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Abstract
This thesis addresses methodological developments of sensitivity analysis.
While sensitivity analysis is an established field of research and is successfully
employed in use cases such as gradient-based optimization, there are only a
few applications and associated research concerning structural engineering. To
exploit the great potential of sensitivity analysis also in this application field,
the advancements presented in the dissertation are developed with a particular
focus on structural engineering. For this purpose, the work considers analysis
approaches and special simulation cases specific to structural engineering.
The influence function approach, a well-known technique in structural analysis,
is closely related to adjoint sensitivity analysis. Based on this connection, the
thesis shows how the method of influence functions can be generalized. The
outcome is an engineering tool for sensitivity analysis, which can consider
various kinds of responses, parameters, structures, and physics. The relation-
ship between influence functions and adjoint sensitivity analysis is discussed
in detail. It is demonstrated how influence functions can be identified as
part of the adjoint sensitivity equations. Furthermore, the thesis explores
the significance of the generalized influence function method in the case of
general responses and parameters in different structures. This highlights the
potential of the approach but also its limitations and particularities. Finally,
the concepts developed for structural mechanics are applied to steady state
heat transfer to investigate their generalizability.
Another introduced methodological advance is the application of sensitivity
analysis to sequenced simulation processes. In structural engineering, these
are necessary for conducting construction stage analysis or for the multi-stage
design process of lightweight structures. The thesis investigates how sensitivity
analysis needs to be extended to account for the transition from one analysis
stage to the next. On this basis, the sensitivity equations are adapted for
construction stage analysis and the design process of lightweight structures.
It can be seen in both cases that the complexity of the sensitivity equations
and the computational effort required to evaluate them is significantly higher
than in a one-step analysis.
Finally, the application of sensitivity analysis as a tool for structural design
is demonstrated. For this purpose, the thesis discusses the processing and
interpretation of sensitivities for practical use. On this basis, analysis models
of real-world engineering structures are examined. The examples show how
sensitivity analysis can support structural design in a valuable and goal-
oriented way.





Kurzfassung
Diese Arbeit befasst sich mit methodischen Weiterentwicklungen der Sensi-
tivitätsanalyse. Obwohl Sensitivitätsanalysen ein etabliertes Forschungsgebiet
sind und in Anwendungsfällen wie der gradientenbasierten Optimierung erfolg-
reich eingesetzt werden, finden diese in der Tragwerksplanung bisher kaum
Beachtung. Auch gibt es nur wenige Forschungsarbeiten mit diesem An-
wendungsschwerpunkt. Um das große Potential der Sensitivitätsanalyse für
die Tragwerksplanung stärker zu erschließen und aufzuzeigen, beschäftigt
sich diese Arbeit mit der Weiterentwicklung von Sensitivitätsanalysen mit
speziellem Fokus auf die Tragwerksberechnung. Dies spiegelt sich durch den
Einbezug baustatischer Methoden und der Berücksichtigung von speziell in
der Tragwerksplanung verwendeten Modellierungsansätzen wider.
Die Technik der Einflussfunktionen ist eine etablierte Berechnungsmethode
der Statik und ist eng mit der adjungierten Sensitivitätsanalyse verbunden.
Auf der Grundlage dieser Beziehung diskutiert die Arbeit, wie die Methode
der Einflussfunktionen zu einem Berechnungswerkzeug für Sensitivitäten ver-
allgemeinert werden kann. Der klassische baustatische Ansatz wird so für
verschiedenste Antwortgrößen, Parameter, Strukturen und physikalische Prob-
leme erweitert. Die Beziehung zwischen Einflussfunktionen und adjungierter
Sensitivitätsanalyse wird im Detail diskutiert. Insbesondere wird gezeigt,
wie die Einflussfunktion als Zwischenergebnis der adjungierten Sensitivitäts-
analyse identifiziert werden kann. Darüber hinaus wird die Anwendung der
Methode der verallgemeinerten Einflussfunktionen für generelle Antwortgrößen
und Parameter in verschiedenen Strukturen untersucht. Dabei zeigt sich der
Nutzen und die Aussagekraft des Ansatzes, aber auch seine Grenzen und
Besonderheiten. Abschließend werden die auf einer strukturmechanischen
Basis entwickelten Konzepte auf stationäre Wärmeübertragungsprobleme
angewendet, um deren Verallgemeinerbarkeit zu demonstrieren.
Im Allgemeinen werden Bauwerke in einer Vielzahl von aufeinanderfolgenden
Bauabschnitten errichtet. In der statischen Berechnung kann der Bauablauf
durch Baufortschrittsmodelle berücksichtigt werden, die einen sequenziellen
Simulationsprozess erfordern. Ähnliche mehrstufige Analysen finden auch
beim Entwurfsprozess von Leichtbaustrukturen Anwendung. In dieser Arbeit
wird untersucht, wie die Sensitivitätsanalyse zur Berücksichtigung von se-
quenziellen Simulationsprozessen adaptiert werden muss. Ausgehend von
grundlegenden Erweiterungen der Sensitivitätsanalyse für den Übergang
von einer Analysestufe zur nächsten werden die Sensitivitätsgleichungen für
Baufortschrittsmodelle und den Entwurfsprozess von Leichtbaustrukturen
angepasst. In beiden Anwendungsfällen zeigt sich, dass die Komplexität der
Sensitivitätsgleichungen und der Rechenaufwand zu ihrer Lösung deutlich
höher ist als bei einer einstufigen Analyse.
Abschließend setzt sich die Arbeit mit der Anwendung von Sensitivitätsanaly-
sen in der Planung und Bemessung von Tragwerken auseinander. Hierfür wird
die weitere Aufbereitung und Interpretation von Sensitivitäten für den prak-
tischen Einsatz diskutiert. Auf dieser Grundlage werden Berechnungsmodelle
von realen Ingenieurbauwerken untersucht. Die Beispiele zeigen, wie Sensi-
tivitätsanalysen die Tragwerksplanung zielführend unterstützen können.
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Chapter 1
Introduction

The civil engineer and computer pioneer Konrad Zuse began his developments
with the motivation to carry out time-consuming static calculations with
machines. Today, this vision is a reality: combining powerful computers and
numerical techniques such as the finite element method makes it possible to
analyze complex structures. This has led to modeling and model evaluation
becoming key parts of structural design as computers carry out the calculations.
A deep understanding of the used model is therefore essential. Knowledge
of the effects of changes in load, stiffness, or boundary conditions on the
phenomena of a structure, such as displacements or stresses, is required, or, in
abstract terms, the relationship between the input parameters and the output
quantities of a model needs to be examined. However, these relationships
often cannot be evaluated using engineering knowledge for structures with
complex load-bearing behavior. Instead, parameter studies are commonly
carried out through repeated analyses with different parameter values. Since
this procedure is cumbersome and computationally intensive, systematic and
powerful computer methods are of interest.

Sensitivity analysis

Sensitivity analyses are systematic approaches to study the effects of varied
input parameters on the variation of output quantities (=̂ responses) of models.
Regarding the design process of structures, common tasks of sensitivity
analysis are (i) to identify and evaluate the importance of parameters in the
modeling process, (ii) to investigate and quantify the effects of parameter
changes for the design and optimization of structures, or (iii) to support the
model assessment by providing information of the characteristics of the model.
Sensitivity analysis is no unique approach. Rather, it is the collective term for
various methods that differ regarding informative value and computational
effort. A distinction is typically made between local and global approaches.
Refer to Saltelli et al. [126] for an overview of different methods.
Global methods are commonly used prior to uncertainty analysis to investigate
which of the uncertain model parameters have a low or high contribution
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to the uncertainty of the output variable. To perform a global sensitivity
analysis, probabilistic properties of the parameters (i.e., their probability
density function) are required. Global sensitivity measures include realizations
of the parameter values in the entire parameter space and are not constrained
to reference values. In addition, global sensitivity measures can also describe
interactions between different input variables. The Sobol’ indices (Sobol’
[132]) or the α-sensitivity factors (Hohenbichler et al. [89]) are exemplary
global sensitivity measures. Refer to Iooss et al. [92] for an overview and
further information on global approaches.
Local methods usually characterize the relation between an input parameter
s and a response J by the derivative dJ/ds. As the derivatives are calculated
based on reference values of the model parameters, local sensitivity measures
are dependent on those. In addition, the first order derivatives dJ/ds do not
provide information on the interaction between different parameters. The
informative value of local sensitivity measures is consequently lower than
that of global sensitivity analyses. However, calculating local sensitivities
does not require probabilistic properties of the parameters, which are often
unknown in structural design practice. Combined with the significantly lower
computational effort, this is a striking argument explaining why local methods
are of interest for everyday structural engineering.
Research on local sensitivity analyses has a long history. Refer to Kelley
[93] or Tomović [134] for contributions on sensitivity theory at an early
stage published in the 1960s. Local sensitivity analyses became particularly
interesting as a derivative supplier in gradient-based structural optimization.
In this context, it was recognized that the main computational effort of the
entire optimization procedure can be attributed to the gradient determination.
This circumstance drove the research and development of systematic and
efficient computer-based local sensitivity analyses in the 1970s and 1980s.
The publications by Haug et al. [84], Arora et al. [7], or Belegundu [15] are
examples of that period. The high level of research activity was particularly
evident when NASA organized the 1986 “Sensitivity Analysis in Engineering”
symposium, see Adelman et al. [2]. In addition, Haug et al. [85] published a
comprehensive textbook on the topic in the same year. The review papers
Adelman et al. [3] and Haftka et al. [80] also prove that sensitivity analysis
was already a well-established field of research at that time.
While the initial focus was on discrete, linear problems concerning size pa-
rameters (e.g., cross-sectional area or thickness), various aspects of structural
mechanics have been considered over time. To name a few examples: There
is research on variational shape sensitivity analysis (Arora [6], Tortorelli
et al. [135], or Barthold et al. [10]), non-linear structural problems (Ryu
et al. [125], or Cardoso et al. [32]), follower loads (Poldneff et al. [120]),
path-dependent responses in the presence of material non-linearity (Schwarz
[128] or Liedmann et al. [100]), or non-linear transient problems (Fernandez
et al. [57]). Research papers on the implementation of sensitivity analysis that
try to find a trade-off between performance, accuracy, and implementation
effort can be found. Refer to Poldneff et al. [121] on the implementation in
a non-linear finite element code, to Bischof et al. [19] or Wujek et al. [138]
for the use of automatic differentiation techniques and to Cheng et al. [35]
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or Bletzinger et al. [23] for semi-analytical methods that try to overcome
tedious derivations of element quantities by finite difference approximations.
In addition to structural mechanics, research on local sensitivity analysis can
be found in various application areas. For instance, Giles et al. [70] shows
the sensitivity analysis for compressible flows, Errico [53] for meteorology
problems, Cacuci et al. [31] for cooling towers of power plants, Santos [127]
for heat transfer problems, Henning et al. [87] for geotechnical engineering,
or Heimbach et al. [86] for glaciology. The literature provides more than
methodologically oriented work on local sensitivity analysis. A large number of
publications also deal with the utilization of sensitivity analysis as a gradient-
supplier. In addition to the optimization already mentioned, applications in
model updating (Mottershead et al. [115] or Airaudo et al. [4]), uncertainty
analysis (Cacuci et al. [30] or Luo et al. [106]), or the construction of response
surfaces (Chung et al. [39]) can be found.
In summary, sensitivity analysis for structural mechanics problems is highly
advanced after a long research period. That includes powerful sensitivity
calculations, applicability to advanced mechanical models, and a wide range
of application areas. Recent publications confirm this to be the case. For
example, Antonau et al. [5] shows that large-scale industrial optimization
problems with up to millions of parameters can be solved with gradient-based
approaches using highly efficient computational sensitivity analyses. The
extension to advanced mechanical models, including material non-linearity or
damage mechanisms, is demonstrated by Liedmann et al. [100] or Guhr et al.
[78]. The importance of sensitivity analysis for research trends such as digital
twins is demonstrated by the work Airaudo et al. [4], in which gradient-based
algorithms are used to identify weaknesses in structures. Ehre et al. [49]
presents a novel application of sensitivities in Bayesian updating.
Despite the high level of research activity described above and the advanced
knowledge gained, sensitivity analysis has not been integrated into everyday
structural engineering practice. Furthermore, there is limited research in this
direction. Henning et al. [87] shows the development and practical application
in geotechnical engineering. The work of Prof. Friedel Hartmann’s research
group at the University of Kassel is also worth mentioning. Based on Green’s
functions (=̂ influence functions in structural analysis), the group developed
a sensitivity analysis approach for reanalysis. It is used to make predictions
of the impact of stiffness changes in structural analysis models. Refer to
Hartmann et al. [83], Kunow [97], Carl [33], Carl et al. [34], and Hartmann
et al. [82] for respective works.

Goals of the thesis

This dissertation aims to develop sensitivity analysis further, focusing on
applications in structural engineering. As noted above, there is little research
in this direction, but interest in this topic is recognizable. For example, Hertle
[88] recently rated sensitivity analysis as an essential tool for investigating
the causes of structural failures. To support the application and acceptance
of sensitivity analysis, this thesis presents methodological developments that
relate specifically to structural engineering. Since structural engineering is a



4 1 . Introduction

far-reaching subject in which sensitivity analysis could be used for various
objectives, the work is consequently limited to selected aspects. Adjoint
sensitivity analysis is the methodological basis of most of the developments
presented. The adjoint method enables the efficient calculation of the sensitiv-
ities of a selected response with respect to a large number of parameters. This
feature holds great potential for structural design. Even in complex analysis
models, the most influential parameters can be determined by efficiently
providing a large amount of sensitivity information per response. A valuable
introduction to adjoint sensitivity analysis is given by Giles et al. [71].
A novel methodical development presented in this dissertation is the gen-
eralization of the influence function method for sensitivity analysis. The
influence functions approach is a traditional and well-known technique in
structural analysis. By combining this established method with the efficiency
of numerical sensitivity analysis and its versatile possibilities, a valuable tool
for structural engineering practice is presented. It is known from the literature
that the adjoint variable (intermediate result of adjoint sensitivity analysis)
can be identified as the influence function concerning the response. Refer
to Belegundu [14, 16, 17], which are the first research papers to report on
this relationship. Prof. Hartmann’s earlier mentioned research group has also
recognized the connection, which is documented in Kunow [97] and Hartmann
et al. [82]. The publications by Belegundu and the Hartmann group have in
common that they concentrate on identifying the adjoint variable as influence
function. Furthermore, the Hartmann group proposed a method to determine
sensitivities concerning parameters influencing the structural stiffness based
on Green’s function (cf. Hartmann et al. [82]). These findings are used
and continued accordingly in this thesis. The research goal is to investigate
how and to what extent the influence function method can be generalized
for sensitivity analysis. In this context, the generalization concerning various
kinds of (i) responses, (ii) parameters, and (iii) physics is studied.
Engineering structures cannot be built in one single piece. Instead, they result
from a construction process during which deformations occur due to their self-
weight. Considering such aspects in the simulation is called construction stage
analysis, which comprises a sequence of simulation stages. Since construction
phase models have not yet been extensively established in structural design
and are generally complex, a systematic investigation and assessment of them
is of interest. In that regard, the literature only covers classic parameter
studies used to investigate construction stage models. Refer to Kurc et al.
[98] or Laggner et al. [99] as exemplary works. However, applying systematic
computer-aided sensitivity analyses to sequential simulation processes is a
new and previously unexplored field of application. Hence, the research goal is
to investigate how sensitivity analysis can be applied to sequenced simulation
processes.
In addition to the methodological developments mentioned above, the disser-
tation deals with applying sensitivity analysis in structural engineering. For
this purpose, sensitivity analysis is considered as a stand-alone engineering
tool and not as a gradient supplier for other methods. The research goal is to
demonstrate sensitivity analysis as a supporting means for structural design.



5

Outline of the thesis

CHAPTER 2 introduces the fundamentals of structural mechanics and steady
state heat transfer. These are the underlying physics to which sensitivity
analysis is applied in the thesis. The consideration of steady state heat trans-
fer is required to demonstrate the generalization of the influence functions
approach for another physics.

CHAPTER 3 introduces the basics of adjoint sensitivity analysis, which
are necessary for the methodological developments in the dissertation. The
sensitivity equations are derived in discrete and variational formulations for
structural mechanics and steady state heat transfer. Furthermore, the influ-
ence function approach is presented.

CHAPTER 4 presents investigations on the generalization of the method
of influence functions for sensitivity analysis. The connection of the adjoint
variable and the influence function is discussed from different viewpoints.
Subsequently, it is demonstrated how the influence function for significant
practice-relevant responses as displacements, stress resultants, or support
forces can be identified in adjoint sensitivity analysis. On that basis, the
thesis proposes how the influence function method can be extended for general
responses and parameters. In that regard, the extendability of the graphical
solution procedure of the classical influence functions method is also consid-
ered. A further focus is the discussion of the significance of the influence
function in general cases and the limitations of the generalization approach.
Finally, the validity of the proposed concept is demonstrated along steady
state heat transfer for a different physical phenomenon.

CHAPTER 5 presents investigations on the required extensions of sensitivity
analysis for sequenced simulation processes. It is discussed how analysis mod-
els can be initialized for the subsequent simulation stage and the necessary
adjustments for sensitivity analysis. Based on these findings, additional exten-
sions for sensitivity analysis in the case of construction stage analysis and the
sequenced simulation process of lightweight structures are investigated. An
essential issue of the chapter is also the critical assessment of the additional
computational costs of sensitivity analysis for sequenced simulation processes.

CHAPTER 6 demonstrates the use of sensitivity analysis in structural de-
sign. Application-oriented aspects such as the graphical processing and the
interpretation of sensitivities are discussed. Subsequently, concepts for the
systematic use of sensitivities are proposed. The final focus is to demonstrate
the described concepts and methods on real-world analysis models of engi-
neering structures.

CHAPTER 7 concludes the thesis and provides an outlook for possible future
research.



6 1 . Introduction

Kratos Multiphysics

All sensitivity analyses presented in this dissertation are conducted with the
open-source1 simulation framework Kratos Multiphysics. Information can be
found in Dadvand et al. [43], Dadvand et al. [44], and Ferrándiz et al. [58].
The research code is structured in a core and applications. The core defines the
framework and provides basic functionalities. The applications contain specific
implementations and are available for various use cases such as structural
mechanics, fluid dynamics, or optimization. Furthermore, different numerical
approaches, such as the finite element method or particle-based methods, are
implemented. For this dissertation, the StructuralMechanicsApplication is
used for examples from structural engineering and the ConvectionDiffusion-
Application for steady state heat transfer simulations. The sensitivity analysis
for structural problems is part of the StructuralMechanicsApplication and was
implemented by the author of this dissertation. In contrast, the sensitivity
analysis in the ConvectionDiffusionApplication was already available for shape
parameters. For this work, the existing implementation was extended for
various other parameters and the proposed generalized influence function
approach.

1 GitHub repository: https://github.com/KratosMultiphysics/Kratos



Chapter 2
Structural mechanics and heat transfer

2.1 Preliminaries
Gâteaux derivatives and variations

Gâteaux or directional derivatives provide information about the changing
behavior of scalar, vector, or tensor-valued fields concerning a selected argu-
ment in an arbitrary direction (•). The Gâteaux derivative of a function Φ(u)
with respect to u in direction of (•) is defined as

Φ′
u (u; (•)) = D(•)Φ(u) = d

dε
Φ (u + ε(•)) |ε=0 (2.1)

where D(•) denotes the Gâteaux operator. The Gâteaux derivative of Φ
in direction of δu is equivalent to the variation δΦ due to variation δu of
argument u:

δΦ = δuΦ = Φ′
u (u; δu) = DδuΦ(u) = d

dε
Φ (u + εδu) |ε=0 (2.2)

The relation of Gâteaux derivative and gradient is given by

DδuΦ(u) = ∂Φ(u)
∂u

· δu (2.3)

as a result of applying the chain rule. If a quantity Φ(u, s) depends on several
arguments, the partial variations δuΦ = Φ′

u and δsΦ = Φ′
s can be computed

with respect to one argument by Equation (2.1) if the other argument is held
fixed. On that basis, the total variation

Φ′ = Φ′
u(u, s) + Φ′

s(u, s) (2.4)
can be determined. If the argument u depends on s, the total partial variation
of Φ(u(s), s) with respect to s reads

DsΦ(u, s) · δs = ∂Φ
∂s

· δs + ∂Φ
∂u

du

ds
· δs (2.5)

using the chain rule.
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Variational forms

Variational or weak forms of the underlying physical problem (e.g., structural
mechanics or heat transfer) are the basis for numerical approaches such as
the finite element method (FEM). The variational form

A(u,v) = a(u,v) − F (v) = 0 ∀v ∈ V
with a(u,v) : U × V → R and F (v) : V → R

(2.6)

is concerned with determining the state field u in a solution space U and
utilizes a test field v ∈ V whereby V is called weighting space. The spaces U
and V are defined as

U = {u ∈ Hm(Ω) : u = û on ΓD}
V = {v ∈ Hm(Ω) : v = 0 on ΓD}

(2.7)

where û are prescribed values of the state field on the Dirichlet boundary
ΓD of a domain Ω. In contrast, the test field fulfills homogeneous boundary
conditions on ΓD. Information about the Sobolev-space Hm can be found by
Adams et al. [1]. The order m of H is defined by the highest derivative order
of the test function v in the weak form.
The functional F (v) operates on the test function v. Frequently occurring
functionals in the context of Equation (2.6) are in the shape

F (v) = (p,v) =
∫

Ω
p · v dΩ (2.8)

for a given p (e.g., distributed load or heat source). Forms and functionals
may depend on several arguments simultaneously. To separate non-linear from
linear arguments, a semicolon is used. For instance, the form a(u, s;v,w)
and the functional F (u, s;v,w) are non-linear in u and s but linear with
respect to v and w. If a(u,v) is linear in both arguments, the form is denoted
bilinear. Otherwise, the case a(u;v) is designated as semilinear.
In structural mechanics, the weak form equates to the principle of virtual work
or more precisely the principle of virtual displacements. Therefore, the test
function v is interpreted as virtual displacement, which is typically denoted
by δu. With the internal virtual work δWint(u, δu) = −a(u, δu) and external
virtual work δWext(δu) = F (δu) the weak form can written as:

δW = δWint(u, δu) + δWext(δu) = 0 (2.9)
For instance, the virtual work expressions read

δWint(w, δw) = −a(w, δw) = −
l∫

0

EIw′′ · δw′′ dx and

δWext(δw) = F (δw) = (p, δw) =
l∫

0

p · δw dx

(2.10)

in the case of an Euler-Bernoulli beam with length l (cf. Appendix B.1).
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Finite element discretization and solution procedure

In the previous section, variational problems A(u,v) were introduced. How-
ever, the utilized solution and weighting space (cf. Equation (2.7)) contain
an infinite number of linearly independent functions whereby the solution of
Equation (2.6) is practically not possible. Approximate solution techniques
as the finite element method restrict the solution and weighting space to finite
dimensional sub-spaces Uh ⊂ U and Vh ⊂ V. Hence, the problem

A(uh,vh) = a(uh,vh) − F (vh) = 0 ∀vh ∈ Vh (2.11)

is treated to solve for uh ∈ Uh. A further characteristic of the finite element
method is separating the domain Ω into sub-domains Ωe, i.e., into the name-
giving elements. Within the elements, the state field and test function are
interpolated in terms of shape functions N as

ue
h(ξ) = N(ξ)ue and ve

h(ξ) = N(ξ)ve (2.12)

with the nodal values of state field ue and test function ve, respectively. In
general, Equation (2.11) is non-linear concerning the unknown state field uh

and must be solved iteratively. For the solution with the Newton Raphson
scheme, the variational form is linearized as

A(uh;vh) +A′
uh

(uh;vh,∆uh) + O = 0 (2.13)

where A′
uh

(•) denotes the Gâteaux derivative with respect to uh in the
direction of the state field increment ∆uh. The higher order terms are
designated by O and are neglected subsequently. Hence, the linear problem

A′
uh

(uh;vh,∆uh) = −A(uh;vh) (2.14)

must be solved in every iteration step to determine the increment ∆uh.

2.2 Structural mechanics
This section briefly introduces the fundamentals of structural mechanics. The
focus is on linear and geometrically non-linear static problems. For more
in-depth information, please refer to the literature, e.g., the textbooks by
Başar et al. [11], Bonet et al. [26], Borst et al. [27], and Holzapfel [90] are
recommended.

2.2.1 Kinematics
Subsequently, it is necessary to distinguish the reference configuration (unde-
formed) and the current configuration (deformed) of the structural domain.
Capital letters are used for variables in the reference configuration, and
lowercase letters are employed for those in the current configuration.
The displacement u is determined by the difference of the position vector of
a material point in the reference and current configuration (cf. Figure 2.1):

u = x − X (2.15)
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A parametric geometry description based on curvilinear coordinates θi can
be utilized to represent the position vectors by

X = Xj
(
θ1, θ2, θ3) ej and x = xj

(
θ1, θ2, θ3) ej (2.16)

where ej are the base vectors of a global Cartesian coordinate system. Based
on the position vectors, local bases in co- and contravariant manner can be
determined. These are defined as

Gi = ∂X

∂θi
, Gi = ∂θi

∂X
, gi = ∂x

∂θi
, and gi = ∂θi

∂x
(2.17)

in reference and current configuration, respectively. The co- and contravariant
bases can be transformed in each other by metrics as listed in Table 2.1.

Table 2.1: Transformation of co- and contravariant bases by metrics.

configuration reference current
covariant metric Gij = Gi · Gj gij = gi · gj

contravariant metric Gij = Gi · Gj gij = gi · gj

covariant bases Gi = GijG
j gi = gijg

j

contravariant bases Gi = GijGj gi = gijgj

The deformation gradient F describes the mapping of an infinitesimal fiber
dX in the reference configuration to the deformed fiber dx in the current
configuration

dx = F · dX (2.18)
and can be determined by

F = dx

dX
= gi ⊗ Gi. (2.19)

Non-linear strain measures can be introduced using the deformation gradient.
The Green-Lagrange (GL) strain tensor E is defined as

E = 1
2
(
FT · F − I

)
= 1

2 (gij −Gij)Gi ⊗ Gj (2.20)

and the Euler-Almansi (EA) strain tensor e as

e = 1
2
(
I − F−T · F−1) = 1

2 (gij −Gij) gi ⊗ gj (2.21)

where I denotes the identity tensor. For other non-linear strain measures,
refer to the literature, e.g., Holzapfel [90] or Başar et al. [11]. Usually, the
coefficients of constitutive equations refer to a local Cartesian basis. Therefore,
the strains in Equation (2.20) can be transformed by

Ēγδ = 1
2(gij −Gij)(eγ · Gi)(Gj · eδ) (2.22)

where eγ , eδ denote the base vectors of a Cartesian frame. A bar •̄ is utilized
to denote that the strains refer to a Cartesian reference frame.
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2.2.2 Constitutive equations and stresses
Constitutive equations relate strains and stresses using a material law. In
non-linear structural mechanics, several strain and stress measures are estab-
lished. In Section 2.2.1, the Green-Lagrange and the Euler-Almansi strain
are introduced. Their energetically conjugated stress measure is the Second
Piola-Kirchhoff (PK2) stress tensor S and the Cauchy stress tensor σ, respec-
tively. In the context of this thesis, only problems with large displacements
but small strains are considered in the case of non-linear analyses. Hence, a
linear relation between strains and stresses described by the Saint Venant-
Kirchhoff material law is used. The chosen material law is characterized by
the strain-energy function

Ψ(E) = 1
2λ (tr (E))2 + µ tr

(
E2)

λ = Eν

(1 + ν)(1 − 2ν) , µ = E

2(1 + ν)

(2.23)

with the Lamé constants λ and µ, Young’s modulus E, Poisson’s ratio ν, and
the trace operator tr (•) (cf., e.g., Holzapfel [90] for details). The PK2 stress
tensor can be determined based on the strain energy function Ψ by:

S = ∂Ψ

∂E
(2.24)

The material tensor C is defined as

C = ∂2Ψ

∂E2 = ∂S

∂E
(2.25)

to describe the relation between strains and stresses, which is linear in the
case of the Saint Venant-Kirchhoff model:

S = C : E (2.26)

The PK2 stress tensor S can be transformed into alternative stress tensors.
The relation with the First Piola-Kirchhoff (PK1) stress tensor P is given by

P = F · S (2.27)

and with the Cauchy stress tensor σ through

σ = 1
detF F · S · FT (2.28)

where F is the deformation gradient according to Equation (2.19). Please
note that only the Cauchy stresses allow a meaningful physical interpretation
among the introduced stress types. Analogously to the linear case, the
components of the Cauchy stress can be interpreted as forces per unit area in
the deformed configuration.
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2.2.3 Governing equation
The equilibrium of internal and external forces gives the governing equation
in structural mechanics. The equilibrium can be formulated in reference or
current configuration (cf. Figure 2.1). For static problems in which dynamic
effects are neglected, the equilibrium in the reference state (indicated by
subscript “0”) can be expressed as

divP + p0 = 0 (2.29)

by means of the PK1 stress tensor P and the distributed volume forces
p0 (commonly referred to as body forces). In addition to the equilibrium
requirement, boundary conditions must be met. In the following it is assumed
that the boundary Γ0 of the domain Ω0 is composed of a Dirichlet part ΓD0
and Neumann part ΓN0 with the following properties:

Γ0 = ΓD0 ∪ ΓN0 and ΓD0 ∩ ΓN0 = ∅ (2.30)

On ΓD0 the structural displacements u have to be equivalent to predefined
values û. In contrast, on ΓN0, external forces t̂0 are specified, which must be
in equilibrium with the internal forces. Hence, the boundary conditions read

u = û on ΓD0 (2.31a)
nP = t̂0 on ΓN0 (2.31b)

where n is a unit normal vector on the domain boundary. The combination
of Equations (2.29) and (2.31) represent the strong form of the boundary
value problem of elastostatics. The respective formulation in the current
configuration can be found in the literature (e.g., Holzapfel [90]).

e3

e2
e1

X

u

x

ΓD0

ΓN0

ΓD ΓN
Ω0

Ω
p0

p

t̂0

t̂

reference configuration

current configuration

Figure 2.1: Domain in the reference and current configuration with
Dirichlet and Neumann boundary conditions.

2.2.4 Weak form
The direct determination of the displacements u by the analytical solution
of the static boundary value problem defined in Section 2.2.3 is generally
impossible. To apply approximate solution techniques such as the finite
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element method, the weak form of the boundary value problem is required.
Therefore, Equation (2.29) is multiplied by an arbitrary test function v ∈ V
(cf. Section 2.1). Subsequent integration over Ω0 gives:∫

Ω0

(div (P ) + p0) · v dΩ0 = 0 (2.32)

By application of Cauchy’s theorem and the divergence theorem (=̂ Gauß’s
theorem) to Equation (2.32), and subsequent substitution of the PK2 stress
tensor by means of Equation (2.27), the weak form of the boundary value
problem of elastostatics is obtained:

A(u;v) = a(u;v) − F (u;v) = 0 with

a(u;v) =
∫

Ω0

S : DvE(u) dΩ0 and

F (u;v) =
∫

Ω0

p0 · v dΩ0 +
∫

ΓN0

t̂0 · v dΓN0

(2.33)

If the test function v is considered as virtual displacement δu, the variational
form in Equation (2.33) can be recognized as the principle of virtual work

δW = δWint + δWext = 0 with

δWint = −
∫

Ω0

S : δE dΩ0 and

δWext =
∫

Ω0

p0 · δu dΩ0 +
∫

ΓN0

t̂0 · δu dΓN0

(2.34)

with the internal virtual work δWint(u; δu) = −a(u; δu) and external virtual
work δWext(u; δu) = F (u; δu), respectively.

2.2.5 Finite element based solution procedure
The equilibrium state given in terms of the principle of virtual work in
Equation (2.34) can be expressed as

δW = ∂W

∂u
δu = 0 (2.35)

if the relation of Gâteaux derivative and gradient as introduced by Equa-
tion (2.3) is considered. Finite element discretization of Equation (2.35) (cf.
Section 2.1) gives

δW = ∂W

∂uh
δuh = −r · δuh = 0 (2.36)

where r denotes the vector of unbalanced forces. The vector r is computed by

r(uh) = −∂Wint

∂uh
− ∂Wext

∂uh
= fint(uh) − fext(uh) = 0 (2.37)
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and can be interpreted as the equilibrium of internal forces fint and external
forces fext. Moreover, the equilibrium state defined by Equation (2.37)
represents the discrete state equation of non-linear structural problems.
Equation (2.37) is non-linear concerning uh and cannot solved directly. An
iterative solution procedure such as the Newton Raphson scheme can be
used instead (cf. Section 2.1 or Borst et al. [27] for detailed information).
Therefore, Equation (2.37) is linearized. The result is the linear problem

KT ∆uh = −r (2.38)

which has to be solved in every iteration step of the Newton Raphson algorithm.
The tangential stiffness matrix KT in Equation (2.38) can be computed by

KT (uh) = ∂r

∂uh
= ∂fint

∂uh
− ∂fext

∂uh
. (2.39)

2.2.6 Linear elasticity theory
The governing equation to determine the structural displacements u on the
basis of linear elasticity theory is given by

−Lu = − [µ∆ + (λ+ µ) ∇div]u = p in Ω (2.40a)
u = û on ΓD (2.40b)
σn = t̂ on ΓN (2.40c)

with the Lamé operator L, the Lamé constants µ and λ as defined by Equa-
tion (2.23) and the distributed volume forces p. Additionally, displacements û
and traction forces t̂ are prescribed on the Dirichlet and Neumann boundary.
The respective weak form reads

A(u,v) = a(u,v) − F (v) = 0 with

a(u,v) =
∫

Ω
σ(u) : ϵ(v) dΩ and

F (v) =
∫

Ω
p · v dΩ +

∫
ΓN

t̂ · v dΓN

(2.41)

where σ(u) = C : ϵ(u) is the Cauchy stress tensor based on the linear strain
tensor

ϵ(u) = 1
2
(
∇u + ∇uT

)
(2.42)

and the material tensor C. If v is interpreted as virtual displacement δu,
the variational form in Equation (2.41) can be recognized as the principle
of virtual work with the internal virtual work δWint(u, δu) = −a(u, δu) and
external virtual work δWext(δu) = F (δu), respectively.
After finite element discretization of Equation (2.41), the discrete state equa-
tion for linear structural problems

r(uh) = Kuh − F = 0 (2.43)

with the symmetric stiffness matrix K = KT and load vector F is received.
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2.3 Steady state heat transfer
Steady state heat transfer problems are only used to demonstrate the gener-
alizability of the proposed sensitivity analysis approach for another physics
in Chapter 4 and are not within the main focus of this thesis. The un-
derlying physics is therefore kept as simple as possible. For example, only
state-independent material properties are assumed. For further reading and
background information, refer to the literature like the comprehensive text-
book Lienhard et al. [101]. Please note that the following derivations are
mainly based on Huang et al. [91] and Zienkiewicz et al. [139].

2.3.1 Governing equation
The theoretical basis for steady state heat transfer is Fourier’s law of heat
conduction (Fourier [60]), which relates the heat flow rate per unit area q, i.e.,
the heat flux, with the gradient of the temperature ϕ by

q = −κ · dϕ
dx

(2.44)

where the constant κ denotes the material-dependent thermal conductivity.
See Lienhard et al. [101, Appendix A] for a comprehensive list of thermal
conductivity values for various materials. In a three-dimensional setting,
Equation (2.44) can be generalized in Cartesian coordinates as

q =

 qx

qy

qz

 = −κ∇ϕ (2.45)

with the matrix κ containing the conductivity properties of the body. For
isotropic materials, the matrix κ can be written as κ = κ · I, where I is the
identity matrix. In the presence of a heat source Q (heat generated per unit
volume), the heat flow equilibrium

∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z
= ∇ · q = Q. (2.46)

must be fulfilled. Finally, by substitution of Equation (2.45) into Equa-
tion (2.46) the governing equation for the temperature ϕ is obtained:

−∇ · (κ∇ϕ) = Q (2.47)

2.3.2 Boundary conditions
In the following it is assumed that the boundary Γ of the domain Ω is
composed of a Dirichlet part ΓD and Neumann part ΓN with the following
properties:

Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅ (2.48)
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Dirichlet boundary conditions
On the Dirichlet boundary ΓD the temperature is specified:

ϕ = ϕ̂ (2.49)
Neumann boundary conditions
On the Neumann boundary ΓN the heat flow in the normal direction of the
surface is assigned by

qTn = − (κ∇ϕ)T n = qN (2.50)
where n is the unit normal vector of the domain boundary. The introduced
boundary heat flow variable qN can include different conditions, which are:

• The boundary heat inflow can be fixed by a prescribed value q̂:
qN = −q̂ (2.51)

• Convection boundary conditions can be considered by Newton’s law of
cooling defined as

qN = α(ϕ− ϕa) (2.52)
where α denotes the heat transfer coefficient and ϕa is the ambient
temperature. For exemplary values of the heat transfer coefficient α
and for a discussion on its temperature dependency, refer to Lienhard
et al. [101].

• Radiation boundary conditions can be considered by

qN = σϵ
(
ϕ4 − ϕ4

a

)
(2.53)

where σ is the Stefan-Boltzmann constant (5.67 · 10−8W/m2K4) and
ϵ is the emissivity of the boundary. For details on radiation, refer to
Balaji [8].

