) is

extracted before ℓ2
v5 (blue, dashed,

triangles). Label ℓ2
v

s+ (green, trian-
gles) is thus never created.

SoC

−∞

0

1

2

3

4

5

6

6 9 12 15 18 21 24

ψ
ℓ

1 v 5

ψ ℓ
2
v 5

ψ
ℓ

3 v 5

ψℓ3
s+

ψℓ1
s+

ψ ℓ
2
s
+

(f) Propagating along service arc
(v5, s

+) with qv5,s+ = 4.25.
Note. In this case, propagating la-
bel ℓ1

v5 (blue, dashed, squares) yields
an infeasible label ℓ1

s+ (orange,
dashed, squares). Propagating label
ℓ2
v5 (blue, dashed, triangles) yields

optimal label ℓ2
v5 (green, solid, tri-

angles), which reaches the sink at
a cost of cmin(ψℓ) = 14.1875, charg-
ing 1.75 and 4 at vg and vf respec-
tively. Here, none of the labels ob-
tained from station replacements at
vg yields the optimal solution.

Figure 5: Running our labeling algorithm on the example network illustrated in Figure 4.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 73

we check whether the residual SoC and the maximum SoC reachable before having to leave for ϑ
jointly suffice to service operation ϑ.

Potential functions: We key our labels according to a potential function h(ℓ, v) that, for a label
ℓ∈Lv at vertex v, computes lower bound on the cost required to feasibly reach the sink:

h(ℓ, v) := cmin(ψℓ) + max(0, (

remaining consumption︷ ︸︸ ︷∑

ϑ∈Θk\Oℓ

∆SoCϑ)− qmin(ψℓ))

·
(

min
q′∈[SoCmin,SoCmax]

̸ Υ(q′)
︸ ︷︷ ︸

minimum battery degradation cost

+
minimum energy price︷ ︸︸ ︷

min
p′∈P,p′≥p(v)

ep′

)
+ c(v).

(13)

Equation (13) comprises three cost components. First, the cost required to feasibly reach v. Second, a
lower bound on the charging-related costs required to reach the sink. Third, the network-related cost
c(v) of the shortest path to the sink vertex.

Extended feasibility check: We perform the following additional checks when testing label feasibility
to detect energy infeasible or service-incomplete schedules early, reduce label redundancy, and avoid
superfluous iterations:

1. We terminate the search when we extract a label with positive cost at any vertex. This remains
correct as our algorithm extracts labels in order of lowest cost, such that path cost monotonically
increases due to non-positive station capacity duals. Hence, the corresponding vehicle schedule
cannot have negative reduced cost.

2. We propagate service arcs only if the associated operation has not been covered yet.
3. We discard labels ℓ extracted at vertex i if p(i)> dϑ for any ϑ /∈Oℓ, ϑ∈Θk. We relax this strict

inequality for non-garage vertices, i.e., p(i)≥ dϑ.
4. We do not propagate charging arcs if a label’s minimum reachable SoC suffices to cover all

operations, such that additional charging is superfluous.

4.4. Branch-and-Price
We embed our column generation procedure into a B&B algorithm to address cases where the RMP’s
final solution is fractional. The resulting B&P algorithm relies on a problem-specific branching rule
(Section 4.4.1), partial pricing (Section 4.4.2), a primal heuristic (Section 4.4.3), and uses a two-stage
vertex selection strategy (Section 4.4.4).

4.4.1. Branching rule
Our branching rule bases on the observation of Foster and Ryan (1976) adopted to our problem setting:
a basic feasible solution of the RMP is only fractional if charger capacity constraints are binding. In
other words, when two or more schedules compete for a charger that is already at capacity.

74 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Proposition 3. Let σ be a fractional basic feasible solution to the RMP. Then it holds that
∃(p, f)∈P ×F such that ∑

xkω∈σ x
k
ωA

ω
p,f =Cf , and there exist at least two xkω ∈ σ with 0<xkω < 1.

Proof: see Appendix B.
We refer to pairs (p, f)∈P ×F where this occurs as conflicts and resolve these by creating a new

branch for each vehicle k ∈ K that participates in the conflict, formally where
∑
ω∈Ãk x

k
ωA

ω
p,f > 0.

Each of these branches cuts off solutions where vehicle k uses charger f in period p. We enforce these
constraints in our subproblems to avoid additional dual variables in our master problem. For this
purpose, we purge all violating columns from Ãk and remove the station vertex representing the
charging opportunity from Gk.

Our algorithm relies on a hierarchial selection strategy to resolve cases with multiple conflicts.
Specifically, we prioritize conflicts (p, f)∈P ×F by i) the most fractional participating schedule, ii)
the number of non-integral columns, iii) the amount of energy recharged, iv) charging speed of f , and
v) the lowest vehicle index.

4.4.2. Partial pricing
Schedules generated in the same iteration often show similar charging patterns due to shared dual
variables, overlapping time windows, and equal energy prices, such that charger capacity constraints
limit the number of simultaneously generated schedules that can be part of the same basic solution.
Hence, many of the schedules generated do not contribute to the convergence of the dual variables and
the lower bound, especially when considering large fleets and a high number of low-capacity chargers
such that limiting the number of vehicles priced in each iteration often reduces total runtime, even if
this requires additional iterations of the column generation procedure.

We implement this so-called partial pricing approach as follows: After solving the RMP, we solve the
arising pricing subproblems in a round-robin fashion until a total number of ν schedules with negative
reduced costs have been generated or all subproblems have been considered. Our termination criterion
remains unchanged, that is, we still terminate the column generation procedure when no subproblem
produces a schedule with negative reduced cost. The main factor that drives the computational
effectiveness of this approach is the number of columns to generate, i.e., ν. Our experiments show
that aligning ν with the minimum charger capacity performs best.

One of the major drawbacks of partial pricing is that the lower bound generated at each iteration is
relatively weak (cf. Desrosiers and Lübbecke 2005). We address this issue by periodically performing a
full iteration, i.e., temporarily set ν = |K|.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 75

4.4.3. Primal heuristic
We utilize a primal heuristic to quickly find upper bounds, thus speeding up the solution procedure by
allowing to prune nodes of the B&B tree early. To this end, we use a diving heuristic that explores
an auxiliary branch-and-bound tree in a depth-first fashion, branching on the variables xkω of the
extensive formulation (IP 2). At each node of this auxiliary B&B tree, the algorithm forces some
fractional xkω to one until an integral or infeasible solution is found. We rely on strong branching to
boost the success rate and solution quality of this diving algorithm: at each node explored in the
diving phase, we bound the impact of fixing a candidate schedule by solving the accordingly modified
RMP. We then fix the schedule promising the most improvement based on the derived lower bounds.

As this procedure is expensive for large numbers of schedules, our algorithm considers only a small
subset of schedules at each node. We select these from the column set at the current node (ÃN)
according to a roulette wheel criterion based on dissimilarity and quality. For this purpose, we define
the distance d(ω1, ω2) between two columns ω1, ω2 ∈ ÃNk as the hamming distance between charger
allocation matrices {Aω1

p,f | p∈P , f ∈F} and {Aω2
p,f | p∈P , f ∈F}. Accordingly, the distance between

two schedules is inversely proportional to the number of shared charging operations between the two
schedules. For each vehicle without an assigned schedule, we then build a pool of columns Θk as
follows: Let rQ(ω) be the rank of ω in ÃNk according to its schedule’s cost. Furthermore, let D(ω,Θk)
be the average distance to all ω′ ∈Θk or 0 if Θk = ∅. Again, rD(ω,Θk) gives the rank of ω according
to D(·). We then build Θk greedily such that Equation (14) is maximized:

F (ω,Θk) := αrQ(ω) + (1−α)rD(ω,Θk). (14)

We stop once the column pool reaches the desired size (Θ̄k).
We execute this primal heuristic on every node of the B&B tree until the algorithm finds an integral

solution. We switch to a periodic evaluation strategy at this point and run our heuristic only on every
|K|th node.

4.4.4. Node selection strategy
We place the nodes generated by our branching procedure into a node queue. The order of this queue
dictates the order in which open nodes are solved and hence influences the performance of the B&P
algorithm. Our node selection strategy combines the benefits of the two most common branching
strategies, namely depth-first, which prioritizes nodes with the highest distance from the root node,
and best-bound-first, which selects nodes according to their lower bounds (cf. Wolsey 1998), in a
two-stage approach. We first select nodes according to the depth-first strategy, breaking ties by vehicle
index, and switch to best-bound-first when we find a feasible integer solution during branching or
using our primal heuristic. Here, we order nodes with equal lower bounds by node depth, prioritizing
nodes deeper in the tree. We resolve any remaining ties by picking the leftmost node.

76 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

4.4.5. Extensions to related problem settings
One of the major assumptions of our problem setting is the fixed service operation assignment, which
limits our algorithm to CSP. Hence, the following section discusses how our algorithm can be extended
to related problem settings that relax this assumption and suggest problem settings that certain
algorithmic components, such as our labeling algorithm, can be applied to.

Treating service operation assignment as a decision requires several modifications to our algorithm:
first, each vehicle now serves only a subset of service operations, which replaces convexity constraints
(2c) with a covering constraint for each service operation. This transforms our label-setting algorithm
into a label-correcting algorithm as the corresponding dual variables may be positive, and requires
changes to the pricing network design. Specifically, in this problem setting, each network must contain
service arcs for each service operation. Finally, an additional branching rule that deals with fractional
solutions caused by the covering constraints is necessary. We note that this extended formulation
would likely require additional algorithmic components to remain scaleable, e.g., in the form of valid
inequalities. Other components of our B&P algorithm, e.g., the primal heuristic, require no further
modification. In fact, our primal heuristic is straightforwardly amendable to arbitrary B&P algorithms.

Finally, we like to note that the core concept of our labeling algorithm can be used in any problem
setting with non-linear, convex trade-off functions. Here, notable examples are the time-dependent
vehicle routing problem with variable speed and vehicle routing problems with speed-dependent energy
consumption.

4.5. Design of experiments
The aim of our computational study is twofold: a first set of numerical experiments validates the correct-
ness, investigates the performance, and analyzes the scalability of our B&P algorithm. Specifically, we
(i) benchmark our algorithm against the MIP-based formulation introduced in Appendix E, (ii) assess
the scalability of our algorithm with respect to various instance parameters, such as fleet size, planning
horizon length, and charger contention, and (iii) analyze the impact of our individual algorithmic com-
ponents, i.e., partial pricing, node selection, and the primal heuristic. Our numerical experiments rely
on instances generated using a parameterized random instance generation procedure, which is detailed
in Appendix F. We will provide the specific parameter settings for each experiment when discussing
the respective results. Additionally, we host the code sources at https://github.com/tumBAIS/.

Second, we assess the impact of integrated charge and service operation scheduling in a potential
real-world scenario. Here, we analyze to which extent flexible service operations improve overall vehicle
utilization, investigate how service flexibility affects the amount of charging infrastructure required,
and assess the impact of energy prices on the cost savings obtainable through integrated charge and

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 77

service scheduling. To keep this paper concise, we refer to Appendix F for details on the instance
derivation of our numerical experiments and focus on the design of our managerial study in the
following:

Our managerial study captures the planning problem of a logistics service provider (LSP) supplying
retail stores in an urban area over a planning horizon of two days. We assume a fleet of sixteen vehicles,
each operating three shifts a day, i.e., one night, one morning, and one afternoon shift. Each shift
comprises a delivery tour that takes six hours and consumes 15 kWh of energy, such that the battery
is depleted once a day. We randomly distribute operation departure times such that vehicles spend a
minimum of one hour before each operation at the depot. We extend this slack to two hours for the
first operation assigned to each vehicle and distribute earliest and latest departure times symmetrically
around the departure time of the case without any service flexibility. Each vehicle is equipped with a
45 kWh battery, purchased at a price of e5.406. This corresponds to an average price per kWh of
$120/kWh (BloombergNEF 2021) at an exchange rate of 0.877e/$. We use the battery wear data
provided in Han, Han, and Aki (2014) calibrated according to our battery price to derive the WDF (cf.
Table 3a). Energy prices are based on the hourly day-ahead spot market price for the 16.01.2021 and
17.01.2021 (ENTSOE 2021), linearly interpolated to fit 30-minute time steps. We scale the reported
prices according to the average European energy price of e0.2127 in 2020 (Eurostat 2021). As we
aim to capture potential charging trade-offs during off-service periods, our planning horizon starts
with the previous day’s end-of-operations (22:00), assuming an initially empty battery. The depot
is equipped with a set of six DC fast chargers. Additionally, each vehicle may be charged using its
on-board charger. We refer to Table 3b for details on the charging functions used.

4.6. Results and discussion
We conducted all of our experiments on a standard desktop computer equipped with an Intel(R)

Core(TM) i9-9900, 3.1 GHz CPU and 16 GB of RAM, running Ubuntu 20.04. We have implemented
the B&P algorithm in Python (3.8.11) using IBM CPLEX (Version 20.01) to solve the RMP. The
pricing problem is implemented in C++ (GCC 11.1.0). We considered solutions with a relative gap

Fleet size Planning horizon
length (days)

Time window
length (periods)

Charger
count

Total charger
capacity

Segment
count (Υ)

Segment
count (Φf)

Small 3 1 6 1 1 3 3

Base 12 2 4 2 6 4 3
Min 12 1 0 1 6 2 2
Max 68 5 8 6 12 8 8
Step 8 1 1 1 1 1 1

Table 2: Instance generation parameter values used in the numerical experiments.

78 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

(a) Considered WDF.
SoC Cost Unit cost

25% 1.59e 0.14e
50% 3.30e 0.15e
75% 5.20e 0.17e
100% 7.79e 0.23e
Avg. - 0.17e

(b) Considered charging functions.
Fast Slow

Time (minutes) SoC Time (minutes) SoC

72.32 34.90 435 45.0
92.6 42.49
120 45.00

Avg. rate 22.5 kW/h Avg. Rate 6.21 kW/h
Full charge 2 h Full charge 7.25 h

Table 3: Wear-cost density function and charging infrastructure considered in the case study.

of less than 0.0001 optimal and ran all our experiments in a single thread. We further limited the
computational time to 3600 seconds. Setup time is negligible and thus not reported. We refer to the
online Appendix for instances and detailed results.

4.6.1. Computational performance
We benchmark our algorithm against the MIP proposed in Appendix E on a set of 50 small instances,
generated according to Appendix F and the parameter values listed as small in Table 2. Table 4
summarizes our results and compares runtime, bounds, gap, size of the B&B tree, the total number
of instances, and the number of instances solved to optimality. As can be seen, the proposed B&P
algorithm outperforms the MIP on all instances, proving optimality in less than a second on average.

In the remainder of this section, we focus on the performance of our B&P algorithm on larger
instances. Here, we generate a total of 25 instances according to Appendix F, varying each parameter
in Table 2 separately, such that our study comprises a total of 1300 runs. Figure 6 summarizes our
results on these.
Impact of fleet size (Figure 6a): Our results indicate a linear increase in runtime with increasing fleet

size, which results from the number of subproblems scaling linearly with the number of vehicles.
Note that we keep the ratio of vehicles to charger capacity constant in this experiment to isolate
the effect of increasing fleet size.

Impact of planning horizon length (Figure 6b): Our results indicate a strong correlation between plan-
ning horizon length and the average runtime. We can attribute this to the computational
complexity of the pricing subproblem: longer planning horizons increase the network size linearly,

Avg. t[s] Avg. obj. Avg. LB Avg. #nodes #optimal #unsolved #total
Algorithm

Branch & Price 0.85 396.56 396.56 4.98 50 0 50
MIP 3600.00 397.46 114.74 2183022.26 1 2 50
Abbreviations hold as follows: t[s] - runtime in seconds, obj. - objective value, LB - lower bound, #nodes - size

of the B&B tree, #optimal - number of optimally solved solutions, #unsolved - number of instances where no
incumbent was identified, #total - total number of instances. Averages do not include unsolved instances.

Table 4: Aggregated results for the small benchmark instances.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 79

12 20 28 36 44 52 60 68

Fleet size

0

25

50

75

100

125

150

175

R
u

n
ti

m
e

(s
)

0%

20%

40%

60%

80%

100%

O
p

ti
m

al
(%

)

Avg. runtime (s)

Solved to optimality

(a) Runtime for varying fleet sizes.

1 2 3 4 5

Number of days

0

500

1000

1500

2000

2500

3000

R
u

n
ti

m
e

(s
)

0%

20%

40%

60%

80%

100%

O
p

ti
m

al
(%

)

Avg. runtime (s)

Solved to optimality

(b) Runtime for varying planning horizon length.

