
Whom to Trust?
Elective Learning for Distributed Gaussian Process Regression

Zewen Yang
∗

Robert Koch Institute

Berlin, Germany

yangz@rki.de

Xiaobing Dai
∗

Technical University of Munich

Munich, Germany

xiaobing.dai@tum.de

Akshat Dubey

Robert Koch Institute

Berlin, Germany

dubeya@rki.de

Sandra Hirche

Technical University of Munich

Munich, Germany

hirche@tum.de

Georges Hattab

Robert Koch Institute

Freie Universität Berlin

Berlin, Germany

hattabg@rki.de

ABSTRACT
This paper introduces an innovative approach to enhance distributed

cooperative learning using Gaussian process (GP) regression in

multi-agent systems (MASs). The key contribution of this work is

the development of an elective learning algorithm, namely prior-

aware elective distributed GP (Pri-GP), which empowers agents

with the capability to selectively request predictions from neigh-

boring agents based on their trustworthiness. The proposed Pri-GP

effectively improves individual prediction accuracy, especially in

cases where the prior knowledge of an agent is incorrect. More-

over, it eliminates the need for computationally intensive variance

calculations for determining aggregation weights in distributed

GP. Furthermore, we establish a prediction error bound within the

Pri-GP framework, ensuring the reliability of predictions, which is

regarded as a crucial property in safety-critical MAS applications.
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1 INTRODUCTION
In the context of multi-agent systems (MASs), distributed learn-

ing entails a collaborative approach where one or more groups of

agents join forces to improve their understanding and knowledge of

complex tasks, such as robotic swarm navigation [23], underwater

vehicle resource exploration missions [28, 29], and air drone search

and rescue operations [1], etc. To address the inherent challenges

posed by uncertain dynamics or environmental conditions in dy-

namic systems, distributed learning integrates supervised machine
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learning techniques enabling agents to learn cooperatively. This

approach leads to more effective and robust learning capabilities

compared to traditional single-agent models [19].

Specifically, Neural Networks (NNs) emerge as the prevailing

methodology approximating complex mappings or functions in

MASs [4]. To learn the unknown patterns jointly, the NN weights

are shared among neighboring agents, facilitating the attainment of

optimal parameter values [10, 26]. Several research endeavors have

been dedicated to system identification within the framework of

addressing uncertainties [5, 11]. However, as the complexity of NN

models increases with additional hidden layers and neurons, the

practicality of sharing all NN weights within constrained communi-

cation bandwidth becomes unfeasible. This challenge further leads

to significant delays in the learning process, rendering it impractical

and resulting in the MAS dynamics potentially unstable. Though

only exchanging the predictions, the inherent challenge arises from

the inadequacy in precisely quantifying prediction uncertainties,

thereby impeding its applicability in safety-critical tasks.

An alternative supervised machine learning approach, Gaussian

process regression (GPR) [20], has been widely used in the realm

of safety-critical control systems, primarily owing to its distinctive

attributes. Under the Bayesian inference framework, GPR not only

provides probabilistic predictions, where the prior model can be

updated continuously accommodating the incorporation of obser-

vations [21], but also offers error bounds endowed with robust

guarantees [14]. In contrast to NNs-based methods, GP models are

only required to share their individual predictions with connected

counterparts [33]. Even if the agent lacks access to the complete

training dataset, collaborative improvements in prediction qual-

ity can be achieved by aggregating predictions from neighboring

agents. The synergy of aggregated predictions from neighboring

agents, as detailed in prior research [15, 31, 32], underscores the

effectiveness of this approach in achieving improved prediction

quality within the multi-agent framework. Moreover, to improve

the efficiency of cooperative learning with GPs, the event-triggered

mechanism is introduced in [7, 8]. However, the mentioned liter-

ature above based on distributed GP [9, 25] imposes a constraint

in the sense that it mandates the exchange of information with all

neighboring agents, offering no flexibility for agents to selectively

determine which neighbors to collaborate with. The agent needs to

aggregate the predictions from the neighbors, thus each agent is
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compelled to compute predictions for all of its neighboring counter-

parts, potentially incurring a substantial increase in computational

overhead. For example, the product of GP experts (POE) methods

[2] and Bayesian committee machine (BCM) methods [16, 24] rely

on the posterior variance of GP requiring O(𝑁 2) calculations. This
concern becomes particularly salient in scenarios characterized by

limited computational resources at each agent’s disposal or when

the expeditious generation of predictions is imperative. Further-

more, the rigidity of this collaborative setup raises noteworthy

issues, especially in cases where the prior knowledge is erroneous.

This is ignored by most distributed GP approaches, for instance, the

mixture of GP experts (MOE) approach [25], where the aggregation

weight is just the reciprocal of the total number of the GP mod-

els. In such instances, a uniform collaboration approach may yield

suboptimal results, as it does not accommodate the possibility that

an individual agent may possess superior predictive capabilities

compared to its collaborators.

To address these challenges, we propose a novel approach where

agents are empowered with the capability of requesting predictions

exclusively, allowing them to actively select their collaborators from

among their neighbors. This elective learning method leverages

the error between prior knowledge and real observations, called

prior-aware elective distributed GP (Pri-GP), which can let the

agent smartly choose the neighbors who are worth trusting. There-

fore, it not only reduces the heavy computation required by the

neighbors but also improves the individual agent’s prediction in the

distributed cooperative learning framework avoiding aggregating

the potentially misleading prediction from the neighbors whose

prior knowledge is significantly wrong.

The contribution of this paper is that an elective distributed

cooperative learning algorithm for MASs with distributed GPR is

proposed. The primary innovation lies in the proposal of an er-

ror metric that leverages prior errors, which possesses broader

applicability beyond its immediate application and can be seam-

lessly integrated into various machine learning methodologies. In

particular, the proposed Pri-GP approach offers a remarkable de-

gree of flexibility by circumventing the necessity of computing

variance for the determination of aggregation weights, a process

commonly associated with a computational complexity of O(𝑁 2)
in distributed GP techniques. Additionally, we provide a prediction

error bound using the Pri-GP framework, thereby ensuring the reli-

ability of predictions, a crucial aspect, particularly in the context of

safety-critical applications.