2.3.3 Weak form
Multiplication of Equation (2.47) by an arbitrary test function v ∈ V (cf.
Section 2.1) and integration over Ω gives:∫

Ω
v · (∇ · (κ∇ϕ) +Q) dΩ = 0 (2.54)

Through integration by parts of Equation (2.54) and subsequent incorporation
of the Neumann boundary conditions (Equations (2.50)-(2.53)), the weak
form

A(ϕ; v) = a(ϕ; v) − F (v) = 0 with (2.55a)

a(ϕ; v) =
∫

Ω
(∇v)T κ∇ϕ dΩ +

∫
ΓN

v
(
αϕ+ σϵϕ4) dΓN (2.55b)

F (v) =
∫

Ω
vQ dΩ +

∫
ΓN

v
(
αϕa + σϵϕ4

a + q̂
)
dΓN (2.55c)
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of steady state heat transfer problems is obtained. It shall be noted that
convection and radiation boundary conditions add additional parts to the
stiffness matrix (second integral in Equation (2.55b)) if the problem is further
discretized. Furthermore, a non-linear occurrence of the temperature ϕ in
Equation (2.55b) due to radiation can be observed. For details on the iterative
solution procedure of non-linear steady state heat transfer problems, refer to
Bathe [12] and Milka [113].

2.3.4 One-dimensional linear case
The equations derived in the previous chapters are subsequently applied to
the one-dimensional case. Thereby, a rod with length l where heat conduction
occurs in x-direction is assumed. Additionally, heat convection at the circum-
ferential surface of the rod as proposed by Liu et al. [103] is considered. The
differential equation and applied boundary conditions read

d

dx

(
κA · dϕ

dx

)
+Q− αU (ϕ− ϕa) = 0 ϕ(0) = ϕ̂, q(l) = 0 (2.56)

where A is the cross-sectional area, and U is the perimeter of the rod. Based
on Equation (2.56), the weak form

l∫
0

dv

dx
κA

dϕ

dx
dx+

l∫
0

vαU (ϕ− ϕa) dx−
l∫

0

vQdx = 0 (2.57)

can be derived. It should be noted that the governing equation and the weak
form correspond to the respective equations of a linear truss.





Chapter 3
Adjoint sensitivity analysis and

influence functions

3.1 Introduction to duality approaches
Adjoint sensitivity analysis and the method of influence functions rely on the
principle of duality. The motivation behind dual approaches is to replace the
solution of a linear system of equations (discrete case) or a partial differential
equation (continuous case) by the solution of the corresponding dual (=̂
adjoint) problem. For explanation, the quantity of interest J

J = gTu (3.1)

is considered. The vector u is the solution of the primal problem

Ku = F (3.2)

with a matrix K and a right-hand side vector F . To omit the solution of
Equation (3.2), the adjoint problem

KTη = g (3.3)

with the adjoint variable η is introduced. If Equation (3.3) is substituted into
Equation (3.1)

J = gTu =
(
KTη

)T
u = ηTKu = ηTF (3.4)

the dual form to determine J is found. The dual form becomes advantageous if
J must be determined based on n > 1 different vectors F . In this case, solving
Equation (3.2) n-times can be circumvented by evaluating Equation (3.3)
once. In adjoint sensitivity analysis, this property is used to decouple the
computational effort from the number of parameters for which sensitivities
must be computed (cf. Section 3.2). The influence function method uses the
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advantage by efficiently evaluating the value of a specific structural response
due to different load cases (cf. Section 3.4).

REMARK I: In the case of a symmetric matrix K, the system matrix of
the adjoint and primal problem are the same since KT = K applies. Such
problems are called self-adjoint.

REMARK II: In linear structural analysis, the matrix K is symmetric and
Equation (3.4) can be identified as Betti’s theorem. Furthermore, the dual
solution equates the influence function of the quantity of interest J . For a
detailed description, refer to Hartmann et al. [82].

3.2 Discrete adjoint sensitivity analysis
Subsequently, response functions J (e.g., stresses) are considered, which
depend on model input parameters s (e.g., Young’s modulus) and on the
state variables u (e.g., displacements of the finite element nodes), that are
also dependent on s:

J(s,u(s)) (3.5)
To determine the derivative of the response function concerning an input
parameter si ∈ s, the chain rule of differentiation has to be employed:

dJ

dsi
= ∂J

∂si
+
[
∂J

∂u

]T

· du
dsi

(3.6)

The state derivative du/dsi is determined by deriving the state equation

r(s,u(s)) = 0 (3.7)

with respect to parameter si

dr

dsi
= ∂r

∂si
+ ∂r

∂u
· du
dsi

= 0 =⇒ du

dsi
=
[
∂r

∂u

]−1
·
[
− ∂r

∂si

]
=
[
∂r

∂u

]−1
·F ∗ (3.8)

where ∂r/∂u equates to the stiffness matrix K in structural mechanics. The
right-hand side −∂r/∂si is referred to as pseudo-load F ∗. The insertion of
Equation (3.8) into Equation (3.6) leads to

dJ

dsi
= ∂J

∂si
+
[
∂J

∂u

]T

·
[
∂r

∂u

]−1
·
[
− ∂r

∂si

]
(3.9)

as sensitivity equation. If Equation (3.9) is evaluated from right to left, i.e.,
by solving Equation (3.8) first, the inverse matrix-vector multiplication with
∂r/∂u needs to be carried out for each parameter. This is because the right-
hand side −∂r/∂si of the linear system of equations depends on si. Hence,
the number of required solutions of linear systems containing the stiffness
matrix is linearly dependent on the number of parameters but independent of
the number of responses. Starting the sensitivity analysis with the solution
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of Equation (3.8) is known as direct sensitivity analysis, which is favored in
cases where the relationship between fewer parameters than responses needs
to be investigated.
For opposite problems, where the number of parameters exceeds the number
of responses, it is advantageous to change the calculation order by introducing
the adjoint variable η as the solution of the linear system of equations

ηT =
[
∂J

∂u

]T

·
[
∂r

∂u

]−1
⇔
[
∂r

∂u

]T

η = ∂J

∂u
(3.10)

where the right-hand side ∂J/∂u is denoted as adjoint load. Equation (3.10) is
the adjoint problem as introduced in Section 3.1. If Equation (3.10) is solved
first, instead of the state derivative given by Equation (3.8), the number of
necessary system solutions is determined by the number of responses and is
at the same time decoupled from the number of parameters. By inserting
the adjoint variable into Equation (3.9), the expression for adjoint sensitivity
analysis is obtained:

dJ

dsi
= ∂J

∂si
+ ηT ·

[
− ∂r

∂si

]
= ∂J

∂si
+ ηTF ∗ (3.11)

It is worth emphasizing that the determination of the partial derivatives
∂J/∂si, ∂r/∂si and the dot product of the latter and the adjoint variable
requires less computational effort than the solution of the linear system in
Equation (3.10). Thus, adjoint sensitivity analysis is a method that enables
the calculation of sensitivities concerning a large number of parameters with
the effort of only one system evaluation per response.

REMARK I: For the method proposed in Chapter 4, the contrary de-
pendencies of adjoint variable and pseudo-load are essential. According to
Equation (3.10), the adjoint variable depends on the considered response
J and, in the case of a non-linear response concerning u, also on the state
variables u. However, the adjoint variable is independent of the parameters s.
In contrast, the pseudo-load −∂r(s,u)/∂si is independent of the response but
is determined by the parameters s and the state u. Only the partial deriva-
tive ∂J/∂si simultaneously depends on response and parameter. Section 4.2
demonstrates that ∂J/∂si vanishes for significant responses in structural
engineering. In these cases, the overall contribution of the response to the
sensitivity is described by the adjoint variable and the entire contribution
of the parameters by the pseudo-load. Hence, the individual analysis of the
adjoint variable and pseudo-load provides additional sensitivity information.
For instance, the adjoint variable indicates zones of a structure where param-
eter variations could have a minor or significant effect on the response.

REMARK II: The Lagrangian approach is an alternative to the shown
derivation of adjoint sensitivity analysis. In Section 3.3.1, a Lagrangian
approach is utilized in the case of variational adjoint sensitivity analysis. This
thesis does not show the equivalent procedure for discrete formulations, but
it can be found in the literature (e.g., Belegundu [15]).
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3.2.1 Linear structural problems
The derived general sensitivity equations are applied to linear structural
problems. The respective state equation

r(s,u(s)) = K(s)u(s) − F (s) = 0 (3.12)

is derived in Section 2.2.6. The insertion of Equation (3.12) in Equation (3.10)
leads to

ηT =
[
∂J

∂u

]T

K−1 ⇔ KT︸︷︷︸
=K

η = ∂J

∂u
(3.13)

as an adjoint problem. Since the stiffness matrix is symmetric, the problem
is self-adjoint. According to Equation (3.13), the adjoint variable η is the
solution of a linear static problem. Hence, the components of η can be
interpreted as the nodal displacements of a system that is stressed by the
adjoint load. The negative partial derivative of Equation (3.12) concerning
the parameter, i.e., the pseudo-load F ∗, can be evaluated by:

− ∂r

∂si
= F ∗ = ∂F

∂si
− ∂K

∂si
u (3.14)

The insertion of Equation (3.14) in Equation (3.11) finally leads to

dJ

dsi
= ∂J

∂si
+ ηT

[
∂F

∂si
− ∂K

∂si
u
]

(3.15)

as adjoint sensitivity equation for linear structural problems.

REMARK I: The pseudo-load in Equation (3.14) accounts only for the
dependencies of the load vector and stiffness matrix on the parameter si.
However, the components of the displacement vector u can also directly depend
on the parameters. Prescribed displacements to model support settlements
are an example. Section 6.6 shows how the pseudo-load must be adapted for
such parameters.

3.2.2 Non-linear structural problems
The derived general sensitivity equations are applied to non-linear structural
problems. The respective state equation

r(s,u(s)) = fint(s,u(s)) − fext(s,u(s)) = 0 (3.16)

is derived in Section 2.2.5 and represents the equilibrium of internal and
external forces. The insertion of Equation (3.16) in Equation (3.10) leads to
the adjoint problem

ηT =
[
∂J

∂u

]T [∂fint

∂u
− ∂fext

∂u

]−1
⇔ [KT (u)]T η = ∂J

∂u
(3.17)
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where the tangential stiffness matrix KT as introduced by Equation (2.39)
can be identified. It shall be noted that Equation (3.17) is based on a certain
pre-computed equilibrium state u. Consequently, the adjoint variable η is
also the solution of a linear system of equations in the case of non-linear
analysis. The negative partial derivative of the state Equation (3.16) with
respect to the parameter can be determined by:

− ∂r

∂si
= F ∗ = ∂fext

∂si
− ∂fint

∂si
(3.18)

The insertion of Equation (3.18) in Equation (3.11) finally leads to

dJ

dsi
= ∂J

∂si
+ ηT

[
∂fext

∂si
− ∂fint

∂si

]
(3.19)

as adjoint sensitivity equation for non-linear structural problems.

REMARK I: In the case of conservative systems, the tangential stiffness
matrix KT is the symmetric Hessian of the potential energy (cf. Belytschko
et al. [18]), and the adjoint problem is self-adjoint. In non-conservative
systems, the tangential stiffness matrix is generally unsymmetrical. A reason
for non-conservatism in structural mechanics can be deformation-dependent
loads. In such cases, the tangential stiffness matrix must be extended by an
additional contribution ∂fext/∂u from the external load called load stiffness
matrix. For details in evaluating the load stiffness matrix and its symme-
try properties, refer, e.g., to Mok et al. [114], Rumpel et al. [124], and
Schweizerhof et al. [129]. The references show that depending on the utilized
formulation of the load field, the load stiffness matrix can be symmetrical or
unsymmetrical. Hence, in the case of deformation-dependent loads, the tan-
gential stiffness matrix can also be symmetric, leading to self-adjoint problems.

REMARK II: The shown derivation within this section is only valid for
path-independent responses. For opposite cases, refer to the literature, e.g.,
Schwarz [128] investigated path-dependent sensitivity analysis in the presence
of elastoplastic material behavior.

3.2.3 Computational aspects
The pseudo-load F ∗ consists of partial derivatives of the system stiffness
matrix and load vector (cf. Equation (3.14)) and the internal and external
forces (cf. Equation (3.18)), respectively. These receive their contributions
from the elements and boundary conditions (Neumann and Dirichlet) of
the finite element model. The global stiffness matrix K, for instance, is
constructed by assembling the element stiffness matrices ke of all m finite
elements in the domain by

K = Amke (3.20)

where A denotes the assembly operator. However, typical parameters only
influence some entries of K/F or fint/fext. If the observed parameter affects
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merely a subdomain consisting of n ⊂ m elements, only these n elements
assemble a contribution to the partial derivative of the stiffness matrix:

∂K

∂si
= An

∂ke

∂si
(3.21)

In such cases, F ∗ is a sparse vector. For reasons of computational efficiency,
an element-wise or boundary condition-wise evaluation of Equations (3.15)
and (3.19) (further characterized by the superscript letter e) is recommended
instead of assembling and operating with system matrices and vectors. From
the system vector η, which is solved by Equation (3.10), the adjoint displace-
ments of member e are extracted to form the adjoint variables ηe related to
the elements and boundary conditions. Eventually, the sensitivities can be
calculated by summing the contributions of the n elements and conditions
affected by a given si:

dJ

dsi
= ∂J

∂si
+
∑

n

{
[ηe]T

(
∂fe

∂si
− ∂ke

∂si
ue
)}

(3.22a)

dJ

dsi
= ∂J

∂si
+
∑

n

{
[ηe]T

(
∂fe

ext

∂si
− ∂fe

int

∂si

)}
(3.22b)

Additional computational simplifications can be achieved by replacing the
analytic derivatives of the components of the pseudo-load with finite difference
approximations

dJ

dsi
= ∂J

∂si
+
∑

n

{
[ηe]T

(
∆fe

∆si
− ∆ke

∆si
ue

)}
(3.23a)

dJ

dsi
= ∂J

∂si
+
∑

n

{
[ηe]T

(
∆fe

ext

∆si
− ∆fe

int

∆si

)}
(3.23b)

which is known as semi-analytic sensitivity analysis (cf. e.g., Bletzinger et al.
[23] and Cheng et al. [35]). The approach is easy to implement and can be
used for any parameter si and any element or boundary condition. This is
advantageous in the case of complex finite element formulations where the ana-
lytic derivative can be very extensive to deduce and implement. Furthermore,
the semi-analytic approach is competitive to the pure analytic procedure
regarding computational time. Refer to Masching [108] for investigations of
the numerical efficiency of the semi-analytic procedure.
The non-exactness of the semi-analytic approach is a disadvantage. For too
small disturbance values ∆si, rounding errors can occur, and too large values
for ∆si lead to approximation errors. Hence, a compromise between the two
error sources must be found when choosing ∆si. For an illustrative discussion
of that issue and an exemplary determination of optimal disturbance values,
refer to Masching [108]. Despite this disadvantage, the semi-analytic approach
according to Equation (3.23) is implemented in Kratos Multiphysics (cf. Sec-
tion 1) due to its generality. To judge the suitability of the utilized disturbance
value, convergence studies were carried out in all examples contained in this
thesis.
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3.3 Variational adjoint sensitivity analysis
Discrete sensitivity analysis, as derived in Section 3.2, computes derivatives of
a response concerning scalar model parameters of a discretized finite element
model. In contrast, variational sensitivity analysis determines sensitivities for
parameters distributed throughout the domain as functions.
In contrast to discrete sensitivity analysis, a methodical distinction has to be
made concerning the observed parameters. On the one hand, some parameters
explicitly appear in the weak form of the underlying physics and the response
functional but do not influence the domain shape. In the literature (e.g., Choi
et al. [38]), these parameter types refer to variational sizing sensitivity analysis,
which is characterized by the fact that the integration can be performed over
a fixed domain. Typical parameters are cross-sectional dimensions, thickness
variables, material properties, or load parameters. For example, derivations
of variational sizing sensitivity equations are given by Cho et al. [36], Choi
et al. [38], and Haug et al. [85]. On the other hand, there are parameters
that influence the shape of the domain. These are handled by variational
shape sensitivity analysis approaches. A well-known method is the material
derivative approach (cf. Arora [6]), in which the shape evolution is described
in terms of pseudo time and design velocity. The sensitivity analysis is then
conducted by application of the material derivative concept of continuum
mechanics. Furthermore, the domain parametrization approach (cf. Tortorelli
et al. [135]) is worth mentioning. That method utilizes the transformation of
the underlying equations to a fixed reference configuration. Both approaches
are compared and critically assessed by Barthold [9]. Another noteworthy
method is presented in Barthold et al. [10], which uses an enhanced description
of the kinematics in the continuum mechanical formulation.
From a mathematical point of view, shape sensitivity analysis is more so-
phisticated. As this section shall serve as an introduction to the topic, the
derivations in Sections 3.3.2, 3.3.3, and 3.3.4 are limited to parameters that
do not influence the integration domain. For derivations of variational shape
sensitivity equations, refer to the mentioned literature. Please note that the
general procedure shown in Section 3.3.1 applies to both sizing and shape
parameters.

3.3.1 Basic principle
For variational sensitivity analysis, the functional

J(u, s) : U × S → R (3.24)

is used to express the response for which sensitivities shall be computed. The
functional operates on a state field u and extracts a scalar response value.
The aim is to determine the sensitivities of J concerning a design parameter
function s ∈ S where S is a space of admissible designs. The variational
form A(u, s;v) describes the primal problem that solves the state field u.
For generality, it is assumed that the response functional and the underlying
variational problem are non-linear concerning u and s. Refer to Section 2.1
for an introduction to forms and variations.
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According to Belegundu [15], the Lagrangian approach is a systematic proce-
dure to set up adjoint sensitivity analysis. The variational form A(•) is used
as a constraint in the Lagrangian function, i.e., the sensitivities are computed
by enforcing that the equilibrium in its weak formulation is fulfilled. Based
on this setting, the Lagrangian function reads

L(u, s;η) = J(u, s) −A(u, s;η) ∀η ∈ V (3.25)

whereby η indicates the Lagrange multiplier. The total directional derivative
(cf. Section 2.1) of the Lagrangian in Equation (3.25) is given by

L′(u, s;η, δs, δu, δη) = L′
s(u, s;η, δs) + L′

u(u, s;η, δu) + L′
η(u, s;η, δη)

(3.26)
with

L′
s(u, s;η, δs) = J ′

s(u, s; δs) −A′
s(u, s;η, δs) (3.27a)

L′
u(u, s;η, δu) = J ′

u(u, s; δu) −A′
u(u, s;η, δu) (3.27b)

L′
η(u, s;η, δη) = −A′

η(u, s;η, δη) = −A(u, s; δη) = 0. (3.27c)

Note that the Gâteaux derivative A′
η(•) equates to the initial variational

problem because A(u, s;η) is linear concerning η. Hence, Equation (3.27c)
is zero if the equilibrium requirement is fulfilled. The Lagrange multiplier is
chosen such that Equation (3.27b) vanishes. Therefore,

A′
u(u, s;η, δu) = J ′

u(u, s; δu) ∀δu ∈ V (3.28)

defines the variational adjoint problem to determine the adjoint variable η.
Note that the Gâteaux derivatives A′

u(•) and J ′
u(•) are based on a fixed

primal state u. Hence, Equation (3.28) is a linear problem concerning η,
which is based on a given solution u determined by the variational primal
problem A(•). Finally, Equation (3.26) simplifies to

L′(u, s;η, δs) = L′
s(u, s;η, δs) = J ′

s(u, s; δs) −A′
s(u, s;η, δs) (3.29)

and is equal to the total partial variation of the response J

DsJ(u, s) · δs = J ′
s(u, s; δs) −A′

s(u, s;η, δs) ∀δs ∈ S (3.30)

where J ′
s(•) represents the explicit partial variation and A′

s(•) accounts for
the implicit dependency on s through the state field u(s). In summary,
variational adjoint sensitivity analysis can be written as

DsJ(u, s) · δs = J ′
s(u, s; δs) −A′

s(u, s;η, δs) ∀δs ∈ S (3.31a)
subjected to{
J ′

u(u, s; δu) −A′
u(u, s;η, δu)

A(u, s; δη)

}
= 0 ∀ {δu, δη} ∈ V × V

(3.31b)

and consists in analogy to the discrete procedure described in Section 3.2 of the
solution of the primal problem, the adjoint problem (both in Equation (3.31b)),
and the final sensitivity post-processing (Equation (3.31a)).



3.3 . Variational adjoint sensitivity analysis 27

3.3.2 Linear structural problems
Subsequently, variational adjoint sensitivity analysis is derived for linear
elasticity problems. To create the Lagrangian functional on the basis of
Equation (3.25), the variational problem A(•) given by Equation (2.41) is
utilized. On that basis, the Lagrangian functional

L(u;η) = J(u) −
∫

Ω
σ(u) : ϵ(η) dΩ +

∫
Ω
p · η dΩ +

∫
ΓN

t̂ · η dΓN (3.32)

is received. The adjoint problem (Equation (3.28)) is determined by the
Gâteaux derivative of Equation (3.32) with respect to u in direction of δu:∫

Ω
σ(δu) : ϵ(η) dΩ = J ′

u(u; δu). (3.33)

The Lagrange multiplier η and δu can be exchanged within the integral on
the left side in Equation (3.33), which leads to the variational problem∫

Ω
σ(η) : ϵ(δu) dΩ = J ′

u(u; δu) (3.34)

to solve for the adjoint variable η. Finally, the sensitivities can be computed
by Equation (3.31a). For non-shape parameters, only the Cauchy stress
tensor σ, the distributed force p, and the surface traction t̂ can be potentially
influenced by the parameters. Thus, the total partial variation of the response
finally reads

DsJ(u, s) · δs = J ′
s(u, s; δs) −

∫
Ω
Dδsσ(u) : ϵ(η) dΩ

+
∫

Ω
Dδsp · η dΩ +

∫
ΓN

Dδst̂ · η dΓN

(3.35)

where δs denotes the variation of s.

3.3.3 Non-linear structural problems
Subsequently, variational adjoint sensitivity analysis is derived for non-linear
structural problems. To create the Lagrangian functional based on Equa-
tion (3.25), the variational problem A(•) given by Equation (2.33) is utilized.
On that basis, the Lagrangian functional

L(u;η) = J(u) −
∫

Ω0

S(E(u)) : DηE(u) dΩ0

+
∫

Ω0

p0 · η dΩ0 +
∫

ΓN0

t̂0 · η dΓN0

(3.36)
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is received. The adjoint problem (Equation (3.28)) is determined by the
Gâteaux derivative of Equation (3.36) with respect to u in direction of δu∫

Ω0

[S(E(u)) : DδuηE(u) +DηE(u) : C : DδuE(u)] dΩ0

−
∫

Ω0

Dδup0 · η dΩ0 −
∫

ΓN0

Dδut̂0 · η dΓN0 = J ′
u(u; δu)

(3.37)

where C = ∂S(E)/∂E denotes the elasticity tensor (cf. Equation (2.25)).
The left-hand side part of Equation (3.37) is equivalent to the linearization
of the variational form, which is needed for the iterative computation with
the Newton Raphson scheme (cf. Section 2.1). In that regard, the vector δu
is equivalent to the incremental displacement field ∆u for which it has to be
solved in the Newton Raphson algorithm. The discretization of the left-hand
side part of Equation (3.37) results in the tangential stiffness matrix KT (cf.
Equation (2.39)).
For the sake of simplicity, it is subsequently assumed that p0 and t̂0 are
independent of the displacement field u. It follows that the Gâteaux derivatives

Dδup0 = 0 and Dδut̂0 = 0 (3.38)

vanish, which reduces Equation (3.37) to:∫
Ω0

[S(E(u)) : DδuηE(u) +DηE(u) : C : DδuE(u)] dΩ0 = J ′
u(u; δu)

(3.39)
The adjoint variable η and δu can be interchanged in Equation (3.39) with-
out changing the result of the integral (cf. Holzapfel [90]). By rewriting
Equation (3.39), the adjoint problem∫

Ω0

[S(E(u)) : DηδuE(u) +DδuE(u) : C : DηE(u)] dΩ0 = J ′
u(u; δu)

(3.40)
to solve for η is received. Finally, the sensitivities can be computed using
Equation (3.31a). For non-shape parameters, only the Second Piola-Kirchhoff
stress tensor S, the body force p0, and the surface traction t̂0 can be potentially
influenced by the parameters. Thus, the total partial variation of the response
finally reads

DsJ(u, s) · δs =J ′
s(u, s; δs) −

∫
Ω0

DδsS(E(u)) : DηE(u) dΩ0

+
∫

Ω0

Dδsp0 · η dΩ0 +
∫

ΓN0

Dδst̂0 · η dΓN0

(3.41)

where δs denotes the variation of s.
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3.3.4 Steady state heat transfer problems
Besides structural mechanics, variational adjoint sensitivity analysis is de-
rived for steady state heat transfer problems. To create the Lagrangian
functional based on Equation (3.25), the variational problem A(•) given by
Equation (2.55) is utilized. On that basis, the Lagrangian functional

L(ϕ; η) = J(ϕ) −
∫

Ω
(∇η)T κ∇ϕdΩ −

∫
ΓN

η
(
αϕ+ σϵϕ4) dΓN

+
∫

Ω
ηQdΩ +

∫
ΓN

η
(
αϕa + σϵϕ4

a + q̂
)
dΓN

(3.42)

is received. The adjoint problem (Equation (3.28)) is determined by the
Gâteaux derivative of Equation (3.42) with respect to ϕ in direction of δϕ:∫

Ω
(∇η)T κ∇δϕ dΩ +

∫
ΓN

η
(
α+ σϵ · 4ϕ3) δϕ dΓN = J ′

ϕ(ϕ; δϕ) (3.43)

The Lagrange multiplier η and δϕ can be exchanged within the integral on
the left side in Equation (3.43), which leads to the variational problem∫

Ω
(∇δϕ)T κ∇η dΩ +

∫
ΓN

δϕ
(
α+ σϵ · 4ϕ3) η dΓN = J ′

ϕ(ϕ; δϕ) (3.44)

to solve for the adjoint variable η. Finally, the sensitivities can be computed
using Equation (3.31a). The total partial variation of the response with
respect to all non-shape parameters reads

DsJ(ϕ, s) · δs =J ′
s(ϕ, s; δs) −

∫
Ω

(∇η)T Dδsκ∇ϕdΩ

−
∫

ΓN

η ·Dδs

(
αϕ+ σϵϕ4) dΓN +

∫
Ω
η ·DδsQdΩ

+
∫

ΓN

η ·Dδs

(
αϕa + σϵϕ4

a + q̂
)
dΓN

(3.45)

where δs denotes the variation of s.

3.4 Influence functions in structural analysis
The method of influence lines and surfaces (or more general influence functions)
is a well-established structural analysis approach. The influence function
describes the impact of a load at an arbitrary position in a analysis model
on a specifically selected response (stress resultant or displacement) by a
displacement field. As the approach is a well-known and established method
in structural analysis, information can be found in many publications. For
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instance, detailed and theory-focused descriptions of the method are given
by Hartmann [81], Hartmann et al. [82], and Melnikov [111]. In contrast,
Ghali et al. [69] and Marti [107] provide brief and application-orientated
instructions.

3.4.1 Fundamentals
The method of influence functions consists of two analysis phases. In the first
step, the influence function η for the chosen response J at a position x has
to be evaluated as the structural displacement by application of the dual load.
The dual load can be described by the generalized Dirac delta function, which
fulfills the properties

δj
i (y−x) = 0 for y ̸= x and

∫
Ω
f(y) ·δj

i (y−x)dΩy = ∂ifj(x) (3.46)

where ∂ifj(x) denotes a partial differential operator of order i which acts on
a function f at x in the jth direction (cf. Grätsch [73] for more information).
Employing the Dirac delta, the influence function can be computed by the
dual problem

−Lyηi(y,x) = δj
i (y − x) in Ω (3.47)

which satisfies homogeneous boundary conditions at Γ = ∂Ω. Note that the
subscript on L indicates that the differential operator acts on y. In the case
of a displacement as a response, the Dirac function in Equation (3.47) can be
interpreted as unity point load in j-direction applied at x. In the case of force
quantities (internal or support forces), a unity displacement at the response
location x has to be applied according to Land’s theorem and Müller-Breslau’s
principle. The Dirac delta can be interpreted as a unity jump or kink at x,
which can be realized by a pre-deformation load case in practice. Common
dual load cases are illustrated in Figure 3.1. For further information, refer to
Hartmann et al. [82].
In the second step, the functional value of J due to a distributed load p can
be determined using the influence function. The procedure can be motivated
if the reciprocal external work of the primal problem (=̂ governing equation
of linear elasticity theory according to Equation (2.40)) and dual problem
(Equation (3.47)) is related by Betti’s theorem∫

Ω
u(y) · δj

i (y − x)dΩy −
∫

Ω
ηi(y,x) · p(y)dΩy = 0 (3.48)

where u is assumed to be 0 on Γ . Finally, Equation (3.48) can be reformulated
as

1 · ∂iuj(x) = 1 · J =
∫

Ω
ηi(y,x) · p(y)dΩy (3.49)

in order to compute the response value J = ∂iuj(x). In the case of a discrete
problem, the response value is evaluated by the dot product

1 · J = ηTF (3.50)
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of the discrete influence function η and load vector F . The comparison with
Equation (3.4) shows that Equation (3.50) is the dual form for calculating
the response value J .
The multiplier “1” on the left-hand side of Equations (3.49) and (3.50) can
be interpreted as the energetic conjugated dual load concerning the response.
Hence, the equations contain work expressions on both sides. Since the “1”
is mathematically not necessary, it is only written explicitly in the thesis in
cases where it is essential to recognize that the method of influence functions
is based on a work balance.
To illustrate the meaning of the generalized Dirac delta and the corresponding
left-hand side part in Equation (3.49), an Euler Bernoulli beam (cf. Ap-
pendix B.1) is considered. The Dirac delta function of order i has, in this
case, the following filtering properties for the displacement w:

l∫
0

δi(y − x) w(y) dy =


1 · w(x) (i = 0)
1 · w′(x) (i = 1)
1 ·M(x) = −EIw′′(x) · 1 (i = 2)
1 · V (x) = −EIw′′′(x) · 1 (i = 3)

(3.51)

The Dirac deltas and the corresponding “1” can be interpreted as

δ0 : load P̄ = 1 δ1 : moment M̄ = 1
δ2 : kink ∆w̄′ = 1 δ3 : jump ∆w̄ = 1

(3.52)

which are the dual loads shown in Figure 3.1. For further reading on the
meaning of the Dirac delta function in the context of the influence function
approach, please refer to Hartmann et al. [82].

displacement
response

dual load

response

dual load

moment shear force normal force support force

rotation

P̄ = 1 M̄ = 1

w
w′

MM V
V

N N

A

∆w̄′ = 1
∆w̄ = 1 w̄ = 1∆ū = 1

Figure 3.1: Dual loads (blue) for generating influence functions of
displacement and force quantities as responses (red).
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3.4.2 Practical relevance
The determination of the influence function η represents the main effort of
the entire approach. Once the influence function η has been predetermined,
the evaluation of the response value using Equations (3.49) and (3.50) is
simple and can be carried out with minimal computational effort. Hence, the
method of influence functions is an efficient tool to deal with various load
cases regarding selected responses. This feature can be beneficially employed
to find critical positions of moving loads or to identify critical load cases.
This is why influence functions are highly relevant, especially when designing
bridges or crane runways.
The practical benefits can be further enhanced if influence functions are used
as a graphical tool. For illustration, Figure 3.2 shows the influence function of
the bending moment Mm at location xm (center of right span). The structure
is subjected to three different load cases. The task is to find the critical
loading concerning Mm. Load case 3 is identified as decisive since a line load
with higher intensity coincides with a region of the influence function with
dominant functional values. The intuitive solution of such tasks by graphical
means is a significant benefit of influence functions and can be seen as the
reason for their importance in structural analysis.

p1

p2 = p1

p3 = 2 · p21

load case 1

load case 2

load case 3

xm

Figure 3.2: Influence function of bending moment Mm at location xm

(left) and three different load cases (right).

3.4.3 Relation to Green’s function
The Green’s function approach is a well-established method in the mathematics
of differential equations. There is a large number of publications and books
dealing with this topic. Comprehensive mathematical descriptions can be
found at Stakgold et al. [133] or Cabada [29]. Rother [123] provides a
discussion of the topic in physics, and Melnikov [111] focuses on Green’s
function for problems in structural mechanics. There is a close relationship
between the Green’s function approach and the influence function method.
In the following, the linear, inhomogeneous differential equation (boundary
value problem)

−Lu(x) = p(x) in Ω (3.53)
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is considered where L denotes the differential operator and u and p are
functions which are defined in the domain Ω. If Equation (3.53) must be
solved for different right-hand side terms p(x), it is beneficial to determine
the unknown function u(x) by

u(x) =
∫

Ω
G0(x,y)p(y)dΩy (3.54)

instead. The kernel G0(x,y) of the integral operator given in Equation (3.54)
is called Green’s function. A unique Green’s function G0(x,y) exists if the ho-
mogeneous differential equation Lu(x) = 0 corresponding to Equation (3.53)
has only the trivial (zero) solution. See e.g., Melnikov [111] or Stakgold et al.
[133] for more information. Furthermore, a Green’s function has to satisfy

−LxG0(x,y) = δj
0(x − y) (3.55)

where the subscript on L indicates that the differential operator acts on x. The
function δj

0(x − y) denotes the Dirac delta as introduced by Equation (3.46).
In structural mechanics, the Dirac delta in Equation (3.55) can be interpreted
as a unity point load acting at y in direction j and the Green’s function as
the resultant structural displacement. Similar interpretations are also possible
for other physics. In steady state heat transfer problems the Green’s function
equates the temperature corresponding to a unit heat source applied at y.
As the Dirac delta in the Green’s function approach equates the dual load,
the influence function ηi in structural analysis can be identified as Green’s
function Gi. However, the aims and applications of the two approaches differ
slightly. The goal of Green’s function approach is to determine the unknown
function u(x) for a given p based on Equation (3.54). In contrast, the method
of influence function is concerned with a specific response at a fixed position
x. This can seen by the exchanged arguments x and y in Equations (3.47)
and (3.49) compared to Equations (3.54) and (3.55).





Chapter 4
The method of generalized influence

functions

The literature shows a strong relationship between adjoint sensitivity analysis
and the method of influence functions. Refer to Chapter 1 for an overview
of essential references. Based on the knowledge about this methodical con-
nection, this chapter investigates how and to what extent the method of
influence functions can be generalized based on adjoint sensitivity analysis.
The goal is to extend the traditional influence functions approach as a tool for
sensitivity analysis, which compromises various kinds of (i) responses (also
other than deflections and stress resultants), (ii) parameters (also other than
load position and intensity), (iii) and underlying physics (also other than
structural mechanics). Consequently, the methodical enhancement is denoted
as the method of generalized influence functions.
The relation between general responses and parameters is commonly non-
linear. In such cases, the superposition principle is invalid, so the response
value cannot be evaluated for a given value of a general parameter using
the influence function. In a generalized perception, the task of the influence
function is to identify the parts of a structure where parameter variations
could significantly affect the response. Hence, the method of generalized
influence functions aims to provide the derivatives instead of the response
value in the case of general responses and parameters. This understanding
also extends the influence functions approach to non-linear structural analysis.
Please note that Kunow [97] or Estep et al. [54] use the denotation generalized
influence function to generate influence functions for various responses and
not in the context of sensitivity analysis.
This chapter is organized as follows: Section 4.1 provides a fundamental
discussion about the connection of the adjoint variable and the influence
function. Section 4.2 derives influence functions for significant practice-
relevant responses as displacements, stress resultants, or support forces based
on adjoint sensitivity analysis. Subsequently, Section 4.3 investigates how
the method of influence functions can be extended for general responses and
parameters and what limitations exist. Therefore, a mechanically interpretable
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extension that can be linked to the work expressions based on Betti’s theorem
is investigated. Another objective of the section is to examine how the
graphical procedure, for which the classical influence functions approach is
well known, can be extended for various parameters. The application of the
concept to another physics is demonstrated in Sections 4.4.
It shall be noted that the concept of generalizing the method of influence
functions by adjoint sensitivity analysis and some parts of this chapter have
been pre-published in Fußeder et al. [63, 66, 67]. For readability reasons,
these sources are not always explicitly referred to below.

4.1 Equivalence of adjoint variable and influence
function

The crucial requisite for the method of generalized influence functions is the
appearance of the influence function as part of the adjoint approach. As
outlined in Chapter 1, the adjoint variable can be identified as influence
function. In the following, different approaches to identify the influence
function as the adjoint variable are reviewed and discussed.

4.1.1 Connection through load sensitivities
Influence functions are typically used to determine worst-case positions of
movable loads or for efficient evaluation of response values due to various load
cases (cf. Section 3.4.2). From another perspective, an influence function can
also be seen as a provider of sensitivities concerning the parameters “load
intensity” and “load position.” Figure 4.1 illustrates the influence function of
the bending moment at the position xm of a two-span, which is subjected to
a point load at xm and xn, respectively.

1

xmxn ηm

Fn Fm

x
z

ηn

Figure 4.1: Influence function of bending moment at location at xm.
Single forces are evaluated at xm and xn.

