
Improving spatio-temporal traffic prediction
through transfer learning

Analysis of impact on source domain diversity

A thesis presented in part fulfilment of the requirements of the Degree of

Master of Science in Transportation Systems at the Department of Civil, Geo

and Environmental Engineering, Technical University of Munich.

Supervisor Univ.-Prof. Dr. Constantinos Antoniou

Chair of Transportation Systems Engineering (TUM)

Cheng Lyu, M.Sc.

Chair of Transportation Systems Engineering (TUM)

Submitted by João Rodrigo Olenscki

Avenariusstraße 15

81243 München

Submitted on Munich, 07.02.2024

Declaration

I hereby confirm that the presented thesis work has been done independently and using only the sources

and resources as are listed. This thesis has not previously been submitted elsewhere for purposes of

assessment.

Munich, 07.02.2024, Signature

Abstract

In urban planning and management, traffic prediction is crucial for reducing congestion, op-

timizing urban layout, and estimating travel time throughout a city. The use of big data and

AI (Artificial Intelligence) has revolutionized this field in recent years, transforming how traffic

data is collected, analyzed, and utilized. It allowed the collection of a significant volume of

data with great diversity, which is essential for AI models, known for being data-hungry. This

optimization of data consumption enables computationally viable models.

Although state-of-the-art deep learning models can be highly accurate, they require large

amounts of data to function correctly. This drawback, also known as the “cold-start” problem,

can hinder cities from building their intelligent network, since inputting a certain amount of

data is required to make the model functional. Recent studies propose using transfer learning

mechanisms to handle this situation. These models can learn complex ST (Spatio-Temporal)

patterns from data-rich cities and use this knowledge to make predictions in data-scarce

counterparts. This approach can also reduce the computational burden of re-training models,

as the model developed to extract complex patterns is reused even for other data-rich cities.

In this work, we explore the study and adaption of state-of-the-art convolutional graph mod-

els in a transfer learning framework to leverage multiple cities as sources of knowledge on

traffic patterns. To achieve this, we utilized a substantially big dataset composed of eight

cities. Specifically, we examined how the diversity of source data, through the use of multiple

source cities, affected the model’s performance. The study compared the performance of

several models to a baseline consisting of two statistical, and one deep learning models. To

verify the accuracy of both the models and baselines, we employed several metrics, such as

MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), and MSE (Mean Squared

Error). Some experiments suggest that increasing the number of cities can lead to better

generalization of patterns and features, but the overall results indicate that these gains are

limited and may not be relevant.

Improving spatio-temporal traffic prediction through transfer learning 1

Acknowledgments

This thesis was written as part of my Master’s degree in Mechanical Engineering at the Tech-

nical University of Munich at the Transporting Systems Engineering chair. First, I would like

to express my gratitude to Univ.-Prof. Dr. Constantinos Antoniou and M. Sc. Cheng Lyu for

allowing me to work on this project. They provided me with great counseling and relevant

discussions, bringing up the level of this work.

I want to express my gratitude to Univ.-Prof. Dr. Larissa Driemeier for serving as my co-

supervisor in this thesis and to the Polytechnic School of the University of São Paulo for

allowing me to study at TUM as part of a double degree program.

I also want to thank my friends with whom I discussed this thesis and from whom I found

good listeners and advisors. In special, Lui, my companion during endless debugging ses-

sions; Luís, João Pedro, and Ariel, my roommates and friends whom I used as rubber ducks,

explaining problems and bugs in detail until I could figure out the causes; and Bruno, for the

diligent revisions he performed on my writings.

I am also very thankful to God for the strength, resilience, and courage during the writing of

this thesis and for the entirety of my degree. To my parents, Ricardo and Camila, with whom I

found support and love during this journey, this thesis is dedicated to you. I also thank all my

siblings, José, Luís, Tomás, Sofia, Beatriz, and André, for their encouragement and help. I

would also like to thank my uncle, aunt, and cousin, Hermann, Luciana, and Hermann, whose

home was a second home for me during this year.

Finally, I thank everyone with whom I shared this part of my life, full of discoveries, a bit of

hardship, and rich in personal growth.

Improving spatio-temporal traffic prediction through transfer learning 2

Contents

1 Introduction ... 10

1.1 Motivation.. 10

1.2 Research Questions ... 11

1.3 Contribution ... 12

1.4 Outline .. 12

2 Literature Review ... 13

2.1 Traffic Forecasting .. 13

2.2 Transfer Learning ... 14

2.3 Domain Adaptation ... 15

3 Methodology.. 17

3.1 Data Analysis and Exploration ... 17

3.1.1 Data processing ... 18

3.2 Model Outline .. 19

3.2.1 Task ... 20

3.2.2 Proposed Architecture .. 22

3.3 Feature Extraction Network ... 22

3.3.1 Autoencoder .. 22

3.3.2 Fine Tuning.. 25

3.4 Domain Adaptation ... 25

3.5 Prediction Network ... 27

3.6 Model Training ... 29

3.7 Loss Functions... 33

3.7.1 Mean Squared Error (MSE) ... 33

3.7.2 Root Mean Squared Error (RMSE) ... 33

3.7.3 Mean Absolute Error (MAE)... 33

3.7.4 Mean Absolute Percentage Error (MAPE).. 34

3.7.5 Weighted Mean Squared Error (WMSE) .. 34

3.7.6 Mean Squared Logarithm Error (MSLE) .. 34

3.7.7 Weighted Mean Squared Logarithm Error (WMSLE) ... 34

3.7.8 Custom Huber Loss.. 35

3.7.9 Log-Cosh Loss... 35

3.7.10 Binary Cross Entropy .. 35

3.8 Baselines .. 36

3.8.1 Historical Average .. 36

3.8.2 ARIMA .. 36

3.8.3 Convolutional LSTM (ConvLSTM) .. 36

4 Results ... 38

4.1 Computational Specifications and Training Times ... 38

4.2 Autoencoder Experiments ... 38

4.3 Predictor Experiments... 46

Improving spatio-temporal traffic prediction through transfer learning 3

4.4 Full Model Experiments... 51

4.4.1 Model Setup .. 52

4.4.2 Results ... 52

5 Discussion... 57

5.1 On the hyperparameter search... 57

5.2 On the model’s performance .. 57

5.3 Research Questions ... 58

6 Conclusion .. 59

6.1 Summary and Contribution .. 59

6.2 Limitations and Future Research .. 60

Improving spatio-temporal traffic prediction through transfer learning 4

List of Figures

Figure 1 Histogram for data distribution for the speed. Note the first (very thin) bin

with the null values... 18

Figure 2 Histogram for data distribution for the volume. Note the first (very thin) bin

with the null values... 18

Figure 3 Heatmap of the snapshot for the (a) Speed; and (b) Volume.......................... 18

Figure 4 Visualization of the data (as a tensor). .. 20

Figure 5 Simplified version of the proposed model. ... 22

Figure 6 Diagram representing the autoencoder as a combination of an encoder and

a decoder. .. 23

Figure 7 Diagram representing the architecture for the Domain Discriminator module. .. 27

Figure 8 Diagram representing the architecture for the Predictor network. 28

Figure 9 Diagram representing the training script and domain adaptation process. 29

Figure 10 MAE and MSE for the autoencoder with different values of Kcheb................... 40

Figure 11 MAE and MSE for the autoencoder with different number of cities.................. 41

Figure 12 MAE and MSE for the autoencoder with different activation functions. 42

Figure 13 MAE and MSE for the autoencoder with different criterion functions. 43

Figure 14 MAE and MSE for the autoencoder with different pairs of latent dimension

values. ... 45

Figure 15 MAE and MSE for the autoencoders using different pre-training strategies. 46

Figure 16 MAE and MSE on the prediction using different values of λ. 48

Figure 17 MAE and MSE on the prediction using different domain adaptation techniques. 49

Figure 18 MAE and MSE on the prediction using different number of epochs. 50

Figure 19 MAE and MSE on the prediction using different number of weeks for the

target dataset. ... 51

Figure 20 RMSE on prediction for the full model... 54

Figure 21 RMSE on reconstruction for the full model .. 56

Improving spatio-temporal traffic prediction through transfer learning 5

List of Tables

Table 1 List of the cities available on the dataset .. 17

Table 2 Statistics for each channel in the specific snapshot.. 19

Table 3 Hardware specifications and training times. These training times are com-

puted as an approximation of the average time required to train the model in

each configuration. .. 38

Table 4 Fixed parameters for the autoencoder experiments 39

Table 5 Specific parameters for Experiment 2. We use “Batch size=8” due to GPU

memory constraints. .. 40

Table 6 Specific parameters for Experiment 3. We use Kcheb = 3 as this is the optimal

value found in Experiment 2.. 41

Table 7 Specific parameters for Experiment 4. We use Kcheb = 3 as this is the optimal

value found in Experiment 2.. 42

Table 8 Specific parameters for Experiment 5. We choose them parameters based on

the optimal parameters found in previous Experiments................................... 44

Table 9 Tested pairs of convolutional and linear dimensions. 44

Table 10 Specific parameters for Experiment 6. We use a reduced batch size and

only one city due to memory constraints. Other parameters are derived from

previous Experiments. ... 45

Table 11 Fixed parameters for Predictor experiments.. 47

Table 12 Fixed parameters for the Full Model experiments .. 53

Table 13 Results of the model and proposed baselines ... 55

Improving spatio-temporal traffic prediction through transfer learning 6

List of Algorithms

1 Autoencoder with Domain Discriminator Training Process .. 31

2 Predictor Training Process .. 32

Improving spatio-temporal traffic prediction through transfer learning 7

Glossary

A
A3T-GCN - Attention Temporal Graph Convolutional Network.......................... 29, 48, 59

AE - Autoencoder ... 47, 53

AI - Artificial Intelligence ... 1

ARIMA - Autoregressive Integrated Moving Average.. 36, 51

B
BCE - Binary Cross Entropy.. 26, 27, 35

C
CNN - Convolutional Neural Network.. 13

ConvLSTM - Convolutional Long Short-Term Memory............................... 13, 36, 37, 51

CTD - Common Tucker Decomposition ... 15

D
DD - Domain Discriminator.. 26, 30, 31, 47

G
GCN - Graph Convolutional Network... 11, 13

GConvLSTM - Chebyshev Graph Convolutional Long Short-Term Memory.. 23–25, 36, 59

GLU - Gated Linear Unit ... 23

GRL - Gradient Reversal Layer .. 15, 16, 25, 26, 30, 31, 57

GRU - Gated Recurrent Unit.. 13

H
HA - Historical Average ... 36, 51

I
IQR - Interquartile Range... 40, 41, 43–46, 49

L
LSTM - Long Short-Term Memory.. 11, 13, 24, 26

M
MAE - Mean Absolute Error.. 1, 5, 33–35, 39–46, 48–51, 57

MAPE - Mean Absolute Percentage Error .. 33, 34

MMD - Maximum Mean Discrepancy .. 15

MSE - Mean Squared Error ... 1, 5, 33, 35, 39–51, 53, 57

MSLE - Mean Squared Logarithm Error.. 34, 42, 43

N
NLP - Natural Language Processing... 14

Improving spatio-temporal traffic prediction through transfer learning 8

P
POI - Point of Interest ... 12

PRED - Predictor.. 47, 53

R
ReLU - Rectified Linear Unit... 37, 39, 41, 47, 53

RMSE - Root Mean Squared Error.. 1, 5, 33, 51, 54, 56, 57, 59

RNN - Recurrent Neural Network ... 13

S
ST - Spatio-Temporal.. 1, 13, 15, 22, 28, 39, 42, 44, 46, 59

STAE - Spatio-Temporal Autoencoder... 23

STGAE - Spatio-Temporal Graph Autoencoder... 22, 23

T
TanH - Hyperbolic Tangent .. 41, 44, 45, 47

W
WMSE - Weighted Mean Squared Error ... 34, 42, 43

WMSLE - Weighted Mean Squared Logarithm Error 34, 35, 42, 43

Improving spatio-temporal traffic prediction through transfer learning 9

1. Introduction

1.1. Motivation

According to [1], a smart city can be defined as a well-coordinated system that integrates

advanced technological infrastructure, relying on sophisticated data processing. The primary

objectives of such integration are to enhance city governance efficiency, improve citizen sat-

isfaction, foster business prosperity, and promote environmental sustainability. Within a smart

city, the management of various individual systems that constitute the urban environment is

not solely reliant on the data collected within the city; it also relies on different adaptable

models that can learn and evolve to suit the specific needs and characteristics of the city. In

this context, the development of traffic prediction models emerges as a pivotal component for

establishing the foundational framework of smart city management.

Recent advances in deep learning, fed by the advent of Big Data, have led to significant

advancements in prediction tasks related to traffic, such as crowd flow [2, 3], traffic flow

[4, 5], public transit flow [6, 7], travel demands [8], and traffic speeds [9]. While formidable

in their predictive power, these models come with a substantial data appetite. This data

requirement poses a challenge for initiating new intelligent networks because meaningful

inferences remain elusive despite the considerable investment needed to establish the sensor

network without access to substantial data history [10]. This difficulty is known in the field as

the “cold-start” problem [11], and has a higher burden on small and medium cities, as “they

have relatively rare knowledge of their historical patterns” [10].

To address the aforementioned challenge, novel techniques rooted in transfer learning [11]

have been introduced. These approaches enable training predictive traffic models for cities

constrained by limited data by taking advantage of patterns observed in cities with abundant

data resources. On the same paper, the authors provide an overview on transfer learning

problems, and segregate the possible setups into five categories. The first one is composed

by the cases where there is no labeled data on both domains, but the target task is related to

the source one.

The second possible setup is called Transductive Transfer Learning, happens when there

is labeled data only for the source domain. If we assume that the domains are the same,

we would end up with Covariance Shift, and otherwise, if we assume that the domains are

different, but the task is the same, we would be performing Domain Adaptation.

Finally, if we do have labeled target data, that’s a case of Inductive Transfer Learning. If,

additionally, there is labeled data on the source domain, we learn both tasks simultaneously,

on what is called Multi-Task Learning. If there is no labeled data for the source domain, we

Improving spatio-temporal traffic prediction through transfer learning 10

end up with Self-taught Learning.

