
FAKULTÄT FÜR MATHEMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Mathematics

Efficient and Scalable Linear Solver for
Kernel Matrix Approximations Using

Hierarchical Decomposition

Zhuoling Li

FAKULTÄT FÜR MATHEMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Mathematics

Efficient and Scalable Linear Solver for Kernel
Matrix Approximations Using Hierarchical

Decomposition

Effizienter und skalierbarer linearer Solver für
Kernel-Matrix-Approximationen unter Verwendung

hierarchischer Zerlegung

Author: Zhuoling Li

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Keerthi Gaddameedi, M.Sc., Severin Reiz, M.Sc.

Date: 01.12.2023

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 01.12.2023 Zhuoling Li

Acknowledgements

I am deeply grateful to Prof. Hans-Joachim Bungartz, my supervisor, for granting me the
opportunity to explore the assigned topic. Alongside, I extend my heartfelt appreciation to
my advisors, Keerthi Gaddameedi and Severin Reiz, whose unwavering support, invaluable
guidance, and expert mentorship have been instrumental in shaping the course of this
project. The contributions from my colleagues at LRZ, especially their steadfast hardware
support, have significantly enriched this research. My heartfelt appreciation extends to
my parents for their enduring love, encouragement, and sacrifices throughout my academic
journey. Furthermore, I extend my sincere gratitude to my friends in various cities, whose
unwavering support, understanding, and encouragement were paramount in this academic
pursuit. Despite the geographical distance, their consistent encouragement, uplifting words,
and understanding during challenging phases were immensely meaningful and contributed
significantly to the success of this endeavor.

vii

viii

Abstract

This study presents an innovative approach that harnesses the power of the Geometry-
Oblivious Fast Multipole Method (GOFMM) to compute and approximate kernel matrices
derived from Convolutional-Neural-Network-equivalent Gaussian Processes (CNN-GPs). The
primary objective is to devise an efficient and scalable linear solver specifically tailored to
handle the intricacies associated with kernel matrix approximations within the domain of
CNN-GPs. By leveraging hierarchical decomposition techniques, particularly the GOFMM
approach, this research aims to significantly enhance both the computational efficiency and
the accuracy in approximating kernel matrices in the context of CNN-GPs. The findings from
extensive experiments underscore the accuracy of the proposed methodology, showcasing
substantial improvements with complex CNN-GP architectures. Additionally, the scalability
analysis demonstrates the method’s robustness in handling various problem sizes, highlighting
its potential versatility and applicability across a myriad of domains. The results of this study
offer a promising avenue for enhancing the accuracy and computational efficiency of kernel
matrix approximation, particularly in CNN-GP context, thereby facilitating advancements
in various real-world applications demanding efficient processing of large-scale data.

ix

x

Zusammenfassung

Diese Studie präsentiert einen innovativen Ansatz, der die Leistung der Geometry-Oblivious
Fast Multipole Method (GOFMM) nutzt, um Kernmatrizen zu berechnen und anzunähern,
die aus Convolutional-Neural-Network-equivalent Gaussian Processes (CNN-GPs) abgeleitet
sind. Das Hauptziel besteht darin, einen effizienten und skalierbaren linearen Solver zu
entwickeln, der speziell darauf abzielt, die Feinheiten der Kernmatrix-Approximationen im
Bereich der CNN-GPs zu bewältigen. Durch die Nutzung hierarchischer Zerlegungstechniken,
insbesondere des GOFMM-Ansatzes, zielt diese Forschung darauf ab, sowohl die Rechenleis-
tung als auch die Genauigkeit bei der Approximation von Kernmatrizen im Kontext von
CNN-GPs signifikant zu verbessern. Die Ergebnisse umfangreicher Experimente unterstre-
ichen die Genauigkeit der vorgeschlagenen Methodik und zeigen erhebliche Verbesserungen
bei komplexen CNN-GP-Architekturen auf. Darüber hinaus zeigt die Skalierbarkeitsanalyse
die Robustheit der Methode bei der Bewältigung verschiedener Problemgrößen und unter-
streicht deren potenzielle Vielseitigkeit und Anwendbarkeit in einer Vielzahl von Bereichen.
Die Ergebnisse dieser Studie bieten einen vielversprechenden Ansatz zur Verbesserung der
Genauigkeit und Rechenleistung der Kernmatrix-Approximation, insbesondere im Kontext
von CNN-GPs, was Fortschritte in verschiedenen realen Anwendungen ermöglicht, die eine
effiziente Verarbeitung großer Datenmengen erfordern.

xi

xii

Contents

Acknowledgements vii

Abstract ix

Zusammenfassung xi

1 Introduction 1

2 Theoretical Background 2
2.1 Preliminaries . 2

2.1.1 Convolution . 2
2.1.2 Non-linear Functions . 2
2.1.3 Kernel Matrix . 2

2.1.4 SPD Matrices . 3
2.2 Convolutional Neural Networks . 3

2.3 Gaussian Processes . 4
2.4 CNNs as Gaussian Processes . 5

2.4.1 A 2D Convolutional Network with Gaussian Prior 6

2.4.2 CNN-equivalent GP Kernels . 7
2.5 Hierarchical Matrix Approximation . 8

2.5.1 FMM . 9

2.5.2 GOFMM . 9

3 Efficient and Scalable Linear Solver for Kernel Matrix Approximations Using
Hierarchical Decomposition 13
3.1 Methodology . 13

3.1.1 Problem Statement . 13
3.1.2 Our Approach: Linear Solver for Kernel Matrix Approximation . . . 13

3.2 Implementation . 14
3.2.1 Main Architecture . 14
3.2.2 CNN-GP Implementation . 15

3.2.3 Parameter Tuning . 17

4 Experiments and Results 19
4.1 Experimental Setup . 19

4.1.1 Datasets . 19
4.1.2 Evaluation Metric . 19

4.1.3 CNN-GP Architectures . 20
4.2 Accuracy Evaluation . 21

xiii

4.3 Performance and Scaling . 23
4.3.1 Hardware and Software Environment 23
4.3.2 Strong Scaling . 25
4.3.3 Weak Scaling . 26

5 Conclusion 29

Bibliography 32

1 Introduction

The field of machine learning and computational sciences has witnessed the growing promi-
nence of kernel methods, leveraging kernel matrices as fundamental entities. These matrices
play a pivotal role in various applications, facilitating non-linear transformations and en-
abling diverse computational techniques. However, resolving linear equations involving
large-scale kernel matrices poses a formidable computational challenge, particularly when
efficiency and scalability are imperative.
This thesis is dedicated to addressing the need for an efficient and scalable linear solver

tailored specifically for kernel matrix approximations. Emphasizing the utilization of
hierarchical decomposition from GOFMM (Geometry-oblivious Fast Multipole Method)
[YLRB17] for this purpose, the research confronts the complexities inherent in handling
kernel matrices derived from the CNN-GP framework [GAR19]. At its core, this work
endeavors to devise a robust linear solver by harnessing the capabilities of GOFMM for
approximating kernel matrices originating from CNN-GP. The study aims to augment
computational efficiency and scalability, critical for addressing the intricacies and scale of
modern data applications, while accommodating the properties of CNN-GP-derived matrices.
The significance of this work lies in its potential to propel computational methodologies

within the domain of kernel-based methods. By introducing an optimized linear solver
tailored explicitly for kernel matrix approximations derived from CNN-GP, this study
anticipates profound advancements in efficiency and scalability across diverse applications,
encompassing machine learning and computational sciences.