Due to |ηm| > |ηn|, a variation of the load at xm has a more significant
influence on the bending moment as the same variation of the load at xn.
This becomes apparent when Equation (3.49) is applied to the given problem
and then differentiated concerning the load intensities in order to calculate
the sensitivities:∣∣∣dMm

dFm

∣∣∣ = |ηm| > |ηn| =
∣∣∣dMm

dFn

∣∣∣with Mm = ηmFm + ηnFn (4.1)
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Equation (4.1) indicates that the sensitivity is equal to the functional value
of the influence function at the position of the load. Thus, the graphical
influence function can be seen as a sensitivity map for the parameter “loading,”
which allows a graphical assessment of the impact of a change in load intensity
or position solely by examining the ordinate of the influence function. A more
general term for sensitivity calculations concerning a load parameter si can
be found in discrete formulation by deriving Equation (3.50):

dJ

dsi
= ηT ∂F

∂si
(4.2)

Equation (4.2) states that the sensitivity analysis for load parameters corre-
sponds to the evaluation of an artificial load vector ∂F /∂si on the influence
function. Hence, the sensitivity analysis is formally equivalent to the evalua-
tion of physical loads F according to the Equation (3.50). If the parameter
si is the intensity Fj of the jth component of F , Equation (4.2) reduces to
the jth component ηj of the discrete influence function

dJ

dFj
= ηT ∂F

∂Fj
= ηTej = ηj · 1 (4.3)

where ej is the jth unit vector. Based on that finding and on the basis of
Equation (4.1), the derivative dJ/dF can be identified as discrete influence
function:

dJ

dF
= η (4.4)

Belegundu [14] was the first researcher who wrote about the methodical con-
nection. The basis of his argumentation is the understanding that influence
functions are the direct carriers of load sensitivities as indicated by Equa-
tion (4.4). In detail, Belegundu [14] computes sensitivities with respect to
the components of the load vector F of a response J(u(F )) by applying the
chain rule of differentiation[

dJ

dF

]T

=
[
∂J

∂u

]T

· du
dF

(4.5)

which can be reformulated by using du/dF = K−1 and by considering the
symmetry of the stiffness matrix K to

K
dJ

dF
= ∂J

∂u
. (4.6)

Equation (4.6) is equal to the adjoint problem defined in Equation (3.13) if
the derivative dJ/dF is replaced by the adjoint variable η. Based on Equa-
tion (4.4), which identifies the derivative dJ/dF as influence function, it can
be concluded that the adjoint variable must be the discrete influence function.

REMARK I: The shown derivation of Belegundu only considers the im-
plicit dependency of J on F through the state u. However, there are also
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responses with an explicit dependency concerning F , i.e., J(F ,u(F )) should
be used correctly. This would require adding the partial derivative ∂J/∂F
to Equation (4.5) whereby, as a consequence, the relation with the adjoint
problem cannot be directly established. Section 4.2 examines the importance
of explicit parameter dependencies for determining influence functions in
adjoint sensitivity analysis.

REMARK II: In Belegundu [16, 17], influence functions for a support
force and a bending moment are determined based on Equation (4.6) without
justification of the support shift and the kink by a value of “1.” Section 4.2
shows how the discontinuities of the influence functions can be originated
based on the complete sensitivity equation.

4.1.2 Connection through the Lagrangian approach
Section 3.3.1 describes the Lagrangian approach as a systematic way to derive
adjoint sensitivity analysis. The traditional method of influence functions
requires the validity of the principle of superposition. To show the equivalence
of adjoint variable and influence function, a functional J(s;u) : S × U → R
which linearly operates on the unknown function u ∈ U must be considered.
Furthermore, let u be the result of a given linear variational problem

A(u,v) = a(u,v) − (p,v) = 0 ∀v ∈ V (4.7)

where a(u,v) : U × V → R represents a symmetric bilinear form and
(p,v) = F (v) : V → R a functional concerning load p (see Section 2.1
for information). Furthermore, it is assumed that u fulfills homogeneous
boundary conditions (u = 0 on ΓD) whereby the spaces U and V coincide (cf.
Equation (2.7)). Based on the Lagrangian functional

L(s;u,η) = J(s;u) −A(s;u,η) ∀η ∈ V (4.8)

with the Lagrange multiplier η ∈ V, variational adjoint sensitivity analysis
according to Equation (3.31) can be established:

DsJ(s;u)δs = J ′
s(s;u, δs) −A′

s(s;u,η, δs) ∀δs ∈ S (4.9a)
subjected to{
J ′

u(s;u, δu) −A′
u(s;u,η, δu)

A(s;u, δη)

}
= 0 ∀ {δu, δη} ∈ V × V

(4.9b)

Under consideration of the assumed linearity of A and J concerning u and η,
Equation (4.9b) simplifies to{

J(δu) − a(δu,η)
a(u, δη) − (p, δη)

}
= 0 ∀ {δu, δη} ∈ V × V (4.10)

where the dependency with respect to s is dropped for improved readability.
Based on the assumption of linearity of the functional and the variational
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problem, the dual problem can be solved independently from the primal
solution, i.e., without pre-computation of u. The adjoint and primal problem
in Equation (4.10) share the identical symmetrical bilinear form and their
solution is contained in the same solution space. Hence, the arguments of
a(·, ·) in Equation (4.10) are exchangeable and the dual and primal problem
can be combined:

a(u,η) = (p,η) = J(u) (4.11)
Equation (4.11) reveals that the functional J(u) can be evaluated by the
scalar product of the adjoint variable η and the right-hand side p of the
underlying boundary value problem (cf. Equation (2.40)):

J(u) = (p,η) =
∫

Ω
η · p dΩ (4.12)

As the equivalence of Equations (4.12) and (3.49) is obvious, the adjoint
variable η can be interpreted as the influence function related to the response
defined by the functional J(u). It is worth mentioning that also Grätsch et al.
[74] identifies the dual-solution as influence function.
To illustrate the meaning of Equations (4.10) and (4.11), the variational form
of an Euler-Bernoulli beam given by Equation (B.5) is observed. Based on
the response functional

J(w) =
l∫

0

w · δi(x− y) dx (4.13)

according to Equation (3.51), the variational forms in Equation (4.10) read:

l∫
0

δw · δi(x− y) dx−
l∫

0

EIδw′′ · η′′ dx = 0 (4.14a)

l∫
0

EIw′′ · δη′′ dx−
l∫

0

δη · p dx = 0 (4.14b)

By replacing δw with w in Equation (4.14a) and δη with η in Equation (4.14b),
both variational forms are still fulfilled and share the same bilinear form a(w, η).
Thus, the sum of Equation (4.14a) and (4.14b) with replaced arguments is

l∫
0

w · δi(x− y) dx−
l∫

0

η · p dx = 0 ⇒ J(w) =
l∫

0

η · p dx (4.15)

which equates Betti’s theorem as used in Equation (3.48) to derive the influ-
ence functions approach.
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REMARK I: Hartmann et al. [83] and Kunow [97] apply a Lagrangian
function as a systematic approach to show the existence of a Green’s function
(=̂ influence function, see Section 3.4.3) for various kinds of functionals J(u).
Therefore, they consider the Lagrangian functional

L(u,η) = J(u) − (a(u,η) − (p,η)) = J(u) −A(u,η) ∀η ∈ V (4.16)

without consideration of a dependence with respect to s whose total directional
derivative

L′(u,η, δu, δη) = L′
u(u,η, δu) + L′

η(u,η, δη) (4.17)
is a reduced version of Equation (3.26). Nevertheless, the same stationary
conditions can be derived based on Equation (4.17) as those from adjoint
sensitivity analysis (Equation (4.9b)). Hence, the same findings can be drawn
as with Equation (4.11). Since the Lagrangian approach is not limited to
linear responses and linear variational problems, Kunow [97] utilizes the
adjoint problem to determine influence functions for non-linear functionals
and non-linear problems and consequently denotes the adjoint variable as
generalized Green’s function.
Although the reduced Lagrangian (Equation (4.16)) leads to the same adjoint
variable as based on Equation (4.8), the consideration of the dependency on
s has the advantage that the influence function is systematically and con-
sistently embedded to sensitivity analysis in terms of Equation (4.9a). This
advantage will be used when the influence function approach is generalized
for various parameters in Section 4.3.

REMARK II: In the literature, generalized Green’s or influence functions
are defined differently. Grätsch et al. [74] relates the term basically to any
but linear quantity of interests. Kunow [97] uses the notion also for non-linear
responses within non-linear problems.

4.1.3 Connection of adjoint variable and finite element
influence functions

The adjoint variable is identified as influence function in Sections 4.1.1
and 4.1.2. This thesis mainly focuses on numerical sensitivity analysis based
on finite element models. Therefore, it is essential to classify the solution of
the discrete adjoint problem given by Equation (3.13).
It can be shown that the discrete adjoint variable is equivalent to the so-called
finite element influence function. The finite element influence function is the
projection of the exact influence function onto the finite element subspace
Vh ⊂ V (cf. Section 2.1), i.e., it is the influence function which can be
represented by the finite element mesh and its shape functions. Projected
influence functions were investigated in detail by Grätsch [73] and can be
computed as follows.
A linear functional J concerning u defined as

J(u) =
∫

Ω
δj

i (y − x)u(y) dΩy (4.18)
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is considered. δj
i is the generalized Dirac delta which extracts the quantity of

interest J from the solution u (cf. Equation (3.46)). According to Grätsch
[73], the projected influence function is defined as the solution ηh ∈ Vh ⊂ V
of the variational form

a(ηh,vh) = (δj
i ,vh) ∀vh ∈ Vh ⊂ V. (4.19)

An essential property of finite element influence functions is that the same
value of J(uh) as the primary finite element analysis would deliver can also be
computed by the evaluation of the right-hand side of the governing differential
equation p on the projected influence function:

J(uh) =
∫

Ω
ηh(y,x) · p(y) dΩy (4.20)

Refer to Grätsch [73] for the proof. Hence, according to Equation (4.20), the
accuracy of J(uh) is directly related to how well the finite element program
can approximate the influence function. Consequently, the projected influence
function has been applied to establish goal-orientated error estimation of finite
element calculations, see Cirak et al. [41], Grätsch et al. [74, 76], and Pierce
et al. [119].
In order to compute ηh with the finite element method, the right-hand side
of Equation (4.19) has to be converted into equivalent nodal forces using
the shape functions N (cf. Section 2.1). Subsequently, the Dirac delta is
assumed to be located within element e. According to Grätsch [73], the kth
equivalent nodal force corresponding to the kth degree of freedom (DOF) can
be computed by:

fk =
∫

Ωe

δj
i (y − x)Nk(y) dΩe

y (4.21)

In consideration of Equation (4.18), Equation (4.21) can be rewritten as

fk = J(Nk) (4.22)

whereby Nk describes the elemental displacement if the kth DOF is set to
one and all other DOFs to zero. Hence, the equivalent nodal force fk in
Equation (4.22) corresponds to the value of the functional J due to the kth
unit displacement.
It can be shown that the result of Equation (4.22) is equivalent to the adjoint
load ∂J/∂u (cf. Equation (3.13)). Therefore, the finite element solution with
n DOFs of the linear functional

J(uh) = J

(
n∑

i=1

uiNi

)
=

n∑
i=1

ui · J (Ni) (4.23)

which operates on uh is considered. The kth entry of the adjoint load of
response J

∂J

∂uk
= ∂

∂uk

[
n∑

i=1

ui · J (Ni)

]
= J(Nk) (4.24)
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is the same as the equivalent nodal force fk. Consequently, the adjoint variable
must be the finite element influence function.
To illustrate the findings, stresses, which are typical post-processing results
of finite element analyses, are considered. Stresses can be recovered on the
element level (denoted by index e) by the elastic constitutive equation

σe = Ceϵe (4.25)

with the elasticity matrix Ce. Usually, the stresses are evaluated at the nodes
or the Gauß points of the element (cf. Felippa [56] for a brief description).
The strain vector ϵe can be recovered by

ϵe = Beue (4.26)

where Be is the strain-displacement matrix, cf. Zienkiewicz et al. [139] for
instance. The jth component of the stress vector σe

J = eT
j σ

e = eT
j C

eBeue (4.27)

is considered as response J where ej is the jth unity vector which extracts
the scalar response. The partial derivative of Equation (4.27) with respect to
the kth displacement uk ∈ ue reads

∂J

∂uk
= eT

j C
eBeek. (4.28)

If Equation (4.27) is compared with (4.28), it can be observed that the ad-
joint load component ∂J/∂uk equates the response value due to the kth unit
displacement described by the kth unity vector ek. Hence, the adjoint load
is equal to the load case to generate the finite element influence function of
response J by Equation (4.22).

REMARK I: In the numerical analysis of beam and truss structures, post-
processing results (e.g., displacement field or course of stress resultant) consists
typically of a homogeneous and a particular (local) solution (cf., e.g., Ghali
et al. [69] or Hartmann et al. [82]). For instance, the particular solution of a
beam element corresponds to the displacement, bending moment, or shear
force of a clamped-clamped beam due to a transverse line load. Analogously,
a local solution ηls can be added to the finite element influence function as
Hartmann et al. [82] proposes:

η = ηh + ηls (4.29)

In Sections 4.2.2, 4.2.3, and 4.2.4, it is shown that the local solution can be
systematically derived within adjoint sensitivity analysis.

4.2 Influence functions in adjoint sensitivity analysis
This section aims to determine influence functions for various responses based
on adjoint sensitivity analysis. In particular, the responses of the traditional
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approach are observed. Although these were already briefly examined by
Belegundu [16, 17], the novelty of the subsequent investigations is that not only
the adjoint variable is analyzed. Instead, the complete sensitivity equations
are considered, which enables specific modifications of the adjoint variable.
Parts of this section have been directly taken from the pre-published journal
paper Fußeder et al. [67] and can thus be understood as quotations.

4.2.1 Nodal displacements
The jth nodal displacement uj ∈ u is considered as response:

J = uj (4.30)

To compute the adjoint variable with Equation (3.10), the response formula-
tion in Equation (4.30) needs to derived with respect to u:

∂J

∂u
= ej (4.31)

The result of Equation (4.31) corresponds to the jth unit vector ej and can
be interpreted as unity force applied at the jth degree of freedom. Hence,
the adjoint load ∂J/∂u equates the dual load for a nodal displacement (cf.
Figure 3.1) and η has to be the influence function. This was also shown before
by, e.g., Hartmann et al. [83]. As the response according to Equation (4.30)
has no explicit dependency on parameter si, the derivative ∂J/∂si is zero.

4.2.2 Support forces
To obtain a mathematical formulation of a support force as response, the
entire state equation with n degrees of freedom, which also contains the m
degrees of freedom of the supports, must be considered:[

K11 K12

K21 K22

]
︸ ︷︷ ︸

K (n×n)

[
u1

u2

]
︸ ︷︷ ︸

u (n×1)

=
[
F1

F2

]
︸ ︷︷ ︸
FL

+
[
0

FA

]
︸ ︷︷ ︸

F (n×1)

(4.32)

The vector of state variables u ∈ Rn in the equilibrium condition according to
Equation (4.32) is composed of the unknown nodal displacements u1 ∈ Rn−m

and the prescribed displacements u2 ∈ Rm, which have a given value (0 for a
fixed support or ̸= 0 for a support settlement). The total vector of nodal forces
FL ∈ Rn encompasses the vectors F1 ∈ Rn−m and F2 ∈ Rm of the equivalent
nodal forces from different load cases. The vector FA ∈ Rm contains the
support forces. Additional explanations are given by Ghali et al. [69].
As response J , the support force FA,j in the jth row (n−m+ 1 ≤ j ≤ n) of
the load vector F ∈ Rn is chosen. It can be extracted from Equation (4.32)
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with the auxiliary vector η0 ∈ Rn by

FA,j = ηT
0 (FL − Ku)

ηT
0 =

[
0 · · · −1︸︷︷︸

j

· · · 0
] (4.33)

where the value of “-1” contained in η0 is necessary for a later simplification of
the derivation. In order to calculate sensitivities according to Equation (3.15)
regarding the response FA,j , the adjoint variable η ∈ Rn needs to be computed
in advance. For this purpose, the derivative ∂FA,j/∂u ∈ Rn is required (cf.
Equation (3.13)). The derivative of Equation (4.33) with respect to the kth
displacement uk ∈ u

∂FA,j

∂uk
= ∂

∂uk

(
ηT

0 (FL − Ku)
)

= Kjk (4.34)

is the entry in the jth row and kth column of K ∈ Rn×n. Thus, ∂FA,j/∂u
(column vector) is according to Equation (4.34) the transposed jth row K(j; n)
or due to the symmetry of the stiffness matrix the jth column K(n; j) of K:

∂FA,j

∂u
= KT

(j; n) = K(n; j) (4.35)

The substitution of Equation (4.35) into Equation (3.13) yields the adjoint
problem: [

K11 K12

K21 K22

]
︸ ︷︷ ︸

K

[
η1

η2

]
︸︷︷︸

η

= K(n; j) =
[

K(1..n−m; j)
K(n−m+1..n; j)

]
(4.36)

Since homogeneous boundary conditions η2 = 0 (m× 1) have to be assumed
when solving the adjoint problem (see e.g., Giles et al. [71]), the adjoint
displacements η1 ∈ Rn−m, which are still unknown in Equation (4.36), result
from solving the linear system of equations:

K11η1 = K(1..n−m; j) (4.37)

According to Equation (4.36), the adjoint variable η of FA,j is the displacement
vector of a static problem in which the jth column of K is the load vector. This
load case corresponds to a prescribed displacement of the jth degree of freedom
by a value of “-1.” Please note that support forces typically have the same
direction as the corresponding degrees of freedom in a finite element analysis.
Thus, the adjoint load case is equivalent to the dual load for generating the
influence function of a support force: a unity displacement against the force
direction (cf. Figure 3.1). However, since the solution of η1 by Equation (4.37)
is based on the assumption of homogeneous boundary conditions, the support
corresponding to the response remains in its initial position (ηj = 0). Hence,
η differs in its jth entry from the influence function of the response function
FA,j . The discrepancy between the adjoint displacement η and the influence



4.2 . Influence functions in adjoint sensitivity analysis 45

function is shown comparatively in Figure 4.2 using the example of the vertical
support force FA,4z (right support at node 4) of a two-span which is discretized
by 3 Euler-Bernoulli beam elements (see element numbers in Figure 4.2). The
graphical comparison shows that the two deformation figures differ only in
the vertical displacement degree of freedom η4z of the right support node.
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Figure 4.2: Adjoint displacement (red line) of the vertical support force
FA,4z as response and the corresponding influence function
(blue line). Adapted from Fußeder et al. [67].

The required displacement of the support node to adapt η to the influence
function is determined by the partial derivative ∂FA,j/∂si which is obtained
by differentiating Equation (4.33) with respect to si:

∂FA,j

∂si
= ∂

∂si

(
ηT

0 (FL − Ku)
)

= ηT
0

[
∂FL

∂si
− ∂K

∂si
u
]

(4.38)

The bracket term in Equation (4.38) can be identified as the pseudo-load
F ∗. Thus, η can be merged with η0 when Equation (4.38) is substituted in
Equation (3.15):

dFA,j

dsi
= ηT

0

[
∂FL

∂si
− ∂K

∂si
u
]

︸ ︷︷ ︸
∂FA,j /∂si

+ηT
[
∂FL

∂si
− ∂K

∂si
u
]

= (ηT
0 + ηT )

[
∂FL

∂si
− ∂K

∂si
u
] (4.39)

The analysis of the sum contained in Equation (4.39)

ηT
0 + ηT =

[
η1 · · · ηj−1 (ηj − 1) ηj+1 · · · ηn

]
=
[
η1 · · · ηj−1 −1 ηj+1 · · · ηn

] (4.40)

indicates that the jth entry of η is modified by the value “-1” according to
the definition of η0 in Equation (4.33). Consequently, the sum of η and η0
represents the influence function. It shall be noted that η0 equates the local
solution, which corrects the finite element influence function (cf. Section 4.1.3
and Equation (4.29)).
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4.2.3 Stress resultants
Stress resultants are post-processing quantities of finite element analyses
computed locally by the elements. Thus, the sensitivity derivations must be
made on the element level (indicated by superscript e in the following). The
jth stress resultant Sj ∈ Se as the observed response can be extracted from
the element residual equation re (containing the element stiffness matrix ke,
the element nodal force vector fe, and element displacement vector ue) with
the auxiliary vector ηe

0 by

Sj = [ηe
0]T [−re] = [ηe

0]T (fe − keue)

ηe
0 =

[
0 · · · 0 −1︸︷︷︸

j

0 · · · 0
]T (4.41)

where the value of “-1” contained in ηe
0 is negative to facilitate similar

simplifications as for the response function “support force” in Section 4.2.2.
To set up Equation (3.13) for the response, the derivative ∂Sj/∂u needs to
be computed first. The derivative of Equation (4.41) with respect to the kth
displacement uk ∈ ue

∂Sj

∂uk
= ∂

∂uk

(
[ηe

0]T (fe − keue)
)

= ke
jk (4.42)

is the entry in the jth row and kth column of the element stiffness matrix.
According to Equation (4.42), ∂Sj/∂u

e corresponds to the transposed jth
row or jth column of the symmetric element stiffness matrix:

∂Sj

∂ue
=
[
ke

(j; n)
]T = ke

(n; j) (4.43)

The adjoint element load vector ∂Sj/∂u
e needs to be assembled in the system

adjoint load vector ∂Sj/∂u to solve Equation (3.13) on system level and can be
interpreted as the load case of a negative unit pre-deformation of the degree of
freedom where the response Sj is to be determined. Again, the adjoint load is
equivalent to the dual load for generating the influence function (cf. Figure 3.1).
Nevertheless, the displacement field η contains no exact representation of the
proper influence function’s characteristic discontinuity (kink or jump). For
illustration, the adjoint variable η for the response “bending moment M3 at
node 3” of the example shown in Figure 4.3 is solved by Equation (3.13) with
the result of Equation (4.43) as applied adjoint load. The adjoint displacement
field is then generated by interpolating the discrete η-values with cubic shape
functions as shown by a red line in Figure 4.3. Therefore, the two-span beam
is discretized with 3 Euler-Bernoulli beam elements (see element numbers in
Figure 4.3) where the specific traced response is the bending moment at the
right node of element 2. It becomes evident that the adjoint displacement
of elements 1 and 3 already conforms with the influence function. The
discrepancy is limited to element 2, where the response variable is located
and can be attributed to the elemental degree of freedom corresponding to
the traced moment. To generate the discontinuity, the rotation η3φ at the
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right node of element 2 needs to be corrected by the value “-1” locally at the
element level to fit the adjoint displacement field with the influence function
as indicated with a blue line in Figure 4.3.

1

1 2 3
1
x, ηix

z, ηiz

ηiφ η3φ
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Figure 4.3: Adjoint displacement of the response bending moment
at node 3 (red line) and its discrepancy to the influence
function in element 2 (blue line). Adapted from Fußeder
et al. [67].

The modification of the jth elemental degree of freedom can be justified by
the partial derivative with respect to si

∂Sj

∂si
= ∂

∂si

(
[ηe

0]T (fe − keue)
)

= [ηe
0]T
(
∂fe

∂si
− ∂ke

∂si
ue
)

︸ ︷︷ ︸
fe∗

(4.44)

in which the element contribution of the pseudo-load fe∗ can be identified.
Thus, ηe can be merged with ηe

0, when Equation (4.44) is substituted in the
element-wise sensitivity term of Equation (3.22):

dSj

dsi
= [ηe

0]T
(
∂fe

∂si
− ∂ke

∂si
ue
)

︸ ︷︷ ︸
∂Sj /∂si

+
∑

n

{
[ηe]T

(
∂fe

∂si
− ∂ke

∂si
ue
)}

=
∑

n

{(
[ηe

0]T + [ηe]T
)(∂fe

∂si
− ∂ke

∂si
ue
)} (4.45)

The vector ηe
0 in Equation (4.45) is always a zero vector except for the element

in which the observed stress resultant is located. There ηe
0 contains the value

“-1” at its jth entry. Thus, the discrepancy between the adjoint variable and
the influence function is fixed by ηe

0. It shall be noted that ηe
0 equates the local

solution which corrects the finite element influence function (cf. Section 4.1.3
and Equation (4.29)).

REMARK I: The vector ηe
0 is a local modification of ηe at element level.

Hence, ηe
0 comes only into play in the case of sensitivity analysis with respect

to parameters that have explicit influence at the element where the response
is located. For illustration, the two-span example shown in Figure 4.3 is
considered. Sensitivities shall be computed for response M3 concerning the
Young’s modulus of element 2 (E2) and the intensity of an external bending
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moment acting at node 3 (M̂L, not shown in the figure). The sensitivity with
respect to E2 can be computed with Equation (4.45) by:

dM3

dE2
=
(
[ηe

0]T + [ηe]T
)(

− ∂ke

∂E2
ue
)

(4.46)

In contrast, M̂L is no parameter of element 2. Hence, the sensitivity is
determined by

dM3

dM̂L

= ηT ∂F

∂M̂L

= η3φ · 1 (4.47)

with the adjoint variable η on system level.

REMARK II: In the utilized response formulation according to Equa-
tion (4.41), the direction of action of the stress resultants conforms with the
orientation of the corresponding degrees of freedom. Thus, the orientation
does not match the usual sign convention for some of the stress resultants.
To adjust the signs of the stress resultants, a diagonal matrix He

0 with “-1”
or “+1” on the main diagonal can be introduced:

Se = He
0 (fe − keue) (4.48)

Hence, ηe
0 equates the transposed jth row of He

0 . For example, in case
of a truss with two degrees of freedom as shown in Figure 4.4 the sign
transformation matrix reads:

He
0 =

[
+1 0
0 −1

]
(4.49)

x, u
u1

N1 1 2
u2

N2

Figure 4.4: Orientation of the degrees of freedom u (red) and the
normal forces N (blue) of a one-dimensional truss element.

REMARK III: No distinction between global and local orientation was
made to keep the derivations as clearly laid out as possible. However, stress
resultants of a beam or truss are typically computed based on the local
orientation of the element. If it is assumed that the elemental residual
keue−fe is given in a global frame, the response formulation (Equation (4.41))
must supplemented by a transformation matrix T , which transforms the
elemental residual from a global to a local frame:

Slocal, j = [ηe
0]T T (fe − keue) (4.50)

Please note that all interpretations with respect to the influence function in
this section can also be made based on Equation (4.50).
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4.2.4 Residual-based responses
The influence function of stress resultants and support forces contains a discon-
tinuity (jump or kink). Sections 4.2.2 and 4.2.3 show how the discontinuity can
be derived within the framework of adjoint sensitivity analysis. In brief, the
response formulations of stress resultants and support forces have in common
that they are components of the elemental residual re and system residual
r, respectively. Furthermore, to select a specific component of the residual,
an auxiliary vector η0 is introduced. Based on these response formulations,
the pseudo-load can be identified as part of the partial derivative ∂J/∂si.
Hence, the adjoint variable η can be merged with η0, which justifies the
discontinuity. Subsequently, it is shown how the procedure can be adapted to
other residual-based responses. A general vector η0(si) is introduced which
extracts the response from the residual through

J = [η0(si)]T [−r] or J = [ηe
0(si)]T [−re] (4.51)

whereby explicit parameter dependencies of η0 are assumed to be as general
as possible. In structural mechanics, the residual r is the state equation
(equilibrium condition) given by Equations (2.37) (non-linear case) and (2.43)
(linear case). The element residual re denotes the contribution which is
assembled by a finite element to the state equation (e.g., in the linear case re =
keue − fe consisting of stiffness matrix, nodal force vector, and displacement
vector of element e). The partial derivatives based on Equation (4.51) read

∂J

∂si
=
[
∂η0

∂si

]T

[−r]︸︷︷︸
=0

+ [η0(si)]T
[
− ∂r

∂si

]
= [η0(si)]T

[
− ∂r

∂si

]
︸ ︷︷ ︸

F ∗

(4.52a)

∂J

∂si
=
[
∂ηe

0
∂si

]T

[−re] + [ηe
0(si)]T

[
−∂re

∂si

]
︸ ︷︷ ︸

fe∗

(4.52b)

in which the pseudo-load F ∗ or fe∗ can be identified. Hence, the final
sensitivity terms simplify to

dJ

dsi
=
(
ηT

0 + ηT
)

· F ∗ (4.53a)

dJ

dsi
=
[
∂ηe

0
∂si

]T

[−re] +
∑

n

{(
[ηe

0]T + [ηe]T
)

· fe∗} (4.53b)

if the partial derivatives of Equation (4.52) are substituted in Equations (3.11)
and (3.22), respectively. Equation (4.53) shows that the partial derivative
∂J/∂si can be replaced by a local modification of η which can be interpreted
as discontinuity of the influence function. However, the partial derivative is
not completely compensable in cases where ηe

0 explicitly depends on si.
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Internal force of geometrically non-linear spatial truss element

Geometrically non-linear spatial trusses are usually derived under the assump-
tion of constant strains within the element. Moreover, a structural truss
system is assumed to be subjected only to node forces (cf., e.g., Borst et al.
[27] and Krenk [96]). Hence, the elemental residual equation consists merely
of the internal force vector

re = fe
int = A · l

L
· σPK2 · ∂l

∂u
(4.54)

where the orientation of internal forces is related to the degrees of freedom u.
The derivation of the elemental residual equation can be found in Appendix B.2.
Based on Equation (4.54), the element contribution to the pseudo-load reads:

fe∗ = −∂re

∂si
= −∂fe

int

∂si
(4.55)

A specific response formulation of an internal force N in local element orienta-
tion can be generated by introducing a transformation matrix T (transforms
from global to local frame) and the auxiliary vector η0. In analogy to Equa-
tion (4.41), the latter contains either “−1” or “+1” at its jth entry depending
on whether the local element degree of freedom corresponds to the direction
of action of the force or not. Hence, the response formulation reads:

Nj = [ηe
0]T T (−fe

int)

ηe
0 =

[
0 · · · 0 ±1︸︷︷︸

j

0 · · · 0
]T (4.56)

As Equation (4.56) represents an elemental residual-based response, the
formulations according to Equation (4.52b) and (4.53b) can be applied. Hence,
the final element-wise sensitivity term is

dNj

dsi
=
∑

n

{(
[ηe

0]T T + [ηe]T
)

· fe∗} (4.57)

whereby the matrix-vector product [ηe
0]T T transforms ηe

0 into the global
frame. The result of Equation (4.57) is in analogy to normal forces of linear
trusses (cf. Section 4.2.3). Also, in the case of a non-linear truss, a local
modification of the adjoint variable of |1| at the position of the traced internal
force is received.

Normal stress in beam element

In the case of a two-dimensional beam problem, the normal stress at the outer
cross-sectional edges can be computed by

σ = N

A
± M

W
(4.58)
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with normal force N , bending moment M , cross-sectional area A, and section
modulus W . Equation (4.58) can be computed based on the elemental residual
equation through

σ = [ηe
0]T (fe − keue)

ηe
0 =

[
0 · · · ± 1

A︸︷︷︸
i

· · · ± 1
W︸︷︷︸
j

· · · 0
]T

(4.59)

where the indices i and j correspond to the position of the normal force and
the bending moment in the element residual. As the response formulation of
Equation (4.59) is an extended version of Equation (4.41), the interpretations
for stress resultants in Section 4.2.3 can be straight forward applied for
normal stress response. Hence, the adjoint load represents simultaneous
pre-deformations with intensity “1/A” and “1/W” of the degrees of freedom
corresponding to N and M . In the case of the partial derivative ∂σ/∂si,
Equation (4.52b) and the final sensitivity Equation (4.53b) are fully applicable.
The local modifications of ηe by ηe

0 can be interpreted as a jump |1/A| and a
kink |1/W | of the influence function. Refer to Figure 4.5 as an example. It can
be concluded that the influence function of normal stress is the superposition
of the scaled influence functions of a normal force and a bending moment.
Please note the existence of ∂ηe

0/∂si if si is either A or W of the element in
which the considered stress is located.

x, ηx

z, ηz

ηφ
zoom

∆ηx = 1
A

J = σ = N

A
− M

W

∆ηφ = 1
W

Figure 4.5: Influence function of the normal stress on the upper edge
in the center of the rafter as response J . At the position
of the response, a longitudinal jump of |1/A| and a kink
of |1/W | can be observed.
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4.3 Sensitivity analysis considering various parameters
and responses

4.3.1 Preliminary remarks
Identifying the adjoint variable as influence function embeds the latter sys-
tematically into sensitivity analysis and allows the generation of influence
functions for general responses. This provides a possible basis for generaliz-
ing the method of influence functions based on adjoint sensitivity analysis.
Furthermore, a comparable computational sequence of the method of influ-
ence functions and adjoint sensitivity analysis can be identified. The formal
equivalence can be seen as the requirement to extend the method for various
parameters. The comparison in Table 4.1 illustrates that both methods are
comparable two-step approaches. In the first step, the influence function is
computed. Secondly, a kind of post-processing is performed. In the case of the
classical method, physical loads are evaluated on the influence function (ηTF ,
cf. Equation (3.50)). In contrast, the parameter-dependent pseudo-load has
to be used in an adjoint sensitivity analysis (ηTF ∗, cf. Equation (3.11)).
The only difference is the partial derivative ∂J/∂si. Hence, the equivalent
computational sequence allows the interpretation of the adjoint approach as
the extension of the method of influence functions for sensitivity analysis.
This becomes additionally visible if Equation (4.2) is compared with (3.15)

dJ

dsi
= ηT · ∂F

∂si︸︷︷︸
limited to

load parameters

(4.60a)

dJ

dsi
= ηT · [∂F

∂si
− ∂K

∂si
u] + ∂J

∂si︸ ︷︷ ︸
additional terms for

general parameters

(4.60b)

where it can be observed how sensitivity analysis for load parameters based
on influence functions is extended by the adjoint approach. However, Equa-
tion (4.60b) reveals that not the whole parameter effect is evaluated on the
influence function. Instead, the partial derivative ∂J/∂si must be added.
The latter expresses the explicit parameter dependency of the response. The
expressiveness of the influence function is, in a general case, consequently
lower as it contributes only to the implicit parameter dependency. This issue is
further discussed in Section 4.3.4. However, Section 4.2 shows that ∂J/∂si is
for some of the most important practice-relevant responses (e.g., displacement,
stress resultant, and support force) either nonexistent or can be replaced. In
these cases, sensitivity analysis reduces to evaluating the pseudo-load on the
influence function and has thus an identical computation sequence as the
classical influence functions method.
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Table 4.1: Comparison of the method of influence functions and the
adjoint approach.

# classical method adjoint method
1. step determination of influence function η by

application of dual load solution of adjoint problem
(see Figure 3.1) (according to Equation (3.10))

independent of load F independent of parameters s

2. step evaluation of physical loads: evaluation of pseudo-loads:
ηTF ηTF ∗

/ +∂J/∂si

result functional value of response J derivative of response J
due to F with respect to parameter si

4.3.2 Adjoint work
As noticed in Section 4.3.1, the method of influence functions can be numer-
ically extended by considering the full pseudo-load and by adding ∂J/∂si.
This section aims to propose a mechanically more interpretable viewpoint.
Therefore, the work expression of the traditional influence functions approach,
based on Betti’s theorem, is considered. Section 3.4.1 explains how Betti’s
theorem establishes the influence functions approach for the traditional re-
sponses (i.e., stress resultants and displacement quantities). The result of
that derivation can be written generally for response J as

1 · J =
∫

Ω
p · η dΩ (4.61)

where the “1” on the left-hand side represents the dual load to generate
the influence function (cf. Figure 3.1). Since the dual load is the energetic
conjugated counterpart of the response, work expressions on both sides of
Equation (4.61) can be observed. Therefore, η has to be considered as
displacement. Based on Equation (4.61), the variational sensitivity term

1 · dJ
ds

· δs =
∫

Ω
Dδsp · η dΩ (4.62)

can be derived with Gâteaux operator D (cf. Equation (2.1)) where s rep-
resents a parameter function which affects exclusively the load p. It can
be observed that the sensitivity term in Equation (4.62) also contains work
expressions on both sides since the additional units due to s cancel. In the
analogy of adjoint sensitivity analysis and to express that the work expressions
are part of a sensitivity term, the variation of p is denoted as pseudo-load and
the work of the latter with the influence function as external adjoint work.
Hence, Equation (4.62) shows how the work balance of the classical influence
function technique is extended for sensitivity analysis with respect to load
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parameters. The adjoint work expression can be smoothly extended by employ-
ing variational adjoint sensitivity analysis that encloses the influence function.
However, the identification of Equations (4.61) and (4.62) as work expressions
requires the presence of the dual load “1” and the assumption of the influence
function as displacement. The sensitivity equations derived in Section 3.3 do
not fulfill the requirements. The unit of the influence function computed by
the adjoint problem given in Equation (3.10) is [response unit] / [force unit].
This becomes especially visible if the influence function is interpreted as a
carrier of the sensitivity with respect to the load vector, i.e., dJ/dF = η (cf.
Equation (4.4)). Furthermore, the dual load “1” appears not as a multiplier of
the sensitivity equations. Both deficits can be resolved if the adjoint sensitivity
analysis expressions are multiplied by the energetic conjugated dual load “1.”
Hence, in the case of linear structural analysis, the complete adjoint work
reads

1 · dJ
ds

· δs = 1 · J ′
s(s;u, δs) +W ∗

int +W ∗
ext with (4.63a)

W ∗
int = −

∫
Ω
Dδsσ(u) : (1 · ϵ(η)) dΩ (4.63b)

W ∗
ext =

∫
Ω
Dδsp · 1 · η dΩ +

∫
ΓN

Dδst̂ · 1 · η dΓN (4.63c)

on the basis of Equation (3.35). All parts of Equation (4.63) can be identified
as work expressions. These can be seen as generalized adjoint work. Equa-
tion (4.63b) represents the internal adjoint work W ∗

int of pseudo-stress (=̂
variation of the Cauchy stress tensor with respect to s) and the adjoint strain
(=̂ linear strain of the influence function). In contrast, Equation (4.63c) can
be interpreted as the external adjoint work W ∗

ext of influence function and
pseudo-forces (=̂ variation of the distributed volume and traction force with
respect to s). Hence, the method of influence functions can be generalized for
sensitivity analysis by an extended work balance expression. Apart from J ′

s,
the work of the influence function or its strain with an energetically conjugated
pseudo-quantity can be identified. Hence, the influence function and its strain
indicate zones in a structure where parameter variations could have a minor
or large effect on the response.
A general response may be defined based on a non-linear structural analysis.
There, the adjoint work expressions are obtained by employing the variational
adjoint sensitivity equation

1 · dJ
ds

· δs = 1 · J ′
s(u, s; δs) +W ∗

int +W ∗
ext with (4.64a)

W ∗
int = −

∫
Ω0

DδsS(E(u)) : (1 ·DηE(u)) dΩ0 (4.64b)

W ∗
ext =

∫
Ω0

Dδsp0 · 1 · η dΩ0 +
∫

ΓN0

Dδst̂0 · 1 · η dΓN0 (4.64c)

on the basis of Equation (3.41). Compared to the linear case, the most signif-
icant differences can be found in the internal adjoint work (Equation (4.64b))
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originated from the work conjugate pair Green-Lagrange strain tensor and
Second Piola-Kirchhoff stress tensor. Firstly, the Second Piola-Kirchhoff
pseudo-stress DδsS(E(u)) is obviously non-linear with respect to u. Sec-
ondly, the energetic conjugated adjoint strain is not a strain in a proper sense.
Instead, it is the variation, i.e., the Gâteaux derivative of the Green-Lagrange
strain tensor concerning the primal solution u in the direction of the influ-
ence function η at a specific u. Hence, a simultaneous dependency of the
adjoint strain on the primal solution u and the influence function η can be
observed. As the solution of η depends according to Equation (3.40) also on
u, a pronounced dependency of the adjoint strain on the primal solution can
be noticed.