Our problem consists in creating a regression model capable of learning patterns from a

data-rich source domain and transferring this knowledge to the target domain, assumed to

be data-scarce. On this setup, the definition of Domain Adaptation is the one that makes the

most sense, as we would be learning the same task over two different domains where the

target domain lacks labeled data. This type of technique entails initializing the network in the

source city and implementing fine-tuning to adapt the network to the unique characteristics of

the target city.

Additionally, the data representing the dynamic progression of urban traffic is inherently com-

plex, encompassing two spatial dimensions and one temporal dimension. This multifaceted

data is often expressed as a graph structure, where distinct segments or areas of the city

are depicted as nodes, interconnected by unweighted edges constituting the physical con-

nections between neighbor nodes. Effectively processing and interpreting this data requires

specialized approaches. GCN (Graph Convolutional Network) are generally employed for this

purpose, adept at handling the intricacies of such graph-based representations.

The temporal aspect of the data is observed as a sequence of graphs that, generally, preserve

their structure (i.e. the connectivity) while varying the node and edge attributes. These vari-

ations can be modeled with the help of recurrent networks, such as LSTM (Long Short-Term

Memory).

Currently, state-of-the-art models focus on exploring the application of new deep learning

frameworks, such as attention, and transformers, instead of leveraging diverse source data

when generating domain-agnostic features in transfer learning. Some works consider the

possibility of using multiple source cities in the domain adaptation process [12, 13, 14]. Still,

as of now, few paper delves into the impact diverse source domains can have on accuracy.

1.2. Research Questions

The main motivation of this thesis is to build a model capable of predicting the next state of a

given traffic system. To reach this goal, the following objectives were drawn:

• Analyze current state-of-the-art models and identify cells and architectures that could be

used when building a novel model;

• Based on the results of the first objective, propose a novel model to be built, which should

follow these requirements:

capable of learning from multiple cities at the same time;

capable of intra-city learning and

Improving spatio-temporal traffic prediction through transfer learning 11

capable of considering external features (such as weather data, POI (Point of Interest)

locations, relative date features).

• Analyze how impactful each feature derived from a requirement is to the model.

Concurrently, the following research questions were raised:

Q.1 Is it possible to encompass more than two cities as sources in a transfer learning pro-

cess?

Q.2 What’s the impact of the number of source cities on the model’s accuracy?

Q.3 Is there a limit on the number of source cities?

1.3. Contribution

With this work, we aim to contribute to the traffic prediction and transfer learning fields by

proposing a novel model composition which explores the idea of gathering a big and diverse

source domain to acquire knowledge from. The understanding of the impacts that this diver-

sity exercises on the model’s performance is key to the development of other models capable

of absorbing even more knowledge.

Furthermore, we also aim to understand how the size of the target dataset impacts the

model’s ability to generalize and absorb a transferred knowledge. Through many experi-

ments, we aspire to test and demonstrate the effectiveness of all model components, as well

as the transfer mechanisms.

1.4. Outline

This work is organized as follows Chapter 2 introduces the literature review that was per-

formed to further understand the problem and provides a comprehensive explanation of com-

monplace concepts of the field. Chapter 3 proposes a methodological framework for the entire

work, including data acquisition, pre-processing, model building, and testing setup. Chapter 4

analyzes the results of the proposed tests and comparisons to proposed baselines. Chapter 5

uses the results to answer and discuss the research questions raised in Chapter 1. Chapter 6

concludes the thesis and discusses the main directions for future research in the field.

All developed code and assets (such as models and notebooks) are available on https:

//github.com/jolenscki/master-thesis.

Improving spatio-temporal traffic prediction through transfer learning 12

https://github.com/jolenscki/master-thesis
https://github.com/jolenscki/master-thesis

2. Literature Review

This chapter presents a literature review that we conducted to further the traffic forecasting

field and its state-of-the-art.

2.1. Traffic Forecasting

Traffic Forecasting is a long-lasting field of study in Traffic Engineering, conceived in the

1950s [15, 16]. Initially centered on traffic simulation, the area observed a significant upward

trend in recent years. By its very nature, a traffic network constitutes a vast and complex

system where events occurring at various junctures within the road grid can exert profound

influence over the entire traffic flow. These inherent complexities render it an ideal subject

for examination by cutting-edge machine-learning algorithms, such as LSTM, GRU (Gated

Recurrent Unit), and CNN (Convolutional Neural Network).

Traffic network problems inherently comprise two domains: the temporal and spatial domains.

In the early stages of deep learning model development for the field of traffic, a natural divi-

sion emerged, allocating separate components to address each of these domains. For ex-

ample, CNN has conventionally been harnessed primarily for spatial feature extraction, which

involves identifying elements’ physical locations or arrangements within a given dataset. Con-

versely, RNN (Recurrent Neural Network) has specialized in temporal feature extraction, fo-

cusing on discerning patterns that evolve or change over time.

The pioneering work of [17] marked one of the earliest instances of employing CNNs for traf-

fic prediction tasks. Subsequently, this methodology proliferated across various model frame-

works and underwent integration with other architectural paradigms. An illustrative example

of this evolutionary trajectory emerges from the study conducted by [18], which employed a

multiple GCN framework. In this network type, the input to the convolutional layers consists

of the city’s graph representation.

Similarly, [19] was among the early proponents of employing LSTM cells for short-term traffic

prediction. This approach gained substantial traction, integrating cells into various models, as

exemplified by the ConvLSTM (Convolutional Long Short-Term Memory) module introduced

by [20]. In this architecture, spatial features were extracted at each time frame and subse-

quently fed into an LSTM chain. This innovative approach allowed for the extraction of spatial

and temporal features concurrently.

As a complex ST problem, traffic forecasting offers a range of strategies, spanning from

problem formulation to data structuring, encompassing data type selection. Regarding data

representation, many authors [21, 12, 22] choose to apply a grid in the city and treat each

Improving spatio-temporal traffic prediction through transfer learning 13

1-by-1 region autonomously, computing variables (inflow and outflow, for instance) inside

these boundaries. In this approach, the instantaneous snapshot of the city could be compared

to an image in the context of image classification algorithms, with each pixel being equivalent

to a region.

An alternative to this structure is transforming the raw data, typically provided as a matrix

or tensor, into a graph-based representation, with each geographical region converted into a

distinct node and an adjacency matrix defining the connections between neighboring regions

[23, 24, 18, 25, 26, 27, 13, 14, 28]. This method can better capture the network’s complexity

and regions’ nuanced connectivity. In contrast to the grid-based approach, where regions

may share a border without necessarily sharing a connecting road, the graph representation

effectively accounts for such subtleties.

A third strategy, applied in the works of [29, 30], involves defining individual road segments

as graph nodes. This approach offers significantly greater detail and precision in modeling

traffic data as the data sources are condensed in a relatively small area. As a drawback, it

also requires the installation of many more sensors to produce the data.

2.2. Transfer Learning

Transfer learning techniques [11] were introduced as valuable tools for addressing problems

where existing knowledge or expertise from one domain could be employed to enhance learn-

ing and performance in another domain. These techniques prove incredibly beneficial when

the latter domain suffers from a shortage of data. This can be applied in NLP (Natural Lan-

guage Processing) problems such as sentiment and document classification, where labeling

data is a very demanding task. Furthermore, the computer vision field also benefited greatly

from applying these approaches, as they are extensively used for image classification.

As many cities started to prepare themselves to transition into smart cities, they stumbled

upon the “cold start” problem. This problem refers to the lack of data that a city faces after in-

stalling the sensor network and before acquiring enough data to justify deep learning models,

and it is not unique to smart cities’ context but resonates with the broader field of machine

learning [31]. In such a situation, managers must wait a certain amount of time until they

can make reasonable predictions with deep learning models despite all investments made in

traffic prediction. In these cases, based on the assumption that despite being different, some

cities can share a common behavior framework and have similar data distributions. Transfer

learning favors acquiring knowledge from cities with abundant data and using this knowledge

to understand and predict cities with scarce data.

Furthermore, Transfer Learning techniques are also suitable for intra-city transfer, i.e., trans-

ferring the learned patterns from a domain (for instance, bike sharing flow) to another in the

same city (for example, pedestrian flow). This can observed in the work of [22], in which the

Improving spatio-temporal traffic prediction through transfer learning 14

author used a taxi trip dataset to learn about bike sharing in the same city.

Generally, a transfer learning algorithm consists of three parts: feature extraction, in which

ST features are obtained through various ways; domain adaptation, in which the knowledge

is transferred; and a predictor, responsible for making a prediction on the next step based on

the extracted features obtained from the aforementioned parts.

The feature extraction step is also present in deep learning approaches to the traffic fore-

casting problem and it can be achieved by many different architectures, as discussed in Sec-

tion 2.1. On the other hand, the domain adaptation step is mainly present in the transfer

learning networks and aims to extract transferable latent features between the domains. With

it, one seeks to learn domain-invariant knowledge about the problem.

2.3. Domain Adaptation

On the efforts of domain adaptation, [22] proposes using convolutional layers parallelly for

both source and target features. These convolutional layers are interconnected by calculating

the MMD (Maximum Mean Discrepancy) between layers to form a transfer loss, which is then

added to the overall model loss. MMD is a statistical metric that quantifies the dissimilarity

between two probability distributions [32]. By using this metric as a loss function, the authors

aimed to make the feature representation of different domains more similar. In like manner,

[24] also proposes the use of MMD to minimize the distance between features of different

features and, in addition, the use of binary cross-entropy on the classification of the edge

types, as the authors use multi-view graphs.

Despite working in a different field (network traffic prediction), [33] uses a similar architecture

to [22], with the substitution of the MMD cells for CTD (Common Tucker Decomposition)

ones. With a similar loss calculation structure, the CTD cells aim to measure the domains’

discrepancy. [23] explores a different approach. In their work, the authors propose using

adversarial training for transfer learning. This implies the design of a discriminator and a

predictor in the network to generate a transfer loss.

A different, more typical approach is used in [14], as the authors employ the parameter-

sharing technique: pre-training on the source domain and fine-tuning on the target domain.

In this technique, the parameters of the fine-tuning stage are initialized with the trained pa-

rameters from the pre-training phase. This adaptation is only possible when we assume that

the difference between distinct domains is insignificant and that both domains may share

common features and patterns.

In the same paper, [14] also implements another knowledge transfer technique, the GRL (Gra-

dient Reversal Layer), proposed initially by [34]. This architecture features an identity forward

pass and reverses the gradient signal during the backward pass. Considering that different

Improving spatio-temporal traffic prediction through transfer learning 15

cities possess unique spatial structures and compositions, the GRL is designed to mitigate

these discrepancies by fostering an adversarial training environment. This is achieved by

reversing the gradient, which confuses the model during training and is coupled with a do-

main classifier. The domain classifier’s task is to differentiate source and target domains.

At the same time, the model, through the influence of the GRL, learns to generate domain-

invariant features, thus enhancing its ability to generalize across different city datasets. This

approach is convenient in scenarios where the goal is to adapt a model trained on one city’s

data (source domain) to perform accurately on data from another city (target domain) despite

the inherent differences in their spatial characteristics.

Improving spatio-temporal traffic prediction through transfer learning 16

3. Methodology

In this chapter, we build a complete picture of the Methodology applied during the subject re-

search. We briefly analyze the dataset used and describe all components of the implemented

model and the training script used to generate the optimal weights for these components.

3.1. Data Analysis and Exploration

The dataset selected for sourcing the prediction model was part of the NeurIPS2021 Traf-

fic4cast competition [35]. This dataset consists of 360 days of data from 8 different cities with

similar sizes derived from trajectories of a fleet of probe vehicles. The original data has 180

days from 2019 and another 180 days from 2020, as one of the questions of the challenge

was to asses how the COVID pandemic affected traffic in different cities. As this represents a

shift in the temporal distribution of the data, we choose not to use the 2020 half of it, intending

to have an assumed temporal invariant distribution. Table 1 disposes of all cities available on

the dataset and the number of data points each city contains.

City # of days # snapshots per day

Antwerp 180 240

Bangkok 180 240

Barcelona 180 240

Berlin 180 240

Chicago 180 240

Istanbul 180 240

Melbourne 180 240

Moscow 180 240

Table 1 List of the cities available on the dataset

For a given time snapshot, the data of one city can be represented by a tensor of size

(495, 436, 8), where 495 × 436 represents the city grid, and 8 stands for the channels, or

pieces of information, per cell. These channels contain information on the volume and mean

speed of the probe cars heading in the four diagonal directions. All data was normalized and

discretized in the uint8 range, meaning values are contained in the [0, 255] range.

To better understand the data, distribution, and characteristics, the following analysis is con-

Improving spatio-temporal traffic prediction through transfer learning 17

ducted on the 5-minute snapshot that started at 12:00 on 9 January 2019 in Melbourne.

Figures 1 and 2 show the distribution of values for both the speed (odd channels) and the

volume (even channels). It’s clear that while the volume has a more even distribution for non-

zero values, there remains a massive bias for the zero values, as they represent more than

99% of the data points. This indicates that most of our data comprises zeros and that activity

should be treated as rare.

Furthermore, Figure 3 confirms this theory, as it can be seen that most of the data for the

speed channels is zero, and the volume, despite being better distributed, is also defined by a

majority of zeros. Table 2 shows the statistics for each channel and reinforces the proposed

thesis.

0 50 100 150 200 250
Speed

100

101

102

103

104

105

106

Fr
eq

ue
nc

y

Figure 1 Histogram for data distribution for the speed.
Note the first (very thin) bin with the null values.

0 50 100 150 200 250
Volume

100

101

102

103

104

105

106

Fr
eq

ue
nc

y

Figure 2 Histogram for data distribution for the volume.
Note the first (very thin) bin with the null values.

Speed Volume 0

10

20

30

40

50

60

Figure 3 Heatmap of the snapshot for the (a) Speed; and (b) Volume.

