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Abstract

Numerous research fields, from forensic to environmental sciences, benefit from information about the variation

of stable isotope abundances (e.g., by measuring 𝛿13C as the ratio of 13C and 12C) in (bio)chemical substances.

In compound-specific isotope analysis (CSIA), the isotopic signature of a compound can be measured with

high precision using an isotope ratio mass spectrometer (IRMS) hyphenated to gas- or liquid chromatography

(GC- and LC-IRMS). During the isotope measurement using the IRMS, the compound of interest is combusted

into a universal analyte, in the case of carbon measurements to CO2. The structural information gets lost

during this process, which makes CSIA prone to matrix interferences in case the separation power provided by

GC/LC is insufficient. For many real-world applications, large amounts of matrix compounds are co-enriched

during the extraction of the sample and, thus, must be removed using further purification steps to guarantee

accurate CSIA. While there are many purification techniques available, like molecularly imprinted solid phase

extraction (MISPE) or the most commonly used one, reversed-phase high-performance liquid chromatography

(RP HPLC), optimizing matrix removal during the respective purification is still one of the greatest challenges

of CSIA sample preparation. For optimal and efficient purification using RP HPLC, for example, simultaneous

online monitoring and quantification of both the target analyte and the matrix is highly valuable. Still, no

commercially available detector can quantify the entirety of the matrix online during an RP HPLC purification.

Hence, the overarching goal of this dissertation was to expand the applicability of CSIA by investigating the

effectiveness of strategies to optimize the matrix removal during the purification of sample extracts prior to

GC-IRMS isotope analysis, with a specific focus on developing a novel detection technique for the online

quantification of the sample matrix during RP HPLC purification.

The first part of the thesis investigated the influence of the anionic character of the environmental matrix

natural organic matter (NOM) on non-specific sorption of NOM during MISPE to increase the understanding

of processes governing non-specific binding of the sample matrix. To this end, acidic functional groups of

NOM were methylated to significantly reduce the charge density of NOM and, thus, the electrostatic repulsion

of dissolved and sorbed NOM compounds. The study successfully shows the reduction of the charge density

of NOM by a factor of 3.4 using a trimethylsilyl diazomethane (TMSD) based selective methylation of NOM

carboxy groups. Breakthrough curves revealed that 30% more methylated NOM compared to untreated NOM

remained on the MIP after a washing procedure using dichloromethane (DCM). This implies stronger MIP-

methylated NOM interactions, which are most likely caused by the smaller charge density of the methylated
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NOM and the consequently smaller electrostatic repulsion between NOM molecules. The presented findings

prove the importance of NOM’s anionic character for the sorption on MIPs and provide a knowledge base for

future research on non-specific binding of the sample matrix NOM during MISPE.

The second and major part of the thesis addressed the challenge of developing a detection technique that can

quantify matrix components online during RP HPLC. For this purpose, this thesis investigated the suitability

of quartz crystal microbalance (QCM) using two different strategies: (i) QCM liquid sensing and (ii) QCM

dry mass sensing. First, a suitable coating must be found to quantify matrix components in the liquid phase

using QCM liquid sensing. The second chapter thus investigated for the first time a grafting approach for a

hypercrosslinked divinylbenzene (DVB)-based copolymer using ethylene glycol dimethacrylate (EGDMA) as

a hydrophilic modifier on a QCM sensor, characterized the sensor coating, and evaluated the interaction of the

coating with humic acids. The study demonstrates the successful grafting of a DVB-EGDMA co-polymer onto

the QCM sensor using radical polymerization. A laterally heterogeneous polymer layer with a thickness of

200-300 nm inside the dynamic range of QCMmeasurements was further achieved. While humic acids did sorb

onto the grafted copolymer during sorption experiments, leading to a high frequency decrease of 18-20 Hz in

comparison to other studies, this number is still too low for matrix online monitoring. Future research can build

upon this study’s grafting and characterization procedure to optimize and explore other co-polymers further.

The third chapter explored the feasibility of coupling a commercial HPLC with a microfluidic spray-dryer

and a QCM using a flow splitter for online monitoring of organic matrix components during RP HPLC gradient

purification. To this end, a measuring, calibration, and data processing strategy was developed, and the system

was characterized in terms of lower and upper quantification limits and accuracy. Validation of NOM in an

environmental sample against offline total organic carbon analysis confirmed the approach’s feasibility with an

absolute recovery of 103±10%. A correlation (R2 ≥ 95) between the amount of matrix quantified by QCM

dry mass sensing during an HPLC clean-up of a brown rice extract and matrix effects measured during the

subsequent GC-MS analysis of the investigated pesticides was found. This suggests that QCM dry mass sensing

can be a valuable tool to the analyst where HPLC clean-up is routinely performed and can thus benefit many

analytical fields.

The fourth chapter investigated the limitations and enhancement of HPLC purification on C18 and C8 phases

for single- and multiple-targets using QCM dry mass sensing. Further, the benefit of such an optimized

HPLC purification for isotope analysis of polar micropollutants typically present in environmental samples

was examined. Strong isotopic shifts of up to 3.3‰ towards the isotopic signature of NOM were observed

for samples with a NOM-to-analyte ratio ≥ 10. Thanks to QCM sensing, optimization of matrix removal of

up to 97 for early and 99.8% for late-eluting compounds was possible. The efficiency of HPLC purification

deteriorated when aiming for simultaneous purification of two or three compounds, leading to up to 2.5% less

NOM removal. Our results suggest that one optimized HPLC purification can be achieved through systematic
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screening of 3 to 5 different gradients, thereby shifting the boundaries of accurate carbon-CSIA by up to two

orders of magnitude toward lower micropollutant concentrations.

Overall, the results of this work emphasize the importance (i) of suitable detection techniques for the specific

requirements of analytical tasks and (ii) of optimized, highly selective, and automated purification techniques for

sample clean-up to use the full potential of CSIA. Specifically, QCM dry mass sensing proved to be successful in

online quantifying of the entirety of the extracted samplematrix duringRPHPLCpurification, thus tremendously

increasing the percentage of NOM that can be removed in one clean-up step. QCM dry mass sensing paves the

way to efficiently develop optimized purification strategies for various purification problems using a large range

of liquid chromatographic solid phase materials and modes. Using optimized chromatographic purification in

combination with selective extraction procedures that were recently developed will, in the future, help to expand

the applicability of CSIA to compounds present in real-world samples in the low to middle ng/L range, enabling

thus insights into environmental and biological processes and forensic cases that are presently not accessible.

Furthermore, the possibility of online detection of both the target and the matrix during RP HPLC is a big step

towards a fully automated method development and optimization of CSIA sample preparation.
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Zusammenfassung

Zahlreiche Forschungsbereiche, von der Forensik bis zu den Umweltwissenschaften, profitieren von Infor-

mationen über die Variation stabiler Isotopenhäufigkeiten (z.B. durch Messung von 𝛿13C als Verhältnis von
13C und 12C) in (bio)chemischen Stoffen. Bei der substanzspezifischen Isotopenanalyse (engl. compound-

specific isotope analysis, CSIA) kann die Isotopensignatur einer Verbindung mithilfe eines Isotopenverhältnis-

Massenspektrometers (engl. isotope ratio mass spectrometry, IRMS) verbundenmit Gas- oder Flüssigkeitschro-

matographie (engl. gas- or liquid chromatography, GC- und LC-IRMS) mit hoher Präzision gemessen werden.

Bei der Isotopenmessung mit dem IRMSwird die Zielverbindung zu einem universellen Analyten verbrannt, bei

Kohlenstoffmessungen zu CO2. Die Strukturinformation geht bei diesem Prozess verloren, was CSIA anfällig

für Matrixinterferenzen macht, falls die Trennleistung der GC/LC nicht ausreicht. Bei vielen Realanwendungen

werden bei der Extraktion der Probe große Mengen an Matrixverbindungen angereichert und müssen daher

durch weitere Aufreinigungsschritte entfernt werden, um eine genaue CSIA zu gewährleisten. Auch wenn viele

Aufreinigungstechniken zur Verfügung stehen, wie beispielsweise die molekular geprägte Festphasenextraktion

(engl. molecularly imprinted solid phase extraction, MISPE) oder die am häufigsten verwendete Methode,

die Umkehrphasen-Hochleistungsflüssigkeitschromatographie (engl. reversed-phase high-performance liquid

chromatography, RP HPLC), ist die Optimierung der Matrixentfernung während der jeweiligen Aufreinigung

immer noch eine der größtenHerausforderungen der CSIA-Probenvorbereitung. Für eine optimale und effiziente

Aufreinigung beispielsweise mittels RP-HPLC ist die gleichzeitige Online-Überwachung und Quantifizierung

sowohl des Zielanalyten als auch der Probenmatrix von großem Wert. Dennoch kann kein kommerziell er-

hältlicher Detektor die gesamteMatrixwährend einer RP-HPLC-Reinigung online quantifizieren. Daher bestand

das übergeordnete Ziel dieser Dissertation darin, den Anwendungsbereich von CSIA zu erweitern, indem die

Wirksamkeit von Strategien zur Optimierung der Matrixentfernung während der Aufreinigung von Probenex-

trakten vor GC-IRMS-Isotopenmessungen untersucht wurde. Ein besonderer Schwerpunkt lag dabei auf der

Entwicklung einer neuartigen Messtechnik zur Online-Quantifizierung der Probenmatrix während RP-HPLC

Probenaufreinigung.

Der erste Teil der Arbeit untersuchte den Einfluss des anionischen Charakters der natürlichen organischen

Materie (engl. natural organic matter, NOM) auf die unspezifische Sorption von NOM während MISPE,

um das Verständnis der Prozesse zu verbessern, die die unspezifische Bindung der Probenmatrix steuern. Zu

diesem Zweck wurden saure funktionelle Gruppen von NOM methyliert, um die Ladungsdichte von NOM und
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damit die elektrostatische Abstoßung gelöster und sorbierter NOM-Verbindungen deutlich zu reduzieren. Die

Studie zeigt erfolgreich die Reduzierung der Ladungsdichte von NOM um den Faktor 3,4 mithilfe einer auf

Trimethylsilyldiazomethan (engl. trimethylsilyl diazomethane, TMSD) basierenden selektiven Methylierung

von NOM-Carboxygruppen. Durchbruchskurven zeigten, dass nach einem Waschvorgang mit Dichlormethan

(DCM) 30%mehr methyliertes NOM imVergleich zu unbehandeltemNOM auf demMIP verblieben. Dies lässt

auf stärkere Wechselwirkungen zwischen MIP und methyliertem NOM schließen, welche höchstwahrscheinlich

durch die geringere Ladungsdichte des methylierten NOM verursacht werden und der daraus resultierenden

geringeren elektrostatischen Abstoßung zwischen NOM-Molekülen. Die präsentierten Ergebnisse belegen die

Bedeutung des anionischen Charakters von NOM für die Sorption an MIPs und bieten eine Wissensbasis für

zukünftige Forschungen zur unspezifischen Bindung der Probenmatrix NOM während MISPE.

Der Hauptteil der Arbeit befasste sich mit der Herausforderung, eine Detektionstechnik zu entwickeln, mit

der Matrixkomponenten online während RP-HPLC quantifiziert werden können. Zu diesem Zweck untersuchte

diese Arbeit die Eignung der Quarzkristall-Mikrowaage (engl. quartz crystal microbalance, QCM) mit zwei

verschiedenen Strategien: (i) QCM Messungen in Flüssigkeiten (engl. QCM liquid sensing, Flüssigkeiten-

QCM) und (ii) QCM Messung von Trockenmassen (engl. QCM dry mass sensing, Trockenmassen-QCM).

Zunächst muss eine geeignete Beschichtung gefunden werden, um Matrixkomponenten in der flüssigen Phase

mithilfe der Flüssigkeiten-QCM zu quantifizieren. Das zweite Kapitel untersuchte daher erstmals eineMethode,

ein hypervernetztes Divinylbenzol (engl. divinylbenzene, DVB)-basiertes Copolymer unter Verwendung von

Ethylenglykoldimethacrylat (engl. ethylene glycol dimethacrylate, EGDMA) als hydrophilem Modifikator auf

einem QCM-Sensor zu synthetisieren, die Sensorbeschichtung zu charakterisieren und die Wechselwirkung der

Beschichtung mit Huminsäuren zu quantifizieren. Die Studie demonstriert das erfolgreiche Synthetisieren eines

DVB-EGDMA-Copolymers auf denQCM-Sensormittels radikalischer Polymerisation. Die Polymerschicht war

lateral heterogen mit einer Dicke von 200-300 nm, womit sie innerhalb des dynamischen Bereichs von QCM-

Messungen liegt. Auch wenn Huminsäuren während der Sorptionsexperimente an das Copolymer sorbierten,

was im Vergleich zu anderen Studien zu einer starken Frequenzabnahme von 18–20 Hz führte, ist diese Zahl für

Online-Quantifizierung von Matrix Substanzen immer noch zu niedrig. Zukünftige Forschung kann auf dem

in dieser Studie präsentierten Synthese- und Charakterisierungsverfahren aufbauen, um andere Copolymere zu

synthetisieren, weiter zu optimieren und zu erforschen.

Das dritteKapitel untersuchte dieMachbarkeit derKopplung einer kommerziellenHPLCmit einemmikroflu-

idischen Sprühtrockner und einer QCM unter Verwendung eines Flusssplitters zur Online-Überwachung organ-

ischer Matrixkomponenten während RP-HPLC-Gradientenaufreinigung. Zu diesem Zweck wurde eine Mess-,

Kalibrierungs- und Datenverarbeitungsstrategie entwickelt und das System hinsichtlich unterer und oberer

Quantifizierungsgrenzen und Genauigkeit charakterisiert. Die Validierung von NOM in einer Umweltprobe

gegen eine Offline-Analyse des gesamten organischen Kohlenstoffs bestätigte die Machbarkeit des Ansatzes mit
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einer absoluten Rückgewinnung von 103 ±10%. Eine Korrelation (R2 ≥ 95) zwischen der Matrixmenge, die

durch Trockenmassen-QCM während einer HPLC-Reinigung eines Braunreisextrakts quantifiziert wurde, und

Matrixeffekten, die während der anschließenden GC-MS-Analyse von Pestiziden im Extrakt gemessen wur-

den, wurde identifiziert. Dies deutet darauf hin, dass Trockenmassen-QCM ein wertvolles Werkzeug für den

Analytiker sein kann überall wo eine HPLC-Aufreinigung routinemäßig durchgeführt wird, und daher vielen

analytischen Bereichen zugutekommen kann.

Das vierte Kapitel untersuchte die Limitierungen und Möglichkeiten der HPLC-Aufreinigung mit Hilfe von

C18- und C8-Phasen für Einzel- und Mehrfachanalytprobleme mithilfe Trockenmassen-QCM. Darüber hinaus

wurde der Nutzen einer solchen optimierten HPLC-Aufreinigung für die Isotopenanalyse polarer Mikroschad-

stoffe untersucht, die typischerweise in Umweltproben vorkommen. Für Proben mit einem NOM-zu-Analyt-

Verhältnis von ≥ 10 wurden starke Isotopenverschiebungen von bis zu 3.3 ‰ in Richtung der Isotopensignatur

von NOM beobachtet. Dank QCM war eine Optimierung der Matrixentfernung auf bis zu 97% für früh

und 99,8% für spät eluierende Verbindungen möglich. Die Effizienz der HPLC-Aufreinigung verschlechterte

sich, wenn zwei oder drei Verbindungen gleichzeitig aufgereinigt werden sollten, was zu einer um bis zu

2,5% geringeren Entfernung von NOM führte. Unsere Ergebnisse legen nahe, dass eine optimierte HPLC-

Aufreinigung durch systematisches Screening von 3 bis 5 verschiedenen Gradienten erreicht werden kann,

wodurch die Grenzen einer genauen Kohlenstoff-CSIA um bis zu zwei Größenordnungen hin zu niedrigeren

Mikroschadstoffkonzentrationen verschoben werden kann.

Insgesamt unterstreichen die Ergebnisse dieser Arbeit die Bedeutung (i) geeigneter Nachweistechniken für

die spezifischen Anforderungen analytischer Aufgaben und (ii) optimierter, hochselektiver und automatisierter

Aufreinigungstechniken für die Probenaufreinigung, um das volle Potenzial vonCSIA auszuschöpfen. Insbeson-

dere erwies sich Trockenmassen-QCM als erfolgreich bei der Online-Quantifizierung der gesamten extrahierten

Probenmatrixwährend der RP-HPLC-Aufreinigung und erhöhte so enormden Prozentsatz anNOM, der in einem

Reinigungsschritt entfernt werden kann. Trockenmassen-QCM ebnet den Weg zur effizienten Entwicklung op-

timierter Aufreinigungsstrategien für verschiedene Aufreinigungsprobleme unter Verwendung einer Vielzahl

von Festphasenmaterialien und -modi für die Flüssigchromatographie. Die Verwendung einer optimierten

chromatographischen Aufreinigung in Kombination mit kürzlich entwickelten selektiven Extraktionsverfahren

wird in Zukunft dazu beitragen, das Anwendungsspektrum von CSIA auf Verbindungen zu erweitern, die in

realen Proben im niedrigen bis mittleren ng/L-Bereich vorhanden sind, und so Einblicke in Umwelt- und biolo-

gische Prozesse und forensische Fälle zu ermöglichen, die noch nicht zugänglich waren. Darüber hinaus ist die

Möglichkeit der Online-Quantifizierung sowohl des Zielanalyts als auch der Probenmatrix während RP-HPLC

ein großer Schritt hin zu einer vollautomatischenMethodenentwicklung und -optimierung zur Vorbereitung von

CSIA.
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1.1 Compound-Specific Isotope Analysis

Numerous research fields, from forensic to environmental sciences, benefit from information about the variation

of stable isotope abundances (e.g. bymeasuring 𝛿13Cas the ratio of 13Cand 12C) in (bio)chemical substances.1–10

These isotopic variations can have different origins: (i) Different processes or raw materials in the synthesis

of the compounds or (ii) transformation processes that act on these chemicals, including chemical reactions,

biological processes, or phase transfer. (i) In case of a different synthesis, the relative abundance of isotopes

can provide information like a fingerprint that can distinguish a different provenance of otherwise identical

chemicals.11–15 (ii) In contrast, isotope ratios change during transformation processes. These changes over time

are like a footprint left by reaction-specific kinetic isotope effects that give insight into the path by which the

compounds are transformed.16–20 Measuring the isotopic signature of a compound with high precision requires

IsotopeRatioMass Spectrometry (IRMS).21–24 The ability to distinguish different sources of the same compound

makes IRMS unique; the information gained is challenging to acquire from concentration measurements or other

techniques.

To achieve high trueness with IRMS, isotopic values must be measured relative to a reference standard.

Further, it is necessary to combust the compound of interest into a universal analyte, in the case of carbon

measurements to CO2.6,21–23 The downside is, however, that the structural information gets lost during this

process, and thus, only bulk measurements are possible. Coupling gas chromatography (GC) with IRMS

revolutionized the field in the late 70s/ early 80s by providing the separation power to move from bulk isotope

analysis to compound-specific isotope analysis (CSIA).21–23 Later, other chromatographic techniques were

hyphenated with IRMS, such as liquid chromatography (LC) in 1991.25 The ability to separate compounds and

measure compound-specific isotope ratios opened various applications with different timescales that would not

have been accessible otherwise. Paleo-/ geochemists use CSIA to reconstruct paleoclimate profiles bymeasuring

variations in 𝛿13C of biomarkers, like plant waxes preserved in fossils.8,26, 27 In doping analysis, GC-IRMS

is used as a confirmation procedure to prove exogenous administration of endogenous anabolic androgenic

steroids by utilizing depleted 𝛿13C values in synthesized steroids.28,29 In environmental sciences, CSIA helps

to identify the source and the fate of micropollutants, their degradation products, and pathways by measuring

isotope fractionation.3,30–33 In food analysis, CSIA can be used for authentication purposes.9,34–36

1.2 Analytical Challenges of Real-World Applications of CSIA

Despite these enormous advances, the separation power provided by GC is insufficient for many real-world

applications to separate the target analyte and other components present in the sample, known as the sample

matrix. An incomplete separation can lead, however, to biased isotope values since (i) the IRMS is not able

to distinguish between CO2 from the analyte and from the sample matrix with the same retention time and
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(ii) since the isotope ratio varies over the chromatographic peak due to vapor pressure isotope effects.2,21, 37–41

Consequently, correction techniques used in conventional mass spectrometry to account for adverse effects

of matrix compounds using, for example, curve fitting to restore overlapped peaks,41 internal standards,42–45

analyte protectants,46,47 or matrix-matched calibration,42,45, 48 can not be used in CSIA. To guarantee accurate

CSIA, there is thus no substitute for complete baseline separation during GC. Bakkour et al.49 and Glöckler

et al.50 observed for a typical water sample containing environmental micropollutants isotopic shifts in carbon

CSIA due to incomplete baseline separation during GC. These isotope shifts occurred as soon as there was

ten times more carbon from matrix substances than from the target analyte in the sample extract that was

injected into GC-IRMS. Consequently, samples containing higher amounts of matrix often necessitate further

purification measures.

On the one hand, such measures can involve increasing chromatographic resolution using longer columns51

or hyphenated multi-dimensional chromatography instead of one-dimensional chromatography.34,52–55 On

the other hand, suitable sample preparation is often crucial to get rid of matrix components before injecting

the sample into the GC-IRMS.2,3, 5, 50, 56 In contrast to its importance, however, sample preparation in CSIA

is pursued on a case-by-case basis rather than systematically and is still underdeveloped. Consequently, the

applicability of CSIA is limited by matrix interferences in real-world samples and the lack of suitable sample

preparation strategies to remove them.

1.2.1 Case Study 1: Limited Field-Applicability of CSIA for Non-Volatile Compounds

In few applications, limitations by matrix interferences are as prominent as in extracts from soil and water

samples. Here, CSIA in environmental contaminant chemistry, therefore, serves to show how these limitations

affect the real-world applicability of CSIA and which analytical challenges need to be overcome. For this

purpose, more than 600 publications from isotope analysis in environmental chemistry (see Table A.1) have

been evaluated by grouping them into classes of compounds and plotting them according to their air-water

partitioning, using Henry‘s law constant, and octanol-water partitioning as a proxy for their distribution in

different environmental compartments (see Figure 1.1). The publications in every group are classified as work

on new methods to measure a given compound with isotope analysis (method, grey circles), as a study on the

lab scale (lab, green circles), or as a field study using real-world samples (field, black circles).

It becomes apparent from Figure 1 that most of the work on CSIA in environmental contaminant chemistry

was published on volatile organic compounds present in the air-water or air-water-soil compartment such as

BTEX (e.g., benzene) or volatile chlorinated aliphatics (e.g., trichloroethene). There is, however, not just a

difference in the total number of papers published on volatile compounds (i.e., volatile chlorinated aliphatics:

266) and non-volatile compounds present in the water or soil compartment (i.e., pesticides: 57), but also a

difference in the ratio of studies on method development (grey) and laboratory studies (green) in comparison
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Figure 1.1 Number of published papers of different compound classes in the environmental sciences subdivided into
publications on method development (grey), laboratory studies (green), and field studies (black). The size of each bubble
correlates to the amount of papers published. Compound classes with fewer than 15 publications are enlarged by factor
6 for better visibility (bubbles in frames). BTEX: aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene,
PCB: polychlorinated biphenyl, PCDD: polychlorinated dibenzodioxins, PAH: polycyclic aromatic hydrocarbon, HCH:
hexachlorocyclohexane. Source: Kuntze et al.57 and Web of Science. Publications were considered till 04.10.2023. All
publications together with their classification are listed in Table A.1.
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to field studies (black). While there is nearly an equal number of publications on method development and

laboratory studies in comparison to field studies available for volatile compounds (ratio (lab+method)/field:

fuel oxygenates: 1.7, volatile chlorinated aliphatics: 1.7, BTEX: 1.2), field studies are scarce for non-volatile

compounds (ratio: pesticides: 6.1, pharmaceuticals: 4.5). There are two main reasons for this predominance

of field studies on volatile compounds: (i) The contaminant concentration in the field relative to the matrix

concentration and (ii) available sample preparation strategies to separate the contaminant from the sample

matrix.

(i)Many of these volatile compoundswere ubiquitously used as solvents in the past and, therefore, correspond

to priority pollutants at contaminated sites, where they occur at concentrations ranging from mg/L to even

g/L.58–61 The sample matrix, namely natural organic matter (NOM), is present in environmental water samples

in the low mg/L range and thus in lower or equal concentrations than the volatile contaminants. In contrast,

pesticides and pharmaceuticals usually occur at a ng/L to µg/L range and thus at 103 to 106 lower concentrations

than NOM.62 (ii) Separating volatile compounds from other matrix components is straightforward using the

Purge and Trap (P&T) technique. In P&T, volatile compounds are purged from the sample by a gas stream

and then concentrated in a trap, while matrix interferences are left behind.2,63, 64 To measure non-volatile

compounds using GC-IRMS, they are extracted from the environmental sample using, for example, solid-

phase extraction (SPE).50,65, 66 Their low natural abundance, in combination with the method detection limits

(MQL) of carbon CSIA on GC-IRMS (≥ 0.8 nmol C on column), make the extraction of several liters of water

necessary.2,37, 62, 67, 68 High amounts of NOM are potentially co-extracted and must be removed using further

purification steps.50,69

1.2.2 Case Study 2: Tediousness of Sample Preparation for Non-Volatile Compounds

In the recent two decades, sample preparation strategies were developed to purify extracts containing high

amounts of matrix in several fields of CSIA. Various purification techniques are utilized in these strate-

gies, ranging from liquid-liquid extraction (LLE)26,28, 70, 71 to several types of chromatography, including

size-exclusion,72 silica gel,73,74 ion-exchange chromatography,70 or the most commonly used reversed-phase

(RP) high-performance liquid chromatography (HPLC).28,66, 68, 75–79 Frequently, the high amount of matrix

co-extracted during the sample extraction (see Figure 1.2, light blue) in combination with the heterogeneity of

the sample matrix — NOM consists, for example, of thousands of different organic compounds80 — renders

the separation of the target analyte and matrix interferences challenging using only one purification step (see

purification steps in brown colors in Figure 1.2). In doping analysis, eight steps, including two HPLC clean-up

steps, are used to extract steroids from urine, to purify the extract, derivatize the steroids, and accurately measure

them using GC-IRMS.28 The required time to process one sample for the final isotope measurement using this

eight-step procedure can be up to two days, which shows how time- and labor-intensive the sample preparation
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of non-volatile compounds for CSIA can be.28,81 On the contrary, the sample purification of volatile compounds

using P&T hyphenated to GC-IRMS is a fast, wholly automated one-step process (see Figure 1.2, chlorinated

solvents (water)).2,60, 63, 64 Furthermore, it is not only the sample preparation that is time-consuming but also

the development of a tailor-made multi-step solution as used in doping analysis.

To reduce the time of both sample preparation and method development and enable field measurements

of non-volatile compounds present in the sample matrix in low concentrations, optimized, highly selective

purification steps are warranted to reduce the overall number of purification steps. In recent years, efforts have

been put into optimizing the selectivity of each sample preparation step. For instance, Glöckler et al.50 optimized

the initial extraction of aquatic micropollutants. Using cyclodextrin polymers as selective SPE sorbent instead

of commercially available sorbents (i.e., Oasis HLB), it was possible to reduce the amount of co-extracted NOM

by a factor of 7.5, which reduced GC-IRMS backgrounds significantly.50,82, 83 Other works investigated new

selective materials to enhance the selectivity of purification steps of the sample extract, using, for example,

molecularly imprinted polymers (MIPs)49,56 or immunoaffinity sorbents.81 Using these optimized procedures,

it was possible to extend the applicability of CSIA to micropollutants in the environment present in the high ng/L

to low µg/L range. To enable CSIA of real-world samples for compounds present at even lower concentrations

(low to mid ng/L range) or present in samples containing higher amounts of the matrix (i.e., wastewater, food,

biological samples), additional optimization approaches of sample purification for target analytes are warranted.

To fill this gap, novel strategies to optimize the selectivity of sample purification for CSIA are outlined in the

following chapters.

1.3 Strategies to Optimize Matrix Removal During CSIA Sample Preparation

1.3.1 Influence of Charge on Non-Specific Sorption of Matrix During MISPE

One strategy to optimize the selectivity of CSIA sample preparation and thus reduce the number of steps

needed to purify the sample for accurate isotope measurements is to use a highly selective sorbent like MIPs.

MIPs possess specific recognition sites that can extract target molecules in a very selective way.84–90 These

recognition sites are tailored to the analyte of choice during the synthesis, where a three-dimensional polymer

network is created around them or a similar molecule. In this way, a cavity that has complementary shape,

size, and chemical binding sites to the analyte is produced.88–92 While MIPs are frequently used in, for

example, chromatographic separation,93–95 as (bio)sensors,96–98 or in drug delivery,99–101 only recently they

have been utilized in CSIA sample preparation for the first time.49,56 Bakkour et al.49,56 developed successful

sample preparation strategies for CSIA for three classes of compounds involving MIPs, namely benzotriazoles,

triazines, and glyphosate, demonstrated their purification power with significantly reduced backgrounds in GC-

IRMS chromatograms and matrix to analyte ratios before and after the purification, and outlined strategies to
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assess and circumvent challenges of MIPs for CSIA regarding potential isotope fractionation or the inherent low

capacity of MIPs.

Even though MIPs are a powerful purification tool, they potentially co-extract matrix components due to

non-specific binding of matrix components on theMIP polymer.102,103 Assessing and reducing this non-specific

binding is crucial to maximize matrix removal during MIP purification steps for CSIA. While there is much

literature available on reducing non-specific binding by optimizing the MIP synthesis, including functional

monomers, reaction conditions, and treatments to block the accessibility of functional groups on the MIP

surface or optimizing molecularly imprinted solid phase extraction (MISPE) procedures, to date the underlaying

processes that govern the non-specific sorption of the matrix are not studied systematically but rather on a

case by case basis.90,91, 104–107 Despite its importance for the sorption of matrices,80,108,109 little is known, for

example, about the role of charge on non-specific binding of the sample matrix during molecularly imprinted

solid phase extraction (MISPE). However, improving our understanding of these underlying mechanisms has

the potential to help reduce non-specific binding in the future and thus significantly increase matrix removal

during MISPE before CSIA.

1.3.2 Improving Chromatographic Purification by Monitoring both the Target and the

Matrix

While MIPs are a promising novel strategy to remove matrix components selectively during CSIA sample

preparation, the most often used strategy for this purpose is RP HPLC.28,66, 68, 75–79 RP HPLC is a versatile and

powerful purification technique suitable for a wide range of analytes.110–113 While the RP HPLC purification

is fully automated, the method development of the purification of analytes present in organic extracts is often

tedious and challenging. This is the case since there is no straightforward way tomonitor and quantify the sample

matrix online during RP HPLC. Monitoring both the target analytes and the sample matrix online is, however,

necessary to optimize their respective separation during the HPLC purification optimally and efficiently and

to thus use the full potential of the purification power of RP HPLC for CSIA sample preparation. For the

online monitoring of organic target analytes, detectors commonly hyphenated with HPLC, like UV-Visible

spectrometry (UV/Vis), fluorescence spectrometry, or MS, can be used. In contrast, these detectors can not

be used for the online quantification of the sample matrix. UV/Vis, fluorescence, or MS can only measure

certain fractions of the matrix that are either chromophoric, fluorescent, or ionizable.114,115 Other detectors that

are considered to be semi-universal, like (i) the total organic carbon (TOC) analyzer, (ii) the charged aerosol

detector (CAD), or (iii) the evaporative light-scattering detector (ELSD), have other shortcomings: (i) The

TOC analyzer can only measure the carbon content of compounds that are soluble in water.114,115 (ii) + (iii)

The ELSD and the CAD detector can measure all non-volatile compounds but show inter-compound response

differences (ELSD: deviations higher than 50%, CAD: up to 11%), thus prohibiting the quantification of the
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sample matrix during RP HPLC.116–118 There is thus a need for a novel detection technique that can be coupled

to RP HPLC and can quantify the entirety of the sample matrix online during chromatographic purification in a

robust way. Such a detector would enable the optimization of the separation of the target analyte and the sample

matrix during the HPLC purification and, thus, improve the selectivity of the respective purification step.

1.3.3 Strategies for Quantifying Complex Organic Matrices During Liquid Chromatography

using Quartz Crystal Microbalance

Quartz Crystal Microbalance: Theoretical Background

The most straightforward way to measure the mass of the matrix online during a chromatographic run is by

using a detector that can measure mass directly and does not rely on other principles such as absorption or

ionization, which can vary from compound to compound. Since the mass measurement should be at the same

time as sensitive as possible, the quartz crystal microbalance (QCM) holds potential as a promising detector

with its sub-nanogram resolution.119,120 The QCM is a resonator consisting of a quartz crystal, which can

be excited electrically to resonate acoustically due to its piezoelectric nature.119,120 For QCM measurements,

AT-cut crystals that vibrate in the thickness-shear mode are used.119,120 When the acoustic wave produced by the

excited crystal is in resonance, the deformation is a standing wave with the crystal surface at the antinodes.119,120

This standing wave can be described using Eq. 1.1.