REMARK I: Equations (4.63) and (4.64) are derived for non-shape parame-
ters (cf. Section 3.3). The consequences of shape parameters to the described
procedure are discussed in Section 4.3.5.1.

REMARK II: Equations (4.63) and (4.64) are multiplied by the energetic
conjugated dual load “1’.’ Table 4.2 summarizes how the units of the original ad-
joint variables of the traditional responses are adjusted towards a displacement
unit. It becomes obvious that the unit of “1” is [work unit] / [response unit]
in each case.

Table 4.2: Summary of units of the adjoint variable η, the dual load “1,”
and of the combination of both. Used unit abbreviations:
length or displacement [L], force [F ], and unit-less [-].

response J η 1 1 · η
displacement w [L] / [F ] [F ]
rotation φ = −w′ [-] / [F ] [F · L]
normal force N [F ] / [F ] [L] [L]
shear force V [F ] / [F ] [L]
bending moment M [F · L] / [F ] [-]

REMARK III: The multiplication with the dual load “1” adjusts the
sensitivity equations to work expressions. However, the adjoint load ∂J/∂u
of general responses is not related to dual loads with intensity “1.” This
becomes obvious if, for example, the adjoint load of linear strain energy
(Equation (4.83)) or an eigenvalue (Equation (4.91)) is observed. Even though
a “1,” which properly adjusts the dimensions, can be found for general
responses, its meaning is artificial. In addition, the units’ adjustment is not
necessary to determine spatial distributions of the sensitivity dJ/ds and their
composition. For this reason, the multiplier “1” is omitted from the notation
below.
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4.3.3 Extension of graphical analysis procedure
A significant strength of the traditional method of influence functions is its
graphical analysis procedure. Based on the visualization of the influence
function as a displacement field, decisive or even critical load cases can be
intuitively identified (cf. Section 3.4.2). This section discusses which graphical
means can be served by the method of generalized influence functions. The
aim is to support sensitivity analysis by a graphical analysis procedure that
provides ancillary information concerning the composition of the resulting
sensitivities and their spatial distribution. It can be observed that the inte-
grands of the internal and external adjoint work in Equations (4.63b) and
(4.63c) can be separated into two parts each. As these quantities are related
to typical post-processing results such as strains, stresses, displacements,
and external forces, they are suitable for visualization. Furthermore, the
internal and external adjoint work components show contrary dependencies.
The pseudo-quantities reflect the observed parameter contribution and the
primal state independently from the response. In contrast, the second part
of the integrands corresponds to the influence function, which notifies the
response contribution independently from the parameters. Hence, the indi-
vidual visualization of the two parts gives insights into the composition of
the sensitivities. Please note that a complete separation of the parameter
and response contribution to the final sensitivity is generally impossible. The
reason is the partial variation J ′

s(·), which depends on the observed parameter
and response simultaneously. Refer to Section 4.3.4 for a discussion concerning
the influence of the partial variation J ′

s(·) on the concept. The subsequent
demonstration is restricted to examples with vanishing J ′

s(·).

4.3.3.1 Exemplary demonstration for beam structures

For a two-sided clamped Euler-Bernoulli beam as introduced in Appendix B.1,
the variational sensitivity expression reads

dJ

ds
· δs = J ′

s(s, u; δs) +W ∗
int +W ∗

ext with (4.65a)

W ∗
int = −

l∫
0

δs · ∂M(x)
∂s

· κη(x) dx = −
l∫

0

δs ·M∗
s (x) · κη(x) dx (4.65b)

W ∗
ext =

l∫
0

δs · ∂p(x)
∂s

· η(x) dx =
l∫

0

δs · p∗
s(x) · η(x) dx (4.65c)

where Equation (4.65b) describes the internal adjoint work W ∗
int of the cur-

vature of the influence function κη = −η′′ (=̂ adjoint curvature) and the
pseudo-moment M∗

s . In contrast, Equation (4.65c) contains the external
adjoint work W ∗

ext of pseudo-line load p∗
s and the influence function.

The aim is to compute sensitivities dJ/ds. Therefore, providing a variation
δs is not required. Instead, it is sufficient to determine and visualize the
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multipliers of δs in Equation (4.65). In that regard, several sensitivity maps
can be provided. If the complete multiplier is visualized, the map represents
the distributed sensitivity course along the beam. This map displays at a
point x the derivative of a specific response (e.g., the bending moment at a
fixed position) concerning the parameter at point x (e.g., the bending stiffness
EI(x)). Further sensitivity information can be provided if the partitions of
the multiplier, namely the influence function, its curvature, the pseudo-line
load, and the pseudo-moment, are visualized.

Example 1: two-span

The graphical analysis is applied to the example shown in Figure 3.2 for
response Mm at xm. Sensitivities are computed with respect to the intensities
p1−3 of the constant line loads. Therefore, Equation (4.65) reduces to the
external adjoint work

dMm

dpi
· δpi =

l∫
0

δpi · ∂p(x)
∂pi

· η(x) dx =
l∫

0

δpi · 1 · η(x) dx (4.66)

with a constant pseudo-line load p∗
pi

(x) = 1 for each pi. The coefficient
(multiplicative combination of η(x) and p∗

pi
(x)) of δpi is plotted along the

beam in Figure 4.6. The map displays at a point x the derivative of the bending
moment Mm (fixed at point xm, cf. Figure 4.6) concerning an infinitesimal
line load segment at x. As the pseudo-loads are constant with intensity “1,”
the final sensitivity courses equate pieces of the influence function. This
is obvious as the influence function is the carrier of load sensitivities (cf.
Section 4.1.1). It can observed that the pseudo-loads of p2 and p3 coincide
with larger influence function values compared to the pseudo-load of p1. Hence,
the pure graphical inspection reveals that the sensitivities with respect to p2
and p3 have to be equal and larger as in the case of p1.
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function of Mm at xm pseudo-line loads p∗
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p2 = 1
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p3 = 1
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z

x

z

x

final sensitivity dMm/dpi

η · p∗
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η · p∗
p2

+
z

x

η · p∗
p3

Figure 4.6: The point-wise multiplication of influence function η (left)
and pseudo-line load p∗

pi
(middle) lead to the sensitivity

distribution (right). The analysis is performed for response
Mm with respect to the intensities pi of the three load
cases defined in Figure 3.2.
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In analogy, the sensitivities of response Mm with respect to the bending
stiffness EI can be computed. For that setting, sensitivity analysis based on
Equation (4.65) reduces to

dMm

dEI
· δEI = −

l∫
0

δEI · ∂M(x)
∂EI

· κη(x) dx

with ∂M(x)
∂EI

(x) = ∂

∂EI
{EI} · κ(x) = 1 · κ(x) = M∗

EI(x)

(4.67)

which is the internal adjoint work of the curvature of the influence function
κη and the pseudo-moment M∗

EI . The latter equates the curvature κ = −w′′

of the primal bending deflection w due to load case pi. The adjoint work
components and their point-wise multiplicative combination, i.e., the final
sensitivity courses, are shown in Figure 4.7. The final sensitivity maps display
at a point x the derivative of the bending moment Mm (fixed at point xm, cf.
Figure 4.7) with respect to the bending stiffness at x. The influence function
of response Mm is independent of the load case. Thus, its curvature can be
utilized for the three sensitivity analyses based on p1−3. For the piecewise
cubic influence function, a symmetric bi-linear course of its curvature is
received. Hence, combining the mirrored pseudo-moments for load cases 1
and 2 (p1 = p2) leads to mirrored sensitivity distributions. As p3 = 2 · p2
is applied, the pseudo-moment and sensitivities of load case 3 are twice the
values of load case 2. Significant sensitivities concerning the bending stiffness
appear near the mid-support and the respective loaded field for all three load
cases.
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Figure 4.7: The combination of the curvature of influence function κη

(left) and pseudo-moment M∗
EI(x) (middle) lead to the

sensitivity distribution (right). The analyses are performed
for response Mm and are based on the three load cases
defined in Figure 3.2.



4.3 . Sensitivity analysis considering various parameters and responses 59

In the graphical analysis in Figure 4.7, the curvature of one influence function
is applied to different pseudo-moments. Subsequently, a reverse execution is
conducted and the pseudo-moment M∗,p1

EI based on load case p1 is applied to
the adjoint curvature of the nodal displacements w1 (J1), w2 (J2), and strain
energy (J3) as responses. The location of the displacement responses, the final
sensitivity courses, and incorporated adjoint work components are visualized
in Figure 4.8. The adjoint curvature of w1 and w2 are mirrored. However,
the maximal adjoint curvature values of w1 coincide with the maximal values
of the pseudo-moment. Hence, significantly higher maximal sensitivities for
w1 can be observed. In the case of strain energy, the analysis is performed
based on Equation (4.84a) where the partial derivative ∂J3/∂EI is vanishing.
Furthermore, the adjoint curvature of strain energy is a scaled version of
the pseudo-moment since η = 0.5 · w (cf. Equation (4.83a)). As the adjoint
curvature of w1 and strain energy are similar in their course, similar final
sensitivity courses based on the same pseudo-moment are received.
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Figure 4.8: The combination of the curvature of influence function
κ

Ji
η (left) and pseudo-moment M∗,p1

EI (middle) lead to the
sensitivity distribution (right). The analysis is performed
based on load case 1 (cf. Figure 3.2).

Example 2: two story building

The pseudo-quantities and their adjoint counterparts act on each other like a
filter. Only regions where noticeable values of both quantities coincide show
high sensitivities. Consequently, the individual judgment of all sensitivity
partitions has the advantage that potentially critical zones can be identified.
An example of how to use that extra sensitivity information for the structural
design of a two-story concrete building is given in Figure 4.9. The response
of interest is the normal force Nn of a column at a fixed xn whose influence
function is shown in the top left of Figure 4.9. The goal is to determine the
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course of sensitivity with respect to the bending stiffness EIy of down-stand
beams and columns (highlighted by black lines). In analogy to the previous
example, the final sensitivity comprises the pseudo-moment and the influence
function’s curvature, shown on the right side of Figure 4.9. Zooming into a
selected column clearly shows the benefit of additional information. Because
of the high curvature of the influence function, a potentially critical zone
can be identified. However, the small values of the pseudo-moments indicate
that the variation of parameter EIy in that area is of minor effect. The final
sensitivity resulting from the combination of that contradictory information
is consequently also of minor importance. As the pseudo-moment is a scaled
version of the moment of the primal analysis (cf. Equation (4.67)), another
load case could lead to a larger pseudo-moment in this region and, accordingly,
to higher sensitivities. This capability can be identified by observation of
the influence function’s curvature. Please note that in real-world problems,
the procedure might be repeated for stiffness parameters influencing bending
around the other axis or torsion. Therefore, respective pseudo and adjoint
fields have to be observed.

influence function

curvature
influence
function

curvature
influence
function

final
sensitivity

final < zoom
sensitivity

pseudo-
moment

pseudo-
moment

xnNn

Figure 4.9: Sensitivity analysis of normal force Nn with respect to the
bending stiffness EIy of the beam construction members.
The combination of the curvature of influence function and
pseudo-moment leads to the final sensitivity distribution.

Example 3: arch-type bridge

In the previous examples, only the adjoint work related to bending around
one axis had to be incorporated. Subsequently, an arch-type bridge is con-
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sidered and the sensitivities of the main girder normal force Nn at a fixed
xn with respect to the Young’s modulus of the beam construction members
are computed. Appendix A.3 provides a detailed description of the structure.
The adjoint work for the problem reads

dNn

dE
δE = −

l∫
0

δE
∂My(x)
∂E

κη,y(x) dx−
l∫

0

δE
∂Mz(x)
∂E

κη,z(x) dx

−
l∫

0

δE
∂Mx(x)
∂E

γη,x(x) dx−
l∫

0

δE
∂N(x)
∂E

ϵη(x) dx

(4.68)

since the bridge is stressed by multiaxial bending and longitudinal action.
The bending moments around the y- and z-axis are denoted by My and Mz,
the twisting moment by Mx, and the normal force by N . κη,y and κη,z denote
the curvature concerning the y- and z-axis, γη,x the torsional shear strain,
and ϵη the longitudinal strain of the influence function η.

curvature influence function κη,y

strain influence function ϵη

pseudo-moment ∂My/∂E

pseudo-normal force ∂N/∂E

final sensitivity dNn/dE
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Figure 4.10: Sensitivity analysis of normal force Nn with respect to
the Young’s modulus of the beam construction members.
Only the adjoint work components significantly contribut-
ing to the final sensitivity are shown.



62 4 . The method of generalized influence functions

The main load-bearing behavior is due to bending around the y-axis and
longitudinal action. Torsion and bending around the z-axis are of minor
importance for the overall sensitivity course and are not shown in Figure 4.10.
Adjoint curvature/strain and pseudo-moment/normal force are plotted with
the same scaling factor. Since the values of the adjoint strain ϵη are much
smaller compared to those of the adjoint curvature κη,y, they are not visible
in Figure 4.10. Hence, it becomes obvious that the final sensitivity course,
which is the result of combining the coefficients of δE in the integrals in
Equation (4.68), is dominated by the y-bending part of the adjoint work.
The significant pseudo-normal force values are irrelevant because they are
multiplied with minor adjoint strain values. Since the adjoint curvature κη,y

changes evenly along the arch and main girder, the waviness of the pseudo-
moment is directly reflected in the final sensitivity course. The pseudo-moment
∂My(x)/∂E = Iy · κy(x) is a scaled version of the primal bending moment
My(x). Hence, it can be observed that the sensitivity course is mainly
determined by the bending around the strong y-axis. The example shows how
the graphical analysis of the adjoint work components can assist in identifying
the mechanical causes of the final sensitivity courses.

4.3.3.2 Numerical implementation

Variational adjoint sensitivity analysis is utilized to identify adjoint and
pseudo-fields for the graphical solution procedure. However, the discrete
adjoint approach is used to perform the sensitivity computations for this
thesis (cf. Section 3.2.3).
Equivalent to the recovery of displacements, strains, and stresses of finite
element analyses (cf. standard textbooks concerning the finite element method
as Bathe [12] and Zienkiewicz et al. [139]), the adjoint and pseudo-fields can
be generated as post-processing results. Once the discrete adjoint variable
η is computed by Equation (3.10), the shape functions N are utilized in
analogy to Equation (2.12) to recover the value of the adjoint displacement
field within element e at location ξ

ηe
h(ξ) = N(ξ)ηe (4.69)

where ηe are the adjoint displacement values at the element nodes. The
adjoint strain within the element at location ξ is recovered by

ϵe
h(η)(ξ) = Be(ξ)ηe (4.70)

where Be is the strain-displacement matrix. The corresponding pseudo-stress
concerning a non-shape parameter si is obtained by

∂σe
h(u)
∂si

(ξ) = ∂Ce

∂si
Be(ξ)ue (4.71)

including the partial derivative of the elasticity matrix Ce and the nodal
displacements ue of the primal problem. For non-shape parameters, only Ce

must be derived within Equation (4.71).
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To demonstrate the relation of discrete and variational sensitivity analysis,
Equations (4.69), (4.70), and (4.71) are inserted into the internal and external
adjoint work given by Equation (4.63) (the formulation is regarding the
element domain Ωe ⊂ Ω with Neumann boundary Γ e

N and the variation δsi

is dropped). The result

W e∗
int = −

∫
Ωe

ϵe
h(η) · ∂σ

e
h(u)
∂si

dΩe = −
∫

Ωe

[Beηe]T · ∂C
e

∂si
Beue dΩe

= − [ηe]T ∂ke

∂si
ue

W e∗
ext =

∫
Ωe

ηe
h · ∂p

e

∂si
dΩe +

∫
Γ e

N

ηe
h · ∂t̂

e

∂si
dΓ e

N

=
∫

Ωe

[Neηe]T · ∂p
e

∂si
dΩe +

∫
Γ e

N

[Neηe]T · ∂t̂
e

∂si
dΓ e

N

= [ηe]T ∂fe

∂si

(4.72)

equates the element-wise dot product of the influence function and the pseudo-
load (cf. Equation (3.22a)) where the definitions

ke =
∫

Ωe

[Be]T CeBe dΩe

fe =
∫

Ωe

[Ne]T pe dΩe +
∫

Γ e
N

[Ne]T t̂e dΓ e
N

(4.73)

of the element stiffness matrix and load vector are applied.

REMARK I: In the case of residual-based responses, it is recommended to
include the local modification ηe

0 (cf. Section 4.2.4) for the recovery of the
adjoint strain:

ϵe
h(η)(ξ) = Be(ξ) (ηe

0 + ηe) (4.74)
On the one hand, ηe

0 replaces ∂J/∂si. On the other hand, it prevents distortion
of the adjoint strain. For illustration, the adjoint curvature of the two-span
example in Figure 4.3 is recreated without consideration of ηe

0. The structure
is discretized with three Euler-Bernoulli beam elements. Adjoint displacement
and influence function are created as described in Section 4.2.3. Figure 4.11
shows the adjoint displacement, influence function, and the respective adjoint
curvature courses. Element 2 (response location) is highly stressed by bending
through the additional unity rotation of its right node in the case of the adjoint
displacement. Hence, the adjoint curvature in element 2 is much higher than
for the influence function. It differs by 2EI/l2 · 1/EI and 4EI/l2 · 1/EI at
the nodes of element 2. Please note that using the adjoint curvature without
ηe

0 is not wrong if ∂J/∂si is considered. However, the intuitive understanding
of the adjoint field is severely limited.
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Figure 4.11: Top figure: Adjoint displacement of the bending moment
at node 3 as response (red line) and its discrepancy to
the influence function in element 2 (blue line). Bottom
figure: Adjoint curvature based on adjoint displacement
(red line) and its discrepancy to the curvature of the
influence function in element 2 (blue line).
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4.3.4 Significance in the case of general responses
Section 4.1.1 discusses the influence function as a provider of sensitivities
concerning load parameters. The corresponding sensitivity analysis can be
interpreted as the work of a pseudo-load with the influence function, denoted
as external adjoint work. If the considered parameter is the load intensity,
the external adjoint work equates evaluating a pseudo-load with intensity “1”
on the influence function (cf. Equation (4.66)). In the case of more general
parameters (e.g., parameters influencing the elastic stiffness), the sensitivity
analysis is complemented by the internal adjoint work where the strain of
the influence functions appears. The inspection of the influence function
and its strain allows, thus, the identification of zones in a structure where
parameter variations could significantly impact the response. Hence, the
influence function and its strain are essential for the resulting sensitivities.
The significance of the influence function and its strain might decrease for
general responses with a non-vanishing partial derivative ∂J/∂si. Furthermore,
∂J/∂si is an essential formal difference between the method of influence
functions and adjoint sensitivity analysis (cf. discussion in Section 4.3.1).
Hence, it is pertinent to investigate the significance of the partial derivative
and the internal/external adjoint work for cases where both contribute to the
resulting sensitivities. This section explores the issue through an exemplary
discussion of responses with different characteristics of ∂J/∂si. Therefore,
local (locally defined at a finite element node or integration point) and global
responses (performance measures of a complete model) are considered.

4.3.4.1 Local element stresses

Sensitivity equation

The generation of influence functions of local post-processing results as re-
sponses is well documented in the literature. Especially in the context of
adaptivity and error analysis of finite element calculations, influence functions
of local quantities are derived and applied. Refer to Cirak [40] and Grätsch
et al. [74, 75, 77] for example. In addition, the significance of the influence
function is subsequently investigated in the context of sensitivity analysis.
Section 4.1.3 derives the adjoint load of local element stresses based on linear
structural analysis. A more general approach to recover local stresses in
a finite element analysis can be established on the continuum mechanical
relations derived in Section 2.2. These are executed element-wise (denoted
by index e) in a discretized formulation. Based on Equation (2.22), the
Green-Lagrange strains in a local Cartesian basis (denoted with bar •̄) can
be recovered through

Ēe
γδ = 1

2(ge
ij −Ge

ij)(eγ · Gi,e)(Gj,e · eδ) (4.75)

where the underlying base vectors are determined by

Ge
i = ∂N

∂θi
Xe and ge

i = ∂N

∂θi
(Xe + ue) (4.76)
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in terms of shape functions N and primal displacement values ue at the
element nodes. For the subsequent stress recovery, the components of strain
tensor Ēe

γδ are assembled into the elemental strain vector Ēe in terms of
Voigt notation. The strains are connected with the Second Piola-Kirchhoff
(PK2) stresses by the elastic constitutive equation

S̄e = C̄eĒe + S̄e
0 (4.77)

with elasticity matrix C̄e and prestress S̄e
0 . The jth component of stress

vector S̄e is considered as response

J = eT
j S̄

e (4.78)

where ej is the jth unity vector which extracts the scalar response. The partial
derivatives of Equation (4.78) with respect to kth displacement uk ∈ ue and
the parameter si read

∂J

∂uk
= eT

j C̄
e ∂Ē

e

∂uk
and (4.79a)

∂J

∂si
= eT

j
∂C̄e

∂si
Ēe + eT

j C̄
e ∂Ē

e

∂si
+ eT

j
∂S̄e

0
∂si

(4.79b)

where the partial derivatives of the Green-Lagrange strains Ēe can be deter-
mined by applying the chain rule of differentiation to Equation (4.75). Finally,
the final sensitivity term

dJ

dsi
= eT

j
∂C̄e

∂si
Ēe + eT

j C̄
e ∂Ē

e

∂si
+ eT

j
∂S̄e

0
∂si

+ ηTF ∗ (4.80)

is obtained for a local element stress if ∂J/∂si is inserted in Equation (3.11).

REMARK I: Cauchy stresses in a Cartesian coordinate system are required
for meaningful physical stress results. Therefore, the observed response
in Equation (4.77) based on PK2 stresses has to be further transformed.
Refer to Section 2.2.2 concerning the connection of Cauchy and PK2 stresses.
Furthermore, Kiendl [94] can be recommended for a comprehensive description
of the recovery of Cauchy stresses. The sensitivity equations of Cauchy stress
as response are not presented here because they provide the same observations
concerning the existence of ∂J/∂si.

Significance of influence function and external adjoint work

The partial derivative ∂J/∂si vanishes according to Equation (4.79b) for
external load parameters. Hence, load sensitivities can be solely computed by
the external adjoint work of influence function and pseudo-load. To illustrate
the influence function as a provider of load sensitivities, the four-point sail,
described in more detail in Appendix A.2, is considered. The membrane is a
very flexible structure that has to be analyzed by geometrically non-linear
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analysis. Hence, the influence function based on Equation (3.17) is state-
dependent. The maximal Cauchy stress σmem in the membrane surface under
the simultaneous action of prestress and a snow load is chosen as the response
(cf. Figure A.2 for the stress course). The influence function based on a snow
load intensity of 0.5 kN/m2 is shown in Figure 4.12 (left). The observed stress
is orientated in warp direction (see Figure 4.12). It can be observed that
the maximum values of the influence function are locally concentrated at the
point where the traced stress is located. Furthermore, zones with negative
sensitivities are identified. If the load in these parts increases, the observed
stress decreases. The shown z-values of the influence function are integrated
across the membrane surface. The result is 3 180 and equates the sensitivity
with respect to the intensity of the applied uniformly distributed snow load
ps in the z-direction. The normalized sensitivity according to Equation (6.1)
is 0.29%, i.e., the stress increases approximately 0.29% if the load is increased
by 1.0% (cf. Section 6.2 for information on sensitivity normalization).
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dσmem

dps
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Figure 4.12: Influence function of the local Cauchy stress σmem in warp
direction under a snow load of ps=0.5 kN/m2 (left). The
response location coincides with the highest values of the
influence function. Shown are the adjoint displacement
components in the z-direction. Normalized sensitivities
with respect to ps during load increasement (right).

To illustrate the state dependency of the influence function and the associated
load sensitivities, Figure 4.12 (right) shows the course of the normalized load
sensitivities while the snow load ps is increased step-wise by increments of
0.05 kN/m2. Starting at a load of approximately 1.3 kN/m2, a substantial
increase in the load sensitivity is identified. This circumstance is associated
with the onset of wrinkling deformation due to tension loss in the direction
between the low points. The changing structural behavior can be studied if
the state-dependent influence function is analyzed before and shortly after
the onset of wrinkling. Figure 4.13 (left) shows the z-components of the
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influence function for 1.0 kN/m2 and 1.35 kN/m2 which look qualitatively
similar to the influence function at 0.5 kN/m2. At all three load stages,
it can be observed that the highest values are locally restricted around the
observed stress. Furthermore, similar regions with negative sensitivities can be
identified. To make the substantial sensitivity increase visible, the difference
in the influence function values between the actual and the preceding load
step is plotted on the right side in Figure 4.13. At 1.0 kN/m2, the influence
function increment is similar to the influence function. This is not the case
for 1.35 kN/m2. A substantial increase in the influence function values on the
connection arch between the low points can be realized (green-colored areas).
This observation reflects the change in the load-bearing behavior due to the
onset of wrinkling.
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Figure 4.13: Influence function η (z-component) of σmem for ps of
1.0 kN/m2 and 1.35 kN/m2 (left). Influence function
difference between two consecutive load steps (right).

Significance of internal adjoint work

According to Equation (4.79b), the partial derivative ∂J/∂si does not vanish
for the parameters that appear explicitly within the stress recovery of the
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finite element e where the observed stress is located. For instance, these
are material parameters such as Young’s modulus or Poisson’s ratio. Hence,
∂J/∂si exists for parameters that are also considered by the internal adjoint
work. For this reason, it is impossible to calculate sensitivities using only the
internal adjoint work for the element in which the response is located.
To study the significance of the explicit parameter influence ∂J/∂si and the
internal adjoint work, the maximal Cauchy stress σmem in the four-point sail
membrane structure under a snow load of ps=0.5 kN/m2 is again chosen as
response (cf. Figure 4.12 for the location and the influence function of σmem).
The element in which the response is located is further indicated with index j.
As parameters, the Young’s modulus of the membrane elements is considered.
The sensitivity distribution, the course of the internal adjoint work, and the
partial derivative are visualized in Figure 4.14. Please note that the figures
show discrete sensitivity values for each element. Therefore, the internal
adjoint work is computed element-wise in a discrete manner and added to the
scalar value ∂J/∂Ei. It can be observed that the overall sensitivity course
(Sub-figures 4.14 (1) and (2)) is well presented by the internal adjoint work
(Sub-figure 4.14 (3)). However, the partial derivative ∂J/∂Ej is of great
significance for the sensitivity with respect to the Young’s modulus of element
j as the final sensitivity dJ/dEj = 1.9 ·10-3 is composed of ∂J/∂Ej = 2.5 ·10-3

and an internal adjoint work contribution of -0.6 · 10-3.

-8.9·10-4

0.0

1.9 · 10-3 0.0 2.5 · 10-3

x

(1) dJ
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dEi
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zoom

(3) W e∗
int = − [ηe]T f∗e (4) ∂J

∂Ei
= 0 for i ̸= j

y

j j

Figure 4.14: (1) Sensitivity distribution of Cauchy stress σmem located
in element j concerning the Young’s modulus of the ele-
ments, (2) zoom into sensitivity distribution, (3) discrete
internal adjoint work, and (4) partial derivative.
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The sensitivity of a parameter of a single finite element may only be of
theoretical interest. Hence, sensitivities are subsequently calculated with
respect to several parameters of the entire membrane. This can be realized
by adding the discrete sensitivities of all membrane elements. The results
are summarized in Table 4.3. A high significance of the partial derivative
∂J/∂si to the final sensitivity can be observed for all considered parameters.
Although only element j contributes, the importance of ∂J/∂si is as significant
as the internal adjoint work for which the entire membrane domain has to be
considered.

Table 4.3: Composition of sensitivities of the local Cauchy stress σmem
with respect to membrane parameters.

parameter si dJ/dsi ∂J/∂si W ∗
int

Young’s modulus 0.0002 0.0025 -0.0023
Poisson’s ratio 16.25 -550.75 567.00
isotropic prestress 0.41 1.00 -0.59

4.3.4.2 Linear strain energy

Sensitivity equation

The strain energy of a structure provides information about its stiffness.
Hence, it is a frequently used objective function in structural optimization
(e.g., Firl et al. [59] and Masching et al. [109]). In linear analysis, strain
energy can be determined by two equivalent formulations:

Elin(s,u(s)) = 1
2u(s)TF (s) or (4.81a)

Elin(s,u(s)) = 1
2u(s)TK(s)u(s) (4.81b)

The sensitivity of J = Elin with respect to si is computed by

dJ

dsi
= ∂J

∂si
+
[
∂J

∂u

]T du

dsi

= 1
2u

T ∂F

∂si
+ 1

2F
TK−1F ∗ or

= 1
2u

T ∂K

∂si
u + F TK−1F ∗

(4.82)

wherein the definitions of state derivative and pseudo-load in Equations (3.8)
and (3.14) are applied. The adjoint variable of strain energy can be identified
in Equation (4.82) whose discrete values

η1 = 1
2K

−1F = 1
2u or (4.83a)

η2 = K−1F = u (4.83b)
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are directly obtained from the state variables u without additional solution
of a system of equations. Finally, the sensitivities in an adjoint formulation
can be computed by

dJ

dsi
= 1

2u
T ∂F

∂si
+ ηT

1

[
∂F

∂si
− ∂K

∂si
u
]

or (4.84a)

dJ

dsi
= 1

2u
T ∂K

∂si
u + ηT

2

[
∂F

∂si
− ∂K

∂si
u
]
. (4.84b)

In principle, Equation (4.84) can be simplified to

dJ

dsi
= ηT

1

[
2 · ∂F

∂si
− ∂K

∂si
u
]

or (4.85a)

dJ

dsi
= ηT

2

[
∂F

∂si
− 1

2 · ∂K
∂si

u
]

(4.85b)

taking into account that ∂J/∂si contains the influence function and parts of
the pseudo-load. However, this operation creates a dependence of the pseudo-
load on a specific response, which contradicts the concept of evaluating
response-independent pseudo-loads on the influence function.

Significance of influence function and external adjoint work

The influence function of strain energy shows some remarkable properties.
First, depending on whether Equation (4.81a) or (4.81b) is applied, a different
influence function is received, where η1 = 0.5 · η2. Hence, there is no
distinct influence function in the case of strain energy. Second, according to
Equation (4.83), the influence function is instantaneous related to the load,
which is a noteworthy difference from the traditional method of influence
functions. For illustration, the steel hook presented by Geiser et al. [68] is
considered, which is shown in Figure 4.15. The hook is subjected to two load
cases. The direct relatedness of influence function and load cases becomes
evident in the visualizations in Figure 4.15 (right).
The existence of ∂J/∂si concerning load parameters depends on the chosen
influence function. If sensitivity analysis with η1 is used, ∂J/∂si is existent
for parameters which affect the load vector F . However, the partial derivative

∂J

∂si
= 1

2u
T ∂F

∂si
= ηT

1
∂F

∂si
(4.86)

is identical to the discrete external adjoint work. To determine load sensitivi-
ties, the pseudo-load has to be evaluated with factor two (cf. Equation (4.85a)).
Although the influence function is not immediately the provider of load sensi-
tivities, its analysis is sufficient to get information concerning load sensitivities.
In other words, significant values of the influence function indicate zones where
load modifications are potentially influential. In the case of the hook shown
in Figure 4.15, it can be observed that a variation of load case 2 has a larger
impact on strain energy as the same variation of load case 1. If sensitivity
analysis according to Equation (4.84b) is utilized, ∂J/∂si vanishes and the
load sensitivities are directly the result of the external adjoint work.
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Figure 4.15: Primal displacement and influence function corresponding
to load case 1 (LC1) and load case 2 (LC2). The influence
function η1 is shown as defined in Equation (4.83a).

Significance of internal adjoint work

Parameters that only influence the stiffness matrix K are considered next. If
Equation (4.84a) with η1 as influence function is applied, the partial derivative
∂J/∂si vanishes. The sensitivities are directly the result of the internal adjoint
work. Otherwise, sensitivity analysis according to Equation (4.84b) requires
∂J/∂si which contains the partial derivative of the global stiffness matrix K.
If, for instance, the sensitivities with respect to the Young’s modulus Ee of
each element e of a finite element model is of interest, Equation (4.84b) can
be executed element-wise by

dJ

dEe
= 1

2 [ue]T ∂ke

∂Ee
ue︸ ︷︷ ︸

∂J/∂Ee

− [ηe
2]T ∂ke

∂Ee
ue︸ ︷︷ ︸

W ∗e
int

with ηe
2 = ue. (4.87)

Obviously, ∂J/∂Ee corresponds to half the dot product of influence function
and pseudo-load (=̂ element-wise discrete internal adjoint work, cf. result
of Equation (4.72)). In the case of the graphical solution procedure, an
additional map for the course of ∂J/∂Ee is required. This sensitivity map is
a scaled version of the internal adjoint work. For visualization, the two-span
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example in Figure 3.2 is discretized by 40 beam elements and loaded by load
case 1 (line load with intensity p1 on left field). The partial derivative and
the discrete internal adjoint work are computed with respect to the Young’s
modulus Ee of each element. In the visualization in Figure 4.16, the scalar
sensitivity partitions with respect to Ee are visualized constant along element
e. The equivalence of partial derivative, the discrete internal adjoint work,
and the final sensitivity course is intuitively visible. Hence, the graphical
analysis of the internal adjoint work and its components is sufficient to receive
qualitative information concerning the sensitivity composition. For instance,
significant adjoint strain values indicate zones where stiffness modifications are
potentially influential. This becomes visible in Figure 4.8 where the qualitative
adjoint curvature of the considered strain energy response is visualized.
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discrete internal adjoint work

final sensitivity
Figure 4.16: Composition of the sensitivity of the linear strain energy

with respect to the Young’s modulus of the beam ele-
ments.

4.3.4.3 Eigenvalue response of non-linear structural systems

Sensitivity equation

Subsequently, the eigenvalue problem

[KT (ũ) − αkM (ũ)]Φk = 0 where

ΦT
k M (ũ)Φl = δkl with δkl =

{
1 if k = l

0 if k ̸= l

(4.88)

with eigenvalue αk, eigenvector Φk, tangential stiffness matrix KT , and mass
matrix M is considered. The system matrices KT and M in Equation (4.88)
depend on the state ũ which is determined by non-linear static analysis based
on operational conditions related to static and pseudo-static external loading.
Hence, the eigenvalue and eigenvector are state-dependent as well. Using
operational conditions as the basis for eigenvalue problems is proposed by
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Emiroğlu [51], where details on the formation of the loading are given. Using
Equation (4.88) as the basis for sensitivity analysis and determining the
associated equations are taken from Emiroğlu et al. [52]. Please note that the
validity of the subsequent derivations presupposes symmetry of KT and M .
As response for sensitivity analysis, the kth eigenvalue J =̂αk is utilized. To
apply the adjoint framework derived in Section 3.2.2, the partial derivatives
∂J/∂si and ∂J/∂u are required. These can be determined by partial derivation
of Equation (4.88) with respect to si and u which results in

∂J

∂si
= ΦT

k

[
∂KT

∂si
− αk

∂M

∂si

]
Φk (4.89)

and
∂J

∂u
= ΦT

k

[
∂KT

∂u
− αk

∂M

∂u

]
Φk. (4.90)

If Equations (4.89) and (4.90) are substituted into Equations (3.17) and (3.19),
respectively, the adjoint problem

[KT (u)]T ηk = ΦT
k

[
∂KT

∂u
− αk

∂M

∂u

]
Φk (4.91)

and the adjoint sensitivity equation

dJ

dsi
= ΦT

k

[
∂KT

∂si
− αk

∂M

∂si

]
Φk + ηT

k

[
∂fext

∂si
− ∂fint

∂si

]
(4.92)

are received for the kth eigenvalue as response. The relation of eigenfrequencies
fk and eigenvalues is given by

fk =
√
αk

2π (4.93)

on which basis the sensitivities

dfk

dsi
= 1

4π√
αk

· dαk

dsi
(4.94)

of the kth eigenfrequency as the response can be determined.

Significance of influence function and external adjoint work

According to Equation (4.89), the partial derivative ∂J/∂si disappears for
parameters that only influence the load vector fext and if the corresponding
loads are deformation-independent, i.e., ∂fext/∂u = 0. Hence, the influence
function provides load sensitivities, i.e., the load sensitivities result from
the external adjoint work. For illustration, the cable net bridge described
in Appendix A.1 is considered. For the eigenvalue problem according to
Equation (4.88), the bridge is subjected to dead load, prestress, and a uniform
line load applied to the central bearer cables (cf. Figure A.1, right). On that
basis, the first three eigenvalues and eigenmodes are computed, which are
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shown in Figure 4.17 (left). The corresponding influence functions of the first
three eigenvalues as responses are shown on the right of Figure 4.17. By their
red-colored parts, the influence functions indicate zones of the bridge in which
load variations have a maximal influence on the eigenvalues.
To interpret the comparatively large values of the influence functions shown in
Figure 4.17, they are integrated along the central bearer cables. The results
equate the force unit-dependent sensitivities with respect to the line load
intensity. A line load sensitivity of 229 495 is received for the first eigenvalue as
the response. According to Equation (6.1), the normalized sensitivity is 0.58%,
i.e., the eigenvalue changes approximately 0.58% if the line load intensity
of 9 · 10−4 MN/m is increased by 1.0%. Please note that the normalized
sensitivity of the equivalent eigenfrequency is with 0.29% only half. This can
be determined if Equations (4.93) and (4.94) are applied to the normalized
sensitivity of the eigenvalue. Refer to Section 6.2 for information concerning
normalized sensitivities.