3.1.1. Data processing
Some other data processing transformations were processed besides disposing of the 2020

half of the original data. A significant part of the motivation for this processing step is to

reduce the input data’s size (or shape) to make the models trainable in a reasonable time,

given the limited computational resources available. The first transformation implemented

was the collapse of the even (volume) and odd (speed) channels by taking the mean of the

data in every channel. Therefore, we were left with two channels: the average volume and

average speed of the cars in the particular region.

Furthermore, to allow efficient development of the model’s components, only the central

Improving spatio-temporal traffic prediction through transfer learning 18

Channel Mean Median Standard Devi-
ation

Non-zero ele-
ments

0 (volume) 0.0216 0.0000 0.2861 1.08%

2 (volume) 0.0141 0.0000 0.2794 0.84%

4 (volume) 0.0133 0.0000 0.6236 0.72%

6 (volume) 0.0118 0.0000 0.5957 0.62%

1 (speed) 0.6758 0.0000 9.5058 0.73%

3 (speed) 0.8655 0.0000 11.3655 0.82%

5 (speed) 0.7419 0.0000 10.5863 0.71%

7 (speed) 0.6149 0.0000 9.8281 0.60%

Table 2 Statistics for each channel in the specific snapshot

square of size 50×50 was employed for the preliminary tests and experiments, including those

used to tune the model’s parameters. This may seem limiting at first glance, as it reduces

the spatial coverage and may exclude potentially significant peripheral data. Nonetheless,

this strategy is practically beneficial as it simplifies computational demands while capturing a

substantial portion of traffic behaviors. The selected central area includes key urban sections

characterized by informative traffic dynamics, which will help scale the model to encompass

the entire urban layout.

Finally, we normalize the data again, form [0, 255] to [0, 1], as dealing with float points in this

interval can be considerably favorable.

3.2. Model Outline

The proposed model consists of two modules: a Feature Extraction Network, modeled as the

encoder of an autoencoder and explained in Section 3.3, and a Prediction Network, thought-

fully dissected in Section 3.5. Furthermore, Section 3.4 is reserved for the exposition of the

domain adaptation techniques employed through the model and during training to enable

knowledge transfer between the domains. Section 3.6 summarizes with figures and pseu-

docode scripts how the model’s training was done. This Section will explain the mathematical

and formal basis for the model and the overall architecture to be built.

Improving spatio-temporal traffic prediction through transfer learning 19

3.2.1. Task
The field of Spatio-Temporal prediction is vast, allowing researchers to try different approaches

to problems that may seem the same, and this can be observed from the bibliography pre-

sented in the bibliographic revision. Therefore, it’s essential to clearly define the problem to

be solved and rigorously define the available information.

Definition 1. A city C is divided into a grid map of shape WC ×HC . Each partition ri,j , with

1 ≤ i ≤ WC and 1 ≤ j ≤ HC , is referred to as a region of C. The set containing all regions

of the city is defined RC = {r1,1, ..., rWC ,HC
}.

Definition 2. The time range of available data of a city is divided into TC intervals of equal

size: t = [1, ..., tC].

Definition 3. For each region ri,j , Nch data channels are available. These channels are the

same for every city.

By combining Definitions 1, 2, and 3 we can visualize the the 4D tensor of shape (WC , HC , Nch, TC).

Figure 4 shows a slice of this tensor. Each color represents a different channel, and each

square of four colors represents a point in the 2D city grid. The stacked layers represent the

time dimension.

Definition 4. A 4D tensor defines the data of a city C:

XC = {xchr,t|r ∈ RC , t ∈ Tc, ch ∈ Nch} (3.1)

Figure 4 Visualization of the data (as a tensor).

Definition 5. Connectivity in the city grid, denoted as EC , is defined by the set of edges that

establish the relationship between adjacent regions in C. Each edge ek,l in EC connects two

regions ri,j and rm,n, where i and m are indices within the width of the grid WC and j and

n are indices within the height of the grid HC . An edge exists if the regions it connects are

Improving spatio-temporal traffic prediction through transfer learning 20

adjacent horizontally, vertically, or diagonally. Formally, the connectivity is represented as:

EC = {ek,l|ek,l connects ri,j and rm,n, such that |i−m| ≤ 1 and |j − n| ≤ 1,

for all i, j,m, n that satisfy 1 ≤ i,m ≤WC and 1 ≤ j, n ≤ HC}

Note that the grid connectivity is associated with the actual underlying road network, with

edges representing the physical connection that exists between the regions.

Definition 6. A graph representation of a city C, denoted as GC , is defined as a tuple

(VC , EC ,XC), where VC is the set of nodes corresponding to the regions of C, EC is the

set of edges representing connectivity between regions, and XC is the node feature matrix,

containing the feature (or channel) values of each node in VC .

Putting all previous definitions together, we define the adjacency matrix:

Definition 7. The adjacency matrix for a city C, denoted as AC , is a matrix that represents

the connectivity between the nodes of C as defined in EC from Definition 5. The adjacency

matrix is a square matrix of size |VC | × |VC |, where |VC | is the number of nodes in the graph

representation of the city. Each element aij of the matrix AC is defined as follows:

aij =

1, if there exists an edge eij ∈ EC connecting nodes vi and vj

0, otherwise

This matrix is symmetrical, as the presence of an edge eij implies bidirectional connectivity

between the nodes vi and vj .

With these definitions, it’s possible then to define Problem 1:

Problem 1. Given a data-scarce target city, CT , and a set of n data-rich source cities

{CS1, ..., CSn}, the problem proposed is to predict the value of the target city’s data at tT + 1

with the historical data of the target city itself to that point and of the source cities:

min
θ
L(X̃T,tT+1,XT,tT+1) (3.2)

where

X̃T,tT+1 = θ(XT,1:tT , {XS1, ...,XSn}) (3.3)

Note that L is the error criterion, which may be tuned depending on our dataset and model

Improving spatio-temporal traffic prediction through transfer learning 21

specifications. Note also that tSk ≫ tT∀k = 1, ..., n, indicating the target city’s scarcity and

the sources’ richness.

3.2.2. Proposed Architecture
As explained at the beginning of this Section, the model comprises a Feature Extractor block

modeled after the encoder of an autoencoder and a Predictor block. Figure 5 outlines the

proposed architecture. Note that the individual modules will be developed and explained in

their sections. The architecture adopted in this research draws upon the works of [33, 22]

as they proposed similar divisions in their models to transfer knowledge. Compared to their

approach, we suggest using a STGAE (Spatio-Temporal Graph Autoencoder) to train the

feature extractor and an adjacency matrix to represent connectivity between the regions.

Furthermore, the training part of the presented model is influenced by the work of [14], as we

use similar domain adaptation techniques but delve into the influences that diversity on the

source domain exerts on the model’s accuracy.

Source cities
(processed data)

Target city
(processed data)

Feature
Extractor

Prediction on
target city

Predictor

Domain
Discriminator Decoder

Figure 5 Simplified version of the proposed model.

3.3. Feature Extraction Network

As the first layer of the model, the Feature Extraction Network receives an input of tensors

from one or more source cities and the target city and tries to extract, from these tensors, ST

features must be extracted to be used to train the Prediction Network.

3.3.1. Autoencoder
Selecting hyperparameters and fine-tuning an extractor are challenging tasks when construct-

ing a model, as it’s difficult to observe causality between the change of a parameter and the

change of the output due to the highly non-linear characteristics of these modules. As a

possible solution to these problems, the use of autoencoders for the feature extraction task

has been proposed by [36], and it’s, as of today, a well-established paradigm in the ST field.

By conceptualizing the feature extraction process through the lens of an encoder, it becomes

easier to verify its quality by constructing a corresponding decoder. As the encoder maps the

input data from its original vectorial space to a latent space, the decoder pursues the contrary

Improving spatio-temporal traffic prediction through transfer learning 22

operation, returning the data from the latent space to the original one. In an ideal scenario, a

well-trained autoencoder will reconstruct the original data perfectly, guaranteeing the quality

of the features extracted by the encoder.

More recently, [37] implemented a STAE (Spatio-Temporal Autoencoder) by coupling GLU

(Gated Linear Unit) layers for time convolution and Chebyshev convolution layers for spatial

convolution. By interpolating two temporal layers by a spatial one, the authors extracted both

spatial and temporal features. Additionally, using Chebyshev filters of relatively large sizes

(K = 6), the proposed autoencoder could correctly derive features on both local and global

scales.

In another paper, [38] proposes a generic framework for STGAE with symmetric encoder-

decoder architectures. The encoder finds a latent graph representation by applying graph

convolutions, temporal downsampling layers, and activation functions. The decoder mirrors

this behavior but uses temporal upsampling layers between the convolutions and activation

functions.

Figure 6 illustrates the architecture of the STGAE utilized in our feature extraction frame-

work. The encoder predominantly comprises a GConvLSTM (Chebyshev Graph Convolu-

tional Long Short-Term Memory) block for extracting spatio-temporal features. It is followed

sequentially by an activation function, batch normalization, a regularization dropout layer,

and a linear transformation layer. Similarly, the decoder incorporates analogous components,

adding a Sigmoid activation function preceding the output. This configuration leverages the

data normalization previously applied, wherein the value range of all channels was linearly

transformed from [0, 255] to a unit interval [0, 1].

G
C

on
vL

ST
M

Ba
tc

h
N

or
m

Ta
nH

D
ro

po
ut

Li
ne

ar

Encoder

G
C

on
vL

ST
M

Ba
tc

h
N

or
m

Ta
nH

D
ro

po
ut

Li
ne

ar

Decoder

Si
gm

oi
d

Loss Function

Figure 6 Diagram representing the autoencoder as a combination of an encoder and a decoder.

The GConvLSTM cell, as implemented by [39], and initially proposed by [40], is parameterized

by the number of input channels Nin, the number of output channels Nout, and the size of the

Chebyshev polynomial filter K. The cell executes graph-based convolutions on the input

tensor x, with the knowledge of the graph edge’s descriptor tensor edge_index, to yield the

hidden state h and the cell state c. These states are then propagated through the sequence

for subsequent iterations, defined by the k discrete temporal segments of which the input x

is composed. This enables the model to capture and encode the temporal dynamics of the

data.

Improving spatio-temporal traffic prediction through transfer learning 23

GConvLSTM : RD1×D2×...×DN×Nin → RD1×D2×...×DN×Nout (3.4)

Furthermore, as implemented in this layer, the order of the Chebyshev filter plays a pivotal

role, as it defines the range of neighborhood aggregation. Specifically, it dictates how and how

many local neighborhoods are expanded around each node during the convolutional process.

This, in turn, influences the gradient computation during backpropagation, affecting both the

receptive field and the capacity of the model to capture and integrate multi-hop relational

information.

In a regular LSTM implementation, all internal variables are calculated based on the sigmoid

of combinations of fully connected layers as highlighted in the equations:

it = σ
(
Wxixt + Whiht−1 + wci ⊙ ct−1 + bi

)
,

ft = σ
(
Wxfxt + Whfht−1 + wcf ⊙ ct−1 + bf

)
,

ct = ft ⊙ ct−1 + it ⊙ tanh
(
Wxcxt + Whcht−1 + bc

)
,

ot = σ
(
Wxoxt + Whoht−1 + wco ⊙ ct + bo

)
,

ht = o⊙ tanh (ct) ,

Generalizing the LSTM, a model developed for time-series forecasting, for graph inputs re-

quires the adjustment of these operations for something that can handle graph-data input.

For the GConvLSTM, the authors implemented the graph convolution operator ∗G proposed

by [41], in which a graph signal x ∈ Rn with n nodes is filtered by a non-parametric kernel gθ
composed of vectors of Fourier coefficients.

y = gθ ∗G x

On this implementation, ∗G is modeled with the normalized graph Laplacian decomposition

L = UΛUT , which would imply a model’s complexity of O(n2). To make its use more feasi-

ble, the authors propose a truncated expansion of gθ using Chebyshev polynomials Tk and

truncated laplacian L̃. This reduces the complexity to O(|ϵ|n), with ϵ number of edges of the

graph.

y = gθ ∗G x =
K−1∑
k=0

θkTk(L̃)x

Improving spatio-temporal traffic prediction through transfer learning 24

Finally, it’s possible to define the GConvLSTM model.

it = σ (Wxi ∗G xt +Whi ∗G ht−1 + wci ⊙ ct−1 + bi) ,

ft = σ (Wxf ∗G xt +Whf ∗G ht−1 + wcf ⊙ ct−1 + bf) ,

ct = ft ⊙ ct−1 + it ⊙ tanh (Wxc ∗G xt +Whc ∗G ht−1 + bc) ,

ot = σ (Wxo ∗G xt +Who ∗G ht−1 + wco ⊙ ct + bo) ,

ht = o⊙ tanh (ct) ,

(3.5)

3.3.2. Fine Tuning
The autoencoder, the most computationally demanding part of the entire model, owes much

of its complexity to the GConvLSTM layers in both the encoder and decoder. These layers

execute graph convolution operations, which can become computationally intensive for large

graphs.

We suggest a pragmatic two-step training approach for the feature extractor to handle the

computational demand more effectively. Initially, we train the autoencoder using the available

source data, which allows us to establish a solid initial data representation. Subsequently, we

fine-tune this representation with the target data, adapting it to the specific characteristics of

the target domain.

Moreover, this method results in a fixed feature extractor not tightly coupled to the overall

model. This flexibility is particularly beneficial when considering the parameter definition

of the latter parts of the model, meaning that we can then focus on training the Prediction

Network without feeling the effects that the choice of the feature extractor’s parameter has on

the results.

3.4. Domain Adaptation

As one of the main challenges of a transfer learning task, domain adaptation is the process of

adapting a model trained on one or more source domains (where abundant data is available)

to perform well on a different but related target domain (where data is limited or has other

distribution characteristics). Various approaches can be taken to tackle this problem in the

different contexts that appear during the development of the model.

We suggest using two domain adaptors for this model: parameter sharing and a GRL coupled

with a Domain Discriminator. The parameter sharing comprises the pre-training of the model

using the source domain, and a fine-tuning of this model using the target domain, but starting

the model’s weights with the final values obtained with the source data.

