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Abstract

This dissertation explores allocation and pricing in non-convex and coupled electricity mar-
kets, addressing the absence of Walrasian equilibrium prices and proposing alternative pric-
ing rules grounded in convex optimization and duality theory. The work is divided into
three main parts, each contributing novel insights and solutions to the challenges posed by
the evolving landscape of electricity markets.

Electricity markets play a critical role in modern economies, serving as the mechanism
through which electricity, a fundamental commodity, is traded between producers and con-
sumers. Traditionally, electricity markets were subject to central planning, where a single
entity, often a monopoly, controlled generation, transmission, and distribution. However,
with advancements in technology, policy shifts, and the desire for increased competition
and efficiency, many electricity markets have transitioned to competitive structures, where
multiple participants, including generators, consumers, and transmission operators interact
through market-based mechanisms.

One of the foundational concepts in economic theory relevant to electricity markets is the
Walrasian equilibrium. In a Walrasian equilibrium, prices and allocation balance supply and
demand and ensure that no bidder has an incentive to deviate from their assigned bundles
of items. In markets with convex preference functions, this equilibrium is characterized by
an efficient resource allocation, maximizing overall welfare.

However, in non-convex and coupled electricity markets, achieving a Walrasian equilibrium
becomes challenging due to various factors such as non-convex bid languages, transmission
constraints, and the integration of renewable energy sources with intermittent generation
patterns. These complexities lead to deviations from the idealized conditions assumed in
traditional economic models, necessitating the development of alternative pricing rules and
allocation mechanisms.

In the first part, this dissertation addresses the impact of increasing demand response on
pricing in U.S. electricity markets, where established pricing rules violate envy-freeness and
budget balance. A new pricing rule that runs in polynomial time is proposed, reducing make-
whole payments while maintaining efficiency and individual rationality. This pricing rule
introduces penalties on paradoxically rejected bids to ensure stability in regulated electricity
markets.

The second part extends the analysis to a multi-objective optimization framework, iden-
tifying conflicting design goals of established pricing rules and proposing the Join pricing
rule. This rule optimizes multiple classes of lost opportunity costs simultaneously, achieving
lower make-whole payments and improved congestion signals than existing pricing rules.
The Join pricing rule leverages techniques from convex optimization and duality theory to
design prices that jointly minimize incentives to deviate locally and incentives to exit the
market.

The third part focuses on the impact of different power flow models on allocation and pric-

iii



ing in nodal electricity markets. The study emphasizes the ability of tighter relaxations of
the Alternating Current Optimal Power Flow (ACOPF) problem to enhance the quality of
price signals and improve economic outcomes. By investigating second-order conic and
semidefinite programming relaxations for the ACOPF, this dissertation demonstrates the
substantial impact of power flow models on allocation and redispatch in coupled electricity
markets where power flows adhere to physical laws.

Overall, this dissertation contributes valuable insights and methodologies to the ongoing
discourse on allocation and pricing in non-convex and coupled electricity markets, offering
pragmatic solutions to achieve a balance among efficiency, individual rationality, and budget
balance while navigating the complexities of modern energy systems. The proposed pricing
rules and approaches provide a framework for designing market mechanisms that address
the challenges posed by non-convexities, demand response, and structural transformations
in electricity markets, ultimately aiming for more efficient, equitable, and sustainable energy
allocation.
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Zusammenfassung

Diese Dissertation befasst sich mit der Allokation und Preisbildung in nicht-konvexen und
gekoppelten Strommärkten. Dabei wird das Fehlen von Walrasianischen Gleichgewichts-
preisen thematisiert und es werden alternative Preisbildungsregeln vorgeschlagen, die auf
konvexer Optimierung und Dualitätstheorie basieren. Die Arbeit ist in drei Hauptteile ge-
gliedert, die jeweils neue Einsichten und Lösungen für die Herausforderungen auf den sich
stets weiterentwickelnden Strommärkten bieten.

Strommärkte spielen in modernen Volkswirtschaften eine entscheidende Rolle, da sie als
Mechanismus dienen, über den Elektrizität zwischen Erzeugern und Verbrauchern gehan-
delt wird. Traditionell funktionierten Strommärkte nach zentraler Steuerung, bei denen ei-
ne einzige Organisation, oft ein Monopolist, die Erzeugung, Übertragung und Verteilung
kontrollierte. Im Zuge des technologischen Fortschritts, politischer Veränderungen und des
Wunsches nach mehr Wettbewerb und Effizienz gingen viele Strommärkte jedoch zu Wett-
bewerbsstrukturen über, bei denen mehrere Teilnehmer, darunter Erzeuger, Verbraucher und
Übertragungsnetzbetreiber, durch marktbasierte Mechanismen zusammenwirken.

Eines der grundlegenden Konzepte der Wirtschaftstheorie, das für die Strommärkte von Be-
deutung ist, ist das Walrasianische Gleichgewicht. In einem Walrasianischen Gleichgewicht
sorgen Preise und Allokation für ein Gleichgewicht zwischen Angebot und Nachfrage und
gewährleisten, dass kein Bieter einen Anreiz hat, von den ihm/ihr zugeteilten Bündel an
Gütern abzuweichen. Auf Märkten mit konvexen Präferenzfunktionen ist dieses Gleichge-
wicht durch eine effiziente Ressourcenzuweisung charakterisiert, die die Gesamtwohlfahrt
maximiert.

Auf nicht-konvexen und gekoppelten Strommärkten wird das Erreichen eines Walrasiani-
schen Gleichgewichts jedoch durch verschiedene Faktoren wie nicht-konvexe Gebotsspra-
chen, Übertragungsbeschränkungen und die Integration erneuerbarer Energiequellen mit in-
termittierenden Erzeugungsmustern erschwert. Diese Komplexität führt zu Abweichungen
von den idealisierten Bedingungen, die in traditionellen ökonomischen Modellen angenom-
men werden, und macht die Entwicklung alternativer Preisbildungsregeln und Allokations-
mechanismen erforderlich.

Der erste Teil dieser Dissertation befasst sich mit den Auswirkungen der zunehmenden
Nachfrageflexibilität auf die Preisbildung in US-amerikanischen Strommärkten, wo die eta-
blierten Preisbildungsregeln keine Neidfreiheit und kein Budgetgleichgewicht erzielen. Es
wird eine neue Preisregel mit polynomialer Zeitkomplexität vorgeschlagen, die Ausgleichs-
zahlungen reduziert und gleichzeitig Effizienz und individuelle Rationalität beibehält. Diese
Preisregel führt Sanktionen für paradoxerweise abgelehnte Gebote ein, um die Stabilität auf
Strommärkten zu gewährleisten.

Im zweiten Teil wird die Analyse auf einen multizentrischen Optimierungsrahmen aus-
geweitet, indem widersprüchliche Ziele etablierter Preisregeln identifiziert und die Join-
Preisregel vorgeschlagen werden. Diese Regel optimiert mehrere Klassen von Opportu-
nitätskosten gleichzeitig und erzielt niedrigere Ausgleichszahlungen und bessere Netzsi-
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gnale als bestehende Preisregeln. Die Join-Preisregel nutzt Techniken der konvexen Op-
timierung und der Dualitätstheorie, um Preise zu berechnen, die gleichzeitig Anreize für
lokale Abweichungen und Anreize zur Nicht-Teilnahme am Markt minimieren.

Der dritte Teil befasst sich mit den Auswirkungen verschiedener Stromflussmodelle auf
Allokation und Preisbildung in nodalen Strommärkten. Die vorgestellte Studie unterstreicht
die Fähigkeit besserer Relaxierungen des Alternating Current Optimal Power Flow (ACOPF)
Problems, die Qualität der Preissignale und der Allokation zu verbessern. Durch die Un-
tersuchung konischer und semidefiniter Relaxationen für das ACOPF-Problem zeigt diese
Dissertation den bedeutenden Einfluss von Stromflussmodellen auf Allokation und Redis-
patch in gekoppelten Strommärkten auf, in denen Stromflüsse physikalischen Gesetzen fol-
gen.

Insgesamt leistet diese Dissertation einen wertvollen Beitrag zum laufenden Diskurs über
die Allokation und Preisbildung in nicht-konvexen und gekoppelten Strommärkten. Sie bie-
tet pragmatische Lösungen, um einen Ausgleich zwischen Effizienz, individueller Rationa-
lität und Budgetgleichgewicht zu finden, bei gleichzeitiger Bewältigung der Komplexität
moderner Energiesysteme. Die vorgeschlagenen Preisbildungsregeln und -ansätze bieten
einen Rahmen für die Gestaltung von Marktmechanismen, die die Herausforderungen von
Nichtkonvexität, Nachfrageflexibilität und strukturellem Wandel in Strommärkten angehen
und letztlich auf eine effizientere, gerechtere und nachhaltigere Energieallokation abzie-
len.
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1. Introduction

In classical microeconomic theory, markets serve as mechanisms to efficiently allocate
goods or items from supply to demand, employing prices as central means of coordination.
Based on this premise, the field of market design studies the design of mechanisms and rules
to achieve favorable market outcomes. Leveraging tools from mathematical optimization,
mechanism design, and game theory, the domain of market design has produced pioneer-
ing results across various markets (e.g., Gale and Shapley, 1962; Myerson, 1981; Roth,
1984; Milgrom, 2000), advancing our understanding of how to allocate goods, resources,
or labor in a financially efficient, equitable, and incentive-compatible manner. The signifi-
cance of market design for the modern economy has been acknowledged by the awarding of
Nobel Memorial Prizes in Economic Sciences in 2007, 2012, and 2020 (The Nobel Prize,
2024).1

1.1. Motivation

A fundamental concept in market design is that of competitive or Walrasian equilibria,
named after French economist León Walras (Walras, 1874). This equilibrium denotes an
allocation and prices where supply equals demand and every bidder maximizes their payoff.
Essentially, a Walrasian equilibrium implies a stable market, in the sense that no bidder has
an incentive to deviate from the outcome. Prices are linear (i.e., the price of a bundle equals
the sum of the prices of its items) and anonymous (i.e., prices apply equally to all bidders)
and provide an efficient signal for market entry or exit.

In their seminal paper, Arrow and Debreu (1954) demonstrate that a set of competitive equi-
librium prices always exists under the assumptions of convex preferences, perfect competi-
tion, and demand independence. The Arrow-Debreu model and its extensions (McKenzie,
1959; Gale, 1963) form the basis of the celebrated welfare theorems (Mas-Colell et al.,
1995), establishing a link between competitive equilibria and allocative efficiency, i.e., an
allocation that maximizes the social welfare of all market participants.

However, the assumptions of general equilibrium theory and the Arrow-Debreu model of-
ten do not align with real-world markets. In practical scenarios, items are rarely perfectly

12007: L. Hurwicz, E. Maskin, and R. Myerson ”for having laid the foundations of mechanism design theory”.
2012: A. Roth and L. Shapley ”for the theory of stable allocations and the practice of market design”.
2020: P. Milgrom and R. Wilson ”for improvements to auction theory and inventions of new auction formats”.
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1. Introduction

divisible and bidders do not typically exhibit convex preferences. Thus, a large stream of
literature investigates necessary conditions for the existence of Walrasian equilibria in mar-
kets with non-convexities, employing the concept of quasilinear utility functions, where
market participants seek to maximize their payoff as the difference between (possibly non-
convex) valuation and price. The existence of Walrasian equilibria necessitates strong as-
sumptions on bidders’ preference functions (Baldwin and Klemperer, 2019), such as gross-
substitutes (Kelso and Crawford, 1982) and their generalizations (Gul et al., 2000; Milgrom
and Strulovici, 2009; Leme, 2017). In general, Walrasian equilibria exist if and only if the
linear relaxation of the winner determination problem has an integer solution (Bikhchandani
and Mamer, 1997). For arbitrary valuations, this may require prices to be non-linear and per-
sonalized (Bikhchandani and Ostroy, 2002), or such prices may not exist at all (Bichler and
Waldherr, 2017).

Prominent examples of markets featuring indivisibilities and non-convex preferences in-
clude transportation markets (Caplice and Sheffi, 2003), industrial procurement (Bichler
et al., 2005), or spectrum auctions (Bichler et al., 2014). This dissertation focuses on elec-
tricity markets, recognizing them as among the most pivotal commodity markets glob-
ally.

In recent decades, electricity markets across many countries have transitioned from cen-
tralized monopolies to competitive wholesale markets. In most industrialized countries, the
majority of electricity is now allocated through market-based mechanisms. For example,
as of 2022, the European day-ahead market has successfully cleared an annual volume of
1683 TWh (NEMO Committee, 2023). Consequently, the design of power markets and sys-
tems has become a fundamental pillar of modern society.

While various market designs have been implemented, they all converge on the central role
of the spot market price, serving as the foundational element from which all other contract
prices are derived. As described above, under the assumption of convexity, Walrasian equi-
librium prices provide perfect short- and long-run equilibria in electricity markets (Perez-
Arriaga and Meseguer, 1997). However, electricity is unlike any other commodity, and the
necessary conditions for Walrasian equilibrium prices are no longer met.

Firstly, the value and cost functions of bidders introduce non-convexities to the allocation
problem (Liberopoulos and Andrianesis, 2016). For instance, conventional electricity gen-
erators have minimum load requirements, ramping constraints, or minimum running time
obligations that are typically modeled with binary decision variables in the central market
clearing problem.

Secondly, electricity markets are coupled, meaning electricity transmission from generators
to consumers traverses expansive power networks. Power flows adhere to physical laws,
necessitating a representation of the transmission network in the market clearing problem.
A central challenge arises from the fact that an accurate network representation, the so-
called Alternating Current Optimal Power Flow (ACOPF) problem (Molzahn and Hiskens,
2019), introduces non-linear and non-convex constraints that render the allocation problem
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1.2. Contributions

intractable and Walrasian equilibria infeasible.

Thirdly, in the wake of climate change, many nations aspire to achieve net zero carbon
emissions and increased electrification of the economy (United Nations, 2015; IEA, 2021).
These endeavors coincide with a fundamental transformation of the power sector, moving
from conventional to variable renewable energy sources and incorporating demand response
and storage into the market. Such changes necessitate market clearing and pricing rules that
are not only economical but also scalable, sustainable, and capable of accommodating the
structural shifts occurring in the power sector.

To summarize, computing an allocation and prices in non-convex and coupled electricity
markets remains an open and fundamental problem. The challenges posed by non-convex
preferences, transmission constraints, and structural transformations are a topic of active
discussion.

In Europe, prices are required to be uniform, i.e., to avoid so-called paradoxically accepted
bids (NEMO Committee, 2019b), which would require individual side-payments to com-
pensate losses. As Walrasian equilibrium prices are unattainable, this requirement can only
be satisfied at the expense of welfare losses (Meeus et al., 2009). Moreover, the repre-
sentation of the European transmission network is much simplified by aggregating nodes
into larger price zones. Given that the resulting economic allocation may not align with
physical power flows, redispatch is necessary to attain a physically feasible outcome. The
rise of renewable energy sources has heightened the need for redispatch, leading to in-
creasingly higher costs. As a consequence of welfare losses, redispatch costs, and scala-
bility problems, there is an ongoing discourse about transitioning to non-uniform or nodal
pricing (Ashour Novirdoust et al., 2021; Eicke and Schittekatte, 2022; NEMO Committee,
2023).

In contrast, in liberalized United States (U.S.) electricity markets, a linearized version of
the ACOPF, known as the Direct Current OPF (DCOPF) problem (Molzahn and Hiskens,
2019), is utilized to compute nodal prices. Employing a non-uniform pricing rule, system
operators implement the welfare-maximizing allocation but need to make side-payments to
bidders that are unable to recover their costs or have an incentive to deviate. With these
out-of-market payments on the rise in recent years, established pricing rules have come
under scrutiny (FERC, 2014). Furthermore, the anticipated increase in non-convexities due
to demand response and storage resources raises new questions regarding price formation
in electricity markets.

1.2. Contributions

This dissertation seeks to contribute to the discussions on clearing and pricing in non-convex
and coupled electricity markets. It builds on the dilemma that spot market prices are con-
sidered crucial for short- and long-term efficiency, yet the theoretical ideal of Walrasian
equilibrium prices does not exist. The primary objective of this thesis is to propose alterna-
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1. Introduction

tive pricing rules that – founded on principles of convex optimization and duality theory –
yield favorable economic outcomes.

1.2.1. Part I: Pricing in the Presence of Demand Response

The first publication of this dissertation (Bichler et al., 2023a, see Chapter 3) addresses the
absence of Walrasian equilibrium prices in the context of increasing levels of price-elastic
demand and the rise of side-payments in U.S. markets.

The welfare theorems imply that Walrasian equilibrium prices ensure efficiency of the al-
location (i.e., maximizing social welfare), individual rationality (i.e., ensuring non-negative
payoffs for each bidder), and envy-freeness (i.e., maximizing individual payoffs), along
with overall budget balance. In non-convex markets, these prices cease to exist. Established
pricing rules in U.S. electricity markets fulfill efficiency and individual rationality but com-
promise on envy-freeness and budget balance. Specifically, budget balance is disrupted by
so-called make-whole payments, i.e., individual side-payments compensating bidders that
are unable to recover bid costs. Increasing make-whole payments have been identified as a
concern, undermining price signals and creating flawed incentives (FERC, 2020).

We establish that, assuming price-inelastic demand, one can always obtain an outcome that
satisfies efficiency, individual rationality, and budget balance. We propose a correspond-
ing pricing rule and suggest that, in regulated wholesale electricity markets, penalties on
remaining lost opportunity costs may ensure stability.

However, this conclusion need not hold in the presence of demand response and price-elastic
demand. We demonstrate that there can be no pricing rule that simultaneously satisfies ef-
ficiency, individual rationality, and budget balance with linear and anonymous prices. To
address concerns about increasing make-whole payments, we propose another pricing rule
that maintains efficiency and individual rationality with minimum budget balance violation
and polynomial time complexity. Numerical experiments indicate that, on average, this pric-
ing rule does not yield higher prices compared to established rules but significantly reduces
make-whole payments, addressing a crucial policy concern.

Bibliographical information:

Bichler, M., Knörr, J., Maldonado, F. (2023). ”Pricing in Nonconvex Markets: How to Price
Electricity in the Presence of Demand Response.” Information Systems Research 34(2):652-
675. https://doi.org/10.1287/isre.2022.1139.

1.2.2. Part II: Pricing as a Multi-Objective Optimization Problem

The second publication (Ahunbay et al., 2023b, see Chapter 4) of this dissertation extends
the approach of Bichler et al. (2023a) and adopts a more holistic perspective of pricing in
non-convex and coupled electricity markets.
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1.2. Contributions

Due to the non-existence of Walrasian equilibrium prices, seeking linear and anonymous
prices for the efficient allocation in non-convex markets inevitably results in the violation of
either envy-freeness or budget balance. In other words, bidders do not maximize individual
profits and – unless compensated – have an incentive to deviate from the efficient outcome.
These incentives are quantified by the lost opportunity costs (LOCs) of a bidder (Schiro
et al., 2016).

Our work is based on the observation that established pricing rules each minimize a spe-
cific class of LOCs. Leveraging techniques from convex optimization and duality theory,
we establish a connection between each pricing rule, its dual problem, and the correspond-
ing class of LOCs. Specifically, Convex Hull pricing (Hogan and Ring, 2003; Gribik et al.,
2007) corresponds to minimizing global LOCs and as such is considered a favorable yet
intractable pricing rule for non-convex markets. The most common implementation in prac-
tical markets, Integer Programming (IP) pricing (O’Neill et al., 2005), corresponds to min-
imizing local LOCs and – as we show – thereby maintains that prices signal the marginal
value of transmission capacity. Finally, make-whole payments, as minimized in Bichler
et al. (2023a), represent a third class of LOCs.

Through this formal analysis, we conclude that the design goals of established pricing rules
are conflicting, and we thus frame pricing in non-convex markets as a multi-objective op-
timization problem. As main contribution, we utilize our primal-dual framework to design
novel pricing rules that jointly optimize multiple classes of LOCs. Specifically, we design
the Join pricing rule, which – in polynomial time – yields prices that jointly minimize in-
centives to deviate locally and incentives to exit the market, thus striking a balance between
local LOCs and make-whole payments. We prove that Join pricing always achieves lower
make-whole payments than IP pricing and satisfies a weak form of Pareto optimality. Ex-
tensive numerical experiments demonstrate that Join pricing provides promising outcomes,
with prices effectively signaling the marginal value of transmission capacity and requiring
minimal make-whole payments.

Bibliographical information:

Ahunbay, M.S., Bichler, M., Knörr, J. (2023). ”Pricing Optimal Outcomes in Coupled and
Non-Convex Electricity Markets.” Proceedings of the 24th ACM Conference on Economics
and Computation (EC ’23). https://doi.org/10.1145/3580507.3597732,
https://arxiv.org/abs/2209.07386. Currently in minor revision for Operations Research.

1.2.3. Part III: Pricing and Optimal Power Flow Problems

Finally, the third publication of this dissertation (Bichler and Knörr, 2023, see Chapter 5)
shifts the focus to the coupled nature of electricity markets and examines the impact of
different power flow models on allocation and prices.

The representation of the transmission network is crucial for deriving price signals that
accurately reflect the locational scarcity of electricity. Given the intractability of the under-
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1. Introduction

lying ACOPF problem, current market models resort to simplified versions. In Europe, the
transmission network is aggregated into zones, and only cross-zonal flows and critical net-
work elements are considered for the allocation problem. U.S. markets utilize the linearized
DCOPF for market clearing, generating nodal price signals. Regulators in both jurisdic-
tions acknowledge that these simplifications adversely impact the economic outcome of the
allocation (Cain and O’Neill, 2012; ACER, 2021).

Recent years have witnessed significant advances in convex optimization, prompting a surge
in literature seeking tighter approximations for the ACOPF problem (Molzahn and Hiskens,
2019). This literature primarily focuses on the optimality of solutions and the computational
costs involved. In our paper, we establish a link to the the literature on electricity market
pricing. Specifically, we investigate second-order conic and semidefinite programming re-
laxations for the ACOPF in terms of the allocation and prices they produce, considering
non-convexities in bidders’ preferences at the same time.

Our findings carry considerable policy implications. Different power flow models result in
substantial deviations in allocation and redispatch. A key observation is that prices derived
from the DCOPF approximation can significantly differ from those of tighter convex re-
laxations. Specifically, the DCOPF allocation suggests congestion on certain transmission
network lines, leading to considerable price differences across nodes. However, the under-
lying physical power flows exhibit no such congestion, rendering the observed high price
peaks under the DCOPF economically unjustified. In contrast, tighter convex relaxations
provide a more accurate depiction of physical power flows, and markedly enhance the qual-
ity of price signals.

Bibliographical information:

Bichler, M., Knörr, J. (2023). ”Getting Prices Right on Electricity Spot Markets: On the
Economic Impact of Advanced Power Flow Models.” Energy Economics 126:106968.
https://doi.org/10.1016/j.eneco.2023.106968.

1.2.4. Other Publications

Besides the referenced papers, the author of this dissertation was involved in multiple other
publications that study the intersection of electricity markets, economic theory, and market
design. Even though these papers are not included in this dissertation, short summaries are
provided below:

Bichler, M., Buhl, H., Knörr, J., Maldonado, F., Schott, P., Waldherr, S., Weibelzahl, M.
(2022). ”Electricity Markets in a Time of Change: A Call to Arms for Business Research.”
Schmalenbach Journal of Business Research 74:77-102. https://doi.org/10.1007/s41471-
021-00126-4.

In this work, we acknowledge that the energy transition presents challenges not confined
to engineering and natural sciences but extends to the business research discipline as well.
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1.3. Outline

Based on an extensive literature review, we offer an up-to-date overview of fundamental
questions in electricity market design and outline research challenges spanning various busi-
ness research disciplines.

Ahunbay, M.S., Bichler, M., Dobos, T., Knörr, J. (2023). ”Solving Large-Scale Electricity
Market Pricing Problems in Polynomial Time”. https://arxiv.org/abs/2312.07071. Currently
in revision for European Journal of Operational Research.

In this study, we address scalability issues identified in non-convex allocation problems
within electricity markets. We leverage a recent proposal for approximating competitive
equilibria in polynomial time, promising approximate efficiency, no budget deficit, and
computational tractability (Milgrom and Watt, 2021). We present experimental results for
this mechanism in the context of electricity markets and observe that it strikes a promising
balance between computational scalability and favorable economic outcomes.

Dobos, T., Bichler, M., Knörr, J. (2024). ”Finding Stable Price Zones in European Elec-
tricity Markets: Aiming to Square the Circle?”. Working Paper.

The European electricity market is split into large bidding zones. As a result of structural
congestion and increasing redispatch costs, the European Commission launched the Bidding
Zone Review process to assess alternative zone configurations. In this study, we employ
data from the Bidding Zone Review to construct zones through node clustering. Notably,
we find that the composition of clusters varies significantly based on the selected clustering
attributes, algorithms, and time frames. Given the ongoing and considerable transformations
in power systems and markets, we posit that establishing large, stable bidding zones may
prove unattainable.

Knörr, J., Bichler, M., Dobos, T. (2024). ”Zonal vs. Nodal Pricing: An Analysis of Different
Pricing Rules in Germany”. http://arxiv.org/abs/2403.09265. Working Paper.

In this work, we utilize a recent data publication in the context of the European Bidding
Zone Review to evaluate various market clearing and pricing rules for the German elec-
tricity market. Based on real-world data, our findings confirm that a nodal market clearing
leads to the lowest system costs by mitigating costly redispatch. The average price increase
from zonal to nodal pricing is moderate. Especially non-uniform pricing rules enhance com-
putational scalability, provide clearer location-based signals, and entail minimal additional
side-payments.

1.3. Outline

The remaining sections of this dissertation are organized as follows: Chapter 2 provides
a foundation of electricity market design and offers essential definitions and notation re-

7

https://arxiv.org/abs/2312.07071
http://arxiv.org/abs/2403.09265


1. Introduction

lated to auctions and our market model. It discusses bidding formats that introduce non-
convexities and explores various representations of the transmission network. Chapter 3
presents the first project of this dissertation, wherein a pricing rule is formulated to min-
imize make-whole payments. Chapter 4 encompasses the second publication, introducing
novel pricing rules from a multi-objective optimization perspective. Lastly, Chapter 5 in-
cludes the third paper of this dissertation, establishing a link between optimal power flow
problems and pricing in electricity markets. The concluding Chapter 6 wraps up the disser-
tation and outlines potential avenues for future research.
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2. Theoretical Background

This chapter serves as an introduction to the subsequent publications presented in the re-
mainder of this dissertation. It begins with an exploration of key insights into electricity
market design, followed by a review of fundamental notions and concepts from competitive
equilibrium theory. Building upon this foundation, two central complexities of electricity
market design are considered as the primary focus of this dissertation: bid languages and
transmission constraints. The section concludes by outlining the current practices in market
clearing and pricing observed in U.S. and European markets. The topics touched upon in
this chapter, such as electricity market design, mechanism design, and general equilibrium
theory, have a rich and expansive history. As a result, this chapter addresses selected aspects
from these fields that are most relevant for the contributions of this dissertation.

2.1. Overview of Electricity Market Design

Electricity is a crucial commodity with unique characteristics. It must be transmitted from
generators to consumers through designated networks, adhering to the laws of physics by
following the path of least resistance. Supply and demand in the power system must be
balanced at every moment. Moreover, even though electricity can be generated from mul-
tiple fuel sources, it is inherently a homogeneous commodity without differences in qual-
ity.

Power grids are considered the most extensive and interconnected system ever built by hu-
manity (Glover et al., 2023), necessitating intricate management to ensure secure and af-
fordable electricity. Historically, the generation and distribution of electricity started as lo-
cal monopolies. Over the years, regulators gradually introduced market structures to power
systems, aiming to enhance both short-run and long-run efficiency. For example, in U.S.
markets, power pools emerged to link local monopoly markets, enabling electricity trade
across regions (Cramton, 2017). In Europe, several European Union (EU) legislative acts
facilitated the establishment of network codes and guidelines to foster an internal energy
market (Meeus, 2020). Ultimately, competitive wholesale electricity markets were intro-
duced in both jurisdictions to facilitate efficient trading and pricing of electricity.

Because of the crucial relevance and technical properties of electricity, power markets de-
mand a careful design to ensure reliability of supply, maximize social welfare, control
carbon emissions, foster efficient investment incentives, and achieve various other objec-
tives. The California electricity crisis of 2001 serves as a stark reminder that flawed market
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2. Theoretical Background

designs have the potential to incur billions of dollars in costs for consumers (Borenstein,
2002). While differing in details, practical market designs typically revolve around inte-
grated markets with nodal pricing, as seen in U.S. markets, or exchange-based markets with
zonal pricing, as observed in Europe.

Electricity can be traded in various time horizons. Futures and forward markets allow to
hedge risk exposures up to years ahead of delivery. Balancing markets are required to react
at short notice to ensure continuous balance of supply and demand and stable grid frequen-
cies. This dissertation focuses primarily on spot markets, which determine the allocation
of electricity and provide key price signals for market participants. Spot markets comprise
day-ahead markets, where electricity is cleared the day before delivery, and intraday or
real-time markets, which operate until shortly before physical delivery.

In the United States, not all regions have shifted to liberalized wholesale markets. However,
in those that have (CAISO, ERCOT, ISO-NE, MISO, NYISO, PJM, SPP), a central entity
known as an Independent System Operator (ISO) manages both the power market and the
power system. Figure 2.1 illustrates the geographical boundaries of the ISO-managed ar-
eas.1 On day-ahead markets, market participants submit complex multi-part bids reflecting
their operating characteristics (e.g., variable and fixed costs) and technical constraints (e.g.,
minimum and maximum output). The ISO then solves a comprehensive mixed-integer prob-
lem, known as the Security-Constrained Unit Commitment and Economic Dispatch (SC-
UCED) problem, to optimize electricity and reserve allocation, incorporating a linearized
version of power flow equations (DCOPF) to ensure approximate physical feasibility. Ad-
ditionally, the ISO computes electricity prices for each node in the transmission network.
The provision of such locational price signals is also referred to as nodal pricing. Real-time
markets involve solving a linear economic dispatch problem every five minutes to determine
the final dispatch and prices.

In European markets, system operation and market operation are decoupled. Transmission
System Operators (TSOs) manage the grid’s stability and balance, while Nominated Elec-
tricity Market Operators (NEMOs) collect bids and determine allocation and prices. Euro-
pean spot markets are jointly cleared through the Single Day-Ahead Coupling (SDAC) and
Single Intraday Coupling (SIDC) mechanisms. Figure 2.2 depicts the current geographical
scope of SDAC.2 On both the SDAC and SIDC market, bidders do not submit technical con-
straints for a central dispatch to NEMOs; instead, they utilize more economical orders (e.g.,
hourly and block bids), effectively shifting some responsibility for optimizing generation
resource operations onto market participants (Herrero et al., 2020). A single Pan-European
clearing algorithm (EUPHEMIA) determines allocation and prices on the day-ahead market
(NEMO Committee, 2019b).

1The shapefiles were obtained from https://www.census.gov/geographies/mapping-files/time-series/geo/carto-
boundary-file.html and https://github.com/electricitymaps.

2The shapefile was obtained from https://ec.europa.eu/eurostat/web/gisco/geodata/reference-
data/administrative-units-statistical-units/nuts.
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Figure 2.1.: U.S. ISO Markets

However, only a small subset of transmission constraints – those referring to cross-zonal
lines and critical network elements – are considered by the algorithm. An elaborate capac-
ity calculation precedes the market clearing to determine line capacities according to the
available transfer capacity (ATC) and flow-based market coupling (FBMC) methodology
(NEMO Committee, 2019b).3 The simplification of transmission constraints has two main
consequences. On the one hand, a single price is computed for every large price zone, often
coinciding with national borders, referred to as zonal pricing. On the other hand, the re-
sulting allocation is far from being physically feasible, and so-called redispatch conducted
by the TSOs is necessary to achieve feasible power flows. In intraday markets, continuous
trading occurs after an initial opening auction, enabling market participants to adjust their
positions in real time through various types of orders (NEMO Committee, 2019a).

The remainder of this dissertation focuses primarily on day-ahead markets due to their sig-
nificance in clearing volume and price signaling. Day-ahead markets are conceptualized as
auctions, and this dissertation approaches them from this perspective. In this chapter, after
introducing notation (Section 2.2) and important concepts from auction and equilibrium the-
ory (2.3), attention shifts to the complexities of day-ahead electricity auctions: non-convex
bid languages (2.4) and non-linear non-convex transmission constraints (2.5). The chap-
ter concludes by introducing U.S. and European day-ahead markets more formally (2.6).
Building on this foundation, the three contributions detailed in Chapters 3-5 introduce in-

3See also https://www.entsoe.eu/network codes/ccr-regions/.
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Figure 2.2.: SDAC Market

novative market clearing and pricing rules to tackle the challenges posed by non-convex bid
languages and transmission constraints within real-world electricity markets.

2.2. Preliminaries

Day-ahead markets can be described in the framework of general combinatorial auctions,
i.e., a set of buyers and sellers that compete for acquiring or selling electricity. Formally,
an auction consists of a set of buyers i ∈ I and a set of sellers j ∈ J , with L = I ∪ J
as the set of bidders and I ∩ J = ∅. Together, they transact a set of indivisible items
k ∈ K, where an item k corresponds to electricity at a specific location and time period.
Multiple homogeneous units of each item are available (e.g., multiple kWh of electricity at
a specific location and period). However, as shown by Bikhchandani and Mamer (1997),
the key results for single-unit markets generalize to multi-unit markets by considering each
unit as a separate item. Therefore, the single-unit case will be considered in the following,
unless stated otherwise.

In full generality, bidders can submit bids for bundles of items, defined as the power set
2K of all possible combinations of the items, with the aim to be allocated exactly one bun-
dle. This so-called exclusive-or (XOR) bid language allows bidders to express any possible
valuation (Nisan, 2000). An auctioneer – possibly subject to allocative restrictions such as
transmission constraints – collects all bids and determines an allocation as well as payments
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for every bidder. Formally, each bidder ℓ ∈ L is assigned a bundle Sℓ ⊆ K and a corre-
sponding (positive or negative) payment pℓ ∈ R. The outcome o = (x, p) of an auction is
defined as the tuple of allocation x = (Sℓ)ℓ∈L and payments p = (pℓ)ℓ∈L.

To quantify the preferences for bundles, each bidder possesses a valuation function vℓ, as-
signing a value to each possible bundle.

vℓ : 2
K → R

For a buyer i ∈ I, the valuation function vi is usually non-negative and represents the
value for a bundle S ⊆ K, while for a seller j ∈ J , the valuation function vj is usually non-
positive and represents the costs of supplying a bundle S ⊆ K.4 Similarly, the payment pi of
a buyer i is usually non-negative, while the payment pj of a seller j is usually non-positive,
indicating a revenue for selling items.

It is assumed that standard assumptions regarding valuation functions are satisfied:

• Monotonicity: The value of the empty bundle is always 0, i.e., vℓ(0) = 0 ∀ℓ ∈ L.
The valuation function of a buyer i ∈ I is weakly increasing, i.e., vi(S′) ≤ vi(S)
for S′ ⊆ S. The valuation function of a seller j ∈ J is weakly decreasing, i.e.,
vj(S

′) ≥ vj(S) for S′ ⊆ S.

• Independent Private Values: The valuation of a bidder remains private information
and is contingent only on the received bundle. Specifically, it remains unaffected even
when information regarding other bidders’ valuations or allocations becomes known.

• Quasilinearity: A bidder’s direct utility uℓ for a bundle Sℓ ⊆ K in outcome o is
defined as the difference between valuation and payments, i.e., uℓ(o) = vℓ(Sℓ) −
pℓ(Sℓ) where pℓ : 2K → R describes the payment function of bidder ℓ.

Bidders may decide to not report their true valuations in order to achieve a more favor-
able outcome for themselves individually. In particular, a bidder ℓ places bids according
to a bidding function bℓ : 2K → R where bℓ may not necessarily correspond to vℓ. If
bℓ(S) = vℓ(S) ∀ S ⊆ K, bidder ℓ bids truthfully. Unless specified otherwise, this disserta-
tion assumes truthful bidding.

Given a payment rule pℓ under outcome o, a bidder ℓ seeks a bundle that maximizes their
direct utility. The collection of these bundles is known as the demand set Dℓ(pℓ):

Dℓ(pℓ) = argmax
S⊆K

vℓ(S)− pℓ(S)

The utility associated with any bundle in the demand set under outcome o is quantified by
the indirect utility ûℓ(o):

ûℓ(o) = max
S⊆K

vℓ(S)− pℓ(S)

4In electricity markets, it has been observed that sellers may bid with negative costs, being willing to pay for
providing electricity. This would result in a positive valuation vj .
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An auctioneer collects bids and determines an allocation of items between sellers and buy-
ers. A common objective in auctions is to maximize social welfare, quantified as the sum
of buyers’ values for the items or bundles they receive minus the sum of sellers’ costs for
items or bundles sold. Finding such an allocation is equivalent to solving a combinatorial
optimization problem referred to as Winner Determination Problem (WDP) (Blumrosen and
Nisan, 2011).

maximize
∑
ℓ∈L

∑
S⊆K

vℓ(S)xℓ(S) (WDP)

subject to
∑
i∈I

∑
S⊆K:k∈S

xi(S) ≤ 1 ∀ k ∈ K

∑
j∈J

∑
S⊆K:k∈S

xj(S) ≤ 1 ∀ k ∈ K

∑
i∈I

∑
S⊆K:k∈S

xi(S)−
∑
j∈J

∑
S⊆K:k∈S

xj(S) = 0 ∀ k ∈ K

∑
S⊆K

xℓ(S) ≤ 1 ∀ ℓ ∈ L

xℓ(S) ∈ {0, 1} ∀ ℓ ∈ L, S ⊆ K

Note that the WDP formulation above assumes truthful bidding and a single-unit market.
The binary variable xℓ(S) takes the value 1 if bundle S is allocated to bidder ℓ, and 0
otherwise. The first and second constraints guarantee that each item is bought or sold by at
most one buyer or seller, respectively. The third constraint ensures that supply and demand
are balanced for each item. The fourth constraint ensures that each bidder obtains at most
one bundle. The final constraint asserts the indivisibility of each item.

The market clearing problem in day-ahead electricity markets is inherently linked to the
WDP, i.e., allocating electricity from generators to consumers in a manner that maximizes
welfare. However, applying the standard WDP directly to real-world markets is impractical.
Specifically, it is well known that the WDP is NP-complete, i.e., no algorithm is known
to solve the WDP efficiently (in polynomial time) for every problem instance (Lehmann
et al., 2006). Additionally, designing an ideal payment rule pℓ(S) that guarantees a stable
and balanced outcome poses a non-trivial challenge. These foundational problems have
been central to two major research domains in economics: mechanism design and general
equilibrium theory. The next section will discuss important but selected aspects from these
areas as they relate to electricity market design.

2.3. Economic Design Goals

The field of mechanism design is concerned with the design of effective mechanisms in
environments where self-interested agents engage in strategic interactions while holding
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private information about their preferences. It is viewed as a counterpart to traditional game
theory. Auctions represent a specific category of mechanisms where a collection of bids is
translated into an outcome.

Day-ahead electricity markets serve as a prime example of these auction mechanisms. This
section outlines essential concepts and design criteria important for market design, while
subsequent sections will elaborate on how these concepts are pertinent to the context of
electricity markets.

Formally, let M denote a mechanism that maps bids to an auction outcome o = (x, p). In
particular, a mechanism is said to implement a social choice function f : BL → O with BL

as the set of all bid functions bℓ : 2K → R over all bidders ℓ ∈ L and O as the set of auction
outcomes. A traditional social choice function is the utilitarian welfare function, wherein
social welfare is defined as the sum of bidders’ valuations. Assuming truthful bidding, the
WDP describes a mechanism to achieve such an outcome with an efficient allocation. More
generally, an auction mechanism can be assessed by its allocative efficiency.

Definition 2.1 (ALLOCATIVE EFFICIENCY). Let x∗ = (S∗
ℓ )ℓ∈L describe an allocation that

maximizes social welfare. Let x = (Sℓ)ℓ∈L describe the allocation obtained by an auction
mechanism M. The allocative efficiency of M is defined as:∑

ℓ∈L vℓ(Sℓ)∑
ℓ∈L vℓ(S

∗
ℓ )
.

This definition assumes that the maximum social welfare
∑

ℓ∈L vℓ(S
∗
ℓ ) is positive, indicat-

ing that allocating bundles from sellers to buyers can create value.

Another notion of efficiency is Pareto optimality (or Pareto efficiency) which characterizes
an outcome where it is impossible to improve the direct utility of one bidder without simul-
taneously decreasing the direct utility of another.

Definition 2.2 (PARETO OPTIMALITY). Given a mechanism M that enacts a social choice
function f , an outcome o is Pareto optimal if and only if there does not exist any alternative
outcome o′ that weakly improves the utility of all bidders ℓ ∈ L and strongly improves the
utility of at least one bidder ℓ′ ∈ L,

∄ o′ such that ∀ ℓ ∈ L, uℓ(o′) ≥ uℓ(o) and ∃ ℓ′ ∈ L where uℓ′(o
′) > uℓ′(o).

Pareto optimality is a broader concept that can be seen as a necessary condition for allocative
efficiency. If an allocation is allocatively efficient, it must be Pareto optimal. However, not
every Pareto optimal outcome is allocatively efficient.

In an attempt to lower their own payments or harm competitors, bidders may decide to
strategically misreport their valuations or enact in collusive behavior. Therefore, a mecha-
nism should make sure that agents cannot obtain higher profits from bidding untruthfully.
An auction mechanism that ensures that truthful bidding is a dominant strategy is called
strategyproof.
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Definition 2.3 (STRATEGYPROOFNESS). Let b−ℓ denote the bid functions of all other bid-
ders L \ {ℓ} and uℓ(o) be the direct utility of bidder ℓ under outcome o. A mechanism M
that implements a social choice function f is strategyproof or dominant-strategy incentive-
compatible (DSIC) if for all bidders ℓ ∈ L and bid functions (bℓ)ℓ∈L ∈ BL,

uℓ(f(vℓ, b−ℓ)) ≥ uℓ(f(bℓ, b−ℓ)).

Various other notions of incentive compatibility have been proposed. For example, re-
garding an auction as a Bayesian game, a mechanism is Bayes-Nash incentive-compatible
(BNIC) if truthful bidding constitutes a Bayes-Nash equilibrium. Specifically, given their
beliefs about other players, a bidder maximizes their expected utility by bidding truthfully.
A strategyproof mechanism is necessarily BNIC, but the reverse need not be the case. Strat-
egyproofness can also be extended to groups of bidders, ensuring that no coalition can profit
from jointly misreporting valuations. This stronger notion of strategyproofness is referred
to as group-strategyproofness.

Bidders participate in an auction mechanism with the goal to maximize their utility. If bid-
ders prefer an outcome that is not in their demand set, given a specific payment rule, the
outcome might not be stable. In particular, bidders might envy competing bidders.

Definition 2.4 (ENVY-FREENESS). A mechanism M is envy-free if every bidder ℓ ∈ L
receives a bundle Sℓ in their demand set,

Sℓ ∈ Dℓ(pℓ).

Even if bidders do not maximize their utility and envy-freeness is violated, a common re-
quirement for auction outcomes – such as those in day-ahead electricity markets – is that
bidders do not incur losses. If this property of individual rationality is not guaranteed, a
bidder might not voluntarily participate in an auction mechanism.

Definition 2.5 (INDIVIDUAL RATIONALITY). A mechanism M is individually rational if
for all bid functions (bℓ)ℓ∈L ∈ BL, no bidder ℓ ∈ L pays more than their bid for their
allocated bundle Sℓ,

bℓ(Sℓ) ≥ pℓ(Sℓ).

Assuming truthful bidding, where bℓ(Sℓ) = vℓ(Sℓ), individual rationality thereby ensures
that every bidder ℓ has a non-negative direct utility uℓ(o) from the auction outcome o.

Furthermore, an ideal mechanism should achieve all these properties without monetary
transfers into or out of the auction. Budget balance requires that no external subsidies are
required, and that no money is withdrawn from the market.

Definition 2.6 (BUDGET BALANCE). A mechanism M is budget balanced if the sum of
payments of buyers equals the sum of payments to sellers,∑

i∈I
pi(Si) +

∑
j∈J

pj(Sj) = 0.
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Lastly, while payments pℓ can, in principle, be non-linear and personalized, many markets –
day-ahead electricity markets being a prime example – require a unique price signal for each
item, e.g., as a reference for hedging instruments or to provide unbiased investment signals.
Usually, this corresponds to the requirement of linear and anonymous prices.

Definition 2.7 (LINEAR AND ANONYMOUS PRICES). A mechanism M implements linear
and anonymous prices if the payment of any bidder ℓ ∈ L for any bundle Sℓ depends only
on item-level prices pk for each item k ∈ K,

pi(Si) =
∑
k∈Si

pk and pj(Sj) = −
∑
k∈Sj

pk.

In other words, two bidders are charged the same price for the same bundle (anonymity),
and the price of a bundle simply equals the sum of the prices of its items (linearity).

Unfortunately, it has been long established that the aforementioned properties cannot be
jointly satisfied. In a social choice context, Gibbard (1973) and Satterthwaite (1975) fa-
mously show that any non-dictatorial voting mechanism with more than two options cannot
be strategyproof. Generally, Hurwicz (1972) demonstrates that under very mild assump-
tions, there can be no strategyproof, individually rational, and Pareto optimal mechanism.
It was later shown that the well-known VCG mechanism (Vickrey, 1961; Clarke, 1971;
Groves, 1973) is the unique mechanism to achieve efficiency and strategyproofness (Green
and Laffont, 1979). However, it violates group-strategyproofness and requires non-linear
and personalized prices. Myerson and Satterthwaite (1983) prove that no mechanism can
simultaneously satisfy efficiency, Bayes-Nash incentive compatibility, individual rational-
ity, and budget balance.

Furthermore, additional complexities occur in real-world markets. For example, electricity
markets have restricted and non-convex bid languages (Section 2.4) and the auctioneer has
to consider non-linear transmission constraints (Section 2.5). This renders market clearing
and pricing fundamentally difficult, and market designers have to develop mechanisms that
reasonably balance between the aforementioned properties.

In the absence of an ideal market clearing mechanism, an often desired outcome is that of a
competitive equilibrium. From the properties listed above, a competitive equilibrium satis-
fies envy-freeness and budget balance, consequently leading to a stable outcome where each
bidder receives a bundle from their demand set, and supply and demand are in equilibrium.
Note that envy-freeness implies that individual rationality holds as well.

Definition 2.8 (COMPETITIVE EQUILIBRIUM). An allocation x = (Sℓ)ℓ∈L and payments
p = (pℓ)ℓ∈L form a competitive equilibrium if for each bidder ℓ, Sℓ ∈ Dℓ(pℓ), ∪i∈ISi =
∪j∈JSj , and

∑
i∈I pi +

∑
j∈J pj = 0.

A competitive equilibrium has been considered desirable due to positive existence results.
Arrow and Debreu (1954) and McKenzie (1959) prove that a competitive equilibrium al-
ways exists in a market with perfect competition if bidders have convex preferences and
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if demand is independent of the price or availability of items. This notion formalizes the
equilibrium concept first noted by Walras (1874). In his honor, a competitive equilibrium
with linear and anonymous prices is called a Walrasian equilibrium.

Definition 2.9 (WALRASIAN EQUILIBRIUM). An allocation x = (Sℓ)ℓ∈L and item prices
p ∈ R|K| form a Walrasian equilibrium if for each bidder ℓ, Sℓ ∈ Dℓ(p) and ∪i∈ISi =
∪j∈JSj .

The model by Arrow and Debreu (1954) and the notion of Walrasian equilibria led to the
celebrated fundamental theorems of welfare economics, revealing the inherent connection
between competitive equilibria and allocative efficiency. The welfare theorems are often
considered a theoretical justification for a market-based allocation of resources.

Theorem 2.1 (FIRST WELFARE THEOREM). Let allocation x and prices p constitute a
Walrasian equilibrium. Then the allocation x maximizes social welfare.

Theorem 2.2 (SECOND WELFARE THEOREM). Let allocation x be Pareto optimal. Then
there exist linear and anonymous prices p such that (x, p) constitutes a Walrasian equilib-
rium.