1st eigenmode influence function of 1st eigenvalue α1

2nd eigenmode

3rd eigenmode

influence function of 2nd eigenvalue α2

influence function of 3rd eigenvalue α3
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·103

α1 = 360.1
f1 = 3.02 Hz

α2 = 597.4
f2 = 3.89 Hz

α3 = 781.8
f3 = 4.45 Hz

Figure 4.17: Left side: The first three eigenmodes. Right side: In-
fluence functions of the eigenvalues α1−3 as responses
shown from two perspectives.

Significance of internal adjoint work

The partial derivative of the eigenvalue response contains the global tangential
stiffness and mass matrix (cf. Equation (4.89)). Consequently, all finite
elements contribute whereby ∂J/∂si is potentially distributed across the
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entire structural domain. The adjoint work thus only contributes a part to
the resulting sensitivity distribution system-wide. For an exclusive parameter
of the mass matrix M , the final sensitivity is even equal to ∂J/∂si. To
investigate the significance of the partial derivative and the internal adjoint
work, a stiffness parameter is considered that affects KT and fint. Again,
the cable net bridge presented in Appendix A.1 is observed. The sensitivity
courses with respect to the Young’s modulus of the elements are computed
along the longitudinal cables. The sensitivity equation considering the Young’s
modulus of a single cable element as the parameter reads

dαk

dEe
= [Φe

k]T
[
∂ke

T

∂Ee

]
Φe

k︸ ︷︷ ︸
∂αk/∂Ee

−
∫

Le

A · εGL · ∂εGL

∂ue
ηe

k dL
e︸ ︷︷ ︸

W ∗e
int

(4.95)

with the contribution of element e to the partial derivative and the internal
adjoint work of adjoint strain ∂εGL/∂u

e · ηe
k and PK2 pseudo-stress resultant

A · εGL. Information regarding the underlying variational formulation of the
internal adjoint work can be found in Appendix B.2. The detailed visualization
of the sensitivity analysis of the first eigenvalue α1 is shown in Figure 4.18.
Please note that the figures of internal adjoint work, partial derivative, and final
sensitivity show discrete values for each element. Therefore, the integration of
the internal adjoint work along the cable reference length Le in Equation (4.95)
has to be executed. The wavy course of the adjoint strain in combination with
the constant pseudo-stress is directly reflected in a similarly wavy course of
the internal adjoint work. In the case of the partial derivative, an equivalent
waviness but with an opposite sign can be observed. Hence, the element-wise
addition of partial derivative and internal adjoint work provides a constant
sensitivity course. It should be noted that the assessment of the internal
adjoint work and its components on the resulting sensitivity is not very
significant: elements with comparably high or low absolute internal adjoint
magnitudes (|-3.0e-7| vs. |-5.2e-6|) coincide with the same final sensitivity
value of 6.4e-6. The numeric contribution of the partial derivative to the final
sensitivity is higher than that from the internal adjoint work. However, the
wavy course of the partial derivative ∂α1/∂E

e along the cables also does not
match the resulting constant sensitivity course.
Similar conclusions can be drawn regarding the second eigenvalue α2 as
the response. Figure 4.19 shows the sensitivity components. In the internal
adjoint work course, the zones of maximal absolute values of adjoint strain and
pseudo-stress on the edge and central cables, respectively, become apparent.
For instance, the maximal negative internal adjoint work values on the central
bearer cables (blue-colored zones) can be explained by the comparable high
pseudo-stresses prevailing there. However, the high internal adjoint work
values on the central cables almost completely fade out due to similarly large
but positive values of the partial derivative. It can be concluded that the
courses of adjoint strain, pseudo-stress, and internal adjoint work are less
significant as they provide only marginal indications of the final sensitivities.
Even though the partial derivative values are not constantly distributed along
the cables, they strongly dominate the final sensitivities. Thus, the partial
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derivative and the final sensitivities show their maximum values at the edge
cables. As in the case of α1 as response (cf. Figure 4.18), constant sensitivities
are obtained by the opposite waviness of internal adjoint work and partial
derivative ∂α2/∂E

e.

∂εGL
∂ue ηe

1 A · εGL W ∗e
int

∂α1

∂Ee

dα1

dEe

16.3
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Figure 4.18: Composition of the sensitivity of the first eigenvalue α1
of a cable net bridge with respect to the Young’s modulus
of the two central bearer cables.
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Figure 4.19: Composition of the sensitivity of the second eigenvalue α2
of a cable net bridge with respect to the Young’s modulus
of the longitudinal cables.
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4.3.4.4 Summary

The exemplary investigation of several responses shows that the properties
and significance of ∂J/∂si differ strongly. It can be summarized as:

• In the case of local post-processing results like stresses, only the param-
eters of a single finite element contribute to ∂J/∂si. Hence, the internal
adjoint work course represents the final sensitivity course apart from
the response element. The partial derivative does not exist for load pa-
rameters, and the sensitivities can be computed entirely by the external
adjoint work. In this context, the state dependence of the influence
function was discussed, showing that the analysis of the development
of the influence function during the load increase can reveal changes in
the load-bearing behavior.

• Since two sensitivity analysis options with different influence functions
and ∂J/∂si are available, strain energy is a particular case. Depending
on the option used, the partial derivative vanishes for parameters of the
stiffness matrix or the load vector. In these cases, the computation of
sensitivities reduces to evaluating the internal and external adjoint work,
respectively. In the opposite cases, the partial derivative corresponds
to a multiple of the internal and external adjoint work. Hence, the
influence function, its strain, and the corresponding pseudo-quantities
are sufficient to analyze the sensitivity courses.

• In the case of eigenvalues, the partial derivative vanishes for parameters
that exclusively impact the external forces. Hence, the influence function
as the provider of load sensitivities is significant. The partial derivative
exists for parameters of the stiffness matrix and the mass matrix and is
highly important for the final sensitivity. For this reason, the informative
value of the influence function and its strain concerning the sensitivities
is limited regarding these parameters.

In summary, the presence of ∂J/∂si is a drawback for the method of generalized
influence functions. The significance of the influence function and its strain on
the overall sensitivity is lower than for the examples discussed in Section 4.3.3.
However, the expressiveness is quite different for the considered responses.
This becomes obvious if local responses as stress within a single finite element
and global responses as eigenvalues are compared. Furthermore, the graphical
solution procedure is complicated since an additional partition of the sensitivity
needs to be visualized and analyzed. Another difficulty is that ∂J/∂si is often
a scalar value that refers to a finite element. Consequently, a discrete adjoint
work value needs to be computed for the graphical and numerical comparison
with ∂J/∂si.
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4.3.5 Limitations and particularities
4.3.5.1 Parameter dependent domains

Up to now, the discussion was limited to parameters that only affect the
integrands in Equations (4.63) and (4.64) but not the shape of the domain.
To examine the consequences if this precondition is not met, the variational
sensitivity equations derived in Sections 3.3.2 - 3.3.4 must be extended for
shape parameters. As noted in Section 3.3, different approaches for variational
shape sensitivity analysis are known in the literature. For the subsequent
discussion, the expressions presented in Materna [110] are used, but similar
general conclusions can also be drawn with optional approaches, although the
respective equations are different. According to Materna [110, Appendix B.2],
the sensitivity equation in the case of linear elasticity theory is given as

DsJ(u, s) · δs = J ′
s(u, s; δs) (4.96a)

−
∫

Ω
Dδsσ(u) : ϵ(η)dΩ (4.96b)

−
∫

Ω
σ(u) : Dδsϵ(η)dΩ (4.96c)

−
∫

Ω
σ(u) : ϵ(η) (dΩ)′

s +
∫

Ω
p · η (dΩ)′

s +
∫

ΓN

t̂ · η (dΓN )′
s (4.96d)

with (dΩ)′
s and (dΓN )′

s denoting the variations of the domain and boundary
elements. The design parameter s can be seen as a control function specifying
the domain Ω. The constituents of Equation (4.96) are work expressions (η
is assumed as displacement, refer to Section 4.3.2) and can be interpreted as
extensions of the adjoint work introduced in Section 4.3.2. If Equation (4.96)
is analyzed, the following observations can be made:

• Equation (4.96b) is equivalent to the internal adjoint work defined by
Equation (4.63b). The integrand consists of a parameter dependent
pseudo-stress Dδsσ(u) and the linear strain of the influence function
ϵ(η). Hence, the response and parameter contributions to the sensitivity
are separated by an adjoint and pseudo-quantity.

• Equation (4.96c) contains the variation Dδsϵ(η) of the strain of the
influence function with respect to s. Hence, a quantity simultaneously
dependent on response and parameter can be observed.

• The integrands in Equation (4.96d) contain either the influence func-
tion η or its strain ϵ(η) to represent the response contribution to the
sensitivity. However, the energetic conjugated force or stress quantity
is independent of the specific s whereby no pseudo-quantity can be
identified.

Even though Equation (4.96) can be seen as extended adjoint work, its
constituents are not in each case the work of a pseudo-quantity and the
energetically conjugated entity of the influence function. Instead, quantities
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that are simultaneously dependent on response and parameter or that cannot
be unambiguously assigned to either are observed. The concept of describing
the composition of sensitivities by the interaction of response and parameter
impact in terms of the influence function, its strain, and the corresponding
pseudo-quantities is thus not applicable to shape parameters.
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Figure 4.20: Considered is a hook which is subjected to two load cases
(LC1 and LC2, see Figure 4.15). It can be observed that
noticeable shape sensitivities coincide with noticeable
high adjoint strains and primal von Mises stresses for
both load cases. Observed response: linear strain energy.

The components of the integrands and their interaction can be analyzed and
visualized to receive information concerning the sensitivity composition. Equa-
tion (4.96) depicts that the components of five integrals must be considered
for a complete evaluation of the sensitivity composition. Given a practical
sensitivity tool for problems in structural engineering, the added value of the
analysis and assessment of this high amount of additional sensitivity infor-
mation can be questioned. However, Equation (4.96) shows that sensitivities
with respect to the shape are mainly driven by the influence function, its
strain, and the the stress of the primal problem. Hence, qualitative assessment
of these fields can provide at least partial insights into the sensitivities.
For illustration, the steel hook presented by Geiser et al. [68] shown in
Figure 4.20 is studied. The hook is subjected to two load cases: a load at
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the center (LC1) or the tip (LC2). The load cases and the resulting primal
and adjoint displacement are shown in Figure 4.15. Linear strain energy
(cf. Section 4.3.4.2) is chosen as response and sensitivities are computed
with respect to the spatial position of the finite element nodes. Since the
focus is on obtaining qualitative insights into the sensitivity composition,
the von Mises stress of the primal state is used. The von Mises equation
is also applied to the adjoint strain tensor. This bypasses the complete
analysis of the entire set of stress and strain fields in the individual spatial
directions or the principal stresses and strains. The sensitivity distributions
in Figure 4.20 show that noticeable sensitivities can be found in the load
application areas. Furthermore, high sensitivities are observed in zones where
high values of primal stress and adjoint strain coincide. In the case of linear
strain energy, the adjoint displacement equates according to Equation (4.83)
the primal displacement. Hence, the primal stress and the adjoin strain
are equally distributed within the hook, and high primal stresses perfectly
fit zones with dominant adjoint strain. The mere consideration of primal
stress or the adjoint strain is sufficient to gain qualitative insight. The
example shows how analyzing the quantities, which are part of the variational
sensitivity equation, can improve understanding of the reasons for the resulting
sensitivity distributions. However, a complete and quantitative assessment of
shape sensitivities is impossible merely by the strain of the influence function
and the primal stress.

4.3.5.2 Graphical solution procedure of internal adjoint work

Section 4.3.3 proposes how the graphical solution procedure of the traditional
influence functions approach can be extended employing pseudo-quantities
and the energetically conjugated quantity of the influence function. In the case
of beam structures, it was shown how sensitivity analysis can be beneficially
supported by these graphical means. However, in the case of thin-walled and
solid structures, the pseudo-stress and the strain of the influence function as
part of the internal adjoint work in Equation (4.63) are tensor-valued quantities.
In principle, the components of the tensors can be visualized individually.
However, the feasibility and the benefit of the intuitive evaluation of the
importance of the individual components and their interaction should be
questioned critically.
The membrane structure presented in Appendix A.2 is considered to investi-
gate and illustrate the issue. The sum of the displacements in the z-direction
(=̂ vertical) of all finite element nodes within a radius of 15 cm around the
membrane center is chosen as response J . This response might be interesting
to investigate the structure in terms of ponding. Prestressed membrane
elements are briefly introduced in Appendix B.3. Based on the weak form
given by Equation (B.15), the internal adjoint work

W ∗
int = −

∫
A0

Dδs (n̄el + n̄0) : ∂ϵ̄
∂u

η dA0 (4.97)

of the pseudo-PK2 stress resultants and the adjoint strain (=̂ variation of the
Green-Lagrange strain) is received. Sensitivities are computed with respect to
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the Poisson’s ratio ν. Therefore, the sensitivity term reduces to the internal
adjoint work

dJ

dν
· δν = −

∫
A0

δν · ∂n̄el

∂ν
: ∂ϵ̄
∂u

η dA0 with ∂n̄el

∂ν
= t · ∂C̄

iso

∂ν
· ϵ̄ (4.98)

if Equation (4.97) is inserted in Equation (4.64). The partial variation J ′
s(·)

vanishes since ∂J/∂si is zero in the case of displacements as response (cf.
Section 4.2.1). The pseudo-PK2 stress resultants are generated by applying
a derived material matrix C̄iso in the constitutive equation. This becomes
obvious if the computation of ∂n̄el/∂ν in Equation (4.98) is compared with
Equation (B.13).
The pseudo-stress consists of two in-plane normal stress components and one
in-plane shear stress quantity. Along with the corresponding adjoint strains,
six maps are required to visualize the composition of the internal adjoint
work. To support the graphical analysis, the partitions of the adjoint work
computed by

W ∗
int,j = −

∫
A0

δν · ∂n̄el,j

∂ν
· ∂ϵ̄j

∂u
η dA0 = −

∫
A0

δν · ∂ν n̄el,j · δuϵ̄j dA0 (4.99)

are additionally plotted where the index j = 1, 2, 3 denotes the component
of n̄el and δuϵ̄. The final spatial sensitivity course equates the sum of the
δν-multipliers in the integrand of W ∗

int,j . The maps are shown together
with the resulting sensitivity map (=̂ course of the multiplier of δν in the
integral in Equation (4.98)) in Figure 4.21. The secondary significance of
the shear part W ∗

int,3 and the high relevance of W ∗
int,1 can be identified. The

distribution of W ∗
int,1 is strongly driven by the adjoint strain component

δuϵ̄1. This demonstrates the high relevance of δuϵ̄1 for the final sensitivity
distribution. Due to the large amount of adjoint work constitutes, that have
to be individually analyzed, the intuitive graphical analysis of the sensitivity
course is more difficult than for the beam examples discussed in Section 4.3.3.1.
In particular, adding the partitions W ∗

int,j complicates the graphical analysis.
It is not only the coincidence of the components’ maximum or minimum
values that must be considered. In addition, their signs are of interest because
maximum values with opposite signs can cancel each other out. Therefore,
the point-wise quantitative graphical analysis of the sensitivity course through
the entire set of adjoint work components can be classified as less significant
for practical purposes. Rather, using the strain of the influence function and
the pseudo-stress for a qualitative screening for potentially relevant zones in
a structure can be recommended. In the case of the membrane structure, the
coincidence of absolute maximum values of δuϵ̄1, δuϵ̄2, ∂ν n̄el,1, and ∂ν n̄el,2
in the center of the structure is a qualitative indicator of comparably high
sensitivities prevailing there.
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final sensitivity

W ∗
int,1

δuϵ̄1 δuϵ̄2 δuϵ̄3

∂ν n̄el,2∂ν n̄el,1 ∂ν n̄el,3

W ∗
int,2 W ∗

int,3
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Figure 4.21: Sensitivity analysis of membrane center displacement with
respect to Poisson’s ratio ν. The final sensitivity is deter-
mined by the internal adjoint work consisting of adjoint
strains δuϵ̄j and pseudo-stresses ∂ν n̄el,j .



84 4 . The method of generalized influence functions

4.3.6 Connection to sensitivity analysis with Green’s
function method (SAGF)

Carl [33], Hartmann et al. [83], and Kunow [97] developed the sensitivity
analysis with Green’s functions method (SAGF), which is a computation
technique to predict the consequences of local stiffness changes within a
subdomain Ωc ⊂ Ω. The SAGF approach strongly relates to the method of
generalized influence functions. Subsequently, that methodical relatedness is
discussed for the Euler-Bernoulli beam in more detail. The connection can
be demonstrated analogously for other structural elements (e.g., truss, plate
in bending or membrane action). Therefore, equivalent SAGF formulations
of the references mentioned above can be utilized.
The SAGF approach compares the weak form of an initial structural status
and that of a modified one in combination with Green’s function (=̂ influence
function, cf. Section 3.4.3). For the exemplary case of an Euler-Bernoulli
beam, the change of the bending moment ∆M(xm) at x = xm due to a local
modification of the bending stiffness ∆EI within the interval [a, b] ⊂ [0, l] can
be predicted by the SAGF method through

∆M(xm) ≈ −
b∫

a

γi ·M(x) ·Mη(x) dx

with γ1 = ∆EI
EI · EI (exemplary, for other γi see Carl [33])

(4.100)

where M(x) denotes the bending moment of the primal analysis, Mη(x) is the
bending moment of the Green’s function of the response M(xm), and γi is a
pre-factor which influences the quality of the approximation. According to
Equation (4.100), the bending moment distribution of the primal analysis and
the Green’s function in the interval [a, b] significantly decide the consequences
of the stiffness modification. Hence, observing the two bending moment
distributions reveals critical zones in a structure regarding stiffness alterations.
Please note that in the same sense, the internal adjoint work of pseudo-moment
and adjoint curvature can be used as discussed in Section 4.3.3.1.
Equation (4.100) is formulated with force quantities as primal variables. By
using the denominator of γ1, it is possible to reformulate Equation (4.100).
Through the application of the inverse material law κ = M/EI, the expression

∆M(xm) ≈ −
b∫

a

∆EI · κ(x) · κη(x) dx (4.101)

is obtained. Equation (4.101) is equivalent to the total partial variation of the
response M(xm) if the stiffness modification ∆EI is replaced by a respective
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variation δEI

DEIM(xm) · δEI = −
b∫

a

δEI · κ(x) · κη(x) dx

= −
b∫

a

δEI ·M ′
EI(x) · κη(x) dx

with M ′
EI = ∂

∂EI
{EI} · κ(x) = κ(x)

(4.102)

or for a more general response J and a universal stiffness parameter s

DsJ · δs = −
b∫

a

δs ·M ′
s(x) · κη(x) dx

with M ′
s = ∂

∂s
{EI(s)} · κ(x).

(4.103)

where the partial variation J ′
s(·) is assumed to be zero. The resultant in-

tegrands in Equation (4.102) and (4.103) are obviously the same as for the
internal adjoint work W ∗

int given by Equation (4.65b) and (4.67). The only
difference in the equations is the integration domain. In general, the SAGF
approach exclusively considers the stiffness-modified subdomain Ωc ⊂ Ω,
whereas variational sensitivity analysis is generally formulated regarding the
entire domain Ω of the observed body.
In summary, the SAGF approach can be interpreted as the extension of the
influence functions method for stiffness parameters. As variational adjoint
sensitivity analysis is consistently derived for general settings of response,
parameter, and underlying physical problem, the method of generalized in-
fluence functions can be seen as an extension of the SAGF approach, which
embraces:

• the systematic extension for almost all parameters (see Section 4.3.5.1
for limitations)

• consideration of explicit parameter dependencies in terms of the partial
variation J ′

s(s, u; δs)

• straight forward application for other physics (cf. Section 4.4)

REMARK I: The target of the SAGF approach is to approximate the actual
response change ∆J due to ∆s by using influence functions. In contrast, the
goal of the method of generalized influence function described within this
thesis is to determine sensitivities dJ/ds. However, the two purposes are
closely linked if the derivatives are used in a Taylor series expansion.
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REMARK II: The advantage of the SAGF approach is that the analysis
in Equation (4.100) must be only executed locally within the subdomain
Ωc ⊂ Ω. That computation is cheap if the primal solution and the influence
function are known and can thus be easily repeated for different subdomains
of potential stiffness modifications. This property is reflected by adjoint
sensitivity analysis by the advantage that its computational effort is almost
independent of the parameter amount.

REMARK III: The SAGF approach does not consider the explicit parameter
dependencies expressed through J ′

s(s, u; δs). Hence, it is not suitable for global
responses as strain energy (Section 4.3.4.2) or eigenvalues (Section 4.3.4.3).

4.4 Application to another physics

Adjoint sensitivity analysis is a general approach that is not limited to struc-
tural mechanics. Hence, it is possible to transfer the method of generalized
influence functions to other physical phenomenons. The key concepts of the
method of generalized influence functions are:

• Determination of the influence function with the adjoint problem (cf.
Section 4.2)

• Provision of additional sensitivity information by the adjoint work of the
influence function, its strain, and the corresponding pseudo-quantities
(cf. Section 4.3.2).

• Extension of the graphical analysis procedure by visualizing the adjoint
work components (cf. Section 4.3.3).

Subsequently, the generalization of the concepts is exemplary demonstrated
for steady state heat transfer problems (cf. Sections 2.3 and 3.3.4).

4.4.1 Determination of influence functions
The identification of the adjoint variable (=̂ adjoint temperature in the case
of heat problems) as influence function is in analogy to the derivations for
responses in structural mechanics (cf. Section 4.2) and will be discussed
below.

Nodal temperature

It is known from Green’s functions approach (e.g., Stakgold et al. [133] or
Section 3.4.3) that the influence function of the temperature at x as the
response can be generated by the application of a concentrated unit heat
source at x. The connection to the adjoint variable can be seen if the jth
nodal temperature J = ϕj ∈ ϕ is considered as response where ϕ is the
discrete vector of nodal temperatures. In analogy to a structural displacement
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(cf. Section 4.2.1), the adjoint load

∂J

∂ϕ
= ej (4.104)

corresponds to the jth unit vector ej , which can be interpreted as a unit
heat source applied at node j. Hence, the adjoint temperature has to be the
influence function.

Heat flux

Another analogy with structural mechanics can be observed in the case of a
nodal heat flux value in a one-dimensional heat transfer problem. Equivalent
to stress resultants, heat fluxes are the components of the element residual
equation re. The nodal heat flux values q can be evaluated through

q = He
0 (fe − keϕe) with He

0 =
[

−1 0
0 +1

]
(4.105)

whereby the jth heat flux qj ∈ q as observed response can be determined
through

qj = [ηe
0]T (fe − keϕe) with ηe

0 =
[
He

0(j;n)
]T (4.106)

with ηe
0 as the transposed jth row of He

0 . The response formulation in
Equation (4.106) is the same as for stress resultants in structural analysis1

(cf. Section 4.2.3 and in particular Equation (4.41)). Hence, all findings from
the investigations of stress resultants can also be applied to heat fluxes. In
particular, the element contribution of the pseudo-load can be identified as
part of the partial derivative ∂qj/∂si, which allows the merge of ηe and ηe

0
in the element-wise sensitivity term of Equation (3.22):

dqj

dsi
= [ηe

0]T
(
∂fe

∂si
− ∂ke

∂si
ϕe
)

︸ ︷︷ ︸
∂qj /∂si

+
∑

n

{
[ηe]T

(
∂fe

∂si
− ∂ke

∂si
ϕe
)}

=
∑

n

{(
[ηe

0]T + [ηe]T
)(∂fe

∂si
− ∂ke

∂si
ϕe
)} (4.107)

Thus, the partial derivative ∂qj/∂si can be replaced by adding a unity jump to
the adjoint temperature at the elemental degree of freedom which corresponds
to the response. Finally, the combination of η and the local correction ηe

0
represents the influence function of heat flux response. This observation shows
how well-known structural analysis approaches, such as Land’s theorem and
Müller-Breslau’s principle, can be smoothly transferred to other application
cases on the generic basis of adjoint sensitivity analysis.
1 In truss analysis the entries of matrix He

0 in Equation (4.105) have opposite signs
(cf. Equation (4.49)). The reason is that the heat flux corresponds with the negative
temperature gradient (cf. Equation (2.44)). In contrast, the truss normal force relates
to the positive displacement derivative.
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4.4.2 Adjoint work
Steady state heat transfer problems are similar to structural analysis problems.
This becomes obvious if the variational forms in Equations (2.41) and (2.55)
are compared. Refer also to Bathe [12] for a discussion on the equivalence of
the principle of virtual work of structural analysis and the variational form of
steady state heat transfer problems. Moreover, variational formulations of
thermal problems are known as principle of virtual thermal work in literature,
see, e.g., Romano et al. [122]. Following this methodical transfer, the
concept of adjoint work (cf. Section 4.3.2) is applied to steady state heat
transfer problems. In analogy to structural mechanics, the adjoint variational
sensitivity formulation (cf. Equation (3.45))

dJ

ds
· δs = J ′

s(ϕ, s; δs) +W ∗
int +W ∗

ext with (4.108a)

W ∗
int = −

∫
Ω

(∇η)T ·Dδsκ∇ϕ dΩ and (4.108b)

W ∗
ext =

∫
Ω
η ·DδsQ dΩ +

∫
ΓN

η ·Dδs

(
α (ϕa − ϕ) + σϵ

(
ϕ4

a − ϕ4)+ q̂
)
dΓN

(4.108c)

is used to identify the internal and external adjoint work expressions. Consis-
tently to Equation (4.63), the integrals of the internal and external adjoint
work can be separated into parts with contrary dependencies. The partial
variations with respect to the parameter are identified as pseudo-quantities
that are independent of the response. For instance, there is the pseudo-heat
source DδsQ or the pseudo-heat flow Dδsκ∇ϕ. In contrast, the influence
function η and the adjoint heat rate ∇η represent the response contribution to
the sensitivity. For the linear one-dimensional case, the variational sensitivity
formulation based on the weak form given by Equation (2.57) reads

dJ

ds
· δs = J ′

s(s;ϕ, δs) +W ∗
int +W ∗

ext with (4.109a)

W ∗
int = −

l∫
0

dη

dx
· ∂
∂s

{κA} dϕ
dx

· δs dx and (4.109b)

W ∗
ext =

l∫
0

η · ∂Q
∂s

· δs dx+
l∫

0

η · ∂
∂s

{αU (ϕa − ϕ)} · δs dx. (4.109c)

4.4.3 Examples
One-dimensional case

An 8 cm long rod subjected to a uniform heat source and convection at the
circumferential surface is considered. The system with its material properties
and boundary conditions is shown in Figure 4.22.
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Q = 3 W
cm

ϕa = 20◦C

xm = 2 cm x

8 cm 1 cm

1
cm

ϕ̂(0 cm) = 0◦C ϕ̂(8 cm) = 0◦C

κ = 1.2 W/(cm ·◦ C)
α = 0.2 W/(cm2 ·◦ C)

Figure 4.22: One-dimensional heat transfer problem. The rod is sub-
jected to a uniform heat source Q and convection length-
wise on the circumferential surface.

Sensitivity analysis will be presented by the heat flux qm at xm = 2 cm as
response with respect to the heat source Q, the thermal conductivity κ, and
the heat transfer coefficient α as parameters. If Equation (4.109) is applied
to the chosen response and parameters, the sensitivities are obtained by:

dqm

dQ
· δQ =

l∫
0

η · 1 · δQ dx (4.110a)

dqm

dκ
· δκ = −

l∫
0

dη

dx
·Adϕ

dx
· δκ dx (4.110b)

dqm

dα
· δα =

l∫
0

η · U (ϕa − ϕ) · δα dx (4.110c)

In analogy to the Euler-Bernoulli beam example (cf. Section 4.3.3.1), the
separated visualization of the coefficients of δs within the integrals of Equa-
tion (4.110) allows a detailed analysis of the composition of the sensitivity
distribution. The maps are shown in Figure 4.23 and enable the following
observations:

• The sensitivity analysis with respect to the heat source is straightforward
to the classical technique of influence functions. As a constant unity
heat source is applied along the rod as pseudo-quantity, the sensitivity
map corresponds to the influence function.

• Both the influence function and its derivative have small values for
6 cm < x < 8 cm. As a consequence, the noticeable values of the
respective pseudo-fields do not come into effect.

• Dominant sensitivity values can be found in areas where high values of
adjoint and pseudo-field coincide. This is especially the case of sensitivity
analysis with respect to κ and α for 0 cm < x < 2 cm.
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Figure 4.23: One-dimensional heat transfer problem. Composition of
sensitivity courses of response qm with respect to heat
source Q (top), thermal conductivity κ (middle), and
heat transfer coefficient α (bottom). The sensitivities
(right) are composed according to Equation (4.110) of a
quantity related to the influence function η (left) and a
pseudo-quantity f∗

s (middle).

Three-dimensional case

A three-dimensional body consisting of a pipe and fin is considered. The
system with its material properties and boundary conditions is shown in
Figure 4.24. An isotropic material with conductivity properties described by
κ is chosen. The left-hand side surface of the pipe represents the Dirichlet
boundary with a prescribed temperature of ϕ̂ = 150◦C. The remaining surface
is the Neumann boundary, which is subjected to convection. Please note that
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the ambient temperature differs (pipe inside: ϕa,i = 50◦C, pipe outside and
fin surface: ϕa,o = 5◦C). Sensitivity analysis is presented by the average
temperature on the body boundary in the green (response J1) and in the
blue-colored domain (response J2) with respect to the heat transfer coefficient
α as the parameter. The response domains are indicated in Figure 4.24.

ϕa,o = 5◦C (outside)
ϕa,i = 50◦C (tube inside) response domain J1

pipe

fin

ϕ̂ = 150◦C κ = 10 W/(cm ·◦ C)
α = 2 W/(cm2 ·◦ C)

response domain J2

Figure 4.24: Three-dimensional heat transfer problem consisting of a
pipe and a fin (left). As responses for sensitivity analysis,
the average temperature on the body boundary in the
green (response J1) and in the blue-colored domain (re-
sponse J2) are considered.

The response formulation is based on nodal temperature values ϕi and reads

J = 1
n

·
n∑

i=1

ϕi (4.111)

where n denotes the number of finite element nodes which are part of the
response domain. As the response formulation has no explicit parameter
dependency, the partial derivative vanishes, i.e., ∂J/∂si = 0. According to
Equation (4.108), sensitivity analysis with respect to parameter α reduces to

dJ

dα
· δα =

∫
ΓN

η ·Dδα (αϕa − αϕ) ΓN =
∫

ΓN

η · (ϕa − ϕ) δα ΓN (4.112)

which equates to the evaluation of the pseudo-quantity f∗
α = ϕa − ϕ on the

influence function η. The sensitivity maps are shown in Figure 4.25 and
enable the following observations:

• The pseudo-field is almost constant on the fin and the right part of the
pipe. Hence, the sensitivity distributions in those parts are dictated by
the influence functions, whereby the domains with maximal values of
the influence function correspond to parts with dominating sensitivities.
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• The maximal values of the pseudo-field can be found on the left part
of the pipe. However, these values are almost faded due to the corre-
sponding small values of the influence function.

• The analysis of the various maps can support the detection of the
reasons for the particularities of the resulting sensitivities. For instance,
the sensitivities inside the pipe are smaller in absolute values than
outside. As a reason, smaller absolute values of the pseudo-quantity
inside due to the higher internal pipe temperature can be identified (cf.
Equation (4.112)). Since the adjoint temperature is almost the same
over the entire pipe cross-section, the different pseudo-quantity values
at the pipe surface are reflected accordingly in the final sensitivity.

1.5

0.0

2.4

0.0

0.0

-109

0.0

-183

0.0

-145
influence function of J1

pseudo-quantity α
f∗

α = ϕa − ϕ

sensitivity dJ1/dα

influence function of J2 sensitivity dJ2/dα

Figure 4.25: Composition of sensitivity distributions of responses J1
(top) and J2 (bottom) with respect to heat transfer coeffi-
cient α. The sensitivities (right) are composed according
to Equation (4.112) of the influence function η (left) and
the pseudo-quantity f∗

α (middle). For better visibility,
the insides of the pipes are shown separately.
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4.5 Summary
In this chapter, the relation between adjoint sensitivity analysis and the
method of influence functions has been investigated in detail. First of all,
the identification of the adjoint variable as influence function was discussed.
Therefore, different viewpoints available from the literature were examined.
Subsequently, the influence functions of the responses of the traditional
approach (displacement, stress resultants, and support forces) have been
successfully derived based on adjoint sensitivity equations. In that regard, it
was shown that the evaluation of the partial derivative ∂J/∂si is necessary
to justify the unity jump or kink of the influence function, which is not
represented by the adjoint variable.
Furthermore, the concept of adjoint work was introduced and investigated.
Based on variational adjoint sensitivity analysis, the work expression of
the traditional influence functions approach can be extended for sensitivity
analysis. A significant feature of the adjoint work concept is that analyzing
the adjoint work components (pseudo-quantities and energetically conjugated
counterparts of the influence function) provides valuable additional sensitivity
information. Moreover, the adjoint work components can be utilized to
extend the graphical analysis procedure of the traditional influence functions
approach. Although the graphical analysis is complicated in the case of
thin-walled and solid structures, adjoint work components can be of interest
for numerical methods. Refer to Chapter 7 for an outlook in this regard.
The partial derivative ∂J/∂si is an essential difference between adjoint sensi-
tivity analysis and the method of influence functions. The impact of ∂J/∂si

on the concept has been investigated based on exemplary responses. Espe-
cially in the case of global responses (e.g., eigenvalues), the significance of the
internal and external adjoint work can be strongly reduced.





Chapter 5
Sensitivity analysis based on sequenced

simulation processes

A challenging group of structural models is one that requires a sequenced
simulation process of several analysis stages. After stage k has finished, the
analysis is stopped and the structural model is modified before the analysis
of stage k+1 is restarted. A typical example of structural engineering is
construction stage modeling. The analysis model must be adapted to the
construction progress after each stage (e.g., adding new members). Another
example is the design and analysis of lightweight structures (e.g., membranes
or cable nets). A sequenced simulation process, which among others consists
of form-finding and subsequent structural analyses, is required. The challenge
in sensitivity analysis is that the quantities carried forward from one analysis
stage to the next may depend on the parameters for which the sensitivities
must be computed. Hence, the parameter influence in several stages has to
be considered in sensitivity analysis. This chapter investigates how sensitivity
analysis based on a sequenced simulation process can be realized. Section 5.1
discusses how analysis models can be initialized for the subsequent simula-
tion stage and the necessary adjustments for sensitivity analysis. Based on
these findings, additional extensions for sensitivity analysis in the case of
construction stage analysis (Section 5.2) and the sequenced simulation process
of lightweight structures (Section 5.3) are investigated.

5.1 Initialization of subsequent analysis stages

Sequenced simulation processes require stopping the analysis, modifying the
structural analysis model (e.g., adding new members), and restarting the
analysis. For the latter, retaining the state of the previous analysis stages is
important. Therefore, the model of the subsequent analysis stage must be
initialized accordingly. This section discusses how sensitivity analysis needs
to be adjusted to adequately account for the initialization for the restart of
the analysis.
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5.1.1 Modeling approaches
Dieringer et al. [48] proposes two approaches to preserve the structural state
of stage k and to restart the analysis of stage k + 1:

• The approach “restart with initial displacements” (InitDisp) applies the
resulting displacements u(k) of stage k as initial displacements u(k+1)

0 for
the start of stage k+1. The reference geometry is not updated1, i.e., the
initial reference geometry is retained in all stages Xinit = · · · = X(k+1).

• The approach “restart with initial stresses” (InitStress) applies the
resulting stresses S(k) of stage k as initial stresses S

(k+1)
0 for the start

of stage k+ 1. Furthermore, the geometry is updated, i.e., the deformed
configuration x(k) of stage k is taken as new reference configuration
X(k+1) for stage k + 1.

The procedure of the two approaches is visualized in Figure 5.1. The illustra-
tion shows the transition from stage k to the subsequent simulation k+1. The
initialization quantities required for the start of stage k+ 1 are highlighted in
blue.
The advantages and disadvantages of the two approaches are examined in
detail by Bauer [13], Dieringer [47], Dieringer et al. [48], and Philipp [118].
Their investigations show that mechanically accurate sequenced simulation
processes can be achieved only with the InitDisp method. The InitStress
modeling approach, on the other hand, approximates the structural behavior
and should only be used for small deflections to ensure sufficient accuracy.
However, the InitDisp approach is more elaborate in modeling. For instance,
in the case of construction stage analysis, the reference geometry of old and
new members is handled differently. This can lead to topologically separated
members at the connection nodes of the construction stages. Section 5.2.1
describes this issue in more detail. It should be noted that despite the
imprecision of the InitStress method, both approaches are considered in the
following. The aim is to discuss the impact of different modeling approaches
on the sensitivity analysis.
The initialization quantities are formulated regarding the total deformation
u in the subsequent derivations. The total deformation of stage k + 1 is
determined as the difference between the initial reference configuration Xinit =
X(1) and the actual configuration x(k+1):

u(k+1) = x(k+1) − Xinit (5.1)
Optionally, it can be computed by

u(k+1) = u(k) + ∆u(k+1) (5.2)

where ∆u(k+1) is the additional deformation, which occurs in stage k + 1.
Please refer to Figure 5.1, where the total deformation is highlighted in red.
1 This is not necessarily the case in construction stage analysis for the members added

in stage k + 1. These members can be modeled with a modified reference geometry
to account for the compensation of occurred deformations. This issue is considered in
Section 5.2.1.
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X
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Figure 5.1: Basic modeling schemes for the initial two stages of a se-
quential analysis process. The second stage can be initial-
ized by the InitDisp (left) or the InitStress (right) approach.
The initialization quantities are written in blue.