The thesis is structured into distinct chapters, each contributing uniquely to the exploration
of the proposed linear solver. Chapter 2 extensively elucidates the theoretical foundations
essential for understanding kernel matrix approximations and CNN-GPs. Chapter 3 delves
into the methodologies and practical implementation aspects, detailing our main approach
and the integration of GOFMM and CNN-GPs. In Chapter 4, the experimental setup,
accuracy evaluation, and performance and scaling analysis of conducted experiments are
presented, offering a comprehensive analysis and validation of the proposed linear solver.
Finally, Chapter 5 encapsulates the thesis by summarizing key findings, contributions, and
implications derived from the research, offering insights into potential avenues for future
advancements.

1

2 Theoretical Background

2.1 Preliminaries

2.1.1 Convolution

The mathematical definition of the convolution function, often denoted as (f ∗ g), describes
how one function is combined with another through a mathematical operation. The discrete
form of convolution, often used in digital signal processing and image processing, is defined
as follows:

(f ∗ g)[n] =
∞∑

k=−∞
f [k] · g[n− k] (2.1)

where:

• f [n] and g[n] are two discrete sequences.

• (f ∗ g)[n] represents the convolution of f and g at position n.

• The summation
∑

computes the sum of the product of the elements of the two
sequences as k varies.

2.1.2 Non-linear Functions

• ReLU (Rectified Linear Unit) [Aga18]

ReLU(x) = max(0, x) (2.2)

The ReLU function outputs x for x > 0 and 0 for x ≤ 0

• Sigmoid

sigmoid(x) =
1

1 + e−x
(2.3)

The sigmoid function maps inputs to a range between 0 and 1, which can be interpreted
as probabilities.

2.1.3 Kernel Matrix

A kernel matrix, often denoted as K, is a symmetric matrix whose entries represent the
pairwise similarities or inner products between data points in a high-dimensional feature
space. Formally, for a dataset X = {x1,x2, · · · ,xn}, the kernel matrix K is a matrix of
kernel functions between xi and xj :

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 (2.4)

2

2.2 Convolutional Neural Networks

and
k(xi, xj) := ϕ(xi)

Tϕ(xj) (2.5)

where k is an inner product of ϕ(xi) and ϕ(xj). The basis (or feature) function ϕ(x)
represents the mapping of the data point x into the high-dimensional feature space. It’s
important to note that this mapping allows for non-linear transformations, enabling the
capture of complex relationships that may not be discernible in the original feature space.

2.1.4 SPD Matrices

A symmetric positive definite (SPD) matrix A is a square matrix with following properties:

• Symmetry: AT = A

• Positive definiteness: ∀x ∈ Rn with x ̸= 0: xTAx > 0.

The positive definiteness of an SPD matrix ensures that it is invertible and has real and
positive eigenvalues.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), also known as ConvNets or Convolutional Networks,
are a class of deep neural networks desinged primarily for processing structured grid data,
such as images and video. CNNs are characterized by their architecture, which is specifically
designed to capture local patterns and hierarchical features in data. The key components of
a CNN are basically listed as follows:

Convolutional layers perform convolution operations on the input data with learnable
filters or kernels that helps identify local patterns in the data. Given an input image or a
feature map as a 2D matrix, a filter slides over the input. The convolution operation in
CNNs can be mathematically expressed as follows:

(f ∗ g)(i, j) =
∑
m

∑
n

f(i+m, j + n) ∗ g(m,n) (2.6)

where:

• f(i, j) represents the value at position (i, j) in the input.

• g(m,n) represents the filter values.

• The double summation considers all positions of the filter relative to (i, j).

Pooling layers are used to reduce the spatial dimensions of the feature maps after
convolution. Common pooling techniques like max pooling or average pooling aim for
retaining the most important information while reducing computational complexity. For
example, at each position in the input feature map F , max pooling selects the maximum
value within a local region, and the pooled output feature map P can be calculated as
follows:

P (i, j) = maxm,nF (i · p+m, j · p+ n) (2.7)

3

2 Theoretical Background

where p is the pool size and (m,n) iterates over the local region.

Fully Connected (FC) layers connect neurons from the previous layers to the ones in
the subsequent layers. They help in capturing global patterns and making decisions based
on local features extracted by the earlier layers. A non-linear activation function is applied
element-wise afterwards to introduce non-linearity. Let X be the input to a FC layer with n
neurons, and each neuron is associated with a weight Wi and a bias bi, the output of the
FC layer can be expressed as:

Y = σ(W ·X + b) (2.8)

where:

• W is a weight matrix of size n×m, where n is the number of neurons and m is the
dimension of the input X.

• σ is a non-linear activation function (e.g., ReLU or sigmoid).

2.3 Gaussian Processes

The seminal work that laid the foundation for using Gaussian processes in modern machine
learning is typically attributed to [WB98] in the late 1990s. As its core, a Gaussian Process
(GP) is a collection of random variables, any finite number of which have a joint Gaussian
distribution [Ras04]. In mathematical terms, a GP is defined as follows:

Let X be a set of input values (often representing time or space) and Y be a set of output
values. A Gaussian Process is then defined as a probability distribution p over functions
f(X) such that for any finite subset of input values X = {x1, x2, · · · , xn}, the corresponding
output values Y = {f(x1), f(x2), · · · , f(xn)} follow a multivariate Gaussian distribution.
This can be expressed as:

p(f(X)) = N (µ(X),KX,X′) (2.9)

where:

• µ(X) ∈ Rn = {µ(x1), · · · , µ(xn)} is the mean function representing the mean value of
the GP at input values X.

• KX,X′ ∈ Rn×n is the covariance matrix representing the covariance between the GP
values at input values X and X ′: (KX,X′)ij := k(xi, xj), where k is the kernel function.

Figure 2.1 illustrates an example of Gaussian process regression:

4

2.4 CNNs as Gaussian Processes

Figure 2.1: Example of Gaussian process regression: the dotted line represents the function
f(x). The orange line is the mean function µ(x) of the GP, and blue circles are
the observed data points. 1

GPs are non-parametric models, meaning that they can fit a wide range of functions
without a fixed number of parameters. However, the choice of the mean and kernel functions,
as well as their parameters, is crucial in defining the behavior of the GP and is typically
determined from the data. Different kernels encode different assumptions about the functions,
and selecting the appropriate kernel is often problem-dependent.

2.4 CNNs as Gaussian Processes

Since GPs are defined over an infinite-dimensional space of functions, researchers have
been exploring their application for modeling complex and non-linear relationships between
input and output values. For example, [WHSX16] combines their non-parametric flexibility
with structural characteristics of deep neural networks. Specifically, they employ GPs to
model the data, wherein the kernel function is constructed as a base kernel defined from
a deep convolutional neural network (CNN) [LBD+89]. The deep kernel hyperparameters
(including the base kernel parameters and the weights of the network) will then be learned
by maximizing the log marginal likelihood L of the GPs. Nonetheless, an overfitting issue
may arise as a consequence of the large number of kernel parameters.

To avoid bringing additional parameters from CNNs, [GAR19] shows that an arbitrarily
deep CNN with an appropriate prior is equivalent to a GP, if each hidden layer has an
infinite number of convolutional filters. In this case, the equivalent kernel contains only the
parameters of the original CNN, addressing the issue raised in [WHSX16].