2 PRELIMINARIES AND PROBLEM SETTING
2.1 Notation and Graph Theory
We use the notation R+/R0,+ to denote positive real numbers with-

out/with zero and denote natural numbers without/with zero as

N/N0, respectively. Unless otherwise specified, the identity matrix

is 𝑰 , and a matrix or vector consisting of elements 1 is denoted by 1,
with appropriate sizes as needed. The Euclidean norm of a vector

or matrix is represented as ∥ · ∥, the cardinality of a set N as |N |,
and the element-wise absolute operator for vector input 𝒗 as |𝒗 |.

To characterize the communication network of the distributed

MAS, an undirected graph G = (V, E) is employed among 𝑆 agents,

𝑆 ∈ N. The node set V = {1, . . . , 𝑆} represents the index of the

agents, and E ⊆ V ×V signifies the set of edges between nodes,

where an edge (𝑖, 𝑗) ∈ E indicates that agent 𝑖 and agent 𝑗 exchange

their information between each other. The self-loop included ad-

jacency matrix of G is denoted by A =
[
𝑎𝑖 𝑗

]
∈ R𝑆×𝑆 , where all

diagonal entries 𝑎𝑖𝑖 = 1, other elements of the matrix 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 = 1

if (𝑖, 𝑗) ∈ E and 𝑎𝑖 𝑗 = 0 otherwise. Moreover, we let the set of

neighbours of agent 𝑖 represent as N𝑖 = { 𝑗 ∈ V : (𝑖, 𝑗) ∈ E} and
the set

¯N𝑖 comprises agent 𝑖 along with its neighbors, meaning it

contains agent 𝑖 itself and all the agents in N𝑖 .

2.2 Problem Description
In this work, we delve into the investigation of a distributed MAS

comprising a total of 𝑆 individual agents. The primary objective of

these homogeneous agents is to identify the identical functional

characteristics of their dynamical systems

¤𝒙 = 𝒇 (𝒙), (1)

considering 𝒇 (𝒙) = [𝑓1 (·), · · · , 𝑓𝑚 (·)]T, where for each dimension,

𝑓𝑑 (·) : X→ R, ∀𝑑 = 1, · · · ,𝑚 and X ⊂ R𝑚 is a𝑚 ∈ N dimensional

compact domain. These agents actively engage in communication

with one another through a network, herein referred to as G. Con-
currently, each agent has the collection of observational data set D𝑖
with the subscript 𝑖 indicating the specific agent within the setV ,

which are subsequently harnessed for the purpose of estimating

the unknown functions. It is noteworthy that each agent possesses

its own distinct set of prior knowledge pertaining to these uniden-

tified functions, which is represented as
ˆ𝑓 (·) considering the same

mapping relationship of 𝑓 . To facilitate the utilization of this prior

knowledge and the learned functions for describing the system’s

dynamics, we introduce the following assumption.

Assumption 1. The functions 𝑓 (·) and ˆ𝑓 (·) exhibit local Lipschitz
continuity within the compact domainX, characterized by a Lipschitz
constant denoted as 𝐿𝑓 ∈ R, i.e, ∥∇𝑓 (𝒙)∥ ≤ 𝐿𝑓 for all 𝒙 ∈ X.

This assumption is frequently encountered in the context of non-

linear systems [12], which serves the guarantee of the existence

and uniqueness of solutions for nonlinear autonomous systems. In

practice, this assumption merely necessitates the system’s conti-

nuity, with the subsequent establishment of Lipschitz continuity

being a derived property within the bounded region denoted as X.
Consequently, it can be contended that this assumption imposes

no onerous constraints on the system under consideration.

It is important to highlight that in this paper, we have chosen

to work with a one-dimensional estimation, i.e., a scalar function,

where𝑑 = 1. This simplification in dimensionality has been adopted

for the sake of keeping our notations concise and straightforward.

However, it should be noted that the outcomes derived in this work

can be readily extended to higher dimensional functions achieved

by employing techniques such as the Kronecker product and multi-

output learning methods.

To describe the training data set of the agent 𝑖 comprising stream-

ing data pairs, we denote it as D𝑖 with 𝑁𝑖 ∈ N training data pairs.

This data set is represented as D𝑖 =
{(
𝒙
(𝑝 )
𝑖

, 𝑦
(𝑝 )
𝑖

)}
𝑝=1,...,𝑁𝑖

, where

each pair consists of a training input 𝒙𝑖 ∈ X and a corresponding

training output 𝑦𝑖 ∈ R, and satisfies the following assumption.



Assumption 2. The data pair
{(
𝒙
(𝑝 )
𝑖

, 𝑦
(𝑝 )
𝑖

)}
that is obtained by

agent 𝑖 ∈ V , such that the noise 𝜍 (𝑝 )
𝑖
∈ R of 𝑦 (𝑝 )

𝑖
= 𝑓

(
𝒙
(𝑝 )
𝑖

)
+ 𝜍 (𝑝 )

𝑖
follows a zero-mean, independent and identical Gaussian distribution,
i.e., 𝜍 (𝑝 )

𝑖
∼ N(0, 𝜎2

𝑛), ∀𝑝 ∈ N with 𝜎𝑛 > 0.

As outlined in Assumption 2, it is assumed that each agent in-

dependently collects their own dataset without sharing it among

others. While this assumption necessitates precise and complete

measurements of the system states, a requirement commonly en-

countered in MASs when employing data-driven methodologies, it

is possible to effectively address the measurement noise associated

with the variable 𝒙 . This can be achieved through various tech-

niques, such as Taylor expansion, as demonstrated in prior works

like [13, 18], or by incorporating noise handling directly into the

kernel function, as discussed in [27]. It is worth noting that there

are broader considerations related to noise distribution relaxation,

we refer to [3, 17]. However, these aspects lie beyond the scope of

this paper.