While the welfare theorems were initially introduced for fully divisible items and fractional
allocations, Blumrosen and Nisan (2011) demonstrate that they also hold for the case of in-
divisible items. Equivalently, a Walrasian equilibrium exists if and only if the solution to the
WDP has zero integrality gap. Moreover, if the linear relaxation of the WDP has an integral
solution, a Walrasian equilibrium always exists (Bikhchandani and Mamer, 1997).

The welfare theorems laid the foundation for general equilibrium theory, i.e., characteriz-
ing the existence and properties of Walrasian equilibria. While they imply a stable market
outcome, mechanisms that implement Walrasian equilibria are generally not strategyproof.
However, it has been demonstrated that with increasing market size, Walrasian equilibria
achieve approximate strategyproofness (Azevedo and Budish, 2018; Jackson and Manelli,
1997).

Due to the welfare theorems, Walrasian equilibria are considered a desirable outcome of
auctions, including day-ahead electricity markets. However, the welfare theorems and exis-
tence of Walrasian equilibria generally only hold under the model by Arrow and Debreu
(1954). Unfortunately, the underlying assumptions are fairly strong and restrict the ap-
plication of the welfare theorems to real-world markets. In particular, when bidders have
non-convex preferences, a Walrasian equilibrium might cease to exist. In many markets –
including day-ahead electricity markets – such non-convexities are an inherent part of the
market design, since bidders are permitted to submit non-convex bids by design of the bid
language.
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2.4. Bid Languages

Bid languages establish the structure for bids that bidders can use to communicate their
valuation or costs. Designing a bid language necessitates ensuring computational scalability
for the allocation problem, providing completeness to accurately express valuations, and
accommodating market and bidder-specific idiosyncrasies.

The most general bid language is the XOR language discussed in Section 2.2, as it allows
bidders to express a value for each of the 2|K| − 1 possible non-empty bundles. However,
employing such a bid language faces practical challenges for several reasons. Due to the
large number of bundles, bidders may find it impractical to assign a value to each one, and
the communication complexity of preference elicitation by the auctioneer is too high (Nisan
and Segal, 2006). If valuations are provided only for a subset of bids, the missing bids prob-
lem can cause substantial welfare losses (Kroemer et al., 2016; Bichler et al., 2014). Lastly,
the WDP grows exponentially in the number of items, and the resulting computational com-
plexity of the allocation problem prevents practical application.

As a result, market designers frequently leverage their understanding of bidders’ valuation
and cost structures to craft domain-specific, concise, and scalable bid languages. Notable
examples include spectrum auctions (Bichler et al., 2023b), procurement auctions (Bichler
et al., 2011), and day-ahead electricity markets (Herrero et al., 2020; Conejo and Sioshansi,
2018). The remainder of this section will focus on U.S. ISO and European day-ahead mar-
kets as representative examples.

In U.S. ISO markets, the day-ahead market operates through a unit commitment and eco-
nomic dispatch system. The ISO, acting as both a central market and system operator,
aims to dispatch resources in a viable and economically efficient manner. To that end, they
provide bid languages that enable bidders to express the operating restrictions and cost
structures of their assets. Examples of these bid languages can be accessed through the
operations manuals of the California ISO (CAISO, 2023) and Midcontinent ISO (MISO,
2023b).

While bid languages can vary between ISOs, they often share common features. Generators
typically submit multi-part bids to convey their operating costs, consisting of a (piecewise
constant or piecewise linear) variable cost function, no-load costs representing fixed costs
to operate a generation unit, and start-up costs representing fixed costs to start a unit. Gen-
erators can also specify various technical parameters of their assets, such as minimum and
maximum output levels, ramping rates, minimum and maximum running times after start-
ups, or minimum cooling times after shut-downs. Although these technical constraints have
been tailored primarily to thermal units, some ISOs have introduced additional bid for-
mats for multi-stage generators (e.g., combined cycle gas turbines), pumped-hydro units, or
storage resources (Herrero et al., 2020). Given the increased volatility in supply resulting
from renewable energy sources, bid languages that allow to express flexibility are a topic
of discussion (Mays, 2021). Moreover, since ISOs co-optimize the actual dispatch and the
provision of ancillary services, generators can submit bids for various reserve products. On
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the demand side, buyers can express fixed, price-inelastic demand as well as (piecewise
constant or piecewise linear) bid curves for price-elastic demand.

In Europe, market operation and system operation is institutionally separated. Consequently,
generation assets are not centrally dispatched; instead, the NEMOs provide bid languages
that facilitate a more decentralized decision-making by bidders (Herrero et al., 2020). For
example, a generation firm owning multiple assets might submit portfolio bids that aggre-
gate the characteristics of their generation units.

The available market orders are outlined in the public documentation of the Pan-European
Hybrid Electricity Market Integration Algorithm (EUPHEMIA, NEMO Committee (2019b)).
All order types, except for seller complex orders, are available to both sellers and buyers.
The standard bid format are hourly orders as single-part offers to sell or buy electricity at
specific prices. An hourly order consists of price-quantity pairs that translate into aggregate
(piecewise constant, piecewise linear, or hybrid) supply and demand curves.5

Block orders describe collections of hourly orders whose acceptance is contingent on spe-
cific conditions. Regular block orders specify a number of periods, a desired volume for
each period, a price limit, and a minimum acceptance ratio.6 The clearing algorithm can
either accept the volumes in each period (at the minimum acceptance ratio or higher), or re-
ject all volumes entirely. Several derivations of block orders exist to express more complex
valuation functions. Linked block orders are composed of a parent block order and a child
block order which may only be accepted if the parent order is cleared. Loop block orders
extend this logic such that two blocks can only be accepted or rejected together. Finally, ex-
clusive block orders represent a collection of block orders for which the sum of the accepted
ratios must not exceed one.

Only hourly orders and regular block orders are accessible to bidders across all NEMOs.
Besides, other order types have been introduced in specific NEMOs to accommodate local
idiosyncrasies and regulations. For example, complex orders, available in Ireland, Portugal,
and Spain, allow to specify a minimum income condition (MIC), ensuring that the revenue
collected from a set of hourly orders covers the specified costs, consisting of a variable
and fixed cost term. MIC orders can be combined with a scheduled stop to avoid abrupt
deactivations of underlying assets. Complex orders with ramping constraints, limiting the
difference in cleared energy between two hours, are termed load gradient orders. Scalable
complex orders enhance computational scalability by directly including the fixed cost term
in the objective function, unlike MIC orders. In Italy, PUN orders (Prezzo Unico Nazionale)
must be cleared at a nationwide price rather than the price of the respective bidding zone.
Merit orders describe hourly orders that will be accepted in the order of a specified ranking.
Lastly, flexible hourly orders in the Nordic market describe hourly orders that can be shifted
to any hour of the day.

5A transition from 60-minute to 15-minute market time unit is expected to go live in 2025 (NEMO Committee,
2023), which will supplement hourly orders with quarter-hourly orders.

6Block orders with a minimum acceptance ratio of less than one are also known as curtailable block orders.
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Although bid languages in U.S. and European markets exhibit considerable differences, they
both possess a common characteristic: non-convexities. Specifically, both the unit commit-
ment in U.S. markets and the block orders in European markets require a modeling via
binary variables, rendering the allocation problem a non-convex mixed-integer optimiza-
tion problem. Consequently, the convexity assumption underlying the model by Arrow and
Debreu (1954) is violated, and Walrasian equilibrium prices generally do not exist, as the
following example demonstrates.

Example 2.1 (NON-EXISTENCE OF WALRASIAN EQUILIBRIUM). Assume a simplified Eu-
ropean market setting with a single zone and a single hour, involving one seller and two
buyers. Seller S1 submits a regular block order for 2 MW, with a price limit of EUR 30 and
a minimum acceptance ratio of 1. Buyers B1 and B2 each submit a regular block order for
1 MW and a minimum acceptance ratio of 1. B1 has a price limit of EUR 10 and B2 a price
limit of EUR 40.

The unique welfare-maximizing allocation is to accept all block orders, yielding a welfare
of EUR 10 + 40− 30 = 20. At any linear price p, equivalent to an hourly electricity price,
the market is balanced, both in budget and in supply and demand.

However, as illustrated in Figure 2.3, achieving envy-freeness is impossible with any linear
price p. For p ≤ 10 EUR/MWh (Case A), the revenue of S1 would be at most EUR 20,
failing to cover their costs and violating individual rationality and envy-freeness. In Figure
2.3, the loss incurred by S1 is depicted in blue. Formally, at p ≤ 10 EUR/MWh, the demand
set of S1 would consist of the empty bundle, and the assigned bundle (selling 2 MW) is not
in the demand set.

Similarly, at p > 10 EUR/MWh (Case B), buyer B1 would pay more than their bid, again vi-
olating individual rationality and envy-freeness. As a result, a Walrasian equilibrium cannot
be achieved.7

Mathematically, the non-existence of Walrasian equilibria follows from the non-convexities
implied by the block orders. Consequently, the allocation problem becomes a mixed-integer
problem, with its solution exhibiting a positive duality gap. This duality gap implies lost
opportunity costs incurred by market participants, i.e.,

∑
ℓ∈L ûℓ(o) − uℓ(o) > 0 for any

feasible outcome o with linear and anonymous prices. The lost opportunity costs quantify
the violation of envy-freeness, and a Walrasian equilibrium thus becomes unattainable in
markets with non-convexities.

In contrast, a Walrasian equilibrium exists if the linear relaxation of the allocation problem
yields an integral solution (Bikhchandani and Mamer, 1997), coinciding with a zero duality
gap by strong duality. Additionally, extensive research efforts have focused on identifying
conditions ensuring the existence of Walrasian equilibria.

7A Walrasian equilibrium is also unattainable for the second feasible allocation, which involves rejecting all
block orders. Under this allocation, if p < 40 EUR/MWh, envy-freeness would be violated for B2. Conversely,
p ≥ 40 EUR/MWh would lead to a violation of envy-freeness for S1.
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Figure 2.3.: Exemplary Market Clearing at p =10 EUR/MWh and p =15 EUR/MWh

Kelso and Crawford (1982) introduce the gross substitutes condition for single-unit markets.
Essentially, this condition posits that increasing the price of one or more items does not
result in a decrease in demand for any other items, with equivalent definitions provided
by Gul and Stacchetti (1999). When all bidders’ valuation functions adhere to the gross
substitutes condition, a Walrasian equilibrium is guaranteed to exist, e.g., for unit-demand
or additive valuation functions. Given gross substitutes, a Walrasian equilibrium can be
implemented as an ascending auction (Gul et al., 2000). The concept of gross substitutes
has also been extended to multi-unit markets (so-called strong substitutes, Milgrom and
Strulovici (2009)) and valuations with complementarities (so-called gross substitutes and
complements, Sun and Yang (2006)).

Baldwin and Klemperer (2019) provide generalized demand types for which a Walrasian
equilibrium exists. For personalized and non-linear prices, it has been demonstrated that
a competitive equilibrium always exists when there is only a single seller in the market
(Bikhchandani and Ostroy, 2002). Lastly, leveraging the Shapley-Folkman Lemma (Starr,
1969), an approximate equilibrium can be attained even without convex preferences. Starr
(1969) and Heller (1972) bound the distance from an approximate equilibrium to a pseu-
doequilibrium obtained from a convexified market.

However, achieving a Walrasian equilibrium is typically unfeasible in electricity markets,
as none of the aforementioned conditions are met. Consequently, allocation and pricing
rules must find a trade-off between allocative efficiency, budget balance, and envy-freeness.
The first (Bichler et al., 2023a, see Chapter 3) and second (Ahunbay et al., 2023b, see
Chapter 4) publication of this dissertation expand on this topic, proposing pricing rules that
aim to balance different dimensions of envy-freeness and budget balance.
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2.5. Transmission Constraints

Electricity markets are characterized by another pivotal challenge that sets them apart from
other markets: transmission constraints. The power system infrastructure is widely regarded
as one of humanity’s most extensive engineering achievements. Market clearing and pric-
ing must acknowledge that electricity transmission operates under the laws of physics rather
than economics. Consequently, transmission constraints impose limitations on the auction-
eer, who must determine a dispatch that adheres to feasible network flows.

Power flow models have received considerable attention in academic research (Cain and
O’Neill, 2012; Frank et al., 2012; Molzahn and Hiskens, 2019; Bienstock et al., 2020).
The power flow equations describe the relationship between injections and withdrawals
of power at nodes (also known as buses) and the resulting transmission line flows. In a
basic alternating current (AC) power circuit, transmission lines exhibit resistance R [Ω] and
reactance X [Ω], depending on factors such as length and conductor material. Resistance
describes the property of a material to oppose the flow of current I [A], and power dissipated
by resistors is known as real or active power P [W], described by Ohm’s Law: P = RI2.
Real power represents the usable power to perform work.

Reactance, on the other hand, represents the opposition to the change in current caused by
inductors and capacitors in AC circuits8, and the respective power component is known as
reactive power Q [VAR]. Reactive power does not perform any useful work but instead
oscillates in the circuit. It is essential for maintaining the voltage profile of the system and
supporting the transfer of active power in AC transmission networks.

Real and reactive power together are represented by the complex apparent power S =
P + jQ [VA] with j as the imaginary unit.9 Apparent power represents the total power
flowing in an AC circuit, including both real and reactive components.

Each node in an AC circuit has a voltage V and each line a current I , often represented as
sinusoidal phasors, where the magnitude represents the amplitude of the voltage or current,
and the angle represents the phase shift. The phase shift θ [rad] between voltage and current
determines the distribution of real and reactive power. When voltage and current are in
phase (θ = 0), all power is real, and no reactive power is exchanged. When there is a
phase difference (θ ̸= 0), a portion of the power becomes reactive and oscillates in the
circuit.

In a large, meshed transmission network, phase angle differences between nodes determine
the flow of real power. Changes in voltage magnitude (|V |) primarily influence the flow of
reactive power. This interplay between phase angles and voltage magnitudes regulates the
distribution of both real and reactive power throughout the network.

8Capacitors cause the current phasor to lead the voltage phasor, generating reactive power. Inductors cause the
voltage phasor to lead the current phasor, absorbing reactive power.

9The bold notation j is used to distinguish the imaginary unit from a seller j.
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Each line in an AC circuit has a resistance and reactance, which together form the impedance
Z = R+ jX [Ω]. The inverse of the impedance is the admittance Y [S = Ω−1], consisting
of a real conductance G and an imaginary susceptance B, i.e., Y = G+ jB.

With this notation, the AC power flow equations describe the flow of electricity in a power
grid.

Definition 2.10 (AC POWER FLOW EQUATIONS). Let N be the set of nodes and pairs
of nodes (n,m) encode transmission lines. Let x ∈ C|L|×|N | be the bundles allocated to
buyers and sellers at each node. With Vn = Vdn + jVqn as complex voltage at node n and
V min
n ,V max

n as minimum/maximum voltages, the AC power flow equations are defined as:

∑
j∈J

xRe
jn −

∑
i∈I

xRe
in =

∑
m∈N

Vdn(GnmVdm −BnmVqm) + Vqn(BnmVdm +GnmVqm) ∀n ∈ N

∑
j∈J

xImjn −
∑
i∈I

xImin =
∑
m∈N

Vdn(−BnmVdm −GnmVqm) + Vqn(GnmVdm −BnmVqm) ∀n ∈ N

V 2
dn + V 2

qn = |Vn|2 ∀n ∈ N
(V min

n )2 ≤ |Vn|2 ≤ (V max
n )2 ∀n ∈ N

Vn ∈ C ∀n ∈ N

xRe denotes real power, while xIm represents reactive power. If line (n,m) does not exist,
it is assumed that Bnm = Gnm = 0. Several alternative formulations of the AC power flow
equations exist (Molzahn and Hiskens, 2019).

To find a feasible allocation, the market clearing problem in electricity markets must ac-
count for AC power flows, meaning the assigned bundles have to satisfy above equations.
This gives rise to the AC Optimal Power Flow (ACOPF) problem. However, solving the
ACOPF is NP-hard and computationally intractable, as the feasible space defined by the
power flow equations is highly non-convex (Hiskens and Davy, 2001). Currently, there are
no scalable algorithms capable of finding the global optimum of the ACOPF. To address
the computational complexities associated with solving such optimization problems, vari-
ous power flow relaxations and approximations have been devised (Molzahn and Hiskens,
2019). These approaches often leverage techniques from convex optimization.

The most established convex optimization technique is linear programming (Dantzig, 1963;
Bertsimas and Tsitsiklis, 1997). A canonical linear program is defined as follows:

min
x∈Rd

{cTx : Ax ≥ b}

Solver techniques for linear programming have seen significant advancements over the
years. The simplex method, for example, has a worst-case exponential time complexity in
the number of variables, but in practice, it often performs well and converges in a reasonable
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number of iterations, particularly for sparse LP instances. Interior-point methods typically
have polynomial time complexity and are known for their efficiency on dense and large-
scale LP problems. Modern solvers can handle problems with thousands or even millions
of variables and constraints. Due to this scalability, linear programming approximations of
the ACOPF have been chosen for implementation in real-world electricity markets.

In U.S. markets with nodal pricing, the linear Direct Current Optimal Power Flow (DCOPF)
problem has been used (Stott et al., 2009; Eldridge et al., 2018; Molzahn and Hiskens,
2019). The DCOPF simplifies the power flow equations by making three key assumptions:
(i) it disregards line resistances and reactive power, (ii) it fixes voltage magnitudes |Vn| at
each node to 1, and (iii) it assumes that voltage angle differences between nodes are suffi-
ciently small such that sin(θn − θm) ≈ θn − θm and cos(θn − θm) ≈ 1. As a consequence,
the power flow equations become linear constraints.

Definition 2.11 (DC POWER FLOW EQUATIONS). Let x ∈ C|L|×|N | be the electricity
allocated to buyers and sellers at each node. With θn as voltage phase angle at node n, the
DC power flow equations are defined as:∑

j∈J
xRe
jn −

∑
i∈I

xRe
in =

∑
m∈N

−Bnm(θn − θm) ∀n ∈ N

θn ∈ R ∀n ∈ N

In U.S. ISO markets, more refined versions of the DCOPF are employed for market clearing,
while maintaining the computational scalability of the DCOPF as a linear program (Li et al.,
2022).

In European zonal markets, sets of nodes are aggregated into large bidding zones Z , with
only cross-zonal lines and critical network elements considered as linear constraints in the
allocation problem. This subset of lines is denoted by H. The EUPHEMIA algorithm ac-
commodates two types of linear constraints to model H.

Firstly, under the available transfer capacity (ATC) methodology (ENTSO-E, 2000), TSOs
compute available capacities for each line h ∈ H that can be utilized for spot market trading.
ATCs are derived as the total transfer capacity minus reliability margins and notified trans-
mission flows. Simple linear constraints in the market clearing problem ensure that cross-
zonal flows (potentially with linearized losses) do not exceed the ATC of each line.

Secondly, under the flow-based market coupling (FBMC) methodology (NEMO Commit-
tee, 2021; Schönheit et al., 2021), the impact of all trades on flows on cross-zonal lines and
critical network elements is directly accounted for. Based on a linearized network represen-
tation, TSOs obtain power transfer distribution factors (PTDFs) for each node in the grid.
For a specific node n ∈ N , its PTDFs specify the line flows on each line given an injection
at n. TSOs further estimate the contribution of an injection at node n to a change of the net
position of each zone z ∈ Z , termed as generation shift keys (GSKs). The nodal PTDFs and
GSKs are then utilized to construct zonal PTDFs that specify how changes in the zone net
positions affect the flows on each line h ∈ H (Schönheit et al., 2021).
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PTDFZonal
hz =

∑
n∈N

GSKnzPTDFNodal
hn

Moreover, TSOs compute remaining available margins (RAMs) for each line h ∈ H, repre-
senting the maximum transmission capacity that can be auctioned in the day-ahead market.
With netz denoting the net position of each zone z, the linear FBMC constraints are formu-
lated as a matrix-vector product (NEMO Committee, 2021).

PTDFZonalnet ≤ RAM

The DCOPF, ATC, and FBMC approximations are linear, but may not yield solutions that
are physically feasible with respect to the AC power flow equations. Consequently, ISOs or
TSOs must conduct redispatch, modifying the computed dispatch to achieve an ACOPF-
feasible outcome. Redispatch costs are notably high in European markets, where the ma-
jority of transmission constraints are not represented. These costs have risen significantly
in recent years (Bundesnetzagentur, 2022), prompting concerns and leading to an ongo-
ing Bidding Zone Review (BZR) process to reassess the configuration of European bidding
zones.

Another approach to better approximate the AC power flow equations is to employ tighter
convex relaxations than simple linear approximations. In particular, the canonical linear
program can be rewritten as minx∈Rd{cTx : Ax−b ∈ Rm

+}. The idea of conic programming
is to replace the non-negative orthant Rm

+ with other non-linear, convex, and well-behaved
cones C:

min
x∈Rd

{cTx : Ax− b ∈ C}

The most developed form of conic programs are second-order cone programs (SOCPs)
(Boyd and Vandenberghe, 2004):

min
x∈Rd

{cTx : ∥Aix− bi∥2 ≤ gTi x− ei,∀i = 1, ..,m}

The notation ∥·∥2 denotes the Euclidean norm. Particularly, the objective function of an
SOCP is linear, and the constraints are defined by convex quadratic inequalities over second-
order cones. Modern SOCP solvers utilize interior-point methods that often have polynomial-
time complexity (Alizadeh and Goldfarb, 2003; Andersen et al., 2003). SOCPs generalize
linear programming and can address a wider range of optimization problems. It has also
been leveraged in optimal power flow applications. The second-order conic (SOC) relax-
ation (Jabr, 2006) and quadratic convex (QC) relaxation (Hijazi et al., 2017; Coffrin et al.,
2016) are two SOCP formulations that closely approximate the ACOPF. Sufficient condi-
tions for the exactness of these SOCP relaxations, particularly in radial networks, have been
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established, and they have demonstrated good empirical results (Gan et al., 2012; Low,
2014). Unlike the DCOPF, SOC and QC represent relaxations rather than approximations,
implying that the feasible space of ACOPF is a subset of the feasible sets of SOC and
QC.

Another variant of conic programming involves the positive semidefinite cone Sm
+ , i.e.,

the cone of all positive semidefinite matrices. A semidefinite program (SDP) is defined as
follows:

min
x∈Rd

{cTx : Ax−B ⪰ 0} = min
x∈Rd

{cTx :
∑
i

xiAi −B ∈ Sm
+ }

An SDP is characterized by a linear objective function and linear matrix inequality con-
straints. Similar to SOCPs, SDP solvers leverage interior-point methods and typically achieve
polynomial-time complexity (Vandenberghe and Boyd, 1996). The SDP relaxation of the
ACOPF (Shor, 1987) is proven to be tighter than the SOC relaxation and solves numer-
ous ACOPF instances exactly (Lavaei and Low, 2012). However, the relaxation may not
always yield exact solutions, and efforts to enhance its tightness often encounter computa-
tional challenges. Leveraging the sparsity of the network has been recognized as a strategy
to mitigate computational costs (Grone et al., 1984).

Figure 2.4 illustrates the hierarchy of convex power flow models that seek to approximate
the non-convex feasible space of the ACOPF, ranging from the tight SDP relaxation to
the fully linearized DCOPF approximation. The ATC and FBMC approximations were ex-
cluded from the diagram, as they refer specifically to zonal market clearing.

DC

SOC

SDP

QC

AC

Figure 2.4.: Hierarchy of Power Flow Models

The non-negative orthant, the second-order cone, and the positive semidefinite cone exhibit
a property known as self-duality. This implies that the dual cone C∗ coincides with the cone
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C itself. Consequently, both weak and strong conic duality hold without requiring additional
conditions. Specifically, for any primal feasible x and any dual feasible y, weak duality
dictates that cTx ≥ bT y, and under the condition of strict feasibility (Slater’s condition),
strong duality ensures that both primal and dual problems are solvable with identical optimal
objective value. Therefore, results such as the welfare theorems remain applicable even
when the allocation problem is formulated as an SOCP or SDP.

Solvers for mixed-integer versions of second-order cone and semidefinite programs are less
mature (Molzahn and Hiskens, 2019). In the third publication of this dissertation (Bichler
and Knörr, 2023, see Chapter 5), the impact of various power flow relaxations and ap-
proximations on allocation and pricing in non-convex markets is explored. This publication
extends the discussion on SOCP and SDP formulations and demonstrates that the choice of
power flow model can have considerable impact on the auction outcome.

2.6. Clearing and Pricing in Electricity Markets

As discussed in the previous sections, non-convex bid languages and transmission con-
straints pose significant challenges to day-ahead electricity markets, leading to two main
consequences: the market clearing problem becomes NP-hard, and Walrasian equilibria
cease to exist. Slightly modifying the notation, the general formulation of the electricity
market clearing problem is as follows:

max
x

∑
ℓ∈L

vℓ(xℓ)

s.t. x ∈ Ψ

In this notation, xℓ represents the bundles assigned to buyers and sellers, indicating the
amount of electricity sold or purchased in a specific time period and location. Buyers ex-
press their valuation function and sellers their cost function using a given bid language vℓ(·),
which may, for example, include multi-part offers or block orders. The set Ψ encompasses
all allocations complying with feasible power flows according to a representation of the
transmission network, such as ACOPF, DCOPF, or ATC/FBMC. The market operator aims
to find an allocation that maximizes welfare while ensuring feasibility with respect to power
flows.

This notation readily identifies the two main complexities addressed in this dissertation:
non-convex bid languages encoded by vℓ(·), and the presence of non-convex physical grid
constraints within Ψ.

The discussion on the design of bid languages and transmission network representations in
U.S. and European markets has been previously outlined. Building upon this foundation,
this section further elaborates on the mechanisms for clearing and pricing in these represen-
tative markets. Figure 2.5 illustrates the schematic clearing and pricing processes in U.S.
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ISO and European markets, the details of which will be explained in the subsequent para-
graphs.

Welfare
Maximization

Pricing

Calculation of
Side-Payments

U.S. ISO Market Clearing

Welfare
Maximization

Pricing Valid
Prices?

PUN Search
Valid
PUN

Prices?

Re-Insertion
and Volume

Determination

yes

yes

no

no
European Market Clearing

Figure 2.5.: Schematic Clearing and Pricing Processes

U.S. ISO Market Clearing

In U.S. ISO markets, the day-ahead market clearing is based on multi-part bids and a
DCOPF representation of the transmission network. The resulting mixed-integer optimiza-
tion problem is solved to optimality to obtain the welfare-maximizing allocation x∗. In
subsequent and separate steps, linear and anonymous market prices p together with non-
uniform side-payments are determined based on some linearized version of the allocation
problem.

Different ISOs employ diverse methodologies to calculate prices, often with subtle varia-
tions distinguishing them. One of the most commonly employed approaches is Integer Pro-
gramming (IP) pricing, as introduced by O’Neill et al. (2005). Its widespread adoption stems
from its notion of ”marginal” pricing, although this terminology may lack precision within
non-convex markets. IP pricing eliminates integer constraints by fixing integer variables
at their optimal values, derived from the welfare-maximizing allocation. This effectively
assumes predetermined commitments for thermal generators to operate or remain idle dur-
ing specific periods. Consequently, the problem transforms into a convex one, and hourly
and nodal electricity prices are obtained as dual variables of the supply-demand balance
constraints.

These prices constitute Walrasian equilibrium prices for the convexified market, albeit not
for the original non-convex market. In particular, generators may have incentives to devi-
ate from their committed status, or may be unable to recover costs associated with their
integer variables (e.g., start-up costs) from the market payment. Therefore, O’Neill et al.
(2005) propose a payment rule that incorporates personalized side-payments to bidders, set
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at the dual variables of the constraints fixing the integer variables. This ensures that ev-
ery bidder attains zero profits; thus, unprofitable suppliers receive positive side-payments,
while profitable ones are assigned negative side-payments. The optimal allocation, linear
and anonymous market prices, and personalized side-payments together satisfy efficiency,
supply-demand balance, and envy-freeness. However, the zero-profit condition for bidders
may be overly restrictive. In practice, side-payments are often limited to positive payments,
compensating only for losses incurred by bidders under the market payments. Such pay-
ments, known as make-whole payments (MWPs), are defined as follows.

MWPℓ = max(−uℓ(o
∗), 0)

In this context, o∗ = (x∗, p) indicates the outcome defined by the welfare-maximizing
allocation x∗ and the determined market prices p. By providing MWPs to bidders, the out-
come maintains individual rationality, but envy-freeness and budget balance may still be
violated. As a result, the outcome of IP pricing does not constitute a Walrasian equilibrium.
Although IP prices can exhibit high volatility (Bjørndal and Jörnsten, 2008), IP prices sig-
nal the marginal value of additional transmission capacity, ensuring efficient signaling of
congestion within the transmission network.

As IP pricing can require large and discriminatory MWPs that can lead to misaligned in-
centives (Herrero et al., 2015), alternative pricing mechanisms are sought to minimize the
need for such side-payments. In this regard, Convex Hull (CH) pricing, proposed by Hogan
and Ring (2003) and Gribik et al. (2007), exhibits promising theoretical properties. Like IP
pricing, CH pricing first determines the optimal allocation and then computes prices based
on a separate convexified pricing problem. Specifically, CH pricing substitutes non-convex
cost functions −vj(xj) with their convex envelopes conv(−vj)(xj) = max{g(xj)|g ≤
−vj is closed and convex}. This transformation yields a convex problem, with prices de-
rived from the dual variables of supply-demand balance constraints.

CH prices represent Walrasian equilibrium prices only if the duality gap of the allocation
problem is zero. In cases where a positive duality gap exists, bidders incur lost opportunity
costs (LOCs), leading to violations of envy-freeness. LOCs quantify the foregone payoffs
of a bidder at the market price p, given as follows.

LOCℓ = ûℓ(o
∗)− uℓ(o

∗)

The appeal of CH pricing stems from its ability to minimize the aggregate LOCs of bidders
(Schiro et al., 2016). Zero LOCs indicate that all bidders receive a bundle from their demand
set, thereby satisfying envy-freeness. Note that as envy-freeness implies individual rational-
ity, MWPs are a subset of LOCs. However, determining convex envelopes of non-convex
functions is generally intractable. Efforts have been made to identify conditions under which
CH prices can be computed using simple linear programs, such as the linear relaxation of
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the allocation problem. This pricing rule, known as Extended Locational Marginal Pric-
ing (ELMP, MISO (2023a)), has been utilized to price fast-start units in various U.S. ISO
markets. For restricted bid languages, it was demonstrated that ELMP is equivalent to CH
pricing (Hua and Baldick, 2017). While the minimization of LOCs is desirable, CH prices
may not effectively signal congestion, and offline units may end up setting the price (Schiro
et al., 2016).

In practice, pricing methodologies in U.S. ISOs are tailored to the specific characteristics of
the market area, such as the treatment of block-loaded and fast-start units or the selection of
integer constraints relaxed in the pricing problem. Given the limitations associated with IP
and CH prices, numerous alternative pricing rules have been proposed (Liberopoulos and
Andrianesis, 2016). Broadly speaking, these pricing rules fall into several categories: they
may involve different types of external side-payments, permit internal zero-sum transfers
among bidders, or depart from the allocation that maximizes welfare. Since the welfare
theorems do not hold, it becomes necessary to compromise at least one of efficiency, envy-
freeness, budget balance, or the attainment of linear and anonymous prices. This dissertation
seeks to contribute to this discussion by developing novel pricing rules that offer desirable
trade-offs.

European Market Clearing

In European markets, the allocation x and prices p are jointly computed by the EUPHEMIA
algorithm (NEMO Committee, 2019b). From an algorithmic perspective, EUPHEMIA solves
a mixed-integer quadratic program subject to complementarity constraints. The master prob-
lem seeks a welfare-maximizing allocation by accepting and rejecting the submitted market
orders, subject to flow constraints according to the ATC and FBMC methodologies. Ad-
ditionally, the objective function integrates a penalty term to ensure equitable distribution
of curtailment among bidding zones if necessary. The mixed-integer problem is solved to
optimality, yielding a candidate allocation.

Subsequently, the candidate allocation is input into the price determination sub-problem.
Specifically, EUPHEMIA aims to determine hourly zonal prices that are coherent with the
candidate allocation. This entails that there must be no paradoxically accepted bids (PABs),
which violate individual rationality and would necessitate a make-whole payment. Further-
more, no in-the-money hourly order must be rejected, corresponding to paradoxically re-
jected bids (PRBs). In-the-money block orders, however, may be paradoxically rejected.
Additionally, complex orders must meet their minimum income requirement, and power
trades must not oscillate along a line connecting two zones with negative prices. Optionally,
EUPHEMIA may prevent adverse flows from more expensive to cheaper zones.

In cases where such prices cannot be determined, EUPHEMIA introduces a cut to the master
problem, discarding the current candidate allocation. The algorithm then revisits the master
problem and initiates the next iteration to search for a new candidate allocation.

Upon successfully completing the price determination, EUPHEMIA advances to the PUN
search sub-problem. This step in the algorithm addresses Italian PUN orders, which require
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clearance at a single national price, unlike regular orders cleared at the zonal price of one
of Italy’s four bidding zones. Determining PUN prices is not trivial, as cleared orders must
avoid paradoxical acceptance, and the PUN price can only deviate from the weighted av-
erage zonal price by a specified tolerance. If valid PUN prices do not exist, EUPHEMIA
reverts to the master problem and introduces an additional cut.

When the PUN search yields a viable outcome, EUPHEMIA proceeds with a re-insertion
step aimed at rectifying false paradoxically rejected MIC orders and other PRBs. This
involves iteratively attempting to accept each PRB and identifying valid market clearing
prices in a feasible solution where social welfare does not decrease. The re-insertion pro-
cess continues until either no paradoxically rejected bids remain or the time limit is reached.
Lastly, EUPHEMIA proceeds with the volume indeterminacy sub-problem to resolve inde-
terminacies arising from multiple feasible solutions, aiming at minimizing curtailment or
maximizing accepted volumes.

Since EUPHEMIA introduces cuts to the original welfare maximization problem, it will
not lead to an outcome with allocative efficiency. Due to PRBs that violate envy-freeness,
EUPHEMIA prices also do not constitute Walrasian equilibrium prices. However, unlike in
U.S. ISO markets, EUPHEMIA eliminates the need for side-payments by avoiding PABs,
thus ensuring individual rationality and budget balance at the expense of reduced wel-
fare.

Another significant concern in European markets pertains to the runtime of EUPHEMIA.
With a requirement to provide a solution within 17 minutes, the iterative nature of the algo-
rithm implies scalability issues. The impending introduction of 15-minute products in day-
ahead markets is anticipated to exacerbate this issue (NEMO Committee, 2023). Lastly,
European market clearing computes a zonal allocation, leading to increasing amounts of
costly redispatch to modify the allocation to satisfy physical power flow constraints (Bun-
desnetzagentur, 2022). This dissertation aims to facilitate an understanding of the impact of
different power flow models on allocation and prices.
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1Department of Computer Science, Technical University of Munich
2 Department of Mathematical Sciences, University of Essex
{bichler, knoerr,}@in.tum.de; felipe.maldonado@essex.ac.uk

A Walrasian competitive equilibrium defines a set of linear and anonymous prices where no coalition of market

participants wants to deviate. Walrasian prices do not exist in non-convex markets in general, with electricity markets as

an important real-world example. However, the availability of linear and anonymous prices is important for derivatives

markets and as a signal for scarcity. Prior literature on electricity markets assumed price-inelastic demand and introduced

numerous heuristics to compute linear and anonymous prices on electricity markets. At these prices market participants

often make a loss. As a result, market operators provide out-of-market side-payments (so-called make-whole payments)

to cover these losses. Make-whole payments dilute public price signals and are a significant concern in electricity markets.

Besides, demand-side flexibility becomes increasingly important with growing levels of renewable energy sources.

Demand response implies that different flexibility options come at different prices, and the proportion of price-sensitive

demand that actively bids on power exchanges will further increase. We show that with price-inelastic demand there

are simple pricing schemes that are individually rational (participants do not make a loss), clear the market, support an

efficient solution and do not require make-whole payments. With the advent of demand-side bids, budget balanced prices

(no subsidies are necessary) cannot exist anymore, and we propose a pricing rule that minimizes make-whole payments.

We describe design desiderata that different pricing schemes satisfy and report results of experiments that evaluate the

level of subsidies required for linear and anonymous prices on electricity spot markets with price-sensitive demand.

Key words: Electricity market design, demand flexibility, non-convexities, pricing

1. Introduction
In many parts of the world, electricity markets have developed from monopolies to competitive wholesale

markets. For example, European countries and large parts of the United States liberalized their electricity

markets in the 1990s. Short-term electricity procurement is now carried out via power exchanges in these

jurisdictions. These power exchanges determine central price signals for over-the-counter trades and futures

markets (Shah and Chatterjee 2020). Typically, on day-ahead markets hourly products for the next day

are traded. After the day-ahead markets, the market operators use real-time markets in the United States

(or intraday markets in Europe) to deal with changes in supply and demand that are closer to the actual

dispatch. We will distinguish these types of electricity spot markets from futures markets where participants

can hedge against longer-term price risks.
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Spot markets are significant in size. In 2020, European coupled day-ahead markets alone cleared 1,530

TWh in 27 countries with average prices between 30 and 40 EUR/MWh (NEMO Committee 2021).

Similarly, the cost of serving load amounted to $8.9 billion in the Californian market, covering 26,000

circuit miles, roughly 1,000 power plants, a population of 30 million, and about 9,700 pricing nodes

(California ISO 2018, 2021).

With climate change and a transition to renewable energy sources (RES) such as wind and solar power,

we move to an economy with many thousands of small generators and a more price-sensitive demand side

that actively bids in electricity markets and offers flexibility to cope with variability in the supply (IRENA

2019, Hytowitz et al. 2020). Changes on electricity markets are not only relevant for market operators, but

they also impact generators, industrial and retail consumers alike. These changes in the market have led

to renewed interest in the design of electricity markets. While many aspects of electricity market design

are similar to other markets, a few features stand out. First, demand and supply need to be balanced at

all times to guarantee a stable electricity grid. Second, electricity markets are characterized by non-convex

preferences. For example, electricity suppliers often incur fixed costs for starting up and running their

generators. On the demand side, industrial customers typically need a certain volume of electricity over

consecutive hours to finish production or maintain energy-intensive services. Such consumption profiles

can sometimes be shifted over time, but the profiles themselves must not be altered. These non-convexities

in the preferences typically lead to non-convex optimization problems that need to be solved in order to

determine the efficient or welfare-maximizing dispatch and prices. We will use the term non-convex markets

in what follows.

Deciding over a particular pricing rule in non-convex market is a complex problem. In this paper we

will describe a series of desirable properties for such pricing rules, outlining when those properties are

feasible in real-life settings. We will start describing the theoretical ideal called Walrasian Equilibrium,

where prices are linear (per MWh) and anonymous (independent of the participant), they are also envy-free

such that nobody would want to deviate from the optimal allocation or dispatch at these prices, and

they are budget-balanced, i.e. no subsidies are required. Unfortunately, it is a well-known fact that in

non-convex markets, Walrasian equilibrium prices do not exist in general. Therefore both academics and

practitioners have proposed alternatives where necessarily some of the properties are violated. For instance,

electricity markets in the United States compute linear and anonymous market prices but they violate

budget-balance. Pricing rules as they are used by market operators stipulate out-of-market side-payments,

so-called make-whole payments, to market participants who would make a loss at the market prices.

However, make-whole payments are currently under scrutiny by regulators, which demands new approaches

as we will discuss below.
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1.1. Contributions

First, we prove that make-whole payments cannot be avoided in markets with a price-sensitive buy-side.

While the literature suggest that demand response and price-sensitive demand will play an increasing role

in the future, standard models in electricity market design mostly assume price-inelastic demand.

We introduce a pricing rule that minimizes make-whole payments and compare it to existing payment

rules used in practice and to other academic proposals. This is in contrast to other literature on electricity

market pricing, which is largely based on heuristics to minimize lost opportunity costs, i.e. incentives to

deviate from the optimal allocation. We argue that lost opportunity costs are less of a concern, since market

operators on electricity markets typically enforce stability via penalties. Our experimental results show that

high make-whole payments on electricity markets as they are challenged by regulators can either be avoided

or reduced substantially with the new pricing rule. This is not at the expense of higher market prices, and

the changes in the overall payments of market participants are very small. The new pricing rule can be

solved efficiently with standard linear programming techniques and it is easy to understand. The approach

is generic and also of interest to non-convex markets beyond those for electricity only.

1.2. Organization of the Paper

The rest of the paper is structured as follows: Section 2 discusses related literature, while Section 3 provides

a short introduction to electricity market design. In Section 4, we discuss competitive equilibrium theory

and show when anonymous and linear prices are possible on budget-balanced electricity markets. Section 5

introduces optimization models to compute prices in environments with price-inelastic and price-sensitive

demand. We briefly characterize existing proposals for electricity prices before we provide results of

experiments in Section 6. Section 7 provides a summary and conclusions.

2. Related Literature
The literature on competitive equilibrium has a long history. In this section, we summarize central

theoretical findings before we discuss the related literature on electricity market design. We briefly survey

the literature on demand response that leads to price-sensitive demand and the challenges arising from this

change for market design. Finally, we discuss the connections between the different literature streams.

2.1. Equilibrium Theory

Early in the research on markets, general equilibrium theory was developed to study demand, supply,

and prices for multiple goods or objects on markets. The Arrow-Debreu model shows that under convex

preferences, perfect competition, and demand independence, there must be a set of competitive equilibrium

prices (Arrow and Debreu 1954, McKenzie 1959, Gale 1963, Kaneko 1976). The results derived from

the Arrow-Debreu model led to the well-known welfare theorems, representing important arguments for
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markets to be used as efficient or welfare-maximizing means to allocate scarce resources such as electricity.

The first theorem states that any Walrasian equilibrium leads to a Pareto efficient allocation of resources.

The second theorem states that any efficient allocation can be attained by a Walrasian equilibrium under

the Arrow-Debreu model assumptions (Mas-Colell et al. 1995). Walrasian equilibrium prices are such that

there is a single price for each product (i.e., prices for a package are linear) and this is the same price for

all participants (i.e., anonymous prices with no price differentiation).

However, standard general equilibrium theory assumes divisible goods and convex preferences. Most

real-world markets such as those for electricity, transportation, radio frequency spectrum, or environmental

access rights are traded as indivisible goods and participants have non-convex preferences and complex

constraints. Such markets have led to substantial interest in the question when Walrasian equilibria exist.

Unfortunately, in markets with indivisible goods, it is well known that only very restricted types of

valuations (e.g., substitutes valuations) allow for convex allocation problems and Walrasian equilibria (Kim

1986, Bikhchandani and Mamer 1997, Leme 2017, Baldwin and Klemperer 2019).

This raises the question how prices can be computed in the presence of non-convex preferences

for indivisible goods and which properties we can hope to achieve compared to Walrasian equilibria.

Established market design desiderata are efficiency (i.e., maximization of welfare or gains from trade),

individual rationality (i.e., participants should not make a loss), budget balance (i.e., the market operator

should not make a loss or a gain), and envy-freeness (i.e., participants would not want a different allocation

at the prices). These axioms are not only central to economic theory (Mas-Colell et al. 1995), but are widely

adopted and natural design desiderata for practical market design. If the allocation problem is convex,

duality theory and dual prices in convex optimization provides a principled way to determine competitive

equilibrium prices that satisfy these desiderata (Bichler et al. 2020). In non-convex markets, it is well known

that competitive equilibrium prices might need to be non-linear and personalized and such prices might not

even exist (Bichler and Waldherr 2017). Thus, in a combinatorial auction or a combinatorial exchange that

allows for supply and demand bids on packages of items, each bidder might need to have a different price for

the same package (personalized prices), and each package price could differ from the sum of the item prices

in this package (non-linear prices). As a simple example, consider a single supplier with an (indivisible)

sell bid of 2 MWh for $30, while there is one buyer asking for 1 MWh for at most $10, and another buyer

asking for 1 MWh for $28. Linear and anonymous market prices could not be higher than $10/MWh and as

such there would be no trade and no gains from trade. With price differentiation, trade would be possible.

However, non-linear and personalized prices would convey little information other than that a bidder lost

or won. Besides, if prices should serve as a baseline for derivatives as is the case for options or futures,

this is hardly possible with non-linear prices that differ among participants. In other words, anonymity and

linearity are important requirements for prices on electricity markets but also in other domains (Bichler

et al. 2018).
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2.2. Pricing on Electricity Spot Markets

Electricity spot markets are composed of varying levels of “demand” (load) and matching levels of “supply”

(generation). Market participants submit supply and demand bids according to a certain bid language that

determines the form of the allocation problem (which yields the efficient dispatch) and the pricing rule.

For example, in markets in the United States (U.S.), generators can express start-up or no-load costs,

economies of scale (by means of piecewise-linear cost functions), or minimum-generation requirements.

These and other elements of the bid language then translate into non-convex allocation problems (Herrero

et al. 2020). In 2005, the Pennsylvania, Jersey, Maryland Power Pool (PJM) introduced mixed integer

programming (MIP) in order to address these non-convexities and to determine the efficient allocation or

dispatch (O’Neill et al. 2020). Since 2018, all Independent System Operators (ISOs) in the U.S use MIPs

to compute the efficient dispatch instead of the Lagrangian relaxation that was used before. Dual prices

as they are accessible for convex optimization problems are not available in such markets, which led to a

fundamental question: How can market prices per hour be computed in such non-convex markets?

One approach followed by European day-ahead markets is to sacrifice efficiency. The EUPHEMIA

algorithm that is used to clear European day-ahead markets first solves a welfare maximization allocation

problem as a mixed-integer program and then iteratively tries to find linear and anonymous prices that clear

the market. If such prices cannot be found, additional constraints are added to the welfare maximization

problem (Committee 2020). However, it is unclear how much of the gains from trade are sacrificed this way.

Furthermore, this approach inevitably leads to paradoxically rejected bids (Meeus et al. 2009). In particular,

there are generators with an ask price that is less than the market price, yet they will not be dispatched.

Such prices are also not envy-free and hence not a Walrasian equilibrium. We will not further discuss this

approach in our paper and focus on market designs as in the United States that implement the efficient

outcome.

Over the years, several pricing rules have been suggested aiming to mimic competitive equilibrium prices

on such MIP-based electricity markets (Liberopoulos and Andrianesis 2016). Locational marginal pricing

(LMP) rules of many ISOs are based on IP pricing (aka. Integer Programming pricing), where the allocation

problem is solved to optimality, the integer variables are fixed, and the prices are then derived from the dual

variables of the demand-supply constraint of the resulting (convex) linear program (O’Neill et al. 2005). IP

pricing computes anonymous and linear prices, but these prices do not constitute competitive equilibrium

prices. Some generators might not maximize their individual profits and want to deviate, i.e., switch to a

different dispatch at those prices, and IP prices are thus not envy-free. The latter is central to the definition

of a competitive equilibrium and it leads to stability of the outcome. Importantly, besides a lack of stability,

the generators often make a loss at the IP prices, i.e., prices are not even individually rational. Pricing in
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U.S. ISO markets has changed in an attempt to reduce the weight of uplift and to internalize all operational

costs into market prices as far as possible (Herrero et al. 2020). Some ISOs switched from IP pricing to

Extended LMPs (ELMPs) in the recent years, which are based on the dual variables from the demand-supply

constraint in the LP relaxation of the underlying MIP. However, similar issues arise. As a consequence, U.S.

ISOs continue to search for improvements via new formulations for ELMP.1

ISOs use personalized side-payments to address the fact that the public market prices from IP pricing

or ELMP are neither envy-free nor individually rational. This effectively differentiates the linear and

anonymous market prices from the payments of the market participants, which are then non-linear

and personalized. Typically, two kinds of external side-payments are considered in the literature: lost

opportunity costs and make-whole payments (Schiro et al. 2016). Lost opportunity costs describe payments

that are so high that no generator would want to change its dispatch and envy-freeness is achieved. Such

payments may be very large if the market contains non-convexities, and these payments could even go

to generators that were not scheduled (Eldridge et al. 2019). However, electricity markets are highly

regulated markets and as such there are alternative means to enforce stability other than high lost opportunity

cost payments. Actually, most ISOs only pay make-whole payments to ensure individual rationality of

all generators and stipulate penalties that a generator has to pay if it indeed deviates from the optimal

dispatch. In other words, they relax envy-freeness to only individual rationality requirements. We refer to

such outcomes as having penalty-based stability.

However, even the make-whole payments are a significant concern (Hytowitz et al. 2020). The U.S.

