
TUM School of Engineering and Design
Technische Universität München

Parametric Projection-based Model Order
Reduction for Crash Simulations

Mathias Lesjak

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Wolfgang Polifke, Ph.D.

Prüfer der Dissertation:
1. Prof. Dr.-Ing. habil. Fabian Duddeck
2. Prof. Dr. Piotr Breitkopf

Die Dissertation wurde am 04.03.2024 bei der Technischen Universität München eingereicht und durch
die TUM School of Engineering and Design am 11.07.2024 angenommen.

iii

Zusammenfassung

Crashsimulationen sind heutzutage ein unerlässliches Hilfsmittel für Ingenieure. Simulationen sparen
teure Hardware in frühen Entwicklungsphasen und sie erhöhen das Vertrauen in das Crashdesign. Immer
schnellere Produktzyklen und striktere Crashanforderungen erfordern auch schnellere Auslegungszyklen.
Zudem erfordern Robustheitsstudien, Unsicherheitsanalysen und auch Optimierungsverfahren viele Sim-
ulationsauswertungen. Dabei spielen Robustheitsanalysen eine besonders wichtige Rolle, da sie das
Vertrauen in das virtuelle Modell erhöhen und somit die Wahrscheinlichkeit eines Versagens von Crashver-
suchen in späten Entwicklungsphasen aufgrund von Unsicherheiten in Hardware und Testdurchführung re-
duzieren. Das Ziel von Modellreduktion ist das Bereitstellen von schnellen Modellen, um die zuvor genan-
nten Methoden benutzen zu können. Modellreduktion lernt aus bereits generierten Daten, um schnelle
Vorhersagen treffen zu können. Diese Arbeit beschäftigt sich mit der projektionsbasierten Modellreduk-
tion, die datenbasiert ist, jedoch mit modifizierten physikalischen Gleichungen arbeitet.
Robustheitsstudien und Optimierung variieren die Parameter des Crashmodells, weshalb das reduzierte
Modell auch parametrisch sein muss. Aktuell werden projektionsbasierte reduzierte Modelle für stark
nichtlineare Probleme jedoch meist ohne Parametervariationen angewendet. Aufgrund dessen ist das Ziel
dieser Arbeit parametrische Modellreduktionsmethoden für Crashprobleme zu entwickeln oder anzuwen-
den.
Diese Arbeit untersucht die Bandbreite an vorhandenen parametrischen projektionsbasierten Modellre-
duktionsmethoden, erweitert einige, und präsentiert ein funktionierendes reduziertes Modell basierend
auf nichtlinearen Mannigfaltigkeiten. Beginnend mit der globalen linearen Methode, arbeiten wir uns zu
lokalen linearen Methoden vor. Die Methode mit lokalen reduzierten Basen ist mit der energy-conserving
sampling and weighting (ECSW) Hyperreduktionsmethode kompatibel. Deshalb erfüllt diese Methode die
Voraussetzungen, um als Modellreduktionsmethode bei explizit zeitintegrierten, nichtlinearen Problemen
eingesetzt zu werden. Die lokalen Basen werden durch ein Clusteringverfahren bestimmt. Wir stellen
eine andere Clusteringmetrik im Crashkontext vor, welche die Charakteristiken von Modellen mit großen
Deformationen berücksichtigt. Schließlich werden reduzierte Modelle basierend auf nichtlinearen Mannig-
faltigkeiten vorgestellt. Sie versprechen reduzierte Modelle mit niedrigen latenten Dimensionen, und damit
verbunden, kleineren reduzierten Netzen und größeren Rechenzeitverkürzungen.
Wir zeigen, dass globale lineare reduzierte Modelle im Grunde nicht geeignet sind für Crashanwendungen.
Eine lineare Dimensionsreduktion findet in Daten mit großer Variation keine niedrigdimensionale Struktur.
Die hohe Dimension der reduzierten Basis führt zu großen reduzierten Modellen mit verschwindender
Rechenzeitverkürzung. Lokale reduzierte Modelle schaffen Abhilfe, indem sie die Lösung in lokale Bere-
iche, auch Cluster genannt, unterteilen. In den Clustern wird linear eine reduzierte Basis berechnet.
Diese Basis ist niedrigdimensional, wodurch kleine reduzierte Modelle mit kleinen reduzierten Netzen in
jedem Cluster möglich werden. Es ergeben sich Rechenzeitreduktionen von bis zu 32%. Diese Reduk-
tion ergibt sich trotz der Auswertung von Elementen, welche mit Null gewichtet werden. Wir nutzen die
parametrischen reduzierten Modelle außerdem, um Randbedingungen zu ersetzen, und beschleunigen
so Crashmodelle, bei welchen ein Ersetzen durch fixe Randbedingungen scheitern würde. Abschließend
zeigen wir ein reduziertes Modell basierend auf einem Autoencoder, mit einer reduzierten Netzgröße von
15% vom Gesamtnetz.
Zusammenfassend zeigen wir, dass reduzierte Modelle basierend auf lokalen Basen schnell und genau
sind und als Ersatzmodelle für Randbedingungen eingesetzt werden können. Damit stellen wir erfolgreich
parametrische, projektionsbasierte reduzierte Modelle für Crashmodelle vor. Außerdem stellen wir weitere
Mechanismen zur Rechenzeitverkürzung vor, die weitere Forschung in diese Richtung motivieren.

v

Abstract

Today, crash simulations are an indispensable design tool for engineers. They save expensive hardware
in the early development phase of a car and increase confidence in a crash design. Ever faster product
cycles and stricter safety requirements also require a multitude of design cycles. In addition, optimization,
uncertainty quantification, and robustness studies are multi-query methods that require numerous simula-
tion evaluations. Robustness studies are particularly important as they increase confidence in the model
and prevent failing crash tests at a late development phase due to hardware and test conduction uncer-
tainties. Model Order Reduction (MOR) aims to provide fast models to enable these multi-query methods.
MOR learns from already existing data and accelerates future predictions. Projection-based MOR restricts
the solution to lie in a low-dimensional subspace and transforms the governing equations to predict the
evolution in latent space. A data-driven dimensionality method determines the subspace.
Multi-query methods apply parameter variations to the model, which is why parametric Reduced-Order
Models (ROMs) are required. So far, projection-based MOR was mainly limited to reproductive examples
in highly nonlinear crash and impact problems. Therefore, this work aims to choose or develop MOR meth-
ods for parametric problems in crash.
This work evaluates the bandwidth of available methods for parametric projection-based MOR, extends
specific methods, and presents a proof of concept (PoC) for MOR on nonlinear manifolds. Beginning with
a global linear method, we move on to local linear approaches. The local reduced-order bases (lROB)
method is compatible with energy-conserving sampling and weighting (ECSW) hyper-reduction. Thus,
ECSW fulfills the prerequisites for MOR applied to explicitly solved nonlinear problems. lROB is extended
by a clustering metric considering the characteristics of models exhibiting large deformations. Finally,
projection-based MOR on nonlinear manifolds is presented for crash applications. Nonlinear manifolds
promise even smaller latent dimensions and, associated with this, smaller reduced meshes and more sig-
nificant speedups.
This thesis shows that global linear methods are in most cases unsuitable for MOR in crash. Parameter
variations partially lead to significant variations in the output. A linear dimensional reduction cannot iden-
tify a low-rank structure in the data due to the large variance. Since hyper-reduction and transformations
of the ROM scale with the reduced dimension, ROMs with negligible speedups result. ROMs based on
lROB eliminate the large reduced dimensions by dividing the solution into subregions. Each subregion,
also named cluster, is then assigned a lROB. The lROBs are low-dimensional, so hyper-reduction provides
a small reduced mesh. We present computational time savings of 32%, even though elements weighted
with zero must be evaluated due to their history dependency. We further utilize lROB ROMs as boundary
condition replacement and accelerate models where a fixed boundary condition replacement fails. Finally,
the PoC of a nonlinear manifold ROM based on an autoencoder motivates future research in this direction
due to the hyper-reduction compatibility and a mesh size reduction of 85%.
To summarize, this work shows that ROMs based on lROB deliver fast and accurate ROMs that can be
used as surrogates for boundary conditions. Therefore, we successfully introduce parametric projection-
based ROMs for crash and impact problems. We outline further speedup potential, which promotes future
research in this direction.

vii

Acknowledgments

Many environmental factors influence a PhD thesis. Not only technical aspects but also social ones are
crucial to successfully mastering a PhD journey. Even if this is already known during the work, it becomes
more present towards the end, which is why I would like to thank all actors who directly or indirectly influ-
enced the success of this work in the following.
First of all, I extend my deepest gratitude to my doctoral supervisor Prof. Dr.-Ing. habil. Fabian Duddeck
for his scientific advice and the technical discussions. I would particularly like to thank him for the trust he
has placed in me, for the freedom to choose my research focus, and for his support during difficult phases.
His critical feedback has constantly improved the quality of my research and shaped my academic growth.
Furthermore, I am grateful for the regular exchange appointments with the whole group, which fostered a
sense of community among us.
I am also thankful to my BMW supervisor Dr. Michael Pfaffinger, for providing me with the opportunity to
undertake this research position. He always found the right mix of constructive criticism and understand-
ing, which has been immensely motivating. I extend my appreciation for his support within BMW. Thanks
to his network and help, all research obstacles were quickly eliminated. Furthermore, I would like to thank
my boss, Frank Bauer, for fostering an environment conducive to rigorous scientific research within our
group.
I would like to thank Christopher Bach, who consistently supported me throughout my PhD. The regular
exchanges provided invaluable opportunities for discussion and brainstorming about model order reduc-
tion. Even shortly before submission, discussions about the research results motivated and stimulated
further thought.
My special thanks go to Ulrich Huber, with whom I had countless debug sessions and professional ex-
changes on computer science topics. His expertise, patience, and willingness to share insights have been
instrumental in overcoming challenges and advancing the development of this thesis.
I am grateful for the great environment where I could conduct this research and work. Many friendships
have arisen from shared PhD activities. I would especially like to mention Giada Colella, Zeyu Lian, Reza
Barzanooni, and Marius Rees. The evenings and activities together were a wonderful distraction from
research.
Furthermore, I owe a debt of gratitude to my best friends. Great time together and enriching conversations
also helped me get through difficult research phases. Thank you Max, Conni, Kevin, Robin, and Alex.
From the bottom of my heart, I want to thank my family for their love, support, encouragement, and under-
standing. Without your safety, this work would never have been completed.

ix

Contents

Zusammenfassung iii

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives . 2
1.3 Preliminaries and Related Work . 2
1.4 Contributions of this Work . 7
1.5 Outline . 8

2 Residual Minimization 9
2.1 Governing Equations . 9

2.1.1 Strong Form . 9
2.1.2 Weak Form . 10
2.1.3 Finite Element Approximation . 10
2.1.4 Time Integration . 11

2.2 Problem Setting and Achievable Speedup . 12
2.3 Projection-based Model Order Reduction . 14

2.3.1 Subspace Projection . 15
2.3.2 Residual Minimization . 16
2.3.3 Commutativity of Projection and Time Discretization 17
2.3.4 Least-squares Petrov-Galerkin . 18
2.3.5 Equivalence of ROMs using Mass Orthonormalized and Orthonormal Bases 18
2.3.6 ROM Summary . 19
2.3.7 POD . 20

2.4 Results . 21
2.4.1 Online Error Measure . 22
2.4.2 Pipe Whip . 22
2.4.3 Crash Box . 27

2.5 Conclusion . 32

3 Local Reduced-order Bases 33
3.1 Towards Parametric ROMs . 33

3.1.1 Parameter Variations . 33
3.1.2 Treatment of DoF Types . 34
3.1.3 Offline Accuracy . 36
3.1.4 Online Accuracy . 40

3.2 Local Reduced-order Bases . 43
3.2.1 MOR Based on lROB . 44
3.2.2 K-means Clustering-based lROB . 46
3.2.3 Spherical Clustering-based lROB . 49
3.2.4 Hyper-reduction . 52

x

3.3 Results . 55
3.3.1 Clustering . 56
3.3.2 Offline Accuracy . 63
3.3.3 Online Phase Results . 68
3.3.4 Hyper-reduction Offline Results . 70
3.3.5 Hyper-reduction Online Results . 73
3.3.6 Hyper-reduction Online Results - Parameter Study 78
3.3.7 Computational Speedup . 82

3.4 Summary and Discussion . 82
3.5 Conclusion . 84

4 Partial MOR 87
4.1 Motivation . 87
4.2 Theory . 87
4.3 Results . 89

4.3.1 Geometry Variations . 89
4.3.2 Deformed Geometries . 90
4.3.3 Reproductive Example (PoC) . 90
4.3.4 ROM Without Modification . 92
4.3.5 Global Approach . 93
4.3.6 Local ROB . 96

4.4 Speedup . 100
4.5 Conclusion . 101

5 MOR using AE 107
5.1 MOR on Nonlinear Manifolds . 107
5.2 Hyper-reduction on Manifolds . 111
5.3 Neural Networks . 113

5.3.1 Artificial Neuron . 113
5.3.2 Normalization . 114
5.3.3 NN Training . 115
5.3.4 Autoencoders . 116
5.3.5 Implementation Details . 117

5.4 Results . 118
5.4.1 AE Training . 118
5.4.2 Regularization . 120
5.4.3 Influence of Activation Function . 123
5.4.4 Influence of Dimensions . 125
5.4.5 CAE and DAE . 126
5.4.6 Hyper-reduction . 128

5.5 Conclusion . 131

6 Outlook and Conclusion 133
6.1 Limits and Outlook . 133
6.2 Conclusion . 134

A Appendix 137
A.1 List of Supervised Study Projects . 137
A.2 Hyper-reduction Offline Results . 138
A.3 Local ROB: Hyper-reduction Online Results - Parameter Study 141
A.4 Fortran C Interface . 145

1

1 Introduction

1.1 Motivation

The virtual design of vehicles is gaining importance as product cycles are becoming ever faster, and in the
context of passive safety, more complex tests have to be performed. Initially, the motivation of this thesis
stems from Verification and Validation (V&V), nowadays often complemented by Uncertainty Quantifica-
tion (UQ), which is a process to get confidence in the simulation models to prevent costs associated with
not meeting the required product properties or avoiding the complete failure of the final product. We are
concerned with the so-called model V&V in computational mechanics, where the final product is a compu-
tational model. Advanced validation metrics are applied to validate the model, which requires numerous
simulation evaluations. Whenever many predictions of the model are necessary, the costs associated with
constructing a reduced order model (ROM) may be negligible compared to the total computation costs.
The concept of using already generated data/knowledge to accelerate future evaluations is the main idea
of Model Order Reduction (MOR).
However, multi-query analyses also appear in other disciplines, such as optimization, robustness studies,
or sensitivity analyses. In the context of passive safety, especially robustness studies are of interest. They
investigate the behavior of the current design around a point in parameter space. This knowledge is essen-
tial as a single prediction of a virtual model only tells the behavior at the exact parameters. However, both
models, virtual and hardware, involve uncertainties. The virtual model includes modeling assumptions,
and the physical crash test involves uncertainties in the test conduction (e.g., impact velocity, impact loca-
tion, etc.) as the vehicle itself is not yet from series production, which is why production-related deviations
can occur. The behavior of the crash design around the parameter point is investigated using robustness
studies to avoid small deviations leading to a failure of the crash test in later development stages. The
required amount of simulations could also make MOR a helpful tool or even enable robustness studies for
larger models, which would otherwise require too much computational resources.
In the context of optimization, MOR provides fast and cheap-to-solve models. As crash simulations are
usually solved explicitly in time, no gradient information is available, and typically, population-based op-
timization algorithms are applied. They require many simulation evaluations. Therefore, MOR enables
optimization or accelerates it.
A different use case for MOR in optimization is the partial reduction of simulation models. Often, only one
part of a vehicle is optimized. The rest of the vehicle remains unchanged. It is computationally infeasible
to optimize the single part based on the full vehicle model. One way to overcome this limitation is to cut
the part free and apply displacements or equivalent loads. However, this approach lacks feedback on the
overall vehicle. A partial reduction could combine computational speedup while maintaining feedback. In
addition, parts with incompatible or confidential formulations could be excluded from MOR.
This work is mainly concerned with projection-based MOR (pMOR). pMOR is successfully applied to crash
problems in reproductive situations [1]. However, these ROMs quickly fail when varying the parameters
for strongly nonlinear crash problems. All of the previously stated methods share the need for paramet-
ric models. Simply including more training data and creating a global ROM does not yield an accurate
and low-dimensional ROM [2]. Therefore, different approaches are investigated to construct parametric
pROMs for crash problems.

2

1.2 Research Objectives

Initially, this work was intended as a continuation of Bach’s thesis [1], wherein projection-based Model
Order Reduction (pMOR) based on Proper Orthogonal Decomposition (POD) with Energy Conserving
Sampling and Weighting (ECSW) hyper-reduction is successfully applied to exemplary crash problems.
However, parameter variations have not been analyzed in depth, which is necessary for most applications
of reduced-order modeling. Optimization and robustness studies are often applied in crash design and
require numerous simulation evaluations. Without parametric reduced-order models (ROMs), these meth-
ods are unsuitable or require large computational resources and time. Hence, this research is concerned
with creating parametric pROMs for highly nonlinear crash and impact models. The following research
objectives are addressed to achieve the overall aim of parametric pMOR for crash:

• To develop fast pROMs, residual minimization is analyzed in detail to provide the necessary foun-
dations for further investigation. The required mathematical construct is adapted to crash models,
and the best methodology is identified among different strategies. Crash models usually consist of
many shell elements that exhibit rotations and displacements. It is to determine whether a ROM that
couples these degrees of freedom (DoF) or a separate ROM for each DoF is preferred. Building on
the best ROM method, we conduct a study determining the preferred treatment of different degrees
of freedom for parametric problems.

• pROMs with a single global linear reduced basis applied to a parametric crash box problem show
a slow error decay. POD fails to identify a low-dimensional structure in the data. The high variance
in the solution data results from the large nonlinearity of the model. ROMs with large reduced
dimensions are the consequence, and effective hyper-reduction is barely possible. Therefore, local
reduced-order bases (lROB) are identified as a suitable method for parametric pROMs. lROB is
adapted to crash problems, and two clustering metrics are analyzed. Hyper-reduction is combined
with lROB, and different strategies are identified. Using a parameter study, the influential hyper-
parameters are identified to derive recommendations.

• Finally, nonlinear dimensionality reduction using an autoencoder (AE) is investigated. Nonlinear
methods promise to resolve nonlinear correlations in the data and ensure a low-dimensional map-
ping. The low dimension enables effective hyper-reduction and, thereby, computational speedup.
We adapt the nonlinear pMOR framework to crash problems. We investigate different AE variants to
identify suitable architectures and hyper-parameters. ECSW is combined with an AE ROM to assess
the potential speedup. In addition, a hyper-parameter study shows correlations and proposes design
recommendations.

To summarize, we investigate currently available dimensionality reduction methods and divide them into
three categories: global linear, locally linear, and global nonlinear. First, the mathematical details of pMOR
are discussed to formulate the ROMs. Afterwards, for each dimensionality reduction category, the research
objective is to transfer and extend the methodology to the problem-specific needs and assess the suitability
of each method.

1.3 Preliminaries and Related Work

There is a need for fast simulation models in many scientific disciplines. Therefore, MOR is applied in
various problems, such as heat transfer, fluid mechanics, chemistry, and solid dynamics [3]. Surrogate
modeling can be categorized into three categories [4], as seen in Fig. 1.1. The models are hierarchi-
cal, data-fit, and projection-based ROMs. Further, the models can be distinguished by the required source
code access. Non-intrusive methods do not require source code access, but intrusive methods do. pROMs
are completely intrusive, whereas data-fit models are usually non-intrusive. However, hybrid methods ex-
ist, which again require access to the source code of the underlying solver.

3

projection-based
reduced models data-fit models hierarchical models

intrusive non-intrusive

Surrogate Modeling

Figure 1.1 Division of surrogate modeling approaches.

Hierarchical models are physics-based models simplified using physical assumptions, coarser grids, alter-
native basis expansions, or looser residual tolerances. They are usually derived from higher-fidelity models
and simplified using the mentioned assumptions. Fehr et al. [5] modeled a go kart frame by dividing it into
nonlinearly deforming and linearly deforming parts. The linear parts are simplified using linear MOR, which
saves computation time. Additional work investigates the identification of nonlinear and linear regions by
considering different measures [6].
Data-fit models are usually purely data-driven models which learn a mapping from inputs to outputs. They
utilize regression or interpolation techniques and need to be made aware of the physics. Popular methods
are based on polynomials, radial bases functions [7], polynomial chaos expansion [8], Gaussian processes
[2, 9–12], and Neural Networks (NN) [13–20].
A different strategy is to learn the dynamical system, which describes the underlying problem and not only
the mapping from some input parameters to some outputs of interest. The sparse identification of nonlin-
ear dynamics (SINDy) method was introduced by Brunton et al. [21] to identify the governing equations
from known data. It assumes that the dynamics are sparse regarding function bases. The optimization
algorithm promotes sparsity by using an L1 regularization. The method is applied to low-dimensional dy-
namical systems and successfully identifies the weighting coefficients of the nonlinear contributions. A
similar approach in pMOR exists, called Operator Inference [22]. The assumption of sparsity is not justi-
fied anymore. Therefore, the coefficients of the nonlinear terms are determined using a least squares fit.
However, SINDy and Operator Inference provide the same nonlinearity in the dictionary of functions as the
sought-after system exhibits. Operator Inference is designed for polynomial nonlinearities. Nevertheless,
if the system is not of polynomial type, in certain cases it can be transformed (lifted) to a system with poly-
nomial nonlinearity [23]. Similar approaches exist for SINDy. The appearance of the governing equations
heavily depends on the chosen coordinates. To obtain a simple structure, [24] combines a NN with SINDy
and trains them simultaneously. The NN identifies a suitable set of coordinates such that the SINDy model
can identify the set of governing equations.
SINDy and Operator Inference are purely data-driven methods and do not impose any structure on the
model. However, physical systems usually exhibit a structure. Now, if the data does not precisely fit the
proposed structure of the models, the model may only fit the data and does not learn physical equations.
This is shown by the fact that the identified systems suffer from instabilities. Additional physical information
is used to stabilize the systems [25, 26]. Using physical constraints to steer data-driven methods towards
stable dynamics and physical solutions is becoming increasingly popular and these methods are grouped
under the term physics-informed machine learning [27]. By teaching NNs to fulfill conservation laws, they
can even be used to solve partial differential equations (PDEs) [28]. Recent developments in NNs make
it even possible to learn continuous operators instead of functions. The DeepONet [29], e.g. learns the

4

solution operator to simple dynamical systems.
Another dimensionality reduction method is the dynamic mode decomposition (DMD) which computes
spatio-temporal modes [30–32] purely data-based. An extension of the DMD, which approximates the
leading eigenvalues, eigenvectors, and modes of the Koopman operator, is proposed by Williams et al.
[33]. While applications of DMD mainly focus on fluid mechanics problems, SINDy was applied to systems
in solid mechanics, even with hysteresis [34–36]. An overview of system identification methods in struc-
tural engineering can be found in [37, 38]. Operator Inference was applied to mechanical systems with a
particular structure. Kim et al. [39] showed that 3rd order polynomials can approximate the nonlinear force
term for hyperelastic materials. Similar approaches can be found in [40] and even with hyper-reduction [41].

The type of MOR we are concerned with in this thesis is projection-based MOR (pMOR). pMOR can
be divided into an offline and an online phase, as seen in Fig. 1.2. The offline phase includes the steps
related to the creation of the ROM. The online phase is the fast evaluation of the created ROM. In the
offline phase, the first step is creating the training data if a data-driven ROM method is used. There are
also simulation-free reduction methods, which do not require training data. In the data-driven case, a di-
mensionality reduction is applied to the data to find a low-dimensional representation. This mapping is
subsequently used to formulate the pROM, the last block of the offline phase in Fig. 1.2. As the dimen-
sional reduction is usually not exact, a residual is formed when the mapping is inserted in the governing
equations. Different strategies exist to treat the residual, which leads to different pROMs. An additional
reduction step, called hyper-reduction must be applied for highly nonlinear equations. A precomputation
of the reduced nonlinear term is only possible for certain types of nonlinearities.
Simulation-free methods do not need expensive model evaluations prior to the ROM construction. One

Training Data Dimensionality
Reduction

ROM Formulation
/Training ROM Prediction

Offline Phase Online Phase

Figure 1.2 Generic MOR workflow.

of the earliest model reduction approaches for linear systems is to approximate the solution of the sys-
tem with a reduced number of vibration modes. Several extensions such as static and modal derivatives
exist [42–50] for nonlinear systems. An overview of modal derivatives, which express the sensitivities of
a system, can be found in [51, 52]. An additional approach to reduce the complexity of large systems is
substructuring. Component Mode Synthesis (CMS) [53] or modal coupling technique [54] divide a large
model into substructures, which are treated individually. To solve the complete system, the substructures
are coupled using interfaces whereby equilibrium is imposed. Further substructuring techniques widely
used in linear structural analysis are the Craig-Bampton (CB) method [55] or the Rubin method [56].
In contrast to the simulation-free approaches, data-driven approaches use generated solution data to cre-
ate a basis for expressing the new solution. This first step in the pROM creation is always the dimensional
reduction and, associated with that, the Reduced-order Basis (ROB) creation. Several methods exist to
compute the ROB. The most commonly used method is the Proper Orthogonal Decomposition (POD) [57].
POD is a linear method, mathematically equivalent to the Singular Value Decomposition (SVD), Principal
Component Analysis (PCA) [58], or the Karhunen-Loève transform. However, algorithm differences exist,
and the terms are used in different contexts. A rigorous discussion about comparing the three algorithms
can be found in [59]. Also, a historical discussion of the SVD can be found in [60]. To the author’s knowl-

5

edge, Sirovich [61] first used POD to identify coherent structures in turbulent fluid flows. Dimensional
reduction relies on the fact that solutions of high-dimensional systems usually live in a lower-dimensional
subspace [62]. Once the solution manifold is approximated, different methods exist to evaluate the approx-
imation quality [63–65]. The truncated POD is the best possible rank k approximation of the training data
regarding the Frobenius norm [66], where k is the dimension of the low-dimensional subspace. However,
this does not necessarily mean it is the best basis to represent the dynamics of the problem, as shown
by Moore, who introduced the Balanced Truncation (BT) method for linear systems [67]. Coordinates with
low variance would be truncated by POD even if the system would be sensitive to them. Rowley proposed
the balanced POD [68], which uses solution snapshots and information about the system’s adjoint. This
approach enabled the application of BT to high-dimensional systems, which would otherwise not be pos-
sible due to the computationally impractical evaluation of the Gramians. Extensions to nonlinear systems
exist [69–73]. Phallipou et al. [74] showed that selecting POD modes according to the ordering of the
eigenvalues can be suboptimal in explicit dynamics (crash applications).

In addition to the variance-based dimensionality reduction methods, extensions of them exist, or oth-
er/nonlinear manifold learning techniques are applied. Chelidze [75] proposed the smooth orthogonal
decomposition which augments the classical POD with an additional requirement for smoothness to re-
move noisy measurements or [76] proposed a weighted POD, which assigns weights to certain snapshots.
A snapshot of a specified variable is defined as the variable evaluated at a specified time, location and
parameter combination. Further variants are the robust PCA [77] or the sparse PCA [78].
For certain problems such as convection-dominated problems, [79] or parametric nonlinear problems
[2], a global linear dimensional reduction is generally not able to accurately describe the data in a low-
dimensional space due to the slowly decaying Kolmogorov n-width [80]. Global means that all solution
snapshots are assembled into one data matrix, also called snapshot matrix, and passed to the POD.
Two methods based on POD exist to overcome the n-width limitation. The first approach applicable to
linear parametric systems is manifold interpolation [81–84]. The Grassmanian [85–88] parameterizes all
r-dimensional linear subspaces of an n-dimensional vector space. Utilizing the manifold concept allows
to span a tangent space to the manifold, which is a space where interpolation can be performed as usual.
After interpolation at the desired point, the point is projected back onto the manifold. This satisfies the or-
thogonality constraints that would not be met if the basis vectors were directly interpolated. However, the
application to nonlinear systems that require hyper-reduction needs to be clarified. Therefore, a second
approach that is directly compatible is considered.
The local ROB (lROB) approach [89] partitions the solution space into subregions, and for each subre-
gion, a local basis is computed using POD. The clustering algorithm is the k-means clustering [90], which
clusters solution snapshots based on their squared L2 norm. Another aspect of the method is the fast
identification of the closest subregion. Each subregion, called a cluster, has a cluster center (centroid).
Calculating the distance in full space scales with the dimension of the Full Order Model (FOM) and thus
prevents a speedup. Amsallem et al. [89], therefore, derived a sign function, which scales with the dimen-
sion of the ROM and indicates the need to change the cluster by a flipping sign. The lROB is compatible
with Petrov-Galerkin ROMs and hyper-reduction [91, 92].
Other methods are designed to resolve more sophisticated manifold structures primarily in a global sense
in contrast to the piecewise linear approximation. Popular nonlinear dimensionality reduction methods
are the kernel PCA (kPCA) [93], locally linear embeddings (LLE) [94], isomaps [95], diffusion maps [96],
and diffusion nets [97]. Different methods are compared in [98]. A popular NN-based method is the Au-
toencoder (AE). The first appearance of AE is hard to determine [99], however, [100] describes a novel
feedforward NN architecture including the mathematical formalism. In MOR, AE appears in non-intrusive
MOR [101–106] as well as in pMOR [79, 107]. AE-based pMOR also appears in the computer graphics
community [108, 109], which could be due to the missing reference simulation. Since the goal is only
a realistic-looking deformation and does not necessarily have to be physical, the requirements here are
lower, and the AE has a clear advantage over a POD-based modeling.
A different nonlinear approach is quadratic manifolds (QM) [110, 111]. The linear approximation obtained

6

by POD is extended by a term that depends quadratically on the reduced state. QM is compatible with
hyper-reduction [112], used for Operator Inference [113] and utilized to mitigate the Kolmogorov barrier in
nonlinear pMOR [114].

Once the proper basis is found, the pROM has to be formulated by inserting the mapping in the governing
equations. Thereby, the trial basis is defined, or simply put, the admissible displacements are defined.
The next step is to define how the arising residual is treated. Suppose the generated residual is enforced
to be orthogonal to a subspace spanned by the test basis, and the test and trial bases are equal. In that
case, we obtain a Bubnov-Galerkin scheme, often labeled Galerkin scheme in literature. This differs from
a Petrov-Galerkin scheme, where the test and trial bases differ. How different ROM formulations can be
interpreted regarding their corresponding residual minimization problems is discussed in [115]. Also, a de-
tailed discussion about time-continuous optimality and time-discrete optimality and which time integration
methods destroy the optimality criterion can be found there.
Projection-based MOR is especially successful (in terms of speedup) in the case of linear ODEs or special
cases in which the reduced operators can be built a priori. The construction of the reduced operators
scales with the size of the high-dimensional model (HDM) but needs to be done only once if they are pre-
computable. Typical examples are linear time-invariant systems (LTI) in control and structural vibration. If
the high-dimensional operators must be evaluated at each time step, additional reduction methods termed
hyper-reduction must be utilized. Especially in crash applications, the semi-discretized PDEs are a highly
nonlinear system of ODEs that do not fulfill the mentioned operator properties.
Hyper-reduction methods can be categorized into nodal vector approximation methods, which try to inter-
polate the finite element force vector, and integral approximation methods, considering the finite element
force vector as domain integral. The nodal vector approximation methods are based on the work of Ev-
erson and Sirovich [116] for gappy data. All methods try to approximate the original vector using only a
small number of entries of the snapshots. How to choose the indices of the entries is described by various
methods, such as the Empirical Interpolation Method (EIM) [117] and its discrete counterpart the Discrete
Empirical Interpolation Method (DEIM) [118], a DEIM version that further reduces the computational time
as it works on the unassembled quantities and does not need to consider adjacent quantities [119, 120],
the Best Points Interpolation Method (BPIM) [121], and the discrete BPIM [122]. Further approaches ex-
ist, such as polynomial tensors [123] or the Gauss-Newton with approximated tensors (GNAT) method.
However, polynomial tensors are only applicable to certain problems. The collocation-based methods do
not construct the low-dimensional approximation directly but evaluate the balance equations only at the
collocation points [124].
The second category relates to integral approximation approaches; they can be further divided into meth-
ods that interpolate the integrand and cubature methods, which interpolate the whole integral as the
weighted sum of the integrand evaluated at sampling points. Interpolation of the integrand follows the
same principles as the vector approximation methods and is presented in [125–128]. The methods men-
tioned above sometimes lack numerical stability for second-order nonlinear differential equations as they
are not structure-preserving. Therefore, cubature-based hyper-reduction methods have been developed.
Optimized cubature methods work on the unassembled quantities and effectively speedup computation
due to the reduced mesh size. The first method of this kind was proposed by An et al. [129] in the field of
computer graphics. Later, the method was adopted by the computational mechanics community by [130,
131] and termed the Energy-Conserving Sampling and Weighting method (ECSW) [132–134]. Hernández
et al. [135] introduced the empirical cubature method related to ECSW but operates on the integration
points instead of working on the element level. A comparison of established hyper-reduction methods can
be found in [136, 137]. In the context of explicit dynamics, ECSW is the most popular technique due to
structure preservation and associated with its stability properties [131]. Structure preservation of MOR for
mechanical systems was further investigated by [138]. Similarly to the non-intrusive methods, the stability
of pROMs [139] can be improved by a postprocessing step [140]. In addition, the stable time step of explicit
time integration is usually enlarged by the projection step [130, 141].
In addition, we want to mention iterative approaches such as a priori model reduction [142–144] and the

7

a priori hyper-reduction (APHR) [145] which both incrementally update the ROM if more data becomes
available. Finally, it is to say that models in crash usually contain internal variables that require special
attention [124], and contact algorithms consume a large portion of the total simulation time. The reduction
of contact forces still needs to be explored [146, 147].

We end this section with an economic perspective on MOR. This consideration can be applied to all

Computation
time

of model
evaluations

FOM

ROM
Break-even

point

Offline phase
costs

Figure 1.3 Economic perspective to model order reduction.

previously discussed MOR methods. Fig. 1.3 compares the total computation time for an increasing num-
ber of model evaluations for a FOM (in orange) and a ROM (in green). Compared to the FOM, the line
for the ROM does not start at zero. Instead, the offline phase cost appears, which is the initial inevitable
"investment". At the break-even point, the total computation time of the FOM and the ROM is equal, and
for further evaluations, the ROM is faster in total. Non-intrusive methods usually have higher offline phase
costs, as a machine learning (ML) model must be trained. However, querying the model is very fast; thus,
it is suitable for methods requiring many evaluations, such as population-based optimization algorithms. In
contrast, pMOR has a cheaper offline phase consisting of dimensionality reduction and a clustering algo-
rithm in the case of lROB. For nonlinear systems, the optimization associated with hyper-reduction must be
added. Since the pROM is still a system of ordinary differential equations (ODEs), which is solved using a
time integration scheme, the reduction in computation time is not as immense as in the non-intrusive case.
Depending on the requirements of the multi-query method regarding computation time of the model and
solution resolution (entire field or just specific quantities), the suitable method can be selected. This thesis
concerns pMOR as it is physics-based and provides the same resolution as the underlying finite element
method (FEM) model. Also, the possibility of replacing certain parts with a reduced model and optimizing
other parts was a challenging question where pMOR is a promising approach.

1.4 Contributions of this Work

The contributions of this work are listed in the following:

• We rigorously derive projection-based ROMs with a particular focus on residual minimization for
nonlinear second-order systems. Different ROMs are formulated which optimize the arising residual
regarding different semi-norms. The ROMs are applied to two exemplary crash problems and the
best ROM is identified for the following chapters.

8

• We apply pMOR in a parametric setting and study the effect on the dimensionality reduction as well
as the ROM construction. Further, the influence of the different variable types, namely displacements
and rotations, is studied and a recommended ROM construction regarding the degrees of freedom
treatment is proposed.

• The identified barriers of reduced order modeling for parametric highly nonlinear systems are tack-
led by introducing local reduced-order bases for second-order systems with explicit time integra-
tion. The chosen method best satisfies the requirements from explicit FEM, e.g., compatibility with
hyper-reduction. Due to the three-point stencil in explicit time integration, we propose a velocity
transformation to transform the velocity to the new local basis in case of a basis change.

• lROB based on spherical clustering (slROB) is introduced due to observing system states with a
nearly monotonically increasing L2 norm. As regular lROB clustering is based on the squared L2

norm, solutions are clustered along the deformation, which is similar to the time axis. Inspired by
the clustering of documents of varying length but similar content, spherical clustering is adjusted to
solid mechanics problems.

• lROB, as well as slROB, are combined with ECSW hyper-reduction. We propose a global-local
hyper-reduction strategy. This strategy uses a global mesh with varying weights and allows changing
clusters and weights without reactivating elements with missing history.

• Motivated by the need to optimize single components in full-vehicle models, we exemplify the pos-
sibility of reducing single parts in a full model. Our proof of concept (PoC) allows even stronger
assumptions as we reduce only certain sections of a crash box model, which equal parts of the
model. Further, the compatibility with ECSW hyper-reduction is demonstrated.

• We formulate a ROM based on AE, which is a NN-based nonlinear dimensionality reduction. We
train the AE regarding different error definitions and evaluate the accuracy compared to the linear
ROMs. To the author’s knowledge, this is the first application of an AE in pMOR for crash.

1.5 Outline

The thesis is structured in the following way. In Chapter 2, we present the governing equations and
formulate a POD-based pROM. The different mechanisms to achieve speedup are discussed and the
following chapters are motivated. We discuss POD and describe how to utilize SVD to create the ROB.
Residual minimization is introduced in the context of second-order nonlinear equations, different pROMs
are formulated, and results are shown for a pipe whip and a crash box example. Parameter variations
are introduced, and the resulting Kolmogorov n-width barrier is illustrated. The behavior of displacements
and rotations is studied, and a recommended treatment is deduced. Lastly, the concept of ECSW hyper-
reduction is introduced. In Chapter 3, the idea of lROB is explained, and the method is applied to the
parametric problem defined in the previous chapter. The crash box problem is analyzed, and features
of crash problems are highlighted. lROB is modified using spherical k-means clustering, and slROB is
presented. ECSW is combined with lROB and slROB. The methods are demonstrated using the crash
box example. In Chapter 4, we conduct a PoC of a partial reduction. The crash box is divided into four
rings, leaving one ring unreduced. The geometry of the unreduced ring is modified, and the accuracy of
the surrounding ROM is measured. In Chapter 5, pROM based on nonlinear dimensionality reduction is
introduced, NN and AE are explained, and successful examples are presented. Finally, in Chapter 6, the
findings are summarized, and an outlook for future research is given.

9

2 Residual Minimization

Chapter 2 introduces residual minimization in the context of second-order ODEs resulting from finite el-
ement approximations in solid mechanics. Section 2.1 summarizes the governing equations beginning
from the strong form arising from continuum mechanics, reaching the finite element approximation and,
finally, the time integration. The resulting equations from Section 2.1 are the starting point for the pMOR
framework, which is why the main mechanisms for computational speedup are presented next in Section
2.2. Finally, pMOR is introduced in Section 2.3. pMOR restricts the solution to lie in a lower-dimensional
subspace. If the conservation equation can no longer be fulfilled exactly, a residual is formed. We propose
different residual minimization strategies in the remainder of Section 2.3, which yield different ROMs. The
ROMs differ in computational complexity, e.g., the inversion of the reduced mass matrix of the Autoencoder
ROM in Chapter 5 could be dispensed with. In addition, mathematical relations are derived and discussed,
and three different pROMs are summarized. Section 2.4 introduces error measures to assess the ROMs
and applies the identified ROMs of the previous section to two exemplary crash problems. We choose the
best ROM and use it for all other methods in this work.

2.1 Governing Equations

2.1.1 Strong Form

In this work, we consider the deformation of structures which can be modeled using continuum assump-
tions. The governing equations are the results of continuum mechanics and consist of conservation laws
for mass, momentum, and energy. In crash applications, temperature is usually not considered and the
energy balance is not solved. Also in this chapter we therefore limit the introduction to mass and momen-
tum conservation. We present a summary of the equations relevant to this work. A detailed derivation can
be found in [148].
Mass conservation reads:

ρ0 = ρ(X, t)J(X, t), (2.1)

where X is the material position, ρ is the density, ρ0 is the material density, t is the time and J = detF is
the determinant of the deformation gradient F. The deformation gradient is defined as:

F(X, t) = dx(X, t)
dX , (2.2)

where x(X, t) is the current position. The linear momentum balance reads:

ρ
Dv
Dt

= ρv̇ = ∇ · σ + ρb, (2.3)

where D·
Dt denotes the material derivative, v is the velocity field, σ is the Cauchy stress tensor and b are

volume forces. The balance of angular momentum is satisfied by imposing symmetry to the Cauchy stress
tensor:

σT = σ. (2.4)

The solution x(X, t) to these equations fulfills the governing equations for every point in space and time.
Therefore, this formulation is called strong form.

10

2.1.2 Weak Form

To solve the previously defined set of partial differential equations (PDEs), the strong form is first trans-
formed into a weak form that weakens the requirements for differentiability of the solution and dictates that
the solution does not need to satisfy the equations in an "absolute" sense anymore but in some precisely
defined sense. The weak form is obtained by multiplying the strong form with a test function δv, integrat-
ing it over the current domain Ω and applying the Gauss-Green divergence theorem to shift one derivative
from the solution onto the test function. The test function can be thought of as velocity, giving the terms
units of power. The resulting equation, which is also known as the principle of virtual power [149], reads:∫

Ω
δv · ρv̇dΩ︸ ︷︷ ︸
δP kin

+
∫

Ω

∂δv
∂x : σdΩ︸ ︷︷ ︸
δP int

−
∫

Ω
δv · ρbdΩ−

nSD∑
j=1

∫
Γtj

δvjtjdΓ

︸ ︷︷ ︸
δP ext

= 0, (2.5)

with the kinetic virtual power δP kin, the internal virtual power δP int and the external virtual power δP ext.
The traction is t and the traction boundaries are Γtj with the number of spatial dimensions nSD. The space
of trial functions is defined as [148]:

vi(X, t) ∈ {vi|vi ∈ C0, vi = vi on Γvi}, (2.6)

where vi is the velocity boundary condition on the velocity boundary Γvi . This space of kinematically
admissible velocities is chosen to satisfy the velocity boundary conditions and to satisfy compatibility [148].
The space of test functions is chosen as:

δvi(X) ∈ {δvi|δvi ∈ C0, δvi = 0 on Γvi}. (2.7)

Both, test and trial function are infinite-dimensional, which is why the weak form and the strong form are
equivalent. However, in computational frameworks, a finite dimensional function space is required. The
transfer to a finite-dimensional space is described in the next subsection.

2.1.3 Finite Element Approximation

To be able to solve eq. (2.5) numerically, a finite-dimensional function space must be chosen. We introduce
the finite element approximation by dividing the whole domain Ω into ne subdomains Ωe with:

Ω =
ne⋃
e

Ωe. (2.8)

The current position of the nN nodes is approximated with shape functions NI :

x(X, t) = NI(X)xI(t), for I ∈ [1, nN]. (2.9)

Summation over repeated indices is implied. At node I, the coordinate vector is defined as:

xI(t) =


x1I
x2I

...
xnSDI

 = xiI for I ∈ [1, nN], i ∈ [1, nSD]. (2.10)

The velocity is the time derivative of eq. (2.9) and reads:

v(X, t) = NI(X)vI(t). (2.11)

The test function is not a function of time and is approximated using the same shape functions as for the
trial function:

δv(X) = NI(X)δvI . (2.12)

11

Inserting the finite element (FE) approximations into eq. (2.5) yields the set of discrete equations [148]:

δviI(δij
∫

Ω
ρNINJdΩ︸ ︷︷ ︸
MijIJ

v̇jJ +
∫

Ω

∂NI

∂xj
σjidΩ︸ ︷︷ ︸

f int
iI

−
∫

Ω
NIρbidΩ−

∫
Γti

NItidΓ︸ ︷︷ ︸
fext

iI

) = 0 ∀δviI /∈ Γvi . (2.13)

As the scalar values δviI are arbitrary, the inner part of eq. (2.13) must be zero. As the focus of this thesis
is MOR, we simplify the notation and write eq. (2.13) as:

M(µ)ẍ+ fint(t, x, ẋ, µ) = fext(t, x, µ), (2.14)

where M ∈ Rn×n is the mass matrix, fint ∈ Rn and fext ∈ Rn are the internal and external force vector,
respectively, and µ ∈ Rp is the parameter vector containing the p varied parameters. The number of DoF
in the system is n reduced by the number of constraints ncstr:

n = nSD ∗ nN − ncstr. (2.15)

Typical car structures are thin-walled and described by shell formulations in the FEM models. Therefore, x
contains translatory and rotatory DoF. Often the force terms are summarized and the equations are simply
written as:

Mẍ+ f = 0, (2.16)

with:
f(t, x, ẋ, µ) = fint − fext. (2.17)

2.1.4 Time Integration

A time integration scheme is applied to discretize eq. (2.14) in time. It is very common to use an explicit
time integration scheme in crash applications due to the high dynamics and short simulation times in these
scenarios. In commercial solvers, central difference scheme is often used to solve systems of second-
order ODEs. The central difference scheme as depicted in Fig. 2.1, reads as follows [148, 150]:

ẍ|t=tn = ẍn ≈ ẋn+ 1
2 − ẋn−

1
2

∆tx
; (2.18a)

ẋ|t=t
n+ 1

2
= ẋn+ 1

2 ≈ xn+1 − xn

∆t2
(2.18b)

where

∆tx = ∆t1 + ∆t2
2 . (2.19)

For a constant time step, the acceleration at time t = tn can be expressed as:

ẍn ≈ xn+1 − 2xn + xn−1

∆t2 (2.20)

and consequently, the new displacement is obtained as:

xn+1 = 2xn − xn−1 −∆t2M−1f. (2.21)

In LS-Dyna1, the stable time step is calculated and may change over time. Therefore, the update is
performed as follows: These equations are repeatedly evaluated until the termination time is reached. It
is important to note that the mass matrix M is a diagonal matrix with mass and rotational inertia on the
diagonal entries due to mass lumping. Therefore, inversion of the mass matrix is computationally cheap.