6 8 10 12

Charger capacity

0

10

20

30

40

50

R
u

n
ti

m
e

(s
)

0%

20%

40%

60%

80%

100%
O

p
ti

m
al

(%
)

Avg. runtime (s)

Solved to optimality

(c) Runtime for varying charger capacities.

1 2 3 4 5 6

Number of chargers (constant total)

0

500

1000

1500

2000

2500

3000

3500

R
u

n
ti

m
e

(s
)

0%

20%

40%

60%

80%

100%

O
p

ti
m

al
(%

)

Avg. Runtime (Scaling)

Avg. Runtime (Constant)

Optimal (Scaling)

Optimal (Constant)

(d) Runtime for varying numbers of distinct charger
types.

2 3 4 5 6 7 8

No. of segments of the piece-wise linear approximation

0

200

400

600

800

1000

1200

R
u

n
ti

m
e

(s
)

0%

20%

40%

60%

80%

100%

O
p

ti
m

al
(%

)

Avg. Runtime (charging functions)

Avg. Runtime (WDF)

Optimal (charging functions)

Optimal (WDF)

(e) Runtime for varying degree of approximation
quality.

0 1 2 3 4 5 6 7 8

Length of departure time window size (Periods)

0

10

20

30

40

50

60

70

R
u

n
ti

m
e

(s
)

0%

20%

40%

60%

80%

100%

O
p

ti
m

al
(%

)

Avg. runtime (s)

Solved to optimality

(f) Runtime for varying departure time
window size.

Note. Each gray dot represents a specific instance. The solid blue line corresponds to the average runtime
in seconds. The dashed orange line shows the percentage of instances where the algorithm did not prove
optimality within 3600 seconds.

Figure 6: Results for the large benchmark instances.

80 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

such that the number of generated labels increases exponentially in the worst case. Additionally,
longer planning horizons increase the probability of charger conflicts such that the number of
branches increases and more iterations are necessary to solve the individual B&B nodes.

Impact of charger capacity (Figure 6c): Here, the runtime decreases with increasing charger capacity.
This can be attributed to lower charger contention, which accelerates the convergence of both
the branch and bound and column generation procedures.

Impact of the number of charger types (Figure 6d): We consider a scaling and a constant setting to
isolate the effect of the number of charger types on runtime. In the scaling setting, we increase
the total charger capacity proportional to the number of chargers added, such that adding a
charger always increases the total number of available charging spots. In the constant setting, we
instead distribute the base case charger capacity across available chargers such that the total
capacity remains constant. In both experiments, the average runtime increases with the number
of chargers available as the size of the pricing network increases. When keeping the total capacity
constant, increasing the number of chargers also increases charger contention as vehicles compete
for more chargers with lower individual capacities. Together, these effects cause an exponential
runtime increase. Increasing the charger capacity proportional to the number of chargers weakens
both effects. Here, runtime scales linearly with the number of chargers.

Impact of approximation quality (Figure 6e): This experiment assesses the effect of increasing the
number of breakpoints, and thus the approximation quality, of our piecewise linear functions.
Recall that the number of created labels increases with the number of breakpoints of both the
WDF and the charging functions (cf. Sections 4.3.5 & 4.3.6). Nevertheless, the runtime of our
algorithm varies only slightly with increasing approximation quality. This underlines the strength
of our dominance criteria.

Impact of departure time window size (Figure 6f): By design of the time-expanded network, one would
expect a substantial increase in computation time with increasing departure time window length:
longer time windows add additional arcs and thus increase the number of feasible paths through
the network. Nevertheless, our algorithm scales well to longer time windows, and we observe only
a slight increase in runtime.

In conclusion, our algorithm manages to reliably solve instances with 68 vehicles or a planning
horizon of 5 days within an hour, allowing for day-ahead planning in practice.

Our last numerical experiment analyzes the impact of various B&P-related algorithmic enhancements
detailed in Section 4.4, i.e., partial pricing, node selection, and the primal heuristic. For this purpose,
we benchmark five different algorithmic configurations (cf. Table 5) on a set of 50 instances sampled

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 81
Algorithm PP PH NS Avg. t[s] Rel. t[s] Avg. #nodes Rel. #nodes

A1 FIFO 397.30 100.00% 7.46 100.00%
A2 FIFO 308.55 77.66% 6.42 86.06%
A3 FIFO 336.93 84.80% 4.48 60.05%
A4 Two-Stage 367.58 92.52% 6.74 90.35%
A5 Two-Stage 224.39 56.48% 2.9 38.87%
Abbreviations hold as follows: PP - partial pricing, PH - primal heuristic, NS - node selection rule,

Avg. t[s] - average runtime in seconds, Rel. t[s] - relative runtime compared to A1, #nodes - average
number of B&B nodes solved, Rel. t[s] - relative number of B&B nodes solved compared to A1.

Table 5: Analysis of the contribution of individual components

0 5 6 7 8 91 2 3 4

Time window length (hours)

0.00%

1.00%

2.00%

3.00%

4.00%

R
el

at
iv

e
ob

je
ct

iv
e

va
lu

e
(%

)

Total saving

Marginal saving

(a) Relative objective value savings.
Note. The solid blue line shows the total objective value
saving relative to the static scenario. The dashed orange
line shows the marginal saving.

0 5 6 7 8 91 2 3 4

Time window length (hours)

−2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

R
el

at
iv

e
co

st
co

m
p

on
en

t
va

lu
e

(%
)

Energy cost saving

Degradation cost saving

Excess departure SoC

85.0%

90.0%

95.0%

100.0%

105.0%

110.0%

115.0%

R
el

at
iv

e
ex

ce
ss

d
ep

ar
tu

re
S

oC
(%

)

(b) Cost components of relative savings.
Note. The solid blue and dashed orange lines show the
average energy and degradation cost savings compared
to the static scenario. The green line shows the average
excess departure SoC, i.e., the charge upon departure
beyond ∆SoCϑ averaged over all operations ϑ∈ Θ, relative
to the static scenario.

Figure 7: Results of the basecase experiment.

from those solved to optimality in our scalability experiment (cf. Table 2). Our results show that the
configurations utilizing our algorithmic enhancements outperform the unmodified B&P algorithm
on average. Here, the impact of partial pricing (A2) is strongest with a runtime improvement of
22.34%, followed by our primal heuristic (A3) with an improvement of 15.20%, and our node selection
rule (A4) with an improvement of 7.48%. The effect of these algorithmic components is additive: the
configuration that combines all components performs best, reducing runtime by 43.52% on average.

4.6.2. Managerial study
Impact on total cost savings This study aims to derive managerial insights on the impact of service

operation flexibility on total cost savings. For this purpose, we have run the developed algorithm on a
set of 50 realistic instances derived according to Section 4.5 with varying degrees of schedule flexibility,
resulting in a total of 500 runs. Figures 7a and 7b summarize our results.

82 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Figure 7a shows the average total and marginal objective value savings of instances with varying
time window lengths compared to the same instances with static departure times. We observe that
flexible service operations have an overall positive impact on the objective value. Specifically, allowing
a service time window of one hour already yields a cost saving of 2.5%. The marginal saving decreases
sharply with increasing flexibility, such that one hour of flexibility already exploits 50% of the savings
potential, while four hours of flexibility exploit 80%. The relative saving converges to 5% at nine hours
of flexibility.

Result 1. Flexible service operations have a positive impact on the total cost. The obtainable
savings increase with increasing flexibility, converging to maximum cost savings of 5%. Marginal
savings decrease with increasing time windows, such that one hour of flexibility already exploits 50%
of the savings potential, while four hours of flexibility yield 80% of the obtainable savings.

Figure 7b shows the impact of increasingly flexible service operations on the individual cost
components and excess departure SoC. Here, we observe a trade-off between battery degradation and
energy cost. Specifically, higher schedule flexibility allows utilizing periods with energy prices cheap
enough to outweigh additional battery degradation costs caused by cycling the battery at higher
SoC levels, such that energy costs decrease while average excess departure SoC, and thus battery
degradation costs, increase.

Result 2. Dynamic service operations allow utilizing the trade-off between battery degradation
cost and energy prices.

Impact of charger capacity We slightly adapt our instance generation procedure and limit charging
operations to the fast charger (Table 3b) to isolate the impact of integrated charge and service
operation scheduling on charging infrastructure utilization. Again, we generate 50 base instances on
which we then vary departure time window length and charger capacity, resulting in a total of 8.000
instances. Figures 8 & 9 illustrate the results of our charger capacity analysis.

Figure 8 shows the percentage of feasible instances for varying charger capacities and time window
lengths. Our scenario requires a minimum charger capacity of seven to support fleet operations
when planning service and charging operations separately. Integrated planning of charge and service
operations lowers the required charger capacity from seven to three, such that only 86% of the original
charger capacity is necessary with one hour of flexibility. A departure time window of three hours,
which amounts to half of the shift length, reduces the required capacity to 57%. Further doubling the
departure time window length yields an additional reduction of 14% to 43% of the basecase’s capacity.

Result 3. Integrated planning of charge and service operations reduces the amount of charging
infrastructure required for fleet operation but shows decreasing marginal benefits: one hour of flexibility
reduces the number of chargers required by 14%, three hours by 43%, and six hours by 57%.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 83

Figure 9 shows the total operational costs for varying charger capacities and time window lengths.
As we can see, both adding additional chargers and increasing service flexibility reduces the total
operational costs. Here, integrated planning has a stronger effect than increasing charger capacity.
Specifically, a departure time window of one hour already outperforms the static scenario, even when
doubling the number of available chargers such that a dedicated charger is available for each vehicle.
Moreover, with a charger capacity of eight, the total cost of static operations, two, and five hours
of planning flexibility amounts to e481.63, e464.21 (3.62% saving), and e459.50 (4.59% saving),
respectively. Increasing the charger capacity by four lowers these costs to e479.96, e463.65 (3.40%
saving), and e456.75 (4.83% saving), respectively. In comparison, the cost saving of adding four
additional chargers to a scenario with eight chargers amounts to 0.34%, 0.12%, and 0.60% for static
operations, two, and five hours of planning flexibility, respectively.

Result 4. Increasing either service operation flexibility or charger capacity lowers operational
costs. Here, increasing flexibility yields higher savings than additional investments into charging
infrastructure.

Generally, increasing the number of chargers available offsets total savings, such that the number
of chargers available limits the maximum cost savings obtainable through integrated planning: with
eight chargers, average savings converge to 4.62%, with 12 chargers, the maximum saving obtainable
is 4.84%, and reaches 5.37% when each vehicle has a dedicated charging spot.

Result 5. Charger capacity offsets the cost savings obtainable and thus limits the maximum cost
savings of integrated charge and service operation planning. With the minimum number of chargers
required in the static scenario, savings peak at 4.62%; increasing the charger capacity to 150% and
200% further increases peak savings to 4.84% and 5.37%, respectively.

3 6 92 70 5 81 4
Time window length (hours)

0%

20%

40%

60%

80%

100%

Fe
as

ib
le

 in
st

an
ce

s (
%

)

Charger capacity
1-2 Slots
3 Slot
4 Slot
5 Slot
6 Slot
7-16 Slots

Figure 8: Percentage of feasible instances for varying charger capacity and time window length.

84 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

0 5 74 6 8 91 2 3
Time window length (hours)

455

460

465

470

475

480

To
ta

l c
os

t (
)

Charger capacity: 8

0 5 74 6 8 91 2 3
Time window length (hours)

Charger capacity: 10

0 5 74 6 8 91 2 3
Time window length (hours)

Charger capacity: 12

0 5 74 6 8 91 2 3
Time window length (hours)

Charger capacity: 14

0 5 74 6 8 91 2 3
Time window length (hours)

Charger capacity: 16

Total cost of
static:
2 hours:
9 hours:

8 slots
8 slots
8 slots

10 slots
10 slots
10 slots

12 slots
12 slots
12 slots

14 slots
14 slots
14 slots

16 slots
16 slots
16 slots

Note. The dotted and dashed lines give the objective for different charger capacities assuming static time windows, a
time window size of two hours, and nine hours, respectively.

Figure 9: Objective value for varying charger capacity and time window length.

Impact of energy price distribution We modify the energy price distribution considered in our
basecase to investigate its effect on the cost savings obtainable through integrated charge and service
operation scheduling. Specifically, we draw energy prices from a normal distribution N (µ′ ·Υ, σ′ ·Υ),
where Υ gives the average unit wear cost of our WDF (cf. Table 3a). We consider scenarios with
high (µ′ := 2.0), medium (µ′ := 1.0), and low (µ′ := 0.5) energy rates. Analogously, we compare TOU
plans with high (σ′ := 0.1250), medium (σ′ := 0.0625), and low (σ′ := 0.0375) variance. We generate
instances with departure time windows of up to five hours in a full factorial design, such that our
study comprises a total of 4.950 runs.

Figure 10 compares the cost savings relative to statically scheduled service operations across time
windows of varying size and different values for µ′ and σ′, respectively. The mean energy price has an
offsetting effect on the total cost. Specifically, we observe an average 56.59% increase in total cost when
doubling energy prices. Energy rates discounted by 50% yield average savings of 28.23%. Regarding
the relative cost saving of adding additional flexibility, we observe the opposite effect. Here, relative
savings increase with lower mean energy price: with two hours of flexibility, the high, medium, and low
rate plans provide an average relative saving of 0.98%, 1.62%, and 2.12%, respectively. At five hours,
the average relative savings amounts to 1.18%, 1.95%, and 2.55%, respectively. The marginal saving is
unaffected by mean energy price: high, medium, and low rates each reach 80% of the maximum saving
at a time window length of two hours. This is related to the higher impact of battery degradation in
scenarios with a low mean energy price.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 85

0.0 5.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time window length (hours)

300

350

400

450

500

550

600

650

700

To
ta

l c
os

t (
)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Re
la

tiv
e

sa
vi

ng
 (%

)

′

0.5
1.0
2.0

(a) Impact of mean energy price (σ′ := 0.0625).

0.0 5.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time window length (hours)

420

425

430

435

440

445

450

To
ta

l c
os

t (
)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

Re
la

tiv
e

sa
vi

ng
 (%

)

′ : = 0.0375 ′ : = 0.0625 ′ : = 0.125

(b) Impact of energy price variance (µ′ := 1.0).
Note. Lines with round markers show the total cost. Lines with diamond markers show relative savings.

Figure 10: Results of the energy price experiment.

Result 6. The mean energy price offsets total cost. The impact of integrated charge and service
operations planning is most pronounced when battery degradation costs are relatively high.

Concerning the energy price standard deviation, we observe two effects: first, TOU plans with
highly variable energy prices lead to greater cost savings in the considered scenario. Specifically, the
TOU plans with high, medium, and low variance converge to a saving of 3.74%, 1.95%, and 1.12%,
respectively, such that the savings potential increases threefold under highly variable energy prices
compared to a rate plan with low variance. Second, the relative savings of additional service flexibility
increase with increasing variance. In other words, the higher the energy price variance, the higher the
impact of service flexibility.

Result 7. Integrated planning of charge and service operations provides the largest savings in
scenarios with highly variable energy prices. Specifically, doubling and quadrupling the energy price
variance roughly doubles and triples relative savings.

4.7. Conclusion
We presented a novel charge- and service operation scheduling problem where a fleet of electric
vehicles fulfills a set of service operations under the assumption of limited charging station capacity,
variable energy prices, battery degradation, and non-linear charging behavior. We developed an exact
algorithm based on B&P to solve the proposed problem. A novel labeling algorithm with efficient
dominance criteria, a primal heuristic, and a problem-specific branching rule establish the efficiency of
our algorithm, which we demonstrated in numerical experiments. This numerical study asserts the
competitiveness of our algorithm through a benchmark against an equivalent mixed-integer formulation,
showing that our algorithm significantly outperforms commercial solvers. This study further shows the

86 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

algorithm’s scalability to instances of larger size, optimally solving instances with planning horizons
of 5 days or 68 vehicles within the hour, allowing for day-ahead planning in practice. We further
derived several managerial insights concerning the impact of service flexibility. Specifically, we find
that integrated scheduling of charge and service operations allows to better utilize the trade-off
between battery degradation costs and energy price, such that cost savings of up to 5% can be realized.
Moreover, service flexibility reduces charger contention, allowing to reduce the number of chargers
installed by up to 57%. Finally, we analyze the impact of different TOU plans on the benefit of flexible
service operations. Here, we find that integrated charge and service operation scheduling performs
best in scenarios with highly variable energy rates.