Federal Energy Regulatory Commission (FERC) regulates the U.S. wholesale power markets to promote

just competition. In 2018, the FERC found that the practices of several ISOs were unjust and ordered them

to change their pricing because prices did not accurately reflect the cost of serving load (O’Neill et al.

2019). Make-whole payments are not reflected in the public price signals, and they lead to biased investment

signals. This also constitutes a problem for futures markets, where spot market prices serve as the key

reference. In addition, the FERC has released several orders and notices about pricing, which argue that

“the use of side-payments can undermine the market’s ability to send actionable price signals.”2 Similarly,

O’Neill et al. (2019) state that “the make-whole payments are not transparent to other market participants

and are allocated too broadly to provide correct price incentives for market participants to make efficient

entry and exit decisions as well as efficient investments in facilities and equipment.” In summary, a challenge

in U.S. ISO markets is to reduce side-payments, which are a clear sign of inefficient pricing, while still

ensuring individual rationality of all market participants.

1 https://www.misoenergy.org/stakeholder-engagement/stakeholder-feedback/msc-elmp-iii-whitepaper-20190117/

2 https://www.ferc.gov/industries-data/electric/electric-power-markets/energy-price-formation
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In our first contribution, we introduce an optimization model which always computes prices that are

individually rational and budget balanced and clear the market at the efficient dispatch without make-whole

payments under the assumptions of price-inelastic demand and strict demand-supply equality. These

assumptions are standard in the electricity market literature (Liberopoulos and Andrianesis 2016).

2.3. Price-Sensitive vs. Price-Inelastic Demand

While the academic literature on electricity market pricing almost exclusively relies on the assumption

of price-inelastic demand, this assumption is unlikely to hold in the future (Herrero et al. 2020). Power

systems are changing profoundly due to the introduction of large volumes of RES. The largest proportion

of RES capacity are Variable Energy Resources (VER) such as solar and wind power. The characteristic

variability and uncertainty of these VER require an integration of demand flexibility (Reihani et al. 2016).

Demand response is the most immediately available way of increasing demand flexibility and the cheaper

option compared to storage technologies (EU 2016). For example, industrial processes for the production

of pulp and paper are able to provide demand response with a duration of up to three hours without any

notice time (EU 2016). Still, this flexibility comes at a cost and bidders want lower prices if they provide

more flexibility. As indicated, it is expected that in the future we will see a much increased price-responsive

demand (Hytowitz et al. 2020). The recent FERC order 2222 from 2020 also aims at an active demand

side to bid in wholesale markets. However, such price-sensitive bids for flexible demand make market

design more challenging. First, new bid formats lead to additional non-convexities which even increase the

make-whole payments needed with currently used pricing rules. Second, prices that are individually rational

and clear the market at the efficient dispatch cannot always be budget balanced anymore, as we will show.

In our second contribution, we introduce alternative pricing rules that minimize make-whole payments

while they still clear the market at the efficient dispatch with price-sensitive demand. The pricing rules

introduced in this paper are based on a mathematical program which differs significantly from IP pricing,

ELMP, or other proposals in the literature. Similar to existing pricing rules on ISO markets, it treats

efficiency and individual rationality as first-order goals (i.e., enforces these directly in the model), while

budget balance and envy-freeness are treated as second-order goals. However, in contrast to existing

literature, we prioritize budget balance over envy-freeness in a lexicographical way. This lexicographical

ordering is motivated by the fact that the violation of budget balance and the resulting side-payments have

led to concerns by regulators and market participants, as we discussed earlier. Envy-freeness should lead to

stability of the outcome in markets as participants do not have an incentive to deviate. In highly regulated

and transparent electricity markets, stability can be achieved by imposing penalties, which is already

common on ISO markets today. Participants cannot easily deviate from the efficient dispatch determined

by the market operator, and the level of penalties (that generators would only have to pay if they deviated
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from the efficient dispatch) is much less of a concern than high personalized side-payments by the market

operator that are not reflected in the market prices.

The new pricing rule (PE-A) that we propose can be computed in polynomial time and scales to large

problem sizes. Importantly, we show that average locational hourly prices do not increase compared to

other established pricing rules in our experiments and the impact on the payments of individual market

participants are small. However, PE-A avoids large make-whole payments as they occur with IP pricing,

even with price-sensitive demand. In Section 6.2 we analyze our proposed pricing schemes based on a

widely-used benchmark data set: the IEEE RTS benchmark market consisting of 24 nodes, 24 hours, 32

generators (with non-convex cost functions), and 17 consumers. The average make-whole payments for

PE-A pricing only amount to 0 - 0.15% of the total costs in all treatments. In contrast, for IP pricing or

ELMP the make-whole payments were 4 - 5% on average for all generators. Actually, for some generators

the make-whole payments could be more than 10% of their payment with IP pricing. Such high make-whole

payments can be avoided with PE-A and we achieve almost budget-balanced outcomes in all experiments.

We also compare PE-A with a simple implementation of Average Incremental Cost (AIC) pricing, a pricing

rule that was recently proposed to address high side-payments on electricity spot markets. PE-A is not

restricted to specifics of the allocation problem on electricity markets and can also be applied to other types

of non-convex and two-sided markets.

2.4. Positioning in the Literature

This paper draws on different streams in the literature. The fundamental problem of pricing in multi-object

markets is central to micro-economic theory and the management sciences. The fact that non-convex

preferences lead to problems in equilibrium theory has been known for a long time (see for example

Farrell (1959)). Several contributions such as the well-known Shapley-Folkman-Starr lemma (Starr 1969)

suggest that nearly competitive equilibria are possible if the market grows large. A number of more recent

articles suggest that Walrasian prices can be approximated in (very) large markets and that such markets are

approximately incentive-compatible (Azevedo et al. 2013, Azevedo and Budish 2019).

Electricity markets are already very large with hundreds of participants, but their non-convex nature adds

an extra complexity to the pricing problem. The question how actual pricing rules for such non-convex

electricity markets should be designed, has led to a number of heuristics such as IP pricing and ELMP

in the operations research and power engineering literature (O’Neill et al. 2005, 2016, Liberopoulos and

Andrianesis 2016, Eldridge et al. 2019, O’Neill et al. 2019). We will revisit this literature in Section 5.4.

These heuristics typically aim to approximate a competitive equilibrium and relax budget balance and

envy-freeness.

The Information Systems literature has made numerous contributions to market design and pricing in

non-convex markets. Some of the work deals with pricing in combinatorial auctions (Xia et al. 2004,
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Adomavicius and Gupta 2005, Adomavicius et al. 2012, Guo et al. 2012, Petrakis et al. 2013, Bichler et al.

2013, Adomavicius et al. 2020), while other articles deal with combinatorial exchanges (Guo et al. 2012,

Bichler et al. 2018). The design of energy markets has also received attention in Information Systems more

recently (Ketter et al. 2016, Valogianni and Ketter 2016, Koolen et al. 2018). This paper combines these

two strands suggesting a new approach to pricing in electricity markets that substantially reduces or even

eliminates the need for side-payments. Our approach can well be relevant to other non-convex markets such

as those used in transportation (Caplice and Sheffi 2003, Garrido 2007) or for the trading fishery access

rights (Bichler et al. 2019).

3. Bid Languages and Demand-Side Flexibility
Let us provide a brief overview of electricity market design and the role of demand response for future

market designs. The pricing rules that can be employed on a market depend on the underlying allocation

problem, which again depends on the types of bids or the bid language available on a market. The bid

languages on electricity markets today are specific and aim at reflecting the underlying cost functions

of generators and – in part – valuation functions of the demand side. They allow the participants to

communicate their valuations or cost structures effectively. The market operator then solves the allocation

problem and determines a schedule of generation and prices (Cramton 2017). Day-ahead markets are

complemented by intraday (Europe) or real-time (U.S.) markets. These markets modify the day-ahead

schedule to determine the actual physical dispatch. Especially in European countries, the day-ahead market

is considered to be the main reference market, while in the United States it mostly possesses the notion of a

forward market for the real-time market that determines the dispatch (Antonopoulos et al. 2020).

Bid languages allow for the expression of the underlying costs in order to enable efficient outcomes

(Cramton 2003). For instance, generators typically incur certain fixed costs for starting up and running

a generator, as well as variable electricity production costs. Moreover, the operation is often subject to

technical conditions, e.g., referring to minimum runtimes or ramping constraints. On the demand side,

market participants might want to express certain flexibility options, and this will become much more of an

issue in the future with increasing levels of RES. Let us briefly summarize the state-of-the-practice.

In European markets, aside from regular bids for individual hours of the day, the bid language allows

for block bids. The latter represent a set of individual bids that can be executed only in total or not at all

(Committee 2020). Cost structures are communicated as single-part offers, requiring market participants to

aggregate various cost components into a single parameter. The communication of multiple cost components

is explicitly avoided in order to promote decentralized decision-making on the part of the market participants

(Herrero et al. 2020). Most European markets allow for price-sensitive bids on the demand side, although

between 2010 and 2015 an estimated 82 - 89% of the bids were not price-sensitive (EU 2016). In Europe,
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the market is cleared with (zonal) linear and anonymous prices without any side-payments which leads

to efficiency losses in the dispatch (Meeus et al. 2009). Overall, the bid language permits a less detailed

expression of cost functions than, for instance, bid languages used in the United States.

Market participants in the United States are generally permitted to indicate their costs in a more granular

way than in European markets (Madani et al. 2018). Cost structures can be communicated with multi-part

bids, usually consisting of start-up costs, no-load costs as well as an offer curve. Furthermore, generators can

express technical constraints such as minimum up and down times, minimum and maximum output levels,

ramp rates, or start-up times. This allows generators to express their cost characteristics very effectively

(Cramton 2017). So-called self-schedules are pure quantity bids specifying an amount of energy that needs

to be dispatched regardless of price levels or cost structures. Demand-side bids comprise price-inelastic

self-scheduling as well as price-sensitive bid curves (Cramton 2017).

As an example of an ISO bid language, PJM allows for fixed-demand bids and price-sensitive bids on

the demand side. A fixed-demand bid or self-schedule is price-inelastic and defines a level of energy to

be purchased at any price over a particular hour at a location or node. In contrast, price-sensitive bids

specify a defined level of energy, a location and a price, above which the demand bid is zero. More than

90% of the bids in the PJM market were fixed-demand bids in 2019, and only a very small proportion is

price-sensitive at this point (Monitoring Analytics 2019). This explains why most proposals for pricing rules

in the literature assume only price-inelastic demand. However, this is expected to change with increasing

levels of demand response, which specifies flexible bids to be executed but only up to a certain price.

U.S. ISO markets aim to find a welfare-maximizing dispatch based on bids, yet in contrast to European

markets, they first determine the efficient dispatch before they compute prices. While European markets

compute prices for large price zones, the prices on U.S. electricity markets are computed per node in

the electricity grid. The nodal system aims to consider physical grid constraints in the optimization. In

U.S. nodal markets, bids and offers, resource constraints, network constraints, transmission losses and

certain ancillary service requirements are all optimized simultaneously3 (Cramton 2017). As a result, the

electricity price reflects the marginal cost of supplying electricity at a specific node in the network (assuming

the underlying problem was convex). Locational marginal prices have also been suggested for European

markets (Purchala 2018, Ashour Novirdoust et al. 2021). For the remainder of this paper, we discuss markets

as they are operated by ISOs in the United States, in Australia, in South American markets, and many other

parts of the world.

As indicated, demand-side bidding is central to accommodate the volatile nature of VER in the

future. ISOs in the United States have already taken steps to accommodate demand-side flexibility

3 This co-optimization of energy and ancillary services differs from European markets, where reserves are cleared in separate
markets.
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and price-sensitive bids. For example, the Midcontinent ISO (MISO) is undergoing reforms4 to better

incorporate Demand Responsive Resources (DRRs) into the price formation (in both day-ahead and

real-time markets). The above mentioned FERC Order 2222 promotes participation of the demand side,

in particular distributed energy resources, and storage in wholesale electricity markets. There is significant

potential for industrial demand flexibility, but industry will invest in flexibility options only if it comes with

lower electricity prices (EU 2016). Therefore, the increase of price-sensitive bids in wholesale electricity

markets is to be expected in the future.

A number of proposals have been made for the demand side to express flexibility (Liu et al. 2015, Ottesen

and Tomasgard 2015, Ottesen et al. 2016). Flexibility extensions of a bid language on the demand side

can include shiftable volumes (asking to meet a certain volume within a certain time frame), shiftable

profiles (allowing to shift a pre-determined demand profile over time), or adjustable demand (involving

extensible or curtailable demand). Such flexibility options in the bid language would be a powerful way to

address the intermittent nature of VER, but they lead to substantial non-convexities due to additional integer

variables in the allocation problem. For example, thermal power plants have ramping constraints that make

the production available in one period dependent on the production in the preceding and following periods.

The introduction of renewable energy sources leads to an increased use of the of thermal units, and ramping

constraints are expected to be binding more frequently (Herrero et al. 2020). Ignoring such constraints in

the day-ahead schedule can significantly degrade the efficiency of the dispatch. Thus, one cannot expect the

non-convexities on electricity markets to vanish, especially in a future with large proportions of renewable

energy sources. Such demand flexibility and price-sensitive demand have ample consequences on the

properties of prices that we can compute, as we will show.

4. Competitive Equilibrium
In this section, we introduce necessary notation, summarize existing theory on pricing in non-convex

markets, and discuss design desiderata for electricity markets.

4.1. Notation and Economic Environment

In the auction market, there are K types of items (goods; hours and locations in a day-ahead market),

denoted by k ∈ K = {1, . . . ,K}, buyers i ∈ I = {1, . . . , I} and sellers j ∈ J = {1, . . . , J}. In the multi-unit case,

we have multiple homogeneous units (e.g., the minimum bid increment) for each of the heterogeneous K

items k ∈K . A bundle of interest to buyer i (seller j) is described by a vector xi ∈ X (y j ∈Y) where X (Y) is

a compact subset of ZK
≥0. Each buyer i (seller j) has a monotonously increasing (decreasing) value function

vi: X→R≥0 (v j: Y→R≥0) over bundles of items or objects xi (y j).

4 https://www.misoenergy.org/stakeholder-engagement/issue-tracking/update-to-demand-response-deployment-tools/
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An auctioneer wants to find an allocation of items to bidders. The auctioneer aims for allocative

efficiency. This means the auctioneer wants to maximize social welfare, which is the gains from trade for

all participants (the buyers and sellers). The goal of the auctioneer is to find an efficient allocation (x,y) =

(x1, . . . , xI , y1, . . . , yJ) and linear and anonymous market clearing prices λ = {λ(k)}k∈K ∈ RK
≥0. The linearity of

prices refers to the property that individual prices are set for each item k ∈K ; the price for a bundle xi is then

simply the sum of the prices of its components, i.e., it is given by the dot product λ′xi. Anonymity means

that the resulting prices λ are the same for all bidders and there is no price differentiation. Competitive

equilibrium prices might also be non-linear and personalized, but linearity and anonymity are crucial on

electricity and other real-world markets as we discussed earlier. We assume, buyer i’s (direct) utility from

bundle xi is given by πi(xi, λ) = vi(xi) − λ′xi, and seller j’s utility from bundle y j is given by π j(y j, λ) =

λ′y j − v j(y j). Such utility functions are linear in price and referred to as quasilinear utility functions. All

market participants are assumed to be price-takers, meaning that they cannot influence the market prices on

their own. Social welfare can now be defined as
∑

i∈I vi(xi)−
∑

j∈J v j(y j), as prices cancel when the utilities

of market participants are added.

With linear and anonymous prices λ = (λ(1), . . . , λ(k), . . . , λ(K)), the indirect utility function is defined as

ui(λ) =max
x∈X
{vi(x)− λ′x} and u j(λ) =max

y∈Y
{λ′y− v j(y)}.

The indirect utility function is widely used in economics and returns the maximal utility that bidder i

can obtain at prices λ. The demand correspondence Di(λ) and D j(λ), resp. describe the set of bundles that

maximize the indirect utility function at prices λ, i.e.,

Di(λ) = arg max
x∈X

{vi(x)− λ′x} and D j(λ) = arg max
y∈Y

{λ′y− v j(y)}.

4.2. Competitive Equilibrium

If in an outcome (consisting of an allocation and prices) all bidders are allocated a bundle from their demand

correspondence, then the outcome is envy-free (EV). No bidder would want to get another bundle, as a

bidder cannot increase her utility at these prices. If we have EV and the market is budget-balanced (BB),

we have a competitive equilibrium (CE). If competitive equilibrium prices are linear and anonymous (LA),

we also refer to this as a Walrasian equilibrium.

Definition 1 (Walrasian (competitive) equilibrium, (WE)). A price vector λ∗ and a feasible allocation

(x,y) form a Walrasian equilibrium if
∑

i∈I xi =
∑

j∈J y j, xi ∈ Di(λ∗) for every buyer i ∈ I, y j ∈ D j(λ∗) for

every seller j ∈J , and budget is balanced with
∑

i∈I λ
∗′ xi =

∑
j∈J λ

∗′y j.

The BB condition implies that an unallocated item has a price of zero. Note that getting a bundle from

the demand correspondence implies individual rationality (IR), because if bidders would make a loss with a

bundle it would never be in their demand correspondence. However, EV is a much stronger condition than
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IR. In summary, a Walrasian equilibrium (WE) has the properties BB∧ EV ∧ LA. Later we will distinguish

between linear and anonymous (LA) prices and linear and anonymous payments (LAP). For now, we assume

that prices coincide with the payments.

The question is now under which conditions Walrasian equilibria exist and whether they support efficient

(welfare-maximizing) outcomes (EF). To study these questions in a market with quasilinear utilities

and independent private values, we use the following mathematical optimization problem describing a

(combinatorial) exchange, which allows for arbitrary package bids. This bid language does not impose

any restrictions on the types of valuations or cost functions and can be seen as the most general form of

non-convex markets. As a matter of fact, the most prominent element of bid languages used in European

day-ahead markets are block bids, i.e., package bids on adjacent time slots, and they can be easily captured

in the following optimization problem. Electricity markets in the USA stipulate different bid languages

to reduce the number of bids that participants need to submit, but they can be seen as a specific type of

combinatorial exchange.

Let Xi ⊆ Z
K
≥0 denote all bundles for which buyer i submitted a bid, and Y j ⊆ Z

K
≥0 denote all bundles for

which seller j submitted an ask. For simplicity, we make the natural assumption that every bidder submits

a bid with value 0 for the empty bundle. Let zi(x) ∈ {0,1} be a binary decision variable denoting whether

buyer i wins bundle x ∈ Xi, and z j(y) ∈ {0,1} be a binary decision variable denoting whether seller j wins

bundle y ∈ Y j. The parameters x(k) and y(k) describe how many units a buyer wants or a seller provides of

item k in a bundle. The allocation or winner determination problem (WDP) can then be written as an integer

program as follows:

max
∑
i∈I

∑
x∈Xi

vi(x)zi(x)−
∑
j∈J

∑
y∈Y j

v j(y)z j(y) (WDP)

s.t.∑
x∈Xi

zi(x) ≤ 1 ∀i ∈ I (πi)∑
y∈Y j

z j(y) ≤ 1 ∀ j ∈J (π j)∑
i∈I

∑
x∈Xi

x(k) zi(x) ≤
∑
j∈J

∑
y∈Y j

y(k)z j(y) ∀k ∈K (λ(k))

zi(x) ∈ {0,1} ∀i ∈ I,∀x ∈ Xi

z j(y) ∈ {0,1} ∀ j ∈J ,∀y ∈Y j

The WDP determines an allocation of bundles maximizing gains from trade, i.e., an efficient outcome. It

assumes that participants specify a package bid for each possible package of interest, but they can win at

most one. This is also referred to as an XOR bid language. While such a bid language is fully expressive, it
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requires exponentially many bids and is impractical for most applications. This is why electricity markets

specify compact bid languages assuming some knowledge of the cost functions of generators. Bikhchandani

and Mamer (1997) describe a multi-item, single-unit market. Their central theorem shows that there exist

clearing prices for the indivisible single-unit problem if and only if the LP relaxation of WDP has an integer

solution. In this case, the dual variables λ(k) constitute Walrasian equilibrium (WE) prices, and the dual

variables πi and π j determine the surplus of buyer i and seller j, respectively. The result can be proven

via the strong duality theorem and the complementary slackness conditions in linear programming. As was

already noted by Bikhchandani and Mamer (1997), the result for multi-item, multi-unit markets also directly

follows from their result, by considering each of the multiple units as separate items. As a result, the welfare

theorems hold in the quasilinear model:

Theorem 1 (First and second welfare theorem). Let (x,y) be an equilibrium allocation induced by a

Walrasian equilibrium price vector λ, then (x,y) yields the optimal social welfare. Conversely, if (x,y) is a

Pareto efficient allocation, then it can be supported by a Walrasian price vector λ so that (λ,x,y) forms a

Walrasian equilibrium.

Unfortunately, the LP relaxation of WDP does not yield integer solutions in general, and thus we cannot

expect WE to exist in general. In fact, it is well known that WE only exist for restricted types of valuations

for which the LP relaxation actually yields a feasible integer solution. For example, if all bidders’ valuations

are strong substitutes, this is a sufficient condition for WE to exist (Bikhchandani and Mamer 1997, Leme

2017, Baldwin and Klemperer 2019, Bichler et al. 2020). In practice, these conditions are rarely satisfied.

In particular, non-convex cost functions on electricity markets lead to non-convex allocation problems that

do not satisfy conditions for WE.

Competitive equilibrium prices do not need to be linear and anonymous. Bikhchandani and Ostroy (2002)

show that, for combinatorial auctions with arbitrary valuations, competitive equilibrium prices need to be

personalized and non-linear. Such prices convey little information other than that a particular package was

winning or losing. In fact, for combinatorial exchanges with multiple buyers and sellers, there can even be

situations where no competitive equilibrium exists (Bichler and Waldherr 2017). As discussed earlier, linear

and anonymous prices on day-ahead electricity markets are an important baseline for forward markets and

they serve as investment signals. Therefore, we need to relax some of the design desiderata of Walrasian

equilibria.

4.3. Penalty-Based Stability

We discussed that prices should be linear and anonymous (LA), they should support the efficient allocation

(EF), and neither the participants (IR) nor the auctioneer (BB) should make a loss. If envy-freeness (EV)
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was additionally satisfied, prices would support a Walrasian equilibrium. The welfare theorems (Theorem

1) suggest that all of these axioms are satisfied in convex markets. With general preferences in non-convex

markets, however, this is impossible to achieve (Bikhchandani and Ostroy 2002, Bichler and Waldherr

2017). Market operators might not want to relax EF and IR as welfare should be maximized and no

participants should incur losses from submitting bids. Current pricing schemes such as IP pricing and ELMP

sacrifice BB and EV, but the side-payments that arise from the violation of BB have led to controversy as

outlined in the introduction.

EV describes stability at prices from which no participant would want to deviate. In highly regulated and

transparent markets such as electricity markets, stability can also be enforced without prices. As a matter of

fact, U.S. ISOs such as ERCOT, MISO, NYISO, or CAISO enforce stability of the outcome via penalties in

case a generator deviates from the efficient dispatch (O’Neill et al. 2020). As compared to WE, they relax

the EV condition and only ask for IR. In what follows, we will show that with price-inelastic demand and

a strict demand-supply equivalence, we can always find prices that satisfy IR ∧ BB∧ LA ∧ EF. While we

focus on an electricity market example, the insights are relevant to all types of non-convex markets. Let us

introduce a simplified example of a single hour traded on an electricity market to illustrate which properties

we can hope to achieve with linear and anonymous prices. From now on, we require strict demand-supply

equivalence.

Example 1. Suppose we have three generators G1, G2, and G3 (the sellers on electricity markets). G1

produces 10 MWh and asks for $500 ($50/MWh). G2 produces 20 MWh and asks for $300 ($15/MWh).

Finally, G3 produces 30 MWh and asks for $700 ($23.3/MWh). A buyer needs exactly 30 MWh in this hour

and can either purchase from G1 and G2 or from G3, where buying from G3 is the efficient dispatch. Bids

are indivisible. There are several options for the ISO:

1. The ISO could select the efficient dispatch, but set the price just below $15/MWh, the ask of G2. The

efficient dispatch with G3 is selected, but G3 makes a loss. In order to achieve IR, the market maker

can pay G3 $700 − 30MWh ∗ $15/MWh = $250 as a make whole payment. These side-payments are

commonly used in U.S. electricity markets, but they violate BB.5

2. The ISO could select the efficient dispatch and set the price at the ask of G3, i.e., $23.3/MWh. At this

price it would be attractive for G2 to produce, and her ask is “paradoxically rejected.” It is common

on U.S. electricity markets to define a penalty for G2 in case she does. This penalty would be at the

difference of her ask and the market price. In our example, this penalty for G2 would be 20MWh ∗

$23.3/MWh − $300 = $166.67. The market satisfies EF, IR, and BB, but not EV, as G2 does not

maximize her payoff at the prices. As such, it is efficient but not a WE.

5 Much of the literature on pricing in electricity markets and their current implementations suggests that the results are a CE. As introduced earlier,
a CE requires envy-freeness and budget balance, but budget balance is not satisfied here.
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3. The ISO could pick the inefficient dispatch with generators G1 and G2 and set the price at $50/MWh. No

side-payments by an ISO are needed, but there is a welfare loss of $100. This alternative is implemented

on European day-ahead markets. G3 is paradoxically rejected.

If we use penalties to enforce stability of the outcome, we can define new design desiderata for pricing

on non-convex markets. Recall that πk is the direct utility for market participant k.

Definition 2 (Penalty-based stable, budget-balanced, and efficient outcome (PBE)). A linear and

anonymous price vector λ∗ and an efficient allocation (x,y) form a penalty-based stable and efficient

outcome if πi(xi, λ
∗) ≥ 0, π j(y j, λ

∗) ≥ 0 for every buyer i ∈ I and every seller j ∈ J , if the market is budget

balanced with
∑

i∈I λ
∗′ xi =

∑
j∈J λ

∗′y j.

Note that budget balance and linear and anonymous prices in non-convex markets imply a strict

demand-supply equivalence. If buyers and sellers have the very same anonymous and linear price vector (λ)

and buyers buy less than what the sellers sell, then make-whole payments are required and BB is violated.

To see this, assume that a seller sells a package of 2 MWh and a buyer is interested in only 1 MWh. We have

a non-convexity arising from the indivisible package bid of the seller which does not allow us to price one

of the two MWh in the seller’s package at zero. Even if the buyer has a higher value for 1 MWh than what

the seller asks for the package, we cannot achieve budget balance with a single price λ. Thus, the auctioneer

needs to compensate the seller for the second MWh. But even if we have strict demand-supply equivalence,

a PBE might not be possible as the following example shows.

Example 2. Suppose there are generators G1 and G2 both asking for $30 for 3 MWh. Buyer B1 wants to

buy 4 MWh for $20 in total, and buyer B2 is price-inelastic with a demand of 2 MWh. With an ask price

of $10/MWh, the two generators ask for $60 in total. However, as the market price cannot be higher than

$5/MWh, which is what B1 is willing to pay, the buyers will pay only $30 for the 6 MWh in total. The ISO

would need to pay a total of $30 of make-whole payments to the two generators to facilitate the efficient

trade at a price of $5/MWh. The ISO could also set a different market price, but at any price it is inevitable

to compensate the losses of some of the market participants.

The efficient trade would be possible only if the bids of the demand side are all higher than the average

ask price or all buyers are price-inelastic. As indicated, the latter is the standard assumption in the literature

on electricity market design.

Definition 3. Buyer i ∈ I is price-inelastic if for any bundle x ∈ X, vi(x)− λ′x ≥ 0 for all λ ∈RK
≥0. Such a

condition implies that, for any price vector λ, πi(xi, λ) ≥ 0.

Proposition 1. A combinatorial exchange can implement a PBE, if the demand is price-inelastic and

demand equals supply.
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Proof: We assume that we can solve the WDP to optimality, providing an efficient allocation (EF),

(x,y) = ((xi)i∈I, (y j) j∈J ) such that
∑

i∈I xi =
∑

j∈J y j. Furthermore, if we assume that all the buyers are

price-inelastic, we can choose a linear and anonymous price vector λ∗ = (λ∗(1), . . . , λ∗(K)) large enough

such that πi(xi, λ
∗) ≥ 0 for all j ∈ J . For example, one can set λ∗(k) as the highest average cost for item

k, such that IR is satisfied for all generators. Finally the condition
∑

i∈I λ
∗′ xi =

∑
j∈J λ

∗′y j gives us budget

balance (BB). As a result, this combinatorial exchange can implement a PBE. Q.E.D.

With price-inelastic demand and strict demand-supply equivalence, we can increase the linear and

anonymous price until we obtain IR for the generators. The same would hold true if some buyers are

price-sensitive but all their bids are higher than the average cost of the sellers. Since these conditions

are rarely met on electricity markets, it is common to deviate from budget balance (BB) by providing

make-whole payments that ensure individual rationality of the generators. We want these make-whole

payments to be minimal, because such personalized payments are not reflected in the public market prices.

Let us now define a penalty-based stable and efficient outcome (PE):

Definition 4 (Penalty-based stable and efficient outcome (PE)). A linear and anonymous market price

vector λ∗, personalized make-whole payments δi, δ j, and an efficient allocation (x,y) form a penalty-based

stable and efficient outcome if πi(xi, λ
∗) + δi ≥ 0, π j(y j, λ

∗) + δ j ≥ 0 for every buyer i ∈ I and every seller

j ∈J . For PE prices, we demand the total of the personalized make-whole payments to be minimal.

Here the make-whole payments compensate (aggregate) losses that result from the allocated bundle.

As we will see, there can be different notions of make-whole payments on electricity markets, such as

compensating item-level losses. Next, we will introduce optimization problems to compute PBE whenever

it exists or PE otherwise.

5. Pricing Rules
For price computation, we want prices to be linear and anonymous and we enforce efficiency, while

other design goals can be relaxed. We treat BB as first-order design goal and price-based stability as

second-order goal. This means that we first aim for linear and anonymous prices, eliminating or minimizing

the make-whole payments that the ISO needs to pay. Such prices better reflect the value of electricity,

as compared to pricing schemes where the price signal is significantly distorted due to large private and

personalized make-whole payments.

PBE (and also PE) prices are not unique. Therefore, we select those prices that minimize incentives to

deviate. Unfortunately, these are computationally intractable problems if we want to compute them exactly,

as we will show. In lieu thereof, we choose the price vector that is closest to the dual variables of the LP

relaxation of the allocation problem. If the allocation problem were a convex optimization problem, such

dual prices would constitute a competitive equilibrium, i.e., a stable solution that satisfies EV.
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Before we get to price computation, let us introduce an abstract version of the central allocation

problem on electricity markets. Then, we introduce optimization models to compute prices on markets

with price-inelastic and with price-sensitive demand to compute PBE or PE prices, respectively. Finally, we

compare these pricing rules with other approaches in the literature.

5.1. Allocation Problem

In the last section, we have discussed combinatorial exchanges with package bidding as they do not restrict

the types of preferences that a participant might have. Combinatorial exchanges with package bids are

impractical for electricity markets because they would require bidders to submit an exponential set of bids.

Rather, electricity markets use compact bid languages (Goetzendorff et al. 2015) that only require generators

to specify a small number of parameters describing their underlying cost functions and technical constraints

as well as buyers to specify their bid curves.

Unit commitment (UC) problems represent our starting point. Operational constraints on thermal

generation units such as ramping limits and minimum up/down times require those units to be committed

in advance of when they are needed, typically via day-ahead unit commitment. Unit commitment models

determine the optimal scheduling of a given set of power suppliers in order to meet electricity demand.

Such models minimize total system costs subject to market clearing conditions (supply meets demand) and

technical power plant constraints (Stott et al. 2009). Unit commitment models are generation scheduling

models, determining the output of each generator. We use the term security constrained unit commitment

model (SCUC) if it additionally includes network characteristics and constraints (van den Bergh et al. 2014).

The SCUC problem can be formulated as a mixed-integer non-linear problem. The non-linearity comes

from the fact that transmission lines are typically high-voltage alternating current (AC). An AC optimal

power-flow model (ACOPF) provides a non-linear system which describes the energy flow through each

transmission line accurately, and is theoretically the best approach to solve the SCUC (Carpentier 1985).

The ACOPF is non-linear, non-convex and an NP-hard mixed-integer optimization problem (Zohrizadeh

et al. 2020). Although there are various approaches to global optimization, an exact solution to the ACOPF

can be considered intractable for realistic networks (Watson et al. 2015). This has led to significant research

into convex relaxations of the problem (Zohrizadeh et al. 2020). The linear relaxation is also referred to as

the direct current (DC) optimal power-flow model (DCOPF), and versions of this are widely used among

U.S. ISOs to compute the efficient dispatch and prices (Eldridge et al. 2017).

In our paper, we focus on pricing and thus assume a generic DCOPF model that is given by a

mixed-integer linear program (MIP). Appendix A provides an overview of the notation. In the abstract

formulation, buyers and generators / sellers are again denoted by the sets I and J , respectively. The set of

traded goodsK can now be described as the Cartesian productN ×T , whereN represents a set of network
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nodes and T a set of time periods. Nodes are connected through a set of transmission lines L. The objective

of DCOPF aims at maximizing welfare, taking into account buyers’ valuations (v) and generators’ variable

and fixed costs (c and h, respectively). Both buyers (2) and generators (1) can specify constraint matrices A,

G and Q, R, respectively, in order to communicate their preferences and feasible bundles. DC power flows

( f ) are determined in (3) (with P as inverse matrix of the power transfer distribution factors and W and Z as

mappings of buyers and sellers to their respective nodes), with a requirement of aggregate balance (4) and

a consideration of line flow limits (5). The decision variables include buying (x) and selling (y) quantities,

the associated binary variables (d and u), as well as power flows ( f ). As indicated by the integer multipliers

r and s, the binary variables d and u can account for several categories such as start-up and commitment

variables for generators.

max
x,y,u,d, f

v′x− c′y− h′u (DCOPF)

s.t.

Ay+Gu ≥ b (1)

Qx+Rd ≤ e (2)

P f =Wy−Zx (3)

Wy−Zx = 0 (4)

F ≤ f ≤ F (5)

x ≥ 0 (6)

y ≥ 0 (7)

u ∈ {0,1}sJT (8)

d ∈ {0,1}rIT (9)

f ∈RLT (10)

For convenience, we define vector xi to include only the buying quantities of buyer i ∈ I as non-zero

components, i.e.,
∑

i∈I xi = x. Similarly, we define the vectors di, y j, and u j for buyers i ∈ I and generators

j ∈ J , respectively. The utility of buyer i is then defined as πi(xi, λ) = v′xi − λ
′Zxi with λ being the

market price vector. The utility of generator j is π j(y j, λ) = λ′Wy j − c′y j − h′u j. Similarly, xt and yt are the

vectors containing the buying and selling quantities of all buyers and generators resp. in period t ∈ T as

non-zero components. The vectors xit and y jt consequently only include one non-zero component, namely

the particular quantity of buyer i and generator j resp. in period t.

The DCOPF model does not allow for non-linear costs or non-linear AC power flows. We also abstract

from transmission network elements such as transformers, shunts, or auxiliary services. However, the

DCOPF formulation provides the overall structure of a MIP used for unit commitment problems, that allows

us to perform a meaningful analysis of different pricing rules in our experiments in Section 6.
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5.2. PBE Pricing with Price-Inelastic Demand

We first focus on the case of price-inelastic demand. This complies with the traditional notion of electricity

as a basic and indispensable necessity. If demand x has no attached valuations, v′x can be removed from

the objective function of DCOPF, and the generators’ cost will be minimized. Demand flexibility can be

taken into account (by constraint 2), as long as buyers are price-inelastic. Let x∗, u∗, y∗, d∗, and f ∗ denote

the optimal solution to this modified problem, which is efficient with demand-supply equivalence. As the

buyers are price-inelastic, there will always be a price profile λPBE ∈ RNT
≥0 over locations and time periods

such that no generator incurs losses (see Proposition 1).

The following bilevel integer program PBE-P computes prices such that at the efficient dispatch no

generator makes a loss at any time (first constraint) and that there are no negative congestion revenues

(second constraint). The latter prevents that nodal prices are set low at demand-intensive nodes and high

at supply-intensive nodes, implying missing money only due to nodal price discrepancies. In the first

constraint, individual rationality is based on hourly losses incurred by the respective market participant.

Even if a loss in a certain hour is offset by a higher gain in the subsequent hour, the loss is compensated by

a make-whole payment. The third constraint makes sure that incentives for generators to deviate from the

efficient solution are minimal. π j describes the payoff that a generator j ∈ J would have at the prices λ, if

she could choose her dispatch such that it maximizes her payoff. The latter is computed in the lower level

optimization (fourth constraint). This model would lead to prices that are IR and BB and it would minimize

the gains by deviating from the efficient solution by an individual. In a Walrasian equilibrium of a convex

economy, also coalitions of market participants cannot deviate. We do not consider such blocking coalitions

in this model.

min
λ,π,γ

∑
j∈J

γ j (PBE-P)

s.t.

λ′Wy∗jt − c′y∗jt − h′u∗jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

π j − (λ′Wy∗j − c′y∗j − h′u∗j) ≤ γ j ∀ j ∈J

π j =max
y,u

(λ′Wy j − c′y j − h′u j) s.t. (1), (7), (8) ∀ j ∈J

λ ∈RNT
≥0 , π ∈R

J
≥0, γ ∈R

J

Solving bilevel mixed integer programming problems is Σp
2-hard (Jeroslow 1985), a complexity class that

is clearly intractable. While this is no proof that the specific problem PBE-P is in this complexity class,

realistic problem sizes of PBE-P are very large and the problems need to be solved in due time. For example,

the time to compute allocation and pricing in European day-ahead markets is only 17 minutes (NEMO

Committee 2021).6

6 Prior to 08/07/2021, the allowed computation time was only 12 minutes.
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Given the associated practical complexity of solving PBE-P in the required time frames, we suggest an

alternative based on Extended Locational Marginal Pricing (ELMP), which will be described in Section

5.4.2 in greater detail. In essence, ELMP is a tractable heuristic where binary variables of the DCOPF

(constraints 8 and 9) are relaxed to continuous variables and prices are retrieved from the duals of the

nodal demand-supply constraints. ELMP aims at minimizing lost opportunity costs, and if a market is

convex it actually does. Therefore, instead of PBE-P we solve PBE-A. The latter omits the lower-level

optimization and instead minimizes the difference between the price vector that satisfies the individual

rationality constraints (λ) and the ELMP prices (λELMP). Note that ELMP are computed by a linear program,

and therefore λELMP can be computed effectively with state-of-the-art linear programming solvers (see

numerical results in Section 6.2).

min
λ
∥λ− λELMP∥1 (PBE-A)

s.t.

λ′Wy∗jt − c′y∗jt − h′u∗jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

λ ∈RNT
≥0

Here we use ∥λ − λELMP∥1 in an attempt to minimize incentives to deviate from the efficient dispatch.

With an L1 norm in the objective, PBE-A can also be modeled as a linear program which can be solved in

polynomial time. One can also minimize the squared Euclidean norm, which makes this a quadratic problem

which might lead to less variation in the components of the price vector. Wolfe’s combinatorial algorithm

is widely used to solve such problems. Even though this algorithm does not run in polynomial time in the

worst case (De Loera et al. 2020), it is very effective in practice and can serve as an alternative.

5.3. PE Pricing with Price-Sensitive Demand

We now assume price-sensitive demand, i.e., some or all of the buyers submit valuations v, as represented

by the DCOPF. As we have shown, a PBE does not always exist for DCOPF. We can sacrifice budget

balance (BB) but still ensure EF and IR. As a result, market prices are still linear and anonymous (LA), but

individual payments are not (no LAP). Let x∗, y∗,u∗,d∗ f ∗ be the optimal solution to DCOPF. We define the

following problem to compute the minimal make-whole payments associated to a price vector λ.

min
λ,δI,δJ

∥δI∥1 + ∥δ
J∥1 (PE-α)

s.t.

v′x∗it − λ
′Zx∗it + δ

I
it ≥ 0 ∀i ∈ I, t ∈ T

λ′Wy∗jt − c′y∗jt − h′u∗jt + δ
J

jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0
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λ ∈RNT
≥0 , δ

I ∈RIT
≥0, δ

J ∈RJT
≥0

The variables δI and δJ represent the required make-whole payments to buyers I and generatorsJ . Note

that we again consider hourly losses for the calculation of make-whole payments which slightly extends the

requirements for make-whole payments compared to Definition 4 (which only asks for no aggregate losses

over all hours). The optimal make-whole payments from PE-α are given as δI∗ and δJ∗. Again, the resulting

price vectors are not unique, and we could formulate a bilevel integer program aiming to satisfy individual

rationality and to minimize incentives to deviate to another dispatch at these prices.

min
λ,π,γ,δI,δJ

∑
i∈I

γi +
∑
j∈J

γ j (PE-P)

s.t.

v′x∗it − λ
′Zx∗it + δ

I
it ≥ 0 ∀i ∈ I, t ∈ T

λ′Wy∗jt − c′y∗jt − h′u∗jt + δ
J

jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

δI = δI∗

δJ = δJ∗

πi − (v′x∗i − λ
′Zx∗i ) ≤ γi ∀i ∈ I

πi =max
x,d

(v′xi − λ
′Zxi) s.t. (2), (6), (9) ∀i ∈ I

π j − (λ′Wy∗j − c′y∗j − h′u∗j) ≤ γ j ∀ j ∈J

π j =max
y,u

(λ′Wy j − c′y j − h′u j) s.t. (1), (7), (8) ∀ j ∈J

λ ∈RNT
≥0 , π ∈R

I+J
≥0 , γ ∈R

I+J , δI ∈RIT
≥0, δ

J ∈RJT
≥0

Similar to our discussion on the case with price-inelastic demand, we replace the bilevel integer program

by a tractable linear program that minimizes the distance to ELMP prices, subject to having the minimal

make-whole payments given by PE-α.

min
λ,δI,δJ

∥λ− λELMP∥1 (PE-A)

s.t.

v′x∗it − λ
′Zx∗it + δ

I
it ≥ 0 ∀i ∈ I, t ∈ T

λ′Wy∗jt − c′y∗jt − h′u∗jt ≥ 0 ∀ j ∈J , t ∈ T

λ′Zx∗ − λ′Wy∗ ≥ 0

δI = δI∗

δJ = δJ∗

λ ∈RNT
≥0 , δ

I ∈RIT
≥0, δ

J ∈RJT
≥0

This basic formulation of PE-A (as well as PBE-A) might lead to prices that differ among nodes even

though there is no congestion in the transmission network. With a few additional constraints, one can make
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sure that two adjacent nodes have the same price if there is no congestion. For this purpose, one only has

to add price equivalence constraints for edges adjacent to those nodes where there is no congestion. In

our experimental evaluation, we observed that such constraints modify the price profile and increase the

necessary make-whole payments, yet the make-whole payments required by PE-A are still significantly

lower compared to alternative pricing rules.

5.4. Comparison to Existing Pricing Rules

There is a significant literature on pricing rules for electricity spot markets, and a detailed discussion of all

proposals is beyond the scope of this paper. An excellent and up-to-date overview of pricing in electricity

markets is provided by Liberopoulos and Andrianesis (2016). Note that the literature in their paper is entirely

based on the assumption of price-inelastic demand.

In our discussion, we focus on Integer Programming (IP) pricing and Extended Locational Marginal

Pricing (ELMP) since they are used by U.S. ISOs in practice. Furthermore, we consider Average

Incremental Cost (AIC) pricing, a recent proposal that also addresses the problem of significant make-whole

payments. As introduced earlier, relevant criteria are efficiency (EF), individual rationality (IR), budget

balance (BB), linear and anonymous prices (LA), and linear and anonymous payments (LAP). Note that IP

pricing, ELMP and AIC satisfy EF and IR, which are widely considered essential on electricity markets.

With price inelastic demand, PBE-A provides a straightforward way to guarantee BB and LAP. In case of

price-sensitive demand, PE-A is the only pricing rule that minimizes make-whole payments under linear and

anonymous prices. Let us now provide a brief description of IP, ELMP, and AIC pricing.

5.4.1. IP Pricing IP pricing (O’Neill et al. 2005) was an early and widely adopted proposal for pricing

on electricity markets. First, the efficient dispatch is computed via DCOPF. Then the integer variables are

fixed to their optimal values, resulting in a linear program. The duals of the nodal balance constraints

provide linear and anonymous market prices, while the duals associated to constraints with integer variables

determine individual uplift payments. O’Neill et al. (2005) originally describe a problem with price-inelastic

demand. IP pricing can, however, also be adapted to settings with price-sensitive demand (Madani et al.

2018). It was also extended to multi-period, multi-nodal markets in many U.S. ISOs, including CAISO,

PJM, or SPP. In practice, the uplift payments are restricted to be non-negative make-whole payments. Thus,

market participants can retain their profits, and only individual losses are compensated by make-whole

payments to ensure individual rationality. Budget balance is violated due to the make-whole payments, and

the prices do not constitute a competitive equilibrium.

5.4.2. ELMP Pricing ELMP relaxes binary variables of the DCOPF to continuous variables and takes

the duals of the relaxed problem as market prices. MISO introduced ELMP in 2011, but similar approaches
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were implemented by ISO-NE (O’Neill et al. 2019). Similar to IP pricing, there are individual make-whole

payments, and the stability of the solution is enforced via penalties. Lost opportunity costs (LOCs) describe

the forgone profit from the most profitable alternative level of electricity production at the prices. In total, the

make-whole payments and the required penalties yield the LOCs of a generator. ELMP pricing represents an

approximation of Convex Hull Pricing (CHP), as introduced by Gribik et al. (2007). CHP computes prices

that indeed minimize LOCs, but it is computationally expensive and thus it has not been implemented in the

field (Schiro et al. 2016). However, for simple problem formulations ELMP and CHP prices are equivalent

(Hua and Baldick 2017). Evidence by MISO suggests that lost opportunity costs can be reduced by ELMP

pricing compared to IP pricing, yet the general economic properties of ELMP remain unclear (Schiro et al.

2016).

5.4.3. AIC Pricing In a series of essays, O’Neill et al. (2019) challenge established pricing rules

on electricity markets and criticize that the resulting make-whole payments lead to biased market prices.

They suggest AIC pricing, which implements IP pricing as a first stage. In a second step, the AIC price

computation relaxes the integer variables of generators that make a loss for the actual AIC pricing run and

adjusts their objective function coefficients to reflect the average costs, i.e., it distributes the fixed costs of

a generator over the quantity allocated to the generator. In a stylized market with only a single period this

would eliminate the make-whole payments of the generators. In a market with multiple periods, O’Neill

et al. (2020) suggests an iterative process comprising several pricing runs to achieve budget balance. The

approach does not consider make-whole payments for the demand side, but proposes price differentiation

among buyers via Ramsey-Boiteux-like pricing.

AIC pricing provides an innovative new approach to electricity market pricing. Similar to PBE-A or

PE-A, the goal is to eliminate or minimize make-whole payments. But there are also differences. First, PE-A

minimizes make-whole payments for both sides of the market in a single optimization. Second, unlike AIC

pricing, PE-A does not involve price differentiation on the demand side, but sticks to linear and anonymous

prices. Price-differentiation among buyers can be a very useful tool to deal with the non-convexities in a

market. However, it is also challenging. First, personalized prices lead to some level of intransparency in

the market compared to an anonymous linear price for all market participants. Again, not all information

is contained in the public price signal. Second, there is a difference between differential and anonymous

prices in terms of manipulability. Uniform multi-unit auctions and the Walrasian mechanism are known to

be strategy-proof in the large (Azevedo and Budish 2019). This means, with many participants truth-telling

is approximately optimal and the impact of a single participant on the price becomes negligible with many

participants. This is no longer the case if the payments of a participant are personalized. A pay-as-bid

pricing scheme is manipulable and bidders will not reveal their true preferences. The only exception



25

is the Vickrey-Clarke-Groves payment rule which is the unique payment rule that is dominant-strategy

incentive-compatible (Green and Laffont 1979).

In our experiments we show that the make-whole payments necessary to achieve linear and anonymous

prices are negligible even with price-sensitive demand. We argue that, if make-whole payments are so

low, there is no need to restrict to discriminatory prices for each buyer or many anonymous but non-linear

prices (say for different volumes of electricity demanded), because the market price includes “almost” all

information about supply and demand.

For our experiments in Section 6, we will ignore price differentiation in AIC, but instead compute

make-whole payments to allow for a comparison to other pricing rules. Besides, we consider only a single

AIC pricing run, and not multiple iterations.