1Version: smp d R12, Revision: R12-4012-g7c66dc5b4e

12

Algorithm 1 Explicit time integration

Input:Initial conditions x0, ẋ
1
2 , boundary conditions, termination time tend and additional parameters µ

Output: Temporal evolution of model xtn , ẋ
t
n+ 1

2

1: t = 0
2: while t ≤ tend do
3: fn(tn, xn, ẋn−

1
2 , µ)← calculate force

4: Compute new acceleration ẍn = M−1fn

5: ẋn+ 1
2 = ẋn−

1
2 + ∆txẍn

6: xn+1 = xn + ∆t2ẋn+ 1
2

7: t = t+ ∆t2
8: end while

tntn−1

xn−1

tn+1

∆t1 ∆t2

∆tx

x

t

ẋn+ 1
2

xn

xn+1

Figure 2.1 Central difference time integration with varying time step.

2.2 Problem Setting and Achievable Speedup

In this section we discuss the computational framework in which we implement an intrusive MOR scheme
and discuss the associated bottlenecks. We start by explaining a time integration loop, highlighting differ-
ence between a commercial solver and an academic one and comment on computational efforts of the
single operations.
Figure 2.2 illustrates the algorithm to proceed one step forward in time as it is typically performed by an
explicit nonlinear Finite Element (FE) solver such as Abaqus, LS-Dyna, PamCrash, or Radioss. The unre-
duced version can be seen on the left side of the dashed line and the reduced version on the right side.
First, we consider the unreduced case where all yellow rhombi are left negatively. In the beginning, it is
checked whether the termination time has already been reached. If not, the forces are calculated based on
the current deformations, velocities, and history variables. The force calculation is the most expensive step
of one explicit integration cycle as the time update itself is inexpensive as compared to implicit schemes.
Once the forces are known, they are converted to accelerations and the time update returns the velocities
and displacements at the new time. Finally, time is incremented and the new state is set as current state.
In this cycle MOR has three possibilities to achieve speed-up:

• Smaller problem size: Projection-based MOR projects the governing equations into a lower dimen-
sional space. This strongly reduces the dimension of the problem. Instead of solving for the state
x ∈ Rn we solve for the reduced state x̂ ∈ Rk with k � n. The reduced dimension k is the sum
of the reduced dimension of the displacements d and the reduced dimension of the rotations r. The
explicit time update directly benefits from the reduced dimension, however, not as much as implicit

13

schemes do as the explicit update is cheap anyway. One implicit integration cycle involves solving
a system of equations iteratively. The repeated use of the small dimension results in an even larger
advantage. Usually, the nonlinear force term must be evaluated in physical/full space except some
special case depending on the type of nonlinearity. Material models and contact algorithms are usu-
ally formulated in physical coordinates. Also in crash applications, forces are not directly computable
from reduced quantities and transformations have to be performed in every integration cycle. The
transformation consists of a projection and a backprojection, as can be seen in Figure 2.2 on the
right side of the dashed line. Both, the projection and the backprojection are associated with com-
putational complexity of O(k ∗ n) for a linear mapping between full and reduced space. In summary,
the transformation costs dominate for pROMs in explicit FE whereas the reduced problem size, due
to the more complex time update can dominate for implicit simulations.

• Larger time step: To still obtain a speed-up by just using projection, e.g. when no access is given to
the force calculation routines in the solver to apply hyper-reduction, Bach et al. [141] has shown that
projection onto the reduced basis filters out the higher modes. More precisely, the largest eigenvalue
of the unreduced system will be always larger than the largest eigenvalue of the corresponding ROM.
As the critical time step of the central difference scheme is in a simplified manner proportional to 1√

λ
with λ the largest eigenvalue of the system, the critical time step of the FOM is smaller than the
critical time step of the ROM. Also Farhat et al. [130] reduced a model of a circular Taylor bar
achieving a speed-up of 118 mainly due to a larger admissible time step.

• Hyper-reduction: If access is given to the force calculation routines, hyper-reduction can be applied.
Hyper-reduction avoids evaluating the full high-dimensional force term and instead evaluates only
selected entries. The selection is an additional optimization problem in the offline phase. ECSW
[130] is the most popular hyper-reduction method for solid dynamics problems as it has shown prior
stability properties. This is mainly due to preservation of the Lagrangian structure of the underlying
problem [131]. The idea for ECSW originated in fluid structure interaction (FSI) problems, where the
fluid mesh is usually much finer than the solid mesh. Instead of imposing force balance directly, the
difference of the work done by the forces of the fine mesh and of the coarse mesh is optimized. This
idea has been transferred to FE models where the original mesh is replaced by a reduced mesh.

14

Start

t ≥ tfinal Stop

Hyper-reduction

Compute forces Compute energies

Compute acceleration

Reduce

Projection

Time update

Backprojection

xn+1 → xn

t = t+ dt

no

yes

no

yes

yes

no

Figure 2.2 Computational graph of a simulation with and without MOR. The steps performed in the FE solver without
MOR are shown on the left hand side of the vertical dashed line. The modifications due to MOR are shown on the
right hand side of the dashed line. The FOM and the ROM share the same time update. However, the ROM requires
additional projection steps and the force calculation is modified based on energies, as described by ECSW.

2.3 Projection-based Model Order Reduction

After discussing the general speedup mechanisms, we derive projection-based MOR related to residual
minimization [115] in this section. The necessary foundations for MOR are introduced, on which the rest
of the work builds. In this section of the thesis, we treat displacements and rotations separately. Therefore
the high-dimensional state is x ∈ Rn with n the dimension of either displacements and rotations and k

15

the corresponding reduced dimension. However, both types of DoF are treated equally, this is why we
consider only displacements here.

2.3.1 Subspace Projection

We introduce the projection-based MOR framework without going into the details for the beginning. The
first step to construct a ROM is to use a mapping Γ : Rk → Rn that maps a low-dimensional state x̂ ∈ Rk
to a high-dimensional state:

x ≈ x̃ = Γ(x̂) ∈ Rn. (2.22)

We restrict our self in the first chapter of this work to linear mappings although the main motivation behind
the different ROMs comes from the difference in solving them for linear and nonlinear mappings. However,
all necessary points can be explained using a linear method and POD is currently most popular to compute
such a mapping. Using a linear mapping, eq. (2.22) reads:

x ≈ x̃ = Φx̂ = x̂i(t)φi , for i = 1, . . . , k, (2.23)

where summation over a pairwise appearing index is implied. The high-dimensional state x is decomposed
into a sum of temporal coefficients x̂i and spatial modes φi ∈ Rn. The sum can be also expressed as a
matrix vector product with Φ ∈ Rn×k the matrix containing the k basis vectors.
The mapping eq. (2.23) is differentiated twice with respect to time and inserted in the governing eq. (2.16):

r1 = MΦ¨̂x+ f. (2.24)

By inserting an approximation, a residual r1 is formed. The next step, often referred to as Galerkin projec-
tion, is to enforce the residual to be orthogonal to the space spanned by the columns of Φ. In other words,
we solve the right hand side of eq. (2.24) exactly in the reduced space.

ΦT r1
!= 0 (2.25a)

=⇒ ΦTMΦ¨̂x+ ΦT f = M̃¨̂x+ ΦT f = 0. (2.25b)

In the resulting set of equations M̃ = ΦTMΦ ∈ Rk×k denotes the reduced mass matrix which is no longer
a diagonal matrix. This is the standard ROM used in literature for second-order mechanical systems.
However, from an implementation point of view or in combination with nonlinear dimensionality reduction,
it may be preferable to work directly with accelerations instead of forces. We try to derive a ROM where ac-
celerations are appearing naturally without the need to invert the reduced mass matrix. First, we transform
eq. (2.16) to standard form by multiplying the whole equation with the inverse of the mass matrix:

ẍ+ M−1f = 0. (2.26)

We insert again the twice differentiated mapping eq. (2.23) and obtain a new residual r2:

r2 = Φ¨̂x+ M−1f. (2.27)

Although different residuals, by multiplying eq. (2.27) with M, the two residuals can be related.

r1 = Mr2. (2.28)

We again enforce the residual r2 to be orthogonal to the column space of Φ and obtain a second ROM
which directly works on accelerations:

ΦT r2
!= 0 (2.29a)

=⇒ ΦTΦ¨̂x+ ΦTM−1f = ¨̂x+ ΦT ẍ = 0. (2.29b)

Solving both ROMs results in different solutions and further investigation is needed to show the mathemat-
ical differences. The next section highlights the relation of both ROMs to the solution of an optimization
problem.

16

2.3.2 Residual Minimization

Now we relate the previously presented ROMs to residual minimization problems. We first consider time
continuous residuals and show that eq. (2.29b) can be interpreted as the solution of an optimization
problem of the L2 norm of residual ‖r2‖2. This derivation is analog to the derivation of the analytical
solution of the least squares problem. We state the following optimization problem as proposed by [115]:

¨̃x = arg min
a∈Ran(Φ)

∥∥∥a+ M−1f(Φx,Φẋ, µ, t)
∥∥∥2

2
. (2.30)

Since ¨̃x = Φ¨̂x, we can rewrite eq. (2.30) and obtain:

¨̂x = arg min
â

∥∥∥Φâ+ M−1f
∥∥∥2

2
. (2.31)

We define g(â) as:

g(â) =
∥∥∥Φâ+ M−1f

∥∥∥2

2
= (Φâ+ M−1f)T (Φâ+ M−1f)

= âTΦTΦâ+ 2âΦTM−1f + fTM−TM−1f
(2.32)

and find the minimum of g by solving for the stationary point:

dg
dâ = 2ΦTΦâ+ 2ΦTM−1f

!= 0

=⇒ ΦTΦâ+ ΦTM−1f = 0.
(2.33)

The solution that solves the time continuous minimization problem of r2 is equal to ROM2 eq. (2.29b) with
ẍ = M−1f :

¨̂x = â = −ΦTM−1f. (2.34)

Right now, we have shown that Galerkin projection optimizes the time continuous residual. This result
applies to general nonlinear first-order systems of the form ẋ = f(x, t, µ) [115].
Does this result also hold for ROM1 eq. (2.16), which is most often used in literature? To answer this
question, we follow the exact same procedure as before and state an L2 optimization problem, but now for
r1:

¨̃x = arg min
a∈Ran(Φ)

‖Ma+ f(Φx,Φẋ, µ, t)‖22 . (2.35)

Since ¨̃x = Φ¨̂x, we can rewrite eq. (2.30) and obtain:

¨̂x = arg min
â
‖MΦâ+ f‖22 . (2.36)

We define g(â) as:

g(â) = ‖MΦâ+ f‖22 = (MΦâ+ f)T (MΦâ+ f)
= âTΦTMTMΦâ+ 2âΦTMT f + fT f

(2.37)

and find the minimum of g by solving for the stationary point:

dg
dâ = 2ΦTMTMΦâ+ 2ΦTMT f

!= 0

=⇒ ΦTMTMΦâ+ ΦTMT f = 0.
(2.38)

ROM1 as derived in Section 2.3.1 does not correspond to the solution of the associated L2 norm opti-
mization problem of the time continuous residual. The question immediately arises to which optimization

17

problem does the solution of ROM1 correspond then?
To find out, we define a new norm:

‖x‖A =
√
xTAx, (2.39)

where A is a symmetric positive definite matrix. We evaluate the objective function g of eq. (2.37) using
the new norm: We define g(â) as:

g(â) = ‖MΦâ+ f‖2A = (MΦâ+ f)TA(MΦâ+ f)
= âTΦTMTAMΦâ+ 2âΦTMTAf + fTAf.

(2.40)

We find the minimum of g by solving for the stationary point:

dg
dâ = 2ΦTMTAMΦâ+ 2ΦTMTAf != 0 (2.41a)

=⇒ ΦTMTAMΦâ+ ΦTMTAf = 0. (2.41b)

By comparing eq. (2.41b) with ROM1 we identify A as:

A = AT = M−1. (2.42)

Therefore, ROM1 is the solution of the optimization problem:

¨̂x = arg min
â
‖MΦâ+ f‖2M−1 . (2.43)

2.3.3 Commutativity of Projection and Time Discretization

Now, we show that Galerkin projection and time integration are commutable. First, we apply the time
integration scheme on ROM1 to obtain the fully discretized reduced equations. Second, we apply Galerkin
projection to the time discretized FOM equations and show equivalence to the first approach. A general
discussion for first-order ODE systems in standard form can be found in [115]. The time discrete residual
rn1 is obtained by evaluating r1 at time t = tn and is directly enforced to be orthogonal to Φ:

r̂1|t=tn = r̂n1 = ΦT rn1
!= 0 (2.44a)

r̂n1 = M̃¨̂xn + ΦT f̃n = 0, (2.44b)

where:
f̃n = f(tn,Φx̂n,Φ ˙̂xn−

1
2 , µ). (2.45)

We now insert the central difference scheme eq. (2.20) in eq. (2.44b) and obtain the implicit formula for
the reduced displacement at the next time step ûn+1:

r̂n1 (ûn+1) = M̃
∆t2 (ûn+1 − 2x̂n + x̂n−1) + ΦT f̃n = 0. (2.46)

In contrast, we now begin with the fully discretized version of eq. (2.16):

M
∆t2 (xn+1 − 2xn + xn−1) + f(tn, xn, ẋn−

1
2 , µ)︸ ︷︷ ︸

fn

= 0. (2.47)

In analogy to the continuous case, we insert the linear mapping eq. (2.23) and obtain the time discrete
residual rn1 :

rn1 = MΦ
∆t2 (xn+1 − 2xn + xn−1) + f̃n. (2.48)

We enforce the high-dimensional residual rn1 to be orthogonal to the space spanned by the columns of Φ
and obtain:

ΦT rn1 = r̂n1 (ûn+1) = M̃
∆t2 (ûn+1 − 2xn + xn−1) + ΦT f̃n

!= 0. (2.49)

For both approaches, the same ROM is obtained. The proof can be performed for ROM2 analogously. A
derivation for general first-order systems with linear multistep schemes and Runge-Kutta schemes can be
found in Carlberg et al. [115].

18

2.3.4 Least-squares Petrov-Galerkin

Until now, we formulated the residual optimization problems explicitly for time continuous residuals. How-
ever, it needs to be shown that time discretization does not destroy the optimality property. A ROM that
is a solution to an optimization problem of the time discrete residual was introduced by Carlberg et al.
[151] in 2011 and named least-squares Petrov-Galerkin (LSPG). Here, we recall the fundamental result of
[115] that LSPG and Galerkin is equivalent for explicit time integration schemes by proving it for the central
difference method applied to a second-order ODE. We define a similar optimization problem as in Section
2.3.2, however, we now consider the time discrete residual:

x̃n+1 = arg min
un+1∈Ran(Φ)

∥∥∥rn1 (un+1)
∥∥∥2

2
. (2.50)

We can use the linear mapping eq. (2.23) again to solve directly for the reduced quantities:

x̂n+1 = arg min
ûn+1∈Rk

∥∥∥rn1 (ûn+1)
∥∥∥2

2
=
∥∥∥∥MΦ

∆t2 (xn+1 − 2xn + xn−1) + f̃n
∥∥∥∥2

2
. (2.51)

Solving eq. (2.51) yields the same result as the time discretized ROM obtained from optimization problem
eq. (2.37):

1
∆t2 ΦTMTMΦ(xn+1 − 2xn + xn−1) + ΦTMT f̃n = 0. (2.52)

It is to note again that this is not equivalent to the result obtained by inserting the POD approach in eq.
(2.16) and applying Galerkin projection on the residual. The optimal solution differs by the additional term
MT . In contrast, also at the fully discrete level, ROM2 is the minimizer of the associated minimization
problem of rn2 and analog to the time discretized Galerkin ROM2 derived in Section 2.3.2.

2.3.5 Equivalence of ROMs using Mass Orthonormalized and Orthonormal Bases

Often in literature, mass orthonormalization of the reduced basis is used. The question arises whether this
ROM represents a new version or is it equal to an already discussed version? We show here that a ROM
using a mass orthonormalized basis is equivalent to ROM1.
We begin by introducing the idea of mass orthonormalization. It can be convenient if forces are the input
of the time update. No inversion of reduced mass matrix and no conversion from forces to accelerations is
necessary then. The definition of a mass orthonormalized basis ΦM ∈ Rn×k is implicitly given by:

ΦT
MMΦM = I, (2.53)

where I ∈ Rk×k denotes the identity matrix. The orthonormalized basis ΦM can be found by computing
the Cholesky-decomposition of the reduced mass matrix M̃ and inverting the lower triangular matrix R
afterwards.

ΦTMΦ = RTR. (2.54)

Then, the mass orthonormalized basis reads:

ΦM = ΦR−1. (2.55)

The proof that this new basis fulfills the desired properties is straightforward:

ΦT
MMΦM = (ΦR−1)TMΦR−1

= R−T ΦTMΦ︸ ︷︷ ︸
RT R

R−1 = I. (2.56)

Using this new basis, the new linear mapping between the reduced and physical space reads:

x̃ = ΦM x̂M = Φ R−1x̂M︸ ︷︷ ︸
x̂

, (2.57)

19

where x̂M is a new reduced variable. Since both mappings approximate the same high-dimensional state,
a relation between the reduced quantities with and without mass orthonormalization can be found:

x̂ = R−1x̂M . (2.58)

Using all the previously derived properties, we show equality of mass orthonormalized ROM with ROM1.
First, we derive the ROM for the mass orthonormalized case and show afterwards equivalence with ROM1.
Differentiation of the linear mapping eq. (2.57) with respect to time and inserting it in the governing equa-
tion (2.16) yields again residual r1:

MΦM
¨̂xM + f = r1. (2.59)

Here again, we enforce r1 to be orthogonal to the subspace spanned by the columns of ΦM :

ΦT
Mr1

!= 0 (2.60a)

=⇒ ΦT
MMΦM

¨̂xM + ΦT
Mf = ¨̂xM + ΦT

Mf = 0. (2.60b)

Now we show that this ROM (eq. (2.60b)) is equivalent to ROM1 (eq. (2.25b)). We insert eq. (2.55) into
the ROM:

¨̂xM + R−TΦT f = R−TΦT r1 = 0 (2.61)

and use eq. (2.58) and multiply with RT from the left side:

RTR ¨̂x+ RTR−TΦT f = RTR−TΦT r1 = 0. (2.62)

Finally, we use eq. (2.54) and obtain ROM1:

ΦTMΦ¨̂x+ ΦT f = ΦT r1 = 0. (2.63)

2.3.6 ROM Summary

Table 2.1 summarizes the most important results from Section 2.3.2. At this point, we consider solely
time continuous results as we have shown that explicit central difference time integration does not destroy
optimality. ROM1_opti is summarized in Table 2.1a. It is the optimal solution of the time continuous residual
minimization problem regarding the L2 norm. However, it is neither physically motivated nor equivalent to
the Galerkin projection of r1. That is why we asked for the minimization problem related to the ROM
obtained from Galerkin projection of r1. The associated minimization problem is stated in Table 2.1b and
denoted ROM1. A semi norm using the inverse of the mass matrix is used to formulate the minimization
problem. In addition, ROM1 is equal to the ROM obtained by using a mass orthonormalized version.
Finally, a third ROM labeled ROM2 is defined by transforming the governing equation to standard form
first. After inserting the low-dimensional approximation, residual r2 is projected onto Φ. The Galerkin
ROM is simultaneously the solution to the optimization problem of r2 regarding L2 norm. However, more
interestingly, it is also the solution to an optimization problem of r1 regarding a semi norm using the square
of the inverse of the mass matrix.
To summarize, we defined three ROMs weighting the residual r1 differently strong. The accuracy of the
individual ROM is investigated in the results section 2.4 and the results are interpreted and commented in
the conclusion 2.5.

20

Governing equation Mẍ+ f = 0
Residual r1 = MΦ¨̂x+ f

Minimization problem min ‖r1‖22
Solution ΦTMTMΦ¨̂x+ ΦTMT f = 0

(a) ROM1_opti

Governing equation Mẍ+ f = 0
Residual r1 = MΦ¨̂x+ f

Minimization problem min ‖r1‖2M−1

Solution ΦTMΦ¨̂x+ ΦT f = 0
(b) ROM1

Governing equation ẍ+ M−1f = 0
Residual r2 = Φ¨̂x+ M−1f = M−1r1

Minimization problem min ‖r2‖22 = min ‖r1‖2(M−1)2

Solution ¨̂x+ ΦT ẍ = 0
(c) ROM2

Table 2.1 Summary of all different ROM versions. Note that f is evaluated at f(x̂, ˙̂x)

2.3.7 POD

So far, it is not clear how to compute the ROB Φ. In this section, we utilize POD to effectively reduce
displacements as well as rotations, which typically appear in the context of crash simulations. It is to note
that reproductive examples are considered. Parameter variations lead to a slow decaying Kolmogorov
n-width and other methods must be utilized, which is shown later in this thesis. Cars consist of many
sheet metal parts which are modeled in the FE model as shell elements. These elements reduce the total
number of DoFs to solve for as assumptions about the kinematics and kinetics are introduced. However,
additional rotational DoFs are inserted which are of different type as translational DoFs. The following
section is structured as follows: first, we introduce POD and define an offline error to judge accuracy
of POD approximation. Second, we comment on how to utilize Singular Value Decomposition (SVD) to
compute a ROB. POD computes a modal decomposition of a field u(x, t) ∈ Rn into temporal coefficients
ai(t) ∈ R and spatial modes φi ∈ Rn:

u(x, t) =
M∑
i=1

ai(t)φi(x), (2.64)

where M is the number of modes to be used. The idea is to replace the sum over all M modes by a
sum over the k dominant modes with k � M . The modes are selected to be optimal regarding the mean
squared error ε:

min
φi

ε(k) = 〈‖u− u(k)‖22〉, (2.65)

where u(k) denotes the reconstruction of u using the first k modes and 〈·〉 is the average, as defined in
eq. (2.79). Without further derivation, we claim that the solution to optimization problem eq. (2.65) is the
eigenvalue problem:

Cφi = λiφi. (2.66)

The covariance matrix C ∈ Rn×n is defined using the snapshot matrix U ∈ Rn×Ns and Ns the number of
collected solution snapshots uti ∈ Rn:

C = 1
Ns − 1UUT , (2.67)

with
U =

[
ut1 , ut2 , . . . , utNs

]
(2.68)

21

and therefore

C = 1
Ns − 1


∑Ns
i=1 u

ti
1 u

ti
1

∑Ns
i=1 u

ti
1 u

ti
2 . . .

∑Ns
i=1 u

ti
1 u

ti
n∑Ns

i=1 u
ti
2 u

ti
1

∑Ns
i=1 u

ti
2 u

ti
2 . . .

∑Ns
i=1 u

ti
2 u

ti
n

...
...

...∑Ns
i=1 u

ti
nu

ti
1

∑Ns
i=1 u

ti
nu

ti
2 . . .

∑Ns
i=1 u

ti
nu

ti
n

 . (2.69)

Once eigenvalue problem eq. (2.66) is solved, the eigenvectors φi can be arranged in a matrix Φfull

ordered correspondingly to the eigenvalues λi in descending order λi+1 ≤ λi ≤ λi−1:

Φfull =
[
φ1, φ2, . . . , φn

]
. (2.70)

To achieve a dimensional reduction, the least important basis vectors are truncated and a ROB Φ can be
defined using the truncation rank k:

Φ =
[
φ1, φ2, . . . , φk

]
. (2.71)

We choose the following error norm to select a reasonable k:

ε2(k) =

∥∥∥U− Ũ
∥∥∥2

F

‖U‖2F
=

∥∥∥U−Φ(k)ΦT (k)U
∥∥∥2

F

‖U‖2F
=
∑Ns
i=k+1 λi∑Ns
i=1 λi

, (2.72)

where ‖‖F denotes the Frobenius norm. Once the approximation rank is determined, the temporal coeffi-
cients can be computed by projecting the high-dimensional state u onto the basis vectors φi:

aj = 〈u, φj〉 for j ∈ 1, . . . , k. (2.73)

It is to note, that 〈·, ·〉 denotes a scalar product in eq. (2.73), whereas in eq. (2.65) it denotes the averaging
operator. For the n-dimensional case, eq. (2.73) transforms to:

ati = a(ti) = ΦTuti , (2.74)

where ati = a(ti) ∈ Rk is also called the reduced state at time ti. All high-dimensional states in time can
be transformed to a reduced state in a single step by using matrix notation:

A =
[
a(t1), a(t2), . . . , a(tNs)

]
= ΦTU. (2.75)

At the end, we want to highlight the similarity to SVD as it is often used in literature to compute the ROB.
The SVD of the snapshot matrix U is given by:

U = ΦfullΣZT . (2.76)

The left singular vectors are equal the orthogonal basis vectors of the ROB, Σ ∈ Rn×Ns contains the
singular values σi which are related to the eigenvalues of the covariance matrix by:

λi = σ2
i

Ns − 1 . (2.77)

The right singular values are contained in ZT ∈ RNs×Ns . Both Φfull and ZT are orthonormal matrices
containing the eigenvectors of the matrices UUT and UTU, respectively.

2.4 Results

In this section, we introduce two examples with relevant properties of typical crash load cases to apply
the different ROMs. First we consider a pipe whip example involving shell elements, contact and plastic
deformation. Second we consider the popular crash box example involving shell elements, contact, self
contact and plasticity. We apply the three different ROM versions summarized in Table 2.1 and evaluate
their accuracy based on two error measures.

22

2.4.1 Online Error Measure

To judge the quality of the obtained ROM solutions, we first need to introduce suitable error measures. The
online error measures consider purely displacements. Rotations or other types of DoF are not considered
to evaluate the online accuracy of the created ROMs, although considered for the offline error. The first
considered online error is time dependent and the second error is related to the temporal average of the
first one. Depending on the problem, a different error metric is more appropriate.
We begin to define the time dependent error:

ε(t) = ‖u(t)− ũ(t)‖2
〈‖u(t)‖22〉

1
2

, (2.78)

where u(t) ∈ Rn denotes the reference solution and ũ(t) ∈ Rn the ROM solution. Here, 〈·〉 is the temporal
averaging operator defined as:

〈u(t)〉 =
n∑
i=1

u(ti)
n

. (2.79)

Crash phenomena usually happen during a small temporal duration and do not exhibit a periodic solution
like an undamped cantilever beam. Therefore, it makes sense to also define an error that compares two
solutions in a temporal averaged sense. We achieve this by temporal averaging the numerator and obtain:

εGRE = 〈‖u(t)− ũ(t)‖22〉
1
2

〈‖u(t)‖22〉
1
2

. (2.80)

If the number of timesteps is the same, we obtain the global relative error (GRE), as defined by [130]:

εGRE =

√∑Ns
i=1(u(ti)− ũ(ti))T (u(ti)− ũ(ti))√∑Ns

i=1 u(ti)Tu(ti)
. (2.81)

2.4.2 Pipe Whip

Model Description

(a) Initial configuration at t = 1 ms (b) Deformed configuration at t = 15 ms

Figure 2.3 Pipe whip model in initial configuration (a) and deformed configuration (b).

Here we consider the pipe whip example taken from LS-Dyna examples homepage. The model can be
seen in the initial configuration in Fig. 2.3a and in the deformed configuration in Fig. 2.3b at the termination

https://www.dynaexamples.com/introduction/Introduction/example-26

23

time of 15 ms. The example consists of two parts colored in red and cyan and labeled tube 1 and tube 2,
respectively. Both tubes are modeled with fully integrated shell elements implemented with the enhanced
assumed strain (EAS) algorithm and standard LS-Dyna viscous form hourglass control. Each tube with a
length of 1270 mm and a midsurface diameter of 57.3 mm is discretized with 4000 elements. The thickness
of both tubes is 10.97 mm. The second-order central difference time integration scheme is chosen to step
forward in time. The time step for the reference solution is chosen to be 90% of the stable timestep. In
the ROM simulations, the time step is fixed to 0.0015 ms to ensure comparability between different ROMs.
Single point constraints (SPCs) are applied to the nodes at the end of tube 2 which block motion in all 6
DoFs. The nodes at the end of tube 1 in positive y-direction are defined as rigid body nodes. As initial
condition, an initial velocity is applied to the whole part. The velocity of each node is defined by a rigid
body rotation with a rotation axis parallel to the x-axis passing through the midpoint of the circle defined
by the rigid body nodes of tube 1. The initial angular velocity is 75 s−1.
Both parts are modeled with an elasto-plastic material with kinematic hardening. The mass density is
7823.59 kg m−3, the Poisson ratio is 0.3, the Young’s modulus equals 2.07× 105 N mm−2, the yield stress
is 310.5 N mm−2, and the tangent modulus equals 0 N mm−2. A vanishing tangent modulus represents a
material without hardening.

Offline Accuracy

In this section we present the POD approximation error ε2(k) as defined by eq. (2.72) for the pipe whip
example. The error in Fig. 2.4 is plotted on a logarithmic y axis for increasing number of used modes k.
Nodal displacement output is collected every 0.01 ms. Hence, 1501 snapshots are collected along 15 ms
simulation time and passed to the SVD. Numpy’s [152] SVD algorithm was utilized to compute the ROB
and the corresponding eigenvalues for error visualization. However, if the truncation rank is known previ-
ously, we recommend randomized algorithms such as facebook’s Principal Component Analysis, which is
considerably faster.
We highlight two things. First, displacements as well as rotations possess a low-rank structure, as can be
seen by the quickly decaying error. That is, both quantities can be represented using less dimensions and
the preliminaries to construct a ROM are satisfied. However, it can be observed that rotational DoFs are
harder to reduce than translational ones. Whether this observation is problem specific or general cannot
be answered at this point. However, we show that this behavior also applies to a crash box example with
varying wall thickness.

24

0 10 20 30 40 50
Number of Modes k

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

ε2(k) thickness=0.43mm

displacement
rotation

Figure 2.4 POD error of the pipe whip example for increasing number of modes for a fixed tube thickness of
t=0.43 mm.

ROM Comparison

In this section, we use the resulting ROB from SVD and construct three different ROMs as summarized in
Table 2.1. We label the ROMs accordingly ROM1_opti, ROM1 and ROM2. Fig. 2.5 shows the temporal
error eq. (2.78) for all three ROMs. Each subplot corresponds to a ROM constructed using a ROB with
a certain number k of basis vectors (modes). Each row shows the same y axis but different ranges are
applied for better visibility. The error curves share the same general behavior. The error starts at zero,
increases over time and decreases at the end. Only ROM2 deviates from this behavior for 25, 30 and 35
modes, where a first drop in error can be seen before it increases again. The decrease of the error at the
end is likely due to elastic spring back of the tube once it has deformed. In this region, the solutions are
getting closer again due to the sign change in velocity.
That the error decreases for an increasing number of modes is only guaranteed for ROM1. It shows the
most consistent behavior and the smoothest error decay for an increasing number of modes. The accuracy
of ROM1 lies in between ROM1_opti and ROM2 until 20 modes, as can be also seen in Fig. 2.6 where the
averaged error, as defined in eq. (2.81), is plotted against an increasing number of modes. ROM1_opti
has the lowest error for less than 25 modes. ROM2 has the lowest accuracy among all numbers of modes.
Only for 40 modes, ROM2 has approximately the same error than ROM1. Fig. 2.6 summarizes all previous
results by plotting GRE against an increasing number of modes. ROM1 has a consistent decrease in error
with an increasing number of modes. With less than 25 modes, ROM2 performs worse and ROM1_opti
performs best. Using more than 25 modes the trend changes and ROM1_opti has the lowest accuracy
and ROM2 has the highest GRE except for 35 modes.

25

0.0

0.1

0.2

0.3

ε(t) modes=5 modes=10 modes=15

0.00

0.03

0.06

0.09

modes=20 modes=25 modes=30

0 5 10 15
time in ms

0.00

0.05

0.10

0.15
modes=35

0 5 10 15

modes=40

ROM1
ROM1_opti
ROM2

Figure 2.5 Temporal error of the pipe whip example plotted against time for increasing number of modes for a fixed
tube thickness of t=0.43 mm.

26

5 10 15 20 25 30 35 40
modes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
εGRE thickness=0.43mm

ROM1
ROM1_opti
ROM2

Figure 2.6 GRE of pipe whip example plotted against increasing number of modes for a fixed tube thickness of
t=0.43 mm.

27

2.4.3 Crash Box

Model Description

(a) Initial configuration at t = 1 ms (b) Deformed configuration at t = 35 ms

Figure 2.7 Crash box model in initial configuration (a) and deformed configuration (b).

Next, we consider a crash box example, which is established as standard example for crash analysis.
The initial and deformed configurations for a crash box with 2 mm wall thickness can be seen in Fig. 2.7a
and 2.7b, respectively.
A rigid plate with an initial velocity of 11.11 m s−1 in negative z-direction and a mass of 157 kg impacts a
deformable tube. The tube consists of 4 parts, colored differently, where the wall thickness can be varied
individually. However, in this study all 4 sections share the same wall thickness that is varied between
1.2 mm and 2.6 mm in 0.2 mm steps. The dimensions of the crash box’s cross-section with respect to the
midsurfaces is 116 mm×96 mm and the height of the tube is approximately 272.5 mm. The crash box is
modeled using 1860 quadrilateral and 8 triangular shell elements of LS-Dyna type 16, which are fully in-
tegrated shell elements implemented with EAS algorithm and standard LS-Dyna viscous form hourglass
control. The material model is *MAT_24 which is a piece-wise linear J2-based plasticity model. The mass
density is 7830 kg m−3, the Poisson ratio is 0.3, the Young’s modulus equals 2.0× 105 N mm−2, the initial
static yield stress is 366 N mm−2 and the values for the plastic stress strain curve are given in Table 2.2.
Strain rate dependencies are treated with the Cowper-Symonds model with C = 40 and p = 5. The tube is
fixed at the bottom with single point constraints (SPCs) prohibiting movement in all 3 translational and rota-
tional DoFs. Contact is handled by the LS-DYNA Keyword *CONTACT_AUTOMATIC_SINGLE_SURFACE
which implements a single surface contact where contact is checked between all parts as well as self
contact is checked for each part. The static and dynamic friction coefficients are 0.08. The end time is
35 ms and automatic time step computation with security factor of 0.9 is chosen for the reference solution.
All ROMs are computed with a fixed time step of 5× 10−4 ms.

28

equivalent plastic strain yield stressN mm−2

0.000 366
0.025 424
0.049 476
0.072 507
0.095 529
0.118 546
0.140 559
0.182 584

Table 2.2 Evolution of the yield stress dependent on the equivalent plastic strain, as given by the LS-Dyna examples
homepage.

Offline Accuracy

In this section we present the POD approximation error ε(k) as defined by eq. (2.72) for a crash box
example with varying wall thickness. The error in Fig. 2.8 is plotted on a logarithmic y-axis for increasing
number of used modes k. We collect 3501 displacement snapshots during 35 ms simulation time and
use again Numpy’s [152] SVD standard algorithm to compute the ROB. It is to note that only the tube
without the rigid plate is considered for POD. In analogy to the pipe whip example, displacements as well
as rotations possess a low-rank structure and the error quickly decays with increasing number of modes.
However, it can be seen that the variance in the dataset of displacements can be captured using less
modes than there would be necessary for the rotational DoFs. This trend is determined here by experience,
but not universally proven. It is likely due to the manifold character of rotational DoFs mentioned by Farhat
et al. [130]. In addition, no connection can be established between the wall thickness and the divergence
of displacement and rotation curve in Fig. 2.8.

https://www.dynaexamples.com/introduction/Introduction/example-26
https://www.dynaexamples.com/introduction/Introduction/example-26

29

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

ε2(k) thickness=1.20mm

displacement
rotation

thickness=2.00mm

0 10 20 30 40 50

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

thickness=2.80mm

0 10 20 30 40 50
Number of Modes k

thickness=3.60mm

Figure 2.8 POD error for the crash box example for varying wall thickness.

ROM Comparison

We now adopt the ROB from the previous section and construct three different ROMs which minimize
different PDE residuals in different ways as described in section 2.3.2 and summarized in Table 2.1. To
make statements about the influence of the wall thickness of the crash box on the accuracy of the ROM
methods, the wall thickness is varied from 1.2 mm to 3.6 mm in 0.2 mm steps. The difference in total
deformation can be seen in Fig. 2.9a and Fig. 2.9b where both figures show the deformed configuration
at t = 35 ms for a tube with the lowest and the highest wall thickness, respectively.

30

(a) Crash box with wall thickness 1.2 mm at t =
35 ms.

(b) Crash box with wall thickness 3.6 mm at t =
35 ms.

Figure 2.9

Fig. 2.10 shows the GRE as defined in eq. (2.81) plotted against an increasing number k of modes
for different wall thicknesses. ROM1 shows a monotonous increase in accuracy for increasing number of
modes consistently among all wall thicknesses. ROM2 and ROM1_opti cannot guarantee this desirable
behavior. Especially for thin tubes, all three ROMs yield similar accuracy. For 3 mm and thicker tubes,
ROM1 and ROM2 are similarly accurate. ROM1_opti behaves too stiff in this thickness region and yields
the least accurate results. In addition, an increase in accuracy with increasing number of modes cannot be
guaranteed. For 5 modes, ROM2 is often the most accurate model. In general, the increase in accuracy
for increasing modes is less for thicker tubes.

31

0.00

0.25

0.50

0.75

εGRE t=1.20mm t=1.40mm t=1.60mm

0.00

0.25

0.50

0.75

t=1.80mm t=2.00mm t=2.20mm

0.00

0.25

0.50

0.75

t=2.40mm t=2.60mm t=2.80mm

0.00

0.25

0.50

0.75

t=3.00mm t=3.20mm t=3.40mm

5 15 25 35
modes

0.00

0.25

0.50

0.75

t=3.60mm

ROM1
ROM1_opti
ROM2

Figure 2.10 Generalized relative error of three different ROM architectures plotted against an increasing number of
modes for the crash box example with increasing wall thickness.

32

2.5 Conclusion

In this chapter, we discuss pMOR for nonlinear finite element models in crash and impact applications. We
discuss the mechanisms to achieve speedup and mainly study different residual minimization problems.
Two crash models are used to investigate POD dimension reduction and residual minimization. We con-
sider a pipe whip example with a fixed tube thickness and a crash box example with varying wall thickness.
FE models in crash applications usually contain shell assumptions, which is why we discuss POD and
compare the low rank structure of displacements and rotations. We experimentally show that rotational
DoFs are harder to reduce, most likely due to their manifold character. The pipe whip example as well as
all different crash box examples show this behavior.
In the pipe whip example, all ROMs show the trend of a decreasing GRE for an increasing number of
modes. However, only ROM1 strictly shows this behavior also for higher number of modes. For very
low modes, ROM1_opti works best, which corresponds to the L2 optimization of the residual. By further
weighting the residual with the inverse of the mass, which yields ROM1 and ROM2, the accuracy de-
creases. These ROMs give more importance to residuals at nodes with a small mass. As the nodal mass
is usually smaller than 1, the residual is weighted with a number larger than 1 and the residual is constraint
tighter than in the L2 case. The same applies to ROM2 in an even stronger manner, where the residual
is weighted with 1

mass2 . However, ROM2 has the lowest accuracy among all ROMs. ROM1 mirrors the
principle of virtual work. Hence, we conclude this is the reason that it shows the most desirable behavior.
That is, by increasing the number of modes in the ROM, the GRE consistently decreases.
The crash box example adds another level of complexity by including folding and self contact. In addition,
the thickness variation leads to different degrees of deformation. Also here, ROM1’s GRE consistently de-
creases by adding additional modes in the ROM construction. The decrease in error is steeper for thinner
tubes than for thicker tubes. Thin-walled tubes deform in all regions of the tube, whereas thick tubes de-
form only locally at the impact region. With thin walls, the weight of the residual matters little and all three
ROMs have about the same accuracy. As we move to thicker walls, deformation becomes more locally and
an equal weighting in an L2 sense of all nodes in the tube does not seem appropriate anymore. ROM1
and ROM2 yield approximately the same accuracy for thick tubes. In some low mode regions, ROM2 with
a stronger weighting performs slightly better.
To summarize, ROMs are sensitive regarding the chosen error norm. ROM1 exhibits the most consistent
error decrease. This is due to the physical motivation behind ROM1. It follows the principle of virtual work
as the linear basis can be interpreted as virtual displacements and reduced quantities have the units of
physical work. This is also shown in Chapter 5. Since ROM1 is the only ROM exhibiting a consistent
behavior, we use ROM1 for all following chapters. Despite the results of this study, more work should
investigate how the chosen residual minimization influences the stable time step of the explicit time inte-
gration and how the chosen time step influences the ROM results. Accuracy variations due to the chosen
time-step could be observed for ROM2 and ROM1_opti. Also, instabilities for simple beam examples were
observed for those ROMs. Therefore, the influence of the contact algorithm on the ROM stability is of
interest. Finally, how ECSW interacts with different ROMs should be investigated, since the reduced force
term does not represent a virtual work in all ROMs and hyper-reduction is the only possibility to achieve
speedup in explicit nonlinear pMOR.

33

3 Local Reduced-order Bases

This chapter introduces pROMs for parameter variations. They are necessary for parametric applications,
such as optimization or robustness studies. We begin by describing the varied parameters and evalu-
ating the offline accuracy of POD. Next, we choose a global strategy for ROM1, which is the best ROM
formulation according to Chapter 2. We further discuss the treatment of displacements and rotations and
decide to choose a combined treatment to introduce lROB. First, lROB based on k-means clustering is
introduced. Subsequently, an adaption based on spherical k-means clustering is proposed. Finally, results
are compared, hyper-reduction is applied, and a speedup for the crash box example is calculated.

3.1 Towards Parametric ROMs

3.1.1 Parameter Variations

152 154 156 158 160 162
mass of plate in kg

1.6

1.8

2.0

2.2

2.4

tube thickness in mm

1

2

3
4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22 23

24

25

26

27

1

2

3

train
test

Figure 3.1 Sampling points for parameter variations obtained by Latin Hypercube sampling (LHS). The 30 points are
divided into 27 training points (black dots) and 3 test points (red triangles).