In the development of a distributed learning framework for the

MAS, the estimation of the unknown function 𝑓 (·) at time 𝑡𝑘 ∈ R0,+
of the 𝑖-th agent is considered as

˜𝑓𝑖 (𝒙 (𝑡𝑘 )) =
𝑆∑︁
𝑗=1

𝜔𝑖 𝑗𝜙𝑖 𝑗

(
𝒙 (𝑡𝑘 ),D𝑗 , ˆ𝑓𝑗 (𝒙 (𝑡𝑘 ))

)
, 𝑖 ∈ V, (2)

where 𝑘 ∈ N is indicating the specific instance of prediction, and

the cooperative estimation function 𝜙𝑖 𝑗 (·, ·, ·) corresponds to the

prediction mechanism employed by each agent. Specifically, when

𝑖 ≠ 𝑗 , it characterizes the prediction generated through the neighbor

agent 𝑗 with its training data set D𝑗 and prior knowledge function

ˆ𝑓𝑗 (·). While 𝑖 = 𝑗 , it represents the prediction of agent 𝑖 itself using

its own prior and training data set.

Therefore, the primary focus of this paper revolves around the

development of a collaborative estimation function tailored to aug-

ment individual predictions of an unknown function in an elective

manner, which can enhance the predictions without necessitating

the aggregation of predictions from all neighboring agents, thereby

mitigating the computational burden imposed on these neighbors.

Importantly, this elective strategy takes into account the varying ac-

curacy of prior knowledge possessed by agents, which is illustrated

in Section 3.

2.3 Gaussian Process Regression
In this paper, Gaussian process regression, a supervised machine

learning technique, is employed to perform inference on the un-

known function 𝑓 (·). A Gaussian process GP( ˆ𝑓 (·), 𝜅 (·, ·)) is uti-
lized to establish a probabilistic model characterized by two funda-

mental components: the prior mean function
ˆ𝑓 (·), and the kernel

function, denoted as 𝜅 (·, ·) : X × X → R0,+, which satisfies the

following assumption.

Assumption 3. The kernel function 𝜅 (∥𝑥 −𝑥 ′∥) = 𝜅 (𝑥, 𝑥 ′) is cho-
sen as stationary, monotonically decreasing, and Lipschitz continuous
with a specified Lipschitz constant denoted as 𝐿𝜅 .

The adoption of a Lipschitz continuous kernel emerges as a judi-

cious selection when dealing with continuous unknown functions

within a confined domain. The kernel’s monotonic decrease, as

reflected in its behavior, implies a diminishing strength of associ-

ation between the training data and the evaluated point as their

Euclidean distance increases. Therefore, a common choice of kernel

function is ARD exponential kernel formulated as

𝜅
(
𝒙, 𝒙′

)
= 𝜎2

𝑟 exp

(
− 1

2

𝑚∑︁
𝑗=1

𝑙 𝑗
2 (𝑥 𝑗 − 𝑥 ′𝑗 )

2

)
, (3)

where 𝒙 = [𝑥1, 𝑥2, . . . , 𝑥𝑚] ∈ X. 𝜎𝑟 ∈ R+ and 𝑙 𝑗 ∈ R+ are hyper-
parameters.

We consider the agent 𝑖 ∈ V within the MAS to be equipped

with a GP model characterized by hyperparameters denoted as

𝜽 = {𝜎𝑟 , 𝑙𝑠 , 𝑠 = 1, 2,. . .,𝑚}. Additionally, the agent possesses a fixed
training dataset denoted as D𝑖 with 𝑁𝑖 ∈ N0 training data pairs

under Assumption 2 and holds different prior of the unknown func-

tion
ˆ𝑓𝑖 (·) satisfying Assumption 1. Agent 𝑖 performs predictions

at discrete time points denoted as 𝑡𝑘 . These predictions are repre-

sented as the posterior mean prediction and associated prediction

variance [20] at the query point 𝒙 (𝑡𝑘 ), which are formulated as

𝜇𝑖
(
𝒙 (𝑡𝑘 ) | ˆ𝑓𝑖 (𝒙 (𝑡𝑘 )),D𝑖

)
= ˆ𝑓𝑖 (𝒙 (𝑡𝑘 )) (4)

+ 𝐾
(
𝒙 (𝑡𝑘 ),𝑿𝑖

)
𝑲 (𝑿𝑖 )−1

(
𝒀T

𝑖 − ˆ𝒇𝑖 (𝑿𝑖 )T
)
,

𝜎𝑖
(
𝒙 (𝑡𝑘 ) | ˆ𝑓𝑖 (𝒙 (𝑡𝑘 )),D𝑖

)
= 𝜅 (𝒙 (𝑡𝑘 ), 𝒙 (𝑡𝑘 )) (5)

− 𝐾
(
𝒙 (𝑡𝑘 ),𝑿𝑖

)
𝑲 (𝑿𝑖 )−1𝐾

(
𝒙 (𝑡𝑘 ),𝑿𝑖

)
T

,

respectively, where

𝑲 (𝑿𝑖 ) = K
(
𝑿𝑖 ,𝑿𝑖

)
+ 𝜎2

𝑛 𝑰 , (6)

K(𝑿𝑖 ,𝑿𝑖 ) =
[
𝜅
(
𝒙 (𝑎)
𝑖
, 𝒙 (𝑏 )

𝑖

) ]
𝑎,𝑏=1,...,𝑁𝑖

(7)

𝐾
(
𝒙 (𝑡𝑘 ),𝑿𝑖 (𝑡𝑘 )) =

[
𝜅
(
𝒙 (𝑡𝑘 ), 𝒙

(1)
𝑖

)
· · ·𝜅

(
𝒙𝑡𝑘 , 𝒙

(𝑁𝑖 )
𝑖

) ]
, (8)

𝑿𝑖 =
[
𝒙 (1)
𝑖
· · · 𝒙 (𝑁𝑖 )

𝑖

]
, 𝒀𝑖 =

[
𝑦
(1)
𝑖
· · ·𝑦 (𝑁𝑖 )

𝑖

]
, (9)

and the concatenated prior mean value is defined as
ˆ𝒇 (𝑿𝑖 ) =[

ˆ𝑓
(
𝒙 (1)
𝑖

)
, . . . , ˆ𝑓

(
𝒙 (𝑁𝑖 )
𝑖

) ]
.