5.4.4. Alternative Proposals Various other pricing rules have been suggested in the past two decades.

Some, such as Direct Minimum Uplift (DMU) pricing, refrain from linear and anonymous prices and are

thus beyond the focus of this paper. Others, such as the Equilibrium-Constrained (EC) pricing framework by

Azizan et al. (2020) are restricted to price-inelastic demand. Moreover, many rules have been investigated

only under very specific assumption (e.g., Generalized Uplift pricing, Semi-Lagrangean pricing).

Toczyłowski and Zoltowska (2009) introduce the DMU approach, which postulates a bid-ask-spread

between the market prices for buyers and generators. DMU pricing aims at finding a spread that allows

for minimal side-payments and that compensates lost opportunity costs. The side-payments are designed

as uniform per-unit payments for buyers and sellers. However, the ISO has to give up a single linear price

vector. DMU pricing has been proposed for multi-period power flow problems with price-sensitive demand.

More recently, Azizan et al. (2020) proposed the EC pricing scheme that is applicable to general

non-convex settings with price-inelastic demand. Dispatch and payments are determined simultaneously

to achieve EF and IR, as well as to ensure no incentives to deviate, rendering penalties unnecessary.

Consequently, the price and payment functions must be general enough and hence allow for non-linear and

personalized components. One upside is the broad applicability of their pricing framework to established

price and payment functions. Moreover, the authors provide a polynomial-time approximation algorithm

for general non-convex cost functions. The authors do not account for price-sensitive demand. Therefore,

their settings are restricted to those where a PBE is feasible. In contrast to PBE-A, equilibrium-constrained

pricing gives up budget balance and linear and anonymous payment functions to ensure stability without

further penalties. Similar to O’Neill et al. (2019), we instead argue for maintaining budget balance with

linear and anonymous payments and treat lost opportunity costs as secondary objective. In regulated

electricity markets penalties are an accepted means to achieve stability.

Generalized Uplift pricing, introduced by Motto and Galiana (2002) and Galiana et al. (2003), has been

proposed for a single-period problem with price-inelastic demand and seeks to find minimum zero-sum
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uplift payments that ensure stability. Minimum Zero-Sum Uplift Pricing by Liberopoulos and Andrianesis

(2016) seeks the minimum prices that ensure a PBE. In contrast to PBE-A, Minimum Zero-Sum Uplift

pricing allows for uplift charges for profitable generators. Starting at marginal cost, it increases prices and

redistributes the additional gains of profitable generators to the loss-making generators. It terminates as soon

as individual rationality is ensured for every generator. The Semi-Lagrangean pricing scheme by Araoz

and Jörnsten (2011) also achieves a PBE, but their formulation is restricted to price-inelastic demand. The

Primal-Dual pricing rule by Ruiz et al. (2012) aims at uniform IR prices with price-inelastic demand by

relaxing efficiency. Finally, O’Neill et al. (2016) introduce the Dual Pricing algorithm which starts with the

dual of the IP pricing problem and adds restrictions to ensure individual rationality and budget balance. By

employing Ramsey-Boiteux pricing, it results in personalized prices for buyers. In Section 6 we will focus

only on IP pricing, ELMP and AIC pricing for the reasons mentioned above.

6. Numerical Experiments
In what follows, we compare the different pricing rules experimentally. We start with small illustrative

examples before we report aggregate results for the IEEE RTS System, which is frequently used as a

benchmark.

6.1. Illustrative Examples

In our illustrative examples we go from simple to more complex environments. We start with a simple

convex setting, consisting of two generators G1 and G2 and two buyers B1 and B2 at a single node and over

three time periods (i.e., hours). We will gradually extend this example to reflect non-convexities, as well

as price-sensitive and flexible demand-side bids. We will benchmark IP and ELMP pricing as established

rules used by ISOs and further include AIC pricing as a promising rule that has not yet been employed in

practice. These existing rules are compared to PBE-A and PE-A, respectively.

6.1.1. Base Case: Convex Supply, Price-Inelastic Demand G1 offers up to 15 MW for $5/MWh, and

G2 offers up to 20 MW for $3/MWh. B1 and B2 schedule price-inelastic demand according to the following

table:

[MWh] B1 B2
t=1 4 3
t=2 6 6
t=3 10 12

G1 G2
Max Load [MW] 15 20
Offer Price [$/MWh] 5 3

Table 1 Base Case: Price-inelastic Demand Table 2 Base Case: Convex Supply

The optimal solution is obviously to let G2 satisfy the entire demand in the first two periods, while G1

satisfies only the residual demand of 2 MWh in excess of the maximum load of G2 in the third period. IP,

ELMP, AIC, and PBE-A prices are identically set and constitute a WE, PBE, and PE.
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[$/MWh] IP ELMP AIC PBE-A
t=1 3.00 3.00 3.00 3.00
t=2 3.00 3.00 3.00 3.00
t=3 5.00 5.00 5.00 5.00
MWP 0.00 0.00 0.00 0.00

[MWh] G1 G2 B1 B2
t=1 0 7 4 3
t=2 0 12 6 6
t=3 2 20 10 12

Table 3 Base Case: Prices Table 4 Base Case: Dispatch

6.1.2. Non-Convexities Next, we introduce non-convexities for the generators, i.e., G1 has a minimum

load of 2 MW per period as well as no-load costs of $8 that occur as fixed costs when G1 is committed. G2

has a minimum load of 10 MW and no-load costs of $10. Therefore, G2 can no longer satisfy the demand

in the first period and is replaced by G1. It is also assumed that G1 requires a minimum runtime of three

periods. That is, if G1 is committed, it must sell at least its minimum load in every period. Consequently,

the optimal dispatch now involves G1 satisfying the entire demand in t = 1 and running at a minimum load

in the remaining periods, while G2 satisfies the residual demand.

[$/MWh] IP ELMP AIC PBE-A
t=1 5.00 3.50 6.14 6.14
t=2 3.00 3.50 3.00 9.00
t=3 5.00 6.10 9.00 9.00
MWP 38.00 40.29 22.00 0.00

[MWh] G1 G2 B1 B2
t=1 7 0 4 3
t=2 2 10 6 6
t=3 2 20 10 12

Table 5 Non-convexities: Prices Table 6 Non-convexities: Dispatch

Neither pricing rule yields a WE. IP, ELMP, and AIC result in individual losses, at least for some of the

hours, and thus fail to produce a PBE. PBE-A avoids any make-whole payments and yields a PBE. Even

if the aggregate profits were considered, AIC pricing cannot ensure individual rationality, at least after a

single pricing run.

6.1.3. Price-Sensitive Demand We now introduce price-sensitive demand. We assume that half of the

price-inelastic demand is retained as price-inelastic. For the remaining half, B1 bids $10/MWh and B2 bids

$2/MWh in each period, respectively. The dispatch thus changes as it is not welfare-optimal to satisfy the

entire demand. Due to the price-sensitive demand, we now use PE-A instead of PBE-A.

[$/MWh] IP ELMP AIC PE-A
t=1 5.00 3.50 6.45 6.45
t=2 2.00 3.50 4.00 4.17
t=3 3.00 3.50 3.71 8.58
MWP 64.00 50.75 26.57 17.00

[MWh] G1 G2 B1 B2
t=1 5.5 0 4 1.5
t=2 2 10 6 6
t=3 2 14 10 6

Table 7 Price-Sensitive Demand: Prices Table 8 Price-Sensitive Demand: Dispatch

Under the welfare-optimal dispatch, no PBE is possible. In order to satisfy the price-inelastic fraction of

demand, both generators need to produce at least at their minimum loads, and make-whole payments thus

become inevitable. PE-A achieves the lowest aggregate make-whole payments ($10.50 to G1, $6.50 to B2),

which are as close to budget balance as possible.
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6.1.4. Flexible Demand We now additionally convert some of the inflexible demand into flexible

demand. B1 has converted 2 MWh from t = 1 and 1 MWh from t = 2 into a shiftable volume of 3 MWh that

can be satisfied in an arbitrary pattern over the considered time frame.

[$/MWh] IP ELMP AIC PE-A
t=1 5.00 3.50 7.29 7.29
t=2 2.00 3.50 4.00 9.00
t=3 3.00 3.50 3.71 9.00
MWP 64.00 44.75 22.57 7.00

[MWh] G1 G2 B1 B2
t=1 3.5 0 2 1.5
t=2 2 10 8 4
t=3 2 14 10 6

Table 9 Flexible Demand I: Prices Table 10 Flexible Demand I: Dispatch

The shiftable volume of B1 is completely served in t = 2 and replaces some of the price-sensitive demand

of B2. This allows for a significant reduction in make-whole payments for PE-A. Assume now that B1

adds an additional 1 MWh from t = 2 to the shiftable volume. Making use of this flexibility allows for PBE

prices.

[$/MWh] IP ELMP AIC PE-A
t=1 5.00 3.50 7.29 7.29
t=2 5.00 3.50 6.14 6.14
t=3 3.00 3.50 3.56 9.00
MWP 38.00 43.75 10.89 0.00

[MWh] G1 G2 B1 B2
t=1 3.5 0 2 1.5
t=2 7 0 4 3
t=3 2 18 14 6

Table 11 Flexible Demand II: Prices Table 12 Flexible Demand II: Dispatch

This example also illustrates the advantages of demand-side bidding and bid languages that permit the

expression of flexibility dimensions.

6.2. Experiments Based on the IEEE RTS System

Finally, we report results of numerical experiments based on the IEEE RTS System introduced by Grigg

et al. (1999), in order to better understand prices in a larger and realistic test system. This system has

been used in a variety of studies on electricity markets (Garcia-Bertrand et al. 2006, Morales et al. 2009,

Zoltowska 2016, Hytowitz et al. 2020, Zocca and Zwart 2021) and includes non-convexities (no-load costs,

minimum loads, minimum runtimes), price-sensitive demand, as well as several nodes and time periods.

Therefore, it is well suited to study prices and make-whole payments under different pricing schemes.

Grigg et al. (1999) provide a stylized system topology, transmission network parameters, hourly (nodal)

demand data as well as characteristics of generating units. In accordance with Zoltowska (2016), we select

the single area, 24-node topology by Grigg et al. (1999) for a representative 24-hour winter day with 32

generators (total capacity: 6.81 GW) and 17 consumers (average hourly demand: 2.60 GWh). For data on

(non-convex) generation costs or demand valuations we rely on the bid and offer curves provided by the
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cases studies of Garcia-Bertrand et al. (2006) and Zoltowska (2016) on this system. The experiments were

conducted on an Intel(R) Core(TM) i7-8565U CPU with 16 GB RAM.

Our base setting includes 32 generators with minimum and maximum loads, minimum runtimes, as

well as no-load costs and an offer curve representing variable costs. The demand of the 17 consumers is

assumed to be price-inelastic at first and later extended to price-sensitive and flexible demand. Generators

and consumers are embedded in a DC power flow model with 24 nodes. Appendix C provides heatmaps of

the hourly nodal prices and Table 13 reports statistics on prices, make-whole payments (MWP) as well as

the magnitude of penalties necessary to avoid generators to deviate from the efficient dispatch. Note that

instead of penalties an ISO could also just prohibit deviations from the efficient dispatch. In all scenarios

we will see that the make-whole payments for PBE-A (in case of price-inelastic demand) or PE-A (in case

of price-sensitive demand) are zero or very low compared to other pricing rules. Also, the make-whole

payments for AIC prices are reduced compared to IP pricing, but remain significant after a single pricing

run and with hourly loss compensation. Make-whole payments per generator can be found in Appendix B.

Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 22.32 8.81 35,749.28 0.00 0.00 0.00 4.63% 1.39s
ELMP 22.62 6.40 6,193.37 0.00 2,460.20 0.00 0.80% 1.39s
AIC 29.62 16.92 26,114.72 0.00 46,095.51 0.00 3.38% 2.68s
PBE-A 23.35 7.53 0.00 0.00 17,966.49 0.00 0.00% 1.46s

Table 13 IEEE RTS Statistics with Price-Inelastic Demand

Under price-inelastic demand, a PBE (Definition 2) is achieved only by PBE-A. All other pricing

rules require make-whole payments to ensure individual rationality. Classical IP pricing requires high

make-whole payments to the generators, resulting in a violation of budget balance for the market operator.

AIC prices are high on average, especially in the peak periods t = 18 and t = 19 (see Figure 5 in Appendix

C), contributing to a large standard deviation of the prices at the same time. The price peaks allow for overall

profitability for the generators, but as discussed before, individual periodic losses are still compensated,

resulting in make-whole payments during low-price periods. In contrast, ELMP produces a smooth price

profile with little volatility and low lost opportunity costs (as reflected by the sum of make-whole payments

and penalties). PBE-A adjusts this price profile only slightly in order to ensure a PBE, mainly by increasing

prices at the nodes 101 and 115, where most of the otherwise unprofitable generators are situated. As a

consequence, the price average and standard deviation are slightly increased, but no make-whole payments

are required outside the market price. Penalties are necessary but are still lower than the lost opportunity

costs required under IP or AIC pricing.
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Next, we consider price-sensitive demand, taking into account the bid curves as described by

Garcia-Bertrand et al. (2006). In particular, each buyer submits some minimum price-inelastic demand and a

piecewise-constant demand curve on top of that. Accounting for buyer valuations naturally decreases prices

compared to the price-inelastic case, which is also evident from Table 14 and Figure 6 in Appendix C.

Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 19.63 5.03 14,272.57 0.33 0.00 0.42 2.52% 1.57s
ELMP 21.02 5.35 490.39 781.43 257.43 803.04 0.22% 1.55s
AIC 21.27 6.36 11,048.85 945.38 0.00 0.00 2.12% 2.96s
PE-A 20.85 5.23 0.00 112.43 929.52 804.66 0.02% 1.66s

Table 14 IEEE RTS Statistics with Price-Sensitive Demand

It is not possible to achieve a PBE in this environment. IP prices produce the lowest average price

and standard deviation. Similar to the price-inelastic case, it diverges most from budget balance, with

make-whole payments amounting to 2.5% of the total incurred generation costs. ELMP prices are higher on

average, resulting in less make-whole payments for the generators. However, these prices do not minimize

total make-whole payments. PE-A requires make-whole payments of only $112.41. Only IP prices are on

average lower than PE-A prices, and the total lost opportunity costs of PE-A (as reflected by the sum of

make-whole payments and penalties) are minimal among the pricing rules under consideration. PE-A prices

are minimal in make-whole payments, closest to stability, and imply low and smooth price profiles.

Finally, we introduce demand flexibility. The following Tables 15 and 16 reflect prices where 20% of the

previously price-inelastic demand is converted to either shiftable profiles or shiftable volumes. Here, each

shiftable demand is a randomly sampled 5-hour interval of inelastic demand that can either be shifted as a

profile by 4 hours (shiftable profile) or the aggregate volume can be satisfied within the original 5 hours in

an arbitrary fashion (shiftable volume).

Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 19.63 5.03 14,275.82 9,116.75 0.00 0.00 4.14% 1.76s
ELMP 20.74 5.14 1,034.49 21,420.72 257.43 0.00 3.97% 1.71s
AIC 20.51 5.76 11,882.69 20,773.64 0.00 0.00 5.78% 3.27s
PE-A 20.42 4.92 188.54 322.96 929.52 538.11 0.09% 1.84s

Table 15 IEEE RTS Statistics with 20% Shiftable Profiles

In both cases, welfare gains can be realized by using the demand-side flexibility in a welfare-maximizing

fashion. The increase in make-whole payments for the buyers is a result of the modeling decision to assign

the highest valuation in the bid curve to the – formerly price-inelastic and now price-sensitive and flexible –
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demand. As the flexible demand needs to be satisfied within the boundaries set by the flexibility parameters,

this can create a loss on the part of the buyer if her highest valuation is still below the generation cost.

This results in the significantly higher make-whole payments for buyers. Again PE-A has by far the lowest

make-whole payments and little price volatility, etc.

Price Price MWP MWP Penalty Penalty MWP / Computation
Mean Std. Dev. Sell Buy Sell Buy Total Cost Time

IP 19.98 5.29 12,725.92 10,491.12 0.00 0.00 4.18% 1.83s
ELMP 21.04 5.36 436.60 22,686.77 257.43 0.00 4.16% 1.74s
AIC 21.66 6.65 10,888.60 35,141.68 0.00 0.00 8.29% 3.34s
PE-A 20.74 5.17 564.35 198.47 741.80 687.45 0.14% 1.84s

Table 16 IEEE RTS Statistics with 20% Shiftable Volumes

The numerical tests indicate that PBE-A and PE-A can substantially reduce or even eliminate make-whole

payments compared to conventional pricing schemes. As a result, there are no or only very low

side-payments that are not reflected in the public market price anymore. Approaching budget balance comes

at the expense of higher penalties to ensure a stable market outcome. As discussed in the previous sections,

we argue that penalties are less of a concern, since they are already established and enforced in highly

regulated electricity markets (O’Neill et al. 2020).

7. Conclusions
Electricity markets have seen significant change among U.S. ISOs recently. While all ISOs moved to

mixed-integer programming in order to determine the efficient dispatch, there is still a significant discussion

about out-of-market make-whole payments paid by the ISOs to some of the generators. These payments

can be significant and they distort the market price signals as has been pointed out by the U.S. FERC and

domain experts. We show that, with the standard assumption of price-inelastic demand and demand-supply

equivalence, no make-whole payments are necessary.

With the advent of variable energy sources, demand response becomes increasingly important. To

adequately reflect flexibility on the demand side, ISOs need new bid formats that likely lead to additional

non-convexities and price-sensitive demand. We prove that in such markets zero make-whole payments are

impossible in general. Based on this insight, we introduce the PE-A pricing rule that minimizes make-whole

payments and compare it to existing payment rules used by ISOs and the AIC pricing rule. Rather than trying

to mimic competitive equilibrium prices based on linear relaxations of the underlying non-convex allocation

problem, we treat envy-freeness as second-order design goal and optimize these objectives directly. The

results show that high side-payments on electricity markets as they are challenged by regulators can either

be avoided or reduced substantially.
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The experiments provide evidence that prices under PE-A do not increase on average compared to

established pricing rules, and the changes in the overall payments of market participants are very small.

Moreover, make-whole payments are avoided or they are negligible in all experiments that we ran. The new

pricing rules are based on optimization problems that can be solved in polynomial time and whose principles

are easy to understand and communicate. The new pricing rule is also general without dependencies on the

specifics of the underlying allocation problem and can be applied to other non-convex markets as well.
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Appendix A: Notation for DCOPF

Sets

•I = {1, ..., I}: Buyers (index i)

•J = {1, ..., J}: Generators (index j)

•T = {1, ...,T }: Time periods (index t)

•N = {1, ...,N}: Nodes (index n)

•L = {1, ...,L}: Lines (index l)

Parameters

•v ∈RIT : Buyer valuations

•c ∈RJT : Generator variable cost

•h ∈RsJT : Generator fixed costs

•A ∈Rm×JT : Generator constraint matrix I

•G ∈Rm×sJT : Generator constraint matrix II

•b ∈Rm: Generator constraint right-hand side

•Q ∈Rk×IT : Buyer constraint matrix I

•R ∈Rk×rIT : Buyer constraint matrix II

•e ∈Rk: Buyer right-hand side

•P ∈ RNT×LT : Inverse PTDF matrix (calculated from susceptance and network incidence matrix; also includes

reference node)

•W ∈RNT×JT : Generator to node and period mapping matrix

•Z ∈RNT×IT : Buyer to node and period mapping matrix

•W ∈RT×JT : Generator to period mapping matrix

•Z ∈RT×IT : Buyer to period mapping matrix

•F ∈RLT : Upper flow limits

•F ∈RLT : Lower flow limits

Decision Variables

•x ∈RIT : Buying quantities

•d ∈ {0,1}rIT : Buy-side binary variables (r as integer multiplier to account for several binaries [different dimensions

of flexibility, etc.])

•y ∈RJT : Selling quantities

•u ∈ {0,1}sJT : Generator commitment and other binaries (s as integer multiplier to account for several binaries

[commitment, start-up, etc.])

• f ∈RLT : Line flows
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Appendix B: Make-Whole Payments

The following figures (see online version for better visualization) provide histograms of make-whole payments per

generator (in $) in the different environments with price-inelastic, price-sensitive, and flexible demand (shiftable

profiles and shiftable volumes) for the IEEE RTS system. With IP pricing, ELMP, and AIC some generators receive

very high make-whole payments that are not reflected in the public prices. With PBE-A / PE-A such make-whole

payments are negligible.

Figure 1 Make-Whole Payments with

Price-Inelastic Demand

Figure 2 Make-Whole Payments with

Price-Sensitive Demand

Figure 3 Make-Whole Payments with

20% Shiftable Profiles

Figure 4 Make-Whole Payments with

20% Shiftable Volumes

Appendix C: Heatmaps of Prices

The following heatmaps describe hourly nodal prices (in $/MWh) for different nodes across the day for the IEEE

RTS system. Darker colors describe higher prices. Each panel describes the outcome of one pricing rule (IP, ELMP,

AIC, and PBE-A or PE-A) for the environments with price-inelastic demand, price-sensitive demand, 20% shiftable

profiles or 20% shiftable volumes. In general, the prices with price-sensitive and flexible demand tend to be higher.
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Interestingly, the prices of PBE-A / PE-A and ELMP tend to be similar in spite of significantly lower make-whole

payments with PBE-A / PE-A.

Figure 5 IEEE RTS Prices with Price-Inelastic Demand

Figure 6 IEEE RTS Prices with Price-Sensitive Demand
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Figure 7 IEEE RTS Prices with 20% Shiftable Profiles

Figure 8 IEEE RTS Prices with 20% Shiftable Volumes

Additional experiments can be found in an online supplement.
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1 INTRODUCTION
Low transaction costs on electronic markets have led to an increased use of market mechanisms to

allocate scarce resources. The promise of markets rests on fundamental theoretical results such

as the welfare theorems [Arrow and Debreu, 1954]. These theorems state that in markets with

convex preferences, a Walrasian equilibrium will maximize social welfare and that every welfare-

maximizing allocation can be supported by Walrasian equilibrium prices. At those prices no market

participant would want to deviate from what they are assigned, and the outcome is envy-free and

budget-balanced. The welfare theorems provide the theoretical rationale for using markets in a

wide variety of applications.

Unfortunately, more recent literature on competitive equilibrium theory formarkets withmultiple

indivisible goods shows that Walrasian equilibrium prices only exist under restrictive assump-

tions on the valuation functions [Baldwin and Klemperer, 2019, Bikhchandani and Mamer, 1997,

Bikhchandani and Ostroy, 2002, Gul and Stacchetti, 1999]. Most real-world markets have non-

convex value and cost functions leading to non-convex welfare maximization problems, where

Walrasian equilibrium prices do not exist in general. Electricity markets are a prime example of such

non-convex markets, but similar characteristics can be found in industrial procurement, spectrum

auctions, and transportation markets [Cramton et al., 2006].

While the fundamental problems that arise in pricing goods in non-convex markets are inde-

pendent of the domain, electricity market design is particularly challenging due to the specific

bid languages used and the fact that supply and demand need to be balanced at all times. More

importantly, electricity markets consist of coupled markets where trade happens on interlinked

nodes in the electricity grid. As a result, congestion on network links needs to be reflected in the

prices as well. These specifics lead to one of the most challenging market design problems, one

that is receiving renewed attention due to the ongoing energy transition.

In aWalrasian equilibrium, one price aligns all incentives such that no participant wants to deviate

from the welfare-maximizing outcome, but such equilibria generally only exist in convex markets

[Bikhchandani and Mamer, 1997]. European day-ahead electricity markets therefore accept welfare

losses while ensuring linear prices, whereas wholesale electricity markets in the U.S. implement

optimal outcomes and determine linear and anonymous market prices that are complemented by

personalized side-payments. However, in both jurisdictions, the current pricing rules have come

under scrutiny.
1

1.1 Multiple Pricing Objectives
This paper is based on the observation that in non-convex electricity markets where no Walrasian

equilibrium exists, a market operator needs to consider multiple incentives to deviate from the

outcome. These include the incentives to deviate from the overall allocation (leading to “global”

lost opportunity costs, GLOCs),
2
but also incentives because bidders might incur a loss (leading to

make-whole payments, MWPs), and incentives to deviate from the output under fixed commitment

(leading to “local” lost opportunity costs, LLOCs, and biased congestion signals). The latter two

types of incentives have received little attention so far.

Minimal MWPs matter because in most electricity spot markets the market operator only pays

MWPs such that the market participants do not incur a loss, but they do not compensate GLOCs.

Deviations from the welfare-maximizing dispatch are avoided by imposing penalties. As a result,

1
https://www.ferc.gov/industries-data/electric/electric-power-markets/energy-price-formation, https://www.nemo-

committee.eu/assets/files/NEMO_CACM_Annual_Report_2020_deliverable_1_pub.pdf

2
Global lost opportunity costs describe the difference between each participant’s profits under the welfare-maximizing

allocation and the individual profit maxima each participant could obtain through self-dispatch given the prices.
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reducing MWPs has been a concern by market operators, and it has been the focus of recent

research [Bichler et al., 2022, O’Neill et al., 2019]. However, low MWPs do not necessarily lead to

low GLOCs or good congestion signals, as we will show.

LLOCs assume that the commitment decisions
3
have been made but that generators can deviate

from their cleared volumes in an attempt to improve their payoff. Such deviations would not be

profitable if there was a Walrasian equilibrium. These local incentives to deviate are in general

a strict subset of global incentives, where generators may also alter their commitment decisions.

Low LLOCs constitute another important but less obvious design goal, that of adequate congestion

signals. Electricity markets are based on a network with possibly thousands of spatially distributed

nodes connected via transmission lines. If transmission lines are congested, the marginal costs of

electricity on two different nodes should differ. As transmission operators have convex costs, zero

LLOCs imply that the congestion price indeed describes the value of additional transmission capacity.

Unfortunately, current pricing heuristics might lead to different prices on neighboring nodes

although there is no congestion [Schiro et al., 2016], creating unrealized arbitrage opportunities for

transmission operators. It is important to have pricing rules that adequately signal congestion in

the electricity grid, for risk hedging of participants, but also for adequate investment decisions.

1.2 Contributions
All three types of incentives matter, but there are trade-offs as we show. In this paper, we establish

these trade-offs for market operators and formalize the pricing problem as a multi-objective

optimization problem. Our main contribution is then the formulation of a parameter-free pricing

rule which balances trade-offs between reducing MWPs and LLOCs to minimize local incentives of

participants to deviate from the efficient outcome or incentives to exit the market. As discussed

above, this also guarantees adequate congestion signals. Our technique does not require elicitation

of weights or other parameters for individual objectives by the market operator, avoiding a fine-

tuning problem. Numerical evidence shows that it outperforms existing pricing rules in reducing

MWPs while maintaining adequate congestion signals.

To formalize our pricing rule, we begin via an in-depth theoretical analysis of pricing in coupled

markets. As our first contribution, we make explicit the link between previously proposed pricing

rules and the classes of incentives they optimize. For this purpose, we study pricing in coupled

and (non-)convex markets through the lens of convex optimization. As a second contribution, we
establish that in the presence of non-convexities, pricing is inherently a multi-objective optimization

problem. This is different to prior literature that primarily aims to minimize GLOCs. Of course, when

Walrasian prices exist, they eliminate all incentives for a market participant to deviate from their

allocation. However, in the presence of non-convexities, the optimization of a class of incentives

is inherently contradictory to the optimization of another, even when one class is a strict subset

of another. Our third contribution introduces alternative pricing rules based on multi-objective

optimization. We propose a pricing rule which minimizes a weighted sum of GLOCs, LLOCs, and

MWPs. This weighing of objectives is referred to as scalarization. The freedom in determining the

weights causes a fine-tuning problem: without information on the bids, the impact of weights is

thus difficult to judge and it can be challenging to settle on a pricing rule. To rectify this issue, we

introduce a join of two established pricing rules (Minimum-MWP and Integer Programming (IP)

pricing) as an alternative approach. This method minimizes the maximum of MWPs and LLOCs,

i.e. incentives for each participant to deviate from the allocation locally (given the commitment

decision) or incentives to exit the market entirely. We prove that the join always achieves lower

3
Commitment decisions on spot markets determine whether a generator is scheduled to produce electricity during a market

time unit (a binary decision variable in the allocation problem), but not the production quantity (in Megawatt hours (MWh)).
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MWPs than IP pricing, and lower LLOCs than any minimal-MWP solution if zero MWPs are

attainable. In addition, we show that prices computed via the join result in a participant-wise

Pareto-optimal outcome, such that different prices cannot jointly reduce MWPs and LLOCs of this

participant. As a practical advantage, the join does not require to specify weights and is thus a

parameter-free pricing rule. In extensive numerical experiments we show that prices computed via

this join require significantly less MWPs than traditional IP pricing and retain good congestion

signals at the same time. Besides, the approach can be computed efficiently and it requires no

fine-tuning of objective weights, as pointed out earlier.

1.3 Organization of the Paper
The remainder of this paper is structured as follows. Section 2 summarizes relevant literature

on competitive equilibrium theory and on electricity market design. In Section 3, we introduce a

generic market and revise central findings for convex and non-convex settings. In Section 4, we

outline how current pricing rules each optimize different objectives, and how these objectives can

be in substantial conflict with each other. To that end, we propose a multi-optimization perspective

in Section 5 and introduce principled ways to balance the trade-offs. Subsequently, we tailor these

pricing rules to an exemplary electricity market in Section 6. We present explicit formulations and

numerical findings that illustrate the advantages of our pricing rules. Section 7 provides a summary

and conclusions.

2 RELATED LITERATURE
The literature on competitive equilibrium has a long history. In this section, we summarize the

main theoretical findings before we discuss the related literature on electricity market design. These

streams of literature are often considered separately, while we aim to connect the contributions of

economics and engineering.

2.1 Competitive Equilibrium Theory
Early in the study of markets, general equilibrium theory was used to understand howmarkets could

be explained through the demand, supply, and prices of multiple commodities. The Arrow-Debreu

model shows that under convex preferences, perfect competition, and demand independence there

must be a set of competitive equilibrium prices [Arrow and Debreu, 1954]. Market participants are

price-takers, and they sell or buy goods in order to maximize their total utility. General equilibrium

theory assumes divisible goods and convex preferences and the well-known welfare theorems do

not carry over to markets with indivisible goods and non-convex preferences and constraints.

More recently, competitive equilibria with indivisible objects were studied and the idea of a

quasilinear utility function was widely adopted [Baldwin and Klemperer, 2019, Bikhchandani and

Mamer, 1997, Bikhchandani and Ostroy, 2002]. In these competitive equilibrium models, buyers

and sellers with a quasilinear utility maximize their respective payoffs at the prices, resulting in an

outcome that is stable (i.e. no participant wants to deviate from their resulting trade). A large part

of the literature focuses on Walrasian equilibria, i.e. efficient market outcomes with linear (i.e. item-

level) and anonymous prices, where all participants maximize payoff. If such prices exist, then the

outcome maximizes welfare, as can be shown via linear programming duality. In general, Walrasian

equilibria for markets with indivisible goods only exist for restricted valuations such as strong

substitutes [Baldwin and Klemperer, 2019, Bikhchandani and Mamer, 1997, Kelso and Crawford,

1982]. These conditions lead to a concave aggregate value function, the allocation problem can be

solved in polynomial time, and linear and anonymous (Walrasian) competitive equilibrium prices

clear the market [Bichler and Waldherr, 2019]. Importantly, under these conditions the welfare

theorems hold for markets with indivisible objects [Bichler et al., 2020, Blumrosen and Nisan, 2007].
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Unfortunately, these conditions are very restrictive and in most markets goods can be substitutes

and complements such that no Walrasian equilibria exist. This has led to significant research on

non-convex combinatorial markets, which allow bidders to specify package bids, i.e. a price is

defined for a subset of the items [Bichler and Goeree, 2017, Milgrom, 2017]. The specified bid price

is only valid for the entire package and the package is indivisible such that bidders can express

complex (quasilinear) preferences for general valuations including complements and substitutes.

The generality of thesemarkets comes at a price. First, thewinner determination problem becomes

an NP-hard optimization problem. Second, competitive equilibrium prices need to be non-linear

and personalized to allow for full efficiency [Bikhchandani and Ostroy, 2002]. Bichler and Waldherr

[2017] show that the core of the game can even be empty such that no competitive equilibrium

prices exist. However, non-linear and personalized prices would convey little information other

than that a bidder lost or won. Besides, if prices should serve as a baseline for futures trading, this

is hardly possible with non-linear prices that differ among participants. In other words, anonymity

and linearity are important requirements for many markets, electricity markets being the prime

example.

2.2 Pricing on Electricity Markets
In this work, we focus on central wholesale electricity spot markets that are based on auctions.

Here, market participants submit supply and demand bids according to a certain bid language
which translates into a central allocation problem. As market participants often exhibit start-up

costs, minimum generation requirements, or other technical constraints, bid languages typically

imply some form of non-convexities [Herrero et al., 2020]. Price-sensitive demand [Bichler et al.,

2022], demand response [Papavasiliou and Oren, 2014] or the multi-period nature of the clearing

problem [Cho and Papavasiliou, 2022] add further complexity. Market operators around the world

use mixed-integer programming (MIP) to address these non-convexities and to determine the

efficient allocation or dispatch [Hobbs et al., 2001]. However, computing (electricity) prices in the

presence of non-convexities remains a fundamental problem.

If Walrasian equilibrium prices exist, no market participant will have an incentive to deviate from

the optimal allocation. In other words, no participant would bear GLOCs. A natural extension to

non-convex markets – where Walrasian equilibrium prices do not exist in general – is to minimize

these GLOCs but maintain linearity and anonymity of prices. This is referred to as Convex Hull
(CH) pricing, originally explored by Gribik et al. [2007] based on Hogan and Ring [2003]. Convex

Hull pricing replaces the non-convex feasible region of the combinatorial allocation problem by

its convex hull, and obtains prices from the dual of the resulting convex problem. We refer to

Schiro et al. [2016] for a comprehensive and critical overview. However, obtaining exact Convex

Hull prices is computationally expensive. A common approach involves solving the (convex but

non-smooth) Lagrangian dual of the original non-convex problem, which – under mild assumptions

– is equivalent to optimizing the convex envelope of the original cost functions over the convex

hull of the feasible region [Falk, 1969, Hua and Baldick, 2017]. While there has been significant

progress in this field [Knueven et al., 2022, Stevens and Papavasiliou, 2022], such methods are not

yet used in practice and computational complexity remains a major concern.

In practice, market operators resort to different heuristics in order to price electricity on real-

world markets. Most practical implementations are based on Integer Programming (IP) pricing,
where the non-convex allocation problem is first solved to optimality, and then solved again with

integer variables being fixed to their optimal values. The IP prices are derived from the dual solution

of the latter convex program [O’Neill et al., 2005]. IP pricing has become popular as it follows

the notion of marginal cost pricing in non-convex markets and furthermore provides accurate

congestion signals when applied on an electricity network. However, IP prices do not constitute
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competitive equilibrium prices and can come with high lost opportunity costs. Based on the ongoing

debate about high MWPs discussed in the introduction, new pricing rules have been proposed in

an attempt to reduce them [Bichler et al., 2022, O’Neill et al., 2019], either via price differentiation

or by minimizing MWPs directly. Recently, Yang et al. [2019] proposed to consider congestion

signals in the design of pricing rules, which we do in our proposal. A comprehensive discussion of

pricing rules as they have been proposed in the academic literature is provided by Liberopoulos

and Andrianesis [2016].

3 DUAL PRICING IN CONVEX MARKETS
In this section, we introduce a model for a non-smooth and coupled market which allows for

Walrasian equilibria. Our paper draws in large parts on themore general field of convex optimization;

in Appendix A, we provide a brief introduction on the relevant notions from convex and non-smooth

optimization.

Our goal in this paper is to gain an understanding of previously proposed pricing rules through the

lens of convex optimization to reveal the corresponding design objectives they optimize. Towards

this end, in this section, we first introduce our market model and then formalize the notion of a

dual pricing problem via analysis of a convex market, where there exists a canonical pricing rule

for optimal outcomes – Walrasian equilibria.

In what follows, we work with functions that take values in the extended real line, R = R ∪
{−∞,∞}. Addition and multiplication are commutative binary operations on the extended real line,

defined as usual for any real number, and 𝑥 + ∞ = ∞, 𝑥 −∞ = −∞ for any 𝑥 ∈ R.

Definition 3.1. A coupled market consists of a set of goods𝑀 , a set of commodity flow parame-

ters 𝐹 and a set of market participants 𝐿 = 𝐵 ∪ 𝑆 ∪ 𝑅, partitioned into the set of buyers 𝐵, set of

sellers 𝑆 and the set of transmission operators 𝑅. Each market participant ℓ ∈ 𝐿 has preferences

over bundles in R𝑀∪𝐹
, i.e. each buyer 𝑏 has a valuation function 𝑣𝑏 : R𝑀∪𝐹 → R, each seller 𝑠 has a

cost function 𝑐𝑠 : R𝑀∪𝐹 → R, and each transmission operator 𝑟 has a cost function 𝑑𝑟 : R𝑀∪𝐹 → R.

We encode any feasibility constraint for market participants in the domain of cost functions,

i.e. buyers have valuation −∞ and sellers / transmission operators have cost +∞ for an infeasible

bundle. We write 𝑥𝑏 (𝑦𝑠 ) for a bundle purchased by buyer 𝑏 (seller 𝑠) and 𝑓𝑟 for an exchange enacted

by transmission operator 𝑟 . To make the notation more concise, we write 𝑧ℓ for the allocation of

an arbitrary market participant ℓ ∈ 𝐿. We assume that buyers and sellers only have values for

the consumption or supply of goods in 𝑀 while commodity flows are performed exclusively by

transmission operators, i.e. only bundles in R𝑀 × {0}𝐹 are feasible for buyers and sellers.

As a result of encoding feasibility in costs, allocations to market participants are assumed to be

constrained only by the set of supply-demand equivalence constraints∑︁
𝑠∈𝑆

𝑦𝑠 −
∑︁
𝑏∈𝐵

𝑥𝑏 +
∑︁
𝑟 ∈𝑅

𝐵𝑟 𝑓𝑟 = 0, (1)

where 𝐵𝑟 is some matrix specifying how commodity flows interact with the supply-demand balance

for the good at each market.

We are concerned with supporting an optimal allocation with prices. An optimal allocation is a

solution (𝑧∗ℓ )ℓ∈𝐿 of the welfare maximization problem

max

𝑥,𝑦,𝑓

∑︁
𝑏∈𝐵

𝑣𝑏 (𝑥𝑏) −
∑︁
𝑠∈𝑆

𝑐𝑠 (𝑦𝑠 ) −
∑︁
𝑟 ∈𝑅

𝑑𝑟 (𝑓𝑟 ) subject to (1). (2)

Then, in a coupled market, prices 𝑝 ∈ R𝑀∪𝐹
correspond to the per-unit cost of purchase of each

unit of a good or flow. Utilities are assumed to be quasilinear in payment – thus each market
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participant has utility

𝑢𝑏 (𝑥 |𝑝) = 𝑣𝑏 (𝑥) − 𝑝𝑇𝑥 ∀ 𝑏 ∈ 𝐵, (3)

𝑢𝑠 (𝑦 |𝑝) = 𝑝𝑇𝑦 − 𝑐𝑠 (𝑦) ∀ 𝑠 ∈ 𝑆,
𝑢𝑟 (𝑓 |𝑝) = 𝑝𝑇𝐵𝑟 𝑓 − 𝑑𝑟 (𝑓 ) ∀ 𝑟 ∈ 𝑅.

By optimizing over 𝑥,𝑦, 𝑓 in (3), each market participant has an indirect utility function, denoting
the utility they would have from consuming / providing the bundle that maximizes their utility

given prices,

𝑢𝑏 (𝑝) = max

𝑥
𝑣𝑏 (𝑥) − 𝑝𝑇𝑥 ∀ 𝑏 ∈ 𝐵, (4)

𝑢𝑠 (𝑝) = max

𝑦
𝑝𝑇𝑦 − 𝑐𝑠 (𝑦) ∀ 𝑠 ∈ 𝑆,

𝑢𝑟 (𝑝) = max

𝑓
𝑝𝑇𝐵𝑟 𝑓 − 𝑑𝑟 (𝑓 ) ∀ 𝑟 ∈ 𝑅.

Thus indirect utility function is simply the convex conjugate of the preferences of buyers and sellers,
𝑢𝑏 (𝑝) = (−𝑣𝑏)∗ (−𝑝) and 𝑢𝑠 (𝑝) = 𝑐∗𝑠 (𝑝) for any price vector 𝑝 and any buyer 𝑏 or seller 𝑠 . Similarly

for transmission operators, 𝑢𝑟 (𝑝) = 𝑑∗𝑟 (𝐵𝑇𝑟 𝑝).
An optimal allocation (𝑧∗ℓ )ℓ∈𝐿 and prices 𝑝 together are then said to form aWalrasian equilibrium

if the allocation of each market participant is utility-maximizing at the given prices.

Definition 3.2 (Walrasian equilibrium in coupledmarkets). Aprice vector 𝑝 and a feasible allocation

(𝑧∗ℓ )ℓ∈𝐿 in R𝑀∪𝐹
form aWalrasian equilibrium if:

(1) (Market clearing) The supply-demand equivalence constraints (1) are satisfied.

(2) (Envy-freeness) The allocation of every agent maximizes their utility at the prices – i.e. for

any market participant ℓ , 𝑢ℓ (𝑧∗ℓ |𝑝) = 𝑢ℓ (𝑝).
(3) (Budget balance) The sum of payments equals zero, 𝑝𝑇

(∑
𝑠∈𝑆 𝑦

∗
𝑠 −

∑
𝑏∈𝐵 𝑥

∗
ℓ +

∑
𝑟 ∈𝑅 𝐵𝑟 𝑓𝑟

)
= 0.

At a Walrasian equilibrium, envy-freeness implies that no agent’s utility can be less than that

for consuming / supplying zero goods. Therefore, it is also individually rational for each buyer and

seller to participate in the market, as no agent earns a negative payoff as a result of their market

participation. A market is convex if −𝑣𝑏, 𝑐𝑠 , 𝑑𝑟 are all closed convex functions. It is the case that the

First and Second Welfare Theorems hold for coupled and convex markets; here we present its proof

as it provides a derivation of the convex hull pricing rule of [Gribik et al., 2007, Hogan and Ring,

2003] and motivates our discussion on different pricing rules.

Theorem 3.3 (The Welfare Theorems for Coupled and Convex Markets). Let price vector
𝑝∗ ∈ R𝑀∪𝐹 and the allocation (𝑧ℓ )∗ℓ∈𝐿 be a Walrasian equilibrium, then this allocation maximizes
social welfare. Conversely, if (𝑧ℓ )∗ℓ∈𝐿 is a welfare-maximizing allocation, then it can be supported by a
Walrasian price vector 𝑝∗ that forms a Walrasian equilibrium.

Proof. The theorem follows by first considering the welfare function, defined as the value of the

welfare maximization problem as its linear constraints are perturbed (cf. Rockafellar [2015] for a

detailed discussion). Assuming strong supply-demand equivalence is required,
4
the social welfare

𝜔 : R𝑀∪𝐹 → R is defined as a function of excess supply such that

𝜔 (𝜎) = max

𝑥,𝑦,𝑓

∑︁
𝑏∈𝐵

𝑣𝑏 (𝑥𝑏) −
∑︁
𝑠∈𝑆

𝑐𝑠 (𝑦𝑠 ) −
∑︁
𝑟 ∈𝑅

𝑑𝑟 (𝑓𝑟 )

subject to

∑︁
𝑠∈𝑆

𝑦𝑠 −
∑︁
𝑏∈𝐵

𝑥𝑏 +
∑︁
𝑟 ∈𝑅

𝐵𝑟 𝑓𝑟 = 𝜎.

4
The discussion generalizes easily to the case of weak supply-demand equivalence
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Thus 𝜔 is a convolution, and by Proposition A.4.4 the convex conjugate of −𝜔 is given by

(−𝜔)∗ (𝑝) =
∑︁
𝑏∈𝐵

(−𝑣𝑏)∗ (𝑝) +
∑︁
𝑠∈𝑆

𝑐∗𝑠 (𝑝) +
∑︁
𝑟 ∈𝑅

𝑑∗𝑟 (𝐵𝑇𝑟 𝑝) =
∑︁
ℓ∈𝐿

𝑢ℓ (𝑝).

Given that valuations are concave and costs are convex, 𝜔 is concave in all arguments and thus

−𝜔 is convex. As all constraints are linear, constraint qualification is satisfied and −𝜔 is closed.

Therefore, −𝜔 admits a subdifferential 𝜕(−𝜔) (0) at 𝜎 = 0. Any element of the subdifferential

provides prices that correspond to the per-unit value of the provision of an additional constraint

violation. As the constraint fixes excess supply to 0, this is precisely the value of the provision of

an additional unit of each good to the market.

By the Fenchel-Young inequality, in general we have (−𝜔)∗ (𝑝) −𝜔 (0) ≥ 0, with equality holding

if and only if 𝑝 ∈ 𝜕(−𝜔) (0). Therefore, for an optimal solution 𝑝 of the subgradient problem

min

𝑝

∑︁
ℓ∈𝐿

𝑢ℓ (𝑝) − 𝜔 (0), (5)

we note that 𝑝𝑇
(∑

𝑠∈𝑆 𝑦
∗
𝑠 −

∑
𝑏∈𝐵 𝑥

∗
𝑏
+∑

𝑟 ∈𝑅 𝐵𝑟 𝑓𝑟
)
= 0 and 𝜔 (0) =

∑
𝑏∈𝐵 𝑣𝑏 (𝑥∗𝑏) −

∑
𝑠∈𝑆 𝑐𝑠 (𝑦∗𝑠 ) −∑

𝑟 ∈𝑅 𝑑𝑟 (𝑓 ∗𝑟 ). Then by the Definition (3) of utilities and by re-arranging terms, this subgradient

problem may be rewritten

min

𝑝

∑︁
ℓ∈𝐿

𝑢ℓ (𝑝) − 𝜔 (0)

=min

𝑝

∑︁
𝑏∈𝐵

𝑢𝑏 (𝑝) + 𝑝𝑇𝑥∗𝑏 − 𝑣𝑏 (𝑥
∗
𝑏
) +

∑︁
𝑠∈𝑆

𝑢𝑠 (𝑝) + 𝑐𝑠 (𝑦∗𝑠 ) − 𝑝𝑇𝑦∗𝑠 +
∑︁
𝑟 ∈𝑅

𝑢𝑟 (𝑝) + 𝑑𝑟 (𝑓 ∗𝑟 ) − 𝑝𝑇𝐵𝑇𝑟 𝑓 ∗𝑟

=min

𝑝

∑︁
ℓ∈𝐿

𝑢ℓ (𝑝) − 𝑢ℓ (𝑧∗ℓ |𝑝). (6)

For any market participant ℓ and for any price vector 𝑝 , 𝑢ℓ (𝑝) ≥ 𝑢ℓ (𝑧∗ℓ |𝑝). Therefore as the value of
the problem equals zero, at an optimal solution 𝑝 these must all hold with equality, which implies

that an optimal solution to (5) 𝑝 together with a welfare-maximizing allocation (𝑧∗ℓ )ℓ∈𝐿 form a

Walrasian equilibrium. Likewise, if 𝑝, (𝑧∗ℓ )ℓ∈𝐿 form a Walrasian equilibrium then the value of (6) is

zero, which implies that (𝑧∗ℓ )ℓ∈𝐿 maximizes social welfare. □

We do not need differentiability, and convexity of −𝑣𝑏 , 𝑐𝑠 , 𝑑𝑟 is sufficient for this proof. As convex

optimization is also computationally efficient so long as each valuation and cost function is tractable

to compute, the subgradient provides a natural way of computing prices. This motivates us to

define dual pricing functions for an optimal outcome

(
(𝑥∗
𝑏
)𝑏∈𝐵, (𝑦∗𝑠 )𝑠∈𝑆 , (𝑓 ∗𝑟 )𝑟 ∈𝑅

)
,

𝜆𝑏 (𝑝 |𝑥∗𝑏) = 𝑢𝑏 (𝑝) − 𝑢𝑏 (𝑥
∗
𝑏
|𝑝), 𝜆𝑠 (𝑝 |𝑦∗𝑠 ) = 𝑢𝑠 (𝑝) − 𝑢𝑠 (𝑦∗𝑠 |𝑝), 𝜆𝑟 (𝑝 |𝑓 ∗𝑟 ) = 𝑢𝑟 (𝑝) − 𝑢𝑟 (𝑓 ∗𝑟 |𝑝). (7)

Furthermore, we call (5) the dual pricing problem associated with the welfare maximization

problem (2).