𝑓 r =
𝑐q

𝜆
=

𝑐q

2𝑑
(1.1)

Here, fr is the resonance frequency of the vibrating crystal, cq is the speed of sound in quartz, and 𝜆 the

wavelength of the sound.120 Since 𝜆 is two times the crystal thickness d, fn is inversely proportional to the

crystal thickness. If mass is deposited on the sensor crystal in the form of a rigid film — a very thin film where

the acoustic wave propagates through without energy loss —, the acoustic thickness increases and can now be

described by Eq. 1.2, where dq is the original thickness of the quartz crystal and df the film thickness.120

𝑓 r =
𝑐q

2𝑑
=

𝑐q

2(𝑑q + 𝑑f)
(1.2)

From this equation, one can derive the Sauerbrey equation (see Eq. 1.3, see Johannsmann et al.120 for the

exact mathematical steps), which can be used to calculate the deposited mass on the sensor crystal.121

Δ𝑚 = −
𝐴
√
𝜌q𝜇q

2 𝑓 02
Δ 𝑓

𝑛
(1.3)

Here, the mass change Δm is calculated using the active area of the sensor crystal (A), the density (𝜌q),

the fundamental frequency (f0, e.g., 5 MHz) and the shear modulus (𝜇q) of the quartz crystal, Δf, which is the
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resonance frequency change, and the overtone order (odd) of the standing wave n. All constants (𝜌q, f0, 𝜇q)

can be summarized using the mass sensitivity coefficient C (see Eq. 1.4), which is 17.7 ng/(cm2Hz) for 5 MHz

quartz crystals and 4.42 ng/(cm2Hz) for 10 MHz quartz crystals.120

Δ𝑚

𝐴
= −𝐶Δ 𝑓

𝑛
(1.4)

Since shear waves decay rapidly in gas and liquid media and since, for the Sauerbrey equation, the deposited

mass layer must be rigid, and the deposited mass small in comparison to the mass of the sensor, next to the

frequency, the overall energy loss is usually measured.119,120 Information about the energy loss can be gained

from measuring the dissipation (D), which is the sum of all energy losses, or the bandwidth of the resonance

(Γ), which is proportional to the dissipation (see Eq. 1.5).120

ΔΓ =
𝑓 0
2
Δ𝐷 (1.5)

The Sauerbrey equation can only be used to measure mass changes if the shift in the bandwidth is much

smaller than the frequency change (see Eq. 1.6).119,120

|ΔΓ | << |Δ 𝑓 | (1.6)

If Eq. 1.6 is not valid, viscoelastic modelling can be used, which necessitates the measurement of several

overtones.119,120,122

Quartz Crystal Microbalance: Different Interfaces for Different Measurements

Depending on the exact interface used, different parameters for the energy loss are measured, and information

is gained to interpret the QCM measurement. There are three different ways to perform QCM measurements to

get a resonance frequency and an output parameter for the energy loss, namely using (i) an oscillator circuit, (ii)

impedance analysis, or (iii) the ring-downmethod. In this thesis, a QCMwith resistance measurement (QCM-R)

based on (i) and a QCM with dissipation monitoring (QCM-D) based on (iii) are used. One requirement for

all measurement approaches is that the quartz crystal is coated with electrodes made frequently of gold. (i) A

simplified model (Butterworth-van Dyke electrical model) of the oscillator circuit can be seen in Figure 1.3a,

where Rm is a resistor, Cm a capacitor, Lm an inductor, C0 the parasitic capacitance, AMP an amplifier, and RL a

load resistor. For amore detailed illustration of the oscillator circuit, see Arnau et al.123 For sensing applications,

a frequency counter must be added to the oscillator circuit. While this technique is the cheapest of the three, it

has several disadvantages: The bandwidth can only be measured indirectly using the motional resistance, which

prevents an absolute quantification of energy losses and allows only the acquisition of relative data. Further, it is

not well suited for liquid sensing since only one harmonic is measured, and thus, data interpretation is severely
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Figure 1.3 (a) QCM-R: Simplified oscillator circuit model, where Rm is a resistor, Cm a capacitor, Lm an inductor, C0 the
parasitic capacitance, AMP an amplifier, and RL a load resistor. In this thesis, a QCM-R is used for dry-mass sensing.
(b) QCM-I: Frequency and bandwidth are determined using the resonator‘s electrical impedance, which is acquired by
measuring different frequencies near resonance. (c) QCM-D: Ring-down method, where the frequency and the dissipation
are determined by intermittently switching the driving voltage on and off using the decay of the oscillation and the generated
voltage during the decay. In this thesis, a QCM-D is used for liquid sensing. The scheme is adapted from Ref.119,120
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limited. In contrast, due to its superior measurement stability, the oscillating circuit approach is the method

of choice for gravimetric sensing in air on one overtone.120,124 (ii) In the impedance analysis, the frequency

and the bandwidth are determined using the resonator‘s electrical impedance, which is acquired by measuring

different frequencies near resonance (see Figure 1.3b).123 Impedance analysis is especially suited for complex

experimental setups since measurement interferences can be identified using the impedance curve.120 (iii) In

the ring-down method, the frequency and the bandwidth are determined by intermittently switching the driving

voltage on and off. The oscillation of the quartz crystal decays while the driving voltage is off (see Figure 1.3c),

and another voltage is generated due to the piezoelectric nature of the quartz crystal, which can be measured

and transferred into the frequency and the dissipation, which is equivalent to the bandwidth.119,125 In this

way, several overtones can be measured quickly, enabling viscoelastic modeling and thus the measurement and

interpretation of complex samples in vacuum, air and liquid media.120,125

Using these different measurement techniques, the QCM has been used in the last decades for various

applications, including the sensing of small molecules, proteins, bacteria, or lipids in both gas and liquid phases,

the investigation of the formation or deposition of membranes, polymer films, and other composites like MOFs,

and the behavior of films under different conditions.122,126–130 Two different strategies could enable the QCM

to monitor matrix compounds online during the RP HPLC purification of an organic extract prior to GC-IRMS.

Firstly, a part of the HPLC eluate could be passed over the QCM sensor coated with a polymer, on which the

matrix can sorb to. Secondly, a rigid film could be produced by spraying a part of the HPLC eluate onto the

QCM sensor and immediately evaporating the solvents using a gas stream to enable dry-mass sensing in the

gas phase. Both strategies could enable the quantification of matrix substances in the HPLC eluate at each time

point of the measurement. They, including potential challenges, research gaps, and ways to overcome them, are

discussed in detail in the following sections of this chapter.

Strategy 1: Liquid Sensing Using a Polymer Coated QCM Sensor

The first strategy is based on QCM liquid sensing, which is one of the most frequently used techniques to

study interactions between compounds in a liquid phase and materials coated on the QCM sensor.122,126–130

Here, the QCM crystal is fully immersed in a liquid media, which is passed over it. The sorption of different

types of analytes onto the QCM crystal, or most of the time onto a crystal coating, can be measured using

the frequency change during the sorption process. Thus, the concentration of analyte in a solution can

be determined. Different QCM sensor coatings are produced and studied for each analyte to observe the

interactions during the sorption procedure. For NOM, a variety of model coatings were already investigated,

including silica,131 polystyrene,131 aluminum oxide,131–135 iron oxide,131 hydroxyapatite,131 poly(vinylidene)

fluoride,136 positively charged polyelectrolyte layer,137–142 and self-assembled monolayers.143,144 Even if many

insights were gained using these model sorbents regarding the sorption behavior of NOM, they can not be used
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for the quantification of the entirety of NOM during liquid chromatography, since (i) only certain fractions of

NOM sorb onto these coatings (i.e., charged fractions)131–135 and since (ii) the capacity of the different coatings

is minimal.131,134,136,143 To use liquid sensing for real-time quantification of matrices like NOM during an

HPLC purification of a formerly extracted sample, a new sensor coating that can extract all NOM compounds

present in the sample extract and has a higher capacity than available coatings must be developed. For this

purpose, it is ideal to coat the sorbent used during the original extraction of the water sample on the QCM

crystal. For the extraction of environmental water samples, frequently polystyrene-divinylbenzene (PS-DVB)-

based polymers modified with a hydrophilic monomer are used.69,145–148 Since these types of polymers are

often hyper crosslinked and possess, therefore, a high capacity,149 it seems ideal to coat a QCM sensor with a

PS-DVB-based polymer modified with a hydrophilic monomer. Such a coated sensor could be used to quantify

NOM in the liquid phase.

Strategy 2: QCM Dry Mass Sensing

The second strategy is based on QCM dry mass sensing, where the analyte-containing solution is sprayed onto

the QCM sensor. During this process, the solvent evaporates, and the non-volatile matrix substances remain on

the sensor. Their dry weight can be determined using the frequency change measured with the QCM.150–153

While liquid sensing used in strategy 1 is frequently used in the field of QCM for many different studies, QCM

dry mass sensing was introduced by Schulz and King in the 70s150 but, however, only recently developed further

and applied. In the last decade, microfluidic sprays were optimized to make dry mass sensing possible by

Müller et al.151 and Kartanas et al..152 This development, together with technical advancement on the QCM,120

made the first application of dry mass sensing possible. Kartanas et al.153 coupled a QCM with the help of a

microfluidic spray-dryer with aquatic size-exclusion LC for the separation and detection of proteins. While this

system seems to be ideal for online monitoring of matrix compounds during HPLC purification prior to CSIA,

several development steps need to be taken, and challenges need to be overcome: First, till now, QCM dry mass

sensing has been used only for aquatic LC. For the purification of micropollutants for CSIA, RP gradient HPLC

is necessary. Therefore, investigations must be conducted on how organic solvent gradients affect the spraying

and measuring process. Secondly, while the system could successfully quantify proteins, it was never used for a

mixture as complex as an environmental extract. Hence, the suitability of this measurement approach for such

samples needs to be fully validated. Thirdly, a strategy for calibrating, processing, and evaluating the data needs

to be developed.
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1.4 Objectives and Approach

The overall goal of this work was to develop novel strategies to optimize the selectivity of sample purification

for CSIA. This thesis specifically focused on MISPE, a promising purification strategy only recently applied to

CSIA, and RP HPLC, the most frequently used purification strategy for CSIA.

Chapter 2, entitled Influence of the Anionic Character of Natural Organic Matter on Sorption on Molecularly

Imprinted Polymers, investigates the influence of the anionic character of NOMon non-specific sorption of NOM

duringMISPE. To this end, (i) acidic NOM groups were methylated using trimethylsilyl diazomethane (TMSD),

(ii) the change in the charge density ofNOMwas assessed, and (iii) the different behavior ofNOMandmethylated

NOM determined during MISPE by constructing MIP breakthrough curves.

Chapters 3-5 systematically explore the feasibility of QCM liquid sensing and QCM dry mass sensing for

online matrix quantification during RP HPLC, with the ultimate goal of using such a detector to optimize

the separation of the target analyte and the sample matrix during the respective purification to improve the

selectivity of the RP HPLC purification prior to CSIA. Chapter 3, entitled Application and Preparation of

Hydrophilic-Lipophilic Balance-Type Polymers Grafted on Quartz Crystal Microbalance Sensors, focuses on

developing a procedure to coat a QCM sensor with a hypercrosslinked DVB-based copolymer using ethylene

glycol dimethacrylate (EGDMA) as a hydrophilic modifier to enable QCM liquid sensing of NOM. The chemical

composition, thickness, and surface coverage of the coating were characterized using Fourier-transform infrared

(FTIR), Raman spectroscopy, scanning electron microscopy imaging (SEM), and energy dispersive X-ray

mapping (EDX). The interaction of NOM with the novel QCM coating was investigated using flow-based

sorption experiments.

Chapters 4 and 5 explore the feasibility of coupling QCM dry mass sensing with RP HPLC for online

quantification of organic matrix components during the respective chromatographic gradient purification. To

this end, chapter 4, entitled Quartz Crystal Microbalance as Holistic Detector for Quantifying Complex Organic

Matrices During Liquid Chromatography: 1. Coupling, Characterization, and Validation, lays the technical

and fundamental groundwork for the matrix online monitoring using QCM dry mass sensing during RP HPLC.

It systematically studies the connection, characterization, calibration, and validation of QCM dry mass sensing

with RP HPLC. Moreover, the lower and upper limits of quantification were determined, and the applicability

of HPLC purification of pesticides in brown rice for subsequent GC-MS residue analysis was evaluated.

Chapter 5, entitled Quartz Crystal Microbalance as Holistic Detector for Quantifying Complex Organic

Matrices During Liquid Chromatography: 2. Compound Specific Isotope Analysis, applies QCM dry mass

sensing coupled with RP HPLC to CSIA. Here, the limitations and enhancement of HPLC purification using

QCM dry mass sensing on C18 and C8 phases for single- and multiple-targets were investigated, and the impact

on accurate 13C/12C analysis of polar micropollutants present in environmental water samples explored.
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In the concluding chapter 6, the essential discoveries of this study are highlighted to form a comprehensive

conclusion. Further, unresolved aspects that beckon further exploration in future research are identified.
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2 Influence of the Anionic Character of Natural

Organic Matter on Sorption on Molecularly

Imprinted Polymers

2.1 Introduction

Organic and inorganic compounds present in real-world samples (i.e., environmental, biological) can prevent

the accurate identification and quantification of organic target analytes in trace analysis and have a negative

effect on the sensitivity of the detection.3,88, 112, 154, 155 The removal of these organic and inorganic compounds,

known as sample matrix, during sample preparation is often considered to be the bottleneck of the analytical

process.88,154,156,157 To this end, molecularly imprinted polymers (MIPs) are frequently used as tailor-made

sorbent materials to selectively extract or purify organic target analytes from the sample matrix. MIPs are

customized, synthetically producedmaterials that show a high recognition of a target analyte due to their antibody

mimicking structures.84–90 Inmolecular imprinting, a three-dimensional polymer network is polymerized around

a template molecule (i.e., the target analyte) using functional monomers and a cross-linker in the presence of

a porogen. After the polymerization, the template is removed, leaving behind a cavity with complementary

size, shape, and chemical binding sites to the template molecule, which acts with high selectivity as antibody

mimicking recognition site.88–92 In non-covalent imprinting, the recognition is driven by molecular interactions

like van-der-Waals interactions, pi-pi stacking, ionic interactions, or hydrogen bridges.84,90, 91 The exact

molecular interactions that are determinant for the recognition of a specific MIP impact the whole MIP solid

phase extraction (MISPE) procedure: After the sample loading during MISPE, non-specifically bound matrix

substances are washed off using a solvent mixture that at the same time cannot disrupt the specific analyte

binding.84,89, 90 Increasing the selectivity of the MIP by, for example, reducing the non-specific binding of

matrix compounds on the MIP and increasing their removal during the washing step is one of the current

research focuses in the field of molecular imprinting.90,91, 104–107

So far, the emphasis on enhancing selectivity by decreasing non-specific binding has been on optimizing

the MIP synthesis (i.e., polymerization conditions, the choice of functional monomers, blocking agents) or

optimizing MISPE procedure (i.e., washing solvent).90,91, 104–107 Designing a tailor-made MIP for a specific
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target analyte and optimizing its selectivity by screening these different parameters is, however, a time- and

labor-intensive procedure.89,90, 104 Therefore, gaining as much knowledge as possible on the factors governing

the sorption of the matrix onto the MIP and desorption processes during the washing step using organic solvents

is essential. While there is a lot of information available regarding the optimization of the MIP, the role of the

matrix is usually not studied systematically but rather on a case-by-case basis.90,91, 104–107 Such a systematic

study would, however, be beneficial for the understanding of sorption processes of matrices that occur in many

different applications, like the environmental matrix natural organic matter (NOM).49,56, 108, 158–160 NOM can be

found in natural water or soil, consisting of thousands of different organic compounds with acidic functionalities

like humic, fulvic, or hydrophilic acids.80,161 The abundance of acids in NOM — especially in the form of

carboxylic functional groups — leads to an anionic character due to their dissociation that is responsible for

many characteristics of NOM, such as solubility, binding sites, electrostatic attraction/repulsion, and represents

a significant factor in its sorption behavior.80,108,109,162 Despite its importance for sorption processes, no

literature is available on the role of its anionic character on the non-specific sorption on MIPs.

The overall goal of this work is to investigate the influence of the anionic character of NOM — and

particularly the role of carboxylic acids — on non-specific sorption of NOM during MISPE. To study this

influence, a masking approach using selective methylation of carboxy groups can give unique insights due to the

possibility of directly comparing the sorption of NOM and masked NOM with a different charge.163,164 To this

end, we (i) methylated acidic NOM groups using trimethylsilyl diazomethane (TMSD), (ii) assessed the change

in the charge density of NOM, and (iii) determined the different behavior of NOM and methylated NOM during

MISPE by constructing breakthrough curves using DCM as washing solvent.

2.2 Experimental

2.2.1 Chemicals and Materials

A list of purchased chemicals, materials, and solvents used in this study is provided in the supporting information

section B.1.

2.2.2 Extraction of NOM from River Water

River water samples (Wiesäckerbach, Garching, Germany, latitude 48.269009, longitude 11.667976) were

passed through glass microfiber filter membranes (1.2 µm particle retention, 47 mm diameter, Whatman, UK).

The filtrate was acidified to pH 3.0 using HCl (32%). NOM was subsequently extracted from the acidified

sample under conventional SPE conditions at 5 mL/min using Oasis HLB SPE cartridges (Waters, 500 mg, 12

cc) and an automated SPE system (Smart Prep Extractor, Horizon Technology, USA). The Oasis HLB cartridges

were dried overnight under vacuum and eluted using 5 mL of DCM containing 3% methanol. The eluates were
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combined, the solvents evaporated, and NOM was reconstituted in methanol. The dissolved NOM was filtrated

using a glass microfiber syringe filter (1.2 µm particle retention, 13 mm diameter, Whatman, UK) and stored at

-18 °C.

2.2.3 Molecular Masking of NOM - Methylation Procedure

To methylate NOM carboxy groups, 5 mL methanol were added to 1 mg extracted NOM in a Teflon beaker. 100

µL of a 2 M TMSD solution in hexane were added to the solution, which was then stirred at room temperature

for 1 h. Afterward, TMSD-hexane solution was added in increments of 100 µL every 30 min until a total

volume of 600 µL was reached. See Figure B.1 for mechanistic details of the methylation reaction. Methanol

and hexane were evaporated using a gentle stream of nitrogen at 50 °C, followed by 30 min evaporation at 105

°C to remove potential by-products.

2.2.4 Determination of Methylation Efficiency and Charge Density Change Using

Acid-Base Titration

The carboxyl and phenolic content were estimated for the extracted NOM before and after the methylating

procedure using acid-base titration according to a procedure used for samples of the International Humic

Substances Society.165,166 After organic solvents were removed from (methylated) NOM (3 mgC), 15 mL 0.1

M NaCl solution as background electrolyte was added in a Teflon beaker with 1-2 mL 0.1 M NaOH to reach

pH 10. Afterward, the pH was adjusted to 3-3.3 using 0.1 M HCl. The titration was performed at 25 °C, which

was maintained using a water bath under a nitrogen gas atmosphere. The titrant (0.1 M NaOH) was added

in increments of 15 µL using a Multipipette (E3x, Eppendorf, Germany). The pH (stable for 7s with drift of

no more than 0.01 pH units) was recorded after each titrant addition using a pH meter (Lab850, SI Analytics,

Germany). The sample was titrated from the initial pH of 3-3.3 to a final pH of 10.5. At each titration point,

the ionic strength (I) was calculated using Equation 2.1.

𝐼 =
1
2
( [𝑁𝑎+] + [𝐶𝑙-] + [𝑂𝐻-] + [𝐻+] +

∑︁
𝑖

[𝑂𝑟𝑔i
-]) (2.1)

Here, the contribution of ionized functional groups of NOM to the ionic strength, [Orgi-], was approximated

using the assumption that NOM consists of monoprotic acids. [Orgi-] during the titration can be thus calculated

using the electroneutrality Equation 2.2.

∑︁
𝑖

[𝑂𝑟𝑔i
-] = [𝑁𝑎+] − [𝐶𝑙-] − [𝑂𝐻-] + [𝐻+] (2.2)

I is, therefore, given by Equation 2.3.
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𝐼 = [𝑁𝑎+] + [𝐻+] (2.3)

[Na+] is the dilution-corrected concentration of the initial NaCl and the added NaOH. [H+] was derived from

the pH. To this end, the activity for the hydrogen ion (𝛼H+) was calculated using the Davies Equation167 with

A=0.5, B=0.30 to obtain the activity coefficient for hydrogen ion, 𝛾H (see Equations 2.4, 2.5, and 2.6).

𝑙𝑜𝑔𝛾H+ = −0.5(
√
𝐼

1 +
√
𝐼
+ 0.3𝐼) (2.4)

𝑝𝐻 = −𝑙𝑜𝑔10𝛼H+ (2.5)

𝛼H+ = 𝛾H+ [𝐻+] (2.6)

These calculations were iteratively repeated till [H+] change was smaller than 1%. The charge density (Qtot/

meq g/C) can then be calculated using the concentration (ca) and volume (va) of strong acid HCl added, the

concentration (cb) and volume (vb) of strong base NaOH added, the total volume (Vtot), and the mass of carbon

originating from NOM (mNOM) in the titration cell (see Equation 2.7).

𝑄tot =
𝑐b𝑉b − 𝑐a𝑉a + ([𝐻+] − [𝑂𝐻-])𝑉 tot

𝑚NOM
(2.7)

The carboxyl content can be estimated as the Qtot value at pH 8 and the phenolic value as two times the

change of Qtot between pH 8 and pH 10.80,166,168

2.2.5 Impact of Methylation on NOM Retention during MISPE

Cartridges filled with 1 g triazine MIPs (Affinisep) were soaked with methanol from the bottom to guarantee

a complete wetting of the MIP surface. The cartridges were sequentially conditioned with two times 5 mL

methanol, two times 5 mL methanol/ formic acid (9/1 v/v), and three times 5 mL DCM. To quantify material

bleed during MISPE, the cartridges were further washed using three times 5 mL DCM (bleed samples 1-3),

one time 10 mL MeOH (bleed sample 4), one time 5 mL methanol/ formic acid (9/1 v/v), 3 times 5 mL DCM,

3 times 5 mL DCM (bleed samples 5-7), one time 10 mL MeOH (bleed sample 8), one time 5 mL methanol/

formic acid (9/1 v/v), and 3 times 5 mL DCM. The 5 mL sample consisting of either (i) 0.5 mgC NOM, (ii) 0.5

mgC NOM that was methylated using the previously described procedure, or (iii) a control, which included no

NOM but was subjected to the same reaction conditions used for the NOM methylation, was passed over the

MIP (sample 1). The MIP was then washed using 16 times 5 mL DCM (samples 2-17) and one time 10 mL

methanol (sample 18). Afterward, the bleed sample eluates and the sample eluates were evaporated to dryness

under a gentle stream of N2 at 30 °C and reconstituted in 16 mL water using an ultrasonic lab homogenizer

(UP200St, Hielscher, Germany; 5 min, power = 190 W, puls = 100%, amplitude = 100%). The organic carbon
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Figure 2.1 Titration data for NOM (gray) and methylated NOM (blue). The charge density is shown on the y-axis. All
carboxyl groups are titrated at pH 8 (black dashed line), and all phenolic groups between pH 8 and 10 (difference between
gray and black dashed line).

content was then determined in the reconstituted sample using a TOC analyzer (TOC-L, Shimadzu, Japan)

equipped with a combustion catalytic oxidation reactor (680 °C) and a non-dispersive infrared detector.

2.3 Results and Discussion

2.3.1 Methylation Efficiency and Change in Charge Density

We assessed the change in charge density as a result of the methylation of NOM acidic groups and the overall

efficiency and selectivity of the methylation of NOM carboxy groups using an acid-base titration. To this end, we

assumed that the only two classes of proton-binding sites are phenolic and carboxylic hydroxy groups.80,166,168

We titrated extracted NOM (gray) and, after the extraction methylated NOM (blue) from an initial pH of 3-3.3 to

a final pH of 10.5 using 0.1 M NaOH, measured the pH after each 15 µL increment, and plotted the pH against

the calculated charge density Qtot (see Figure 2.1). All carboxyl groups are titrated at pH 8 (black dashed line),

and all phenolic groups between pH 8 and 10 (gray and black dashed line).

We determined a carboxyl content in the extracted NOM (gray) of 12.1 meq/gC and a phenolic content of

4.7 meq/gC. These values are in the range of values found by the international humic substance society for other

organic matter samples.165,166 We observed a significant shift of the NOM titration curve to lower Qtot values for

the methylated NOM curve (blue). While the carboxyl content dropped from 12.1 meq/gC for NOM to 0meq/gC

for methylated NOM, the phenolic content (NOM: 4.7 meq/gC, methylated NOM: 5 meq/gC) stayed constant

within our results’ uncertainty of 0.4% according to triplicate measurements (see Figure B.2). This shows that

the overall lower Qtot values originate exclusively from changes in the carboxyl content. These results prove the
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Figure 2.2 Breakthrough curves of NOM (gray) and methylated NOM (blue) on MISPE. After sample loading (green
dashed line), the MIP is washed with 80 mL DCM in 5 mL increments, followed by a 10 mL methanol elution step (black
dashed line). The percentage of DOC in each breakthrough fraction (bars, left y-axis) and the total breakthrough (dots,
right y-axis) are shown.

success of the charge density reduction by methylating all carboxy groups present in the sample. They further

confirm the selectivity of the used methylation procedure: Diazomethane methylates only carboxylic and acidic

phenolic hydroxy groups; it does not react with weakly acidic phenolic or alcoholic groups.163,169–171 The

presented methylating procedure can thus significantly change the acidity and charge of NOM in a controlled

manner.

2.3.2 Impact of Methylation on NOM Retention during MISPE

After the NOM carboxy groups were successfully methylated and the charge density significantly reduced, we

investigated how NOM (gray) and methylated NOM (blue) retention behavior differs during MISPE. MISPE

breakthrough curves (see Figure 2.2) were determined by washing the MIP after sample loading (green dashed

line) with 80 mL DCM in 5 mL increments followed by a 10 mL methanol elution step (black dashed line);

organic carbon present in the breakthrough was quantified using TOC analysis. In the case of the methylated

NOMbreakthrough curve, the control was used to subtract contaminations present in the sample originating from

the methylating procedure (see Figure B.4). A complete mass balance was determined for both breakthrough

curves (NOM: 101±4%, methylated NOM 104±4%), confirming the suitability of the approach to quantify

organic carbon in the breakthrough.

Methylated NOM (blue) shows a stronger retention to the MIP, resulting in 55%methylated NOM remaining

after the DCM washing procedure in comparison to only 43% remaining in the case of the untreated NOM (see

Figure 2.2 gray square and blue dots before black dashed line). To explain the different sorption behaviors of

methylated NOM and NOM, the (i) MIP-NOM interactions and (ii) DCM-NOM interactions play an essential
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role. (i) The initial sorption of NOM to the MIP is caused by a variety of intermolecular interactions like

hydrogen bridges, van der Waals forces, and ionic interactions.49,56, 80, 108, 109, 158–160,162,172 While the MIP has

strong hydrogen acceptor and hydrogen donor functions originating from both building blocks methacrylic acid

(MAA) and ethylene glycol dimethacrylate (EGDMA) and the possibility to accommodate negative charge with

the hydrogen donor function of MAA,89,173–175 for NOM the hydrogen accepting functions in the form of ether

and carbonyl groups dominate.80,109,176,177 Since the hydrogen accepting function of NOM is not impacted by

the methylation, the role of hydrogen bridges for the different behaviour of NOM and methylated NOM should

thus be negligible. On the other hand, the more NOM sorbs onto the MIP, the higher the charge density will

get on the surface of the MIP and thus the electrostatic repulsion that prevents more NOM to sorb.80,177–180 In

contrast, this effect is nearly wholly taken out of the picture by methylating NOM carboxy groups and reducing

thus the charge density of NOM by a factor of 3.4, which leads to more methylated NOM sorbing onto the MIP

as observed during the breakthrough curves.

(ii) The lower charge density did, however, impact not only the sorption of NOM onto the MIP but also the

total desorption and the volume of DCM necessary to wash off all elutable fractions of NOM. During the first

10 mL percolated through the MIP, 1.6 times more NOM breaks through than methylated NOM (compare to

Figure 2.2 gray and blue bars). Furthermore, while the elutable fraction of NOM broke through in the first 25

mL, it took nearly double the volume of DCM (45 mL) until the elutable fraction of methylated NOM broke

through. This observation can again be explained using the reduced charge density: The higher the charge

density, the more readily NOM will desorb and vice versa due to electrostatic repulsion.80,177–180 DCM, with

its weak hydrogen donor ability, can still interact with NOM‘s strong hydrogen acceptor functions, but it takes

a higher volume to wash off all elutable fractions, and less total methylated NOM can be washed off.181 These

results show that methylation of NOM leads to higher non-specific binding of NOM during MISPE due to the

change in charge density.

2.4 Conclusion

The current work investigates the influence of NOM’s anionic character on NOM’s non-specific sorption during

MISPE by comparing breakthrough curves of NOM and methylated NOM. We demonstrate that the charge

density of NOM can be significantly reduced by a factor of 3.4 by methylating NOM carboxy groups using

TMSD. Breakthrough curves revealed that less methylated NOM, compared to untreated NOM, could be washed

off the MIP using DCM during a MISPE procedure. This implies stronger MIP-methylated NOM interactions,

which are most likely caused by the smaller charge density of the methylated NOM and the consequently smaller

electrostatic repulsion between NOMmolecules.80,177–180 These results prove the importance of NOM’s anionic

character for the sorption on MIPs and emphasize the influence of the charge of the sample matrix on non-

specific sorption. Manipulating electrostatic repulsion between the MIP and the sample matrix, or compounds
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sorbed onto the MIP and the remaining sample matrix, could help in the future to reduce non-specific binding

and thus significantly increase matrix removal during MISPE.
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3 Application and Preparation of

Hydrophilic-Lipophilic Balance-Type Polymers

Grafted on Quartz Crystal Microbalance Sensors

3.1 Introduction

Natural organic matter (NOM), which is produced from the decomposition of animal and plant biomass, is a

key environmental aquatic component, which represents a very complex mixture of organic compounds like

humic acids, fulvic acids, or hydrophilic acids.80,161 The adsorption of NOM to surfaces and the sorption of

compounds to NOM influence the properties of (i) NOM and the respective (ii) surface or (iii) compound. (i)

The adsorption of NOM on surfaces prevents NOM degradation and alters the composition of NOM in solution

due to preferential adsorption.182–185 (ii) NOM sorption on particle surfaces affects the particle’s deposition

and coagulation behavior, while the sorption on membranes causes membrane fouling.186–190 (iii) Compounds

sorbing onto NOM often show altered properties regarding their degradation or transport behavior.191–195 Since

(i-iii) can have a significant impact on, among others, water quality, water treatment efficiency, or carbon cycling,

it is essential to get a comprehensive understanding of NOM sorption processes.131,143,185,196,197

These NOM sorption processes, together with the corresponding adlayer properties and the influence of

external factors (i.e., pH, oxidants, ionic strength), are studied using different analytical techniques, including

spectroscopic methods, chromatographic methods, batch sorption experiments, titrations, or in situ surface

techniques.114,144,198–202 Especially the quartz crystal microbalance with dissipation monitoring (QCM-D) as

an in situ surface technique led in the recent decade to essential insights into NOM sorption processes.131–144

This information can be acquired using the QCM-Ds ability to measure small mass changes on its sensor surface

as resonance frequency changes of its oscillating piezoelectric quartz crystal with a sub-nanogram resolution

in combination with information on layer viscoelasticity and thickness gained from the dissipation monitor-

ing.119,121 For the NOM sorption studies, different model sensor surfaces were used that are either commercially

available (i.e., silica, polystyrene, aluminium oxide, iron oxide, hydroxyapatite),131–135 can be produced using

spin coating (i.e., poly(vinylidene fluoride)),136 or can be made in the lab using established procedures (pos-

itively charged polyelectrolyte layer, self-assembled monolayers).137–144 While it is possible to answer many
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important questions regarding NOM sorption behavior using these few sensor coatings, many research questions

regarding interactions of NOM and sorbent materials, polymers, or membranes used, for example, during water

treatment cannot yet be investigated because of the lack of suitable novel sensor coatings.69,147,148,203,204 Such

novel sensor coatings could open up new possibilities to study the interaction of NOM with polymers used as

sorbent or membrane materials using the QCM-D.

Thin polymer layers with different compositions, surface properties, and structures can be coated on the

QCM using various polymerization techniques.205 Polymer grafting from the QCM substrate is, for example,

a controllable, versatile approach that enables the coating of a thin and dense polymer brush layer with high

stability.205,206 Grafting different polymer chains (i.e., polyvinyl, -acryl, -styrene-based) from the QCM sensor

has been achieved in the past using photo, reversible addition-fragmentation chain-transfer (RAFT) or radical

polymerization.205,207–209 One of the most frequently used polymers as sorbents for environmental applications

are polystyrene-divinylbenzene (PS-DVB)-based polymers (commercial products: i.e., Chromabond HR-P,

Isolute ENV+, or Lichrolut EN) or (PS-DVB)-based polymers modified with a hydrophilic monomer to get a

co-polymer with hydrophilic moieties (commercial products: i.e., Oasis HLB with N-vinylpyrrolidone (NVP)

as modifier).69,145–148 Establishing a grafting procedure for hypercrosslinked (PS-DVB)-based polar-modified

co-polymers would enable the study of interfacial dynamics between NOM and one of the most important

sorbent classes and could be used as a model approach for the grafting of other relevant co-polymers on a QCM

sensor.

In this work, we report for the first time a grafting approach for a hypercrosslinked DVB-based copolymer

using ethylene glycol dimethacrylate (EGDMA) as a hydrophilic modifier on a QCM sensor. (i) We charac-

terized the sensor coating regarding chemical composition using Fourier-transform infrared (FTIR) and Raman

spectroscopy. (ii) Further, we assessed the polymer distribution, the thickness, and the chemical composition

of the grafted polymer layer using scanning electron microscopy imaging (SEM) and energy dispersive X-ray

mapping (EDX). (iii) Lastly, we performed flow-based sorption experiments to evaluate the interaction between

humic acids as a proxy for NOM and the polymer coating.

3.2 Experimental

3.2.1 Chemicals and Materials

A list of purchased chemicals and materials and a description of the standard solutions and ultrapure water is

provided in the supporting information section C.1.
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Figure 3.1 Schematic representation of the modification procedure used to graft a DVB-based copolymer in a two-step
process onto a QCM sensor. Step 1: Silanization of the silica coated electrode using 𝛾-MAPS. Step 2: Hypercrosslinking
polymerization reaction using DVB, EGDMA, and AIBN as initiator.

3.2.2 Surface Modification of Quartz Crystal Microbalance Sensor

10 MHz QCM sensor crystals (Au coated with SiO2, Novaetech S.r.l., Italy) were coated with a DVB-based

copolymer in a two-step process (see Figure 3.1). The sensor crystals were immersed in the first step, the

silanization, in toluene (100 mL) using a tailor-made sensor holder (see Figure C.1). 𝛾-Methacryloxypropyl-

trimethoxysilane (𝛾-MAPS) (5.00 mL, 20.9 mmol) were added, and the solution stirred at 70 °C overnight.

Afterward, the sensor crystal was cleaned using acetone (5 mL) and water (5 mL) and then dried at 60 °C. In

the second step, the hypercrosslinking of a co-polymer, the silanized crystal in its holder is immersed in toluene

(40 mL). DVB (276 mL, 1.94 mmol, 1.0 eq.) and EGDMA (91.3 mL, 0.484 mmol, 0.25 eq.) were added.

The polymerization was initiated using 2,2’-Azobis(2-methylpropionitrile) (AIBN) (8.70 mg, 53.0 mmol). The

mixture was stirred at 60 °C overnight under an argon atmosphere. The sensor crystal was then again cleaned

using acetone (5 mL) and water (5 mL) and dried at 60 °C.