1Scikit-Learn. ”Gaussian Process Regression (GPR) on Noisy Targets.” Retrieved from https://scikit-
learn.org/stable/auto examples/gaussian process/plot gpr noisy targets.html.

5

2 Theoretical Background

2.4.1 A 2D Convolutional Network with Gaussian Prior

Given an input image X with size C ×H ×W , where C is the number of the channels, H
the height and W width, respectively.

Algorithm 1: A 2D Convolutional Network

Input: Image X ∈ RC×H×W (C : #channels, H : height, W : width)
Output: Last activations A(L+1)(X)

1 Function 2d conv(X):
// Iterate over all channels per layer

2 for i← 1 to C(1) do

3 a
(1)
i (X) := b

(1)
i 1+

∑C
j=1Wi,jxj // Activations at layer 0

4 for l ← 1 to L do

5 a
(l+1)
i (X) := b

(l+1)
i 1+

∑C(l)

j=1 W
(l+1)
i,j ϕ(a

(l)
j (X)) // Activations at other

layers

6 A(L+1)(X) := (a
(L+1)
1 (x), · · · , a(L+1)

C(L+1)(x)) // Output activations

Figure 2.2: The convolutional filter U
(0)
i,j ∈ R2×2 performs on the input image xj ∈ R3×3

on the jth channel. W
(0)
i,j ∈ R(2×2)×(3×3) as a weight matrix stores the kernel

parameters and transforms U
(0)
i,j into a matrix such that it can be multiplied

with xj . The µth row represents the convolutional patch (red squares) where
the filter is applied to (Here: A 2× 2 filter applied on a 3× 3 image leads to 4
patches). [GAR19]

A prior distribution is defined over functions by making the kernel parameters and biases
independently Gaussian distributed, i.e., for each layer l, channels i, j and locations within
the filter x, y:

6

2.4 CNNs as Gaussian Processes

U
(l)
i,j,x,y ∼ N (0, σ2

w/C
(l)) (2.10)

b
(l)
i ∼ N (0, σ2

b) (2.11)

2.4.2 CNN-equivalent GP Kernels

[GAR19] prove that the output of the CNN defines a GP indexed by the inputs X and
X′, by applying the multivariate Central Limit Theorem (CLT), referring to the proof in
[LBN+18] and [dGMRH+18]. The corresponding GP kernels are computed in an iterative
way through the layers of the CNN. The kernel at layer 1 is initialized as follows:

K(1)
µ (X,X′) = σ2

b +
σ2
w

C(0)

C(0)∑
i=1

∑
υ∈µth patch

Xi,υX
′
i,υ (2.12)

And at each layer l + 1, the kernel is computed by the element-wise convariance of the
activations from the last layer and the parameters of the Gaussian distribution:

K(l+1)
µ (X,X′) = σ2

b + σ2
w

∑
υ∈µth patch

V (l)
υ (X,X′) (2.13)

where:

V (l)
υ (X,X′) = E[ϕ(A(l)

j,v(X))ϕ(A
(l)
j,υ(X

′))] (2.14)

is the element-wise covariance of the activations that is independent of the channel.

Note that the right-hand side of Eq. (2.14) can be computed in closed form with the
choices of ϕ. For example, in the case of a ReLU nonlinearity (i.e., ϕ(x) = max(0, x)), the
covariance could be computed as:

V (l)
υ (X,X ′) =

√
K

(l)
υ (X,X ′)K

(l)
υ (X ′, X ′))

π
(sinθ(l)υ + (π − θ(l)υ)cosθ(l)υ) (2.15)

where θ
(l)
υ = cos−1(K

(l)
υ (X,X ′)/

√
K

(l)
υ (X,X)K

(l)
υ (X ′, X ′).

We go through all L layers of the CNN, compute intermediate kernel values and covariance
at each layer and obtain in the end the output kernel K(L+1). The flowchart in Figure 2.3
illustrates the whole procedure of the computation, which is documented step by step in
Algorithm 2.

7

2 Theoretical Background

Figure 2.3: Flowchart of kernel computation in ConvNet

Algorithm 2: Compute ConvNet Kernel [GAR19]

Input: Image X,X′ ∈ RC×H×W (C : #channels, H : height, W : width)
Output: Kernel matrix K(L+1)(X,X′)

1 Function conv kernel(X,X′):
// Iterate over all locations

2 for µ ∈ {1, 2, ...,H(1)W (1)} do
3 Compute the variance of the first layer K

(1)
µ (X,X), K

(1)
µ (X,X′) and

K
(1)
µ (X′,X′) using Eq. (2.12)

4 for l← 1 to L do

5 for µ ∈ {1, 2, ...,H(l)W (l)} do
6 Compute the covariance for each data pair V

(l)
υ (X,X′) using Eq. (2.15)

7 for µ ∈ {1, 2, ...,H(l)W (l)} do
8 Compute the variance of the last layer K

(l+1)
µ (X,X), K

(l+1)
µ (X,X′),

K
(l+1)
µ (X′,X′) using Eq. (2.13)

9 Output K(L+1)(X,X′).

2.5 Hierarchical Matrix Approximation

Hierarchical matrix approximation is a technique used in numerical linear algebra to represent
large matrices with a hierarchical low-rank structure.

Definition 2.5.1 A matrix K̃ ∈ RN×N is said to have a hierarchical low-rank structure
or be an H-matrix [Hac15], if:

K̃ = D + S + UV (2.16)

where D is block-diagonal with every block being an H-matrix, U and V are low rank and
S is sparse.

8

2.5 Hierarchical Matrix Approximation

2.5.1 FMM

The Fast Multipole Method (FMM) is a numerical technique designed for computing pairwise
interactions in a system of N particles. Obviously the direct computation requires O(N2)
operations, while the FMM achieves only O(N) operations.

Classical FMM and its variations leverage quad-trees or oct-trees for hierarchical subdi-
vision of the computation domain, often referred to as ”tree code” algorithms. The tree
structure enables adaptive refinement for non-uniform particle distributions, making these
schemes well-suited for multi-core and parallel computing platforms.

2.5.2 GOFMM

GOFMM (Geometry-Oblivious FMM) [YLRB17], is an algorithm performing a low-rank
approximation of dense symmetric positive definite (SPD) matrices. Given an arbitrary
SPD matrix K, GOFMM constructs a hierarchically low-rank matrix K̃ that approximates
K, such that:

u = Kw ≈ K̃w, for w ∈ RN (2.17)

where Kij = K(xi, xj). The main algorithm of GOFMM adopts a tree-based structure. For
every tree node α, a node β is said to be far to α if Kβα is low-rank and near otherwise.
Here are several key notations outlined as follows:

• N(α): neighbour list of node α

• Near(α): near interaction list of node α

• Far(α): far interaction list of node α

• MortonID(i): a bit array that codes the path from the root to the leaf node

GOFMM usually consists of two stages: compression and evaluation .

Compression

The compression part is composed of following processes: creating node neighbour lists and
near lists of a node α, finding far list of α and performing low-rank approximation.

Given a treenode α that contains a set of matrix indices, its two children l and r will
divide the indices evenly as shown in Figure 2.4.

Figure 2.4: A treenode α contains a set of matrix indices and two children nodes l and r
divide them evenly (α = l ∪ r).