The GRL, when coupled with a Domain Discriminator, on the other hand, aims to help the

Improving spatio-temporal traffic prediction through transfer learning 25

feature extractor to produce domain-invariant features, which will then be extremely useful for

transferring knowledge between different domains by making the encoder less sensitive to

the specific characteristics of the source domain, thereby enhancing its ability to perform well

on the target domain. It’s to be placed just after the encoder block of the autoencoder and

before the decoder.

This joint effort between the GRL and the DD (Domain Discriminator) is also known as adver-

sarial training strategy. While we encode and reconstruct the original data with the autoen-

coder (which generates the reconstruction loss), the domain discriminator or classifier tries to

distinguish source and target domains. Since the GRL reverses the gradient sign and scales

it during backpropagation, it encourages the model to generate features that try to “fool” the

domain classifier, which raises the loss (as we expect from a generalization technique) but

enforces the encoder to generate features that are domain-agnostic.

In the Domain Discriminator block, a sequence of operations is designed to process the graph

features effectively. Initially, a Top-K Pooling operation is employed to reduce the node count

over all the graphs, selecting the Kpool nodes with the most significant features from the last

temporal segment output of the encoder. This process is essential for maintaining a consis-

tent input shape for subsequent layers, ensuring the discriminator can operate uniformly on

graphs from varying domains. After pooling, the features undergo batch normalization and

dropout. The following linear layer projects the normalized and subsampled features onto a

latent space, which a sigmoid function then squeezes into the [0, 1] interval.

This operation translates the latent representations into probabilities, indicating the likelihood

of the graph belonging to the target or source domain. These probabilities form the basis for

computing the Domain Adversarial Loss with the BCE (Binary Cross Entropy) Loss function.

Figure 7 illustrates the placement of the GRL and the Domain Discriminator within the overall

model structure.

Given the output of the encoder block H ∈ Rk×N×Dlin , with k being the number of discrete

temporal segments of which the input was composed, N being the batched number of nodes

of the input, and Dlin the tunable dimension of the output of the linear layer of the encoder, we

first select the last temporal segment from H . This choice is predicated on the understanding

that the final snapshot encapsulates the most refined representation of the input graph, having

undergone the full extent of recurrent processing through the LSTM layers.

The next step in the pipeline is to apply the Top-K Pool to the graph. This is crucial in harmo-

nizing node dimensionality across graphs from varied domains, which inherently may have

different number of nodes. This will standardize the input size for the domain discriminator,

allowing it to consistently and fairly assess the domain characteristics regardless of the orig-

inal graph size. By retaining only the top Kpool most significant nodes as per their learned

representation in the encoder, Top-K Pooling concentrates on the most informative parts of

Improving spatio-temporal traffic prediction through transfer learning 26

Encoder DecoderGradient Reversal
Layer

features

Top-K Pool

Linear

Sigmoid BCE Loss

Domain Discriminator

Batch Norm

Dropout

Figure 7 Diagram representing the architecture for the Domain Discriminator module.

the graphs, ensuring that the most critical structural and feature information is preserved for

accurate domain discrimination.

Top-K Pool : RN×Dlin → RKpool×Dlin (3.6)

Following the dimensionality reduction via Top-K Pooling, the processed graph features are

channeled through a linear layer, which projects the features onto a scalar. The subsequent

application of the sigmoid function maps these projections to a [0, 1] range, with the output

values near 0 or 1 interpreted as the probability of the graph belonging to the target or source

domain, respectively. These probabilities are then used to determine the Domain Adversarial

Loss using the BCE function - which will be presented and explained in Section 3.7.10.

The general loss for the autoencoder training will then be defined accordingly to Equation 3.7,

with λ being a tunable regularization parameter for balancing both the reconstruction loss

Lfeat and this adversarial loss LDAN.

LAE = Lfeat + λ · LDAN (3.7)

3.5. Prediction Network

The second and final part of the model is the Prediction Network, which is responsible for

making the next step prediction on the system state based on the features generated by the

feature extractor and contextual timestamp features (time-of-the-day and day-of-the-week).

Improving spatio-temporal traffic prediction through transfer learning 27

Given that the autoencoder developed is sufficiently good and can recreate the original in-

put tensor x with high accuracy, it’s possible to consider that the encoder has appropriately

learned how to extract the relevant features from the input. Based on that assumption, we

extract the encoder from the trained autoencoder and use it as the feature extractor. Note

that for feature extraction, we would only require the encoder block of the autoencoder, as the

decoder and the domain discriminator blocks are only helpful tools for training the encoder.

Figure 8 exposes the proposed architecture for the predictor block. It comprises an attention

graph convolution block, an activation function, a linear layer, and a sigmoid normalization.

A3
TG

C
N

Ta
nH

Li
ne

ar

Si
gm

oi
d

Features

Predictor

Criterion

Relative time features

Features

Fusion

Figure 8 Diagram representing the architecture for the Predictor network.

The tensor H is the aforementioned output of the encoder block, while the tensor T is the

tensor that encapsulates periodic relative time features within our dataset. These features are

derived from a sine-cosine transformation to exploit the inherent cycles in traffic flow, such as

the daily rush hour peaks or the variation in traffic between weekdays and weekends. For the

hour-of-the-day, we calculate:

hour_sin = sin

(
2π · current_hour

hours_in_day

)
, hour_cos = cos

(
2π · current_hour

hours_in_day

)
(3.8)

And for the day-of-the-week, we calculate:

day_sin = sin

(
2π · current_weekday

days_in_week

)
, day_cos = cos

(
2π · current_weekday

days_in_week

)
(3.9)

Concatenating these results, we create the tensor T = [hour_sin, hour_cos, day_sin, day_cos],

providing a continuous and differentiable representation of time. This tensor is fused with the

regular ST feature tensor, generating H ′. For the fusion process, the tensor T was extended

(by repetition) to have all but the last dimension match the shape of H . The fusion technique

applied to join them was a simple concatenation.

Improving spatio-temporal traffic prediction through transfer learning 28

The leading actor of the Predictor block is the A3T-GCN (Attention Temporal Graph Convolu-

tional Network) cell, proposed by [42] and implemented in the Pytorch Geometric Temporal

package [39]. It comprises two parts: first, a temporal convolution layer will generate Nt hid-

den states h for an input of Nt temporal snapshots. These hidden states will then be the input

of an attention model that will determine the context vector capable of understanding global

variation trends, with which we can predict the system’s future steps.

3.6. Model Training

After introducing all components of the model, it’s opportune to explain, in detail, how exactly

these components are supposed to be trained. Figure 9 shows the proposed training script

for the whole model.

Source cities
(processed data)

Target city
(processed data)

Encoder

Prediction on the
target city

Prediction
Network

Source cities
(reconstruction)

Encoder

Parameter sharing

Target city
(reconstruction)

Encoder

Source cities
(processed data)

Encoder Training

Module extraction

Prediction
NetworkEncoder

Target city
(processed data)

Prediction on the
source cities

Predictor Training

Parameter sharing

Gradient Reversal
Layer

Gradient Reversal
Layer

Domain
Discriminator

Domain
Discriminator

Decoder

Decoder

Parameter sharing

Parameter sharing

Figure 9 Diagram representing the training script and domain adaptation process.

The training starts with pre-training the autoencoder and the domain discriminators using the

source and target cities. As the decoder reconstructs the input, we can calculate a loss value

composed of both a reconstruction criterion and an adversarial loss. After a determined

number of epochs, the optimizer parameters are resettled, and the autoencoder is again

trained with only the target city’s data.

Improving spatio-temporal traffic prediction through transfer learning 29

We freeze the autoencoder’s weights for the second part and import the encoder block as the

feature extractor. Again, the first step is to pre-train the predictor using the source cities’ data

and fine-tune it with the target city. For a more formal and structured explanation, Algorithm 1

exposes the training process of the autoencoder with domain discriminator, while Algorithm 2

does the same for the predictor block.

Since we use batch normalization as a regularization technique for all parts of our model, we

selected ADAMW [43], a variation of ADAM, as the optimizer algorithm. This makes sense

because ADAMW applies weight decay in a manner that is more compatible with batch nor-

malization layers. Unlike the original ADAM optimizer, which adjusts gradients directly and

can undesirably impact batch normalization’s scale and shift parameters, ADAMW modifies

the weights directly decoupled from the gradients, leading to more stable and consistent train-

ing dynamics.

Additionally, the utilization of GRADSCALER is noteworthy. This technique is employed to

mitigate the underflow in gradient values during the backpropagation process, which occurs

when the magnitudes of the gradients are so small that they are approximated to zero in the

numerical precision being used. GRADSCALER addresses this issue by multiplying the loss

value, from which gradients are derived, by a constant scaling factor. This operation increases

the magnitudes of the gradients, preventing them from going to zero. After the backpropa-

gation step, the gradients are then divided by the same scaling factor to restore their original

magnitudes, preventing underflows without significantly impacting the performance.

To optimize the model’s training time and required memory, as both are important resources,

we make use of mixed-precision training, as proposed by [44]. With this technique, the oper-

ations during the training phase are done with half-precision, halving their size and enabling

for the increase of the batch size. This goes well along with the GRADSCALER technique, as

the less precise gradients may incur gradient vanishing.

Furthermore, it’s interesting that we clarify the datasets used for each step of the training and

evaluation of the model. During the pre-training phase, the autoencoder is trained on a com-

bined dataset comprising both source and target data. This strategy facilitates the exposure

of the domain discriminator to target features, which, in conjunction with the GRL, orches-

trates the adversarial training of the autoencoder. The datasets from the source domains are

uniformly sized, while the smaller target domain dataset is iteratively cycled to align with the

larger source datasets. Also, to make sure that the Domain Discriminator is trained in an

unbiased way, for each BATCH from the dataloader, we randomly select one city and use only

this selected city and the target city to train the DD.

To enhance consistency, the pre-training of the predictor is also done on this same mixed

dataset. The OPTIMIZER_PARAMS for the different tasks are different and tuned based on the

behavior of the loss of each task over the epochs, which are also task-specific parameters to

Improving spatio-temporal traffic prediction through transfer learning 30

be tuned depending on the learning capacity of each part of the model.

During the fine-tuning phase, we reset the optimizers using new, smaller learning rate and

weight decay values and focused on the target dataset only. For the autoencoder, we still train

both the GRL and DD to ensure that the model can adapt to the specific characteristics of the

target domain while preserving the domain-invariant nature of the features. Since the fine-

tuning dataset is smaller and the learning rate is reduced, we expect this to refine the model’s

performance on the target domain while maintaining its ability to generalize across domains.

For this training phase, the target city dataset comprised, at a base case, 2 weeks’ worth of

data (meaning 3360 data points) extracted from the whole dataset via random split.

All testing on the predictor is done with a never-seen target data dataset. This dataset con-

sisted of all non-used data of the target city. As in our setup, we had the same amount of

data for all cities (6 months or 43 200 data points). We used then ca. 40 000 data points for

the testing.

Algorithm 1 Autoencoder with Domain Discriminator Training Process

Require: AE_params, DD_params, num_epochs, dataloaders, criterion,
optimizer_params, BATCH_SIZE, lambda

Ensure: Autoencoder ae, Domain Discriminator dd, Gradient Scaler scaler
1: ENCODER, DECODER← AUTOENCODER(AE_params)
2: dd← DOMAINDISCRIMINATOR(DD_params)
3: scaler ← GRADSCALER

4: optimizer ← ADAMW({ae, dd}, optimizer_params)
5: for epoch = 1 to num_epochs do
6: for each dataloader in dataloaders do ▷ pre-training and fine-tuning dataloaders
7: for each batch in dataloader do
8: total_loss← 0
9: for each data in batch do ▷ each batch can comprise N different cities

10: x, edge_index, batch← data
11: H ← ENCODER(x, edge_index)
12: H ← GRADIENTREVERSALLAYER(H)
13: dan_loss← DOMAINDISCRIMINATOR(H, batch)
14: x_recons← DECODER(H, edge_index)
15: feat_loss← criterion(x_recons, x)
16: loss← feat_loss+ lambda · dan_loss
17: total_loss← total_loss+ loss
18: end for
19: BACKWARD(scaler.scale(total_loss))
20: STEP(optimizer)
21: UPDATE(scaler)
22: optimizer.zero_grad()
23: end for
24: end for
25: end for

Improving spatio-temporal traffic prediction through transfer learning 31

Algorithm 2 Predictor Training Process

Require: PR_params, num_epochs, dataloaders, criterion, optimizer_params
Ensure: Predictor pred, Autoencoder ae

1: pred← PREDICTOR(PR_params)
2: ENCODER← AUTOENCODER(pre-trained) ▷ pre-trained and fine-tuned autoencoder
3: optimizer ← ADAMW({pred}, optimizer_params)
4: scaler ← GRADSCALER

5: for epoch = 1 to num_epochs do
6: for each batch in dataloaders do
7: total_loss← 0
8: for each data in batch do
9: x, edge_index, y, T_features← data

10: H ← ENCODER(x, edge_index)
11: H ← FUSIONFEATURES(H , T_features)
12: y_hat← PREDICTOR(H , edge_index, batch)
13: loss← CRITERION(y, y_hat)
14: total_loss← total_loss+ loss
15: end for
16: BACKWARD(scaler.scale(total_loss))
17: STEP(optimizer)
18: UPDATE(scaler)
19: optimizer.zero_grad()
20: end for
21: end for
22: function FUSIONFEATURES(H , T)
23: T ← EXTENDS(H .shape)
24: H ← H concatenated with T along the feature dimension
25: return H
26: end function

Improving spatio-temporal traffic prediction through transfer learning 32

3.7. Loss Functions

In this Section, we define and explain the loss functions, also known as cost functions or

criteria, that will be implemented or tested on the model or its parts. From the following

criteria, MAE, RMSE and MAPE (Mean Absolute Percentage Error) are to be used exclusively

as performance metrics. The purpose of listing and implementing a varied array of loss

functions is to determine the best fit for our problem and data.