Fig. 3.1 shows the 30 sampling points obtained by LHS. The varied parameters are the tube thickness
and the mass of the plate. The tube thickness is sampled between 1.5 mm and 2.5 mm and the mass of
the plate is sampled between 152 kg and 162 kg. The sampling points are divided into 27 training points
and 3 test points. The training points are used to generate the training data and to train the model. The
training data is generated with a non-modified version of LS-Dyna1. More precisely, pMOR training data is

1Version: smp d R12, Revision: R12-4012-g7c66dc5b4e

34

Figure 3.2 Highly deforming crash box at t =35 ms. Figure 3.3 Crash box with low total deformation at
t =35 ms.

used to create the ROB, or later the clusters and lROBs. The test points are chosen to represent a crash
box with a high total deformation and a crash box with a low total deformation. The high deformation case
corresponds to the test point with a low wall thickness and a high mass of the plate. The low deformation
case corresponds to a crash box with high wall thickness and a low plate mass. The total deformation can
be seen in Fig. 3.2 and Fig. 3.3. The parameters depicted in Fig. 3.1 are summarized in Tab. 3.1. The
highly deforming test case depicted in Fig. 3.2 corresponds to test simulation number 2 in Table 3.1, and
the low deforming test case shown in Fig. 3.3 corresponds to test simulation number 3 in Table 3.1. As
test simulation number 1 shows a total deformation between test cases 2 and 3, it is not considered in
the following evaluations. In addition, it is mentioned that the highly deforming test case usually poses the
more difficult scenario. This observation is empirical and the author believes it is due to the cumulative
nature of the error during a longer deformation path. The training data is collected and assembled to the
global snapshot matrix Uglob ∈ Rn×NpNs , which concatenates the temporal training data of all parameter
variations:

Uglob =
[
U1, U2, . . . , UNp

]
, (3.1)

where Ui ∈ Rn×Ns is the snapshot matrix of the simulation corresponding to training parameter i and Np

is the total number of training parameters. Each snapshot matrix Ui for the parametric case is equivalently
defined as the snapshot matrix for the reproductive case eq. (2.68):

Ui =
[
ut1i , ut2i , . . . , u

tNs
i

]
, (3.2)

where utji ∈ Rn is the solution snapshot of training simulation i at time tj . Next, the global snapshot matrix
is used to compute a ROB.

3.1.2 Treatment of DoF Types

So far, displacements and rotations have been treated separately. However, a combined treatment that
uses correlations between the different DoF types can also be used. Therefore, the following two ways to
reduce the system state are discussed in detail. First, we look at the separated treatment, which is the

35

Table 3.1 Numeric values of sampling points.

Training Simulation Mass of the plate kg Tube thickness mm

1 160.500 2.250
2 155.167 1.650
3 160.833 2.117
4 157.167 2.050
5 160.167 1.517
6 155.500 1.683
7 161.833 2.217
8 156.500 1.817
9 152.500 2.417
10 158.833 2.017
11 161.167 2.150
12 156.167 1.550
13 158.167 2.350
14 155.833 2.450
15 159.500 1.617
16 156.833 1.583
17 154.500 1.850
18 152.833 2.283
19 152.167 1.917
20 159.167 1.783
21 157.833 2.483
22 154.833 1.950
23 157.500 1.983
24 153.167 1.883
25 158.500 1.750
26 154.167 2.383
27 153.500 2.083

Test Simulation Mass of the plate kg Tube thickness mm

1 161.500 2.317
2 159.833 1.717
3 153.833 2.183

previously used method. As shown in Fig. 3.4, a separate basis is created for displacements and rotations.
The portion of the high-dimensional state vector containing displacement DoF xdisp is approximated as:

xdisp = Φdispx̂disp, (3.3)

and the portion containing rotations DoF xrot is approximated as:

xrot = Φrotx̂rot. (3.4)

The reduced state vector for displacements is x̂disp ∈ Rkdisp , where kdisp is the reduced dimension cor-
responding to displacements and x̂rot ∈ Rkrot is the reduced state vector for rotations with the reduced
dimension krot. The total dimension of the ROM is therefore:

k = kdisp + krot. (3.5)

36

x(t) =

xdisp

separate

combined

xrot

Φrot

Φ

Φdisp

x̂disp

x̂rot

x̂

Figure 3.4 Two approaches to reduce displacements and rotations.

A combined treatment, as shown in the second row of Fig. 3.4, simply concatenates both types of DoF
and approximates the entire state x as:

x = Φx̂, (3.6)

where the dimension of the reduced state x̂ is k. The combined treatment increases the size of the dimen-
sionality reduction problem. However, the resulting ROM is smaller as correlations between displacements
and rotations are considered and summarized to one reduced state. When displacements and rotations
are separated, the size of the dimensionality reduction problems is reduced. However, the resulting ROM is
usually higher-dimensional than the combined ROM. It was not observed in this thesis that displacements
and rotations are fully uncorrelated, such that the sum of the separate bases is smaller than the com-
bined basis. In addition, more hyper-parameters need to be adjusted. Compared to the combined ROM,
two reduced dimensions, two hyper-reduction tolerances, and later, when using local reduced-bases, two
numbers of clusters must be chosen. Which strategy delivers more accurate results will be assessed in
the following. Furthermore, all evaluations aim to show the necessity of local ROMs.

3.1.3 Offline Accuracy

Error Evaluation

First, the approximation error eq. (2.72) is investigated for an increasing number of dimensions k for dif-
ferent scenarios. Fig. 3.5 depicts the approximation error of the reduced bases for the highly deforming
test case, the low deformation test case, and a global basis for all training simulations. In each scenario,
a separate and a combined reduced basis is calculated. In all cases, the error decreases with increasing
dimensions. The error decays fastest for displacement bases and is the lowest for the single-parameter
scenarios. The low deformation displacement basis is the most accurate basis for low dimensions. For
larger dimensions (> 150), the accuracies of the single-parameter displacement bases converge. Re-
duced bases for rotations approximate the data less accurately than those for the displacements. The
least accurate basis is the global basis for rotations. In general, global approximations are less accurate
than single-parameter approximations. This is due to the increase in variance in the data set, which makes
it harder for the dimensionality reduction to identify a low-rank structure in the data. The combined basis

37

is less accurate than the displacement basis but more accurate than the respective rotation basis in all
scenarios. We conclude that a combined treatment is preferred from an offline error perspective. Also,
the error is higher for the global/parametric basis compared to the single-parameter cases. To achieve the
same error in the parametric case, the ROB must use more dimensions, which counteracts the computa-
tional speedup. Finally, it is important to note that the discussed accuracy measure does not guarantee an
accurate ROM. Hence, the online error is assessed additionally.

1 50 100 150 200
rank k

10−9

10−7

10−5

10−3

10−1

ε2(k)

global basis combined
global basis disp
global basis rot
high defo basis combined
high defo basis disp
high defo basis rot
low defo basis combined
low defo basis disp
low defo basis rot

Figure 3.5 Approximation error ε2(k) depending on the number of modes k to reconstruct the training data.

Visualization of Basis Vectors

The basis vectors, which compose the ROB, can be visualized. The displacement basis Φdisp or the part of
the combined basis Φ associated with the displacement DoF can be viewed as a displacement field. Figs.
3.6 - 3.9 show the deformation mode as deformed geometry in each case. The scalar coloring represents
the magnitude of the rotation mode. Let u ∈ Rn be an arbitrary deformation state. Then, the state can
be expressed in terms of reduced quantities (eq.(2.23)). The state u is a superposition of weighted mode
contributions ui ∈ Rn. The contribution of the first three dominant modes is therefore visualized in the
following plots. The deformation state is calculated as follows:

ui = αiφi for i = 1, 2, 3. (3.7)

The scaling factor αi = 1000 is chosen to ensure good visualization of the displacement modes. For the
rotation modes, no scaling is applied αi = 1. Fig. 3.6 visualizes the first three modes of the ROB for the
high deformation test case. The first mode represents the most dominant buckling shape. The higher the
mode number, the higher the frequencies in the spatial deformations. Fig. 3.7 visualizes the deformation
modes for the high deformation test case calculated in a combined POD. While the deformation shapes are
similar, the rotation modes differ for the second and third modes. Especially top and bottom regions behave

38

(a) φ1 (b) φ2 (c) φ3

Figure 3.6 First three basis vectors of a POD-based ROM with a separate basis for displacements and rotations,
trained using the highly deforming test simulation.

differently. The main deformation modes are similar in the parametric case for the separate and combined
POD. Also, in the parametric case, mainly modes for rotations differ. As in Fig. 3.5 depicted, the first modes
account for a large portion of the variance in the data set and cause a fast error decay. However, the more
simulation data must be approximated at once, the more modes must be used to accurately reconstruct
the solution. Especially in the parametric case, this is seen in the slow error decay. Already mode 5 (Fig.
3.10) cannot be related to a "visual" deformation shape anymore; however, it is needed to fully reconstruct
a specific solution via linear superposition. In the parametric case, many different deformations can occur
during the simulation, which is why many modes need to be retained in the ROB.

39

(a) φ1 (b) φ2 (c) φ3

Figure 3.7 First three basis vectors of a POD-based ROM with combined reduction trained using the highly deforming
test simulation.

(a) φ1 (b) φ2 (c) φ3

Figure 3.8 First three basis vectors of a POD-based ROM with a separate basis for displacements and rotations,
trained using all training simulations.

40

(a) φ1 (b) φ2 (c) φ3

Figure 3.9 First three basis vectors of a POD-based ROM with combined reduction, trained using all training simu-
lations.

Figure 3.10 Fifth deformation mode φ5 of a POD-based ROM.

3.1.4 Online Accuracy

Next, we assess the resulting online error of the ROM for an increasing number of dimensions k. Two
cases are considered. The first case is a reproductive example of the highly deforming test case. That
is, the ROB is computed based on the snapshots of the same simulation, which is afterward re-simulated.
The second example uses a global basis calculated using all training simulations. Fig. 3.11 shows the
displacement-based temporal error for the simulation time 35 ms for an increasing number of dimensions k
in the reproductive case. The temporal error quickly decreases with increasing k, which can also be seen
in Fig. 3.12. In Fig. 3.12 the temporal average error ε is shown for an increasing number of dimensions k
for the combined ROM, a ROM where solely displacements are reduced, and a ROM where only rotations
are reduced and displacements are reduced with k = 200 for the respective DoF to ensure nearly-zero
error induced by displacements. A rapid error decrease is observable for all three ROMs. However, already
at k = 40, the combined ROM yields the same error as the displacement-only ROM. Also, in the online
phase, the combined ROM can reduce the slow error decay associated with the rotations. At approximately

41

k = 90, the combined ROM yields the same error as ROM with k = 90 for the rotation DoF and k = 200
for the displacement DoF, resulting in a 290-dimensional ROM.

0 5 10 15 20 25 30 35
time in ms

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ε(t)

k increases

High deformation combined

Figure 3.11 Time dependent error ε(t) for an increasing number of modes k using a combined basis in a reproductive
example.

15 50 100 150 200
rank k

0

1

2

3

4

5

6

7
ε ×10−2

combined
displacements
rotations

Figure 3.12 Average error ε for an increasing number of modes k using a ROM with separate bases, and a ROM
with a combined basis, applied to a reproductive example.

42

Next, the global basis is used to simulate the highly deforming test case. Also, the temporal error is
shown for an increasing number of dimensions k for the ROM with combined reduction. Compared to the
reproductive example, the error starts at higher values, and a slower decrease in error with increasing
dimensions can be observed in Fig. 3.13. The error behavior is also mirrored in Fig. 3.14, where the tem-
poral average error is plotted against the approximation rank k for the combined ROM, the displacement
ROM, and rotation ROM as defined in the reproductive example before. In analogy to the offline phase,
the displacement-only ROM has the fastest error decay and the lowest error in total. The rotations exhibit
a slower error decrease, especially for larger approximation ranks. However, the combined ROM ensures
comparable error to the separate ROMs with approximately 65 dimensions.

0 5 10 15 20 25 30 35
time in ms

0.0

0.1

0.2

0.3

0.4

ε(t)

k increases

High deformation combined

Figure 3.13 Time dependent error ε(t) for an increasing number of used modes k, using a combined basis with a
global approach of the training data.

In conclusion, the combined reduction is beneficial, yielding low error at low dimensions. In addition, the
creation of the ROM in the offline phase is simplified by reducing the number of adjustable parameters. The
global basis has a slower error decay, which results in higher-dimensional ROMs. The ROM dimension
influences the hyper-reduction. High-dimensional ROMs result in higher-dimensional reduced meshes,
which is negative for computational speedup. Therefore, a different approach needs to be chosen for
parametric pROMs. The approach must be suitable for ECSW hyper-reduction, as this is one primary
mechanism to achieve speedup in nonlinear explicit simulations.

43

15 50 100 150 200
rank k

0.0

0.5

1.0

1.5

2.0

ε ×10−1

combined
displacements
rotations

Figure 3.14 Average error ε for an increasing number of modes k, using a ROM with separate bases and a combined
basis. The bases are calculated using all training data.

3.2 Local Reduced-order Bases

In this section, we introduce the necessary theory of lROB. Motivated by the observations made in the
previous section about global ROMs, we choose lROB to realize projection-based ROMs for parametric
systems in crash. A poor approximation quality of a global ROB for ROMs of nonlinear systems was already
observed in literature [153]. A ROM based on a global basis often lacks robustness regarding parameter
variations [81, 154–156]. Trajectories of parametric nonlinear systems can transverse or localize around
different regions in state space, which implies that local ROB will better approximate the solution manifold
at the considered point. In fact, the reproductive example in the previous section can be considered a
local approximation. The reproductive ROM was accurate with fewer dimensions, while the global ROM
required more dimensions to achieve the same accuracy.
The idea of local ROBs is illustrated in Fig. 3.15 for the 3-dimensional case. The dashed line is a one-
dimensional manifold embedded in three-dimensional space. Further, the one-dimensional manifold also
lives in a two-dimensional plane. On the left hand side, a global one-dimensional basis Φ is used to
approximate the manifold. It can be seen that the orthogonal projection x̂ of the state x onto the one-
dimensional basis results in a significant approximation error. At least two dimensions must be used to
accurately describe the original manifold without introducing significant error. On the right hand side of
Fig. 3.15, the original manifold is approximated using two local subspaces Φ1 and Φ2. In this simple
example, it can be seen that using two local subspaces, the current state x(t) can be described by the
associated local reduced-order basis Φi and reduced state qi(t). The resulting ROM is closer to the
intrinsic dimension of the original manifold, which is one in this case. The local ROM will likely result
in a more accurate and lower-dimensional ROM than the global ROM. Fig. 3.16 illustrates the global
approach for the n-dimensional case. The ROB Φ spans a hyperplane and approximates the manifold
M. The global ROB cannot ensure to provide a good approximation to the manifold without increasing the
dimensionality of the ROB. Instead, the manifold can be divided into subregions Φi, as seen in Fig. 3.17.
The local subspaces are tailored to the region and accurately describe the state x(t), and the evolution
ẋ(t) = f(x(t)) is captured without significant error during the projection step ΦT

i f .

44

x1

x2

x3

x(t)

Φ
Φ1

Φ2

x̂(t)

x1

x2

x3

x(t)q1(t)

Figure 3.15 Global ROB approach (on the left side) versus local ROB approach (on the right side) in two dimensions.

Rn

M

x̃(t)

Φ

x(t)

Figure 3.16 Global ROB describing a hyper plane.

Φ1

Φ2

Φ3

x(t)

Rn
M

Figure 3.17 Local ROB approximating the solution manifoldM.

3.2.1 MOR Based on lROB

We formulate the lROB approach for second-order systems with explicit two-step time integration. Com-
pared to the standard algorithm proposed by Amsallem et al. [140], an additional transformation step is

45

required if the solution moves from one subdomain to another. We recall eq. (2.25b) to provide a basis for
the introduction of lROB:

ΦTM(µ)Φ¨̂x+ ΦT f(t,Φx̂,Φ ˙̂x, µ) = 0.
The ROM predicts the evolution of the reduced state x̂ using a ROB Φ, which remains unchanged during
the entire simulation. Compared to the ROMs presented in Chapter 2, lROB approximates the increment
∆xn+1 the instead of the states xn, xn+1 itself. For notational reasons, the time index is written as a
subscript for the remainder of this work. Thus, the increment can be written as:

∆xn+1 = xn+1 − xn = Φn∆x̂kn
n+1, (3.8)

where Φn is the reduced basis corresponding to the cluster chosen at tn and ∆x̂kn
n+1 is the associated

reduced increment with reduced dimension kn. The velocities ẋn+ 1
2
, ẋn− 1

2
and reduced velocities ˙̂xkn

n+ 1
2
,

˙̂xkn−1
n− 1

2
can be related to the increments by dividing eq. (3.8) with the corresponding time step:

ẋn+ 1
2

= xn+1 − xn
∆t2

= Φn
∆x̂kn

n+1
∆t2

= Φn
˙̂xkn

n+ 1
2
, (3.9a)

ẋn− 1
2

= xn − xn−1
∆t1

= Φn−1
∆x̂kn−1

n

∆t1
= Φn−1 ˙̂xkn−1

n− 1
2
. (3.9b)

Next, the governing equation eq. (2.16) is considered at time tn and the temporal discretization of the
acceleration eq. (2.18) is inserted:

M∆t−1
x (ẋn+ 1

2
− ẋn− 1

2
) + fn = 0. (3.10)

The approximation of the velocities eq. (3.9) can now be inserted in eq. (3.10), which forms the high-
dimensional residual rn(˙̂xkn

n+ 1
2
):

rn(˙̂xkn

n+ 1
2
) = ∆t−1

x M(Φn
˙̂xkn

n+ 1
2
−Φn−1 ˙̂xkn−1

n− 1
2

) + f̃n, (3.11)

where ∆tx = 1
2(∆t1 +∆t2) and f̃n is the force vector evaluated at the ROM solution x̃n, ˙̃xn− 1

2
. We enforce

the residual to be orthogonal to the current basis Φn:

ΦT
nrn

!= 0. (3.12)

The resulting ROM is:
ΦT
nM(Φn

˙̂xkn

n+ 1
2
−Φn−1 ˙̂xkn−1

n− 1
2

) + ∆txΦT
n f̃n = 0. (3.13)

Eq. (3.13) still scales with the dimension of the HDM. Not only does the projection of the nonlinear force
vector ΦT

n f̃n involve high dimensions, but also the multiplication of the ROB with the mass matrix MΦn,
MΦn−1. The reduction of the nonlinear force term is achieved using hyper-reduction, which will be dis-
cussed in Subsection 3.2.4. Addressing the multiplication of the ROB with the mass matrix, two ap-
proaches are possible to avoid high-dimensional operations. The first approach is performed offline. All
combinations of reduced mass matrices are computed:

M̃ij = ΦT
i MΦj ∈ Rki×kj i, j ∈ [1, nc], (3.14)

where nc is the number subdomains, also called clusters. However, we follow a different approach and
transform the velocity:

ẋn− 1
2

= Φn−1 ˙̂xkn−1
n− 1

2
≈ Φn ΦT

nΦn−1 ˙̂xkn−1
n− 1

2︸ ︷︷ ︸
˙̂xkn

n− 1
2

. (3.15)

The reduced velocity at time t = tn− 1
2

is now transformed to the current cluster at t = tn. The trans-
formation is assumed to introduce no significant error as the cluster borders are assumed to be close to
each other. In addition, a parameter will be introduced that controls the overlap of the clusters to ensure a
smooth transition between different clusters. For the ROM, two cases must be distinguished:

46

1. The solution stays in the cluster and no cluster change appears. That is, Φn = Φn−1 and kn = kn−1.
Due to the orthonormality of the ROB

ΦT
nΦn = I, (3.16)

eq. (3.13) transforms to the standard ROM regarding the currently chosen basis Φn:

ΦT
nMΦn︸ ︷︷ ︸
M̃n

(˙̂xkn

n+ 1
2
− ˙̂xkn

n− 1
2
) + ∆txΦT

n f̃n = 0. (3.17)

The new velocity is thus obtained as:

˙̂xkn

n+ 1
2

= ˙̂xkn

n− 1
2

+ ∆txM̃−1
n ΦT

n f̃n = 0. (3.18)

2. The solution transverses from one subregion to another. The ROBs Φn 6= Φn−1 and the associated
dimensions kn 6= kn−1 differ. Therefore, the previous reduced velocity ˙̂xkn−1

n− 1
2

must be transformed to

the current cluster first:
˙̂xkn

n− 1
2

= ΦT
nΦn−1 ˙̂xkn−1

n− 1
2
. (3.19)

Once the velocity is transformed, the new reduced velocity is obtained as in the first case using eq.
(3.18).

Once the new velocity is known, the displacement increment can also be calculated:

∆x̂kn
n+1 = ∆t2Φn

˙̂xkn

n+ 1
2

(3.20)

and
xn+1 = xn + Φn∆x̂kn

n+1. (3.21)

At this point, the ROM formulation is complete. Now, it is still to be determined how the subdomains are
formed and how it can be determined quickly in which subdomain the model is located. These tasks are
addressed in the next sections for the k-means-based ROM, as proposed by [140], and for the new ROM
based on spherical k-means.

3.2.2 K-means Clustering-based lROB

Clustering and Reduced Basis Generation

Now that the model has been derived, the solution snapshots must be divided into subregions/clusters.
The difficulty of this task is to choose a proper clustering metric. In the first part of this chapter, we recall
lROB based on k-means clustering [90, 157] and subsequently apply it to a typical crash problem. k-means
clustering minimizes the squared L2 distance of the samples/snapshots to the cluster centers mj ∈ Rn:

{π∗j }
nC
j=1 = arg min

{πj}
nC
j=1

nC∑
j=1

∑
u∈πj

‖u−mj‖2 , (3.22)

where πj , j = 1, . . . , nc are the nc subsets. The union of all subsets contains all Np ∗Ns snapshots stored
in the global snapshot matrix Uglob:

nC⋃
j=1

πj = {ut11 , . . . , u
tNs
Np
}, (3.23)

and the subsets are disjoint:
nC⋂
j=1

πj = ∅. (3.24)

47

The cluster centers are the average of the snapshots contained in one cluster:

mj = 1
|πj |

∑
u∈πj

u. (3.25)

In addition, they can be arranged in a matrix m ∈ Rn×nc :

m =
[
m1, m2, . . . , mnc

]
. (3.26)

Optimization problem eq. (3.22) can be solved iteratively by Lloyd’s algorithm [157]: The snapshots are

Algorithm 2 Lloyd’s algorithm to partition a dataset into nc disjoint subsets πj , j = 1, . . . , nc regarding a specified
distance metric S(x, y). In k-means S = ‖x− y‖2

2.

Input:Tolerance ε, data matrix Uglob containing the solution snapshots, predefined number of clusters nc,
maximum iterations nmax.
Output:nc subsets πj containing the assigned solution snapshots, the cluster centroids mj for j =
1, . . . , nc.

1: Randomly choose nc snapshots as initial cluster centers m(0)
j , for j = 1, . . . , nc

2: t = 0
3: ε(0) = ε+ 1
4: while t < nmax and ε(t) > ε do
5: for j ∈ {1, . . . , nc} do
6:

π
(t)
i =

{
utsr

∣∣∣ ∥∥∥utsr −m(t)
i

∥∥∥2
≤
∥∥∥utsr −m(t)

j

∥∥∥2
, for s = 1, . . . , Ns, r = 1, . . . , Np

}
(3.27)

7: end for
8: for j ∈ {1, . . . , nc} do
9: m

(t+1)
j = 1

|π(t)
j |

∑
u∈π(t)

j

u

10: end for
11: ε(t+1) =

∥∥∥m(t+1) −m(t)
∥∥∥
F

12: t = t+ 1
13: end while
14: πj ← π

(t)
j , for j = 1, . . . , nc

15: mj ← m
(t)
j , for j = 1, . . . , nc

16: return πj , mj

assigned to clusters, and the centroids of the clusters are calculated. An overlap between the subregions
is introduced to ensure a smooth transition of the solution from one cluster to the other. The clusters
are, therefore, no longer distinct. The overlap is realized by adding the r closest snapshots regarding the
specified metric to each cluster. The final assignment of the snapshots is termed:

πfin
j , for j = 1, . . . , nc (3.28)

The final sets are used to assemble the local snapshot matrices Xj :

Xj =
[
u1, ui, . . . , unj

]
∈ Rn×nj , ui ∈ πfin

j (3.29)

with
nj = |πfin

j |. (3.30)

SVD is applied to each local snapshot matrix to compute the associated ROB Φj with a reduced dimension
kj .

48

Cluster Identification

During the online phase of the simulation, it is necessary to quickly determine the distance of the solution
to the centroids of the clusters. The shortest distance defines the current cluster and the chosen ROB.
Without further modification, the distance calculation in state space scales with the dimension of the HDM.
Therefore, in analogy to [140], we avoid the computation of the distance directly and compare the distances
among each other. We define the sign function:

zm,pi−1 = S(ui−1,mm)− S(ui−1,mp) = ‖ui−1 −mm‖2 − ‖ui−1 −mp‖2 . (3.31)

By a change in sign, the need to change cluster is indicated. It is to note that the function can be similarly
defined using the coordinates x by translating the centroids with the initial configuration x0:

S(ui−1,mp) = ‖ui−1 −mp‖2 = ‖xi−1 − x0 −mp‖2 = ‖xi−1 − (mp + x0)‖2 = S(xi−1,mp + x0), (3.32)

and therefore expressed in terms of coordinates:

zm,pi−1 = S(xi−1,mm + x0)− S(xi−1,mp + x0). (3.33)

Next, by repeatedly using the lROB definition eq. (3.8), the state xi−1 can be expressed solely in terms of
reduced increments:

xi−1 = x0 +
nc∑
r=1

Φrq
r
i−1, (3.34)

where
qri =

∑
1≤m≤i,
m∈Ir

∆x̂km−1
m ∈ Rkr . (3.35)

Ir is the index set of time steps, for which the solution lies in cluster k associated with basis Φk. If the
initial condition x0 is subtracted from both sides of eq. (3.34), the current displacement can be related to
the sum of increments qri :

ui−1 =
nc∑
r=1

Φrq
r
i−1. (3.36)

We insert eq. (3.36) in eq. (3.31) and obtain:

zm,pi−1 =
∥∥∥∥∥
nc∑
r=1

Φrq
r
i−1 −mm

∥∥∥∥∥
2

−
∥∥∥∥∥
nc∑
r=1

Φrq
r
i−1 −mp

∥∥∥∥∥
2

=
∥∥∥∥∥
nc∑
r=1

Φrq
r
i−1

∥∥∥∥∥
2

− 2
nc∑
r=1

mT
mΦrq

r
i−1 + ‖mm‖2

−
∥∥∥∥∥
nc∑
r=1

Φrq
r
i−1

∥∥∥∥∥
2

+ 2
nc∑
r=1

mT
p Φrq

r
i−1 − ‖mp‖2

=
nc∑
r=1

2(mT
p −mT

m)Φr︸ ︷︷ ︸
wm,pT

r

qri−1 + ‖mm‖2 − ‖mp‖2︸ ︷︷ ︸
dm,p

. (3.37)

We define the following quantities:

wm,pr = 2ΦT
r (mp −mm) ∈ Rkr , ∀r ∈ [1, nc], 1 ≤ m < p ≤ nc, (3.38)

and
dm,p = ‖mm‖2 − ‖mp‖2 ∈ R, 1 ≤ m < p ≤ nc. (3.39)

49

They are precomputable and can be used to relate the increment in the sign function of two consecutive
time steps:

∆zm,pi−1 = zm,pi−1 − z
m,p
i−2 =

nc∑
r=1

wm,pTr (qri−1 − qri−2). (3.40)

Let ri−1 be the index of the local basis chosen at ti−1. Taking a closer look at the difference and using eq.
(3.35) yields:

qri−1 − qri−2 =
{

0 r 6= ri−1

∆x̂ki−2
i−1 r = ri−1

. (3.41)

Eq. (3.41) states that the reduced state is not incremented for all clusters except for the currently used
one. The difference in state variables is, therefore, zero for all clusters that are not currently in use. The
sign function update eq. (3.40) therefore simplifies to:

∆zm,pi−1 = wm,pTri−1 ∆x̂ki−2
i−1

=⇒ zm,pi−1 = zm,pi−2 + wm,pTri−1 ∆x̂ki−2
i−1 . (3.42)

All the necessary building blocks are now available, so the online phase can be carried out. With the
appropriate initial and boundary conditions, the forces and, subsequently, the accelerations are calculated
and projected to the reduced space. The reduced accelerations are integrated in time and the reduced
increment is obtained. The need to change the ROB is determined using the previously derived sign
function. If no basis change is necessary, the solution is mapped to high-dimensional state again to
compute the next force vector. When changing the cluster, the reduced velocity is also transformed.

3.2.3 Spherical Clustering-based lROB

In this section, we propose lROB based on spherical k-means clustering. We start by comparing the
properties of crash systems with those of fluid mechanical problems since lROB is mainly used in the
latter. Afterward, we explain spherical k-means clustering and derive a new distance (sign) function to
quickly determine the current subregion in the online phase.
Classical lROB is based on k-means clustering and was introduced in the context of a fluid-structure-
electric interaction. k-means clustering is based on Euclidean distances and not scale-invariant. Amsallem
et al. [158] claimed that k-means clustering is suboptimal and proposed a clustering method based on the
true projection error. Systems in crash often exhibit large deformations in one direction. The state space
is mainly traversed in one direction, and localization around certain points does not occur. We also claim
that, in this case, k-means clustering is suboptimal. However, we propose a different clustering metric
more closely related to the Euclidean norm. A similar distance function can be derived, and less severe
modifications of the original lROB framework are necessary.
We will revisit the main differences between other systems and crash systems below to support using a
different clustering metric. Except for differences such as complex materials involving path-dependencies
and contact algorithms, systems in crash and impact differ from systems describing fluid problems and
some linear/nonlinear elastodynamics problems in the following further points:

• Fluid problems are usually described by Eulerian coordinates, while a Lagrangian description is
chosen for crash and impact problems.

• Velocities describe fluids whereas nodal coordinates x or displacements u = x−x0 describe solids.
In solid mechanics, the trajectory of a single material point is tracked, whereas the velocity of the
particles passing a fixed point in space is considered.

• In fluid problems, the velocity vector changes rather in direction than in magnitude in the course of
the simulation.

• Compared to elastodynamic problems, crash solutions are not oscillatory.

50

• Solutions of crash problems usually show a nearly monotonic increase in magnitude. The models
deform in one direction until the kinetic energy is consumed by deformation work.

It is to be noted that the previous claims are general and need to be checked in each case. In the crash box
example, the temporal evolution of the solution corresponds to an increase in magnitude of the solution
vector. Assuming the trajectories of different parameter combinations are close, the L2 distance-based
k-means clustering will mainly separate the solution along the temporal axis. Snapshots of the beginning
of the solution will never be assigned to the same cluster as snapshots from the end of the simulation, even
though their deformation direction could be similar. In reduced-order modeling, the ROB dictates the space
of admissible deformations. The information is stored in the individual basis vectors of the ROB, where
the length of the vectors is irrelevant regarding the subspace they span. This leads us to the claim that
the magnitude of the solution snapshots should have no influence and only the direction of deformation
is relevant. A similar problem appears in document processing, where documents of differing lengths are
clustered. Dhillon et al. [159] proposed spherical k-means clustering, which uses normalization to mitigate
the effect of different document lengths [160]. Normalizing the snapshots is equivalent to spherically
projecting them onto a unit sphere. Calculating the cosine between two normalized vectors relates to the
computation of the L2, which is why minor modifications of the k-means algorithm are sufficient, although
not the most efficient.

Clustering and Reduced Basis Generation

The key idea is to use a different clustering metric. We adopt the definition of the cosine dissimilarity and
use it for clustering. The cosine dissimilarity is defined as:

D(x, y) = 1− cos(φ) = 1− x · y
‖x‖ ‖y‖

. (3.43)

Eq. (3.43) measures the dissimilarity between two vectors x, y ∈ Rn and defines the angle φ between
the two vectors. For two normalized vectors a, b ∈ Rn, ‖a‖ = 1, ‖b‖ = 1, the cosine dissimilarity can be
related to the Euclidian distance:

‖a− b‖2 = (a− b)T · (a− b) = ‖a‖+ ‖b‖ − 2aT · b = 2(1− cos(φ)) = 2D(a, b). (3.44)

This relation is beneficial when modifying existing algorithms that solve the original k-means problem. For
spherical k-means, we seek the solution of the following optimization problem:

{π∗j }
nC
j=1 = arg min

{πj}
nC
j=1

nC∑
j=1

∑
u∈πj

D(u, cj), (3.45)

where cj ∈ Rn denotes the normalized centroid of cluster πj , which is defined as:

cj = mj

‖mj‖
. (3.46)

The centroid is analogously defined as in k-means eq. (3.25).
During the experiments, we found that snapshots with a small magnitude are prone to false identification.
These snapshots appear mainly at the beginning of the training simulations. To overcome the false iden-
tification, an initial cluster is defined in a preprocessing step. The initial cluster includes snapshots which
are collected until a user-defined time tinit:

πinit = {ui : i ≤ tinit
∆t }. (3.47)

The time interval between two consecutive snapshots is denoted by ∆t. The snapshots from the initial
cluster are removed from the snapshots fed to the clustering algorithm. Let Uglob be the set of all snapshots
contained in the snapshot matrix Uglob:

Uglob = {ut11 , . . . , u
tNs
Np
}. (3.48)

51

Then, the final set of snapshots U is:

U = Uglob \ πinit (3.49)

and the modified snapshot matrix U is:

U = [u1, ui, . . . , unmod] ∈ Rn×nmod , ui ∈ U, (3.50)

with

nmod = Ns ∗Np − |πinit| = |U |. (3.51)

Optimization problem eq. (3.45) is solved using the Python implementation "spherecluster" from Jason
Laska [161]. The standard implementation presented in Algorithm 2 is modified, such that the new cen-
troid is normalized using eq. (3.46) after the centroids are updated. When the algorithm has converged
or reached the maximum number of iterations, the closest snapshots are added to the clusters as in con-
ventional lROB. However, the initial cluster is excluded. A fixed number of snapshots can be added to
each cluster, or all snapshots in a certain distance can be added. In this work, we use a fixed number
of snapshots r. In analogy to the k-means-based ROM, as soon as the snapshots are added, the final
sets/clusters πfin

j and πinit are determined. The final clusters are used to construct the cluster-specific
snapshot matrices eq. (3.29). They are input for SVD, which yields the local ROBs.

Cluster Identification

As for the k-means-based ROM, a computationally cheap cluster identification must also be derived for
the spherical k-means ROM. We again define a sign function, indicating the need for a cluster change by
a changing sign. The sign function is defined as:

zm,pi−1 = D(ui−1, cm)−D(ui−1, cp) = ui−1 · cp
‖ui−1‖ ‖cp‖

− ui−1 · cm
‖ui−1‖ ‖cm‖

. (3.52)

Using the definition of the normalized centroids eq. (3.46) leads to:

zm,pi−1 = ui−1 · (cp − cm)
‖xi−1‖

. (3.53)

First, we consider the squared denominator of eq. (3.53). We square the equation for notation purposes,
but this does not impact computation time since we are dealing with the square root of a scalar. We
express the state ui−1 by the previous state ui−2 and the increment ∆x̂ki−2

i−1 :

‖ui−1‖2 = uTi−1ui−1 = (xi−2 + Φi−2∆x̂ki−2
i−1)T (xi−2 + Φi−2∆x̂ki−2

i−1)

= ‖ui−2‖2 + ‖∆x̂ki−2
i−1 ‖

2 + 2(uTi−2Φi−2∆x̂ki−2
i−1). (3.54)

The norm ‖ui−2‖2 is known from the previous time step; however, the multiplication of ui−2 from left in the
last term of eq. (3.54) still involves high dimensions. Therefore, we use the reduced representation eq.
(3.34) of ui−2 and insert it in eq. (3.54):

‖ui−1‖2 = ‖ui−2‖2 + ‖∆x̂ki−2
i−1 ‖

2 + 2
nc∑
r=1

qri−2ΦT
r Φi−2∆x̂ki−2

i−1 . (3.55)

52

The terms ΦT
r Φi−2 can be precomputed. However, more importantly, the reduced state qri is zero for all

clusters not used until the current simulation time in the online phase, and summation can be skipped in
these cases. Finally, we replace the numerator in eq. (3.53) by the previous state and the increment:

zm,pi−1 = ui−2 · (cp − cm)
‖ui−1‖

+
(Φi−2∆x̂ki−2

i−1) · (cp − cm)
‖ui−1‖

= ‖ui−2‖
‖ui−1‖

zm,pi−2 +
(Φi−2∆x̂ki−2

i−1) · (cp − cm)
‖ui−1‖

= ‖ui−2‖
‖ui−1‖

zm,pi−2 +
∆x̂ki−2

i−1 ·ΦT
i−2(cp − cm)

‖ui−1‖

= ‖ui−2‖
‖ui−1‖

zm,pi−2 +
∆x̂ki−2

i−1 · w
m,p
i−2

‖ui−1‖
, (3.56)

with
wm,pi = ΦT

i (cp − cm) ∈ Rki , ∀i ∈ [1, nc], 1 ≤ m < p ≤ nc + 1, (3.57)

where the initial cluster is included, therefore nc + 1. An exemplary algorithm to update the sign function
is presented in the following:

Algorithm 3 Sign function update for the spherical k-means based ROM.

Input: Sign function at the last time step zm,pi−2 , precomputed quantities wm,pi , ΦT
r Φk, 1 ≤ r ≤ k ≤ nc + 1,

norm at the last time step ‖ui−2‖, current reduced increment ∆x̂ki−2
i−1 , reduced state at last time step qri−2

and reduced bases Φr, r ∈ [1, nc + 1].
Output: Norm of state vector at new time step ‖ui−1‖ and sign function at new time step zm,pi−1 .

1: Update norm using eq. (3.55)
‖ui−1‖2 ← ‖ui−2‖2 + ‖∆x̂ki−2

i−1 ‖2 + 2
∑nc
r=1 q

r
i−2ΦT

r Φi−2∆x̂ki−2
i−1

2: Update sign function using eq. (3.56)

zm,pi−1 ←
‖ui−2‖
‖ui−1‖z

m,p
i−2 + ∆x̂ki−2

i−1 ·w
m,p
i−2

‖ui−1‖
3: return zm,pi−1 , ‖ui−1‖

3.2.4 Hyper-reduction

As introduced in Section 2.2, hyper-reduction is the only way to achieve computational speedup in highly
nonlinear systems besides the larger admissible time step in explicit simulations. We apply ECSW hyper-
reduction [130] as it was shown it is a suitable method for highly nonlinear systems [162]. The stability
properties are due to the preservation of the Lagrangian structure of the problem [131]. In addition, ECSW
is easily compatible with lROB method [92]. In the following, we quickly illustrate the main idea behind
ECSW.
To understand ECSW, we recall the assembly of the nonlinear internal force term:

fint =
ne

A
e=1

f
(e)
int =

ne∑
e=1

Lef (e)
int , (3.58)

where the global internal force fint is assembled using the assembly operator A for all elemental force
contributions f (e)

int of the ne elements. The assembly operator can be rewritten using assembly matrices
Le ∈ Rn×me . The DoF for the element are denoted by me. Next, we project the internal force onto the
reduced basis and obtain the reduced force as appearing in ROM1 eq. (2.25b):

ΦT fint =
ne∑
e=1

ΦTLef (e)
int =

ne∑
e=1

ΦT
e f

(e)
int . (3.59)

53

The assembly matrix selects the rows of Φ associated with the DoF of the current element yielding an
element-specific reduced basis Φe ∈k×me . The reduced force can also be considered a virtual work, with
Φ being the virtual displacement. The idea of ECSW is to find a weighted combination of a few elements,
which yields the same total virtual work as the whole element set:

ΦT fint ≈
∑
e∈Ẽ

ξeΦT
e f

(e)
int , ξe > 0. (3.60)

The reduced element set is Ẽ and the non-negative weighting factors are ξe. Finding Ẽ and ξe requires the
solution of an optimization problem, which is defined as [130]:

ξ∗ = arg min
ξ∈Λ
‖ξ‖0

Λ = {ξ ∈ Rne : ‖Gξ − b‖2 ≤ τ‖b‖2, ξe ≥ 0}, (3.61)

where τ ∈ (0, 1] is a predefined accuracy. The reduced set Ẽ comprises the elements with non-zero
weights:

Ẽ = {e ∈ {1, 2, . . . , ne} : ξe 6= 0} (3.62)

The matrix G is composed of submatrices Gj,e:

G =



G1,1 . . . G1,e . . . G1,ne

...
. . .

...
. . .

...
Gj,1 . . . Gj,e . . . Gj,ne

...
. . .

...
. . .

...
Gnb,1 . . . Gnb,e . . . Gnb,ne


∈ Rnb×ne , (3.63)

where the first dimension nb is the sum of the reduced dimension k over all nf force snapshots:

nb = k ∗ nf . (3.64)

The submatrix Gj,e is the product of the reduced basis Φ with the force snapshot at tj of element e:

Gj,e = ΦT
e f

(e)
j ∈ Rk. (3.65)

The vector b is the column sum of matrix G:

bj =
ne∑
e=1

Gj,e ∈ Rnb . (3.66)

Algorithm 4 presents a basic strategy to solve optimization problem eq. (3.61). The algorithm is closely
related to the approaches presented in [129, 135], where the active set non-negative least squares (NNLS)
solver presented by Lawson and Hanson [163] is utilized in every iteration. It is noted that an advanced
version of this algorithm, as proposed by Bach [1] was used in this thesis. Next, we transfer ECSW to
local ROB by allowing the reduced basis to change Φ → Φi. That is, an individual matrix Gi and the
corresponding vector bi can be formulated:

Gij,e = (Φi)Te f
(e)
j ∈ Rki , f

(e)
j ∈ πfin

i (3.67)

and

bij =
ne∑
e=1

Gij,e. (3.68)

It is assumed that force snapshots are collected at the same time steps as displacement time snapshots.
Therefore, f (e)

j ∈ πfin
i states that if a displacement snapshot at the current time is in cluster i, then also

the force snapshot at this time is assigned to the same cluster. Depending on the formulation of the
optimization problem, different strategies to calculate the reduced element set and the weights exist. In
the following, we examine all three possibilities.

54

Algorithm 4 Basic greedy algorithm to solve optimization problem eq. (3.61).

Input: G, b, tolerance τ ∈ (0, 1]
Output: Reduced element set Ẽ, element weights ξn, n = 1, . . . , |Ẽ|.

1: Initialize element set, weight vector and residual vector
Ẽ← {}, ξ ← 0, r ← b

2: while ‖r‖ / ‖b‖ ≥ τ do
3: Compute gradient of residual regarding not included elements ∇ ← (G:,ẼC)T r,

where ẼC denotes the complement of the set.
4: Add element corresponding to the largest element in ∇ to the reduced set Ẽ.

5: Solve NNLS of ξ ← arg minξ
∥∥∥G:,Ẽξ − b

∥∥∥2

6: Remove zero weights from ξ and the corresponding elements from the reduced set Ẽ.
7: Update residual r ← b−G:,Ẽξ.
8: end while
9: return Ẽ, ξ

Global-global

Here, the reduced element set Ẽglob as well as the corresponding weights ξ∗glob are global and do not
change during a cluster change during the online phase. The matrix G contains all local matrices Gi as
defined in eq. (3.67):

Gglob =



G1

...
Gi

...
Gnc


∈ Rnb×ne , i = 1, .., nc, (3.69)

where

nb =
nc∑
i=1
|πfin
i |ki. (3.70)

The vector bglob is again defined as:

bglob =
ne∑
e=1

Gij,e ∈ Rnb . (3.71)

Finally, Ẽglob and ξ∗glob are obtained by solving the given optimization problem:

ξ∗glob = arg min
ξ∈Λ
‖ξ‖0

Λ = {ξ ∈ Rne : ‖Gglobξ − bglob‖2 ≤ τ‖bglob‖2, ξe ≥ 0}, (3.72)

and the reduced element set obtained as:

Ẽglob = {e ∈ {1, 2, . . . , ne} : ξ∗glob,e 6= 0}. (3.73)

The global approach is easy to implement due to no necessity to change the reduced mesh and/or the
associated weights. However, the dimension nb of the matrix GG can become large quickly. Due to the
large data set, including snapshots from different subregions/clusters, the resulting reduced mesh is larger
than experience supports.

55

Local-local

In contrast to the global option, the reduced element set Ẽi and the weights ξ∗i can be local (cluster-
specific). The following optimization problem is solved for each cluster:

ξ∗i = arg min
ξ∈Λ
‖ξ‖0

Λ = {ξ ∈ Rne : ‖Giξ − bi‖2 ≤ τ‖bi‖2, ξe ≥ 0}, (3.74)

and the reduced element set obtained as:

Ẽi = {e ∈ {1, 2, . . . , ne} : ξ∗i,e 6= 0}, (3.75)

for each cluster
i = 1, . . . , nc. (3.76)

The size of each optimization problem is smaller compared to the global approach. In this approach, the
reduced mesh and the weights are tailored to each cluster, usually resulting in a smaller reduced mesh
and, consequently, a larger computation speedup. However, this approach is not able to handle path-
dependent materials. Assuming an element was not considered in the first reduced mesh and is activated
during the online phase of the simulation. In the integration of the material routine, the history needs to be
included. Using methods for gappy data, such as the gappy POD, could reconstruct the field of internal
variables. However, this is beyond the scope of this work and requires currently not accessible parts of the
FEM solver.