Although the connections between convexity and the existence of a Walrasian equilibrium are

well-known [Bikhchandani and Mamer, 1997, Liberopoulos and Andrianesis, 2016], the version of

the welfare theorems for coupled markets clearly delineates when we can expect Walrasian prices

in coupled markets. This provides a foundation for our discussion of pricing rules in non-convex

electricity markets.
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4 PRICING NON-CONVEX AND COUPLED MARKETS
In the absence of convexity, the negative welfare function −𝜔 is non-convex in general and the

subgradient problem (5) has value > 0, pointing to a duality gap. The representation (6) of the

convex pricing problem then suggests that for any welfare-maximizing outcome (𝑧∗ℓ )ℓ∈𝐿 and any

price vector 𝑝∗, Definition 3.2.2 is not satisfied and market participants incur lost opportunity costs
(LOCs). This raises the question of how to price these markets.

In this section, we review some proposals for pricing optimal outcomes of such non-convex

markets via the formalism through which we established the existence of Walrasian equilibria in

coupled and convex markets. We will see that these pricing rules consist of convex models for

the dual pricing problem (5). Moreover, they assert a convexified model of the original welfare

maximization problem corresponding to minimization of a class of LOCs, given prices, as a central

design goal. global LOCs (GLOCs) which correspond to unrealized profit as participants deviate to

any feasible outcome, local LOCs (LLOCs) which correspond to unrealized profit as participants

deviate to another outcome under fixed commitment, and make-whole payments (MWPs) as the

required amount of compensation to market participants to ensure they do not make a loss. We

conclude the section by illustrating that the minimization of each class of LOCs results in prices

causing market participants to incur large LOCs in other classes. This motivates framing pricing in

non-convex markets as a multi-objective optimization problem.

4.1 Minimizing Global Lost Opportunity Costs
While an optimal solution to (5) of the subgradient problem does not provide prices that form a

Walrasian equilibrium in the presence of non-convexities, the possibility of using such prices was

nevertheless investigated by Hogan and Ring [2003] and Gribik et al. [2007]. Noting that the term

in the objective for each market participant is the difference between their payoff if they were to

choose an allocation of their choice and the payoff they receive from their current allocation, given

the prices, a solution to (5) minimizes GLOCs. This pricing rule is known as CH pricing [Schiro

et al., 2016] because the associated welfare maximization problem is obtained by convexifying the

preferences of market participants in the original welfare maximization problem

max

𝑥,𝑦,𝑓

∑︁
𝑏∈𝐵

𝑐𝑜𝑛𝑐 [𝑣𝑏] (𝑥𝑏) −
∑︁
𝑠∈𝑆

𝑐𝑜𝑛𝑣 [𝑐𝑠 ] (𝑦𝑠 ) −
∑︁
𝑟 ∈𝑅

𝑐𝑜𝑛𝑣 [𝑑𝑟 ] (𝑓𝑟 ) subject to (1). (Primal CH)

Given the optimal allocation (𝑧∗ℓ )ℓ∈𝐿 , we thus relabel the contribution 𝜆ℓ (𝑝 |𝑧∗ℓ ) of market par-

ticipant ℓ ∈ 𝐿 to the dual pricing problem as 𝜆𝐶𝐻ℓ (𝑝 |𝑧∗ℓ ) and call this contribution the Convex Hull
pricing function of ℓ at 𝑧∗ℓ . We infer that if 𝑝 is a solution to (5) with objective value 0, then

−𝑝 ∈ 𝜕(−𝑣𝑏)∗∗ (𝑥∗𝑏) ∀ 𝑏 ∈ 𝐵, 𝑝 ∈ 𝜕𝑐∗∗𝑠 (𝑦∗𝑠 ) ∀ 𝑠 ∈ 𝑆, 𝐵𝑇𝑟 𝑝 ∈ 𝜕𝑑∗∗𝑟 (𝑓 ∗𝑟 ) ∀ 𝑟 ∈ 𝑅.
In otherwords, when the objective of the CH pricing problem equals zero, prices form supragradients

of the concave closures of buyers’ valuation functions and subgradients of the convex closure of

sellers’ and transmission operators’ cost functions. Furthermore, in this case the duality gap equals

zero and prices reflect the marginal valuations and costs for any extra unit of a good or flow. In

general, CH pricing provides a supragradient of the concave closure of the welfare function at 𝜎 = 0,

though these prices might not necessarily belong to the subdifferential of market participants at an

optimal outcome when there exists a positive duality gap due to non-convexities.

One issue with Convex Hull prices is that they are generally intractable to compute [Schiro

et al., 2016]. There have been efforts to establish conditions under which Convex Hull prices can be

computed by simple linear programs [Hua and Baldick, 2017] or to design more efficient algorithms

[Andrianesis et al., 2022, Knueven et al., 2022], yet as of today CH pricing cannot be applied for

practical problems.
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4.2 Minimizing Local Lost Opportunity Costs
In the presence of non-convexities CH pricing may result in large LLOCs (an example is provided

below). As a result, market participants have high incentives for just small deviations from the

welfare-maximizing allocation, requiring large amounts of penalties to enforce the optimal outcome.

This drastic instability under such pricing rules is of concern, and it merits direct minimization of

LLOCs to ensure local stability.

Most U.S. and European electricity markets implement bidding languages which allow the

expression of piecewise-concave valuations for buyers and piecewise-convex costs for sellers. We

say that a function 𝑓 : R𝑛 → R is piecewise convex if there exist disjoint convex sets 𝑋1, 𝑋2, .., 𝑋𝐾 ⊆
R𝑛 and closed convex functions 𝑓1, 𝑓2, .., 𝑓𝑘 such that for any 1 ≤ 𝑘 ≤ 𝐾, 𝑓𝑘 : 𝑋𝑘 → R and

𝑓 = min1≤𝑘≤𝐾 𝑓𝑘 . For each 𝑘 ∈ 𝐾 , we let dom(𝑓𝑘 ) = 𝑋𝑘 denote the domain of 𝑓𝑘 . For any 𝑥 ∈ R𝑛 ,
𝑓𝑘 ′ is called active at 𝑥 if 𝑘 ′ ∈ arg max1≤𝑘≤𝐾 𝑓𝑘 (𝑥).
Piecewise-convex preferences may be modeled via the addition of binary variables that represent

the choice of active valuation / cost functions. When each 𝑣𝑏, 𝑐𝑠 , 𝑑𝑟 is piecewise linear, this allows

casting the welfare maximization problem as a mixed-integer linear program. It is shown in O’Neill

et al. [2005] that marginal prices which eliminate LLOCs can be obtained by fixing binary variables

to their optimal values and solving the resulting dual problem. This provides what is known as IP

pricing in electricity markets. Formally, IP pricing is given by the dual pricing problem associated

with the welfare maximization problem

max

𝑥,𝑦,𝑓

∑︁
𝑏∈𝐵

𝑣𝑏 (𝑥𝑏) −
∑︁
𝑠∈𝑆

𝑐𝑠 (𝑦𝑠 ) −
∑︁
𝑟 ∈𝑅

ˆ𝑑𝑟 (𝑓𝑟 ) subject to (1), (Primal IP)

where 𝑣𝑏, 𝑐𝑠 ,
ˆ𝑑𝑟 are the corresponding active valuation and cost functions given the optimal alloca-

tion. The dual pricing problem can be explicitly enumerated as the minimization of LLOCs of all

market participants,

min

𝑝

∑︁
𝑏∈𝐵

max

𝑥𝑏
𝑣𝑏 (𝑥𝑏) − 𝑝𝑇𝑥𝑏 − 𝑢𝑏 (𝑥∗𝑏 |𝑝) +

∑︁
𝑠∈𝑆

max

𝑦𝑠
𝑝𝑇𝑦𝑠 − 𝑐𝑠 (𝑦𝑠 ) − 𝑢𝑠 (𝑦∗𝑠 |𝑝) (IP Pricing)

+
∑︁
𝑟 ∈𝑅

max

𝑓𝑟

𝑝𝑇𝐵𝑟 𝑓𝑟 − ˆ𝑑𝑟 (𝑓𝑟 ) − 𝑢𝑟 (𝑓 ∗𝑟 |𝑝)

subject to 𝑥𝑏 ∈ dom(𝑣𝑏) ∀ 𝑏 ∈ 𝐵, 𝑦𝑠 ∈ dom(𝑐𝑠 ) ∀ 𝑠 ∈ 𝑆, 𝑓𝑟 ∈ dom( ˆ𝑑𝑟 ) ∀ 𝑟 ∈ 𝑅,

minimizing the total LOCs incurred by market participants for deviations under fixed commitment.

We then denote the contribution of market participant ℓ to the dual pricing problem as 𝜆𝐼𝑃ℓ (𝑝 |𝑧∗ℓ )
and call this contribution the IP dual pricing function of ℓ at 𝑧∗ℓ .
We note that in our setting, by local convexity prices, may be found that completely eliminate

LLOCs. Moreover, when transmission operators are fully convex, we can conclude zero GLOCs for

them as well. Therefore IP pricing provides adequate signaling of congestion in the network as

prices reflect the marginal value of additional transmission capacity [Yang et al., 2019], mitigating

a shortfall of congestion income that was identified for other pricing rules [Schiro et al., 2016].

4.3 Minimizing Make-Whole Payments
As discussed in the introduction, increasing levels of MWPs are a growing concern in electricity

markets. They imply discriminatory pricing and can be seen as a distortion of price signals by

participants. To rectify this issue, Bichler et al. [2022] introduced the following optimization problem,
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where MWPs are minimized directly.

min

𝜆≥0,𝑝,𝛾

∑︁
𝑏∈𝐵

𝜆𝑀𝑊𝑃
𝑏

(𝑝 |𝑥∗
𝑏
) +

∑︁
𝑠∈𝑆

𝜆𝑀𝑊𝑃
𝑠 (𝑝 |𝑦∗𝑠 ) +

∑︁
𝑟 ∈𝑅

𝜆𝑀𝑊𝑃
𝑟 (𝑝 |𝑓 ∗𝑟 ) (Min-MWP)

subject to −𝑣𝑏 (𝑥∗𝑏) + 𝑝
𝑇𝑥∗

𝑏
− 𝜆𝑀𝑊𝑃

𝑏
(𝑝 |𝑥∗

𝑏
) ≤ 0 ∀ 𝑏 ∈ 𝐵,

−𝑝𝑇𝑦∗𝑠 + 𝑐𝑠 (𝑦∗𝑠 ) − 𝜆𝑀𝑊𝑃
𝑠 (𝑝 |𝑦∗𝑠 ) ≤ 0 ∀ 𝑠 ∈ 𝑆,

−𝑝𝑇𝐵𝑟 𝑓 ∗𝑟 + 𝑑𝑟 (𝑓 ∗𝑟 ) − 𝜆𝑀𝑊𝑃
𝑟 (𝑝 |𝑓 ∗𝑟 ) ≤ 0 ∀ 𝑟 ∈ 𝑅.

The associated dual pricing functions for this problem are 𝜆𝑀𝑊𝑃
ℓ

(𝑝 |𝑧∗ℓ ) = max{−𝑢ℓ (𝑧∗ℓ |𝑝), 0} for
each market participant ℓ , and we call this contribution the Min-MWP dual pricing function of

ℓ . By definition the Min-MWP dual pricing function accounts only for the lost opportunity cost

with respect to non-participation, thus the value of (Min-MWP) is precisely the minimum MWPs

required to compensate participants’ losses.

4.4 Contradictions in Design Goals
We established in the preceding discussion that CH pricing, IP pricing, and Min-MWP pricing each

optimize a corresponding class of LOCs. While the minimization of all such LOCs is evidently

desirable, it turns out to be the case that focusing on only one such design goal can lead to large

LOCs in other classes.

For instance, even in settings where CH prices may be tractably computed, a minimization of

GLOCs does not necessarily correspond to low MWPs and LLOCs. This is because the convexified

market model (Primal CH) allows for fractional commitment. Therefore, an optimal solution of

(Primal CH) might prescribe offline units to partially activate for gains in welfare, even when the

original welfare maximization problem has no optimal allocation where these units are committed.

In other words, with CH pricing offline units can set prices. For this reason, CH prices do not exhibit

a clear economic interpretation [Schiro et al., 2016]. This phenomenon may manifest itself as very

high MWPs and LLOCs (and thereby flawed congestion signals in coupled markets). Similarly, IP

prices fix LLOCs to zero via local convexity, but discard any information on changing commitment.

As a result, IP prices may fail to adequately account for GLOCs or MWPs. Finally, Min-MWP

directly minimizes the make-whole payments but loses all information on subgradients in the

process. As a result, while MWPs may be reduced to insignificant amounts, the solution set will be

large and the computed prices will in general incur both significant LLOCs and GLOCs. We provide

illustrative examples in Appendix B.

5 PRICING AS MULTI-OBJECTIVE OPTIMIZATION
In the previous section, we discussed dual pricing problems that minimize either GLOCs (CH

pricing), LLOCs (IP pricing), or MWPs (Min-MWP pricing). We provided examples illustrating

that a focus on one of these objectives can lead to high costs in the others. Ultimately, we are

faced with trade-offs between the three conflicting objectives. Noting that the market designer

can also have design goals that go beyond minimization of deviation incentives, e.g. (approximate)

budget balance, we infer that the pricing problem in non-convex markets is one of multi-objective

optimization rather than single-objective optimization.

While many techniques for multi-objective optimization have been proposed (see, e.g., Deb

[2001], Miettinen [2012] or Emmerich and Deutz [2018]), not all of them are suitable to be used as

pricing rules in electricity markets. A poor choice of a multi-objective formulation can impose a

highly distorted convex model for the welfare maximization problem, resulting in a divergence

between its implied optimal allocation and the true optimal allocation. Specifically, the underlying

convex model might possess fictitious goods and agents, unrealistically expand the feasible sets
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of market participants, or consolidate market participants to a single entity. Then, as in the case

of CH pricing in Example B.1 in the appendix, we are faced with the possibility of an economic
interpretability problem. We elaborate on this issue in Appendix C.

Therefore, in order to prevent such distortions and to allow for economic interpretability, we

restrict attention to pricing problems with an additively separable objective function with linear

prices, i.e. pricing problems of the form min𝑝∈R𝑀
∑
ℓ∈𝐿 𝜆ℓ (𝑝 |𝑧∗ℓ ). We also keep in mind that a pricing

rule should be simple to communicate and computationally scalable for the large problems in

electricity markets.

In what follows, we first consider linear scalarization and analyze the Pareto frontiers of the multi-

objective optimization problemminimizing a weighted sum of GLOCs, MWPs, and LLOCs. However,

we note that linear scalarization requires fine-tuning of the weights and might be impractical for

practical application. Therefore, motivated by the correspondence between the minimization of

MWPs or LLOCs and convex approximations to the market participants’ preferences, we propose

a new approach thereafter that tightens these convex approximations and requires no additional

preference information.

5.1 Linear Scalarization
Linear scalarization optimizes a weighted sum of individual objective functions. In particular,

given dual pricing functions for market participants

(∑
ℓ∈𝐿 𝜆

𝑖
ℓ (·|𝑧∗ℓ )

)
𝑖∈{1,..,𝑚} associated with𝑚 dual

pricing problems and a non-negative weight vector𝑤 ∈ R𝑚≥0
, the linear scalarization problem is

given by

min

𝑝

∑︁
ℓ∈𝐿

𝑚∑︁
𝑖=1

𝑤𝑖 · 𝜆𝑖ℓ (𝑝 |𝑧∗ℓ ) (8)

As each dual pricing objective 𝜆𝑖 is separable over the market participants, linear scalarization

is equivalent to picking certain convex approximations to each participant’s valuation or cost

function, as in the case for CH, IP, and Min-MWP pricing. In fact, the resulting pricing problem is

that of a convex market where each participant is replaced by an admixture of participants, where
preferences from each dual pricing problem 𝑖 are present in proportion to the weight𝑤𝑖 . Specifically,

suppose the weights are non-negative and normalized such that

∑𝑚
𝑖=1
𝑤𝑖 = 1. Then, if buyer 𝑏 has

allocation 𝑥∗
𝑏
and valuation function 𝑣𝑖

𝑏
in the welfare maximization problem corresponding to

dual pricing objective 𝑖 , the weighted dual pricing function

∑𝑚
𝑖=1
𝑤𝑖𝜆

𝑖 (𝑝 |𝑥∗
𝑏
) corresponds to the

valuation function

𝑣𝑏 (𝑥) = max

𝑚∑︁
𝑖=1

𝑤𝑖𝑣
𝑖
𝑏
(𝜒𝑖
𝑏
) subject to

𝑚∑︁
𝑖=1

𝑤𝑖 𝜒
𝑖
𝑏
= 𝑥 . (9)

In a multi-objective optimization problem, it is generally not possible for a solution to be

optimal for each objective. Therefore, the optimality criterion is, in general, Pareto optimality.
For 𝑚 dual pricing problems, a price vector 𝑝 is said to be Pareto optimal with respect to
objectives if there does not exist another price vector 𝑞 such that for any pricing problem 𝑖 ,∑
ℓ∈𝐿 𝜆

𝑖
ℓ (𝑞 |𝑧∗ℓ ) ≤

∑
ℓ∈𝐿 𝜆

𝑖
ℓ (𝑝 |𝑧∗ℓ ), with one inequality holding strictly.

It is known that solutions to the linear scalarization problem yield the Pareto frontier of the

multi-objective [Emmerich and Deutz, 2018]. We thus infer that if the dual pricing functions under

consideration correspond to CH, IP, and Min-MWP pricing, linear scalarization allows to obtain

other Pareto-efficient solutions with respect to total GLOCs, MWPs, and LLOCs.

However, linear scalarization comes with certain disadvantages for practical applications despite

providing a Pareto optimal solution with respect to GLOCs, MWPs, and LLOCs. In particular, it

requires preference information in order to set weights that produce a desirable outcome. In practice,
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however, preferences might be difficult to define in an environment with various stakeholders and

without being able to study the impact of weights on the outcomes. One might want to re-calibrate

and fine-tune the weights after the Pareto frontier has been computed. For this reason, linear

scalarization cannot be considered a full a priori multi-objective technique as weights and therefore

the pricing rule might be set only after bids have been elicited. Therefore, linear scalarization might

be difficult to implement in practice.

5.2 Join
In what follows, we focus on a pricing rule that treats low LLOCs and low MWPs as first-order

objectives. Together, they imply that the market allocation is as locally stable as possible against

considerations of non-participation or small deviations by the market participants. Whereas linear

scalarization weighing IP and Min-MWP pricing achieves a Pareto optimal outcome with respect

to minimizing total LLOCs and MWPs globally over all participants, the prices obtained are not

optimal for the incentives of individual market participants to deviate under fixed commitment

(LLOCs) or for incentives exit the market (MWPs). Specifically, given prices 𝑝 and an optimal

allocation (𝑧∗ℓ )ℓ∈𝐿 , market participant ℓ’s opportunity cost under consideration of local deviations

in allocation is given by 𝜆𝐼𝑃ℓ (𝑝 |𝑧∗ℓ ) while their opportunity cost against exiting the market is given

by 𝜆𝑀𝑊𝑃
ℓ

(𝑝 |𝑧∗ℓ ). Therefore, the amount of compensation required to disincentivize such deviations

from ℓ is given by max{𝜆𝐼𝑃ℓ (𝑝 |𝑧∗ℓ ), 𝜆𝑀𝑊𝑃
ℓ

(𝑝 |𝑧∗ℓ )}. This motivates us to consider the following dual

pricing problem.

Definition 5.1. For each market participant ℓ , let 𝜆𝐼𝑃ℓ (𝑝 |𝑧∗ℓ ), 𝜆𝑀𝑊𝑃
ℓ

(𝑝 |𝑧∗ℓ ) denote the LLOCs and
MWPs of ℓ at prices 𝑝 and allocation 𝑧∗. Then the join IP ∨MWP of IP and Min-MWP pricing is

the dual pricing problem

min

𝑝

∑︁
ℓ∈𝐿

max{𝜆𝐼𝑃ℓ , 𝜆𝑀𝑊𝑃
ℓ }(𝑝 |𝑧∗ℓ ). (IP ∨MWP)

Specifically, the objective is the sum of MWPs to compensate losses and penalties against

deviations required for local stability, and the join provides prices that minimizes it. IP ∨ MWP

utilizes minimal concave closures of valuation functions and convex closures of cost functions

that account for both LLOCs and MWPs, implying that the associated convex approximation

is minimally distortionary for preferences. A linear programming formulation can be found in

Appendix H.

We emphasize that the join is distinct from any pricing rule obtained via linear scalarization.

Inspection of (9) shows that the associated convex approximations to preferences do not fully

account for neither the LLOCs nor the MWPs. Formally, there do not exist weights (𝑤𝐼𝑃 ,𝑤𝑀𝑊𝑃 )
such that the LOCs of some market participant ℓ under such deviations equals 𝑤𝐼𝑃𝜆

𝐼𝑃
ℓ (𝑝 |𝑧∗ℓ ) +

𝑤𝑀𝑊𝑃𝜆
𝑀𝑊𝑃
ℓ

(𝑝 |𝑧∗ℓ ) for every set of prices 𝑝 . Based on these considerations, we introduce the sum

of these LOCs over the market participants to ensure local stability as a new and parameter-free
multi-objective. It jointly minimizes MWPs and LLOCs while properly aligning incentives, without

requiring specific weights as an input.

Let us next prove some useful properties of the join. First, the join IP ∨MWP is indeed guaranteed

to achieve lower MWPs than IP pricing.

Proposition 5.2. Suppose that 𝑝∨ is an optimal solution of (IP ∨ MWP) and 𝑝𝐼𝑃 is an optimal
solution of (IP Pricing). Then

∑
ℓ∈𝐿 𝜆

𝑀𝑊𝑃
ℓ

(𝑝∨ |𝑧∗ℓ ) ≤
∑
ℓ∈𝐿 𝜆

𝑀𝑊𝑃
ℓ

(𝑝𝐼𝑃 |𝑧∗ℓ ).
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Proof. The result follows since∑︁
ℓ∈𝐿

𝜆𝑀𝑊𝑃
ℓ (𝑝∨ |𝑧∗ℓ ) ≤

∑︁
ℓ∈𝐿

max{𝜆𝑀𝑊𝑃
ℓ , 𝜆𝐼𝑃ℓ }(𝑝∨ |𝑧∗ℓ )

≤
∑︁
ℓ∈𝐿

max{𝜆𝑀𝑊𝑃
ℓ , 𝜆𝐼𝑃ℓ }(𝑝𝐼𝑃 |𝑧∗ℓ ) =

∑︁
ℓ∈𝐿

𝜆𝑀𝑊𝑃
ℓ (𝑝𝐼𝑃 |𝑧∗ℓ ).

Here, the first inequality holds since the terms of the second sum are element-wise no less than the

terms of the first sum, the second inequality holds by the minimum property of 𝑝∨. The final equality
then holds since for any market participant ℓ , prices 𝑝𝐼𝑃 achieve zero LLOCs due to convexity. □

While Proposition 5.2 might appear to immediately follow from its definition, this is only

guaranteed since IP pricing achieves zero LLOCs for each market participant. Trying to modify the

proof to show that a solution of (IP ∨MWP) achieves lower LLOCs than any solution of (Min-MWP),

we obtain the following guarantee.

Corollary 5.3. Suppose that 𝑝∨ is an optimal solution of (IP ∨MWP) and 𝑝𝑀𝑊𝑃 is an optimal solu-
tion of (Min-MWP) such that

∑
ℓ∈𝐿 𝜆

𝑀𝑊𝑃
ℓ

(𝑝𝑀𝑊𝑃 |𝑧∗ℓ ) = 0. Then
∑
ℓ∈𝐿 𝜆

𝐼𝑃
ℓ (𝑝∨ |𝑧∗ℓ ) ≤

∑
ℓ∈𝐿 𝜆

𝐼𝑃
ℓ (𝑝𝑀𝑊𝑃 |𝑧∗ℓ ).

Therefore, a solution of (IP ∨ MWP) achieves lower LLOCs than any solution of (Min-MWP)

in settings where zero MWPs may be achieved with linear and anonymous prices. In general,

the presence of non-convexities might render this impossible. Moreover, the following example

demonstrates that the zero MWP condition in Corollary 5.3 is necessary.

Example 5.4. Consider a market with one good, one seller 𝑠 and two buyers 𝑏1 and 𝑏2. Buyer 𝑏1

has a block bid of $20 for 1 MWh and buyer 𝑏2 has a block bid of $10 for 1 MWh, both of which

must be fulfilled completely or not at all. Seller 𝑠 has a cost function for generation

𝑐𝑠 (𝑦) =


0 𝑦 = 0,
30

𝜖
· (𝑦 − 2 + 𝜖) 𝑦 ∈ [2 − 𝜖, 2],

+∞ otherwise,

with some small 𝜖 > 0. In this case, note that only the seller 𝑠 can have strictly positive LLOCs,

thus she determines IP prices and LLOCs are minimized for 𝑝𝐼𝑃 ≥ 30/𝜖 . Meanwhile, setting the

price 𝑝𝑀𝑊𝑃
equal to 15 minimizes MWPs. However, since 𝑝∨ ∈ [0, 10], seller 𝑠 incurs a greater

LLOC than for 𝑝𝑀𝑊𝑃
.

A sufficient condition to satisfy the zero MWP condition with linear and anonymous prices is the

presence of purely inelastic demand [Bichler et al., 2022]. Furthermore, we note that the example

above is pathologically chosen. Specifically, in our numerical analysis in Section 6 we find that the

set of optimal solutions to (Min-MWP) is large and that a solver typically picks solutions with very

high GLOCs and LLOCs. Then, the solution of (IP ∨ MWP) tends to achieve lower LLOCs than the

solution of (Min-MWP) picked by the solver.

The join does not necessarily exhibit Pareto optimality with respect to the objectives of total

LLOCs and total MWPs. However, the join satisfies a participant-wise Pareto optimality criterion.

Proposition 5.5. For an optimal outcome (𝑧∗ℓ ) of a market, there exists some optimal solution 𝑝∨

of (IP ∨ MWP) such that deviations cannot jointly reduce MWPs and LLOCs of all market participants.
Formally, there is no other price vector𝑞, such that for anymarket participant ℓ and any 𝑖 ∈ {𝐼𝑃, 𝑀𝑊𝑃},
𝜆𝑖ℓ (𝑞 |𝑧∗ℓ ) ≤ 𝜆𝑖ℓ (𝑝∨ |𝑧∗ℓ ), with the inequality holding strictly for some ℓ, 𝑖 .

The solution 𝑝∨ in the statement of Proposition 5.5 may be obtained via lexicographic minimiza-

tion of 𝜆𝑖ℓ (𝑝 |𝑧∗ℓ ) over the set of optimal solutions of (IP ∨ MWP). We identify this weakening of the
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global Pareto optimality guarantee as the trade-off for parameter-freeness and the alignment of

participants’ incentives, as now the individuals’ incentives to deviate locally are minimized. Still,

our experiments show that the join may achieve very low LLOCs and MWPs in practical settings.

Finally, we emphasize that the join indeed avoids the distortions to the welfare maximization

problem exhibited by CH pricing. Specifically, Schiro et al. [2016] show that CH pricing allows

offline sellers to distort both locational prices and congestion signals. As the join may only modify

the dual pricing function of online units, it disallows offline units from having any effect on the

price. The join can also be implemented efficiently (in poly-time) in practical electricity markets.

Overall, the join provides a straightforward, parameter-free method of jointly minimizing LLOCs

and make-whole payments, eliminating the need for fine-tuning or preference elicitation.

6 NUMERICAL RESULTS
To analyze the proposed pricing rules in an exemplary electricity market, we consider a simplified

multi-period direct current optimal power flow (DCOPF) model [Frank et al., 2012, Molzahn and

Hiskens, 2019]. This model describes a nodal electricity market with linearized transmission flows.
5

We refer to Appendix D for the notation and problem formulation. Each buyer 𝑏 has a concave,

piecewise linear valuation function, a certain inelastic demand and a maximum power consumption

for each period 𝑡 . Each seller 𝑠 has some convex cost function for producing a positive amount

at time 𝑡 on some closed interval. Moreover, a binary commitment variable 𝑢𝑠𝑡 ∈ {0, 1} denotes
whether the unit of seller 𝑠 is active at time 𝑡 (associated with certain fixed costs). Moreover, there

potentially exists a set of linear minimum uptime constraints. For the transmission operators, the

flow on each line is restricted by minimum and maximum flows and phase angles can be provided

at any value for no cost, except for the operator at the reference node whose phase angle is fixed at

0 at each time period.

With this welfare maximization problem at hand, we implement the pricing rules discussed in

Section 4. While CH pricing is intractable in general, a common heuristic in practical electricity

markets is to relax the binary constraints in the DCOPF for 𝑢𝑠𝑡 , {0, 1} → [0, 1], and to obtain

prices from the resulting dual problem. It has been shown by Hua and Baldick [2017] that with

the valuation / cost functions in our setting, the dual of this relaxation of the DCOPF is in fact

equivalent to CH pricing. Therefore, we have an explicit and tractable dual formulation of CH

prices, provided in Appendix E.

In order to compute IP prices, we follow the approach suggested by O’Neill et al. [2005]. In

particular, we restrict each integer variable of the welfare maximization problem to the value it

takes in the optimal allocation and solve the dual of the resulting problem. More explicitly, we set

𝑢𝑠𝑡 as {0, 1} → [0, 1] and 𝑢𝑠𝑡 = 𝑢∗𝑠𝑡 in the DCOPF and solve the dual problem in Appendix F.

For our implementation of Min-MWP, we note that given some prices the phase angle operators

have either infinite or zero LLOCs (and hence GLOCs). To be able to obtain a solution to Min-MWP

with finite LLOCs / GLOCs, we thus opt to replace the Min-MWP dual pricing functions of phase

angle operators with their actual CH dual pricing functions in our implementation, thus accounting

for their GLOCS. This implementation, provided in Appendix G, minimizes MWPs of buyers, sellers

and flow operators under the constraint that phase angle operators suffer no GLOCs.

For linear scalarization, we combine these pricing problems and optimize a weighted average of

the individual objective functions. The formulation for the join (IP ∨MWP) is provided in Appendix

H and considers each participant’s maximum of the IP and Min-MWP dual pricing function.

5
Tighter power flow relaxations exist, but are currently not applied in practical electricity markets for computational

reasons. We refer to Molzahn and Hiskens [2019] for a comprehensive overview of power flow problems.
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6.1 IEEE RTS System
First, we report results based on the IEEE RTS System, originally introduced by Grigg et al. [1999]

and used in a variety of studies on electricity markets [Garcia-Bertrand et al., 2006, Hytowitz et al.,

2020, Morales et al., 2009, Zocca and Zwart, 2021, Zoltowska, 2016]. Grigg et al. [1999] provide the

stylized system topology, transmission network parameters, hourly (nodal) demand data as well as

characteristics of generating units. In accordance with Zoltowska [2016], we select the single-area,

24-node topology by Grigg et al. [1999] for a representative 24-hour winter day with 32 generators

(total capacity: 6.81 GW) and 17 consumers (average hourly demand: 2.60 GWh). Generators exhibit

several non-convexities, such as no-load costs, minimum loads, or minimum runtimes. For data

on generation costs or demand valuations we rely on the bid and offer curves provided by the

case studies of Garcia-Bertrand et al. [2006] and Zoltowska [2016] on this system. Generators

and consumers are embedded in a DC power flow model with 24 nodes. The optimal dispatch is

computed by solving the mixed-integer DCOPF problem. All applied pricing rules constitute linear

programs, with negligible computational effort compared to the initial MILP. Table 1 provides a

first high-level overview of the results.

GLOCs [$] MWPs [$] LLOCs [$]

CH 1436.21 202.57 1272.12

IP 10364.24 3387.00 0

Min-MWP 2.1 ×10
11

0 1.1 ×10
11

0.9 IP + 0.1 Min-MWP 11025.03 693.00 111.79

0.9 CH + 0.1 Min-MWP 1432.93 199.27 1119.85

0.5 IP + 0.5 CH 1570.13 606.21 729.29

IP ∨Min-MWP 12022.38 0 191.14

Table 1. RTS System - GLOCs, MWPs, LLOCs

To begin with, the results underpin the finding that the optimization of individual objectives via

CH, IP, and Min-MWP pricing is undesirable in at least one of the other objectives.

Result 1. The LOC classes under consideration (GLOCs, LLOCs, MWPs) are conflicting. Pricing
rules that optimize one class of LOCs lead to undesirable outcome in other classes of LOCs.

Applying linear scalarization to IP and Min-MWP pricing leads to alternative results on the

Pareto frontier (e.g., Table 1 displays a linear scalarization with 90% weight on IP and 10% weight on

Min-MWP
6
), yet setting the weights is arbitrary. It should be noted that the set of outcomes implied

by linear scalarization is not continuous. That is, there is only a limited number of outcomes and

different weight vectors might produce the same result. The join IP ∨Min-MWP requires no MWPs

and LLOCs are reduced by 85% compared to CH pricing (and close to 100% compared to Min-MWP

pricing). Moreover, GLOCs are significantly reduced compared to Min-MWP pricing and are only

16% higher than the GLOCs of IP pricing.

Figure 1a illustrates the GLOCs, MWPs, and LLOCs for the tested pricing rules and the Pareto

frontier. Note that Min-MWP possesses very high GLOCs and LLOCs and can therefore not be

meaningfully depicted. The Pareto frontier is obtained by applying linear scalarizations to the three

pricing rules.

6
A simple 50:50 weight assignment would lead to a high emphasis on MWPs and outcomes that are much worse than that

of the join.
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(a) GLOCs, MWPs, LLOCs [$] (b) RTS System - Price Heatmaps [$/MWh]

Fig. 1. RTS System - GLOCs, MWPs, LLOCs, Prices

Result 2. The Pareto frontier of GLOCs, LLOCs, and MWPs possesses a high curvature, i.e. the
LOCs of a linear scalarization are well below the weighted averages of its parts. This suggests that
there are significant merits to balancing the trade-offs between different classes of LOCs by applying
multi-objective optimization.

For example, with an equal-weight linear scalarization of IP and CH pricing, we obtain prices that

have less GLOCs and LLOCs than the average over IP and CH. This effect is particularly prominent

for Min-MWP pricing: although the original price profile is fairly extreme, a linear scalarization

causes the GLOCs and LLOCs to collapse very fast.
7

Result 3. Pure minimization of MWPs leads to very high GLOCs and LLOCs. Market participants
have high incentives to deviate from the optimal outcome and congestion signals are flawed. Accounting
for other classes of LOCs, e.g., by adding a small weight of LLOCs or GLOCs by means of linear
scalarization, can significantly improve the outcome while retaining very low MWPs.

However, finding the correct weight vector for an a priori pricing rule requires information

on preferences, which may require some degree of exploration and thus poses an impediment in

practice. In contrast, the proposed join IP ∨ Min-MWP does not require such preference elicitation.

Figure 1b contains price heatmaps (in $/MWh) along the different nodes and periods. The Min-

MWP pricing without additional constraints leads to high price volatility and inadequate congestion

signals. However, joining it with standard IP pricing retains the congestion signals almost perfectly

and at the same time reduces the substantial MWPs that IP pricing implies.

6.2 ARPA-E Grid Optimization Competition Data
Apart from the IEEE RTS System, we test our pricing rules on the network and bid data provided for

the ARPA-E Grid Optimization Competition Challenge 2.
8
This competition seeks the development

of modern and scalable optimization techniques for solving complex power flow problems. To

that end, they provide large-scale and realistic test sets of single-period power flow problems.

7
We also tested linear scalarizations with a non-exact ELMP approximation of CH pricing, in order to simulate a situation

when CH prices are not readily available. This provided similar results, albeit with slightly increased GLOCs due to the

non-exactness of the approximation.

8
See https://gocompetition.energy.gov/challenges/challenge-2 for further details.
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For our purposes, we test the five different scenarios provided for an exemplary 617-node grid.

We parameterize the DCOPF with the available data (with capped susceptance values to avoid

numerical instability) and report the results of exemplary linear scalarizations and the join in the

table below.

617-I 617-II

GLOCs MWPs LLOCs GLOCs MWPs LLOCs

CH 1393.93 856.66 1145.55 1878.76 1364.99 1273.89

IP 7690.75 4913.05 0.0 6826.01 3783.67 0.0

Min-MWP 830053.91 0.0 506335.11 611089.04 0.0 441164.65

0.9 IP + 0.1 Min-MWP 6029.08 3219.04 38.77 6275.68 3038.20 53.77

0.9 CH + 0.1 Min-MWP 1393.97 852.46 1145.59 1879.28 1359.99 1274.33

0.5 IP + 0.5 CH 1532.48 1169.44 871.31 2174.56 1722.28 819.39

IP ∨Min-MWP 3990.84 749.79 1093.35 5055.31 1053.66 1222.65

617-III 617-IV 617-V

GLOCs MWPs LLOCs GLOCs MWPs LLOCs GLOCs MWPs LLOCs

2559.29 1800.84 783.26 1873.58 1288.15 1310.83 1877.00 1364.69 1273.05

19027.58 3273.93 0.0 6822.54 3775.00 0.0 6824.22 3783.09 0.0

671163.75 0.0 395002.33 667209.59 0.0 459423.61 675095.75 0.0 425703.24

18215.44 2318.44 65.43 6525.53 3422.37 28.88 6274.43 3037.82 53.48

2559.29 1800.84 783.26 1874.17 1282.66 1311.03 1877.50 1359.86 1273.47

2485.78 1797.36 537.03 2164.45 1723.96 852.58 2172.80 1721.73 818.55

18064.77 976.18 1039.22 4958.65 1007.88 1268.75 5055.28 1053.35 1222.04

Table 2. ARPA Grid Optimization Competition - GLOCs, MWPs, LLOCs [$]

Our results confirm the observations made for the IEEE RTS system. The lost opportunity costs

implied by Min-MWP pricing are very high, yet adding a small weight of make-whole payments to

IP or CH can already reduce MWPs significantly. IP prices can lead to large MWPs and GLOCs,

which are reduced by linear scalarization and the join, leading to only a small increase in LLOCs.

As discussed earlier, linear scalarization is sensitive to the weights which are difficult to set a priori.

In contrast, IP ∨ Min-MWP requires no parameterization and trades off MWPs and congestion

signals (by means of LLOCs) in a meaningful way. In our experiments on the ARPA-E dataset, the

MWPs are always below those of the scalarization with different weights. The join also reduces

GLOCs compared to IP and Min-MWP.

Result 4. The join IP ∨Min-MWP significantly reduces LLOCs compared to Min-MWP pricing and
MWPs compared to IP pricing. It produces a better congestion signal than CH pricing, while exhibiting
lower MWPs at the same time. GLOCs are higher than those of CH pricing but below those of Min-MWP
and IP pricing.

Compared to IP ∨Min-MWP, CH prices compromise on MWPs and LLOCs (and thus congestion

signals) to reduce GLOCs. Typically, CH prices are intractable. As indicated earlier, we chose a model

formulation that allows to compute CH prices in polynomial time. For more complex valuation or

cost functions, convex hull formulations are not readily available, rendering CH pricing intractable

[Schiro et al., 2016]. In contrast, IP ∨Min-MWP can always be computed in polynomial time and it

is practically tractable even for large problem sizes.
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7 CONCLUSIONS
Pricing in non-convex markets remains a fundamental problem in market design and economics.

Motivated by electricity spot markets, we study a coupled market with non-convex valuation and

cost functions. We introduce a version of the Welfare theorems for coupled markets that delineates

those environments for which we can expect Walrasian equilibria to exist. In the absence of

Walrasian equilibria that support the efficient allocation in non-convex markets, several heuristics

have been proposed to calculate prices in a computationally scalable manner. We establish that

existing pricing rules minimize certain classes of lost opportunity costs, which can cause substantial

increases in other relevant lost opportunity costs.

Based on this trade-off, we propose to view the design of pricing rules in non-convex electricity

markets as a multi-objective optimization problem. We analyze linear scalarization as a weighted

sum of individual objective functions to derive a Pareto frontier of the different design goals. As this

comes with certain practical limitations, i.e. the need for preference elicitation, we propose a novel

and scalable pricing rule that requires no parameterization or fine-tuning. This join of the IP and

Min-MWP pricing rule addresses current policy issues in U.S. and European electricity markets, i.e.

minimizes side-payments and maintains adequate congestion signals. In contrast to Convex Hull

pricing, the join can be computed efficiently. We apply our pricing rules to an exemplary electricity

market and demonstrate the possibilities to capitalize on the upsides of several pricing rules. In

view of recent concerns by regulators regarding increasing levels of MWPs with the IP pricing

rule and the desire to maintain good congestion signals, the join provides a straightforward and

easy-to-implement alternative for regulators. Apart from the practical relevance of the designed

artifact, this paper contributes to the fundamental problem of pricing in non-convex markets.



19

REFERENCES
Panagiotis Andrianesis, Dimitris Bertsimas, Michael C. Caramanis, and William W. Hogan. 2022. Computation of Convex

Hull Prices in Electricity Markets With Non-Convexities Using Dantzig-Wolfe Decomposition. IEEE Transactions on
Power Systems 37, 4 (2022), 2578–2589. https://doi.org/10.1109/TPWRS.2021.3122000

Kenneth J. Arrow and Gerard Debreu. 1954. Existence of an Equilibrium for a Competitive Economy. Econometrica 22, 3
(1954), 265. https://doi.org/10.2307/1907353

Elizabeth Baldwin and Paul Klemperer. 2019. Understanding preferences: demand types, and the existence of equilibrium

with indivisibilities. Econometrica 87, 3 (2019), 867–932.
Martin Bichler, Maximilian Fichtl, and Gregor Schwarz. 2020. Walrasian equilibria from an optimization perspective: A

guide to the literature. Naval Research Logistics (NRL) (2020).
Martin Bichler and Jacob K Goeree. 2017. Handbook of spectrum auction design. Cambridge University Press.

Martin Bichler, Johannes Knoerr, and Felipe Maldonado. 2022. Pricing in Non-Convex Markets: How to Price Electricity in

the Presence of Demand Response. Information Systems Research to appear (2022).

Martin Bichler and Stefan Waldherr. 2017. Core and pricing equilibria in combinatorial exchanges. Economics Letters 157
(2017), 145–147.

Martin Bichler and Stefan Waldherr. 2019. Computing Core-Stable Outcomes in Combinatorial Exchanges with Financially

Constrained Bidders. In Proceedings of the 2019 ACM Conference on Economics and Computation. ACM, 747–747.

Sushil Bikhchandani and John W Mamer. 1997. Competitive equilibrium in an exchange economy with indivisibilities.

Journal of Economic Theory 74, 2 (1997), 385–413.

Sushil Bikhchandani and Joseph M Ostroy. 2002. The package assignment model. Journal of Economic Theory 107, 2 (2002),

377–406.

Liad Blumrosen and Noam Nisan. 2007. Combinatorial auctions. Algorithmic game theory 267 (2007), 300.

Jehum Cho and Anthony Papavasiliou. 2022. Pricing Under Uncertainty in Multi-Interval Real-Time Markets.

P. C. Cramton, Y. Shoham, R. Steinberg, et al. 2006. Combinatorial auctions. Vol. 475. MIT press Cambridge.

Kalyanmoy Deb. 2001. Multi-objective optimization using evolutionary algorithms (1. ed. ed.). Wiley, Chichester. http:

//www.loc.gov/catdir/description/wiley034/2001022514.html

Michael T. M. Emmerich and André H. Deutz. 2018. A tutorial on multiobjective optimization: fundamentals and evolutionary

methods. Natural computing 17, 3 (2018), 585–609. https://doi.org/10.1007/s11047-018-9685-y

James E Falk. 1969. Lagrange multipliers and nonconvex programs. SIAM Journal on Control 7, 4 (1969), 534–545.
Stephen Frank, Ingrida Steponavice, and Steffen Rebennack. 2012. Optimal power flow: a bibliographic survey I. Energy

Systems 3, 3 (2012), 221–258. https://doi.org/10.1007/s12667-012-0056-y

Raquel Garcia-Bertrand, Antonio J. Conejo, and Steven Gabriel. 2006. Electricity market near-equilibrium under locational

marginal pricing and minimum profit conditions. European Journal of Operational Research 174, 1 (2006), 457–479.

https://doi.org/10.1016/j.ejor.2005.03.037

Paul R Gribik, William W Hogan, Susan L Pope, et al. 2007. Market-clearing electricity prices and energy uplift.

C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong, S. Haddad, S. Kuruganty, W. Li, R.

Mukerji, D. Patton, N. Rau, D. Reppen, A. Schneider, M. Shahidehpour, and C. Singh. 1999. The IEEE Reliability Test

System 1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods

Subcommittee. IEEE Transactions on Power Systems 14, 3 (1999), 1010–1020. https://doi.org/10.1109/59.780914

F. Gul and E. Stacchetti. 1999. Walrasian equilibrium with gross substitutes. Journal of Economic Theory 87 (1999), 95–124.

Ignacio Herrero, Pablo Rodilla, and Carlos Batlle. 2020. Evolving bidding formats and pricing schemes in USA and Europe

day-ahead electricity markets. Energies 13, 19 (2020), 5020.
Benjamin F. Hobbs, Michael H. Rothkopf, Richard P. O’Neill, and Hung-po Chao. 2001. The Next Generation of Electric Power

Unit Commitment Models. Vol. 36. Springer US, Boston, MA. https://doi.org/10.1007/b108628

William W Hogan and Brendan J Ring. 2003. On minimum-uplift pricing for electricity markets.

Bowen Hua and Ross Baldick. 2017. A Convex Primal Formulation for Convex Hull Pricing. IEEE Transactions on Power
Systems 32, 5 (2017), 3814–3823. https://doi.org/10.1109/TPWRS.2016.2637718

Robin Broder Hytowitz, Bethany Frew, Gord Stephen, Erik Ela, Nikita Singhal, Aaron Bloom, and Jessica Lau. 2020. Impacts

of Price Formation Efforts Considering High Renewable Penetration Levels and System Resource Adequacy Targets.

A. S. Kelso and V. P. Crawford. 1982. Job matching, coalition formation , and gross substitute. Econometrica 50 (1982),

1483–1504.

Bernard Knueven, James Ostrowski, Anya Castillo, and Jean-Paul Watson. 2022. A computationally efficient algorithm for

computing convex hull prices. Computers & Industrial Engineering 163 (2022), 107806. https://doi.org/10.1016/j.cie.2021.

107806

George Liberopoulos and Panagiotis Andrianesis. 2016. Critical review of pricing schemes in markets with non-convex

costs. Operations Research 64, 1 (2016), 17–31.

Kaisa Miettinen. 2012. Nonlinear multiobjective optimization. Vol. 12. Springer Science & Business Media.



20

Paul Milgrom. 2017. Discovering Prices. Columbia University Press. https://doi.org/10.7312/milg17598

MISO. 2019. ELMP III White Paper I R&D report and Design Recommendation on Short-Term Enhancements. https:

//www.misoenergy.org/stakeholder-engagement/stakeholder-feedback/msc-elmp-iii-whitepaper-20190117/

Daniel K. Molzahn and Ian A. Hiskens. 2019. A Survey of Relaxations and Approximations of the Power Flow Equations.

Foundations and Trends in Electric Energy Systems 4, 1-2 (2019), 1–221. https://doi.org/10.1561/3100000012

Juan M. Morales, Salvador Pineda, Antonio J. Conejo, and Miguel Carrion. 2009. Scenario Reduction for Futures Market

Trading in Electricity Markets. IEEE Transactions on Power Systems 24, 2 (2009), 878–888. https://doi.org/10.1109/TPWRS.

2009.2016072

Richard O’Neill, Robin Broder Hytowitz, Peter Whitman, Dave Mead, Thomas Dautel, Yonghong Chen, Brent Eldridge,

Aaron Siskind, Dan Kheloussi, Dillon Kolkmann, Alex Smith, Anya Castillo, and Jacob Mays. 2019. Essays on Average

Incremental Cost Pricing for Independent System Operators.

Richard P O’Neill, Anya Castillo, Brent Eldridge, and Robin Broder Hytowitz. 2016. Dual pricing algorithm in ISO markets.