9

2 Theoretical Background

Combining with Eq. (2.16), we can say that K̃ can be compressed recursively such that:

K̃αα =

[
K̃ll 0

0 K̃rr

]
+

[
0 Slr

Srl 0

]
+

[
0 UVlr

UVrl 0

]

where l and r are the children nodes of α.

Algorithm 3 demonstrates the complete compression process. The functions comprising
its components are detailed below:

Algorithm 3: Compress(K) [YLRB17]

1 for each randomized tree do
2 SPLI(α) // split α into l and r
3 ANN(α) // update Nα with KNN(Kα)

4 SPLI(α)
5 Near(β) = LeafNear(β) // Get Near(β) using Algo. (4)
6 Far(β) = FindFar(β, root) // Find Far(β) using Algo. (5)
7 MergeFar(α) // Merge Far(l), Far(r) to Far(α) using Algo. (6)
// Low-rank approximation

8 α̃, Pα̃α or Pα̃[l̃r̃] = Skeleton(α) // Skeletonization using Algo. (7)

9 ∀α ∈ Near(β) : Kβα = K(β, α)

10 ∀α ∈ Far(β) : Kβ̃α̃ = K(β̃, α̃)

LeafNear() constructs the near interaction list Near(β) using the neighbour list N(β).

Algorithm 4: LeafNear(β)[YLRB17]

1 return Near(β) = {MortonID(i) : ∀i ∈ N(β)}

FindFar() finds the far interaction list Far(β).

Algorithm 5: FindFar(β = leaf , α)[YLRB17]

1 if α ∩Near(β) ̸= ∅ then
2 FindFar(β, l)
3 FindFar(β, r)

4 else
5 Far(β) = Far(β) ∪ α

MergeFar() involves combning common nodes found in two children lists Far(l) and
Far(r). These shared nodes are extracted from the children lists and included in their
parent list Far(α).

10

2.5 Hierarchical Matrix Approximation

Algorithm 6: MergeFar(α) [YLRB17]

1 MergeFar(l)
2 MergeFar(r)
3 Far(α) = Far(l) ∩ Far(r)
4 Far(l) = Far(l)\Far(α)
5 Far(r) = Far(r)\Far(α)

The Skeleton() function basically consists of two parts: skeletonization that selects α̃,
and interpolation that computes Pα̃[l̃r̃].

Algorithm 7: Skeleton(α) [YLRB17]

1 if α is leaf then
2 return [α̃, Pα̃α = ID(α)]

3 [l̃,] = Skeleton(l)
4 [r̃,] = Skeleton(r)

5 return [α̃, Pα̃[l̃r̃]] = ID([l̃r̃])

At the end of the compression phase, we can cache all Kβα in Near(β), and all Kβ̃α̃ in
Far(β), which can significantly decrease the time required for evaluating and collecting
submatrices.

Evaluation

GOFMM computes the value of u in Eq. (2.17). The goal is to approximate each matvec
(matrix-vector multiplication) uβ with all α in Near(β).

Algorithm 8: Evaluate(u, ω) [YLRB17]

1 if α is leaf then
2 ω̃α = Pα̃αωα // Compute w̃

3 else
4 ω̃α = Pα̃[l̃r̃][ω̃l; ω̃r]

5 ũβ =
∑

α∈Far(β)Kβ̃α̃ω̃α // Apply skeleton basis Kβ̃α̃

6 if α is leaf then
7 uβ = P T

β̃β
ũβ

8 else
9 [ũl; ũr]+ = Pβ̃[l̃r̃][ũβ] // Accumulate ũ

10 uβ =
∑

α∈Near(β)Kβαωα // Accumulate matvec to u

The initial step involves computing the skeleton weights, denoted as ω̃, for every leaf
and inner node. Subsequently, the skeleton basis Kβ̃α̃ is utilized to aggregate the skeleton
potentials ũ alongside their respective skeleton weights. Finally, for a leaf node, the
computation of the matvec uβ is directly achieved by accumulating its children. In contrast,

11

2 Theoretical Background

for a non-leaf node, each matvec uβ involving all α in Near(β) is computed and subsequently
accumulated into uβ.

12

3 Efficient and Scalable Linear Solver for
Kernel Matrix Approximations Using
Hierarchical Decomposition

3.1 Methodology

3.1.1 Problem Statement

Linear solving involves finding solutions to linear equations, and in the context of kernel
matrices, it primarily revolves around solving linear systems in the form of:

Kx = b (3.1)

where:

• K ∈ RN×N is the kernel matrix where each entry Kij := k(xi, xj) is the kernel function
between i-th and j-th data points (N is the number of the data points).

• x ∈ RN represents the solution vector.

• b ∈ RN represents the target values or observations.

A kernel matrix K can grow substantially in size as N increases. This poses computational
and memory challenges when storing and manipulating large kernel matrices. Therefore,
developing efficient methods of linear solving for kernel matrices becomes crucial, i.e.,
computing the solution vector x with numerical stability.

We are aiming for constructing a kernel matrix approximation K̃ of the raw K, such that
the error of the solution of the linear solving is sufficiently small, i.e.,

∥x− x̃∥ → 0 (3.2)

with

x = K−1b, x̃ = K̃−1b (3.3)

3.1.2 Our Approach: Linear Solver for Kernel Matrix Approximation

The algorithm aims to derive a solution for solving linear equations concerning the kernel
matrix approximation K̃. GOFMM serves as a solid foundation for approximating the kernel
matrix. While the typical approach involves initializing the kernel matrix of a diffusion map
with a Gaussian kernel, we now explore the potential to leverage GOFMM for the kernel
matrix generated by CNN-GP. The algorithm’s illustration is outlined below:

13

3 Efficient and Scalable Linear Solver for Kernel Matrix Approximations Using Hierarchical Decomposition

Algorithm 9: Linear Solver for Kernel Matrix Approximation

Input: X ∈ RN×C×H×W , b ∈ RN

Output: Linear solution for kernel matrix approximation x̃ ∈ RN

1 Kxx = conv kernel(X,X) // Generate kernel matrix with Algo. (2)
2 Kapprox = gofmm(Kxx) // Kernel matrix approximation with GOFMM
3 return x̃ = K−1

approxb // Approximated linear solution

With an input minibatch X sized (N,C,H,W), we construct a CNN designed to mirror
an equivalent GP, followed by computing the kernel matrix associated with this GP (see
Algorithm 2). GOFMM is then employed to approximate the kernel matrix through
hierarchical decomposition. The resulting x̃ represents the linear solution derived from the
kernel matrix approximation Kapprox and target vector b. Note that the kernel approximation
Kapprox in this context is assumed to possess full rank, enabling the inversion process. In
the end, we expect to attain x̃ with an error small enough in comparison to the raw linear
solution x = K−1b.

3.2 Implementation

This section provides an in-depth exploration of the implementation phase, offering insights
into how theoretical concepts were translated into a functional system. It covers the main
architecture of our approach, CNN-GP implementation, and crucial parameters utilized
within our approach.

3.2.1 Main Architecture

The implementation of our approach is briefly described in the following pseudocode:

1 from full_matrix import FullMatrix

2 from cnn_gp.kernels import Sequential , Conv2d , ReLU

3 import scipy

4 import torch

5

6 cnn_gp = Sequential(

7 Conv2d (),

8 ReLU(),

9 ...