Global-local

In this thesis, we propose a global element set with local weights. It benefits from higher accuracy due
to the local weights and is compatible with path-dependent materials due to the global reduced mesh.
Algorithm 5 presents the applied scheme. In the first loop, the reduced mesh and the local weights are

Algorithm 5 Global ECSW hyper-reduction for lROB with local weights.

Input: Gi and bi for i = 1, . . . , nc, tolerance τ ∈ (0, 1]
Output: Reduced element set Ẽglob, local element weight vectors ξ∗i , i = 1, . . . , nc with true accuracy τi.

1: for i ∈ {1, . . . , nc} do
2: Ẽi, ξ∗i ← Algorithm 4(Gi, bi, τ)
3: end for
4: Ẽglob ←

⋃nc
i=1 Ẽi

5: for i ∈ {1, . . . , nc} do

6: Solve NNLS of ξ∗i , τi ← arg minξ
∥∥∥∥Gi:,Ẽglob

ξ − bi
∥∥∥∥2

7: end for
8: return Ẽglob, ξ∗i , τi

computed as described in the local-local approach. However, in a subsequent step, a global reduced
mesh is formed by the union of all local reduced meshes. The weights are adjusted to the probably larger
reduced mesh in a second loop, and the true accuracy τi is returned.

3.3 Results

This section applies the proposed method to a typical crash problem. We use the crash box example as
it is a well-established benchmark for crash analysis. The model is introduced in Subsection 2.4.3, and
the parameters are varied as explained in Section 3.1.1. Also, the critical time step is not kept fixed and

56

is calculated in each time step with a safety factor of 0.9. In addition, the eight triangular shells existing
in the original mesh are replaced by four quadrilateral shell elements, resulting in a total of 1,864 shell
elements. During the 35 ms simulation time, every 0.01 ms, a snapshot of the displacements, rotations,
forces, and moments is collected. This collection strategy returns 3,501 snapshots for each variable for
each simulation.
The results section is structured as follows. First, the offline phase results are presented, consisting of
clustering and basis construction. Next, the resulting ROMs are presented, and the approximation qual-
ity is assessed without hyper-reduction. Subsequently, hyper-reduction is introduced, the offline phase is
summarized in tables, and the resulting online accuracy is evaluated. The evaluations are always con-
ducted on one test case with high deformation and one test case with low deformation.

3.3.1 Clustering

First, clustering is evaluated. To better understand the clustering results later, the snapshots are assessed
by investigating their magnitude ‖x(t)‖. Fig. 3.18 shows the evolution of the magnitude until the termina-
tion time of the simulation. The magnitude is shown for the test case with low deformation and the test
case with large deformation. A monotonic increase in magnitude is observable for both simulations. Only
at the end of the simulation, where the whole kinetic energy of the impacting plate is absorbed, and the
rebound occurs, a small decrease in magnitude appears. Systems with oscillating solutions or systems
with Eulerian description would have a different magnitude behavior. Exceptions may exist, or systems
may be designed to replicate this behavior. Next, we need to select a reasonable number of clusters. The

0 5 10 15 20 25 30 35
time in ms

0

1000

2000

3000

4000

magnitude

small deformation
large deformation

Figure 3.18 Temporal evolution of the magnitude of the state vector ‖x(t)‖ containing displacement and rotation
DoF.

elbow method is a graphical method to select the number of clusters in a data-set. This method observes
the total variance of the clustering for different numbers of clusters and stops where there is a kink and
selects this number. The method also has this name since the curve looks like an elbow. However, the
method is subjective and unreliable if no sharp elbow is visible. Nevertheless, it meets our requirements
and is suitable for selecting a reasonable number of clusters. Fig. 3.19 shows the total variance of the
k-means clustering for an increasing number of clusters. The curve has the shape of an elbow, and we
select three numbers of clusters for all further evaluations. We select nc = 3, nc = 6, and nc = 9. As
the local hyper-reduction depends on the number of clusters, we choose a small number, which could be

57

too small, a presumably reasonable number, and finally, a conservative number, which does not reduce
the total variance strongly compared to the previous cluster number. Fig. 3.20 evaluates the total variance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2020
cluster

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Total variance
×1011

Figure 3.19 Elbow of k-means clustering.

for the spherical k-means clustering. A direct comparison to k-means clustering is impossible due to the
different clustering metrics and variance range. However, the same behavior is visible. We choose the
same number of clusters for further investigation. Next, we investigate how the clustering assigns the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2020
cluster

0

500

1000

1500

2000

2500

3000

3500

Total variance

Figure 3.20 Elbow of spherical k-means clustering.

snapshots to the different clusters. Fig. 3.21 and Fig. 3.22 show the results for k-means and spherical
k-means clustering, respectively. k-means clustering is based on the L2 norm. As shown in Fig. 3.18, the
norm constantly increases during the simulation. This is mirrored in Fig. 3.21, where the assignment of

58

the individual snapshots to the corresponding cluster is indicated by the color for all 27 training simulations
until the final simulation time. The snapshots are divided along the temporal axis. Especially in the first
15 ms, the magnitudes of the different training simulations are similar, and most training simulation snap-
shots are assigned to the same cluster. Afterwards, the magnitudes differ and snapshots associated with
a higher deformation are assigned to a different cluster than snapshots related to a lower deformation. For
instance, training simulations 1, 26, and 27 are of lower total deformation and stay in cluster one for the
remainder of the simulation. In contrast, other simulations change to cluster 3 in the last milliseconds of the
simulation. Fig. 3.22 shows the results for the spherical k-means clustering. The first 4 ms are excluded

0 5 10 15 20 25 30 35
time in ms

1

4

7

10

13

16

19

22

25

simulation

1

2

3

cluster

Figure 3.21 Cluster visualization for 3 clusters and k-means clustering.

from clustering, forming the initial cluster. Spherical k-means clustering divides the remaining snapshots.
The cluster change to the final cluster happens on average earlier, and fewer training simulations change
the cluster only twice. Spherical k-means clustering is more sensitive at later simulation times and, there-
fore, higher magnitudes. This is probably due to the normalization in spherical k-means. Fig. 3.23 and Fig.
3.24 show the results for k-means and spherical k-means clustering for 6 clusters, respectively. Fig. 3.25
and Fig. 3.26 provide the results for 9 clusters. With the increasing number of clusters, the division of the
snapshots becomes finer for both clustering methods. Especially in the spherical k-means clustering, the
clusters are thin in the early phase of the simulation, and cluster changes appear more often compared to
the k-means clustering. In the later phases, clusters are larger compared to k-means.

59

0 5 10 15 20 25 30 35
time in ms

1

4

7

10

13

16

19

22

25

simulation

1

2

3

cluster

Figure 3.22 Cluster visualization for 3 clusters and spherical k-means clustering. The initial cluster was manually
chosen to contain snapshots from the first 4 ms.

0 5 10 15 20 25 30 35
time in ms

1

4

7

10

13

16

19

22

25

simulation

1

2

3

4

5

6

cluster

Figure 3.23 Cluster visualization for 6 clusters and k-means clustering.

60

0 5 10 15 20 25 30 35
time in ms

1

4

7

10

13

16

19

22

25

simulation

1

2

3

4

5

6

cluster

Figure 3.24 Cluster visualization for 6 clusters and spherical k-means clustering. The initial cluster was manually
chosen to contain snapshots from the first 4 ms.

0 5 10 15 20 25 30 35
time in ms

1

4

7

10

13

16

19

22

25

simulation

1

2

3

4

5

6

7

8

9

cluster

Figure 3.25 Cluster visualization for 9 clusters and k-means clustering.

61

0 5 10 15 20 25 30 35
time in ms

1

4

7

10

13

16

19

22

25

simulation

1

2

3

4

5

6

7

8

9

cluster

Figure 3.26 Cluster visualization for 9 clusters and spherical k-means clustering. The initial cluster was manually
chosen to contain snapshots from the first 4 ms.

62

Before the ROBs are created, near snapshots are added to ensure an overlap of the subspaces and a
smooth transition between them. We visualize where snapshots are added for the ROM with 6 clusters.
For each cluster, the nearest 2,000 snapshots are added. Fig. 3.27 visualizes the added snapshots for
each snapshot. In each subfigure, the snapshots belonging to the cluster are colored in turquoise, and the
added snapshots are colored in yellow. Except for clusters 2 and 5, where snapshots from other training
simulations are identified as closest and added to the cluster, the nearest added snapshots lie directly at
the border of the cluster itself and ensure a smooth transition of the solution from one cluster to the other
during temporal evolution.
Fig. 3.28 shows the results for spherical k-means clustering. The initial cluster (cluster 6) is predefined and
considered as "added", which is why it is colored yellow. Like k-means clustering, the clusters containing
the snapshots appearing later in time identify snapshots from other training simulations as closest. For the
other clusters, snapshots are added at the borders of the clusters.

1
4
7

10
13
16
19
22
25

#
si
m
u
la
ti
o
n

Cluster 1 Cluster 2 Cluster 3

0 5 10 15 20 25 30 35

1
4
7

10
13
16
19
22
25

Cluster 4

0 5 10 15 20 25 30 35

Cluster 5

0 5 10 15 20 25 30 35

time in ms

Cluster 6

Figure 3.27 Visualization of the closest 2,000 snapshots, which are added for k-means clustering using 6 clusters.

63

1
4
7

10
13
16
19
22
25

#
si
m
u
la
ti
o
n

Cluster 1 Cluster 2 Cluster 3

0 5 10 15 20 25 30 35

1
4
7

10
13
16
19
22
25

Cluster 4

0 5 10 15 20 25 30 35

Cluster 5

0 5 10 15 20 25 30 35

time in ms

Cluster 6

Figure 3.28 Visualization of the closest 2,000 snapshots, which are added for spherical k-means clustering using 6
clusters. No snapshots are added to the initial cluster.

3.3.2 Offline Accuracy

Next, we investigate the approximation quality of the ROB and compare it to the offline error of the global
basis. The global basis is the analogy to a local ROM with one cluster containing the snapshots of all
training simulations. Fig. 3.29, Fig. 3.30, and Fig. 3.31 show the offline/approximation error ε2(k) for
an increasing number of dimensions k for the clusters obtained by k-means clustering for 3, 6, and 9
clusters, respectively. For comparison, the offline error for the global basis is given for reference. For
the clustering with 3 and 6 clusters, all lROBs show a faster decay in error except the basis containing the
initial snapshots, which is basis 2 for 3 clusters and basis 6 for 6 clusters. For the clustering with 9 clusters,
basis 6, and basis 3 show a slower error decay than the global basis. Both lROBs are related to the initial
snapshots. Basis 6 contains the first snapshots, and basis 3 the subsequent ones.

64

1 50 100 150 200
rank k

10−8

10−6

10−4

10−2

100
ε2(k)

global basis
lROB basis1
lROB basis2
lROB basis3

Figure 3.29 Offline accuracy of the ROB for k-means clustering using 3 clusters.

1 50 100 150 200
rank k

10−9

10−7

10−5

10−3

10−1

ε2(k)

global basis
lROB basis1
lROB basis2
lROB basis3
lROB basis4
lROB basis5
lROB basis6

Figure 3.30 Offline accuracy of the ROB for k-means clustering using 6 clusters.

65

1 50 100 150 200
rank k

10−9

10−7

10−5

10−3

10−1

ε2(k)

global basis
lROB basis1
lROB basis2
lROB basis3
lROB basis4
lROB basis5
lROB basis6
lROB basis7
lROB basis8
lROB basis9

Figure 3.31 Offline accuracy of the ROB for k-means clustering using 9 clusters.

66

Fig. 3.32, Fig. 3.33, and Fig. 3.34 show the offline/approximation error ε2(k) of the lROBs associated
with the clusters obtained by spherical k-means clustering for 3, 6, and 9 clusters, respectively. The error
is plotted for an increasing number of approximation dimensions k. In analogy to the k-means case, the
lROBs containing the initial snapshots show the slowest decay in error. In the case of 3 clusters, the second
cluster yields a similar error to the global basis. Also, in the 6 and 9 clusters cases, the lROBs related to
the early snapshots in the simulation show a slow error decay. The next section assesses whether the
slowly decaying approximation error correlates with the online error of the resulting ROM.

1 50 100 150 200
rank k

10−8

10−6

10−4

10−2

100
ε2(k)

global basis
lROB basis1
lROB basis2
lROB basis3

Figure 3.32 Offline accuracy of the ROB for spherical k-means clustering using 3 clusters.

1 50 100 150 200
rank k

10−8

10−6

10−4

10−2

100
ε2(k)

global basis
lROB basis1
lROB basis2
lROB basis3
lROB basis4
lROB basis5
lROB basis6

Figure 3.33 Offline accuracy of the ROB for spherical k-means clustering using 6 clusters.

67

1 50 100 150 200
rank k

10−9

10−7

10−5

10−3

10−1

ε2(k)

global basis
lROB basis1
lROB basis2
lROB basis3
lROB basis4
lROB basis5
lROB basis6
lROB basis7
lROB basis8
lROB basis9

Figure 3.34 Offline accuracy of the ROB for spherical k-means clustering using 9 clusters.

The results of the offline phase are summarized in Tab. 3.2. For each ROM, denoted by the number of
clusters in the first column, the number of snapshots in the cluster |πi| and the offline accuracy for an ap-
proximation rank of k = 15, 30, 40 is tabulated. No correlation between the cluster size and the achievable
accuracy can be found. This mirrors the observation of the clusters containing the initial snapshots.

Table 3.2 Summary of clustering results and accuracy of linear dimensional reduction.

cluster cluster k-means spherical k-means
i |πi| ε2i |ki=15 ε2i |ki=30 ε2i |ki=40 |πi| ε2i |ki=15 ε2i |ki=30 ε2i |ki=40

3 1 45164 0.205% 0.046% 0.023% 41676 0.534% 0.118% 0.060%
2 27668 1.640% 0.350% 0.181% 46051 0.101% 0.021% 0.011%
3 27695 0.061% 0.011% 0.005% 10800 1.921% 0.458% 0.252%

6 1 25308 0.215% 0.045% 0.024% 24281 0.053% 0.010% 0.005%
2 16991 0.029% 0.006% 0.003% 27251 0.244% 0.049% 0.026%
3 13714 0.303% 0.061% 0.030% 7631 0.798% 0.180% 0.091%
4 20586 0.040% 0.009% 0.004% 23949 0.042% 0.009% 0.004%
5 12495 0.021% 0.003% 0.001% 10615 0.232% 0.047% 0.025%
6 17433 2.546% 0.555% 0.295% 10800 1.921% 0.458% 0.252%

9 1 13436 0.022% 0.004% 0.002% 5803 0.711% 0.160% 0.083%
2 19653 0.162% 0.037% 0.021% 17107 0.029% 0.006% 0.003%
3 10218 0.755% 0.168% 0.087% 19232 0.193% 0.042% 0.024%
4 8853 0.016% 0.002% 0.001% 6562 0.327% 0.064% 0.034%
5 14083 0.023% 0.005% 0.003% 16528 0.027% 0.007% 0.003%
6 13264 2.417% 0.519% 0.282% 12617 0.022% 0.003% 0.001%
7 8813 0.014% 0.002% 0.001% 9062 0.172% 0.034% 0.018%
8 10782 0.186% 0.036% 0.019% 12816 0.063% 0.015% 0.008%
9 13425 0.059% 0.013% 0.007% 10800 1.921% 0.458% 0.252%

68

3.3.3 Online Phase Results

The last section investigated the approximation error of the lROBs. It is found that the snapshots in the
early phase of the simulations are harder to approximate than the ones towards the termination time of
the simulations. However, the online error of the ROM must show whether a correlation exists to the
approximation error of the lROB. Therefore, the temporal average error ε of the ROMs is shown in Fig.
3.35 for all ROMs, including the global ROM tested on the high deformation case. All local ROMs are
more accurate than the global ROM using fewer dimensions, which is why Fig. 3.36 zooms in and enables
a better comparison of the individual ROMs. The error decreases for all ROMs with increasing rank k.
The k-means-based ROM with three clusters has the largest error with the slowest error decay. The k-
means-based ROM with 6 clusters and the spherical k-means-based ROM with 3 clusters have comparable
accuracy. The error decay for the k-means-based ROMs is not as smooth as for the spherical k-means-
based ROMs. That is why the k-means ROM with 9 clusters is more accurate for small ranks, but for
higher ranks, the spherical k-means ROM with 9 clusters is more accurate and converges slightly faster
to a small error. In general, the error decay of the spherical k-means ROMs is more consistent, and the
range of achieved errors is smaller than for the k-means ROMs.

15 50 100 150 200
rank k

0.0

0.5

1.0

1.5

2.0

ε ×10−1

global
kmeans 3
kmeans 6
kmeans 9
sphere 3
sphere 6
sphere 9

Figure 3.35 Online accuracy for all local ROMs and the global ROM. All ROMs are tested on the high deformation
case.

69

15 20 30 40 50 100
rank k

0

1

2

3

4

5

6

ε ×10−2

kmeans 3
kmeans 6
kmeans 9
sphere 3
sphere 6
sphere 9

Figure 3.36 Detailed comparison of the online accuracy for all local ROMs, tested on the high deformation case.

The same results are also shown for the low deformation test case. First, in Fig. 3.37, the results of
all local ROMs are shown in contrast to the global basis. Also, in the low deformation test case, the local
approach proves its success, and the ROMs achieve a higher accuracy with fewer dimensions than the
global ROM. Also, here, we zoom in and investigate the difference between the individual ROMs, as can
be seen in Fig. 3.38. Compared to the high deformation test case, the ROMs converge faster to low errors.
k-means ROMs and spherical k-means ROMs have comparable errors for the same number of clusters.
However, the k-means ROM with 3 clusters barely reaches an error below 0.08, and the k-means ROM
with 6 dimensions also requires many dimensions to reach the same error as the other ROMs. In contrast,
at k = 40, all spherical k-means ROMs have a similar error, regardless of the number of clusters.

70

15 50 100 150 200
rank k

0.0

0.5

1.0

1.5

2.0

ε ×10−1

global
kmeans 3
kmeans 6
kmeans 9
sphere 3
sphere 6
sphere 9

Figure 3.37 Online accuracy for all local ROMs and the global ROM. They are tested on the low deformation case.

15 20 30 40 50 100
rank k

0

1

2

3

4

ε ×10−2

kmeans 3
kmeans 6
kmeans 9
sphere 3
sphere 6
sphere 9

Figure 3.38 Detailed comparison of the online accuracy for all local ROMs tested on the low deformation case.

3.3.4 Hyper-reduction Offline Results

In this section, the results of ECSW hyper-reduction are presented. Force snapshots are collected every
0.01 ms and are assigned to the same cluster as the displacement snapshot at that time. Tab. 3.3, Tab.
3.4, and Tab. 3.5 summarize the offline results of global hyper-reduction for ROMs with reduced dimension
k = 15, k = 30, and k = 40, respectively. The tables further show the results for the k-means ROM and
the spherical k-means ROM with 3, 6, and 9 clusters and accuracy τ = 0.01, τ = 0.02, and τ = 0.03.
The number of clusters has little effect on the reduced mesh size. Although small differences exist, no
consistent behavior is observable. Instead, the accuracy τ directly influences the reduced mesh size.

71

More accuracy requires more elements in the reduced mesh. Also, the higher the ROM dimension k, the
larger the selected element set. As the optimization problem scales with the ROM dimension, it becomes
more complex with larger dimensions, thus requiring more elements. A general conclusion cannot be
made whether k-means or spherical k-means yields a smaller reduced mesh. In all cases, the reduced
mesh is for both ROMs in the same size range.

Table 3.3 Summary of global hyper-reduction for an approximation rank of k = 15.

cluster τ k-means spherical k-means
|Ẽ| |Ẽ|

3 0.01 485 478
0.02 365 350
0.03 306 295

6 0.01 482 479
0.02 365 360
0.03 305 299

9 0.01 482 486
0.02 352 374
0.03 302 299

Table 3.4 Summary of global hyper-reduction for an approximation rank of k = 30.

cluster τ k-means spherical k-means
|Ẽ| |Ẽ|

3 0.01 572 574
0.02 449 455
0.03 379 386

6 0.01 574 593
0.02 456 457
0.03 385 389

9 0.01 553 574
0.02 439 456
0.03 371 395

Table 3.5 Summary of global hyper-reduction for an approximation rank of k = 40.

cluster τ k-means spherical k-means
|Ẽ| |Ẽ|

3 0.01 615 601
0.02 494 484
0.03 423 412

6 0.01 612 614
0.02 487 497
0.03 429 424

9 0.01 607 616
0.02 482 500
0.03 417 432

72

Next, the results of the global-local hyper-reduction approach are tabulated in Tab. 3.6 and Tab. 3.7 for
the ROM with k = 15. The global-local hyper-reduction results for the ROMs with k = 30 and k = 40 are
tabulated in Appendix A.2 in tables A.1 - A.4.
As the local-local approach is not possible for path-dependent materials, this work does not consider it.
Compared to the global-global approach, the global-local approach scales with the ROM dimension k,
with the accuracy τ and the number of clusters. The reduced mesh for the k-means ROM with 3 clusters,
k = 15, and τ = 0.01 is 755 compared to 485. However, the real accuracy after adjusting the weights
in each cluster is around 0.5% in each cluster. The clusters with a high offline approximation error, e.g.
cluster 2 in the k-means ROM with 3 clusters or the last cluster in spherical k-means clustering, which is
always the initial cluster, show the lowest ratio of zero elements αi. Generally, the ratio of zero elements
compared to the total number of elements in the reduced mesh is above 0.5. However, due to plasticity,
these elements need to be evaluated to keep the history information in case an element is reactivated, as
can be seen later for some elements in Fig. 3.41 and Fig. 3.42.

Table 3.6 Summary of global-local hyper-reduction for ROMs with 3 and 6 clusters and an approximation rank of
k = 15.

cluster τ cluster k-means spherical k-means
i |Ẽ| αi τi |Ẽ| αi τi

3 0.01 1 755 0.88 0.509% 716 0.79 0.581%
0.01 2 755 0.65 0.454% 716 0.92 0.603%
0.01 3 755 0.84 0.550% 716 0.42 0.237%
0.02 1 541 0.81 1.052% 530 0.77 1.233%
0.02 2 541 0.63 1.027% 530 0.84 1.245%
0.02 3 541 0.74 1.189% 530 0.43 0.588%
0.03 1 447 0.78 1.715% 420 0.76 1.922%
0.03 2 447 0.64 1.697% 420 0.81 1.945%
0.03 3 447 0.71 1.706% 420 0.46 0.883%

6 0.01 1 923 0.67 0.422% 918 0.72 0.494%
0.01 2 923 0.64 0.355% 918 0.71 0.400%
0.01 3 923 0.50 0.431% 918 0.39 0.365%
0.01 4 923 0.62 0.482% 918 0.67 0.491%
0.01 5 923 0.60 0.449% 918 0.45 0.396%
0.01 6 923 0.49 0.334% 918 0.33 0.228%
0.02 1 681 0.64 0.832% 659 0.66 1.009%
0.02 2 681 0.64 0.574% 659 0.68 0.818%
0.02 3 681 0.50 0.732% 659 0.44 0.670%
0.02 4 681 0.61 0.748% 659 0.66 0.779%
0.02 5 681 0.56 0.839% 659 0.48 0.657%
0.02 6 681 0.51 0.715% 659 0.35 0.541%
0.03 1 573 0.63 1.186% 552 0.61 1.525%
0.03 2 573 0.59 0.947% 552 0.65 1.325%
0.03 3 573 0.50 1.080% 552 0.46 1.120%
0.03 4 573 0.61 1.034% 552 0.67 1.027%
0.03 5 573 0.50 1.228% 552 0.48 0.917%
0.03 6 573 0.49 1.229% 552 0.35 0.936%

73

Table 3.7 Summary of global-local hyper-reduction for ROMs with 9 clusters and an approximation rank of k = 15.

cluster τ cluster k-means spherical k-means
i |Ẽ| αi τi |Ẽ| αi τi

9 0.01 1 1017 0.50 0.354% 1026 0.30 0.447%
0.01 2 1017 0.61 0.383% 1026 0.59 0.346%
0.01 3 1017 0.44 0.335% 1026 0.60 0.373%
0.01 4 1017 0.50 0.388% 1026 0.37 0.442%
0.01 5 1017 0.48 0.514% 1026 0.51 0.512%
0.01 6 1017 0.34 0.205% 1026 0.56 0.413%
0.01 7 1017 0.44 0.333% 1026 0.35 0.428%
0.01 8 1017 0.39 0.403% 1026 0.48 0.397%
0.01 9 1017 0.50 0.403% 1026 0.30 0.197%
0.02 1 769 0.49 0.532% 772 0.32 0.687%
0.02 2 769 0.58 0.759% 772 0.59 0.561%
0.02 3 769 0.44 0.746% 772 0.58 0.749%
0.02 4 769 0.43 0.740% 772 0.39 0.705%
0.02 5 769 0.47 0.731% 772 0.49 0.753%
0.02 6 769 0.35 0.483% 772 0.51 0.732%
0.02 7 769 0.43 0.538% 772 0.38 0.613%
0.02 8 769 0.39 0.630% 772 0.50 0.613%
0.02 9 769 0.51 0.610% 772 0.31 0.506%
0.03 1 654 0.48 0.690% 655 0.34 1.002%
0.03 2 654 0.56 1.063% 655 0.56 0.786%
0.03 3 654 0.44 1.017% 655 0.57 1.039%
0.03 4 654 0.39 0.913% 655 0.41 0.889%
0.03 5 654 0.46 0.923% 655 0.50 0.928%
0.03 6 654 0.34 0.748% 655 0.46 1.212%
0.03 7 654 0.41 0.802% 655 0.39 0.824%
0.03 8 654 0.41 0.844% 655 0.49 0.767%
0.03 9 654 0.48 0.800% 655 0.31 0.771%

3.3.5 Hyper-reduction Online Results

Given the offline results before, we pick parameters with good accuracy and a reasonable reduced mesh
size and investigate the behavior of the ROM for the high deformation and low deformation test cases
in detail. The parameters we choose are nc = 6, with a reduced dimension ki = 15, for i = 1, .., nc
and a tolerance τ = 0.02 for hyper-reduction. Fig. 3.39 shows the temporal error for the hyper-reduced
k-means ROM and the spherical k-means ROM. All ROMs show a cumulative error behavior. That is, the
error accumulates and increases along the simulation time until the rebound phase. The rebound phase
is reached earlier in the low deformation test case than in the high deformation test case. For the high
deformation test case, the spherical k-means ROM and the k-means ROM have a similar error evolution
during the first 15 ms. Afterward, the spherical k-means yields a smaller error. This is underlined by the
offline results, where differences in the assignment of snapshots to different clusters later in the simulation
were pointed out. In addition, spherical k-means clustering was motivated by the nearly monotonically
growing magnitude of the state vector. In the low deformation test case, the k-means ROM has a lower
increase in error after 15 ms. Fig. 3.40 investigates the error evolution of the k-means ROM Fig. 3.40a
and the spherical k-means ROM Fig. 3.40b in detail by relating the error to the chosen clusters. ROM
denotes the cluster chosen by the ROM during the online phase, and it is compared to the cluster chosen
by the clustering algorithm of the snapshots from a FOM simulation of the test case, which is denoted by

74

0 5 10 15 20 25 30 35
time in ms

0.000

0.025

0.050

0.075

0.100

0.125

ε(t)

kmeans high defo
sphere high defo
kmeans low defo
sphere low defo

Figure 3.39 Comparison of temporal error ε(t) for the hyper-reduced local ROMs, for the high deformation and low
deformation test case.

Reference. The error of the low deformation test case is smaller than that of the highly deforming test case.
As the total deformation is lower and the error is cumulative, less total error has evolved. In general, the
error always results in a stiffening of the considered example, as can be seen in Fig. 3.43 and Fig. 3.44
for the crash box. As the reduced representation involves an error, the required next deformation state
cannot be described precisely, resulting in a stiffening of the solution. As the clusters are partly related
to the temporal axis, due to the distance-based clustering and the nature of the solution, the error is also
manifested by a later cluster change. Similarly, the low deformation test case changes the clusters later
in time than the high deformation test case. After a certain time span, when the solutions reach different
points in state space, the cluster choice of the ROM is different. In general, it is difficult to establish a
direct connection between cluster choice and error growth. However, a relation between the change to
cluster 4 and the increased error growth can be observed in the spherical k-means ROM applied to the
low deformation test case. Also, it is difficult to determine the exact cause of the error in a hyper-reduced
ROM, as the reduced mesh or the basis approximation could be responsible for it.

75

0.00

0.05

0.10

ε(
t)

Error

high defo
low defo

1

2

3

4

5

6

i
C
lu
st
er

Cluster high defo

ROM
Reference

0 5 10 15 20 25 30 35
time in ms

1

2

3

4

5

6

i
C
lu
st
er

Cluster low defo

ROM
Reference

(a) k-means ROM

0.000

0.025

0.050

0.075

0.100

ε(
t)

Error

high defo
low defo

1

2

3

4

5

6

i
C
lu
st
er

Cluster high defo

ROM
Reference

0 5 10 15 20 25 30 35
time in ms

1

2

3

4

5

6

i
C
lu
st
er

Cluster low defo

ROM
Reference

(b) Spherical k-means ROM

Figure 3.40 Accuracy of the k-means ROM and spherical k-means ROM with nc = 6, k = 15, and τ = 0.02. The
error evolution is related to the chosen clusters and compared to the ideal clusters, obtained by the clustering of the
unreduced simulation.

Next, the reduced mesh for the global-local approach is visualized in Fig. 3.41 for the k-means ROM
and in Fig. 3.42 for the spherical k-means ROM, applied to the high deformation test case. As the weights
of the reduced mesh change during the online phase, the results are shown for t =0 ms, 15 ms, and 35 ms
with the current deformation state. The reduced mesh is global, however, it contains zero elements. The
zero elements are colored grey, while non-zero elements are colored according to the colorbar. For the
k-means ROM, a shift of non-zero elements can be observed. At the t =0 ms, many zero elements are
located at the bottom. As ECSW selects elements based on their work and the nodal displacements in
the bottom region are zero at the beginning of the simulation, they contribute no work and are therefore
not selected. As time progresses, elements closer to the bottom deform and are increasingly assigned
non-zero weights. The same behavior can be observed in the spherical k-means ROM, however, in the
beginning of the simulation, elements are more evenly distributed across the height of the crash box.

To illustrate the accuracy values shown in the graphs before, Fig. 3.43 and Fig. 3.44 show the results
for the test case with high deformation and low deformation, respectively. Both figures show the solutions

76

Figure 3.41 Simulation results of the k-means ROM with 6 clusters, k = 15 and τ = 0.02 for the crash box example
in the high deformation test case with reduced mesh at the times 0 ms, 15 ms, and 35 ms.

Figure 3.42 Simulation results of the spherical k-means ROM with 6 clusters, k = 15 and τ = 0.02 for the crash box
example in the high deformation test case with reduced mesh at the times 0 ms, 15 ms, and 35 ms.

77

Figure 3.43 Simulation results for the high deformation test case. The original model is colored grey, the k-means
ROM is green, and the spherical k-means ROM is blue.

of the reference solution in grey, the k-means ROM in green, and the spherical k-means ROM in blue.
The solution is plotted at t =15 ms and at the termination time t =35 ms. The error manifests itself as a
stiffening of the model. The deformation approximation by the ROB is not exact and involves small errors
(see offline phase). During the online phase, the ROB has to provide the necessary deformation required
to proceed to the next time step. If the next required deformation state cannot be achieved exactly, this is
reflected in the stiffening mentioned above. Therefore, in Fig. 3.43, the final deformation at t =35 ms of
the spherical k-means ROM in blue is larger than the final deformation of the k-means ROM in green. This
can be seen by the green plate being above the blue one. Both models deformed less than the reference
solution due to the introduced error. The opposite can be observed in the low deformation test case in Fig.
3.44 at the final time. There, the blue plate is above the green plate.

78

Figure 3.44 Simulation results for the low deformation test case. The original model is colored grey, the k-means
ROM is green, and the spherical k-means ROM is blue.

3.3.6 Hyper-reduction Online Results - Parameter Study

In a parameter study, we investigate how the two ROMs behave for different approximation ranks k, num-
bers of clusters nc, hyper-reduction approaches, and hyper-reduction accuracy τ , tested on both test
cases. The approximation rank is chosen as k = 15, 30, 40, the number of clusters is nc = 3, 6, 9, the
global-global and global-local strategies are applied, and the accuracy is τ = 0.01, 0.02, 0.03. The aver-
age accuracy ε is calculated for each combination of the parameters and evaluated in the following figures.
Fig. 3.45 compares the accuracy of the k-means ROM and spherical k-means ROM for both test cases in
each subplot. The individual subplots vary the number of clusters, the hyper-reduction accuracy and strat-
egy. Except in some cases, the error decreases with increasing dimensions k. For the spherical k-means
ROM with nc = 3, τ = 0.01, and the global-local approach, the error increases again between k = 30 and
k = 40. However, the increase in error is small, as can be seen in the scale of the plot. In general, the
global-local approach is more accurate than the global-global one due to the higher real accuracy caused
by the weight adjustment. This can also be seen in Fig. 3.46 where in each subplot, both hyper-reduction
approaches are analyzed for each accuracy. For the ROMs with nc = 6, 9, the global-global approach is
strictly less accurate than the global approach. Also, in Fig. 3.46, it can be seen that for some ROMs, the
error does not decrease or even increase from k = 30 to k = 40. A possible explanation is the accuracy of
the underlying non-hyper-reduced ROM combined with the larger optimization problem for hyper-reduction
due to the higher dimension. It is not always guaranteed that the error decreases for an increasing number
of dimensions, as can be seen by the results of the ROMs without hyper-reduction (Fig. 3.36 and Fig.
3.38). Assuming the error does not decrease significantly, the larger optimization problem will yield a dif-
ferent solution regarding the error norm, which is also influenced by the problem’s size. It is not guaranteed
that the online phase yields more accurate results in a parametric example.
Finally, Fig. 3.47 evaluates the error of one ROM regarding one test case (e.g., spherical k-means ROM
with global-global approach) for all possible parameters (number of clusters, tolerance τ and dimension
k). The ROMs with a low number of clusters nc = 3 and a low hyper-reduction tolerance τ = 0.02, 0.03
yield high error, especially for the low deforming test case. A comparison of the ROMs error using the
same y-axis scale can be found in Appendix A.3.

79

0.05

0.10

ε(k) nc=3 τ=0.01 global

0.025

0.050

nc=3 τ=0.01 local

0.1

0.2
nc=3 τ=0.02 global

0.05

0.10

0.15

nc=3 τ=0.02 local

0.10

0.15

nc=3 τ=0.03 global

0.05

0.10

0.15

nc=3 τ=0.03 local

0.05

0.10
nc=6 τ=0.01 global

0.02

0.04

nc=6 τ=0.01 local

0.1

0.2
nc=6 τ=0.02 global

0.02

0.04

nc=6 τ=0.02 local

0.1

0.2

nc=6 τ=0.03 global

0.025

0.050

nc=6 τ=0.03 local

0.04

0.06

0.08
nc=9 τ=0.01 global

0.01

0.02

0.03

nc=9 τ=0.01 local

0.05

0.10

nc=9 τ=0.02 global

15 30 40

0.02

0.04
nc=9 τ=0.02 local

15 30 40

0.05

0.10

0.15

nc=9 τ=0.03 global

15 30 40
rank k

0.02

0.04

nc=9 τ=0.03 local

high defo kmeans
high defo sphere

low defo kmeans
low defo sphere

Figure 3.45 Hyper-reduction comparison between the k-means ROM and spherical k-means ROM for both test
cases.

80

0.05

0.10

ε(k)
high defo kmeans 3

0.05

0.10

0.15

high defo sphere 3

0.00

0.05

0.10

low defo kmeans 3

0.05

0.10

0.15

0.20
low defo sphere 3

0.02

0.04

0.06

0.08

high defo kmeans 6

0.0

0.1

0.2

high defo sphere 6

0.00

0.05

0.10

low defo kmeans 6

0.0

0.1

0.2

low defo sphere 6

0.00

0.02

0.04

0.06

0.08

high defo kmeans 9

15 30 40
0.00

0.05

0.10

0.15

high defo sphere 9

15 30 40
0.00

0.05

0.10

low defo kmeans 9

15 30 40
rank k

0.00

0.05

0.10

0.15

low defo sphere 9

global τ=0.01
local τ=0.01

global τ=0.02
local τ=0.02

global τ=0.03
local τ=0.03

Figure 3.46 Hyper-reduction comparison of the global-global approach versus the global-local approach.

81

0.04

0.06

0.08

0.10

0.12
ε(k)

high defo kmeans global

0.00

0.02

0.04

0.06

0.08

0.10
high defo kmeans local

0.05

0.10

0.15

0.20

0.25

high defo sphere global

0.00

0.05

0.10

0.15

high defo sphere local

0.02

0.04

0.06

0.08

0.10

0.12

low defo kmeans global

0.02

0.04

0.06

0.08
low defo kmeans local

15 30 40

0.05

0.10

0.15

0.20

low defo sphere global

15 30 40
rank k

0.00

0.05

0.10

0.15

low defo sphere local

nc =3 τ=0.01
nc =3 τ=0.02
nc =3 τ=0.03
nc =6 τ=0.01
nc =6 τ=0.02
nc =6 τ=0.03
nc =9 τ=0.01
nc =9 τ=0.02
nc =9 τ=0.03

Figure 3.47 Comparison of all cluster numbers and tolerances τ for one hyper-reduced ROM for one test case in
each subplot.

82

3.3.7 Computational Speedup

This section discusses the computational speedup for the chosen parameter configuration of the previ-
ous section. Although smaller reduced meshes were shown in the parameter study, an estimate of the
simulation time for other reduced mesh sizes is easily possible. Another restriction is the limited source
code access in this study. A more efficient implementation would have been possible with full source code
access. Nevertheless, we provide simulation times achieved using 4 threads on an Intel(R) Xeon(R) Gold
6254 CPU with 32GB of RAM. The results are obtained by taking the mean of 15 identical simulations
of the high deformation test case. The results are tabulated in Table 3.8. The FOM/reference simulation

Table 3.8 Mean simulation time of 15 runs for each model.

Model Simulation time s

Reference 132.93
K-means ROM 93.27
Spherical k-means ROM 90.6

requires 132.93 s. In comparison, the hyper-reduced k-means ROM runs 93.27 s, corresponding to a re-
duction in simulation time by 30%. The spherical k-means ROM is slightly faster with a simulation time
of 90.6 s, corresponding to a reduction of 32%. The decrease in simulation time is mainly based on the
reduced number of evaluated elements. The full model has a total number of 1,864 elements. The re-
duced mesh size of the k-means ROM is 681 elements, and the size of the spherical k-means ROM is 659
elements. This equals a mesh size reduction of 63% and 65%, respectively. The discrepancy between the
reduction in mesh size and computation can be explained by considering the solver-generated statistics.
First, the rigid plate is not considered for reduction, and second, shell element processing causes only
52% of the total simulation time. The remainder is occupied by contact evaluation, the additional effort of
the projection steps in each time step, I/O operations, and miscellaneous other functions. A further influ-
ence on the discrepancy of simulation time between the two ROMs is the evaluation of a different distance
function.
For completeness, we want to mention the increased critical time step. Although this work does not con-
sider the probably larger critical time step of the ROMs, it motivates further research in this direction. A
larger time step affects all parts of the solver and results in a nearly 1:1 relationship between the increase
in critical time step and reduction in computation time. The evaluation of the critical time step would re-
quire additional source code access and is therefore left for future research. Further research could also
investigate the reduction of zero elements in the global-local approach. Zero elements currently comprise
approximately half of all elements in the reduced mesh. Interpolating the missing history variables using a
gappy-POD approach could enable further speedups.

3.4 Summary and Discussion

This work concerns extending pROMs for nonlinear solid dynamics from reproductive to parametric appli-
cations. We emphasize the necessity of different ROM approaches by experimentally demonstrating the
inability to construct an efficient ROM using a global approach. In addition, a comparison between ROMs
that combine displacements and rotations and ROMs that treat them separately indicates that a combined
treatment is preferable in the offline and online phases of parametric problems. Once the ROM architecture
is fixed, the transition from reproductive to parametric examples begins by comparing the offline accuracy
with the error decay for the ROBs. In the offline phase, the global basis requires more dimensions to
reconstruct the data. In contrast, a ROB, which is trained on snapshots from one parameter point and ap-
proximates the same snapshots afterward, is more tailored to the specific simulation than a global basis.
This can be seen in the much faster error decay and lower approximation error generally. Also, differences

83

in the approximation error exist for displacements and rotations. Rotations exhibit a higher approximation
error and a slower error decay than displacements. This observation is amplified in the parametric ex-
ample. However, a combined treatment already in the offline phase can reduce the approximation error
(regarding the defined error norm) and yield a reasonable approximation. The error of the combined ROB
is higher than the displacement-only basis but smaller than the rotation-only basis. The first basis vectors
of the ROBs are visualized, whereby the main deformation modes can be seen. A higher mode is also
shown, in which significantly higher frequencies become visible in space. These higher frequencies are
required to accurately reconstruct the deformation state as the superposition of modes. In a parametric
example, more modes are required to cover the range of possible deformation states, which results in
higher-dimensional ROMs.
Next, the results of the offline phase must be confirmed in the online phase of the high deformation test
case. The temporal average of the time-dependent error is considered in the online phase. As in the
offline phase, the error decreases rapidly for an increasing number of dimensions in a reproductive ex-
ample. Also, the combined treatment of displacements and rotations is confirmed, as a combined ROM
with k = 30 yields the same error as the displacement-only ROM with 30 dimensions. For a full ROM,
rotations must be considered in addition. Next, the global ROM using the global ROB is applied to the
high deformation test case. Similarly, the combined ROM yields for k = 60 the same accuracy as the sep-
arated ROM with more dimensions. However, a slower error decay is observed. The slower error decay
requires retaining more modes in the ROM to achieve high accuracy. However, a high-dimensional ROB
increases the complexity of hyper-reduction and potentially alleviates the increase in the critical time step
due to modes with higher frequencies. Therefore, new approaches must be utilized to provide accurate
but low-dimensional ROMs.
We utilize the lROB approach and extend it to spherical k-means clustering. lROB divides the solution
space first into distinct subregions, also called clusters. The standard method uses k-means clustering
based on the L2 norm. In crash and impact models, the state vector usually increases nearly monotoni-
cally in time, leading to a state space division along the time dimension. We argue that this is suboptimal
and introduce direction-based clustering, which is spherical k-means clustering. First, the offline phase of
both clustering methods is investigated. It consists of the clustering itself and the accuracy of the created
lROBs. k-means and spherical k-means mainly differ because clusters appearing early in the simulation
are smaller, and later clusters are larger. That is, the k-means-based ROM changes clusters towards the
end of the simulation less often than the spherical k-means-based ROM. Before the lROBs are created, the
nearest snapshots are added to ensure a smooth transition between the clusters. Snapshots are added at
the borders of the clusters in both methods. However, both methods are sensible towards the end of the
simulation and add snapshots from other parameter configurations instead of snapshots at the border of
the cluster.
After lROBs are created for each cluster, the accuracy is compared to the global basis. While local bases
associated with clusters containing snapshots from later simulation times yield good approximation error,
especially the lROBs associated with the early clusters show larger error than the global basis. As spheri-
cal k-means divides the early phase of the simulation into more clusters, especially the ROMs with many
clusters have more lROBs with a larger offline error. However, the online phase shows that the offline
error is not directly related to the time-dependent error of the ROM, as no excessive error growth can be
observed during the early phases of the simulation. Before hyper-reduction, both ROMs are tested on a
high deformation test case, and a low deformation test case for different numbers of clusters and approxi-
mation ranks k. Compared to a global ROM, both local methods show a significantly higher accuracy with
the same number of dimensions. Also, we observe a much faster error decay with increasing dimensions.
While the error decay is slower for the high-deformation test case than for the low-deformation test case,
especially the k-means ROM has convergence problems to a low error in the low deformation test case.
The spherical k-means ROMs show a smoother error decay in general and a faster error decay in the low
deformation test case, compared to the k-means ROM.
Finally, hyper-reduction is applied in two variants, the global-global and the global-local approach. The re-
duced mesh size mainly governs the speedup of the ROM. In the global-global approach, the mesh size is

84

mainly influenced by the tolerance τ and the dimension of the ROM. In contrast, the introduced global-local
approach also scales with the number of clusters nc, resulting in a larger reduced mesh given a tolerance
τ . However, the local approximation’s real accuracy τreal is higher. The online phase analysis is detailed
for a k-means and spherical k-means ROM with k = 15, τ = 0.02, and nc = 6. The spherical k-means
ROM yields a lower error for the high deformation test case for which it was designed. The hyper-reduced
k-means ROM yields a smaller error for the low deformation test case. The increase in error of the spheri-
cal k-means ROM towards the end can be related to a cluster change. However, in a hyper-reduced ROM,
the exact error cause is unclear. Either it is due to the lROB, or the reduced weight set is unsuitable for the
current simulation state.
A final hyper-reduction study compares the two ROMs for different ranks k, tolerances τ , hyper-reduction
strategies, and number of clusters nc. Although the global-global strategy yields smaller reduced-meshes,
the global-local approach yields smaller online error, given that the real tolerance is lower. For the accu-
rate, not hyper-reduced local ROMs, the hyper-reduced ROMs show a consistent error behavior. The error
decreases with increasing rank, tolerance, or cluster number. However, there is no convergence guarantee
in parametric problems, as some ROMs show a slightly higher error for the ROM with k = 40 compared to
the ROM with k = 30. A possible explanation is that an increase in dimensions of the non-hyper-reduced
ROM does not always lead to an increase in accuracy. However, the hyper-reduction optimization problem
becomes larger, and the chosen error norm could lead to a worse approximation of the single quantities.
Also, overfitting could be an additional reason for the slightly higher error.
Finally, the computational speedup is strongly coupled to the reduced mesh size. This work does not con-
sider the speedup due to the larger stable time step. We demonstrate a reduction in mesh size by 60%,
resulting in 30% less computation time due to element processing accounting for only 52% of the total
time. There is still potential for further computational speedup, which promotes further research. Over-
coming the source code limitation present in this work would enable the computation of the local ROM’s
stable time step. The adjustment of the stable time step affects the whole simulation directly. Also, the
local weight sets contain approximately 50% zero weights. If an element is reactivated again, trying to
interpolate the field of internal variables could further reduce the reduced mesh size, and a local-local
hyper-reduction approach would be possible for history-dependent materials. Trying to better understand
how the offline phase’s approximation error correlates to the ROM’s accuracy could enable the develop-
ment of an accuracy-based lROB creation and even lower-dimensional ROMs. Finally, the whole work
does not address contact forces. The reduction of contact forces is still an open field of research.