Therefore, each agent 𝑖 can use the posterior mean to identify the

unknown 𝑓 (·) at 𝒙 (𝑡𝑘 ) by Eq. (4), the individual estimation func-

tion 𝜙𝑖𝑖
(
𝒙 (𝑡𝑘 ),D𝑖 , ˆ𝑓𝑖 (𝒙 (𝑡𝑘 ))

)
= 𝜇𝑖

(
𝒙 (𝑡𝑘 ) | ˆ𝑓 (𝒙 (𝑡𝑘 )),D𝑖

)
. To simplify

our notation, we denote 𝜇𝑖 (𝒙 (𝑡𝑘 ) | ˆ𝑓𝑖 (𝒙 (𝑡𝑘 )),D𝑖 ) as 𝜇𝑖 (𝒙 (𝑡𝑘 )) in the

subsequent sections of this paper. Having established the GPR as

our foundational tool, the subsequent section is dedicated to the

formulation of our elective distributed learning approach.

3 ELECTIVE DISTRIBUTED LEARNINGWITH
PRIOR-AWARE GPR

To assess the reliability of the collaborators, we introduce the prior

estimation error in Section 3.1. This metric serves as a quantitative

measure for gauging the trustworthiness of neighboring agents in

the MAS. Building upon this quantitative foundation, we proceed

to formulate an elective distributed learning algorithm, as outlined

in Section 3.2. Additionally, to bolster the safety and guarantee of

the learning scenario, we establish a prediction error bound within

the Pri-GP framework in Section 3.3.



3.1 Prior Error Quantification
Inmulti-agent systems, each agent possesses a finite training dataset,

which naturally leads to a scenario where predictions for points

lying beyond the training data domain or in sparsely sampled re-

gions become highly reliant on prior knowledge. Consequently,

the accuracy of these predictions is predominantly influenced by

the quality of the prior information in the Bayesian framework.

This situation underscores the potential challenges arising from

incorrect or inadequate prior knowledge. Therefore, there arises a

compelling need for a systematic mechanism to assess the degree

of inaccuracy associated with prior knowledge, particularly in the

presence of observed true values for predictions. To formally quan-

tify the disparity between the prior estimation and observed data,

we introduce the concept of prior estimation error denoted by

𝑒𝑖 (𝒙 (𝑡𝑘 )) = ˆ𝑓𝑖 (𝒙 (𝑡𝑘 )) − 𝑦 (𝑡𝑘 ) . (10)

Given the availability of system observations, we systematically

log the associated errors. To establish the evolving cumulative

error over time, we define the average accumulated historical prior

estimation error as

𝜀𝑖 (𝑡𝑘 ) =
1

𝑘

𝑘∑︁
𝑙=1

|𝑒𝑖 (𝒙 (𝑡𝑘−𝑙 )) |. (11)

This metric serves as a pivotal instrument in characterizing the

deviation between prior expectations and empirical observations,

thereby enhancing our capacity to evaluate and interpret the relia-

bility of the models, which is illustrated in the following lemma.

Lemma 1. The variable 𝜀𝑖 (𝑡𝑘 ) reflects the prediction error on the
training data set D𝑖 , and the measurement error. In particular, 𝜀𝑖 (𝑡𝑘 )
is written as

𝜀𝑖 (𝑡𝑘 ) =
1

𝑘
1T |𝑮𝑘 (𝝃𝑘 + 𝝇𝑘 ) |, (12)

where 𝑮𝑘 = (𝑰 + 𝜎−2

𝑛 K(𝑿𝑖 ,𝑿𝑖 )). The aggregated error denotes 𝝃𝑘 =

[𝜉0, · · · , 𝜉𝑘 ]𝑇 with 𝜉𝑝 = 𝑓 (𝒙 (𝑝 ) ) − 𝜇𝑖 (𝒙 (𝑝 ) ),∀𝑝 = 1, · · · , 𝑘 . The
noise vector 𝝇𝑘 collects all measurement from 𝑡 = 𝑡0 to 𝑡𝑘 , i.e., 𝜍𝑘 =

[𝜍 (0) , · · · , 𝜍 (𝑘 ) ]𝑇 , where the individual noise 𝜍 (𝑝 ) ,∀𝑝 = 1, · · · , 𝑘 ,
follows Assumption 2.

Proof. Considering the prediction of each sample in D𝑖 using

(4), the aggregated prediction 𝝁𝑖 (𝑿𝑖 ) = [𝜇𝑖 (𝒙 (0) ), · · · , 𝜇𝑖 (𝒙 (𝑁𝑖 ) )]𝑇
is written as

𝝁𝑖 (𝑿𝑖 ) = ˆ𝒇𝑖 (𝑿𝑘 )T + K(𝑿𝑖 ,𝑿𝑖 )𝑲 (𝑿𝑖 )−1
(
𝒀T

𝑘
− ˆ𝒇𝑖 (𝑿𝑖 )T

)
(13)

=
(
𝑰 − K(𝑿𝑖 ,𝑿𝑖 )𝑲 (𝑿𝑖 )−1

)
ˆ𝒇𝑖 (𝑿𝑖 )T

+ K(𝑿𝑖 ,𝑿𝑖 )𝑲 (𝑿𝑖 )−1𝒀T

𝑘
.