The methodology developed in this work serves as a starting point for future research on charge
scheduling problems. Here, potential avenues include extending the B&P algorithm to a Branch-
Cut-and-Price framework, i.e., by deriving problem-specific cutting planes, heuristic approaches, and
integrating charge scheduling into a vehicle routing or scheduling problem.

Acknowledgments
This work was supported by the German Federal Ministry for Economic Affairs and Energy within the project

MILAS (01MV21020B).

References
Abdelwahed A, van den Berg PL, Brandt T, Collins J, Ketter W, 2020 Evaluating and Optimizing Opportunity

Fast-Charging Schedules in Transit Battery Electric Bus Networks. Transportation Science 54(6):1601–
1615.

Adler J, Mirchandani PB, 2016 The vehicle scheduling problem for fleets with alternative-fuel vehicles.
Transportation Science 51(2):441–456.

Alvo M, Angulo G, Klapp MA, 2021 An exact solution approach for an electric bus dispatch problem.
Transportation Research Part E: Logistics and Transportation Review 156:102528.

Batsyn MV, Batsyna EK, Bychkov IS, Pardalos PM, 2021 Vehicle assignment in site-dependent vehicle routing
problems with split deliveries. Operational Research 21(1):399–423.

Baum M, Dibbelt J, Gemsa A, Wagner D, Zündorf T, 2019 Shortest Feasible Paths with Charging Stops for
Battery Electric Vehicles. Transportation Science 53(6):1627–1655.

BloombergNEF, 2021 Long-term electric vehicle outlook. https://www.bloomberg.com/news/terminal/
QUFO0CDWRGGH, last accessed: 01.10.2022.

Boland N, Hewitt M, Marshall L, Savelsbergh M, 2019 The price of discretizing time: a study in service
network design. EURO Journal on Transportation and Logistics 8(2):195–216.

Boland N, Hewitt M, Marshall L, Savelsbergh M, 2020 The continuous-time service network design problem.
Operations Research 65(5):1303–1321.

Bruglieri M, Mancini S, Pisacane O, 2019 The green vehicle routing problem with capacitated alternative fuel
stations. Computers & Operations Research 112:104759.

Clark D, 2019 Delivering shipment zero, a vision for net zero carbon shipments. https://blog.aboutamazon.
com/sustainability/delivering-shipment-zero-a-vision-for-net-zero-carbon-shipments,
last accessed: 24.06.2019.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 87

Conrad RG, Figliozzi MA, 2011 The recharging vehicle routing problem. Doolen T, Van Aken E, eds.,
Proceedings of the 2011 Industrial Engineering Research Conference, 1–8 (Reno, NV).

Dabia S, Ropke S, van Woensel T, De Kok T, 2013 Branch and Price for the Time-Dependent Vehicle Routing
Problem with Time Windows. Transportation Science 47(3):380–396.

Desaulniers G, Errico F, Irnich S, Schneider M, 2016 Exact algorithms for electric vehicle-routing problems
with time windows. Operations Research 64(6):1388–1405.

Desrosiers J, Lübbecke ME, 2005 A Primer in Column Generation, 1–32 (Boston, MA: Springer US), ISBN
978-0-387-25486-9.

DPDHL, 2017 Mission 2050: Zero emissions. https://www.dpdhl.com/content/dam/dpdhl/en/
media-center/responsibility/dpdhl-flyer-gogreen-zero-emissions.pdf, accessed: 25.06.2019.

EEA, 2018 EEA report no 13/2018. Technical report, European Environment Agency.
ENTSOE, 2021 Spot market day-ahead prices. https://transparency.entsoe.eu/transmission-domain/

r2/dayAheadPrices/show, last accessed 17.01.2021.
Erdoǧan S, Miller-Hooks E, 2012 A green vehicle routing problem. Transportation Research Part E: Logistics

and Transportation Review 48(1):100–114.
Eurostat, 2021 Electricity Prices by type of user. https://strom-report.de/electricity-prices-europe/,

online data code: TEN00117, last accessed: 10.01.2022.
Foster BA, Ryan DM, 1976 An integer programming approach to the vehicle scheduling problem. Operational

Research Quarterly (1970-1977) 27(2):367.
Franco A, 2015 Rechargeable lithium batteries: from fundamentals to applications (Elsevier), ISBN 978-1-

78242-090-3.
Froger A, Jabali O, Mendoza JE, Laporte G, 2022 The Electric Vehicle Routing Problem with Capacitated

Charging Stations. Transportation Science 56(2):460–482.
Froger A, Mendoza J, Jabali O, Laporte G, 2019 Improved formulations and algorithmic components for the

electric vehicle routing problem with nonlinear charging functions. Computers & Operations Research
104:256–294.

Griffin L, 2021 ALtogether ElectricAL. https://www.addisonlee.com/addlib/
addison-lee-fully-electric-fleet-by-2023/, last accessed: 01.10.2022.

Guo F, Zhang J, Huang Z, Huang W, 2022 Simultaneous charging station location-routing problem for electric
vehicles: Effect of nonlinear partial charging and battery degradation. Energy 250:123724.

Han S, Han S, Aki H, 2014 A practical battery wear model for electric vehicle charging applications. Applied
Energy 113(113):1100–1108.

Juan A, Méndez C, Faulin J, Armas J, Grasman S, 2016 Electric Vehicles in Logistics and Transportation: A
Survey on Emerging Environmental, Strategic, and Operational Challenges. Energies 9:86.

Kok AL, Hans EW, Schutten JMJ, 2011 Optimizing departure times in vehicle routes. European Journal of
Operational Research 210(3):579–587.

Kullman ND, Froger A, Mendoza JE, Goodson JC, 2021 frvcpy: An Open-Source Solver for the Fixed Route
Vehicle Charging Problem. INFORMS Journal on Computing 33(4):1277–1283.

Lam E, Desaulniers G, Stuckey PJ, 2022 Branch-and-cut-and-price for the Electric Vehicle Routing Problem
with Time Windows, Piecewise-Linear Recharging and Capacitated Recharging Stations. Computers &
Operations Research 145:105870.

Lee C, 2020 An exact algorithm for the electric-vehicle routing problem with nonlinear charging time. Journal
of the Operational Research Society 71(1):1–24.

Liang Y, Dabia S, Luo Z, 2021 The Electric Vehicle Routing Problem with Nonlinear Charging Functions.
arXiv:2108.01273 [cs] .

Lin B, Ghaddar B, Nathwani J, 2021 Electric Vehicle Routing and Charging/Discharging under Time-Variant
Electricity Prices. Transportation Research Part C: Emerging Technologies 130:103285, arXiv: 2012.09357.

88 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Luo Z, Qin H, Zhu W, Lim A, 2017 Branch and Price and Cut for the Split-Delivery Vehicle Routing Problem
with Time Windows and Linear Weight-Related Cost. Transportation Science 51(2):668–687.

Lyft, 2021 Leading the Transition to Zero Emissions: Our Commitment to 100% Electric Vehicles by 2030.
https://www.lyft.com/blog/posts/leading-the-transition-to-zero-emissions, last accessed:
10.01.2022.

Marra F, Fawzy YT, Bülo T, Blažic B, 2012 Energy storage options for voltage support in low-voltage grids
with high penetration of photovoltaic. 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe
(ISGT Europe), 1–7.

Montoya A, Guéret C, Mendoza J, Villegas J, 2017 The electric vehicle routing problem with nonlinear charging
function. Transportation Research Part B: Methodological 103(103):87–110.

Olsen N, 2020 A literature overview on scheduling electric vehicles in public transport and location planning of
the charging infrastructure (Freie Universität Berlin).

OpenEI, 2022 Utility rate database. https://apps.openei.org/USURDB/, last accessed: 01.07.2022.
Parmentier A, Martinelli R, Vidal T, 2021 Mobility-on-Demand with Electric Vehicles: Scalable Route and

Recharging Planning through Column Generation. arXiv:2104.03823 [math] .
Pelletier S, Jabali O, Laporte G, 2018 Charge scheduling for electric freight vehicles. Transportation Research

Part B: Methodological 115(115):246–269.
Pelletier S, Jabali O, Laporte G, Veneroni M, 2017 Battery degradation and behaviour for electric vehicles:

Review and numerical analyses of several models. Transportation Research Part B: Methodological
103:158–187.

Reniers JM, Mulder G, Howey DA, 2019 Review and performance comparison of mechanical-chemical
degradation models for lithium-ion batteries. Journal of The Electrochemical Society 166(14):A3189–
A3200.

Rodriguez F, Hildermeier J, Jahn A, 2020 Electrifying eu city logistics. Technical report.
Sassi O, Oulamara A, 2014 Simultaneous electric vehicles scheduling and optimal charging in the business

context: Case study. IET Conference Proceedings, volume 5, 6.3–6.3(1) (Institution of Engineering and
Technology).

Sassi O, Oulamara A, 2016 Electric vehicle scheduling and optimal charging problem: complexity, exact and
heuristic approaches. International Journal of Production Research 55(2):519–535.

Schiffer M, Klein PS, Walther G, Laporte G, 2021 Integrated planning for electric commercial vehicle fleets: A
case study for retail mid-haul logistics networks. European Journal of Operational Research 291(3):944–
960.

Schiffer M, Schneider M, Walther G, Laporte G, 2019 Vehicle routing and location-routing with intermediate
stops: A review. Transportation Science 53(2):319–343.

Schiffer M, Walther G, 2018 An adaptive large neighborhood search for the location-routing problem with
intra-route facilities. Transportation Science 52(2):331–352.

Schneider M, Stenger A, Goeke D, 2014 The electric vehicle-routing problem with time windows and recharging
stations. Transportation Science 48(4):500–520.

Stavropoulou F, 2022 The Consistent Vehicle Routing Problem with heterogeneous fleet. Computers &
Operations Research 140:105644.

Taefi TT, 2016 Viability of electric vehicles in combined day and night delivery: a total cost of ownership
example in germany. European Journal of Transport & Infrastructure Research 16(4):512–553.

Tremblay O, Dessaint L, Dekkiche A, 2007 A generic battery model for the dynamic simulation of hybrid
electric vehicles. 2007 IEEE Vehicle Power and Propulsion Conference, 284–289.

van Kooten Niekerk ME, van den Akker JM, Hoogeveen JA, 2017 Scheduling electric vehicles. Public Transport
9(1):155–176.

Wen M, Linde E, Ropke S, Mirchandani P, Larsen A, 2016 An adaptive large neighborhood search heuristic
for the Electric Vehicle Scheduling Problem. Computers & Operations Research 76:73–83.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 89

Wolsey LA, 1998 Integer programming, volume 52 (John Wiley & Sons), 1st edition.
Yao E, Liu T, Lu T, Yang Y, 2020 Optimization of electric vehicle scheduling with multiple vehicle types in

public transport. Sustainable Cities and Society 52.
Zang D, Ling J, Wei Z, Tang K, Cheng J, 2019 Long-term traffic speed prediction based on multiscale

spatio-temporal feature learning network. IEEE Transactions on Intelligent Transportation Systems
20:3700–3709.

Zang Y, Wang M, Qi M, 2022 A column generation tailored to electric vehicle routing problem with nonlinear
battery depreciation. Computers & Operations Research 137:105527.

90 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Appendix A: Counterexample

Straightforwardly adopting the labeling algorithms proposed in Baum et al. (2019) and Froger et al.
(2019) to our problem setting yields an algorithm with a slightly modified label representation.
Specifically, cost profiles track only the last visited station in these works. Accordingly, intermediate
charging is not possible such that realizing a charging opportunity at i when propagating ℓ along (i, j)
creates new labels according to the station replacement operation (Section 4.3.5) only. Specifically,
the algorithm creates a set of new labels {ℓ f(i)←

(i,j)
c | ∀c∈B(ψℓ)}∪ {ℓ ←

(i,j)
/} based on the breakpoints of

cost profile ψℓ at target vertex j.
The following example illustrates a case where this approach does not yield an optimal solution:

consider a planning horizon of two periods P1,P2 of duration ξ = 5 with energy prices eP1 = 10c and
eP2 = c, a single service operation with consumption q, and a single charger f with constant charging
rate q

8 . For the sake of simplicity, we ignore battery degradation in this example and assume zero fixed
costs for each arc in the time-expanded network. The optimal path through this network spends 3 · 10c
on charging at vertex (P1, f) and 5 · c at (P2, f), such that the minimal cost is 3 · 10c+ 5 · c. According
to (Baum et al. 2019, Froger et al. 2019), a visit to vertex (P1, f) generates a single label with cost
profile ψℓ1(c) = c

10∀c∈ [0,5]. Realizing the second charging opportunity at vertex (P2, f) then creates
two labels, one for each breakpoint of ψℓ1 , i.e., ℓ2 := ℓ1

f(i)←
(i,j)

0 and ℓ3 := ℓ1
f(i)←
(i,j)

5 ·10c. Here, ℓ2 is infeasible
as qmax(ψℓ2) = 5

8q < q and ℓ3 is not optimal: ψ−1
ℓ3 (q) = 5 · 10c+ 3c > 3 · 10c+ 5c.

Appendix B: Proofs

Proposition 4. The slope of a cost profile ψℓ′ obtained from ℓ′ := ℓ ←
(i,j)

τ can only be negative at
c∈ [cmin(ψℓ′), cmax(ψℓ′)] if for q′ := Φf(i)(Φ−1

f(i)(ψ−1
ℓ′ (c))− τ), ̸

ψ−1
ℓ

(q′)< ̸
ψ−1
i,j

(q′) holds.

Proof: we first observe that Term 12.1 is never negative as Φf(i) is piecewise linear and concave,
which, together with Φ−1

f(i)(q)− τ ≤Φ−1
f(i)(q), implies ̸ Φf(i)(Φ

−1
f(i)(q)− τ)≥ ̸ Φf(i)(Φ

−1
f(i)(q)):

̸ Φf(i)(Φ
−1
f(i)(q)− τ) · ̸ Φ−1

f(i)
(q) =

̸ Φf(i)(Φ
−1
f(i)(q)− τ)

̸ Φf(i)(Φ
−1
f(i)(q))

≥ 1.

As ̸
ψ−1
i,j

is non-negative, we have ̸
ψ−1
ℓ′

(q′)< 0, which implies ̸
ψ−1
ℓ

(q′)< ̸
ψ−1
i,j

(q′). □

Proposition 5. For any c on a decreasing segment [c′, c′ + ϵ] with ϵ > 0 of some cost profile ψℓ′
obtained from ℓ′ := ℓ ←

(i,j)
τ , there exists some ℓ′′ ∈Lj \ {ℓ′} such that ψℓ′′(c)≥ ψℓ′(c).

Proof: let there be some c where ψℓ′ is decreasing. Further let q := ψ−1
ℓ′ (c). Since ψℓ′ is decreasing on

[c′, c′ +ϵ], we have cmin(ψℓ′)< c< cmax(ψℓ′) such that there exists some ℓ′′ := ℓ
f(i)←
(i,j)

c′′ with qmax(ψℓ′′) = q.
As we have ̸

ψ−1
ℓ

(q′)< ̸
ψ−1
i,j

(q′) for q′ := ψ−1
ℓ′′ (c′′) (Proposition 4), we can apply the same reasoning as

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 91

in the proof of Theorem 2 (Case 2.2) and argue that there exists some set of labels L′ ⊆Lj \ {ℓ′} such
that L′ ≥ ψℓ′(c).

□

Theorem 2. For any charging arc (i, j) and label ℓi ∈Li, the set of labels

L′ := {ℓj , ℓi ←
(i,j)

ξ}∪ {ℓi
f(i)←
(i,j)

c | ∀c∈B(ψℓi)},

with ℓj := ℓi ←
(i,j)

/ dominates any label

ℓ′ ∈ {ℓi
f(i)←
(i,j)

c | c∈ [cmin(ψℓi), cmax(ψℓi)]}∪ {ℓi ←(i,j) τ | 0≤ τ ≤ ξ} \L
′.

Proof: assume the contrary, i.e., that there exists some ℓ′ not dominated by L′. Then there exists
some c∈R such that ψℓ′(c)>maxℓ′′∈L′{ψℓ′′(c)}.
Case 1: c < cmin(ψℓ′).

Then ψℓ′(c) =−∞≤maxψℓ′′ ∈L′{ℓ′′(c)} holds by definition.
Case 2: cmin(ψℓ′)≤ c≤ cmax(ψℓ′).