IEEE Transactions on Power Systems 32, 4 (2016), 3308–3310.
Richard P O’Neill, Paul M Sotkiewicz, Benjamin F Hobbs, Michael H Rothkopf, and William R Stewart. 2005. Efficient

market-clearing prices in markets with nonconvexities. European Journal of Operational Research 1, 164 (2005), 269–285.

Anthony Papavasiliou and Shmuel S. Oren. 2014. Large-Scale Integration of Deferrable Demand and Renewable Energy

Sources. IEEE Transactions on Power Systems 29, 1 (2014), 489–499. https://doi.org/10.1109/TPWRS.2013.2238644

Ralph Tyrell Rockafellar. 2015. Convex analysis. Princeton university press.

Dane A. Schiro, Tongxin Zheng, Feng Zhao, and Eugene Litvinov. 2016. Convex Hull Pricing in Electricity Markets:

Formulation, Analysis, and Implementation Challenges. IEEE Transactions on Power Systems 31, 5 (2016), 4068–4075.
https://doi.org/10.1109/TPWRS.2015.2486380

Nicolas Stevens and Anthony Papavasiliou. 2022. Application of the Level Method for Computing Locational Convex Hull

Prices. IEEE Transactions on Power Systems (2022).
Zhifang Yang, Tongxin Zheng, Juan Yu, and Kaigui Xie. 2019. A Unified Approach to Pricing Under Nonconvexity. IEEE

Transactions on Power Systems 34, 5 (2019), 3417–3427. https://doi.org/10.1109/TPWRS.2019.2911419

Alessandro Zocca and Bert Zwart. 2021. Optimization of Stochastic Lossy Transport Networks and Applications to Power

Grids. Stochastic Systems 11, 1 (2021), 34–59. https://doi.org/10.1287/stsy.2019.0063

Izabela Zoltowska. 2016. Demand shifting bids in energy auction with non-convexities and transmission constraints. Energy
Economics 53 (2016), 17–27. https://doi.org/10.1016/j.eneco.2015.05.016



21

A BASICS OF CONVEX OPTIMIZATION
Definition A.1 (Convexity, closedness and properness). A function 𝑓 : R𝑛 → R is called

(1) convex if for any 𝑥,𝑦 ∈ R𝑛 , for any 𝜆 ∈ [0, 1], 𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦),
(2) closed (or lower semi-continuous) if for any 𝑥 ∈ R𝑛 , lim inf𝑦→𝑥 𝑓 (𝑦) ≥ 𝑓 (𝑥), and
(3) proper if 𝑓 (𝑥) ≠ −∞ for any 𝑥 ∈ R𝑛 , and 𝑓 ≠ ∞ identically.

In turn, a set 𝑆 ⊆ R𝑛 is called convex if its characteristic function 𝜒𝑆 is convex, where 𝜒𝑆 (𝑥) = 1 if

𝑥 ∈ 𝑆 and 0 otherwise.

A function 𝑓 might not be closed or convex, but it is always possible to consider its convex

closure. The convex closure of a function 𝑓 , 𝑐𝑜𝑛𝑣 (𝑓 ), is the pointwise maximum closed and convex

function that underestimates it,

𝑐𝑜𝑛𝑣 (𝑓 ) (𝑥) = max{𝑔(𝑥) |𝑔 ≤ 𝑓 is closed and convex}.
A closed, proper and convex function 𝑓 admits information on the change in the value of the

function in response to small changes at each point in its domain. This quantity is given in the

form of an affine minorant, and is the analogue of a gradient for differentiable functions.

Definition A.2 (Affine minorants and subgradients). A function 𝑓 : R𝑛 → R is said to have an

affine minorant if ∃𝑝 ∈ R𝑛, 𝑐 ∈ R,∀𝑥, 𝑓 (𝑥) ≥ 𝑝𝑇𝑥 + 𝑐 . If 𝑐 = 𝑓 (𝑥∗) − 𝑝𝑇𝑥∗ for some 𝑥∗ ∈ R𝑛 , i.e. if
𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝑝𝑇 (𝑥 − 𝑥∗) ∀ 𝑥 ∈ R𝑛,

then 𝑝 is said to be a subgradient of 𝑓 at 𝑥∗. The set of all subgradients of 𝑓 at a given point 𝑥 is

called the subdifferential of 𝑓 at 𝑥 , and is denoted 𝜕𝑓 (𝑥).
For a function 𝑓 that has an affine minorant, a transformation of 𝑓 encodes information on

the set of its affine minorants. This transformation is obtained by evaluation of a maximization

problem.

Definition A.3. For a function 𝑓 : R𝑛 → R, the Legendre-Fenchel transformation (or the

convex conjugate) of 𝑓 is the function

𝑓 ∗ (𝑝) = sup

𝑥∈R𝑛
𝑝𝑇𝑥 − 𝑓 (𝑥).

In particular, for a proper function 𝑓 , 𝑓 ∗ (𝑝) < ∞ if and only if there exists 𝑐 such that 𝑝𝑇𝑥 + 𝑐 is
an affine minorant of 𝑓 . In this case, 𝑓 ∗ is closed, convex and proper. Furthermore, the biconjugate

𝑓 ∗∗ then equals 𝑐𝑜𝑛𝑣 (𝑓 ), the convex closure of 𝑓 [Rockafellar, 2015]. Convex conjugation provides a

connection between operations on functions 𝑓 , 𝑔 : R𝑛 → R and their conjugates 𝑓 ∗, 𝑔∗. We remark

that for a function 𝑓 taking values in a primal space, its conjugate 𝑓 ∗ has its arguments in the

corresponding dual space. For instance, in our economic setting, as we shall see in (4), if 𝑓 (𝑥)
corresponds to the costs a generator incurs for supplying 𝑥 MWh then 𝑓 ∗ (𝑝) is the maximum profit

attainable by this generator given a price vector 𝑝 – i.e. the generator’s indirect utility.
The following propositions are standard in convex analysis, and we need them to prove the

welfare theorems for coupled markets and in the analysis of the pricing rules we consider in this

paper. The first proposition lists the rules for the algebraic manipulation of functions and their

conjugates, which we employ to study the link between pricing rules and their associated convex

market models.

Proposition A.4 (Calculus of convex conjugation [Rockafellar, 2015]). Let 𝑓 , 𝑔 : R𝑛 → R,
𝛼, 𝛽 ∈ R such that 𝛼 > 0, and 𝑣 ∈ R𝑛 , then the following hold:

(1) (Translation by a vector) Addition of a linear function to 𝑓 corresponds to a constant shift in the
argument of its conjugate, (𝑓 − 𝑣𝑇 (·))∗ = 𝑓 ∗ ((·) + 𝑣).
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(2) (Addition of a number) Addition of a constant to 𝑓 corresponds to subtracting the same constant
from its conjugate, (𝑓 + 𝛽)∗ = 𝑓 ∗ − 𝛽 .

(3) (Multiplication by a number) Rescaling 𝑓 by some positive constant rescales both the magnitude
and the argument of its conjugate, (𝛼 𝑓 )∗ = 𝛼 𝑓

(
( ·)
𝛼

)
.

(4) (Convolution) Suppose the function 𝜔 : R𝑛 → R is defined via a convolution of 𝑓 and 𝑔, i.e.

𝜔 (𝜎) = min

𝐴𝑥+𝐵𝑦=𝜎
𝑓 (𝑥) + 𝑔(𝑦)

for some𝑚 × 𝑛 matrices 𝐴, 𝐵. Then for any 𝑝 ∈ R𝑚 the conjugate of 𝜔 is given by

𝜔∗ (𝑝) = 𝑓 ∗ (𝐴𝑇𝑝) + 𝑔∗ (𝐵𝑇𝑝).
(5) (Partial closure) The convex closure of the minimum of two functions 𝑓 , 𝑔 has as its conjugate

the pointwise maximum of the conjugates 𝑓 ∗, 𝑔∗, (𝑐𝑜𝑛𝑣 min{𝑓 , 𝑔})∗ = max{𝑓 ∗, 𝑔∗}.

Specifically, in the next section we will see that optimal market clearing subject to supply-demand

equivalence is a maximization problem, which can be interpreted as the value of a welfare function

defined by a convolution. Thus Proposition A.4.4 implies that the conjugate of this welfare function

additively separates over participants’ indirect utility functions. Pricing problems in practice turn

out to be approximations of this conjugate, and the rest of Proposition A.4 allows us study their

corresponding convex models.

The next proposition shows that if 𝑓 is closed and convex, then its convex conjugate encodes

information on its subgradients:

Proposition A.5 (Fenchel-Young (in)eqality). Suppose that 𝑓 is closed, convex and proper.
Then for any 𝑝, 𝑥 ∈ R𝑛 ,

𝑓 ∗ (𝑝) + 𝑓 (𝑥) ≥ 𝑝𝑇𝑥 .

Moreover, the inequality holds with equality if and only if 𝑝 ∈ 𝜕𝑓 (𝑥).

Thus for any 𝑥 , 𝜕𝑓 (𝑥) = argmax𝑝 𝑝
𝑇𝑥 − 𝑓 ∗ (𝑝). In particular, if 𝑓 (𝑥) is given as the solution to a

linear (minimization) program, then the subdifferential 𝜕𝑓 (𝑥) is a polyhedron whose form may be

noted down explicitly.

We conclude this section by noting that the results above may be extended immediately to

concave functions. A function 𝑓 is called concave if −𝑓 is convex, and upper semi-continuous if
−𝑓 is closed. The concave closure 𝑐𝑜𝑛𝑐 (𝑓 ) is then simply −𝑐𝑜𝑛𝑣 (−𝑓 ), and the definitions of affine
majorants and supragradients follow analogously to the discussion above.

B EXAMPLES FOR CONTRADICTING DESIGN GOALS
In this appendix, we provide examples to illustrate that CH pricing, IP pricing and Min-MWP

pricing each optimize a class of LOCs, but fail to account for the other classes of LOCs. This implies

significant trade-offs and motivates to view pricing in non-convex markets as a multi-objective

optimization problem.

First, we show that a minimization of GLOCs through CH pricing does not necessarily correspond

to low MWPs and LLOCs.

Example B.1. Consider a single-item market with two sellers in a single hour and two coupled

locations. The first (second) seller is located at the first (second) node and has a minimum sales

quantity of 2 (8) units, a maximum quantity of 15 (15) units, variable per-unit costs of $1000 ($1)

and fixed costs of $10 ($10) when supplying a positive amount. At the first (second) node a fixed

demand of 6 (1) units needs to be satisfied, and the line capacity is 4 in either direction. The optimal

solution is for the first seller to supply the entire demand. In this case, 1 unit is transmitted from the
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first node to the second node, and there is no congestion in the network. We record prices, GLOCs,

MWPs, LLOCs for the pricing rules under consideration in Table 3. While CH pricing minimizes

GLOCs, it may very well imply large MWPs and LLOCs and a false congestion signal (by the price

difference across the uncongested line).

Price 1 [$/Unit] Price 2 [$/Unit] GLOCs [$] MWPs [$] LLOCs [$]

CH 1000.67 1.67 5000.33 1004.33 5000.33

IP 1000.00 1000.00 14985.00 10.00 0

Min-MWP 1001.43 1001.43 15007.86 0 11.43

Table 3. Example for CH pricing with large MWPs and LLOCs

To illustrate the reason for this discrepancy, we compute participants’ preferences and the

optimal allocation for (Primal CH). After convexification, the first (second) seller can supply up to

15 units with variable per-unit costs of $1000 + 2/3 ($1), while the fixed demand and line capacity

are unchanged. Therefore, the optimal allocation is for the second seller to provide 5 units while the

first seller provides 2 units, and 4 units are transmitted from the second node to the first. However,

in the true optimal allocation the second seller could not be committed (due to its minimum quantity

of 8), and 1 unit was transmitted in the opposite direction.

IP prices fix LLOCs to zero but discard any information on changing commitment. As a result, IP

prices may fail to adequately account for GLOCs or MWPs.

Example B.2. Consider an single-item market with two sellers in a single hour and two coupled

locations. The first (second) seller is located at the first (second) node and has a minimum sales

quantity of 2 (8) units, a maximum quantity of 8 (15) units, variable per-unit costs of $1 ($10) and

fixed costs of $100 ($100) when supplying a positive amount. At the first (second) node a fixed

demand of 6 (1) units needs to be satisfied, and the line capacity is 4 in either direction. The optimal

solution is for the first seller to supply the entire demand, and there is no congestion in the network.

We record prices, GLOCs, MWPs, LLOCs for different pricing rules in Table 4. While IP pricing

minimizes LLOCs, it may very well imply large GLOCs and MWPs.

Price 1 [$/Unit] Price 2 [$/Unit] GLOCs [$] MWPs [$] LLOCs [$]

CH 13.5 13.5 12.5 12.5 12.5

IP 1 1 100 100 0

Min-MWP 15.29 15.29 14.29 0 14.29

Table 4. Example for IP pricing with large GLOCs and MWPs

Finally, Min-MWP directly minimizes the make-whole payments but loses all information on

subgradients in the process. As a result, the computed prices will in general incur significant LLOCs

and GLOCs.

Example B.3. Consider a single-item market with two sellers in a single hour and two coupled

locations. The first (second) seller is located at the first (second) node and has a minimum sales

quantity of 2 (8) units, a maximum quantity of 50 (15) units, variable per-unit costs of $10 ($10)

and fixed costs of $1000 ($10) when supplying a positive amount. At the first node there is a fixed

demand of 4 units, at the second node a buyer is willing to pay $50 per unit to consume up to 3

units, and the line capacity is 2 in either direction. The optimal solution is for the first seller to
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supply the entire demand at the first node and 2 units to the second node, and as a consequence

there is congestion in the network. We record prices, GLOCs, MWPs, LLOCs for different pricing

rules in Table 5. While Min-MWP pricing minimizes MWPs, it may very well imply large GLOCs

and LLOCs and the congestion is not reflected in the prices as the price is identical at both nodes. In

contrast, with IP pricing the price on node 2 is higher than on node 1, indicating correctly directed

congestion.

Price 1 [$/Unit] Price 2 [$/Unit] GLOCs [$] MWPs [$] LLOCs [$]

CH 30.00 10.67 996.67 918.67 996.67

IP 10.00 50.00 1590.00 1000.00 0

Min-MWP 176.67 176.67 10076.67 253.33 7586.67

Table 5. Example for Min-MWP pricing with large GLOCs and LLOCs

C ECONOMIC INTERPRETABILITY PROBLEM
In Section 5, we had mentioned that a dual pricing problem induces a convexified model for the

underlying welfare maximization problem (2), and that a poor choice of multi-objective formulation

for the dual pricing may expand the feasible region of the underlying welfare maximization problem,

exaggerating the gap between the dual pricing and the primal allocation problems. This, in turn,

may lead to a loss of semantic meaning, disallowing any meaningful economic interpretation. In this

section of the electronic companion, we elaborate on this phenomenon. In order to do so, we first

explain how to derive the corresponding convex model of a dual pricing problem by application

of results from Section A. We then illustrate how severe distortions in the welfare maximization

problem may occur by considering two commonly used multi-objective solution concepts.

To derive the welfare maximization problem corresponding to some dual pricing problem

min𝑝

∑
ℓ∈𝐿 𝜆ℓ (𝑝 |𝑧∗ℓ ), we note that for a convex market the dual pricing functions are defined as in

(7), i.e.

𝜆𝑏 (𝑝 |𝑥∗𝑏) = (−𝑣𝑏)∗ (−𝑝) + 𝑝𝑇𝑥∗𝑏 − 𝑣𝑏 (𝑥
∗
𝑏
) ∀ 𝑏 ∈ 𝐵,

𝜆𝑠 (𝑝 |𝑦∗𝑠 ) = 𝑐∗𝑠 (𝑝) + 𝑐𝑠 (𝑦∗𝑠 ) − 𝑝𝑇𝑦∗𝑠 ∀ 𝑠 ∈ 𝑆,
𝜆𝑟 (𝑝 |𝑓 ∗𝑟 ) = 𝑑∗𝑟 (𝐵𝑇𝑟 𝑝) + 𝑑𝑟 (𝑓 ∗𝑟 ) − 𝑝𝑇𝐵𝑟 𝑓 ∗𝑟 ∀ 𝑟 ∈ 𝑅.

This implies that, given a convex dual pricing function
˜𝜆𝑏 (𝑝 |𝑥∗𝑏) for a buyer 𝑏, denoting by 𝑣𝑏 the

corresponding concave valuation function for buyer 𝑏,

(−𝑣𝑏)∗ (𝑝) = ˜𝜆𝑏 (−𝑝 |𝑥∗𝑏) + 𝑝
𝑇𝑥∗

𝑏
+ 𝑣𝑏 (𝑥∗𝑏), (10)

where 𝑣𝑏 (𝑥∗𝑏) is the value buyer 𝑏 has for allocation 𝑥
∗
𝑏
in the original welfare maximization problem

(2). Noting that for a closed convex function 𝑓 the biconjugate equals the function itself, i.e. 𝑓 = 𝑓 ∗∗,
we conclude that

𝑣𝑏 (𝑥) = −( ˜𝜆𝑏 (−𝑝 |𝑥∗𝑏) + 𝑝
𝑇𝑥∗

𝑏
+ 𝑣𝑏 (𝑥∗𝑏))

∗ (𝑥) (11)

= −(max

𝑝
𝑝𝑇 (𝑥 − 𝑥∗

𝑏
) − 𝑣𝑏 (𝑥∗𝑏) − ˜𝜆𝑏 (−𝑝 |𝑥∗𝑏))

= − ˜𝜆∗
𝑏
(𝑥∗
𝑏
− 𝑥) + 𝑣𝑏 (𝑥∗𝑏).

By a similar analysis, the corresponding cost function for a seller 𝑠 is given by

𝑐𝑠 (𝑦) = ˜𝜆∗𝑐 (𝑦 − 𝑦∗𝑠 ) + 𝑐𝑠 (𝑦∗𝑠 ). (12)
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The induced cost functions of transmission operators, in turn, need to be more carefully defined

due to the presence of matrices 𝐵𝑟 which specify the interaction of flows with the supply-demand

constraints. In this case, as a first attempt one may consider a modified conjugate function

˜𝑑𝑟 (𝑓 ) = max

𝑝
𝑝𝑇𝐵𝑟 (𝑓 − 𝑓 ∗𝑟 ) + 𝑑𝑟 (𝑓 ∗𝑟 ) − ˜𝜆𝑟 (𝑝 |𝑓 ∗𝑟 ).

However, this allows for transmission operator 𝑟 a feasible flow of the form 𝑓 = 𝑓 ′ + 𝛿 , where
𝐵𝑟𝛿 = 0 (i.e. 𝛿 is in the null-space null(𝐵𝑟 ) of 𝐵𝑟 ) and 𝑓 ′ is orthogonal to 𝛿 . Such flows 𝛿 do not

have any effect on the supply-demand balance, and can be considered to be infeasible. Therefore,

to rectify this, we instead set

˜𝑑𝑟 (𝑓 ) =
{

max𝑝 𝑝
𝑇𝐵𝑟 (𝑓 − 𝑓 ∗𝑟 ) + 𝑑𝑟 (𝑓 ∗𝑟 ) − ˜𝜆𝑟 (𝑝 |𝑓 ∗𝑟 ) if 𝑓 𝑇𝛿 = 0,∀ 𝛿 ∈ null(𝐵𝑟 ),

+∞ else.

(13)

Then by Proposition A.4.4, we note for the welfare function

�̃� (𝜎) = max

𝑥,𝑦,𝑓

∑︁
𝑏∈𝐵

𝑣𝑏 (𝑥𝑏) −
∑︁
𝑠∈𝑆

𝑐𝑠 (𝑦𝑠 ) −
∑︁
𝑟 ∈𝑅

˜𝑑𝑟 (𝑓𝑟 )

subject to

∑︁
𝑠∈𝑆

𝑦𝑠 −
∑︁
𝑏∈𝐵

𝑥𝑏 +
∑︁
𝑟 ∈𝑅

𝐵𝑟 𝑓𝑟 = 𝜎,

the conjugate of the negative welfare function (−�̃�)∗ equals

(−�̃�)∗ (𝑝) =
∑︁
ℓ∈𝐿

˜𝜆ℓ (𝑝 |𝑧∗ℓ ) + 𝜔 (0). (14)

The pricing problem for this convex market, given by the subgradient problem (5), is therefore

precisely min𝑝

∑
ℓ∈𝐿 ˜𝜆ℓ (𝑝 |𝑧∗ℓ ).

To illustrate how the calculations work, we derive the convex model corresponding to (Min-

MWP):

Example C.1. In (Min-MWP), each market participant ℓ has a dual pricing function 𝜆𝑀𝑊𝑃
ℓ

(𝑝 |𝑧∗ℓ ) =
max{−𝑢ℓ (𝑧∗ℓ |𝑝), 0}. For any buyer 𝑏,

𝑢𝑏 (𝑥∗𝑏) = 𝑣𝑏 (𝑥
∗
𝑏
) − 𝑝𝑇𝑥∗

𝑏
.

We know that the convex model 𝑣𝑏 here satisfies (11), and by Proposition A.4.5, [𝜆𝑀𝑊𝑃
𝑏

(·)]∗ (𝑥) =
𝑐𝑜𝑛𝑣 min{(−𝑢𝑏 (𝑥∗𝑏 |·))

∗, 0∗}(𝑥). The convex conjugate of the identical zero function is 𝜒{0} (𝑥), the
indicator function for the singleton set containing 0. Meanwhile, (−𝑢𝑏 (𝑥∗𝑏 |·))

∗
is given by

(−𝑢𝑏 (𝑥∗𝑏 |·))
∗ (𝑥) = max

𝑝
𝑝𝑇𝑥 + 𝑢𝑏 (𝑥∗𝑏 |𝑝)

= max

𝑝
𝑝𝑇 (𝑥 − 𝑥∗

𝑏
) + 𝑣𝑏 (𝑥∗𝑏)

= 𝜒{𝑥∗
𝑏
} (𝑥) + 𝑣𝑏 (𝑥∗𝑏).

Therefore, substituting for the expression (11), we get

−𝑣𝑏 (𝑥) = 𝑐𝑜𝑛𝑣 min{𝜒{0} (𝑥) + 𝑣𝑏 (𝑥∗𝑏), 𝜒{𝑥∗𝑏 }} − 𝑣𝑏 (𝑥
∗
𝑏
),

which then implies that

𝑣𝑏 (𝑥) = 𝑐𝑜𝑛𝑐 max{−𝜒{0},−𝜒{𝑥∗
𝑏
} + 𝑣𝑏 (𝑥∗𝑏)}.
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Specifically, buyer 𝑏’s valuations are modelled as the convexification of the valuation they have for

their allocation, and the valuation they have for not participating in the market. Likewise, for a

seller 𝑠 and a transmission operator 𝑟 , we have

𝑐𝑠 (𝑦) = 𝑐𝑜𝑛𝑣 min{𝜒{0}, 𝜒{𝑦∗𝑠 } + 𝑐𝑠 (𝑦
∗
𝑠 )},

˜𝑑𝑟 (𝑓 ) = 𝑐𝑜𝑛𝑣 min{𝜒{0}, 𝜒{ 𝑓 ∗𝑟 } + 𝑑𝑟 (𝑓 ∗𝑟 )}.

Thus it is indeed possible to extract a convex welfare maximization problem from a given

dual pricing problem, and the dual pricing problem prices the optimal outcome of this welfare

maximization problem. The set of participants and goods of this welfare maximization problem

might in fact greatly differ for this problem; we provide two examples.

Example C.2 (Penalty functions: Fictitious goods and agents). As mentioned previously, in non-

convex markets a Walrasian equilibrium need not exist. In this case, there is no price vector 𝑝 such

that the conditions of Walrasian equilibria (3.2) are all satisfied. While we consider budget balance

in linear payments, market participants’ losses still need to be compensated. To finance these

uplift payments, O’Neill et al. [2016] consider imposing personalized price vectors to participants.

Specifically, their approach involves finding a set of participants who require make-whole payments,

and then imposing personalized prices so that their uplifts are financed via the payments of other

market participants. As a measure of fairness, they minimize the magnitude of these transfers.

Here, we analyze the distortionary effect of a similar pricing problem, stylized for simplicity of

analysis. We impose personalized prices to the dual pricing problem (6), with a quadratic penalty

term for the magnitude of differences in prices. Furthermore, we add a budget balance constraint.

Then the resulting dual pricing problem is given by

min

(𝑝ℓ )ℓ ∈𝐿

∑︁
ℓ∈𝐿

𝜆𝐶𝐻ℓ (𝑝ℓ |𝑧∗ℓ ) +
1

2

∑︁
(ℓ,ℓ ′ ) ∈𝐿2

∥𝑝ℓ − 𝑝ℓ ′ ∥2

2

subject to

∑︁
ℓ∈𝐿

𝑝𝑇ℓ 𝑧
∗
ℓ = 0.

We can then compute the associated welfare maximization problem for this dual pricing problem.

The corresponding market has set of personalized goods and flow parameters 𝑀 × 𝐿, 𝐹 × 𝐿. We

also add a fictitious exchange operator (ℓ, ℓ ′) ∈ 𝐿2
for each pair of participants, who can exchange

goods and flows in {ℓ} × (𝑀 ∪ 𝐹 ) with the corresponding goods and flows in {ℓ ′} × (𝑀 ∪ 𝐹 ) at a
one-to-one ratio. Finally, we add an auctioneer 𝐴 who can provide any multiple of (𝑧∗ℓ )ℓ∈𝐿 to the

market at cost 0, clearing personalized goods in proportion to the priced optimal outcome. The

resulting welfare maximization problem is thus

max

𝑥,𝑦,𝑓 ,𝑧𝐴,(𝑧 (ℓ,ℓ ′ ) ) (ℓ,ℓ ′ ) ∈𝐿2

∑︁
𝑏∈𝐵

𝑣𝑏 (𝑥𝑏) −
∑︁
𝑠∈𝑆

𝑐𝑠 (𝑦𝑠 ) −
∑︁
𝑟 ∈𝑅

𝑑𝑟 (𝑓𝑟 ) −
1

2

∑︁
(ℓ,ℓ ′ ) ∈𝐿2

∥𝑧 (ℓ,ℓ ′ ) ∥2

2

subject to 𝑥𝑏 − 𝑧𝐴𝑥∗𝑏 −
∑︁
ℓ∈𝐿

𝑧 (𝑏,ℓ ) − 𝑧 (ℓ,𝑏 ) = 0 ∀ 𝑏 ∈ 𝐵

𝑦𝑠 − 𝑧𝐴𝑦∗𝑠 −
∑︁
ℓ∈𝐿

𝑧 (𝑠,ℓ ) − 𝑧 (ℓ,𝑠 ) = 0 ∀ 𝑠 ∈ 𝑆

𝑓𝑟 − 𝑧𝐴 𝑓 ∗𝑟 −
∑︁
ℓ∈𝐿

𝑧 (𝑟,ℓ ) − 𝑧 (ℓ,𝑟 ) = 0 ∀ 𝑟 ∈ 𝑅.

The additional exchange operators may be thought of as participants who can take advantage

of personalized price differences for arbitrage, while the auctioneer attempts to enforce optimal

market clearing.
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Example C.3 (Chebyshev scalarization: Consolidation of agents). To obtain a more balanced out-

come with respect to the GLOCs of market participants, one might consider minimizing the

(weighted) maximum of participants’ GLOCs instead. Such a method is known as Chebyshev scalar-
ization in the literature, where for objectives to 𝑓1, 𝑓2, ..., 𝑓𝑛 to be jointly minimized, one seeks a

solution of

min

𝑞∈F
max

1≤𝑖≤𝑛

𝑓𝑖 (𝑞)
𝑤𝑖

.

Here, (𝑤𝑖 )1≤𝑖≤𝑛 are the weights on each objective 𝑓𝑖 , signifying their relative importance, and F is

the feasible region of the problem.

Let us consider implementing Chebyshev scalarization as a dual pricing problem, where each

participant’s GLOCs are scaled by the 2-norm of the participant’s allocation. Intuitively, this

minimizes the GLOCs incurred for each unit of good purchased. This leads us to consider the dual

pricing problem

min

𝑝
max

ℓ∈𝐿

𝜆𝐶𝐻ℓ (𝑝 |𝑧∗ℓ )
∥𝑧∗
ℓ
∥2

.

However, this dual pricing problem is not additively separable over the market participants. Assum-

ing the market does not have transmission operators for simplicity and by evaluating the convex

conjugate of the dual pricing problem equals

𝑐𝑜𝑛𝑐 max

{
𝑣𝑏 (∥𝑥∗𝑏 ∥2 · (𝜎 + 𝑥∗

𝑏
)) − 𝑣𝑏 (𝑥∗𝑏)

∥𝑥∗
𝑏
∥2

}
𝑏∈𝐵

∪
{
−𝑐𝑠 (∥𝑦

∗
𝑠 ∥2 · (𝜎 + 𝑦∗𝑠 )) − 𝑐𝑠 (𝑦∗𝑠 )

∥𝑦∗𝑠 ∥2

}
𝑠∈𝑆

.

It does not seem possible, however, to transform this expression into a utilitarian welfare function

for the original set of market participants. In fact, the expression does not appear to admit a

straightforward interpretation as any meaningful welfare function.

By the examples above, we see that the addition of constraints and penalty functions lead to an

addition of new agents in the primal welfare maximization problem, while combining participants’

lost opportunity costs under a single term consolidates them into a single entity. We expect such

drastic changes in the welfare maximization problem to widen the gap between the true optimal

allocation and the allocation priced by the dual pricing problem, as in the case of CH pricing.

Therefore, we would like to avoid such distortions if possible.

We note that the dimension𝑀 of the price vector 𝑝 ∈ R𝑀 is precisely the number of priced goods.

This is because the welfare function 𝜔 takes as its argument supply-demand constraint violations

in real goods, and prices are in the corresponding dual space. To maintain the number of goods,

we must thus impose linear prices – as modifying the size of the price vector (e.g. by imposing

personalized prices) modifies the number of goods in the corresponding welfare maximization

problem.

To maintain the number of participants, note that by Proposition A.4.4 a welfare maximization

problem with a set of agents 𝐿 necessarily has an associated subgradient problem (5) that is

additively separable over the participants. That is, for a welfare maximization problem of the form

max

𝑥,𝑦,𝑓

∑︁
𝑏∈𝐵

𝑣𝑏 (𝑥𝑏) −
∑︁
𝑠∈𝑆

𝑐𝑠 (𝑦𝑠 ) −
∑︁
𝑟 ∈𝑅

˜𝑑𝑟 (𝑓𝑟 )

subject to

∑︁
𝑠∈𝑆

𝑦𝑠 −
∑︁
𝑏∈𝐵

𝑥𝑏 +
∑︁
𝑟 ∈𝑅

𝐵𝑟 𝑓𝑟 = 0,

the dual pricing problem is of the form min𝑝

∑
ℓ∈𝐿 ˜𝜆ℓ (𝑝 |𝑧∗ℓ ). The converse implication also holds

and an additively separable dual pricing function leads to a welfare maximization problem with
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set of participants 𝐿. This leads us to observe that, to obtain a dual pricing problem with minimal

distortion, we should restrict attention to dual pricing problems with an additively separable

objective function (over 𝐿) and linear prices for each good.
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D DCOPF PROBLEM

Sets

𝐵 Buyers

𝑆 Sellers

𝑇 = {1, ..,𝑇 } Time Periods

𝑉 Nodes (with some 𝑅∗ ∈ 𝑉 as reference node)

𝑁 (𝑣) Neighboring nodes of a node 𝑣 ∈ 𝑉
𝛽𝑡
𝑏

Bids of buyer 𝑏 ∈ 𝐵 in period 𝑡 ∈ 𝑇
𝛽𝑡𝑠 Bids of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
Mappings

𝜈 (𝑏) 𝐵 → 𝑉 Mapping of buyer 𝑏 ∈ 𝐵 to its node 𝑣 ∈ 𝑉
𝜈 (𝑠) 𝑆 → 𝑉 Mapping of seller 𝑠 ∈ 𝑆 to its node 𝑣 ∈ 𝑉
Parameters

𝐵𝑣𝑤 [pu] Susceptance of the line connecting 𝑣,𝑤 ∈ 𝑉
𝑣𝑏𝑡ℓ [$/MWh] Value of bid ℓ ∈ 𝛽𝑡

𝑏
of buyer 𝑏 ∈ 𝐵 in period 𝑡 ∈ 𝑇

𝑞𝑏𝑡ℓ [MWh] Maximum quantity of bid ℓ ∈ 𝛽𝑡
𝑏
of buyer 𝑏 ∈ 𝐵 in period 𝑡 ∈ 𝑇

𝑃
𝑏𝑡

[MWh] Price-inelastic demand of buyer 𝑏 ∈ 𝐵 in period 𝑡 ∈ 𝑇
𝑃𝑏𝑡 [MWh] Maximum demand of buyer 𝑏 ∈ 𝐵 in period 𝑡 ∈ 𝑇
𝑐𝑠𝑡ℓ [$/MWh] Cost of bid ℓ ∈ 𝛽𝑡𝑠 of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
ℎ𝑠 [$] No-load costs of seller 𝑠 ∈ 𝑆
𝑞𝑠𝑡ℓ [MWh] Maximum quantity of bid ℓ ∈ 𝛽𝑡𝑠 of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
𝑃
𝑠𝑡

[MWh] Minimum output of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
𝑃𝑠𝑡 [MWh] Maximum output of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
𝑅
𝑠

Minimum uptime of seller 𝑠 ∈ 𝑆
𝐹
𝑣𝑤

[MWh] Minimum flow on the line connecting 𝑣,𝑤 ∈ 𝑉
𝐹 𝑣𝑤 [MWh] Maximum flow on the line connecting 𝑣,𝑤 ∈ 𝑉
Primal Variables

𝑥𝑏𝑡 ≥ 0 [MWh] Consumption of buyer 𝑏 ∈ 𝐵 in period 𝑡 ∈ 𝑇
𝑥𝑏𝑡ℓ ≥ 0 [MWh] Consumption of buyer 𝑏 ∈ 𝐵 in period 𝑡 ∈ 𝑇 regarding bid ℓ ∈ 𝛽𝑡

𝑏

𝑦𝑠𝑡 ≥ 0 [MWh] Generation of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
𝑦𝑠𝑡ℓ ≥ 0 [MWh] Generation of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇 regarding bid ℓ ∈ 𝛽𝑡𝑠
𝑢𝑠𝑡 ∈ {0, 1} Commitment of seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
𝜙𝑠𝑡 ≥ 0 Start-up indicator for seller 𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
𝛼𝑣𝑡 ∈ R [rad] Voltage angle at node 𝑣 ∈ 𝑉 in period 𝑡 ∈ 𝑇
𝑓𝑣𝑤𝑡 ∈ R [MWh] Flow on the line connecting 𝑣,𝑤 ∈ 𝑉 in period 𝑡 ∈ 𝑇
Dual Variables

𝑝𝑣𝑡 ∈ R [$/MWh] Price at node 𝑣 ∈ 𝑉 in period 𝑡 ∈ 𝑇
𝛾𝑣𝑤𝑡 ∈ R [$/MWh] Congestion price for the line connecting 𝑣,𝑤 ∈ 𝑉 in period 𝑡 ∈ 𝑇
𝑟𝑡 ∈ R Dual of the reference node voltage angle constraint in period 𝑡 ∈ 𝑇

Table 6. DCOPF Notation



30

max

∑︁
𝑏∈𝐵

∑︁
𝑡 ∈𝑇

∑︁
ℓ∈𝛽𝑡

𝑏

𝑣𝑏𝑡ℓ𝑥𝑏𝑡ℓ −
∑︁
𝑠∈𝑆

∑︁
𝑡 ∈𝑇

∑︁
ℓ∈𝛽𝑡𝑠

𝑐𝑠𝑡ℓ𝑦𝑠𝑡ℓ −
∑︁
𝑠∈𝑆

∑︁
𝑡 ∈𝑇

ℎ𝑠𝑢𝑠𝑡 (DCOPF-MILP)

subject to 𝑥𝑏𝑡ℓ ∈ [0, 𝑞𝑏𝑡ℓ ] ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇, ℓ ∈ 𝛽𝑡
𝑏

𝑥𝑏𝑡 −
∑︁
ℓ∈𝛽𝑡

𝑏

𝑥𝑏𝑡ℓ = 𝑃𝑏𝑡 ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇

𝑥𝑏𝑡 ≤ 𝑃𝑏𝑡 ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇
𝑦𝑠𝑡ℓ ∈ [0, 𝑞𝑠𝑡ℓ ] ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, ℓ ∈ 𝛽𝑡𝑠
𝑦𝑠𝑡 −

∑︁
ℓ∈𝛽𝑡𝑠

𝑦𝑠𝑡ℓ = 0 ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

𝑦𝑠𝑡 − 𝑃𝑠𝑡𝑢𝑠𝑡 ≥ 0 ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇
𝑦𝑠𝑡 − 𝑃𝑠𝑡𝑢𝑠𝑡 ≤ 0 ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇
𝜙𝑠𝑡 − 𝑢𝑠𝑡 + 𝑢𝑠 (𝑡−1) ≥ 0 ∀ 𝑠 ∈ 𝑆, 1 < 𝑡 ≤ 𝑇

𝑡∑︁
𝑖=𝑡−𝑅𝑠+1

𝜙𝑠𝑖 − 𝑢𝑠𝑡 ≤ 0 ∀ 𝑠 ∈ 𝑆, 1 < 𝑡 ≤ 𝑇

𝑓𝑣𝑤𝑡 ∈ [𝐹
𝑣𝑤
, 𝐹 𝑣𝑤]∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇

𝑓𝑣𝑤𝑡 − 𝐵𝑣𝑤 (𝛼𝑣𝑡 − 𝛼𝑤𝑡 ) = 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇∑︁
𝑠 :𝜈 (𝑠 )=𝑣

𝑦𝑠𝑡 −
∑︁

𝑏:𝜈 (𝑏 )=𝑣
𝑥𝑏𝑡 −

∑︁
𝑤∈𝑁 (𝑣)

𝑓𝑣𝑤𝑡 = 0 ∀ 𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑇

𝛼𝑅∗𝑡 = 0 ∀ 𝑡 ∈ 𝑇
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E ELMP PRICING PROBLEM
The continuous relaxation of the binary integer constraints in the welfare maximization problem

provide an LP. The associated dual pricing problem with this relaxation of the welfare maximization

problem is the pricing rule known as ELMP [MISO, 2019]. Furthermore, the class of valuation /

cost functions we consider are such that the optimal solutions to the dual LP provide CH prices

[Hua and Baldick, 2017].

Therefore, to formulate the Convex Hull pricing problem in our setting we consider the dual LP

to the DCOPF where for each seller 𝑠 and each time period 𝑡 , the binary integer constraints are

relaxed 𝑢𝑠𝑡 ∈ [0, 1]. Furthermore, we add constants to the dual objective function which do not

alter the solution sets. However, the addition of these constants allows the objective function value

to be sum of GLOCs. The resulting dual LP is given as:

min

𝜖,𝜓,𝜒≥0,𝜖,𝜓,𝜒,𝜒≤0,𝑝,𝛾,𝑟,𝜆,𝜖

∑︁
𝑏∈𝐵

𝜆𝑏 +
∑︁
𝑠∈𝑆

𝜆𝑠 +
∑︁

𝑣∈𝑉 ,𝑤∈𝑁 (𝑣),𝑡 ∈𝑇
𝜆𝑣𝑤𝑡 (ELMP-LP)

subject to 𝜆𝑏 −
∑︁
𝑡 ∈𝑇

[
𝜖𝑏𝑡𝑃𝑏𝑡 + 𝜖𝑏𝑡𝑃𝑏𝑡 +

∑︁
ℓ∈𝜈𝑡

𝑏

𝜖𝑏𝑡ℓ𝑞𝑏𝑡ℓ

]
+ 𝑣𝑏 (𝑥∗𝑏) − 𝑝

𝑇
𝜈 (𝑏 )𝑥

∗
𝑏
≥ 0 ∀ 𝑏 ∈ 𝐵

𝜆𝑠 −
∑︁
𝑡 ∈𝑇

[
𝜓𝑠𝑡 +

∑︁
ℓ∈𝜈𝑡𝑠

𝜖𝑠𝑡ℓ𝑞𝑠𝑡ℓ

]
+ 𝑝𝑇

𝜈 (𝑠 )𝑦
∗
𝑠 − 𝑐𝑠 (𝑦∗𝑠 , 𝑢∗𝑠 ) ≥ 0 ∀ 𝑠 ∈ 𝑆

𝜆𝑣𝑤𝑡 − 𝜖𝑣𝑤𝑡𝐹 𝑣𝑤 − 𝜖
𝑣𝑤𝑡

𝐹
𝑣𝑤

+ 𝛾𝑣𝑤𝑡 𝑓 ∗𝑣𝑤𝑡 ≥ 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇∑︁
𝑤 |𝑣∈𝑁 (𝑤 )

𝐵𝑤𝑣 (𝑝𝑤𝑡 + 𝛾𝑤𝑣𝑡 ) −
∑︁

𝑤∈𝑁 (𝑣)
𝐵𝑣𝑤 (𝑝𝑣𝑡 + 𝛾𝑣𝑤𝑡 ) = 0 ∀ 𝑣 ∈ 𝑉 \ {𝑅∗}, 𝑡 ∈ 𝑇

𝑟𝑡 +
∑︁

𝑤 |𝑅∗∈𝑁 (𝑤 )
𝐵𝑤𝑅∗ (𝑝𝑤𝑡 + 𝛾𝑤𝑅∗𝑡 ) −

∑︁
𝑤∈𝑁 (𝑅∗ )

𝐵𝑅∗𝑤 (𝑝𝑅∗𝑡 + 𝛾𝑅∗𝑤𝑡 ) = 0 ∀ 𝑡 ∈ 𝑇

− 𝛾𝑣𝑤𝑡 + 𝜖𝑣𝑤𝑡 + 𝜖𝑣𝑤𝑡 = 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇
𝜖𝑏𝑡ℓ + 𝜖𝑏𝑡ℓ − 𝜖𝑏𝑡 = 𝑣𝑏𝑡ℓ ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇, ℓ ∈ 𝜈𝑡

𝑏

𝜖𝑏𝑡 + 𝜖𝑏𝑡 + 𝑝𝜈 (𝑏 )𝑡 = 0 ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇
𝜖𝑠𝑡ℓ + 𝜖𝑠𝑡ℓ − 𝜖𝑠𝑡 = −𝑐𝑠𝑡ℓ ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, ℓ ∈ 𝜈𝑡𝑠
𝜖𝑠𝑡 + 𝜖𝑠𝑡 + 𝜖𝑠𝑡 − 𝑝𝜈 (𝑠 )𝑡 = 0 ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

−
∑︁
ℓ∈𝜈1

𝑠

𝑞𝑠1ℓ𝜀𝑠1ℓ +𝜓𝑠1 +𝜓𝑠1 − 𝑃𝑠1𝜖𝑠1 − 𝑃𝑠1𝜖𝑠1 + 𝜒𝑠2 = −ℎ𝑠1, ∀ 𝑠 ∈ 𝑆

−
∑︁
ℓ∈𝜈𝑡𝑠

𝑞𝑠𝑡ℓ𝜀𝑠𝑡ℓ +𝜓𝑠𝑡 +𝜓𝑠𝑡 − 𝑃𝑠𝑡𝜖𝑠𝑡 − 𝑃𝑠𝑡𝜖𝑠𝑡 − 𝜒𝑠𝑡 − 𝜒𝑠𝑡 + 𝜒𝑠 (𝑡+1)
= −ℎ𝑠𝑡

∀𝑠 ∈ 𝑆, 1 < 𝑡 < 𝑇

−
∑︁
ℓ∈𝜈𝑇𝑠

𝑞𝑠𝑇 ℓ𝜀𝑠𝑇 ℓ +𝜓𝑠𝑇 +𝜓
𝑠𝑇

− 𝑃𝑠𝑇𝜖𝑠𝑇 − 𝑃
𝑠𝑇
𝜖
𝑠𝑇

− 𝜒𝑠𝑇 − 𝜒
𝑠𝑇

= −ℎ𝑠𝑇 ∀ 𝑠 ∈ 𝑆

𝜒𝑠𝑡 + 𝜒
𝑠𝑡
+

min{𝑇,𝑡+𝑅𝑠−1}∑︁
𝑡 ′=𝑡

𝜒𝑠𝑡 = 0 ∀ 𝑠 ∈ 𝑆, 1 < 𝑡 ≤ 𝑇 .
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F IP PRICING PROBLEM
Note that in our setting, an optimal allocation

(
(𝑥∗
𝑏
)𝑏∈𝐵, (𝑦∗𝑠 )𝑠∈𝑆 , (𝑓 ∗𝑟 )𝑟 ∈𝑅

)
fixes the binary integer

variables 𝑢∗𝑠𝑡 which indicate whether seller 𝑠 is generating at period 𝑡 . IP pricing then restricts the

primal DCOPF problem by adding the constraints 𝑢𝑠𝑡 = 𝑢
∗
𝑠𝑡 ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . The resulting welfare

maximization problem is an LP, and the dual LP provides prices which minimize LLOCs. Again, we

modify the dual objective function to be the sum of LLOCs by adding constants that do not affect

the optimal solution. In our setting, this dual LP is given as:

min

𝜖≥0,𝜖≤0,𝑝,𝛾,𝑟,𝜆,𝜖

∑︁
𝑏∈𝐵

𝜆𝑏 +
∑︁
𝑠∈𝑆

𝜆𝑠 +
∑︁

𝑣∈𝑉 ,𝑤∈𝑁 (𝑣),𝑡 ∈𝑇
𝜆𝑣𝑤𝑡 (IP-LP)

subject to 𝜆𝑏 −
∑︁
𝑡 ∈𝑇

[
𝜖𝑏𝑡𝑃𝑏𝑡 + 𝜖𝑏𝑡𝑃𝑏𝑡 +

∑︁
ℓ∈𝜈𝑡

𝑏

𝜖𝑏𝑡ℓ𝑞𝑏𝑡ℓ

]
+ 𝑣𝑏 (𝑥∗𝑏) − 𝑝

𝑇
𝜈 (𝑏 )𝑥

∗
𝑏
≥ 0 ∀ 𝑏 ∈ 𝐵

𝜆𝑠 −
∑︁
𝑡 ∈𝑇

[
𝜖
𝑠𝑡
𝑃
𝑠𝑡
𝑢∗𝑠𝑡 + 𝜖𝑠𝑡𝑃𝑠𝑡𝑢∗𝑠𝑡 +

∑︁
ℓ∈𝜈𝑡

𝑏

𝜖𝑠𝑡ℓ𝑞𝑠𝑡ℓ

]
+ 𝑝𝑇

𝜈 (𝑠 )𝑦
∗
𝑠 − 𝑐𝑠 (𝑦∗𝑠 , 𝑢∗𝑠 ) ≥ −ℎ𝑇𝑢∗𝑠 ∀ 𝑠 ∈ 𝑆

𝜆𝑣𝑤𝑡 − 𝜖𝑣𝑤𝑡𝐹 𝑣𝑤 − 𝜖
𝑣𝑤𝑡

𝐹
𝑣𝑤

+ 𝛾𝑣𝑤𝑡 𝑓 ∗𝑣𝑤𝑡 ≥ 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇∑︁
𝑤 |𝑣∈𝑁 (𝑤 )

𝐵𝑤𝑣 (𝑝𝑤𝑡 + 𝛾𝑤𝑣𝑡 ) −
∑︁

𝑤∈𝑁 (𝑣)
𝐵𝑣𝑤 (𝑝𝑣𝑡 + 𝛾𝑣𝑤𝑡 ) = 0 ∀ 𝑣 ∈ 𝑉 \ {𝑅∗}, 𝑡 ∈ 𝑇

𝑟𝑡 +
∑︁

𝑤 |𝑅∗∈𝑁 (𝑤 )
𝐵𝑤𝑅∗ (𝑝𝑤𝑡 + 𝛾𝑤𝑅∗𝑡 ) −

∑︁
𝑤∈𝑁 (𝑅∗ )

𝐵𝑅∗𝑤 (𝑝𝑅∗𝑡 + 𝛾𝑅∗𝑤𝑡 ) = 0 ∀ 𝑡 ∈ 𝑇

− 𝛾𝑣𝑤𝑡 + 𝜖𝑣𝑤𝑡 + 𝜖𝑣𝑤𝑡 = 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇
𝜖𝑏𝑡ℓ + 𝜖𝑏𝑡ℓ − 𝜖𝑏𝑡 = 𝑣𝑏𝑡ℓ ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇, ℓ ∈ 𝜈𝑡

𝑏

𝜖𝑏𝑡 + 𝜖𝑏𝑡 + 𝑝𝜈 (𝑏 )𝑡 = 0 ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇
𝜖𝑠𝑡ℓ + 𝜖𝑠𝑡ℓ − 𝜖𝑠𝑡 = −𝑐𝑠𝑡ℓ ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, ℓ ∈ 𝜈𝑡𝑠
𝜖𝑠𝑡 + 𝜖𝑠𝑡 + 𝜖𝑠𝑡 − 𝑝𝜈 (𝑠 )𝑡 = 0 ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 .