3.5 Conclusion

This chapter introduces parametric pROMs based on lROB. These ROMs enable applications requiring
large parameter variations, e.g., optimization. Compared to reproductive examples, global pROMs show
a slow error decay. The large variance in the training data makes it difficult for a linear dimensionality
reduction method such as POD to find a low-dimensional structure. Minor to no speedups are achieved
since hyper-reduction scales with the dimension of the ROM. More sophisticated methods are required
to ensure small dimensions. The lROB method is chosen due to its hyper-reduction compatibility, which
is essential for explicit nonlinear models. In addition to utilizing the correlation between displacements
and rotations, dividing the training data set into subregions ensures again local low-dimensional ROBs. k-
means clustering is compared to spherical k-means clustering, a direction-based clustering method. Both
clustering procedures yield similar distributions of the snapshots. The resulting approximation error of the
ROBs does not necessarily correlate with the accuracy of the associated Galerkin ROM, which is why it
was impossible to define an error-based criterion dimension criterion. Nevertheless, all local ROMs show
a fast online error decay using fewer dimensions than the global ROM. The requirements for effective
hyper-reduction are fulfilled, and a parameter study is conducted. Two hyper-reduction approaches are
investigated: the global-global and the global-local approach. Compared to the global-global method,
which has a global reduced element set and global weights, the global-local has local weights that are
cluster-specific. For a given hyper-reduction tolerance, the global-global approach yields smaller meshes

85

than the global-local approach. Nevertheless, the global-local approach is preferred, as the accuracy of
the hyper-reduced ROM is higher compared to the global-global ROMs, and the larger reduced mesh is
mainly due to zero elements. Zero elements are elements that are evaluated and afterwards weighted with
zero to preserve the history once the local weights change and the elements are activated. Avoiding the
evaluation of zero elements using gappy POD or image reconstruction is left for future research. Applying
hyper-reduced lROB pROMs yields a reduction of 60% of the elements and a reduction in computation time
of 30%. Parametric pROMs are successfully demonstrated for a typical crash example, and the potential
for further speedup is still present. Approximately 50% of the reduced mesh are zero elements, the critical
time step is usually larger for ROMs and can be increased, and contact forces are not considered in this
work. All these open questions provide opportunities for further research to improve the accuracy and
computational speedup of parametric ROMs for nonlinear solid dynamics in crash and impact.

87

4 Partial MOR

The previous chapters derived pMOR and lROB enabled parametric pMOR. This chapter examines a
use case of parametric pMOR. After partial MOR is motivated in Section 4.1, Section 4.2 introduces the
theory. Section 4.3 introduces the considered model including geometry variations first and highlights the
need for parametric pMOR in Subsection 4.3.3 and Subsection 4.3.4 afterwards. In the remainder of the
results section, the ROMs are tested in increasing order of complexity. The ROMs are reaching from a
global linear basis in Subsection 4.3.5 to different parametric ROMs using lROB with hyper-reduction in
Subsection 4.3.6. Finally, the computational speedup is discussed, and the results are concluded.

4.1 Motivation

Often, in modern car development, only a single component of interest is optimized; i.e. only one com-
ponent in a large model is modified, while the rest remains unchanged. E.g., mechanical properties of
the battery pack are optimized without changing the surrounding structure. The adjacent structure influ-
ences the modified part and vice versa. To reduce computation time, displacement or force histories are
stored and imposed on the optimized part. However, this approach assumes that the model’s response
changes only slightly and the influence on the surrounding structure is small. The interface displacements
or forces do not change due to changes in the modified model. If the previously stated assumption is
invalid, significant errors are assumed. Crash problems often include buckling of structures. These in-
stabilities are sensitive to small changes in the boundary conditions. Therefore, a more sophisticated
approach is needed that adapts the surrounding structure’s response to changes in the response of the
modified model.
In this chapter, we choose pMOR to create a physics-based ROM of parts of a structure, while one part of
the model is geometrically modified and remains unreduced. A global approach and standard k-means-
based local ROB with global hyper-reduction are applied. Different training strategies are assessed to
show the method’s limitations and highlight the difficulties with sensitive problems. Finally, we assume the
theoretically achievable speedup and conclude.

4.2 Theory

Fig. 4.1 shows the interface of two parts, which are directly connected. The blue upper part remains
unreduced, while the lower part is considered for POD and ECSW. Multiple parts can be defined as one
continuous material. In this figure, one part of the crash box is replaced by different geometries. They are
modeled as separate parts in LS-Dyna. However, the parts consist of the same material and elements as
the surrounding parts. This is equivalent to a tied-contact condition between the parts. The division of one
part into sub-parts is different from real distinct parts. For genuine distinct parts, the nodes at the interface
do not belong to two parts simultaneously. The node sets are, therefore, naturally separated and can be
assigned to the respective parts. In our case, we decide to consider the nodes at the boundary for POD,
as can be seen in Fig. 4.1.
ECSW hyper-reduction works on the unassembled forces and moments. As each element is assigned
to one part, we must take no additional care in dividing the elements. The hyper-reduction problem is
formulated using solely the elements in the reduced parts. This approach results in a smaller offline
optimization problem. However, ECSW removes fewer elements from the model, which will result in a
lower computational speedup. Next, we derive the mathematical formulation for the partial reduction. First,

88

x considered for POD

not considered for POD

y

Part 1

Part 2

e1
1 e2

1 e3
1 e4

1

e1
2 e2

2 e3
2 e4

2

Figure 4.1 Interface nodes of a model consisting of two parts, which are directly connected to each other.

we select the considered nodes by applying the selection matrix S∂ ∈ Rn∂×n to the state vector x. The
new state vector x∂ ∈ Rn∂ containing the reduced nodes is:

x∂ = S∂x, (4.1)

where the selection matrix assigns one element of the input vector x to a new position in the partial state
vector x∂ . The row index of the selection matrix determines the new position of the entry in the state vector
x, determined by the column index. That is, if the entry

S∂i,j = 1, (4.2)

then
x∂i = xj . (4.3)

Element j of the full state vector x is assigned to element j of the partial state vector j. This is again
illustrated here: x∂1

x∂2
x∂3

 =

x1
x3
x5

 =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1



x1
x2
x3
x4
x5

 . (4.4)

For ECSW hyper-reduction, we consider the partial internal force vector

f∂,int =
∑
e∈E∂

L∂,ef
(e)
int ∈ Rn∂ , (4.5)

where the partial assembly matrix L∂,e is obtained as

L∂,e = S∂Le ∈ Rn∂×me . (4.6)

89

The summation over all ne elements is replaced by the sum over all elements, contained in the reduced
parts. The elements of the reduced parts are contained in the set E∂ . Once the correct nodes and
elements are assigned to the respective domains (reduced, unreduced), the steps to construct a ROM are
equal, as described in Chapter 3. First, the snapshot matrices for each geometry are compiled containing
the partial displacement vector utNs

∂,i at the defined time tj instances:

U∂,i =
[
ut1∂,i, ut2∂,i, . . . , u

tNs
∂,i

]
∈ Rn∂×Ns , for i = 1, . . . , NG, (4.7)

where NG is the number of different geometries. The local snapshot matrices can be concatenated in one
large snapshot matrix

U∂,glob =
[
U∂,1, U∂,2, . . . , U∂,NG

]
∈ Rn∂×NGNs . (4.8)

All ROM construction steps are equal to the steps in the previous chapters and the initial variables are
replaced by the partial ones, denoted by the ∂ subscript.

4.3 Results

4.3.1 Geometry Variations

Original geometry
replaced by

center beads

non-modified

horizontal bead

vertical bead

3 modified ones

Figure 4.2 Geometry variance.

90

As shown in Fig. 4.2, the crash box geometry is varied in three different kinds. The original geometry is
the same as described in Section 3.1.1, with a wall thickness and plate mass equal to the high deforma-
tion test case. This test case has a plate mass of 159.833 kg and a wall thickness of 1.717 mm. The plate
mass and wall thickness are kept constant for all examples in this chapter. However, different geometry
modifications are introduced. The first modification is center beads. The beads with a normal pointing in
the x-direction are rectangular. They are centered around the middle of the tube in the y-direction, and the
lower edge of the bead has a distance of 30.276 mm to the lower adjacent part. The bead has a depth of
4 mm, a width of 50 mm and a height of 30.276 mm. The bead’s depth is reached within one element. The
second beads with a normal pointing in the y-direction are centered around the x-axis and are located at
the same z-direction position. The dimensions are equal to those of the first beads except for a different
width of 48 mm.
The second modification is a horizontal bead. Two beads are placed on the same sides of the tube as the
other folding triggers. The lower edge of the bead is placed in a z-distance of 30.276 mm to the lower edge
of the adjacent part. The height of the bead is 22.707 mm, and the bead extends across the entire width
of the tube. The bead has a depth of 4 mm, which is reached within a distance of one element.
The third modification is a vertical bead. The vertical bead extends across the entire height of the ex-
changed part. It is placed on the same side as the folding triggers. It is centered around the y-axis and
has a width of 32 mm. The bead depth is 4 mm, which is linearly reached within a distance of one element.
The geometries are chosen such that the stiffness of the exchanged part is varied, which influences the
behavior of the remaining tube. The difference in results is shown in the next section.

4.3.2 Deformed Geometries

Fig. 4.3 shows the deformation of the three modified geometries at 12 ms and at 35 ms, the termination time
of the simulation. Fig. 4.3a and Fig. 4.3b show the deformation of the center beads model. Compared to
the non-modified geometry, the buckle directed outwards is affected by the bead. A full folding is prevented
due to the increased stiffness. At 12 ms, mainly the area around the bead is affected, and the changes in
the solution can be considered local. However, at 35 ms, other folds are also distorted due to the strong
folding of the whole model. For instance, the fold with the bead bends the fold below due to the larger
height of the bead. The center bead does not affect the buckling order compared to the horizontal bead
and the vertical bead. Fig. 4.3c and 4.3d show the deformation of the horizontal bead example at 12 ms
and 35 ms, respectively. The final deformation is similar to the non-modified example, and the geometry
modifications have a small impact on the final deformation. However, the horizontal bead strongly impacts
the deformation history. The first buckle begins to form during the first milliseconds of the simulation. The
increased stiffness of the bead prevents the fold from fully developing, and the crash box starts to buckle
at the bottom. Once the other folds are fully developed, the remaining energy is sufficient to fully form
the fold with the bead. The horizontal bead case highlights the sensitivity of the solution to changes in
the geometry of the model. Finally, the vertical bead, as can be seen in Fig. 4.3e and 4.3f, introduces
sufficient stiffness to first trigger folding in the bottom region. The vertical bead never bends outwards, as
the non-modified example would, and distorts the adjacent parts heavily.
To summarize, the three modifications introduce three levels of impact. The center bead impacts the
solution rather locally in the modified area. In contrast, the vertical bead introduces significant stiffness in
the modified area, directly affects the reduced parts of the model, and causes a different folding order. The
horizontal bead is in between the two other cases. It highlights the sensitivity of the crash box problem by
still triggering a different folding order but ending in the same final deformation state as the non-modified
model.

4.3.3 Reproductive Example (PoC)

We begin with a PoC of partial MOR. The non-modified geometry is used to generate the training data for
displacement and force data. Snapshots are taken every 0.01 ms, resulting in a total of 3,501 snapshots

91

(a) Geometry with center bead at 12 ms. (b) Geometry with center bead at 35 ms.

(c) Geometry with horizontal bead at 12 ms. (d) Geometry with horizontal bead at 35 ms.

(e) Geometry with vertical bead at 12 ms. (f) Geometry with vertical bead at 35 ms.

Figure 4.3 Deformation of modified geometries at 12 ms and 35 ms.

92

0 5 10 15 20 25 30 35
time in ms

0.00

0.02

0.04

0.06

0.08
ε(t)

without hyper-reduction
τ = 0.2
τ = 0.05

Figure 4.4 PoC of the partial MOR using a reproductive example.

for displacements and forces each. We choose k = 30 as the dimension for the ROM. In addition to a non-
hyper-reduced ROM, we also construct two hyper-reduced ROMs with tolerances of τ = 0.2 and τ = 0.05.
The crash-box without the modified part consists of 1,292 elements, and the modified part consists of 572
elements. The reduced mesh for a tolerance of τ = 0.2 has a size of 246 elements, and the reduced mesh
for τ = 0.05 consists of 410 elements. The time-dependent error of the three ROMs for the non-modified
example is depicted in Fig. 4.4. The error increases along the simulation time, and the maximum error
is small for all ROMs. Hyper-reduction adds additional error, which decreases with decreasing tolerance
τ . Summarized, all ROMs show good accuracy with a small dimension of the ROM. A small error was
expected as Chapter 3 shows good accuracy for low-dimensional ROMs in reproductive examples. Next,
the geometries are modified.

4.3.4 ROM Without Modification

The motivation behind partial MOR is to replace simple boundary conditions as prescribed displacements
or forces by ROMs that describe the behavior of the surrounding structure more accurately. In this subsec-
tion, we investigate the influence of the geometry modifications on the remaining structure and whether
a ROM purely trained on the non-modified geometry is capable of predicting the structure’s behavior with
these modifications. The hyper-reduced ROM with k = 30 and τ = 0.05 is tested on the modified geome-
tries. This ROM is purely trained on the results of the non-modified geometry. The time-dependent error
for a simulation time of 35 ms can be seen in Fig. 4.5a. The error for the example without modifications is
transferred from Fig. 4.4 and serves as a reference. As observed in Subsection 4.3.2, the changes in the
solution of the center beads model are predominant in the vicinity of the geometry variation. Only towards
the end of the simulation time the beads influence other parts of the crash tube due to folding. However, the
beads cause small changes in the overall solution, which is reflected in the small error of the ROM for the
center beads model. Both models that influence the folding order cause large errors during the simulation
time. Towards the termination time, the horizontal bead model fully folds, and the horizontal bead does not
affect the final deformation. Also, the ROM fully deforms and shows small errors towards the end, although
the ROM folds in the wrong order. The ROM fails for the vertical bead modes, as it yields a different folding
order and final deformation shape. The wrong folding order is illustrated in Fig. 4.5b. The turquoise crash
box is the reference solution, and the other crash box is the ROM solution. The ROM is colored as follows:

93

0 5 10 15 20 25 30 35
time in ms

0.0

0.1

0.2

0.3

0.4

0.5

ε(t)

without modification
center beads
horizontal bead
vertical bead

(a) Time-dependent error ε(t) of the hyper-reduced
ROM with k = 20 and τ = 0.05, applied to all geome-
tries.

(b) Hyper-reduced ROM applied to the vertical bead ex-
ample at 10 ms. Reference solution in turquoise and
ROM in grey with elements colored according to their
weights.

Figure 4.5

missing elements are colored in grey, and the remaining elements are colored according to their weights.
The rigid plate and the non-reduced parts are colored as elements with a weighting factor of 1.0. The
reference solution starts to buckle at the bottom while the ROM buckles first at the non-reduced part and
in the wrong direction. The ROB of the ROM is not possible to provide the correct boundary conditions for
the vertical bead as the impact of the geometrical modification onto the ROM is severe. Therefore, more
training data must be included to provide a richer ROB for a more accurate ROM.

4.3.5 Global Approach

After the ROM, which was purely trained on the non-modified geometries and tested on modified ones, the
next level of complexity is to include the results of the geometry modifications as training data in a global
sense. The resulting training data consists of 3,501 snapshots for four simulations, including six DoF for
1,400 considered nodes in the model. A global ROB is constructed by concatenating all snapshots in one
snapshot matrix. Fig. 4.6 shows the time-dependent error for the ROM with k = 30 and k = 60. Inserting
more variance in the snapshot matrix by including snapshots from multiple different solutions requires the
resulting ROM to use more dimensions. This was also observed in Chapter 3. While the error for a ROM
with k = 60 is large and the ROM behaves too stiff for all geometries, the ROM with k = 60 already
accurately predicts the buckling order for the vertical bead example. The horizontal bead example is the
most sensitive one regarding the buckling order. The sensitivity is further underlined by Fig. 4.8a, where
the error for a ROM with k = 140 still indicates a wrong buckling order. The solution of the ROM and the
reference solution is also depicted in Fig. 4.8b. The reference solution is colored turquoise, and the ROM

94

solution is colored grey. At 5 ms, the ROM deformed close to the rigid plate in the top region, while the
reference solution mainly deforms in the bottom region of the tube. Even with k = 140, the global ROM
is not able to accurately reproduce the correct buckling order of the sensitive horizontal buckling example.
Nevertheless, a hyper-reduced ROM is created with k = 60 and τ = 0.05, resulting in a reduced mesh of
525 elements instead of 1,292 elements. The time-dependent error for the hyper-reduced ROM is shown
in Fig. 4.7. Hyper-reduction adds a small amount of error. However, the ROM only fails to predict the
buckling order for the horizontal bead, equal to the non-hyper-reduced ROM.

0 5 10 15 20 25 30 35

0.0

0.1

0.2

0.3

0.4

0.5

ε(t) k = 30

without modification
center beads
horizontal bead
vertical bead

0 5 10 15 20 25 30 35
time in ms

k = 60

Figure 4.6 Time-dependent error for a non-hyper-reduced global ROM with k = 30 and k = 60 applied to all
geometries.

In conclusion, a more sophisticated method must be utilized to accurately predict the buckling behavior
of the sensitive horizontal bead example. Therefore, we apply the lROB approach in the next subsection.

95

0 5 10 15 20 25 30 35
time in ms

0.0

0.1

0.2

0.3

0.4

ε(t)

without modification
center beads
horizontal bead
vertical bead

Figure 4.7 Time-dependent error for a hyper-reduced global ROM with k = 60 and τ = 0.05 applied to all geome-
tries.

0 5 10 15 20 25 30 35
time in ms

0.0

0.1

0.2

0.3

0.4

ε(t)
k = 60
k = 140

(a) Time-dependent error for a non-hyper-reduced
global ROM with k = 60 and k = 140 applied to the
horizontal bead example.

(b) Solution of the ROM with k = 140 at 5 ms. The
ROM is colored grey and the reference solution is col-
ored turquoise.

Figure 4.8

96

4.3.6 Local ROB

Similar to the parametric case discussed in Chapter 3, the variance in the data set is too large to be
captured by one low-dimensional ROB. In addition, the geometric variations in this chapter lead to sensitive
models, which depend even stronger on the approximation quality of the ROB. The sensitivity is illustrated
in Fig. 4.8a, where even a ROM with k = 140 is not able to reproduce the correct buckling behavior, without
mentioning that no efficient hyper-reduction could be carried out with this large dimension. To construct
an accurate and low-dimensional ROM even for the sensitive model, we utilize standard k-means-based
lROB. The following sections are structured as follows: first, we decide on a suitable number of clusters and
evaluate the resulting division of snapshots. Second, we investigate the accuracy of the non-hyper-reduced
local ROMs. Finally, global-global hyper-reduction is applied, and the reduced mesh with simulation results
is shown as the most accurate local ROM.

Clustering

First, we estimate a suitable number of clusters by evaluating the total variance of the k-means clustering
for an increasing number of clusters. The result is shown in Fig. 4.9. As typical for a total variance plot,
the curve drops rapidly for small cluster numbers and converges for larger cluster numbers. For further
investigation, we select cluster numbers of nc = 6, 8, 10. The assignment of the snapshots to the different

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cluster

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Total variance
×1010

Figure 4.9 Elbow partial MOR

clusters is visualized in Fig. 4.10. The results are shown for nc = 6 in Fig. 4.10a, nc = 8 in Fig. 4.10b,
and nc = 10 in Fig. 4.10c. The horizontal and the vertical beads, which are geometry variations with
a different buckling order, are assigned to different clusters in the period of the buckling. This can be
seen in all subfigures of Fig. 4.10 between 4 ms and 15 ms. The more clusters are used, the thinner the
clusters, especially in the early phase of the simulation, where the velocity is high. That is, the magnitude
of the state vector x(t) increases fast. Hence, the L2-based k-means clustering divides the region into
more clusters. The final deformation of the vertical bead differs from the remaining geometries. This is
observable in Fig. 4.10b and 4.10c, where the final cluster for the vertical bead example differs from the
other models. Although the horizontal bead has a different deformation history, the final deformation is
similar to the non-modified and center beads example.

97

0 5 10 15 20 25 30 35

time in ms

without bead

central beads

horizontal bead

vertical bead

simulation

1

2

3

4

5

6

cluster

(a) nc = 6.

0 5 10 15 20 25 30 35

time in ms

without bead

central beads

horizontal bead

vertical bead

simulation

1

2

3

4

5

6

7

8

cluster

(b) nc = 8.

0 5 10 15 20 25 30 35

time in ms

without bead

central beads

horizontal bead

vertical bead

simulation

1

2

3

4

5

6

7

8

9

10

cluster

(c) nc = 10.

Figure 4.10 Assignment of snapshots to clusters, for different cluster numbers. The cluster is indicated by the color.
The results are shown for all 35 ms and for all geometry variations.

To ensure a smooth transition of the solution between the clusters, the 300 nearest snapshots are added
to each cluster. The number of added snapshots is significantly smaller compared to the previous chapter,
where 2,000 snapshots were added. This is because the clusters, in this case, contain fewer snapshots,
and the 300 added snapshots are divided among just four different variants. The added snapshots are
exemplarily visualized in Fig. 4.10b for the ROM with 8 clusters. Each subplot visualizes one cluster,
and in each subplot, the snapshots of the cluster are colored turquoise, and the added ones are colored
yellow. Depending on the velocity of the solution, the distance between two consecutive snapshots is larger
or smaller. The snapshot distance explains the one-sided addition to the right-hand side for cluster 2 or
cluster 7. However, the adjacent clusters add snapshots at the border, which is why a smooth transition is
still ensured. Additionally, differences in the velocity of the different models can lead to an unequal addition
of snapshots among them. This is seen in cluster 5, which is the initial cluster, where snapshots are mainly
added for the non-modified geometry and the central beads model.
Once the snapshots are added, the final clusters are used to compute a ROB for each cluster. As the
offline accuracy does not directly correlate with the online accuracy of the ROM, we refrain from examining
the offline accuracy and now investigate the time-dependent error of local ROMs with different dimensions
in the following subsection.

98

without bead

central beads

horizontal bead

vertical bead

Cluster 1 Cluster 2 Cluster 3

without bead

central beads

horizontal bead

vertical bead

Cluster 4 Cluster 5 Cluster 6

0 5 10 15 20 25 30 35

without bead

central beads

horizontal bead

vertical bead

Cluster 7

0 5 10 15 20 25 30 35

time in ms

Cluster 8

Figure 4.11 Visualization of the added snapshots for the ROM with 8 clusters. The snapshots in the cluster are
colored turquoise and the added snapshots are colored yellow.

Online Accuracy

Based on the results of the previous subsection, we construct local k-means-based ROMs with nc =
6, 8, 10 clusters and k = 20, 60 dimensions. Fig. 4.12 shows the time-dependent error ε(t) during the
simulation time of 35 ms for all four geometry variants. The row in Fig. 4.12 corresponds to the number
of clusters nc and the column to the dimension of the ROM. The local ROM yields accurate results for
all geometries, except for the horizontal bead, even for the smallest number of clusters and dimensions.
Also, here, the sensitivity of the horizontal bead example is highlighted. Only the ROM with the highest
number of clusters and dimensions can accurately predict the horizontal bead example. Also, increasing
the dimension of the ROM does not guarantee a more accurate ROM, as can be seen for the ROM with
6 and 8 clusters at the horizontal bead example. Fig. 4.13 shows the chosen cluster of the ROMs with
nc = 6 (Fig. 4.13a) and nc = 8 (Fig. 4.13b). For each number of clusters, a ROM with k = 20 and k = 60
is compared to the reference solution, which is the solution as shown in Fig. 4.10. The high errors of the
higher-dimensional ROMs can be related to a wrong choice of the cluster during the simulation time.

99

0.0

0.1

0.2

0.3

0.4

ε(t) nc = 6, k = 20 nc = 6, k = 60

0.0

0.1

0.2

0.3

0.4

nc = 8, k = 20 nc = 8, k = 60

0 5 10 15 20 25 30 35
0.0

0.1

0.2

0.3

0.4

nc = 10, k = 20

0 5 10 15 20 25 30 35
time in ms

nc = 10, k = 60

without modification
center beads
horizontal bead
vertical bead

Figure 4.12 Non-hyper-reduced local ROMs for a different number of clusters and dimensions.

Finally, hyper-reduction in a global-global approach is applied to the non-hyper-reduced local ROMs
introduced before. The global-global approach was described in Subsection 3.2.4 and yields the reduced
mesh sizes, as tabulated in Tab. 4.1. While the number of clusters has a small impact on the reduced mesh
size, the dimension k of the ROM and the tolerance τ strongly influence it. Finally, the time-dependent
error of the hyper-reduced ROMs as summarized by Tab. 4.1 is assessed in Fig. 4.14. Each row is

100

0 5 10 15 20 25 30 35
time in ms

1

2

3

4

5

6

i
C
lu
st
er

k = 20
k = 60
reference

(a) Chosen clusters during the simulation for the local
ROM with 6 clusters.

0 5 10 15 20 25 30 35
time in ms

1

2

3

4

5

6

7

8

i
C
lu
st
er

k = 20
k = 60
reference

(b) Chosen clusters during the simulation for the local
ROM with 8 clusters.

Figure 4.13

associated with one cluster number nc, and the columns are one combination of dimension k and hyper-
reduction tolerance τ . The first two columns are the hyper-reduced ROMs with a tolerance of τ = 0.02,
and the remaining two are the ROMs with τ = 0.005. The results show that hyper-reduction decreases
the accuracy of the ROM. Hyper-reduction is a second layer of approximation, and a loss of precision
is to be expected. For the lowest number of clusters nc = 6, hyper-reduction triggers a wrong buckling
order for the vertical bead example. An unstable behavior is also observed for k = 60 and τ = 0.02.
In general, increasing the dimension of the ROM and lowering the approximation tolerance improves the
accuracy. However, no convergence proofs are available for local ROMs and parametric problems, which
can be seen for the ROM with nc = 10. There, the accuracy is worse compared to the problems with
a lower number of clusters. The sensitive horizontal bead example remains challenging, and solely the
most accurate ROM with nc = 10, k = 60, and τ = 0.005 can predict the solution accurately for all
geometry variants. The hyper-reduced ROM results highlight the importance of an accurate ROB as the
foundation for hyper-reduction, as only this ROM is also able to accurately predict the solution in the non-
hyper-reduced case.
The reduced mesh for the most accurate hyper-reduced local ROM is shown in Fig. 4.15. We assign a
weight of 1.0 to the non-reduced parts, which is equal to a non-modified evaluation of the material routine.
The reduced mesh is 623 elements large, which is a reduction of 52% related to the reduced elements
(1,292) or a reduction of 36% associated with the number of elements in the deformable crash tube. The
final deformation at 35 ms of the most accurate local ROM compared to the reference solution, colored in
turquoise, is shown in Fig. 4.16. In addition to the non-reduced part, the rigid plate is colored according
to a weighting factor of 1.0. In all cases, the ROM behaves stiffer than the FOM. The interpretation of the
error as a stiffening has already been discussed. In general, the ROM and the reference agree well, and
the error is small.

4.4 Speedup

We estimate the achievable speedup by considering the effort of the projection steps in each time update
and the reduced mesh size. A measurement of the computational speedup is not meaningful, as we have

101

Table 4.1 Summary of hyper-reduction for partial MOR.

cluster τ k = 20 k = 60
|Ẽ| |Ẽ|

6 0.02 275 403
0.005 426 580

8 0.02 279 433
0.005 431 591

10 0.02 290 430
0.005 439 623

to choose a less efficient implementation due to the limited source code access. The projection of the
state vector is:

x̂∂ = ΦT
∂ x∂ , (4.9)

where x̂∂ ∈ Rk∂ is the reduced state vector and Φ∂ ∈ Rn∂×k∂ the ROB for the partial reduction. The
operation is of asymptotic complexity O(k∂n∂). The projection and back-projection are both operations
of the same complexity. These additional operations must be performed each time update and slightly
increase the computational effort. It is to note that n∂ < n, hence the effort is smaller for the partial ROM
than for a full ROM. Also, efficient parallelized algorithms exist to perform linear operations.
The smallest and stiffest elements in the model dominate the critical time step. The crash box consists
of elements of similar size. The critical time step is, therefore, similar to that of the whole model, as in
the unreduced part. Increasing the time step is not possible and cannot be used to achieve speedup.
Increasing the time step would be possible if the dominating elements are in the reduced section and allow
for a larger time step after the reduction procedure.
Hyper-reduction effectively reduces the computation time by removing elements from the mesh. The crash
box consists of 1,864 shell elements. The non-reduced part has 572 elements. Hence, 1,292 elements are
considered for hyper-reduction. For the estimation, we consider the most accurate ROM with a reduced
mesh size of 623 and an accurate ROM that fails in the horizontal bead example but has a smaller reduced
mesh size of 431. This equals a reduction of 52% elements with respect to the elements considered for
hyper-reduction and a reduction of 36% with respect to the total number of shell elements. For the less
accurate ROM with a reduced mesh size of 431, the reduction is 67% with respect to the reduced parts and
46% with respect to the full model. According to the solver statistics, shell element processing accounts for
approximately 55% of the CPU time in the application. To finally estimate the computational speedup, we
multiply the mesh-size-reduction by the share of element processing and obtain an estimated speedup for
the most accurate ROM of 20% with respect to the full model. Equally, we obtain a computational speedup
of 25% for the second ROM. If we assume a proportional scaling of all processes in the solver, we can
estimate the speedup associated with the reduced-only parts of the crash box. In this case, the speedup
for the most accurate ROM is 28.6% and 37% for the less accurate ROM.

4.5 Conclusion

In this chapter, we introduced partial MOR. It is motivated by the need to optimize single components
embedded in a large model. Since large models require high computational times, we seek to replace
the non-modified parts with a ROM. The variation of the component can have a significant impact on the
surrounding model, which is why classical methods that enforce a displacement or force fail. Partial MOR
replaces the model around the modified component with a projection-based ROM. In this chapter, we begin
with a PoC of the proposed ROM formulation. Afterward, we increase the complexity of the ROM method
until a suitable ROM is found.
The PoC is a reproductive example of the non-modified crash tube, where one section is left unreduced.

102

0.0

0.2

0.4

0.6

ε(t)
nc = 6, k = 20, τ = 0.02 nc = 6, k = 60, τ = 0.02 nc = 6, k = 20, τ = 0.005 nc = 6, k = 60, τ = 0.005

0.0

0.2

0.4

0.6
nc = 8, k = 20, τ = 0.02 nc = 8, k = 60, τ = 0.02 nc = 8, k = 20, τ = 0.005 nc = 8, k = 60, τ = 0.005

0 10 20 30
0.0

0.2

0.4

0.6
nc = 10, k = 20, τ = 0.02

0 10 20 30

nc = 10, k = 60, τ = 0.02

0 10 20 30

nc = 10, k = 20, τ = 0.005

0 10 20 30
time in ms

nc = 10, k = 60, τ = 0.005

without modification
center beads
horizontal bead
vertical bead

Figure 4.14 Time-dependent error of the hyper-reduced local ROMs applied to all geometry variants.

The proposed method divides the model into reduced and unreduced sections. Next, by modifying the
geometry of the unreduced part, the hypothesis is confirmed that small variations can have a large im-
pact on the surrounding structure. The modified geometries partially lead to a different buckling order and
shape. The ROM purely trained on the non-modified geometry has not seen the new deformation shapes
and fails to accurately predict their behavior. Only the center beads modification is predicted accurately. It

103

Figure 4.15 Reduced mesh for nc = 10, k = 60, and τ = 0.005.

is the modification with the least effect on the surrounding structure. Additional training data of the modi-
fied examples is included in the ROM in a global approach to increase the ROM’s accuracy for the other
geometry variants. However, we observe the same behavior as in Chapter 3. The error slowly decreases
for increasing dimensions of the ROM, which leads to high-dimensional ROMs. These ROMs will yield a
large reduced mesh, which results in a small computational speedup. The horizontal bead modification
poses the most challenging example due to the sensitivity of the buckling order. Even 140 dimensions are
not sufficient to predict the correct buckling order in a global approach.
lROB based on k-means clustering is introduced to further increase the complexity of the ROM approach.
This approach yields more accurate ROMs while using fewer dimensions than the global approach. How-
ever, correctly predicting the buckling order of the horizontal bead example remains challenging, and solely
a ROM with a sufficient number of clusters and dimensions is capable of that. In the hyper-reduced case,
the hyper-reduction tolerance must be chosen small. We decided on the global-global hyper-reduction
approach as it yields smaller reduced mesh sizes. The small reduced mesh size is especially important
here to achieve speedup since the critical time step cannot be modified, and a smaller number of elements
is available for hyper-reduction.
To further improve the ROM’s speedup, more accurate ROBs or hyper-reduction must be found. This de-
creases the dimension of the ROM, which is, therefore, more efficient. One idea to reach this objective is
to divide the solution not just along its trajectory, as k-means-based lROB does. Instead, the state vector
can also be divided in space. Currently, the solution is reconstructed as follows:

x∂ = Φ∂ x̂∂ =
k∂∑
i=1

φ∂,ix̂∂,i, (4.10)

where φ∂,i is the i-th column vector of the ROB and x̂∂,i is the i-th component of the reduced state. The
state vector x∂ contains the DoF of the reduced parts above and below the unreduced part of the crash

104

(a) Without modification. (b) Center beads.

(c) Horizontal bead. (d) Vertical bead.

Figure 4.16 Final deformation of all geometries at 35 ms.

105

box. As can be seen in eq. (4.10), one global basis function φ∂,i, weighted by one scalar coefficient x̂∂,i
describes the deformation of the reduced parts. This means that the reduced part above and below the
unreduced part are coupled. One way to decouple them is to treat them separately and make the reduced
bases space-local. Each space-local basis is weighted with a separate scalar factor. The state can be
reconstructed as follows:

x∂ =
k∂∑
i=1

=
[
φ∂1,i 0

0 φ∂2,i

] [
x̂∂1,i
x̂∂2,i

]
, (4.11)

where the subscript ∂1 denotes all DoF associated with the region above the unreduced part and ∂2 with
the DoF below.
In conclusion, we successfully replaced the adjacent parts of one modified part in a model with a ROM.
This method allows simple boundary conditions to be replaced by complex ROMs. However, sensitive
models require complex ROMs, which provide a lower speedup. Further promising research directions
exist to design more accurate and faster ROMs.

107

5 MOR using AE

Chapter 5 is the last technical chapter and investigates pMOR on nonlinear manifolds. So far, all ROMs
have been constructed using a global linear subspace or local linear subspaces (lROB). Being aware of
linear dimensionality reduction limits and inspired by successful applications in computer graphics [108]
and fluid mechanics [79], we decided to investigate pMOR on nonlinear manifolds for crash. In addition,
current research strongly focuses on extending linear subspaces for pMOR [110, 112, 114]. During the
emergence of this thesis and especially towards the end, newly published research underlines the potential
of nonlinear dimensionality reduction for pMOR [164–166]. Nonlinear dimensionality reduction promises
smaller reduced dimensions, which positively influence hyper-reduction and promise large speedups de-
spite the additional costs of the nonlinear dimensionality reduction.
This chapter is structured as follows. First, MOR on nonlinear manifolds is introduced in Section 5.1 us-
ing a three-dimensional pendulum example to facilitate understanding. Later in this section, the results
are transferred to n-dimensional second-order systems to derive the ROM. Once the ROM is presented,
hyper-reduction is introduced for nonlinear manifolds in Section 5.2. We use an autoencoder (AE) as a
manifold learning method, which is why neural networks and AEs are introduced next. The results section,
Section 5.4, discusses and presents results of the AE training and achievable offline approximation errors,
the influence of regularization, different AE hyper-parameters, and activation functions. Finally, the most
accurate AE is chosen, and hyper-reduction is applied and studied.

5.1 MOR on Nonlinear Manifolds

x1

x2
x3

linear

x(t)

x̂1

x̂2

R2

x̂(t)

z(t)
nonlinear

Figure 5.1 One-dimensional manifold embedded in three-dimensional space.

The last chapter of this thesis concerns projection-based MOR on nonlinear manifolds. To illustrate
the central concept of nonlinear manifolds, we consider a pendulum example first. With the help of the
pendulum example, we introduce all quantities necessary to construct the ROM. Once all required vari-
ables are introduced, they are generalized to the high-dimensional case, and the final ROM is presented.
Fig. 5.1 shows a one-dimensional manifold embedded in three-dimensional space to emphasize the need
for nonlinear dimensional reduction. The left picture in Fig. 5.1 shows the solution x(t) of a nonlin-
ear system. This figure assumes the solution of a two-dimensional nonlinear pendulum embedded in
three-dimensional space. Using a linear coordinate transformation, the system is transformed into two-

108

dimensional space. We utilize the same notation as in the previous chapters to emphasize the connection.
The two-dimensional state x̂(t) is obtained as orthogonal projection onto the two-dimensional plane:

x̂(t) = ΦTx(t). (5.1)

The plane is spanned by the orthonormal column vectors of Φ ∈ R3×2. In the previous chapters, the
column vectors were the deformation modes. In addition, it is to be noted that the mapping in eq. (5.1)
is exact. The error-free example is for illustrative purposes. However, real examples with approximation
error assume a small error. That is, the out-of-plane component during the projection step is small.
The solution is still a line, a one-dimensional manifold that can be described by one parameter. This
parameter is the angle in the pendulum model. To formulate the system and the solution in their intrinsic
dimension z ∈ R, a nonlinear transformation Γ : R→ R2 is required. Using Γ, we can express x̂ in terms
of z:

x̂(t) = Γ(z(t)). (5.2)

Since the solution of the pendulum example is known, we can further specify Γ. First, we know that the
solution manifold M is the set of points on the circle with a radius equal to the pendulum’s length. For
simplicity, we assume that the radius is 1. Hence, we define the solution manifold as:

M = {x̂1, x̂2 ∈ R | x̂2
1 + x̂2

2 = 1}. (5.3)

The positive quarter x̂1, x̂2 ≥ 0 ofM is shown in Fig. 5.2. In this example, we identify the mapping Γ for
the circle as:

x̂ = Γ(z(t)) =
[
cos(z(t))
sin(z(t))

]
. (5.4)

The time derivative of x̂ is obtained by applying the chain rule:

˙̂x = ∂Γ
∂z︸︷︷︸
J

dz
dt︸︷︷︸
ż

, (5.5)

where J is the Jacobian matrix of the mapping Γ and ż is the latent velocity. We insert eq. (5.4) in eq.
(5.5) and obtain:

˙̂x =
[
− sin(z(t))
cos(z(t))

]
ż (5.6)

for the circle. The column vectors of the Jacobian span the tangent space to the solution manifold. In this
simple example, the tangent space is a line spanned by one column of J.

x̂1

x̂2

z

x̂ = Γ(z)

∂Γ
∂z |z

|x̂|
= 1

Figure 5.2 AE based pROM using a linear outer layer and an AE to resolve the nonlinear correlations.

Before we derive the equations for projection-based MOR on nonlinear manifolds in the k-dimensional
case, we generalize the concepts introduced before and visualized in Fig. 5.2 with the help of a pendulum

109

example. Fig. 5.3 depicts an r-dimensional manifold M embedded in the k-dimensional space. The
solution x̂(t) evolves over time. At each point in time, the columns of the Jacobian matrix ∂x̂

∂zi
∈ Rk for

i = 1, .., r span the tangent space Tx̂M. Next, we derive projection-based MOR for the r-dimensional

M z1

Rk

z2

z2 = const
∂x̂
∂z2

∂x̂
∂z1

x̂(t)

Tx̂M
z1 = const

Figure 5.3 AE approximating the solution manifoldM.

case based on nonlinear mappings. The nonlinear mapping is defined as follows:

x̂(t) ≈ ˜̂x(t) = Γ(z(t)), (5.7)

where x̂(t) ∈ Rk is the linear reduced state with dimension k, z(t) ∈ Rr is the nonlinear reduced state
with dimension r < k, Γ, Rr → Rk is the nonlinear mapping that connects the two states, and ˜̂x(t) ∈ Rk
is the approximation of the state. Since Γ is not exact, the equations hold approximately. However, we
forego the approximate sign in the following and write an equal sign for clarity.
Next, we recall the global ROM eq. (2.25b):

ΦTM(µ)Φ︸ ︷︷ ︸
M̃

¨̂x+ ΦT f(t,Φx̂,Φ ˙̂x, µ) = 0.