W.l.o.g., we assume ℓ′ = ℓi
f(i)←
(i,j)

c′ for some c′ and let c′
j := c′ + ci,j and q′ := ψℓi(c′) = ψℓj (c′

j). Recall
from Section 4.3.5 that

ψℓ′(c) = ψℓi(c
′) + ci,j + ∆c−1

p(i),f(i)⟨q′⟩(c− ci,j − c′)

= ψℓj (c
′
j) + ∆c−1

p(i),f(i)⟨q′⟩(c− ci,j − c′)

= ψℓj (c
′
j) + ∆c−1

p(i),f(i)⟨q′⟩(c− c′
j).

Case 2.1: ̸ ψℓj (c
′
j)≥ ̸ ψ→

i,j
(c′
j).

Let ℓ′′ := ℓi
f(i)←
(i,j)

c′′, with c′′ = min{c | c∈B(ψℓi)∧ c≥ c′}, and let c′′
j := c′′ + ci,j such that

ψℓ′′(c) = ψℓi(c
′) + ci,j + ∆c−1

p(i),f(i)⟨q′′⟩(c− ci,j − c′′)

= ψℓj (c
′′
j) + ∆c−1

p(i),f(i)⟨q′′⟩(c− ci,j − c′′)

= ψℓj (c
′′
j) + ∆c−1

p(i),f(i)⟨q′′⟩(c− c′′
j).

We argue that ℓ′′ exists and ℓ′′ ∈L′ holds since c′ ∈ [cmin(ψℓi), cmax(ψℓi)].
Case 2.1.1: cmin(ψℓ′)≤ c≤ cmin(ψℓ′′).

Then we have cmin(ψℓj)≤ c < cmin(ψℓ′′)≤ cmax(ψℓj). From the definition of ℓ′′, it further
follows that ̸ ψℓj is constant on [c′

j , c]. Hence, we get

ψℓj (c) = ψℓj (c
′
j) +ψℓj (c)−ψℓj (c′

j)

92 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

= ψℓj (c
′
j) + ̸ ψℓj (c

′
j) · (c− c′

j)
(⋆)
≥ ψℓj (c

′
j) + ̸ ψi,j (c

′
j) · (c− c′

j)

= ψℓ′(c),

which contradicts our assumption. Here, (⋆) holds as ̸ ψℓj (c
′
j)≥ ̸ ψ→

i,j
(c′
j).

Case 2.1.2 : cmin(ψℓ′′)< c≤ cmax(ψℓ′).
We note that ∆q := ψℓ′′(c′′

j)−ψℓ′(c′′
j) ≥ 0 holds by Case 2.1.1, such that it holds

that ∆c := ψ−1
ℓ′ (q′′)− c′′

j ≥ 0. Hence, for c < c′′
j + ∆c, we have ψℓ′′(c) ≥ ψℓ′(c) since

∆c−1
p(i),f(i)⟨q⟩(·) are concave for q ∈ [SoCmin,SoCmax] (cf. Section 4.3.5). Using the same

argument for inequality (⋆), we get the following for c≥ c′′
j + ∆c:

ψℓ′(c) = q′ + ∆c−1
p(i),f(i)⟨q′⟩(c− c′

j)

= q′′ + ∆c−1
p(i),f(i)⟨q′′⟩(c− (c′′

j + ∆c))
(⋆)
≤ q′′ + ∆c−1

p(i),f(i)⟨q′′⟩(c− c′′
j)

= ψℓ′′(c),

which contradicts the assumption. See Figure 11a for an illustration.
Case 2.2: ̸ ψℓj (c

′
j)< ̸ ψ→

i,j
(c′
j).

Let ℓ′′ := ℓi
f(i)←
(i,j)

c′′, with c′′ = max{c | c ∈ B(ψℓi) ∧ c ≤ c′}, and let c′′
j := c′′ + ci,j such that

ψℓ′′(c) = ψℓj (c′′
j) + ∆c−1

p(i),f(i)⟨q′′⟩(c− c′′
j).

Case 2.2.1: ψℓ′(c)≤ qmax(ψℓ′′).
It follows from the definition of ℓ′′ that ̸ ψℓj is constant on [c′

j , c
′′
j]. Then, analogous to

Case 2.1.1, we have

ψℓ′′(c′
j) = ψℓ′′(c′′

j) +ψℓ′′(c′
j)−ψℓ′′(c′′

j)
(⋆)
≥ ψℓ′′(c′′

j) + ̸ ψ→
i,j

(c′
j) · (c′

j − c′′
j)

(⋆⋆)
≥ ψℓ′′(c′′

j) + ̸ ψℓj (c
′
j) · (c′

j − c′′
j)

(⋆⋆⋆)= ψℓ′(c′′
j) + ̸ ψℓj (c

′
j) · (c′

j − c′′
j)

= ψℓ′(c′
j).

Here, (⋆) follows from the concavity of ψ→
i,j , i.e., ̸ ψ→

i,j
(c′′
j)≥ ̸ ψ→

i,j
(c′
j), (⋆⋆) follows from

̸ ψℓj (c
′
j)< ̸ ψi,j (c′

j), and (⋆ ⋆ ⋆) holds since ̸ ψℓj is constant on [c′′
j , c

′
j] by the definition

of c′
j and c′′

j .

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 93

Concluding, ∆q := ψℓ′′(c′
j)− q′ ≥ 0 holds, which implies ∆c := ψ−1

ℓ′ (ψℓ′′(c′
j)) −

ψ−1
ℓ′ (q′)≥ 0, such that, analogous to Case 2.1.2, we get ψℓ′′(c)≥ ψℓ′(c) for c+ ∆c < c′

j

due to the concavity of ∆c−1
p(i),f(i)⟨q⟩(·) (cf. Section 4.3.5). Furthermore, for c+ ∆c≥ c′

j ,
it holds that

ψℓ′′(c) = q′′ + ∆c−1
p(i),f(i)⟨q′′⟩(c− c′

j)

= q′ + ∆c−1
p(i),f(i)⟨q′⟩(c− c′

j + ∆c)

≥ q′ + ∆c−1
p(i),f(i)⟨q′⟩(c− c′

j)

= ψℓ′(c),

which contradicts the assumption. See Figure 11b for an illustration.
Case 2.2.2: ψℓ′(c)> qmax(ψℓ′′).

Let ℓξ := ℓi ←
(i,j)

ξ and q := ψℓ′(c). Further let ℓ′′′ := ℓi
f(i)←
(i,j)

c′′′ such that qmax(ψℓ′′′) = q.
The existence of ℓ′′′ follows straightforwardly from c≤ cmax(ψℓ′) and the existence of
ℓ′. Let c′′′

j := c′′′ + ci,j and q′′′ := ψℓ′′′(c′′′
j). Note that c′′ ≤ c′′′ ≤ c′, and thus c′′

j ≤ c′′′
j ≤ c′

j ,
since the definition of c′′ implies that ̸ ψℓi is constant on [c′′, c′]. Hence, analogous to
Case 2.2.1, we get ψℓ′′′(c)≥ ψℓ′(c). With this in mind, we recall from Equation 8 that

ψ−1
ℓ′′′ (q) = ψ−1

ℓ′′′ (qmax(ψℓ′′′)) = c′′′
j + ∆cp(i),f(i)⟨q′′′⟩(Φf(i)(q′′′, ξ)− q′′′)

= ψ−1
ℓj

(q′′′) + ∆cp(i),f(i)⟨q′′′⟩(Φf(i)(q′′′, ξ)− q′′′)

= ψ−1
ℓi

(q′′′) + ci,j + ∆cp(i),f(i)⟨q′′′⟩(Φf(i)(q′′′, ξ)− q′′′).

Recall that q := ψℓ′(c) = Φf(i)(q′′′, ξ), such that substituting q yields

ψ−1
ℓi

(q′′′) + ci,j + ∆cp(i),f(i)⟨q′′′⟩(Φf(i)(q′′′, ξ)− q′′′)

= ψ−1
ℓi

(q′′′) + ci,j + ∆cp(i),f(i)⟨q′′′⟩(q− q′′′)
(⋆)= ψ−1

ℓi
(q′′′) + ci,j + (∆cp(i),f(i)⟨0⟩(q)−∆cp(i),f(i)⟨0⟩(q′′′))

= ψ−1
ℓi

(q′′′) + ci,j + (ψ−1
i,j (q)−ψ−1

i,j (q′′′))

= ψ−1
ℓξ

(q).

Here, (⋆) holds since

∆cp(i),f(i)⟨q′′′⟩(q− q′′′) = ep · (q− q′′′) + Υ(q′′′, q′′′ + q− q′′′)

= ep · (q− q′′′) + Υ(q′′′ + q− q′′′)−Υ(q′′′)

94 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Cost

SoC

−∞

ψ ℓ
j

ψℓ
′′

ψℓ
′

∆c

∆q

q′′

c′′
j ψℓ′

−1(q′′)

q′

c′
j

(a) ̸ ψℓj
(c′
j)≥ ̸ ψi,j

(c′
j)

(Case 2.1).
Note. ∆c corresponds to the addi-
tional cost incurred by using vertex
i to recharge up to the SoC at which
ℓ′′ stops charging using the charging
opportunity captured by the previ-
ous label. As the previous charging
opportunity provides a lower price,
∆c is positive.

Cost

SoC

−∞

ψ ℓ j

ψ ℓ
′

ψ ℓ
′′

q′

c′
j

q′′

c′′
j

ψ
ℓ′

′ (c
′ j)

ψ−1
ℓ′ (ψℓ′′(c′

j))

∆q

∆c

(b) ̸ ψℓj
(c′
j)< ̸ ψi,j

(c′
j),

ψℓ′(c)≤ qmax(ψℓ′′) (Case 2.2.1).
Note. Here, ∆c corresponds to the
cost saved by using i to charge up
to the arrival SoC of ℓ′ at j. ∆c is
positive as station i provides a lower
charging price in this case.

Cost

SoC

−∞

ψ ℓ j

ψ ℓ
′

ψ ℓ
′′

ψℓξ

ψℓ′′′2ψℓ′′′1

c1

q2

c2

q1

q′

c′
j

q′′

c′′
j

(c) ̸ ψℓj
(c′
j)< ̸ ψi,j

(c′
j),

ψℓ′(c)> qmax(ψℓ′′) (Case 2.2.2).
Note. c1 and c2 provide example
values for c. The red dashed lines il-
lustrate the corresponding cost pro-
files ψℓ′′′

1
and ψℓ′′′

2
, respectively. The

green profile illustrates charging in-
termediately. Note that, for the sake
of simplicity, we show only the seg-
ment of ψℓξ relevant to this proof.

Figure 11: Illustration of cases 2.1 and 2.2 in the proof of Theorem 2.

= ep · (q− q′′′) + Υ(q)−Υ(q′′′)

= (ep · q+ Υ(q)−Υ(0))− (ep · q′′′ + Υ(q′′′)−Υ(0))

= (ep · q+ Υ(0, q))− (ep · q′′′ + Υ(0, q′′′))

= ∆cp(i),f(i)⟨0⟩(q)−∆cp(i),f(i)⟨0⟩(q′′′).

Concluding, we have ψ−1
ℓξ

(q) = ψ−1
ℓ′′′ (q) and ψℓ′′′(c)≥ ψℓ′(c) such that ψ−1

ℓξ
(q) = ψ−1

ℓ′′′ (q)≤
ψ−1
ℓ′ (q), which contradicts the assumption. See Figure 11c for an illustration.

Case 3: c≥ cmax(ψℓ′).
Case 2 implies that ∃ℓ′′ ∈L′ : ψℓ′′(cmax(ψℓ′))≥ qmax(ψℓ′). Hence, as ψℓ′(c) = qmax(ψℓ′) by definition,
we get ψℓ′′(cmax(ψℓ′))≥ qmax(ψℓ′), which contradicts the assumption.

Concluding, for any c∈R, there exists a ℓ′′ ∈L′, such that ψℓ′′(c)≥ ψℓ′(c). Hence, maxℓ′′∈L′{ℓ′′(c)} ≥
ψℓ′(c), and Theorem 2 holds. □

Proposition 6. Let σ be a fractional basic feasible solution to the RMP. Then it holds that
∃(p, f)∈P ×F such that ∑

xkω∈σ x
k
ωA

ω
p,f =Cf , and there exist at least two xkω ∈ σ with 0<xkω < 1.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 95

Proof: Assume the contrary, i.e., that there exists schedules ω1, . . . , ωn in basic feasible
σ = (xk1

ω1 , . . . , x
kn
ωn

) with 0 < xkω < 1, and
∑
xkω∈σ x

k
ωA

ω
p,f < Cf . Let k′ ∈ K such that ∃ωi, ωj ∈ Ak′

with i ̸= j and 0 < xk
′
ωi
≤ xk

′
ωj
< 1 in σ. Here, convexity Constraints (2c) ensure the existence of

such ωi and ωj. As charger capacity Constraints (2b) are non-binding, there exists ϵ > 0 such that
σ′ = (xk1

ω1 , . . . , x
k′
ωi

+ ϵ, . . . , xk
′
ωj
− ϵ, . . . , xknωn) is feasible. This implies that σ is not basic and thus contra-

dicts the assumption. □
Appendix C: Fundamentals

The following sections detail the methodology behind and the derivation of charging functions Φf

and WDF Υ̃: we first provide an overview of the electro-chemical fundamentals of the charging
process and discuss a charging scheme that prevents overcharging and thus critically damaging
the battery’s internals in Section C.1. Afterwards, we show how to model this charging scheme in
functions Φf (Section C.2). Finally, Section C.3 details how we capture battery health considerations
in our optimization problem. For an in-depth review of battery modeling for ECVs in particular and
electro-chemical cells in general, we refer to Pelletier et al. (2017) and Franco (2015).

C.1. The Constant Current-Constant Voltage charging scheme

A battery’s capacity can be measured in several units: Ampere-hours, Coulombs, and kWh, each proper
in different application cases. To avoid confusion arising from handling these technicalities in the
remainder of this section, we use the concept of SoC, which expresses the battery’s unit-independent
state of charge relative to its nominal capacity, i.e., a SoC of 0% corresponds to an empty and a SoC
of 100% to a full battery.

Most electric vehicles use Lithium-ion (Li-Ion) batteries for energy storage. These are commonly
charged with a constant current - constant voltage (CC-CV) charging scheme to prevent critically
damaging the battery’s internals by overcharging. This process is best understood using the battery
model developed in Tremblay, Dessaint, and Dekkiche (2007) and Zang et al. (2019), which is specifically
tailored to ECV applications. Tremblay, Dessaint, and Dekkiche model the battery as a controlled
voltage source in series with a resistor (see Figure 12), which allows expressing the dynamics of the
charging process as:

Vterm(SoC) := VOC(SoC) +R · I. (15)

Equation (15) states the relationship between terminal voltage (Vterm(SoC)), which refers to the
voltage measured across the battery’s terminals during the charging process, the open-circuit voltage
(VOC(SoC)), which corresponds to the terminal voltage in a disconnected state, and the charging
current I. The battery’s internal resistance is denoted by R and varies with several exogenous factors,
e.g., temperature, load, and battery age. For the sake of simplicity, we assume this resistance to be

96 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

constant (cf. Pelletier et al. (2017)).
The open circuit voltage, VOC(SoC), increases (non-linearly) with the battery’s SoC and is often
used as an indicator of the battery’s charge level. In practice, VOC(SoC) is often approximated using
Equation (16), parameterized with experimental data (cf. Marra et al. 2012, Pelletier et al. 2017):

VOC(SoC(t)) :=E0−
K

SoC(t) +A exp(−BQ(1− SoC(t))). (16)

Here, E0 denotes the battery’s constant voltage, Q corresponds to the battery’sä capacity in ampere-
hours, A and B are parameters, and K is the polarization voltage. To prevent damaging the battery’s
electrodes, the charging current I and the terminal voltage Vterm(SoC) must remain within charger
and battery-dependent bounds Imax and V max

term, respectively. Usually, the maximum terminal voltage
V max
term lies well below Vterm(100%) = VOC(100%) +R · Imax and is hence exceeded before the battery is

fully charged. To respect this voltage threshold, the CC-CV charging scheme is as follows: first the
charging current I is held constant at Imax in the CC charging phase until Vterm(SoC) reaches V max

term,
at which point the CV charging phase begins. Here, the charging current I is steadily reduced such
that Vterm(SoC) remains at but does not exceed V max

term. The constant voltage (CV) phase ends when
the charging current drops below manufacturer recommendations. The SoC evolution over time during
CC-CV charging is thus non-linear and concave.