3.2.3 Surface Characterization of Quartz Crystal Microbalance Sensor

The chemical composition of the grafted co-polymer was studied using FTIR spectroscopy (FTIR spectropho-

tometer, Elmer Perkin Frontier, Germany) and Raman spectroscopy (alpha300R Confocal Raman Microscope,

WITec GmbH, Germany). The IR spectra were recorded with a resolution of 1 cm-1 in the spectral range of

4000-650 cm-1. The Raman spectra were recorded using 10 mW laser power, an integration time of 1 s, and

50 accumulations. The surface morphology and elemental composition of the coated QCM sensor were inves-

tigated using SEM (ZEISS SIGMA VP Field Emission Scanning Electron Microscope, Carl Zeiss Microscopy

GmbH, Germany) equipped with an EDX detector (EDS Quantax XFlash 6l60 Detector, Bruker Nano GmbH,

Germany).
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Figure 3.2 Schematic overview of the setup used for sorption experiments. 1: Water bottle, 2: Peristaltic Pump, 3: Sample
injector, 4: QCM

Table 3.1 Measurement parameters of sorption experiments 1 and 2.

Parameter Unit Exp. 1 Exp. 2
humic acid concentration mgC/L 4 5

injection volume µL 19 200
number of injections 15 6
mass per injection ngC 77 1000

mass injected in total ngC 1152 6000
flow rate µL/min 30 30

3.2.4 Preparation of Humic Acid Solutions

A humic acid stock solution was prepared by dissolving 50 mg in water (50 mL). The solution was filtered

through glass microfiber filter membranes (1.2 µm particle retention, 47 mm diameter, Whatman, UK) and

stored at -4 °C. Organic carbon concentrations were determined using a total organic carbon (TOC) analyzer

(TOC-L, Shimadzu, Japan) equippedwith a combustion catalytic oxidation reactor (680 °C) and a non-dispersive

infrared detector. Humic acid samples were prepared by diluting aliquots of the stock solution.

3.2.5 Sorption Experiments

Figure 3.2 shows a schematic overview of the setup used for sorption experiments. In this setup, degassed water

(1) is constantly passed over a QCM (openQCMQ-1, openQCM by Novaetech S.r.l., Italy) (4) using a peristaltic

pump (IPC 24, Ismatec, Germany) (2) with a flow rate of 30 µL/min. The instruments were connected using inert

tubes (Tygon MHSL 2001, inner diameter: 1.52 mm, wall thickness: 0.85 mm, Ismatec, Germany). Samples

were injected using an injection valve (Model 7725i, Rheodyne, USA) (3). The measurement parameters,

including injection volume, injectedmass of humic acids, and times of injections for experiment 1 and experiment

2, are shown in Table 3.1. The experiments were conducted at room temperature with temperature fluctuations

below 1 °C.
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Figure 3.3 IR spectrum of a silica QCM sensor (uncoated sensor, black) and a silica QCM sensor coated with a DVB-
EGDMA polymer (coated sensor, blue).

3.2.6 Data Evaluation

We defined the resonance frequency shift measured during the sorption experiments as the difference between

the average of 250 measured data points before and after the injection of the sample. The resonance frequency

shift was corrected using the baseline drift observed before the injection of the sample. The baseline drift was

determined using a linear regression of the weighted average of 701 data points within the moving window

(adjacent-averaging method). The code used for the data processing is shown in section C.3.

ΔΓ =
𝑓 0
2
ΔD (3.1)

The half-bandwidth at half height of a resonance (ΔΓ) is calculated using Eq. 3.1 by dividing the fundamental

resonance frequency of the oscillating quartz (f0 = 10MHz) by 2 andmultiplying it with themeasured dissipation

change (ΔD).119,120

3.3 Results and Discussion

3.3.1 Chemical Composition of the Grafted DVB-EGDMA Co-Polymer

To evaluate the success of the grafting of a DVB-based copolymer using EGDMA as a hydrophilic modifier on

a QCM sensor (Au coated with SiO2), we analyzed the chemical composition of the coated and the uncoated

sensor crystal using FTIR spectroscopy and Raman spectroscopy. The IR spectrum is shown in Figure 3.3

(blue data: coated sensor, black data: uncoated sensor), the Raman spectrum in Figure A.4.1, and the peak
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Table 3.2 IR and Raman peak assignment for grafted DVB-EGDMA copolymer.

IR Peak Raman Peak Peak Assignment210–214 Monomer Assignment
cm-1 cm-1

- 3106 𝜈(C-Haromatic) DVB
2918 2928 𝜈(C-Haliphatic) DVB, EGDMA
2851 - 𝜈(C-Haliphatic) DVB, EGDMA
1721 1714 𝜈s(C=O) EGDMA
1637 1639 𝜈(C=Caliphatic) DVB, EGDMA
- 1609 Ring skeletal stretch DVB

1454 1454 𝛿a(C-H) of 𝛼(C-H3) EGDMA
1408 1406 𝛿(C-Hvinyl), 𝛾(C-H2) DVB, EGDMA
- 1201 𝜈a(C-O-C) EGDMA
- 1013 Ring breathing mode DVB

assignment in Table 3.2. Even if the main part of the fingerprint region in the IR spectrum is overlayed by

intense peaks from the silica coating (below 1250 cm-1),215 there are several additional signals visible in the

IR spectrum of the coated sensor crystal (see Figure 3.3 blue data and Table 3.2) originating from the two

polymer building blocks DVB and EGDMA. The peaks around 2900 cm-1 can be assigned to the aliphatic

C-H vibration of DVB and EGDMA, while the pronounced peak at 1721 cm-1 likely originates from the C=O

stretching vibration of EGDMA. The stretch vibration of the methacrylate C=C double bond can be observed

at 1637 cm-1, the deformation vibration of the methyl group of EGDMA at 1454 cm-1, and the deformation

of the CH2=CH bond at 1408 cm-1.210,211,213 Raman (see Table 3.2), on the other hand, reveals additionally

the aromatic C-H vibration at 3106 cm-1, the ring skeletal stretch at 1609 cm-1, the C-O-C stretch at 1201

cm-1, and the ring breathing mode at 1013 cm-1.212,214 These additional signals on the spectrum of the coated

sensor measured with IR and Raman, two complementary techniques, prove the successful grafting of a DVB/

EGDMA copolymer onto the sensor crystal.

3.3.2 Thickness and Surface Morphology of the Grafted DVB-EGDMA Co-Polymer

We assessed the surface morphology, polymer distribution, layer thickness, and chemical composition of the

grafted DVB-EGDMA polymer layer using SEM and EDX. SEM images of the top and the side view of the

sensor crystal before and after the grafting and EDX imaging of the side view are shown in Figure 3.4. SEM

pictures of the top (Figure 3.4, a: uncoated, b: coated) and the side view (Figure 3.4, c: uncoated, d: coated)

confirm the successful grafting of a polymer on the sensor crystal. SEM picture of the top view (Figure 3.4b)

shows that the grafted polymer film is laterally heterogeneous, consisting of areas with a homogeneously grafted

polymer film and regions without any coating. This heterogeneous coverage can potentially lead to energy

dissipation during the QCM measurement.119 The side view (Figure 3.4d) also shows that the polymer layer’s

thickness varies with a maximal thickness of up to 300 nm. This film thickness lies in the optimal range since a

few hundred nanometres is the upper limit of the dynamic range in liquid applications where polymer swelling
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Figure 3.4 SEM and EDX images of the QCM sensor coated and uncoated with the DVB-EGDMA polymer. The QCM
sensor consists of a quartz crystal coated with a 200 nm thick gold coating and a 50 nm thick silicon dioxide layer. SEM
images: (a) Top view of QCM sensor, (b) top view of coated QCM sensor, (c) side view of QCM sensor, (d) side view of
coated QCM sensor. EDX images for the elements gold (Au, red), carbon (C, green), oxygen (O, dark blue), and silicon
(Si, light blue): (e) Side view of QCM sensor, (f) side view of coated QCM sensor.
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Table 3.3 Determined values for the frequency change (Δf), the dissipation change (ΔD), and the bandwidth change ΔΓ
during sorption experiment 1 and 2.

Experiment Δf ΔD ΔΓ

1 18±2 1.9±0.2 10±1
2 20±2 6.1±0.1 31±1

can occur.120,216 A lower thickness is, however, not beneficial since the capacity of the coating is dependent

on the thickness. The EDX images visualize the different layers of the sensor crystal and give information

about the elemental composition of the grafted film (see Figure 3.4). The quartz crystal (dark and light blue

for oxygen and silicon) is coated with a 200 nm thick gold coating (red) and a 50 nm thick silicon dioxide

layer. The crystal with the grafted polymer (Figure 3.4f) has an additional layer (approximately 200 nm) that

mainly consists of carbon (green) with some oxygen incorporated (dark blue), supporting the findings of FTIR

and Raman spectroscopy and confirming the incorporation of both DVB (only green signals for carbon) and

EGDMA (green and blue signals for carbon and oxygen) in the grafted polymer.

3.3.3 Interactions Between DVB-EGDMA Co-Polymer and Humic Acids during Flow-Based

Sorption Experiments Revealed by QCM-D

After characterizing the successfully grafted DVB-EGDMA co-polymer, we further assessed the interaction

between the grafted co-polymer and humic acids. To this end, we carried out two continuous flow experiments:

In the first one, we injected 1152 ngC humic acids dissolved in MilliQ distributed over 15 injections, and in

the second one, 6000 ngC dissolved humic acids distributed over 6 injections. The resonance frequency shift

during these experiments is shown in (Figure 3.5). The measurement results are summarized in Table 3.3.

Passing humic acids over the coated QCM sensor led to a significant frequency decrease (experiment 1: 18±2

Hz, experiment 2: 20±2 Hz). Injecting water on a coated sensor and humic acids on an uncoated silica sensor

led to no significant frequency shift (see Figure A.4.2), thus demonstrating that the changes in the resonance

frequency in experiment 1 and 2 are a result of the interaction between humic acids and the sensor coating.

There is no sorption on the uncoated silica sensor since the negatively charged humic acids at neutral pH are

electrostatically repulsed from the negatively charged silica surface.217 The extent of the frequency decrease due

to humic acid sorption on the coated sensor is comparable to numbers reported in the literature for the sorption

of humic acids or NOM to different model surfaces (silica: 0 Hz,131 PS: 0.1-2.4 Hz,131 aluminium oxide: 3-15

Hz,131,134 poly(vinylidene fluoride) blended with SiO2 nanoparticles: 20-35 Hz,136 alkylthiol self-assembled

monolayer: 4-14 Hz143). It has to be noted that we can compare frequency changes and cannot quantify the

absolute sorbed mass since the Sauerbrey equation cannot be used for this application. This is the case since

one requirement for the Sauerbrey equation is the small load approximation, which is only valid if ΔΓ is much

smaller than the frequency change.119,120 This approximation does not apply to our measurements since ΔΓ

is only by a factor of 2 smaller than the frequency change in experiment 1 and even bigger than the frequency



3.3 Results and Discussion

33

0 1 0 2 0 3 0 4 0 5 0 6 0
- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

A r e a = - 4 . 4 7 5 6 9 9 9 9 1 9 0 2
F W H M = 6 . 8 9 9 4 4 1 2 4 8 1 0 2

A r e a = - 5 . 4 1 8 9 4 1 8 4 0 6
F W H M = 0 . 9 4 3 2 1 6 3 2 5 1 0 1

A r e a = - 5 . 2 1 1 5 3 4 4 2 4 5 3 3
F W H M = 0 . 6 8 4 2 9 3 2 8 7 0 5

A r e a = - 6 . 7 9 5 7 2 8 1 5 5 2 4 2
F W H M = 1 . 5 6 9 4 1 9 4 3 9 3 6 2

A r e a = - 8 . 1 2 1 4 3 8 2 9 1 3 4 9
F W H M = 1 . 8 9 8 8 6 5 8 2 9 2 2 2

A r e a = - 9 . 4 8 0 3 0 7 0 6 2 1 7 7
F W H M = 0 . 7 6 6 1 7 6 3 1 9 9 8 1A r e a = - 9 . 0 9 4 8 1 7 3 9 9 2 0 4

F W H M = 3 . 0 1 5 7 5 1 2 7 7 3 0 3
A r e a = - 1 3 . 2 0 3 6 2 2 3 2 1 8 6 3
F W H M = 9 . 9 6 4 3 7 3 3 1 0 2 0 7

A r e a = - 1 2 . 0 0 9 8 8 4 9 0 4 2 0 6
F W H M = 2 . 2 4 2 3 2 8 2 9 5 6 4 3

A r e a = - 1 4 . 6 5 6 7 2 6 0 5 5 7 3 8
F W H M = 1 . 8 8 8 7 7 4 9 6 5 4 1 2

A r e a = - 1 4 . 7 5 0 7 3 9 7 4 6 0 0 9
F W H M = 5 7 . 2 7 1 1 5 6 9 5 2 3 5 8

A r e a = - 1 3 . 7 1 7 0 8 1 3 8 0 0 5 3
F W H M = 1 . 0 4 1 3 4 8 0 4 1 7 2 3

A r e a = - 1 5 . 6 1 9 4 5 7 8 3 5 7
F W H M = 4 . 9 9 2 5 5 9 3 1 4 4 3 6

A r e a = - 2 . 2 6 5 6 2 6 7 6 7 5 4 4
F W H M = 0 . 3 0 8 2 1 0 5 0 3 6 4 2

A r e a = - 1 0 . 4 2 1 8 2 0 3 1 1 0 5 4
F W H M = 6 . 2 8 7 4 2 8 1 9 3 4 6 1

0 5 0 1 5 0 2 0 0 2 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

t /  m i n

��

�

�
�

�
�

�
�

��



�
�

	
�

��
�

��
��

�

E x p .  1

E x p .  2
K e i n e  D a t e n  a u s g e w ä h l t

K e i n e  D a t e n  a u s g e w ä h l t
K e i n e  D a t e n  a u s g e w ä h l t

K e i n e  D a t e n  a u s g e w ä h l t
K e i n e  D a t e n  a u s g e w ä h l t

K e i n e  D a t e n  a u s g e w ä h l t

Figure 3.5 Frequency change (black) during humic acid sorption experiments 1 and 2 on a QCM sensor coated with the
DVB-EGDMA copolymer. Water was passed constantly over the sensor with a flow rate of 30 µL/min. Using an injection
valve, humic acid solutions were injected during the flow experiments. The brown bars visualize the time when the humic
acid solution is passed over the sensor.
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change in experiment 2. The reason for this is that — as the SEM images showed — the surface coating is

not homogeneous and not rigid, prohibiting humic acids from being sorbed and distributed evenly across the

sensor. Instead of the Sauerbrey equation, which would significantly underestimate the sorbedmass, viscoelastic

modeling has to be used. This is, however, not possible using openQCM Q-1 since only one overtone can be

measured per experimental run, while for viscoelastic modeling, at least two are necessary.119–121

The extent of sorption is not constant among the different injections for both experiments. There is a decline

of the frequency decrease visible that leads, in the case of experiment 2, to no significant frequency change after

the 4th injection. Together with the observation that the overall frequency decrease in both experiments 1 and

2 are similar — even if in experiment 2 nearly 6 times more humic acids were passed over the sensor — we

conclude that the non-linear sorption behavior is a result of reaching the capacity limits for the coated polymer.218

Experiment 2 shows further that after the initial sorption, parts of the adsorbed humic acids desorb until an

equilibrium, the capacity limit, is reached. This sorption behavior is comparable to the observations of Eita et

al.134 for the sorption of humic acids on aluminium oxide. However, rinsing the surface with excess water did

not lead to any further removal of sorbed humic acids. In a consecutive sorption experiment, we further rinsed

the sensor after humic acid sorption equilibrium was reached with three different organic solvents (acetonitrile,

isopropyl alcohol, methanol). Again, no significant frequency change could be detected (acetonitrile: +2±2

Hz, isopropyl alcohol: -2±1 Hz, methanol: +2±1 Hz). These results suggest that the fraction of humic acids

sorbing to the grafted DVB-EGDMA co-polymer forms a very stable adlayer.131

3.4 Conclusion

The current work presents the grafting of a DVB-EGDMA co-polymer onto a QCM sensor using radical

polymerization. FTIR and Raman spectroscopy confirmed the successful incorporation of DVB and EGDMA

into the polymer. SEM and EDX measurements showed that the polymer is coated laterally heterogeneous on

the sensor chip. These techniques further revealed that the polymer layer is 200-300 nm thick and thus inside the

dynamic range of QCM measurements.120,216 The demonstrated polymerization and characterization strategy

can be used as a model to graft other (DVB-based) co-polymers onto QCM sensors. We observed humic acid

sorption during two flow experiments, leading to a significant frequency decrease of 18-20 Hz. This decrease is

on the higher end compared to frequency changes measured during the sorption of humic acids to other model

surfaces— especially considering the lateral heterogeneity of the coating. The stability of the adlayer formation

further proves the strong interactions between the DVB-EGDMA co-polymer coating and humic acids — and

prohibits, at the same time, regeneration of the sensor with common organic solvents. Future research can

build upon our findings and optimize the presented polymerization strategy to enable the coating of a more

homogeneous polymer layer to study NOM sorption processes using the QCM.
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4 Quartz Crystal Microbalance as Holistic Detector

for Quantifying Complex Organic Matrices During

Liquid Chromatography: 1. Coupling,

Characterization, and Validation

Abstract

Matrix in highly complex samples can cause adverse effects on trace analysis of targeted organic compounds.

A suitable separation of target analyte(s) and matrix before the instrumental analysis is often a vital step

for which chromatographic clean-up methods remain one of the most frequently used strategies, particularly

high-performance liquid chromatography (HPLC). The lack of a simple real-time detection technique that can

quantify the entirety of the matrix during this step renders optimization of the clean-up challenging. This paper,

along with a companion one, explore the possibilities and limitations of quartz crystal microbalance (QCM) dry

mass sensing for quantifying complex organic matrices during gradient HPLC. To this end, this work coupled

a QCM and a microfluidic spray-dryer with a commercial HPLC system using a flow splitter and developed

a calibration and data processing strategy. The system was characterized in terms of quantification limits,

accuracy, and applicability for subsequent pesticide residue analysis in food using gas chromatography-mass

spectrometry (GC-MS). Validation of natural organic matter in an environmental sample against offline total

organic carbon analysis confirmed the approach’s feasibility with an absolute recovery of 103±10%. We found

a correlation (R2 ≥ 95) between the amount of matrix quantified by QCM dry mass sensing during an HPLC

clean-up of a brown rice extract and matrix effects measured during the subsequent GC-MS analysis of the

investigated pesticides. This suggests that QCM dry mass sensing can be a valuable tool to the analyst where

HPLC clean-up is routinely performed and can thus benefit many analytical fields.
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4.1 Introduction

A challenge in trace analysis of targeted organic compounds are highly complex samples, such as environmen-

tal,3,112 biological,219,220 or food samples.154,157,221 This is the case because abundant organic and inorganic

constituents of the complex sample, other than the target analyte(s) and also known as matrix, can have a variety

of adverse effects on the analytical mode of detection. These adverse effects include increased detection noise,

higher detection limits, obscured peaks, false positive signals/ results, signal suppression (negative matrix

effect), or signal enhancement (positive matrix effect).154,155 Despite many instrumental developments that

improved the overall detection or the separation of the sample matrix and target analytes, e.g., high-resolution

mass spectrometry or multi-dimensional hyphenated chromatography, there are still limitations in trace analysis

of targeted organic compounds due to the sample matrix.154,157,222 A suitable sample preparation before the

instrumental analysis is often a vital key to the reduction of matrix-related adverse effects.154,156,157

An efficient separation of the matrix constituents from the target analyte(s) is usually the focus of such

sample preparation procedures for which chromatographic clean-up methods remain one of the most often used

strategies, particularly high-performance liquid chromatography (HPLC). As a stand-alone purification system

or directly coupled to a detector, HPLC cleanup finds many applications mainly due to the wide variety of

available column materials and modes (e.g., reversed phase (RP)),110,111 as well as the possibility to optimize

purification using an unlimited combination of solvents.110–112 In addition to the easy automation of the sample

clean-up, which increases reliability and accuracy,223–225 the possibility to pack columns with highly selective

materials226,227 makes the sample preparation tunable to any target analyte of interest. Yet, the HPLC method

development becomes tedious and challenging when the matrix is a complex mixture that cannot be quantified

with straightforward measures. In fact, an optimal and efficient optimization of the HPLC clean-up warrants a

simultaneous online quantification of both the target analyte(s) and the interfering matrix.

While there are numerous detectors for organic target analytes (UV-Visible spectrometry (UV/Vis), mass

spectrometry (MS)), they cannot be directly used for the online quantification of organic matrices. This is

because the matrix composition is often very heterogeneous and complex. Natural organic matter (NOM)

consists, for example, of thousands of different compounds with a wide variety of physicochemical properties,

while food matrices are a complex mixture of different fatty acids, proteins, carbohydrates, vitamins, and many

more compounds.80,228 Also, most instruments typically used to quantify analytes can only monitor certain

matrix fractions (e.g., chromophoric or ionizable).114,115 Semi-universal sensors like the total organic carbon

(TOC) analyzer, the charged aerosol detector (CAD), or the evaporative light-scattering detector (ELSD) are

limited by their inter-compound response differences (TOC: solubility in H2O, only carbon content is measured;

CAD: up to 11% relative standard deviation for different compounds, ELSD: relative standard deviations higher

than 50% are reported),115–118 which play an important role if not just one compound but the sample matrix

should be quantified. A robust, simple, and inexpensive detection technique capable of quantifying the entirety
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of the matrix online during a gradient HPLC purification would help improve the selectivity of the respective

separation process in a straightforward approach.

One promising detector that could be used for this purpose is the quartz crystal microbalance (QCM). The

QCMmeasures small mass changes with a sub-nanogram resolution on the surface of its oscillating piezoelectric

quartz crystal by measuring changes in the oscillating resonance frequency as a function of deposited mass on

its surface.119,121 Several studies showed how the QCM can be used to measure the sorption of the matrix

NOM directly in a solution or the adsorption of dissolved compounds onto NOM and get thus insights into

adsorption, adlayer formation, and interfacial dynamics of this matrix.131–144 NOM real-time quantification

directly in liquid phase is, however, challenging to achieve due to (i) the limited capacity of available sensor

surface coatings,131 (ii) the dependency of the sorption behavior on the type or fraction of NOM,132,143 the

pH,132,134 and the continuous desorption,134 (iii) the often slow deposition rate,131 (iv) and other known

challenges of liquid-based QCM measurements (e.g., viscous damping).119,151 The challenges of liquid-based

QCM measurements can, however, be overcome using QCM dry mass sensing introduced in the 70s by Schulz

et al.150 Technical advancement on the QCM and substantial optimization measures in the last decade make

dry mass sensing seem to be an ideal solution for a robust and inexpensive strategy to monitor and quantify the

entire matrix.120,151–153 In QCM dry mass sensing, a small fraction of the HPLC column effluent is diverted

and nebulized into micron-sized droplets using a microfluidic spray nozzle and sprayed onto the QCM sensor.

The nebulized solvent evaporates, while non-volatile components are deposited evenly on the QCM sensor,

which can be quantified using the direct correlation between frequency change and mass.151–153 Kartanas et

al.153 showed how this QCM dry-mass sensing could be used in combination with aquatic size-exclusion LC

to separate and detect different proteins. It has, however, never been explored for a mixture as complex as an

environmental extract or a food matrix. Moreover, the transition from aquatic to RP gradient elution is expected

to cause variations in QCM response as a result of changing fluid dynamics and evaporation rates. To this end,

comprehensive characterization and validation of such a system is warranted to deal with organic solvents along

with the development of a suitable calibration strategy.

The work presented in this and the companion paper229 has the overall goal of exploring the feasibility of

coupling a commercial HPLC with a microfluidic spray-dryer and a QCM for online monitoring of organic

matrix components during RP HPLC gradient purification for different mass spectrometry-based applications

in environmental and food sciences. Both studies focus on organic matrices in already extracted samples

where most inorganic salts are excluded through a first solid-phase extraction step. The specific objectives

of this paper were to (i) connect, characterize, and calibrate a microfluidic spray-dryer with RP HPLC using

an adjustable post-column flow splitter, (ii) define the lower and upper limits of quantification for QCM dry

mass sensing, and (iii) validate the online approach against offline TOC fraction analysis of NOM. Lastly, we

(iv) illustrate its applicability and analytical implications for the analysis of pesticides in brown rice through
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Figure 4.1 Schematic overview of the coupled HPLC-QCM system. 1: HPLC grade solvents, 2: Binary HPLC pump,
3: Sample injector/autosampler, 4: Chromatographic column; 5: DAD detector, 6: Fraction collector, 7: Post-column
adjustable flow splitter, 8: Microfluidic spray-dryer, a: connection to liquid channel, b: connection to gas channel, 9:
QCM sensor.

qualitative assessment during separation of matrix compared with UV/Vis, and quantification of matrix effects

in subsequent gas chromatography (GC)-MS analysis, respectively.

4.2 Experimental Section

4.2.1 Chemicals and Materials

A description of purchased chemicals, materials, as well as standard solutions used in this study are provided in

the supporting information (section D.1).

4.2.2 Instrumental Setup of QCM Dry Mass Sensing

Coupling of QCM Dry Mass Sensing with RP HPLC using a Flow Splitter

An HPLC system, Figure 4.1 (parts 1-6), was coupled through an adjustable flow splitter, Figure 4.1 (7), to

QCM dry mass sensing, Figure 4.1 (8-9). Chromatography was performed on a Nexera XR HPLC system

(Shimadzu, Japan) equipped with a solvent delivery module (LC-20AD, Shimadzu, Japan) (2), an RP column

(4) (XTerra RP18 Column, length: 150 mm, diameter: 3.0 mm, particle size: 3.5 µm, Waters, USA), a diode

array detector (DAD) (5) (SPD-M20A, Shimadzu, Japan), and a fraction collector (6) (FRC-10A, Shimadzu,

Japan). A flow rate of 0.5 mL/min, a sample injection volume of 200 µL (3), and a column oven temperature

of 40 °C were used for all HPLC measurements. Binary phase gradients with H2O (A) and 90% CH3OH 10%

H2O (B) were used as eluents (1).

The column effluent is split after the DAD using an analytical post-column adjustable flow splitter (7) (ASI

610-PO10-01, Analytical Scientific Instruments, USA, 50:1 to 1000:1 Split Ratio). Vernier scale settings were

set to 65 unless otherwise stated. The high-flow port was connected with the fraction collector and the low flow

port with a microfluidic spray-dryer (8) using polytetrafluorethylene (PTFE) tubing. The low-flow port was

connected with the liquid channel of the spray-dryer via PTFE tubes (a) (tube 1: outer diameter 1/16 inch, inner

diameter 0.010 inch; tube 2: outer diameter 1/32 inch, inner diameter 1/75 inch) that were connected through an
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adapter (1/16 inch to 1/32 inch, PEEK, IDEX Health and Science) to meet the requirements of both the splitter

and the spray-dryer.

We fabricated themicrofluidic spray-dryer (8) in-house using an optimized protocol (details in sectionD.1) of

a previously published standard polydimethylsiloxane (PDMS) soft-lithography approach.152 The microfluidic

spray-dryer had two inlets, one connected to a nitrogen supply (b) set to 3 bar and another to the low-flow port

of the flow splitter (a). The liquid channel had a length of 8.1 mm and a cross-section of 25 times 20 µm2, the

gas channels had a length of 8.4 mm and a cross-section of 100 times 70 µm2. The mobile phase was sprayed

onto the frequency counter QCM200 from Stanford Research Systems (USA) equipped with a 5 MHz QCM

crystal (9) (Stanford Research Systems 100RX1, Cr/Au, USA); a gate time of 0.1 s was used. To this end, the

spray-dryer was centered 3.5 cm above the QCM.

Determination of Split Ratios

Split ratios (Rsplit) were determined for different Vernier scale settings (56, 66, 73, 79, 94, 112) for three

different CH3OH/H2Omobile phase compositions (85/15, 50/50, and 15/85 (v/v)) by spraying the mobile phase

containing 500 mg/L NaCl for 30 min into a vial. The dried salt was reconstituted in 8 mL H2O. The salt

concentration in solution was determined by measuring the salinity using a salinometer (MultiLine F/SET-3,

WTW, Germany).

𝜅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜅𝑠𝑎𝑚𝑝𝑙𝑒 − 𝜅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (4.1)

𝑐𝑠𝑎𝑚𝑝𝑙𝑒 =
𝜅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

Λ𝑁𝑎𝐶𝑙
𝑚

(4.2)

Dividing the corrected salinity (𝜅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) by the molar conductivity of NaCl (Λ𝑁𝑎𝐶𝑙
𝑚 ) results in the

concentration of the sample in the vial (𝑐𝑠𝑎𝑚𝑝𝑙𝑒) (see Eq 4.1 and 4.2).

𝑄𝑠𝑝𝑟𝑎𝑦 =
𝑚𝑠𝑎𝑚𝑝𝑙𝑒

𝑐𝑁𝑎𝐶𝑙 · 𝑡
(4.3)

The flow to the spray-dryer (𝑄𝑠𝑝𝑟𝑎𝑦) was calculated using Eq 4.3 by dividing the sprayed mass (𝑚𝑠𝑎𝑚𝑝𝑙𝑒),

calculated using 𝑐𝑠𝑎𝑚𝑝𝑙𝑒, by the sprayed time (t) and by the concentration of salt (𝐶𝑁𝑎𝐶𝑙) in the mobile phase.

𝑅𝑠𝑝𝑙𝑖𝑡 =
𝑄𝑖𝑛𝑝𝑢𝑡 −𝑄𝑠𝑝𝑟𝑎𝑦

𝑄𝑠𝑝𝑟𝑎𝑦

(4.4)

The split ratio (Rsplit) was calculated using Eq 4.4. Here, the high flow, which is the difference of the input

flow (𝑄𝑖𝑛𝑝𝑢𝑡 ) and the low flow (𝑄𝑠𝑝𝑟𝑎𝑦), is divided by the low flow.
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Measurement, Calibration and Data Processing

Prior to each sample, a blank was run on the system described in Figure 4.1 under identical conditions where

200 µL of 25/75 CH3OH/H2O (v/v) were injected instead of the sample. After the sample measurement, a

one-point calibration was performed through constant mass spraying on the sensor achieved under the same

chromatographic conditions but with the eluents containing NaCl (𝑐𝑐𝑎𝑙 = 300 mg/L). The obtained frequencies

given in Hz for each time point were translated into mass concentrations given in mg/L using Eq. 4.5, as well

as detailed in a Matlab script (see section D.8).

𝑐𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑐𝑐𝑎𝑙 ·
𝜕Δ 𝑓𝑠𝑎𝑚𝑝𝑙𝑒

𝜕𝑡
/𝜕Δ 𝑓𝑐𝑎𝑙

𝜕𝑡
(4.5)

In this procedure, the blank ( 𝑓𝑏𝑙𝑎𝑛𝑘) is subtracted from both the sample ( 𝑓𝑠𝑎𝑚𝑝𝑙𝑒) and the calibration mea-

surement ( 𝑓𝑐𝑎𝑙) to obtain corrected frequencies Δ 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 and Δ 𝑓𝑐𝑎𝑙 , respectively. Then, the 1st derivative

(𝜕Δ 𝑓𝑠𝑎𝑚𝑝𝑙𝑒/𝜕𝑡 and 𝜕Δ 𝑓𝑐𝑎𝑙/𝜕𝑡) is produced and smoothed using a Savitzky-Golay filter (polynomial order

3, 301 points). The derivatives ratio multiplied by the salt concentration for calibration (𝑐𝑐𝑎𝑙) yields mass

concentrations in the sample (𝑐𝑠𝑎𝑚𝑝𝑙𝑒).

Determination of Lower and Upper Limits of Detection and Quantification

The limits of detection (LOD) and limits of quantification (LOQ) of the system were determined for three

different CH3OH/H2O mobile phase compositions (85/15, 50/50, and 15/85 (v/v)) according to the calibration

method (DIN 32645).230 To this end, we sprayed the mobile phase containing NaCl in different concentrations

(0, 30, 60, 90, 120, 150, and 180 mg/L) for 10 minutes onto the QCM. The average slope of quadruplicates of

the frequency decrease was used for the signal intensity.

For the determination of the upper limit of the system for the three different mobile phase compositions, the

mobile phase containing 500 mg/L NaCl was sprayed onto the QCM in triplicates. The upper limit was then

estimated by calculating the amount of salt being sprayed till the resistance was by a factor of three higher than

the starting resistance (12-17 ohm). This value was then converted into a maximal concentration for a 10 minute

measurement.

Validation of QCM Dry Mass Sensing Approach

We compared dry-mass sensing with TOC analysis to validate our measurement approach. The elution of 1.65

mg NOM during a typical HPLC gradient (see Table A.4.2) was monitored and quantified online using QCM

dry mass sensing and offline using TOC analysis. To this end, fractions of the HPLC eluate were taken every 30

s using a fraction collector (6). The fractionated eluate was evaporated to dryness under a gentle stream of N2 at

30 °C and then reconstituted in 16 mL of H2O. Organic carbon concentrations in each reconstituted sample were
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determined using a TOC analyzer (TOC-L, Shimadzu, Japan) equipped with a combustion catalytic oxidation

reactor (680 °C) and a non-dispersive infrared detector to analyze the generated CO2.

4.2.3 Extraction Procedures to Isolate Environmental and Food Matrices

Extraction of Rice Matrix

Brown rice was treated using a modified version of the QuEChERS method.46,231 Frozen brown rice (500

g) was homogenized using cryogenic milling. Ten grams of the homogenized sample were weighed in a 50

mL centrifuge tube and soaked in 10 mL Milli-Q H2O for 1 h. Afterwards, 10 mL of acetonitrile were added

together with a buffer salt mixture of 4 g of magnesium sulfate anhydrous grit, 1 g of sodium chloride, 0.5 g

of disodium hydrogen citrate sesquihydrate, and 1 g of trisodium citrate dihydrate. The mixture was shaken

vigorously by hand for 1 minute and then centrifuged at 3500×g for 5 minutes. The acetonitrile phase was

collected and stored at -18 °C for further experiments.

Extraction of Riverine NOM

Samples were taken from creek Wiesäckerbach (Garching, Germany, latitude 48.269009, longitude 11.667976)

and filtered through glass microfiber filter membranes (1.2 µm particle retention, 47 mm diameter, Whatman,

UK). The filtered samples were passed over OASIS HLB cartridges under conventional solid-phase extraction

conditions (Waters, 200 mg, 6 cc) using an automated SPE system (Smart Prep Extractor, Horizon Technology,

USA) at 5 mL/min. The cartridges were subsequently dried under vacuum overnight and eluted in 5 mL of

CH3OH. The volume of combined eluates was reduced under a gentle stream of N2 at 30 °C and then stored at

-18 °C.