G MIN-MWP PRICING PROBLEM
As mentioned before, while a direct implementation of (Min-MWP) is possible, solutions to the

resulting dual pricing problem may result in phase angle operators having infinite LLOCs / GLOCs.

To rectify this issue, in our implementation of (Min-MWP) we still account for GLOCs of phase

angle operators. This is achieved by including the dual constraints associated with primal variables

𝛼𝑣𝑡 for 𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑇 , and the resulting dual pricing problem is given as:

min

𝑝,𝛾,𝑟,𝜆

∑︁
𝑏∈𝐵

𝜆𝑏 +
∑︁
𝑠∈𝑆

𝜆𝑠 +
∑︁

𝑣∈𝑉 ,𝑤∈𝑁 (𝑣),𝑡 ∈𝑇
𝜆𝑣𝑤𝑡 (Min-MWP-LP)

subject to −𝑣𝑏 (𝑥∗𝑏) + 𝑝
𝑇
𝜈 (𝑏 )𝑥

∗
𝑏
− 𝜆𝑏 ≤ 0 ∀ 𝑏 ∈ 𝐵

−𝑝𝑇
𝜈 (𝑠 )𝑦

∗
𝑠 + 𝑐𝑠 (𝑦∗𝑠 , 𝑢∗𝑠 ) − 𝜆𝑠 ≤ 0 ∀ 𝑠 ∈ 𝑆
−𝛾𝑣𝑤𝑡 𝑓 ∗𝑣𝑤𝑡 − 𝜆𝑣𝑤𝑡 ≤ 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇∑︁

𝑤 |𝑣∈𝑁 (𝑤 )
𝐵𝑤𝑣 (𝑝𝑤𝑡 + 𝛾𝑤𝑣𝑡 ) −

∑︁
𝑤∈𝑁 (𝑣)

𝐵𝑣𝑤 (𝑝𝑣𝑡 + 𝛾𝑣𝑤𝑡 ) = 0 ∀ 𝑣 ∈ 𝑉 \ {𝑅∗}, 𝑡 ∈ 𝑇

𝑟𝑡 +
∑︁

𝑤 |𝑅∗∈𝑁 (𝑤 )
𝐵𝑤𝑅∗ (𝑝𝑤𝑡 + 𝛾𝑤𝑅∗𝑡 ) −

∑︁
𝑤∈𝑁 (𝑅∗ )

𝐵𝑅∗𝑤 (𝑝𝑅∗𝑡 + 𝛾𝑅∗𝑤𝑡 ) = 0 ∀ 𝑡 ∈ 𝑇 .
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H IP ∨MIN-MWP PRICING PROBLEM
As discussed, the join of IP and Min-MWP pricing considers each participant’s maximum of the IP

and Min-MWP dual pricing function. For the DCOPF, we need not introduce new decision variables

and the addition of only |𝐵 ∪ 𝑆 | constraints to IP-LP is sufficient. Then, by choice of the constraints,

each participant’s contribution to the objective function 𝜆ℓ will equal the maximum of their MWPs

and LLOCs. The dual LP is given as:

min

𝜖≥0,𝜖≤0,𝑝,𝛾,𝑟,𝜆,𝜖

∑︁
𝑏∈𝐵

𝜆𝑏 +
∑︁
𝑠∈𝑆

𝜆𝑠 +
∑︁

𝑣∈𝑉 ,𝑤∈𝑁 (𝑣),𝑡 ∈𝑇
𝜆𝑣𝑤𝑡 ((IP ∨Min-MWP)-LP)

subject to 𝜆𝑏 −
∑︁
𝑡 ∈𝑇

[
𝜖𝑏𝑡𝑃𝑏𝑡 + 𝜖𝑏𝑡𝑃𝑏𝑡 +

∑︁
ℓ∈𝜈𝑡

𝑏

𝜖𝑏𝑡ℓ𝑞𝑏𝑡ℓ

]
+ 𝑣𝑏 (𝑥∗𝑏) − 𝑝

𝑇
𝜈 (𝑏 )𝑥

∗
𝑏
≥ 0 ∀ 𝑏 ∈ 𝐵

𝑣𝑏 (𝑥∗𝑏) − 𝑝
𝑇
𝜈 (𝑏 )𝑥

∗
𝑏
+ 𝜆𝑏 ≥ 0 ∀ 𝑏 ∈ 𝐵

𝜆𝑠 −
∑︁
𝑡 ∈𝑇

[
𝜖
𝑠𝑡
𝑃
𝑠𝑡
𝑢∗𝑠𝑡 + 𝜖𝑠𝑡𝑃𝑠𝑡𝑢∗𝑠𝑡 +

∑︁
ℓ∈𝜈𝑡

𝑏

𝜖𝑠𝑡ℓ𝑞𝑠𝑡ℓ

]
+ 𝑝𝑇

𝜈 (𝑠 )𝑦
∗
𝑠 − 𝑐𝑠 (𝑦∗𝑠 , 𝑢∗𝑠 ) ≥ −ℎ𝑇𝑢∗𝑠 ∀ 𝑠 ∈ 𝑆

𝑝𝑇
𝜈 (𝑠 )𝑦

∗
𝑠 − 𝑐𝑠 (𝑦∗𝑠 , 𝑢∗𝑠 ) + 𝜆𝑠 ≥ 0 ∀ 𝑠 ∈ 𝑆

𝜆𝑣𝑤𝑡 − 𝜖𝑣𝑤𝑡𝐹 𝑣𝑤 − 𝜖
𝑣𝑤𝑡

𝐹
𝑣𝑤

+ 𝛾𝑣𝑤𝑡 𝑓 ∗𝑣𝑤𝑡 ≥ 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇∑︁
𝑤 |𝑣∈𝑁 (𝑤 )

𝐵𝑤𝑣 (𝑝𝑤𝑡 + 𝛾𝑤𝑣𝑡 ) −
∑︁

𝑤∈𝑁 (𝑣)
𝐵𝑣𝑤 (𝑝𝑣𝑡 + 𝛾𝑣𝑤𝑡 ) = 0 ∀𝑣 ∈ 𝑉 \ {𝑅∗}, 𝑑𝑡 ∈ 𝑇

𝑟𝑡 +
∑︁

𝑤 |𝑅∗∈𝑁 (𝑤 )
𝐵𝑤𝑅∗ (𝑝𝑤𝑡 + 𝛾𝑤𝑅∗𝑡 ) −

∑︁
𝑤∈𝑁 (𝑅∗ )

𝐵𝑅∗𝑤 (𝑝𝑅∗𝑡 + 𝛾𝑅∗𝑤𝑡 ) = 0 ∀ 𝑡 ∈ 𝑇

− 𝛾𝑣𝑤𝑡 + 𝜖𝑣𝑤𝑡 + 𝜖𝑣𝑤𝑡 = 0 ∀ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑁 (𝑣), 𝑡 ∈ 𝑇
𝜖𝑏𝑡ℓ + 𝜖𝑏𝑡ℓ − 𝜖𝑏𝑡 = 𝑣𝑏𝑡ℓ ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇, ℓ ∈ 𝜈𝑡

𝑏

𝜖𝑏𝑡 + 𝜖𝑏𝑡 + 𝑝𝜈 (𝑏 )𝑡 = 0 ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇
𝜖𝑠𝑡ℓ + 𝜖𝑠𝑡ℓ − 𝜖𝑠𝑡 = −𝑐𝑠𝑡ℓ ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, ℓ ∈ 𝜈𝑡𝑠
𝜖𝑠𝑡 + 𝜖𝑠𝑡 + 𝜖𝑠𝑡 − 𝑝𝜈 (𝑠 )𝑡 = 0 ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 .
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A B S T R A C T

As the share of variable renewable energy increases, adequate prices on electricity spot markets become
increasingly important as they set signals for scarcity, investment, or demand response. Market prices are
derived from the underlying welfare maximization problem. On electricity spot markets, this optimization
problem is based on the non-convex and non-linear Alternating Current Optimal Power Flow (ACOPF) model.
Since the ACOPF is intractable, electricity markets around the world use a linear approximation, the Direct
Current Optimal Power Flow (DCOPF) model. Recent research has led to better non-linear relaxations of the
ACOPF. We show that these non-linear relaxations increase welfare and imply significantly lower redispatch
costs and side-payments. Most importantly, we show that the price signals obtained from non-linear relaxations
are much improved. The DCOPF often yields high price differences between nodes when there is no line
congestion in the AC-feasible solution or vice versa. Such biased price signals pose a significant problem in
practice as they lead to inefficient demand response, distorted investment signals, and incorrect congestion
incomes. The use of non-linear relaxations mitigates this problem and provides an important advantage of the
resulting prices over prices based on the DCOPF.

1. Introduction

Electricity spot markets collect bids from buyers and sellers and
solve a welfare maximization problem to determine the optimal eco-
nomic dispatch and prices. With an accurate representation of the
transmission network and the underlying physics, this can be described
as a non-linear and non-convex optimization problem referred to as
Alternating Current Optimal Power Flow (ACOPF) problem (Molzahn
and Hiskens, 2019). This ACOPF is computationally intractable for
the problem sizes that we observe in real-world electricity markets.
As a result, linearized network models are used for market clearing
and pricing. The standard linearized model is known as Direct Cur-
rent Optimal Power Flow (DCOPF) problem. The DCOPF or variations
thereof are used in most jurisdictions today, but an optimal solution for
DCOPF is generally neither AC-optimal nor AC-feasible. This requires
market operators or transmission system operators (TSOs) to adjust
the dispatch after the market clearing to reach a physically feasible
outcome.

This issue is magnified by the transition to renewable energy
sources (Lété et al., 2022). A decreasing amount of thermal generators
can supply reactive power and the consideration of reactive power

✩ This work was supported by the German National Science Foundation, grant BI 1057/9-1.
∗ Corresponding author.
E-mail addresses: bichler@cit.tum.de (M. Bichler), knoerr@cit.tum.de (J. Knörr).

1 See https://gocompetition.energy.gov/ for further details.

on the transmission level is therefore crucial (Hemmati et al., 2013;
Karmakar and Bhattacharyya, 2020). Larrahondo et al. (2021) found
that high integration of wind power contributes to the inaccuracies
of the DCOPF, e.g., by disregarding reactive power. There have been
significant efforts to obtain tighter and more accurate relaxations of
the ACOPF problem in an effort to leverage recent advances in convex
optimization for real-world markets, which culminated in the ARPA-E
Grid Optimization Competition.1 However, errors in the optimization
models due to linearization or simplifying assumptions remain a con-
cern in virtually all electricity markets. For example, the revision of
the European Capacity Allocation and Congestion Management (CACM)
regulation requires accounting for ‘‘linearization errors’’ while calcu-
lating available capacities for trading (ACER, 2021). A key concern of
linearized models is the welfare loss arising from a poor approximation
of ACOPF.

In recent years, substantial research has been devoted to finding
tighter convex relaxations and approximations for the ACOPF prob-
lem (Molzahn and Hiskens, 2019). This research is driven by advances
in convex non-linear optimization algorithms. A goal of the ARPA-
E Grid Optimization Challenge is to develop algorithms for the next

https://doi.org/10.1016/j.eneco.2023.106968
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generation of solvers providing tighter relaxations of ACOPF and to
better reflect the physics of the power grid. This research focuses on
the optimality of the solution and computational costs to obtain it.

However, even if one could solve ACOPF to optimality, getting
adequate price signals is challenging. Competitive equilibrium (aka.
Walrasian) prices in economic theory leverage duality theory in convex
optimization. Walrasian prices in a convex market are such that no
participant would want to deviate from the efficient outcome (aka.
envy-freeness), and the market is budget-balanced. This means that
market operators neither need to subsidize the market, nor do they
make a profit. Unfortunately, a well-known problem in economics is
that Walrasian prices generally exist only when the allocation problem
is a convex optimization problem (Bichler et al., 2020). Many real-
world markets are based on non-convex optimization problems with
electricity spot markets as a prime example. Such non-convexities can
even affect transmission network expansion planning (García-Cerezo
et al., 2021)

The literature on electricity market pricing developed a number
of proposals how to price electricity in the presence of such non-
convexities (Liberopoulos and Andrianesis, 2016). The most prominent
examples are Integer Programming (IP) pricing (O’Neill et al., 2005)
and Convex Hull (CH) pricing (Gribik et al., 2007; Hogan and Ring,
2003; Bichler et al., 2023). IP pricing is used in a number of U.S.
markets and so are versions of CH pricing. Both pricing rules require
side-payments by the market operator to compensate losses of market
participants (make-whole payments, MWPs) or even to compensate
all incentives to deviate from the efficient allocation (lost opportunity
costs, LOCs, for buyers and sellers; potential congestion revenue short-
falls, PCRS, for TSOs). However, the high MWPs are a concern of the
U.S. Federal Energy Regulatory Commission (FERC).2 The U.S. FERC
also found that the size and concentration of side-payments can be
affected by the inability to accurately model ACOPF, suggesting that
the benefit-to-cost ratio of more accurate power flow representations is
at least 100-fold (Cain and O’Neill, 2012).

We focus on the improvement of price signals we can expect from
better relaxations of ACOPF. Ideally, prices reflect marginal costs at a
network node to provide adequate incentives for investment or demand
reduction to aid overall system stability (Herrero et al., 2015). If DCOPF
does not adequately reflect the physics of the power grid, the prices
retrieved from the DCOPF solution will not be accurate. Thus, tighter
relaxations of ACOPF could lead to prices that better reflect scarcity in
the physical network. However, the magnitude of these improvements
is unclear. So far, only very few articles study pricing based on non-
linear convex relaxations of ACOPF (Ndrio et al., 2019; Papavasiliou,
2018; Garcia et al., 2020; Winnicki et al., 2020). All of these papers
focus on small networks with a few nodes and they assume convex
cost functions of sellers and fixed demand of buyers. Non-convexities of
sellers’ cost or buyers’ valuation functions are important and have been
the central problem that sparked the literature on electricity market
pricing (Liberopoulos and Andrianesis, 2016; Zoltowska, 2016; Kuang
et al., 2019).

We study the impact of non-linear convex market clearing models
on prices, MWPs, LOCs, and PCRS. In contrast to prior work, we
consider non-convexities in the preferences of buyers and sellers and
analyze realistic problem sizes, which should provide a good estimate
of the prices and welfare gains we can expect from tighter power
flow relaxations in the field. More precisely, we consider the linearized
DCOPF, a second-order conic (SOC) relaxation, and a quadratic convex
(QC) relaxation (Molzahn and Hiskens, 2019).3 For each of these re-
laxations, we compute Integer Programming (IP) prices (O’Neill et al.,

2 See https://www.ferc.gov/industries-data/electric/electric-power-
markets/energy-price-formation for further details.

3 We also considered a semidefinite programming (SDP) relaxation, but
it was not possible to solve large mixed-integer SDPs to optimality for the
problem sizes at hand.

2005) and Convex Hull (CH) prices (Gribik et al., 2007; MISO, 2023;
Hua and Baldick, 2017) as the two pricing rules primarily used in U.S.
markets.4 To our knowledge, this is the first paper to simultaneously
consider non-convexities arising from power flow models as well as
non-convexities arising from bidding formats. We leverage the large
problem instances from the ARPA-E Grid Challenge II5 as they were
designed to reflect real-world problems.

The results of our extensive numerical experiments show that differ-
ent power flow models lead to substantial differences in the allocation.
This of course has an impact on both welfare and prices. If the dispatch
computed on the market is not AC-feasible, redispatch is required.
Therefore, we report the costs of redispatch as well as welfare, MWPs,
LOCs, and PCRS after computing a near AC-feasible solution.

As one would expect, tighter convex relaxations require substan-
tially less redispatch compared to the standard DCOPF approximation,
and MWPs, LOCs and PCRS are, on average, lower for the final AC-
feasible outcome. Moreover, the tighter convex relaxations lead to
higher welfare of the final dispatch. However, welfare gains are not the
most important argument for tighter convex relaxations of ACOPF. Our
numerical experiments show that the prices obtained from DCOPF are
often substantially different from those of the non-linear relaxations,
leading to biased scarcity signals that distort effective demand response
and investment decisions. In contrast, the results of the SOC and QC
relaxation, which both model reactive power and line losses more
accurately, are almost identical. Prices obtained from DCOPF might
be excessively high at some of the nodes, even though there is no
congestion in the AC-feasible solution. In other words, DCOPF leads
to unnecessary price peaks at some of the nodes, with prices being
multiples of the average price, even though there is no congestion in
the physical grid at all. Similarly, we might encounter congestion in
the AC-feasible solution that the DC prices of adjacent nodes do not
reflect. Overall, DCOPF can expose some of the market participants
to unjustifiably high prices and further leads to inefficient demand
response, biased investment signals, and wrong congestion incomes. In
a world with 100% renewables, where adequate demand response is
even more important, this is a decisive disadvantage of standard DCOPF
solutions compared to tighter non-linear relaxations.

2. Power flow models and electricity pricing

In this section, we describe the setup of the electricity market
we consider. We outline the optimization problem to be solved by
the market operator and discuss competitive equilibrium theory with
respect to pricing on non-convex markets.

2.1. Setup

We consider a coupled electricity market with a set of buyers
(consumers) 𝐵 and a set of sellers (generators) 𝑆 of electricity located
at interlinked nodes 𝑁 in an electricity grid.6 The set of power lines
𝐿 is encoded by the pairs of nodes (𝑖, 𝑘) that are directly connected by
lines. We consider a single period such that the set of goods corresponds
to units of (real or reactive) power at the locations 𝑁 . Each buyer
𝑏 ∈ 𝐵 possesses a valuation function 𝑣𝑏 ∶ C|𝑁| → R and each seller
𝑠 ∈ 𝑆 possesses a cost function 𝑐𝑠 ∶ C|𝑁| → R that encodes feasibility
constraints and preferences.

A market operator collects buy and sell bids and provides a feasible
allocation (𝑥, 𝑦) as well as locational prices 𝜆. The variables 𝑥 ∈ C|𝑁|×|𝐵|

4 CH pricing is currently used for fast-start pricing by MISO and
ISO-NE (MISO, 2023; PJM, 2018).

5 See https://gocompetition.energy.gov/challenges/challenge-2 for further
details and to access the data.

6 One may aggregate several nodes into zones as it is done in European
markets, but we assume a fully nodal setting.
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(with column vectors 𝑥𝑏 ∈ C|𝑁|) and 𝑦 ∈ C|𝑁|×|𝑆| (with column
vectors 𝑦𝑠 ∈ C|𝑁|) describe the allocated bundles to buyers and sellers,
respectively. In essence, the market operator is faced with the following
welfare maximization problem:

max
𝑥,𝑦

∑

𝑏∈𝐵
𝑣𝑏(𝑥𝑏) −

∑

𝑠∈𝑆
𝑐𝑠(𝑦𝑠) (1)

subject to 𝑥, 𝑦 ∈ 𝛹.

Here, 𝛹 describes the set of feasible power flows. In other words, the
market operator seeks the welfare-maximizing allocation that ensures
feasible power flows with strict supply–demand equivalence at each
node. However, with an accurate representation of the underlying
physics, 𝛹 is highly non-linear and non-convex, and solving such prob-
lems to optimality is not viable from a practical perspective. Therefore,
various relaxations and approximations have been introduced that
reduce 𝛹 to a convex set. We discuss possible power flow models in
Section 2.2.

Given an optimal solution (𝑥∗, 𝑦∗), the market operator proceeds by
determining adequate prices 𝜆 ∈ R|𝑁| (we assume non-negative prices
for real power and prices of zero for reactive power). However, by
design of the bidding formats, valuation functions 𝑣𝑏 and cost functions
𝑐𝑠 are typically non-convex. In this case, Walrasian equilibrium prices
do not exist and market operators need to resort to non-uniform prices
and consider incentives to deviate. We provide an overview of these
issues in Section 2.3. It should be noted that some market operators
(e.g., in European markets) deviate from the welfare-maximizing allo-
cation in order to ensure better price properties. Since this comes with
computational challenges (All NEMO Committee, 2022), we focus on
pricing optimal outcomes in this paper.

Both the complexity of power flows and of pricing in non-convex
markets has been studied extensively, but typically separated. Prac-
tical electricity markets employ fully linearized versions of 𝛹 and
pricing rules that require side-payments to some market participants.
The interdependence between alternative power flow models, different
pricing rules, and the welfare of the resulting outcome has not yet been
investigated.

2.2. Power flow

In essence, power flow models describe the relationship between
power injections/withdrawals at each node and the resulting line flows
and voltage phasors. Due to their complexity and fundamental impor-
tance for power systems, there is a huge strand of literature dealing
with power flow problems in various forms and aspects. We refer
to Cain and O’Neill (2012), Frank et al. (2012) Castillo and O’Neill
(2013), Low (2014a) and Molzahn and Hiskens (2019) for comprehen-
sive overviews.

Modeling the physics of a power grid results in a highly non-linear
and non-convex optimization problem, the Alternating Current Optimal
Power Flow (ACOPF) problem. As the intention of this paper is to con-
nect the literature on power models and pricing with non-convexities,
we will neither discuss the physics of electric circuits that lead to these
types of constraints, nor the numerous representations of ACOPF that
have been proposed. We refer interested readers to Bienstock et al.
(2020) and Molzahn and Hiskens (2019). For our purposes, we provide
a bus injection formulation of ACOPF (Molzahn and Hiskens, 2019)
below. We use Re(𝑥𝑏) to denote the real power consumed by buyer 𝑏
and Im(𝑥𝑏) to denote the reactive power (and analogously for sellers 𝑠).
Parameters that are given include a complex nodal admittance matrix
𝑌 ∈ C|𝑁|×|𝑁| with 𝑌 = 𝐺 + 𝑗𝐵 consisting of a real conductance part 𝐺
and an imaginary susceptance part 𝐵, as well as minimum/maximum
voltages 𝑉 𝑚𝑖𝑛

𝑖 , 𝑉 𝑚𝑎𝑥
𝑖 at each node 𝑖 ∈ 𝑁 . With 𝑉𝑖 = 𝑉𝑑𝑖+𝑗𝑉𝑞𝑖 as complex

voltage phasor variable, the set of feasible power flows 𝛹𝐴𝐶 can be
written as

𝛹𝐴𝐶 = {𝑥 ∈ C|𝑁|×|𝐵|, 𝑦 ∈ C|𝑁|×|𝑆| ∶

∑

𝑠∈𝑆
Re(𝑦𝑖𝑠) −

∑

𝑏∈𝐵
Re(𝑥𝑖𝑏) =

∑

𝑘∈𝑁
𝑉𝑑𝑖(𝐺𝑖𝑘𝑉𝑑𝑘 − 𝐵𝑖𝑘𝑉𝑞𝑘)

+ 𝑉𝑞𝑖(𝐵𝑖𝑘𝑉𝑑𝑘 + 𝐺𝑖𝑘𝑉𝑞𝑘) ∀𝑖 ∈ 𝑁,
∑

𝑠∈𝑆
Im(𝑦𝑖𝑠) −

∑

𝑏∈𝐵
Im(𝑥𝑖𝑏) =

∑

𝑘∈𝑁
𝑉𝑑𝑖(−𝐵𝑖𝑘𝑉𝑑𝑘 − 𝐺𝑖𝑘𝑉𝑞𝑘)

+ 𝑉𝑞𝑖(𝐺𝑖𝑘𝑉𝑑𝑘 − 𝐵𝑖𝑘𝑉𝑞𝑘) ∀𝑖 ∈ 𝑁,

𝑉 2
𝑑𝑖 + 𝑉 2

𝑞𝑖 = |𝑉𝑖|
2 ∀𝑖 ∈ 𝑁,

(𝑉 𝑚𝑖𝑛
𝑖 )2 ≤ |𝑉𝑖|

2 ≤ (𝑉 𝑚𝑎𝑥
𝑖 )2 ∀𝑖 ∈ 𝑁,

𝑉𝑖 ∈ C ∀𝑖 ∈ 𝑁 }.

The set of constraints may further include limits on line flows or
the definition of a reference bus. In any case, the quadratic and non-
convex constraints implied by this system of equations make the ACOPF
problem notoriously hard to solve and it is considered intractable in
spite of advances in global optimization. The desire to obtain good
solutions to ACOPF has sparked competitions such as the ARPA-E Grid
Optimization Competition.7 In this context, new reformulations and
decomposition techniques have been proposed (Petra and Aravena,
2021).

Overall, there has been significant research on convex relaxations
and approximations of ACOPF to provide tractable programs and high
quality solutions for practical application. These relaxations make use
of advances in convex optimization, i.e. they leverage increasingly
powerful solvers for linear programs (LPs), second-order cone programs
(SOCPs), and semidefinite programs (SDPs). We briefly outline the main
ideas of the relaxations used in this paper and refer to more comprehen-
sive summaries (Zohrizadeh et al., 2020; Molzahn and Hiskens, 2019)
for further details. Molzahn and Hiskens (2016) provide an accessible
illustrative example of different convex relaxations.

SDP relaxation
The SDP-relaxation, dating back to the works of Shor (1987), is

based on lifting decision variables of the canonical ACOPF to capture
non-convexities in a single constraint. In particular, defining 𝑊 = 𝑉 𝑉 𝑇

as the product of voltages, we can rewrite the quadratic terms in
𝛹𝐴𝐶 in linear terms of entries of 𝑊 . Constraining 𝑊 to be a positive
semidefinite and rank-one matrix, i.e. 𝑊 ≽ 0 and rank(𝑊 ) = 1, is a
sufficient condition for the exactness of this reformulation. Since the
rank-one constraint now contains all non-convexities resulting from
power flows, dropping this constraint yields a convex SDP relaxation.

With ⟨⋅, ⋅⟩ as Frobenius inner product and 𝑒𝑖 as 𝑖th unit vector, the
relaxed set of feasible power flows 𝛹𝑆𝐷𝑃 can be written as (Bai et al.,
2008; Molzahn and Hiskens, 2019)

𝛹𝑆𝐷𝑃 = {𝑥 ∈ C|𝑁|×|𝐵|, 𝑦 ∈ C|𝑁|×|𝑆| ∶
∑

𝑠∈𝑆
Re(𝑦𝑖𝑠) −

∑

𝑏∈𝐵
Re(𝑥𝑖𝑏) = ⟨𝐿𝑃𝑖 ,𝑊 ⟩ ∀𝑖 ∈ 𝑁,

∑

𝑠∈𝑆
Im(𝑦𝑖𝑠) −

∑

𝑏∈𝐵
Im(𝑥𝑖𝑏) = ⟨𝐿𝑄𝑖

,𝑊 ⟩ ∀𝑖 ∈ 𝑁,

|𝑉𝑖|
2 = ⟨𝑀𝑖,𝑊 ⟩ ∀𝑖 ∈ 𝑁,

𝑊 ≽ 0 }.

Here, the matrices 𝐿𝑃𝑖 , 𝐿𝑄𝑖
, and 𝑀𝑖 are defined as

𝐿𝑃𝑖 =
1
2

(

Re(𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 + 𝑒𝑖𝑒𝑇𝑖 𝑌 ) Im(𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 − 𝑒𝑖𝑒𝑇𝑖 𝑌 )

Im(𝑒𝑖𝑒𝑇𝑖 𝑌 − 𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 ) Re(𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 + 𝑒𝑖𝑒𝑇𝑖 𝑌 )

)

𝐿𝑄𝑖
= −1

2

(

Im(𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 + 𝑒𝑖𝑒𝑇𝑖 𝑌 ) Re(𝑒𝑖𝑒𝑇𝑖 𝑌 − 𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 )

Re(𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 − 𝑒𝑖𝑒𝑇𝑖 𝑌 ) Im(𝑌 𝑇 𝑒𝑖𝑒𝑇𝑖 + 𝑒𝑖𝑒𝑇𝑖 𝑌 )

)

𝑀𝑖 =

(

𝑒𝑖𝑒𝑇𝑖 0

0 𝑒𝑖𝑒𝑇𝑖

)

.

7 See https://gocompetition.energy.gov/ for further details.
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While SDP solvers are not as mature as classical LP software,
many commercial packages can approximately solve these continu-
ous SDPs in polynomial time using interior point algorithms (Ben-Tal
and Nemirovski, 2001; Vandenberghe and Boyd, 1996). Exploiting the
sparsity of the network (and thus of matrix 𝑊 ) can further alleviate
computational challenges, i.e. by using the matrix completion theorem
to impose semidefiniteness constraints only on smaller submatrices of
𝑊 (Grone et al., 1984).

The SDP relaxation was much celebrated due to its capability to
solve several IEEE test cases exactly (Lavaei and Low, 2012).8 However,
the relaxation fails to be exact in general and exactness can even de-
pend on the specific formulation of the problem (i.e. the exactness does
not merely depend on physical characteristics of the network) (Kocuk
et al., 2016a; Bukhsh et al., 2013; Lesieutre et al., 2011; Molzahn
and Hiskens, 2019; Low, 2014b). As a consequence, there are efforts
to further strengthen the relaxation, e.g., using the Lasserre hierar-
chy (Lasserre, 2001, 2009; Josz and Henrion, 2016; Molzahn and
Hiskens, 2014, 2015), bound tightening, or lifted non-linear cuts (Cof-
frin et al., 2015). However, the computational hardness of the problem
grows quickly in this case. It should further be noted that mixed-integer
SDP solvers, which become relevant when we consider non-convexities
in the valuation and cost functions, are still in early stages of devel-
opment (Gally et al., 2018) and cannot be reliably used for global
optimization.9 Therefore, we could not obtain meaningful results from
the SDP relaxation and refrain from reporting approximate results that
have little significance.

SOC relaxation
In contrast to SDPs, second-order cone programs (SOCPs) can be

efficiently solved by a variety of solvers, even in a mixed-integer
form, using interior point methods (Andersen et al., 2003; Ben-Tal
and Nemirovski, 2001; Alizadeh and Goldfarb, 2003). However, since
SDPs represent a generalization of SOCPs, SOCP relaxations are usually
less tight. In this paper, we consider two second-order cone relax-
ations of ACOPF: Jabr’s second-order cone (SOC) relaxation and Hijazi’s
quadratic convex (QC) relaxation.

Jabr’s SOC relaxation (Jabr, 2006; Molzahn and Hiskens, 2019) is
similar to the SDP relaxation in that first lifted decision variables are
defined from squared voltage magnitudes and the product of voltage
phasors, i.e. 𝑐𝑖 = 𝑉 2

𝑑𝑖 + 𝑉 2
𝑞𝑖, 𝑐𝑟𝑖𝑘 = 𝑉𝑑𝑖𝑉𝑑𝑘 + 𝑉𝑞𝑖𝑉𝑞𝑘, and 𝑐𝑖𝑖𝑘 =

𝑉𝑑𝑖𝑉𝑞𝑘 − 𝑉𝑞𝑖𝑉𝑑𝑘. Then, in a radial network, which was the original
setting considered by Jabr (2006), an exact representation of 𝛹𝐴𝐶 can
be formulated using these variables.10 Similar to the SDP relaxation, all
non-convexities are contained in a single quadratic equality constraint
𝑐𝑟2𝑖𝑘 + 𝑐𝑖2𝑖𝑘 = 𝑐𝑖𝑐𝑘. Replacing this by an inequality constraint yields a
convex SOC relaxation, i.e.,

𝛹𝑆𝑂𝐶 = {𝑥 ∈ C|𝑁|×|𝐵|, 𝑦 ∈ C|𝑁|×|𝑆| ∶
∑

𝑠∈𝑆
Re(𝑦𝑖𝑠) −

∑

𝑏∈𝐵
Re(𝑥𝑖𝑏) = 𝐺𝑖𝑖𝑐𝑖 +

∑

𝑘∈𝑁⧵{𝑖}
𝐺𝑖𝑘𝑐𝑟𝑖𝑘 − 𝐵𝑖𝑘𝑐𝑖𝑖𝑘 ∀𝑖 ∈ 𝑁,

∑

𝑠∈𝑆
Im(𝑦𝑖𝑠) −

∑

𝑏∈𝐵
Im(𝑥𝑖𝑏) = −𝐵𝑖𝑖𝑐𝑖 +

∑

𝑘∈𝑁⧵{𝑖}
−𝐵𝑖𝑘𝑐𝑟𝑖𝑘 − 𝐺𝑖𝑘𝑐𝑖𝑖𝑘 ∀𝑖 ∈ 𝑁,

𝑐𝑟𝑖𝑘 = 𝑐𝑟𝑘𝑖 ∀(𝑖, 𝑘) ∈ 𝐿,

𝑐𝑖𝑖𝑘 = −𝑐𝑖𝑘𝑖 ∀(𝑖, 𝑘) ∈ 𝐿,

𝑐𝑟2𝑖𝑘 + 𝑐𝑖2𝑖𝑘 ≤ 𝑐𝑖𝑐𝑘 ∀(𝑖, 𝑘) ∈ 𝐿,

𝑐𝑖, 𝑐𝑟𝑖𝑘, 𝑐𝑖𝑖𝑘 ∈ R ∀(𝑖, 𝑘) ∈ 𝐿 }.

This SOC relaxation can also be obtained from the SDP relaxation
by replacing the positive semidefiniteness constraint of 𝑊 by second-
order conic constraints on 2 × 2 submatrices thereof. As this constitutes

8 Note that for the SDP relaxation the rank-one condition of 𝑊 provides a
simple way to verify exactness.

9 See http://www.opt.tu-darmstadt.de/scipsdp/ for an example of a solver.
10 Note that for mesh networks, this representation constitutes a relaxation

as voltage angles in a loop may not sum to zero (Molzahn and Hiskens, 2019).

a necessary but not sufficient condition for 𝑊 ≽ 0, the SDP relaxation
is at least as tight as the SOC relaxation. Therefore, the SOC relaxation
is exact only under restrictive conditions (Jabr, 2006; Gan et al., 2012;
Low, 2014b), and tightening techniques can be used to improve the
quality of the solution (Kocuk et al., 2016b).

QC relaxation
Hijazi’s QC relaxation (Hijazi et al., 2017; Coffrin et al., 2016)

is derived from a polar representation of ACOPF. In essence, it uses
convex envelopes for various non-convex terms to yield a second-order
cone program. By accounting for voltage angle constraints in loops, it
is explicitly designed to be applicable to mesh networks (Molzahn and
Hiskens, 2019), unlike the SOC relaxation. In fact, the QC relaxation
simply tightens 𝛹𝑆𝑂𝐶 by adding more constraints on voltage angles
and magnitudes. We will write ⟨⋅⟩ to denote convex envelopes of non-
convex square, bilinear, sine, or cosine terms and refer to Hijazi et al.
(2017) and Molzahn and Hiskens (2019) for explicit formulations of
these convex envelopes. With this notation and 𝜃𝑖 as voltage angle at
node 𝑖, the set of power flows can be written as

𝛹𝑄𝐶 = 𝛹𝑆𝑂𝐶 ∩ {𝑥 ∈ C|𝑁|×|𝐵|, 𝑦 ∈ C|𝑁|×|𝑆| ∶

𝑐𝑖 ∈ ⟨|𝑉𝑖|
2
⟩ ∀𝑖 ∈ 𝑁,

𝑐𝑟𝑖𝑘 ∈ ⟨⟨|𝑉𝑖||𝑉𝑘|⟩⟨cos (𝜃𝑖 − 𝜃𝑘)⟩⟩ ∀(𝑖, 𝑘) ∈ 𝐿,
𝑐𝑖𝑖𝑘 ∈ ⟨⟨|𝑉𝑖||𝑉𝑘|⟩⟨sin (𝜃𝑖 − 𝜃𝑘)⟩⟩ ∀(𝑖, 𝑘) ∈ 𝐿,

𝑐𝑖, 𝑐𝑟𝑖𝑘, 𝑐𝑖𝑖𝑘, 𝜃𝑖 ∈ R ∀(𝑖, 𝑘) ∈ 𝐿 }.

Note that phase angle differences 𝜃𝑖 − 𝜃𝑘 are assumed to be bound
between zero and 𝜋

2 (Coffrin et al., 2016). By design, the QC-relaxation
is at least as tight as the SOC relaxation while still maintaining com-
putational efficiency as a second-order cone program. Neither the SDP
nor the QC relaxation dominate the other.

DC approximation
Finally, we consider the standard linear approximation for ACOPF

as it is currently applied in practical electricity markets. The Direct
Current Optimal Power Flow (DCOPF) problem (Stott et al., 2009;
Li and Bo, 2007; Overbye et al., 2004; Molzahn and Hiskens, 2019;
Eldridge et al., 2018) makes three simplifying assumptions: (i) line
resistances and reactive power are ignored, (ii) voltage magnitudes |𝑉𝑖|
at each bus are set to 1, and (iii) voltage angle differences between
nodes are assumed to be small such that sin (𝜃𝑖 − 𝜃𝑘) ≈ 𝜃𝑖 − 𝜃𝑘 and
cos (𝜃𝑖 − 𝜃𝑘) ≈ 1. As a result, the set of power flows simply formulates
as a set of linear constraints, i.e.,

𝛹𝐷𝐶 = {𝑥 ∈ C|𝑁|×|𝐵|, 𝑦 ∈ C|𝑁|×|𝑆| ∶
∑

𝑠∈𝑆
Re(𝑦𝑖𝑠) −

∑

𝑏∈𝐵
Re(𝑥𝑖𝑏) =

∑

𝑘∈𝑁∶(𝑖,𝑘)∈𝐿
−𝐵𝑖𝑘(𝜃𝑖 − 𝜃𝑘)

−
∑

𝑘∈𝑁∶(𝑘,𝑖)∈𝐿
−𝐵𝑘𝑖(𝜃𝑘 − 𝜃𝑖) ∀𝑖 ∈ 𝑁,

𝜃𝑖 ∈ R ∀𝑖 ∈ 𝑁 }.

Of course one may impose an admissible range on voltage angles,
e.g. 𝜃𝑖 ∈ [− 𝜋

2 ,
𝜋
2 ]. We also note that many system operators in prac-

tice use refined linear approximations that go beyond the standard
DCOPF (Li et al., 2022).11 In any case, the set of constraints constitute
a polyhedron, and mature and powerful linear programming solvers
can be applied (Bertsimas and Tsitsiklis, 1997). At the same time, 𝛹𝐷𝐶

may not approximate 𝛹𝐴𝐶 sufficiently well. While there are ambiguous
empirical findings on the accuracy of DCOPF (Molzahn and Hiskens,
2019), recent developments in research and practice alike suggest that
tighter relaxations would be preferable as long as tractability can be
ensured. This motivates to examine the introduced non-linear network
models in the context of pricing on wholesale electricity markets.

11 For example, approximation models in practice include more constraints
that reflect specific knowledge of the system. We therefore remark that prac-
tical implementations of DCOPF are likely to be tighter than 𝛹𝐷𝐶 presented
here and may yield better numerical results.
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Redispatch
As discussed, the introduced relaxations and approximations are

generally not tight, i.e., 𝛹𝐴𝐶 ⊆ 𝛹𝑆𝐷𝑃 ⊆ 𝛹𝑆𝑂𝐶 , 𝛹𝐴𝐶 ⊆ 𝛹𝑄𝐶 and for
𝛹𝐷𝐶 we cannot make any statement. Solutions obtained from these
power flow models may thus not be physically feasible. It is therefore
necessary to reconstruct a feasible solution from 𝛹𝐴𝐶 given the opti-
mal solution to the relaxation/approximation. As noted by Petra and
Aravena (2021), this reconstruction may be as complex as finding a
solution from 𝛹𝐴𝐶 from scratch. Ensuring AC-feasibility often involves
iterative processes with metaheuristics which are ineffective when
the system is stressed (Castillo, 2016). Thus, the economic costs of
reconstructing an AC-feasible solution is another important factor to
consider. We will refer to this reconstruction as redispatch.12

For our purposes, we will consider a cost-based redispatch. When
the market operator detects that the obtained solution is not in 𝛹𝐴𝐶 ,
the dispatch of certain market participants will be adjusted upward or
downward to ensure AC-feasibility. The affected market participants
are compensated for their additional costs or lost profits and are thus
indifferent to the initially assigned dispatch. We refer to the sum of
these compensation payments as redispatch costs. The redispatch costs
serve as additional benchmarks for efficiency losses of the different
relaxations and approximations.

In order to find a near AC-feasible solution, we construct an AC
power flow model 𝑥, 𝑦 ∈ 𝛹𝐴𝐶 , albeit with no objective function.
In order to speed up the calculations, we use a warm-start proce-
dure and set starting values for various variables. In particular, the
voltage magnitudes, active and reactive power generation, as well as
active and reactive power consumption of the solution of the relax-
ation/approximation are provided. Moreover, we add constraints that
restrict the active power generation and consumption to only deviate
by some specified tolerance from the initial solution. If the tolerance
is chosen too restrictive, the problem may become infeasible, yet an
appropriately chosen tolerance helps to keep the redispatch of active
power within reasonable limits. Moreover, due to the computational
complexity of this problem, the commitments of the generators can-
not be altered. As a result, redispatch only changes the dispatch of
market participants, but not their commitment status. The AC power
flow problem is thus of a continuous rather than discrete nature. The
problem is then solved using commercial software, i.e., interior-point
methods that try to find a local solution to the large-scale, non-linear,
non-convex problems at hand Nocedal et al. (2009), Wächter and
Biegler (2005a,b) and Wächter and Biegler (2006). The obtained al-
location (𝑥𝐴𝐶 , 𝑦𝐴𝐶 ) is AC-feasible, i.e., (𝑥𝐴𝐶 , 𝑦𝐴𝐶 ) ∈ 𝛹𝐴𝐶 , but it is not
AC-optimal, i.e., (𝑥𝐴𝐶 , 𝑦𝐴𝐶 ) is not a solution to (1) with 𝛹𝐴𝐶 .

2.3. Competitive equilibrium theory and pricing

After computing an optimal allocation (𝑥∗, 𝑦∗) based on some convex
power flow representation, the market operator needs to calculate real
power prices 𝜆 ∈ R|𝑁| for electricity at each node.13 We assume prices
of zero for reactive power and only assign non-zero prices to real power.
The motivation to allocate and price goods through markets is based
on competitive equilibrium theory and has a long history. As we will
see, however, the design of 𝑣𝑏 and 𝑐𝑠 as non-convex valuation or cost
functions implies a fundamental problem for pricing.

The promise of markets rests on well-known theoretical results such
as the welfare theorems (Arrow and Debreu, 1954). Assuming convex
preferences 𝑣𝑏 and 𝑐𝑠, demand independence, and perfect competition

12 Note that redispatch also refers to the process of adjusting a dispatch in
zonal markets due to the neglect of intra-zonal transmission constraints. In this
paper, by redispatch we refer to the process of reconstructing an AC-feasible
solution from a solution obtained from a relaxation/approximation.

13 The prices obtained from the convexified allocation problem also apply
to the allocation after redispatch, i.e., for (𝑥𝐴𝐶 , 𝑦𝐴𝐶 ).

with divisible goods, there is a set of competitive equilibrium prices
that will maximize social welfare. Further, every welfare-maximizing
allocation can be supported by a set of equilibrium prices. An equi-
librium implies that no market participants wants to deviate from
the assigned allocation, and that the outcome is thus envy-free and
budget-balanced.

However, many real-world markets exhibit indivisible goods and
non-convex preferences. In this context, the concept of a quasilin-
ear utility function was widely adopted to study competitive equilib-
ria (Bikhchandani and Mamer, 1997; Bikhchandani and Ostroy, 2002;
Baldwin and Klemperer, 2019). A large part of the literature focuses
on Walrasian equilibria, i.e., efficient market outcomes with linear
(i.e., item-level) and anonymous prices such that every market par-
ticipant maximizes their utility. Unfortunately, Walrasian equilibria
with indivisible goods generally only exist under very restrictive as-
sumptions on the preference functions (e.g., strong substitutes) (Kelso
and Crawford, 1982; Bikhchandani and Mamer, 1997; Baldwin and
Klemperer, 2019). Under these assumptions, Walrasian prices can be
obtained from the Lagrangian dual of the welfare maximization prob-
lem and the welfare theorems can be generalized to markets with indi-
visibilities (Blumrosen and Nisan, 2007; Bichler et al., 2020). However,
when these assumptions do not hold, these properties are generally
lost. In general non-convex combinatorial markets, determining the
allocation is NP-hard and competitive equilibrium prices need to be
non-linear and personalized (Bikhchandani and Ostroy, 2002) or not
exist at all (Bichler and Waldherr, 2019).

Electricity markets are a prime example of such markets. In the
absence of competitive equilibrium prices, different heuristics have
been proposed to serve as alternative pricing rules (Liberopoulos and
Andrianesis, 2016). The resulting prices are not unique, but virtually
all established pricing rules produce linear and anonymous prices such
that they can serve as a baseline for derivatives contracts. Given that
Walrasian equilibria are impossible to obtain, these prices compro-
mise on some of the properties thereof. We will discuss these issues
along two established pricing rules in electricity markets: Integer Pro-
gramming (IP) pricing (O’Neill et al., 2005) and Convex Hull (CH)
pricing (Hogan and Ring, 2003; Gribik et al., 2007).

To ease our reasoning, we will impose a specific form of valuation
and cost functions for the remainder of this paper. Buyers 𝑏 have con-
cave, piecewise-linear valuation functions 𝑣𝑏 based on their real power
consumption, represented by a set of bids 𝛽𝑏 and upper bounds 𝑞𝑏𝓁 .
Moreover, for both real and reactive power, they possess an inelastic
demand 𝑃 𝑏, 𝑄𝑏

and a maximum consumption of 𝑃 𝑏, 𝑄𝑏, respectively.

𝑣𝑏(𝑥𝑏) = max
𝑥𝑏 ,𝑥𝑏𝓁

∑

𝓁∈𝛽𝑏

𝜈𝑏𝓁𝑥𝑏𝓁

s.t.
∑

𝓁∈𝛽𝑏

𝑥𝑏𝓁 = Re(𝑥𝑏)

𝑃 𝑏 ≤ Re(𝑥𝑏) ≤ 𝑃 𝑏

𝑄
𝑏
≤ Im(𝑥𝑏) ≤ 𝑄𝑏

0 ≤ 𝑥𝑏𝓁 ≤ 𝑞𝑏𝓁 ∀𝓁 ∈ 𝛽𝑏

Buyers are thus assumed to have fully convex preferences. On the
other hand, for sellers 𝑠 we define a binary commitment variable
𝑢𝑠 that signals if a generator is supplying a positive amount and
thereby introduces non-convexities. When 𝑢𝑠 = 1, seller 𝑠 has a convex,
piecewise-linear variable cost function in analogy to buyers’ valuation
functions. Moreover, fixed costs ℎ𝑠 occur when a positive amount is pro-
duced, and sellers have minimum and maximum production quantities
𝑃 𝑠, 𝑄𝑠

, 𝑃 𝑠, and 𝑄𝑠, respectively.

𝑐𝑠(𝑦𝑠) = max
𝑦𝑠 ,𝑦𝑠𝓁 ,𝑢𝑠

∑

𝓁∈𝛽𝑠

𝜈𝑠𝓁𝑦𝑠𝓁 + ℎ𝑠𝑢𝑠

s.t.
∑

𝓁∈𝛽𝑠

𝑦𝑠𝓁 = Re(𝑦𝑠)

𝑃 𝑠𝑢𝑠 ≤ Re(𝑦𝑠) ≤ 𝑃 𝑠𝑢𝑠
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𝑄
𝑠
𝑢𝑠 ≤ Im(𝑦𝑠) ≤ 𝑄𝑠𝑢𝑠

0 ≤ 𝑦𝑠𝓁 ≤ 𝑞𝑠𝓁 ∀𝓁 ∈ 𝛽𝑠
𝑢𝑠 ∈ {0, 1}

As discussed, with such non-convex cost functions, Walrasian equi-
librium prices can generally not be obtained. As such, some market
participants do not maximize their utility at the prices 𝜆. We call this
forgone payoff lost opportunity costs (LOCs) of a market participant, i.e.,

𝐿𝑂𝐶𝑏 = �̂�𝑏(𝜆) − 𝑢𝑏(𝑥∗𝑏 |𝜆) = (max
𝑥𝑏

𝑣𝑏(𝑥𝑏) − 𝜆𝑇 Re(𝑥𝑏)) − (𝑣𝑏(𝑥∗𝑏 ) − 𝜆𝑇 Re(𝑥∗𝑏 )),

𝐿𝑂𝐶𝑠 = �̂�𝑠(𝜆) − 𝑢𝑠(𝑦∗𝑠 |𝜆) = (max
𝑦𝑠

𝜆𝑇 Re(𝑦𝑠) − 𝑐𝑠(𝑦𝑠)) − (𝜆𝑇 Re(𝑦∗𝑠 ) − 𝑐𝑠(𝑦∗𝑠 )).