5.1.2 Extension of sensitivity analysis

The basic discrete sensitivity expressions in Chapter 3.2 are derived based on
the response J(s,u(s)) (cf. Equation (3.5)) and the state equation r(s,u(s))
(cf. Equation (3.7)). In sequential simulation processes based on the ap-
proaches introduced in Section 5.1.1, it must be considered that the analysis
is restarted based on initialization quantities. The latter are related to the
deformations of the previous stages, which depend on the parameters si ∈ s.
These additional dependencies must be considered when formulating the
response and the state equation. This section aims to derive the sensitivity
equations for a response at stage k + 1. It is expected that the deformations
u(1)(si) up to u(k+1)(si) and the state derivatives du(1)/dsi up to du(k)/dsi

are pre-computed.
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Extension of sensitivity analysis for InitDisp

For the restart of the analysis at stage k+ 1, initial displacements u
(k+1)
0 have

to be applied. These coincide with the total displacements u
(k+1)
0 = u(k)(si)

and are therefore dependent on si. If this additional relation is considered,
the response formulation and the state equation read

J(k+1)
(
si,∆u(k+1)(si),u(k+1)

0
(
u(k)(si)

))
(5.3a)

r(k+1)
(
si,∆u(k+1)(si),u(k+1)

0
(
u(k)(si)

))
= 0 (5.3b)

which are the basis for sensitivity analysis at stage k + 1. The derivative of
the response with respect to si is

dJ(k+1)

dsi
= ∂J(k+1)

∂si
+ ∂J(k+1)

∂u
(k+1)
0

∂u
(k+1)
0

∂u(k)
du(k)

dsi
+ ∂J(k+1)

∂∆u(k+1)
d∆u(k+1)

dsi
(5.4)

if the chain rule of differentiation is applied to Equation (5.3a). The state
derivative d∆u(k+1)/dsi can be determined equivalently to the procedure
conducted in Equation (3.8). Therefore, the equilibrium condition in Equa-
tion (5.3b) is first derived concerning the parameter si, then the pseudo-load
F ∗(k+1) is introduced. Finally, the result is reformulated concerning the state
derivative:

d∆u(k+1)

dsi
=
[
∂r(k+1)

∂∆u(k+1)

]−1

F ∗(k+1) with

F ∗(k+1) = −∂r(k+1)

∂si
− ∂r(k+1)

∂u
(k+1)
0

∂u
(k+1)
0

∂u(k)
du(k)

dsi

(5.5)

If Equation (5.5) is substituted in (5.4) the final sensitivity equation is ob-
tained:

dJ(k+1)

dsi
=∂J(k+1)

∂si
+ ∂J(k+1)

∂u
(k+1)
0

∂u
(k+1)
0

∂u(k)
du(k)

dsi

+ ∂J(k+1)

∂∆u(k+1)

[
∂r(k+1)

∂∆u(k+1)

]−1

F ∗(k+1)

(5.6)

REMARK I: When the analysis is restarted only, i.e., when the analysis
model is not changed except for adding initial displacements to all degrees
of freedom, the sensitivity equations for the InitDisp restart model can be
simplified. Since the relations

∂J(k+1)

∂u
(k+1)
0

= ∂J(k+1)

∂∆u(k+1) and ∂r(k+1)

∂u
(k+1)
0

= ∂r(k+1)

∂∆u(k+1) (5.7)
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can be identified, Equation (5.6) reduces to

dJ(k+1)

dsi
= ∂J(k+1)

∂si
+ ∂J(k+1)

∂∆u(k+1)

[
∂r(k+1)

∂∆u(k+1)

]−1 −∂r(k+1)

∂si
(5.8)

which is equal to the sensitivity expression of a single stage analysis given
by Equation (3.9). The same can be found for the state derivative regarding
the total displacement if Equation (5.7) is applied when Equation (5.5) is
substituted in (5.18):

du(k+1)

dsi
=
[
∂r(k+1)

∂∆u(k+1)

]−1 −∂r(k+1)

∂si
(5.9)

Equations (5.8) and (5.9) show that the state derivative du(k)/dsi has canceled
out. Hence, no additional solutions of linear systems are required to determine
the state derivative of previous stages. Consequently, the computational effort
for sensitivity analysis is the same as for a single stage simulation. It should
be noted that this observation is mainly of theoretical interest. In practical
situations, the main reason for stopping and restarting an analysis is to change
the model.

Extension of sensitivity analysis for InitStress

Initial stresses and a modified reference geometry are applied as initialization
quantities. The updated reference configuration can be formulated with
respect to the initial reference configuration as X(k+1) = u(k)(si) +Xinit. To
determine the initial stresses for stage k + 1, the resulting stress state of the
previous stage k has to be computed. The PK2-stresses at stage k are

S(k) = C : E(k) + S
(k)
0 (5.10)

based on the Saint Venant-Kirchhoff model and the applied initial stresses
for the initialization of stage k. The material tensor contains parameters that
are relevant for sensitivity analysis. Hence, an explicit dependency of the
initial stresses on si is assumed. The Green-Lagrange strains (cf. Section 2.2.1
and Equation (2.20)) are based on the reference and deformed configuration
of the previous stage k, which simultaneously2 depend on u(k) and u(k−1).
Furthermore, the initial stresses for the restart of stage k + 1 depend on the

2 This can be easily seen in the case of a non-linear truss element. The resulting Green-
Lagrange strain ϵGL at stage k can be computed by

ϵGL =
l
(
u(k)
)2

− L
(
u(k−1)

)2

2 · L
(
u(k−1)

)2

where the current length l can be determined based on u(k). The modified reference
length L for stage k is computed with respect to u(k−1).
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initial stresses of the previous stage k, which in turn depend on the initial
stresses of stage k − 1. This results in a linkage of the initial stresses:

S
(2)
0
(
si,u

(1))
S

(3)
0

(
si,u

(1),u(2),S
(2)
0
(
si,u

(1)))
...

S
(k+1)
0

(
si,u

(k−1),u(k),S
(k)
0

(
si,u

(k−2),u(k−1),S
(k−1)
0 (· · · )

))
(5.11)

The sensitivities of the initial stresses defined in Equation (5.11) are required
below. These can be calculated using the pre-calculated state derivatives:

dS
(2)
0

dsi
= ∂S

(2)
0

∂si
+ ∂S

(2)
0

∂u(1)
du(1)

dsi

dS
(3)
0

dsi
= ∂S

(3)
0

∂si
+ ∂S

(3)
0

∂u(1)
du(1)

dsi
+ ∂S

(3)
0

∂u(2)
du(2)

dsi
+ ∂S

(3)
0

∂S
(2)
0

dS
(2)
0

dsi

...

dS
(k+1)
0
dsi

= ∂S
(k+1)
0
∂si

+ ∂S
(k+1)
0

∂u(k−1)
du(k−1)

dsi
+ ∂S

(k+1)
0

∂u(k)
du(k)

dsi
+ ∂S

(k+1)
0

∂S
(k)
0

dS
(k)
0

dsi

(5.12)
Since the partial derivatives ∂(•)S

(j)
0 are cheap to calculate, the additional

costs for the evaluation of Equation (5.12) are low for given state derivatives.
If the dependency of the modified reference geometry and the initial stress on
si is considered, the response formulation and state equation

J(k+1)
(
si,∆u(k+1)(si),X(k+1) (u(k)(si)

)
,S

(k+1)
0 (•)

)
(5.13a)

r(k+1)
(
si,∆u(k+1)(si),X(k+1) (u(k)(si)

)
,S

(k+1)
0 (•)

)
= 0 (5.13b)

are obtained. Note that (•) in Equation (5.13) represents the dependencies
defined by Equation (5.11). The application of the chain rule of differentiation
to Equation (5.13a) leads to

dJ(k+1)

dsi
=∂J(k+1)

∂si
+ ∂J(k+1)

∂X(k+1)
∂X(k+1)

∂u(k)
du(k)

dsi
+ ∂J(k+1)

∂S
(k+1)
0

dS
(k+1)
0
dsi

+ ∂J(k+1)

∂∆u(k+1)
d∆u(k+1)

dsi

(5.14)
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where the state derivative is determined based on Equation (5.13b):

d∆u(k+1)

dsi
=
[
∂r(k+1)

∂∆u(k+1)

]−1

F ∗(k+1) with

F ∗(k+1) = − ∂r(k+1)

∂si
− ∂r(k+1)

∂X(k+1)
∂X(k+1)

∂u(k)
du(k)

dsi
− ∂r(k+1)

∂S
(k+1)
0

dS
(k+1)
0
dsi

(5.15)
The combination of Equations (5.14) and (5.15) yields the final sensitivity
term:

dJ(k+1)

dsi
=∂J(k+1)

∂si
+ ∂J(k+1)

∂X(k+1)
∂X(k+1)

∂u(k)
du(k)

dsi
+ ∂J(k+1)

∂S
(k+1)
0

dS
(k+1)
0
dsi

+ ∂J(k+1)

∂∆u(k+1)

[
∂r(k+1)

∂∆u(k+1)

]−1

F ∗(k+1)

(5.16)

Computational aspects

Depending on the execution order of the matrix-vector products in the last
line of Equations (5.6) and (5.16), a direct or adjoint procedure is carried out.
In the latter case, the adjoint variable η(k+1) is solved by the linear system
of equations [

∂r(k+1)

∂∆u(k+1)

]T

η(k+1) = ∂J(k+1)

∂∆u(k+1) (5.17)

and then dot-multiplied with the pseudo-load. Otherwise, direct sensitivity
analysis initiates with the solution of the state derivative given by Equa-
tions (5.5) and (5.15). Refer to Section 3.2 for a discussion of which procedure
to be preferred depending on the number of responses and parameters.
In terms of computational effort, the most significant difference between
Equations (5.6) respectively (5.16) and the basic sensitivity expressions derived
in Section 3.2 is that the state derivatives du(k)/dsi of the previous stages
are required. To compute the state derivative du(k+1)/dsi for the following
stage, Equation (5.2) has to be derived with respect to si:

du(k+1)

dsi
= du(k)

dsi
+ d∆u(k+1)

dsi
(5.18)

The derivative d∆u(k+1)/dsi can be computed either by direct or adjoint
sensitivity analysis. The choice depends on whether the number of degrees of
freedom nDOF or the number of parameters ns is dominant. For nDOF > ns

a direct procedure by solving the state derivative given by Equations (5.5)
and (5.15) is to be preferred. In that case, ns solutions of linear systems are
required. Otherwise, for nDOF < ns an adjoint sensitivity analysis with each
degree of freedom ∆u(k+1)

j ∈ ∆u(k+1) as response J = ∆u(k+1)
j is beneficial.

This procedure compromises nDOF solutions of Equation (5.17). Hence, the
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computational effort of sensitivity analysis can be significantly larger than
for a single stage analysis. This is particularly true for large models with
many degrees of freedom and nDOF ≈ ns. In such cases, neither the direct
nor adjoint approach can significantly reduce the computational effort. In
contrast to the calculation of the state derivative, the costs of the partial
derivatives ∂(•)J

(k+1), ∂(•)r
(k+1), ∂(•)u

(k+1)
0 , ∂(•)X

(k+1), and ∂(•)S
(k+1)
0 in

the Equations (5.6) and (5.16) are comparatively low.

5.1.3 Example
To illustrate the derivations of the previous section, a two bar example is
considered. The structure is also known as von Mises truss. The analysis
model and the applied parameters are shown in Figure 5.2.

y

λP

single stage analysis and
first analysis stage based on InitDisp

second analysis stage
based on InitStress

second analysis stage

L =
√
b2 + h2
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u
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b b

h

b = h = 1 E = 100
P = 1A = 1
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b2 + (h− u(2))2
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x

∆u(2)
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deformed geometry

Figure 5.2: Considered von Mises truss with applied parameters (left).
Deformations, reference and actual lengths of the second
analysis stage are based on the InitDisp (middle) and
InitStress (right) configuration update approach.

Philipp [118] utilized the example to demonstrate the restart of the structural
analysis by the InitDisp and InitStress approach. Based on the derivations
of Philipp [118], the example is subsequently supplemented with sensitivity
analysis. The system can be analyzed with a single degree of freedom. This
property is advantageous for the derivations since the equations remain clear
and can be written analytically.
The residual equation of the von Mises truss with respect to the degree of
freedom u reads

r = EA

L3

(
u3 − 3u2h+ 2uh2)− λP (5.19)

with Young’s modulus E, cross section A, and external load P which is
controlled by load factor λ. Based on Equation (5.19), the tangential stiffness
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matrix
K = ∂r

∂u
= EA

L3

(
3u2 − 6uh+ 2h2) (5.20)

is obtained. Equivalent to Philipp [118], the first analysis stage is stopped and
restarted at a load factor of λ = 6.5. After the restart with the InitDisp and
InitStress approach, the second analysis stage is continued until λ = 13.0. The
load-displacement graph is visualized in Figure 5.3. Additionally, Table 5.1
compares the total displacement u at the considered load stages based on
the two configuration update approaches with the results of a single stage
analysis. At the start of analysis stage 2 both update approaches yield the
reference displacement of the single step analysis. If λ is increased further, it
can be observed that u based on the InitStress approach increasingly deviates
from the reference result of the single stage analysis. Hence, the mechanical
non-exactness of the InitStress method becomes obvious. Refer to Philipp
[118] for further discussion on that issue.

Table 5.1: Structural analysis results of the von Mises truss. The
displacement u is computed based on a single stage analysis
and a sequenced analysis consisting of two stages. Adapted
from Philipp [118].

λ u (single stage) u(2) (InitDisp) u(2) (InitStress)
6.5 0.10914 0.10914 (±0.0%) 0.10914 (±0.0%)
13.0 0.32566 0.32566 (±0.0%) 0.26077 (−19.9%)

The aim is to compute the sensitivities of the total deformation u with
respect to Young’s modulus E and external load P . In the case of a single
analysis stage and of the first stage of the considered sequenced analysis, the
sensitivities can be computed by

du

ds
= du(1)

ds
= − 1

K
· ∂r
∂si

. (5.21)

After the start of the second analysis stage the sensitivity formulation depends
on whether the InitDisp or InitStress approach is utilized.
In the case of InitDisp, the displacement u(1) is applied as initial deformation
u

(2)
0 = u(1). The respective residual equation can be directly obtained by

substituting the total deformation u(2) = ∆u(2) + u(1) (cf. Equation (5.2))
into Equation (5.19), which gives

r(2) = EA

L3

(
u(2)3 − 3u(2)2h+ 2u(2)h2)− λP. (5.22)

The derivative d∆u(2)/dsi is computed in a first step. For this purpose,
Equation (5.22) is applied in Equation (5.5), which leads to

d∆u(2)

dsi
= − 1

K(2) ·
[
∂r(2)

∂si
+ ∂r(2)

∂u
(2)
0

· ∂u
(2)
0

∂u(1) · du
(1)

dsi

]
(5.23)
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where K(2) = ∂r(2)/∂∆u(2) is the tangential stiffness matrix. The sensitiv-
ity of the total displacement is computed based on Equation (5.18), which
simplifies to

du(2)

dsi
= − 1

K(2) · ∂r
(2)

∂si
− du(1)

dsi
+ du(1)

dsi
= − 1

K(2) · ∂r
(2)

∂si
(5.24)

if ∂r(2)/∂u
(2)
0 = K(2) and ∂u

(2)
0 /∂u(1) = 1 is applied in Equation (5.23).

The result is equivalent to the sensitivity equation of a single step analysis
(compare Equations (5.21) and (5.24)). This finding is in line with what
has already been established with regard to Equation (5.9). Hence, the final
sensitivities of the sequenced analysis with InitDisp configuration update are
the same as for a single stage analysis, which can seen in Table 5.2. The
complete sensitivity course for λ ∈ [0.0, 13.0] is visualized in Figure 5.3.

Table 5.2: Sensitivities computed based on a single stage analysis and
a sequenced analysis consisting of two stages.

single stage analysis two stage analysis (InitDisp)
λ du/dE du/dP du(2)/dE du(2)/dP

6.5 -0.00133 0.133 -0.00133 (±0.0%) 0.133 (±0.0%)
13.0 -0.0101 1.010 -0.0101 (±0.0%) 1.010 (±0.0%)

In the case of a restart with the InitStress approach, the reference length of
the trusses is updated. The new reference length can be calculated by

L(2) = l(1) =
√
b2 + (h− u(1))2 (5.25)

where l(1) denotes the actual length resulting from analysis stage 1 at λ = 6.5.
Additionally, prestress is applied to the members, which is obtained by

σ
(2)
PK2,0 = E · ϵGL

(
u(1)) · l

(1)

L(1) with ϵGL
(
u(1)) = 1

2
l(1)2 − L(1)2

L(1)2 (5.26)

based on the Saint Venant-Kirchhoff material law. Please note, the multiplier
l(1)/L(1) in Equation (5.26) is required to transform the PK2-stresses to the
updated reference configuration. On that basis, the residual equation can be
formulated:

r(2) = EA

L(2)3

(
∆u(2)3 − 3∆u(2)2 (h− u(1))+ 2∆u(2) (h− u(1))2

)
+ 2Aσ(2)

PK2,0
∆u(2) + u(1) − h

L(2) − λP

(5.27)

The sensitivity of the total displacement (cf. Equation (5.18)) requires the
derivative d∆u(2)/dsi. For this purpose, Equation (5.27) is applied in Equa-
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tion (5.15), which leads to

d∆u(2)

dsi
= − 1

K(2)

[
∂r(2)

∂si
+ 2 · ∂r

(2)

∂L(2) · ∂L
(2)

∂u(1) · du
(1)

dsi
(5.28a)

+2 · ∂r(2)

∂σ
(2)
PK2,0

·
∂σ

(2)
PK2,0

∂u(1) · du
(1)

dsi
+ 2 · ∂r(2)

∂σ
(2)
PK2,0

·
∂σ

(2)
PK2,0

∂si

]
(5.28b)

where K(2) = ∂r(2)/∂∆u(2) is the tangential stiffness matrix. Please note,
the second part of Equation (5.28b) vanishes for parameter P . Table 5.3
summarizes the sensitivities at the start and end of analysis stage 2. At
λ = 6.5, the sensitivities coincide with the reference results of the single stage
sensitivity analysis since d∆u(2)/dsi vanishes. If λ is increased further, it
can be observed that du(2)/dsi based on the InitStress approach increasingly
deviates from the reference result of the single stage analysis (cf. sensitivity
course plotted in Figure 5.3). A maximal relative deviation of −55.3% at
λ = 13.0 can be identified. Hence, the relative deviations of the sensitivities
are significantly higher as compared to the displacements (cf. Table 5.1).

Table 5.3: Sensitivities computed based on a single stage analysis and
a sequenced analysis consisting of two stages.

single stage analysis two stage analysis (InitStress)
λ du/dE du/dP du(2)/dE du(2)/dP

6.5 -0.00133 0.133 -0.00133 (±0.0%) 0.133 (±0.0%)
13.0 -0.0101 1.010 -0.00451 (−55.3%) 0.451 (−55.3%)
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Figure 5.3: Load-displacement graph of the von Mises truss (left). Re-
spective sensitivity courses of displacement u with respect
to Young’s modulus E and load P (middle and right). The
analysis is restarted at λ = 6.5.
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5.2 Construction stage analysis
Increasing computational power, advanced software packages, and approaches
as building information modeling (BIM) boost the usage of total building
models in structural analysis. These cover the load-bearing structure of
an entire building. Total building models are generated with the nominal
geometry of all components and it is assumed that the load (in particular, the
dead load) only acts on the completed structure. These modeling assumptions
do not correspond to reality. Deformations due to dead weight occur during
construction, which are partially compensated for by the ongoing building
process. For example, columns might be built “too long” to compensate for
deformations in the earlier stages. The issue is illustrated in Figure 5.4, which
shows an abstract two-stage construction process. After completing the first
stage, the column is compressed by w1 according to the dead load g1. To
meet the support at y = 2h with a horizontal linear slab, the column of the
second stage is erected on the deformed members of the first stage with a
length of h + w1. The non-consideration of such circumstances that occur
during construction can lead to misjudgments of the structural behavior or
even be relevant to structural safety, as reported by Fastabend et al. [55].

h

stage 1

stage 2

w1

g1

w1

y

x

h y

x

h

h
+
w

1

g1

Figure 5.4: Two-stage construction sequence. The column built in the
second stage is erected “too long” to compensate for the
deformation of the first stage.

Construction stage analysis aims to overcome the deficits of total building
models by modeling aspects such as (i) the consideration of deformations
of previous construction stages, (ii) their partial compensation through the
progressive construction process, (iii) change of boundary conditions, or
(iv) time-dependent material behavior such as creep or shrinkage. From
a computational point of view, construction stage analysis is a sequenced
simulation process. After each stage, the deformed model is modified with
regard to the progress of the construction.
In the literature, construction stage analysis is rarely considered, although
the topic has been discussed since the 1980s, see, e.g., Choi et al. [37]. Com-
parative studies of different modeling approaches, including total building
and construction stage models, are carried out by Kurc et al. [98], Laggner
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et al. [99], and Sobek et al. [131] based on abstracted and real-world multi-
story buildings. The investigations consistently show significant differences
in responses, such as support forces or stress resultants, depending on the
modeling approach. The references mentioned above focus on concrete struc-
tures. Research on construction stage analysis for lightweight structures can
be found in Philipp [118] or Bauer [13].
There are several possibilities to model the construction stage process, i.e,
the transition from one construction stage to the next. Refer to Philipp [118]
for a brief introduction of different approaches and to Löwenstein [104, 105]
regarding their realization in a commercial software package. In this thesis, the
focus is on the method of compensation of deformations, where new members,
whose geometry has been modified based on the deformations of previous
phases, are added to a deformed and stressed structure. The investigations do
not consider time-dependent effects such as creep or shrinkage. Section 5.2.1
starts with basic derivations using the modeling approaches introduced in
Section 5.1.1. The aim is to investigate the fundamental challenges for
sensitivity analysis. In Section 5.2.2, the focus is on the systematic realization
of construction stage analysis and the corresponding sensitivity computation
based on established modeling techniques in finite element codes.

5.2.1 Construction stage analysis on a fundamental basis
5.2.1.1 Modeling approach

A modified reference geometry of the new members considers the deformations
of previous construction stages. The issue is illustrated in Figure 5.5. A new
truss member is added at the beginning of stage k + 1 at the actual position
x

(k)
A of point A. The reference position of point A related to the new member

is XA,new = x
(k)
A .

In the case of the InitDisp approach, it has to be noted that attached “old”
and “new” members become topologically separated. The issue becomes
visible in Figure 5.5 (left). Different reference positions of point A on the
existing structural domain XA,init and at the connection point of the new
truss member XA,new can be observed. Additional nodes must be introduced
to realize that particularity in a finite element model. The connection nodes
are doubled to link the “old” and “new” members, whereby the new node’s
reference position is modified following the previous deformations. The “old”
members keep their nodes at which the initial displacements are applied to
account for the deformations of the previous analysis stages. The double
nodes are coupled by assigning the same degree of freedom to both.
These additional modeling aspects are not necessary in the case of InitStress.
There the reference geometry of “old” and “new” members is modified si-
multaneously and the topology is not separated. This becomes visible in
Figure 5.5 (right), where the reference position of node A of the existing
structural domain and the new truss member coincides. Refer to Dieringer
et al. [48] and Philipp [118] for detailed discussions on this modeling issue.
Furthermore, the problem is treated in the example in Section 5.2.1.3.
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Figure 5.5: Modeling schemes for two subsequent analysis stages. At
the beginning of stage k+1, a new truss member is added at
the actual position of point A. The initialization quantities
for the analysis restart are in blue.

5.2.1.2 Extension of sensitivity analysis

Section 5.1.2 discusses the necessary adaptions of sensitivity analysis for
sequenced simulation processes based on two analysis restart approaches.
Subsequently, the derivations are extended for construction stage analysis.
It is assumed that new components are added at stage k + 1 but not in
other stages in order to keep the derivations clear. The aim is to determine
sensitivities at stage k + l with l ≥ 1. It is expected that the deformations
u(1)(si) to u(k+l)(si) and the state derivatives du(1)/dsi to du(k+l−1)/dsi are
pre-computed.

Extension of sensitivity analysis for InitDisp

New members with the reference geometry X(k+1)
(
u(k)(si)

)
depending on

the previous deformations are added. It should be noted that the stage at
which the members are added and their reference geometry is defined can be
seen by a subscript. The superscript, which indicates the current observed
stage, is not required in the case of InitDisp because the reference geometry
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is not further modified in subsequent stages, i.e., X(k+1) = X
(k+1)
(k+1) = X

(k+l)
(k+1)

with l ≥ 1. When new members are introduced, the number of degrees of
freedom generally increases. Thus, the vector of total displacements given by
Equation (5.1) must be expanded to

u(k+l) = x(k+l) −
[

Xinit

X(k+1)

]
(5.29)

where Xinit denotes the reference geometry of the initially existing structural
domain. Note that the initial displacements which are applied by the InitDisp
approach are u

(k+l)
0 = u(k+l−1) based on the total displacements defined by

Equation (5.29).
For sensitivity analysis, it has to be additionally considered that the reference
geometry X(k+1) of the added members at stage k + 1 depends on the
deformation of the previous construction stages. Therefore, the response and
equilibrium condition

J(k+l)
(
si,∆u(k+l)(si),u(k+l)

0
(
u(k+l−1)(si)

)
,X(k+1)

(
u(k)(si)

))
(5.30a)

r(k+l)
(
si,∆u(k+l)(si),u(k+l)

0
(
u(k+l−1)(si)

)
,X(k+1)

(
u(k)(si)

))
= 0

(5.30b)

are utilized. The formulations in Equation (5.30) are extensions of those in
Equation (5.3). Hence, the derivation of the sensitivity equations is almost
the same as presented in Section 5.1.2. The only difference is the dependency
on X(k+1)

(
u(k)(si)

)
. Based on Equation (5.30), the sensitivity equation

dJ(k+l)

dsi
=∂J(k+l)

∂si
+ ∂J(k+l)

∂u
(k+l)
0

∂u
(k+l)
0

∂u(k+l−1)
du(k+l−1)

dsi

+ ∂J(k+l)

∂X(k+1)

∂X(k+1)

∂u(k)
du(k)

dsi

+ ∂J(k+l)

∂∆u(k+l)

[
∂r(k+l)

∂∆u(k+l)

]−1

F ∗(k+l)

(5.31)

and the state derivative

d∆u(k+l)

dsi
=
[
∂r(k+l)

∂∆u(k+l)

]−1

F ∗(k+l) with

F ∗(k+l) = − ∂r(k+l)

∂si
− ∂r(k+l)

∂u
(k+l)
0

∂u
(k+l)
0

∂u(k+l−1)
du(k+l−1)

dsi

− ∂r(k+l)

∂X(k+1)

∂X(k+1)

∂u(k)
du(k)

dsi

(5.32)
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are received. In contrast to the sensitivity equations of a pure restart analysis
(cf. Equations (5.5) and (5.6)), not only the state derivative of the previous
stage k + l − 1 is required. Rather, the state derivative of stage k, i.e., the
stage before adding the new members, is also needed.

REMARK I: Double nodes are introduced to realize the topologically
separated reference geometry of “old” and “new” members in a finite element
model. The nodes are coupled because they are assigned the same degrees
of freedom. However, the applied initial displacements differ since the two
nodes relate to different reference configurations. This particularity has to be
properly considered in sensitivity analysis. For illustration, refer to Figure 5.6,
which shows the initialization of node A for stage k + l. The terms

∂(•)(k+l)

∂u
(k+l)
A,0,init

∂u
(k+l)
A,0,init

∂u
(k+l−1)
A,init

du
(k+l−1)
A,init

dsi
,
∂(•)(k+l)

∂u
(k+l)
A,0,new

∂u
(k+l)
A,0,new

∂u
(k+l−1)
A,new

du
(k+l−1)
A,new

dsi

as part of the partial derivative regarding the response (•=̂J) and the pseudo-
load (•=̂r) are required to consider the dependency on si concerning the
initial displacements of double node A.

e3

e2
e1 u

(k+l)
A,0,newu

(k+l)
A,0,init

XA,in
it

XA,new

x (k+l−1)A

A

A

A

u
(k+l)
A,0,init = u

(k+l−1)
A,init = x

(k+l−1)
A − XA,init

initial displacements of double node A:

u
(k+l)
A,0,new = u

(k+l−1)
A,new = x

(k+l−1)
A − XA,new

Figure 5.6: Initialization of the double node A for stage k + l by initial
displacements (blue).

Extension of sensitivity analysis for InitStress

New members with the reference geometry X
(k+1)
(k+1)

(
uk(si)

)
depending on

the deformation of the previous stage are introduced at stage k + 1. In
contrast to the notation for the InitDisp approach, a superscript is required to
indicate the currently observed stage. The total displacement of the degrees
of freedom associated with the new members is defined in relation to the
reference geometry at stage k + 1. The vector of total displacements reads

u(k+l) = x(k+l) −
[

X
(1)
init

X
(k+1)
(k+1)

]
(5.33)
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where X
(1)
init denotes the reference geometry of the initially existing structural

domain at stage 1. Accordingly, the modified reference geometry for the
restart of stage k + l can be determined by:

X(k+l)
(
u(k+l−1)(si),X(k+1)

(k+1)

(
uk(si)

))
= u(k+l−1) +

[
X

(1)
init

X
(k+1)
(k+1)

]
(5.34)

The initial stresses

S
(k+2)
0

(
si,u

(k),u(k+1))
...

S
(k+l)
0

(
si,u

(k+l−2),u(k+l−1),S
(k+l−1)
0 (· · · )

) (5.35)

applied to the new members from stage k+ 2 show equivalent dependencies as
in Equation (5.11). Accordingly, the sensitivities dS(j)

0 /dsi can be computed
in analogy to Equation (5.12). The response and equilibrium condition

J(k+l)
(
si,∆u(k+l)(si),X(k+l) (⋆) ,S(k+l)

0 (•)
)

(5.36a)

r(k+l)
(
si,∆u(k+l)(si),X(k+l) (⋆) ,S(k+l)

0 (•)
)

= 0 (5.36b)

are principally the same as for the pure restart analysis in Equation (5.13).
Nevertheless, different dependencies must be taken into account. These are
identified by symbols that refer to equations (⋆: Equation (5.34), •: Equa-
tions (5.11) and (5.35)). Based on Equation (5.36), the sensitivity equation

dJ(k+l)

dsi
=∂J(k+l)

∂si
+ ∂J(k+l)

∂X(k+l)
∂X(k+l)

∂u(k+l−1)
du(k+l−1)

dsi

+ ∂J(k+l)

∂X(k+l)
∂X(k+l)

∂X
(k+1)
(k+1)

∂X
(k+1)
(k+1)

∂u(k)
du(k)

dsi
+ ∂J(k+l)

∂S
(k+l)
0

dS
(k+l)
0
dsi

+ ∂J(k+l)

∂∆u(k+l)

[
∂r(k+l)

∂∆u(k+l)

]−1

F ∗(k+l)

(5.37)

and the state derivative

d∆u(k+l)

dsi
=
[
∂r(k+l)

∂∆u(k+l)

]−1

F ∗(k+l) with

F ∗(k+l) = − ∂r(k+l)

∂si
− ∂r(k+l)

∂X(k+l)
∂X(k+l)

∂u(k+l−1)
du(k+l−1)

dsi

− ∂r(k+l)

∂X(k+l)
∂X(k+l)

∂X
(k+1)
(k+1)

∂X
(k+1)
(k+1)

∂u(k)
du(k)

dsi
− ∂r(k+l)

∂S
(k+l)
0

dS
(k+l)
0
dsi

(5.38)

are received.
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5.2.1.3 Example

The truss example shown in Figure 5.7 is considered. The first analysis stage
is the same as discussed in Section 5.1.3, i.e., the von Mises two bar truss is
stressed by an increasing load until λ = 6.5. Then, the analysis is stopped,
and a third truss is added to the structure. Afterward, the second analysis
stage is started by the InitDisp and InitStress approach and the load is further
increased until λ = 13.0. The resulting displacements u are given in Table 5.4
and the load-displacement graph is visualized in Figure 5.9.

Table 5.4: Displacement u of a three bar truss. The third truss is
added at λ = 6.5.

λ u(2) (InitDisp) u(2) (InitStress)
6.5 0.10914 0.10914 (±0.0%)
13.0 0.17955 0.17280 (−3.8%)

At λ = 6.5, a kink of the load-displacement graph can be observed due to the
additional stiffness introduced by the added third truss. Furthermore, it can
be identified that the system based on the InitStress restart behaves slightly
stiffer than the mechanically accurate InitDisp model. Due to the third
construction member, it is quite evident that the deformation that occurs
during the second analysis stage is significantly smaller than in the case of
the pure restart analysis in Section 5.1.3. Hence, the difference between the
InitDisp and InitStress model is less pronounced. This observation aligns
with the explanations of Dieringer et al. [48]. The authors argue that the
two update approaches deliver comparable results if only small to moderate
additional deformations occur after the analysis restart.
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first analysis stage
based on InitDisp
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second analysis stage
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Figure 5.7: Considered two step construction sequence.
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The reference length of the new member 3 (see labeling in Figure 5.7) is
L

(2)
3 = 2 ·h−u(1) to account for the deformation that occurred during the first

construction stage. Since the reference geometry of the initial two trusses is
not modified in the case of InitDisp, the third truss is topologically separated.
The connection of the three trusses can be modeled by a double node as
shown in Figure 5.8 (there the two nodes are denoted as A and B). These
can be coupled by assigning the same degree of freedom ∆u(2) to both. To
consider the deformation of the two bar truss during the first analysis stage,
an initial displacement of u(2)

0 = u(1) is assigned to node A. Once the initial
displacement is applied, node A and B share again the same position. In the
case of InitStress, the reference lengths L(2)

1 and L
(2)
2 of the initial two bar

truss are modified depending on u(1) according to Equation (5.25). Hence, a
single node can realize the connection with the third truss.

∆u(2)

u
(1

)

1 2

3

A

B

∆u(2) + u(1)

Figure 5.8: Double node to couple topologically separated trusses.

Equivalent to the von Mises truss example discussed in Section 5.1.3, the aim
is to compute the sensitivities of the total deformation u. The considered
parameters are the Young’s modulus E of trusses 1 and 2 (see labeling
in Figure 5.7) and the external load P . In the case of the first analysis
stage, the sensitivities are determined by Equation (5.21). To compute the
sensitivity of the total displacement of the second analysis stage according to
Equation (5.18), the derivative d∆u(2)/dsi is required. The computation of
that sensitivity is very similar compared to the derivations in Section 5.1.2.
However, in addition to Equations (5.23) and (5.28), the dependence of the
reference length L

(2)
3 of the new member on u(1) (si) must also be taken into

account.
The direct sensitivity expression reads

d∆u(2)

dsi
= − 1

K(2) ·
[
∂r(2)

∂si
+ ∂r(2)

∂u
(2)
0

· ∂u
(2)
0

∂u(1) · du
(1)

dsi

+ ∂r(2)

∂L
(2)
3

· ∂L
(2)
3

∂u(1) · du
(1)

dsi

] (5.39)

in the case of InitDisp, where the pseudo-load is based on Equation (5.32). If
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InitStress is utilized as method for the restart of the analysis, the expression

d∆u(2)

dsi
= − 1

K(2)

[
∂r(2)

∂si
+ 2 · ∂r(2)

∂σ
(2)
PK2,0

·
∂σ

(2)
PK2,0

∂u(1) · du
(1)

dsi

+2 · ∂r(2)

∂σ
(2)
PK2,0

·
∂σ

(2)
PK2,0

∂si
+

3∑
j=1

∂r(2)

∂L
(2)
j

·
∂L

(2)
j

∂u(1) · du
(1)

dsi

] (5.40)

is received where the pseudo-load is according to Equation (5.38). Table 5.5
summarizes the sensitivities at the start and end of analysis stage 2. At
λ = 6.5, the sensitivities of the InitDisp and InitStress models coincide since
d∆u(2)/dsi vanishes. If λ is increased further, it can be observed that du(2)/dsi

based on the InitStress approach increasingly deviates from the reference
result of the InitDisp model. However, the difference in the sensitivities based
on the two models is less significant as in the case of the pure restart analysis
of the von Mises truss discussed in Section 5.1.3. This becomes also obvious
if the sensitivity courses plotted in Figure 5.9 are compared with those shown
in Figure 5.3.

Table 5.5: Sensitivities computed based on a sequenced analysis con-
sisting of two stages.

restart by InitDisp restart by InitStress
λ du(2)/dE du(2)/dP du(2)/dE du(2)/dP

6.5 -0.00133 0.133 -0.00133 (±0.0%) 0.133 (±0.0%)
13.0 -0.00187 0.229 -0.00177 (−5.3%) 0.211 (−7.9%)
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Figure 5.9: Load-displacement graph of two step construction sequence
(left). Respective sensitivity courses of displacement u with
respect to Young’s modulus E and load P (middle and
right). The second analysis stage starts at λ = 6.5.
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5.2.2 Construction stage analysis with multi-freedom
constraints

Section 5.2.1 discusses the fundamental challenges if sensitivities shall be
computed based on construction stage models. For this purpose, (i) geometric
non-linearity, (ii) a continuum mechanically motivated configuration update
method for the analysis restart, and (iii) the change of the reference geometry
of added members are considered. However, in many practical situations,
linear structural analysis is sufficient. A systematic modeling procedure
based on non-homogeneous multi-freedom constraints is described below for
such cases. Furthermore, the required extensions to sensitivity analysis are
discussed. Parts of this section have been directly taken from the pre-published
conference paper Fußeder et al. [61] and can thus be understood as quotations.