Then, the aggregated deviation between the measurements 𝑦 (𝑝 )

and the prediction 𝜇𝑖 (𝒙 (𝑝 ) ) denoted by

𝒀T

𝑘
− 𝝁𝑖 (𝑿𝑘 ) = 𝜎2

𝑛𝑲 (𝑿𝑖 )−1
(
𝒀T

𝑘
− ˆ𝒇𝑖 (𝑿𝑘 )T

)
= 𝑮−1

𝑘

(
𝒀T

𝑘
− ˆ𝒇𝑖 (𝑿𝑘 )T

)
, (14)

which is also equivalent to

𝒀T

𝑘
− ˆ𝒇𝑖 (𝑿𝑘 )T = 𝑮𝑘

(
𝒀T

𝑘
− 𝝁𝑖 (𝑿𝑘 )

)
due to the non-singular 𝑮𝑘 . Note that 𝒀T

𝑘
− 𝝁𝑖 (𝑿𝑘 ) is divided

into two parts with prediction error 𝝃𝑘 and measurement error

𝜍𝑘 , i.e., 𝒀
T

𝑘
− 𝝁𝑖 (𝑿𝑘 ) = 𝝃𝑘 + 𝜍𝑘 . Moreover, reformulating (11) as

𝜀𝑖 (𝑡𝑘 ) = 𝑘−11T𝒆𝑖 (𝑿𝑘 ) with 𝒆𝑖 (𝑿𝑘 ) = [𝑒𝑖 (𝒙 (𝑡0)), · · · , 𝑒𝑖 (𝒙 (𝑡𝑘 ))]𝑇 ,
the accumulated prior estimation error 𝜀𝑖 (𝑡𝑘 ) is written as

𝜀𝑖 (𝑡𝑘 ) =
1

𝑘
1T |𝒀T

𝑘
− 𝝁𝑖 (𝑿𝑘 ) | (15)

and then the result in (12) is derived. □

Remark 1. Lemma 1 shows the accumulated historical prior esti-
mation error encodes the joint effects of the prediction and measure-
ment. Moreover, the coefficient matrix 𝑮𝑘 indicates the correlation
of the training data by K(𝑿𝑖 ,𝑿𝑖 ). As the value of 𝑮𝑘 is influenced
by the number of training samples, to eliminate the effects from the
size of the data set and normalize the prediction performance of the
GP model, the mean of the absolute value for the prediction and mea-
surement error is considered by applying 𝑘−11T. Therefore, 𝜀𝑖 (𝑡𝑘 ) is
a reasonable metric to evaluate the performance of the GP models
without heavy variance computation.

However, one must consider that the historical estimation errors

can exhibit significant disparities, ranging from scenarios where

an agent possesses an ideal prior knowledge resulting in zero error,

to instances where an agent’s prior information is grossly inaccu-

rate, leading to exceedingly substantial errors. Consequently, there

arises a necessity to standardize these errors to a suitable range.

In this context, it becomes imperative to normalize them within

the interval [0, 1], i.e. the min-max normalization for accumulated

historical estimation error, which is expressed in

𝜀𝑖 (𝑡𝑘 ) =
𝜀𝑖 (𝑡𝑘 ) − 𝜀min,𝑖 (𝑡𝑘 )

𝜀max,𝑖 (𝑡𝑘 ) − 𝜀min,𝑖 (𝑡𝑘 )
, (16)

where 𝜀max,𝑖 (𝑡𝑘 ) = max𝑖∈ ¯N𝑖
𝜀𝑖 (𝑡𝑘 ) and 𝜀min,𝑖 (𝑡𝑘 ) = min𝑖∈ ¯N𝑖

𝜀𝑖 (𝑡𝑘 ).
The variable 𝜀𝑖 (𝑡𝑘 ) serves the dual purpose of standardizing error
magnitudes and facilitating threshold-based decision making. It not

only simplifies the comparison and analysis of errors across differ-

ent scenarios or datasets but also streamlines the establishment of

thresholds for acceptable errors, which is used for designing the

elective strategy.

3.2 Prior-Aware Elective Cooperative Learning
Through the incorporation of the quantifiable term 𝜀, we introduce

an elective learning function denoted as 𝛼𝑖 𝑗 leveraging the average

accumulated historical estimation errors (16). Essentially, it informs

us about the degree of trust in the GP models and the circumstances

in which the agent 𝑖 requires calculations for prediction from its

neighboring agent 𝑗 ( 𝑗 ∈ ¯N𝑖 ), including itself. This inclusion is

particularly relevant when agent 𝑖 seeks to calculate predictions at

query point 𝒙𝑖 (𝑡𝑘 ) utilizing its local GPmodel. The elective function

for agent 𝑖 is designed as

𝛼𝑖 𝑗
(
𝑡𝑘 , 𝑆𝑖

)
=

{
𝑎𝑖 𝑗 𝜀 𝑗 (𝑡𝑘 ) < 𝜀𝑖 (𝑡𝑘 )
0 otherwise

, 𝑗 ∈ ¯N𝑖 , (17)

where 𝜀𝑖 (𝑡𝑘 ) is the 𝑆𝑖 -th largest value of the set {𝜀𝑖 (𝑡𝑘 )}𝑖∈ ¯N𝑖
as-

sociated with the agent 𝑖 . This elective function signifies that the

agent 𝑖 exclusively selects cooperative predictions from a subset

S𝑖 (𝑡𝑘 ) = { 𝑗 |𝛼𝑖 𝑗 (𝑡𝑘 , 𝑆𝑖 ) > 0, 𝑗 ∈ ¯N𝑖 } of ¯N𝑖 . Specifically, the subset
S𝑖 defines the number of |S𝑖 | = | ¯N𝑖 | − 𝑆𝑖 trustworthy agents in

the set
¯N𝑖 for the aggregation prediction. Therefore, this elective



function affords the agent the capability to determine the number of

collaborators, including itself, that it wishes to engage in computing

joint inferences for the unknown function.