4.2.4 Experiments

Quantification of Brown Rice Matrix During Reversed-Phase Liquid Chromatography

Brown rice matrix collected from the acetonitrile phase was evaporated to dryness at 50 °C under a gentle

stream of N2. The dry residues (2.6 mg) were then reconstituted in 250 µL H2O/isopropanol 1/1 (v/v) and

introduced using a manual injection valve into the HPLC-QCM dry mass sensing system with a Vernier scale

setting of 65. The HPLC gradient parameters are listed in Table A.4.3. Matrix quantification data from the

QCM dry mass sensing (Figure 4.1, 8&9, low-flow port) were collected and processed after calibration with a

blank measurement constituting a QuEChERS extract in absence of rice matrix for baseline correction. Data

from the DAD detector (Figure 4.1, 5) was collected using the software LabSolutions and chromatograms were

extracted at wavelengths of 220, 254, and 310 nm. Comparison of data from QCM dry mass sensing and DAD



4.3 Results and Discussion

43

detector are plotted as intensity (mV) and mass concentration (mg/L), respectively, as a function of elution time

after correction for the dead time (2.5 min) between the DAD detector and the QCM sensor.

Quantification of Matrix Effects in Residue Analysis of Pesticides Using GC-MS

Extracted brown rice matrix was fractionated into 5 portions after HPLC. Each fraction was evaporated to

dryness under a gentle stream of N2 at 50 °C, reconstituted in CH3OH, and spiked with five different model

analytes, namely 2,6-dichlorobenzamide (BAM), atrazine (ATZ), boscalid (BOSC), desethylatrazine (DEA),

and propargite (Prop) to reach a volume of 1 mL and a pesticide concentration of 5 mg/L. The rice matrix

fractions were measured using a GC-MS consisting of an Agilent 7890A GC system (Column: RestekTM

RxiTM-5ms, 30 m, 250 µm i.d., 0.25 µm thickness, Restek Corporation, Bellefonte, USA) equipped with a

5975C Triple-Axis Detector MS from Agilent Technologies (Santa Clara, USA) and a High-Efficiency Source

(HES). Liquid samples were injected (1 µL injection volume) using a CTC Pal combi-xt autosampler (CTC

Analytics AG, Zwingen, Switzerland) with split injection mode (split-ratio 1:10) at an injection temperature

of 250 °C with an injection liner pressure of 14.86 psi. The analyte separation was accomplished at a helium

flow of 1.4 mL/min using the following temperature program of the GC oven: Starting temperature was 90 °C

(0.5 min hold time), followed by a temperature ramp of 7.5 °C/min to 224 °C, a ramp of 25 °C/min to 290 °C

and a ramp of 10 °C/min to 300 °C (4 min hold time). The electron ionization energy was 70 eV. For the MS

detection single ion mode was used, retention times and masses are shown in Table A.4.4. Every sample was

measured in triplicates and bracketed by triplicates of a standard containing the five pesticides in pure CH3OH

at the same concentration.

𝑀𝐸% = (
𝑆𝑖𝑔𝑛𝑎𝑙𝐴𝑟𝑒𝑎Sample

𝑆𝑖𝑔𝑛𝑎𝑙𝐴𝑟𝑒𝑎Standard
− 1) × 100 (4.6)

The absolute matrix effect in percent (ME%) was calculated according to Eq. 4.6, in which the area of each

pesticide in the sample (Signal AreaSample) is divided by the mean of the area of the six bracketing standards

(Signal AreaStandard).232,233

4.3 Results and Discussion

4.3.1 Coupling, Flow Control, and Calibration

We coupled an HPLC system (1-6 in Figure 4.1, flow range = 0.1-1 mL/min) with a microfluidic spray-dryer and

QCM sensor (8&9, respectively; flow range = 1-4 µL/min) through an adjustable flow splitter (7). The narrow

flow dynamic range of components 8&9 warrants accurate control of the split ratio under chromatographic

conditions. Therefore, we evaluated split ratios for three different solvent compositions (CH3OH/H2O 15/85,

50/50, and 85/15 v/v) and six different Vernier scale settings in the range between 56 and 112 (see Figure 4.2a).
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Figure 4.2 (a) Comparison of split ratios measured for the HPLC-QCM system at different Vernier scale settings for three
different CH3OH/H2O compositions at 40 °C. The values were fitted with an exponential decay function. The values
provided by the manufacturer at 25 °C for pure H2O are shown in gray. (b) Viscosity values of CH3OH/H2O mixtures
at 40 °C from Mikhail et al.234 in millipoise (mP). (c) Correlation of frequency slope and measured split ratios during a
calibration (black). The eluent composition during the gradient run is shown in gray in vol. % of CH3OH (containing
constantly 300 mg/L NaCl).
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The split ratios increase up to 2.4 times for the HPLC-QCM dry mass sensing system using CH3OH/H2O

solvent compositions (Figure 4.2a blue, red, and green data) in comparison with the data provided by the

manufacturer (Figure 4.2a, gray data), using only H2O as a solvent with no restrictions after the flow splitter.

Moreover, variations by a factor of 1.1 - 1.8 were observed for different solvent compositions in the order

CH3OH/H2O 50/50 (blue) > 15/85 (red) > 85/15 (green). These variations are significant enough to induce

shifts towards lower flow rates to the spray-dryer that may lead to operation outside its dynamic range (split

ratios between 125 and 500), thus affirming the need to quantify split ratios for the system. The overall split ratio

shift for the HPLC-QCM dry mass sensing system is caused by backpressure originating from the small inner

diameter of the liquid channel of the spray-dryer (25×20 µm2), which is the only additional constriction in the

system compared to manufacturer’s data.235–237 In addition, the pressure in the system leads to a deformation

of the liquid channel made of PDMS and thus to an increase of its hydraulic diameter (Dhyd) as reported by

Kartanas et al.153 This deformation strongly influences the hydraulic resistance (Rres ∝ 1/(Dhyd)4) and thus the

generated backpressure. Since Dhyd is dependent on the liquid dynamic viscosity, the trend of the split ratios

must follow the trend of the dynamic viscosities of the respective solvent compositions. Indeed, this is the case

as shown in Figure 4.2b where the highest viscosity is for CH3OH/H2O 50/50 (10.5 mP, blue) > 10/90 (8.0 mP,

red) > 90/10 (6.1 mP, green).

These results imply that while the split ratio, and thus the flow to the microfluidic spray-dryer, will stay

constant during an isocratic HPLC run, flows will constantly change in a gradient HPLC mode. If the split

ratio shifts are within the dynamic range (split ratios between 125 and 500), QCM dry mass sensing response

is still expected to vary. Indeed, spraying a fixed concentration of solute (300 mg/L NaCl) returns a non-

linear frequency response (Figure 4.2c) during CH3OH/H2O gradient run (Figure 4.2c, gray). The slope of

the frequency change as a function of CH3OH content follows in fact the observed shifts in split ratio earlier

determined in the order CH3OH 25-55% (𝜕Δ 𝑓 /𝜕𝑡: -36, blue) < 10-25%& 55-90% (𝜕Δ 𝑓 /𝜕𝑡: -44, red&green).

Based on these results, we developed a calibration and data processing strategy, where we prepare calibration

solvents (e.g., H2O, CH3OH) with an NaCl concentration of 300 mg/L for binary solvent systems and record

the QCM response as a function of time during the same gradient run of the sample. This calibration is used

to quantify the amount of solutes in the sample by dividing the frequency change of the sample with the one of

the calibration. This strategy is not only valid for solute concentrations of 300 mg/L but also for large range of

concentrations as the sprayed mass gives linear response of the frequency change in this range (30 to 500 mg/L,

see supporting information Figure A.4.1).

4.3.2 Evaluation of Lower and Upper Quantification Limits

The concentration range in which accurate quantification of masses is achievable using the presented QCM dry

mass sensing approach was investigated next by spraying different concentrations of NaCl (from 0 to 180 mg/L)



4 QCM: 1. Coupling, Characterization, and Validation

46

Table 4.1 LODs, LOQs and upper limit determined for dry-mass sensing for three solvent compositions over 10 minute
duration.

CH3OH/H2O LOD LOQ upper limit
(v/v) mg/L mg/L mg/L
15/85 15 52 336±7
50/50 4.3 16 408±2
85/15 12 42 475±4

in a binary mobile phase system (i.e., CH3OH/H2O) for three different compositions (CH3OH/H2O 15/85,

50/50, and 85/15 (v/v)). The LOD and LOQ were determined according to the calibration method by using

the slope of the frequency change per minute for each measurement as signal intensity term (y); the results are

shown in Table 4.1.

The LOD for the different mobile phase compositions ranged from 4.3 mg/L to 15 mg/L, whereas the LOQ

was found to be from 16 mg/L to 52 mg/L. The presented system’s detection limits are at least 6 times lower

than that estimated by Kartanas et al.153 for aquatic conditions (LOQ: 100 mg/L). Although we observed lower

noise levels in this study (5-15 Hz) compared with Kartanas et al.153 (aquatic: 30 Hz), this cannot alone explain

these results. In our study, the lowest detection limits were determined for CH3OH/H2O 50/50 composition

(LOD = 4.3 mg/L, noise = 10 Hz), whereas the observed noise was found to be smallest for CH3OH/H2O

85/15 composition (LOD = 12 mg/L, noise = 5 Hz). Flow rates cannot fully explain the observed trends of the

detection limits either, as they do not follow the same order we observed earlier. This indicates that the exact

limits are not merely dependent on the noise and the flow rate, but also on other interconnected factors that are

influenced by both the solvent composition and the flow rate including the spray cone dimensions, uniformity

of the generated spray, droplet size, and evaporation rate of solvent(s).238–240

There exists, however, not only a lower limit of the QCM quantification but also an upper limit, above

which both trueness and precision of QCM dry mass sensing is compromised. Indeed, spraying a salt solution

with high concentration (500 mg/L) on the QCM led over time to an increase in noise, to a shift of the slope

of the frequency change, and to increased resistance values measured on the QCM (see Figure 4.3). Since

higher resistance values indicate a change in oscillation behavior of the quartz crystal, and hence a change of

the frequency-mass correlation,241 we defined an operational upper limit when the measured resistance is by

a factor of three higher than the starting resistance. This corresponds to a change of the noise over time ≤ 5

Hz/min and a difference of the frequency change ≤ 7 Hz/min among triplicates. For a 10 minute measurement,

the upper limit was found to be above 330 mg/L for all solvent compositions (see Table 4.1), which corresponds

to 2 measurements at 𝑐𝑠𝑎𝑚𝑝𝑙𝑒 = 5000 mg/L (injection volume = 200 µL) and 𝑅𝑠𝑝𝑙𝑖𝑡 = 200− 290. This suggests

that cleaning the QCM sensor after each measurement may be necessary to guarantee reproducible and accurate

results. Such a step was accomplished in this study by 2-3 gentle swipes of the QCM sensor surface using a wet

microfiber cloth that proved to be effective with no significant deviation of frequency change over time even after
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Figure 4.3 Frequency (blue) and resistance (orange) raw data of triplicate measurements of three different CH3OH/H2O
compositions ((a): 15/85, (b): 50/50, (c): 85/15 (v/v)) containing 500 mg/L NaCl.

100 deposition and cleaning cycles (deviation from new sensor: 𝜕Δ 𝑓 /𝜕𝑡 = 0.4±2.4 Hz/min). Alternatively,

depositing a droplet of CH3OH/H2O on the surface and blowing it away using pressurized air was equally

effective — a step that can be easily automated.

4.3.3 Validation of Online QCM Dry Mass Sensing Against Offline TOC Fraction Analysis

for Organic Matrix

We validated the accuracy of QCM dry-mass sensing coupled to HPLC by real-time monitoring of an NOM

extract during HPLC separation using our system and compared it with the results of offline TOC analysis of

collected HPLC fractions during the same run as a reference strategy. This was possible since the extracted

NOM could be reconstituted in H2O without significant losses (NOM recovery ≥ 98%) while inorganic salts
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Figure 4.4 (a) Comparison of the NOMmatrix monitoring results obtained by dry-mass sensing (blue line) with the results
of offline TOC analysis of LC fractions (orange bar chart) during isocratic HPLC separation (CH3OH/H2O 30/70 v/v; 0.5
mL/min) of NOM (injected mass = 1 mg) on column (XTerra RP18, 150 × 3.0 mm, 3.5 µm). Orange dashed line: MQL
of TOC analysis (13.2 mg/L). Blue dashed line: LOQ of QCM (40 mg/L). (b) Gray bar chart: Variance of QCM and TOC
measurement per fraction shown as residual in %.

were already removed during the pre-extraction step. NOM quantification using QCM dry-mass sensing (see

Figure 4.4a, blue line, see Figure A.4.3 for QCM raw data) is in good agreement with fraction analysis using

TOC (Figure 4.4a, orange bars). Both detection techniques show that NOM elutes as an unresolved hump

with maxima between 4 and 9 min, which is a typical behavior of NOM during RP HPLC using C18 separation

columns of similar dimensions.242,243 Moreover, absolute recoveries obtained by real-time QCM dry mass

sensing (= 103±10%) agree well with that of offline TOC fraction analysis (= 98±1%). These results confirm

the suitability of QCM dry mass sensing for real-time monitoring of complex matrices during a typical HPLC

separation. The lower precision achieved by QCM dry mass sensing (= ±10%) compared to TOC analysis (=

±1%) is conceivably the result of the variations associated with the continuous spraying/evaporation processes

(typical precision of QCM measurements without spray-drying: 0.1 Hz).120

Analysis of variance shows a tendency of QCM to overestimate NOM (see Figure 4.4b). This overestimation

sums up to a total of 5±11% until the retention time where limit of quantification for QCM is reached (t

= 17.2 min, LOQQCM = 52 mg/L, Figure 4.4a blue dashed line), which is still within the measured QCM

precision. Note that LOQ of dry mass sensing is 2.7 times higher than the method quantification limit of offline

TOC analysis (MQL = 19.2 mg/L, Figure 4.4a orange dashed line, for calculation from LOD to MQL see

Figure A.4.2). This narrow sensitivity gap could easily be closed by further fine-tuning the performance of the

spray-dryer such as spraying a higher fraction of the mass in the mobile phase on the QCM.
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Figure 4.5 (a) UV/Vis chromatogram of RP HPLC purification of rice matrix (injected mass = 2.6 mg) at three different
wavelengths (brown; 220 nm, 254 nm, 310 nm). (b) Monitoring of rice matrix during the same RP HPLC purification
using dry-mass sensing (blue).

4.3.4 Applicability and Analytical Implication of QCM Dry Mass Sensing for the Analysis of

Pesticides in Food

After a successful coupling, characterization, and validation of QCM dry mass sensing, it is important to (i)

assess its applicability, as a holistic detector of complexmatrices, to a real-world analytical task, and (ii) examine

the implications of the data collected by QCM dry mass sensing for sample preparation. To this end, we chose

a typical example of pesticide analysis (DEA, BAM, ATZ, BOSC, and Prop) in brown rice as food matrix using

GC-MS after QuEChERS extraction followed by a typical HPLC cleanup step.

Qualitative Assessment – Reversed-Phase Separation of Brown Rice Matrix and Monitoring Using

UV/Vis Detection and QCM Dry Mass Sensing

We applied QCM dry-mass sensing during RP HPLC of brown rice matrix and compared the response of the

DAD detector and the QCM. Figure 4.5a shows the HPLC chromatogram measured with the DAD detector at

three different wavelengths (brown: 220 nm (dashed line), 254 nm (solid line), 310 nm (dotted)) while Figure

4.5b represents the results of the QCM dry-mass sensing (blue). Data were acquired over a range of 190 nm –

800 nm but no significant changes in intensity ratios were observed across the chromatogram within the visible

range and hence not discussed.
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There is a vast discrepancy between the validated data acquired by the QCM compared with the DAD

detector where most matrix elutes in the time window 13.5-17.5 min whereas UV absorption shows only

some scattered peaks. This demonstrates the unsuitability of using UV/Vis for food matrix monitoring and

quantification purposes. This further confirms other studies that compared UV/Vis and TOC analysis during

HPLC purification of NOM.243,244 It comes as no surprise that UV/Vis detection can not quantify matrix

compounds since the response depends on the specific chemical compound/class and its molar absorptivity,245

as well as absorption wavelength (e.g., 220 nm: aromatic and carboxylic chromophores, 254 nm: aromatic

groups with varying degrees of activation).114,246 Sugitate et al.228 identified monoacylglycerols as the most

abundant chemical class found in GC-MS analysis of the QuEChERS extract of brown rice. The lack of UV/Vis

absorption of most fatty acids can conceivably explain the discrepancy between QCM and UV/Vis data between

minute 13.5 and 17.5.247,248 We identified, in fact, oleic acid as one of the main substances eluting in this range

with GC-MS analysis using the NIST database (see Figure A.4.4). These results illustrate that mere reliance on

UV detection during HPLC clean-up does not necessarily reveal information about the matrix’s behavior and

is thus inadequate to assess this analytical step’s efficiency. Yet, combining the information gained from the

DAD detector (i.e., insights into the compound structure and analyte retention times) with the complementary

information obtained by QCM dry mass sensing (i.e., quantification of entire matrix) provides the analyst with

a complete picture of the separation process.

Quantitative Implication – Matrix Effect Correlations in GC-MS Residue Analysis With QCM Dry

Mass Sensing Data

We further examined the interpretability of acquired data using QCM dry mass sensing during a typical HPLC

clean-up on a subsequent analysis using GC-MS as an example. To this end, five fractions that were quantified

using QCM dry mass sensing (see retention windows in Table A.4.5) were collected during an HPLC clean-up

of brown rice matrix, spiked with an analyte mixture (DEA, BAM, ATZ, BOSC, and Prop), and matrix effects

associated with each analyte in each fraction were measured using GC-MS (see Figure 4.6 and Table A.4.5).

The relative amount of matrix in each fraction (matrixfrac/matrixtotal) determined by QCM dry mass sensing

correlates with the observed matrix effects (blue symbols in Figure 4.6). These correlations were found for

all investigated compounds with signal enhancement for DEA (R2 = 0.99), BAM (0.99), ATZ (0.99), and

BOSC (0.99), and with signal suppression, observed for Prop (0.95). In contrast, such a correlation couldn’t

be observed when UV/Vis data were used to estimate the percentage of the total matrix in the respective

fraction (brown symbols in Figure 4.6). Our findings, which primarily demonstrate signal enhancement, are

consistent with the literature since this effect is the most common type (> 90%) observed in GC-MS residue

analysis.155,228,249 While we can not explain the correlation for signal suppression since no mechanism has

been proposed and accepted in literature for this phenomenon,155,228,249 the signal enhancement correlations
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can be explained using the established mechanism of matrix-induced chromatographic response enhancement

in GC. Signal enhancement is caused by matrix components competing with the analyte for the adsorption on

active sites present in the injection liner and chromatographic column, which are mainly free silanol groups.

In this way, analyte losses are reduced due to irreversible adsorption or catalytic decomposition.155 Literature

shows that the extent of such signal enhancement is dependent on (i) the mass of the matrix in the sample,228,250

which the found correlations corroborate.

The extent of the signal enhancement further depends on (ii) the strength of interaction between the active

sites and the components in the matrix, as well as (iii) the analyte properties.47,228,250 Although the limited

number of investigated compounds in this study doesn’t allow a comprehensive disentanglement of (ii) and (iii),

the results still show that different compounds have different sensitivities to matrix effects as a function of the

matrix mass (i.e. 𝜕ME/𝜕mmatrix) following the order BAM (1.8±0.1) ≈ ATZ (2.0±0.1) ≈ DEA (2.2±0.1) <

BOSC (5.8±0.4). This suggests that the late-eluting compound on GC BOSC (22.9 min) is the most susceptible

to signal enhancement compared with the early-eluting DEA, BAM, and ATZ (12-13.9 min). This agrees with

Anastassiades et al.,250 who illustrated that monoacylglycerols, the most abundant matrix component in brown

rice,228 elutes in the late window of chromatography giving rise to the highest matrix effects for late-eluting

pesticides. These results demonstrate that the data acquired by QCM dry mass sensing during a typical HPLC

clean-up of a complex sample provide, in fact, meaningful information on the efficiency of this clean-up step.

The analyst can use the acquired data to minimize matrix co-elution reducing thereby adverse matrix effects in

the subsequent analysis.

4.4 Conclusion

The current work presents the successful coupling of a commercial HPLC system with a QCM using a microflu-

idic spray-dryer. We demonstrate that QCM dry mass sensing is suitable as a holistic detector for quantifying

complex organic matrices during HPLC clean-up, in contrast to other detectors such as UV/Vis. Validation

against offline TOC analysis confirmed the successful coupling, calibration and data processing strategy and its

suitability within a precision of 10%. The demonstrated results of NOM and brown rice matrix, in conjunction

with the system’s current LOQ (16-52 mg/L), prove that the employed technique is relevant for a large range

of real samples in environmental and food chemistry. This can possibly be further extended to other fields

(e.g., archaeology, forensics) with similar loads of matrix, whereas further reduction of the systems LOQ may

be necessary for more matrix-susceptible samples. The direct correlation found between the amount of brown

rice matrix, quantified by QCM dry mass sensing, and matrix effects measured in GC-MS agrees with the

established understanding of matrix-induced chromatographic response enhancement. This implies that the

developed system can be a useful tool to minimize matrix co-elution reducing thereby adverse matrix effects in
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a subsequent analysis, which is the ultimate goal of a clean-up. The exact potential gain of such an optimized

clean-up is further evaluated in the companion paper.229
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5 Quartz Crystal Microbalance as Holistic Detector

for Quantifying Complex Organic Matrices During

Liquid Chromatography: 2. Compound Specific

Isotope Analysis

Abstract

In carbon-compound-specific isotope analysis (carbon-CSIA) of environmental micropollutants, purification of

samples is often required to guarantee accurate measurements of a target compound. A companion paper has

brought forward an innovative approach to couple quartz crystal microbalance (QCM) with high-performance

liquid chromatography (HPLC) for online quantification of matrices during a gradient HPLC purification. This

paper investigates the benefit for isotope analysis of polar micropollutants typically present in environmental

samples. Here, we studied the impact of natural organic matter (NOM) on the isotopic integrity of model

analytes and the suitability of the NOM-to-analyte ratio as a proxy for sample purity. We further investigated

limitations and enhancement of HPLC purification using QCM on C18 and C8 phases for single- and multiple-

targets. Strong isotopic shifts of up to 3.3‰ towards the isotopic signature of NOM were observed for samples

with a NOM-to-analyte ratio ≥ 10. Thanks to QCM, optimization of matrix removal of up to 99.8% of NOM

was possible for late-eluting compounds. The efficiency of HPLC purification deteriorated when aiming for

simultaneous purification of two or three compounds, leading to up to 2.5% less NOM removal. Our results

suggest that one optimized HPLC purification can be achieved through systematic screening of 3 to 5 different

gradients thereby leading to a shift of the boundaries of accurate carbon-CSIA by up to two orders of magnitude

toward lower micropollutant concentrations.



5 QCM: 2. Compound Specific Isotope Analysis

56

∆δ13Ccompound (‰)

Aprep-LC
Gradients

GC-c-IRMS

1

2

n

B C

C
o-

el
ut

in
g 

M
at

ri
x

co
m

po
un

ds
3

A B C

A

B
C

C A B

0 +2-2

concave

linear

convex

sh
all

ow

ste
ep

The results of this chapter were published in a modified form in a peer-reviewed journal.

Reprinted with permission from:

Christopher Wabnitz, Wei Chen, Martin Elsner, and Rani Bakkour. Quartz Crystal Microbalance as Holistic

Detector for Quantifying Complex Organic Matrices During Liquid Chromatography: 2. Compound Specific

Isotope Analysis. Analytical Chemistry 2024, 96, 7436–7443.

Copyright © 2024 American Chemical Society.



5.1 Introduction

57

5.1 Introduction

Compound-specific isotope analysis (CSIA) has proven to be a powerful tool for identifying environmental

contamination sources and delineating their natural and engineered degradation pathways by measuring isotopic

ratios (i.e., 13C/12C, 15N/14N) of the contaminant/target analyte at natural abundance.2,3, 17–19,30, 31, 33, 251–253 To

this end, gas chromatography combustion isotope ratio mass spectrometry (GC-c-IRMS) is typically used,

where the contaminant is separated from other components in the sample using a GC, then converted in a

combustion oven to a universal gas (i.e., CO2, N2), and measured using a sector field MS.6,21–23 The structural

information of the compound gets, however, lost during this process, which makes accurate CSIA susceptible

to interferences by concurrent carbon-/ nitrogen-containing constituents in the same sample.3–5 This represents

a challenge for carbon CSIA of polar environmental contaminants that occur in low concentrations, such as

pesticides and pharmaceuticals, for the following reasons. (i) The concentrations of such contaminants occur

in the ng/L to µg/L range, whereas the potential interferences, namely natural organic matter (NOM), occur

at 103 to 106 higher concentrations in the mg/L range.62 (ii) The heterogeneity of NOM, which consists of

thousands of different organic compounds found in environmental samples like river water, renders an efficient

separation of the target analyte and interferences challenging in one extraction step.50,80 While classical

mass spectrometry can correct for adverse effects caused by such interferences using, for example, internal

standards,42–45 analyte protectants,46,47 or matrix-matched calibration,42,45, 48 such corrections are not possible

in GC-c-IRMS. Therefore, CSIA critically depends on highly purified samples.

Several purification strategies are at the analyst’s disposal to separate target analytes from sample interfer-

ences, also referred to as matrix, in carbon-CSIA sample preparation. These strategies range from offline chro-

matographic techniques using conventional solid-phase extraction (SPE) materials,65,66 molecularly imprinted

polymers (MIPs),56 cyclodextrin polymers,50 immunoaffinity chromatography,81 silica gel chromatography,73,74

or ion-exchange chromatography,70 to different types of online chromatographic purification techniques includ-

ing size-exclusion chromatography,72 or the most widely used reversed-phase (RP) high-performance liquid

chromatography (HPLC).28,66, 68, 75–79 While the target analytes are monitored in most of these works, this is not

necessarily the case for all interferences. For example, consider 13C/12C measurement of atrazine in a ground-

water extract containing interfering NOM, where chromatographic clean-up is warranted prior to GC-c-IRMS.

To screen for the optimal clean-up conditions, fractions have to be collected, organic solvents removed, the

sample reconstituted in water, and each fraction measured using a total organic carbon (TOC) analyzer. On

the other hand, quantification of matrix interferences during online purification procedures like HPLC is often

hindered by a lack of suitable detectors.254 Detectors usually combined with HPLC are only able to monitor

specific fractions of common matrices like NOM (i.e., chromophoric, fluorescent, or ionizable)114,115 or show

inter-compound response differences, as discussed in detail in the companion paper.115–118,254 Alternatively,

monitoring and quantifying potential interferences during the purification would, in fact, give insights into the
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success of the clean-up and its exact gain. We have brought forward in the companion study an innovative

approach using quartz crystal microbalance (QCM) dry mass sensing that was coupled to RP HPLC and used

to monitor and gravimetrically quantify different types of matrices (NOM, brown rice) during a gradient HPLC

purification.254

In the current and the companion study,254 we spray a small part (<1%) of the column effluent on a QCM

using a microfluidic spray-dryer, adopting elements of other works by Schulz et al.,150 Müller et al.,151 and

Kartanas et al.153 In this process, the column effluent is nebulized into micron-sized droplets, which leads to the

immediate evaporation of the solvent and deposits the non-volatile components on theQCM. Their absolutemass

is measured due to the QCM’s ability to measure mass changes on the oscillating piezoelectric quartz crystal

with sub-nanogram resolution.119,121 Using this approach, it was possible to quantify matrix interferences in

real-time during RP HPLC. Remarkably, these matrix interferences correlated with the extent of matrix effects

on observable instrument response (signal enhancement/ suppression) observed during subsequent GC-MS

analysis (R2 ≥ 95).254 This approach, hence, circumvented challenges for QCM dry mass sensing before

application to RP HPLC clean-up through (i) enabling the use of organic solvents including gradients by

using a microfluidic spray-dryer, (ii) characterizing variations of the QCM response caused by gradients, and

(iii) alleviating the impact of the latter through a suitable calibration strategy.254 It seems ideal to apply this

approach for environmental extracts intended for carbon-CSIAmeasurements after RPHPLC. Yet, a quantitative

assessment of the gain of optimizing RP HPLC purification using real-time matrix monitoring has never been

conducted — and its impact on accurate carbon-CSIA never been explored.

The work presented in this and the companion paper254 has the overall goal of exploring the feasibility of

coupling a commercial HPLC with a microfluidic spray-dryer and a QCM for online monitoring of organic

matrix components during RP HPLC gradient purification for different mass spectrometry-based applications

in environmental and food sciences. Both studies focus on organic matrices in already extracted samples where

most inorganic salts are excluded through a first SPE step. While the technical and fundamental groundwork for

matrix onlinemonitoring using QCMdrymass sensing during RPHPLCwas laid out in the companion study,254

this paper systematically investigates the purification potential of RP HPLC before 13C/12C analysis of polar

micropollutants present in environmental water samples usingGC-c-IRMS. To this end, we (i) studied the impact

of NOM on the isotopic integrity of model analytes and whether the NOM-to-analyte ratio (CNOM/Canalyte, nmol

C/nmol C) can be used as a proxy for the sample purity and (ii) investigated limitations and enhancement of

HPLC purification using QCM dry mass sensing on C18 and C8 phases for single- and multiple-targets.
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5.2 Experimental Section

5.2.1 Chemicals, Materials, and Samples

A list of purchased chemicals and materials, a description of standard solutions, and working solutions used

in this study are provided in the supporting information (section E.1). NOM was extracted from surface water

samples as detailed in the companion paper254 and summarized in section E.2. Samples for isotope analysis

with different NOM/analyte ratios (10, 20, 50, 100), CNOM/Canalyte in mol C/mol C, were prepared in methanol

by mixing the stock solution of extracted NOM with stock solution of corresponding analyte to reach an analyte

concentration of 1667 nmol C/mL, corresponding to 5 nmol C per injection on GC-c-IRMS. Extracts for

HPLC purification were prepared in methanol/water (25/75 v/v) and contained 3 mg/L of eight different model

analytes, namely 2,6-dichlorobenzamide (BAM), atrazine (ATZ), azoxystrobin (AZOX), boscalid (BOSC),

caffeine (CAF), desethylatrazine (DEA), desisopropylatrazine (DIA), and simazine (SIM), and 9000 mg/L of

the extracted river water NOM. These extracts correspond to original water samples with 3.6 mg/L NOM and

120 ng/L analyte.

5.2.2 Chemical Analysis

Compound Specific Isotope Analysis

Carbon isotope measurements were performed on a GC-c-IRMS system consisting of a GC (TRACE GC Ultra

multi-channel gas chromatograph, Thermo Fisher Scientific, Germany; Column: J&W DB-5MS UI column,

L = 30 m × ID = 0.25 × film thickness = 1.0 µm, Agilent, Germany), a combustion interface (Finnigan

GC Combustion III interface, Thermo Fisher Scientific, Germany), and an IRMS (Finnigan MAT 253 IRMS,

Thermo Fisher Scientific, Germany). The combustion interface consisted of an oxidation reactor (1050 °C)

with an alumina tube (L = 320 mm, ID = 0.5 mm, OD = 1.5 mm, Friatec, Germany) containing one platinum

wire (D = 0.1 mm, 99.99% purity, Goodfellow, GB) and two nickel wires (D = 0.1 mm, 99.99% purity, Alfa

Aesar, Germany). An identical alumina tube enclosing three copper wires (0.1 mm diameter, 99.99% purity,

Alfa Aeser, Germany) was used for the reduction reactor (650 °C). Extracts in methanol were injected (3 µL

injection volume) using an autosampler (GC PAL, CTC, Switzerland) with splitless injection mode (liner: ID =

5 mm × L = 105 mm, Thermo Fisher Scientific, Germany) at 250 at a surge pressure of 250 kPa. Analytes were

separated at a helium flow of 1.4 mL/min using the following temperature program. The starting temperature

was 120 °C (1 min hold time), followed by a temperature ramp of 22 °C/min to 250 °C, and a ramp of 40

°C/min to 325 °C (9 min hold time). The peaks were automatically detected and baseline-corrected (individual

background algorithm) using the Isodat software of Thermo Fisher Scientific, Germany. Isotope ratios were

calculated in relation to a CO2 reference gas (Carbo, Germany) and are reported as arithmetic means of at

least triplicate measurements as 𝛿13C values (in ‰) with the respective 95% Confidence Interval (CI) relative



5 QCM: 2. Compound Specific Isotope Analysis

60

to the international reference material Vienna PeeDee Belemnite (VPDB).255 In addition, standard bracketing

procedures were used to ensure identical treatment of standard and sample256 and method quantification limits

were determined according to the moving mean procedure (see Figure A.4.1 and Table A.4.5).64

High-Performance Liquid Chromatography

ANexera XRHPLC system (Shimadzu, Japan) was used for chromatographic separation. It consists of a solvent

delivery module (LC-20AD, Shimadzu, Japan), a diode array detector (DAD) (SPD-M20A, Shimadzu, Japan),

and a fraction collector (FRC-10A, Shimadzu, Japan). As the stationary phase, two different columns were

used: XTerra RP18 column (particle size = 3.5 µm, L×D = 150 × 3.0 mm, pore size = 125 Å, Waters, USA) and

Orbit 100 C8 column (particle size = 3.5 µm, L×D = 150 × 3.0 mm, pore size = 100 Å, MZ Analysentechnik,

Germany). As the mobile phase, binary gradients consisting of water (A) and methanol/water (90/10 v/v) (B)

were used. A column oven temperature of 40 , a flow rate of 0.5 mL/min, and a sample injection volume

of 200 µL were used for all measurements. Using the DAD detector, the retention time and peak width of

each analyte were determined at the corresponding maximum absorption wavelength and used to constrain the

fraction in which the analyte was completely recovered. For HPLC optimization, the RP gradient conditions

were systematically varied by changing the percentage of CH3OH in the mobile phase at minute 7.5 (30, 40,

50, 60, 70, 80, or 90%) and minute 15 (60, 70, 80, or 90%) covering thereby linear, concave, and convex

gradients. Twenty-two and 7 different gradients were studied for XTerra RP18 column and Orbit 100 C8

column, respectively (see Table A.4.7 and A.4.8).