To insert eq. (5.7) into eq. (2.25b), we differentiate the nonlinear mapping twice with respect to time, which
yields:

˙̂x = ∂Γ
∂z
ż, (5.8)

¨̂x = ∂Γ
∂z
z̈ + ∂2Γ

∂z2 żż, (5.9)

We identify the Jacobian matrix as:

J = ∂Γ
∂z
∈ Rk×r, (5.10)

and the Hessian as:

H = ∂2Γ
∂z2 ∈ Rk×r×r. (5.11)

Next, we insert the second time derivative and the nonlinear mapping into the linearly reduced ROM. The
ROM, including the nonlinear mapping, reads:

M̃(Jz̈ + Hżż) + ΦT f(t,ΦΓ(z),ΦJż, µ) = r, (5.12)

110

where the residual r ∈ Rk is formed due to the approximation. To obtain the final ROM, we must still
determine which condition to apply to the residual. We look closer at the variational formulation of the
governing equations derived in Section 2.1.2 to find this condition. Although we named the test function
δvi virtual velocity, and the derivation consequently principle of virtual power, the choice of the test function
is arbitrary. The test function is required to test the whole function space, which is the space of linear
shape functions in this thesis. The function space in the principle of virtual power is defined in eq. (2.7).
Considering the test function as virtual displacement δd yields the equivalent result if the function space is
maintained. Using virtual displacements as a test function is also known as the principle of virtual work in
literature. The test function represents all kinematically admissible deformations. The test function reads:

δd(X) = NI(X)δdI , for I ∈ [1, nN]. (5.13)

Compared to the virtual velocities eq. (2.12), only the variable naming has changed. However, since we
perform SVD and the AE training based on displacements, continuing the derivation with virtual displace-
ments is more intuitive. The governing equation including the arbitrary virtual displacements reads:

δdT (Mẍ+ f) = 0, (5.14)

where all n arbitrary values δdI are flattened in δd ∈ Rn. The dimension n is defined in eq. (2.15). In
the following, we restrict the test function to different subspaces. First, we restrict the solution to lie in the
k-dimensional subspace spanned by the columns of the ROB Φ. Using the linear mapping eq. (2.23), the
virtual displacement can be further written as:

δd = δ(x(x̂)− x0) = ∂(x− x0)
∂x̂

δx̂ = Φδx̂. (5.15)

Inserting the linear mapping eq. (2.23) and the variation eq. (5.15) in eq. (5.14) yields the standard linear
ROM, which we used throughout this thesis:

δx̂T [ΦTM(µ)Φ¨̂x+ ΦT f(t,Φx̂,Φ ˙̂x, µ)] = 0. (5.16)

Since the variations δx̂ ∈ Rk are arbitrary, the expression inside the square brackets must vanish, and we
obtain the linear ROM (eq. (2.25b)).
Similarly, we derive the AE ROM. We express the variation δx̂ in terms of the AE’s latent coordinates
variation δz ∈ Rr. For an infinitesimal displacement, we can express δx̂ as:

δx̂ = ∂Γ
∂z
δz = Jδz. (5.17)

We identify the Jacobian matrix again, which governs the space of kinematically admissible deformations.
Inserting the second time derivative eq. (5.9) in eq. (5.16) and expanding the variation according to eq.
(5.17) yields the final AE ROM:

JTM̃Jz̈ + JTM̃Hżż + JTΦT f(t,ΦΓ(z),ΦJż, µ) = 0. (5.18)

Comparing the ROM derived using the principle of virtual work with eq. (5.12) reveals, that the principle
of virtual work is equal to enforcing the residual to be orthogonal to the tangent space spanned by the
columns of J:

JT r != 0. (5.19)

Finally, we evolve the ODE system in time using the explicit central difference method, as described by
Algorithm 6. In the initial step of the time stepping procedure for the AE ROM, the initial conditions must
be transformed once to the latent space. The transformation of the initial conditions is the only step in
which the Encoder φ is used. To still obtain an explicit scheme, the velocity of the last half time step is
used to evaluate the additional term that includes the Hessian matrix. This term is due to the curvature of
the solution manifold. Once the initial conditions are transformed, the Jacobian and Hessian matrix can be

111

Algorithm 6 Explicit time integration for the AE ROM.
Input:Initial conditions x0, ẋ 1

2
, boundary conditions, termination time tend, linear mapping Φ, nonlinear

mapping Γ(z), and additional parameters µ
Output: Temporal evolution of model xtn , ẋtn+ 1

2
, ztn , and żt

n+ 1
2

1: t = 0
2: M̃ = ΦTMΦ← compute linearly reduced mass matrix
3: z0 = φ(ΦTx0), ż0 = ż− 1

2
= ∂φ

∂x̂ |x0ΦT ẋ0 ← compute initial conditions

4: x̃0 = Γ(z0), J0 = ∂Γ
∂z |z0 , ˙̃x− 1

2
= ΦJ0ż− 1

2
, H0 = ∂2Γ

∂z2 |z0 ← Forward pass of Decoder

5: JT0 M̃J0 ← Compute nonlinearly reduced mass matrix
6: while t ≤ tend do
7: fAE

n = JTnM̃Hnżn− 1
2
żn− 1

2
+ JTnΦT f(tn, x̃n, ˙̃xn− 1

2
, µ)← calculate force

8: z̈n = (JTnM̃Jn)−1fAE
n ← Compute new reduced acceleration

9: żn+ 1
2

= żn− 1
2

+ ∆txz̈n
10: zn+1 = zn + ∆t2żn+ 1

2

11: x̃n+1 = Γ(zn+1), Jn+1 = ∂Γ
∂z |zn+1 , ˙̃xn+ 1

2
= ΦJn+1żn+ 1

2
, Hn+1 = ∂2Γ

∂z2 |zn+1 ← Forward pass of
Decoder to obtain new high-dimensional state

12: t = t+ ∆t2
13: n = n+ 1
14: JTn+1M̃Jn+1 ← Compute next nonlinearly reduced mass matrix
15: end while

computed for the first time step. Next, the nonlinear force term is obtained, and the latent acceleration can
be determined using the reduced mass matrix. The acceleration is then integrated in time, and the velocity
and state are obtained. In the forward pass to obtain the high-dimensional state and velocity, the Jacobian
and Hessian matrices are also obtained at the next time step. Finally, the time and index are incremented,
and the next iteration can be entered.
As the ROM derivation for a nonlinear dimensionality reduction model is completed, the remaining part is
to determine the model Γ and φ. As the name of the ROM and the chapter suggests, this thesis concerns
AEs as nonlinear dimensinality reduction method. An AE is a Neural Network (NN) type consisting of an
Encoder and a Decoder. Before explaining in the next sections NNs in detail and introducing different
types of AEs, Fig. 5.4 shows the basic structure of the employed model. The AE is enclosed by two linear
layers, which a global SVD determines. These linear layers are intended to resolve the linear correlations,
as illustrated in Fig. 5.1. The AE resolves the final nonlinear correlations. The pre-reduction enables the
use of an efficient NN, which is significantly reduced in size, requires less training data, and calculates
faster. In the next section, we introduce the concept of NNs.

5.2 Hyper-reduction on Manifolds

Also, in the AE ROM, hyper-reduction is the only way to achieve speedup. Hyper-reduction is even more
important for the AE ROM because many operations still scale with the higher linear ROM dimension. As
shown in Chapter 3 and 4, hyper-reduction strongly scales with the dimension of the ROM. The aim is,
therefore, to use the small latent dimension of the AE to create a small reduced mesh. The small reduced
mesh size should accelerate the ROM more than the additional computational effort of the Jacobian and
Hessian matrix decelerates it.
Without further modification, ECSW is directly compatible with the AE ROM. The nonlinear internal force
term reads:

J(z)TΦT fint =
ne∑
e=1

J(z)TΦTLef (e)
int =

ne∑
e=1

J(z)TΦT
e f

(e)
int . (5.20)

112

x

x̂

Θ Γ

˜̂x

x̃

ΦT Φ

z

Figure 5.4 AE-based pROM using a linear outer layer and an AE to resolve the nonlinear correlations.

Equally to Section 3.2.4, the assembly of all ne elements is replaced by a weighted reduced sum of all
elements in the reduced mesh Ẽ. The approximation reads:

JTΦT fint ≈
∑
e∈Ẽ

ξeJ(z)TΦT
e f

(e)
int , ξe > 0. (5.21)

To determine the weights ξe and the reduced mesh Ẽ, optimization problem eq. (3.61) is solved. For
simplicity, we restate the optimization problem again:

ξ∗ = arg min
ξ∈Λ
‖ξ‖0

Λ = {ξ ∈ Rne : ‖GAEξ − bAE‖2 ≤ τ‖b‖2, ξe ≥ 0},

where τ ∈ (0, 1] is a predefined accuracy. The reduced set Ẽ comprises the elements with non-zero
weights:

Ẽ = {e ∈ {1, 2, . . . , ne} : ξe 6= 0}.

The global matrix GAE ∈ Rnb,AE×ne is composed of submatrices GAE,j,e ∈ Rnb,AE . The dimension nb,AE
is the sum of the bottleneck dimension r overall nf force snapshots:

nb,AE = r ∗ nf � nb = k ∗ nf . (5.22)

Since the bottleneck dimension r is smaller than the dimension of the linear ROM k and both are multiplied
by the usually large number of training snapshots nf , the dimension is smaller than the linear dimension
nb, and the optimization problem becomes drastically smaller. The submatrix GAE,j,e is the product of the
Jacobian matrix J(zj)T at the current solution point zj , and the reduced basis Φ with the force snapshot
at tj of element e:

GAE,j,e = J(zj)TΦT
e f

(e)
j ∈ Rr. (5.23)

The vector bAE is the column sum of matrix GAE:

bAE =
ne∑
e=1

GAE,j,e ∈ Rnb,AE . (5.24)

113

Regularization can be included in the optimization problem to avoid overfitting when working with NNs.
The NNLS problem in each iteration of Algo. 4 can be extended by including regularization:

ξ∗ = arg min
ξ≥0

(
‖Gξ − b‖22 + ‖βξ‖22

)
. (5.25)

We refer to Bach [1] for further details about regularization in ECSW.

5.3 Neural Networks

In this section, we introduce NNs with all relevant topics, such as data preparation, NN training, and
various AE architectures. We choose AEs as a nonlinear dimensionality reduction method due to the
easily accessible libraries, including automatic differentiation (AD) frameworks, which efficiently compute
gradients of the NNs. Also, NNs have proven to be powerful regression models.

5.3.1 Artificial Neuron

The base element of artificial NNs is the artificial neuron, as depicted in Fig. 5.5. It takes the inputs xi for
i = 1, . . . , n, weights them with weighting factors wi, and sums them up. A bias b is added before the sum
is passed to the activation function f(z) R → R. Hence, the output y ∈ R of a single artificial neuron is
obtained as:

y = f(
n∑
i=1

xiwi + b) = f(wTx+ b). (5.26)

The role of the activation function f is crucial. If linear activation functions are used, the NN can perform

x1
w1

w2

wn

x2

xn

b

z y

Σ f(z)

Figure 5.5 Schematic representation of an artificial neuron.

purely linear operations as the composition of linear functions is also linear. Therefore, we need to con-
sider nonlinear activation functions to obtain a nonlinear dimensionality reduction model. Some popular
activation functions are depicted in Fig. 5.6, and the analytical formulas are given in Tab. 5.1. The linear
activation function maps the input to the output. The rectified linear unit (ReLU) maps all negative values
to zero and is linear for positive inputs. However, the first derivative has a jump at zero, and the second
derivative has a Dirac impulse at zero. The exponential linear unit (ELU) is similar to the ReLU function
except that the transition from negative to positive values is continuously differentiable if α = 1.0. Also, the
negative branch is mapped to negative values. Another variant of ReLU is the leaky ReLU function, which

114

allows small positive gradients for negative inputs. The non-vanishing gradient mitigates the vanishing
gradient problem, which can occur during training. Also, the negative branch is not mapped to zero, which
preserves the invertability of the function. It is also possible to use custom activation functions, such as a
quadratic function. So far, all activation functions are unbounded for large values. In contrast, the sigmoid
function is bounded and saturates for large input values. However, the saturation can cause vanishing
gradients.

−10

0

10
Linear

0

5

10
ReLU

0

5

10
ELU

−10 0 10

0

5

10
Leaky ReLU

−10 0 10

0

5

10
Smooth ReLU

−10 0 10
z

0.0

0.5

1.0
Sigmoid

Figure 5.6 Different activation functions.

Table 5.1 Summary of activation functions visualized in Fig. 5.6.

Name Formula

Linear f(z) = z

ReLU f(z) = max(0, z)

ELU, α = 1.0 f(z) =
{
z, z > 0
α(ez − 1), z ≤ 0

Leaky ReLU, α = 0.3 f(z) =
{
z, z > 0
αz, z ≤ 0

Smooth ReLU, α = 0.3 f(z) = αz + (1− α) log (1 + exp z)
Sigmoid f(z) = 1

1+e−z

The artificial neurons are combined into layers to obtain a NN, which are again stacked together. Once
the architecture of the NN is determined, the trainable parameters of the NN are updated in the training
phase. The trainable parameters are usually the weights and the bias. Parameters concerning the archi-
tecture, such as the dimension and the number of layers, are pre-defined and termed hyper-parameters.
Next, we explain how the data is prepared for the NN training.

5.3.2 Normalization

We describe how to pre-process the data before passing it to the NN. We introduce two different methods
to normalization the data. The first method is the classical normalization, usually a min-max scaling. The

115

second method is standardization, which is also often called normalization. First, we describe normaliza-
tion. Normalization is a min-max scaling, which scales the data from a to b, where a is the minimum value
and b is the maximum value in the data range. The min and max values are usually set to 0,1 or -1,1. The
formula to scale one feature x in the data is:

x, = x−min (x)
max (x)−min (x) ∗ (a− b)− b, (5.27)

where x, is the scaled data. Normalization can work better than standardization if the variance of the data
set is very small or the underlying distribution is not Gaussian.
Standardization scales the data to a mean of zero and a standard deviation of 1. The scaled feature x
hence reads:

x, = x− x
σ

, (5.28)

where x is the mean and σ the standard deviation of all samples of the feature. In the remainder of this
Thesis, only standardization is used to pre-process the data.

5.3.3 NN Training

A loss function is minimized in the training phase. We consider one loss functions in this work. However, for
completeness, we introduce also the mean squared error (MSE), which is a commonly used loss function
in regression tasks. The MSE is defined as:

LMSE(ỹ, y) = 1
ntrain

ntrain∑
i=1

(ỹi − yi)2, (5.29)

where yi ∈ Rn is the n-dimensional target output and ỹi ∈ Rn is the predicted output. The second error
definition is the relative Frobenius norm, which is equal to the approximation error definition in the linear
case eq. (2.72), except for the square root. The error is defined as

LF (ỹ, y) =
n∑
j=1

ntrain∑
i=1

√
(ỹij − yij)2√

y2
ij

, (5.30)

where yij denotes the i-th sample of the j-th sample. This error definition delivered the best results in
this work. The NNs are trained using the stochastic gradient descent (SGD) method or more sophisticated
variants. In this method, the weights and biases are updated using the gradient of the loss function and a
learning rate lr ∈ R:

wi = wi − lr
∂L

∂wi
, (5.31)

or equally

bi = bi − lr
∂L

∂bi
. (5.32)

Neural Networks are compositions of functions. The derivative of compositions of functions can be ob-
tained using the chain rule. That is, the gradient of the loss function with respect to a weight in the first
layer of the network is the product of all gradients. We can illustrate this in a simple example:

yi = yi(yi−1(yi−2(wk))), (5.33)

where yi is the output of layer i and wk the currently considered weight. The gradient is then the product
of all derivatives:

∂yi
∂wk

= ∂yi
∂yi−1

∂yi−1
∂yi−2

∂yi−2
∂wk

. (5.34)

The algorithm that computes the gradient of the loss function with respect to the weights based on the
chain rule is named backpropagation, as the error is propagated backward through the NN. Refinements,
such as adapting the learning rate during training, exist.

116

5.3.4 Autoencoders

In this subsection, we explain the concept of an AE architecture. An AE is a NN architecture used for
unsupervised learning. It is used to learn a low-dimensional representation of the data, also called en-
coding, which captures the most relevant features. A simple AE is shown in Fig. 5.7. The AE consists of
an encoder and a decoder. The encoder consists of multiple fully connected layers which transform the
high-dimensional input into a low-dimensional representation. The low dimension of the bottleneck layer
enforces the compressed representation. Nonlinear transformations due to nonlinear activation functions
transform the input state in the hidden layers. The decoder also consists of fully connected layers. The
hidden layers decode the compressed representation of the bottleneck layer. A nonlinear transformation is
achieved if nonlinear activation functions are used. Finally, the output layer is usually a linear layer for con-
tinuous data. The linear layer allows for a large range of values. The input and target output values are the
same for an AE, as it tries to compress the input state and decompress it again. Hyper-parameters of the
AE are the width of the hidden layers, the latent dimension (bottleneck dimension), the number of layers,
the activation function, the type of normalization, training parameters, and many other hyper-parameters.

Input Layer Output Layer
Hidden Layer

Encoder Decoder

Hidden Layer

Bottleneck Layer

Figure 5.7 Architecture of an AE.

Classical AE

Using the AE introduced in the previous sections is considered the classical AE in this work. The input of
the AE is the linearly reduced state x̂, and we train the AE to reproduce this state. This means the target
value is also the reduced state x̂. Both loss functions, the MSE and the Frobenius norm, can be used
and are assessed in the results section. To avoid overfitting, regularization can be added. We apply L2

regularization on a per-layer basis. That is, the additional loss term per layer is obtained as:

LL2 = β ∗ ‖w‖22. (5.35)

The regularization parameter is named β and is usually small. The layer weights, also called the kernel,
are denoted by w. Regularization makes the AE more robust to unseen data and helps the model to
generalize well.

Denoising AE

To make the AE more robust to small changes in the input that will occur due to errors in the ROM during
the simulation, we propose to use the Denoising Auto Encoder (DAE). The DAE is a model to remove
noise from custom data, such as images. The DAE differs from the normal AE in that the input and the

117

output are unequal. The input to the DAE is the samples contained in the linearly reduced global snapshot
matrix

Ûglob = ΦTUglob ∈ Rk×NpNs . (5.36)

Before passing the samples to the DAE training, Gaussian noise is added to the data:

Û∗glob = Ûglob +N (µ, σ2), (5.37)

where µ is the mean and σ2 the variance of the Gaussian noise. We choose a zero mean, and the variance
is an additional hyper-parameter to choose. The input is the noisy data, however, the target is the unaltered
samples Ûglob.

Contractive Loss AE

The last AE we discuss in this work is the contractive loss AE (CAE) [167], which adds a penalty term to
the loss function that is equal to the Frobenius norm of the Jacobian matrix of the encoder with respect
to the input. Similar to the AEs using regularization or noise, the CAE also aims to make the AE robust
against small changes in the input. However, compared to the DAE, which uses randomness to achieve a
robust AE, the CAE is based on the Jacobian of the NN and is deterministic. The penalty term for the CAE
is the Jacobian of the encoder Θ with respect to the input x:

‖JΘ(x)‖2F =
∑
ij

(
∂zj
∂xi

)2
. (5.38)

A complete loss function for a CAE with Frobenius error would therefore read:

LCAE(x̃, x) = LF (x̃, x) + αJ‖JΘ(x)‖2F , (5.39)

where the target output y = x is the input and the regularization term is weighted with αJ .

5.3.5 Implementation Details

-API

Pure Python

LS-Dyna Interface

Figure 5.8 Structure of the Fortran-Python interface.

The implementation has presented a significant challenge, which is why we mention it in a subsection
and give more details in Appendix A.4. The challenge arises because queries of the AE are required
during the runtime of the solver (LS-Dyna). High-level application programming interfaces (APIs) exist for
NNs in Python. Tensorflow [168] with its higher-level API, Keras [169], are popular ML platforms, and we
decided to use them due to their powerful Python APIs. Using Keras, it is simple to quickly create NN
and implement different variants of AEs. However, once the models are trained, the FEM solver needs

118

to query the trained model in each iteration. Therefore, an efficient implementation is required to avoid
computational overhead due to the data transfer. For us, the only possibility is to transfer the data directly
inside the main memory. Writing the data to the disk and rereading it or a server-client approach for inter-
process communication seems unsuitable. Directly passing data in the main memory is possible using the
programming language C. Both applications can communicate with C as Fortran is interoperable with C
using the iso-c-bindings, and the reference implementation of the Python interpreter is also in C. Further,
Python offers a C-API, which can be used to control the interpreter. The structure of the Fortran-Python
interface is shown in Fig. 5.8. In each iteration of the LS-Dyna solver, the prediction of the decoder of the
AE is required. Starting from the very left side in Fig. 5.8, the data is passed to the C-interface, which
correctly interprets the data. Next, the interface uses the Python C-API to create corresponding Python
objects of the transferred data. Finally, the code written in pure Python can be executed and used for
inference using the C-API. Equally, as the data is transferred from Fortran to Python, it is received again
by C, interpreted correctly, and transferred back to Fortran. Once the AE is queried and the values are
passed, the Fortran code continues and the next steps in the FEM solver are performed.

5.4 Results

In this section, we present the results of the AE ROM. The results are structured as follows: First, using
a classical AE, we present the results of the training procedure. While keeping the dimensions of the
AE model rather small, we investigate the effect of regularization, different activation functions, SVD and
bottleneck dimensions, and the number of neurons in the hidden layers. Once a suitable AE model is
identified, the classical AE is compared with the DAE and CAE, which can be considered AEs that apply
a different type of regularization. Finally, hyper-reduction is applied, and the reduced mesh is shown for
different hyper-reduction tolerances. The additionally introduced error is investigated, and the results are
summarized and concluded.

5.4.1 AE Training

The AE is trained on the linearly reduced data. The global snapshot matrix Uglob is linearly reduced as
described in eq. (5.36). The same snapshots are used as in Chapter 3 to construct the global snapshot
matrix. This means there are Np = 27 training simulations, as shown in Figure 3.1, and snapshots are
taken every 0.01 ms during 35 ms for each parameter configuration. This results in a total of NpNs =
27 ∗ 3, 501 = 94, 527 snapshots. A global SVD is applied on Uglob to obtain the global reduced basis
Φ which is then used for the linear reduction. The reduced data is then fed to the AE to train it. Before
we describe the hyper-parameters of one specific AE, we summarize the training parameters in Tab. 5.2.
The initial learning rate lr0 is lowered to lrmin during the epochs e0 and e1. The learning rate is modified

Table 5.2 AE training parameters.

Training Parameter Value

Optimization Algorithm Adam [170]
Batch size 500
Validation portion 20%
Max epochs 500
Early stopping 20 epochs
lr0 0.001
lrmin 0.0001
e0 30
e1 150

119

according to

lr =


lr0, e < e0

lr0 exp
(

(e− e0)
ln(lrmin

lr0
)

e1−e0

)
, e0 ≤ e ≤ e1

lrmin, e > e1

. (5.40)

The AE is trained for a maximum of 500 epochs. An epoch describes one cycle in which the network
has seen all training data samples. The training data per epoch is 80% of the whole training data. The
remaining 20% are reserved as validation data and randomly chosen in each epoch. The gradient of the
loss function is computed using all samples in one batch, and the weights and biases are updated using
the gradient. For efficiency, the network training stops if the loss function is not minimized further for 20
epochs. In case the network training stops early, the best weights are restored. To ensure reproducible
results, the random generator’s seed is set to 0 for the weight initialization and the noise generation in the
DAE case.
Next, the AE architecture, which is used for the study of influential hyper-parameters is presented and
tabulated in Tab. 5.3. A dimension for the outer linear ROM of kSV D = 30 and a bottleneck dimension of
kAE = 7 is chosen. The hyper-parameters are primarily chosen to achieve small ROMs, which are fast to
evaluate and, therefore, suitable to study the effects of hyper-parameter changes. The described AE is first

Table 5.3 AE hyper-parameters.

Hyper-parameter Encoder Decoder

kSV D 30 30
kAE 7 7
Layer width 80 80
Hidden layers 2 2
L2-regularization 0.0001 0.0001
Activation function Leaky ReLU Leaky ReLU
Loss function(AE) Frobenius

trained using a fixed lr of lr = lr0 = 0.001 and compared to the training using a dynamic lr as described
in eq. (5.40). Fig. 5.9 shows the results of the AE training. The figures show the loss and the relative
Frobenius norm of the approximated data

√
ε2 during the epochs for the training and validation data set.

The discrepancy between loss and Frobenius norm results from the loss, including the regularization term.
The Frobenius norm error is defined as:

√
ε2 =

∥∥∥Û− Γ
(
Θ
(
Û
))∥∥∥

F∥∥∥Û∥∥∥
F

. (5.41)

Except for the square root, the error definition is equivalent to the error definition of the linear dimensionality
reduction (eq. (2.72)). To emphasize the similarity to the error of the linear dimensionality reduction, the
notation with root and square is chosen. Although it is unusual to train a network with the square root of
the error, we obtained the best and most stable results using this error definition. Fig. 5.9a shows the
training history for a fixed learning rate. It can be seen that the learning rate is too large, and the loss
becomes unstable. The network’s weights and biases are updated according to the loss of one epoch,
calculated using the snapshots of the considered batches. The weight update is also linearly dependent
on the learning rate. The weight update is too large if the learning rate is too large. The weights can
become too specific for the current batch, and the new randomly chosen training and validation data sets
are predicted badly. Adjusting the learning rate mitigates this issue, as shown in Fig. 5.9b. The error
decays smoothly during training. However, the training takes longer.

120

0 100 200 300 400 500
epoch

10−2

10−1 training loss
validation loss
√
ε2 training√
ε2 validation

(a) AE training using a fixed lr=0.001.

0 100 200 300 400 500
epoch

10−2

10−1 training loss
validation loss
√
ε2 training√
ε2 validation

(b) AE training using the adjusted lr.

Figure 5.9

5.4.2 Regularization

Regularization prevents overfitting. Overfitting is when a model learns the training data too specifically but
fails to generalize and makes accurate predictions on new data. The first proposed AE (see Tab. 5.3)
contained a small portion of weight regularization. In the following, we show results for an AE without
regularization, a small amount of regularization, a reasonable amount of regularization, and too much
regularization. Tab. 5.4 tabulates four different AEs using a different amount of L2 weight regularization.
All AEs share the same architecture with an input dimension of 30, a bottleneck dimension of 7, Leaky

Table 5.4 AE hyper-parameters for regularization study.

Hyper-parameter AE1 AE2 AE3 AE4

kSV D 30 30 30 30
kAE 7 7 7 7
Layer width 80 80 80 80
Hidden layers Θ 2 2 2 2
Hidden layers Γ 2 2 2 2
L2-regularization 0 0.00001 0.00005 0.0001
Activation function Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU
Loss function(AE) Frobenius Frobenius Frobenius Frobenius

ReLU activation functions, two hidden layers in the encoder and two hidden layers in the decoder, a layer
width of 80, and the proposed relative Frobenius norm error. First, we compare the achieved approximation
error. The total approximation error for the composition of SVD and AE is defined as:

ε2tot =

∥∥∥U−ΦΓ
(
Θ
(
ΦTU

))∥∥∥2

F

‖U‖2F
, (5.42)

which is the logical extension of the linear error to include the AE. Therefore, the values are comparable
to the linear results. Tab. 5.5 summarizes the achieved approximation errors for the different AEs. The
error introduced by the linear approximation is termed ε2SV D and is equal for all AEs, as all use the same

121

Table 5.5 Approximation error for the regularized AE variants.

Error AE1 AE2 AE3 AE4

ε2SV D 1.499× 10−6 1.499× 10−6 1.499× 10−6 1.499× 10−6

ε2AE 1.044× 10−5 6.507× 10−6 4.269× 10−6 4.696× 10−6

ε2tot 1.194× 10−5 8.006× 10−6 5.768× 10−6 6.195× 10−6

SVD dimension kSV D. The error solely introduced by the AE is named ε2AE . AE3 achieves the lowest error
and AE1 the highest one. The error is composed of two parts. One part of the error is governed by the
approximation of the 80% training data and the other part by the 20% validation data in the global training
data set. The validation data governs how well the AE generalizes to unseen data. AE3 with the medium
regularization factor of all tested values achieves the lowest error, and AE1 without regularization yields
the largest error. To relate the AE approximation errors to the linear ones of the previous chapters, we
plot the error values compared to the SVD approximation error in Fig. 5.10. The vertical line indicates the
AE-dimension kAE = 7. All AEs yield lower errors than the SVD with seven dimensions. The global SVD
error is the curve that decays for larger approximation ranks k. Due to the logarithmic y-scale, all AE errors
are close to each other. Next, we plug the trained AEs into the AE ROM and assess the time-dependent

1 50 100 150 200
rank k

10−7

10−5

10−3

10−1

ε2(k)

AE1
AE2
AE3
AE4
global basis

Figure 5.10 Offline accuracy of the AEs in comparison to the linear global SVD.

displacement error ε(t). The error is plotted over time for all AEs in Fig. 5.11. The high deformation
test case is plotted in Fig. 5.11a and the low deformation test case is shown in Fig. 5.11b. In addition
to the AE ROMs, the online error for a global linear ROM with k = 30 and k = 7 are also compared.
The AE ROMs show the same error behavior as the linear ROM. The error accumulates over time and
reaches a steady state after the rebound phase, where it decreases due to the solutions’ approach. Equal
to the linear ROMs, the error for the high deformation test case is larger than for the low deformation test
case. AE3 yields the lowest accuracy in the high deformation test case. However, in the low deformation
test case, AE4 is slightly more accurate. The offline approximation error is defined globally. Therefore,
although the overall error is smaller for AE3, it can be larger in specific regions of the solution space,
leading to less accurate results for different parameter variations. AE1 without regularization yields large
errors. The error is larger than the error of the linear ROM using the same bottleneck dimension. The
linear ROM using the input dimension of the AE is more accurate than the AE ROMs. However, the
approximation error of the SVD alone is smaller than the approximation error of the AEs using seven

122

dimensions. To further understand the large error of the AE ROM without regularization, we plot the latent

0 5 10 15 20 25 30 35
time in ms

0.00

0.25

0.50

0.75

1.00
ε(t) high defo

AE1
AE2
AE3
AE4
Lin err k=7
Lin err k=30

(a) Results of the AE ROM for the high deformation test
case.

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6

0.8

ε(t) low defo

AE1
AE2
AE3
AE4
Lin err k=7
Lin err k=30

(b) Results of the AE ROM for the low deformation test
case.

Figure 5.11

space variables zi for i = 1, .., kAE of the AE ROM over time for the AE without and with regularization in
Fig. 5.12 and Fig. 5.13, respectively. Without regularization, the ROM solution quickly deviates from the
reference solution and reaches a steady state. The steady state is quickly reached if the tube behaves
too stiff and the energy of the impacting plate is consumed, or the plate springs back with more kinetic
energy. Locking is observed if the solution’s function space cannot provide the required deformation or
if the tangent space to the manifold, spanned by the Jacobian matrix of the AE, is inaccurate and does
not provide the correct deformation directions. Locking is, therefore, related to the approximation quality
of the AE. Without regularization, the AE overfits the data and is not robust to small errors. These errors
strongly influence the prediction and lead again to wrong predictions. The system locks, and the latent
space trajectories quickly deviate from the reference solution. Also, oscillations towards the end of the
simulation time indicate a high stiffness and errors in the approximation of the AE. The regularized AE
ROM can follow the reference trajectories much longer. The steady state is reached at later simulation
times, and no high-frequency oscillations are observed. To conclude, regularization makes the AEs more
robust to small errors, resulting in more accurate AE ROMs.

123

−0.5

0.0

z1

0

2

z2

0

2

4

z3

0.0

2.5

z4

0 10 20 30

0

2

z5

0 10 20 30

0

2

z6

0 10 20 30

0

2

4
z7

ref
ROM

Figure 5.12 Latent space variables over time for AE1 without regularization.

0

1

2
z1

0.0

0.5

1.0

z2

0

2

z3

0

1

z4

0 10 20 30

0

1

z5

0 10 20 30

0

1

2
z6

0 10 20 30

0

2

z7

ref
ROM

Figure 5.13 Latent space variables over time for AE3 with regularization.

5.4.3 Influence of Activation Function

So far, we considered nonlinear activation functions consisting of linear parts. This means the Hessian
is zero, and the associated term in eq. (5.18) is also zero. We utilize a smooth version of the leaky
ReLU function to investigate the effect of second-order terms. The smooth ReLU, as listed in Tab. 5.1, is
continuously differentiable, and the Hessian matrix differs from zero. To study the influence of the curvature
term, we choose the best AE from the previous section (AE3 in Tab. 5.4) and replace the activation function
with the smooth ReLU function. The new hyper-parameters of the AE using the smooth ReLU activation
function read: First, we assess the achieved approximation error. Tab. 5.7 summarizes the three different
error measures, as defined before (see Tab. 5.10). The smooth ReLU AE yields larger approximation
errors than AE3 using leaky ReLU activation functions after training. This is directly mirrored in Fig. 5.14,

124

Table 5.6 AE hyper-parameters with smooth ReLU activation function.

Hyper-parameter

kSV D 30
kAE 7
Layer width 80
Hidden layers Θ 2
Hidden layers Γ 2
L2-regularization 0.00005
Activation function Smooth ReLU
Loss function(AE) Frobenius

where the leaky ReLU AE ROM yields lower errors than the smooth version. To still assess the influence

Table 5.7 Approximation error for the regularized AE variants.

Error AE3 AE with smooth ReLU

ε2SV D 1.499× 10−6 1.499× 10−6

ε2AE 4.269× 10−6 16.878× 10−6

ε2tot 5.768× 10−6 18.377× 10−6

of the curvature term, the smooth ReLU AE ROM is evaluated neglecting the curvature term. In the high
deformation test case Fig. 5.14a as well as in the low deformation test case 5.17b, the effect of the
curvature of the manifold is negligible. The error of the ROM, including the curvature term, is equal to the
error of the ROM without the Hessian matrix. The region of the activation function with curvature is small

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6

0.8

ε(t) high defo

leaky ReLU
smooth ReLU
smooth ReLU without Hessian

(a) Time dependent error of the AE ROMs with and with-
out curvature for the high deformation test case.

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6

ε(t) low defo

leaky ReLU
smooth ReLU
smooth ReLU without Hessian

(b) Time dependent error of the AE ROMs with and with-
out curvature for the low deformation test case.

Figure 5.14

and is located around zero. We further assess the impact of the curvature term by observing the term:

‖fcurv‖2 =
∥∥∥M̃Hżż

∥∥∥
2
. (5.43)

125

Fig. 5.15 shows ‖fcurv‖2 during the simulation time for the high deformation and low deformation test
case. In both cases, the curvature term differs from zero only before 15 ms. Finally, we emphasize that the
AE ROM term, including the curvature, is the projection of fcurv,

JT fcurv, (5.44)

onto the tangent space spanned by the columns of J. Since the AE ROM, including the curvature term
and the AE ROM without it, do not differ, we conclude that the projection of the depicted term is negligible
compared to the projection of the internal force term.

0 5 10 15 20 25 30 35
time in ms

0.00

0.02

0.04

‖fcurv‖2 Curvature term

high defo
low defo

Figure 5.15 Norm of curvature term in the AE ROM.

5.4.4 Influence of Dimensions

Next, we investigate how varying the dimensions of the input kSV D, of the bottleneck kAE , and the hidden
layers influences the accuracy of the AE and the derived AE ROM. We introduce three new AEs in which
one parameter is varied. The AEs are named according to:

AE kSV D−kAE (layerwidth) .

The first AE is the best regularized AE, named AE3 in Tab. 5.4. Then, the bottleneck dimension is
increased to 10, the layer width is increased to 200, and finally, the input dimension is increased to 50.
The dimensionality variations’ impact on the approximation error can be seen in Tab. 5.8. The only way
to decrease the linear approximation error ε2SV D is to increase the input dimension, which can be seen
for AE 50-7(80). However, increasing the linear approximation accuracy yields only a small decrease in
total error. Also, increasing the layer width does not significantly improve the total approximation error.
This is also because the weight regularization parameter is not adjusted, although the number of weights
increases. Increasing the bottleneck dimension yields an improvement in the total approximation error.
The corresponding time-dependent online errors can be seen in Fig. 5.16a and Fig. 5.16b for the high
deformation and low deformation test case, respectively. The increased bottleneck dimension leads to an
improvement in online accuracy, especially for the low-deformation test case. Increasing the layer width
without modifying the regularization parameter yields a decrease in online error while maintaining a similar
offline error. Increasing the input dimension yields a minor accuracy improvement. We conclude that the

126

Table 5.8 Approximation error for the AE variants with different dimensions.

Error AE 30-7(80) AE 30-10(80) AE 30-7(200) AE 50-7(80)

ε2SV D 1.499× 10−6 1.499× 10−6 1.499× 10−6 4.632× 10−7

ε2AE 4.269× 10−6 3.775× 10−6 4.153× 10−6 5.164× 10−6

ε2tot 5.768× 10−6 5.274× 10−6 5.652× 10−6 5.627× 10−6

offline approximation error greatly influences the online error. However, maintaining a smooth and well-
behaved latent representation is of similar importance, as a small offline accuracy improvement does not
necessarily lead to a better AE ROM.

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6
ε(t) high defo

AE 30-7(80)
AE 30-10(80)
AE 30-7(200)
AE 50-7(80)

(a) Time dependent error of AE ROMs with different di-
mensions for the high deformation test case.

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6
ε(t) low defo

AE 30-7(80)
AE 30-10(80)
AE 30-7(200)
AE 50-7(80)

(b) Time dependent error of AE ROMs with different di-
mensions for the low deformation test case.

Figure 5.16

5.4.5 CAE and DAE

Before applying hyper-reduction, the standard AE is compared to the CAE and DAE. Both AE types rep-
resent different types of regularization. The DAE makes the AE robust by first inserting noise in the data
and learning the unaltered data. The CAE promotes a robust latent space by regularizing the AE with
the Frobenius norm of the encoder’s Jacobian matrix. The encoder’s Jacobian relates (infinitesimal) incre-
ments of the input to increments in the latent space representation.
For the following comparison, we choose the hyper-parameters of the AEs according to Tab. 5.9. The AE
training yields the offline approximation error as tabulated in 5.10 using these hyper-parameters. The CAE
yields the lowest approximation error and DAE the largest one. However, the CAE yields less accurate
results in the online phase than the AE, as shown in Fig. 5.17. The AE ROMs are evaluated for the high
deformation test case in Fig. 5.17a and the low deformation test case in Fig. 5.17b. The error of the linear
ROM using kSV D = 10 is plotted for comparison. The final deformation of the DAE in the high deformation
test case is similar to the final deformation obtained by the CAE. However, the DAE yields a nonphysical
deformation history. We assume this is due to the stochastic nature of this method. Also, the DAE yields
large errors for the low deformation test case. Although the offline error of the CAE is smaller than that

127

Table 5.9 AE hyper-parameters for AE-type comparison.

Hyper-parameter AE CAE DAE

kSV D 50 50 50
kAE 10 10 10
Layer width 150 150 150
Hidden layers Θ 2 2 2
Hidden layers Γ 2 2 2
L2-regularization 5× 10−5 0.0001 0.0625
Activation function Leaky ReLU Leaky ReLU Leaky ReLU
Loss function(AE) Frobenius Frobenius Frobenius

of the AE, the CAE has a slightly larger online error than the AE. This supports our assumption that the
properties of the embedding play an equally important role than the approximation accuracy itself. The
following subsection shows the compatibility of ECSW hyper-reduction with the AE ROM.

Table 5.10 Approximation error for the different AE variants.

Error AE CAE DAE

ε2SV D 4.632× 10−7 4.632× 10−7 4.632× 10−7

ε2AE 6.868× 10−6 3.252× 10−6 9.525× 10−6

ε2tot 7.331× 10−6 3.715× 10−6 9.988× 10−6

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6

ε(t) high defo

AE
CAE
DAE
Lin err k=10

(a) AE ROM accuracy for different AE variants tested on
the high deformation test case.

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6
ε(t) low defo

AE
CAE
DAE
Lin err k=10

(b) AE ROM accuracy for different AE variants tested on
the low deformation test case.

Figure 5.17

128

5.4.6 Hyper-reduction

Finally, we also show the compatibility of ECSW hyper-reduction with the AE ROM. We choose the most
accurate AE, the L2 weight-regularized AE, as stated in Tab. 5.9. Like the previous chapters, hyper-
reduction is the only way to achieve computational speedup for the AE ROM. Since the evaluation of the AE
and the computation of the Jacobian matrix in each iteration are associated with additional computational
costs, the small reduced mesh size due to the low dimensions of the AE ROM must compensate for this
additional effort.
Equal to previous chapters, force snapshots are collected every 0.01 ms for all 27 training simulations.
These snapshots and the trained AE are used to construct the matrix GAE eq. (5.23) and the vector bAE
eq. (5.24). Using these assembled quantities, we compute the reduced mesh by solving eq. (3.61). The
reduced mesh sizes are tabulated in Tab. 5.11 for different tolerances τ and regularization factors β. The

Table 5.11 Hyper-reduction offline results for the most accurate AE.

Tolerance / Regularization τ = 0.02, β = 0.0 τ = 0.01, β = 0.0001 τ = 0.005, β = 0.005

|Ẽ| 124 183 276
Reduction in % 93.34% 90.18% 85.19%

optimization problem scales with the bottleneck dimension of the AE. Therefore, we obtain small reduced
meshes even though all snapshots are included in a global sense. The reduced mesh size scales with the
tolerance τ . A small tolerance also yields a larger reduced mesh. Regularization is also used to stabilize
the hyper-reduced ROM and make it more accurate. The time-dependent error for the hyper-reduced
AE ROMs is shown in Fig. 5.18a and Fig. 5.18b for the high deforming and low deforming test case,
respectively. The most accurate hyper-reduced ROM is also the ROM with the lowest tolerance. Additional
error is mainly introduced in the low deformation test case. The additional error in the high deformation
test case is small. Larger hyper-reduction tolerances lead to unrobust and partially nonphysical ROMs.
Problems arise when the AE is sensitive to small errors and the latent space variables deviate from the
reference trajectories on which the hyper-reduced ROM was trained. This can be seen in Fig. 5.19, where
the latent space trajectories of the ROM, the hyper-reduced ROM, and the reference are compared for
all ten latent space variables and the low deformation test case. Especially in the first milliseconds of
the simulation, the AE ROM and the hyper-reduced AE ROM cannot follow the strongly varying reference
trajectory. This is mirrored by the jump in error occurring during the first millisecond of the simulation.

Finally, the reduced mesh with a reduction of 85.19% of all deformable elements is shown in Fig. 5.20a
for the hyper-reduction parameters τ = 0.005 and β = 0.005 in the initial configuration. The elements are
colored according to their weights. The final deformed configuration for the high deformation test case is
shown in Fig. 5.20b. The reference solution is colored turquoise for comparison.

129

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

0.6

0.8

ε(t) high defo

τ = 0.02
τ = 0.01, β = 0.0001
τ = 0.005, β = 0.005
Without hyper-reduction

(a) Hyper-reduced AE ROMs tested on the high defor-
mation test case.

0 5 10 15 20 25 30 35
time in ms

0.0

0.2

0.4

ε(t) low defo

τ = 0.02
τ = 0.01, β = 0.0001
τ = 0.005, β = 0.005
Without hyper-reduction

(b) Hyper-reduced AE ROMs tested on the low defor-
mation test case.

Figure 5.18

−0.25

0.00

z1

0

1

z2

0

2

z3

0

1
z4

−0.25
0.00
0.25

z5

0

1

z6

0

1

z7

0

2

z8

0 10 20 30
0

1

z9

0 10 20 30
time in ms

0.0

0.5

z10

ref
ROM
ROM hyper

Figure 5.19 Latent space trajectories of the AE ROM and most accurate hyper-reduced AE ROM in comparison to
the reference solution for the low deformation test case.

130

(a) Hyper-reduced AE ROM for τ = 0.005 and β =
0.005.

(b) Hyper-reduced AE ROM with τ = 0.005 and β =
0.005 tested on the high deformation test case. The
reference solution is colored turquoise.

Figure 5.20

131

5.5 Conclusion

In this chapter, we introduced projection-based MOR on nonlinear manifolds based on AEs. This chapter
aims to prove the concept of combining SVD with an AE to reduce dimensions further. The additional di-
mension reduction enables smaller reduced meshes, which is one major speedup mechanism in nonlinear
explicit FEM. The implementation posed a challenge, so we included a small section. Finite element codes
have usually grown historically and are, therefore, programmed in Fortran. Modern ML libraries often uti-
lize a high-level programming language like Python to make the use easy and comfortable. This enables
the user to quickly implement a new model. However, it also obscures the internals of the ML library. We
present an exemplary implementation that uses the Python C-API to pass the data directly inside the main
memory.
The potential computational speedup is due to two mechanisms. The first mechanism is demonstrated
in this chapter and is the small reduced mesh. ECSW hyper-reduction scales with the dimension of the
ROM. An AE can further reduce the ROM’s dimensions compared to a global linear SVD. A ROM based on
a global SVD requires many dimensions to achieve reasonable accuracy. However, small to no speedups
are expected for large dimensions due to the resulting large reduced mesh. An AE with a bottleneck di-
mension of 10 already yields a reduced mesh, which contains 15% of the original model’s elements. The
second mechanism is the increased critical time step. Although not investigated in this work, a deriva-
tion for partially linear activation functions, such as the leaky ReLU function, would be easily possible.
These two mechanisms must compensate for the additional effort required to evaluate the AE, including
the Jacobian and Hessian matrix computations. Using partially linear functions speeds up the computation
enormously since the Hessian computation is neglected. Computing the Hessian matrix is associated with
high costs, as one Hessian calculation equals multiple Jacobian evaluations. Also, the AE ROM term as-
sociated with the manifold’s curvature must be evaluated. However, our example shows that the Hessian
can be neglected in our example. We trained an AE on a smooth version of the leaky ReLU function and
compared the AE ROM, including the Hessian, with the AE neglecting the Hessian term. The solutions
nearly overlap, and the evaluation of the Hessian term also showed that the solution transverses curved
regions of the manifold in only a tiny fraction of the entire solution.
The curvature is small and for most of the solution parts zero. This could be seen as an indicator that
the transformation is not nonlinear enough. Also, the achieved approximation errors are not as low as ex-
pected. In addition, the approximation error for the training and validation data differs during training. The
AE cannot learn a latent representation during training that generalizes well enough to the validation data.
The observation supports that the AE architecture is not yet suitable to fully transform the data in an ac-
curate low-dimensional representation. In addition, we observe that the approximation error is not the only
indicator for an accurate ROM. We draw the same conclusion as in the previous chapters: some additional
knowledge about the system must be used. Otherwise, the AE is just a purely data-driven method and is
not informed about the physics. Similarly to the linear case, more dimensions must be used to accurately
predict the system’s evolution, which prevents a fast ROM.
To summarize, pMOR on nonlinear manifolds is the logical extension of pMOR on linear manifolds. NNs,
and more specifically, AEs, are a popular dimensional reduction method. Powerful and efficient frame-
works exist that enable automatic differentiation (AD). AD is a convenient way to analytically differentiate
the nonlinear mapping and provides the required derivatives for the ROM. AEs yield low-dimensional rep-
resentations of the solution data, which can be used to build projection-based ROMs. While global linear
dimensional reduction fails to provide a low-dimensional mapping to create a ROM, the AE can provide
such a mapping. The low-dimensional mapping enables effective hyper-reduction, which can compensate
for the additional costs due to the AE evaluation. Also, the global reduced mesh avoids evaluating zero
elements, as needed for local reduced bases with history variables. An additional speedup mechanism is
the enlargement of the critical time step, which is not discussed in this thesis.
The prospect of low-dimensional fast ROMs for parametric problems encourages future research. The
research can be located both in the implementation and mathematical foundations. More efficient Jaco-
bian or Hessian calculation implementations can be introduced by using Jacobian vector products (JVP)

132

or Hessian vector products (HVP). Also, the interaction between the FEM solver and the ML library can be
improved and parallelized. New mathematical foundations emerged towards the end of this thesis, which
were published lately [165, 166] and not available during the formation of this work. Romor et al. [165] use
convolutional AEs to formulate a ROM and test it on a 2d non-linear conservation law and a 2d shallow
water model. Otto et al. [166] present AEs with invertible activation functions and constraints on the weight
matrices. Also, an oblique projection is proposed. The necessity of an oblique projection is in agreement
with our observation that the accuracy of the AE alone is not sufficient for an accurate ROM.
In conclusion, despite many unresolved questions, MOR on nonlinear manifolds is an exciting field of
research, and many advances can be expected in the next few years.