3.7.1. Mean Squared Error (MSE)
As the most known and traditional loss function, MSE is widely used in almost all fields of

machine learning. In particular, it’s one of traffic forecasting models’ most “standard” loss

functions as it focuses on minimizing significant errors.

L(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi)
2 (3.10)

3.7.2. Root Mean Squared Error (RMSE)
A typical variation of the MSE, RMSE is widely used in almost all fields of machine learning

for testing as a performance metric. It is based on the same concept that governs its base

function but on the same scale as the input data.

L(y, ŷ) = 1

N

√√√√ N∑
i=1

(yi − ŷi)2 (3.11)

3.7.3. Mean Absolute Error (MAE)
The MAE is not supposed to be used as a criterion during the training phase, but rather, it’s

widely used as a performance metric for testing. It calculates the average absolute difference

between the predicted and actual values. It treats all errors equally and is particularly robust

when dealing with outliers.

L(y, ŷ) = 1

N

N∑
i=1

|yi − ŷi| (3.12)

As it measures the average magnitude of errors in a set of predictions without considering

their direction, the MAE offers a scale-dependent interpretation of how far off the predictions

are, on average, from the actual values.

Improving spatio-temporal traffic prediction through transfer learning 33

3.7.4. Mean Absolute Percentage Error (MAPE)
Similarly, MAPE is another performance metric to be applied during the testing phase. It uses

the same logic as the MAE but calculates the percentage error of the absolute difference

between the predicted and actual values. It’s used in the same context as MAE, but it’s easier

to interpret and practical when dealing with data represented in different scales.

L(y, ŷ) = 100%

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.13)

3.7.5. Weighted Mean Squared Error (WMSE)
As a variant of the MSE, the WMSE (Weighted Mean Squared Error) amplifies the signifi-

cance of errors in certain parts of the dataset by multiplying each error by a specific weight.

It’s helpful in scenarios where certain data points are more critical than others and should

have more influence on the total loss. Mainly, it’s applied to heavenly imbalanced datasets,

as is the case for the data used in this work. This criterion is also known as Zero Inflation

Loss when defining a weight for zero values.

L(y, ŷ) = 1

N

N∑
i=1

w · (yi − ŷi)
2 (3.14)

3.7.6. Mean Squared Logarithm Error (MSLE)
This other variation of the MSE criterion consists of the mean of the squares of the logarithmic

differences between the predicted and actual values. This criterion reduces the impact of

significant errors on large true values. They are applied to problems where the target values

have a wide range.

L(y, ŷ) = 1

N

N∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (3.15)

3.7.7. Weighted Mean Squared Logarithm Error (WMSLE)
The WMSLE (Weighted Mean Squared Logarithm Error) is a sophisticated criterion that com-

bines the aspects of the MSLE (Mean Squared Logarithm Error) and the WMSE. It addresses

the challenge of imbalanced datasets, focusing on penalizing the errors associated with non-

zero targets more heavily.

This loss function is particularly adept at handling datasets where the prediction of non-zero

values is more crucial than the prediction of zeros, which may be abundant but less informa-

tive. The WMSLE is therefore especially useful when the cost of an error varies depending

on the magnitude of the true value, such as in datasets with many zero entries but where

Improving spatio-temporal traffic prediction through transfer learning 34

accurate prediction of the non-zero values is paramount, which happens to be the case in our

dataset (as discussed in Section 3.1). The WMSLE is defined as follows:

L(y, ŷ) = 1

N

N∑
i=1

w · (log(yi + 1)− log(ŷi + 1))2 (3.16)

3.7.8. Custom Huber Loss
The Custom Huber Loss combines the MSE and MAE. It’s quadratic for small errors and

linear for significant errors. We can also apply a Zero Inflation Loss for zero target values. It’s

advantageous when dealing with outliers and versatile as it can have the best of both criteria

on the domains they are the best.

Lδ,w(y, ŷ) =


1
2w · (yi − ŷi)

2 for y = 0,

1
2(y − ŷ)2 for |y − ŷ| ≤ δ,

δ · (|y − ŷ| − 1
2δ) otherwise.

(3.17)

3.7.9. Log-Cosh Loss
The Log-Cosh error is defined by the logarithm of the hyperbolic cosine of the difference

between the prediction and actual values. It has a shape similar to the MSE but is smoother

and less sensitive to outliers. It’s useful as it has the robustness of the MAE while maintaining

the smooth gradient of the MSE. This loss function is differentiable, unlike MAE.

L(y, ŷ) = 1

N

N∑
i=1

log(cosh(ŷi − yi)) (3.18)

3.7.10. Binary Cross Entropy
In the binary classification, the BCE loss penalizes deviations from the actual labels by com-

paring the predicted probabilities against the ground truth, providing a robust gradient signal

for model updates during training.

L(y, ŷ) = − 1

N

N∑
i=1

[yi log(σ(ŷi)) + (1− yi) log(1− σ(ŷi))] (3.19)

Improving spatio-temporal traffic prediction through transfer learning 35

3.8. Baselines

To better understand the performance achieved by the models elaborated, we propose us-

ing three different baselines: HA (Historical Average) and ARIMA (Autoregressive Integrated

Moving Average), as statistical models, and ConvLSTM, as a deep learning one. In this Sec-

tion, we explain each of the baselines, how they are calculated, and how they are applied to

the dataset.

It’s noteworthy that the dataset used to calculate the baselines is the target dataset only, as

the main problem to be tackled on this thesis is how to predict future states of the target

domain.

To avoid the effects of biases related to the unbalance of the data, the values taken to calcu-

late the metrics on the historical average and ARIMA are the non zero ones. Since the data

collection is done with probes, there are huge parts of the city that are not visited regularly by

the data collectors and thus yield 0 for every time step.

3.8.1. Historical Average
As one of the most common baselines in this field, HA is based on the premise of tem-

poral consistency, leveraging the average of data from corresponding time periods in the

past—such as previous weeks—to forecast current traffic conditions.

The HA would receive, as input, N weeks worth of data to "train". This means that when

comparing to a transfer learning model that has a training dataset comprising 2 weeks of

target data, the average would be composed of the last 2 values (i.e. N = 2). For a 1 week

target dataset, this baseline just repeats the values from last week.

3.8.2. ARIMA
As the other most famous and employed non-transfer baseline model, ARIMA is a statistical

time-series regression based on autoregressive (AR) and moving average (MA) components,

which account for past values and errors, respectively, along with an integrated (I) element

for differencing to induce stationarity [45].

Similarly to the historical average, the ARIMA baseline is going to be "trained" (or rather fitted)

using the same target data that will be used to train the transfer learning model.

3.8.3. Convolutional LSTM (ConvLSTM)
Similar to the GConvLSTM we used to develop our autoencoder, the ConvLSTM architecture

is an already established composition that aims to extract both spatial and temporal features.

The difference between these two modules is that the later lacks the graph component, and

therefore can’t make use of the adjacency matrix or connectivity information when extracting

features.

Improving spatio-temporal traffic prediction through transfer learning 36

The implementation we used for this purpose is the one made by [46], which was based on

the works of [47]. The model developed for this baseline is composed of three ConvLSTM

layers. Their main purpose is to expand the latent space of the input, from num_channels to

a certain latent_dim, hyperparameter of the model. In our use case, we had cells with latent

dimensions of 8, 16, 32 and a kernel size of 3. The last hidden state of the last layer is then

passed through a ReLU (Rectified Linear Unit) activation, and a linear layer brings the output

of the activation function back to the number of desired channels, and a Sigmoid is used after

all steps as a normalization layer.

Improving spatio-temporal traffic prediction through transfer learning 37

4. Results

4.1. Computational Specifications and Training Times

This section specifies the computational hardware used during the development of the model.

Here, we detail the machines employed during training and testing and the time each part of

this process consumes. Table 3 shows the GPU models used and the training times for each

dataset configuration and part of the model. The RTX 3070 was available on a personal

computer, while the Tesla T4 and RTX 4090 were run as servers. The availability of the

computational resources in the workspace determined the usage of different machines. Be-

sides the time spent on training, the model’s performance does not depend on the GPU. The

headers “Central Square” and “Whole City” should be interpreted as the “Time to train - (in

minutes, per epoch per source city) in this dataset configuration”.

GPU Model VRAM (GB) Central
Square

Whole City

AE PRED AE PRED

RTX 3070 8 150 75 - -

Tesla T4 16 60 30 660 480

RTX 4090 24 40 20 330 240

Table 3 Hardware specifications and training times. These training times are computed as an approximation of the average
time required to train the model in each configuration.

As observed in Table 3, the training process is very time-consuming, even for powerful graphic

cards. This is why, for the preliminary experiments, we chose to use only the Central Square

of each city.

4.2. Autoencoder Experiments

This Section will present the experiments on the variation of the autoencoder’s parameters.

Experiments 1, 2, 3, 4, and 5 are related to the hyperparameter search for the autoencoder,

as we tested for the impact of the Kcheb, the number of source cities, the activation function,

the criterion function, and the latent dimensions of the autoencoder. Experiment 6 explores

parameter sharing as a domain adaptation technique for the autoencoder.

Table 4 shows the parameters used for most experiments in this Section. Note that when a

different value is used for a determined experiment, this value would be stated on a similar

table in the experiment explanation.

Improving spatio-temporal traffic prediction through transfer learning 38

Parameter Value

Batch size 32

Number of cities 2

Epochs 2

Chebyshev polynomial degree 2

Convolution dimension 16

Linear dimension 8

Activation function ReLU

Dropout rate 0.5

Loss criterion ZeroInflationLoss(w = 100)

Table 4 Fixed parameters for the autoencoder experiments

Experiment 1: Impact of the Chebyshev polynomial degree parameter on the
autoencoder’s performance
The Chebyshev polynomial degree is one of the parameters of the GConvLSTM cell used as

the backbone of the autoencoder. It dictates the receptive field of the model, as it limits the

number of neighbors that will be used to structure a computational graph during backpropa-

gation. For instance, for a value of Kcheb = 1, the computational graph will have a depth of

1, and only the nodes individually will be part of it. A Kcheb = 2 implies that the computa-

tional graphs will contain not only the nodes themselves but the immediate neighbors of each

node.

In this experiment, we evaluated the autoencoder’s performance with varying values of Kcheb,

ranging from 1 to 6, while maintaining all other parameters as specified in Table 4. Figure 10

illustrates the distributions of both MAE and MSE for the corresponding Kcheb values. The

boxplots reveal a discernible trend where both MAE and MSE metrics decrease as Kcheb

increases from 1 up to 3, indicative of improved performance. The median of MAE reaches

its minimum at Kcheb = 3, suggesting this is the optimal Chebyshev polynomial degree for

capturing the ST features within the dataset, given the current parameter configuration. How-

ever, for Kcheb values greater than 3, there is an observable increase in variance and a slight

rise in error metrics, which may signal a risk of overfitting.

Improving spatio-temporal traffic prediction through transfer learning 39

1 2 3 4 5 6
Kcheb

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

M
AE

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

M
SE

MAE
MSE

Figure 10 MAE and MSE for the autoencoder with different values of Kcheb

Parameter Value

Batch size 8

Table 5 Specific parameters for Experiment 2. We use “Batch size=8” due to GPU memory constraints.

Experiment 2: Impact of the number of source cities on the autoencoder’s
performance
Experiment 2 deals with the impact of the number of cities on the autoencoder’s performance.

The number of cities indicates the data available to the model and the diversity and complexity

presented. Four different values for the number of cities were considered: 1, 2, 4, and 8. The

fixed parameters of the experiment are presented in Tables 4 and 5, and Figure 11 shows the

results obtained.

For training over just one city (Ncities = 1), we observe a relatively high median value for

both MAE and MSE, with a wide IQR (Interquartile Range), suggesting that the model lacks

generalization capabilities compared to the other configurations. Introducing another city to

the model (Ncities = 2) seems to result in a slighter better median for the MSE, but at the

cost of outliers and a significantly higher median value for the MAE.

When training over four (Ncities = 4) and eight (Ncities = 8) cities, the model seem to behave

similarly. It’s noticeably better than the previous models when comparing the median values

for both metrics, indicating better performance and generalization capabilities. There are

outliers at (Ncities = 8), which may indicate a limit on how much diversity can be inputted into

the model while trying to increase generalization capabilities.

Improving spatio-temporal traffic prediction through transfer learning 40

The overall trend suggests that incorporating data from more cities enables the model to

learn more generalizable features across different domains, reducing the model’s bias toward

specific cities’ traffic patterns. It’s worth noting that increasing the number of cities also in-

creases the computational cost of training the model. Therefore, using the Ncities values near

4 seems more optimal.

1 2 4 8
Ncities

0.005

0.010

0.015

0.020

0.025

M
AE

0.0000

0.0005

0.0010

0.0015

0.0020

M
SE

MAE
MSE

Figure 11 MAE and MSE for the autoencoder with different number of cities

Experiment 3: Impact of the activation function on the autoencoder’s
performance

Parameter Value

Chebyshev polynomial degree 3

Table 6 Specific parameters for Experiment 3. We use Kcheb = 3 as this is the optimal value found in Experiment 2.

The choice of activation function within neural network layers substantially impacts the model’s

ability to capture and represent complex patterns within the data. This experiment examines

how the activation function selection influences the autoencoder’s performance. Three stan-

dard activation functions were considered: ReLU, Sigmoid, and TanH (Hyperbolic Tangent).

For this analysis, we trained separate autoencoder models using each activation function

while keeping all other parameters constant, as specified in Tables 4 and 6. Figure 12

presents the distributions of MAE and MSE across the different activation functions.

The boxplots indicate that the model with the ReLU activation function exhibits a slightly

higher median MAE than the other functions but also has a broader IQR, suggesting less

consistent predictions across different instances. On the other hand, the model utilizing the

Sigmoid function shows a tighter IQR in MAE, indicating less variability in its predictions.

However, its median MAE is higher. Interestingly, the TanH function yields the lowest median

Improving spatio-temporal traffic prediction through transfer learning 41

MAE, suggesting it may be the most effective at capturing the underlying ST patterns for this

dataset and model configuration.

relu sigmoid tanh
ActivationFunction

0.011

0.012

0.013

0.014

0.015

M
AE

0.0002

0.0004

0.0006

0.0008

0.0010

M
SE

MAE
MSE

Figure 12 MAE and MSE for the autoencoder with different activation functions.