QCM Dry Mass Sensing Coupled to HPLC

The QCM dry mass sensing system was coupled to the HPLC, characterized, and validated as described in

detail in the companion paper.254 In short, the HPLC effluent was split after the DAD detector and prior to

the fraction collector using a post-column adjustable flow splitter. The high-flow port was connected to the

fraction collector, whereas the low-flow port to a microfluidic spray-dryer. The latter was fabricated in-house

using a standard polydimethylsiloxane (PDMS) soft lithography approach.254 Using the spray-dryer, the HPLC

effluent was sprayed onto a 5 MHz QCM crystal (100RX1, Cr/Au, Stanford Research Systems, USA) placed in a

frequency counter (QCM200, gate time: 0.1 s, Stanford Research Systems, USA). Each measurement consisted

of a blank run (methanol/water 25/75 v/v), the sample (NOM-containing extract), and a one-point calibration

(c(NaCl) = 300 mg/L in mobile phase), which were used to derive the concentration of matrix in mg/L in the

sample during chromatography.
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5.2.3 Data Evaluation

QCM Dry Mass Sensing

The QCM dry mass sensing data was evaluated using a Matlab script as reported in the companion paper.254 In

short, after correcting the frequency measurement of the sample and that of the calibration using the one of the

blank, the 1st derivative was derived from the corrected frequencies. Then, 1st derivatives were smoothed using

a Savitzky-Golay filter. To get the mass concentration of the sample in mg/L, the smoothed 1st derivative of the

sample measurement was divided by the smoothed 1st derivative of the calibration measurement and multiplied

by the concentration of the calibration solution (see Eq. 1 in companion paper254).

CNOM/Canalyte Ratio and Gain Factor

The CNOM/Canalyte ratio in mol C/mol C before HPLC purification ([CNOM/Canalyte]no LC) was calculated by

dividing the molar concentration of NOM by the molar concentration of the respective analyte in the extract.

To calculate the CNOM/Canalyte ratio after the HPLC purification ([CNOM/Canalyte]LC), the integral of the NOM

data measured using QCM dry mass sensing during the HPLC purification was taken over the corresponding

time window of the analyte peak (areafraction). The latter was divided by the integral of the NOM data over the

whole chromatogram (areatotal), where complete recovery of NOMwas validated, to get the percentage of NOM

co-eluting during the analyte fraction (see Eq. 5.1).

NOMco-elution =
areafraction
areatotal

· 100 (5.1)

[CNOM/Canalyte]no LC was multiplied by the percentage of NOM co-eluting in the respective fraction to get

[CNOM/Canalyte]LC (see Eq. 5.2).

[CNOM/Canalyte]LC =
NOMco-elution · [CNOM/Canalyte]no LC

100
(5.2)

The gain factor, which is the factor by which the CNOM/Canalyte was improved, was calculated by dividing

[CNOM/Canalyte]no LC by [CNOM/Canalyte]LC (see Eq 5.3).

gain factor =
[CNOM/Canalyte]no LC
[CNOM/Canalyte]LC

(5.3)

Matrix Removal for Individual and Multiple Compounds

The matrix removal in % for individual compounds was calculated by subtracting the percentage of co-eluting

NOM from 100 (see Eq. 5.4).

matrix removalindividual = 100 − NOMco-elution (5.4)



5 QCM: 2. Compound Specific Isotope Analysis

62

3 0 4 0 5 0 6 0 7 0 8 0 9 0
6 0

7 0

8 0

9 0

%  o f  M e O H  a t  m i n  7 . 5

% 
of 

Me
OH

 at
 m

in 
15

C A F B O S C
C A F +
B O S C

3 0 4 0 5 0 6 0 7 0 8 0 9 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
1

4

7

1 0
1 3

+ 2 . 3 %
+ 0 . 2 %

% 
of 

NO
M 

co
-el

uti
ng

Figure 5.1 Gradient screening for the individual compounds CAF and BOSC and their NOM co-elution average for
HPLC purification on XTerra RP18 of both compounds at the same time (CAF+BOSC). The optimal gradient with the
lowest NOM co-elution is encircled both for the individual compound purification (CAF, BOSC, gradienti) and multiple
compound purification (CAF+BOSC, gradientm). The arrows show the difference between the optimal gradienti and the
optimal gradientm, the number next to the arrows the difference of NOM co-elution in % between gradienti and gradientm.

To determine themaximalmatrix removal duringmultiple compound purification, we added for each investigated

HPLC gradient the respective matrix removal of the individual compounds and divided the value by the number

of compounds n to get the average matrix removal for n-compounds (matrix removaln-compounds) (see Eq. 5.5;

see examples in Figure 5.1 and A.4.15).

matrix removaln-compounds =

∑𝑛
𝑘=1 matrix removal (k)

𝑛
(5.5)

This calculationwasmade for eachHPLCgradient separately. The gradientwith the highestmatrix removaln-compounds

(gradientm) was selected as the optimal gradient for the respective combination of compounds. The exact matrix

removal of each of the compounds for gradientm was used as the maximal matrix removal for this exact purifica-

tion problem. The difference between the optimal gradient determined for the individual compound (gradienti)

and gradientm is reported as loss in matrix removal. Repeating this procedure for several combinations of two

or three early, middle, and late eluting compounds (see Table A.4.17 and A.4.18) made it possible to determine

an average matrix removal and to plot the different determined numbers in a box plot (see Figure 5.5).

5.3 Results and Discussion

5.3.1 Natural Organic Matter-to-Analyte Ratio as Proxy for Sample Purity and its Impact on

Isotopic Integrity

We assessed the NOM/analyte ratio, CNOM/Canalyte in mol C/mol C, as representative indicator of sample purity

and its impact on accurate isotope analysis. Figure 5.2a shows measured 𝛿13C values on GC-c-IRMS of four

different model analytes, namely DIA (𝛿13C = -36.8±0.5‰), ATZ (-29.6±0.5‰), DEA (-29.4±0.5‰), and CAF

(𝛿13C = -1.2±0.5‰), in extracts containing different CNOM/Canalyte ratios (10, 20, 50, 100 mol C/mol C) and

compared to standard measurements in the absence of NOM. Analyte concentrations were kept constant for all
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Figure 5.2 (a) The isotope value of standard measurements of four different analytes (DEA: green, ATZ: black, DIA:
red, CAF: blue) is plotted against the isotope value measured in extracts containing NOM in different CNOM/Canalyte ratios
(10: triangle up, 20: triangle down, 50: circle, 100: diamond). The range of typical NOM isotope values (𝛿13C =
27±1‰) is highlighted (brown circle). (a1-a3) show the enlarged areas of the four analytes. (a1) gray: Extract with
concentration of NOM equal to ratio 100 was subjected to HPLC clean-up using XTerra RP18 (see HPLC gradient in
Table A.4.4). The respective fraction of DIA was collected, the solvents evaporated, NOM reconstituted and spiked with
DIA to reach an analyte concentration of 1667 nmol C/mL and a total volume equal to the original NOM extract (200 µL).
(b1-b4) Correlation of the background intensity (m/z 44/ mV) at the respective analyte retention time in the GC-c-IRMS
chromatogram and the amount of NOM injected.
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samples at 5 nmol C injected in each measurement, corresponding to concentrations of 57.9 mg/L (DIA), 44.9

mg/L (ATZ), 52.1 mg/L (DEA), and 40.5 mg/L (CAF) in the extract. The corresponding background intensities

at m/z 44 are depicted in Figure 5.2b at the respective analyte retention time in the GC-c-IRMS chromatogram

as a function of CNOM/Canalyte.

We observed significant 𝛿13C shifts in the presence of NOM for DIA (Figure 5.2a1, red data, positive shift)

and CAF (Figure 5.2a3, blue data, negative shift), while no significant shifts are visible for ATZ and DEA

(Figure 5.2a2, black and green data). The absence of isotopic shifts for ATZ and DEA confirms the observation

of Glöckler et al.50 that compounds with an isotopic signature close to the one of NOM do not suffer from

isotopic shifts induced by the sample matrix. Indeed, 𝛿13C of ATZ (-29.6±0.5‰) and DEA (-29.4±0.5‰)

are both in the proximity of that of NOM (-27±1‰)257 on the carbon isotopic scale. This implies that the

obtained 𝛿13C values of the analytes are not only attributable to the compound but, strictly speaking, a bulk

measurement of analyte and matrix. In contrast, the effect of NOM on 𝛿13C integrity of DIA (-36.8±0.5‰) and

CAF (-1.2±0.5‰) is evident and becomes most pronounced the greater the distance of their isotopic signatures

to that of NOM is. This is corroborated by the direction of the isotopic shift, which consistently goes in the

direction of the isotopic signature of NOM (postive for DIA, negative for CAF), and the magnitude of the shift,

which is greater for CAF (𝛿13Csample - 𝛿13Cstandard for CNOM/Canalyte ratio 100: -3.3±0.8‰) compared to DIA

(+1.3±0.6‰) reflecting the greater difference to the one of NOM on the isotopic scale (CAF-NOM= +25.8±1.1,

DIA-NOM= -9.8±1.1). Even the magnitude of isotopic shifts is progressively following the CNOM/Canalyte ratios

(see arrow in Figure 5.2a1&a3 and Figure A.4.2 in the supporting information). The observed deviation is,

however, not precisely the composite of the background and the peak due to the applied individual background

algorithm implemented in the Isodat software: The measured shift for CAF for CNOM/Canalyte ratio 100 (Δ𝛿 13C

= -3.3‰) is, for example, four times smaller than the theoretically determined isotope shift using the ratio of

background area to analyte area (-14.5‰) (see Table A.4.6). This shows that the applied background correction

can reduce the influence of NOM but not entirely compensate for it, as already illustrated by Glöckler et al.50

The influence of the matrix NOM on the measurement can also be seen in the IRMS chromatograms. A

distinct hump-shaped baseline rise is visible in the samples containing NOM (see Figure 5.3). We found a direct

correlation (R2 ≥ 0.999) between the amount of NOM injected and the background intensity (m/z 44) recorded

on the IRMS at the respective analyte retention times for all compounds (see Figure 5.2b). Consequently, the

ratio of injected matrix and analyte, CNOM/Canalyte, seems to be a good proxy of sample purity as proposed by

Bakkour et al.56 and Glöckler et al.50 Accurate isotope values of DIA were only measured for CNOM/Canalyte

≤ 10 (Figure 5.2a1 and Figure A.4.2). To further probe for this, we moved the CNOM/Canalyte ratio from 100

to 8 using HPLC purification and were thus able to recover the isotope integrity of the analyte (Figure 5.2a1

grey data point). For CAF, a CNOM/Canalyte of 10 was not sufficient to resolve the target analyte peak and

guarantee accurate isotope analysis (Figure 5.2a3 and Figure A.4.2). Upon comparing these findings with data
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Figure 5.3 GC-IRMS chromatograms of DEA and CAF for different CNOM/Canalyte ratios.

published in the existing literature for other analytes, a noticeable range of approximately a CNOM/Canalyte ratio

of 10 or slightly less emerges.49,50 The exact CNOM/Canalyte ratio guaranteeing accurate isotope analysis varies

depending on the analyte, the distance between the signature of the analyte and NOM on the isotopic scale,

and the used GC method. This highlights the importance of (i) including standards spanning over a range of

isotope signatures in carbon-CSIA method development and (ii) the purity of the sample as a strategy to avoid

systematic bias in isotope values. Samples containing NOM in higher amounts therefore warrant sufficient

sample purification procedures to guarantee accurate isotope analysis.

5.3.2 Limitations and Enhancement of Preparative Chromatography Revealed by QCM Dry

Mass Sensing

To quantitatively assess the limits and possible enhancement of typical preparative chromatography clean-up

steps in removing organic matrix from a sample extract, we selected 8 model compounds (CAF, BAM, DIA,

DEA, SIM, ATZ, AZOX, BOSC; logKOW range: -0.07-2.96) present in an extract containing NOM as organic

matrix and subjected them to HPLC clean-up using a C18 stationary phase (XTerra RP18), a classical phase used

inmanyCSIA applications (see TableA.4.19). Binary solventmixtures ofwater andCH3OHwere systematically

varied by changing the percentage of CH3OH in the mobile phase at minute 7.5 and minute 15 thus covering

linear, concave, and convex gradients (see illustrative gradients in Figure 5.4a; all gradients in Table A.4.7

and A.4.8). NOM concentrations in the HPLC effluent were acquired using QCM dry mass sensing, whereas

analyte retention times were monitored using UV-Visible spectroscopy (UV/Vis) detection at the corresponding

maximum absorption wavelength. Figure 5.4b depicts fractions of analytes at the corresponding retention

time window where the analyte is completely recovered (coloured vertical bars), whereas the area underneath
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Figure 5.4 (a) Seven out of the 22 measured gradients with varying % of CH3OH in the mobile phase till minute 7.5 (blue;
30, 40, 50, 60, 70, 80, or 90%) and minute 15 (grey; 60, 70, 80, or 90%). (b) Chromatogram (gradient 10-60-70) shows
both the analyte peaks detected using UV/Vis for CAF, DEA, SIM, and BOSC (dotted grey line) and NOM in %/min
quantified using QCM dry mass sensing (black line). The amount of co-eluting NOM during the analyte retention time
is integrated (colorful areas) and divided by the total amount of NOM measured to receive a number of the percentage of
NOM co-eluting with the analyte (corresponding colour). (c-f) The NOM co-elution in % is plotted for the 22 different
gradients for 4 analytes ((c): CAF, (d): DEA, (e): SIM, (f): BOSC). The second axis shows the CNOM/Canalyte ratio after
the purification step corresponding to BOSCs ratio in the original extract of 2383. The minima are encircled using a black
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Table 5.1 Reduction of the CNOM/Canalyte ratio during HPLC purification of the Oasis HLB extract of a water sample
containing 120 ng/L of each respective analyte and 1.8 mgC/L NOM. The Table displays the CNOM/Canalyte (nmol C/nmol
C) ratio in the extract (no LC), the reduced ratio for the gradient on XTerra RP18 that showed the highest (LCXTerra RP18)
and the lowest (optim-LCXTerra RP18) NOM co-extraction, and the lowest (optim-LCOrbit 100 C8) co-extraction on Orbit 100
C8. It also shows the gain factor, which is calculated by dividing the CNOM/Canalyte ratio before the clean-up ("no LC")
by the CNOM/Canalyte ratio after the respective clean-up. The matrix removal in % is shown in brackets. The analytes are
classified in early-, middle-, and late-eluting substances depending on their retention behaviour during the 22 investigated
gradients and listed in the order of their retention time.

early-eluting middle-eluting late-eluting
CAF BAM DIA DEA SIM ATZ AZOX BOSC

logKow -0.07 0.77 1.50 1.51 2.18 2.61 2.50 2.96
no LC 3034 3393 4343 3909 3601 3370 2292 2383

LCXTerra RP18 448 347 548 453 417 403 264 207
gain factor 7 10 8 9 9 8 9 12
matrix removal (%) (85.3) (89.8) (87.4) (88.4) (88.4) (88.0) (88.5) (91.3)

optim-LCXTerra RP18 242 215 296 281 192 107 53 47
gain factor 13 16 15 14 19 31 44 51
matrix removal (%) (92.0) (93.7) (93.2) (92.8) (94.7) (96.8) (97.7) (98.0)

optim-LCOrbit 100 C8 96 156 206 271 129 78 14 4
gain factor 32 22 21 14 28 44 167 556
matrix removal (%) (96.8) (95.4) (95.3) (93.1) (96.4) (97.7) (99.4) (99.8)

represents the percentage of co-eluting NOM in the respective fraction and thus the CNOM/Canalyte ratio. Changes

of NOM co-eluting in each fraction are shown as heat maps for different gradients in Figure 5.4c-f, where the

x-axis represents the percentage of CH3OH in the mobile phase at minute 7.5 and the left y-axis at minute 15,

whereas the colour code represents the percentage of co-eluting NOM as well as CNOM/Canalyte ratio at the right

y-axis. To reduce the complexity of the figure, data for CAF, DEA, SIM, and BOSC are shown here, whereas

the data for BAM, DIA, ATZ, and AZOX are shown in Figure A.4.3 (all NOM co-elution data are summarized

in Table A.4.10 and A.4.11).

Gains from an Individual Compound Perspective

A single HPLC purification of an extract of a 5L water sample containing 1.8 mgC/L NOM (post-spiked after

the extraction with each respective analyte to correspond to 120 ng/L in the original water sample) could remove

between 85-91% of the co-extracted NOM (see Table 5.1, "LCXTerra RP18 matrix removal"). This corresponds to a

remaining percentage of co-eluting NOM in each fraction of between 9-15% of the original NOM concentration

(see Figure 5.4c-f solid marked areas). The CNOM/Canalyte ratio in the extract could thus be reduced by a factor of

7 to 12 from ratios ranging between 2292 and 4343 to down to between 207 and 548. While these results show

the substantial purification potential of HPLC using a typical C18 column without any method development, the

CNOM/Canalyte ratio is still too high for accurate carbon-CSIA (≤10). This highlights the need for optimizing

HPLC purification. In fact, screening for 22 gradients using QCM dry mass sensing made it possible to remove

an additional 6.7% NOM in the retention window of CAF, 3.7% in the window of DEA, 6.3% of SIM, and
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Figure 5.5 Removal of NOM (in %) in the fraction of early-, middle-, or late-eluting compounds during the purification
of one individual compound or multiple compounds for both columns. The dashed upward arrow annotates the trend of
elution regions early<middle<late, the dotted downward arrow the compound number trend 1>2>3.

6.7% of BOSC (see Figure 5.4c-f, dashed marked areas). These gains are significant considering the associated

uncertainties between 0.1% and 1.1% according to triplicate to sextuplicate measurements (see Table A.4.10 and

A.4.11). Using the QCM optimized HPLC purification, the CNOM/Canalyte ratios could be reduced to between

47 and 296 ("optim-LCXTerra RP18"), corresponding to gain factors between 13 and 51 compared to no clean-up

("no LC") and to gain factors between 2 to 5 compared to not optimized LC ("LCXTerra RP18").

An optimized single clean-up on XTerra RP18 leads to larger gain factors for late-eluting compounds (31-

51), compared with early- (13-16) and middle-eluting compounds (14-19). These results are meaningful given

the shape of the NOM hump that can be influenced more for the late eluting compounds than for the early and

middle ones eluting directly with the main part of the NOM hump (see Figure 5.4b). Yet, CNOM/Canalyte =

47-296 are significantly above the required value for accurate carbon-CSIA (≤10). This is not surprising given

the concentration of the target analytes and NOM in the investigated water sample (1.8 mgC/L NOM, 120 ng/L

analyte). This highlights that residuals of NOM of as low as 2% in the collected fraction of such a sample

require further optimization, even when recovering 100% of the target analyte. Therefore, we assessed the

potential for NOM removal on a different stationary HPLC phase, namely a column Orbit 100 C8, which offers

a higher theoretical plate number (see Table A.4.9) for the investigated compounds and, thereby, possesses

a higher retention and smaller peak width presumably leading to an even lower NOM co-elution and thus

lower CNOM/Canalyte ratios. Indeed, it was possible to reach an NOM removal of between 93.1 and 99.8% (see

results for all gradients in A.4.12 and A.4.13) leading to gain factors for early- (21-32), middle- (14-28), and

late-eluting compounds (167-556) as shown in Table 5.1 "optim-LCOrbit 100 C8". Thanks to the QCM, it was

therefore possible to remove up to 99.8% of the matrix for BOSC with a single optimized clean-up leading to a

CNOM/Canalyte ratio = 4, which is smaller than the suggested value of 10.
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Trade-Offs between Single- and Multiple-Targets

Purifying more than one compound in a single HPLC purification run is expected to lead to trade-offs in the

potential of maximal NOM removal. Therefore, we quantified the maximal NOM removal (lowest percentage

of co-eluting NOM depicted in the dashed area of Figure 5.4 and A.4.3) when optimizing HPLC purification for

only one compound at a time and compared it with the NOM removal determined for the optimised purification

for multiple targets over the whole chromatographic run, covering thereby combinations of early, middle, and

late eluting compounds (see Figure 5.5).

Efficiency of HPLC purification deteriorates when aiming for simultaneous purification of two (orange) or

three compounds (blue) compared to an individual compound (black) as seen by the maximal NOM removal

denoted as dotted downward arrows in Figure 5.5. For (a) early eluting compounds on XTerra RP18, 92.0%

NOM can be removed on average when purifying two compounds and 91.0% during the purification of three

compared with one (93.0%). The same holds true for (b) middle (1: 93.7%, 2: 92.4%, 3: 92.0%) and (c)

late eluting compounds (1: 97.5%, 2: 96.0%, 3: 95.2%). The trend of the NOM removal for individual and

multiple compounds is consistent within each elution region following the order early<middle<late (denoted

as dashed upward arrow). This picture may vary dependent on the chromatographic behaviour of different

matrices, as well as on the exact combination of compounds used (see Table A.4.17 and A.4.18 and Figure

5.1 and A.4.13-A.4.15). For example, the maximal NOM removal determined for late eluting compounds in

combination with middle eluting ones (96.7%) is higher in comparison to the simultaneous purification with

early eluting compounds (95.3%).

Similar trends were observed on a different column, namely Orbit 100 C8, which further corroborates the

acquired results (see Figure 5.5d,e). The data on the middle eluting compounds on Orbit 100 C8 is not shown

since we did not determine any variations between the different combinations. Nonetheless, the determined

maximal NOM removal on Orbit 100 C8 is higher in comparison with the XTerra RP18 column. In fact,

the average NOM removal for three compounds on Orbit 100 C8 ("early": 93.1%, "late": 97.5%, see Figure

5.5d,e) is equal to the individual compound NOM removal on XTerra RP18 ("early": 93.0%, "late": 97.5%, see

Figure 5.5a,c), highlighting the importance of column choice. Although the differences in the maximal NOM

removal for one, two, or three compounds might seem small, they are significant considering the precision of

these measurements (±0.1–1.1%) and their impact on the CNOM/Canalyte ratios. This can be illustrated using the

example of BOSC, where the CNOM/Canalyte ratio changes from 4 for the individual compound to 26 on average

for two and to 44 on average for three compounds, thus preventing accurate carbon-CSIA measurements in the

latter cases.
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Figure 5.6 Dependence of accurate isotope analysis on the analyte and NOM concentration in the real-world water sample
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(black), plus an HPLC purification (red), or plus an optimized HPLC purification (blue).
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5.4 Conclusion and Analytical Implications

The present work systematically demonstrates that QCM dry mass sensing is a valuable auxiliary tool for

optimizing matrix removal during a classical clean-up of extracts prior to carbon-CSIA. In fact, this is the first

study to report quantitative efficiencies of RP HPLC clean-up that amounted to matrix removal up to 99.8%

upon optimization. On average, the maximal matrix removal within a precision of 1% could be determined

by screening 3 to 5 different gradients, including convex, concave, and linear gradients (see Table A.4.14 and

A.4.15 and Figures A.4.5-A.4.12), thus demonstrating that a systematic method development with the help of

QCM dry mass sensing yields substantial benefits with reasonable efforts.

The discrepancies in gain factors of an HPLC clean-up between early- and late-eluting compounds have

analytical implications for carbon-CSIA. This is depicted in Figure 5.6 for one early-eluting compound (BAM,

Figure 5.6a) and one late-eluting compound (BOSC, Figure 5.6b), where limits of accurate carbon-CSIA are

shown as a function of environmental analyte concentration (x-axis), NOMconcentration (y-axis), and efficiency

of the HPLC purification (red and blue arrows). While for both model compounds these limits can be shifted

by approximately a factor of 10 to lower analyte concentrations using one HPLC purification (red arrow), a

factor of up to 500 can be gained instead for a late-eluting compound by optimizing the HPLC purification (blue

arrow). In contrast, only a factor of approximately 20 can be gained for an early-eluting compound. These

findings are meaningful since the challenge of separating small polar compounds using RP columns is well

known.258–260 Potentially, a column phase engineered for these compounds (e.g., HILIC)261,262 could result in a

better separation of early eluting compounds and NOM and thus a higher NOM removal during purification. To

put these findings in a larger context of complete sample preparation for carbon-CSIA, an overall higher removal

can become possible when combining the targeted HPLC cleanup presented here with the use of more selective

SPE materials (e.g., cyclodextrins)50 to replace OASIS HLB in the first extraction step, making it possible to

measure concentrations ≥ 100 ng/L for BAM and ≥ 3 ng/L for BOSC in a groundwater sample containing 0.5

mgC/L NOM.

The use of NOM elution data for a given matrix is, furthermore, not limited to the 8 model compounds

investigated in this study. Combined with software tools that can predict the analyte retention time and peak

width,263–265 it is possible to determine the CNOM/Canalyte ratio for any given analyte and thus the feasibility of

carbon-CSIA. Creating in the future an openly available database for different samples and matrices can be very

useful for researchers and can open the door to training artificial intelligence and prediction tools to assist in the

optimization of sample preparation for targeted analysis.
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6 Conclusion and Outlook

The overarching goal of this dissertation was to expand the applicability of CSIA to polar, non-volatile com-

pounds present in real-world samples in the low ng/L concentration range. In particular, the research focused

on addressing the significant analytical challenges associated with the lack of selectivity in compound-specific

isotope analysis (CSIA) sample preparation and the tediousness of these sample preparation workflows. To

this end, the present work investigated the effectiveness of strategies to optimize the matrix removal during the

purification of sample extract prior to gas chromatography isotope ratio mass spectrometry (GC-IRMS) isotope

analysis. This work supplements earlier research efforts addressing the identical analytical issue, wherein

substantial efforts were dedicated to introducing new selective extraction/purification techniques to the CSIA

sample preparation workflow. The results of this dissertation stress the importance of optimizing the matrix

removal during sample purification in a targeted way to enable accurate CSIA of complex real-world samples. In

particular, the presented approach of optimizing reversed-phase high-performance liquid chromatography (RP

HPLC) purification by online quantifyingmatrix compounds using quartz crystal microbalance (QCM) drymass

sensing paves the way for (i) faster development of purification methods, (ii) a significantly improved selectivity

of chromatographic purification, and (iii) new applications of CSIA for compounds present in complex samples

at low to mid ng/L concentrations.

6.1 Implications of Charge of the Sample Matrix on its Sorption on

Molecularly Imprinted Polymers

Chapter 2 investigated the influence of the charge of natural organic matter (NOM) on non-specific sorption of

NOM during molecularly imprinted solid phase extraction (MISPE) by reducing the charge density of NOM

using methylation of acidic functional groups. Breakthrough curves revealed a stronger interaction between

the methylated NOM and the MIP, leading to nearly 30% more NOM binding to the MIP. This is most likely

the result of smaller electrostatic repulsion between NOM molecules resulting from the significantly reduced

charge density. These results demonstrate the importance of studying the underlying intermolecular mechanisms

to understand non-specific sorption of matrix compounds on selective sorbent materials like MIPs. Further

research should focus on developing techniques to use this electrostatic repulsion to increase the selectivity of

MISPE and, thus, matrix removal before CSIA.
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6.2 Effectiveness and Limitations of Quartz Crystal Microbalance for

Online Quantification of Matrix Compounds during Liquid

Chromatography

The central part of the thesis addressed the challenge of developing a detection technique that can quantify

matrix components online during liquid chromatography. It was hypothesized that such a detector could help

to optimize the separation of the target analyte and the matrix, thus significantly improving the removal of

co-extracted sample matrix during the respective chromatographic purification of the sample extract to reduce

adverse effects of the sample matrix during the subsequent measurement of the target analyte using GC-MS and

GC-IRMS. The present work systematically investigated the possibilities and limitations of using QCM liquid

sensing (see chapter 3) and QCM dry mass sensing (see chapters 4 and 5) for this purpose.

6.2.1 Effectiveness and Limitations of QCM Liquid Sensing

To quantify matrix components in the liquid phase using QCM liquid sensing, first, the challenge of finding a

suitable coating for the QCM sensor that (i) can extract the entirety of NOM previously extracted from the water

sample with a (ii) sufficient capacity had to be tackled. Chapter 3 demonstrates for the first time the successful

grafting of a hyper crosslinked divinylbenzene ethylene glycol dimethacrylate (DVB-EGDMA) co-polymer

layer onto a QCM sensor using radical polymerization. It was possible to graft the polymer layer with a 200-300

nm thickness inside the dynamic range of QCM measurements.120,216 Humic acids did sorb onto the grafted

co-polymer during sorption experiments leading to a frequency decrease of 18-20 Hz. This is at the higher end

of the frequency decrease observed in other studies for a variety of polymer coatings.131,134,136,143 However,

this number is still too low for the purpose of matrix online monitoring. Additionally, it was not possible

to regenerate the sorption abilities of the grafted DVB-EGDMA co-polymer using organic solvents. Future

research should focus on further increasing the capacity of the grafted polymer layer by (i) increasing the layer

thickness while staying inside the QCM‘s dynamic range and (ii) further improving the homogeneity of the

grafted polymer layer. Furthermore, future research can build upon the established grafting and characterization

procedure to coat the QCM sensor with other co-polymers to gain valuable insights into sorption processes.

6.2.2 Effectiveness and Limitations of QCM Dry Mass Sensing

While there is still a long way to go to monitor matrix compounds online using QCM liquid sensing, QCM

dry mass sensing proved to be suitable as a holistic detector for the quantification of complex organic matrices

during gradient RP HPLC purification. Chapters 4 and 5 systematically investigated how a QCM can be coupled

to a commercial HPLC using a post-column adjustable flow splitter and a microfluidic spray-dryer, developed

a measurement and data processing strategy, assessed how it can be used for the quantification of matrix
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components during a typical gradient RP HPLC purification, and applied it to different mass spectrometry-

based applications. It was possible to overcome challenges of organic solvent gradients (i.e., constantly

changing spraying/evaporation behavior) for QCM dry mass sensing by calibrating the system using a constant

NaCl concentration in the HPLC eluate. Validating the measurement approach and characterizing the system’s

upper and lower limit of quantification, precision, and accuracy confirmed the relevance of the approach

for a large set of real-world samples in environmental and food chemistry and demonstrated the successful

integration of QCM dry mass sensing as auxiliary detector into HPLC purification workflows. Comparing

the results acquired with the QCM for a chromatographic application of a complex food sample with the ones

obtained with UV-Visible spectroscopy (UV/Vis) detection demonstrated the unsuitability of UV/Vis for such

a complex sample. It emphasized again the need for a universal detector like a QCM for the chromatographic

separation of target analytes from complex matrices.

Optimizing HPLC purification of an environmental extract using the combined data of UV/Vis detection for

the retention of the target analyte and QCM for the retention of matrix compounds led to 93-99.8% NOM being

removed from target analytes eluting at retention times spanning over the whole chromatogram. Furthermore,

using the data measured with the QCM, it was possible to find optimal HPLC gradients for the simultaneous

purification of multiple targets; this, however, led to up to 2.5% less NOM removal. On average, the maximal

matrix removal could be determined by screening 3 to 5 different gradients, thus demonstrating that a systematic

method development with the help of QCM dry mass sensing yields substantial benefits with reasonable effort.

Applying the QCM as a holistic detector for quantifying complex organic matrices during RP HPLC for

subsequent (i) pesticide residue analysis in food using GC-MS and (ii) carbon-CSIA of environmental aquatic

micropollutants demonstrated the validity and the applicability of the approach and the benefit this technique

can bring to many matrix susceptible analytical applications. (i) In GC-MS residue analysis, significantly

different matrix effects (up to 345%) were determined for different chromatographic fractions for several model

compounds (DEA, BAM, ATZ, Prop, BOSC). Together with the newly established correlation between the

amount of matrix quantified by QCM dry mass sensing and matrix effects measured during the subsequent

GC-MS analysis, this shows that QCM dry mass sensing can be a valuable tool to the analyst where HPLC

clean-up is routinely performed to reduce adverse effects caused by the sample matrix. (ii) Carbon-CSIA,

especially, proved to be highly susceptible to the sample matrix. A direct correlation was found between the

mass of NOM injected and the background intensity measured. This matrix background highly affected the

accuracy of the isotope measurement, leading to strong isotopic shifts of up to 3.3‰ and becoming greater

the higher the amount of matrix in the sample was and the greater the distance of the isotopic signature of

the target analyte to that of NOM was. Systematic investigations of the impact of the ratio of injected matrix

and analyte, CNOM/Canalyte, on the accuracy of carbon-CSIA further corroborated the hypothesis and findings

of Bakkour et al.56 and Glöckler et al.50 that the CNOM/Canalyte ratio is a good proxy of sample purity and
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that accurate carbon-CSIA necessitates a CNOM/Canalyte ratio in the purified sample extract of below 10. This

highlights the importance of (i) including standards spanning over a range of isotope signatures in carbon-CSIA

method development and (ii) the purity of the sample as a strategy to avoid systematic bias in isotope values.

Carbon-CSIA can thus benefit significantly from a sample purification optimized with a semi-universal detector

like the QCM, whose purification power can shift the boundaries of accurate carbon-CSIA by up to two orders

of magnitude toward lower micropollutant concentrations.

6.3 Perspectives for Micropollutant CSIA in Field Studies

Altogether, the findings of chapters 4 and 5 emphasize the importance (i) of suitable detection techniques for

the specific requirements of analytical tasks and (ii) of optimized, highly selective, and automated purification

techniques for sample clean-up to use the full potential of CSIA. To put these findings in a larger context of

complete sample preparation for carbon-CSIA and to provide the analyst with a more general tool at hand, Table

6.1 summarizes the sample preparation strategies for different NOM and analyte concentration levels expressed

as CNOM/Canalyte ratios.

For highly contaminated fields (level 1), an extraction using a classical sorbent like Oasis HLB is enough

(Ext; NOM removal: 90-95%). For pollutants in the low µg/L range (level 2), using a more selective SPE

during the extraction of the water sample can already be the solution to rising amounts of NOM in the extract

(Ext+; NOM removal: 95-99%; i.e., cyclodextrin polymers).50 While this shows that CSIA for pollutants in

the low µg/L range can be achieved using only a selective sample extraction, CSIA of non-volatile organic

micropollutants in the ng/L range was limited in the past by the low concentrations of micropollutants in the

environment and a lack of suitable sample preparation procedures. As a result, field applications were scarce

(see Figure 1.1). This work, together with very recent advancements in CSIA sample preparation, have the

potential to change this since field samples with analyte concentrations in the low to mid ng/L region (compare

Table 6.1 CBAM, CDEA, and CBOSC) can now be processed. Purifying the SPE extract by adding one HPLC

clean-up makes it possible to accurately measure isotope ratios of pollutants present in the sample in mid to

high ng/L concentrations (level 3, NOM removal: 99-99.95%) or even in the low to mid ng/L micropollutant

concentrations (level 4) if the pollutants were extracted during the first step using a selective SPE material

(NOM removal: 99.9-99.99%).

For very low concentrated pollutants (level 5), it might, however, still be necessary to add a second clean-up

step (NOM removal: 99.99-99.999%). To this end, procedures that were already successfully used in the

field of CSIA, like two-dimensional chromatography or MIPs can be used,56 or other purification techniques

using selective materials like covalent organic frameworks (COFs),266 or metal organic frameworks (MOFs),267

which still have to be investigated in the future for their use in CSIA sample preparation. Furthermore,

additional advancements on the instrumental end to increase the chromatographic resolution of the hyphenated
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Table 6.1 Sample preparation strategies for different NOM and analyte concentration regimes in environmental real-world
samples expressed as CNOM/Canalyte ratios.