5.2.2.1 Modeling approach

The described modeling procedure can be seen as a realization of the InitDisp-
approach (cf. Section 5.1.1) by established FEM-modeling techniques. Non-
homogeneous multi-freedom constraints along with the master-slave method
(cf., e.g., Felippa [56]) are used. Therefore, the finite element nodes, which
connect construction stage k with stage k+1, are realized as double nodes.
These share the same geometric position but are linked to different elements.
Multi-freedom constraints connect the degrees of freedom (DOFs) of the double
nodes. Here, the node linked to the elements of construction stage k is chosen
as master and the corresponding double node as slave. Non-homogeneous
constraints are introduced to consider the deformation of construction stage
k when coupling with the undeformed stage k+1. The coupling procedure
is visualized in Figure 5.10. In the example shown, the non-homogeneous
constraint is:

umaster, k+1 − uslave, k+1 = uk (5.41)

Hence, a gap of uk (displacement in stage k) is introduced between the
master and slave DOF to account for the compensation of deformations. The
applied non-homogeneity can be interpreted as pre-deformation of the master
degree of freedom corresponding to the InitDisp modeling approach. However,
compared to the fundamental derivations in Section 5.2.1.2, no dimension
changes of the construction members added at stage k + 1 are considered.
Instead, all elements retain their originally modeled geometry throughout
the entire construction stage analysis. Since no decisions need to be made
on how to modify the finite element mesh based on the deformations of the
previous stages, the concept is easy to implement. After the analysis of a
construction stage, only the inhomogeneities of the multi-freedom constraints
need to be initialized based on the determined deformations. A modeling
shortfall is introduced as the method neglects stiffness changes of members
whose dimensions are changed during construction to account for deformation
compensation. However, since the derivations in this section are limited to
linear structural analysis, in which small deformations are assumed, the non-
consideration of dimensional changes can be justified. This argumentation
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can be supported by Bischoff et al. [22], in which geometric deviations are
rated as relatively marginal modeling errors in construction stage analysis.

construction
stage k

construction
stage k

construction
stage k + 1

master
slaveuk

umaster,k+1

uslave,k+1

Figure 5.10: Coupling of the construction stages k and k+1 by a
double node whose DOFs are connected by the master-
slave-method. Adapted from Fußeder et al. [61].

Multiple non-homogeneous multi-freedom constraints can be systematically
considered by

u = T ŭ + g (5.42)
where u contains all degrees of freedom and ŭ is generated by removing
all slave DOFs from u. The latter is realized by a transformation matrix
T . The vector g contains the deformations of the master DOFs in previous
construction stages. The displacements ŭ are determined as the solution of
the linear state equation

r̆(ŭ) = K̆ŭ − F̆ = 0 (5.43)

with the transformed stiffness matrix

K̆ = T TKT (5.44)

and transformed load vector

F̆ = T T (F − Kg) . (5.45)

5.2.2.2 Extension of sensitivity analysis

To enable sensitivity analysis for application on models that consider the
construction stage modeling as described in Section 5.2.2.1, the response
formulation in Equation (3.5) must be extended for the state vector u as
given in Equation (5.42). The reason is that the entries of g can also depend
on the input parameters s, which must be considered in sensitivity analysis.
The adapted response is:

J(s,T ŭ(s) + g(s)︸ ︷︷ ︸
u(s)

) (5.46)
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To compute the derivative of Equation (5.46) with respect to parameter si ∈ s
the chain rule of differentiation has to be utilized:

dJ

dsi
= ∂J

∂si
+
[
∂J

∂u

]T

T
dŭ

dsi
+
[
∂J

∂u

]T dg

dsi
(5.47)

The derivative of the state variables ŭ with respect to si is determined by
applying Equation (5.43) to Equation (3.8)

dŭ

dsi
= K̆−1

[
∂F̆

∂si
− ∂K̆

∂si
ŭ

]
(5.48)

The state derivative can be reformulated in terms of Equations (5.44) and
(5.45) as

dŭ

dsi
= K̆−1T T

[
∂F

∂si
− ∂K

∂si
u − K

dg

dsi

]
︸ ︷︷ ︸

F ∗

(5.49)

where the bracket term can be considered as extended pseudo-load F ∗. The
insertion of Equation (5.49) into (5.47) leads to

dJ

dsi
= ∂J

∂si
+
[
∂J

∂u

]T

TK̆−1T TF ∗ +
[
∂J

∂u

]T dg

dsi
(5.50)

as sensitivity equation. A direct sensitivity analysis is executed if the state
derivative given by Equation (5.49) is first solved and then inserted into
Equation (5.47). An adjoint formulation of Equation (5.50) can be achieved
by introducing the adjoint variable η̆ as the solution of the following linear
system of equations (the reduced stiffness K̆ is symmetric, i.e., K̆ = K̆T ):

η̆T =
[
∂J

∂u

]T

TK̆−1 ⇔ K̆η̆ = T T ∂J

∂u
(5.51)

According to Equation (5.51), the adjoint variable η̆ can be identified as
the nodal displacements (with missing slave DOFs) due to the adjoint load
T T ∂J/∂u. The comparison of the right-hand side of Equation (5.51) with
the reduced load vector in Equation (5.45) shows that η̆ is solved with homo-
geneous multi-freedom constraints, i.e., g = 0. Hence, the adjoint variables
are independent of the construction process. The adjoint displacement vector
containing all DOFs (also the slave freedoms) can be determined by adaption
of the transformation rule according to Equation (5.42):

η = T η̆ (5.52)

After inserting Equations (5.51) and (5.52) in Equation (5.50) the final adjoint
sensitivity term is achieved:

dJ

dsi
= ∂J

∂si
+ ηT

[
∂F

∂si
− ∂K

∂si
u − K

dg

dsi

]
+
[
∂J

∂u

]T dg

dsi
(5.53)
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When comparing the classical adjoint sensitivity analysis (cf. Equation (3.15))
with the extended approach for construction stage analysis (Equation (5.53)),
it can be observed that the only differences are the terms including the deriva-
tive dg/dsi. The vector dg/dsi contains the sensitivities of the displacements
of the master DOFs of previous construction stages. Direct or adjoint sen-
sitivity analysis can be beneficial to compute dg/dsi. The choice depends
on whether the number of master DOFs or the number of parameters si is
dominant. In the latter case, an adjoint sensitivity analysis according to
Equation (5.53) with the displacement of each of the master DOFs as response
J is to be preferred. However, the sensitivity analyses of these additional
responses involve solving the adjoint problem given by Equation (5.51). In
the other case, the state derivative provided by Equation (5.49), which con-
tains the derivatives of all master DOFs with respect to si, is directly solved.
Regardless of whether direct or adjoint computations are utilized to solve
dg/dsi, the computational effort of sensitivity analysis for construction stage
models can be significantly larger than for the corresponding holistic models.
This is particularly the case for problems with a high number of coupling
nodes and a simultaneously high number of parameters, where neither the
direct nor the adjoint approach can significantly reduce the computational
effort.

5.2.2.3 Example: Idealized eight-story building

The idealized eight-story building shown in Figure 5.11 is considered. The
example is intended to investigate the differences in sensitivities based on a
total building model and a construction stage model. The structure under
consideration is taken from an example presented by Bischoff et al. [21]. Refer
also to Fußeder et al. [62], where the example demonstrates how sensitivity
analyses regarding load parameters can assess the load redistribution after
removing a temporary auxiliary truss.

cs 8
cs 7
cs 6
cs 5
cs 4
cs 3
cs 2
cs 1

Figure 5.11: Structure to be built in eight construction stages (cs).

Rigid connections between the slabs and the core are modeled. Moment
hinges link slabs and columns. It is considered that the rigid core is already
erected. The frame structure is subsequently built in eight construction phases.
This means that three columns and one slab are erected in each step. The
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coupling of the construction stages is modeled as described in Section 5.2.2.1.
Figure 5.12 compares the bending moment and normal force distribution due
to the dead weight of the total building and the construction stage model.
The following differences can be observed:

• The total building model shows a considerably higher maximal clamping
moment.

• The largest bending moment is located at different points in the structure
(slab over 8th floor vs. slab over 4th floor).

• The construction stage model shows larger column normal forces in
absolute values. This observation is a typical deficit of total building
models. These generally underestimate the loading of weak vertical
load-bearing elements (in this case, the columns compared to the stiff
core) as Bischoff et al. [21] and Fastabend et al. [55] for instance report.

93
M [kNm]

total building model construction stage model

-246
M [kNm]N [kN] N [kN]

0-1400 81-196 0-1462

Figure 5.12: Moment M and normal force N due to dead load based
on different models. Adapted from Fußeder et al. [61].

Sensitivity analyses are performed to improve the understanding of the com-
position of the decisive bending moments and to enhance the transparency of
the different structural models. For this purpose, the clamping moments of
the slab above the 4th floor (decisive moment of the construction stage model,
called MCS4) and above the 8th floor (decisive moment of the total building
model, called MCS8) are chosen as responses. The responses are labeled in
Figure 5.13. Sensitivities are computed with respect to the slabs’ dead load,
where the dead load of each slab is considered as an individual parameter. The
situation after all eight construction stages have been built is considered for
the investigations. The sensitivities are computed with Equation (5.53) in the
case of the construction stage model and with Equation (3.15) for the total
building model. The sensitivity maps are shown in Figure 5.13. Please note
that the load sensitivities are illustrated by a constant plot over the length of
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the respective slab (see Section 6.1 for details concerning the visualization).
Based on the maps, the following observations can be made:

• In the total building model, the dead load of all slabs influences the
traced moments. This observation reveals a fundamental shortcoming
of total building models in which the dead load of earlier stages (cs 1 -
3 in case of MCS4 resp. cs 1 - 7 in case of MCS8) leads to deformations
and stresses in later stages.

• In the construction stage model, only the dead load of the members,
built in the same or a later construction stage as the slab in which the
response is located, influences the respective response. For instance, only
the dead load of the slab above the 8th floor has an influence on MCS8
(see Figure 5.13, right). The model error of the total building model
mentioned above is resolved by coupling the stages with inhomogeneous
multi-freedom constraints.

• The total building model underestimates the impact of the dead load
of the slab over the 4th floor on MCS4 (-1.9 vs. -2.6, see first and
second sub-figure from left in Figure 5.13). This observation reflects the
mentioned shortcoming of total building models. The lower absolute
value of the sensitivity indicates that the dead load of the slab above
the 4th floor is also carried by the components added in later stages.

• The sensitivity of the clamping moment MCS8 with respect to the dead
load of the slab over the eighth floor is the same for both modeling
approaches (-3.0, see third and fourth sub-figure from left in Figure 5.13).
As the dead load of all slabs influences MCS8 in the case of the total
building model, the moment is significantly larger compared to the
construction stage model.

0tbm tbmcsm csm-1.9 0-2.6 0-3.0 0-3.0

MCS4 MCS4

MCS8 MCS8

Figure 5.13: Sensitivities of the responses MCS4 and MCS8 concerning
the dead load of the slabs based on a total building model
(tbm) and a construction stage model (csm). Adapted
from Fußeder et al. [61].



5.2 . Construction stage analysis 121

Significant differences can also be observed for other parameters when com-
paring the results of the two modeling approaches. Figure 5.14 shows an
example of the sensitivities of the normal force N of a column on the first floor
regarding the Young’s modulus of the slabs. The sensitivities differ both in
terms of distribution and intensity. In the total building model, the Young’s
modulus of the slabs of the top floors has the most significant influence on
N. In contrast, the stiffness of the middle floors is the most important in
the case of the construction stage model. Please note the unit dependence of
the derivatives, which is the reason for the small numbers of the derivatives
concerning the Young’s modulus (cf. Section 6.2 for information).

5 · 10-7

-1·10-7

9 · 10-7

4 · 10-9
N N

tbm csm

Figure 5.14: Sensitivities of the response N with respect to the Young’s
modulus of the slabs based on a total building model
(tbm, left) and a construction stage model (csm, right).
Adapted from Fußeder et al. [61].
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5.3 Simulation process of hybrid lightweight structures

This section aims to apply sensitivity analysis to hybrid lightweight struc-
tures. These include elastic elements such as beams and tensile elements like
membranes or cables. An example is shown in Figure 5.15. The umbrella
structure consists of elastic beams that stretch the membrane. For detailed
information on the structure, refer to Dieringer [47] and Michalski [112].
Lightweight structures cannot be designed by a single simulation. Instead,
several analysis stages such as form-finding, structural analysis, and cutting
pattern generation are required. Refer to Goldbach [72] for a comprehensive
discussion on the multi-stage design process of lightweight structures. This
section limits the focus to the connection between form-finding and structural
analysis. Concerning sensitivity analysis, two significant challenges are faced.
First, the material and cross-sectional properties of the elastic elements influ-
ence the form-found shape. Hence, the impact of those variables during the
form-finding process has to be considered in sensitivity analysis. This issue is
addressed in Section 5.3.1. Second, form-finding results must be transferred,
and the subsequent structural analysis must be appropriately initialized to
combine the two analyses. The necessary adjustments for sensitivity analysis
are described in Section 5.3.2.

Figure 5.15: A foldable umbrella as an example of a hybrid lightweight
structure. Taken from Michalski [112].
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5.3.1 Form-finding with the Updated Reference Strategy
The main focus of this section is to discuss the adaption of sensitivity analysis
to form-finding. Therefore, form-finding is only briefly presented so that
the sensitivity derivations can be understood. For further reading, refer to
Bletzinger et al. [25] and Linhard et al. [102] on the topic in general and to
Dieringer et al. [48] on form-finding of hybrid structures in particular.
Form-finding aims to determine the geometry for which a given stress state
is in equilibrium, considering given boundary conditions. This means the
opposite task must be solved compared to regular structural analysis. There,
the stress state is calculated based on load-dependent displacements. This is
why form-finding is also denoted as inverse problem.
Form-finding is initiated by prescribing the desired stress state in terms of
Cauchy stresses σ0. On this basis, the equilibrium is formulated by the
principle of virtual work in the current configuration, which is

δWc = −
∫

Ω
σ0 : δe dΩ = 0 (5.54)

if external loads are excluded3. It appears that the tangential stiffness matrix
becomes singular when Equation (5.54) is discretized (cf. Section (2.2.5))
to solve it. The reason is the non-uniqueness of the discrete form-finding
geometry because finite element nodes can be moved tangentially on the
domain surface without changing the structure’s geometry. An illustrative
discussion of the issue is given by Wüchner [137]. A regularization is required
to solve the form-finding problem. Therefore, Bletzinger et al. [24] proposes
an homotopy approach which extends Equation (5.54) as

δWhom = λ · δWc + (1 − λ) · δWPK2 (5.55)

where the principle of virtual work in the reference configuration

δWPK2 = −
∫

Ω0

S0 : δE dΩ0 = 0 (5.56)

is chosen as a stabilization term. The influence of the latter is controlled
by the homotopy factor λ ∈ [0; 1[. For the solution of the form-finding
problem based on Equation (5.55), Bletzinger et al. [24] proposes the Updated
Reference Strategy (URS). A value for λ and an initial reference geometry
X are chosen. Furthermore, the PK2 stresses are prescribed by the desired
Cauchy stresses S0 = σ0. Based on this setting, Equation (5.55) is solved by
the finite element method, which is denoted as form-finding step. Generally,
one form-finding step is insufficient to ensure that the resulting stresses equate
to the desired stress state. Therefore, an iterative procedure is required. For a
subsequent form-finding step k+ 1 the resulting geometry x(k) of the previous
step is chosen as new reference geometry X(k+1) = x(k). The procedure is
3 This a typical assumption in the case of mechanically prestressed membrane or cable

net structures.
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repeated until convergence where the resulting Cauchy stresses σ equate the
prescribed prestresses S0. Equivalence of the stresses is achieved when the
reference and actual configuration coincides X(k+1) = x(k+1) = x(final).
In the special case of hybrid lightweight structures, the virtual work

δWelastic = −
∫

Ω0

(C : E) : δE dΩ0 = 0 (5.57)

of the elastic members must be added to Equation (5.55). The PK2 stresses of
the elastic members are not prescribed. Instead, they are calculated using the
Saint Venant-Kirchhoff model based on the displacements occurring during
form-finding. It is important to note that, unlike the form-finding elements,
the reference geometry of the elastic members is not changed during the
form-finding process.

Sensitivity of form-found geometry

For the derivations in Section 5.3.2, the sensitivity of the form-found geometry,
expressed by the state derivative dx(final)/dsi, is required. It is important to
note that the form-finding problem is independent of the material properties
of the form-finding elements because their stress state is prescribed. The
situation is different with the material and geometry parameters of the elastic
members (e.g., Young’s modulus or cross-sectional area). These parameters
are introduced to the form-finding problem via Equation (5.57) and influence
the form-finding result. In addition, parameters that affect the boundary
conditions, such as the spatial position of the supports, influence the form-
found geometry.
Each form-finding step with the URS is an entire finite element analysis.
Hence, the URS can be interpreted as a sequenced simulation process. After
form-finding step k has finished, the actual configuration x(k) is taken as
reference configuration X(k+1) for step k + 1. If x(k) is dependent on si, the
equilibrium condition

r(k+1) (si,x
(k+1)(si),X(k+1) (x(k)(si)

))
= 0 (5.58)

has to be considered, which is derived with respect to si

dr(k+1)

dsi
= ∂r(k+1)

∂si
+ ∂r(k+1)

∂x(k+1)
dx(k+1)

dsi
+ ∂r(k+1)

∂X(k+1)
∂X(k+1)

∂x(k)
dx(k)

dsi
= 0 (5.59)

and reformulated as

dx(k+1)

dsi
= −

[
∂r(k+1)

∂x(k+1)

]−1 [
∂r(k+1)

∂si
+ ∂r(k+1)

∂X(k+1)
∂X(k+1)

∂x(k)
dx(k)

dsi

]
(5.60)

to compute the state derivative by direct sensitivity analysis. Equation (5.60)
has to be solved after each form-finding step to receive the sensitivity of the
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form-found geometry x(final) = x(k+1):

dx(1)

dsi
= −

[
∂r(1)

∂x(1)

]−1
∂r(1)

∂si

dx(2)

dsi
= −

[
∂r(2)

∂x(2)

]−1 [
∂r(2)

∂si
+ ∂r(2)

∂X(2)
∂X(2)

∂x(1)
dx(1)

dsi

]
...

dx(k+1)

dsi
= −

[
∂r(k+1)

∂x(k+1)

]−1 [
∂r(k+1)

∂si
+ ∂r(k+1)

∂X(k+1)
∂X(k+1)

∂x(k)
dx(k)

dsi

]
(5.61)

The computation of the state derivative with Equation (5.61) regarding one
form-finding step requires the solution of ns linear systems where ns denotes
the number of parameters. Hence, in total ns · (k + 1) evaluations of linear
equation systems are necessary to compute the sensitivities of the form-found
geometry with the direct approach. In cases where ns exceeds the number
of degrees of freedom nDOF an adjoint approach is beneficial, which requires
nDOF · (k + 1) solutions of linear systems. The necessary equations are not
presented here but can be derived in analogy to Section 3.2.

5.3.2 Form-finding and consecutive structural analysis
During form-finding with the URS, the reference configuration of the form-
finding members is updated in each step. In contrast, the elastic members
keep their reference configuration and follow the form-finding process by
elastic deformations. These must be retained for the subsequent structural
analysis. Therefore, Dieringer et al. [48] propose using the InitDisp or
InitStress approach presented in Section 5.1.1.

Extension of sensitivity analysis for InitDisp

If the InitDisp approach is used, the elastic deformations during form-finding
are applied as initial displacements. This procedure initializes the structural
analysis to be mechanically accurate. However, it has the disadvantage that
the reference geometry of elastic and form-finding members are topologically
separated. The same modeling issues arise as discussed for construction stage
analysis in Section 5.2.1.2.
For sensitivity analysis, it has to be considered that the initial displacements
u0 and the reference geometry of the form-finding members Xffm depend on
the form-finding solution x(final)(si). The response and equilibrium condition

J
(
si,u(si),u0

(
x(final)(si)

)
,Xffm

(
x(final)(si)

))
(5.62a)

r
(
si,u(si),u0

(
x(final)(si)

)
,Xffm

(
x(final)(si)

))
= 0 (5.62b)
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are formally equivalent to those of construction stage analysis defined by
Equation (5.30). Hence, the response sensitivity

dJ

dsi
= ∂J

∂si
+ ∂J

∂u0

∂u0

∂x(final)
dx(final)

dsi
+ ∂J

∂Xffm

∂Xffm

∂x(final)
dx(final)

dsi

+ ∂J

∂u

[
∂r

∂u

]−1
F ∗ with

F ∗ = − ∂r

∂si
− ∂r

∂u0

∂u0

∂x(final)
dx(final)

dsi
− ∂r

∂Xffm

∂Xffm

∂x(final)
dx(final)

dsi

(5.63)

is equivalent to Equation (5.31) where dx(final)/dsi is computed by Equa-
tion (5.61).

Extension of sensitivity analysis for InitStress

When using the InitStress approach, the reference geometry of the form-
finding and elastic elements is adjusted based on x(final)(si). Furthermore,
the internal stress state due to the deformations of the elastic members
during form-finding is considered by initial stresses. The advantage is that
the members remain connected and no double nodes are required as in the
case of InitDisp. But, as noted earlier, the InitStress approach delivers no
mechanically consistent analysis initialization.
For sensitivity analysis, it has to be considered that the initial stresses S0 and
the reference geometry of all elements depend on the form-finding solution
x(final)(si). The response and equilibrium condition are:

J
(
si,u(si),X

(
x(final)(si)

)
,S0

(
si,x

(final)(si)
))

(5.64a)

r
(
si,u(si),X

(
x(final)(si)

)
,S0

(
si,x

(final)(si)
))

= 0 (5.64b)

As for InitDisp, formally equivalent formulations as for construction stage
analysis (Equation (5.36)) are received. Hence, the response sensitivity

dJ

dsi
= ∂J

∂si
+ ∂J

∂X

∂X

∂x(final)
dx(final)

dsi
+ ∂J

∂S0

[
∂S0

∂si
+ ∂S0

∂x(final)
dx(final)

dsi

]
+ ∂J

∂u

[
∂r

∂u

]−1
F ∗ with

F ∗ = − ∂r

∂si
− ∂r

∂X

∂X

∂x(final)
dx(final)

dsi
− ∂r

∂S0

[
∂S0

∂si
+ ∂S0

∂x(final)
dx(final)

dsi

]
(5.65)

is equivalent to Equation (5.37) where dx(final)/dsi is computed by Equa-
tion (5.61).

5.3.3 Example
The example shown in Figure 5.16 is considered as an abstracted hybrid
lightweight structure. The trusses 1 and 2 represent the elastic members,
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whereas the cable 3 is the form-finding member. The form-finding goal is to
determine the y-coordinate of node A (see labeling in Figure 5.16) such that
a Cauchy stress of σ0 = 10 acts in the cable. After form-finding, a structural
analysis with an external load P is executed. Please note that P is not acting
during form-finding. The aim is to compute the sensitivities of displacement
u with respect to the Young’s modulus E of the elastic trusses (members 1
and 2) and the load P .

y
(final)
A

σ0 = 10

elastic members

form-finding member

y

form-finding
InitDisp
structural analysis initialized by

reference geometry

InitStress

x

b b

h
h

b = h = 1 E = 100
P = 1A = 1

y

λP

x

y

x

u

x

u0

λP

u

deformed geometry

1 2

3

A

Figure 5.16: Form-finding and consecutive structural analysis of an
abstracted hybrid structure.

If the URS as introduced in Section 5.3.1 is used, y(final)
A = 1.806 is obtained

as the form-found position of node A. For form-finding step k + 1, the actual
position y(k)

A is taken as new reference position Y (k+1)
A of the node A. Hence,

Equation (5.61) reads

dy
(k+1)
A

dsi
= −

[
∂r(k+1)

∂y
(k+1)
A

]−1 [
∂r(k+1)

∂si
+ ∂r(k+1)

∂Y
(k+1)

A

∂Y
(k+1)

A

∂y
(k)
A

dy
(k)
A

dsi

]
(5.66)

to compute the sensitivities of the form-found position of node A. The results
are given in Table 5.6. A positive sensitivity regarding the Young’s modulus
is obtained, which indicates that an increased stiffness leads to a shift of the
form-found position of node A in the positive y-direction.

Table 5.6: Form-found position of node A and the corresponding sen-
sitivities.

y
(final)
A dy

(final)
A /dE dy

(final)
A /dP

1.806 0.00299 0.0
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The subsequent structural analysis is initialized with the InitDisp and Init-
Stress approach. Note that the initialization of the analysis and, consequently,
the sensitivity equations correspond to those of the example presented in
Section 5.2.1.3 for construction stage analysis. In the case of InitDisp, the
reference length of the cable element is L3 = y

(final)
A according to the form-

finding result. Since the reference geometry of the elastic elements is not
modified, a double node is introduced to realize the topologically separated
elements. The modeling is equivalent to construction stage analysis and can
be seen in Figure 5.8. An initial displacement of u0 = 2h− y

(final)
A is applied

to account for the deformation of the elastic members during form-finding. If
the dependency of L3 and u0 on the form-found geometry in Equation (5.63)
is considered, the expression

du

dsi
= − 1

K

[
∂r

∂si
+ ∂r

∂u0

∂u0

∂y
(final)
A

dy
(final)
A

dsi
+ ∂r

∂L3

∂L3

∂y
(final)
A

dy
(final)
A

dsi

]
(5.67)

is received to compute the sensitivities. In the case of InitStress, the reference
length of all three members is modified in dependency on the form-found
geometry y

(final)
A . Furthermore, an initial stress is applied to the elastic

members. The prestress can be computed according to Equation (5.26). For
sensitivity analysis, the dependency of the reference lengths Lj and the elastic
element’s prestress on y

(final)
A has to be considered and the expression

du

dsi
= − 1

K

[
∂r

∂si
+ 2 ∂r

∂σPK2,0

∂σPK2,0

∂y
(final)
A

dy
(final)
A

dsi

+2 ∂r

∂σPK2,0

∂σPK2,0

∂si
+

3∑
j=1

∂r

∂Lj

∂Lj

∂y
(final)
A

dy
(final)
A

dsi

] (5.68)

is obtained based on Equation (5.65). Structural and sensitivity analysis are
conducted for λ ∈ [0.0, 10.0]. The outcomes are shown in Figure 5.17 and
Table 5.7. The results allow similar observations to the truss examples in
Sections 5.1.3 and 5.2.1.3. It can be observed that u and its sensitivities
du/dsi, which are based on the InitStress approach, increasingly deviate from
the reference result of the InitDisp model for increasing λ.

Table 5.7: Sensitivities of structural analysis result u after previous
form-finding.

restart by InitDisp restart by InitStress
λ du/dE du/dP du/dE du/dP

0 0.0 0.0 0.0 (±0.0%) 0.0 (±0.0%)
10 -0.00126 0.159 -0.000899 (−28.7%) 0.129 (−18.9%)
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Figure 5.17: Load-displacement graph of structural analysis after pre-
vious form-finding (left). Respective sensitivity courses of
displacement u with respect to Young’s modulus E and
load P (middle and right).

5.4 Summary
This chapter discussed how sensitivity analyses can be carried out on the
basis of sequential simulation processes. These consist of a series of analyses,
where the model is modified after the completion of a stage and must be
correctly initialized for the subsequent analysis. To realize the restart of the
next stage, two approaches from the literature were used. These employ
either initial displacements or initial stresses in combination with a modified
reference geometry to initialize the analysis. For sensitivity analysis, it has to
be considered that the response and the equilibrium condition depend on the
initialization quantities. As the latter depend on the structural analysis results
of the previous stage, the chain rule of differentiation must be consistently
applied to the interlinked dependencies. A particular computational challenge
in this context is the requirement of the state derivatives duj/dsi of the pre-
liminary stage. Determining the necessary duj/dsi requires entire sensitivity
analyses, including the solution of linear equation systems. Depending on
whether the number of uj or si is dominating, a direct or adjoint approach is
to be preferred. However, regardless of the method used to determine duj/dsi,
the additional computational effort can be significant compared to a standard
one-step analysis problem.





Chapter 6
Application of sensitivity analysis in

structural design

The “Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche
Anlagen” (GruSiBau, DIN [46]) is the German base document for standard-
ization of structural design and forms the basis for codes such as the EN 1990
(Eurocode 0, CEN [42]). Among other requirements, the GruSiBau demands a
review of the structural design and calculation. The structural analysis must
be checked to cover the actual influences and boundary conditions and that
appropriate analysis models are used (cf. DIN [46], §7.2.1). In order to meet
these requirements, it is necessary to deal carefully with the used analysis
models. On the one hand, relevant model parameters must be identified
to consider them in the calculation. On the other hand, the model itself
must be examined. In the 1980s, when the GruSiBau was published, simple
structural models were typically used, and the necessary investigations could
be performed with intuitional engineering understanding. However, complex
models can nowadays be calculated using modern numerical analysis methods.
Advanced exploration approaches are required if the models are too complex
to assess intuitively. For this reason, computational sensitivity analysis is
proposed as an auxiliary structural design tool. The practical application
of sensitivity analysis in this context is demonstrated below. The first part
of the section demonstrates how sensitivities can be further processed for
practical usage. Subsequently, a systematic analysis and decision chain to
identify essential model parameters is proposed. To conclude the chapter,
the proposed methods and procedures are demonstrated using examples from
structural engineering. Note that parts of this section are directly taken from
the previously published works Fußeder et al. [64, 66, 67] and can thus be
understood as quotations. The author also contributed to the revision of the
GruSiBau with a chapter on sensitivity analysis. An initial proposal of the
document for discussion in the specialist community was published by DIBt
[45] in 2022. The sensitivity analysis part of the GruSiBau revision is based
on investigations that are also presented in the following. For readability
reasons, explicit reference is not always made below to the sources mentioned.
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6.1 Sensitivity maps
Section 3.2 describes the ability of adjoint sensitivity analysis to calculate
sensitivities for many parameters per response in a computationally efficient
way. For a purposeful exploration of essential model parameters from the
resulting large amount of sensitivity information, graphical processing as
sensitivity maps is recommended. Chapter 4 discusses in detail the relationship
between the method of influence functions and adjoint sensitivity analysis.
Based on this connection, the sensitivity maps of adjoint sensitivity analyses
can be interpreted in analogy to influence functions. This property is examined
in Section 4.3.3. There, it is discussed how the graphical analysis procedure of
the influence functions approach can be extended. Subsequently, it is described
how sensitivities concerning different parameter types can be visualized and
read in this context. Similar sensitivity maps are regularly used in sensitivity
analyses concerning many parameters. See Heimbach et al. [86] or Henning
et al. [87] for examples from different application areas.
The influence function itself can be considered as a sensitivity map for the
parameter “load intensity,” whereby the functional value of the influence
function at the position of the load corresponds to the sensitivity with respect
to the load parameter (cf. Section 4.1.1). In that regard, Figure 6.1 (top) shows
the sensitivity map of bending moment J=̂Mm at location xm as response with
respect to load F at position ξ as parameter, i.e., η(ξ) = dMm/dF (ξ). This
type of graphical presentation can be transferred to the sensitivities concerning
general parameters in an equivalent manner as Figure 6.1 additionally shows
by two examples.
The map in the middle of Figure 6.1 displays the sensitivities of Mm with
respect to the bending stiffness of the four construction members EI1−4. The
sensitivity analysis according to Equation (3.15) provides a scalar derivative
value dMm/dEIi for the bending stiffness si=̂EIi of the ith construction
member, which is illustrated by a constant representation over the length
of the ith component in the sensitivity map. By analogy to the influence
function, the derivative of the response function concerning the parameter
can be read at the location of the parameter. All construction members’
bending stiffness has the same influence on the response, but the sensitivities
of elements 2 and 3 have a negative sign. This map type is the discrete
equivalent of the final sensitivity maps presented in Section 4.3.3.1.
Parameters of the nodes of a finite element mesh often have components in the
spatial directions (e.g., nodal position or pre-deformation). Thus, sensitivities
of such nodal parameters also have components in the respective directions,
which can be visualized as a vector arrow at the corresponding finite element
node. As an example of this type of illustration, the lower map in Figure 6.1
shows the sensitivities of Mm with respect to the spatial position Xi of nodes
1 - 5. These sensitivities express the consequences of deviations between the
structure’s actual and planned geometry. It can be seen that only four of
the considered nodes influence the response. The horizontal position of the
support in the middle is the most influential one (red arrow).
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Figure 6.1: Sensitivity maps of the response “bending moment Mm”
with respect to the parameters “load intensity F (ξ)” (top),
“bending stiffness EI1−4” (middle), and the parameters
“spatial position Xi of nodes 1-5” (below). Adapted from
Fußeder et al. [67].

6.2 Normalization of sensitivities
With their value and sign, local sensitivities provide two valuable pieces of
information. In principle, the magnitude of the sensitivities can be used to
compare the effect of model parameters on the response or to quantify the
effect of a parameter variation. However, this is made more difficult because
the value of a derivative depends on the units of the response J and the
parameter si. In order to achieve comparability between the sensitivities of
a response concerning different parameter types or between sensitivities of
different responses with respect to the same parameter, a normalization with

ei = dJ

dsi
· si

J(s) [%] (6.1)

can be done. A normalized sensitivity of ei = 1.0 indicates that a parameter
variation of 1.0% leads to a response variation of 1.0%. Smith et al. [130]
gives an extensive discussion on the significance of normalized and unmodified
sensitivities.
However, applying Equation (6.1) is not readily possible for all typical ques-
tions in structural engineering. In the first instance, parameters exist whose
value is unsuitable for normalization. An example is the spatial position
of a finite element node. The entire finite element model can be moved in
space without changing itself and its behavior, while the nodal coordinates’
values constantly vary during movement. Thus, the actual values of the nodal
coordinates are not unique for usage in Equation (6.1).
Furthermore, parameters with a reference value of si = 0 are problematic. A
practical situation is investigating the effect of possible support settlements.
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No magnitudes of support settlements for normalization are available if the
sensitivity analysis is based on the initial model with unmoved supports. To
enable a quantification of the parameter variation effect for the depicted
parameter types, a slightly modified normalization approach is recommended:

di = dJ

dsi
· δsi

J(s) · 100 [%] (6.2)

Instead of the actual parameter value, Equation (6.2) incorporates a charac-
teristic variation δsi in the unit of the parameter. Suppose an exemplary finite
element model based on the unit of length meters. A sensitivity concerning a
nodal position or support settlement of di = 1.0 for δsi = 0.001 m indicates
that the response variation is 1.0% if the nodal position or settlement varies
by 0.001 m. The result of Equation (6.2) is highly dependent on the choice
of δsi . This circumstance complicates the comparison of the relevance of
different parameters. It is important to note that Equations (6.1) and (6.2)
are based on Taylor series expansions. Hence, their results only approximate
if the functional relation between J and si is non-linear.
The sign of the sensitivity indicates whether an increase in the parameter value
leads to an increased (positive derivative) or decreased (negative derivative)
value of the response function. This information can be helpful when the
semi-probabilistic partial safety factor concept (PSF concept) introduced by
DIN [46] and Ellingwood et al. [50] is applied. The sign shows whether a
basis variable has a favorable or unfavorable impact on a design quantity and
how the partial safety factors have to be applied accordingly. Section 6.6
presents an example for this purpose.

6.3 The effect of the applied load on the sensitivities
Attention must be drawn to the load case and its level applied during sensitivity
analysis. On the one hand, the term (=̂ Equation (3.15), repeated for clarity)

dJ

dsi
= ∂J

∂si
+ ηT

[
∂F

∂si
− ∂K

∂si
u
]

shows that the sensitivities are, in general, dependent on the actual model
state. This can be seen as the displacement vector u is part of the pseudo-load.
On the other hand, the actual value of the response J(s,u(s)) is affected by
the load, too. As the response value and derivative are part of Equations (6.1)
and (6.2), the normalized sensitivities also depend on the load case. This
must be considered when normalized sensitivities are used for investigations
in structural design where different load combinations and certain load levels
(e.g., mean, characteristic, or design load level) are of interest.
Subsequently, the steel arch bridge introduced in Appendix A.3 is considered.
The structure is subjected to self-weight G and a traffic load Q in the bridge
center. This example aims to study the effect of the applied load on the
derivatives and normalized sensitivities. For this purpose, the bridge is
comparatively analyzed at mean and design load level. The mean self-weight
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Gµ is computed with the nominal dimensions of the members and a specific
weight of 0.0785 MN/m3. The characteristic self-weight Gk is selected as
the mean1 value, to which a partial safety factor of γG = 1.35 is applied to
calculate the design value. For the traffic load, a Gumbel distribution with
a mean of Qµ=0.01 MN/m and a coefficient of variation of 25% is assumed.
The design value Qd is determined based on the 98% fractile as characteristic
value Qk and a partial safety factor of γQ = 1.5. Hence, the load combinations

Fµ = Gµ “+” Qµ and Fd = γG ·Gk “+” γQ ·Qk (6.3)

are received. The following observations are made for bending moment M as
response with respect to (i) the intensity of the traffic load Q, (ii) the vertical
nodal position of the connection node 1 of tension chord/main girder, and
(iii) the Young’s modulus of the member “component 1” in the arch crown as
parameters (see labeling in Figure 6.2).

M

node 1

component 1

tension chord
main girder

Q

Figure 6.2: Arch-type bridge with indication of the response “bending
moment M” and the observed model members. Adapted
from Fußeder et al. [67].