Experiment 4: Impact of the criterion function on the autoencoder’s
performance

Parameter Value

Chebyshev polynomial degree 3

Table 7 Specific parameters for Experiment 4. We use Kcheb = 3 as this is the optimal value found in Experiment 2.

Another interesting choice that can be made in the autoencoder training is the criterion func-

tion that yields the backpropagated loss. In this experiment, we analyze how different loss

functions can influence the autoencoder’s performance. All criteria used here were presented

and explained in Section 3.7. All other parameters are exposed in Tables 4 and 7. The losses

considered were:

• MSE

• WMSE (w = 10)

• WMSE (w = 100)

• MSLE

• WMSLE (w = 10)

• WMSLE (w = 100)

• Log-Cosh Loss

Improving spatio-temporal traffic prediction through transfer learning 42

• Focal Loss (α = 0.25, γ = 2)

Figure 13 provides a comparative overview of the performance of these criteria on the au-

toencoder. From the plots, it is evident that both Focal Loss (with the input parameters) and

Log-Cosh Loss are worse than their pairs, showing more considerable overall error (MAE and

MSE) and IQR, indicating that they are not fit for being used as criteria.

The traditional MSE provides a baseline for comparison, exhibiting a moderate spread in MAE

values. The MSLE is designed to be less sensitive to significant errors by emphasizing the

logarithmic difference between the predicted and actual values, which is evident in the lower

median MAE it achieves compared to MSE.

A more nuanced approach is observed with both WMSE and WMSLE, where introducing a

weight factor (w) aims to penalize errors differently based on their magnitude. Notably, for

the WMSE, as the weight increases from w = 1 (MSE) to w = 10 to w = 100, the spread

and median of the MAE decrease, suggesting a tighter grouping of errors around a lower

central value. However, an increase in weight also introduces a higher variance in MSE, as

indicated by the presence of outliers, particularly for w = 100. This implies that while WMSE

can potentially reduce the average error, it may also lead to more extreme errors in some

instances. For the WMSLE criterion, a similar result is observed, with the increase of w being

associated with a smaller IQR but a higher median of the MAE.

Fo
ca

l (
=

0.
25

,
=

2)

Lo
gC

os
h

MS
E

MS
LE

W
MS

E
(w

=
10

)

W
MS

E
(w

=
10

0)

W
MS

LE
 (w

=
10

)

W
MS

LE
 (w

=
10

0)

Criterion Function

0.005

0.010

0.015

0.020

0.025

0.030

M
AE

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
SE

MAE
MSE

Figure 13 MAE and MSE for the autoencoder with different criterion functions.

Experiment 5: Impact of the latent dimension’s size on the autoencoder’s
performance
Experiment 5 focuses on the impact of inner (or latent) layer dimensions on the autoencoder’s

performance. For this purpose, several pairs of convolutional and linear dimensions were

Improving spatio-temporal traffic prediction through transfer learning 43

Parameter Value

Chebyshev polynomial degree 3

Activation function TanH

Table 8 Specific parameters for Experiment 5. We choose them parameters based on the optimal parameters found in
previous Experiments.

tested and are exposed in Table 9. Furthermore, Tables 4 and 8 show the fixed parameters

for the experiment.

Convolutional Dimension Linear Dimension

8 2

8 4

8 8

16 4

16 8

16 16

32 8

32 16

Table 9 Tested pairs of convolutional and linear dimensions.

Analyzing Figure 14, it’s possible to note that the convolutional dimension is the most critical

parameter between the two. Models with smaller convolutional dimensions (conv_dim = 8)

tend to have higher MAE and MSE values, indicating a lower performance. This suggests that

these models may not have enough complexity to capture the data’s relevant ST features.

Going up to conv_dim = 16, we can observe a significant reduction in both metrics. This

points to a better extraction feature, enabling the autoencoder to capture more of the data’s

complexity. Finally, with conv_dim = 32, we note an increase of the median and extremes of

the error, but a smaller IQR, suggesting that we’ve reached a point where overfitting starts to

take effect on the model.

Considering the values of the linear dimensions now, there’s no clear trend that we can ex-

tract from the results, as an increase in it for low values of convolutional dimension led to

more significant errors, but for other values, it made no difference. It’s important to note that

increasing convolutional and linear dimensions implies higher model complexity and, thus,

Improving spatio-temporal traffic prediction through transfer learning 44

higher computational cost for training it. For this reason, settling for pairs like (16, 4) or (16, 8)

is the best option for balancing performance with cost.

(8
, 2

)

(8
, 4

)

(8
, 8

)

(1
6,

4)

(1
6,

8)

(1
6,

16
)

(3
2,

8)

(3
2,

16
)

Convolutional and Linear Dimensions

0.010

0.015

0.020

0.025

0.030

0.035

M
AE

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
SE

MAE
MSE

Figure 14 MAE and MSE for the autoencoder with different pairs of latent dimension values.

Experiment 6: Pre-training as a domain adaptation technique for the
autoencoder

Parameter Value

Batch size 16

Number of cities 1

Epochs 4

Chebyshev polynomial degree 3

Activation function TanH

Table 10 Specific parameters for Experiment 6. We use a reduced batch size and only one city due to memory constraints.
Other parameters are derived from previous Experiments.

Experiment 6 is the first attempt to apply a fine-tuning technique to transfer knowledge from

one model to another. It consisted of training the model across three different setups: using

solely the target city data (“Target Only”), pre-training with data from one source city followed

by fine-tuning on the target city data (“Pre-trained w/ 1 Source”), and pre-training with data

from two source cities before fine-tuning on the target city data (“Pre-trained w/ 2 Sources”).

The results, illustrated in Figure 15, underscore the benefits of transfer learning through pre-

training.

The “Target Only” model shows the higher median and IQR for both MAE and MSE when

Improving spatio-temporal traffic prediction through transfer learning 45

compared to the pre-trained ones. Conversely, both pre-trained setups significantly reduce

both error metrics’ median and IQR. This suggests that the pre-training is an effective method

for domain adaptation, as the model gets significantly better at generalizing and accurately

predicting the ST patterns. Furthermore, the image also indicates that having more cities

can enhance this technique, as the diversity of data presented in the model increases its

generalization capacity, making it more accurate.

Ta
rg

et
 O

nl
y

Pr
e-

tra
in

ed
 w

/ 1
 so

ur
ce

Pr
e-

tra
in

ed
 w

/ 2
 so

ur
ce

Pre-training

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
AE

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
SE

MAE
MSE

Figure 15 MAE and MSE for the autoencoders using different pre-training strategies.

4.3. Predictor Experiments

Given then an autoencoder capable of effectively extracting the relevant ST features, which

we found with the previous experiments, it’s necessary now to define good hyperparameters

for the predictor part of the model. Experiments 8, 9, and 10 investigate the predictor’s

optimization by varying the relevant parameters of the model and datasets, such as the latent

dimensions, the number of training epochs, and the quantity of target data available while

Experiment 7 studies the efficacy of the adversarial training.

Similarly to how we organized the previous Section, Table 11 shows the fixed parameters for

all predictor experiments. If a parameter from this table is to be changed, it will be clearly

stated on the particular experiment’s specific parameters table.

Experiment 7: Impact of the lambda regularization on the predictor
As we complete the development of the autoencoder, it’s essential to address one of the

main challenges of the proposed model: to generalize the knowledge obtained on the source

domain to the new, different target domain. As presented in the Methodology section, we aim

to learn how to extract domain-invariant features, which hold the key to a model’s ability to

Improving spatio-temporal traffic prediction through transfer learning 46

Module Parameter Value

both Batch size 64

both Epochs 2

both Number of source cities 1

both Weeks of target data 2

AE Chebyshev polynomial de-
gree

3

AE Convolution dimension 16

AE Autoencoder Linear dimen-
sion

8

AE Activation function TanH

AE Dropout rate 0.5

AE Loss criterion MSE

AE λ regularization 0.1

PRED Activation function ReLU

PRED Loss criterion MSE

PRED Top-K Pooling 1750

PRED Linear Dimension 32

Table 11 Fixed parameters for Predictor experiments

perform well across varied domains without succumbing to domain-specific biases.

In this context, Experiment 7 was designed to investigate the impact of balancing the re-

construction loss of the autoencoder with the domain discriminator loss, modulated by a

regularization parameter λ. This parameter regulates the trade-off between the fidelity of the

reconstruction and the degree of domain invariance imposed by the DD. Since we’re intro-

ducing a regularization technique in the model’s training, we expect that the individual perfor-

mance of the autoencoder must pay for this enhanced performance on the generalization of

the features, as we try to “fool” it during training.

The values of λ tested range from 0 to 1, including 0.001, 0.005, 0.01, 0.1, 0.5, and 1. A value

Improving spatio-temporal traffic prediction through transfer learning 47

of 0 means no regularization from the domain discriminator and, therefore, no adversarial

training, while a value of 1 means that reconstruction and domain discriminator losses have

the same weight when composing the total loss.

Figure 16 exposes the results obtained from training these models. The plot suggests that

including the domain discriminator loss positively impacts the model’s prediction ability as the

performance for λ = 0 is inferior to that for λ ̸= 0. In particular, we can observe that for the

MAE boxes, there’s an apparent decrease in both median and max values when going from

λ = 0 to λ = 0.001 and then from λ = 0.001 to λ = 0.005, from which point it’s hard to

observe significant changes on the performances. However, one can verify that the number

of outliers on the maximum size of the boxes seems to increase.

One possible explanation for the lack of changes observed from a certain point onwards is

that as we reach a point of stabilization during training, the reconstruction loss starts to reach

low values (in the order of 10−4). At the same time, we maintain the domain discriminator loss

oscillating around 0.6 (the ideal expected value for it is ln (2) ≃ 0.693, which occurs when the

domain discriminator can’t identify the domain due to the features being completely domain-

agnostic). This means that the domain discriminator loss, supposed constant, will dominate

the total loss almost constantly, and, for a determined threshold, there’s no difference between

λ = 0.5 and λ = 1 as they both result in a seemingly significant loss for the optimizer.

0

0.
00

1

0.
00

5

0.
01 0.
1

0.
5 1

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

M
SE

MAE
MSE

Figure 16 MAE and MSE on the prediction using different values of λ.

Experiment 8: Impact of the linear layer dimension on the predictor
Experiment 8 was projected to better understand the impact of the linear layer dimension, the

output size of the A3T-GCN layer, on the model’s performance. The experiment assessed

four sizes for the linear dimension: 8, 16, 32, and 64. Figure 17 shows the MAE and MSE

distribution for the different compositions.

Improving spatio-temporal traffic prediction through transfer learning 48

The trend observed in the experiment is clear: with the increase of the latent dimension, the

medians for MAE decrease significantly, while the ones for MSE decrease slightly. Noteworthy

is the decrease on the maximum of the MSE boxplots. Overall, the results indicate that the

increase on the size of the latent dimension imply a increase on the generalization capabilities

of the model.

8 16 32 64
Linear Dimension

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

M
SE

MAE
MSE

Figure 17 MAE and MSE on the prediction using different domain adaptation techniques.

Experiment 9: Impact of the number of epochs on the predictor
In machine learning terms, an epoch represents a complete cycle through the data, providing

the model with repeated exposure to the training examples and allowing it to incrementally

adjust its parameters. Changing the number of epochs to be used impacts the model’s per-

formance directly, as an epoch count that is too low may lead to underfitting. At the same

time, too many epochs can cause overfitting. The investigation proposed in this experiment

is critical for understanding the temporal dynamics of model convergence and identifying the

most resource-efficient training regimen that maintains or enhances model efficacy.

For this experiment, we tested the model proposed using five different values of the number

of epochs, ranging from 1 to 5, to be used on the autoencoder and predictor training. Fig-

ure 18 contains the results obtained. There’s a clear trend of improvement in the model’s

performance as we increase the number of training epochs. We can observe a considerable

gap on both MAE and MSE from one to two epochs. Still, the rate of improvement appears

to diminish after that, as the median for the remaining boxes seems to share similar medians

and IQR. Nonetheless, we can observe that the maximum error (for both metrics) continues

to decrease with the increase of epochs. This indicates that the model is becoming more

robust to outliers and noise in the data.

As we reach three training epochs, we’ve got a plateau regarding median error for the metrics,

Improving spatio-temporal traffic prediction through transfer learning 49

suggesting that the model may be approaching its learning capacity given the provided data.

As we’re dealing with a relatively large training dataset (in both numbers of data points and

information/nodes per data point), it’s plausible to consider that with only three epochs, the

model has effectively learned how to capture the underlying patterns in the data. Since, as

discussed in Section 4.1, an epoch of training with one source city takes approximately two

hours, given the computational resources available, we can consider that the modest number

of three epochs is sufficient for the model to learn. We can allocate the processing power into

other areas of the model, such as supporting more source cities.
1 2 3 4 5

Nepochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

M
SE

MAE
MSE

Figure 18 MAE and MSE on the prediction using different number of epochs.

Experiment 10: Impact of the scarcity of the target dataset
As the volume of available target data is one of the main grounds on which the develop-

ment of transfer learning models is based, we find it interesting to experiment with how the

availability of this kind of data impacts the overall performance of the model. By incremen-

tally increasing the quantity of target data from 1 to 4 weeks, we aim to uncover how the

breadth of target domain exposure affects the model’s capacity to learn and generalize. Also,

for many decision-makers, for which such models must yield important information that will

govern their decisions, the availability of such data has a monetary price. By examining the

model’s performance with 1, 2, 3, and 4 weeks of target data, we can evaluate the prediction

performance one can obtain for that price.

From Figure 19, we observe that as the quantity of target data increases from 1 to 4 weeks,

there is a general trend of improvement in prediction accuracy. This is evidenced by the

overall decrease in MAE, suggesting that the additional data helps the model to make more

accurate forecasts. The MAE values appear to show the most significant decrease between

1 and 2 weeks of data, after which the improvements become less pronounced.

