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Abstract—The use of automated vehicle testing on proving
grounds is increasing to enable time and cost-effective testing
and reduce risks to test drivers. Robot test vehicles are used
to perform various functions and load tests, even under severe
conditions. Therefore, to ensure safety in proving grounds,
perception and monitoring of surrounding vehicles are necessary.
This requires a target-oriented, robust and foresighted perception
based on road-side systems, due to the fact that test vehicles’ on-
board sensors are generally insufficient and short-sighted. Such
a challenging sensor system has to take into account area-wide
coverage, high detection probability, and low cost, for complex
areas. To address this problem, we introduce AutoSCOOP, a novel
method to automatically optimize sensor coverage on proving
grounds. AutoSCOOP uses ray-cast sensor models and a detailed
3D environment model in a game engine to determine accurate
and realistic sensor coverage. In combination with an evolution-
ary strategy-based method, an optimization is performed to find
the optimal placement and number of road-side sensors. The
methodology is successfully applied to an environmental model
based on a real proving ground, and experimental evaluations are
presented to show that full coverage is achieved with a minimal
number of sensors.

Index Terms—Optimal Sensor Coverage, Proving Grounds,
Evolutionary Strategy, Game Engine, Ray-cast, Road-Side Sensor

I. INTRODUCTION

Before vehicles are ready for production, they must be

extensively tested to ensure they meet legislative and safety

standard requirements. Testing is time-consuming, involves

thousands of test kilometers and combines proving ground

with free road driving [1]. Safety-critical testing, usually

involving high-speed or risky maneuvers, takes place in con-

trolled environments on testing tracks.

Various studies show that automated testing with robot

vehicles reduces risks and costs [2], [3]. Besides, automation

guarantees test reproducibility, improves safety and reduces

test duration. However, it requires monitoring of the surround-

ings of the robot vehicles to ensure a safe and collision-free

trajectory. Monitoring and safeguarding cannot be reliant upon

on-board sensors, as they have a limited field of view (FoV)

and their specifications depend on each test vehicle.

A solution to significantly increase foresight and robust

perception even under severe weather conditions is to extend

on-board sensors with road-side sensors, e.g., camera, lidar,

and radar, as demonstrated in [4], [5], [6]. Placing road-side

sensors on proving grounds for robust surveillance and at

low cost is challenging due to topography, buildings, road

geometry and existing infrastructure. The sensor coverage

area is strongly influenced by the environment. Objects and

topography, for example, lead to limitations in visibility and

gaps in coverage. Consequently, determining the most suitable

sensor number and position becomes a complex optimization

problem that needs to deal with all possible solutions and fulfill

all proving ground requirements and conflicting criteria.

This problem requires a target-oriented automated place-

ment of the road-side sensors able to take all these conditions

into account and determine an optimal result based on a real-

istic sensor coverage. In this paper, a preliminary design for

multi-sensor systems using a new method called AutoSCOOP

(Automated Sensor Coverage Optimization) is shown to de-

termine and evaluate realistic coverage. This method uses

sensor models and a virtual environment for sensor distribution

optimization, which takes the previous boundary conditions

into account.

II. RELATED WORK

Optimizing sensor positioning and orientation for outdoor

surveillance based on camera sensors has been explored for

different applications in many studies [7], [8], [9].



The environment is partially represented by the Two-

dimensional (2D) or Three-dimensional (3D) area to be mon-

itored, in which sensors can be placed. It usually contains

objects or boundaries that can cause occlusion in the sensor

FoV. Two-dimensional grid-based environments are proposed

in [10], [11], [8]. These environments can approximate occlu-

sion and are simple enough to apply powerful optimization

methods. However, these approaches imply strong environ-

ment simplifications, undetailed maps, unwanted occlusions,

and unobstructed views, making it difficult to determine the

quality of coverage transferred to a complex real area.

In [12], 3D environments are used to monitor ground-level

airspace in urban areas again with the goal of sensor coverage.

This environment is based on a precise mesh and allows

for the representation of complex environments and thus

detailed sensor coverage. A 3D environment for perception in

autonomous vehicle applications is also presented in [13]. In

this article, the authors make use of game engine technology

to power the simulation environment.