We call �̂�𝑏(𝜆), �̂�𝑠(𝜆) the indirect utility function that measures the
individual payoff maximum given the prices 𝜆. In contrast, the direct
utility 𝑢𝑏(𝑥∗𝑏 |𝜆), 𝑢𝑠(𝑦

∗
𝑠 |𝜆) measures the actual payoff given the optimal

allocation (𝑥∗, 𝑦∗) and prices 𝜆.
A natural choice for a pricing rule in non-convex markets is to min-

imize these lost opportunity costs. This is the main idea of Convex Hull
(CH) pricing. CH pricing replaces each non-convex cost function 𝑐𝑠(𝑦𝑠)
by its convex envelope conv(𝑐𝑠(𝑦𝑠)). Assuming a convex power flow
representation, prices can be obtained from the dual of the resulting
convex problem. Determining convex envelopes and thus calculating
CH prices is generally computationally hard (Schiro et al., 2016). How-
ever, under restricted bidding languages, as applicable to our form of 𝑐𝑠,
CH prices can be tractably obtained by relaxing the binary constraints
𝑢𝑠 ∈ {0, 1} to 𝑢𝑠 ∈ [0, 1] and solving the dual problem (Hua and
Baldick, 2017). The resulting prices 𝜆𝐶𝐻 then equal the dual variables
of the active power balance constraints. They minimize LOCs, and if
a Walrasian equilibrium is attainable, 𝜆𝐶𝐻 constitutes such Walrasian
prices.

Since CH prices cannot always be computed efficiently, most market
operators in practice implement Integer Programming (IP) pricing. This
involves (i) obtaining the optimal commitment variables 𝑢∗𝑠 from the
welfare-maximizing solution, (ii) fixing the commitment variables to
these optimal values, i.e. relaxing 𝑢𝑠 ∈ {0, 1} to 𝑢𝑠 ∈ [0, 1], 𝑢𝑠 = 𝑢∗𝑠 ,
and (iii) retrieving prices from the dual of the active power balance
constraints of the resulting convex problem. IP pricing is considered to
follow the notion of marginal pricing in non-convex markets (O’Neill
et al., 2005).

Recently, practical pricing rules that are based on IP pricing have
come under scrutiny. They have been criticized for invoking too high
make-whole payments (MWP) to some of the market participants, dis-
torting the market price signal (Bichler et al., 2023; O’Neill et al.,
2019). Again, this criticism refers back to the absence of Walrasian
prices. In particular, in non-convex markets with linear and anonymous
prices, there may be no price vector that allows all market participants
to break even (Bichler et al., 2023). We call this property of non-
negative payoffs individual rationality. If this property is violated for
a market participant, they need to be compensated by an individual
side-payment. This MWP amounts to

𝑀𝑊𝑃𝑏 = max(−𝑢𝑏(𝑥∗𝑏 |𝜆), 0) = max(−(𝑣𝑏(𝑥∗𝑏 ) − 𝜆𝑇 Re(𝑥∗𝑏 )), 0),

𝑀𝑊 𝑃𝑠 = max(−𝑢𝑠(𝑦∗𝑠 |𝜆), 0) = max(−(𝜆𝑇 Re(𝑦∗𝑠 ) − 𝑐𝑠(𝑦∗𝑠 )), 0).

This observation has motivated the development of pricing rules
with reduced levels of MWPs (Bichler et al., 2023; O’Neill et al.,
2019; Ahunbay et al., 2022). Note that while 𝑀𝑊𝑃𝑏 ≤ 𝐿𝑂𝐶𝑏 (and
for sellers alike), the objectives to minimize MWPs and LOCs can be
conflicting (Ahunbay et al., 2022). It is unclear how CH prices, IP
prices, as well as the LOCs and MWPs they imply behave depending
on the choice of the power flow representation 𝛹 .

In addition, we aim to benchmark the quality of the congestion
signals provided by the different pricing rules. In particular, congestion
on network elements should be reflected in the prices, and if no conges-
tion occurs, prices should be identical throughout the network. Flawed

congestion signals have an impact on congestion income distribution,
financial hedging, and investment decisions, and are thus of essential
importance in practical electricity markets. In order to measure the
accuracy of congestion signals, we rely on a metric known as financial
transmission right (FTR) uplift or potential congestion revenue shortfall
(PCRS) (Garcia et al., 2020). This metric represents lost opportunity
costs for the transmission operators. It constitutes the difference be-
tween the maximum possible FTR payoffs (respecting the set of feasible
power flows 𝛹 ) and the actual congestion income given the optimal
allocation.

Let us denote 𝑥𝑁 ∈ C|𝑁| as the vector that holds the aggregate con-
sumption at each node 𝑖 ∈ 𝑁 as components, i.e. 𝑥𝑁 = (

∑

𝑏∈𝐵 𝑥𝑖𝑏)𝑖∈𝑁 .
Analogously, we define 𝑦𝑁 ∈ C|𝑁| as the aggregate supply at each node,
i.e. 𝑦𝑁 = (

∑

𝑠∈𝑆 𝑦𝑖𝑠)𝑖∈𝑁 . Then, the PCRS is defined as

𝑃𝐶𝑅𝑆 = max
𝑥,𝑦∈𝛹

𝜆𝑇 (Re(𝑥𝑁 ) − Re(𝑦𝑁 )) − 𝜆𝑇 (Re(𝑥∗𝑁 ) − Re(𝑦∗𝑁 )).

FTRs are allocated based on some set of feasible flows which may
not correspond to the actual flows. The notion of the PCRS metric is
that prices should be set in a way that the congestion revenues can
cover payoffs from a worst-case FTR allocation (Garcia et al., 2020).
If this were not the case, the resulting shortfall has to be distributed
among market participants, which is not trivial (Hogan, 2013). Similar
to LOCs and MWPs, the behavior of PCRS under different power flow
representations 𝛹 is unclear and one focus of this study.

3. Data and processing

We apply the different power flow relaxations and pricing rules on
the network and bid data provided for the ARPA-E Grid Optimization
Competition Challenge II.14 This competition seeks the development
of modern and scalable optimization techniques for solving complex
power flow problems. To that end, they provide large-scale and realistic
test sets of single-period power flow problems. We consider the power
flow models and valuation/cost functions as described in the previous
section (for which ARPA-E provides all necessary data), including ther-
mal line limits, and therefore abstract from some of the available data
(e.g., switched shunts, transformers, contingencies). In the Appendix,
we provide an overview of the notation.

We consider a set of five synthetic networks and 20 scenarios. The
problem sizes range from 617 nodes, 94 generators, and 404 consumers
to 3970 nodes, 391 generators, and 2744 consumers. This matches
the size of realistic power networks, e.g., those of Germany (roughly
438 nodes (DIW Berlin, 2022)) or the United Kingdom (roughly 300
nodes (National Grid, 2022)). The dataset includes even larger net-
works (up to 31,777 nodes), yet solving tighter non-linear convex
relaxations beyond DCOPF turned out to be intractable for these prob-
lem sizes. For example, a nodal model of Continental Europe and
Ireland would encompass roughly 25,000 nodes and 25,000 genera-
tors (ENTSO-E, 2022), and the Californian market consists of roughly
9700 nodes (California ISO, 2018). Note that we ran our experiments
on an Intel Xeon E312xx 2.0 GHz machine with 20 cores. European-
scale models might be tractable on a super-computer, but scalability is
not the focus of our research. We instead aim for an estimate of the
impact of different relaxations on prices, MWPs, LOCs, and PCRS. In
terms of external validity, our problem instances are large enough and
representative of those in the field.

We implemented the models in the Julia programming language.
For the different power flow models, we worked with the PowerModels
library,15 which offers readily available implementations of all common
power flow representations. We built on this library to enrich the

14 See https://gocompetition.energy.gov/sites/default/files/Challenge2_
Problem_Formulation_20210531.pdf for the problem statement.

15 See https://lanl-ansi.github.io/PowerModels.jl for the package documen-
tation.
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Fig. 1. Visualization of the approach.

Table 1
Overview of experiments.

Network sizes Power flow models Pricing rules Metricsa

617 (5 scenarios) DC IP Welfare
2020 (3 scenarios) SOC CH Prices
2312 (5 scenarios) QC MWPs
3288 (5 scenarios) LOCs
3970 (2 scenarios) PCRS

Redispatch costs
Runtime

a Welfare, MWPs, LOCs, and PCRS can be analyzed before and after the redispatch is
conducted.

models with the non-convex valuation and cost functions described
above, and further added functionalities to determine prices, LOCs,
MWPs, and PCRS. We used different commercial packages to solve the
optimization problems, including Gurobi (DC, SOC, QC), Ipopt (DC,
SOC, QC, AC), and Mosek (DC, SOC, QC). With standard constraint
qualification conditions satisfied, we can conclude strong duality (Cao
et al., 2022) and obtain prices from the dual solutions of our pricing
problems. Table 1 summarizes the factors of our experimental design
and the metrics analyzed.

As illustrated in Fig. 1, we first compute the allocation and prices
for each convexified model. This yields a certain welfare, MWPs, LOCs,
and PCRS. Since the computed allocation may not be AC-feasible, we
then conduct cost-based redispatch to obtain a physically AC-feasible
outcome. The now modified allocation yields a different welfare and
– together with the initially computed prices – different MWPs, LOCs,
and PCRS. In the next section, we only report MWPs, LOCs, and PCRS
for the AC-feasible solution, since this is the outcome that is physically
implemented.

4. Results

Below, we report the main results from our analysis.

4.1. Welfare & prices

For each test case, we solve the welfare-maximization problem for
each power flow model. This provides the optimal generator dispatch,
buyer consumption, and power flows that are valid under the chosen
relaxation/approximation.

Result 1. While the welfare of different power flow models is similar,
generator commitments between different power flow models vary signifi-
cantly. These differences in allocation impact the prices, the level of required
redispatch, and the final AC-feasible outcome.

In terms of welfare, each relaxation/approximation yields a similar
outcome. In all tested scenarios, choosing a different power flow model
impacts the welfare by, at most, 0.5%. This hinges on the fact that the
valuations of the buyers in the data set are very high. Large welfare
losses are thus not to be expected under any power flow model, even
though minor welfare improvements can already create significant
savings (Cain and O’Neill, 2012). At the same time, this does not
imply that the allocations are similar for all power flow models. Fig. 2
illustrates the differences in committed generation capacities between
𝛹𝐷𝐶 , 𝛹𝑆𝑂𝐶 , and 𝛹𝑄𝐶 . In the Appendix, we include a similar figure that
visualizes differences in the dispatched capacities. In most cases, the
conic relaxations commit and dispatch more generators compared to
the DC approximation, in order to account for the additional network
constraints (e.g., reactive power constraints). The differences can be
significant and impact prices and redispatch, as we will see.

Result 2. While the average prices of different power flow relaxations
are similar, prices under 𝛹𝐷𝐶 exhibit significantly more outliers. The DC
solution may contain line congestions that do not occur under 𝛹𝑆𝑂𝐶 and
𝛹𝑄𝐶 , leading to potentially high and unjustified price peaks in the network.
In contrast, prices for 𝛹𝑆𝑂𝐶 and 𝛹𝑄𝐶 are very similar, more stable, and
better reflect the physics of the network. CH prices usually exhibit fewer
discrepancies between power models than IP prices, but this comes at the
expense of distortions in the congestion signals.

After computing the welfare-maximizing allocation based on the
respective power flow representations, we determine IP and CH prices
by solving a convexified version of the original allocation problem.
We present exemplary boxplots of the computed prices for the net-
works with 2020 and 3970 nodes (aggregated over all scenarios) in
Fig. 3. Especially in large networks, IP and CH prices under 𝛹𝐷𝐶

exhibit substantially more outliers. We provide small examples that
illustrate how such deviations can occur with DCOPF in the Appendix.
For example, the very high DC prices up to $743/MWh for test case
C2FEN02020/121 are caused by a single congested line in the re-
spective part of the network, which implies high marginal costs and
leads to high prices at all surrounding nodes. Importantly, this line
congestion vanishes under 𝛹𝑆𝑂𝐶 and 𝛹𝑄𝐶 and prices range at stable
levels at around $75/MWh. While we cannot compute the AC-optimal
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Fig. 2. Committed generation capacity: The figure denotes the number of committed generators (‘‘Gen’’) and their total capacity (‘‘Cap’’) for 𝛹𝐷𝐶 (in MW) at the bottom. The
bars indicate the relative difference (in %) in committed capacity for 𝛹𝑆𝑂𝐶 and 𝛹𝑄𝐶 , respectively. The labels of each bar indicate the number of generators with a different
commitment status compared to 𝛹𝐷𝐶 . For example, the first bar in the first test case C2FEN00617/17 indicates that 5 units are committed differently under 𝛹𝑆𝑂𝐶 as compared
to the 49 committed units under 𝛹𝐷𝐶 .

Table 2
IP price statistics.

𝜇𝐷𝐶 𝜎𝐷𝐶 𝜇𝑆𝑂𝐶 𝜎𝑆𝑂𝐶 𝜇𝑄𝐶 𝜎𝑄𝐶 𝜌𝐷𝐶,𝑆𝑂𝐶 𝜌𝐷𝐶,𝑄𝐶 𝜌𝑆𝑂𝐶,𝑄𝐶

617 112.36 0.00 116.11 2.15 115.29 2.18 0.73 0.73 1.00
2020 76.63 24.86 71.63 3.60 72.16 3.63 0.49 0.49 1.00
2312 9.27 2.44 9.38 2.04 9.40 1.99 0.80 0.79 0.94
3288 18.71 3.04 17.48 0.19 17.46 0.19 0.11 0.14 0.98
3970 28.92 3.72 27.92 0.29 27.92 0.29 0.23 0.23 1.00

Table 3
CH price statistics.

𝜇𝐷𝐶 𝜎𝐷𝐶 𝜇𝑆𝑂𝐶 𝜎𝑆𝑂𝐶 𝜇𝑄𝐶 𝜎𝑄𝐶 𝜌𝐷𝐶,𝑆𝑂𝐶 𝜌𝐷𝐶,𝑄𝐶 𝜌𝑆𝑂𝐶,𝑄𝐶

617 112.87 0.12 115.00 2.07 115.00 2.06 0.21 0.21 1.00
2020 74.27 23.34 74.58 4.44 74.58 4.44 0.56 0.56 1.00
2312 9.28 2.38 9.34 2.05 9.34 2.05 0.82 0.82 1.00
3288 17.94 2.37 17.59 0.19 17.59 0.19 0.20 0.20 1.00
3970 28.96 3.43 27.94 0.19 27.94 0.29 0.24 0.24 1.00

allocation in this case, we argue that the tighter SOC and QC relaxations
better reflect the actual physical flows in the network. Moreover, when
computing a near AC-feasible solution, the line congestion vanishes
even for the DC outcome. We therefore argue that the high price peaks
of the DC network are unjustified and that the conic relaxations provide
a better price signal.

The price peaks for 𝛹𝐷𝐶 lead to a higher volatility (𝜎) of DC
prices, as evident from Tables 2 and 3. While average prices (𝜇) are
similar for different power flow relaxations, DC prices exhibit very little
correlation (𝜌) with SOC or QC prices. Correlations tend to be higher
for CH prices compared to IP prices, with the exception of the 617-node
network where DC prices tend to be constant throughout the network.

This is further illustrated by the median prices for each tested
scenario in Fig. 4. They are depicted in terms of their relative deviation
to the median IP and CH price under 𝛹𝐷𝐶 , respectively. Generally, price
spreads between different power flow relaxations tend to be higher
for IP pricing. This can be explained by the design of the convexified
model underlying IP and CH pricing. In particular, IP pricing fixes the

Table 4
Redispatch costs [$] and their proportion of welfare [%].

DC SOC QC

617 14 709.70 (1.93%) 7452.95 (0.98%) 8269.10 (1.08%)
2020 70 468.60 (2.77%) 42 905.50 (1.73%) 43 580.50 (1.75%)
2312 20 624.10 (0.69%) 390.50 (0.01%) 376.75 (0.01%)
3288 48 896.30 (0.91%) 16 993.70 (0.32%) 12 461.90 (0.23%)
3970 1489.50 (1.25%) 998.41 (0.80%) 992.46 (0.83%)

commitment variables 𝑢𝑠 of each generator to their optimal values 𝑢∗𝑠
and computes marginal prices based on this assumption. In contrast,
CH pricing computes marginal prices based on the convex envelopes
of the non-convex cost functions. As a result, generators under the
convexified model for CH pricing can be dispatched more flexibly than
under the convexified model for IP pricing. Differences in generator
commitments thus do not impact CH prices, and hence CH prices
are more similar across different power flow representations. Notably,
in all tested scenarios the conic relaxations do not increase prices
significantly compared to the DC benchmark, and often even decrease
median prices by several percent.

4.2. Redispatch costs and AC-feasibility

Next, we consider cost-based redispatch to obtain an AC-feasible
solution according to the methodology described in Section 2.2. Note
that redispatch refers to the allocation alone, and the choice of pricing
rule therefore does not matter. Redispatch only changes the dispatch
quantities of buyers and sellers, but not their commitment status.

Result 3. Redispatch costs are substantial for the DC approximation. The
required adjustments of the allocation to obtain AC-feasibility correlate with
the tightness of the power flow model. The high redispatch costs of the linear
DC approximation can be significantly reduced by using second-order conic
power flow relaxations.
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Fig. 3. Price boxplots [$/MWh].

Fig. 4. Median prices.
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Table 5
Average welfare, MWPs, LOCs, and PCRS for the AC-feasible solutions.

DC SOC QC

IP CH IP CH IP CH

Welfare vs. 𝛹𝐷𝐶
𝐴𝐶

617 – – +0.91% +0.91% +0.83% +0.83%
2020 – – +1.10% +1.10% +1.09% +1.09%
2312 – – +0.72% +0.72% +0.73% +0.73%
3288 – – +0.40% +0.40% +0.50% +0.50%
3970 – – +0.53% +0.53% +0.53% +0.53%

MWPs
617 1.55 0.00 0.00 0.00 44.39 0.64
2020 5375.92 504.37 1927.20 400.76 1789.93 400.76
2312 51 766.40 50 824.40 51 029.00 50 302.70 50 750.70 50 121.60
3288 36.09 7.54 9536.83 9527.38 9624.19 9611.17
3970 49.53 24.87 16.94 16.93 16.12 16.12

LOCs
617 13 801.00 13 779.10 7187.81 7041.99 7682.68 7536.17
2020 75 277.60 68 553.00 43 440.30 41 936.50 43 361.20 41 960.10
2312 91 967.90 90 953.10 72 330.60 71 160.00 72 648.50 70 975.40
3288 47 815.60 47 309.10 25 898.20 25 887.50 21 538.00 21 522.10
3970 692.68 672.05 457.66 457.70 456.49 456.55

PCRS
617 1106.21 1109.01 169.16 200.15 268.47 298.14
2020 2437.87 2245.06 899.50 1042.09 1008.50 1054.98
2312 425.05 450.97 49.34 77.67 76.53 247.45
3288 1023.04 988.94 401.89 415.09 167.15 182.74
3970 526.27 523.25 112.99 114.19 112.99 114.20

Table 4 lists the redispatch costs for all tested scenarios. As ex-
pected, the DC approximation requires the highest degree of redispatch
to obtain an AC-feasible outcome. On average, the redispatch costs for
the DC approximation exceed those of the SOC relaxation by a factor of
2.49, and those of the QC relaxation by a factor of 2.67. The linearized
DCOPF abstracts too much from physical reality, and large additional
costs arise from correcting the dispatch. Even if these costs are not
passed on to consumers,16 the significant change in allocation implies
that the prices do not reflect accurate scarcity signals. In contrast,
the two conic relaxations are tighter and thus approximate 𝛹𝐴𝐶 much
better. As a result, on average, significantly less redispatch is necessary.

Result 4. As redispatch modifies the underlying allocation, the originally
computed prices lead to a different outcome. Considering final AC-feasible
solutions, tighter convex power flow relaxations imply higher welfare and
fewer incentives to deviate, as measured by MWPs, LOCs, and PCRS. The
price signals obtained from the SOC or QC relaxation are much more
suitable for the AC-feasible outcomes than standard DC prices. This results
from the fact that the SOC and QC relaxations are better representations of
the physical grid than the DC approximation.

After conducting the redispatch, we have obtained an AC-feasible
dispatch that satisfies grid constraints and can be physically realized.
Table 5 summarizes the final welfare, MWPs, LOCs, and PCRS as a
result of redispatch.

As discussed above, the redispatch is most substantial for the DC
approximation, resulting in the highest welfare losses from ensuring
AC-feasibility. In Table 5, we compare the welfare of the AC-feasible
outcomes of the conic relaxations relative to the welfare of the AC-
feasible outcome of the DC approximation (denoted 𝛹𝐷𝐶

𝐴𝐶 ). The welfare
based on the conic relaxations outweighs that of the DC approximation
in all tested scenarios. Thus, even though we cannot compute the
welfare-maximizing AC-optimal outcome, tighter non-linear relaxations
provide an allocation that enables higher welfare than the standard

16 In decentralized European electricity markets, redispatch costs are passed
on to consumers. In U.S. central dispatch markets, the independent system
operator can mandate an AC-feasible dispatch as the final allocation.

linearized DC approximation. Using estimates from the past, these
efficiency gains between 0.40% and 1.10% could translate into billions
of dollars in annual savings (Cain and O’Neill, 2012), especially with
the recent increase in energy prices.

Importantly, while the originally computed prices are not modified,
the underlying allocation changes as a result of the redispatch and
implies certain MWPs and LOCs for market participants. The highest
MWPs are necessary for IP pricing and 𝛹𝐷𝐶 in 14 of the 20 tested
scenarios. With CH pricing the MWPs are consistently lower, yet the
DC approximation again requires the highest MWPs in the majority of
scenarios when CH pricing is applied. One exception is the 3288 node
network, where the set of generators that require MWPs under 𝛹𝐷𝐶

and under 𝛹𝑆𝑂𝐶/𝛹𝑄𝐶 are entirely disjunct. However, even though the
tighter conic relaxations require higher MWPs, their welfare exceeds
that of 𝛹𝐷𝐶 even more (e.g., by an average of $26,611 for the QC
relaxation).

Similarly, we observe a strong increase in LOCs for the DC approx-
imation as a result of the redispatch. In particular, LOCs are highest
for 𝛹𝐷𝐶 in 19 of 20 cases. We thus conclude that the redispatch of
the DC approximation can lead to substantial changes in the allocation
(e.g., for reactive power balancing). As a result, prices based on 𝛹𝐷𝐶

tend to be more distorted for the final AC-feasible outcome than prices
based on tighter convex relaxations. They imply strong incentives for
market participants to deviate from the AC-feasible dispatch. Large
amounts of penalties are necessary to prevent market participants to
deviate. In contrast, price signals obtained from non-linear relaxations
maintain better incentives for the final AC-feasible dispatch.

Moreover, PCRS increase over-proportionally for 𝛹𝐷𝐶 , implying
that prices based on 𝛹𝐷𝐶 do not reflect congestion properly and can
imply significant PCRS for transmission operators. In contrast, the
PCRS for the SOC and QC relaxation are significantly smaller, and the
respective prices admit a much higher quality in terms of congestion
signals for the final AC-feasible dispatch than the DC prices.

4.3. Computational costs

Finally, we consider the computational costs to determine allocation
and prices.
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Fig. 5. Visualization of the examples.

Result 5. Despite advances in non-linear optimization, computational
effort is still a limiting factor when employing tighter power flow relaxations.
We could solve all mixed-integer second-order conic and quadratic convex
relaxations to optimality for the selected problem sizes. Semidefinite pro-
grams, however, could not be solved on our test installation as mixed-integer
problems, and could not reliably be solved as continuous problems for larger
problem sizes.

When computing the original allocation, mixed-integer programs
have to be solved in order to determine generator commitments. While
such problems are NP-hard in general, the mixed-integer linear pro-
grams underlying the DC approximation can be solved effectively by
modern solver technology for the problem sizes at hand. On our ma-
chine, the median runtime over all scenarios is only 2.22 s (maximum
12.16 s). Although second-order cone program solvers have matured,
solving the mixed-integer SOCPs means more computational effort. As
such, the median runtime for the SOC relaxation is 9.1 min (maxi-
mum 382.4 min) and for the QC relaxation it is 11.4 min (maximum
564.4 min).

Naturally, the runtimes for the continuous-type pricing problems
decrease compared to the respective mixed-integer problems. In par-
ticular, the runtimes for the second-order cone programs decrease
significantly to a median runtime of 81.5 s (307.4 s) over all pricing
problems for the SOC (QC) relaxation, respectively. We note that we
only consider a single-period problem, and that more pronounced
runtime discrepancies are to be expected in a multi-period context with
intertemporal constraints (e.g., ramping constraints).

5. Conclusion

Clearing electricity spot markets is a complex problem. A feasible
dispatch has to consider non-linear transmission constraints and non-
convex preferences of the market participants. As a result, the ACOPF
clearing problem is intractable to solve and market operators need to
rely on convex relaxations or approximations of network constraints.
Besides, buyers and sellers typically possess non-convex preference
functions, preventing the existence of Walrasian equilibrium prices.
As a consequence, market participants can have incentives to deviate
or even incur losses that need to be compensated by individual side-
payments. In this paper, we aim to bring together the literature of
optimal power flow and competitive equilibrium theory and study
clearing and pricing in non-convex electricity markets with non-linear
network models.

Crucially, prices based on the standard linearized DC approximation
can be fundamentally flawed and insufficiently reflect actual network
flows. Prices can wrongly signal congestion that does not comply with

actual scarcities in the AC-feasible outcomes. This is important since
consumers may be exposed to unjustifiably high prices, and invest-
ment and demand response signals as well as congestion rents are
fundamentally distorted.

One reason for diverging prices is the fact that the DC approxi-
mation does not price reactive power, even though it affects the final
AC-feasible allocation. Given these findings, one direction for future
research could be an assessment of whether reactive power prices on
the transmission level might be a reasonable addition for a future
market design. Reactive power sources are currently compensated as
ancillary services (Yu et al., 2019), but if reactive power constraints
are binding for the allocation, a locational reactive price signal might
better reflect the physical reality.

Moreover, our experiments reveal a number of additional insights.
The allocations and committed generation capacities can differ sig-
nificantly between different power flow models. This has an impact
on the properties of prices and the required redispatch to enable AC-
feasibility. Typically, more capacity is committed and dispatched with
tighter convex relaxations, as this is required to accommodate the more
complex transmission constraints.

In terms of pricing rules, CH prices are less dependent on the under-
lying power flow model. They exhibit less MWPs and minimize LOCs of
market participants. CH prices are generally intractable to compute and
the prices might not reflect congestion accurately, resulting in larger
PCRS for the transmission operator. In contrast, IP prices provide better
congestion signals and lower PCRS. However, they are more volatile
and depend on the chosen power flow model.

The solution obtained from a DC approximation is often far away
from an AC-feasible outcome, requiring significant redispatch. Tighter
convex relaxations reduce redispatch costs substantially. Moreover,
they lead to higher welfare and much improved price signals. The
computational costs for dispatch and pricing remains an advantage for
the DC approximation. The underlying (mixed-integer) linear programs
scale better than equivalent second-order conic (or even semidefinite)
programs. However, the second-order conic relaxations provide a vi-
able alternative already today. An open question for future research
is the evaluation of convex power flow relaxations for very large
(e.g., European-scale) grids and multi-period problems.

Overall, we conclude that tighter power flow relaxations can pro-
vide significant upsides for electricity spot markets. Apart from welfare
gains and low redispatch costs, we argue that unbiased price signals
are a major advantage of advanced power flow models. This is even
more relevant for future electricity markets with many decentralized
renewable energy sources, variability in supply and demand, and less
predictable congestion patterns.
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Fig. 6. DC (Left) and SOC (Right) Prices and line flows.

Fig. 7. Dispatched generation capacity: The figure denotes the number of dispatched generators (‘‘Gen’’) and their total dispatched capacity (‘‘Alloc’’) for 𝛹𝐷𝐶 (in MW) at the
bottom. The bars indicate the relative difference (in %) in dispatched capacity for 𝛹𝑆𝑂𝐶 and 𝛹𝑄𝐶 , respectively. The labels of each bar indicate the number of generators with a
different dispatch compared to 𝛹𝐷𝐶 . For example, the first bar in the first test case C2FEN00617/17 indicates that 5 units were dispatched differently under 𝛹𝑆𝑂𝐶 as compared
to the 49 dispatched units under 𝛹𝐷𝐶 .
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Appendix A. Biased prices from the DCOPF approximation

Currently, prices on electricity markets rely on the linearized DC
approximation, regardless of the chosen pricing rule (e.g., IP or CH). A
main finding of our numerical experiments concerned the large price
discrepancies at some nodes that appeared even though there was no
congestion in the AC-feasible solution.

Large networks as those analyzed in the paper are difficult to study.
In this section, we illustrate how such problems can arise in very small
networks with two or four nodes. Even in these small examples, DC

prices may signal congestion where there is none, or fail to signal
congestion even though it occurs.

Fig. 5 visualizes 𝛹𝐴𝐶 , 𝛹𝐷𝐶 , and one exemplary conic relaxation
(either 𝛹𝑆𝑂𝐶 or 𝛹𝑄𝐶 ). Note that 𝛹𝑆𝑂𝐶 and 𝛹𝑄𝐶 represent relaxations,
i.e., 𝛹𝐴𝐶 ⊆ 𝛹𝑆𝑂𝐶 and 𝛹𝐴𝐶 ⊆ 𝛹𝑄𝐶 , while 𝛹𝐷𝐶 represents an ap-
proximation, i.e., 𝛹𝐴𝐶 ⧵ 𝛹𝐷𝐶 might be non-empty. Generally, we are
unable to determine the AC-optimal allocation (due to computational
hardness) and AC-optimal prices (due to computational hardness and
the non-existence of competitive equilibria). For the small examples
below, however, we can at least compute the AC-optimal allocation and
analyze the quality of different price signals based thereupon.

Case A: DC-optimal solution being SOC/QC-Infeasible

We consider a simple market with two connected nodes N1 and N2
and a single time period. Both nodes have a base voltage of 1 p.u. and
a voltage angle of 25 degrees. A single generator at N1 can supply
up to 100 MW at a cost of $40/MWh. A single buyer at N2 wishes
to consume up to 30 MWh for $3000/MWh. Both market participants
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Table 6
Lines.
ID From-node To-node Resistance [p.u.] Reactance [p.u.] Thermal limit [MW]

L1 N1 N2 0.01 0.03 35
L2 N1 N3 0.01 0.03 25
L3 N1 N3 0.02 0.04 30
L4 N2 N3 0.005 0.01 35
L5 N3 N4 0.01 0.02 30

Table 7
Mapping of notation.
Notation in this work Description Equivalent notation for ARPA-E

Sets

𝐵 Buyers 𝐽
𝑆 Sellers 𝐺
𝑁 Nodes 𝐼
𝐿 Lines 𝐸 and 𝐹

Parameters

𝑉 𝑚𝑖𝑛
𝑖 Minimum voltage at node 𝑖 ∈ 𝑁 𝑣𝑖

𝑉 𝑚𝑎𝑥
𝑖 Maximum voltage at node 𝑖 ∈ 𝑁 𝑣𝑖

𝐺𝑖𝑘 Conductance at line (𝑖, 𝑘) ∈ 𝐿 Re((𝑅 + 𝑗𝑋)−1)
𝐵𝑖𝑘 Susceptance at line (𝑖, 𝑘) ∈ 𝐿 Im((𝑅 + 𝑗𝑋)−1)
𝜈𝑏𝓁 Valuation for bid 𝓁 ∈ 𝛽𝑏 of buyer 𝑏 ∈ 𝐵 𝑐𝑗𝑛
𝑞𝑏𝓁 Upper bound for bid 𝓁 ∈ 𝛽𝑏 of buyer 𝑏 ∈ 𝐵 𝑝𝑗𝑛
𝑃 𝑏 Minimum real power of buyer 𝑏 ∈ 𝐵 𝑝0𝑗 𝑡𝑗
𝑃 𝑏 Minimum real power of buyer 𝑏 ∈ 𝐵 𝑝0𝑗 𝑡𝑗
𝑄

𝑏
Minimum reactive power of buyer 𝑏 ∈ 𝐵 𝑞0𝑗 𝑡𝑗

𝑄𝑏 Minimum reactive power of buyer 𝑏 ∈ 𝐵 𝑞0𝑗 𝑡𝑗
𝜈𝑠𝓁 Variable cost for bid 𝓁 ∈ 𝛽𝑠 of seller 𝑠 ∈ 𝑆 𝑐𝑔𝑛
ℎ𝑠 Fixed cost of seller 𝑠 ∈ 𝑆 𝑐𝑜𝑛𝑔
𝑞𝑠𝓁 Upper bound for bid 𝓁 ∈ 𝛽𝑠 of seller 𝑠 ∈ 𝑆 𝑝𝑔𝑛
𝑃 𝑠 Minimum real power of seller 𝑠 ∈ 𝑆 𝑝

𝑔
𝑃 𝑠 Minimum real power of seller 𝑠 ∈ 𝑆 𝑝𝑔
𝑄

𝑠
Minimum reactive power of seller 𝑠 ∈ 𝑆 𝑞

𝑔
𝑄𝑠 Minimum reactive power of seller 𝑠 ∈ 𝑆 𝑞

𝑔

Variables

𝑥𝑏 Consumption of buyer 𝑏 ∈ 𝐵 𝑝𝑗
𝑥𝑏𝓁 Consumption of buyer 𝑏 ∈ 𝐵 regarding bid 𝓁 ∈ 𝛽𝑏 𝑝𝑗𝑛
𝑦𝑠 Generation of seller 𝑠 ∈ 𝑆 𝑝𝑔
𝑦𝑠𝓁 Generation of seller 𝑠 ∈ 𝑆 regarding bid 𝓁𝑖𝑛𝛽𝑠 𝑝𝑔𝑛
𝑢𝑠 Commitment of seller 𝑠 ∈ 𝑆 𝑥𝑜𝑛𝑔
|𝑉𝑖| Voltage magnitude at node 𝑖 ∈ 𝑁 𝑣𝑖
𝜃𝑖 Voltage angle at node 𝑖 ∈ 𝑁 𝜃𝑖

have no preferences or restrictions with respect to reactive power. They
both have fully convex preference functions, and thus IP and CH prices
are equivalent. The line connecting N1 and N2 has a resistance of 0.02
p.u., a reactance of 0.01 p.u., and a thermal line capacity of 30.1 MW.

The optimal solution based on 𝛹𝐷𝐶 is to let the generator supply 30
MWh to the buyer. The lossless DC line transmits 30 MWh and is thus
uncongested. The price at both nodes is $40/MWh.

In this example, the SOC and QC solutions are identical. Since these
power flow models consider line losses, the DC-optimal solution is not
SOC/QC-feasible. In particular, under either conic model, the generator
produces 30.1 MWh and transmits this to N2, yet due to line losses,
the buyer only obtains 29.95 MWh. The transmission line is congested
due to its thermal line limit, and the prices are $40/MWh at N1 and
$3000/MWh at N2.

Importantly, the SOC/QC-solution is equivalent to the AC-optimal
allocation. In other words, the welfare-maximizing physically feasible
AC-solution implies a congested transmission line, and a price dif-
ference between the two nodes is justified or even necessary. The
prices based on 𝛹𝐷𝐶 significantly distort the congestion income of the
transmission operator and send wrong investment or demand response
signals. Prices based on 𝛹𝑆𝑂𝐶 or 𝛹𝑄𝐶 are much better suited for the
actual AC-optimal outcome.

Case B: SOC/QC-optimal solution being DC-Infeasible

We now consider a market with four nodes and five transmission
lines. All nodes have a base voltage of 1 p.u. and a voltage angle of 25
degrees, and the line data are shown in Table 6.

A generator at N2 can supply up to 100 MW at a cost of $40/MWh,
and a generator at N4 can provide up to 30 MW at $500/MWh.
At both N1 and N4, a buyer is willing to consume up to 15 MWh
for $3000/MWh. At N3 a buyer can consume up to 30 MWh for
$3000/MWh. Similar to above, there are no restrictions regarding
reactive power, IP and CH prices are equivalent due to fully convex
market participants, and the SOC and QC relaxations produce the same
prices.

Under all allocations, all buyers consume their maximum quanti-
ties. However, the implied power flows are different. Under 𝛹𝐷𝐶 , the
thermal capacity of line L4 is fully exhausted and the network is thus
congested. This leads to large price differences, ranging from $40/MWh
at N2 to $572.63/MWh at N3. In contrast, under the optimal SOC
and QC allocation, the critical line L4 is not fully exhausted. As a
result, the network is uncongested, and prices are roughly $40/MWh
at each location (minor price differences occur due to line losses). This
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is illustrated in Fig. 6.17 The power flows of the SOC/QC-relaxation are
not DC-feasible.

Importantly, under the AC-optimal outcome, none of the transmis-
sion lines are congested, including the critical line L4. We argue that
in this case only minor price differences due to line losses should occur
in the network, as implied by the conic relaxations. In contrast, the
linearized DC approximation sets unjustifiably high prices at some of
the nodes, which comes at the expense of electricity consumers at these
locations.

While the test cases above are illustrative, we observe the same
patterns in Section 4. While we cannot verify the AC-optimal outcome
for these large networks, we argue that the price signals obtained from
tighter conic relaxations reflect the physical network flows much better,
avoiding the highly distorted prices, congestion incomes, or demand
response signals that DC prices can imply.

Appendix B. Mapping of notation to ARPA-E documentation

In the following, we provide a mapping of the notation used in
this paper to the notation used in the problem formulation for the
ARPA-E Grid Optimization Competition Challenge II. We refer to the
following document: https://gocompetition.energy.gov/sites/default/
files/Challenge2_Problem_Formulation_20210531.pdf. Note that some
parameters from ARPA-E are normalized (see Table 7).

Appendix C. Differences in dispatched capacities

Fig. 2 in the main part of this paper illustrates the differences in
committed capacity during unit commitment. In contrast, the following
Fig. 7 illustrates the difference in dispatched capacity. In particular, the
figure visualizes the differences in allocation across different power
flow models. As Fig. 2 already implied, allocations can vary signifi-
cantly depending on the choice of power flow model, with up to 4.01%
differences in dispatched capacities. This, of course, has an impact on
pricing and the required redispatch.
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6. Conclusion

This dissertation has investigated the complexities of pricing in non-convex and coupled
electricity markets, aiming to address the challenges posed by non-convex preferences and
the coupled nature of power systems.

An essential economic concept related to electricity markets is the Walrasian equilibrium,
consisting of an allocation and linear and anonymous prices that satisfy budget balance and
envy-freeness. The welfare theorems posit that Walrasian equilibria maximize social wel-
fare, assuming perfect competition, demand independence, and convex preferences.

However, as elaborated in this dissertation, the critical assumption of convexity does not
hold in electricity markets. Bid languages and physical transmission constraints introduce
non-convexities into the market clearing problem, rendering existence conditions for Wal-
rasian equilibria invalid. Moreover, these non-convexities affect the computational scalabil-
ity of the allocation problem.

Present-day electricity markets employ various methodologies to determine allocation and
prices, often resorting to linearized models. This dissertation aims to contribute to the ad-
vancement of allocation and pricing rules in electricity markets. This research has resulted
in three publications, each contributing to the understanding and improvement of market
design in the context of day-ahead electricity markets.

6.1. Summary of Contributions

The first part of this dissertation, presented in Bichler et al. (2023a), focused on the impact
of demand response on pricing in electricity markets. Recognizing the absence of Wal-
rasian equilibrium prices, the paper proposed alternative pricing rules founded on princi-
ples of convex optimization. It demonstrated that, in the presence of price-elastic demand,
achieving both efficiency and individual rationality while maintaining budget balance and
linear and anonymous prices becomes an impossible task. The proposed pricing rule runs in
polynomial time and addressed concerns about increasing make-whole payments, offering
a potential solution to regulated day-ahead electricity markets.

The second part, detailed in Ahunbay et al. (2023b), extended the perspective to a multi-
objective optimization framework. By identifying conflicting design goals in established
pricing rules using duality theory, the paper framed pricing in non-convex markets as a
multi-objective optimization problem. It introduced the novel Join pricing rule, optimizing
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multiple classes of lost opportunity costs simultaneously. This work highlighted the trade-
offs inherent in pricing rules and provided a new perspective for designing rules that strike
a balance between competing objectives.

The third part, discussed in Bichler and Knörr (2023), shifted the focus to the impact of
different power flow models on market outcomes. Investigating the representation of the
transmission network in the context of optimal power flow problems, the paper emphasized
the economic implications of using simplified models such as the widespread DCOPF. It re-
vealed substantial deviations in allocation and redispatch when employing different power
flow models, with significant economic consequences. This work highlighted the impor-
tance of accurate representations of power flows for deriving price signals that reflect the
locational scarcity of electricity.

6.2. Discussion and Outlook

Electricity markets are characterized by profound complexities. They encompass vast and
complex physical systems with interconnected grids, where power flows adhere to non-
convex and non-linear laws of physics. Electricity markets operate across various time-
frames (forward, day-ahead, intraday, real-time, balancing) to achieve an efficient, phys-
ically feasible, and sustainable allocation of power. Prices serve to indicate the short-run
marginal value of electricity as well as efficient long-run investment signals. At the same
time, the electricity sector is undergoing a major transition with substantial investments in
low-carbon technologies to meet net-zero carbon emission targets in the coming decades.
As a result, electricity market design must evolve to align with these changes, and it is
crucial to obtain a deep understanding of power systems and market dynamics.

The contributions made in this dissertation aim to enhance our understanding of pricing
in non-convex and coupled day-ahead electricity markets. The presented publications pro-
posed scalable pricing rules with a robust economic justification, including minimizing side-
payments and providing effective congestion signals. Numerical analyses demonstrated
favorable outcomes achievable through these pricing rules. Furthermore, the dissertation
prompted consideration of how power flow models impact allocation and pricing, suggest-
ing a potential shift from linearized transmission models to more sophisticated second-order
conic power flow models as optimization software advances.

At the same time, these contributions raise new questions regarding clearing and pricing
in day-ahead markets. Given the complexity of electricity markets and fundamental trans-
formations in power systems and markets, numerous avenues for future research emerge,
necessitating further exploration and analysis.

For example, a current issue in European markets concerns the scalability of the EUPHEMIA
algorithm. With the continual expansion of renewable energy capacities, the SDAC mar-
ket is set to introduce 15-minute products, thereby increasing the size of the market clear-
ing problem and significantly impacting the runtime of EUPHEMIA (NEMO Committee,
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2023). Even as the transition from MIC orders to Scalable Complex Orders occurs and PUN
orders are phased out, scalability issues are anticipated to persist. As a consequence, SDAC
considers non-uniform pricing approaches as an alternative (SDAC, 2023). In contrast, U.S.
ISO markets, where non-uniform pricing is already in place, face fewer scalability concerns,
although the mixed-integer allocation problems lack polynomial time scalability.

Similarly, all presented non-uniform pricing rules in this dissertation require to obtain the
optimal, welfare-maximizing allocation as a first step. Recently, there have been promising
theoretical advances in tractable, near-optimal clearing and pricing in non-convex markets
(Milgrom and Watt, 2021). Exploring this line of research and its applications to electric-
ity markets (Ahunbay et al., 2023a) could yield promising scalable solutions for practi-
cal application. Other directions could involve machine learning applications to reduce the
computation costs of power flow problems (Hasan et al., 2020; van Hentenryck, 2021). Im-
proving the scalability of second-order conic and semidefinite programs (Vandenberghe and
Andersen, 2015; Yuan and Hesamzadeh, 2019) could facilitate an implementation in real-
world markets, leading to enhanced allocation and price signals, as explored in the third
publication of this dissertation.

Scalability concerns and the representations of transmission networks are also tied to the
discussion surrounding bidding zone configurations in European markets. The current zonal
market clearing process has faced scrutiny due to the substantial increase in redispatch vol-
umes and associated costs. To address concerns related to efficient market clearing and
congestion management, the EU Commission has initiated a Bidding Zone Review (BZR)
to reassess the configuration of European bidding zones (ACER, 2022). However, determin-
ing appropriate bidding zone delineations (Dobos et al., 2024) or even implementing nodal
pricing in Europe (PSE, 2017; Knörr et al., 2024) requires thorough analysis and investi-
gation concerning market efficiency, security of supply, stability, carbon emission objec-
tives, and other pertinent factors. Despite initial reports (ENTSO-E, 2022a), there remains
a notable absence of large-scale empirical studies using real-world data to comprehensively
understand the behavior of different market clearing and pricing rules in practical applica-
tions.

In auction theory, the concepts of incentive compatibility and the core assume an impor-
tant role. Incentive compatibility asserts that every bidder achieves their best outcome by
bidding truthfully, while the core comprises a set of allocations that cannot be improved
by any coalition of buyers with sellers and/or the auctioneer. Due to the size and com-
plexity of electricity markets, these concepts are often overlooked in the development of
clearing and pricing rules. However, the strategic behavior of bidders and their incentives
to manipulate the system merit closer examination (Garcia et al., 2022). This also includes
examining gaming strategies across different timeframes, such as strategic overbidding in
day-ahead markets to increase profits in subsequent redispatch markets, known as inc-dec
gaming (Hirth and Schlecht, 2020).

As electricity systems continue to decarbonize, the volatility of supply increases. However,
due to non-convexities, even minor bid adjustments can considerably impact allocation and
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prices. Therefore, a potential area for future research could involve exploring robust opti-
mization methods for market clearing and assessing their influence on prices (Zugno and
Conejo, 2015; Xiong and Singh, 2017). As a result, market clearing and pricing rules could
be enhanced to provide more stable outcomes in a future energy system with higher uncer-
tainty and volatility.

Looking ahead in the medium to long term, electricity markets may necessitate significant
reforms to integrate extensive renewable energy capacities, storage resources, and demand
response mechanisms. For instance, in European markets, both the European Commission
(European Commission, 2023) and ENTSO-E (ENTSO-E, 2022b) have outlined their vi-
sions for future market designs. While these visions offer guidance on necessary reforms
and changes in market design, numerous unanswered questions remain regarding the precise
formulation of market rules and policy instruments.

Moreover, reforms in spot markets extend beyond the scope of day-ahead markets, which
forms the main focus of this dissertation. Although the majority of energy is cleared in day-
ahead markets, intraday, real-time, and balancing markets assume increasing importance in
decarbonized electricity systems, where changing weather conditions can affect power sup-
ply close to physical delivery. For example, current European intraday markets require con-
tinuous trading, efficient utilization of cross-border capacity, and effective congestion pric-
ing (European Commission, 2019). Reconciling these requirements with current regulations
(NEMO Committee, 2019a) presents challenges, prompting active discussions to amend or
replace continuous trading with frequent intraday auctions (Graf et al., 2022).

In the balancing timeframe, ancillary services are presently co-optimized with energy in
U.S. spot markets. In contrast, European markets feature separate markets for distinct types
of reserves, such as PICASSO (for automatic frequency restoration reserve), MARI (for
manual frequency restoration reserve), and TERRE (for replacement reserves). However,
to enhance the use of cross-zonal capacity, SDAC is currently exploring co-optimization
approaches as well (SDAC, 2022). These developments and related aspects introduce nu-
merous new research questions concerning electricity market design closer to real-time op-
erations.

In conclusion, the research presented in this dissertation contributes to the ongoing dis-
course on market design in non-convex and coupled electricity markets. By addressing
the challenges posed by demand response, non-uniform side-payments, and power flows,
the findings offer insights and potential solutions for improving the efficiency, fairness,
and sustainability of day-ahead electricity markets. As the energy landscape continues to
evolve, future research endeavors can build upon these contributions to create innovative
and adaptive market designs that align with the goals of a modern and sustainable power
sector.
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