By employing the proposed elective function in conjunction with

the normalized accumulated historical error (16), we formulate the

elective prior-aware aggregation weight function for the 𝑖-th agent

designed by

�̃�𝜀
𝑖 𝑗 (𝑡𝑘 ) = 𝜑𝑖 𝑗

(
∪𝑗∈ ¯N𝑖

𝛼𝑖 𝑗 (𝑡𝑘 , 𝑆𝑖 )ℎ𝜀 (𝜀 𝑗 (𝑡𝑘 ))
)
, 𝑗 ∈ ¯N𝑖 , (18)

which can be simplified as

�̃�𝜀
𝑖 𝑗 (𝑡𝑘 ) = 𝜑𝑖 𝑗

(
∪𝑗∈S𝑖 ℎ

𝜀 (𝜀 𝑗 (𝑡𝑘 ))
)
, 𝑗 ∈ S𝑖 , (19)

according to the definition of S𝑖 , where 𝜑𝑖 𝑗 (·) is a proportional

function

𝜑𝑖 𝑗 (∪𝑠∈S𝑖𝑤𝑖𝑠 ) =
𝑤𝑖 𝑗∑

𝑠∈S𝑖 𝑤𝑖𝑠
. (20)

Since smaller estimation error 𝜀 𝑗 (𝑡𝑘 ) indicates more reliable per-

formance for GP model 𝑗 with larger �̃�𝜀
𝑖 𝑗
(𝑡𝑘 ), the positive function

ℎ𝜀 (·) : R+ → R+ is designed as monotonically decreasing, i.e.,

∀𝜀𝑖 , 𝜀 𝑗 ∈ R+ with ∀𝜀𝑖 ≤ ∀𝜀 𝑗 it holds ℎ𝜀 (∀𝜀𝑖 ) ≥ ℎ𝜀 (∀𝜀 𝑗 ). Moreover,

when ℎ𝜀 (·) is well-defined, i.e., not tend to be infinite, when the

input is close to 0. With the above requirements, the function ℎ𝜀 (·)
can be designed as

ℎ𝜀 (𝜀 𝑗 (𝑡𝑘 )) =
𝜎ℎ𝑖

√
2𝜋

exp

(
− 1

2

(
𝜀 𝑗 (𝑡𝑘 )−𝜀𝑖 (𝑡𝑘 )

𝜎ℎ𝑖

)
2
) , (21)

where the scaling factor 𝜎ℎ𝑖 ∈ R+ is the standard deviation value

of the Gaussian distribution in the denominator of Eq. (21). The

rationale behind utilizing the function (21) instead of Eq. (16) as the

weighting scheme lies in the fact that the parameter 𝜎ℎ𝑖 is a train-

able variable, affording the flexibility to optimize the distribution of

aggregation weights. More importantly, an additional crucial con-

sideration is the necessity to prevent singular values from arising.

Notably, the elective aggregation weight function Eq. (18) presents

an advantageous feature wherein the computation of aggregation

weights does not impose a significant computational burden, as

these weights are determined based on the prior estimation errors

of collaborators. However, it is well-established that the posterior

variance in GPR serves as an indicator of prediction uncertainties

[9]. This metric quantifies the confidence degree of predictions with

respect to the training dataset, as employed in the concept presented

in [32]. In light of this, we incorporate this notion with Eq. (20) to

design the elective weight based on the variance �̃�𝜎
𝑖 𝑗
(𝑡𝑘 ) of GP as

�̃�𝜎
𝑖 𝑗 (𝑡𝑘 ) = 𝜑𝑖 𝑗

(
∪𝑗∈ ¯N𝑖

𝛼𝑖 𝑗 (𝑡𝑘 , 𝑆𝑖 )ℎ𝜎 (𝜎 𝑗 (𝒙 (𝑡𝑘 )))
)

(22)

where ℎ𝜎 (•) : R→ R is •−2
. Therefore, considering both the elec-

tive weights (18) and (22), we combine them by using the following

method

𝜔𝑖 𝑗 (𝑡𝑘 ) = 𝜌 (�̃�𝜀
𝑖 𝑗 (𝑡𝑘 ), �̃�

𝜎
𝑖 𝑗 (𝑡𝑘 )), (23)

where 𝜌 (·, ·) : R × R → R is designed as a function that can bal-

ance the impact between the aggregation weights based on prior

estimation error and the weights based on posteriors.

Remark 2. The design of the function 𝜌 (·) is restraint under the
condition

∑
𝑗∈ ¯N𝑖

�̃�𝑖 𝑗 (𝑡𝑘 ) = 1. A valid choice of 𝜌 can be

𝜌 (�̃�𝑒
𝑖 𝑗 (𝑡𝑘 ), �̃�

𝜎
𝑖 𝑗 (𝑡𝑘 )) = 𝜑𝑖 𝑗

(
∪𝑗∈ ¯N𝑖

(
�̃�𝜀
𝑖 𝑗 (𝑡𝑘 )

)𝑐 (
�̃�𝜎
𝑖 𝑗 (𝑡𝑘 )

)
1−𝑐

)
, (24)

where 0 ≤ 𝑐 ≤ 1 ∈ R0,+ serves as a means to modulate the influence
of the first and second input variables in a proportional manner.
Consequently, the manipulation of the factor 𝑐 affords us the ability to
finely adjust the relative significance of two key metrics. This choice
of 𝜌 guarantees

∑
𝑗∈ ¯N𝑖

𝜔𝑖 𝑗 (𝑡𝑘 ) = 1 considering the definition of
function 𝜑𝑖 𝑗 in (20).

It is essential to acknowledge that the aggregation weights in

Eq. (22) entail increased computational demands on the collaborat-

ing agents, along with a higher volume of information exchange

to convey the posterior variances. Nevertheless, these adjustments

yield a richer source of predictive information from the collabora-

tors. This augmentation has the potential to enhance predictions

with Eq. (24) under fine-tuned hyperparameters. However, Pri-GP

provides a valuable avenue for achieving such adaptability, particu-

larly in situations where computational resources are constrained,

considering the calculation of variance infeasible due to its inher-

ent complexity O(𝑁 2) or resulting in substantial processing delays,

circumstances under which the POE method may prove ineffective.

Remark 3. Owing to the inherent characteristics of Bayesian learn-
ing methodologies, the posterior distribution continually refines itself
with the assimilation of additional training data, thereby mitigating
the influence of the prior distribution. Nevertheless, our approach
offers a broader perspective on quantifying the model’s confidence,
transcending the limitations of localized query points within the
training data domain. Moreover, even in scenarios where all predictive
regions have been fully explored and observed, it becomes feasible to
set the factor 𝑐 = 0 in Eq. (24). The Pri-GP transitions into an elective
POE, where the determination of aggregation weights relies solely
on posterior variance. When 𝑐 = 1, it signifies that the weighting
scheme exclusively relies on the prior-aware aggregation weights in
Eq. (18). Furthermore, it is pertinent to underscore that expeditious
acquisition of aggregation weights can be facilitated by bypassing the
computation of variance altogether.