C.2. Modeling CC-CV charging

We capture the charger-specific non-linear behavior of the CC-CV charging process in charging
functions Φf (τ), which map the time spent charging at charger f to the resulting SoC when charging
with an initially empty battery. In what follows, we describe how to derive Φf (τ) from battery and
charger specifications. Let Ifmax be the maximum charging current of charger f and τ fCV be the point
in time where the CV phase of charger f begins. We can then express Φf using auxiliary functions

.
Figure 12: Circuit diagram of the battery model developed in Tremblay, Dessaint, and Dekkiche (2007)

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 97

ΦCC
f (τ) and ΦCV

f (τ), which correspond to the CC and CV phases of the charging process, respectively,
in Equations (17a)-(17d):

ΦCC
f (τ) := Φf (0) + Ifmax · τ

Q
, (17a)

VCC := VOC(SoC(τ)) +R · 3600 ·Q · ∂ΦCV
f (τ)
∂τ

, (17b)

∂ΦCV
f (τ)
∂τ

:=
VCC −VOC(ΦCV

f (τ))
R · 3600 ·Q , (17c)

Φ̃f (τ) :=
{

ΦCC
f (τ) if τ ≤ τ fCV

ΦCV
f (τ) otherwise. (17d)

Solving Equations (17a)-(17d), we obtain an accurate model of the charging process, which we can
easily incorporate into our planning problem. We note that Φ̃f is concave for realistic charger models
and, without loss of generality, extend the definitions of Φ̃f and Φ̃f

−1
to avoid edge cases in the main

body of this work. Equations (18) and (19) state the final definitions.

Φf (τ) :=

Φ̃f if τ ≤ 0
Φ̃f (τmax) if τ ≥ τmax

Φ̃f (τ) otherwise.
(18) Φ−1

f (β) :=

0 if β ≤ Φ̃f (0)
τmax if β ≥ Φ̃f (τmax)
Φ̃f

−1
(β) otherwise.

(19)

Here, τmax represents the point in time at which the charging current falls below manufacturer recom-
mendations. We assume that τmax is finite, such that there exists some τmax > 0 with Φf (τmax) = SoCmax.
Finally, we note that Φf are continuous functions and that the main body of this work, in line with
Pelletier et al. (2017), Montoya et al. (2017), and Froger et al. (2019), instead uses Φf to refer to the
piecewise linear approximation of Φf .

C.3. Battery degradation

The CC-CV charging scheme prevents critically damaging a battery through overcharging. However,
overcharging is not the only cause of accelerated degradation. More precisely, the magnitude of
battery degradation resulting from (dis-)charging depends on (endogenous) factors such as cycle depth,
charging current, and residual SoC. Hence, different charge scheduling decisions have different impacts
on battery life. In fact, there exists a trade-off between utilization and battery degradation, that
an operator can use to her advantage. Capturing this trade-off requires quantifying the impact of
charge scheduling decisions on battery health in an analytical model. Such models take one of two
approaches: they either model battery wear based on the underlying electro-chemical processes, or
pursue an empirical approach based on experimental data (cf. Reniers, Mulder, and Howey 2019).
As data required to parameterize the former is often unavailable and may vary between individual

98 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

cells, we rely on an empirical approach to quantify battery degradation. To this end, we follow the
approach from Pelletier, Jabali, and Laporte (2018) and base our model on the work of Han, Han,
and Aki (2014).

Han, Han, and Aki (2014) relate battery price to cycle life specifications supplied by manufacturers,
specifically to the depth of discharge - achievable cycle count (DOD-ACC) curve. Each point on the
DOD-ACC curve, ACC(D), corresponds to the number of cycles achievable before the battery becomes
unusable when it is cycled at the respective depth of discharge (DoD). For instance, ACC(20%) = 2500
indicates that the battery can be discharged from 100% to 80% and then recharged back to 100% SoC
2500 times before capacity and power fade render it ineffective.

The DOD-ACC function establishes a relationship between battery life and price: dividing the
battery price by the total energy transferred over ACC(D) cycles gives the average wear cost of
(dis-)charging when cycling the battery at a DoD of D, denoted AWC(D). However, the average
wear cost function is only of limited use as it is only valid if the battery is always cycled in the same
fashion, i.e., from 100% SoC to 1−D and back to 100%. Han, Han, and Aki (2014) address this issue
by combining n (equidistant) points on the DOD-ACC curve according to the following methodology:
let S := [S1, . . . , Sn] be the SoC values corresponding to the given DOD-ACC points and let

Q(s) :=ACC(1− s) · 2 · (1− s) ·C (20)

denote the total amount of energy transferred when cycling a battery with capacity C to a SoC of s.
For the highest SoC segment Sn, the battery price cbat must equal the wear cost Υ̃(Sn) of energy
charged on the segment [Sn,100%], multiplied by the total amount of energy transferred over the
battery’s lifespan when cycling at D= 1−Sn. Equation (21) formalizes this relationship:

cbat =Q(Sn) · Υ̃(Sn). (21)

Each charging cycle at a DoD of 1−Sn−1 also cycles the battery at 1−Sn. Hence, the average wear
cost must be at least Υ̃(Sn). Formally, we have AWC(1−Sn−1) = Υ̃(Sn) + ϵ for some ϵ > 0. We thus
have AWC(1−Si) =

∑n
j=i Υ̃(Sj) by induction, i.e., the average wear cost corresponds to the sum of

wear costs incurred on all utilized segments. Hence, we can generalize Equation (21) to Equation (22):

cbat =Q(Si) · (
n∑

j=i
Υ̃(Sj)). (22)

Equation (22) yields a linear equation system of size n, which can be solved for Υ̃(s) at discrete points
s∈ {S1, . . . , Sn} (cf. Han, Han, and Aki 2014). Setting Υ̃(s) := Υ̃(Si) for s∈ [Si, Si+1],0≤ i < n finally
yields a piecewise constant function, called the wear density function, which gives the unit cost of

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 99

charging at a certain SoC. We utilize this function to compute the (cumulative) wear density function,
denoted by Υ : SoC 7→ cost. Specifically, we obtain Υ by integrating Υ̃, which yields a convex piecewise
linear function stating the total cost of charging an initially empty battery up to a certain SoC.

Appendix D: Implementation details

Algorithm 1: Label setting search
1 Initialization:
2 Lunss− := {ℓs−};
3 Q := {s−};
4 while Q.notEmpty() do
5 i :=Q.pop();
6 ℓ := extract_min(Lunsi);
7 if i= s+ then
8 return cmin(ψℓ);
9 if ∃ℓ′ ∈Lseti , ℓ′ ⪰ ℓ then

10 continue;
11 for (i, j)∈ Ek do
12 if (i, j) /∈ EkF then
13 Lnew := {ℓ ←

(i,j)
/};

14 else
// Track charging decisions in period p(i)

15 Lnew := {ℓ f(i)←
(i,j)

c | c∈B(ψℓ)};
// Charge for τ = ξ in p(i)

16 Lnew :=Lnew ∪{ℓ ←
(i,j)

ξ};
17 remove_set_dominated(Lnew);

// Enqueue feasible labels

18 for ℓ′ ∈Lnew do
19 if feasible(ℓ′) then
20 insert(Lunsj , ℓ′);
21 insert(Lseti , ℓ);
22 return infeasible;

Algorithm 1 details our label-setting search procedure. The algorithm relies on several data structures:
first, it maintains a set of settled (Lsetv) and unsettled (Lunsv) labels for each vertex v ∈ Vk. These keep
track of already developed paths and collect candidates for expansion, respectively. To establish the

100 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

label-setting property of our algorithm, we store vertices v with unsettled labels, i.e., potential candi-
dates for expansion, in a priority queue Q. This queue orders vertices according to the cost of the cheap-
est unsettled label at the respective vertex, formally, minℓ∈Lunsv

cmin(ψℓ)≥minℓ∈Luns
v′ cmin(ψℓ)⇒ v⪰Q v

′

for v, v′ ∈Q. We break ties according to the vertex’s period index in descending order such that we
prefer vertices closer to the sink node.

We initialize Q with the source vertex and root label (Lines 2-3). The main body of the algorithm
(Lines 4-21) iteratively extracts labels from Q (Lines 5-6) and propagates these along all adjacent
arcs (Lines 11-16). We propagate extracted labels ℓ∈Li along idle and service arcs (i, j) according to
ci,j, qi,j, and ϑi,j. Charging arcs require special treatment: here, it is possible to either commit to a
charging decision at a previously visited station vertex i′ to then track charging trade-offs at station
vertex i, or to commit to charging at i, continuing to track decisions at i′. Line 15 handles the former
case and creates a label for each non-dominated charging decision at the station vertex i′ tracked
by ℓ so far, i.e., fixes the amount of charge replenished at i′, and thus the arrival SoC at i to some
value. Line 16 handles the latter case, i.e., spawns a label that charges at i without forcing a decision
at the tracked station i′. This fixes the amount of time spent charging at i to some value. Note that
ignoring the charging opportunity at i corresponds to visiting the respective garage vertex and is thus
not explicitly considered. We prune the set of generated labels according to our set-based dominance
criterion (cf. Definition 2) in Line 17.

Lines 18-20 insert feasible labels into Lunsj , i.e., track potential candidates for expansion at vertex j,
updating the vertex queue accordingly. Finally, we settle the original label at vertex i for future
dominance checks. The algorithm terminates when a label is extracted at the sink (Line 8), or no
unsettled labels remain.

We implement Lunsi as a min-heap and key labels by minimum cost. We postpone pairwise dominance
checks against already settled labels to label extraction (Line 9). This lazy approach serves two
purposes: first, it avoids superfluous dominance checks for labels never considered during the search;
second, it delays dominance checks as much as possible to maximize the number of candidates for
domination.

We further rely on two techniques to speed up dominance checks: first, we keep Lseti sorted by
maximum reachable SoC. This allows skipping superfluous dominance checks against settled labels
with a lower maximum SoC. Second, we maintain a hash table of settled and unsettled labels at each
vertex. We probe this hash table and abort the dominance check if an equivalent label is found. These
strategies minimize the number of (explicit) dominance checks required to maintain our dominance
invariant.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 101

Vk set of vertices
VkF set of charger vertices
Vkf set of vertices associated with charger f
δ+(v) set of incoming arcs at vertex v
δ−(v) set of outgoing arcs at vertex v
EkF set of charging arcs
EkΘk

set of service arcs
ep energy cost in period p
qi,j charge consumption of arc (i, j)
ci,j cost of arc (i, j)

F set of chargers
Cf charger capacity for f ∈ F
B(f) breakpoints of the linearized charging function
qf,b SoC associated with breakpoint b∈ B(f)
tf,b Time associated with breakpoint b∈ B(f)

B(Υ) breakpoints of the (cumulative) wear density function (WDF)
qΥ,b SoC associated with breakpoint b∈ B(Υ)
cΥ,b Costs per kWh associated with breakpoint b∈ B(Υ)

P set of periods in the planning horizon

K set of vehicles
SoCmax maximum battery charge level (SoC)
SoCmin minimum battery charge level (SoC)

βkv SoC with which vehicle k arrives at vertex v
γkv SoC charged/discharged at vertex v
ρkv battery wear cost incurred by charging at v
xki,j binary variable, indicating whether vehicle k traverses arc (i, j) (xki,j = 1)

or not (xki,j = 0)
λk,inv,b Convex multipliers binding entry SoC to Φf(v)

λk,outv,b Convex multipliers binding exit SoC to Φf(v)

µk,inv,b Convex multipliers binding entry SoC to Υ
µk,outv,b Convex multipliers binding exit SoC to Υ

Table 6: Parameters and variables of the compact formulation.

Appendix E: Compact formulation

In the following, we model our planning problem as a mixed integer program, which we state as a
shortest path problem on the time-expanded network presented in Section 4.3.1. MIP 1 comprises the
following decision variables: binary variable xki,j indicates that vehicle k traverses arc (i, j). Variables
λk,inv,b and λk,outv,b model charging operations as piecewise linear functions. To this end, continuous
variables λk,inv,b and λk,outv,b are convex multipliers associated with the breakpoints of the respective
piecewise linear charging functions, i.e., give the contribution of each breakpoint to the function value.
We establish a Special-Ordered Set of Type 2 (SOS2) relationship between variables associated with
the same vertex and vehicle. Variables µk,inv,b and µk,outv,b model the WDF analogously. We use continuous
variables βkv and γkv to track the arrival SoC and total amount of energy replenished by vehicle k at
vertex v ∈ Vk. With the notation summarized in Table 6, our MIP is as follows.

102 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

min
∑

k∈K

∑

v∈VkF

γkv · ep(v) + ρkv (1.1)

∑

(i,j)∈δ−(s−)

xki,j = 1 k ∈K (1.2)

∑

(i,j)∈Ek
ϑ

xk(i,j) ≥ 1 ϑ∈Θk, k ∈K (1.3)

∑

(i,j)∈δ+(v)

xki,j −
∑

(i,j)∈δ−(v)

xki,j = 0 v ∈ Vk \ {s−, s+}, k ∈K (1.4)

βki + qi,j + γki ≥ βkj − (1−xki,j) · SoCmax ∀(i, j)∈ Ek, k ∈K (1.5)

βki + qi,j + γki ≤ βkj + (1−xki,j) · SoCmax ∀(i, j)∈ Ek, k ∈K (1.6)

SoCmin ≤ βkv ≤ SoCmax v ∈ Vk, k ∈K (1.7)

βks− = SoCmin k ∈K (1.8)
∑

b∈B(f(v))
λk,inv,b · qf(v),b = βkv v ∈ VkF , k ∈K (1.9)

∑

b∈B(f(v))
λk,inv,b = 1 v ∈ VkF , k ∈K (1.10)

∑

b∈B(f(v))
λk,outv,b · qf(v),b−

∑

b∈B(f(v))
λk,inv,b · qf(v),b = γkv v ∈ VkF , k ∈K (1.11)

∑

b∈B(f(v))
λk,outv,b = 1 v ∈ VkF , k ∈K (1.12)

∑

b∈B(f(v))
λk,outv,b · tf(v),b−

∑

b∈B(f(v))
λk,inv,b · tf(v),b ≤ ξ ·

∑

(i,j)∈δ−(v)

xki,j v ∈ Vkf , k ∈K (1.13)

∑

b∈B(Υ)
µk,inv,b · qΥ,b = βkv v ∈ VkF , k ∈K (1.14)

∑

b∈B(Υ)
µk,inv,b = 1 v ∈ VkF , k ∈K (1.15)

∑

b∈B(Υ)
µk,outv,b · qΥ,b−

∑

b∈B(f(i))
µk,inv,b · qΥ,b = γkv v ∈ VkF , k ∈K (1.16)

∑

b∈B(Υ)
µk,outv,b = 1 v ∈ VkF , k ∈K (1.17)

∑

b∈B(Υ)
µk,outv,b · cΥ,b−

∑

b∈B(Υ)
µk,inv,b · cΥ,b = ρkv v ∈ Vkf , k ∈K (1.18)

∑

k∈K

∑

(i,j)∈δ−(v)

xki,j ≤Cf(v) ∀v ∈
⋃

k∈K
VkF (1.19)

xki,j ∈ {0,1} (i, j)∈ E , k ∈K (1.20)

βkv , γ
k
v , ρ

k
v ≥ 0 v ∈ Vk, k ∈K (1.21)

∀b∈B(f(v)) : λk,inv,b , λ
k,out
v,b ∈ SOS2 v ∈ VkF , k ∈K (1.22)

∀b∈B(Υ) : µk,inv,b , µ
k,out
v,b ∈ SOS2 v ∈ VkF , k ∈K (1.23)

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 103

The objective function (1.1) minimizes the total cost of the charging schedule, i.e., the sum of energy
costs and battery wear incurred. Constraints (1.2) and (1.3) enforce an outgoing and incoming
arc at the source and sink nodes, respectively. Constraints (1.4) set up flow conservation on all
other vertices. Constraints (1.5)-(1.6) propagate the SoC. The concaveness of the WDF requires
strict equality. Consumption and charging operations are captured with qi,j and γki , respectively.
Constraints (1.7) ensure that manufacturer SoC bounds are respected. Constraints (1.8) initialize βks− .
Constraints (1.9-1.12) model charging operations as piecewise linear functions. Constraints (1.13) limit
the maximum SoC rechargeable at station nodes, i.e., ensure that the charging rate is respected, and
establish a link between xki,j and γkv , such that charging can occur only if the station node is visited.
Constraints (1.14)-(1.18) model battery degradation similarly. Constraints (1.19) limit the number of
simultaneous charging operations at each charger. Finally, Constraints (1.20)-(1.23) state the domain
of the decision variables and establish SOS2 sets.