10) # initialize a CNN -GP model with specified layers

11

12 Kxx = cnn_gp(X,X) # generate kernel matrix of input batch X

13

14 kernel_OP = FullMatrix(Kxx , problem_size , ...) # kernel matrix

approximation from GOFMM

15 x_gofmm = scipy.linalg.solve(kernel_OP ,b) # approximated solution of

the linear system

Listing 3.1: Pseudocode of our main approach

14

3.2 Implementation

In the first stage, we initialize a CNN-GP model using a Sequential architecture that
combines multiple convolutional layers (see line 6). After that, we feed the input minibatch X
into the CNN-GP model to generate a kernel matrix of X. Note that in order to simplify the
problem, we only consider the kernels between the data inside X itself in our implementation,
meaning that taking two input of cnn gp as the same. Once we get the kernel matrix, we
use the FullMatrix class used for performing decompositions with GOFMM and obtain
the approximation of the kernel matrix. The final outcome will be the solution of the linear
system with the approximated kernel matrix.

3.2.2 CNN-GP Implementation

The CNN-GP model is structured as a Sequential class, organizing multiple convolutional
layers in sequence. Within our implementation, we construct various instances of the CNN-
GP by exploring different parameter combinations. Our primary focus is on the Conv2d

and ReLU layers, both of which are subclasses of NNGPKernel. The following UML diagram
illustrates the overall architecture of the CNN-GP implementation:

Figure 3.1: UML diagram of CNN-GP implementation.

• NNGPKernel: A torch.nn.Module() that constructs a covariance kernel of input
minibatches x and (or) y for the GP.

• Conv2d: The parameters kernel size, stride, padding, var weight and var bias

are used to specify the kernels of convolutional layers. Note that a dense layer could
also be implemented as a Conv2d with setting the padding to 0. nn() initializes
neural networks that have the architecture corresponding to the kernel. propagate()
computes the GP kernel through the convolutional layer.

• ReLU: The ReLU nonlinearity is used to numerically stabilise the covariance by clam-
pling values.

• Sequential: The class combines multiple convolutional layers and sequences the
propagate() and nn() accordingly.

In our implementation, a CNN-GP layer consists of a Conv2d and a ReLU. A Conv2d is
initialized as follows:

15

3 Efficient and Scalable Linear Solver for Kernel Matrix Approximations Using Hierarchical Decomposition

1 class Conv2d(NNGPKernel):

2 def __init__(self , kernel_size , stride=1, padding="same",

dilation=1, var_weight =1., var_bias =0.):

3 super ().__init__ ()

4 self.kernel_size = kernel_size

5 self.stride = stride

6 self.dilation = dilation

7 self.var_weight = var_weight

8 self.var_bias = var_bias

9 if padding == "same":

10 self.padding = dilation *(kernel_size //2)

11 else:

12 self.padding = padding

Listing 3.2: Initialization of Conv2d() [GAR19]

And the entire model includes multiple CNN-GP layers where the last layer is a dense
layer (padding=0), the below listing illustrates an example of a CNN-GP instance with a
3-layer convolutional network:

1 cnn_gp = Sequential(

2 Conv2d(kernel_size =3),

3 ReLU(),

4 Conv2d(kernel_size =3, stride =2),

5 ReLU(),

6 Conv2d(kernel_size =7, padding =0)

7)

Listing 3.3: Example of a 3-layer CNN-GP instance

Below is a comprehensive table detailing the parameters crucial for defining the entire
network architecture.

kernel size stride padding dilation

layer 1 3 1 1 1

layer 2 3 2 1 1

layer 3 7 1 0 1

Table 3.1: Example of a 3-layer CNN-GP instance

• kernel size: The kernel size parameter refers to the dimensions of the convolutional
kernel.

• stride: The stride parameter determines the step size at which the convolutional
kernel moves across the input data. For example, With a stride of 2, the kernel moves
two pixels at a time along both height and width during the convolution operation.

• padding: The padding parameter involves adding extra pixels around the input data,
helping preserve spatial dimensions after convolution. A padding of 1 adds one pixel
of zero padding around the input, maintaining the output size.

16

3.2 Implementation

• dilation: The dilation parameter controls the spacing between the kernel elements,
influencing the receptive field and the stride of the convolution operation. A dilation
value of 2 means there are gaps of one pixel between the elements of the kernel during
convolution.

3.2.3 Parameter Tuning

Problem Size

The problem size defines the size of the input minibatch and determines the dimension
of the kernel matrix, scaling the approximation of GOFMM. The kernel matrix will be
of size N × N if we set the problem size to N . Consequently, the space complexity
grows quadratically with a linear increase in the problem size. This signifies that for
each increment in the problem size, the space required increases exponentially due to the
quadratic relationship between size and space complexity. In order to explore how the
performance of the approach influenced by the scaling, we set problem size from 512 with
a scale factor of 2, up to 16384.

1 X = torch.randn(problem_size , c, h, w) # input minibatch

2 Kxx = cnn_gp(X,X) # of size (problem_size , problem_size)

3 weights = np.ones((problem_size , num_rhs))

4 kernel_matrix_OP = FullMatrix(problem_size , weights , Kxx , ...)

Listing 3.4: Code snippet demonstrating the utilization of the problem size

Input Resolution

The input resolution mainly refers to the height and width of the input minibatch X. Since
the CNN-GP is designed to produce an output size of 1× 1 (kernel matrix), it is essential
that the input resolution aligns with this expectation to achieve the desired output. We
take the example from Table 3.2:

kernel size stride padding dilation input size output size

layer 1 3 1 1 1 14× 14 14× 14

layer 2 3 2 1 1 14× 14 7× 7

layer 3 7 1 0 1 7× 7 1× 1

Table 3.2: Input and output size of the example 3-layer CNN-GP

With an initial minibatch featuring an input resolution of 14×14, the initial layer’s output
maintains identical dimensions to the input owing to a padding value of 1 and a stride of
1. Subsequently, the second layer, employing a stride of 2, effectively halves the spatial
dimension, resulting in an output size of 7× 7. The third layer’s application of a 7× 7 kernel
without padding on the 7× 7 input ultimately yields a compressed 1× 1 output due to the
considerable kernel size in relation to the input dimensions.

17

3 Efficient and Scalable Linear Solver for Kernel Matrix Approximations Using Hierarchical Decomposition

Number of ConvNet Parameters

The number of parameters in the CNN refers to the total count of weights and biases across
all layers within the network. These parameters play a pivotal role in defining the network’s
architecture and capacity. For a single Conv2d layer, the number of the parameters is the
sum of the number of the weights and the number of the biases:

• num parameters = num weights + num biases

• num weights = kernel size × kernel size × input channels × output channels

• num biases = output channels

The total number of parameters of the entire ConvNet is obtained by summing the
parameters across all layers. In the following table, we count the number of parameters for
each layer of the example from Table 3.2:

kernel

size

input

channels

output

channels

num weights num biases num params

layer 1 3 3 1 3× 3× 3× 1 = 27 1 28

layer 2 3 1 1 3× 3× 1× 1 = 9 1 10

layer 3 7 1 1 7× 7× 1× 1 = 49 1 50

Table 3.3: Number of parameters of the example 3-layer CNN-GP

The total number of the parameters is therefore 28 + 10 + 50 = 88. This count gives an
indication of the network’s complexity, memory requirements, and learning capacity. Models
with more parameters require more computation for each input sample, resulting in slower
inference times.