133

6 Outlook and Conclusion

6.1 Limits and Outlook

As we delve deeper into the intricacies of our research, it is also important to acknowledge the boundaries
that shaped the scope of our research and point out future directions. Delineating the boundaries helps
us to maintain intellectual rigor and prompts critical reflection on the precision and generalizability of our
findings. Thereby, the transparency and integrity of our work are improved, and future researchers are
supported by a detailed understanding of the context within which our contributions are situated. By
accepting our limits and discussing the limits with curiosity, we contribute to the scientific dialogue that
propels scientific research forward.
In accordance with the chapter layout, we discuss further research directions:

Identify the latent dynamics: In the pMOR approach, a subspace or manifold is calculated based on ex-
istent solution data. Afterward, the governing equations are transformed to the reduced space to obtain the
latent dynamics. However, freedom is involved in the transformation process, such as the projection step,
in which an orthogonal or oblique projection can be chosen. Therefore, it is not automatically guaranteed to
obtain the correct latent dynamics. In contrast, data-driven approaches identify the latent dynamics directly
once the dimensionality reduction is performed. Methods such as operator inference and Sindy restrict the
system to certain types of function, whereas, for instance, recurrent neural networks allow for complex
and unknown dynamics. An application to highly complex systems involving history-dependent variables
and contact forces remains. Identifying the dynamics in reduced space circumvents hyper-reduction, as
no high dimensions are involved anymore.

Learn or identify the nonlinear force term: Similar to learning the whole dynamics of the system in
reduced space, a ML model can learn single terms of the system. Learning the reduced force term would
deliver large speedups as no HDM dimensions are involved in the force evaluation. This is a similar
approach to data-driven constitutive modeling. However, we want to learn the reduced force term directly.
This means that operations, such as spatial integration and projection, which are required to solve the
HDM, are involved in the operator we want to learn. Nevertheless, successful applications exist for simple
systems with hyperelastic materials.

MOR of contact forces: The share of contact force evaluation in the total computation time can exceed
50% for large crash models. That is, if hyper-reduction reduces the number of elements to be evaluated
by 50%, then the computation time is reduced by 25%. The example assumes a ratio of 50:50 between
internal force evaluation and contact force evaluation. The example further illustrates the necessity of MOR
for contact forces. However, MOR for contact mechanics is a field of research itself and is out of scope for
this work.

Physics-informed dimensionality reduction: POD is a purely data-driven method. Although the data
variance can be interpreted as energy, the results in this thesis do not allow for a direct correlation between
the approximation error of POD and the accuracy of the resulting ROM. The balanced truncation method
introduces concepts such as observability and controllability and yields pROMs with quality and stability
guarantees. Due to the computation of a Gramian matrix, which is computationally intensive, the method
is unsuitable for large systems. Also, the method was initially applied to linear systems. However, recent
developments transfer balanced truncation to nonlinear systems [73].

Local ROB with critical time step adjustment: The adjustment of the critical time step was impossible
due to missing source code access. Bach [1] has proven that the critical time step of the hyper-reduced

134

ROM is larger or equally large as the critical time step of the HDM. Experience emphasizes that the critical
time step correlates with the dimension of the ROM. The dimension of the lROBs is small compared to
a global ROM. This would result in large speedups. Enlarging the critical time step is a potent speedup
mechanism, affecting all parts of the solver, including the contact force evaluation.

Hyper-reduction with history dependency: In the local ROB approach, we introduced three variants
of ECSW hyper-reduction and identified the global-local most suitable for our purpose. A global reduced
mesh is used with local weights. That is, the weights are cluster-specific, and the mesh is global. This
is necessary due to the history dependency. If we assume that an element was not active in the initial
cluster of the simulation and the cluster changes during the simulation, then the element is activated. In
this case, the deformation history is missing. This means although the element is weighted with zero due
to the local refinement of the weights, the element must be evaluated and consumes computation time. An
idea to avoid evaluating zero elements is to reconstruct the field of internal variables using a gappy POD
approach. This would transfer the global-local approach to a fully local-local approach. Then, the local
reduced mesh is also smaller than the global mesh, which results in further speedups.

Space-time local ROB: MOR based on local ROB clusters the solution in state space. Since crash
systems usually deform monotonically in one direction, this is similar to clustering along the temporal axis.
Depending on the velocity, certain solution parts are assigned to clusters. However, the computed modes
are still global to the whole model. However, the solution can be divided locally in space too. Recently,
Anderson [171] proposed space-local ROBs. Separating the spatial domain could yield better results,
especially in models where deformations appear locally. Space-local MOR is closely related to partial
MOR. However, in partial MOR, the modes are also defined globally and couple the deformations of parts.
Cutting the connection in partial MOR is therefore described as the next potential improvement.

Partial MOR, decouple ROMs: Partial MOR excludes sections or parts from the reduction process. The
unreduced part is a HDM and the neighboring ROMs can be considered as boundary conditions. In this
thesis, all reduced parts are combined into one ROM. This means the ROMs are coupled, and one reduced
part cannot deform independently. In our crash box example, the deformation of the upper region of the
crash box is coupled with the deformation of the lower parts. Cutting the connection by using space-local
ROBs could yield better results.

Suitable AE architectures: The offline approximation error is one parameter that influences the online
accuracy of the AE ROM. However, the achievable offline errors can be improved. The discrepancy be-
tween the training and validation errors is a hint of the AE’s bad generalization capability. Since the crash
box is a time-dependent problem, including the time history with convolutions could improve the accuracy.
Recurrent AEs require a fixed time step. A fixed time step prevents an adjustment, so convolutions are
prioritized. Using constraints on the weight matrices, other activation functions, or an oblique projection
could improve the accuracy of the AE ROM while maintaining similar offline accuracy.

Fast higher-order derivatives of AE: The speedup strongly depends on the AE evaluation, including the
Jacobian and Hessian matrix computation. Accelerating the evaluation could be achieved by sparsifying
the AE, using Jacobian vector products instead of explicitly calculating the Jacobian, or using analytical
results of the derivatives.

6.2 Conclusion

The main conclusions are summarized in this final section. More detailed conclusions are given at the end
of each technical Chapter 2, 3, 4, and 5. In this thesis, we extended pMOR for explicit FEM applied to
highly nonlinear systems in crash to parametric problems. First, a detailed discussion of pMOR consid-
ering residual minimization provided the foundation of this work. By using fast and efficient randomized
algorithms for PCA and ECSW hyper-reduction (Bach [1]), we could consider a parametric crash box prob-
lem globally. A global PCA cannot provide a low-dimensional basis to capture the variance in the whole

135

data set. High dimensions are required to construct the ROM. Large dimensions negatively impact the
achievable speedup. The two mechanisms considered in this thesis influenced by the large dimension are
the projection step and ECSW hyper-reduction. The impact of hyper-reduction is the largest. Both, the of-
fline and online phases are negatively affected. The optimization problem of the offline phase is enlarged,
which yields a larger reduced mesh. Accordingly, more elements must be evaluated in the online phase,
and the expected speedup is small.
Therefore, global ROMs do not yield the required speedups and are unsuitable for the intended purpose,
such as robustness studies, uncertainty quantification, or optimization. Suppose pROMs based on a global
linear dimensionality reduction are considered the least complex models, and pROMs based on a global
nonlinear dimensionality reduction are the most complex models. In that case, pROMs based on locally
linear ROBs are the next complexity level from global linear to global nonlinear ROMs. MOR based on
lROBs divides the training samples into clusters and creates linear lROBs for each cluster. An efficient dis-
tance measure determines the nearest cluster, and the local ROM to be used is determined and changed
if needed. Clustering is based on a distance measure. We compared the standard k-means clustering
with spherical k-means clustering, which normalizes the data and accounts for the magnitude difference
of snapshots during the beginning and toward the end of the simulation. While lROB based on spherical
k-means clustering yields slightly more accurate results for ROMs without hyper-reduction, hyper-reduced
models provide comparable accuracy. To summarize, the lROB method enables low-dimensional ROMs
for parametric problems and outperforms the global linear method regarding dimensionality and accuracy.
The prerequisites for a fast ROM are created, and hyper-reduction can be applied. Cluster-specific hyper-
reduction is performed, which yields small reduced meshes with high accuracy. However, the cluster-
specific reduced meshes are combined into a global reduced mesh with cluster-specific weights. History
dependency in the constitutive model enforces a global mesh. This yields an evaluation of elements,
which are weighted afterward with zero. Developing a method to avoid the evaluation of zero elements is a
promising future research direction. In conclusion, parametric pROMs for crash problems were developed
and achieved speedups up to 32%. Adjusting the critical time step and avoiding zero elements will result
in speedups larger than 50%.
The development of parametric ROMs enables their application as boundary conditions. This use case is
important as optimizing single parts embedded in a large model often requires the solution of the entire
model. This is computationally infeasible, which is why simplified models replace the surrounding model
with fixed boundary conditions. However, the underlying assumption of these boundary conditions is that
the solution of the modified part in the model does not change the behavior of the boundary conditions it-
self. That is, the model’s feedback to the surrounding model is neglected. We show that parametric ROMs
based on lROB can serve as reduced boundary conditions. The crash box model is divided into reduced
and unreduced parts, in which the unreduced part is modified. The geometry variations lead to solution
changes of increasing severity. A geometry variation that primarily affects the modification’s local area
can be treated without a parametric ROM. This observation justifies the simplified approach, replacing the
adjacent model with fixed boundary conditions. However, modifications impacting the global solution lead
to a different buckling behavior, and parametric ROMs are required. We have shown that depending on the
sensitivity of the problem, a more or less accurate ROM can be chosen. Especially in sensitive buckling
problems, an accurate ROM using more dimensions must be selected to reproduce the buckling behavior
correctly. Still, speedups of approx. 29% for an accurate ROM and 37% for a less accurate ROM can be
expected related to the reduced parts. The speedup estimation includes evaluating zero elements and no
adjustment of the critical time step.
Finally, we conducted a PoC for pMOR based on nonlinear dimensionality reduction. Finding the true
latent dimension of a problem can further reduce the dimension of the ROM and positively influence
hyper-reduction, resulting in even smaller reduced meshes. However, nonlinear dimensionality reduc-
tion increases complexity. No stability and accuracy estimates are available anymore. Nevertheless, we
can present the first results using an AE for pMOR for explicit FEM in crash. The low dimension of the
AE yields a reduction of 85% of all elements. However, the accuracy of the resulting AE ROM may be
insufficient for industrial applications.

136

To summarize, this thesis presents the extension of pMOR to parametric problems for crash and impact.
Methods reaching from global linear approximations to global nonlinear approximations are presented and
investigated. While globally linear methods are still in research, locally linear MOR is suitable for paramet-
ric problems and yields fast and accurate ROMs. Nevertheless, as presented in Section 6.1, the potential
for improvement promotes further research in this direction.

137

A Appendix

A.1 List of Supervised Study Projects

As part of this dissertation, the student works listed below were created at the Associate Professorship
of Computational Solid Mechanics between 2020 and 2023 under the author’s essential scientific, tech-
nical and content-related guidance. The author would like to thank all students for their commitment to
supporting this academic work.

Name Thesis Title Programme of Study Year

Evgeni Todorov Restoring Force Surface Models for Fi-
nite Element Modeling in Crash Analysis

Computational Science
and Engineering

2021

Maternus Herold Projection-based Model Order Reduction
using Autoencoders in nonlinear Finite
Element Analysis

Informatics 2022

Syed Saadat Shakeel Model Order Reduction in Crash using
nonlinear Dimensional Reduction, einge-
flossen in Kapitel 5

Computational Mechan-
ics

2023

138

A.2 Hyper-reduction Offline Results

This section tabulates the offline results for the global-local hyper-reduced ROMs with dimension k = 30
and k = 40. The results for the ROM with k = 30 are tabulated in Tab. A.1 and Tab. A.2 and the results
for the ROM with k = 40 are tabulated in Tab. A.3 and Tab. A.4.

Table A.1 Summary of global-local hyper-reduction for ROMs with 3 and 6 clusters and an approximation rank of
k = 30.

cluster τ cluster k-means spherical k-means
i |Ẽ| αi τi |Ẽ| αi τi

3 0.01 1 916 0.92 0.454% 896 0.84 0.456%
0.01 2 916 0.69 0.344% 896 0.95 0.607%
0.01 3 916 0.89 0.484% 896 0.49 0.209%
0.02 1 714 0.87 0.870% 705 0.80 0.966%
0.02 2 714 0.68 0.895% 705 0.88 1.137%
0.02 3 714 0.79 0.939% 705 0.50 0.495%
0.03 1 596 0.84 1.568% 587 0.76 1.585%
0.03 2 596 0.65 1.596% 587 0.85 1.709%
0.03 3 596 0.77 1.397% 587 0.50 0.902%

6 0.01 1 1128 0.77 0.321% 1141 0.82 0.414%
0.01 2 1128 0.75 0.227% 1141 0.80 0.281%
0.01 3 1128 0.55 0.339% 1141 0.44 0.236%
0.01 4 1128 0.69 0.409% 1141 0.72 0.413%
0.01 5 1128 0.70 0.357% 1141 0.51 0.304%
0.01 6 1128 0.54 0.240% 1141 0.39 0.190%
0.02 1 892 0.72 0.606% 879 0.73 0.846%
0.02 2 892 0.70 0.419% 879 0.75 0.624%
0.02 3 892 0.53 0.645% 879 0.47 0.508%
0.02 4 892 0.65 0.677% 879 0.70 0.716%
0.02 5 892 0.63 0.672% 879 0.52 0.596%
0.02 6 892 0.56 0.530% 879 0.40 0.519%
0.03 1 762 0.70 0.909% 749 0.68 1.230%
0.03 2 762 0.69 0.587% 749 0.71 1.061%
0.03 3 762 0.51 0.945% 749 0.48 0.731%
0.03 4 762 0.65 0.900% 749 0.68 1.035%
0.03 5 762 0.58 0.968% 749 0.52 0.867%
0.03 6 762 0.54 1.056% 749 0.41 0.877%

139

Table A.2 Summary of global-local hyper-reduction for ROMs with 9 clusters and an approximation rank of k = 30.

cluster τ cluster k-means spherical k-means
i |Ẽ| αi τi |Ẽ| αi τi

9 0.01 1 1190 0.60 0.256% 1257 0.35 0.277%
0.01 2 1190 0.70 0.294% 1257 0.68 0.223%
0.01 3 1190 0.47 0.260% 1257 0.69 0.248%
0.01 4 1190 0.60 0.340% 1257 0.42 0.275%
0.01 5 1190 0.49 0.528% 1257 0.58 0.433%
0.01 6 1190 0.39 0.191% 1257 0.65 0.369%
0.01 7 1190 0.51 0.217% 1257 0.41 0.329%
0.01 8 1190 0.27 0.699% 1257 0.53 0.312%
0.01 9 1190 0.56 0.341% 1257 0.35 0.183%
0.02 1 933 0.59 0.412% 969 0.37 0.538%
0.02 2 933 0.63 0.663% 969 0.66 0.398%
0.02 3 933 0.49 0.648% 969 0.65 0.612%
0.02 4 933 0.53 0.627% 969 0.42 0.490%
0.02 5 933 0.48 0.778% 969 0.57 0.690%
0.02 6 933 0.41 0.530% 969 0.58 0.685%
0.02 7 933 0.48 0.444% 969 0.42 0.539%
0.02 8 933 0.28 0.966% 969 0.54 0.519%
0.02 9 933 0.56 0.551% 969 0.37 0.561%
0.03 1 798 0.55 0.706% 826 0.39 0.810%
0.03 2 798 0.61 0.947% 826 0.62 0.656%
0.03 3 798 0.49 0.988% 826 0.61 0.939%
0.03 4 798 0.45 0.993% 826 0.44 0.697%
0.03 5 798 0.47 1.005% 826 0.55 0.919%
0.03 6 798 0.40 0.919% 826 0.52 1.070%
0.03 7 798 0.44 0.870% 826 0.42 0.805%
0.03 8 798 0.30 1.135% 826 0.54 0.713%
0.03 9 798 0.55 0.751% 826 0.36 1.003%

140

Table A.3 Summary of global-local hyper-reduction for ROMs with 3 and 6 clusters and an approximation rank of
k = 40.

cluster τ cluster k-means spherical k-means
i |Ẽ| αi τi |Ẽ| αi τi

3 0.01 1 970 0.92 0.458% 949 0.83 0.452%
0.01 2 970 0.71 0.349% 949 0.95 0.575%
0.01 3 970 0.91 0.486% 949 0.52 0.193%
0.02 1 769 0.86 0.880% 752 0.81 0.952%
0.02 2 769 0.71 0.896% 752 0.87 1.095%
0.02 3 769 0.82 0.934% 752 0.51 0.534%
0.03 1 652 0.85 1.363% 647 0.79 1.488%
0.03 2 652 0.69 1.500% 647 0.87 1.643%
0.03 3 652 0.76 1.429% 647 0.52 0.936%

6 0.01 1 1196 0.78 0.297% 1217 0.85 0.398%
0.01 2 1196 0.76 0.249% 1217 0.79 0.307%
0.01 3 1196 0.57 0.285% 1217 0.47 0.226%
0.01 4 1196 0.70 0.397% 1217 0.73 0.414%
0.01 5 1196 0.72 0.384% 1217 0.53 0.284%
0.01 6 1196 0.56 0.277% 1217 0.40 0.178%
0.02 1 962 0.74 0.633% 977 0.71 0.881%
0.02 2 962 0.73 0.439% 977 0.75 0.559%
0.02 3 962 0.56 0.568% 977 0.48 0.477%
0.02 4 962 0.67 0.666% 977 0.70 0.699%
0.02 5 962 0.66 0.714% 977 0.54 0.503%
0.02 6 962 0.56 0.630% 977 0.41 0.487%
0.03 1 817 0.70 0.973% 841 0.64 1.387%
0.03 2 817 0.70 0.687% 841 0.71 0.924%
0.03 3 817 0.55 0.865% 841 0.50 0.629%
0.03 4 817 0.67 0.929% 841 0.68 1.003%
0.03 5 817 0.61 1.073% 841 0.53 0.780%
0.03 6 817 0.55 1.065% 841 0.41 0.755%

141

Table A.4 Summary of global-local hyper-reduction for ROMs with 9 clusters and an approximation rank of k = 40.

cluster τ cluster k-means spherical k-means
i |Ẽ| αi τi |Ẽ| αi τi

9 0.01 1 1332 0.63 0.219% 1338 0.36 0.248%
0.01 2 1332 0.70 0.242% 1338 0.72 0.192%
0.01 3 1332 0.49 0.212% 1338 0.71 0.256%
0.01 4 1332 0.67 0.292% 1338 0.45 0.246%
0.01 5 1332 0.59 0.411% 1338 0.62 0.399%
0.01 6 1332 0.40 0.176% 1338 0.71 0.309%
0.01 7 1332 0.57 0.208% 1338 0.44 0.305%
0.01 8 1332 0.47 0.295% 1338 0.55 0.293%
0.01 9 1332 0.58 0.260% 1338 0.36 0.168%
0.02 1 1073 0.61 0.382% 1080 0.39 0.408%
0.02 2 1073 0.65 0.582% 1080 0.68 0.378%
0.02 3 1073 0.49 0.522% 1080 0.67 0.513%
0.02 4 1073 0.58 0.564% 1080 0.46 0.405%
0.02 5 1073 0.56 0.644% 1080 0.60 0.609%
0.02 6 1073 0.41 0.477% 1080 0.61 0.661%
0.02 7 1073 0.53 0.408% 1080 0.44 0.497%
0.02 8 1073 0.47 0.565% 1080 0.56 0.438%
0.02 9 1073 0.56 0.465% 1080 0.39 0.338%
0.03 1 933 0.60 0.507% 923 0.41 0.628%
0.03 2 933 0.62 0.852% 923 0.66 0.622%
0.03 3 933 0.50 0.741% 923 0.64 0.920%
0.03 4 933 0.55 0.766% 923 0.48 0.576%
0.03 5 933 0.54 0.889% 923 0.59 0.842%
0.03 6 933 0.41 0.829% 923 0.56 1.025%
0.03 7 933 0.52 0.542% 923 0.45 0.656%
0.03 8 933 0.45 0.709% 923 0.56 0.663%
0.03 9 933 0.57 0.602% 923 0.37 0.930%

A.3 Local ROB: Hyper-reduction Online Results - Parameter Study

This section includes further evaluations of the parameter study for the hyper-reduced local ROMs pre-
sented in subsection 3.3.6. The figures differ from those in Subsection 3.3.6 in that they use the same
y-axis scaling.

142

0.0

0.1

0.2

ε(k) nc=3 τ=0.01 global nc=3 τ=0.01 local nc=3 τ=0.02 global

0.0

0.1

0.2

nc=3 τ=0.02 local nc=3 τ=0.03 global nc=3 τ=0.03 local

0.0

0.1

0.2

nc=6 τ=0.01 global nc=6 τ=0.01 local nc=6 τ=0.02 global

0.0

0.1

0.2

nc=6 τ=0.02 local nc=6 τ=0.03 global nc=6 τ=0.03 local

0.0

0.1

0.2

nc=9 τ=0.01 global nc=9 τ=0.01 local nc=9 τ=0.02 global

15 30 40
0.0

0.1

0.2

nc=9 τ=0.02 local

15 30 40

nc=9 τ=0.03 global

15 30 40
rank k

nc=9 τ=0.03 local

high defo kmeans
high defo sphere

low defo kmeans
low defo sphere

Figure A.1 Hyper-reduction comparison between the k-means ROM and spherical k-means ROM for both test cases.

143

0.0

0.1

0.2

ε(k)
high defo kmeans 3 high defo sphere 3 low defo kmeans 3

0.0

0.1

0.2

low defo sphere 3 high defo kmeans 6 high defo sphere 6

0.0

0.1

0.2

low defo kmeans 6 low defo sphere 6 high defo kmeans 9

15 30 40
0.0

0.1

0.2

high defo sphere 9

15 30 40

low defo kmeans 9

15 30 40
rank k

low defo sphere 9

global τ=0.01
local τ=0.01

global τ=0.02
local τ=0.02

global τ=0.03
local τ=0.03

Figure A.2 Hyper-reduction comparison of the global-global approach versus the global-local approach.

144

0.00

0.05

0.10

0.15

0.20

0.25

ε(k)
high defo kmeans global high defo kmeans local

0.00

0.05

0.10

0.15

0.20

0.25

high defo sphere global high defo sphere local

0.00

0.05

0.10

0.15

0.20

0.25

low defo kmeans global low defo kmeans local

15 30 40
0.00

0.05

0.10

0.15

0.20

0.25

low defo sphere global

15 30 40
rank k

low defo sphere local

nc =3 τ=0.01
nc =3 τ=0.02
nc =3 τ=0.03
nc =6 τ=0.01
nc =6 τ=0.02
nc =6 τ=0.03
nc =9 τ=0.01
nc =9 τ=0.02
nc =9 τ=0.03

Figure A.3 Comparison of all cluster numbers and tolerances τ for one hyper-reduced ROM for one test case in
each subplot.

145

A.4 Fortran C Interface

An exemplary implementation of the Fortran C interface, as illustrated in Fig. 5.8, is presented for the
interested reader. Using the example of the predict function, code snippets of the interface are shown.
The predict function in Fortran is the entry point of the interface and is called in each solver iteration. We
begin with the declaration of the predict function in Fortran, as seen in Listing A.1. As the subroutine
definition is not inside a program, another subroutine, function, or module, the subroutine is external,
and the subroutine declaration is wrapped in an interface. The Iso-C-binding module is used to ensure
interoperability with the C programming language. The bind attribute in line 3 ensures that the subroutine
is interoperable with C. Also, the usage of the types c_ptr and c_int serve the same purpose. Fortran
passes by default references, which can be considered pointers in C. Since c_ptr is already a pointer type,
the value attribute is passed, forcing Fortran to pass the variable’s value. The value attribute is also used
to pass the dimensions of the arrays by value to the function definition in C, which is shown in Listing A.4.

1 i n t e r f a c e p r e d i c t
2 subrou t ine p r e d i c t (s ta te , jac_mat , hes_mat , dim1 , dim2)
3 bind (C, name=" p r e d i c t ")
4 use , i n t r i n s i c : : iso_c_bind ing , on ly : c_pt r , c _ i n t
5 i m p l i c i t none
6 type (c_p t r) , value : : s t a te
7 type (c_p t r) , value : : jac_mat
8 type (c_p t r) , value : : hes_mat
9 !DIMENSIONS

10 i n t e g e r (c _ i n t) , value : : dim1
11 i n t e g e r (c _ i n t) , value : : dim2
12 end subrou t ine p r e d i c t
13 end i n t e r f a c e p r e d i c t

Listing A.1 Declaration of a generic predict function

Before we discuss the implementation of the predict function, which will use the Python C-API, we need to
initialize the interpreter first. Since the declaration in Fortran of a function implemented in C has already
been shown, we will forego it and show the C code directly. The init_python function is shown in Listing
A.2. Assume the python file module.py is saved in the directory "folder." The Python file contains the pure-
python function Pypredict. In Python, every variable, every function, and every module is a Python object
(PyObject) defined in Python.h. The variables pModule and pFunc will be used in other functions, which
is why they are defined globally. In the function init_python in Listing A.2, the python C-API functions can
be used after the Python interpreter is initialized. For instance, strings can be directly executed. Finally,
the function is identified in the module and assigned to pFunc. The reference count of unused variables
is decremented since Python has a garbage collector, which will free the memory allocated by unused
variables.

1 # inc lude < s t d i o . h>
2 # inc lude <Python . h>
3

4 / / Python ob jec ts o f module and f u n c t i o n
5 / / Def ined i n g loba l scope
6 PyObject * pModule = NULL;
7 PyObject * pFunc = NULL ;
8

9 / / S t r i ngs o f module and f u n c t i o n
10 char module [] = " f o l d e r . module " ;
11 char func [] = " Pypred ic t " ;
12

146

13 vo id i n i t _ p y t h o n () {
14

15 / / For decoded s t r i n g
16 PyObject *pName;
17

18 / / I n i t i a l i z e Python I n t e r p r e t e r
19 P y _ I n i t i a l i z e () ;
20

21 / / Now, the C−API can be used
22 / / Execute S t r i n g
23 PyRun_SimpleString (" impor t sys ") ;
24

25 / / Get the module
26 pName = PyUnicode_DecodeFSDefault (module) ;
27 pModule = PyImport_Import (pName) ;
28

29

30 / / Check i f module was found
31 i f (pModule != NULL) {
32 / / Get f u n c t i o n o f module
33 pFunc = PyObjec t_GetAt t rS t r ing (pModule , func) ;
34 }
35

36 / / Decrease re ference count
37 Py_DECREF(pName) ;
38 }

Listing A.2 Initialization of the python Interpreter.

Once the interpreter is set up, the prediction of the AE can be obtained using Python. We must utilize the
C-API and tell the interpreter to call the Python function stored in pFunc. However, before we can call the
Python function, we need to wrap the data passed by Fortran in a suitable Python object. In this work, we
decided to use the Numpy [152] C-API to directly create Numpy arrays, which are passed to the Python
function. The benefit is that the memory address is passed directly, and there is no need to copy the
data. However, this is beyond the scope of this report. Therefore, we quickly illustrate the idea by creating
a Python list based on a one-dimensional C array in Listing A.3. Even a float value is an object inside
Python. Therefore, the C double must be converted to a PyFloat before inserting it into the list.

1 / / Funct ion to conver t a C ar ray to a Python l i s t
2 PyObject * a r r a y _ t o _ l i s t (double * array , i n t dim1) {
3 PyObject * p y L i s t = PyList_New (dim1) ;
4

5 f o r (i n t i = 0 ; i < dim1 ; ++ i) {
6 / / Also a simple f l o a t i s a Python ob jec t
7 PyObject * pyValue = PyFloat_FromDouble (ar ray [i]) ;
8 / / I n s e r t the f l o a t a t p o s i t i o n i
9 PyLis t_Set I tem (pyL is t , i , pyValue) ;

10 }
11

12 r e t u r n p y L i s t ;
13 }

Listing A.3 Function which transfers data from a one-dimensional array to a Python list.

147

Finally, the C-API is used to call the function, which will execute the function defined in pure Python. This
is the function which will use Keras to query the AE. The call to the Python function happens in line 13
of Listing A.4. In the conversion of the raw data to the Python list, we used that dim1≤dim2, and before
writing the results of the Python function back to state, the first dim1 values of state can be used to pass
the latent variable state to the decoder.

1 vo id p r e d i c t (vo id * s ta te , vo id * jac , vo id * hes , i n t dim1 , i n t dim2) {
2

3 PyObject * pArgs , * pReturnValue ;
4 PyObject * pstate , * pjac , * phes ;
5

6 ps ta te = a r r a y _ t o _ l i s t ((double *) s ta te , dim1) ;
7

8 / / Create tup l e o f arguments which are passed to pFunc
9 pArgs = PyTuple_New (1) ;

10 PyTuple_SetItem (pArgs , 0 , ps ta te) ;
11

12 / / Ca l l the Python f u n c t i o n
13 pReturnValue = PyObject_Cal lObject (pFunc , pArgs) ;
14

15 Py_DECREF(pArgs) ;
16

17 / / Obtain the r e t u r n values
18 ps ta te = PyTuple_GetItem (pReturnValue , 0) ;
19 pjac = PyTuple_GetItem (pReturnValue , 1) ;
20 phes = PyTuple_GetItem (pReturnValue , 2) ;
21

22 / / Copy data from PyL is t to double ar ray
23 f o r (i n t i = 0 ; i < dim2 ; ++ i) {
24 PyObject * l i s t I t e m = PyList_GetI tem (pstate , i) ;
25 s ta te [i] = PyFloat_AsDouble (l i s t I t e m) ;
26 }
27

28 / *
29 Do the same f o r Jacobian and Hessian Mat r i x here . . .
30 * /
31

32 Py_DECREF(pReturnValue) ;
33 r e t u r n ;
34 }

Listing A.4 Implementation of the predict function declared in Fortran.

The function Pypredict is now accessible by Fortran, and an exemplary implementation is shown in Listing
A.5. The one-dimensional state is converted to a Python list to illustrate the conversion back to a C array
in Listing A.4. The two- and three-dimensional arrays for the Jacobian and Hessian matrices are left as
Numpy arrays.

1 def Pypred ic t (x) :
2 #conver t s t a te x to s u i t a b l e shape
3 x =np . ar ray (x)
4 x = x . reshape ((1 , −1))
5 x = t f . conver t_ to_ tensor (x , dtype= t f . dtypes . f l o a t 6 4)
6

148

7 #Query the AE model
8 s ta te , J , H = Decoder (x)
9

10 #Obtain numeric values
11 s ta te = l i s t (s t a t e . numpy ())
12

13 J = J . numpy ()
14 H = H. numpy ()
15

16 r e t u r n s ta te , J , H

Listing A.5 Pure-Python implementation of the function Pypredict.

The function which finally queries the AE uses the automatic differentiation(AD) framework of Tensorflow,
as can be seen in Listing A.6.

1 @tf . f u n c t i o n
2 def Decoder (x) :
3 wi th t f . GradientTape () as t2 :
4 t2 . watch (x)
5 wi th t f . GradientTape () as t1 :
6 t1 . watch (x)
7 # P r e d i c t i o n o f the AE
8 y = model (x)
9 J = t1 . batch_jacobian (y , x)

10 H = t2 . batch_jacobian (J , x)
11

12 r e t u r n y [0 , :] , J [0 , : , :] , H [0 , : , : , :]

Listing A.6 Using AD to obtain the Jacobian and Hessian matrix.

Finally, we mention important things that were not sufficiently discussed in the short illustration of the
interface. Care must be taken for the data types of the numeric data. If double values are passed to
Python, they must be declared as such. Mixing floats and double values leads to the wrong interpretation
of the data and may cause segmentation faults. Also, Fortran uses a different memory layout than C. This
layout becomes important when working with higher-dimensional arrays.
We touched slightly on memory management by decreasing the reference counts of some objects. When
using the Python C-API, it is important to correctly increase or decrease the reference counts of objects.
Otherwise, memory leaks or segmentation faults can occur. It is also important to close the interpreter
and release all memory at the end of the application. Python itself is not thread-safe, which is why Python
has the global interpreter lock (GIL). The GIL prevents multiple threads from executing Python code at
the same time. Care must be taken when interfacing with a multi-threaded application such as LS-Dyna.
The example shown completely dispenses with checks, but they are recommended to avoid application
crashes and help in the error search. For instance, checks could be introduced if the module and function
are found and correctly loaded. Also, it checks if the function call was successful or if the returned Python
type is the expected one.
Since we include the Python header Python.h, we also need to provide it at compile time. The Python
configure script can be used to find the required includes:

1 python3−con f i g −−p r e f i x |−−exec−p r e f i x |−− i nc ludes|−− l i b s |−−c f l a g s |−− l d f l a g s
2 |−−extension−s u f f i x |−−help|−−a b i f l a g s |−−c o n f i g d i r |−−embed

Listing A.7 Python configure script.

During linking, it is necessary to link against the Python library, which is achieved by passing the option:

149

1 −lpy thon3 .8

to the linker, where 3.8 denotes the used Python version.

151

Bibliography

[1] C. Bach. “Data-driven model order reduction for nonlinear crash and impact simulations”. Disserta-
tion. München: Technische Universität München, 2019. ISBN: 978-3-8440-7297-6.

[2] C. Czech, M. Lesjak, C. Bach, and F. Duddeck. “Data-driven models for crashworthiness optimi-
sation: intrusive and non-intrusive model order reduction techniques”. In: Structural and Multidisci-
plinary Optimization 65.7 (2022). DOI: 10.1007/s00158-022-03282-1.

[3] P. Benner, S. Gugercin, and K. Willcox. “A Survey of Projection-Based Model Reduction Methods
for Parametric Dynamical Systems”. In: SIAM Review 57.4 (2015), pp. 483–531. DOI: 10.1137/
130932715.

[4] M. Eldred and D. Dunlavy. “Formulations for Surrogate-Based Optimization with Data Fit, Multifi-
delity, and Reduced-Order Models”. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimiza-
tion Conference. DOI: 10.2514/6.2006-7117.

[5] J. Fehr, P. Holzwarth, and P. Eberhard. “Interface and model reduction for efficient explicit simulations-
a case study with nonlinear vehicle crash models”. In: Mathematical and Computer Modelling of
Dynamical Systems 22.4 (2016), pp. 380–396. DOI: 10.1080/13873954.2016.1198385.

[6] D. Grunert and J. Fehr. “Identification of nonlinear behavior with clustering techniques in car crash
simulations for better model reduction”. In: Advanced Modeling and Simulation in Engineering Sci-
ences 3.1 (2016), pp. 1–19. DOI: 10.1186/s40323-016-0072-x.

[7] M. F. Hussain, R. R. Barton, and S. B. Joshi. “Metamodeling: Radial basis functions, versus polyno-
mials”. In: European Journal of Operational Research 138.1 (2002), pp. 142–154. DOI: 10.1016/
S0377-2217(01)00076-5.

[8] M. D. Spiridonakos and E. N. Chatzi. “Metamodeling of dynamic nonlinear structural systems
through polynomial chaos NARX models”. In: Computers & Structures 157 (2015), pp. 99–113.
DOI: 10.1016/j.compstruc.2015.05.002.

[9] M. Guo and J. S. Hesthaven. “Reduced order modeling for nonlinear structural analysis using
Gaussian process regression”. In: Computer Methods in Applied Mechanics and Engineering 341
(2018), pp. 807–826. DOI: 10.1016/j.cma.2018.07.017.

[10] M. Guo and J. S. Hesthaven. “Data-driven reduced order modeling for time-dependent problems”.
In: Computer Methods in Applied Mechanics and Engineering 345 (2019), pp. 75–99. DOI: 10.
1016/j.cma.2018.10.029.

[11] M. Kast, M. Guo, and J. S. Hesthaven. “A non-intrusive multifidelity method for the reduced order
modeling of nonlinear problems”. In: Computer Methods in Applied Mechanics and Engineering
364 (2020), p. 112947. DOI: 10.1016/j.cma.2020.112947.

[12] J. P. C. Kleijnen. “Kriging metamodeling in simulation: A review”. In: European Journal of Opera-
tional Research 192.3 (2009), pp. 707–716. DOI: 10.1016/j.ejor.2007.10.013.

[13] J. S. Hesthaven and S. Ubbiali. “Non-intrusive reduced order modeling of nonlinear problems using
neural networks”. In: Journal of Computational Physics 363 (2018), pp. 55–78. DOI: 10.1016/j.
jcp.2018.02.037.

[14] J. Kneifl, D. Grunert, and J. Fehr. “A nonintrusive nonlinear model reduction method for structural
dynamical problems based on machine learning”. In: International Journal for Numerical Methods
in Engineering 122.17 (2021), pp. 4774–4786. DOI: 10.1002/nme.6712.

https://doi.org/10.1007/s00158-022-03282-1
https://doi.org/10.1137/130932715
https://doi.org/10.1137/130932715
https://doi.org/10.2514/6.2006-7117
https://doi.org/10.1080/13873954.2016.1198385
https://doi.org/10.1186/s40323-016-0072-x
https://doi.org/10.1016/S0377-2217(01)00076-5
https://doi.org/10.1016/S0377-2217(01)00076-5
https://doi.org/10.1016/j.compstruc.2015.05.002
https://doi.org/10.1016/j.cma.2018.07.017
https://doi.org/10.1016/j.cma.2018.10.029
https://doi.org/10.1016/j.cma.2018.10.029
https://doi.org/10.1016/j.cma.2020.112947
https://doi.org/10.1016/j.ejor.2007.10.013
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1002/nme.6712

152

[15] J. Kneifl and J. Fehr. “Machine Learning Algorithms for Learning Nonlinear Terms of Reduced
Mechanical Models in Explicit Structural Dynamics”. In: PAMM 20.S1 (2021), e202000353. DOI:
10.1002/pamm.202000353.

[16] J. Kneifl, J. Hay, and J. Fehr. “Real-time Human Response Prediction Using a Non-intrusive Data-
driven Model Reduction Scheme”. In: IFAC-PapersOnLine 55.20 (2022), pp. 283–288. DOI: 10.
1016/j.ifacol.2022.09.109.

[17] A. Fuchs, Y. Heider, K. Wang, W. Sun, and M. Kaliske. “DNN2: A hyper-parameter reinforcement
learning game for self-design of neural network based elasto-plastic constitutive descriptions”. In:
Computers & Structures 249 (2021), p. 106505. DOI: 10.1016/j.compstruc.2021.106505.

[18] S. F. Masri, A. G. Chassiakos, and T. K. Caughey. “Identification of Nonlinear Dynamic Systems
Using Neural Networks”. In: Journal of Applied Mechanics 60.1 (1993), pp. 123–133. DOI: 10.
1115/1.2900734.

[19] J.-S. Pei and E. C. Mai. “Constructing Multilayer Feedforward Neural Networks to Approximate
Nonlinear Functions in Engineering Mechanics Applications”. In: Journal of Applied Mechanics
75.6 (2008), p. 061002. DOI: 10.1115/1.2957600.

[20] R. Zhang, Y. Liu, and H. Sun. “Physics-informed multi-LSTM networks for metamodeling of nonlin-
ear structures”. In: Computer Methods in Applied Mechanics and Engineering 369 (2020), p. 113226.
DOI: 10.1016/j.cma.2020.113226.

[21] S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”. In: Proceedings of the National Academy of Sci-
ences 113.15 (2016), pp. 3932–3937. DOI: 10.1073/pnas.1517384113.

[22] B. Peherstorfer and K. Willcox. “Dynamic data-driven model reduction: adapting reduced models
from incomplete data”. In: Advanced Modeling and Simulation in Engineering Sciences 3.1 (2016),
pp. 1–22. DOI: 10.1186/s40323-016-0064-x.

[23] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox. “Lift & Learn: Physics-informed machine learn-
ing for large-scale nonlinear dynamical systems”. In: Physica D: Nonlinear Phenomena 406 (2020),
p. 132401. DOI: 10.1016/j.physd.2020.132401.

[24] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. “Data-driven discovery of coordinates
and governing equations”. In: Proceedings of the National Academy of Sciences 116.45 (2019),
pp. 22445–22451. DOI: 10.1073/pnas.1906995116.

[25] N. Sawant, B. Kramer, and B. Peherstorfer. “Physics-informed regularization and structure preser-
vation for learning stable reduced models from data with operator inference”. In: Computer Meth-
ods in Applied Mechanics and Engineering 404 (2023), p. 115836. DOI: 10.1016/j.cma.2022.
115836.

[26] A. A. Kaptanoglu, J. L. Callaham, A. Aravkin, C. J. Hansen, and S. L. Brunton. “Promoting global
stability in data-driven models of quadratic nonlinear dynamics”. In: Phys. Rev. Fluids 6.9 (2021),
p. 094401. DOI: 10.1103/PhysRevFluids.6.094401.

[27] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. “Physics-informed
machine learning”. In: Nature Reviews Physics 3.6 (2021), pp. 422–440. DOI: 10.1038/s42254-
021-00314-5.

[28] M. Raissi, P. Perdikaris, and G. Karniadakis. “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions”. In: Journal of Computational Physics 378 (2019), pp. 686–707. DOI: https://doi.org/
10.1016/j.jcp.2018.10.045.

[29] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. “Learning nonlinear operators via Deep-
ONet based on the universal approximation theorem of operators”. In: Nature Machine Intelligence
3.3 (2021), pp. 218–229. DOI: 10.1038/s42256-021-00302-5.

https://doi.org/10.1002/pamm.202000353
https://doi.org/10.1016/j.ifacol.2022.09.109
https://doi.org/10.1016/j.ifacol.2022.09.109
https://doi.org/10.1016/j.compstruc.2021.106505
https://doi.org/10.1115/1.2900734
https://doi.org/10.1115/1.2900734
https://doi.org/10.1115/1.2957600
https://doi.org/10.1016/j.cma.2020.113226
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1186/s40323-016-0064-x
https://doi.org/10.1016/j.physd.2020.132401
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1016/j.cma.2022.115836
https://doi.org/10.1016/j.cma.2022.115836
https://doi.org/10.1103/PhysRevFluids.6.094401
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42256-021-00302-5

153

[30] J. Mann and N. J. Kutz. “Dynamic mode decomposition for financial trading strategies”. In: Quanti-
tative Finance 16.11 (2016), pp. 1643–1655. DOI: 10.1080/14697688.2016.1170194.

[31] P. J. Schmid. “Dynamic mode decomposition of numerical and experimental data”. In: Journal of
Fluid Mechanics 656 (2010), pp. 5–28. DOI: 10.1017/S0022112010001217.