As the aggregation weight function defined above, Eq. (2) can

be written as

˜𝑓𝑖 (𝒙 (𝑡𝑘 )) =
∑︁
𝑗∈ ¯N𝑖

𝜔𝑖 𝑗 (𝑡𝑘 )𝜙𝑖 𝑗
(
𝒙 (𝑡𝑘 ),D𝑗 , ˆ𝑓𝑗 (𝒙 (𝑡𝑘 ))

)
=

∑︁
𝑗∈ ¯N𝑖

𝜔𝑖 𝑗 (𝑡𝑘 )𝜇 𝑗 (𝒙 (𝑡𝑘 )), 𝑖 ∈ V . (25)

Therefore, to obtain the aggregated prediction, the exchanged infor-

mation necessitates the sharing of two critical components: firstly,

the posterior mean for prediction; secondly, the cumulative histori-

cal estimation error for the computation of the aggregation weights.

To facilitate a better understanding of the algorithm’s operation,

we provide a pseudo-code representation of Pri-GP in Algorithm 1.

3.3 Prediction with Probabilistic Guarantee
Before analyzing the prediction performance for the MAS with

the proposed prior-aware elective distributed learning, we first



Algorithm 1 Pri-GP Algorithm

Require: 𝑆 ≥ 2 ⊲ number of agents

for 𝑖 = 1 : 𝑆 do
for 𝑗 ∈ ¯N𝑖 do

𝜀𝑖 𝑗 (𝑡𝑘 ), 𝜀𝑖 𝑗 (𝑡𝑘 ), 𝛼𝑖 𝑗 (𝑡𝑘 , 𝑆𝑖 ) ← Eq. (11), Eq. (16), Eq. (17)

if 𝛼𝑖 𝑗 (𝑡𝑘 , 𝑆𝑖 ) ≠ 0 then
if 𝑐 = 1 then

�̃�𝜀
𝑖 𝑗
(𝑡𝑘 ) ← Eq. (19)

Calculate 𝜔𝑖 𝑗 (𝑡𝑘 ) = 𝜑𝑖 𝑗 (�̃�𝜀
𝑖 𝑗
(𝑡𝑘 ), 1)

else if 𝑐 ≠ 1 then
�̃�𝜎
𝑖 𝑗
(𝑡𝑘 ), 𝜔𝑖 𝑗 (𝑡𝑘 ) ← Eq. (22), Eq. (23)

end if
Calculate 𝜙𝑖 𝑗

(
𝒙 (𝑡𝑘 ),D𝑗 , ˆ𝑓𝑗 (𝒙 (𝑡𝑘 ))

)
end if

end for
˜𝑓𝑖 (𝒙 (𝑡𝑘 )) ←Eq. (25)

if 𝑦 (𝑡𝑘 ) ≠ ∅ then
𝑒𝑖 (𝒙 (𝑡𝑘 )) ← Eq. (10)

end if
end for

quantify the prediction error bound for a single GP model with

prior information, which is shown in the following lemma.

Lemma 2. For an unknown function satisfying Assumption 1, a GP
model is given with a training data D = {𝑿 , 𝒀 } set containing 𝑁 =

|D| ∈ N samples under Assumption 2. Moreover, choose the kernel
function 𝜅 (·) satisfying Assumption 3 and a Lipschitz continuous
prior mean function ˆ𝑓 (·) with Lipschitz constant 𝐿

ˆ𝑓
∈ R+. Pick the

grid factor 𝜏 ∈ R+ and 𝛿 ∈ (0, 1), then the prediction error with prior
information is uniformly bounded by

|𝜇 (𝒙) − 𝑓 (𝒙) | ≤ 𝜂 (𝒙) =
√︁
𝛽𝜎 (𝒙) + 𝛾𝜏,∀𝒙 ∈ X (26)

with a probability of at least 1 − 𝛿 , where 𝛾 = 𝐿𝑓 + 𝐿 ˆ𝑓
+
√︁
𝛽𝐿𝜎2𝜏 +

√
𝑁𝐿𝑘 ∥𝑲 (𝑿 )−1

(
𝒀T

𝑘
− ˆ𝒇 (𝑿 )T

)
∥ and the Lipschitz constant of the

posterior variance 𝐿𝜎2 = 2𝐿𝜅
(
1 + 𝑁

𝑲 (𝑿 )−1


max𝑥,𝑥 ′∈X 𝑘 (𝑥, 𝑥 ′)

)
.

The constant 𝛽 = 2

∑𝑚
𝑗=1

log

(√𝑚
2𝜏 (𝑥 𝑗 − 𝑥 𝑗 ) + 1

)
− 2 log𝛿 , where 𝑥 𝑗

and 𝑥 𝑗 denote the maximum and minimum of the 𝑗-th dimension of
𝒙 in the domain X, i.e., 𝑥 𝑗 = max𝒙∈X 𝑥 𝑗 and 𝑥 𝑗 = min𝒙∈X 𝑥 𝑗 .