The sensor FoV depends on the sensor specifications as well

as the sensor parameters and is crucial for the representation

of the area that can be covered. In previous work, the FoV

is often assumed to be a geometric surface to simplify the

optimization problem. Usual shapes are circular sectors [10],

[11], triangles and trapezoids [14]. A more realistic represen-

tation is proposed in [15] using probabilistic distance- and

angle-dependent sensing models. This approach provides the

necessary differentiability for the optimization and describes

realistic transition at the edges of the sensor FoV.

A further complexity degree is presented in [16], where the

authors propose using ray-cast sensor models. Ray casting is

a common technique for map scanning and to get occlusion

areas. Sensors can be modeled with a number of rays, which

shoot in specific directions, and can emulate occlusion, object

detection and blind spots. This generates a visibility matrix

that is used in [16] as input for the optimization.

Eventually, the sensor network can be designed by solving

an optimization problem to maximize environmental cover-

age while minimizing the number of sensors. Metaheuristic

methods for optimization such as genetic algorithm [17], [18]

and particle swarm method [14], [8] are used to maximize

coverage of an area for a given number of sensors. Other

approaches implement the Global Greedy Algorithm either

combined with metaheuristic approaches [18] or alternated

with Greedy Grid Voting with predefined camera locations

[19]. An alternative method is proposed in [16], where Binary

Integer Programming is applied with constraints on the sensor

distances and the coverage of the target points.

The consideration of realistic constraints, taking into ac-

count an accurate sensor coverage for optimization and im-

plementation on real grounds, remains a challenge.

III. METHODOLOGY

Previous work only allows limited predictions about the

accuracy of coverage for real outdoor applications due to

simplifications in the modeling of the sensor coverage and

the environment. Influences by topography or 3D objects on

the sensor FoV are only insufficiently taken into account. In

addition, requirements and constraints of real infrastructures

are not or only partially considered in sensor placement.

Therefore, we propose a novel method for automated sensor

coverage optimization based on a 3D environment and accu-

rate sensor coverage areas, enabling more precise prediction

for a real outdoor application. Furthermore, all relevant de-

grees of freedom and constraints of the sensors are included

in the optimization to achieve an optimal result in terms of

full coverage with a minimum number of sensors.

First, we define the problem of searching for an optimal

solution. Then we introduce our methodology to address the

challenge based on dynamic sensor coverage and optimization

method.

A. Problem Definition

The goal of this work is the automatic placement and

orientation of the minimum number of sensors to surveil

a given area. Thus, the degrees of freedom of each sensor

n are given by the position in x, y and z directions and

rotations pitch φ, roll θ and yaw ψ within a georeferenced local

coordinate system. This can be simplified into the solution

vector ~popt(n) = (x, y, φ, ψ) as the sensor roll does not

affect coverage and the sensor height z is constrained by the

infrastructure. The optimum of ~popt(n) with minn for full

coverage of the area has to be found given the boundary

conditions.

Considering the environmental conditions and constraints,

two areas are specified, target and sensor area. The target

area is defined as bt = [~xr, ~yr] for r reference points, which

is to be monitored and the sensor area limits where sensors

can be positioned. Depending on the existing infrastructure

and environmental conditions ns number of sensor areas can

be defined. They are usually selected as close as possible to

target areas. The boundary of the sensor areas are defined by

j reference points bs,i = [~xi,j , ~yi,j ] for i = {1, 2, · · · , ns} in

the xy-plane.

B. Dynamic Sensor Coverage

The accuracy of sensor coverage depends on two factors, the

environment model and the sensor model. As the level of detail

of these two factors increases, a more realistic representation

is achieved.

In this work, we base our sensor coverage calculation on

the open-source simulator CARLA [20] in combination with

Epic Games’ open-source game engine, Unreal [21]. This

simulation environment provides the accuracy for appropriate,

detailed sensor coverage based on a 3D environment built in

Unreal and a ray-cast sensor model.

A model of a real proving ground based on accurate

environmental data for automated testing is shown in Fig. 1.

It describes details of the proving ground, such as track

geometry, elevation, infrastructure and vegetation that are

relevant for sensor placement. Based on the 3D environment,

the sensor and target areas are locally defined, as shown in



Fig. 1: Proving ground sections modeled in Unreal with

various test routes, intersections, and safety-related structures.

Fig. 2: Virtual section top view of a real proving ground with

two routes. Overlaid are the sensor (bs,i) and the target points

(bt), as well as the corresponding surface shapes.