Appendix F: Benchmark instance generation

We choose a discretization step size of 30 minutes and draw period energy prices uniformly from
the interval [0.5,1.0] (e). We further assume a battery capacity of 80 kWh with SoCmin := 0% and
SoCmax := 100%. To avoid biases in our numerical study, we generate charging functions Φf and the
WDF randomly according to the following procedure: Given parameters n, χmin, χmax, and ν, which
correspond to the number of segments, minimum slope, maximum slope, and upper bound respectively,
we assign a random weight wi, and a slope drawn from interval [χmin, χmax] to each segment i. We
then sort the segments by slope in descending (ascending) order such that the resulting function is
convex (concave) for WDF and charging functions, respectively. We transform the piecewise linear
functions generated in this fashion to valid WDF and charging functions by scaling each segment i to
span ν · wi∑

j∈[1,n]wj
on the SoC and time axes. We generate the WDF with χmin := 0.1, χmax := 0.8, and

ν := 80. We use durations ν := [150,60,90,120,75,135] to generate chargers, such that fully charging
the battery using the ith charger takes νi minutes. Unless otherwise specified, we distribute charger
capacity evenly across all available chargers. Finally, we generate a set of three operations for each day
and vehicle. Each service operation consumes 50% of the battery capacity, leading to a total discharge
of 120 kWh per day and vehicle. We distribute operation departure times randomly such that vehicles
spend a minimum of one hour before each operation at the depot, and center the departure time
windows according to the static case. To ensure that the generated instances are comparable, we use
independently seeded random engines for each parameter, such that the set of service operations of a
one day instance is a subset of the service plan of the two and three-day instances generated from the
same seed.

104 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Appendix G: Data used in the example

SoC Cost Unit cost

0 0 -
2 1 0.5
7 7 1.2

Table 7: Wear density function.

Arc Consumption (qi,j) Fixed cost (ci,j) Energy cost at origin

(s−, vf) 0 2 0
(vf , v2) 0 0 2.5
(v2, v3) 1.5 0 0
(v3, vg) 0 0 0
(vg, v5) 0 0 0.75
(v5, s

+)(1) 0 3.5 0
(v5, s

+)(2) 0 4.25 0

Table 8: Arcs of the time expanded network.

f g

Time SoC Rate Time SoC Rate

0 0 - 0 0 -
6 2 0.3333 2.5 2 0.8

24.5 7 0.2707 12.25 7 0.5128

Table 9: The charging functions used.

f g

Cost SoC Rate Cost SoC Rate

0 0 - 0 0 -
6 2 0.3333 2.5 2 0.8

24.5 7 0.2702 12.25 7 0.5128

Table 10: The station cost profiles.

Cost profile Segments

ψℓ
s− [−∞,0.0) → [−∞,−∞] [0.0,∞) → [0.0,0.0]

ψℓvf
[−∞,2.0) → [−∞,−∞] [2.0,∞) → [0.0,0.0]

ψℓv2
[−∞,2.0) → [−∞,−∞] [2.0,8.0) → [0.0,2.0] [8.0,11.7) → [2.0,3.0) [11.7,∞] → [3.0,3.0]

ψℓv3
[−∞,6.5) → [−∞,−∞] [6.5,8.0) → [0.0,0.5] [8.0,11.7) → [0.5,1.5) [11.7,∞] → [1.5,1.5]

ψℓvg
[−∞,6.5) → [−∞,−∞] [6.5,8.0) → [0.0,0.5] [8.0,11.7) → [0.5,1.5) [11.7,∞] → [1.5,1.5]

ψ
ℓ1

v5
[−∞,6.5) → [−∞,−∞] [6.5,9.0) → [0.0,2.0] [9.0,12.9) → [2.0,4.0) [12.9,∞] → [4.0,4.0]

ψ
ℓ2

v5
[−∞,12.9) → [−∞,−∞] [12.9,14.75) → [4.0,4.5] [14.75,19.15) → [4.5,5.5) [14.75,∞] → [5.5,5.5]

ψ
ℓ3

v5
[−∞,8.0) → [−∞,−∞] [8.0,9.875) → [0.5,2.0] [9.875,14.75) → [2.0,4.5) [14.75,∞] → [4.5,4.5]

ψ
ℓ4

v5
[−∞,11.7) → [−∞,−∞] [11.7,12.325) → [1.5,2.0] [12.325,19.15) → [2.0,5.5) [12.325,∞] → [5.5,5.5]

q(v5,s+) = 4.25

ψ
ℓ1

s+
[−∞,11.925) → [−∞,−∞] [11.925,12.9) → [0.0,0.5] [12.9,∞) → [0.5,0.5)

ψ
ℓ2

s+
[−∞,12.9) → [−∞,−∞] [12.9,14.75) → [0.5,1.0] [14.75,19.15) → [1.0,2.0) [14.75,∞] → [2.0,2.0]

q(v5,s+) = 3.5

ψ
ℓ2

s+
[−∞,13.825) → [−∞,−∞] [13.825,14.75) → [0.0,0.25] [14.75,19.15) → [0.25,1.25) [14.75,∞] → [1.25,1.25]

ψ
ℓ3

s+
[−∞,14.2625) → [−∞,−∞] [14.2625,14.75) → [0.0,0.25] [14.75,∞] → [0.25,0.25]

Table 11: Cost profiles created in the example.

5 RoutingBlocks: An open-source
Python package for Vehicle
Routing Problems with
Intermediate Stops

This chapter is based on an article published as:

Klein P. S., Schiffer M. (2024) RoutingBlocks: An Open-Source Python Package for
Vehicle Routing Problems with Intermediate Stops. INFORMS Journal on Computing
(Articles in Advance).

Patrick S. Klein
School of Management, Technical University of Munich, Munich, Germany,

patrick.sean.klein@tum.de

Maximilian Schiffer
School of Management & Munich Data Science Institute, Technical University of Munich, Munich, Germany,

schiffer@tum.de

We introduce RoutingBlocks, a versatile open-source Python package designed to simplify the development
of algorithms for vehicle routing problems with intermediate stops (VRPIS). The package offers a variety of
modular algorithmic components and optimized data structures, crafted specifically to address key challenges
of VRPIS, such as a lack of efficient exact move evaluations and difficult station visit decisions. By employing
a unified solution and instance representation that abstracts problem-specific behavior, e.g., constraint check-
ing, move evaluation, and cost computation, into well-defined interfaces, RoutingBlocks maintains a clear
separation between algorithmic components and specific problem configurations, thus allowing to apply the
same algorithm to a variety of problem settings. Leveraging an efficient C++ implementation for performance-
critical core elements, such as move evaluation and local search operators, RoutingBlocks combines the
high performance of C++ with the user-friendliness and adaptability of Python, thereby streamlining the
development of effective metaheuristic algorithms. As a result, researchers using RoutingBlocks can focus
on their algorithms’ core features, allocating more resources to innovation and advancement in the VRPIS
domain.

Key words : Vehicle routing, metaheuristic algorithms, Python, open-source software

5.1. Introduction
Vehicle routing problems with intermediate stops (VRPIS) have become ubiquituous in trans-
port optimization when focusing on recently evolving planning problems, e.g., the deployment
of electric vehicles or innovative urban logitics concepts where city freighters perform last-
mile delivery, replenishing freight at micro depots (cf. Schiffer et al. 2019). In VRPIS, vehicles
perform intermediate stops at intraroute facilities to replenish a resource, e.g., energy or
freight, to keep a vehicle operational while fulfilling its main task. Here, an intraroute facil-
ity differs from a conventional depot as it is on the same echelon as the customers, e.g., a
charging station or a micro depot.

During the last decade, we have seen steep progress on developing state-of-the-art open
source meta-heuristic and exact frameworks for classical vehicle routing problem (VRP) vari-

106

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 107

ants such as the capacitated vehicle routing problem (CVRP) and the vehicle routing problem
with time windows (VRPTW) (see, e.g., Accorsi and Vigo 2021, Vidal 2022). Contrarily, the
progress on state-of-the-art algorithms for VRPIS variants appears to emerge rather slowly.
In the case of exact algorithms, this is likely caused by a lack of VRPIS-specific algorithms
(cf. Schiffer et al. 2019). For metaheuristic algorithms, this can partially be attributed to
missing state-of-the-art open-source implementations tailored to VRPIS.

In fact, extending metaheuristics or open source libraries designed for classical VRP vari-
ants to VRPIS is anything but straightforward for several reasons: first, classical algorithms
rely heavily on local search, which is insufficient for accommodating intermediate stops as it
focuses on cost-minimization. Indeed, inserting intermediate stops often causes a detour which
is orthogonal to the goal of local search. Second, existing algorithms rely on efficient, exact
evaluation of local search moves in amortized constant time. However, for many well-known
VRPIS, e.g., electric vehicle routing problems (EVRPs), no such evaluation functions exist
such that move evaluation remains expensive or approximate (Montoya et al. 2017, Schiffer
and Walther 2018, Erdelić and Carić 2022). Third, different VRPIS variants often show unique
problem characteristics, e.g. w.r.t. replenishment behavior (quantitiy-dependent vs. quantity-
independent), replenishment and resource trade-offs, and synchronization constraints (cf.,
Schiffer et al. 2019), that require specialized algorithmic components. Accordingly, designing
a library that is amendable to a broad range of VRPIS is a challenge in itself. In fact, even for
mainstream VRPs, existing libraries (Groer 2009, Rasku and Kwon 2023) and open sourced
metaheuristics (Vidal 2022) struggle with this generalization task and surpass it by either
modeling the union of all problem-specific characteristics1 (Groer 2009, Vidal 2022), or by
not providing a generalized interface for, e.g., cost evaluation and constraint checking (Rasku
and Kwon 2023). Both of these approaches have their respective drawbacks: considering the
union of all problem-specific characteristics makes the implementation more challenging and
requires additional cognitive effort on the side of the library user. Not providing a central
interface on the other hand limits the composeability and interoperability of the implemented
algorithms, which often use different solution representations and evaluation procedures.

Against this background, we provide an open-source Python package—RoutingBlocks—
that eases the design and implementation of algorithms for VRPIS. Here, RoutingBlocks

1 using dummy values for problems that only require a subset of these

108 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

specifically focusses on metaheuristics to best align with existing research in the area and

remain amendable to broad range of applications, e.g., dynamic settings. RoutingBlocks

breaks with the design of existing open-source VRP packages to account for the peculiari-

ties highlighted above, and, instead of implementing a single, monolithic algorithm, provides

a library of modular algorithmic components and efficient data structures. We specifically

tailor these to handle some of the fundamental challenges that arise when solving VRPIS.

The modular design of our package significantly eases the development of metaheuristics

for VRPIS, allowing researchers to focus on implementing the primary algorithmic flow by

composing the provided components, with an easy option to add specialized supplementary

components if necessary. Ultimately, researchers can focus on the core aspects of their algo-

rithms when utilizing our package, using more of their resources to facilitate innovation and

progress in the field of VRPIS.

The remainder of this paper is structured as follows. Section 5.2 gives a general definition of

the class of VRPIS considered when developing the RoutingBlocks package. Section 5.3 then

provides an overview on the architecture and design of RoutingBlocks and briefly reviews the

package’s algorithmic components. Section 5.4 provides information on obtaining the package,

before Section 5.5 benchmarks an algorithm implemented using RoutingBlocks against state-

of-the-art monolithic designs. Section 5.6 concludes the paper. We note that this paper details

the design of Routingblocks and supplements the documentation2, which provides a hands-on

introduction to the package in addition to several example implementations.

5.2. Vehicle routing problems with intermediate stops
VRPIS expand upon classic VRPs by considering one or multiple additional resources con-

sumed when traveling along arcs and servicing customers. Unlike resources in classical VRPs,

e.g., time, these resources do not increase or decrease monotonously. Instead, they can

be replenished at intermediate facilities, typically by facing a trade-off between different

resources. An example of a VRPIS is the electric vehicle routing problem with time windows

(EVRP-TW), where a fleet of electric vehicles with limited battery capacity must serve a set

of customers within specified time windows. In this case, the consumed additional resource

2 https://routingblocks.readthedocs.io/

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 109

is the battery’s state of charge, which can be replenished by charging at designated charging
stations, consuming time in the process.

Formally, VRPIS are defined on directed complete graphs, which consist of vertices rep-
resenting locations that vehicles can visit during their routes, specifically depots, customers,
and intermediate stops. Arcs connect these vertices, and both arcs and vertices have resource
consumption functions that determine the consumption of each considered resource incurred
by traversing the arc or visiting the vertex. These resource consumption functions can be
arbitrary and are often non-linear, e.g., in some EVRP variants. For a formal definition of
VRPIS, we refer the interested reader to Schiffer et al. (2017).

5.3. The RoutingBlocks package
RoutingBlocks is an open-source Python package that eases the implementation of algo-
rithms for VRPIS by providing a diverse set of modular algorithmic components and effi-
cient data structures (see Figure 1), designed specifically to tackle some of the fundamental
challenges of VRPIS, e.g., inexact move evaluation and difficult decisions around embed-
ding visits to intraroute replenishment facilities. These components serve as building blocks
for problem-specific algorithms and include a local search solver (Sections 5.3.1 and 5.3.2),
an exact labelling algorithm (Section 5.3.3), components for metaheuristic algorithms (Sec-
tion 5.3.4), and auxiliary algorithms and data structures, e.g., move caches (Section 5.3.5).
Each of these can be extended through well-defined interfaces to support a wide range of
algorithmic designs.

As illustrated in Figure 1, RoutingBlocks consists of three modules: algorithms and data
structures, core components, and problem-specific interfaces. Algorithms and data structures
implement components commonly used in metaheuristics for VRPIS and utilize a com-
mon solution and instance representation provided by the core components. These abstract
problem-specific behavior, such as constraint checking, move evaluation, and cost compu-
tation, such that algorithms remain decoupled from specific problem settings. Users can
incorporate problem-specific behavior by implementing the provided interfaces.

RoutingBlocks builds on an efficient C++-based implementation of runtime-critical core
components. This integration of C++ and Python combines the high performance of C++ with
the ease of use and flexibility of Python, allowing rapid development of efficient metaheuristic

110 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Figure 1 Architecture of the RoutingBlocks package.

algorithms. Users can thus implement the core logic of their algorithms in Python, potentially
capitalizing on existing high-quality implementations of other complex algorithmic compo-
nents (see, e.g., Kullman et al. (2021)) and leveraging robust tooling (Peng and Murray 2022,
Mendoza et al. 2014). Beyond this, RoutingBlocks supports using any of the provided com-
ponents straight from C++ as well. Accordingly, our package supports customization of the
provided algorithmic components using C++, Python, or a combination of the two.

In what follows, we briefly review the design of our core components, i.e., the instance and
solution representations, as well as the algorithms and data structures our package provides.
We refer to https://github.com/tumBAIS/RoutingBlocks for comprehensive documenta-
tion of the individual components and an example that illustrates how to compose these to
a full algorithm.

5.3.1. Core components

Core components capture the fundamental concepts shared by all VRPIS, such as instance
graphs, routes, and solutions. By providing abstract interfaces, they effectively conceal
problem-specific data, e.g., customer time windows, and behavior, e.g., cost evaluation pro-
cedures, from the provided data structures and algorithms.

5.3.1. Instance Graph Similar to regular VRPs, VRPIS are almost exclusively modeled
on graphs, which we represent using the instance class. This class contains a set of vertices,

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 111

that correspond to locations vehicles can visit during their routes. We divide vertices into
three groups: depots, customers and intermediate stops. The class also contains a set of arcs,
represented as a dense two-dimensional matrix, where each row corresponds to the set of arcs
that originate from a particular vertex.

The instance class assumes only minimal knowledge about concrete vertices and arcs.
Specifically, vertices carry only an identifier and a type (i.e., station, depot, or customer),
and arcs do not carry any information at all. Instead, these provide type-erased slots for user-
defined problem-specific data, e.g., time windows, demand, and distance. Problem-specific
details thus remain opaque to the instance but are retrievable by specialized algorithms.