Improving spatio-temporal traffic prediction through transfer learning 50

The MSE values, which are more sensitive to outliers due to squaring the errors, remain

relatively stable across the different weeks. The presence of outliers in the MSE indicates

that there are still instances where the model’s predictions deviate substantially from the

actual values, regardless of how much data it has been trained on.

1 2 3 4

Nweeks

0.002

0.004

0.006

0.008

0.010

M
AE

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

M
SE

MAE
MSE

Figure 19 MAE and MSE on the prediction using different number of weeks for the target dataset.

4.4. Full Model Experiments

Building upon the insights obtained from the previous experiments, we now assess the en-

tire model, experimenting with the complete model in its best possible form. Also, to test

the model in its best extension, for this Section, we use the entire city’s data, not only the

central square we’ve been using until now to save computation resources (as discussed in

Section 3.1).

The selected target city to be considered in all experiments done is Melbourne. The target

cities for the transfer learning methods are Antwerp, Bangkok, and Barcelona. They were

chosen at random from the available cities on the dataset.

Furthermore, for this section, the trained models will be tested against the following baselines:

ARIMA and HA, standard statistical baselines in traffic prediction, ConvLSTM, and our model

in data-driven mode, meaning that no sources are used for pre-training. All baselines and

models are evaluated by two metrics: MAE, and RMSE, which are both frequently used as

benchmarks for models on the field.

Improving spatio-temporal traffic prediction through transfer learning 51

4.4.1. Model Setup
As we move to prepare the models, it’s fundamental that we clearly define all the parameters

used on what we call the “Full Model”. We derive them from all previous experiments run for

both the autoencoder and predictor modules. Table 12 presents these parameters, catego-

rized by the specific part of the model they pertain to. As we are now using the full city data

on training and prediction, the size of the tensors are at least 10 times bigger. Consequently,

even with more powerful GPUs, the maximum manageable batch size is limited to 2.

With this constraint, we propose the use of Gradient Accumulation [48], meaning that we

calculate the gradient at every iteration using OPTIMIZER.BACKWARD(), but only update the

optimizer every Nga steps. This makes a dataloader with batch size of 2 and Nga = 32

produce the same effect on the optimizer during training as a dataloader with batch size of

64.

Additionally, as the batch size is reduced, the application of BATCHNORM stops to make

sense, as we can’t compute meaningful statistics with a sample size of 2, and no statistics

at all for the extreme case where batch size is 1. We propose the substitution, for this ex-

periments, of the BATCHNORM layer for the LAYERNORM [49]. This normalization operation

normalizes an input tensor across the features’ dimension.

4.4.2. Results
Table 13 contains the resulting median of the metrics for our model in six different configura-

tions, with the variation of two hyperparameters: the number of sources used to pre-train the

model (1, 2, or 3) and the number of weeks of available fine-tuning data (1 or 2). Further-

more, we also present in the same table the results of the baselines for two available data

configurations (1 or 2 weeks).

The results presented show that the Transfer Learning approach has overall superiority in re-

lation to the baselines, both the statistical and data-driven ones. Particularly, we can observe

a clear enhance on performance in relation to a fine-tuning only approach using the same

model, but limiting training data to only the target dataset.

Furthermore, Figure 20 shows the resulting distributions of the prediction errors for the six

configurations tested. We note that there seems to be no substantial change when consid-

ering all six configurations. A small disturb can be observed, but the overall distributions

seem to be very close, suggesting that the parameter variation has no impact on the model’s

performance.

The model also seems to be robust in relation to the number of training weeks available

for fine-tuning. This indicates that the amount of data contained in one week (ca. 1700

datapoints) is already enough for the model to learn the specific target patterns.

Improving spatio-temporal traffic prediction through transfer learning 52

Module Parameter Value

both Batch size 2 or 1

both Epochs 2

AE Chebyshev polynomial de-
gree

3

AE Convolution dimension 16

AE Autoencoder Linear dimen-
sion

8

AE Activation function Sigmoid

AE Dropout rate 0.5

AE Loss criterion MSE

AE λ regularization 0.01

AE Optimizer Learning Rate 5× 10−4

AE Optimizer Weight Decay 5× 10−5

PRED Activation function ReLU

PRED Loss criterion MSE

PRED Top-K Pooling 1750

PRED Linear Dimension 32

PRED Optimizer Learning Rate 5× 10−4

PRED Optimizer Weight Decay 5× 10−5

Table 12 Fixed parameters for the Full Model experiments

Improving spatio-temporal traffic prediction through transfer learning 53

1 2 3
sources

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

RM
SE

weeks
1
2

Figure 20 RMSE on prediction for the full model

Improving spatio-temporal traffic prediction through transfer learning 54

1
w

ee
k

2
w

ee
ks

R
M

S
E

M
A

E
R

M
S

E
M

A
E

S
ta

tis
tic

al
A

R
IM

A
0.

08
21

0.
05

23
0.

07
85

0.
04

99

S
ta

tis
tic

al
H

A
0.

12
27

0.
09

47
0.

11
50

0.
08

88

D
at

a-
D

riv
en

C
on

vL
S

TM
0.

13
73

0.
08

53
0.

12
27

0.
08

47

ou
rs

(F
T

on
ly

)
0.

16
95

0.
04

04
0.

15
04

0.
03

56

Tr
an

sf
er

#
S

ou
rc

es
1

2
3

1
2

3
1

2
3

1
2

3

Le
ar

ni
ng

ou
rs

0.
01

71
0.

01
71

0.
01

73
0.

00
18

0.
00

17
0.

00
19

0.
01

71
0.

01
66

0.
01

72
0.

00
17

0.
00

20
0.

00
36

Ta
bl

e
13

R
es

ul
ts

of
th

e
m

od
el

an
d

pr
op

os
ed

ba
se

lin
es

Improving spatio-temporal traffic prediction through transfer learning 55

1 2 3
sources

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

RM
SE

weeks
1
2

Figure 21 RMSE on reconstruction for the full model

Investigating further, the same pattern can be observed on the reconstruction RMSE for all

six configurations, as shown in Figure 21. It seems that the increase on the number of

sources doesn’t increase the model’s capacity to better learn domain-agnostic patterns on

the dataset. Additionally, the use of one or two weeks of data seems to not imply any effects

on the model’s capacity, as the error values are very close, and the distribution bars seem to

coincide in most of their ranges.

Improving spatio-temporal traffic prediction through transfer learning 56

5. Discussion

5.1. On the hyperparameter search

For the hypeparameter search task, we tested several model configurations, parameters, and

adaptation techniques. The ten most interesting experiments were exposed in Sections 4.2

and 4.3. As we built the model iteratively, the pursue of validation steps to prove or disprove

propositions made or concluded during the development of the methodology.

Some of the main highlights we found on these experiments helped us guide the next step

on the research and enhance our understanding on both the problem and the model’s com-

ponents. For instance, Experiment 7 helped us prove the positive effect of the domain dis-

criminator on the adaptation of the model to the target domain. Experiment 4, on the other

hand, showed us that selecting a good criterion function can help the learning of the model

substantially.

Overall, with the best configuration assembled, and without the presence of the domain adver-

sarial training (and GRL), we were able to reach RMSE values of under 2× 10−2, suggesting

that the autoencoder is capable of reconstructing the provided input fairly well.

Furthermore, in Experiment 7 we studied the impact of the λ regularization hyperparameter

and found that the Domain Discriminator in combination with a GRL produces better results

than a model without it, supporting the thesis on its effectiveness.

Another interesting finding was obtained in Experiment 6, as we tested pre-training as a do-

main adaptation mechanism. The results obtained hint that pre-training is indeed a effective

method for domain adaptation, and that an increase in the number of source cities can in-

crease the model’s performance significantly.

5.2. On the model’s performance

The results obtained on the Full Model Experiment show that the obtained performance is well

above the proposed baselines. Considering a 1-week fine-tuning dataset, we can observe

enhancements on the range of 70-90% depending on the baseline considered compared to

the model using only one source city.

These resulting metrics are well in accord to what we observed during the initial experiments,

with MAE values around 2 × 10−3 and RMSE around 2 × 10−2 (equivalent to 4 × 10−4 for

MSE).

Improving spatio-temporal traffic prediction through transfer learning 57

5.3. Research Questions

Q.1 - Is it possible to encompass more than two cities as sources in a transfer
learning process?
It’s indeed very much possible to encompass more than two cities as sources in a transfer

learning process. Our experiments shows that using more cities can enhance the prediction

accuracy as the model is able to extract more, and more diverse patterns from the data.

As we introduced on the Methodology chapter, it’s indeed very possible to encompass multi-

ple cities on the source domain and, theoretically, this can enhance the model’s capabilities

on generalization.

Q.2 - What’s the impact of the number of source cities on the model’s
accuracy?
With Experiment 6 we could prove that pre-training the autoencoder in two cities instead of a

single one makes a significant impact on the model’s ability to reconstruct the data, implying

that the features extracted when the model has access to more patterns are richer and more

informative compared to the standard case.

However, this trend was not as apparent in the Full-Model Experiment, where the complete

city map was utilized. The implications of this observation require further analysis on the

model’s architecture and the impact of the dataset distribution on the results. We conjecture

that this could be due to the lack of data on the peripheral parts of the city, which doesn’t add

any information to the model in relation to patterns of traffic.

Q.3 - Is there a limit on the number of source cities?
Yes, there seems to be a limit on how good a model can generalize given the number (or

diversity) of source domains. Experiment 2 clearly shows that the performance of an au-

toencoder trained with four cities exceeds the one trained with eight cities. This may be an

indicative that the cities in question (or at least one of the cities in question) may not have

a similar distribution as the others, which is a major assumption we made in the start of the

development that allows us to use the patterns learned from one city on another.

Of course that having more data is generally accepted as the main way in which one can

enhance a model, as the diversity of data is often regarded as the limit of what the model can

generalize, but in order to make use of this diversity one must be sure that the distributions of

the data are similar.

Despite that, one of the major limitations associated with the increase on the number of

source cities is that it requires significant more computational resources. This implies that,

for instance, that the model’s complexity, or even architecture, needs to be adapted to enable

this change, as we had to do in relation to the Batch and Layer Normalization layers.

Improving spatio-temporal traffic prediction through transfer learning 58

6. Conclusion

This Chapter, as announced before, has the purpose of summarizing the thesis’ key findings

and outlining the contributions of the work presented here to the state-of-the-art of the traffic

forecasting field, as well as showing the limitations we found during the development of these

complex models and addressing the possible future path to take to overcome them. It’s di-

vided into two parts: Section 6.1 reviews the entirety of the thesis, highlighting its main points

and contributions. Section 6.2 exposes the limitations faced and sets the future directions to

expand upon these findings.

6.1. Summary and Contribution

As cities continue to develop into becoming smart, the demand for models that can predict

the evolution of its data over time will only grow. As we have discussed earlier, the “cold-start

problem”, as the first challenge that a city needs to overcome when entering this field, will

become persistent. This research aimed to propose ideas and solutions on how to tackle this

issue, making smart city management possible as soon as sensors are installed.

The main focus of our work was on the evaluation of the impact that the diversity of domains

can have on the performance of both the feature extractor as the predictor. We modeled the

feature extractor as the encoder of an autoencoder. This made training and evaluating the

extractor very straight-forward, as after going through the encoder and then decoder cells, the

output data is supposed to be the same as the input. As a result of this convenience, we are

prone to incur in two errors - one when encoding and another when decoding. Nonetheless,

training the network using this schema proved to be reliable, as we could reach relatively low

reconstruction errors (RMSE in the order of 10−2).

Moreover, using GConvLSTM as the base cell for the autoencoder validates what was pro-

posed on the methodology development as this architecture can effectively extract ST fea-

tures from the traffic data.

The second part of the model, the predictor, was based on the A3T-GCN cell, which blends

convolutional graph layers with attention, making the model capable of learning how to predict

the next steps based on the complex feature tensor input.

As for the transfer learning part, the combination of pre-training with domain adversarial train-

ing yielded good results on the task. Experiments performed on the thesis confirm the hy-

pothesis that pre-training is effective to handle lack of data on the target dataset and that

the increase on the number of cities (and therefore increase on the diversity of the source

domain) can also positively impact the model. Furthermore, adversarial training was proved,

Improving spatio-temporal traffic prediction through transfer learning 59

supported by experimental data, to be successful on generating domain-agnostic features.

Our developed model also has a remarkable capability: it can transfer learn through cities

of different sizes, as the number of nodes from the graph of two distinct cities is naturally

different, we are able to perform transfer learning between cities with graphs that hold distinct

sizes.

As the main contribution of the thesis, the expansion of the source domain in order to enclose

a higher data diversity was shown to work well in parts. Since one of the proposed experi-

ments shows that it can lead to better generalization for the autoencoder, we can understand

that there is a field to make more advancements on the prediction capabilities of transfer

learning models.

On the other hand, we couldn’t observe significant changes regarding the number of source

cities when testing the model for the full dataset (meaning the full city map). This may imply

that there is a limitation on the city map, as the excess nodes we added may not be conveying

any kind of useful information (they could all be 0 if no probe cars drove on these peripheral

regions), confusing the model and filling spaces on the GPU’s memory.

As an variable in the full model experiments, the number of weeks available on the target

dataset also didn’t seem to enhance or worse the performance. This may suggest that, after

pre-training the model using at least 43200 datapoints, the model can satisfactorily learn the

local patterns using only 1-week worth of data of the target city (ca. 1700 datapoints).

6.2. Limitations and Future Research

During the development of the models and thesis, we’ve encountered some technical and

methodological limitations, which show that this growing field has still much space for re-

search and development.

One of the major limitations we incurred was limited computational capabilities, as the data

and problem are inherently big and complex, we had to make adaptations to the developed

model to be able to run it for the full city dataset. A clear example of this is that even thought

we had access to the best available consumer-level GPU, we had to lower the batch size

of the dataloaders, which led to the need of modifications on all models, as BATCHNORM

is known for being unreliable or even undefined for such cases. This changes may lead to

biases, as we search and select hyperparameters for a task that is not the same as the one

we are testing for.