[32] K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T. Schmidt,
S. Gordeyev, V. Theofilis, and L. S. Ukeiley. “Modal Analysis of Fluid Flows: An Overview”. In: AIAA
Journal 55.12 (2017), pp. 4013–4041. DOI: 10.2514/1.J056060.

[33] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. “A Data–Driven Approximation of the Koopman
Operator: Extending Dynamic Mode Decomposition”. In: Journal of Nonlinear Science 25.6 (2015),
pp. 1307–1346. DOI: 10.1007/s00332-015-9258-5.

[34] Z. Lai and S. Nagarajaiah. “Sparse structural system identification method for nonlinear dynamic
systems with hysteresis/inelastic behavior”. In: Mechanical Systems and Signal Processing 117
(2019), pp. 813–842. DOI: 10.1016/j.ymssp.2018.08.033.

[35] M. Stender, S. Oberst, and N. Hoffmann. “Recovery of Differential Equations from Impulse Re-
sponse Time Series Data for Model Identification and Feature Extraction”. In: Vibration 2.1 (2019),
pp. 25–46. DOI: 10.3390/vibration2010002.

[36] G. Thiele, A. Fey, D. Sommer, and J. Krüger. “System identification of a hysteresis-controlled pump
system using SINDy”. In: 2020 24th International Conference on System Theory, Control and Com-
puting (ICSTCC). 2020, pp. 457–464. DOI: 10.1109/ICSTCC50638.2020.9259776.

[37] G. F. Sirca and H. Adeli. “System identification in structural engineering”. In: Scientia Iranica 19.6
(2012), pp. 1355–1364. DOI: 10.1016/j.scient.2012.09.002.

[38] R. Ceravolo, S. Erlicher, and L. Z. Fragonara. “Comparison of restoring force models for the iden-
tification of structures with hysteresis and degradation”. In: Journal of Sound and Vibration 332.26
(2013), pp. 6982–6999. DOI: 10.1016/j.jsv.2013.08.019.

[39] E. Kim and M. Cho. “Equivalent model construction for a non-linear dynamic system based on an
element-wise stiffness evaluation procedure and reduced analysis of the equivalent system”. In:
Computational Mechanics 60.5 (2017), pp. 709–724. DOI: 10.1007/s00466-017-1435-y.

[40] R. Perez, X. Q. Wang, and M. P. Mignolet. “Nonintrusive Structural Dynamic Reduced Order Mod-
eling for Large Deformations: Enhancements for Complex Structures”. In: Journal of Computational
and Nonlinear Dynamics 9.3 (2014), p. 031008. DOI: 10.1115/1.4026155.

[41] J. Lee, J. Lee, H. Cho, E. Kim, and M. Cho. “Reduced-order modeling of nonlinear structural dy-
namical systems via element-wise stiffness evaluation procedure combined with hyper-reduction”.
In: Computational Mechanics 67.2 (2021), pp. 523–540. DOI: 10.1007/s00466-020-01946-7.

[42] P. M. Slaats, J. de Jongh, and A. Sauren. “Model reduction tools for nonlinear structural dynam-
ics”. In: Computers & Structures 54.6 (1995), pp. 1155–1171. DOI: 10.1016/0045-7949(94)
00389-K.

[43] S. R. Idelsohn and A. Cardona. “A reduction method for nonlinear structural dynamic analysis”. In:
Computer Methods in Applied Mechanics and Engineering 49.3 (1985), pp. 253–279. DOI: 10.
1016/0045-7825(85)90125-2.

[44] J. Barbič and D. L. James. “Real-time subspace integration for St. Venant-Kirchhoff deformable
models”. In: ACM Transactions on Graphics (TOG) 24.3 (2005), pp. 982–990. DOI: 10.1145/
1073204.1073300.

[45] P. Tiso, E. Jansen, and M. Abdalla. “Reduction method for finite element nonlinear dynamic analysis
of shells”. In: AIAA Journal 49.10 (2011), pp. 2295–2304. DOI: 10.2514/1.J051003.

[46] P. Tiso. “Optimal second order reduction basis selection for nonlinear transient analysis”. In: Modal
Analysis Topics, Volume 3. Springer, 2011, pp. 27–39. DOI: 10.1007/978-1-4419-9299-4_3.

https://doi.org/10.1080/14697688.2016.1170194
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.2514/1.J056060
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1016/j.ymssp.2018.08.033
https://doi.org/10.3390/vibration2010002
https://doi.org/10.1109/ICSTCC50638.2020.9259776
https://doi.org/10.1016/j.scient.2012.09.002
https://doi.org/10.1016/j.jsv.2013.08.019
https://doi.org/10.1007/s00466-017-1435-y
https://doi.org/10.1115/1.4026155
https://doi.org/10.1007/s00466-020-01946-7
https://doi.org/10.1016/0045-7949(94)00389-K
https://doi.org/10.1016/0045-7949(94)00389-K
https://doi.org/10.1016/0045-7825(85)90125-2
https://doi.org/10.1016/0045-7825(85)90125-2
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.2514/1.J051003
https://doi.org/10.1007/978-1-4419-9299-4_3

154

[47] O. Weeger, U. Wever, and B. Simeon. “On the use of modal derivatives for nonlinear model order re-
duction”. In: International Journal for Numerical Methods in Engineering 108.13 (2016), pp. 1579–
1602. DOI: 10.1002/nme.5267.

[48] A. K. Noor, C. M. Andersen, and J. M. Peters. “Reduced basis technique for nonlinear vibra-
tion analysis of composite panels”. In: Computer Methods in Applied Mechanics and Engineering
103.1-2 (1993), pp. 175–186. DOI: 10.1016/0045-7825(93)90045-Y.

[49] K. Hildebrandt, C. Schulz, C. v. Tycowicz, and K. Polthier. “Interactive surface modeling using
modal analysis”. In: ACM Transactions on Graphics (TOG) 30.5 (2011), pp. 1–11. DOI: 10.1145/
2019627.2019638.

[50] O. A. Bauchau and D. Guernsey. “On the choice of appropriate bases for nonlinear dynamic modal
analysis”. In: Journal of the American Helicopter Society 38.4 (1993), pp. 28–36. DOI: 10.4050/
JAHS.38.28.

[51] D. A. Tortorelli and P. Michaleris. “Design sensitivity analysis: Overview and review”. In: Inverse
Problems in Engineering 1.1 (1994), pp. 71–105. DOI: 10.1080/174159794088027573.

[52] F. van Keulen, R. T. Haftka, and N. H. Kim. “Review of options for structural design sensitivity
analysis. Part 1: Linear systems”. In: Computer Methods in Applied Mechanics and Engineering
194.30 (2005), pp. 3213–3243. DOI: 10.1016/j.cma.2005.02.002.

[53] R. M. Hintz. “Analytical Methods in Component Modal Synthesis”. In: AIAA Journal 13.8 (1975),
pp. 1007–1016. DOI: 10.2514/3.60498.

[54] N. M. M. Maia and Montalvão e Silva, Júlio Martins, eds. Theoretical and Experimental Modal
Analysis. Taunton, Somerset, England: Research Studies Press, 1997. ISBN: 0863802087.

[55] R. R. Craig and M. C. C. Bampton. “Coupling of substructures for dynamic analyses”. In: AIAA
Journal 6.7 (1968), pp. 1313–1319. DOI: 10.2514/3.4741.

[56] S. Rubin. “Improved Component-Mode Representation for Structural Dynamic Analysis”. In: AIAA
Journal 13.8 (1975), pp. 995–1006. DOI: 10.2514/3.60497.

[57] J. L. Lumley. “The structure of inhomogeneous turbulent flows”. In: Atmospheric Turbulence and
Radio Wave Propagation (1967). URL: https://ci.nii.ac.jp/naid/10012381873/.

[58] H. Hotelling. “Analysis of a complex of statistical variables into principal components”. In: Journal
of Educational Psychology 24.6 (1933), pp. 417–441. DOI: 10.1037/h0071325.

[59] J. J. Gerbrands. “On the relationships between SVD, KLT and PCA”. In: Pattern Recognition 14.1
(1981), pp. 375–381. DOI: 10.1016/0031-3203(81)90082-0.

[60] G. W. Stewart. “On the Early History of the Singular Value Decomposition”. In: SIAM Review 35.4
(1993), pp. 551–566. DOI: 10.1137/1035134.

[61] L. Sirovich. “Turbulence and the dynamics of coherent structures. III. Dynamics and scaling”. In:
Quarterly of Applied Mathematics 45.3 (1987), pp. 583–590. DOI: 10.1090/qam/910464.

[62] M. Udell and A. Townsend. “Why Are Big Data Matrices Approximately Low Rank?” In: SIAM Jour-
nal on Mathematics of Data Science 1 (2019), pp. 144–160. DOI: 10.1137/18M1183480.

[63] J. B. Rutzmoser, F. M. Gruber, and D. J. Rixen. “A comparison on model order reduction techniques
for geometrically nonlinear systems based on a modal derivative approach using subspace angles”.
In: Proceedings of the 11th International Conference on Engineering Vibration. 2015.

[64] R. J. Kuether, M. R. Brake, and M. S. Allen. “Evaluating Convergence of Reduced Order Models
Using Nonlinear Normal Modes”. In: Model Validation and Uncertainty Quantification, Volume 3.
Springer, Cham, 2014, pp. 287–300. DOI: 10.1007/978-3-319-04552-8_28.

[65] R. J. Kuether and M. S. Allen. “Validation of Nonlinear Reduced Order Models with Time Integration
Targeted at Nonlinear Normal Modes”. In: Nonlinear Dynamics, Volume 1. Springer, Cham, 2016,
pp. 363–375. DOI: 10.1007/978-3-319-15221-9_33.

https://doi.org/10.1002/nme.5267
https://doi.org/10.1016/0045-7825(93)90045-Y
https://doi.org/10.1145/2019627.2019638
https://doi.org/10.1145/2019627.2019638
https://doi.org/10.4050/JAHS.38.28
https://doi.org/10.4050/JAHS.38.28
https://doi.org/10.1080/174159794088027573
https://doi.org/10.1016/j.cma.2005.02.002
https://doi.org/10.2514/3.60498
https://doi.org/10.2514/3.4741
https://doi.org/10.2514/3.60497
https://ci.nii.ac.jp/naid/10012381873/
https://doi.org/10.1037/h0071325
https://doi.org/10.1016/0031-3203(81)90082-0
https://doi.org/10.1137/1035134
https://doi.org/10.1090/qam/910464
https://doi.org/10.1137/18M1183480
https://doi.org/10.1007/978-3-319-04552-8_28
https://doi.org/10.1007/978-3-319-15221-9_33

155

[66] C. Eckart and G. Young. “The approximation of one matrix by another of lower rank”. In: Psychome-
trika 1.3 (1936), pp. 211–218. DOI: 10.1007/BF02288367.

[67] B. Moore. “Principal component analysis in linear systems: Controllability, observability, and model
reduction”. In: IEEE Transactions on Automatic Control 26.1 (1981), pp. 17–32. DOI: 10.1109/
TAC.1981.1102568.

[68] C. W. Rowley. “Model Reduction for Fluids, using Balanced Proper Orthogonal Decomposition”.
In: International Journal of Bifurcation and Chaos 15.03 (2005), pp. 997–1013. DOI: 10.1142/
S0218127405012429.

[69] P. Benner and P. Goyal. “Balanced truncation model order reduction for quadratic-bilinear control
systems”. In: arXiv preprint arXiv:1705.00160 (2017). DOI: 10.48550/arXiv.1705.00160.

[70] J. Scherpen. “Balancing for nonlinear systems”. In: Systems & Control Letters 21.2 (1993), pp. 143–
153. DOI: 10.1016/0167-6911(93)90117-O.

[71] S. Lall, J. E. Marsden, and S. Glavaški. “A subspace approach to balanced truncation for model
reduction of nonlinear control systems”. In: International Journal of Robust and Nonlinear Control
12.6 (2002), pp. 519–535. DOI: 10.1002/rnc.657.

[72] E. I. Verriest and W. S. Gray. “Nonlinear balanced realizations”. In: 2004 43rd IEEE Conference
on Decision and Control (CDC) (IEEE Cat. No.04CH37601). Vol. 2. 2004, 1164–1169 Vol.2. DOI:
10.1109/CDC.2004.1430199.

[73] S. E. Otto, A. Padovan, and C. W. Rowley. Model Reduction for Nonlinear Systems by Balanced
Truncation of State and Gradient Covariance. 2023. DOI: 10.48550/arxiv.2207.14387.

[74] P. Phalippou, S. Bouabdallah, P. Breitkopf, P. Villon, and M. Zarroug. “’On-the-fly’ snapshots selec-
tion for Proper Orthogonal Decomposition with application to nonlinear dynamics”. In: Computer
Methods in Applied Mechanics and Engineering 367 (2020), p. 113120. DOI: 10.1016/j.cma.
2020.113120.

[75] D. Chelidze and W. Zhou. “Smooth orthogonal decomposition-based vibration mode identification”.
In: Journal of Sound and Vibration 292.3-5 (2006), pp. 461–473. DOI: 10.1016/j.jsv.2005.
08.006.

[76] E. A. Christensen, M. Brøns, and J. N. Sørensen. “Evaluation of proper orthogonal decomposition–
based decomposition techniques applied to parameter-dependent nonturbulent flows”. In: SIAM
Journal on Scientific Computing 21.4 (1999), pp. 1419–1434. DOI: 10.1137/S1064827598333181.

[77] E. J. Candès, X. Li, Y. Ma, and J. Wright. “Robust Principal Component Analysis?” In: J. ACM 58.3
(2011). DOI: 10.1145/1970392.1970395.

[78] H. Zou, T. Hastie, and R. Tibshirani. “Sparse Principal Component Analysis”. In: Journal of Compu-
tational and Graphical Statistics 15.2 (2006), pp. 265–286. DOI: 10.1198/106186006X113430.

[79] K. Lee and K. T. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders”. In: Journal of Computational Physics 404 (2020), p. 108973.
DOI: 10.1016/j.jcp.2019.108973.

[80] A. Kolmogoroff. “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse”.
In: Annals of Mathematics 37.1 (1936), pp. 107–110. ISSN: 0003486X. (Visited on 07/17/2023).

[81] D. Amsallem and C. Farhat. “Interpolation Method for Adapting Reduced-Order Models and Appli-
cation to Aeroelasticity”. In: AIAA Journal 46.7 (2008), pp. 1803–1813. DOI: 10.2514/1.35374.

[82] R. Zimmermann. Manifold interpolation and model reduction. 2022. DOI: 10.48550/arXiv.
1902.06502.

[83] O. Friderikos, E. Baranger, M. Olive, and D. Néron. On the stability of POD Basis Interpolation via
Grassmann Manifolds for Parametric Model Order Reduction in Hyperelasticity. arXiv, 2020. DOI:
10.48550/arXiv.2012.08851.

https://doi.org/10.1007/BF02288367
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.48550/arXiv.1705.00160
https://doi.org/10.1016/0167-6911(93)90117-O
https://doi.org/10.1002/rnc.657
https://doi.org/10.1109/CDC.2004.1430199
https://doi.org/10.48550/arxiv.2207.14387
https://doi.org/10.1016/j.cma.2020.113120
https://doi.org/10.1016/j.cma.2020.113120
https://doi.org/10.1016/j.jsv.2005.08.006
https://doi.org/10.1016/j.jsv.2005.08.006
https://doi.org/10.1137/S1064827598333181
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.2514/1.35374
https://doi.org/10.48550/arXiv.1902.06502
https://doi.org/10.48550/arXiv.1902.06502
https://doi.org/10.48550/arXiv.2012.08851

156

[84] N. T. Son. “A real time procedure for affinely dependent parametric model order reduction using
interpolation on Grassmann manifolds”. In: International Journal for Numerical Methods in Engi-
neering 93.8 (2013), pp. 818–833. DOI: 10.1002/nme.4408.

[85] P.-A. Absil, R. Mahony, and R. Sepulchre. “Riemannian Geometry of Grassmann Manifolds with a
View on Algorithmic Computation”. In: Acta Applicandae Mathematicae 80.2 (2004), pp. 199–220.
DOI: 10.1023/B:ACAP.0000013855.14971.91.

[86] W. M. Boothby. An introduction to differentiable manifolds and Riemannian geometry. Rev. 2. ed.
Amsterdam and New York: Academic Press, 2003. ISBN: 978-0121160517.

[87] A. Edelman, T. A. Arias, and S. T. Smith. “The Geometry of Algorithms with Orthogonality Con-
straints”. In: SIAM Journal on Matrix Analysis and Applications 20.2 (1998), pp. 303–353. DOI:
10.1137/S0895479895290954.

[88] R. S. Kulkarni. “Book Review: Differential geometry, Lie groups and symmetric spaces”. In: Bulletin
of the American Mathematical Society 2.3 (1980), pp. 468–477. DOI: 10.1090/S0273-0979-
1980-14772-2.

[89] D. Amsallem and C. Farhat. “Stabilization of projection-based reduced-order models”. In: Interna-
tional Journal for Numerical Methods in Engineering 91.4 (2012), pp. 358–377. DOI: 10.1002/
nme.4274.

[90] J. B. MacQueen. “Some Methods for Classification and Analysis of MultiVariate Observations”. In:
Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability. Ed. by L. M. Le
Cam and J. Neyman. Vol. 1. University of California Press, 1967, pp. 281–297.

[91] D. Amsallem, M. J. Zahr, and K. Washabaugh. “Fast local reduced basis updates for the efficient
reduction of nonlinear systems with hyper-reduction”. In: Advances in Computational Mathematics
41.5 (2015), pp. 1187–1230. DOI: 10.1007/s10444-015-9409-0.

[92] S. Grimberg, C. Farhat, R. Tezaur, and C. Bou–Mosleh. “Mesh sampling and weighting for the hy-
perreduction of nonlinear Petrov–Galerkin reduced–order models with local reduced–order bases”.
In: International Journal for Numerical Methods in Engineering 122.7 (2021), pp. 1846–1874. DOI:
10.1002/nme.6603.

[93] B. Schölkopf, A. Smola, and K.-R. Müller. “Nonlinear Component Analysis as a Kernel Eigenvalue
Problem”. In: Neural Computation 10.5 (1998), pp. 1299–1319. DOI: 10.1162/089976698300017467.

[94] S. T. Roweis and L. K. Saul. “Nonlinear dimensionality reduction by locally linear embedding”. In:
science 290.5500 (2000), pp. 2323–2326. DOI: 10.1126/science.290.5500.2323.

[95] J. B. Tenenbaum, V. de Silva, and J. C. Langford. “A global geometric framework for nonlinear
dimensionality reduction”. In: science 290.5500 (2000), pp. 2319–2323. DOI: 10.1126/science.
290.5500.2319.

[96] R. R. Coifman and S. Lafon. “Diffusion maps”. In: Applied and Computational Harmonic Analysis
21.1 (2006), pp. 5–30. DOI: 10.1016/j.acha.2006.04.006.

[97] G. Mishne, U. Shaham, A. Cloninger, and I. Cohen. “Diffusion nets”. In: Applied and Computational
Harmonic Analysis 47.2 (2019), pp. 259–285. DOI: 10.1016/j.acha.2017.08.007.

[98] F. Anowar, S. Sadaoui, and B. Selim. “Conceptual and empirical comparison of dimensionality
reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)”. In: Computer
Science Review 40 (2021), p. 100378. DOI: 10.1016/j.cosrev.2021.100378.

[99] J. Schmidhuber. “Deep learning in neural networks: an overview”. In: Neural networks : the official
journal of the International Neural Network Society 61 (2015), pp. 85–117. DOI: 10.1016/j.
neunet.2014.09.003.

[100] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Internal Representations by Error
Propagation”. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Vol. 1: Foundations. Cambridge, MA, USA: MIT Press, 1986, pp. 318–362. ISBN: 026268053X.

https://doi.org/10.1002/nme.4408
https://doi.org/10.1023/B:ACAP.0000013855.14971.91
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1090/S0273-0979-1980-14772-2
https://doi.org/10.1090/S0273-0979-1980-14772-2
https://doi.org/10.1002/nme.4274
https://doi.org/10.1002/nme.4274
https://doi.org/10.1007/s10444-015-9409-0
https://doi.org/10.1002/nme.6603
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2017.08.007
https://doi.org/10.1016/j.cosrev.2021.100378
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003

157

[101] B. Bahmani and W. Sun. “Manifold embedding data-driven mechanics”. In: Journal of the Mechan-
ics and Physics of Solids 166 (2022), p. 104927. DOI: 10.1016/j.jmps.2022.104927.

[102] M. Mrosek, C. Othmer, and R. Radespiel. “Variational Autoencoders for Model Order Reduction in
Vehicle Aerodynamics”. In: AIAA AVIATION 2021 FORUM. DOI: 10.2514/6.2021-3049.

[103] F. J. Gonzalez and M. Balajewicz. “Deep convolutional recurrent autoencoders for learning low-
dimensional feature dynamics of fluid systems”. In: arXiv preprint arXiv:1808.01346 (2018). DOI:
10.48550/arXiv.1808.01346.

[104] N. B. Erichson, M. Muehlebach, and M. W. Mahoney. “Physics-informed autoencoders for Lyapunov-
stable fluid flow prediction”. In: arXiv preprint arXiv:1905.10866 (2019). DOI: 10.48550/arXiv.
1905.10866.

[105] R. Maulik, B. Lusch, and P. Balaprakash. “Reduced-order modeling of advection-dominated sys-
tems with recurrent neural networks and convolutional autoencoders”. In: Physics of Fluids 33.3
(2021), p. 037106. DOI: 10.1063/5.0039986.

[106] S. Dutta, P. Rivera-Casillas, B. Styles, and M. W. Farthing. “Reduced Order Modeling Using Advection-
Aware Autoencoders”. In: Mathematical and computational applications 27.3 (2022). DOI: 10.
3390/mca27030034.

[107] S. Shen, Y. Yin, T. Shao, H. Wang, C. Jiang, L. Lan, and K. Zhou. High-order Differentiable Autoen-
coder for Nonlinear Model Reduction. 2021. DOI: 10.48550/arXiv.2102.11026.

[108] L. Fulton, V. Modi, D. Duvenaud, D. I. W. Levin, and A. Jacobson. “Latent–space Dynamics for
Reduced Deformable Simulation”. In: Computer Graphics Forum 38.2 (2019), pp. 379–391. DOI:
10.1111/cgf.13645.

[109] D. Holden, B. C. Duong, S. Datta, and D. Nowrouzezahrai. “Subspace Neural Physics: Fast Data-
Driven Interactive Simulation”. In: Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA ’19. New York, NY, USA: Association for Computing
Machinery, 2019. DOI: 10.1145/3309486.3340245.

[110] S. Jain, P. Tiso, J. B. Rutzmoser, and D. J. Rixen. “A quadratic manifold for model order reduction of
nonlinear structural dynamics”. In: Computers & Structures 188 (2017), pp. 80–94. DOI: 10.1016/
j.compstruc.2017.04.005.

[111] J. B. Rutzmoser and D. J. Rixen. “A lean and efficient snapshot generation technique for the Hyper-
Reduction of nonlinear structural dynamics”. In: Computer Methods in Applied Mechanics and En-
gineering 325 (2017), pp. 330–349. DOI: 10.1016/j.cma.2017.06.009.

[112] S. Jain and P. Tiso. “Hyper-Reduction Over Nonlinear Manifolds for Large Nonlinear Mechanical
Systems”. In: Journal of Computational and Nonlinear Dynamics 14.8 (2019). DOI: 10.1115/1.
4043450.

[113] R. Geelen, S. Wright, and K. Willcox. “Operator inference for non-intrusive model reduction with
quadratic manifolds”. In: Computer Methods in Applied Mechanics and Engineering 403 (2023),
p. 115717. DOI: 10.1016/j.cma.2022.115717.

[114] J. Barnett and C. Farhat. “Quadratic approximation manifold for mitigating the Kolmogorov barrier
in nonlinear projection-based model order reduction”. In: Journal of Computational Physics 464
(2022), p. 111348. DOI: 10.1016/j.jcp.2022.111348.

[115] K. Carlberg, M. Barone, and H. Antil. “Galerkin v. least-squares Petrov–Galerkin projection in non-
linear model reduction”. In: Journal of Computational Physics 330 (2017), pp. 693–734. DOI: 10.
1016/j.jcp.2016.10.033.

[116] R. Everson and L. Sirovich. “Karhunen–Loeve procedure for gappy data”. In: Journal of the Optical
Society of America A 12.8 (1995), pp. 1657–1664. DOI: 10.1364/JOSAA.12.001657.

https://doi.org/10.1016/j.jmps.2022.104927
https://doi.org/10.2514/6.2021-3049
https://doi.org/10.48550/arXiv.1808.01346
https://doi.org/10.48550/arXiv.1905.10866
https://doi.org/10.48550/arXiv.1905.10866
https://doi.org/10.1063/5.0039986
https://doi.org/10.3390/mca27030034
https://doi.org/10.3390/mca27030034
https://doi.org/10.48550/arXiv.2102.11026
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1145/3309486.3340245
https://doi.org/10.1016/j.compstruc.2017.04.005
https://doi.org/10.1016/j.compstruc.2017.04.005
https://doi.org/10.1016/j.cma.2017.06.009
https://doi.org/10.1115/1.4043450
https://doi.org/10.1115/1.4043450
https://doi.org/10.1016/j.cma.2022.115717
https://doi.org/10.1016/j.jcp.2022.111348
https://doi.org/10.1016/j.jcp.2016.10.033
https://doi.org/10.1016/j.jcp.2016.10.033
https://doi.org/10.1364/JOSAA.12.001657

158

[117] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. “An ‘empirical interpolation’ method: applica-
tion to efficient reduced-basis discretization of partial differential equations”. In: Comptes Rendus
Mathématique 339.9 (2004), pp. 667–672. DOI: 10.1016/j.crma.2004.08.006.

[118] S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical interpo-
lation”. In: SIAM Journal on Scientific Computing 32.5 (2010), pp. 2737–2764. DOI: 10.1137/
090766498.

[119] P. Tiso and D. J. Rixen. “Discrete empirical interpolation method for finite element structural dynam-
ics”. In: Topics in Nonlinear Dynamics, Volume 1. Springer, 2013, pp. 203–212. DOI: 10.1007/
978-1-4614-6570-6_18.

[120] P. Tiso, R. Dedden, and D. Rixen. “A Modified Discrete Empirical Interpolation Method for Reducing
Non-Linear Structural Finite Element Models”. In: Proceedings of the ASME International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference -
2013. New York, NY, USA: ASME, 2014. ISBN: 978-0-7918-5597-3. DOI: 10.1115/DETC2013-
13280.

[121] N. C. Nguyen and J. Peraire. “An efficient reduced-order modeling approach for non-linear parametrized
partial differential equations”. In: International Journal for Numerical Methods in Engineering 76.1
(2008), pp. 27–55. DOI: 10.1002/nme.2309.

[122] J. Baiges, R. Codina, and S. Idelsohn. “Explicit reduced-order models for the stabilized finite ele-
ment approximation of the incompressible Navier–Stokes equations”. In: International Journal for
Numerical Methods in Fluids 72.12 (2013), pp. 1219–1243. DOI: 10.1002/fld.3777.

[123] K. Martynov and U. Wever. “On polynomial hyperreduction for nonlinear structural mechanics”.
In: International Journal for Numerical Methods in Engineering 118.12 (2019), pp. 701–717. DOI:
10.1002/nme.6033.

[124] D. Ryckelynck. “Hyper-reduction of mechanical models involving internal variables”. In: Interna-
tional Journal for Numerical Methods in Engineering 77.1 (2009), pp. 75–89. DOI: 10.1002/nme.
2406.

[125] T. Ø. Aanonsen. “Empirical interpolation with application to reduced basis approximations”. Mas-
ter’s Thesis. Trondheim, Ålesund, Gjøvik, Norway: Norwegian University of Science and Technol-
ogy, 2009. URL: http://hdl.handle.net/11250/258487.

[126] H. Antil, S. E. Field, F. Herrmann, R. H. Nochetto, and M. Tiglio. “Two-step greedy algorithm for
reduced order quadratures”. In: Journal of Scientific Computing 57.3 (2013), pp. 604–637. DOI:
10.1007/s10915-013-9722-z.

[127] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. “Efficient reduced-basis treatment of non-
affine and nonlinear partial differential equations”. In: ESAIM: Mathematical Modelling and Numer-
ical Analysis 41.3 (2007), pp. 575–605. DOI: 10.1051/m2an:2007031.

[128] J. A. Hernández, J. Oliver, A. E. Huespe, M. A. Caicedo, and J. C. Cante. “High-performance
model reduction techniques in computational multiscale homogenization”. In: Computer Methods
in Applied Mechanics and Engineering 276 (2014), pp. 149–189. DOI: 10.1016/j.cma.2014.
03.011.

[129] S. S. An, T. Kim, and D. L. James. “Optimizing cubature for efficient integration of subspace de-
formations”. In: ACM transactions on graphics (TOG) 27.5 (2008), pp. 1–10. DOI: 10.1145/
1409060.1409118.

[130] C. Farhat, P. Avery, T. Chapman, and J. Cortial. “Dimensional reduction of nonlinear finite element
dynamic models with finite rotations and energy-based mesh sampling and weighting for compu-
tational efficiency”. In: International Journal for Numerical Methods in Engineering 98.9 (2014),
pp. 625–662. DOI: 10.1002/nme.4668.

https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1137/090766498
https://doi.org/10.1137/090766498
https://doi.org/10.1007/978-1-4614-6570-6_18
https://doi.org/10.1007/978-1-4614-6570-6_18
https://doi.org/10.1115/DETC2013-13280
https://doi.org/10.1115/DETC2013-13280
https://doi.org/10.1002/nme.2309
https://doi.org/10.1002/fld.3777
https://doi.org/10.1002/nme.6033
https://doi.org/10.1002/nme.2406
https://doi.org/10.1002/nme.2406
http://hdl.handle.net/11250/258487
https://doi.org/10.1007/s10915-013-9722-z
https://doi.org/10.1051/m2an:2007031
https://doi.org/10.1016/j.cma.2014.03.011
https://doi.org/10.1016/j.cma.2014.03.011
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1002/nme.4668

159

[131] C. Farhat, T. Chapman, and P. Avery. “Structure-preserving, stability, and accuracy properties of
the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite
element dynamic models”. In: International Journal for Numerical Methods in Engineering 102.5
(2015), pp. 1077–1110. DOI: 10.1002/nme.4820.

[132] J. B. Rutzmoser, D. J. Rixen, P. Tiso, and S. Jain. “Generalization of quadratic manifolds for reduced
order modeling of nonlinear structural dynamics”. In: Computers & Structures 192 (2017), pp. 196–
209. DOI: 10.1016/j.compstruc.2017.06.003.

[133] J. Rutzmoser. “Model Order Reduction for Nonlinear Structural Dynamics”. PhD thesis. Technische
Universität München. URL: https://mediatum.ub.tum.de/1381943.

[134] D. Scheffold, C. Bach, F. Duddeck, G. Müller, and M. Buchschmid. “Vibration Frequency Optimiza-
tion of Jointed Structures with Contact Nonlinearities using Hyper-Reduction”. In: IFAC-PapersOnLine
51.2 (2018), pp. 843–848. DOI: 10.1016/j.ifacol.2018.04.019.

[135] J. A. Hernandez, M. A. Caicedo, and A. Ferrer. “Dimensional hyper-reduction of nonlinear finite ele-
ment models via empirical cubature”. In: Computer Methods in Applied Mechanics and Engineering
313 (2017), pp. 687–722. DOI: 10.1016/j.cma.2016.10.022.

[136] B. Brands, D. Davydov, J. Mergheim, and P. Steinmann. “Reduced-Order Modelling and Homogeni-
sation in Magneto-Mechanics: A Numerical Comparison of Established Hyper-Reduction Methods”.
In: Mathematical and computational applications 24.1 (2019), p. 20. DOI: 10.3390/mca24010020.

[137] J. Maierhofer and D. J. Rixen. “Model order reduction using hyperreduction methods (DEIM, ECSW)
for magnetodynamic FEM problems”. In: Finite Elements in Analysis and Design 209 (2022),
p. 103793. DOI: 10.1016/j.finel.2022.103793.

[138] S. Lall, P. Krysl, and J. E. Marsden. “Structure-preserving model reduction for mechanical sys-
tems”. In: Physica D: Nonlinear Phenomena 184.1-4 (2003), pp. 304–318. DOI: 10.1016/S0167-
2789(03)00227-6.

[139] S. Grimberg, C. Farhat, and N. Youkilis. “On the stability of projection-based model order reduction
for convection-dominated laminar and turbulent flows”. In: Journal of Computational Physics 419
(2020), p. 109681. DOI: 10.1016/j.jcp.2020.109681.

[140] D. Amsallem, M. J. Zahr, and C. Farhat. “Nonlinear model order reduction based on local reduced-
order bases”. In: International Journal for Numerical Methods in Engineering 92.10 (2012), pp. 891–
916. DOI: 10.1002/nme.4371.

[141] C. Bach, L. Song, T. Erhart, and F. Duddeck. Stability conditions for the explicit integration of projec-
tion based nonlinear reduced-order and hyper reduced structural mechanics finite element models.
arXiv, 2018. DOI: 10.48550/arXiv.1806.11404.

[142] D. Ryckelynck. “A priori hyperreduction method: an adaptive approach”. In: Journal of Computa-
tional Physics 202.1 (2005), pp. 346–366. DOI: 10.1016/j.jcp.2004.07.015.

[143] D. Ryckelynck, F. Chinesta, E. Cueto, and A. Ammar. “On the a priori model reduction: Overview
and recent developments”. In: Archives of Computational Methods in Engineering 13.1 (2006),
pp. 91–128. DOI: 10.1007/BF02905932.

[144] A. Nouy. “A priori model reduction through Proper Generalized Decomposition for solving time-
dependent partial differential equations”. In: Computer Methods in Applied Mechanics and Engi-
neering 199.23-24 (2010), pp. 1603–1626. DOI: 10.1016/j.cma.2010.01.009.

[145] D. Ryckelynck, L. Hermanns, F. Chinesta, and E. Alarcón. “An efficient ‘a priori’ model reduction
for boundary element models”. In: Engineering Analysis with Boundary Elements 29.8 (2005),
pp. 796–801. DOI: https://doi.org/10.1016/j.enganabound.2005.04.003.

[146] Y. Teng, M. A. Otaduy, and T. Kim. “Simulating Articulated Subspace Self-Contact”. In: ACM Trans.
Graph. 33.4 (2014). DOI: 10.1145/2601097.2601181.

https://doi.org/10.1002/nme.4820
https://doi.org/10.1016/j.compstruc.2017.06.003
https://mediatum.ub.tum.de/1381943
https://doi.org/10.1016/j.ifacol.2018.04.019
https://doi.org/10.1016/j.cma.2016.10.022
https://doi.org/10.3390/mca24010020
https://doi.org/10.1016/j.finel.2022.103793
https://doi.org/10.1016/S0167-2789(03)00227-6
https://doi.org/10.1016/S0167-2789(03)00227-6
https://doi.org/10.1016/j.jcp.2020.109681
https://doi.org/10.1002/nme.4371
https://doi.org/10.48550/arXiv.1806.11404
https://doi.org/10.1016/j.jcp.2004.07.015
https://doi.org/10.1007/BF02905932
https://doi.org/10.1016/j.cma.2010.01.009
https://doi.org/https://doi.org/10.1016/j.enganabound.2005.04.003
https://doi.org/10.1145/2601097.2601181

160

[147] M. Balajewicz, D. Amsallem, and C. Farhat. “Projection-based model reduction for contact prob-
lems”. In: International Journal for Numerical Methods in Engineering 106.8 (2016), pp. 644–663.
DOI: 10.1002/nme.5135.

[148] T. Belytschko. Nonlinear Finite Elements for Continua and Structures. 2nd ed. New York: John
Wiley & Sons Incorporated, 2013. ISBN: 978-1118632703.

[149] L. E. Malvern. Introduction to the mechanics of a continuous medium. Prentice-Hall series in engi-
neering of the physical sciences. Englewood Cliffs, NJ: Prentice-Hall, 1969. ISBN: 978-0134876030.

[150] Livermore Software Technology Corporation. LS-DYNA Theory Manual. Livermore, CA, USA, 2018.

[151] K. Carlberg, C. Bou-Mosleh, and C. Farhat. “Efficient non-linear model reduction via a least-squares
Petrov-Galerkin projection and compressive tensor approximations”. In: International Journal for
Numerical Methods in Engineering 86.2 (2011), pp. 155–181. DOI: 10.1002/nme.3050.

[152] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, et al. “Array programming with NumPy”. In: Nature 585.7825 (2020),
pp. 357–362. DOI: 10.1038/s41586-020-2649-2.

[153] C. Gu and J. Roychowdhury. “Model reduction via projection onto nonlinear manifolds, with appli-
cations to analog circuits and biochemical systems”. In: 2008 IEEE/ACM International Conference
on Computer-Aided Design. IEEE, 112008, pp. 85–92. DOI: 10.1109/ICCAD.2008.4681556.

[154] B. I. Epureanu. “A parametric analysis of reduced order models of viscous flows in turbomachinery”.
In: Journal of Fluids and Structures 17.7 (2003), pp. 971–982. DOI: 10.1016/S0889-9746(03)
00044-6.

[155] T. Lieu and C. Farhat. “Adaptation of Aeroelastic Reduced-Order Models and Application to an F-16
Configuration”. In: AIAA Journal 45.6 (2007), pp. 1244–1257. DOI: 10.2514/1.24512.

[156] D. Amsallem and C. Farhat. “An Online Method for Interpolating Linear Parametric Reduced-Order
Models”. In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2169–2198. DOI: 10.1137/
100813051.

[157] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information Theory 28.2
(1982), pp. 129–137. DOI: 10.1109/TIT.1982.1056489.

[158] D. Amsallem and B. Haasdonk. “PEBL-ROM: Projection-error based local reduced-order models”.
In: Adv. Model. and Simul. in Eng. Sci. 3 (2016). DOI: 10.1186/s40323-016-0059-7.

[159] I. S. Dhillon and D. S. Modha. “Concept Decompositions for Large Sparse Text Data Using Cluster-
ing”. In: Machine Learning 42.1 (2001), pp. 143–175. DOI: 10.1023/A:1007612920971.

[160] A. Singhal, C. Buckley, and M. Mitra. “Pivoted Document Length Normalization”. In: SIGIR Forum
51.2 (2017), pp. 176–184. DOI: 10.1145/3130348.3130365.

[161] J. Laska. JASONLASKA/Spherecluster: Clustering Routines for the unit sphere. 2019. URL: https:
//github.com/jasonlaska/spherecluster.

[162] C. Bach, D. Ceglia, L. Song, and F. Duddeck. “Randomized low–rank approximation methods for
projection–based model order reduction of large nonlinear dynamical problems”. In: International
Journal for Numerical Methods in Engineering 118.4 (2019), pp. 209–241. DOI: 10.1002/nme.
6009.

[163] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Society for Industrial and Applied
Mathematics, 1995. DOI: 10.1137/1.9781611971217.

[164] J. Barnett, C. Farhat, and Y. Maday. Neural-Network-Augmented Projection-Based Model Order
Reduction for Mitigating the Kolmogorov Barrier to Reducibility of CFD Models. 2022. DOI: 10.
48550/arXiv.2212.08939.

[165] F. Romor, G. Stabile, and G. Rozza. “Non-linear Manifold Reduced-Order Models with Convolu-
tional Autoencoders and Reduced Over-Collocation Method”. In: Journal of Scientific Computing
94.3 (2023). DOI: 10.1007/s10915-023-02128-2.

https://doi.org/10.1002/nme.5135
https://doi.org/10.1002/nme.3050
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/ICCAD.2008.4681556
https://doi.org/10.1016/S0889-9746(03)00044-6
https://doi.org/10.1016/S0889-9746(03)00044-6
https://doi.org/10.2514/1.24512
https://doi.org/10.1137/100813051
https://doi.org/10.1137/100813051
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1186/s40323-016-0059-7
https://doi.org/10.1023/A:1007612920971
https://doi.org/10.1145/3130348.3130365
https://github.com/jasonlaska/spherecluster
https://github.com/jasonlaska/spherecluster
https://doi.org/10.1002/nme.6009
https://doi.org/10.1002/nme.6009
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.48550/arXiv.2212.08939
https://doi.org/10.48550/arXiv.2212.08939
https://doi.org/10.1007/s10915-023-02128-2

161

[166] S. E. Otto, G. R. Macchio, and C. W. Rowley. “Learning nonlinear projections for reduced-order
modeling of dynamical systems using constrained autoencoders”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 33.11 (Nov. 2023), p. 113130. DOI: 10.1063/5.0169688.

[167] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. “Contractive Auto-Encoders: Explicit Invari-
ance during Feature Extraction”. In: Proceedings of the 28th International Conference on Interna-
tional Conference on Machine Learning. ICML’11. Madison, WI, USA: Omnipress, 2011, pp. 833–
840. ISBN: 9781450306195.

[168] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M.
Devin, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. URL:
https://www.tensorflow.org/.

[169] F. Chollet et al. Keras. https://keras.io. 2015.

[170] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017. DOI: 10.48550/
arXiv.1412.6980.

[171] S. Anderson, C. White, and C. Farhat. “Space–local reduced–order bases for accelerating reduced–
order models through sparsity”. In: International Journal for Numerical Methods in Engineering
124.7 (2023), pp. 1646–1671. DOI: 10.1002/nme.7179.

https://doi.org/10.1063/5.0169688
https://www.tensorflow.org/
https://keras.io
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1002/nme.7179

	Zusammenfassung
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Preliminaries and Related Work
	1.4 Contributions of this Work
	1.5 Outline

	2 Residual Minimization
	2.1 Governing Equations
	2.1.1 Strong Form
	2.1.2 Weak Form
	2.1.3 Finite Element Approximation
	2.1.4 Time Integration

	2.2 Problem Setting and Achievable Speedup
	2.3 Projection-based Model Order Reduction
	2.3.1 Subspace Projection
	2.3.2 Residual Minimization
	2.3.3 Commutativity of Projection and Time Discretization
	2.3.4 Least-squares Petrov-Galerkin
	2.3.5 Equivalence of ROMs using Mass Orthonormalized and Orthonormal Bases
	2.3.6 ROM Summary
	2.3.7 POD

	2.4 Results
	2.4.1 Online Error Measure
	2.4.2 Pipe Whip
	2.4.3 Crash Box

	2.5 Conclusion

	3 Local Reduced-order Bases
	3.1 Towards Parametric ROMs
	3.1.1 Parameter Variations
	3.1.2 Treatment of DoF Types
	3.1.3 Offline Accuracy
	3.1.4 Online Accuracy

	3.2 Local Reduced-order Bases
	3.2.1 MOR Based on lROB
	3.2.2 K-means Clustering-based lROB
	3.2.3 Spherical Clustering-based lROB
	3.2.4 Hyper-reduction

	3.3 Results
	3.3.1 Clustering
	3.3.2 Offline Accuracy
	3.3.3 Online Phase Results
	3.3.4 Hyper-reduction Offline Results
	3.3.5 Hyper-reduction Online Results
	3.3.6 Hyper-reduction Online Results - Parameter Study
	3.3.7 Computational Speedup

	3.4 Summary and Discussion
	3.5 Conclusion

	4 Partial MOR
	4.1 Motivation
	4.2 Theory
	4.3 Results
	4.3.1 Geometry Variations
	4.3.2 Deformed Geometries
	4.3.3 Reproductive Example (PoC)
	4.3.4 ROM Without Modification
	4.3.5 Global Approach
	4.3.6 Local ROB

	4.4 Speedup
	4.5 Conclusion

	5 MOR using AE
	5.1 MOR on Nonlinear Manifolds
	5.2 Hyper-reduction on Manifolds
	5.3 Neural Networks
	5.3.1 Artificial Neuron
	5.3.2 Normalization
	5.3.3 NN Training
	5.3.4 Autoencoders
	5.3.5 Implementation Details

	5.4 Results
	5.4.1 AE Training
	5.4.2 Regularization
	5.4.3 Influence of Activation Function
	5.4.4 Influence of Dimensions
	5.4.5 CAE and DAE
	5.4.6 Hyper-reduction

	5.5 Conclusion

	6 Outlook and Conclusion
	6.1 Limits and Outlook
	6.2 Conclusion

	A Appendix
	A.1 List of Supervised Study Projects
	A.2 Hyper-reduction Offline Results
	A.3 Local ROB: Hyper-reduction Online Results - Parameter Study
	A.4 Fortran C Interface