Fig. 2. A subsequent discretization with an equidistant grid of

the target area leads to At = [~xt, ~yt] and is used for the later

evaluation of the sensor coverage.

The combination of the environment model and ray-cast

sensor models allows coverage to be calculated dynamically

with the position and orientation of the sensors. Ray-cast

sensor models are suitable for different sensor technologies,

including cameras, lidars and radars. Hereby each ray-cast

model is parametrized for horizontal αH and vertical αH FoV,

range and number of rays casted per second, that is sample

points, and represent a typical image sensor. Each ray-cast

model returns a 3D point cloud with the relative coordinate

vectors to the sensor that discretizes the environment.

For simplification, the projection of the point cloud in the

xy-plane is used in the following. The sensor coverage is cal-

culated as a function of the point cloud density and implements

a minimum probability of detection. Fig. 3 illustrates a filtered

sensor FoV, including sensor shadow areas caused by a wall.

Next, we calculate the α-shape vs according to [22] based

on the outer FoV points, to determine later the points on At

that lie within the sensor FoV. This results in an envelope

of α-shape that can be adjusted to provide a more accurate

representation of coverage.

Fig. 3: Coverage sections of a 80◦ horizontal and vertical

viewing angle mounted at 7m height on a track section with

sensor position (red dot), target area (turquoise stars), sensor

area (purple area), sensor FoV outside the target area (yellow

circles), and sensor area inside the target area (blue circles).

C. Optimization Method

The optimization of the sensor distribution in AutoSCOOP

is based on the Evolutionary Strategy (ES). ES can search

for an optimum in n-dimensional search space, which can

be easily extended, without prior application knowledge [23].

Furthermore, ES offers low dependencies on initial conditions

and has no restrictive requirements on the objective function.

For AutoSCOOP, the ES algorithm is adapted in the following

for fast and optimum sensor coverage to take into account the

defined constraints and sequentially optimize the sensors.

In this population-based method, individuals include parents

µ and their offspring λ as well as their behavioral character-

istics ~pµ and ~pλ derived from the solution vector. Like in ES,

AutoSCOOP optimization consists of four steps to optimize

one sensor: reproduction, mutation, evaluation, and selection.

Reproduction of nµ individuals gives nλ new individuals

with ~pλ. Mutations of (λ, µ) with widths ~oλ(t), ~oµ(t) are de-

termined for each element in ~popt allowing selective adaptation

of individuals with Gaussian phenotypic change. The mutation

width is obtained using a Gaussian distribution N(0, ~σ2) with

variance ~σ. In the AutoSCOOP algorithm, ~oλ(t), ~oµ(t) are

saturated to consider the boundary conditions, such as sensor

area or pitch angle constraints. In the evaluation step, the

fitness value for each individual (λ, µ), is calculated as follows:

1) The first fitness function evaluates the sensor coverage:

fca =



















∑q

i=1
χ(i), if At(i) inside vs

ζ, if At(i) is covered by

multiple sensors
∑h

j=1
τ(j), otherwise

(1)

depending on target area points At(i) with i =
{1, 2, · · · , q}, the sensor point cloud density χ(i), the

coverage overlap constant ζ and the function τ(j). The

density is used here to score areas with a high point



cloud density of the sensor better, as they have a higher

probability of detection. In the third case, for each grid

point h within the sensor coverage and outside of bt, a

fitness value depending on

τ(j) = exp

(

−
dpp(j)

2

2ϑ2

)

(2)

determined as a function of the distance dpp(j) with

j = {1, 2, · · · , h} to the nearest point on the target

surface. The distance can be additionally weighted with

the constant ϑ.

2) The second fitness function alludes to the minimum

distances dsensor(i) of the sensors (µ+ λ) to the already

optimized sensors ~popt:

fds =
fca

z
·

z
∑

i=1

exp

(

−
dsensor(i)

2

2ϑ2

)

(3)

3) The third fitness function evaluates for seamless coverage

by the minimum Euclidean distance dsensor area(i) of the

centroid of gravity of the FoV area to the optimized

sensors:

fsc =
fca

z
·

z
∑

i=1

exp

(

−
dsensor area(i)

2

2ϑ2

)

(4)

The dependence in (3) and (4) on fca is for prioritization

of target area coverage.

4) Finally, the total fitness value is calculated with:

fs =

{

fca · wca, n = 1

fca · wca + fds · wds + fsc · wsc, n >1
(5)

where the weights wca, wds and wsc are used to prioritize

the individual fitness functions and are adjusted according

to the boundary conditions.