Level CNOM/Canalyte CBAM
1 CDEA

1 CBOSC
1 NOM removal Sample Prep. Strategy

ratio range in % Ext Ext+ HPLC pur.
1 1-200 >11000 >13000 >8000 90-95 x
2 200-1000 >2300 >2600 >1600 95-99 x
3 1000-20000 >500 >900 >15 99-99.95 x x
4 3000-100000 >100 >180 >3 99.9-99.99 x x
5 30000-1000000 >10 >18 >0.3 99.99-99.999 x x x

1: in ng/L for a NOM concentration of 1 mgC/L
Extraction (Ext): analyte recovery: 90-100%, NOM removal: 90-95%.50

selective Extraction (Ext+): analyte recovery: 90-100%, NOM removal: 95-99%.50
HPLC: analyte recovery: 90-100%, NOM removal: 93-99%

additional purification (pur.): analyte recovery: 90-100%, NOM removal: 90%

GC and IRMS sensitivity might help close the gap to the level 5 concentrations. There are already strategies

available to increase the chromatographic resolution using, for example, longer columns,51 multidimensional

chromatography,34,52–55 or new reactor design that reduces peak broadening.268 Alongside with optimized

sample preparation procedures, they are expected to boost new applications of CSIA in the future.

All in all, this shows that there are several strategies available to reach level 5. Selectivity optimization

alongside automation of procedures is vital for all of them. QCM dry mass sensing paves the way to efficiently

develop optimized purification strategies for various purification problems using a large range of liquid chro-

matographic solid phase materials and modes. Combining the efficient development of selective purification

methods using the QCM with the strategy of comparing Cmatrix/Canalyte ratios before and after each chromato-

graphic purification helped to compare two different RP columns objectively for clean-up of an environmental

extract for CSIA. In the future, such a selectivity assessment strategy has to be developed/validated for different

matrices and applications of CSIA to enable targeted optimization. To extend the applicability of QCM dry

mass sensing even further, future research should focus on optimizing the spray-dryer to make it resistant to

solvents other than methanol, acetonitrile, or water269 and to be able to increase the dynamic range of the

flow-range to increase the sensitivity of the measuring process. Furthermore, while QCM dry mass sensing was

successfully applied to optimize the sample preparation for subsequent isotope analysis using GC-IRMS and

residue analysis using GC-MS, it might be potentially useful in the future to other matrix susceptible techniques

(i.e., LC-MS)155 or could even be used to quantify particles (i.e., nanoparticles, micro/nanoplastic).

Last but not least, QCM dry mass sensing enabled online method development and optimization for CSIA

sample preparation for environmental extracts, thus taking a big step towards a fully automated method develop-

ment. The future generation of more data on the behavior of matrix during chromatographic purification using

a holistic detector like the QCM could open the door to training artificial intelligence as a method development

assistant, getting even closer to the goal of a fully automated, highly selective sample preparation.
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Table A.1 Publications in CSIA in environmental chemistry are classified as work on newmethods tomeasure a given com-
pound with isotope analysis (method), as a study on the lab scale (lab), or as a field study using real-world samples (field)
for several compound classes, namely PAHs (polycyclic aromatic hydrocarbon), pesticides (atrazine, acetochlor, meto-
lachlor, chloridazon, desethylatrazine, desphenylchloridazon, 2,6-dichlorobenzamide, isoproturon, parathion, glyphosate,
metalaxyl, bromoxynil, dimetomorph), HCHs (hexachlorocyclohexane), 1H-benzotriazole, BTEX (aromatic hydrocar-
bons benzene, toluene, ethylbenzene, and xylene), PCB+PCDD (polychlorinated biphenyl, polychlorinated dibenzodiox-
ins), pharmaceuticals (diclofenac, ibuprofen, sulfamethoxazole, sulfonamide), explosives (2,4,6-trinitrotoluene, hexogen,
2,4-dinitrotoluene), fuel oxygenates (tert-butyl methyl ether, ethyl tert-butyl ether, tert-butyl alcohol), and volatile chlo-
rinated aliphatics (trans-1,2-dichloroethene, cis-1,2-dichloroethene, trichloroethene, tetrachloroethene, dichloromethane,
chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, tetrachloromethane). Only publications on
micropollutants in water or soil measured with IRMS were considered but no reviews and no exhaust analytics. Source:
Kuntze et al.57 and Web of Science. Publications were considered till 04.10.2023.

Publication Year Method/ Lab/ Field

PAH

Hammer et al.270 1998 field

McRae et al.271 2000 field

Fabbri et al.272 2003 field

Walker et al.273 2005 field

Saber et al.274 2006 field

Bosch et al.275 2015 field

Richnow et al.276 2003 field

O’malley et al.277 1996 field

Richnow et al.278 2003 field

Micić et al.279 2007 field

Morasch et al.280 2011 field

Mahro et al.281 2014 field

Steinbach et al.282 2004 field

Blum et al.283 2009 field

Griebler et al.284 2004 field

Marquès et al.285 2016 lab
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Blessing et al.286 2015 method

Kümmel et al.287 2016 lab

Morasch et al.288 2007 lab

Li et al.289 2009 method

Tolosa et al.290 2019 method

Yanik et al.291 2003 lab

Zhang et al.292 2019 field

Mikolajczuk et al.293 2009 method

Lichtfouse et al.294 1995 method

Yan et al.295 2006 field

Cennerazzo et al.296 2017 lab

McRae et al.297 1996 lab

McRae et al.298 1998 lab

Ou et al.299 2010 field

O’malley et al.300 1994 field

Kim et al.301 2005 method

Bergmann et al.302 2011 lab

Buczynska et al.303 2014 method

Ternon et al.304 2015 method

Kim et al.305 2008 field

Smirnov et al.306 1998 field

Kim et al.307 2006 field

Yang et al.308 2020 lab

McRae et al.309 2000 field

Vinzelberg et al.310 2005 field

Mazéas et al.311 1999 field

Zhang et al.312 2014 field

Okuda et al.313 2002 field

Petrisic et al.314 2013 field

O’malley et al.315 1997 lab

Zhang et al.316 2014 method

Gauchotte-Lindsay et al.317 2014 method

Wang et al.318 2004 method

McRae et al.319 1999 lab
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Boyd et al.320 2006 method

Marozava et al.321 2019 lab

Mazéas et al.322 2001 method

Liu et al.323 2021 lab

Meckenstock et al.324 2004 lab

Mazéas et al.325 2002 lab

Jautzy et al.326 2013 field

Meckenstock et al.327 1999 lab

Morasch et al.328 2002 lab

Tolosa et al.329 2004 method

Dickhut et al.330 2004 lab

Tian et al.331 2023 method

van Leeuwen et al.332 2022 field

pesticides

Chen et al.333 2017 lab

Chen et al.334 2019 lab

Penning et al.335 2010 lab

Reinnicke et al.336 2012 method

Schreglmann et al.68 2013 field

Ehrl et al.337 2018 lab

Masbou et al.338 2018 lab

Ehrl et al.339 2018 lab

Torrento et al.65 2019 field

Ponsin et al.340 2019 method

Meyer et al.341 2008 method

Elsayed et al.342 2014 lab

Lutz et al.343 2017 field

Lihl et al.344 2019 method

Alvarez-Zaldívar et al.253 field

Imfeld et al.345 2018 lab

Melsbach et al.346 2019 method

Schürner et al.347 2016 lab

Jin et al.348 2016 lab
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Wu et al.349 2018 lab

Wu et al.350 2018 field

Kujawinski et al.351 2013 method

Mogusu et al.352 2015 method

Hartenbach et al.353 2008 lab

Yamamoto et al.354 2004 lab

Lutz et al.355 2013 lab

Meyer et al.356 2009 lab

Penning et al.357 2007 method

Reinnicke et al.358 2012 lab

Maier et al.359 2013 method

Wu et al.360 2014 method

Jin et al.361 2016 method

Wu et al.362 2017 method

Tang et al.363 2017 lab

Chen et al.364 2019 lab

Melsbach et al.66 2020 field

Limon et al.365 2020 method

Torabi et al.366 2020 lab

Knossow et al.367 2020 lab

Shi et al.368 2022 lab

Masbou et al.369 2018 method

Melsbach et al.370 2020 lab

Droz et al.371 2021 lab

Drouin et al.372 2021 lab

Torrentó et al.373 2021 method

Gilevska et al.374 2023 field

Gilevska et al.375 2022 field

Glöckler et al.50 2023 method

Liang et al.376 2023 lab

Chen et al.377 2022 lab

Li et al.378 2022 lab

Arar et al.379 2023 lab

Prieto-Espinoza et al.380 2022 lab
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Kundu et al.381 2022 lab

Sun et al.382 2022 lab

Marks et al.236 2022 method

Meite et al.383 2022 lab

HCH

Badea et al.384 2011 field

Bashir et al.385 2015 field

Chartrand et al.386 2015 field

Liu et al.387 2017 field

Wu et al.388 2019 field

Zhang et al.389 2014 lab

Badea et al.390 2015 method

Jin et al.361 2016 method

Qian et al.391 2019 lab

Badea et al.392 2009 lab

Bashir et al.393 2013 lab

Schilling et al.394 2019 lab

Schilling et al.395 2019 lab

Ivdra et al.396 2014 method

Gui et al.397 2015 method

Bashir et al.398 2018 lab

Liu et al.399 2020 lab

Gao et al.400 2022 field

Liu et al.401 2022 lab

Liu et al.402 2019 lab

Badea et al.403 2021 lab

Kannath et al.404 2019 method

Ivdra et al.12 2017 lab

Liu et al.405 2022 field

Zhu et al.406 2023 lab

Liu et al.407 2022 lab

Gao et al.400 2022 field

Liu et al.408 2023 field
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Aamir et al.409 2023 field

1H-benzotriazole

Bakkour et al.56 2018 field

Huntscha et al.410 2014 lab

Spahr et al.411 2013 method

Wu et al.412 2021 lab

BTEX

Kelley et al.413 1997 field

Mancini et al.414 2008 field

Lutz et al.415 2014 field

Beckley et al.416 2016 field

Richnow et al.417 1999 field

Stehmeier et al.418 1999 field

Bugna et al.419 2004 field

Bugna et al.420 2005 field

Micić et al.279 2007 field

Beller et al.421 2008 field

Gelman et al.422 2008 field

Mahro et al.281 2014 field

Kolhatkar et al.423 2017 field

Moshkovich et al.424 2018 field

BenIsrael et al.425 2019 field

Vieth et al.426 2001 field

Mancini et al.427 2002 field

Meckenstock et al.428 2002 field

Richnow et al.429 2002 field

Richnow et al.276 2003 field

Richnow et al.278 2003 field

Fischer et al.430 2004 field

Griebler et al.284 2004 field

Peter et al.431 2004 field

Steinbach et al.282 2004 field
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Vieth et al.432 2005 field

Fischer et al.433 2006 field

Mak et al.434 2006 field

Stelzer et al.435 2006 field

Fischer et al.58 2007 field

Bouchard et al.436 2008 field

Batlle-Aguilar et al.437 2009 field

Blum et al.283 2009 field

Mäurer et al.438 2009 field

Prommer et al.439 2009 field

De Biase et al.440 2011 field

Morasch et al.280 2011 field

Rakoczy et al.441 2011 field

Van Keer et al.442 2012 field

Batlle-Aguilar et al.443 2014 field

Ponsin et al.444 2015 field

Gilevska et al.445 2019 field

McKelvie et al.446 2005 field

Feisthauer et al.447 2012 field

Xiong et al.448 2012 field

Wei et al.449 2015 field

Shayan et al.450 2018 field

Wei et al.451 2018 field

Wanner et al.452 2019 field

Imfeld et al.453 2014 lab

Ponsin et al.454 2017 method

Breukelen et al.455 2007 method

Vogt et al.456 2008 lab

Fischer et al.457 2009 lab

Herrero-Martín et al.458 2015 method

Ebongué et al.459 2009 method

Dempster et al.460 1997 method

Sherwood Lollar et al.461 1999 lab

Ahad et al.462 2000 lab



A Supporting Information to Introduction Figure 1.1

86

Slater et al.463 2000 lab

Wang et al.464 2003 lab

Harrington et al.465 1999 lab

Aeppli et al.466 2008 method

Kampara et al.467 2008 lab

Tobler et al.468 2008 lab

Langenhoff et al.469 2009 lab

Seeger et al.470 2011 lab

Dorer et al.471 2014 method

Jin et al.472 2014 lab

Busch-Harris et al.473 2008 lab

Jin et al.474 2014 lab

Ward et al.475 2000 lab

Mancini et al.476 2003 lab

Dias et al.477 1997 method

Slater et al.478 1999 lab

Elsner et al.479 2006 method

Morasch et al.288 2007 lab

Mancini et al.414 2008 lab

Herrmann et al.480 2009 lab

Amaral et al.481 2010 method

Jechalke et al.482 2013 lab

Centler et al.483 2013 method

Bouchard et al.484 2014 method

Passeport et al.485 2014 method

Dorer et al.486 2016 lab

Bouchard et al.487 2017 method

Morasch et al.488 2001 lab

Morasch et al.489 2004 lab

Mancini et al.490 2006 lab

Qiu et al.491 2013 lab

Khan et al.492 2018 lab

Klisch et al.493 2012 method

Nagel et al.494 2011 field
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Knöller et al.495 2006 lab

Schüth et al.496 2003 lab

Sun et al.497 2021 lab

Ahad et al.498 2008 lab

Teramoto et al.499 2020 field

van Leeuwen et al.332 2022 field

Müller et al.500 2020 field

Passeport et al.20 2016 field

Keller et al.501 2017 lab

Feng et al.502 2021 method

Solano et al.503 2018 lab

Gilevska et al.504 2021 field

Willach et al.505 2020 method

Rostkowski et al.506 2021 lab

van Breukelen et al.507 2008 method

Hunkeler et al.508 2001 lab

Shin et al.509 2010 lab

Poulson et al.510 2010 lab

Fischer et al.511 2008 lab

Kopinke et al.512 2005 lab

Rolle et al.513 2017 lab

Oba et al.514 2008 lab

Rakoczy et al.515 2013 lab

Höhener et al.516 2012 lab

Bouchard et al.517 2008 lab

Jochmann et al.64 2006 method

Aüllo et al.518 2016 lab

Vieth et al.519 2006 lab

Chen et al.520 2022 lab

Khan et al.521 2022 lab

PCB+PCDD

Horii et al.522 2005 method

Vetter et al.523 2007 method
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Drenzek et al.524 2004 lab

Drenzek et al.525 2001 lab

Huang et al.526 2020 field

Böttcher et al.527 2010 field

Liu et al.528 2010 lab

Ewald et al.529 2007 lab

pharmaceuticals

Schürner et al.347 2016 field

Maier et al.530 2014 method

Jin et al.348 2016 method

Maier et al.17 2016 lab

Birkigt et al.531 2015 lab

Gilevska et al.13 2015 lab

Willach et al.532 2017 lab

Willach et al.533 2018 lab

Kujawinski et al.534 2012 method

Bennett et al.535 2017 field

Ouyang et al.536 2022 lab

explosives

Coffin et al.537 2001 field

Amaral et al.538 2009 field

Bernstein et al.539 2010 field

Moshe et al.540 2010 field

Wĳker et al.16 2013 field

Miyares et al.541 1999 field

Pennington et al.542 2001 field

Hatzinger et al.543 2018 field

Gelman et al.544 2011 method

Berg et al.545 2007 method

Bernstein et al.546 2008 lab

Lott et al.547 2015 method

Hofstetter et al.548 2008 lab
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Tobler et al.549 2007 lab

Hartenbach et al.550 2006 lab

Ulrich et al.551 2018 lab

Tong et al.552 2020 lab

Berens et al.553 2019 lab

Fuller et al.554 2020 field

Smith et al.555 2015 lab

Bernstein et al.556 2013 lab

Fuller et al.557 2016 lab

Ippoliti et al.558 2023 lab

Hlohowskyj et al.559 2023 lab

fuel oxygenates

Oudĳk et al.560 2008 field

Day et al.561 2003 field

Day et al.562 2003 field

Kolhatkar et al.563 2002 field

Spence et al.564 2005 field

McKelvie et al.565 2007 field

Gelman et al.422 2008 field

De Biase et al.440 2011 field

Thornton et al.566 2011 field

Lu et al.567 2016 field

Moshkovich et al.424 2018 field

van der Waals et al.568 2018 field

Kuder et al.569 2005 field

Wilson et al.570 2005 field

Zwank et al.571 2005 field

McKelvie et al.572 2007 field

Gafni et al.573 2016 field

Berg et al.574 2005 field

Lesser et al.575 2008 field

Kujawinski et al.576 2010 field

Jechalke et al.577 2010 field
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Fayolle-Guichard et al.578 2012 field

Bombach et al.579 2015 field

Bastida et al.580 2010 lab

Youngster et al.581 2010 lab

Hunkeler et al.582 2001 lab

Smallwood et al.583 2001 method

Wang et al.464 2003 lab

Zwank et al.63 2003 method

Jochmann et al.64 2006 method

Somsamak et al.584 2006 lab

Elsner et al.479 2006 method

van Breukelen et al.585 2007 method

van Breukelen et al.455 2007 method

Eweis et al.586 2007 lab

Aeppli et al.466 2008 method

Busch-Harris et al.473 2008 lab

Kuder et al.587 2009 lab

Gauchotte et al.588 2009 method

Amaral et al.481 2010 method

Youngster et al.589 2010 lab

Seeger et al.470 2011 lab

North et al.590 2012 lab

Jin et al.472 2014 lab

Herrero-Martín et al.458 2015 method

Liu et al.591 2016 lab

Rosell et al.592 2007 lab

Rosell et al.593 2012 lab

Zhang et al.594 2015 lab

McKelvie et al.595 2009 lab

Schmidt et al.596 2004 lab

Heo et al.597 2012 lab

McKelvie et al.598 2010 lab

Somsamak et al.599 2005 lab

Shin et al.600 2013 lab
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Rosell et al.601 2010 lab

Youngster et al.581 2010 lab

Elsner et al.602 2007 lab

O’Sullivan et al.603 2008 lab

Tremblay et al.604 2009 method

Bouchard et al.605 2022 lab

Ji et al.606 2023 lab

volatile chlorinated aliphatics

Hunkeler et al.607 2004 field

Blessing et al.608 2009 field

Hunkeler et al.609 2011 field

McHugh et al.610 2011 field

Kaown et al.15 2014 field

Filippini et al.611 2018 field

Eberts et al.612 2008 field

Nĳenhuis et al.613 2013 field

Badin et al.614 2015 field

Beneteau et al.615 1999 field

Wang et al.616 2010 field

Wang et al.617 2013 field

Beckley et al.416 2016 field

McKelvie et al.565 2007 field

Mundle et al.618 2012 field

Damgaard et al.619 2013 field

Puigserver et al.620 2016 field

Kirchholtes et al.621 2004 field

Vanstone et al.622 2005 field

Chapman et al.623 2007 field

Nĳenhuis et al.624 2007 field

Imfeld et al.625 2008 field

Morrill et al.626 2009 field

Courbet et al.627 2011 field

Révész et al.628 2014 field
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Lee et al.629 2015 field

Filippini et al.630 2016 field

Hallsworth et al.631 2017 field

Pierce et al.632 2018 field

Schaefer et al.633 2018 field

Vogel et al.634 2018 field

Blázquez-Pallí et al.635 2019 field

Buchner et al.636 2019 field

Richards et al.637 2019 field

Sturchio et al.638 1998 field

Hunkeler et al.639 1999 field

Song et al.640 2002 field

Kirtland et al.641 2003 field

Carreón-Diazconti et al.642 2009 field

Kuhn et al.643 2009 field

McLoughlin et al.644 2014 field

Velimirovic et al.645 2014 field

Sonne et al.646 2017 field

Wilkin et al.647 2018 field

Pooley et al.648 2009 field

Elsner et al.61 2010 field

Amaral et al.649 2011 field

Broholm et al.650 2014 field

Hermon et al.651 2018 field

Wanner et al.652 2018 field

Vieth et al.653 2003 field

Morrill et al.654 2005 field

Martin et al.655 2006 field

Hirschorn et al.656 2007 field

Mäurer et al.438 2009 field

Patterson et al.657 2013 field

Sherwood Lollar et al.252 2001 field

Hunkeler et al.658 2003 field

Chartrand et al.659 2005 field
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Hunkeler et al.660 2005 field

Abe et al.661 2009 field

Hamonts et al.662 2012 field

Appelo et al.663 2010 field

Torrentó et al.664 2014 field

Aeppli et al.60 2010 field

Hunkeler et al.665 2011 field

Lojkasek-Lima et al.666 2012 field

Lojkasek-Lima et al.667 2012 field

Wiegert et al.668 2012 field

Petitta et al.669 2013 field

Palau et al.59 2014 field

Audí-Miró et al.670 2015 field

Kaown et al.671 2016 field

Palau et al.672 2016 field

Clark et al.673 2017 field

Dogan-Subasi et al.674 2017 field

Schiefler et al.675 2018 field

Segal et al.676 2018 field

Jochmann et al.64 2006 method

Imfeld et al.677 2008 lab

Cichocka et al.678 2008 lab

Haluska et al.679 2019 field

van Breukelen et al.680 2017 lab

Alvarez-Zaldívar et al.681 2016 lab

Schmidt et al.682 2014 lab

Kuder et al.683 2013 method

Chan et al.684 2012 lab

Fletcher et al.685 2011 lab

Morrill et al.686 2004 method

Harding et al.687 2013 lab

Liu et al.688 2018 lab

Rosell et al.689 2019 lab

Gafni et al.690 2019 field
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van Breukelen et al.691 2005 lab

Vanstone et al.692 2008 lab

Hunkeler et al.693 2009 method

Fletcher et al.694 2009 lab

Amaral et al.481 2010 method

Chiang et al.695 2012 lab

Wiegert et al.696 2013 lab

Shouakar-Stash et al.697 2013 method

Wanner et al.698 2015 lab

Kret et al.699 2015 lab

Wanner et al.700 2016 field

Ebert et al.701 2017 method

Goli et al.702 2017 method

Blázquez-Pallí et al.703 2019 lab

Shouakar-Stash et al.704 2006 method

Leitner et al.705 2017 lab

Zwank et al.63 2003 method

Kuder et al.706 2013 lab

Rodríguez-Fernández et al.707 2017 lab

Wanner et al.708 2019 lab

Rodríguez-Fernández et al.709 2018 lab

Zwank et al.710 2005 lab

Rodríguez-Fernández et al.711 2018 field

Mundle et al.712 2017 lab

van Breukelen et al.585 2007 lab

Chartrand et al.713 2007 method

Heckel et al.714 2017 method

Slater et al.478 1999 lab

Elsner et al.479 2006 method

Bouchard et al.484 2014 method

Bouchard et al.487 2017 method

Ertl et al.715 1996 lab

Dayan et al.716 1999 lab

Numata et al.717 2002 method
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Poulson et al.718 2002 lab

Slater et al.719 2002 lab

Shouakar-Stash et al.720 2003 lab

Slater et al.721 2003 lab

Chu et al.722 2004 lab

Sakaguchi-Söder et al.723 2007 lab

Elsner et al.724 2008 lab

Liang et al.725 2009 lab

Aeppli et al.726 2009 lab

Bernstein et al.727 2011 lab

Marchesi et al.728 2012 lab

Klisch et al.493 2012 method

Gan et al.729 2013 method

Audí-Miró et al.730 2013 lab

Cretnik et al.731 2013 lab

Marchesi et al.732 2013 lab

Cretnik et al.733 2014 lab

Jin et al.472 2014 lab

Renpenning et al.734 2014 lab

Lee et al.735 2015 lab

Buchner et al.736 2015 lab

Liu et al.737 2016 lab

Liu et al.738 2016 lab

Badin et al.19 2016 lab

Gafni et al.739 2018 lab

Heckel et al.740 2018 lab

Yu et al.741 2018 lab

Liu et al.742 2018 lab

Jian-Ye et al.743 2019 method

Thouement et al.744 2019 lab

Lihl et al.344 2019 method

Gafni et al.745 2020 lab

Gui et al.397 2015 method

Walaszek et al.746 2020 lab
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Franke et al.747 2020 lab

Franke et al.748 2017 lab

Hirschorn et al.749 2007 lab

Carpani et al.750 2021 field

Heckel et al.751 2022 lab

Yankelzon et al.752 2020 lab

Palau et al.753 2014 method

Head et al.754 2020 lab

Hunkeler et al.755 2000 lab

Palau et al.756 2017 lab

Hirschorn et al.757 2004 lab

Hunkeler et al.758 2002 lab

Wanner et al.759 2017 field

Abe et al.760 2009 lab

Soder-Walz et al.761 2021 lab

Palau et al.762 2017 lab

Hart et al.763 2022 field

Liu et al.764 2021 lab

Rodríguez-Fernández et al.707 2017 lab

Heckel et al.765 2017 lab

Liang et al.766 2007 lab

Rodríguez-Fernández et al.709 2018 lab

Neumann et al.767 2009 lab

Elsner et al.768 2007 lab

Stewart et al.769 2018 lab

Elsner et al.770 2004 lab

Breider et al.771 2013 lab

Rostkowski et al.506 2021 lab

Arnold et al.772 2008 lab

Torrentó et al.773 2017 lab

Breider et al.774 2014 lab

Asfaw et al.775 2020 method

Chen et al.776 2018 lab

Heckel et al.777 2019 lab
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Aeppli et al.778 2013 lab

Hunkeler et al.14 2012 field

Benbow et al.779 2008 method

Nikolausz et al.780 2006 lab

Torgonskaya et al.781 2019 lab

Nadalig et al.782 2013 lab

Prieto-Espinoza et al.783 2021 lab

Cichocka et al.784 2007 lab

Nĳenhuis et al.785 2005 lab

Büsing et al.786 2019 lab

Béranger et al.787 2006 lab

Renpenning et al.788 2015 lab

Jeannottat et al.789 2012 lab

Numata et al.717 2002 lab

Palau et al.790 2010 field

Thullner et al.791 2008 method

Badin et al.792 2014 lab

Barth et al.793 2002 lab

Jeannottat et al.794 2013 lab

Gan et al.795 2014 lab

Morrill et al.796 2006 lab

Höhener et al.797 2015 method

Lihl et al.798 2019 lab

Marco-Urrea et al.799 2011 lab

Smits et al.800 2011 lab

Imfeld et al.801 2011 field

Ottosen et al.802 2021 field

Damgaard et al.803 2013 field

Murray et al.804 2019 field

Åkesson et al.805 2020 field

Hellal et al.806 2020 field

Schwarzbauer et al.807 2005 method

Ghezzi et al.808 2021 field

Halloran et al.809 2021 method
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Ottosen et al.810 2020 field

Liu et al.811 2014 lab

Schmidt et al.812 2014 lab

Yu et al.813 2014 lab

Bloom et al.814 2000 lab

Horst et al.815 2020 lab

Schüth et al.816 2003 lab

Kopinke et al.512 2005 method

Bill et al.817 2001 lab

Schüth et al.496 2003 lab

Tiehm et al.818 2008 lab

Dong et al.819 2011 lab

Clingenpeel et al.820 2012 lab

Han et al.821 2018 lab

Horst et al.822 2016 lab

Höhener et al.516 2012 lab

Li et al.823 2022 lab

Julien et al.824 2018 method

Imfeld et al.825 2010 lab

Schmidt et al.826 2010 lab

Abe et al.827 2009 lab

Gilevska et al.828 2015 method

Holt et al.829 2001 method

Brungard et al.830 2003 lab

Heraty et al.831 1999 lab

Bouchard et al.605 2022 lab

Lincker et al.832 2022 lab

Buchner et al.833 2022 method

Wienkenjohann et al.834 2023 lab

Willmann et al.835 2023 lab

Phillips et al.836 2022 lab

Asfaw et al.837 2023 lab

Cai et al.838 2022 lab

Emsbo-Mattingly et al.839 2022 field



99

Yuan et al.840 2022 field

Ji et al.606 2023 lab
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B Supporting Information to Chapter 2

B.1 Chemicals, Materials, and Standard Solutions

All chemicals and materials purchased commercially and used in this work are summarized in Table B.1.

Table B.1 List of reagents, solvents, and analytical standards.

Chemical Purity/Grade/Type Supplier
dichloromethane ≥99% Sigma-Aldrich

formic acid ≥88% Sigma-Aldrich
hydrochloric acid ACS reagent, 37% Sigma-Aldrich

methanol ≥99% Sigma-Aldrich
sodium chloride ≥99.5% Fisher Scientific

sodium hydroxide solution 0.1 N Carl Roth
(trimethylsilyl)diazomethane solution 2.0 M in hexane Sigma-Aldrich

Ultrapure H2O (18.2 MΩ cm at 25 °C) was obtained from a Milli-Q® direct reference H2O purification

system from Merck MilliPore (Burlington, USA).

B.2 Methylation: Mechanistic Details

Figure B.1 Reaction mechanism of methylation of NOM carboxylic acid groups (1) using TMSD (2) according to Kühnel
et al.841 2 deprotonates the carboxylic acid group of 1 and is subsequently desilylated by the excess of methanol (3). The
nucleophilic attack of the deprotonated carboxylic acid group at diazomethane (4) leads to the release of nitrogen and the
final methylated product (5).
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B.3 Supplementary Data on the Titration
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Figure B.2 Triplicate acid-base titration measurements of NOM (3 mgC).

B.4 Supplementary Data on the Breakthrough Curves
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Figure B.3 Validation of time methylated NOM samples have to be ultrasonicated using an ultrasonic lab homogenizer to
fully reconstitute all organic compounds in water.
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Figure B.4 Breakthrough curves of a control measurement on MISPE. For the control measurement, the same reaction
conditions used for methylated NOM were used except of no NOM was included. The gray bars show the amount of DOC
in the breakthrough and indicate the amount of contamination in the different fractions originating from the methylation
procedure.
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C Supporting Information to Chapter 3

C.1 Chemicals, Materials, and Standard Solutions

All chemicals and materials purchased commercially and used in this work are summarized in Table C.1.

Table C.1 List of reagents, solvents, and analytical standards.

Chemical Purity/Grade/Type Supplier
1-vinyl-2-pyrrolidone stabilizer: sodium hydroxide Sigma-Aldrich

2,2’-azobis(2-methylpropionitrile) ≥98% Sigma-Aldrich
𝛾-methacryloxypropyltrimethoxysilane ≥97% Sigma-Aldrich

acetone technical grade in-house supply
acetonitrile ≥99% Sigma-Aldrich

divinylbenzene stabilizer: 4-tert-butylpyrocatechol Sigma-Aldrich
ethylene glycol dimethacryate stabilizer: hydroquinone monomethyl ether Sigma-Aldrich

humic acids technical grade Sigma-Aldrich
hydrochloric acid ACS reagent, 37% Sigma-Aldrich
isopropyl alcohol ≥99% Sigma-Aldrich
magnesium sulfate anhydrous, ≥98.0% Sigma-Aldrich

methanol ≥99% Sigma-Aldrich
sodium hydroxide solution 1 N Carl Roth

toluene ≥99% Sigma-Aldrich
trimethylol-propane trimethacrylate stabilizer: monomethyl ether hydroquinone Sigma-Aldrich

Ultrapure H2O (18.2 MΩ cm at 25 °C) was obtained from a Milli-Q® direct reference H2O purification

system from Merck MilliPore (Burlington, USA).

Before using DVB for the synthesis, the respective monomer was sequentially washed twice with NaOH (1

M) and once with water to remove the stabilizer and. then dried over MgSO4. The stabilizer was removed from

EGDMA using a vacuum destillation at 140 °C and 40 mbar. The purified monomers were stored at -80 °C. To

purify AIBN, it was recrystallized in methanol and stored at 4 °C.

The carbon content of the above-mentioned humic acids was determined to be 37% ± 3% by measuring a

suspension of 0.5 mg humic acids in 1 mL water with a Total Organic Carbon Analyzer (TOC-L, Shimadzu,

Germany) and used for mass calculations.
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C.2 Sensor Holder

Figure C.1 Sensor holder used during the coating reaction to guarantee only the upper sensor surface being coated. (a)
Scheme of the sensor holder: 1: Custom-made teflon sensor holder, 2: Screws, 3: O-rings made of FFKM (11.1 mm x
1.6 mm, Techniparts, Wezep, Netherlands), 4: QCM sensor. (b) Setup during the reaction: The sensor holder is placed in
the middle of the flask using wire.

C.3 Data Evaluation

Listing A.4.1 Peak picking for the interval experiments with the shutter in which outliers were eliminated manually.