The detailed computation of the normalized sensitivities at the two load stages
is shown in Table 6.1 and enables the following observations:

• Significant differences in the derivative values dJ/dsi due to their unit
dependency can be observed. Hence, comparing the effects of the
different parameter types based on the derivatives is not readily possible
(line 2 in Table 6.1).

• The derivative concerning the traffic load intensity is the same in linear
statics for both load stages. In contrast, the derivatives regarding
the nodal position and the Young’s modulus are different due to their
dependency on the current state (cf. Equation (3.15)).

• The absolute variations dJ/dsi · δsi (line 4 in Table 6.1) are more
significant at design load level, either due to a higher value of δsi (load)
or higher derivative values (other parameters).

• Depending on whether the change in the derivative, parameter variation,
or the shift in the response value dominates, the relative variations, i.e.,

1 According to EN 1990 (CEN [42]), this is possible due to the low variability of the
specific weight of steel, whose coefficient of variation is < 1% (cf. JCSS model code,
Vrouwenvelder [136, Part 2.1]).
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the entirely normalized sensitivities (line 5 in Table 6.1), show irregular
alternations for the two load levels.

The comparison of absolute and relative variations shows that a judgment
based exclusively on normalized sensitivity values can lead to misinterpreta-
tions. The qualitative observation of line 5 in Table 6.1 indicates that the
impact of the nodal position is less at the design load stage. However, this
evaluation is only relatively valid, as the absolute change in the response
value under design load is more significant with the same parameter variation
(cf. line 4). These circumstances must be considered when critical values
for sensitivities are defined. Therefore, whether the relative or the absolute
parameter effect is more suitable for the specific design problem must be care-
fully decided. The influence of the variations δsi on the observable sensitivity
measures must also be considered.

Table 6.1: Composition of normalized sensitivities for load impact
with mean values (J(Fµ)=0.89 MNm) and design values
(J(Fd)=1.73 MNm). The load combinations Fµ and Fd are
defined by Equation (6.3). Taken from Fußeder et al. [67].

li- parameter si traffic load Q node 1 Young’s modulus
ne unit MN/m m MPa

# load comb. Fµ Fd Fµ Fd Fµ Fd

1 value of si 0.01 0.025 / 210 000
2 dJ/dsi 42.3 0.24 0.34 7.3e-7 1.5e-6
3 δsi 0.0001 0.00025 0.01 2 100
4 dJ/dsi · δsi 0.0042 0.011 0.0024 0.0034 0.0015 0.0031

5 dJ
dsi

δsi
J(s) · 100% 0.48 0.61 0.27 0.20 0.17 0.18

6.4 Proposal of a systematic analysis and decision chain
The proposed analysis and decision chain is an extended version of the one
presented in Fußeder et al. [64, 66] and is shown in Figure 6.3. It compromises
the consecutive stages: (i) problem definition, (ii) identification, and (iii)
assessment and control. The stages are described in more detail below.

6.4.1 Problem definition
A key challenge in applying sensitivity analysis is defining the responses and
model parameters for which sensitivities should be computed. Almost every
structure has a unique character with different challenges in planning and
construction. Moreover, a structure can be modeled in different ways and
must be modeled differently depending on the problem, i.e., what phenomenon
(local stress vs. eigenmode) has to be analyzed. Refer to Bischoff et al. [21] for
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Figure 6.3: Analysis and decision chain to treat structural sensitivities.

a discussion of this issue. Therefore, a universally valid definition of responses
and model parameters for sensitivity analysis is impossible.
When selecting the parameters, adjoint sensitivity analysis can be used to
calculate the sensitivities concerning numerous parameters per response in
a computationally efficient manner (cf. Section 3.2). Hence, no limited pa-
rameter selection is required, and the computation of sensitivities concerning
various entities is possible. For instance, stiffness or material parameters of
construction members or finite elements, load parameters, geometric parame-
ters, or parameters of the boundary conditions can be analyzed. This enables
a broad overview of the influenceability of specific responses. In particular,
information about the influence of the parameters, which are listed in CEN
[42, §4] (EN 1990) as potential basic variables, can be received. These are (i)
actions and environmental influences, (ii) material and product properties,
and (iii) geometrical data. Furthermore, parameters that contribute to the
model uncertainty should be considered. According to the Model Code of the
JCSS, the negligence of aspects like 3D-effects, inhomogeneities, interactions,
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boundary effects, simplification of connection behavior, and imperfections are
the primary sources of the uncertainty of the structural analysis model (cf.
Vrouwenvelder [136, Part 3.9]). Some of these aspects are directly or indirectly
related to model parameters, which can be assessed with a sensitivity analysis.
For example, the importance of spring stiffness parameters of connections
or boundary conditions can be analyzed. Finally, model- or project-specific
parameters should be traced as well.
When selecting responses, those that are part of a limit state function or a par-
tial safety factor (PSF) design inequality in probabilistic or semi-probabilistic
design are particularly interesting. However, modern computational tools
can perform almost automatic structural design. No PSF design inequality,
including a specific model response, is explicitly chosen when such tools are
used. In the case of complex structures with various construction members, a
selection strategy can be to choose the design quantity (e.g., stress resultant)
of the construction member with the highest utilization level. In that regard,
Section 6.6 presents an exemplary roof construction where the decisive bend-
ing moments of certain construction members are chosen as responses for
sensitivity analysis.

6.4.2 Identification
The identification stage aims to obtain a pre-selection of potentially significant
parameters. Therefore, sensitivity analyses are performed for the selected
model responses and parameters. For a purposeful exploration of the results,
graphical processing as sensitivity maps is recommended (cf. Section 6.1).
Furthermore, it is beneficial to normalize the results (cf. Section 6.2) to
enhance the comparability between the sensitivities of a specific response
with respect to different parameter types or between sensitivities of various
responses. The sensitivity maps are then reviewed in a screening phase,
providing an overview of essential parameters or structural components. By
this, a parameter selection for further assessment is received. The selection is
supplemented by parameters that are considered significant based on expert
knowledge (e.g., experience from other projects).

6.4.3 Assessment and control
This phase aims to evaluate the significance of the pre-selected parameters and
to decide whether and how they should be further considered in the structural
design. The first step is to evaluate the reasons for possible changes in the
values of the pre-selected parameters. Conceivable causes can be natural
variability, lack of knowledge, or subjective assumptions during the structure
modeling. Depending on this assessment, various actions are possible.
In the case of natural variability, the identified parameter should be considered
as a basic variable in subsequent probabilistic or semi-probabilistic analyses.
If the PSF concept is utilized, the parameter influence can be captured by
the explicit safety components (characteristic value, partial safety factor, or
additive safety element). The sign of the sensitivity shows whether a basis
variable has a favorable or unfavorable impact on a design quantity. On that
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basis, it can be determined how the explicit safety components need to be
applied. Hence, sensitivity analysis assists in controlling the completeness
of the utilized basis variables and the correct usage of the explicit safety
components. Section 6.6 presents an example for this purpose. If the utilized
standards do not provide explicit safety components for a specific parameter,
limit value considerations due to unfavorable modification of the parameter
value could be made instead.
Suppose there is an appreciable or conspicuous sensitivity regarding a param-
eter whose value is due to certain model assumptions or modeling decisions.
In that case, the results of sensitivity analyses can serve as the basis for
controlling or modifying the model. It can be checked whether the sensitivity
is the consequence of a specific, possibly even erroneous modeling which is less
pronounced or not present in the case of a modified model (e.g., the sensitivity
concerning the bending stiffness of a hinged column is not zero because the
connection modeling with the slab is erroneous).

6.5 Application example: steel arch bridge

The steel arch bridge described in Appendix A.3 is examined. The load
combination Fµ defined by Equation (6.3) is applied when performing the
sensitivity analysis. The example demonstrates the analysis and decision
chain introduced in Section 6.4. In particular, the systematic use of the
sensitivity maps presented in Section 6.1 to obtain a fast overview of significant
parameters during the identification phase is shown. The example is also
presented in Fußeder et al. [66].

M

uN

node 1

node 2

Figure 6.4: Static system of an arch-type bridge. Considered responses:
bending moment M , normal force N , and deflection u.
Blue points indicate observed nodes. The connection node
main girder/tension chord is denoted by “node 1/2.”

Problem description

The observed responses are (i) bending moment M , (ii) normal force N , and
(iii) vertical deflection u, whose respective positions can be seen in Figure 6.4.
The parameters are (a) the Young’s modulus of the beam construction mem-
bers (black-colored members in Figure 6.4) and (b) the spatial node position
of the construction members connections (blue points in Figure 6.4).
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Identification

After the sensitivity analysis is completed, normalization is applied. The
sensitivities concerning the Young’s modulus are normalized according to
Equation (6.1) whereas for the nodal positions Equation (6.2) with δsi =
0.01 m (unit of length of the model is meters) is utilized. The screening of the
maps with normalized sensitivities (abbreviation: n.s.) shown in Figure 6.5
leads to the following observations:

• The considered parameters have less influence on normal force (max.
n.s. 0.03) than on bending moment (max. n.s. 0.27) and deflection
(max. n.s. 0.30).

• The influence of the Young’s modulus (|max. n.s.| 0.17 and 0.13) and
the node positions (max. n.s. 0.27 and 0.30) is comparable for bending
moment and deflection.

• The Young’s modulus in the area of the arch crown has a comparatively
large influence on all three responses.

• In addition to the spatial position of the support nodes of the arch,
only the vertical position of the connection node of the tension chord
to the main girder (cf. node 1/2 in Figure 6.4) has a comparatively
large influence on the observed responses. This is indicated by the
comparably large vector arrows at the position of those nodes.

Assessment and control

The following assessments can be concluded from the observations made
during the identification phase:

• The normalized sensitivities concerning the Young’s modulus have only
a moderately high maximum value of 0.17. Furthermore, the coefficient
of variation of the Young’s modulus of steel is relatively small. For
instance, the Model Code of the JCSS recommends a coefficient of
variation of 3% (cf. Vrouwenvelder [136, Part 3]). In combination with
the low coefficient of variation, the normalized sensitivity indicates that
the Young’s modulus is not a significant model parameter in this case.

• The normalized sensitivity concerning the vertical node position of the
tension chord/main girder connection node shows a remarkable order
compared to the other observed nodes. However, a good dimensional
tolerance can be expected due to the prefabrication of the steel compo-
nents at a factory. Hence, the vertical position of the connection does
not tend to be a safety-relevant parameter. This assertion is supported
by the magnitude of the normalized sensitivity, which is 0.3 for the
deflection u. Based on a linearized estimate, the deflection varies by
0.3% when the deviation of the connection node is 1 cm. However, even
if the connection node is not relevant from a safety point of view, the
modeling of the analysis model should be checked in the vicinity of the
connection (e.g., stiffness of the adjacent elements, prestress force of
the tension chord, or possible eccentricity).
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Figure 6.5: Sensitivity maps of different responses with respect to
(abbreviation. w.r.t.) the parameters “Young’s modulus of
construction members” (left) and the parameters “spatial
position of FE nodes”. Modified from Fußeder et al. [66].

6.6 Application example: wooden roof construction
The roof construction shown in Figure 6.6 is considered. The example is also
presented in Fußeder et al. [66, 67]. The bearing structure is a girder grid
that consists of wooden beams in combination with single steel and concrete
girders. The grid is planked by a wooden plate and is pointwise-supported
by columns (indicated by blue and orange points in Figure 6.6). Refer to
Appendix A.4 for more details on the roof construction.
Some support columns reach only the prestressed concrete plate of the floor
below but not the foundation. The deformation of the prestressed concrete
plate due to creep and shrinkage represents an additional load case for the
analysis of the roof structure. As no total building model is used, the settle-
ments are modeled by prescribed displacements in the analysis model. Given
the expected support settlements of up to 30 mm, a thorough treatment of
these is crucial for the design, according to expert assessment. It is assumed
that the support settlements act in particular on the surrounding stiff steel
facade strip (see green colored bars in Figure 6.6). It will be shown how
sensitivity analysis can support handling such a challenge. For this purpose,
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the analysis and decision chain presented in Section 6.4 is utilized, and the
information obtained are applied to the structural design with the partial
safety factor concept.

steel facade strip
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Figure 6.6: Roof construction: covered girder grid made of wood with
highlighted important construction members and supports
(blue and orange points). Refer to Appendix A.4 for more
details. Adapted from Fußeder et al. [67].

Problem definition

Sensitivity analysis will be demonstrated using three quantities as responses.
These are (i) the sum of the vertical displacements of all finite element nodes
of the facade strip, (ii) the decisive bending moment of the facade strip MF ,
and (iii) the decisive bending moment MS of steel girder 2 (see identifiers in
Figure 6.6). The bending moments are needed for the structural design of
the facade strip and the steel girder. They are located at a specific position
within the roof. On the contrary, the displacement response is a more global
performance measure of the structure whose sensitivities can be used to
screen potential essential parameters of the overall roof construction. The
model parameters of particular interest are the settlement magnitudes of the
supports, marked by blue points in Figure 6.6. In addition, the sensitivities
concerning the second moment of inertia Iy of all beam elements of the girder
grid are computed. These sensitivities can be used as comparative values to
further assess the actual relevance of the support settlements. Please note
that each beam finite element’s second moment of inertia is treated as an
individual parameter. To obtain the sensitivity of a complete construction
member, the sensitivities of the finite elements contained in the member must
be added.
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The settlement magnitude ûj of the support corresponding to the jth de-
gree of freedom is a prescribed entry of the displacement vector u. Note
that such parameters were not considered when deriving the pseudo-load in
Equation (3.14). The consideration of the explicit existence of the parameter
si = ûj = uj as the jth entry of the displacement vector leads to

− ∂r

∂si
= −K

∂u

∂si
= −K

∂u

∂uj
= −Kej (6.4)

as pseudo-load for prescribed displacements when Equation (3.12) is derived,
where ej is the jth unit vector. Equation (6.4) is independent of the actual
system state u due to a specific external load case. Moreover, the result of
Equation (6.4) can be identified as the load case corresponding to a support
settlement of the jth degree of freedom by a value of “1” (cf. Section 4.2.2).
Thus, the sensitivity computed by the dot product of the influence function
(=̂ adjoint variable η, see Section 4.1) and the pseudo-load (Equation (6.4))
is equal to the resulting response value due to a unit displacement of the
support.
The sensitivities concerning the second moment of inertia are normalized
according to Equation (6.1) whereas for the prescribed displacements Equa-
tion (6.2) with δsi = 0.001 m (unit of length is meters) is utilized. During
sensitivity analysis and the computation of the response values, the model is
stressed by permanent action G (dead load and weight of finishes), wind W ,
and snow S with their design values for the ultimate limit state according to
the EN 1990 (Eurocode 0, CEN [42]). Refer to Appendix A.4 for more details
on the load cases. The actions are applied with the following combination
rule:

γG ·G “+” γQ ·W “+” γQ ·ψ0 ·S with γG = 1.35, γQ = 1.5 and ψ0 = 0.5 (6.5)

Please note that the supports are kept in their unmoved position. Thus,
the normalized sensitivities concerning the prescribed displacements make it
possible to quantify the effect of the support settlements in addition to the
impact of the action combination according to Equation (6.5).

Identification, assessment and control

The screening of the maps with normalized sensitivities shown in Figure 6.7
leads to the following observations:

• The nodal displacements of the facade are influenced by all traced
support settlements and the second moment of inertia of a large part of
the elements. The settlements and the second moment of inertia are
particularly significant near the intersection points of axes a/2, b/1, g/1,
and h/2. This observation indicates that these regions are potentially
important and should be carefully considered by the design. Noteworthy
are also the higher Iy-sensitivities of the steel girders compared to the
wooden ones.
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• Noticeable sensitivities of the bending moment MF concerning the
support settlements are restricted to six supports (intersection points of
axes 1/b-d and a/2-4). The normalized sensitivities with values up to
9.19 are relatively high (the moment changes by 9.19% compared to its
value due to the load combination in Equation (6.5) if the corresponding
support sinks by 1 mm). The influence of MF concerning the second
moment of inertia is also locally restricted. In particular, the sensitivities
of the elements close to the intersection points of the axes a/2 and b/1
are noticeable.

• The bending moment MS is influenced only locally by a limited number
of support settlements (intersection points of axes 1/b-d and a/2-5) and
the second moment of inertia of the steel girders 1 and 2. Although
the maximum absolute value of the normalized support settlement
sensitivities is much smaller compared to MF (0.57 vs. 9.19), the
influence is not negligible given support settlements of up to 30 mm.

• As the sensitivity normalization of the support settlements and second
moment of inertia is carried out differently (cf. problem definition in
the previous section), the parameter types’ influence cannot be directly
compared. A connection can be established by estimating the needed
parameter variation to achieve the same effect on the response. For
instance, the sensitivity of MS concerning the support settlement at
position 1/b indicates a change in the negative response function value
of -0.57% if the support sinks by 1 mm. The normalized sensitivity of
MS with respect to Iy of steel girder 2 is -0.43 (calculated by adding the
sensitivities of all finite elements of steel girder 2). Hence, a response
change of -0.57% can be achieved by a 1.3% increase of Iy.

The sensitivity analysis confirms the experts’ estimation of the significance of
the support settlements. It is essential to consider the settlements in structural
design. EN 1990 classifies that support settlements belong to the basic variable
group “actions and environmental influences.” More specifically, they are
treated as indirect permanent actions. See CEN [42, §4.1.1] and for more
information the corresponding chapter in the designers’ guide (Gulvanessian
et al. [79]). The treatment of the settlements as basic variables in semi-
probabilistic design is shown in the following section.
In addition to applying a partial safety factor to the settlements, the determi-
nation of their magnitude should also be carefully considered. The utilized
magnitudes correspond to the displacements at the respective positions of
the rising columns in the analysis model of the prestressed concrete floor.
After checking whether the computational analysis model of the prestressed
concrete floor is suitable for determining the required deformations, a detailed
study can be carried out to investigate in what range they can vary. The basis
for this study is the knowledge about the settlements, which have the most
significant effect on the bending moments given by the sensitivity analysis.
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Figure 6.7: Sensitivity maps of roof construction. Responses: nodal
displacements of facade strip and design moments MF

and MS with respect to (abbreviation: w.r.t.) parameters:
prescribed displacements û (sign convention: positive/neg-
ative sensitivities are shown by downwards/upwards di-
rected vector arrows) and second moment of inertia Iy of
beam elements. Adapted from Fußeder et al. [67].
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Sensitivity-assisted structural design

The previous section identifies and discusses the high relevance of the support
settlements regarding the bending moments MF and MS . For the design
of the facade strip and steel girder with the partial safety factor concept,
the sensitivity maps in sub-figures (3) and (5) of Figure 6.7 indicate which
of the traced support settlements under consideration have a noteworthy
influence. Furthermore, they show by the direction of the vector arrows that
there are both supports whose sinking has an unfavorable and supports with a
favorable effect. As the moments MF and MS are negative, unfavorably acting
settlements are indicated by negative sensitivities. Hence, the sensitivities
provide information about which of the settlements need to be taken into
account and how the corresponding partial safety factors must be applied.
To quantify these findings, the design values of the bending moments are
determined in three ways:

• Design 1: basic action combination according to Equation (6.5) without
approach of settlements

• Design 2: basic action combination according to Equation (6.5) and
approach of settlements, with a partial safety factor applied to all
settlements (cf. Table 6.2)

• Design 3: basic action combination according to Equation (6.5) and
approach of settlements, where only unfavorably acting settlements are
subjected to a partial safety factor (cf. Table 6.2)

Table 6.2: Applied values and partial safety factors (PSF) of prescribed
displacements (p.s.) to compute the design value of MF

and MS . Taken from Fußeder et al. [67].

position a/2 a/3 a/4 a/5 1/b 1/c 1/d
p.s. values [mm] 30 30 30 30 10 10 10

design 2
PSFs (MF and MS) 1.35 1.35 1.35 1.35 1.35 1.35 1.35

design 3
sign sensitivity (MF ) − + + − + − −

PSFs (MF ) 1.35 1.0 1.0 1.35 1.0 1.35 1.35
sign sensitivity (MS) + + + − − − −

PSFs (MS) 1.0 1.0 1.0 1.35 1.35 1.35 1.35

The resulting moments for design cases 1 to 3 can be found in Table 6.3. Their
remarkable differences underline the relevance of carefully considering the
support settlements. Especially in the case of MF , the increase of the response
value is highly significant for structural design and safety. As the sensitivities
of MF are much greater than the respective ones of MS (cf. Figure 6.7),
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the differences in the design values of MS are consequently lower when the
settlements are considered. Nevertheless, the increase of 9% between designs
1 and 3 is not negligible and should be considered.

Table 6.3: Design moments (absolute values) due to different treat-
ment of prescribed displacements of supports. Taken from
Fußeder et al. [67].

moment design 1 design 2 design 3
MF [kNm] 242.6 557.1 (+130%) 748.2 (+208%)
MS [kNm] 2 384.6 2 518.5 (+6%) 2 590.1 (+9%)

6.7 Summary
The chapter illustrated the application of adjoint sensitivity analysis in struc-
tural design. Sensitivity maps were used for the purposeful identification
of essential model parameters. When interpreting sensitivities, their unit
dependence must be considered. Normalization can be applied to the deriva-
tives to compare sensitivities concerning different responses and parameters.
In structural design, various load cases and load levels are of interest. In
order to avoid misjudgments regarding the importance of the parameters,
the dependence of the sensitivities and their normalized value on the load
must be taken into account. Furthermore, a workflow for systematically using
sensitivities was introduced and demonstrated based on two examples.





Chapter 7
Conclusions and outlook

An essential outcome of this thesis is the method of generalized influence
functions. It is based on the close relationship between the influence function
approach and adjoint sensitivity analysis. The methodological connection
comprises identifying the influence function as part of adjoint sensitivity
analysis and the formal equivalence of the influence function technique and
adjoint sensitivity analysis. It was already known from the literature that the
adjoint variable equates to the influence function. This knowledge was verified
and extended by the thesis. In particular, it was shown that examining the
entire sensitivity equation - and not just the adjoint variable - is necessary to
identify the influence function. The concept of adjoint work was introduced to
extend the method of influence functions to non-load parameters. Since the
adjoint work is based on variational adjoint sensitivity analysis, an equivalence
to the principle of virtual work, which is based on the variational form of
the underlying problem, is achieved. Moreover, the adjoint work can be
considered as an extension of the work balance of the influence function
method. The adjoint work consists of expressions including the influence
function, its strain, and energetically conjugated pseudo-quantities. The
adjoint work components show contrary dependencies concerning the response
and the parameters. Thus, their individual assessment and visualization can
provide additional sensitivity information. For example, the influence function
and its strain indicate potentially significant zones in a structure regardless
of the parameters.
Based on the stated findings, the thesis proposed that the influence function
method can be generalized by (i) determining the influence function for
different types of responses by the adjoint problem, (ii) considering different
types of parameters by the concept of adjoint work, and (iii) visualizing
the adjoint work components. The three key concepts were also transferred
to steady state heat transfer. However, the method shows shortcomings
regarding responses with a dominant explicit parameter dependency ∂J/∂si

and specific parameter types (in particular shape parameters). Furthermore,
the graphical analysis of the adjoint work components complicates in the case
of thin-walled and solid structures. Although the proposed generalization
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concept is not equally suitable for all cases, the investigations show that it can
be used for many typical structural engineering and design issues. Responses
such as stress resultants, local stresses, support forces, or displacements are
particularly important. For these responses, the thesis demonstrated that
∂J/∂si is nonexistent or can be merged with the adjoint variable. Hence, the
influence function and the other adjoint work components are significant for
the final sensitivities, leading the method of generalized influence function to
be a promising approach for sensitivity analysis in structural engineering.
The thesis introduced the concept of adjoint work. Furthermore, the usage of
the adjoint work components was demonstrated for the qualitative assessment
of analysis models. Therefore, a consequent next step is their quantitative
application for numerical methods. The internal adjoint work consists of
the adjoint strain and the pseudo-stress. The combination of both delivers
the derivatives with respect to parameters such as cross-sectional area or
thickness, which are required for gradient-based size optimization. In the case
of linear responses concerning the state variables, only the pseudo-stress is
state-dependent. By using the adjoint strain as a kind of gradient information,
size optimization can be performed independently from the applied load. This
could be a concept for optimizing structures subjected to many load cases
and should be further investigated. Similarly, adjoint strains could also be of
interest to determine suitable sensor locations on existing structures, which is
essential for model updating to create a digital twin. Suppose the case that the
suitability of location A for placing a strain gauge to detect stiffness changes
(e.g., due to degradation or cracks) at location B needs to be investigated.
The strain at A is chosen as the response. Comparable low adjoint strains at
B indicate that the sensitivity concerning a stiffness-related parameter (e.g.,
Young’s modulus) will also be low there. Thus, A would not be a reliable
sensor location. Exploring this idea could be another promising area for future
research related to the method of generalized influence functions.

The second methodological focus of the thesis was the extension of sensitiv-
ity analysis for sequenced simulation processes. Two approaches from the
literature were used to initialize the model for subsequent analysis stages.
These apply either initial displacements or stresses to retain the state of the
previous analysis. The major challenge concerning sensitivity analysis is that
the initialization quantities are determined based on the parameter-dependent
state variables of the previous stage. Hence, considering all parameter de-
pendencies in the sensitivity analysis is crucial. In the thesis, the sensitivity
equations were determined for the pure restart of an analysis, construction
stage analysis, and the design process of lightweight structures. The de-
rived expressions of the analyzed cases consistently show that considerable
computational effort is necessary to solve them. This is the main challenge
with sensitivity analyses based on sequenced simulation processes. Hence,
the sensitivity analyses examined are only suitable to a limited extent for
structures for which the primary analysis is already very costly. One example
is the construction stage analysis of three-dimensional high-fidelity models
of high-rise buildings. The value of the presented methods can rather be
seen for preliminary investigations of these structures based on less extensive
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models. This was demonstrated for an idealized multi-story building. The
properties of the different modeling approaches could be investigated in detail
by comparing the sensitivities of a total building model and a construction
stage model. Furthermore, the presented sensitivity analysis is of interest
for structures that are complex in their construction process and structural
behavior but have only a moderate number of degrees of freedom and parame-
ters of interest. In addition to the high computational costs required to carry
out sensitivity analyses, the implementation effort in a finite element code
is a further significant difficulty. Complex process and data structures are
required to consider the additional partial derivatives of the response and the
residual equation and to transfer sensitivity information from one analysis
stage to the next.
The work focused on exploring the fundamentals for extending sensitivity
analysis for sequenced simulation processes and identifying associated chal-
lenges. This was achieved by deriving and demonstrating the basic sensitivity
equations based on comprehensive academic examples. Thus, the next step is
to further develop the investigated fundamentals for larger-scale structures.
In this context, it is essential to investigate how the computational costs can
be reduced.

Finally, the thesis demonstrated the usage of sensitivity analysis for structural
engineering and design. Application-oriented aspects such as normalization,
graphical processing, and the load-dependency of sensitivities were examined.
Furthermore, a systematic analysis and decision chain for using sensitivities in
structural design was introduced and demonstrated exemplarily. The workflow
is not intended to be prescriptive and entirely fitting for all applications,
models, and design scenarios. Instead, the decision and analysis chain should
be understood as a systematized synthesis of aspects that could be important
for dealing with model parameters.
Among the structures considered in the thesis, the rooftop example highlighted
the benefit of computational sensitivity analysis in structural design. The
most critical support settlements for the design quantities were purposefully
identified and applied accordingly in the partial safety factor concept. In
principle, information regarding the influence of the support settlements could
also be obtained by classical parameter studies, i.e., by repeated analysis with
a different moved support each time. However, in addition to the tremendous
effort, there is a risk that relevant support settlements are overlooked and
thus not further considered. This risk can be reduced by adjoint sensitivity
analysis since all supports can be systematically considered. In addition, the
graphically prepared sensitivities allow a quick overview and can be a helpful
auxiliary way to document and communicate decisions during structural
design.
In order to further increase the acceptance of sensitivity analysis in daily
structural engineering, future work should focus on real-world examples. A
portfolio of examples with individual challenges in structural design, similar to
the shown rooftop, should be collected. On this basis, the proposed analysis
and decision chain can be tested and refined, and the overall benefit of
sensitivity analysis in structural engineering and design can be demonstrated.





Appendix A
Description of analyzed structures

A.1 Cable net bridge

The observed cable net bridge shown in Figure A.1 is a real-world structure
planned by the engineering office Breinlinger Ingenieure. The bridge crosses
the Danube (Donau) river by Inzigkofen in Southwest Germany with a span
of 45 m. The flexible bridge shows deformations up to 0.25 m through regular
pedestrian loading. Hence, geometric non-linear analysis has to be utilized.
The behavior of the bridge during load increase is thoroughly studied in
Fußeder et al. [65]. The cable net can be crossed by a steel grid pavement
supported by the two central bearer cables. The cables are made of steel
with a Young’s modulus of 160 000 MN/m2 and different diameters, whereas
the central bearer cables have a diameter of 24 mm. For structural analysis,
the bridge is subjected to prestress (defined by form-finding, varying among
cables), self-weight, and a uniform line load of pz = 0.9 kN/m applied to the
central bearer cables (cf. Figure A.1, right).

z

x

y

pz

Figure A.1: Photo of cable net bridge taken from Breinlinger Inge-
nieure [28] and its analysis model. Adapted from Fußeder
et al. [65].
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A.2 Four-point sail membrane structure
The observed structure is a four-point sail membrane shaped like a hyperbolic
paraboloid (hypar). The structure has a base area of 6×6 m and a height of
3 m and is shown in Figure A.2.
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Figure A.2: Observed membrane structure with the shape of a hy-
perbolic paraboloid. The plot shows the Cauchy stress
distribution in the direction pointing between the high
points of the sail.

The membrane and its edge cables are fixed at the low points. At the high
points, the structure is supported by elastic trusses braced by prestressed
cables. The Updated Reference Strategy by Bletzinger et al. [24] is used
for form-finding. Therefore, an isotropic prestressing for the membrane of
4.0 kN/m and an edge cable force of 40 kN is utilized. The membrane
with a thickness of 1 mm is modeled with a linear elastic isotropic material
law defined by a Young’s modulus of E=600 kN/m (pre-integrated over the
thickness) and a Poisson’s ratio of ν=0.4. In addition, a stress-strain tensor
modification is applied as described in Nakashino et al. [116] based on the
tension field theory to incorporate wrinkle deformation due to tension loss
in the membrane. The edge and support cables have a Young’s modulus of
205 000 MN/m2 and a diameter of 12 mm. For structural analysis, the hypar
is subjected to prestress and a uniformly distributed snow load acting in the
positive z-direction. Figure A.2 shows the Cauchy stress distribution in the
direction pointing between the high points of the sail under a snow load of
0.5 kN/m2. The position of the maximal stress is indicated by σmem.
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A.3 Steel arch bridge
The observed arch-type bridge shown in Figure A.3 is based on the construction
presented by Krapf [95]. The pedestrian and bicycle bridge crosses the
Neckar and connects the Stuttgart districts of Mühlhausen and Hofen. The
construction is a steel arch bridge with a suspended composite deck. For the
sake of simplicity, not the entire bridge deck is modeled. Instead, only the
steel substructure is considered. The components included in the analysis
model have the following properties:

• The arch spans 79.2 m and is designed as a steel box girder with a
width/height of 60/55 cm (crown) and 1.6/1.0 m (abutment).

• The box-shaped main girder is made of steel, has a constant height of
40 cm, and a variable width of 1.5 to 3.25 m.

• The box-shaped transverse girders are made of steel, have a height of 30
to 40 cm, a width of 30 cm, and are arranged at a distance of 7.20 m.

• The main girder and the arch abutment are connected by a tension
chord consisting of two 70 mm thick steel cables.

• The bridge deck is suspended on 35 mm thick steel cables attached
between the arch and the transverse girder.

• A Young’s modulus of 210 000 MN/m2 is selected for all steel parts.
The specific weight is 0.0785 MN/m3.

The bridge is stressed by self-weight and a traffic load of Q =0.01 MN/m.

tension chord

tension chord

main girder Q

transverse girder

arch

suspendors

Figure A.3: Static system of an arch-type bridge. Beam elements are
colored in black and cable elements in gray.
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A.4 Wooden roof construction
A top view of the roof construction is shown in Figure A.4. The bearing
structure is a girder grid that consists of wooden beams in combination with
single steel and concrete girders. The different girder types and a sketch of
their cross-sections are indicated by different colors in Figure A.4.
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Figure A.4: Overview of the utilized girder cross-sections in a roof
construction.

The grid is planked with a 0.057 m thick wood cladding, which is modeled
with an orthotropic material law to account for the different properties of
wood regarding the fiber direction. All wood members are made of glued
laminated timber GL 32 c, the steel girders of S355, and the concrete girders
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of C30/37. The properties of the construction material are chosen according
to the respective standards.
The structure is stressed by different load cases, which are illustrated in Fig-
ure A.5. The permanent action consists of the self-weight of the construction
members and additional load due to finishes (e.g., technical facility equipment
or ceiling liners). The actions from finishes are considered by uniform surface
loads (different at the outer balcony area) and point loads. The latter consider
connecting constructions, which are applied at the connection nodes of the
steel facade segments (blue points in Figure A.5) and the connection nodes
of the girder grid members (5 kN each, not shown in Figure A.5 for clarity).
The variable action consists of snow and wind.
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Figure A.5: Load cases applied to the roof construction. The given

magnitudes are characteristic values.





Appendix B
Structural elements

B.1 Euler-Bernoulli beam
The Euler-Bernoulli beam theory neglects shear deformations of the cross-
section. Therefore, the theory assumes that initially straight lines perpen-
dicular to the beam’s center line remain straight during deformation and
stay perpendicular to the deformed center line. Due to this assumption, the
rotation angle φ of the cross-section can be related to the derivative of the
vertical bending deformation w:

φ = −w′ (B.1)

The curvature κ of the bending deformation

κ = dφ

dx
= −w′′ (B.2)

can be used to calculate the bending moment M by Hooke’s law

M = EIκ (B.3)

where EI is the bending stiffness consisting of Young’s modulus E and second
moment of inertia I. The differential equation for a beam is(

EIw′′)′′ = p (B.4)

where p is a distributed load acting along the beam. The corresponding weak
form for a two-sided clamped beam reads:

A(w, δw) = a(w, δw) − F (δw) = 0 with

a(w, δw) =
l∫

0

EIw′′ · δw′′ dx and F (δw) =
l∫

0

p · δw dx
(B.5)
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B.2 Geometrically non-linear truss
Based on the reference length L and actual length l of a truss element, the
Green-Lagrange strain reads:

ϵGL = 1
2
l2 − L2

L2 (B.6)

The energetically conjugated Second Piola-Kirchhoff stress can be determined
by the Saint Venant-Kirchhoff material model as

σPK2 = E · ϵGL (B.7)

where E is the Young’s modulus. Based on the Green-Lagrange strain and
the Second Piola-Kirchhoff stress, the variational form can be formulated as

A(u; δu) = a(u; δu) − P T δu = 0 with

a(u; δu) =
∫

Ω0

σPK2 · ∂ϵGL

∂u
δu dΩ0

(B.8)

where P denotes point forces applied at the end-points of the truss and
Ω0 = A ·L is the reference truss domain with cross-section A. Since the strain
and stress are constant along the truss, Equation (B.8) simplifies to

A(u; δu) = AL · σPK2 · ∂ϵGL

∂l

[
∂l

∂u

]T

δu − P T δu

= δuT
(
A · l

L
· σPK2 · ∂l

∂u
− P

)
= δuTr

(B.9)

where the vector of unbalanced forces

r = fint − fext = A
l

L
σPK2

∂l

∂u
− P (B.10)

consisting of internal forces fint and external forces fext can be identified.
Please note that nodal forces are typically not treated as element quantities in
a finite element formulation. Hence, the elemental residual equation (denoted
by index e) consists merely of the internal force vector:

re = fe
int = A · l

L
· σPK2 · ∂l

∂u
(B.11)
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B.3 Prestressed membrane
The considered membrane element is assumed to be extremely thin with negli-
gible bending resistance. To withstand out-of-plane loading, the membrane is
prestressed. Due to this assumptions, the PK2 stress tensor S reduces to the
in-plane normal stresses S11, S22 and the in-plane shear stresses S12 = S21

which are composed of elastic stress Sel and prestress S0. As a constant
and deformation-independent thickness t is assumed, the stresses can be
pre-integrated. Hence, the PK2 stress resultants read

n = nel + n0 = t ·

S11
el

S11
el

S12
el

+ t ·

S11
0

S11
0

S12
0

 (B.12)

in Voigt notation. The elastic PK2 stress resultants can be related to the
Green-Lagrange strains E = ϵ by the constitutive equation. By consideration
of isotropic material and strains that are given in a local Cartesian basis
(further denoted by •̄), the PK2 stress resultants read

n̄el =

n̄11
el

n̄22
el

n̄12
el

 = t · C̄iso ·

 ϵ̄11

ϵ̄22

2ϵ̄12

 = t · C̄iso · ϵ̄ (B.13)

where

C̄iso = E

1 − ν2

1 ν 0
ν 1 0
0 0 1 − ν

2

 (B.14)

is the material matrix. Based on those definitions, the weak form is

A(u; δu) = a(u; δu) − F (u; δu) = 0 with (B.15a)

a(u; δu) =
∫

A0

(n̄el + n̄0) : ∂ϵ̄
∂u

δu dA0 and (B.15b)

F (u; δu) =
∫

A0

p0 · δu dA0 +
∫

ΓN0

t̂0 · δu dΓN0 (B.15c)

where A0 is the membrane’s reference surface with the Neumann boundary
edges dΓN0. The membrane is loaded by an external load p0 on the surface
and an external load t̂0 on the edges. For further reading on the membrane
theory, refer to Bischoff et al. [20] and Philipp et al. [117].
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