5.3.2. Solution Representation Our framework provides a rich, intuitive solution repre-
sentation comprising solution, route, and node classes, organized hierarchically: a solution
comprises a set of routes, which each manage a sequence of nodes. Here, nodes represent visits
to vertices and carry data used for cost calculation, constraint checking, and efficient move
evaluation (cf. Section 5.3.2). Clearly, the structure of this data and how it is utilized remains
highly problem-specific and thus has to remain opaque to route and solution classes. These
operations are instead implemented in a problem-specific evaluation class (cf. Section 5.3.3).
This reduces the responsibility of route and solution classes to managing the sequences of
nodes and set of routes, respectively. Specifically, they provide interfaces to insert, remove,
or exchange arbitrary segments of nodes, guaranteeing that information on feasibility, costs,
and the data associated with partial routes, i.e., what is carried in node classes, is maintained
at all times. This simplifies the implementation of specific algorithms, and further allows to
abstract from problem-specific characteristics by default.

Similar to Vidal (2022), we assign monotonic timestamps to routes, which can be utilized
to implement caching strategies. Specifically, we guarantee that routes with matching times-
tamps are equal with respect to the sequence of nodes visited. We achieve this with a simple
global counter: each time a route is modified, we set it’s timestamp to the current value of
the counter, which is incremented subsequently.

5.3.3. Evaluation The evaluation class provides interfaces to i) assess the cost of a (par-
tial) route, ii) verify the feasibility of a (partial) route, and iii) maintain the information
contained within node structures. It’s interfaces are implemented by the user, such that

112 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

the class has access to data that is opaque to instance, solution, route, and node classes.
The design of this interface follows the concept of propagation functions and route segment
concatenation introduced in Vidal et al. (2014), which we further detail in Section 5.3.2.

5.3.2. Data structures and algorithms

5.3.1. Local Search Local search is a core component of almost every state-of-the-art
metaheuristic designed for VRPs. The main idea of this algorithm is to iteratively improve
an initial solution by making small, localized modifications, so called moves, to the current
solution until reaching a local optimum, i.e., a state where none of the defined moves further
improve the solution. This seemingly simple concept allows for a lot of customization, such
that the specific design of the local search procedure varies significantly between algorithms.
Common design decisions include i) the selection of neighborhood operators, which define
the considered moves, ii) pivoting rules, which dictate a strategy for selecting moves, e.g.,
best and first improvement, and iii) speed-up techniques such as granular neighborhoods.

RoutingBlocks provides a local search component that supports a variety of local search
designs. Here, we deviate from generator-arc based move definitions (see, e.g., Vidal 2022).
Specifically, in generator-arc based designs, each move is uniquely defined by a single arc.
This allows to define operators as single, stateless functions that take an arc to be evaluated
as input argument, thus allowing for a clear separation of concerns: operators simply evaluate
or apply a move, and a local search solver steers the search procedure by controlling which
arcs are passed to the respective operators. Unfortunately, this generator-arc based design is
not well-suited for VRPIS, where widely used operators, e.g., the station-in operator (Schnei-
der et al. 2014) that attempts to insert detours to intermediate replenishment facilities into
an existing route, may assess several moves per arc, and arcs can appear an arbitrary num-
ber of times within the same solution. We achieve similar benefits as generator-arc based
designs by treating operators as iterators over the neighborhood of a solution. Specifically, on
each invocation, an operator generates the (next) improving move, returning control to the
callee. These moves remain opaque to the local search solver and simply provide apply and
evaluation interfaces. This provides the flexibility required to support arbitrary operators
while still allowing the local search solver to control the search. Accordingly, implement-
ing design decisions such as pivoting rules and neighborhood composition strategies (e.g.,

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 113

variable neighborhood descent) in RoutingBlocks does not require implementation on an
operator-to-operator basis.

RoutingBlocks provides well defined interfaces for general moves and operators, which
can be implemented in Python or C++. It additionally provides specializations of general
operator and move interfaces to support generator-arc based implementations, such that
porting existing implementations of local search operators to RoutingBlocks is straightfor-
ward. RoutingBlocks further implements a set of well-known operators commonly used in
VRPIS, e.g., various swap- and relocation-based neighborhoods (n-m-exchange), TwoOpt*,
and Station-In/Out, out of the box.

5.3.2. Move evaluation Computationally efficient evaluation of moves is crucial to estab-
lish the performance of local search based metaheuristics. Here, many algorithms rely on
the observation that any edge- or node-exchange based move can be expressed as a con-
catenation of route sub-sequences (Kindervater and Savelsbergh 2003). Hence, an evalua-
tion function that takes a list of node sequences as arguments can leverage pre-computed
information on route sub-sequences to achieve computationally efficient move evaluation.
For instance, removing node xi from route [x1, . . . , xi−1, xi, xi+1, . . . , xn] can be expressed
as concatenating routes [x1, . . . , xi−1] and [xi+1, . . . , xn], potentially making use of the for-
ward information stored in xi−1 and the backward information stored in xi+1. This idea
has been generalized in Vidal et al. (2014). RoutingBlocks’s interface follows their design
and exposes five functions to be implemented by the user: i) initialize_forward(x) and
initialize_backward(x), which initialize forward and backward information stored on node
x, respectively, ii) propagate_forward([. . . , xi], y) and propagate_backward(y, [xj, . . .]),
which extend the forward and backward information stored for routes [. . . , xi] and [xj, . . .] to
[. . . , xi, y] and [y,xj, . . .] for some node y, respectively, and iii) evaluate(σ1, . . . , σn), which
evaluates the cost of concatenating an arbitrary number of route segments σ.

A major challenge in many VRPIS, e.g., (non-linear) EVRP-TW, is that no efficient exact
move evaluation functions are known. A common approach to dealing with this issue is to
combine efficient approximate concatenation operators with exact move evaluation functions
(Montoya et al. 2017, Froger et al. 2022, Erdelić and Carić 2022). Here, the approximate
operator ideally provides an upper bound on the improvement obtained from applying a move.

114 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

This allows to eagerly discard non-improving moves, such that the potentially expensive exact
move evaluation function needs to be applied to only a subset of potential moves.

RoutingBlocks’s local search solver supports this approach by default and allows to verify
improving moves using a second evaluation function. In general, any component provided by
RoutingBlocks allows to switch evaluation implementations at any point in time.

5.3.3. Labeling algorithm Many VRPIS rely on exact algorithms to embed detours to
intraroute facilities at optimal locations (Schiffer et al. 2017, Erdelić and Carić 2022). A
specific approach that was proven to work well in practice models this detour embedding
problem as a resource-constrained shortest path problem (CSP) on an auxilliary graph, solved
for each route in the solution independently. This graph comprises a vertex for each non-
station node in the route, and allows detours to these by inserting copies of each intraroute
facility between two consecutive non-station vertices. We refer to Schiffer and Walther (2018)
for a comprehensive description of this procedure.

RoutingBlocks provides an implementation of this algorithm that takes care of label man-
agement, dominance-based path pruning, graph building, and other boilerplate tasks while
providing an interface to abstract problem-specific functionality, i.e., label representation,
resource extension functions, dominance, and preprocessing. The design of this interface bases
on the abstractions introduced in Irnich (2008).

5.3.4. Metaheuristic components Broady speaking, Metaheuristics are solution meth-
ods that guide local improvement based procedures to allow escaping from local optima.
RoutingBlocks provides a set of data structures and boilerplate required to implement com-
mon metaheuristic algorithms. These include components that provide deterministic sources
of randomness, several destroy operators that remove vertices from a solution, repair opera-
tors that insert vertices into a solution, an (adaptive) priority list to learn to dynamically rate
operators based on past performance, and a solver that applies operators sequentially, i.e.,
removes and (re-)inserts a subset of vertices. Specifically, RoutingBlocks provides several
generic destroy and repair operators known to work well for VRPIS out-of-the-box: Ran-
domInsertion, BestInsertion (Ropke and Pisinger 2006), WorstRemoval (Ropke and Pisinger
2006), RelatedRemoval (Pisinger and Ropke 2007), ShawRemoval (Shaw 1997), and Station-
VicinityRemoval (Goeke and Schneider 2015). These remain extensible, e.g., the acceptance

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 115

criterion of best sequential insertion is customizable, such that N-best-insertion and best-

insertion-with-blinks can be implemented straightforwardly. We provide interfaces to allow

user-defined destroy and repair operators, implemented in either C++ or Python.

Our examples3 showcase how to utilize these components to build well-known metaheuristic

algorithms, e.g. adaptive large neighborhood search (ALNS) (cf., Ropke and Pisinger 2006).

5.3.5. Auxiliary data structures We provide several auxiliary data structures, such as

insertion and removal caches, to significantly reduce the development overhead of imple-

menting custom algorithms. Similar to the concept of static move descriptors (Zachariadis

and Kiranoudis 2010, Beek et al. 2018), these caches track changes to solutions, avoiding

potentially expensive re-evaluations of moves unaffected by a specific modification. Our imple-

mentation of this caching mechanism is much simpler than the one proposed in Zachariadis

and Kiranoudis (2010) and Beek et al. (2018): as in Vidal (2022), we rely on route times-

tamps (cf. Section 5.3.2) to determine if a move has to be re-evaluated or not. The reason

for this is twofold: first, maintaining complicated static move descriptor data structures can

entail significant computational overhead especially in VRPIS, where the number of nodes in

a solution may change dynamically. Second, this simple timestamp-based solution does not

rely on any problem-specific information.

The benefit of these move caches is especially pronounced when used in algorithms imple-

mented in Python. Here, the use of caches, which are implemented in native code, allows to

bundle evaluation operations and thus minimizes the number of calls between Python and

the C++ extension module.

5.4. Distribution
The RoutingBlocks package is available via pip through PyPI (https://pypi.org/

project/routingblocks). It’s source code, documentation, and examples can be found at

https://github.com/tumBAIS/RoutingBlocks. The repository further provides informa-

tion on contributing to the project, e.g., by reporting bugs or supplying additional algorithmic

components.

3 https://routingblocks.readthedocs.io/en/latest/examples.html

116 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

5.5. Benchmarks
We have implemented a simple metaheuristic algorithm for the electric vehicle routing prob-
lem with time windows and partial recharging (EVRP-TW-PR) using RoutingBlocks to
show that the performance of algorithms developed with RoutingBlocks remains comparable
to specialized, monolithic implementations, i.e., the one provided in Erdelić and Carić (2022).
This particular problem setting is particularly suitable to showcase some of RoutingBlocks’
core features, such as two-stage move evaluation, complex guiding metaheuristics, and exact
subcomponents. Moreover, the algorithm proposed in Erdelić and Carić (2022) is similar to
our proposed algorithm: It bases on ALNS, relies on an exact dynamic programming based
station placement procedure, and uses an approximate evaluation function. Note that the
purpose of this benchmark is to assess the performance of RoutingBlocks and not to provide
new best known solutions. We thus did not conduct sensitivity analyses on the components
used or tune our algorithm’s hyperparameters. We refer to Erdelić and Carić (2022) for further
information on the considered instances. The source code of our implementation is available
on https://github.com/tumBAIS/RoutingBlocks and may serve as a reference implemen-
tation, showcasing how to utilize the package. Beyond this, up-to-date benchmarks that verify
the performance of our core algorithms compared to pure Python-based implementations are
part of our CI pipeline and available on https://github.com/tumBAIS/RoutingBlocks.

We conducted all of our experiments on a standard desktop computer equipped with an
Intel(R) Core(TM) i9-9900, 3.1 GHz CPU and 16 GB of RAM, running Ubuntu 20.04 and
Python 3.8.11. We limit the total number of iterations of our ALNS algorithm to 5000, and
the number of iterations without improvement to 1100. Table 1 summarizes the results of our
benchmark compared to two state-of-the-art monolithic algorithms implemented in native
code, i.e., C# and C++ (cf. Schiffer et al. 2017, Erdelić and Carić 2022). We report detailed
statistics in the Appendix.

The solution quality achieved with a RoutingBlocks-based implementation remains com-
pareable to that of monolithic algorithms, maintaining a gap of 0.44% to the best known
solution on average. When comparing runtime, we see that RoutingBlocks is 14.86% slower
than a C#-based implementation (Erdelić and Carić 2022), and 277.93% slower than a pure
C++ implementation Schiffer et al. (2017). Despite these performance differences, the effi-
ciency of RoutingBlocks is well within the bounds expected for a generic library, making it
a suitable choice for prototyping metaheuristic algorithms.

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 117

n nRB ne ns nRB
BKS ne

BKS ns
BKS ∆RB

BKS [%] ∆e
BKS [%] ∆s

BKS [%] τ RB [s] τe [s] τs [s]

56 54 56 42 24 49 29 0.43 0.04 0.13 615.21 535.61 162.78
Abbreviations hold as follows: n - total number of instances, n◦ - number of instances where the respective algorithm
matched the number of vehicles in the BKS, n◦

BKS - number of instances where the respective algorithm matched the
BKS, ∆◦

BKS
- average gap of instances with the same number of vehicles as the BKS expressed in percent, τ◦ - average

runtime on instances with the same number of vehicles as the BKS in seconds. RB corresponds to RoutingBlocks, e to
the algorithm of Erdelić and Carić (2022), and s to the algorithm of Schiffer et al. (2017). We caclulate percentage
gaps as ∆a

BKS = va−vBKS
vBKS

· 100%.

Table 1 Aggregated results of our benchmark against Schiffer et al. (2017) and Erdelić and
Carić (2022).

5.6. Conclusion

We introduced RoutingBlocks, a modular Python package for the implementation of algo-

rithms for VRPIS. RoutingBlocks provides a diverse set of algorithmic components and

efficient data structures designed specifically to tackle some of the fundamental challenges

of VRPIS, such as inexact move evaluation and complex station visit decisions. These serve

as building blocks for problem-specific algorithms, streamlining the development process

for algorithms addressing VRPIS and related problems. RoutingBlocks provides a scalable

C++-based implementation as a rich Python API, combining the high performance and scal-

ability of C++ with the ease of use and flexibility of Python. This allows the rapid develop-

ment of scalable, problem-specific algorithms that can further leverage existing high-quality

implementations of complex algorithms (see, e.g., Kullman et al. 2021), and leverage robust

tooling (Peng and Murray 2022, Mendoza et al. 2014). In accordance with this approach,

RoutingBlocks supports customization of the provided algorithmic components using C++,

Python, or a combination of both, catering to diverse algorithmic requirements. We provide

RoutingBlocks under a permissive open-source license, ensuring that it remains relevant and

useful to the community over time. Ultimately, we hope that RoutingBlocks will serve as a

valuable resource for anyone working on the challenging and important class of VRPIS.