# In [ 1 ] :

### RUN ME

import pandas as pd

import s c i p y . s i g n a l a s s i g n a l

import numpy as np

import s c i p y

from ma t p l o t l i b import pyp l o t a s p l t

import s e abo r n as sn s

import os

# In [ 2 ] :

### RUN ME

def c oun t _ e xp e r imen t s ( d a t a ) :

n = 1

exp e r imen t s = {n : { ’ r e l a t i v e _ t i m e ’ : [ ] , ’ f r e qu en cy ’ : [ ] } }
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f o r i , row in d a t a . i t e r r ow s ( ) :

i f ( i >0 and d a t a . R e l a t i v e _ t im e . l o c [ i ] <

d a t a . R e l a t i v e _ t im e . l o c [ i −1 ] ) :

n += 1

exp e r imen t s [ n ] = { ’ r e l a t i v e _ t i m e ’ : [ ] , ’ f r e qu en cy ’ : [ ] }

e xp e r imen t s [ n ] [ ’ r e l a t i v e _ t i m e ’ ] . append ( row . R e l a t i v e _ t im e )

e xp e r imen t s [ n ] [ ’ f r e qu en cy ’ ] . append ( row . Resonance_Frequency )

re turn n , e xp e r imen t s

def ge t _p e ak s ( expe r imen t , d i s t a n c e =200 , p rominence =1 ) :

peaks , _ = s i g n a l . f i n d _p e a k s ( expe r imen t [ ’ f r e qu en cy ’ ] ,

p rominence=prominence , d i s t a n c e = d i s t a n c e )

re turn np . a r r a y ( expe r imen t [ ’ r e l a t i v e _ t i m e ’ ] ) [ peaks ] ,

np . a r r a y ( expe r imen t [ ’ f r e qu en cy ’ ] ) [ peaks ]

def c l e a n_p e ak s ( t imepo i n t s _ p e a k s , v a l u e s_peak s , t h r h =20 ) :

t o _ d e l e t e = [ ]

f o r i , v a l in enumerate ( v a l u e s _ p e a k s ) :

i f i >0 and i < l en ( v a l u e s _ p e a k s )−1 and

abs ( v a l u e s _ p e a k s [ i ]− v a l u e s _ p e a k s [ i −1])<= t h r h and

abs ( v a l u e s _ p e a k s [ i ]− v a l u e s _ p e a k s [ i +1]) <= t h r h :

t o _ d e l e t e . append ( i )

v a l u e s _ p e a k s = np . d e l e t e ( v a l u e s_peak s , t o _ d e l e t e )

t im e p o i n t s _ p e a k s = np . d e l e t e ( t imepo i n t s _ p e a k s , t o _ d e l e t e )

re turn t imepo i n t s _ p e a k s , v a l u e s _p e a k s

def g e t _ v a l u e ( param , d e f u l t _ p a r am ) :

i f param == ’ ’ :

re turn d e f u l t _ p a r am

e l s e :

re turn i n t ( param )

# In [ 3 ] :

pa t h = os . p a t h . j o i n ( ’~ ’ , ’ Desktop ’ , ’ I n t e r v a l ’ ,
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’ 202100830 _ I n t e r v a l −100mgC−3. x l s x ’ )

d a t a = pd . r e a d _ e x c e l ( pa th , shee t_name= ’ Tab e l l e 2 ’ )

d a t a = d a t a . rename ( columns={

’Time␣ ( s ) ’ : ’ R e l a t i v e _ t im e ’ ,

’ De l t a ␣F␣ (Hz ) ’ : ’ Resonance_Frequency ’

} )

n , e x p e r imen t s = coun t _ e xp e r imen t s ( d a t a )

pr in t ( f ’ Based␣on␣ t h e ␣ t i m e l i n e ␣ t h e r e ␣were ␣{n}␣ exp e r imen t s ␣ d e t e c t e d ’ )

# In [ 4 ] :

### Compute t h e p i c k s f o r t h e e x p e r i m e n t

n = i n t ( input ( ’ Choose␣ expe r imen t ␣ t o ␣ p l o t : ’ ) )

d i s t a n c e = input ( ’ Approximate ␣min␣ d i s t a n c e ␣ between ␣ peaks ␣ ( d e f a u l t =200 ) : ’ )

p rominence = input ( ’ Prominence ␣ va l u e ␣ f o r ␣ peaks ␣ ( d e f a u l t ␣ 1 ) : ’ )

t h r e s h o l d = input ( ’ Th r e sho l d ␣ f o r ␣ peaks ␣ remova l ( d e f a u l t ␣ 2 0 ) : ’ )

t imepo i n t s _ p e a k s , v a l u e s _ p e a k s = ge t _p e ak s (

expe r imen t = exp e r imen t s [ n ] ,

d i s t a n c e = g e t _ v a l u e ( d i s t a n c e , 200 ) ,

p rominence= g e t _ v a l u e ( prominence , 1 )

)

t imepo i n t s _ p e a k s , v a l u e s _ p e a k s = c l e a n_p e ak s (

t im e p o i n t s _ p e a k s = t imepo i n t s _ p e a k s ,

v a l u e s _ p e a k s = va l u e s_peak s ,

t h r h = g e t _ v a l u e ( t h r e s h o l d , 20)

)

### Approx imate min d i s t a n c e be tween peaks ( d e f a u l t =200): 200

### Prominence va l u e f o r peaks ( d e f a u l t 1 ) : 1

### Thr e sho l d f o r peaks remova l ( d e f a u l t 2 0 ) : 0

# In [ 5 ] :

### P l o t t h e r e s u l t s

p l t . f i g u r e ( f i g s i z e = ( 2 0 , 1 0 ) )
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sn s . l i n e p l o t ( x= exp e r imen t s [ n ] [ ’ r e l a t i v e _ t i m e ’ ] ,

y= exp e r imen t s [ n ] [ " f r e qu en cy " ] , c i =None )

sn s . s c a t t e r p l o t ( x= t imepo i n t s _ p e a k s , y= va l u e s_peak s , c o l o r = ’ r ’ )

p l t . y l a b e l ( ’ Resonance ␣ Frequency ’ , f o n t s i z e =20 ) ;

p l t . x l a b e l ( ’ R e l a t i v e ␣Time ’ , f o n t s i z e =20 ) ;

p l t . t i t l e ( f ’ Peak␣ De t e c t i o n ␣ i n ␣ Expe r imen t ␣{n} ’ , f o n t s i z e =20 ) ;

# In [ 6 ] :

### To Save

d a t a = pd . DataFrame ( e xp e r imen t s [ n ] )

d a t a [ ’ p e ak_ f r equency ’ ] = d a t a [ [ ’ r e l a t i v e _ t i m e ’ , ’ f r e qu en cy ’ ] ] . apply (

lambda x : x [ 1 ] i f ( x [ 0 ] , x [ 1 ] ) in

[ ( t , v ) f o r ( t , v ) in z ip ( t imepo i n t s _ p e a k s , v a l u e s _ p e a k s ) ] e l s e None ,

a x i s =1

)

# In [ 7 ] :

p a t h _ t o _ s a v e = input ( f ’ Pa th ␣ t o ␣ save ␣ expe r imen t ␣{n } : ␣ ’ )

d a t a [ [ ’ f r e qu en cy ’ , ’ r e l a t i v e _ t i m e ’ , ’ p e ak_ f r equency ’ ] ] . t o _ e x c e l (

p a t h_ t o_ s av e , i ndex= F a l s e

)

Listing A.4.2 Linear regression for changes in resonance frequency.

import pandas as pd

from s c i p y . s t a t s import l i n r e g r e s s

FILE = " . / Date_Name . csv "

COLUMNS = [ " t " , "F" ]

# i n p u t t i n min and F i n Hz

d a t a s e t = pd . r e ad_ c s v ( FILE , sep=" ; " )

pr in t ( l en ( d a t a s e t ) )
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f o r c o l in COLUMNS:

d a t a s e t [ c o l ] = d a t a s e t [ c o l ] . apply ( lambda x :

f l o a t ( x . r e p l a c e ( " , " , " . " ) ) )

f o r c o l in COLUMNS[ 1 : ] :

X = d a t a s e t [ ’ t ’ ]

y = d a t a s e t [ c o l ]

s , i , r , p , s t d = l i n r e g r e s s (X, y )

pr in t ( c o l )

pr in t ( s ∗60 , s t d ∗60)

pr in t ( s ∗60 ∗4 . 42 , s t d ∗60 ∗4 . 4 2 )

# o u t p u t Hz / h and ng / hcm^2

Listing A.4.3 Smoothing of resonance frequency baselines for calculation of the baseline drift.

import pandas as pd

import s e abo r n as sn s

FILE = " . / Date_Name . csv "

COL = "F"

C = [701 ]

d f = pd . r e a d_c sv ( FILE , sep=" ; " )

d f [COL] = df [COL ] . apply ( lambda x : f l o a t ( x . r e p l a c e ( " , " , " . " ) ) )

f o r c in C:

pr in t ( c )

name = f " {COL} _smoothed_ {c} "

d f [ name ] = df [COL ] . r o l l i n g ( c ) . median ( )

d f [ name ] = df [ name ] . apply ( lambda x : s t r ( x ) . r e p l a c e ( " . " , " , " ) )
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df [COL] = df [COL ] . apply ( lambda x : s t r ( x ) . r e p l a c e ( " . " , " , " ) )

d f . t o _ c s v ( " . / Date_Name_smooth . csv " , sep=" ; " )

C.4 Raman Measurement

Figure A.4.1 Raman spectrum of a silica QCM sensor coated with a DVB-EGDMA polymer.
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C.5 Supplementary Data on Flow Experiments

0 2 0 4 0 6 0
- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

A r e a = - 2 . 7 1 2 0 7 7 8 0 3 0 8 5
F W H M = 6 . 4 8 4 5 6 2 9 2 9 7 0 6

0 5 1 0 1 5 2 0 2 5 3 0
- 2

- 1

0

1

2

�

�

�
�

�
�

�
�

��



�
�

	
�

��
�

��
��

�

A r e a = - 2 . 9 3 0 4 6 7 2 3 0 2 4 6
F W H M = 0 . 5 7 9 8 4 8 4 8 4 8 7 6

A r e a = - 2 . 6 6 9 9 7 4 9 0 2 3 7 1
F W H M = 0 . 4 8 6 9 0 4 7 6 1 9 3 1

A r e a = - 3 . 2 6 6 4 1 5 4 5 1 4 6
F W H M = 0 . 7 2 8 7 9 1 6 6 6 7 2 8

A r e a = 0 . 5 7 0 8 9 4 0 1 6 7 7 2
F W H M = 0 . 4 8 4 2 0 3 3 6 1 8 0 4

A r e a = - 3 . 4 5 2 9 5 4 3 7 4 9 9 1
F W H M = 0 . 6 2 5 3 8 8 3 3 3 3 4 6

A r e a = - 3 . 4 6 8 5 9 3 1 5 2 9 1 2
F W H M = 0 . 9 2 3 7 3 6 3 7 0 6 1 6

A r e a = - 6 . 0 4 0 2 5 6 9 0 1 2 6 6
F W H M = 0 . 5 9 9 8 8 4 5 6 9 0 4 2

A r e a = - 4 . 1 9 9 9 0 0 5 8 2 4 3 7
F W H M = 3 . 0 4 8 0 1 3 8 8 8 7 1 2

A r e a = - 2 . 5 8 8 1 5 9 6 0 3 6 6 2
F W H M = 3 3 . 0 2 6 6 6 6 6 6 6 6 6 7

A r e a = - 3 . 3 6 3 0 4 2 8 8 6 2 9 7
F W H M = 0 . 7 0 1 5 4 9 3 8 2 6 4A r e a = - 2 . 0 2 7 2 9 4 4 1 6 2 7 8

F W H M = 0 . 8 2 2 8 7 4 4 7 2 7 4 2
A r e a = - 4 . 4 6 3 8 3 9 9 3 7 9 9 1

F W H M = 0 . 7 5 4 2 1 0 1 4 4 5 3 7A r e a = - 2 . 5 0 2 6 5 5 6 9 0 2 4 9
F W H M = 2 . 6 8 4 3 3 3 3 3 7 1 4 5

A r e a = - 4 . 1 3 5 4 5 2 6 5 5 8 8 3
F W H M = 1 . 3 6 5 9 7 8 8 9 6 8 3 9

A r e a = - 4 . 9 0 2 3 7 6 2 9 3 9 5 8
F W H M = 1 . 2 3 2 5 1 5 9 3 0 9 4 1n o m  o n  u n c o a t e d  s e n s o r  e x p  1

�

�

�
�

�
�

�
�

��



�
�

	
�

��
�

��
��

�

t /  m i n

( b )

( a )

Figure A.4.2 Frequency change (black) during (a) humic acid sorption experiment on an uncoated sensor and (b) water
passed over a coated sensor. (a) Humic acid sorption experiment 1 on an uncoated QCM sensor. Water was passed
constantly over the sensor with a flow rate of 30 µL/min. Using an injection valve, humic acid solutions were injected
during the flow experiments. The brown bars visualize the time when the humic acid solution is passed over the sensor.
(b) Water is passed over a coated sensor with a flow rate of 30 µL/min. Using an injection valve, water was injected. The
blue bar visualizes the time when the injected water is passed over the sensor.
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D Supporting Information to Chapter 4

D.1 Chemicals, Materials, Standard Solutions, and Spray Fabrication

Table A.4.1 List of reagents, solvents, and analytical standards.

Chemical Purity/Grade Supplier
QuEChERS extraction

brown rice (Oryza) n.a. Euryza GmbH
disodium hydrogen citrate sesquihydrate ≥99 % Sigma-Aldrich

magnesium sulfate anhydrous grit ≥98 % Sigma-Aldrich
sodium chloride ≥99.5 % Fisher Scientific

trisodium citrate dihydrate ≥99 % Sigma-Aldrich

Solvents
acetonitrile ≥99 % Sigma-Aldrich
isopropanol ≥99 % Sigma-Aldrich
methanol ≥99 % Sigma-Aldrich

Analytical Standards
2,6-dichlorobenzamide (BAM) PESTANAL®, anal. st. Sigma-Aldrich

atrazine (Atz) PESTANAL®, anal. st. Sigma-Aldrich
boscalid (Bosc) PESTANAL®, anal. st. Sigma-Aldrich

desethylatrazine (DEA) PESTANAL®, anal. st. Sigma-Aldrich
propargite (Prop) PESTANAL®, anal. st. Sigma-Aldrich

n.a. = not available, anal. st. = analytical standard

Ultrapure H2O (18.2 MΩ cm at 25 °C) was obtained from a Milli-Q® direct reference H2O purification

system from Merck MilliPore (Burlington, USA). Stock solutions of analytical standards (1 g/L) were prepared

in CH3OH and stored at -18 °C.

Themicrofluidic spray-dryers were fabricated in-house at theHeinzNixdorf-Chair of Biomedical Electronics

at the Center for Translational Cancer Research of the Technical University of Munich (TranslaTUM). Fast and

reliable production of microfluidic spray-dryers was achieved using a two-layer soft lithography approach

according to a previously published protocol.152 Microfluidic channels were designed in AutoCAD 2021

(Autodesk GmbH). Negative resists SU8-3025 and SU8-3050 (MicroChem Corp.) were spin-coated and

patterned using a maskless laser lithography system (Dilase 250, Kloe, France) on a 3” Si substrate to obtain the

negative master mold. The first layer has a thickness of 20 µm and contains the channel for the liquid sample,

while the second layer has a thickness of 70 µm and contains the channel for the gas. PDMS (Sylgard 184, Dow
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Corning) was mixed at a ratio of 9:1 (w/w), degassed, and cured in the negative SU8 master mold for 60 min

at 65 °C. Microfluidic devices were cut along alignment marks using a razor blade, and holes for tubings were

punched using a 0.5 mm biopsy punch (World Precision Instruments). Individual PDMS devices were cleaned

using isopropanol and acetone and blown dry with nitrogen. PDMS devices were activated using oxygen plasma

for 60 s at 30 W (Zepto, Diener electronic GmbH, Germany). A drop of deionized water was applied to the

surface to facilitate the alignment of two PDMS devices under a stereo microscope for the final microfluidic

device. A permanent bond between PDMS parts is formed by curing the assembled devices for 60 min at 85

°C. The cross-section of the channels for liquid and gas delivery were measured to be 27 × 20 µm2 (w × h) and

110 × 70 µm2 (w × h), respectively.

D.2 Determination of Limits of Detection and Quantification
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Figure A.4.1 a-c: Frequency raw data of three different CH3OH/H2O compositions ((a): 15/85, (b): 50/50, (c): 85/15
(v/v)) containing NaCl in different concentrations (0, 30, 60, 90, 120, 150, 180 and 500 mg/L). d-f: The average slope of
quadruplicates of dry mass sensing experiments using different CH3OH/ H2O compositions ((d): 15/85, (e): 50/50, (f):
85/15 (v/v)) containing NaCl in different concentrations (0, 30, 60, 90, 120, 150, 180 and 500 mg/L). The slopes were
used for the calculation of the LOD and the LOQ.
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D.3 TOC Validation

Table A.4.2 HPLC gradient conditions for the TOC validation measurement.

Time/ min % CH3OH
0 10
7.5 40
15 80
16.5 90
18 90

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0

 B

B
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      ( 0 . 2 5  m L )

  E v a p o r a t i o n  &  R e -
c o n s t i t u t i o n  i n  1 6  m L

T O C  a n a l y s i s

M e t h o d  L O D :
    6 . 4  m g / L

I n s t r u m e n t a l  L O D :
    0 . 0 5  m g C / L

  L O D :
1 5  m g / L

Figure A.4.2 Flow chart of offline TOC measurement of HPLC fractions. The mobile phase is split using a post-column
adjustable flow splitter. The high flow goes to a fraction collector; each fraction is collected for 30 seconds (volume: 0.25
mL). The fraction is evaporated and reconstituted in 16 mL H2O and measured using TOC analysis.
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Figure A.4.3 Frequency raw data (blank = black, sample = blue, calibration = red) of the QCM measurement during the
TOC validation experiment. The grey bar shows the measurement window (2.5 min dead time).



D Supporting Information to Chapter 4

116

D.4 HPLC Parameters for Rice Matrix Measurement

Table A.4.3 HPLC gradient conditions for the brown rice measurement.

Time/ min % CH3OH
0 10
0.5 10
6 80
13 100
17 100
20 10
22 10

D.5 GC-MS: Measurement Details and Analyte Retention Time

Table A.4.4 SIM parameters for GC-MS analysis and pesticide retention times.

Analyte Retention Time/ min Measured Ion m/z
Desethylatrazine 12.0 172.0

2,6-Dichlorobenzamide 12.4 172.9
Atrazine 13.9 200.0
Propargite 16.3 135.1
Boscalid 22.9 140.0

D.6 Correlation of Relative Detector Intensity and Matrix Effect

Table A.4.5 Absolute matrix effect (in %) of five pesticides (in order of their retention time; see Table A.4.4) during
GC-MS measurement of LC fractionated brown rice matrix of triplicate sample measurements (standard deviation: ± in
%)

fraction A B C D E
retention window/ min 6 - 7.5 8.5 - 10 11 - 12.5 12.7 - 14.2 15 - 16.5

absolute matrix effect/ %
Desethylatrazine 6.0±7.3 3.8±8.2 9.0±6.3 17±11 130±33
2,6-Dichlorobenzamide 4.1±9.9 -1.1±7.3 5.3±4.4 14±9 101±62
Atrazine -2.0±5.7 0.8±8.6 3.9±5.9 10±7 110±33
Propargite -36±7 -31±6 -34±8 -55±11 -83±4
Boscalid 25±8 29±10 23±8 31±11 345±132
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D.7 GC-MS Chromatograms for Collected Fractions and Mass Spectrum of

Oleic Acid
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Figure A.4.4 (a) OverlappedGC chromatograms of the five brown ricematrix fractions. GC chromatogramswere recorded
in full scan mode (0-4000 m/z). There is no data available before minute 12 because of solvent delay. (b) Mass spectrum
of the brown rice matrix fraction 5 peak at minute 19. The main component is oleic acid according to the NIST database.

D.8 Matlab Script for QCM Data Processing

1

2 clc

3 clear

4

5 para.Projecttitle =('10-80-90');

6 para.Endtime =22;

7 MEOHpercent0min =10;

8 MEOHpercent75min =80;

9 MEOHpercent15min =90;

10 GradientX =[0 7.5 15 16.5 18 19 para.Endtime ];

11 GradientY =[ MEOHpercent0min MEOHpercent75min MEOHpercent15min 90 90

10 10];

12

13 figure

14 plot(GradientX ,GradientY ,'-k')

15 title('Solvent Gradient ')

16 xlabel('time /min')

17 ylabel('MeOH %')
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18 xlim ([0 para.Endtime ])

19 ylim ([0 100])

20 %%%%%%%%%%%%%%%%%%%% if no QuEChERS are related QuechersBlank =0,

otherweise

21 %%%%%%%%%%%%%%%%%%%% type in any nr.

22 QuechersBlank =0;

23 UV without Blank subtraction

24 namelist=dir('*.txt');

25 len=length(namelist);

26

27 UVfilename='./UV/10 _80_90.txt'%namelist (1).name;

28 % UVfilename ="220324 _isochratic30percent_NOMextractsample.txt";

29

30 [RetentionTime ,Intensity ]= textread(UVfilename ,'%s%s','headerlines '

,25);

31

32 RetentionTime=strrep(RetentionTime ,',','.');

33

34 [inx_Time ,~ ,~]= find(contains(RetentionTime ,'Time'));

35 [inx_R ,~ ,~]= find(contains(RetentionTime ,'R'));

36 [inx_Wave ,~ ,~]= find(contains(RetentionTime ,'Wave'));

37

38 Wavelength=Intensity(inx_Wave);

39 Starttxt='Bandwidth(nm)';

40 Endtxt='[PDA';

41 [inx_Start ,~ ,~]= find(contains(RetentionTime ,Starttxt));

42 inx_Start=inx_Start +3;

43

44 [inx_End ,~ ,~]= find(contains(RetentionTime ,Endtxt));

45 inx_End=inx_End -1;

46 inx_End=inx_End (2:end);

47 inx_End =[ inx_End;length(RetentionTime)];

48

49 for i=1: length(Wavelength)
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50

51 UVtime{i}= RetentionTime(inx_Start(i): inx_End(i) ,1);

52 UVtime{i}= str2double(convertCharsToStrings(UVtime{i}));

53

54 UVintensity{i}= Intensity(inx_Start(i): inx_End(i) ,1);

55 UVintensity{i}= str2double(convertCharsToStrings(UVintensity{i

}));

56 end

57 Raw data extraction

58

59 %%figurename must match the sequence of filelist

60 % figurename ={'Blank1 ', 'Blank2 ', 'Blank3 ', 'Calibration01_1 ','

Calibration01_2 ','Calibration01_3 ', ...

61 % 'Calibration02_1 ','Calibration02_2 ','Calibration02_3 ','

Sample01_1 ', 'Sample01_2 ', 'Sample01_3 ','Sample02_1 ', '

Sample02_2 ', 'Sample02_3 '};

62 para.figurename ={'blank1 ', 'blank2 ', 'cali1', 'cali2', 'sample1 '};

63

64 %%%read the file from QCM

65

66 QCMnamelist=dir('*.txt');

67 len=length(QCMnamelist);

68 n=1;

69 TableTimeDeltaF =[];

70

71 for i=1:len

72 filename{i}= QCMnamelist(i).name;

73

74 [RawF{i}, RawR{i} , DeltaF{i}, DeltaR{i}, DeltaMass{

i}, Thickness{i}, Time{i}, Tag{i}]= textread(

filename{i},'%s%s%s%s%s%s%s%s','headerlines ' ,16);

75 DeltaF_num{i}= strrep(DeltaF{i},',','.');

76 DeltaF_num{i}= cell2mat(DeltaF_num{i});
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77 % DeltaF_num{i}= str2double(convertCharsToStrings(

DeltaF_num{i}));

78 DeltaF_num{i}= str2num(DeltaF_num{i});

79

80 DeltaR_num{i}= strrep(DeltaR{i},',','.');

81 DeltaR_num{i}= cell2mat(DeltaR_num{i});

82 % DeltaF_num{i}= str2double(convertCharsToStrings(

DeltaF_num{i}));

83 DeltaR_num{i}= str2num(DeltaR_num{i});

84

85 RawR_num{i}= strrep(RawR{i},',','.');

86 RawR_num{i}= cell2mat(RawR_num{i});

87 % DeltaF_num{i}= str2double(convertCharsToStrings(

DeltaF_num{i}));

88 RawR_num{i}= str2num(RawR_num{i});

89

90 Time_num{i}= strrep(Time{i},',','.');

91 Time_num{i}= cell2mat(Time_num{i});

92 % Time_num{i}= str2double(convertCharsToStrings(Time_num{i}));

93 Time_num{i}= str2num(Time_num{i});

94

95 Time_min{i}= Time_num{i}./60;

96

97 % write time and delte freq to excel file.

98

99 T{i}= table(Time_min{i},DeltaF_num{i});

100

101 T{i}. Properties.VariableNames = {'Time_min ','DeltaF '};

102

103 TableTimeDeltaF=T{i};

104 excelcolumn ={'A2','C2','E2','G2','I2', 'K2', 'M2','O2','Q2', '

S2', 'U2'};

105

106 excelfilename = [para.Projecttitle 'TableTimeDeltaF.xlsx'];
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107 writetable(TableTimeDeltaF ,excelfilename ,'Sheet',1,'Range ',

excelcolumn{i})

108

109 [TF{i},S1{i},S2{i}] = ischange(DeltaF_num{i},'linear ','

Threshold ' ,30000);

110 end

111

112 filename

113 add title for excel columns

114

115 for n=1: length(para.figurename)

116

117 excelcolumn ={'A1','C1','E1','G1','I1', 'K1', 'M1','O1','Q1', '

S1', 'U1'};

118

119 excelfilename = [para.Projecttitle 'TableTimeDeltaF.xlsx'];

120 writecell(para.figurename(n),excelfilename ,'Sheet ',1,'Range',

excelcolumn{n})

121

122 end

123 Enter the index of blank/calibration/sample!!

124 blank_index =[1:2];

125 calibration_index =[3:4];

126 sample_index= [5];

127 Compare blanks and calibrations via figures

128

129 figure

130 hold on

131 for i=blank_index

132

133 plot(Time_min{i},DeltaF_num{i})

134

135 end

136
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137 for j=sample_index

138

139 plot(Time_min{j},DeltaF_num{j})

140

141 end

142

143 hold off

144

145 xlim ([0 ,25])

146 legend ([para.figurename(blank_index),para.figurename(sample_index)

],"Location",'best')

147 title('CompareBlank ')

148 figure

149 hold on

150 for i=blank_index

151

152 plot(Time_min{i},RawR_num{i})

153

154 end

155

156 for j=sample_index

157

158 plot(Time_min{j},RawR_num{j})

159

160 end

161

162 hold off

163 xlim([0,para.Endtime ])

164 legend ([para.figurename(blank_index),para.figurename(sample_index)

],"Location",'best')

165 title('Compare Blanks and Smaple R')

166 figure

167

168 hold on
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169 for i=calibration_index

170

171 plot(Time_min{i},DeltaF_num{i})

172

173 end

174

175 for j=sample_index

176

177 plot(Time_min{j},DeltaF_num{j})

178

179 end

180

181 hold off

182

183 xlim ([0 ,25])

184 legend ([para.figurename(calibration_index),para.figurename(

sample_index)],"Location","best" )

185 title('\DeltaF comparation ')

186 ylabel('\DeltaF /Hz')

187 xlabel('time /min')

188

189 xlim ([0.0 26])

190 figure

191 hold on

192 for i=calibration_index

193

194 plot(Time_min{i},RawR_num{i})

195

196 end

197

198 for j=sample_index

199

200 plot(Time_min{j},RawR_num{j})

201
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202 end

203

204 hold off

205 xlim([0,para.Endtime ])

206 legend ([para.figurename(calibration_index),para.figurename(

sample_index)],"Location",'best')

207 title('R-value comparation ')

208 ylabel('R-value /Ohms')

209 xlabel('time /min')

210 Select Blank and Calibration

211 %%%%%% Blank =3 means Blank3

212 %%%%%% Cali=5 means Calibration1; C=5 or 6 or 7 for four blanks and

three Cali

213 %------select Blank and Calibration

214 Cali =4;

215 Blank =2;

216 Export template file for selected calibration and sample with

selected blank

217

218 %-------Export template file for selected calibration

219 Caliexcelfilename = [para.Projecttitle 'Template_Calibration.xlsx'

];

220

221 writematrix(BLANKfinal_frequency ,Caliexcelfilename ,'Sheet',1,'

Range ','A1')

222 writematrix(Califinal_frequency ,Caliexcelfilename ,'Sheet',1,'Range

','C1')

223

224 %-------Export template file for Sample

225

226 Samexcelfilename = [para.Projecttitle 'Template_Sample.xlsx'];

227

228 writematrix(BLANKfinal_frequency ,Samexcelfilename ,'Sheet',1,'Range

','A1')
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229 writematrix(SAMPLEfinal_frequency ,Samexcelfilename ,'Sheet',1,'

Range ','C1')

230 Control subtraction , filtration , derivate calculation

231 For Calibraition:

232

233 %-----------Load data

234

235 %Specify path:

236 path_to_excel_file = Caliexcelfilename;

237 sheet_name_in_excel = "Sheet1 ";

238 data = xlsread(path_to_excel_file , sheet_name_in_excel);

239

240 %-----------Compute the difference:

241 %-----------since timepoints are not aligned the difference is

computed between two closest in time points

242

243 %define the row

244 time_control = 1;

245 frequency_control = 2;

246 time_calib = 3;

247 frequency_calib = 4;

248 control_timepoints = data(:, time_control);

249 calib_timepoints = data(:, time_calib);

250 control_freq = data(:, frequency_control);

251 calib_freq = data(:, frequency_calib);

252

253 %Specify path:

254 path_to_excel_file = Caliexcelfilename;

255 sheet_name_in_excel = "Sheet1 ";

256 data = xlsread(path_to_excel_file , sheet_name_in_excel);

257

258 %-----------Compute the difference:

259 %-----------since timepoints are not aligned the difference is

computed between two closest in time points



D Supporting Information to Chapter 4

126

260

261 %define the row

262 time_control = 1;

263 frequency_control = 2;

264 time_calib = 3;

265 frequency_calib = 4;

266 control_timepoints = data(:, time_control);

267 calib_timepoints = data(:, time_calib);

268 control_freq = data(:, frequency_control);

269 calib_freq = data(:, frequency_calib);

270

271 %%%%%%%%%%%%%%%% consider the data length of Calibration

272 validEND=sum(~isnan(calib_freq));

273 if validEND >2000

274 validEND =2000;

275 end

276

277 calib_freq=calib_freq (1: validEND);

278 calib_timepoints=calib_timepoints (1: validEND);

279 %searching for the nearest time_control and subtract control

frequency from

280 %calibration

281

282 %searching for the nearest time_control

283

284 calib = zeros(length(calib_timepoints), 2);

285 for i = 1 : length(calib_timepoints)

286 calib(i, 1) = calib_timepoints(i);

287 [~,Index] = min(abs(control_timepoints -calib_timepoints(i)));

288 calib(i, 2) = calib_freq(i) - control_freq(Index);

289 end

290

291 %------------------calculating derivate

292 %type in approx_step to adjust the timestep in regression
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293

294 approx_step = 100;

295 derivate_data = zeros(length(calib_timepoints) - approx_step ,2);

296 for i = 1 : (length(calib_timepoints)-approx_step)

297 approx_timepoint = zeros(approx_step , 1);

298 approx_frequency = zeros(approx_step , 1);

299 for j = 1 : approx_step

300 approx_timepoint(j) = calib(i+j-1, 1);

301 approx_frequency(j) = calib(i+j-1, 2);

302 end

303 X = [ones(size(approx_timepoint)), approx_timepoint ];

304 Y = approx_frequency;

305 derivate = X\Y;

306 derivate_data(i, 1) = calib(i + floor(approx_step /2), 1);

307 derivate_data(i, 2) = derivate (2);

308 end

309 position = "C";

310 position_app = position + floor(( length(calib_freq)-length(

derivate_data (:,2)))/2);

311 derivate_data(end ,1)

312 %------------Applying filter

313 % odd num only

314 window_length =801;

315 polyorder = 3;

316 filt_calib = sgolayfilt(derivate_data , polyorder , window_length);

317 filt_calib(end ,1)

318 figure

319 plot(calib(:, 1), calib(:, 2), '-r', derivate_data (1:end ,1),

derivate_data (1:end ,2), '-b')

320 hold on

321 plot(filt_calib (1:end ,1), filt_calib (1:end ,2),'-k','LineWidth ' ,2)

322 hold off

323 xlim ([0 27])
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324 legend('\DeltaF ', '1st Derivate ', 'Filtered Derivate ','Location ',"

best")

325 title('Calibration ', 'Data processing ')

326 xlabel('time /min')

327 ylabel ({'Frequency /Hz'; '1^st Derivate of \DeltaF '})

328 plot( derivate_data (:,1), derivate_data (:,2), '-b')

329 hold on

330 plot(filt_calib (:,1), filt_calib (:,2),'-k','LineWidth ' ,2)

331 hold off

332 ylim ([-200 150])

333 xlim ([0 27])

334 x0=10;

335 y0=10;

336 width =1200;

337 height =400;

338 set(gcf ,'position ',[x0,y0 ,width ,height ])

339 For Sample:

340 path_to_excel_file = Samexcelfilename;

341 sheet_name_in_excel = "Sheet1 ";

342 data = xlsread(path_to_excel_file , sheet_name_in_excel);

343

344 %-----------Compute the difference:

345 %-----------since timepoints are not aligned the difference is

computed between two closest in time points

346

347 %define the row

348 time_control = 1;

349 frequency_control = 2;

350 time_calib = 3;

351 frequency_calib = 4;

352 control_timepoints = data(:, time_control);

353 calib_timepoints = data(:, time_calib);

354 control_freq = data(:, frequency_control);

355 calib_freq = data(:, frequency_calib);
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356

357 %searching for the nearest time_control

358

359 calib = zeros(length(calib_timepoints), 2);

360 for i = 1 : length(calib_timepoints)

361 calib(i, 1) = calib_timepoints(i);

362 [~,Index] = min(abs(control_timepoints -calib_timepoints(i)));

363 calib(i, 2) = calib_freq(i) - control_freq(Index);

364 end

365

366 %------------------calculating derivate

367 %type in approx_step to adjust the timestep in regression

368

369 approx_step = 30;

370 derivate_data = zeros(length(calib_timepoints) - approx_step ,2);

371 for i = 1 : (length(calib_timepoints)-approx_step)

372 approx_timepoint = zeros(approx_step , 1);

373 approx_frequency = zeros(approx_step , 1);

374 for j = 1 : approx_step

375 approx_timepoint(j) = calib(i+j-1, 1);

376 approx_frequency(j) = calib(i+j-1, 2);

377 end

378 X = [ones(size(approx_timepoint)), approx_timepoint ];

379 Y = approx_frequency;

380 derivate = X\Y;

381 derivate_data(i, 1) = calib(i + floor(approx_step /2), 1);

382 derivate_data(i, 2) = derivate (2);

383 end

384 position = "C";

385 position_app = position + floor(( length(calib_freq)-length(

derivate_data (:,2)))/2);

386

387 %------------Applying filter

388 window_length = 301;



D Supporting Information to Chapter 4

130

389 polyorder = 3;

390 filt_SAMPLE = sgolayfilt(derivate_data , polyorder , window_length);

391

392 %------------plot data

393 figure

394 plot(calib(:, 1), calib(:, 2), '-r', derivate_data (:,1),

derivate_data (:,2), '-b')

395 hold on

396 plot(filt_SAMPLE (:,1), filt_SAMPLE (:,2),'-k','LineWidth ' ,2)

397 hold off

398 xlim ([0 27])

399 legend('\DeltaF ', '1st Derivate ', 'Filtered Derivate ','Location ',"

best")

400 title('Sample ', 'Data processing ')

401 xlabel('time /min')

402 ylabel ({'Frequency /Hz'; '1^st Derivate of \DeltaF '})

403 %------------zoom

404

405 plot( derivate_data (:,1), derivate_data (:,2), '-b')

406 hold on

407 plot(filt_SAMPLE (:,1), filt_SAMPLE (:,2),'-k','LineWidth ' ,2)

408 hold off

409 ylim ([-200 150])

410 xlim ([0 20])

411 x0=10;

412 y0=10;

413 width =1200;

414 height =400;

415 set(gcf ,'position ',[x0,y0 ,width ,height ])

416 %-----------------saving data to the file

417 %first row is time

418 %second row is calb.frequency

419

420 head = {'time_calib ', 'frequency_calib '};
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421 file_name = "Sample_Frequency -filtered.xlsx";

422 if exist(file_name , 'file') == 1

423 delete(file_name);

424 end

425 writematrix(calib , file_name , 'range', 'A2');

426 writematrix (" time_calib",file_name , 'range', 'A1');

427 writematrix (" frequency_calib",file_name , 'range ', 'B1');

428 writematrix (" filtered gravity", file_name , 'range', 'C1');

429 writematrix(derivate_data (:, 2), file_name , 'range', position_app)

430 Correction of time (shift , cut off)

431 df_dm =0.1415;

432

433 %-------input timeshift

434 timeshift = -2.50;

435

436

437 shifted_filt_calibtime=filt_calib (:,1)+timeshift;

438

439 shifted_filt_SAMPLEtime=filt_SAMPLE (:,1)+timeshift;

440

441 %//////// cut off the negative timeframe

442

443 cutted_shifted_filt_calibtime=shifted_filt_calibtime(

shifted_filt_calibtime >0 & shifted_filt_calibtime <20);

444

445 cutted_shifted_filt_SAMPLEtime=shifted_filt_SAMPLEtime(

shifted_filt_SAMPLEtime >0 & shifted_filt_SAMPLEtime <20);

446

447 cutted_shifted_filt_calibfreq=filt_calib (:,2);

448 cutted_shifted_filt_calibfreq=cutted_shifted_filt_calibfreq(

shifted_filt_calibtime >0 & shifted_filt_calibtime <20);

449

450 cutted_shifted_filt_SAMPLEfreq=filt_SAMPLE (:,2);
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451 cutted_shifted_filt_SAMPLEfreq=cutted_shifted_filt_SAMPLEfreq(

shifted_filt_SAMPLEtime >0 & shifted_filt_SAMPLEtime <20);

452

453 figure

454 plot(cutted_shifted_filt_SAMPLEtime ,cutted_shifted_filt_SAMPLEfreq

)

455 Gradient construction: run if HPLC with Gradient

456 GRADIENT.startMEOH =0.111;

457

458 %%%%%%%%%%%%%%%%%% y=mx+b

459 GRADIENT.m1 =5.2952;

460 GRADIENT.m2=3.7;

461 GRADIENT.m3 =11.1;

462

463 GRADIENT.t1 =8.4524;

464 GRADIENT.t2=26;

465 GRADIENT.t3= -77.6;

466

467 %-------input sample concentrations in H2O and MeOH

468

469 GRADIENT.sample_meoh =300;

470 GRADIENT.sample_h2o =300;

471

472 gradientcomposition=zeros(length(cutted_shifted_filt_calibtime) ,1)

;

473 gradientcomposition(cutted_shifted_filt_calibtime <=0.5)= GRADIENT.

startMEOH;

474 gradientcomposition(cutted_shifted_filt_calibtime >0.5 &

cutted_shifted_filt_calibtime <=11) =(

cutted_shifted_filt_calibtime(cutted_shifted_filt_calibtime >0.5

& cutted_shifted_filt_calibtime <=11) .* GRADIENT.m1 + GRADIENT.

t1)/100;

475 gradientcomposition(cutted_shifted_filt_calibtime >11 &

cutted_shifted_filt_calibtime <=14) =(
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cutted_shifted_filt_calibtime(cutted_shifted_filt_calibtime >11

& cutted_shifted_filt_calibtime <=14) .* GRADIENT.m2 + GRADIENT.

t2)/100;

476 gradientcomposition(cutted_shifted_filt_calibtime >14 &

cutted_shifted_filt_calibtime <=16) = (

cutted_shifted_filt_calibtime(cutted_shifted_filt_calibtime >14

& cutted_shifted_filt_calibtime <=16) .* GRADIENT.m3 + GRADIENT.

t3)./100;

477 gradientcomposition(cutted_shifted_filt_calibtime >16) = 1;

478

479 plot(cutted_shifted_filt_calibtime ,gradientcomposition)

480 figure

481 yyaxis left

482 plot(cutted_shifted_filt_calibtime ,gradientcomposition .*90)

483 ylim ([0 100])

484

485 yyaxis right

486 plot(CaliDF (:,1), CaliDF (:,2));

487

488 legend('Solvent Gradient ','Calibration \DeltaF ','Location ',"south

")

489 xlim ([0 20])

490 concentration_sprayed=ones(length(cutted_shifted_filt_calibtime)

,1);

491

492 concentration_sprayed=gradientcomposition .* GRADIENT.sample_meoh +

(1- gradientcomposition).* GRADIENT.sample_h2o;

493

494 figure

495 plot(cutted_shifted_filt_calibtime ,concentration_sprayed)

496 Calculation of sprayed concentration

497

498 Isocratic: Run if isocratic , input the solvent composition of MeOH

499



D Supporting Information to Chapter 4

134

500 % Isocratic !!+++++++++ calculation of sprayed conc.