In the final step, selection, k number of sensors with the

best fs values are selected for the next generation as µ.

The termination criterion is set based on the convergence

ǫsensor of the individuals and the threshold ǫthres in the current

epoch t. The convergence depends on the individuals with the

best and worst fitness values. Once an optimum is found for

~popt, the sensor is fixed and the optimization of the next sensor

initiates. The optimal number of sensors is achieved when the

ratio of the target area at and the already covered target area

by optimized sensors ac exceeds the threshold ̺thres. Finally,

the clustering of sensors close to each other is performed.

The AutoSCOOP algorithm is shown in the following table

Algorithm 1.

IV. SIMULATION EXPERIMENT

A. Setup Environment

AutoSCOOP is created using CARLA version 0.9.11, con-

nected to MATLAB R2021a where it is implemented. For

the evaluation, we use the environment model Fig. 2 with

6 predefined sensor areas and a target area discretized with

Algorithm 1: AutoSCOOP Algorithm

input : bs,i, At, nµ, nλ
output: n sensors with solution vector ~popt

begin

Sensor counter setting n← 1 ;

while
at

ac
< ̺thres do

Generation of nµ individuals with random ~pµ ;

while ǫsensor > ǫthres do

λ← µ with ~pλ random nλ number ;

Mutation of ~pλ ← ~pλ + ~oλ ;

Mutation of ~pµ ← ~pµ + ~oµ ;

if λ, µ are outside of bs,i then

Saturation of ~oλ, ~oµ ;

New Mutation step ;

end

Determination of FoV vs for λ, µ ;

Fitness calculation fs(vs,At) ;

Selection of k sensors with best fs ;

end

~popt(n)← sensor with best fs ;

Fixed placement of ~popt in map ;

n← n+ 1 ;

end

Clustering of sensors ~popt ;

return ~popt,n

end

1mx1m grid. The ray-cast sensor model is parameterized

according to Tab. I based on a typical camera. The effective

range of the sensor is chosen so that monitoring is possible

even in poor visibility conditions. The sensor angle ψ is further

restricted upper and lower depending on the vertical FoV angle

of the sensor.

TABLE I: Parameterset for Sensor

αH αV Eff. z Sample φ
FoV FoV Range Points Range

80◦ 80◦ 80m 7m 30720ppsa [31◦ 70◦]
apoints per seconds

TABLE II: Parameterset for the AutoSCOOP algorithm

Parameter λ µ ̺thres ǫthres wca wds wsc

Value 20 40 97% 0.2 1 0.5 2.5

AutoSCOOP parameters are listed in Tab. II. The parameter

λ depends on the size of the search space, i.e. the length of

the solution vector. We chose the parameter to achieve a good

compromise between fine coverage of the search space and

acceptable computation time due to the number of individuals.

Here, full coverage was achieved when at least 97% of the

target area was covered.



B. Results and Discussion

The evaluation of the AutoSCOOP algorithm is based on the

optimized solution vectors in Table Tab. III using the following

criteria: cluster ratio, relative coverage, number of epochs, and

overlapping factor.

AutoSCOOP algorithm achieves coverage of 97.61% with

27 sensors in the previously detailed setup, Fig. 4. The sensors

were distributed to 18 different sensor locations, resulting in

a cluster ratio of ≈0.66 with the number of sensors. A cluster

ratio of 1 means that all sensors have different locations and

thus require extensive infrastructure. Placing multiple sensors

in one location reduces costs by using one sensor mast and

simultaneous wiring for multiple sensors.

The relative sensor coverage is given by the quotient of a

reference sensor area of 1229.95m2, the maximum coverage

on flat terrain, and the mean value of the individual sensor

coverage of 1236.02m2. The higher the quotient, the more

effective the sensors are and cover a larger area. The quotient

here is 1.005, indicating effective use of the sensor areas. On

average, the covered area is slightly higher than the reference

area, which can be explained by a positive terrain elevation

and thus an even larger sensor range.