The dataset used for this work also caused us some problems. We used it as it was a very

reliable dataset containing uniformly stored data from eight different cities with similar sizes,

which is good for the purpose of understanding the impact of diversity of the source domain on

Improving spatio-temporal traffic prediction through transfer learning 60

the performance with cities that will have graphs with similar number of nodes. Our dataset,

however, had problems with data availability, as most values (as shown in Section 3.1) are

0.

As we noted from the contributions, our model can learn patterns from graphs of different

sizes, but it has yet to be tested whether we can have meaningful transfer between cities with

very discrepant sizes.

Future developments using this work as basis can apply intra-city transfer using this model,

in special with different datasets types, as some cities may have collected data on different

fields that may be useful as sources. Although for this implementation to be successful, some

changes in how the model handles channels may be required.

As the number of cities that collect data increase, and we have access to multiple source

domain candidates, it would be interesting to have ways to better select best fit sources to

adapt for a particular target. This task would involve graph analysis and classification, but

can led to much more optimized models, saving computational and time resources.

Improving spatio-temporal traffic prediction through transfer learning 61

Bibliography

[1] C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, and B. David, “A literature survey on

smart cities.,” in Sci. China Inf. Sci., vol. 58, pp. 1–18, 2015.

[2] J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, and T. Li, “Predicting citywide crowd flows using

deep spatio-temporal residual networks,” in Artificial Intelligence, vol. 259, pp. 147–166,

Elsevier, 2018.

[3] W. Jin, Y. Lin, Z. Wu, and H. Wan, “Spatio-temporal recurrent convolutional networks

for citywide short-term crowd flows prediction,” in Proceedings of the 2nd International

Conference on Compute and Data Analysis, pp. 28–35, 2018.

[4] N. G. Polson and V. O. Sokolov, “Deep learning for short-term traffic flow prediction,”

in Transportation Research Part C: Emerging Technologies, vol. 79, pp. 1–17, Elsevier,

2017.

[5] Y. Wu, H. Tan, L. Qin, B. Ran, and Z. Jiang, “A hybrid deep learning based traffic flow

prediction method and its understanding,” in Transportation Research Part C: Emerging

Technologies, vol. 90, pp. 166–180, Elsevier, 2018.

[6] Y. Liu, Z. Liu, and R. Jia, “Deeppf: A deep learning based architecture for metro passen-

ger flow prediction,” in Transportation Research Part C: Emerging Technologies, vol. 101,

pp. 18–34, Elsevier, 2019.

[7] D. Chai, L. Wang, and Q. Yang, “Bike flow prediction with multi-graph convolutional net-

works,” in Proceedings of the 26th ACM SIGSPATIAL international conference on ad-

vances in geographic information systems, pp. 397–400, 2018.

[8] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu, “Spatiotemporal multi-

graph convolution network for ride-hailing demand forecasting,” in Proceedings of the

AAAI conference on artificial intelligence, vol. 33, pp. 3656–3663, 2019.

[9] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learn-

ing framework for traffic forecasting,” in arXiv preprint arXiv:1709.04875, 2017.

[10] Y. Huang, X. Song, Y. Zhu, S. Zhang, and J. J. Q. Yu, “Traffic prediction with trans-

fer learning: A mutual information-based approach,” in IEEE Transactions on Intelligent

Transportation Systems, vol. 24, p. 8236–8252, Institute of Electrical and Electronics

Engineers (IEEE), Aug. 2023.

Improving spatio-temporal traffic prediction through transfer learning 62

[11] S. J. Pan and Q. Yang, “A survey on transfer learning,” in IEEE Transactions on knowl-

edge and data engineering, vol. 22, pp. 1345–1359, IEEE, 2009.

[12] H. Yao, Y. Liu, Y. Wei, X. Tang, and Z. Li, “Learning from multiple cities: A meta-learning

approach for spatial-temporal prediction,” in The World Wide Web Conference, ACM,

May 2019.

[13] B. Lu, X. Gan, W. Zhang, H. Yao, L. Fu, and X. Wang, “Spatio-temporal graph few-shot

learning with cross-city knowledge transfer,” in Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, ACM, Aug. 2022.

[14] Y. Tang, A. Qu, A. H. Chow, W. H. Lam, S. Wong, and W. Ma, “Domain adversar-

ial spatial-temporal network: A transferable framework for short-term traffic forecasting

across cities,” in Proceedings of the 31st ACM International Conference on Information

& Knowledge Management, CIKM ’22, (New York, NY, USA), p. 1905–1915, Association

for Computing Machinery, 2022.

[15] M. J. Beckmann, C. B. McGuire, and C. B. Winsten, Studies in the Economics of Trans-

portation. Santa Monica, CA: RAND Corporation, 1955.

[16] H. W. Bevis, “A model for predicting urban travel patterns,” in Journal of the American

Institute of Planners, vol. 25, pp. 87–89, Informa UK Limited, May 1959.

[17] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning traffic as images: A deep

convolutional neural network for large-scale transportation network speed prediction,” in

Sensors, vol. 17, p. 818, MDPI AG, Apr. 2017.

[18] J. Lin, Y. Chen, H. Zheng, M. Ding, P. Cheng, and L. Hanzo, “A data-driven base station

sleeping strategy based on traffic prediction,” in IEEE Transactions on Network Science

and Engineering, 2021.

[19] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: a deep learning

approach for short-term traffic forecast,” in IET Intelligent Transport Systems, vol. 11,

pp. 68–75, Institution of Engineering and Technology (IET), Feb. 2017.

[20] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. Li, “Deep multi-

view spatial-temporal network for taxi demand prediction,” in Proceedings of the AAAI

conference on artificial intelligence, vol. 32, 2018.

[21] L. Wang, X. Geng, X. Ma, F. Liu, and Q. Yang, “Cross-city transfer learning for deep

spatio-temporal prediction,” in Proceedings of the Twenty-Eighth International Joint Con-

Improving spatio-temporal traffic prediction through transfer learning 63

ference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence

Organization, Aug. 2019.

[22] S. Wang, H. Miao, J. Li, and J. Cao, “Spatio-temporal knowledge transfer for urban

crowd flow prediction via deep attentive adaptation networks,” in IEEE Transactions on

Intelligent Transportation Systems, vol. 23, p. 4695 – 4705, 2022.

[23] X. Ouyang, Y. Yang, W. Zhou, Y. Zhang, H. Wang, and W. Huang, “Citytrans: Domain-

adversarial training with knowledge transfer for spatio-temporal prediction across cities,”

in IEEE Transactions on Knowledge and Data Engineering, p. 1–14, 2023.

[24] Y. Jin, K. Chen, and Q. Yang, “Selective cross-city transfer learning for traffic prediction

via source city region re-weighting,” in Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, p. 731 – 741, 2022.

[25] L. Zhang, X. Geng, Z. Qin, H. Wang, X. Wang, Y. Zhang, J. Liang, G. Wu, X. Song, and

Y. Wang, “Multi-modal graph interaction for multi-graph convolution network in urban

spatiotemporal forecasting,” in Sustainability, vol. 14, p. 12397, MDPI AG, Sept. 2022.

[26] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu, “Spatiotemporal multi-

graph convolution network for ride-hailing demand forecasting,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 33, pp. 3656–3663, Association for the

Advancement of Artificial Intelligence (AAAI), July 2019.

[27] L. Wang, D. Chai, X. Liu, L. Chen, and K. Chen, “Exploring the generalizability of spatio-

temporal traffic prediction: Meta-modeling and an analytic framework,” in IEEE Transac-

tions on Knowledge and Data Engineering, vol. 35, pp. 3870–3884, Institute of Electrical

and Electronics Engineers (IEEE), Apr. 2023.

[28] Y. Wei, Y. Zheng, and Q. Yang, “Transfer knowledge between cities,” in Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, ACM, Aug. 2016.

[29] S. Elmi and K.-L. Tan, “Travel time prediction in missing data areas: Feature-based

transfer learning approach,” in Proceedings - 2020 IEEE 22nd International Conference

on High Performance Computing and Communications, IEEE 18th International Con-

ference on Smart City and IEEE 6th International Conference on Data Science and

Systems, HPCC-SmartCity-DSS 2020, p. 1088 – 1095, 2020.

[30] J. Li, N. Xie, K. Zhang, F. Guo, S. Hu, and X. M. Chen, “Network-scale traffic prediction

via knowledge transfer and regional mfd analysis,” in Transportation Research Part C:

Emerging Technologies, vol. 141, 2022.

Improving spatio-temporal traffic prediction through transfer learning 64

[31] Z. Ali, P. Kefalas, K. Muhammad, B. Ali, and M. Imran, “Deep learning in citation rec-

ommendation models survey,” in Expert Systems with Applications, vol. 162, p. 113790,

Elsevier BV, Dec. 2020.

[32] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-

sample test,” in J. Mach. Learn. Res., vol. 13, p. 723–773, JMLR.org, mar 2012.

[33] Y. Wang, Y. Chen, P. Chen, J. Hu, and H. Zheng, “Application-based cooperative content

caching via tensor domain adaptation networks,” in 2022 IEEE 14th International Con-

ference on Wireless Communications and Signal Processing, WCSP 2022, p. 22 – 27,

2022.

[34] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,”

2015.

[35] C. Eichenberger, M. Neun, H. Martin, P. Herruzo, M. Spanring, Y. Lu, S. Choi,

V. Konyakhin, N. Lukashina, A. Shpilman, N. Wiedemann, M. Raubal, B. Wang, H. L. Vu,

R. Mohajerpoor, C. Cai, I. Kim, L. Hermes, A. Melnik, R. Velioglu, M. Vieth, M. Schilling,

A. Bojesomo, H. A. Marzouqi, P. Liatsis, J. Santokhi, D. Hillier, Y. Yang, J. Sarwar, A. Jor-

dan, E. Hewage, D. Jonietz, F. Tang, A. Gruca, M. Kopp, D. Kreil, and S. Hochreiter,

“Traffic4cast at neurips 2021 - temporal and spatial few-shot transfer learning in gridded

geo-spatial processes,” in Proceedings of the NeurIPS 2021 Competitions and Demon-

strations Track (D. Kiela, M. Ciccone, and B. Caputo, eds.), vol. 176 of Proceedings of

Machine Learning Research, pp. 97–112, PMLR, 06–14 Dec 2022.

[36] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” in Science, vol. 313, p. 504–507, American Association for the Advancement

of Science (AAAS), July 2006.

[37] Y. Fan, X. Yu, R. Wieser, D. Meakin, A. Shaton, J.-N. Jaubert, R. Flottemesch, M. How-

ell, J. Braid, L. S. Bruckman, R. French, and Y. Wu, “Spatio-temporal denoising graph

autoencoders with data augmentation for photovoltaic timeseries data imputation,” 2023.

[38] M. Sabbaqi, R. Taormina, A. Hanjalic, and E. Isufi, “Graph-time convolutional autoen-

coders,” in Learning on Graphs Conference, pp. 24–1, PMLR, 2022.

[39] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei,

O. Kiss, F. Beres, G. Lopez, N. Collignon, and R. Sarkar, “PyTorch Geometric Temporal:

Spatiotemporal Signal Processing with Neural Machine Learning Models,” in Proceed-

ings of the 30th ACM International Conference on Information and Knowledge Manage-

ment, p. 4564–4573, 2021.

Improving spatio-temporal traffic prediction through transfer learning 65

[40] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured sequence model-

ing with graph convolutional recurrent networks,” in Lecture Notes in Computer Science,

p. 362–373, Springer International Publishing, 2018.

[41] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on

graphs with fast localized spectral filtering,” in Advances in Neural Information Process-

ing Systems, 2016.

[42] J. Zhu, Y. Song, L. Zhao, and H. Li, “A3T-GCN: attention temporal graph convolutional

network for traffic forecasting,” in CoRR, vol. abs/2006.11583, 2020.

[43] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,” in CoRR,

vol. abs/1711.05101, 2017.

[44] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg,

M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed precision training,” 2018.

[45] B. Zhou, D. He, and Z. Sun, “Traffic predictability based on arima/garch model,” in 2006

2nd Conference on Next Generation Internet Design and Engineering, 2006. NGI ’06.,

pp. 8 pp.–207, 2006.

[46] A. Palazzi and J. Liu, “Convlstm for pytorch.” https://github.com/Jimexist/conv_

lstm_pytorch, 2020.

[47] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional

lstm network: A machine learning approach for precipitation nowcasting,” in Advances

in neural information processing systems, vol. 28, 2015.

[48] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee, J. Ngiam, Q. V.

Le, Y. Wu, and Z. Chen, “Gpipe: Efficient training of giant neural networks using pipeline

parallelism,” 2019.

[49] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.

Improving spatio-temporal traffic prediction through transfer learning 66

https://github.com/Jimexist/conv_lstm_pytorch
https://github.com/Jimexist/conv_lstm_pytorch

	Introduction
	Motivation
	Research Questions
	Contribution
	Outline

	Literature Review
	Traffic Forecasting
	Transfer Learning
	Domain Adaptation

	Methodology
	Data Analysis and Exploration
	Data processing

	Model Outline
	Task
	Proposed Architecture

	Feature Extraction Network
	Autoencoder
	Fine Tuning

	Domain Adaptation
	Prediction Network
	Model Training
	Loss Functions
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	Mean Absolute Percentage Error (MAPE)
	Weighted Mean Squared Error (WMSE)
	Mean Squared Logarithm Error (MSLE)
	Weighted Mean Squared Logarithm Error (WMSLE)
	Custom Huber Loss
	Log-Cosh Loss
	Binary Cross Entropy

	Baselines
	Historical Average
	ARIMA
	Convolutional LSTM (ConvLSTM)

	Results
	Computational Specifications and Training Times
	Autoencoder Experiments
	Predictor Experiments
	Full Model Experiments
	Model Setup
	Results

	Discussion
	On the hyperparameter search
	On the model's performance
	Research Questions

	Conclusion
	Summary and Contribution
	Limitations and Future Research