501 %%% deactive if with Gradient

502 % GRADIENT.sample_meoh =290.6055516;

503 % GRADIENT.sample_h2o =290.2358244;

504 %

505 % gradient_HPLC =0.3333;

506 %

507 % concentration_sprayed=GRADIENT.sample_meoh .* gradient_HPLC+

GRADIENT.sample_h2o .*(1- gradient_HPLC);

508 sample concentration calculated

509 if length(cutted_shifted_filt_calibfreq)< length(

cutted_shifted_filt_SAMPLEfreq)

510 cutted_shifted_filt_SAMPLEfreq=cutted_shifted_filt_SAMPLEfreq

(1: length(cutted_shifted_filt_calibfreq));

511 cutted_shifted_filt_SAMPLEtime=cutted_shifted_filt_SAMPLEtime

(1: length(cutted_shifted_filt_calibfreq));

512 concentration_sprayed=concentration_sprayed (1: length(

cutted_shifted_filt_calibfreq));

513 else

514 cutted_shifted_filt_calibfreq=cutted_shifted_filt_calibfreq (1:

length(cutted_shifted_filt_SAMPLEfreq));

515 cutted_shifted_filt_calibfreq=cutted_shifted_filt_calibfreq (1:

length(cutted_shifted_filt_SAMPLEtime));

516 concentration_sprayed=concentration_sprayed (1: length(

cutted_shifted_filt_SAMPLEfreq));

517 end

518

519 %--------------------sample concentration calculated

520

521 concentration_sample_passedColumn=cutted_shifted_filt_SAMPLEfreq ./

cutted_shifted_filt_calibfreq .* concentration_sprayed;

522

523 %///////// plot

524
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525 %%%%%% Mass Calculation

526

527 para.MassInteEndtime =20;

528

529 validtimeframe=cutted_shifted_filt_SAMPLEtime >=0 &

cutted_shifted_filt_SAMPLEtime <=para.MassInteEndtime &

concentration_sample_passedColumn >=0;

530

531 SprayTotalMass=trapz(cutted_shifted_filt_SAMPLEtime(validtimeframe

),concentration_sample_passedColumn(validtimeframe))/2000

532 SprayTotalMass = 1.9785

533 TheoInjectedNOM =1.80;

534 MassBalance=SprayTotalMass/TheoInjectedNOM

535 FinalResult=table(cutted_shifted_filt_SAMPLEtime ,

concentration_sample_passedColumn);

536

537 % % % % % % % % % % % % % % % % % % % % % export excel

538

539 FinalResult=table(cutted_shifted_filt_SAMPLEtime ,

concentration_sample_passedColumn);

540

541 FinalResult.Properties.VariableNames = {'Time_min ','Mass Conc. /

mg/L'};

542

543 TableFinalResult=FinalResult;

544 excelcolumn ={'A2','C2','E2','G2','I2', 'K2', 'M2','O2','Q2', 'S2',

'U2','W2', 'Y2'};

545

546 excelfilename = [para.Projecttitle 'TableFinalResult.xlsx'];

547 writetable(TableFinalResult ,excelfilename ,'Sheet',1,'Range',

excelcolumn {1})

548

549 f = figure;

550 u = f.Units;
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551 f.Units = 'normalized ';

552

553 % % legend ([p1 p3],{'First ','Third '})

554

555 xlim ([0 ,20])

556

557 g_1=gca;

558

559 plot_1=plot(cutted_shifted_filt_SAMPLEtime ,

concentration_sample_passedColumn , 'LineWidth ',2,"Color",'k');

560 ylim ([ -10 ,700])

561 xlim ([0 ,20])

562 g_1.YColor='k';

563 xlabel('Time /min');

564 % legend('QCM ')

565

566 Y1=ylabel('Mass /mg'); label

567 xlim_1=get(g_1 ,'xlim');

568 ylim_1=get(g_1 ,'ylim');

569

570 pos_2=get(g_1 ,'position ');

571 g_2=axes('Position ',pos_2 ,'Color ','none','XTick ',[],'YAxisLocation

','right ');

572 Y2=ylabel('UV -Vis'); label

573 g_2.YColor='k';

574 hold on;

575 plot_2=plot(UVtime {1}, UVintensity {1},'-','LineWidth ',1,"Color",'

#0072 BD');

576

577 xlim ([0 ,20])

578 % ylim ([0 ,100])

579 pos_1=g_1.Position;

580 pos_1 (1)=pos_1 (1) -0.03;

581 pos_1 (3)=pos_1 (3) *0.9;
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582

583 g_3=axes('Position ',pos_1 ,'Color ','none','XTick ',[],'YTick' ,[]);

584 set([g_1;g_2;g_3],'position ',pos_1);

585 hold on;

586

587 plot_3=plot(GradientX ,GradientY ,'-','LineWidth ',1,"Color", '#

D95319 ');

588 % legend('Gradient: MeOH %')

589

590 xlim ([0 ,20])

591 ylim ([0 ,100])

592 pos_4=pos_1;

593 pos_4 (3)=pos_4 (3) +0.1;

594 g_4=axes('Position ',pos_4 ,'Color ','none','XTick ',[],'YLim' ,[0

100],'YTick ' ,[0:10:100] ,'YAxisLocation ','right');

595

596 Y3=ylabel('MeOH %'); label

597 legend ([plot_1 ,plot_2 , plot_3], {'QCM','220nm PestMix ','Gradient:

MeOH %'}, 'Location ', "northwest","Box","off")

598

599 g_4.YColor='k';

600 grid off;

601 title(para.Projecttitle)

602 %%%%%%%%%%%%%%%%%%%% PestMix peak time

603 Peaktime =[];

604 Peaktime (1,:) =[6.258 6.883];

605 Peaktime (2,:) =[6.700 7.317];

606 Peaktime (3,:) =[6.983 7.575];

607 Peaktime (4,:) =[8.125 8.675];

608 Peaktime (5,:) =[9.183 9.750];

609 Peaktime (6,:) =[9.908 10.433];

610 Peaktime (7,:) =[10.125 10.783];

611 Peaktime (8,:) =[10.367 10.908];

612
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613 for i=1: length(Peaktime)

614 Peak_Starttime=Peaktime(i,1);

615 Peak_Endtime=Peaktime(i,2);

616 Peaktimedata=cutted_shifted_filt_SAMPLEtime >= Peak_Starttime&

cutted_shifted_filt_SAMPLEtime <= Peak_Endtime;

617 Spray_Peak_NOMMass(i)=trapz(cutted_shifted_filt_SAMPLEtime(

Peaktimedata),concentration_sample_passedColumn(

Peaktimedata))/2000;

618

619 end

620 Spray_Peak_NOMMass

621 RelNOM_Peak=Spray_Peak_NOMMass/SprayTotalMass *100
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E Supporting Information to Chapter 5

E.1 Chemicals, Materials, and Standard Solutions

All chemicals and materials purchased commercially and used in this work are summarized in Table A.4.1.

Additional information on the selected model analytes can be found in Table A.4.2.

Table A.4.1 List of reagents, solvents, and analytical standards.

Chemical Purity/Grade Supplier
2,6-dichlorobenzamide (BAM) PESTANAL®, anal. st. Sigma-Aldrich

atrazine (ATZ) PESTANAL®, anal. st. Sigma-Aldrich
azoxystrobin (AZOX) PESTANAL®, anal. st. Sigma-Aldrich
boscalid (BOSC) PESTANAL®, anal. st. Sigma-Aldrich

caffeine (CAF), USGS63 USGS
desethylatrazine (DEA) PESTANAL®, anal. st. Sigma-Aldrich

desisopropylatrazine (DIA) PESTANAL®, anal. st. Sigma-Aldrich
methanol ≥99% Sigma-Aldrich

simazine (SIM) PESTANAL®, anal. st. Sigma-Aldrich
sodium chloride ≥99.5% Fisher Scientific

anal. st. = analytical standard

Ultrapure H2O (18.2 MΩ cm at 25 °C) was obtained from a Milli-Q® direct reference H2O purification

system from Merck MilliPore (Burlington, USA). Stock solutions of analytical standards (1 g/L) were prepared

in CH3OH and stored at -18 °C.

Table A.4.2 Additional information on the selected model analytes including the chemical formula, the isotope signature
of the specific batch used, the molecular weight, the logKOW and the charge at pH7.

Name Formula Isotope Signature Molecular Weight logKOW Charge pH 7
[g/mol] [-] [-]

BAM C7H5Cl2NO n.a. 190.02 0.77 n
ATZ C8H14ClN5 -29,56 215.68 2.61 n
AZOX C22H17N3O5 n.a. 403.4 2.50 n
BOSC C18H12Cl2N2O n.a. 343.2 2.96 n
CAF C8H10N4O2 -1,17 194.19 -0.07 n
DEA C6H10ClN5 -29,39 187.63 1.51 n
DIA C5H8ClN5 -36,78 173.60 1.50 n
SIM C7H12ClN5 n.a. 201.66 2.18 n

n.a. = not available, n = neutral.
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E.2 Extraction of Riverine NOM

Surface water samples (Wiesäckerbach, latitude 48.269009, longitude 11.667976, Garching, Germany) were

filtered using glass microfiber filter membranes (1.2 µm particle retention, 47 mm diameter, Whatman, UK).

NOMwas extracted using Oasis HLB SPEmaterial (Waters, 200 mg, 6 cc) and an automated SPE system (Smart

Prep Extractor, Horizon Technology, USA). The extraction was performed using conventional SPE conditions

at 5 mL/min. The Oasis HLB cartridges were dried overnight under vacuum and eluted using 5 mL of CH3OH.

The eluates were combined, reduced under a gentle stream of nitrogen at 30 °C, and stored at -18 °C. TOC

analysis (TOC-L, Shimadzu, Japan) was used to determine the carbon content of the eluate. Elemental analysis

(EURO-EA, HEKATech, Germany) was used to determine the percentage of carbon in the extracted NOM (see

Table A.4.3).

Table A.4.3 Elemental analysis of NOM extracted from Wiesäckerbach using Oasis HLB.

Element Content in %
Carbon 51.20

Hydrogen 6.56
Nitrogen 2.02
Sulfur 0.51
Oxygen 39.71

E.3 Compound Specific Isotope Analysis: Method Detection Limits, Δ𝜕13C

Data, and Chromatogram Background Data

Table A.4.4 HPLC gradient used for purifying NOM sample prior to GC-c-IRMS measurement.

t/ min
0 7.5 15 16.5 18

% of CH3OH
10 90 90 90 90

Table A.4.5 Method detection limits (nmol C) for GC-IRMS measurements determined according to the moving mean
procedure with an uncertainty limit of ±0.5‰ and the corresponding analyte amplitude at m/z 44 in mV.

Analyte MQL nmol C on column Amplitude/ mV
ATZ 1 818 ± 24
DIA 2 1172 ± 156
DEA 3 2489 ± 78
CAF 4 3643 ± 71
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Figure A.4.1 Determination of Method detection limits (nmol C) for GC-IRMS measurements with an uncertainty limit
of ±0.5‰ (dotted lines) for four analytes: (a) DEA, (b) DIA, (c) ATZ, and (d) CAF. The measured 𝜕13C values are shown
in black, and the respective peak amplitude in red (m/z 44 in mV). Isotope values and amplitudes are arithmetic means of
at least triplicate measurements with their respective standard deviation.

Table A.4.6 Determined ratio of background area to analyte area in the GC-IRMS chromatogram is shown as matrix
fraction (fmatrix) in %. Using this ratio, theoretically determined isotope shifts were calculated (Δ𝜕13Ccalc in ‰) using
the isotope value of the analyte and NOM (𝜕13C ≈ 27±1). The experimentally determined isotope shifts are shown for
comparison as Δ𝜕13Cexp in ‰.

compound NOM/analyte ratio fmatrix Δ𝜕13Ccalc Δ𝜕13Cexp
[%] [‰] [‰]

DIA

10 17.8 ± 0.5 1.74 ± 0.05 0.43 ± 0.23
20 26 ± 4 2.54 ± 0.39 0.58 ± 0.07
50 42 ± 6 4.11 ± 0.59 0.99 ± 0.42
100 54 ± 8 5.18 ± 0.78 1.33 ± 0.60

DEA

10 11.1 ± 0.1 0.26 ± 0.00 0.18 ± 0.20
20 20 ± 1 0.47 ± 0.01 -0.04 ± 0.19
50 36 ± 2 0.87 ± 0.05 -0.08 ± 0.45
100 48 ± 7 1.15 ± 0.17 -0.44 ± 0.20

ATZ

10 9.5 ± 0.2 0.24 ± 0.00 0.46 ± 0.40
20 15.6 ± 0.4 0.40 ± 0.01 0.34 ± 0.16
50 33 ± 3 0.84 ± 0.07 0.40 ± 0.30
100 49 ± 2 1.25 ± 0.05 0.42 ± 0.38

CAF

10 20 ± 1 -5.17 ± 0.23 -1.02 ± 0.44
20 22 ± 1 -5.79 ± 0.16 -0.79 ± 0.09
50 40 ± 4 -10.34 ± 1.03 -1.89 ± 0.23
100 56 ± 11 -14.48 ± 2.84 -3.30 ± 0.78
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Figure A.4.2 Deviations of carbon isotope values (Δ𝜕13C in black) of (a) DIA, (b) DEA, (c) ATZ, and (d) CAF during
the measurement of samples containing NOM in different amounts (NOM/analyte ratios: 10, 20, 50, 100) from the values
of standard measurements. The dotted black lines show the uncertainty limit of carbon isotope analysis using GC-IRMS
(±0.5‰). The error bars resemble the 95% confidence interval of triplicate measurements. The red data point shows a
measurement after an HPLC clean-up using 10-60-90 gradient and column 1 of a sample containing NOM/analyte ratio
100 with an expected final NOM/analyte ratio of 8 after the clean-up.
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E.4 Details on HPLC Gradients and QCM Dry Mass Sensing Results

Table A.4.7 22 HPLC gradients used to optimize separation of analytes and NOM on XTerra RP18. Mobile phase consists
of methanol and water.

t/ min
0 7.5 15 16.5 18

% of methanol
10 30 60 90 90
10 30 70 90 90
10 30 80 90 90
10 30 90 90 90
10 40 60 90 90
10 40 70 90 90
10 40 80 90 90
10 40 90 90 90
10 50 60 90 90
10 50 70 90 90
10 50 80 90 90
10 50 90 90 90
10 60 60 90 90
10 60 70 90 90
10 60 80 90 90
10 60 90 90 90
10 70 70 90 90
10 70 80 90 90
10 70 90 90 90
10 80 80 90 90
10 80 90 90 90
10 90 90 90 90

Table A.4.8 7 HPLC gradients used to optimize separation of analytes and NOM on Orbit 100 C8. Mobile phase consists
of methanol and water.

t/ min
0 7.5 15 16.5 18

% of methanol
10 30 60 90 90
10 40 80 90 90
10 50 60 90 90
10 60 70 90 90
10 70 90 90 90
10 80 90 90 90
10 90 90 90 90

Table A.4.9 Theoretical plate number for gradient 10-70-90.

CAF BAM DIA DEA SIM ATZ AZOX BOSC
XTerra RP18 822 800 2061 5639 11294 13795 28775 27699
Orbit 100 C8 10384 10605 15990 28947 41653 49415 50835 54224
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Figure A.4.3 The NOM co-elution in % on XTerra RP18 column is plotted for the 22 different gradients for 4 analytes
((a): BAM, (b): DIA, (c): ATZ, (d): AZOX). The x-axis represents the % of methanol at minute 7.5 during the HPLC
clean-up and the y-axis % of methanol at minute 15.

Table A.4.10 NOM co-elution in % shown for 22 HPLC gradients on XTerra RP18. Gradient: first number represents %
of methanol at min 0, second number at min 7.5, and third number at min 15.

Gradient CAF BAM DIA DEA
10-30-60 14.8 ± 0.8 10.2 ± 0.8 11.7 10.6
10-30-70 14.8 ± 0.8 10.2 ± 0.8 12.6 9.8
10-30-80 14.8 ± 0.8 10.2 ± 0.8 11.0 8.9
10-30-90 14.8 ± 0.8 10.2 ± 0.8 11.7 8.6
10-40-60 12.3 ± 1.0 8.7 ± 0.7 10.5 10.2
10-40-70 12.3 ± 1.0 8.7 ± 0.7 9.2 9.6
10-40-80 12.3 ± 1.0 8.7 ± 0.7 9.7 ± 0.3 10.5 ± 0.9
10-40-90 12.3 ± 1.0 8.7 ± 0.7 8.8 9.3
10-50-60 11.3 ± 0.7 8.8 ± 0.7 9.1 ± 0.8 10.9 ± 0.5
10-50-70 11.3 ± 0.7 8.8 ± 0.7 9.1 ± 0.8 10.3
10-50-80 11.3 ± 0.7 8.8 ± 0.7 9.1 ± 0.8 10.2
10-50-90 11.3 ± 0.7 8.8 ± 0.7 9.1 ± 0.8 8.7
10-60-60 8.2 ± 0.1 7.5 ± 0.2 8.5 ± 1.1 11.0
10-60-70 8.2 ± 0.1 7.5 ± 0.2 8.5 ± 1.1 11.6
10-60-80 8.2 ± 0.1 7.5 ± 0.2 8.5 ± 1.1 10.4
10-60-90 8.2 ± 0.1 7.5 ± 0.2 8.5 ± 1.1 10.3
10-70-70 8.0 ± 0.8 6.5 ± 0.6 6.8 ± 0.8 9.7
10-70-80 8.0 ± 0.8 6.5 ± 0.6 6.8 ± 0.8 9.2
10-70-90 8.0 ± 0.8 6.5 ± 0.6 6.8 ± 0.8 8.6
10-80-80 8.0 ± 0.5 6.4 ± 0.5 6.9 ± 0.6 8.7 ± 0.9
10-80-90 8.0 ± 0.5 6.4 ± 0.5 6.9 ± 0.6 8.7 ± 0.9
10-90-90 8.6 6.8 7.8 7.2
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Table A.4.11 NOM co-elution in % shown for 22 HPLC gradients on XTerra RP18. Gradient: first number represents %
of methanol at min 0, second number at min 7.5, and third number at min 15.

Gradient SIM ATZ AZOX BOSC
10-30-60 6.6 3.2 2.3 3.2
10-30-70 6.5 4.6 3.6 3.4
10-30-80 7.4 5.2 4.0 2.8
10-30-90 5.3 5.0 5.8 4.6
10-40-60 8.0 5.3 3.7 2.0
10-40-70 7.6 5.8 3.7 2.6
10-40-80 6.5 ± 0.6 5.6 ± 0.6 4.7 ± 0.3 3.8 ± 0.3
10-40-90 6.2 5.0 6.1 5.7
10-50-60 7.2 ± 0.7 5.4 ± 0.4 4.4 ± 0.8 2.4 ± 0.4
10-50-70 8.1 5.8 4.5 2.0
10-50-80 8.1 5.8 5.0 2.7
10-50-90 7.8 5.3 5.2 3.3
10-60-60 11.6 10.3 9.6 6.1
10-60-70 9.3 7.4 8.8 4.3
10-60-80 7.9 6.8 8.8 5.9
10-60-90 7.3 5.6 7.9 5.8
10-70-70 10.0 8.3 9.3 6.9
10-70-80 8.5 7.4 9.9 7.4
10-70-90 8.4 8.0 11.5 8.7
10-80-80 10.9 12.0 8.3 7.7
10-80-90 9.6 ± 0.4 8.2 ± 0.5 7.2 ± 0.6 6.6 ± 0.7
10-90-90 8.3 10.2 8.2 7.6

Table A.4.12 NOM co-elution in % shown for 7 HPLC gradients on Orbit 100 C8. Gradient: first number represents %
of methanol at min 0, second number at min 7.5, and third number at min 15.

Gradient CAF BAM DIA DEA
10-30-60 7.4 7.5 8.8 6.9
10-40-80 5.0 6.0 5.7 7.2
10-50-60 4.5 6.3 7.2 13.2
10-60-70 4.6 6.0 6.5 7.7
10-70-90 4.7 5.5 5.3 7.6
10-80-90 3.2 4.6 5.1 7.0
10-90-90 4.9 4.9 4.7 7.9

Table A.4.13 NOM co-elution in % shown for 7 HPLC gradients on Orbit 100 C8. Gradient: first number represents %
of methanol at min 0, second number at min 7.5, and third number at min 15.

Gradient SIM ATZ AZOX BOSC
10-30-60 3.6 2.9 2.7 1.9
10-40-80 6.3 5.1 3.5 2.7
10-50-60 8.9 2.3 0.6 0.2
10-60-70 10.0 6.8 2.5 1.7
10-70-90 8.0 6.0 10.4 6.8
10-80-90 8.1 6.9 8.3 6.6
10-90-90 9.0 8.2 7.6 5.9
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Figure A.4.4 Comparison of NOM retention on XTerra RP18 (blue) and Orbit 100 C8 (grey). The bands resemble all
measured NOM values (in %/min) between the maximal and the minimal value determined for 22 gradients in case of
column 1 (XTerra RP18 Column, 150×3.0 mm, 3.5 µm, pore size 125 Å) and 7 gradients in case of column 2 (Orbit 100
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Figure A.4.5 Gradient screening of CAF using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.
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Figure A.4.6 Gradient screening of BAM using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.

6 0

7 0

8 0

9 0

3 5

6 0

7 0

8 0

9 0

1 07

6 0

7 0

8 0

9 0

1 2

% 
me

tha
no

l a
t m

in 
15

% 
NO

M 
co

-el
uti

ng

3 0 4 0 5 0 6 0 7 0 8 0 9 0
6 0

7 0

8 0

9 0

3 0 4 0 5 0 6 0 7 0 8 0 9 0
%  m e t h a n o l  a t  m i n  7 . 5

1

4

7

1 0

1 4
1 5

2 21 8

1 5

Figure A.4.7 Gradient screening of DIA using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.
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Figure A.4.8 Gradient screening of DEA using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.
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Figure A.4.9 Gradient screening of SIM using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.
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Figure A.4.10 Gradient screening of ATZ using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.
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Figure A.4.11 Gradient screening of AZOX using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.
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Figure A.4.12 Gradient screening of BOSC using 3, 5, 7, 10, 12, 15, 18, or 22 different gradients on XTerra RP18.
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Figure A.4.13 NOM co-elution average for HPLC purification on XTerra RP18 of two or three compounds (early eluting:
CAF, middle eluting: DEA, late eluting: BOSC).
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Figure A.4.14 NOM co-elution average for HPLC purification on XTerra RP18 of two or three compounds (early eluting:
CAF, middle eluting: SIM, late eluting: BOSC).
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Figure A.4.15 Gradient screening for the individual compounds SIM and BOSC and their NOM co-elution average for
HPLC purification on XTerra RP18 of both compounds at the same time (SIM+BOSC). The optimal gradient with the
lowest NOM co-elution is encircled both for the individual compound purification (SIM, BOSC, gradienti) and multiple
compound purification (SIM+BOSC, gradientm). The arrows show the difference between the optimal gradienti and the
optimal gradientm, the number next to the arrows the difference of NOM co-elution in % between gradienti and gradientm.
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Table A.4.14 Minimal NOM co-elution on XTerra RP18 column dependent on the number of gradients screened (from
3 to 22 gradients). All gradient mixes include convex, concave, and linear gradients. The number of gradients that is
sufficient to find the optimal conditions within a precision of 1% is marked bold.

Number of Gradients CAF BAM DIA DEA
3 8.2 6.8 7.8 7.2
5 8.0 6.4 6.8 7.2
7 8.0 6.4 6.8 7.2
10 8.0 6.4 6.8 7.2
12 8.0 6.4 6.8 7.2
15 8.0 6.4 6.8 7.2
18 8.0 6.4 6.8 7.2
22 8.0 6.4 6.8 7.2

Table A.4.15 Minimal NOM co-elution on XTerra RP18 column dependent on the number of gradients screened (from
3 to 22 gradients). All gradient mixes include convex, concave, and linear gradients. The number of gradients that is
sufficient to find the optimal conditions within a precision of 1% is marked bold.

Number of Gradients SIM ATZ AZOX BOSC
3 6.6 3.2 2.3 3.2
5 6.2 3.2 2.3 2.0
7 6.2 3.2 2.3 2.0
10 5.3 3.2 2.3 2.4
12 5.3 3.2 2.3 2.4
15 5.3 3.2 2.3 2.0
18 5.3 3.2 2.3 2.0
22 5.3 3.2 2.3 2.0

Table A.4.16 Analyte recovery in % during HPLC purification.

DIA DEA ATZ BOSC
91.4±4.8 86.2±0.1 84.9±3.1 89.2±4.3
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Table A.4.17 Higher NOM co-extraction during an optimized multi compound HPLC purification on XTerra RP18 in
comparison to the optimized HPLC purification for a single compound is shown as optimization loss in % NOM (loss/
%). The different compounds are classified into early, middle, and late eluting.

compound loss/%
early middle late early middle late
CAF DEA 0.6 0
CAF SIM 0.2 2.0
BAM DEA 0.5 0
BAM SIM 1.1 2.0

CAF ATZ 0.2 2.4
CAF AZOX 0 4.9
CAF BOSC 0.2 2.3
BAM ATZ 1.1 2.4
BAM AZOX 2.4 1.4
BAM BOSC 2.4 0

DEA ATZ 1.4 1.9
DEA AZOX 1.7 1.7
DEA BOSC 1.7 0.9
SIM ATZ 1.3 0
SIM AZOX 1.3 0
SIM BOSC 1.9 0.4

BAM DEA ATZ 0 1.4 4.8
BAM DEA ATZ 2.4 2.1 1.8
BAM DEA ATZ 2.5 1.5 2.1
BAM DEA AZOX 2.4 2.4 1.4
BAM DEA AZOX 2.5 1.5 2.9
BAM DEA AZOX 0.5 0 5.9
BAM SIM ATZ 3.9 1.3 0
BAM SIM ATZ 2.4 0.9 1.8
BAM SIM ATZ 1.1 2.0 2.4
BAM SIM AZOX 3.9 1.3 0
BAM SIM AZOX 2.4 1.2 2.4
CAF DEA BOSC 3.3 1.5 1.4
CAF DEA BOSC 0 1.5 4.7
CAF DEA BOSC 3.3 3.1 0
CAF SIM BOSC 3.3 1.9 0.4
CAF SIM BOSC 0.2 2.0 3.9
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Table A.4.18 Higher NOM co-extraction during an optimized multi compound HPLC purification on Orbit 100 C8 in
comparison to the optimized HPLC purification for a single compound is shown as optimization loss in % NOM (loss/
%). The different compounds are classified into early, middle, and late eluting.

compound loss/%
early middle late early middle late
CAF DEA 0 0.1
CAF SIM 4.3 0
BAM DEA 0 0.1
BAM SIM 2.9 0

CAF ATZ 1.3 0
CAF AZOX 1.3 0
CAF BOSC 1.3 0
BAM ATZ 1.7 0
BAM AZOX 1.7 0
BAM BOSC 1.7 0

DEA ATZ 0 0.6
DEA AZOX 0 2.1
DEA BOSC 0 1.8
SIM ATZ 0 0.6
SIM AZOX 0 2.1
SIM BOSC 0 1.8

BAM DEA ATZ 2.9 0 0.6
BAM DEA AZOX 2.9 0 2.1
BAM DEA AZOX 1.4 0.8 1.9
BAM SIM ATZ 2.9 0 0.6
BAM SIM AZOX 2.9 0 2.1
CAF DEA BOSC 1.5 0.8 1.5
CAF SIM BOSC 4.3 0 1.8
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Abbreviations

Γ Bandwidth of the resonance

𝛾-MAPS 𝛾-Methacryloxypropyltrimethoxysilane

Δf Resonance frequency change

AIBN 2,2’-Azobis(2-methylpropionitrile

ATZ Atrazine

AZOX Azoxystrobin

BAM 2,6-dichlorobenzamide

BOSC Boscalid

BTEX Benzene, toluene, ethylbenzene, and xylene

C Mass sensitivity coefficient

CAD Charged aerosol detector

CAF Caffeine

COF Covalent organic framework

CSIA Compound-specific isotope analysis

D Dissipation

DAD Diode array detector

DCM Dichloromethane

DEA Desethylatrazine

Dhyd Hydraulic diameter

DIA Desisopropylatrazine
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EDX Energy dispersive X-ray mapping

EGDMA Ethylene glycol dimethacrylate

ELSD Evaporative light-scattering detector

f0 Fundamental frequency

FTIR Fourier-transform infrared

GC-c-IRMS Gas chromatography combustion isotope ratio mass spectrometry

HCH Hexachlorocyclohexane

HPLC High-performance liquid chromatography

IAC Immunoaffinity chromatography

IEC Ion-exchange chromatography

LLE Liquid-liquid extraction

LOD Limits of detection

LOQ Limits of quantification

MAA Methacrylic acid

ME% Matrix effect in percent

MeOH Methanol

MIPs Molecularly imprinted polymers

MISPE Molecularly imprinted solid phase extraction

MOF Metal organic framework

MQL Method detection limits

NOM Natural organic matter

NVP N-vinylpyrrolidone

PAH Polycyclic aromatic hydrocarbon

PCB Polychlorinated biphenyl
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PCDD Polychlorinated dibenzodioxins

PDMS Polydimethylsiloxane

Prop Propargite

PS-DVB Polystyrene-divinylbenzene

P&T Purge and trap

PTFE Polytetrafluorethylene

QCM Quartz crystal microbalance

QCM-D QCM with dissipation measurement

QCM-R QCM with resistance measurement

RAFT Reversible addition-fragmentation chain-transfer

RP Reversed-phase

SEM Scanning electron microscopy imaging

SIM Simazine

SPE Solid phase extraction

TMSD Trimethylsilyl diazomethane

TOC Total organic carbon

UV/Vis UV-Visible spectrometry
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