118 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Appendix A: Detailed results

Instance RoutingBlocks Erdelić and Carić (2022) Schiffer et al. (2017)
σ K τ [s] σ K τ [s] σ K τ [s]

c101 1043.38 12 382.17 1043.38 12 220.20 1043.38 12 64.20
c102 1074.07 10 350.14 1058.67 10 190.20 1027.80 11 121.20
c103 973.92 10 654.90 971.19 10 248.40 973.63 10 127.80
c104 892.33 10 1070.25 884.38 10 454.20 884.48 10 135.00
c105 1064.66 10 739.17 1064.66 10 143.40 1023.52 11 81.00
c106 1091.14 10 574.49 1061.61 10 151.80 1009.26 11 58.80
c107 1088.43 10 482.79 1046.50 10 158.40 1010.91 11 54.60
c108 1055.70 10 607.18 1022.93 10 274.80 1030.48 10 105.00
c109 954.77 10 491.64 940.38 10 268.80 940.38 10 148.20
c201 629.95 4 136.11 629.95 4 49.20 629.95 4 25.20
c202 629.95 4 160.79 629.95 4 139.20 629.95 4 91.80
c203 629.95 4 207.14 629.95 4 155.40 629.95 4 199.20
c204 628.91 4 251.22 628.91 4 310.20 628.91 4 196.20
c205 629.95 4 188.13 629.95 4 63.60 629.95 4 46.80
c206 629.95 4 220.71 629.95 4 77.40 629.95 4 46.80
c207 629.95 4 233.37 629.95 4 96.60 629.95 4 72.60
c208 629.95 4 217.99 629.95 4 78.60 629.95 4 66.00
r101 1639.68 17 1815.91 1624.89 17 371.40 1618.89 18 161.40
r102 1454.92 15 1461.45 1454.53 15 441.60 1426.82 16 244.20
r103 1211.40 13 1375.46 1304.24 12 496.80 1211.99 13 358.80
r104 1056.69 11 1013.35 1051.41 11 706.20 1051.41 11 249.00
r105 1347.80 14 1234.39 1347.80 14 324.00 1347.80 14 181.20
r106 1263.13 13 1495.94 1263.13 13 510.00 1265.18 13 237.00
r107 1108.47 11 681.00 1104.51 11 635.40 1108.23 12 150.00
r108 1021.47 11 422.24 1030.44 10 696.00 1020.52 11 200.40
r109 1185.40 12 952.50 1176.69 12 502.80 1176.69 12 191.40
r110 1069.18 11 1396.62 1067.11 11 495.00 1068.87 11 226.20
r111 1073.15 11 692.80 1076.15 11 489.00 1070.97 12 241.20
r112 1001.79 11 929.92 1001.79 11 448.20 1001.79 11 204.00
r201 1255.81 3 560.94 1255.81 3 627.00 1255.81 3 88.80
r202 1051.46 3 274.08 1052.52 3 685.80 1051.46 3 151.80
r203 895.54 3 538.69 895.54 3 1144.20 895.96 3 314.40
r204 779.57 2 333.15 779.49 2 1325.40 779.49 2 428.40
r205 987.36 3 281.68 987.22 3 558.60 987.22 3 175.80
r206 925.37 3 546.18 922.08 3 701.40 922.08 3 211.20
r207 843.20 2 244.77 845.19 2 960.60 843.20 2 156.60
r208 737.30 2 275.65 736.46 2 1436.40 736.12 2 228.60
r209 871.55 3 245.37 863.17 3 668.40 863.17 3 115.20
r210 844.71 3 260.75 844.71 3 835.20 844.86 3 215.40
r211 823.82 2 548.54 825.25 2 1164.60 826.26 2 163.80
rc101 1662.16 15 590.50 1661.53 15 352.80 1648.99 16 133.80
rc102 1510.16 14 992.38 1510.16 14 461.40 1510.16 14 112.20
rc103 1361.68 12 986.65 1359.34 12 455.40 1304.10 13 181.20
rc104 1175.06 11 1118.39 1174.32 11 575.40 1175.06 11 155.40
rc105 1473.34 13 1448.29 1471.80 13 269.40 1449.53 14 179.40
rc106 1386.25 13 484.94 1391.23 13 333.60 1385.96 13 116.40
rc107 1250.80 11 524.47 1244.37 11 368.40 1248.11 12 186.00
rc108 1154.14 11 565.44 1154.14 11 541.20 1154.14 11 135.00
rc201 1443.13 4 322.21 1433.57 4 474.00 1443.13 4 84.00
rc202 1406.18 3 274.24 1403.67 3 848.40 1407.05 3 180.60
rc203 1054.91 3 327.32 1054.91 3 1264.20 1054.91 3 319.80
rc204 886.57 3 447.36 884.75 3 1237.20 884.75 3 256.80
rc205 1256.54 3 515.78 1238.46 3 962.40 1255.84 3 143.40
rc206 1184.61 3 371.69 1197.60 3 639.60 1184.61 3 100.80
rc207 990.59 3 407.76 978.30 3 892.20 992.16 3 134.40
rc208 838.86 3 524.60 833.12 3 1014.00 833.12 3 161.40

Abbreviations hold as follows: σ - objective value, K - number of vehicles used, τ [s] - runtime
in seconds.

Table 2 Detailed results of our benchmark against Schiffer et al. (2017)
and Erdelić and Carić (2022).

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 119

References
Accorsi L, Vigo D (2021) A fast and scalable heuristic for the solution of large-scale capacitated vehicle

routing problems. Transportation Science 55(4):832–856.

Beek O, Raa B, Dullaert W, Vigo D (2018) An Efficient Implementation of a Static Move Descriptor-based
Local Search Heuristic. Computers & Operations Research 94:1–10, ISSN 0305-0548.

Christiaens J, Vanden Berghe G (2020) Slack Induction by String Removals for Vehicle Routing Problems.
Transportation Science 54(2):417–433, ISSN 0041-1655.

Erdelić T, Carić T (2022) Goods delivery with electric vehicles: Electric vehicle routing optimization with
time windows and partial or full recharge. Energies 15(1):285.

Froger A, Jabali O, Mendoza JE, Laporte G (2022) The Electric Vehicle Routing Problem with Capacitated
Charging Stations. Transportation Science 56(2):460–482, ISSN 0041-1655.

Goeke D, Schneider M (2015) Routing a mixed fleet of electric and conventional vehicles. European Journal
of Operational Research 245(1):81–99.

Groer C (2009) Vrph. https://github.com/coin-or/VRPH.

Irnich S (2008) A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-Based
Metaheuristics. INFORMS Journal on Computing 20(2):270–287, ISSN 1091-9856.

Kindervater GAP, Savelsbergh MWP (2003) 10. vehicle routing: handling edge exchanges. Local Search in
Combinatorial Optimization, 337–360 (Princeton University Press).

Kullman ND, Froger A, Mendoza JE, Goodson JC (2021) frvcpy: An open-source solver for the fixed route
vehicle charging problem. INFORMS Journal on Computing .

Mendoza J, Guéret C, Hoskins M, Lobit H, Pillac V, Vidal T, Vigo D (2014) Vrp-rep: a vehicle routing
community repository.

Montoya A, Guéret C, Mendoza JE, Villegas JG (2017) The electric vehicle routing problem with nonlinear
charging function. Transportation Research Part B: Methodological 103:87–110, ISSN 0191-2615.

Peng L, Murray C (2022) VeRoViz: A vehicle routing visualization toolkit. INFORMS Journal on Computing
34(4):1842–1848.

Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Computers & Operations Research
34(8):2403–2435.

Rasku J, Kwon C (2023) VeRyPy. https://github.com/yorak/VeRyPy.

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transportation Science 40(4):455–472.

Schiffer M, Klein P, Schneider M, Walther G (2017) A solution framework for a class of vehicle routing
problems with intermediate stops. Working Paper OM-DPO 01/2017 .

120 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

Schiffer M, Schneider M, Walther G, Laporte G (2019) Vehicle routing and location routing with intermediate
stops: A review. Transportation Science 53(2):319–343.

Schiffer M, Walther G (2018) An adaptive large neighborhood search for the location-routing problem with
intra-route facilities. Transportation Science 52(2):331–352.

Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and recharg-
ing stations. Transportation Science 48(4):500–520.

Shaw P (1997) A new local search algorithm providing high quality solutions to vehicle routing problems.
APES Group, Dept of Computer Science, University of Strathclyde, Glasgow, Scotland, UK 46.

Vidal T (2022) Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood.
Computers & Operations Research 140:105643, ISSN 0305-0548.

Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-attribute vehicle
routing problems. European Journal of Operational Research 234(3):658–673, ISSN 0377-2217.

Zachariadis EE, Kiranoudis CT (2010) A strategy for reducing the computational complexity of local search-
based methods for the vehicle routing problem. Computers & Operations Research 37(12):2089–2105,
ISSN 0305-0548.

6 Conclusion

Author: Patrick Sean Klein

6.1. Main contributions

This thesis aimed to provide logistics service providers (LSPs) with the tools and method-
ology necessary to address complex optimization challenges emerging in today’s last-mile
distribution. For this purpose, I developed algorithmic solutions, complemented by prac-
tical contributions in the form of open-source software. This combination of fundamental
theoretical research with tangible, practical tools is not only essential for ethical and
reproducible science but is also pivotal in bridging the gap between theory and prac-
tice. Chapters 3 and 4 focused on theoretical contributions, developing algorithmic solu-
tions for dynamic vehicle dispatching and electric fleet management, respectively. Chap-
ter 5 introduced the practical contribution of this thesis, namely, the Python package
RoutingBlocks. This package and all other open-source implementations of the Thesis’
contributions are available on https://github.com/tumBAIS.

The first theoretical contribution of this thesis addressed dynamic route planning and
dispatching. Specifically, it considered a Dynamic Vehicle Routing Problem (DVRP)
where customer requests were not known in advance but gradually revealed over the span
of the planning horizon. This setting required operators to dispatch vehicles in an on-
line fashion, carefully balancing the benefits of immediately serving a specific customer
against bundling it with so far unrevealed requests. Successfully tackling this problem re-
quired solving two challenging problems: first, determining the optimal timing for serving
a request, and second, efficiently assembling served requests into routes. These chal-
lenges, while interrelated, required fundamentally different methodological approaches.
The first challenge is a predictive task, typically addressed using Machine Learning (ML),
whereas the second involves solving a Combinatorial Optimization (CO) problem. The
major methodological contribution of this thesis was an approach that integrates these
orthogonal methodologies in a single Machine Learning enriched Combinatorial Optimiza-
tion (ML-CO) pipeline, allowing the ML model to leverage the combinatorial structure

122 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

present in the CO problem. For this purpose, the CO component was reformulated as
a prize-collecting Vehicle Routing Problem (VRP). This transformed the problem of de-
ciding whether to serve a request at a particular time to anticipating the cost of serving
an order in the future, moving the dispatching decision into the CO problem. This
transformation ultimately allowed to compute approximate gradients over the CO algo-
rithm, thus enabling end-to-end learning. This innovative approach not only advanced
the state-of-the-art in DVRP but also made a significant contribution to the broader
ML-CO domain. Specifically, this thesis introduced the first ML-CO pipeline that incor-
porated a metaheuristic component in the CO layer, showcasing how to carefully design
a metaheuristic that allows the computation of meaningful approximate gradients in in-
tegrated pipelines. Extensive numerical experiments demonstrated the performance of
this approach: it outperformed monte-carlo and rolling-horizon policies by 1.57% and
7.12% in terms of objective value while only taking 1.67% and 15.00% of the runtime,
respectively. The approach further outperformed state-of-the-art reinforcement learning
and classic two-stage non-integrated approaches, winning first prize in the EURO Meets
NeurIPS 2022 Vehicle Routing Competition.

The second theoretical contribution of this thesis dealt with an integrated charging
and service operation scheduling problem for fleets of electric vehicles. It enhanced the
state-of-the-art by jointly scheduling charging and service operations while accounting
for realistic battery behavior, i.e., non-linear charging and battery deterioration, variable
energy prices, and charging infrastructure capacity constraints. Methodologically, this
thesis approached the problem by decomposing it into master and subproblems, which
were then solved using column generation within a Branch and Price (B&P) framework.
In this setup, the master problem created fleet schedules according to infrastructure ca-
pacity constraints, drawing from a pool of promising vehicle schedules generated by the
individual subproblems. This approach entailed two major algorithmic challenges: first,
solving the subproblems required to consider non-linear trade-offs involving battery de-
terioration, charging costs, charger capacity, and the scheduling of service operations.
To address this challenge, the thesis developed a novel label-setting shortest-path al-
gorithm based on a function-based label representation. This approach enabled optimal
decision-making even in continuous-time settings, significantly advancing the state-of-the-
art in fixed-route vehicle charging problems. Second, capacity constraints caused a large
fan-out in the branch-and-bound tree, threatening scalability. The B&P algorithm em-
ployed efficient branching and pruning strategies to address this issue. These strategies
encompassed a problem-specific branching rule, a primal heuristic, and partial pricing,
all of which collectively contributed to effectively managing the algorithm’s scalability.
A comprehensive numerical study showed the efficiency of the developed algorithm on

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 123

large-scale instances. An ablation analysis further quantified the contribution of each of
the developed branching and pruning strategies, providing a deeper understanding of the
individual and collective impacts of these strategies on the overall effectiveness of the
algorithm. Beyond these theoretical findings, this thesis contributes an analysis of the
impact of jointly scheduling charging and service operations, focusing on i) the benefit
of an integrated approach to charge and service operation scheduling, ii) the impact of
infrastructure capacity on operational costs, and iii) the impact of considering variable
energy prices. Specifically, integrating charging and service operation scheduling lowered
the amount of charging infrastructure required by up to 57% and reduced operational
costs by up to 5%. Here, both the degree of service schedule flexibility and the energy
price distribution significantly impacted operational cost savings.

This thesis further made a practical contribution by providing a software package devel-
oped to ease the implementation of advanced routing algorithms, called RoutingBlocks.
This library serves as a tool to enable researchers and practitioners to leverage advanced
routing algorithms in their research or as part of their software infrastructure. For such a
library to be effectively used in practice, it needs to be adaptable to a variety of unique,
case-specific problem settings and needs to support numerous algorithmic approaches,
including genetic algorithms, neighborhood search, and simulated annealing, all while
maintaining computational efficiency. Balancing these diverse and sometimes conflicting
requirements is undoubtedly a challenging task. RoutingBlocks tackled this challenge by
providing a modular algorithmic framework that allows the composition of tailored so-
lution methods from optimized, state-of-the-art algorithmic components and data struc-
tures. Specifically, the package achieved a clear separation between algorithmic compo-
nents and problem configurations by employing a unified solution and instance representa-
tion that abstracts problem-specific behavior, e.g., constraint checking, move evaluation,
and cost computation, thus allowing to apply the same algorithm to various problem set-
tings. Each algorithmic component was thoroughly documented and showcased in several
tutorials, ensuring the package’s accessibility - a key for its application in educational
and practical settings. To maintain high performance while adhering to this modular ap-
proach, RoutingBlocks employs a low-level, C++-based implementation. To shield users
from the complexities of low-level programming, such as explicit memory management
and lifetime issues, RoutingBlocks concealed its high-performance native components
behind a user-friendly and accessible Python interface. A numerical benchmark against
two monolithic state-of-the-art algorithms implemented in native code demonstrated the
versatility and applicability of this approach. Here, RoutingBlocks achieved comparable
performance, maintaining a gap of 0.44% w.r.t. objective value, while being only 14.86%

slower than a state-of-the-art native implementation. This is well within the bounds

124 Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics

expected for a generic library exposed in a high-level dynamic language such as Python.
In summary, this thesis contributed new methods, algorithms, and software that ef-

fectively address challenging optimization problems in modern last-mile logistics. Specif-
ically, it tackled a dynamic route planning and dispatching problem, proposed efficient
algorithms to design charging schedules for fleets of electric vehicles, and developed a
software package to ease the implementation of advanced vehicle routing algorithms.

6.2. Limitations and Perspectives

The work presented in this thesis provides comprehensive algorithmic frameworks and
modular tooling, establishing a solid foundation for future research to build upon in these
areas. Nevertheless, some problem cases remained out of scope.

First, building on the practical applications of the dynamic route planning and dis-
patching problem considered in this thesis, future research could explore its applicability
in real-world settings beyond the one considered in the EURO Meets NeurIPS Vehicle
Routing Competition. For example, studies could examine the model’s effectiveness in
environments with rapid changes in demand or in scenarios with fleet size constraints.
Furthermore, reusing the developed approach for dynamic slot pricing problems presents
an exciting research avenue. From a methodological perspective, the developed ML-CO
pipeline raises several foundational questions. For instance, investigating the extent to
which the performance of the anticipative strategy, the quality of heuristic solutions, and
the predictive capability of the ML model impact performance promises general insights
into the principles of ML-CO pipelines. Such an investigation could deepen our under-
standing of ML-CO pipelines, further advancing the state-of-the-art in this area.

Second, while the integrated charging and service scheduling problem allows continuous-
time charging, it is modeled on a discrete time horizon. Relaxing this common assumption
may lead to more efficient schedules, potentially further reducing the amount of charg-
ing infrastructure required. This likely requires switching to an event-based formulation,
but future work can still leverage the label-setting shortest-path algorithm developed for
the discrete-time setting. Moreover, extending the problem setting to integrate vehicle
assignment-, routing-, or rostering decisions could further improve short- and long-term
cost savings. Such extensions can leverage the speedup techniques proposed for the B&P
and shortest-path algorithms. Methodologically, further improving the scalability of the
B&P algorithm, e.g., through deriving problem-specific cutting planes, developing heuris-
tic approaches, or formulating lower bounds, presents promising research avenues.

Third, with the state-of-the-art in VRPs advancing rapidly, continuously extending
RoutingBlocks with new algorithms and data structures remains a significant under-

Patrick Klein: Algorithmic solutions for emerging challenges in last-mile logistics 125

taking. Beyond this, further performance improvements, e.g., by embedding a domain-
specific modeling language, provide exciting avenues for future development and software-
focused research. Ideally, these advancements will help to bridge the performance gap
between RoutingBlocks and native implementations.

	Introduction
	Background
	Aims and Scope
	Contribution

	State of the art
	Introduction
	Vehicle Routing
	Dynamic Vehicle Routing

	Vehicle and charge scheduling
	Vehicle Scheduling
	Charge Scheduling

	Open Source Software for Vehicle Routing Problems
	Conclusion

	Combinatorial Optimization enriched Machine Learning to solve the Dynamic Vehicle Routing Problem with Time Windows
	Electric vehicle charge scheduling with flexible service operations
	RoutingBlocks: An open-source Python package for Vehicle Routing Problems with Intermediate Stops
	Conclusion
	Main contributions
	Limitations and Perspectives