Other Parameters

To ensure consistency across experiments for comparison, we maintain fixed values for other
parameters, specifically utilized to initialize the FullMatrix for GOFMM approximation.
These constants remain unchanged to facilitate comparative analyses.

1 max_leaf_node_size = 256

2 num_of_neighbors = 0

3 max_off_diagonal_ranks = 256

4 num_rhs = 1

5 user_tolerance = 1E-3

6 computation_budget = 0.00

7 distance_type = "kernel"

8 matrix_type = "dense"

9 kernel_type = "gaussian"

Listing 3.5: Other parameters

18

4 Experiments and Results

In this section, we delve into the empirical evaluation of our proposed methodology and
implementation, presenting a comprehensive analysis of experiments conducted and the
ensuing results.

4.1 Experimental Setup

4.1.1 Datasets

One dataset on which we evaluate our model is the MNIST dataset [LCB98], which consists
of a collection of handwritten digits (0 through 9) that have been normalized and centered.
Each image is a grayscale image with dimensions of 28 × 28 pixels, representing a single
digit. In terms of classification, the dataset encompasses 10 distinct classes, each aligning
with a digit ranging from 0 to 9.

• Size: The dataset contains a total of 60,000 training images and 10,000 test images.

• Labeling: Each image is associated with a ground truth label indicating the digit it
represents.

In our experiment, we only sample the images from the training set with the size of
problem size. Each input data instance comprises a grayscale image of dimensions 1×28×28.
The associated label for each image ranges from 0 to 9, representing the digit depicted in
the image.

4.1.2 Evaluation Metric

We evaluate the performance of the Algorithm 9 with the normalized error between the
solutions of the raw kernel matrix and the approximated kernel matrix of GOFMM. The
normalized error between N -dimensional solutions is defined as follows:

xerror :=
∥x− x̃∥F√

N
(4.1)

where x, x̃ ∈ RN and N is the dimension of the kernel matrix. ∥ ·∥F denotes the Frobenius
norm [Hig02] which is computed as the square root of the sum of the squares of all individual
elements of the matrix sized m× n:

∥ · ∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 (4.2)

To mitigate the impact introduced by the problem size N , we normalize the error by
dividing the norm by the square root of the problem size. This normalization helps in

19

4 Experiments and Results

accounting for and scaling the error concerning the size of the problem, enabling a more
standardized assessment.

4.1.3 CNN-GP Architectures

We performed experiments using various CNN-GP architectures to explore the impact of
diverse input sizes. Initially, utilizing a randomly initialized input featuring 3 channels, we
constructed the CNN-GP using convolutional kernels with smaller kernel sizes. As input
resolutions decrease in size, the network tends to become less complex, characterized by a
reduction in both parameters and layers.

Network n1 n2

num layers 3 3

layer 1 Conv2d(kernel size=3)+ReLU Conv2d(kernel size=3)+ReLU

layer 2 Conv2d(kernel size=3, stride=2)+ReLU Conv2d(kernel size=3, stride=2)+ReLU

layer 3 Conv2d(kernel size=7, padding=0) Conv2d(kernel size=3, padding=0)

num params 88 48

input size 3× 14× 14 3× 6× 6

Network n3

num layers 2

layer 1 Conv2d(kernel size=2)+ReLU

layer 2 Conv2d(kernel size=2, padding=0)

layer 3 -

num params 18

input size 3× 2× 2

Table 4.1: Different CNN-GP architectures on random 3-channel inputs

In the case of the MNIST dataset, the input image maintains a consistent size of (1, 28,
28). Consequently, we adapt the network architecture to accommodate these specific input
dimensions. Additionally, we initialize the var weight and var bias using the prescribed
values from [GAR19].

20

4.2 Accuracy Evaluation

Network n5 n6

num layers 2 2

layer 1 Conv2d(kernel size=3,
var weight * 7**2, var bias) +
ReLU

Conv2d(kernel size=3,
var weight * 7**2, var bias) +
ReLU

layer 2 Conv2d(kernel size=28,
padding=0, var weight * 7**2,
var bias)

Conv2d(kernel size=14,
padding=0, var weight * 7**2,
var bias)

num params 795 225

input size 1× 28× 28 1× 14× 14

Network n7

num layers 2

layer 1 Conv2d(kernel size=3, var weight * 7**2, var bias) + ReLU

layer 2 Conv2d(kernel size=7, padding=0, var weight * 7**2, var bias)

num params 60

input size 1× 7× 7

Table 4.2: Different CNN-GP architectures on MNIST dataset with fixed var bias=7.86
and var weight=2.79

The network n5 serves as an illustration from the implementations of [GAR19]. When
adjusting a similar architecture for smaller images, we tailor the last layer to fit the necessary
output sizes. This adaptation results in a corresponding decrease in the number of parameters.

4.2 Accuracy Evaluation

We first evaluate our approach on randomly initialized input employing different CNN archi-
tectures. These networks exhibit distinct kernel sizes within their final layers, consequently
leading to input sizes of (3, 14, 14) and (3, 6, 6) for n1 and n2, and (1, 28, 28), (1, 14, 14)
and (1, 7, 7) for n3, n4 and n5, respectively. Note that due to the memory limit on the
cluster, certain complex networks with a larger number of weights could solely accommodate
problem sizes up to 2048 or 4096. In the table, we signify these cases with a ’-’ to indicate
unavailability due to memory constraints.

CNN Architecture
n1 n2 n5 n6 n7

num weights 88 48 795 225 60

Problem
size

512 6.62e-4 6.901e-1 1.73e-10 4.01e-9 1.02e-7
1024 1.45e-2 3.16e0 3.49e-3 1.389e-1 9.3581e-1
2048 2.542e1 1.119e2 - 4.929e-1 3.018e-1
4096 - 1.15e2 - - 4.946e0

Table 4.3: Normalized error xerror on random input

21

4 Experiments and Results

As observed in both types of networks ({n1, n2} and {n3, n4, n5}) from the table, it
becomes apparent that as the number of weights decreases, signifying a simpler network
architecture, the normalized error tends to increase. This trend indicates a proportionate
relationship between the reduction in network complexity and the rise in normalized error
across the tested configurations.

In order to strengthen this observation, our evaluation extends to the MNIST dataset, also
exploring varied CNN-GP architectures. Notably, in the case of n3, the network demonstrates
simplicity, characterized by an extremely small number of parameters. As a consequence,
across all instances, the kernel matrix fails to attain full rank. This occurrence is attributed
to the specifics of the MNIST dataset, wherein the target values are constrained within
a limited range. The complexity of CNN-GP becomes crucial in this context, potentially
resulting in the generation of naive kernel matrices prone to linear dependency among rows,
consequently rendering the matrix non-invertible.

n3

problem
size

512 1024 2048 4096 8192 16384

rank(K) 405 819 1611 3147 6139 11927

Table 4.4: Cases of n3 (num params=18): the kernel matrix with all problem sizes lack full
rank.