Here, it is shown that the algorithm takes the environment

into account via the sensor coverage during the optimization

and places the sensors in such a way that occlusion of the

target area by objects is avoided. In addition, the optimization

finds solutions where the target area is effectively covered even

TABLE III: Optimized sensor solution vectors, fitness values

and covered target area

Sensor n x y φ ψ Fitness TAa covered

[m] [m] [◦] [◦] [-] [m2]
1 169.1 -125.5 35.9 339.2 2823.0 1007

2 169.1 -125.5 33.0 45.9 5862.8 822

3 204.7 -139.5 37.9 48.1 5949.0 1080

4 73.8 -322.4 31.0 174.3 2519.1 1295

5 73.8 -322.4 33.5 94.8 6603.1 724

6 78.4 -361.8 34.4 54.6 6066.7 1210

7 78.4 -361.8 42.2 156.3 4629.2 599

8 196.6 -193.1 37.5 50.1 4971.6 1082

9 111.3 -363.7 37.7 345.3 5129.1 1035

10 187.7 -227.0 39.6 84.8 6186.0 1230

11 162.5 -242.0 31.8 325.7 4647.7 834

12 97.6 -331.4 31.1 57.6 4038.4 622

13 26.4 -302.6 31.0 100.0 3196.8 877

14 160.0 -273.1 37.8 53.6 3398.0 542

15 208.7 -282.3 40.6 3.4 3564.3 614

16 232.4 -317.4 35.1 71.4 4203.9 1040

17 248.5 -326.5 31.4 355.4 6097.1 1051

18 220.5 -335.0 36.2 132.5 4169.4 534

19 204.7 -139.5 38.4 325.7 2690.7 583

20 232.4 -317.4 31.0 353.3 2415.5 632

21 111.3 -363.7 38.1 187.1 1728.8 954

22 269.0 -335.0 31.9 41.1 2696.0 1057

23 187.7 -227.0 34.3 284.1 2341.9 923

24 130.0 -363.2 31.1 312.6 2241.7 819

25 26.4 -302.6 35.7 339.5 1727.8 187

26 26.4 -302.6 31.0 145.9 1355.7 201

27 191.2 -214.0 31.0 86.3 1659.5 1063
aTarget Area

Fig. 4: Visualization of the optimization result with the vs for

the sensors in green and the corresponding sensor positions

shown as red circles.

with complex shapes. This can be seen in Fig. 4 at the narrow

point of the two routes, where a sensor covers more than one

route of the target area at the same time.

From the table Tab. III it can be seen that certain sensors,

such as #25 or #26, cover a small part of the target area

exclusively. This is the result of penalizing covering same

areas with several sensors and encouraging coverage of small

area gaps between two consecutive already placed sensors.

According to (1), an individual is rated better if an uncovered

target area is covered with a high point cloud density.

On average, 26.96 epochs are required until the optimization

converges to a solution for sensor placement. This demon-

strates the robustness of the optimization method, allowing

a solution to be found even for complex areas. The pitch

angle constraint and the limitation of the sensor areas for the

individuals are taken into account when saturating the mutation

width and also lead to valid results.

The covered target areas from Table Tab. III are used to

determine the overlapping factor by taking the quotient of the

sum of these areas and the total target area by 17221m2, which

returns 1.31. A factor higher than 1 indicated overlapping,

which is desired to some extent for gapless coverage, also

shown in (4).

With the required overlapping and the high relative sensor

coverage, it also shows that a minimum number of sensors

were found to achieve the target coverage.

V. CONCLUSION AND FUTURE WORK

Optimal road-side sensor placement is important for auto-

mated tests on proving grounds to achieve a far-reaching and

robust perception. The challenge consists of automatic place-

ment of road-side sensors even on complex areas considering

realistic constraints. In this paper, we present the novel method

AutoSCOOP that solves the optimization problem based on

evolutionary strategy for maximum coverage with a minimum

number of road-side sensors. Here, we use accurate sensor



coverage for optimization based on a detailed 3D environment

model and ray-cast sensor models in a game engine. This

allows automatic placement and evaluation of sensor positions

while taking into account relevant optimization degrees of

freedom and constraints.

We have shown in experimental simulations that the method

applies to complex virtual routes of a real proving ground

and determines robust and valid sensor coverage. Considering

the constraints of the sensor itself, as well as the sensor

area and target area for optimization, an optimal solution is

automatically found, resulting in cost and time savings for a

proving ground sensor infrastructure design.

Future work is planned on the sensor modeling for a more

realistic coverage under poor visibility and adverse weather

conditions. Besides, further improvements of the AutoSCOOP

algorithm concerning a more effective closing of coverage

gaps is another planned task.
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