This motivates us to explore more complex CNN-GP architectures on the MNIST dataset.
Networks equipped with a minimum of 48 parameters are capable of handling matrices
up to a size of 4096 × 4096. Except for the case of n3, the outcomes derived from the
MNIST dataset consistently exhibit a similar trend observed in the random input scenario,
suggesting that more complex networks tend to yield smaller normalized errors:

CNN Architecture
n1 n2 n5 n6 n7

num weights 88 48 795 225 60

problem
size

512 2.83e-9 3.33e-7 2.10e-11 3.5e-11 1.19e-9
1024 9.81e-2 1.696e1 1.66e-3 1.43e-3 1.90e-2
2048 4.8408e4 - - 1.50e2 2.57e2
4096 - - - - 5.122e3

Table 4.5: Normalized error xerror on MNIST dataset

To further examine the impact of CNN-GP model complexity on the normalized error
xerror, we plot the error against different numbers of the weights of the network with different
problem size:

22

4.3 Performance and Scaling

(a) problem size=512 (b) problem size=1024

Figure 4.1: xerror on MNIST dataset with different model complexity: the x-axis represents
the number of the weights in the CNN-GP model, while the y-axis denotes the
normalized error xerror.

As depicted in both plots of Figure 4.1, initially, as model complexity increases, xerror
tends to decrease, indicating improved performance with a more complex model. This
reduction in error signifies the model’s ability to capture intricate patterns in the data.

4.3 Performance and Scaling

In this section, we delve into an analysis of the performance and scaling characteristics of
the implemented methodologies. The focus revolves around evaluating the computational
efficiency and scalability of the proposed approaches across varying problem sizes and
network complexities.

4.3.1 Hardware and Software Environment

Hardware The experiments are performed on the compute node lxlogin2 within the
CoolMUC-2 cluster. The CoolMUC-2 cluster comprises 812 nodes, each featuring 64GB of
memory and operating on 28-way Intel Xeon E5-2690 v3 (”Haswell”) processors. Furthermore,
the cluster employs FDR14 Infiniband interconnect technology to facilitate communication
between nodes. 1

Software While docker container is not supported by the Linux cluster due to admin
rights, we use Charliecloud [PR17] that enables users to run containers on HPC systems
without requiring administrative privileges or root access. Charliecloud converts a docker
image into a Charliecloud image, subsequently exporting it to the Linux cluster for utilization.
The container creates an integrated environment for utilizing GOFMM methods, ensuring
the installation of necessary run-time dependencies. Within this environment, it employs
a SWIG (Simplified Wrapper Interface Generator) interface within this environment to
generate Python versions of GOFMM’s C++ methods. Apart from the docker image,

1”Linux Cluster Segments”. Retrieved from https://doku.lrz.de/coolmuc-2-11484376.html.

23

4 Experiments and Results

installing the complete package encompassing all CNN-GP implementation necessitates the
installation of key components, particularly the framework PyTorch [PGM+19].

The computation time corresponding to the experiments conducted in the previous section
are documented in the subsequent tables. Once more, we distinguish between cases involving
random inputs and those employing input derived from the MNIST dataset.

CNN Architecture
n1 n2 n5 n6 n7

num weights 88 48 795 225 60

problem
size

512 38.50 18.12 63.83 21.25 16.58
1024 176.20 168.88 540.43 160.98 154.75
2048 1707.10 1341.35 - 1180.93 1088.61
4096 - - - - 5829.88

Table 4.6: Computation time of our approach on random input (s)

The findings clearly demonstrate that as the number of weights in the CNN-GP network
increases while maintaining a constant problem size, there is a direct correlation with
extended computation times. This relationship is underscored by the increased volume of
operations required during the forward pass of the CNN-GP. Conversely, when examining
the same CNN-GP network, a substantial rise in computation time occurs upon doubling the
problem size due to the increased size of the kernel matrix for approximation. Across various
networks, there is a gradual decrease in computation time, contrasting with an observed
exponential growth when augmenting the problem size. This exponential increase signifies
an accelerated rise in computation time as the problem size expands. The results on MNIST
dataset below further validate this trend:

CNN Architecture
n1 n2 n5 n6 n7

num weights 88 48 795 225 60

problem
size

512 12.93 7.66 27.02 14.76 14.23
1024 211.56 141.81 208.73 158.65 146.02
2048 1532.86 - - 1525.01 1483.59
4096 - - - - 10314.47

Table 4.7: Computation time of our approach on MNIST dataset (s)

We visualize the relationship between runtime, model complexity, and problem size using
the results from the aforementioned table in the following figure:

24

4.3 Performance and Scaling

Figure 4.2: Runtime on MNIST dataset with different problem size

Figure 4.2 showcases a considerable disparity in runtime between problem sizes 1024 and
2048. By referencing the data from the above table, it is apparent that this gap is anticipated
to widen further as the problem size escalates to 4096. Consequently, while both problem
size and model complexity contribute to computation time, the problem size emerges as a
relatively dominant factor. This is evident as it significantly influences the GOFMM process,
which remains the most time-consuming aspect throughout the entirety of the procedure.

4.3.2 Strong Scaling

Strong scaling, in the realm of parallel computing, examines how the performance of the
model envolves as the number of processors (OMP NUM THREADS) increases while keeping
the problem size constant. Strong scaling assesses how effectively a model’s performance
improves as more processors are employed to solve a fixed-size problem. Here we fix the
problem size to 4096, and determine whether the runtime decreases as more processors
are added to solve the computational task.

problem size 4096

OMP NUM THREADS 1 2 4 8 16 32

Runtime(s) 5.228e3 4.361e3 3.441e3 3.822e3 4.596e3 1.7296e4

Table 4.8: Runtime with strong scaling (problem size=4096)

25

4 Experiments and Results

Figure 4.3: Runtime with strong scaling

The plot consistently depicts the runtime within the magnitude of 103 across 1 to 16 OMP
threads. This stable runtime implies that scaling the computation by adding more threads
does not significantly reduce the computation time per task, suggesting a saturation point in
the system’s ability to improve efficiency solely through thread addition. This phenomenon
might arise from overhead or bottlenecks within the system as more threads are introduced.

4.3.3 Weak Scaling

Weak scaling is used to measure how a model’s performance behaves when the prob-
lem size per thread (LOAD PER THREAD) remains constant, but the number of the threads
(OMP NUM THREADS) increases. This evaluation aims to determine if the system’s computa-
tional capacity grows proportionally alongside the allocated resources. In our context, we
augment the problem size by a factor of 2 and observe the runtime to completion. The
aim of weak scaling is to maintain a balanced workload per thread as the computational
resources expand. Note that in our scenario, the workload per processor does not stay
constant; instead, it grows linearly with the number of threads due to the quadratic increase
in matrix size:

WORKLOAD PER THREAD =
problem size ∗ (scale factor)2

OMP NUM THREADS
(4.3)

26

4.3 Performance and Scaling

Figure 4.4: Quadratic increase of matrix size: when the problem size doubles, it leads to a
workload increase of four times.

For instance, doubling the problem size from 512 to 1024 with a scale factor of 2 results
in a quadrupling of the total matrix. With an increase of OMP NUM THREADS by a factor of 2,
the workload per thread is 1024, increasing 2 times as before:

problem size 512 1024 2048 4096 8192 16384

OMP NUM THREADS 1 2 4 8 16 32

WORKLOAD PER THREAD 512 1024 2048 4096 8192 16384

Table 4.9: Workload per thread

Thus, by observing the problem size and workload per thread, we expect a linear
increase in the computation time as problem size and OMP NUM THREADS increase simutae-
nously. The increase will correspond to the problem size.

problem size 512 1024 2048 4096 8192 16384

OMP NUM THREADS 1 2 4 8 16 32

Runtime(s) 1.538e1 1.360e2 1.670e4 3.822e3 1.906e4 1.216e5

Table 4.10: Runtime with weak scaling

Table 4.10 and Figure 4.5 illustrate an noteworthy contrast: while the workload per
thread showcases a linear growth, the runtime displays an exponential rise, particularly from
OMP NUM THREADS = 16 onwards. This resemblance to the observed behavior also in strong
scaling is quite remarkable.

27

4 Experiments and Results

Figure 4.5: Runtime with weak scaling

The unexpected behavior observed in the plotted results of both strong and weak scaling
could be attributed to various factors inherent to the experimental setup or the computational
infrastructure employed. One conceivable factor could be the limitations of the hardware
utilized for the experiments. It is only manageable to use 28 threads on the node lxlogin2 of
CoolMUC-2, such that the system reached its maximum capacity or encountered resource
constraints near this threshold, hindering its ability to efficiently scale with the addition
of more computational resources. Additionally, increased communication overhead among
processors or threads could have introduced bottlenecks, causing inefficiencies as more
resources were added. Furthermore, as the number of processors increased, synchronization
and coordination between threads or nodes might have introduced overhead, affecting the
overall performance.

28

5 Conclusion

In summary, this thesis has introduced a novel methodology employing the Geometry-
Oblivious Fast Multipole Method (GOFMM) to compute and approximate kernel matrices
from Convolutional Neural Network-equivalent Gaussian Processes (CNN-GPs). The primary
objective was to craft an efficient and scalable linear solver tailored for managing the
intricacies of kernel matrix approximations within CNN-GPs. Through the utilization of
hierarchical decomposition techniques, notably GOFMM, this research significantly enhanced
computational accuracy in approximating CNN-GP kernel matrices, especially with complex
CNN-GP architectures. The methodology’s application in extensive experimental scenarios
highlighted nuanced behaviors in both strong and weak scaling. While initially anticipating
linear or exponential relationships between problem size, workload per thread, and runtime,
the observed deviations from these anticipated trends surfaced intriguing challenges. The
unexpected behaviors were found to potentially stem from hardware limitations, where the
system’s capacity on certain nodes restricted scalability, encountering resource constraints or
bottlenecks upon scaling beyond a certain threshold. Additionally, increased communication
overhead among processors or threads further impacted scalability. These findings underscore
the need for meticulous optimization efforts, considering potential reconfigurations of the
computational environment, to achieve more favorable scaling behaviors. Addressing these
challenges will pave the way for more efficient and scalable solutions, facilitating advancements
across diverse applications reliant on large-scale data processing.

29

List of Figures

2.1 Example of Gaussian process regression: the dotted line represents the function
f(x). The orange line is the mean function µ(x) of the GP, and blue circles
are the observed data points. 1 . 5

2.2 The convolutional filter U
(0)
i,j ∈ R2×2 performs on the input image xj ∈ R3×3

on the jth channel. W
(0)
i,j ∈ R(2×2)×(3×3) as a weight matrix stores the kernel

parameters and transforms U
(0)
i,j into a matrix such that it can be multiplied

with xj . The µth row represents the convolutional patch (red squares) where
the filter is applied to (Here: A 2× 2 filter applied on a 3× 3 image leads to
4 patches). [GAR19] . 6

2.3 Flowchart of kernel computation in ConvNet 8
2.4 A treenode α contains a set of matrix indices and two children nodes l and r

divide them evenly (α = l ∪ r). 9

3.1 UML diagram of CNN-GP implementation. 15

4.1 xerror on MNIST dataset with different model complexity: the x-axis rep-
resents the number of the weights in the CNN-GP model, while the y-axis
denotes the normalized error xerror. 23

4.2 Runtime on MNIST dataset with different problem size 25
4.3 Runtime with strong scaling . 26
4.4 Quadratic increase of matrix size: when the problem size doubles, it leads to

a workload increase of four times. 27
4.5 Runtime with weak scaling . 28

30

List of Tables

3.1 Example of a 3-layer CNN-GP instance . 16
3.2 Input and output size of the example 3-layer CNN-GP 17
3.3 Number of parameters of the example 3-layer CNN-GP 18

4.1 Different CNN-GP architectures on random 3-channel inputs 20
4.2 Different CNN-GP architectures on MNIST dataset with fixed var bias=7.86

and var weight=2.79 . 21
4.3 Normalized error xerror on random input . 21
4.4 Cases of n3 (num params=18): the kernel matrix with all problem sizes lack

full rank. 22
4.5 Normalized error xerror on MNIST dataset 22
4.6 Computation time of our approach on random input (s) 24
4.7 Computation time of our approach on MNIST dataset (s) 24
4.8 Runtime with strong scaling (problem size=4096) 25
4.9 Workload per thread . 27
4.10 Runtime with weak scaling . 27

31

Bibliography

[Aga18] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375, 2018.

[dGMRH+18] Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner,
and Zoubin Ghahramani. Gaussian process behaviour in wide deep neural
networks, 2018.

[GAR19] Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward Rasmussen.
Deep convolutional networks as shallow Gaussian processes. In International
Conference on Learning Representations, 2019.

[Hac15] Wolfgang Hackbusch. Hierarchical Matrices: Algorithms and Analysis, vol-
ume 49. 12 2015.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, second edition, 2002.

[LBD+89] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson,
Richard E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Handwrit-
ten digit recognition with a back-propagation network. In Neural Information
Processing Systems, 1989.

[LBN+18] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Deep neural networks as gaussian
processes, 2018.

[LCB98] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST
database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[PR17] Reid Priedhorsky and Tim Randles. Charliecloud: Unprivileged containers for
user-defined software stacks in hpc. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
SC ’17, New York, NY, USA, 2017. Association for Computing Machinery.

32

Bibliography

[Ras04] Carl Edward Rasmussen. Gaussian Processes in Machine Learning, pages
63–71. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[WB98] C.K.I. Williams and D. Barber. Bayesian classification with gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–
1351, 1998.

[WHSX16] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing.
Deep kernel learning. In Arthur Gretton and Christian C. Robert, editors,
Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, volume 51 of Proceedings of Machine Learning Research, pages
370–378, Cadiz, Spain, 09–11 May 2016. PMLR.

[YLRB17] Chenhan D. Yu, James Levitt, Severin Reiz, and George Biros. Geometry-
oblivious fmm for compressing dense spd matrices, 2017.

33

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Theoretical Background
	Preliminaries
	Convolution
	Non-linear Functions
	Kernel Matrix
	SPD Matrices

	Convolutional Neural Networks
	Gaussian Processes
	CNNs as Gaussian Processes
	A 2D Convolutional Network with Gaussian Prior
	CNN-equivalent GP Kernels

	Hierarchical Matrix Approximation
	FMM
	GOFMM

	Efficient and Scalable Linear Solver for Kernel Matrix Approximations Using Hierarchical Decomposition
	Methodology
	Problem Statement
	Our Approach: Linear Solver for Kernel Matrix Approximation

	Implementation
	Main Architecture
	CNN-GP Implementation
	Parameter Tuning

	Experiments and Results
	Experimental Setup
	Datasets
	Evaluation Metric
	CNN-GP Architectures

	Accuracy Evaluation
	Performance and Scaling
	Hardware and Software Environment
	Strong Scaling
	Weak Scaling

	Conclusion
	Bibliography