Proof. To prove the uniform error bound in X, we first define
the discrete domain X𝜏 based on the grid factor 𝜏 , such that for

each element 𝒙 ∈ X there exists an element 𝒙′ ∈ X𝜏 satisfying

∥𝒙−𝒙′∥ < 𝜏 . The domainX𝜏 is finite, whose cardinality is bounded

according to [6] as |X𝜏 | ≤
∏𝑚

𝑗=1

(√
𝑚

2𝜏 (𝑥 𝑗 − 𝑥 𝑗 ) + 1

)
. Moreover,

employing Lemma 5.1 in [22], the uniform error bound within X𝜏
is written as

Pr{|𝜇 (𝒙′) − 𝑓 (𝒙′) | ≤
√︁
𝛽𝜎 (𝒙′),∀𝒙′ ∈ X𝜏 } ≥ 1 − 𝛿 (27)

considering 𝛽 = 2 log( |X𝜏 |/𝛿). Then, due to fact that ∥𝒙 − 𝒙′∥ ≤ 𝜏 ,
the prediction error within the domain X is bounded by

|𝜇 (𝒙) − 𝑓 (𝒙) | ≤ |𝜇 (𝒙) − 𝜇 (𝒙′) | + |𝑓 (𝒙) − 𝑓 (𝒙′) | + |𝜇 (𝒙′) − 𝑓 (𝒙′) |

≤
√︁
𝛽𝜎 (𝒙′) + 𝐿𝑓 𝜏 + |𝜇 (𝒙) − 𝜇 (𝒙′) |

≤
√︁
𝛽𝜎 (𝒙) +

√︁
𝛽𝐿𝜎𝜏 + 𝐿𝑓 𝜏 + |𝜇 (𝒙) − 𝜇 (𝒙′) | (28)

for all 𝒙 ∈ X. While the Lipschitz constant for the posterior mean

additionally depends on the prior mean, i.e.,

|𝜇 (𝒙) − 𝜇 (𝒙′) | ≤ |
(
𝐾 (𝒙,𝑿 ) − 𝐾 (𝒙′,𝑿 )

)
𝑲 (𝑿 )−1

(
𝒀T

𝑘
− ˆ𝒇 (𝑿 )T

)
|

+ | ˆ𝑓 (𝒙) − ˆ𝑓 (𝒙′) | (29)

≤
√
𝑁𝐿𝑘 ∥𝑲 (𝑿 )−1

(
𝒀T − ˆ𝒇 (𝑿 )T

)
∥∥𝒙 − 𝒙′∥ + 𝐿

ˆ𝑓
∥𝒙 − 𝒙′∥ .

Apply (29) into (28), then the uniform error bound in (26) for X is

derived, which completes the proof. □

Based on Lemma 2, we derive the overall prediction error bound

of the MAS.

Theorem 1. Consider a MAS with 𝑆 agents using the Pri-GP al-
gorithm to infer the unknown function 𝑓 (·) under Assumption 1.
Equip a GP model on each agent 𝑖 with the kernel function satisfying
Assumption 3 and a Lipschitz continuous prior ˆ𝑓 (·) with Lipschitz
constant 𝐿

ˆ𝑓 ,𝑖
. Moreover, let each agent has its individual data set D𝑖

satisfying Assumption 2. Pick 𝜏 ∈ R+ and 𝛿 ∈ (0, 1) , then the overall
prediction error denotes

∥ ˜𝒇 (𝒙) − 𝒇 (𝒙)∥ ≤ ∥[𝜂1 (𝒙1), · · · , 𝜂𝑆 (𝒙𝑆 )]𝑇 ∥, (30)

with probability of at least 1−∑𝑆
𝑖=1
|S𝑖 |𝛿 , where the aggregated func-

tion and prediction denote ˜𝒇 (𝒙) = [ ˜𝑓1 (𝒙1), · · · , ˜𝑓𝑆 (𝒙𝑆 )]𝑇 , 𝒇 (𝒙) =
[𝑓 (𝒙1), · · · , 𝑓 (𝒙𝑆 )]𝑇 , and

𝜂𝑖 (𝒙𝑖 ) =
∑

𝑗∈S𝑖 ℎ𝜀 (𝜀 𝑗 (𝑡𝑘 ))
𝑐ℎ𝜎 (𝜎 𝑗 (𝒙 (𝑡𝑘 ))1−𝑐𝜂 𝑗 (𝒙𝑖 )∑

𝑗∈S𝑖 ℎ𝜀 (𝜀 𝑗 (𝑡𝑘 ))𝑐ℎ𝜎 (𝜎 𝑗 (𝒙 (𝑡𝑘 ))1−𝑐
. (31)

Proof. Due to the property of function𝜑 (·), the prediction error
for the 𝑖-th agent is written as

| ˜𝑓𝑖 (𝒙𝑖 (𝑡𝑘 )) − 𝑓 (𝒙𝑖 (𝑡𝑘 )) | =
��� ∑︁
𝑗∈ ¯N𝑖

𝜔𝑖 𝑗 (𝑡𝑘 )
(
𝜇𝑖 (𝒙 (𝑡𝑘 )) − 𝑓 (𝒙𝑖 (𝑡𝑘 ))

) ���
≤

∑︁
𝑗∈ ¯N𝑖

𝜔𝑖 𝑗 (𝑡𝑘 ) |𝜇 𝑗 (𝒙 (𝑡𝑘 )) − 𝑓 (𝒙𝑖 (𝑡𝑘 )) | ≤
∑︁
𝑗∈ ¯N𝑖

𝜔𝑖 𝑗 (𝑡𝑘 )𝜂 𝑗 (𝒙𝑖 (𝑡𝑘 )),

(32)

where the second inequality is derived from Lemma 2. Consider the

definition of 𝜔𝑖 𝑗 (𝑡𝑘 ) in (23), the aggregation weight is rewritten as

𝜔𝑖 𝑗 (𝑡𝑘 ) =
(�̃�𝑒

𝑖 𝑗
(𝑡𝑘 ))𝑐 (�̃�𝜎

𝑖 𝑗
(𝑡𝑘 ))1−𝑐∑

𝑠∈ ¯N𝑖
(�̃�𝑒

𝑖𝑠
(𝑡𝑘 ))𝑐 (�̃�𝜎

𝑖𝑠
(𝑡𝑘 ))1−𝑐

(33)

With (18) and (22), one has

(�̃�𝑒
𝑖 𝑗 (𝑡𝑘 ))

𝑐 (�̃�𝜎
𝑖 𝑗 (𝑡𝑘 ))

1−𝑐
(34)

=
𝛼𝑖 𝑗 (𝑡𝑘 , 𝑆𝑖 )ℎ𝜀 (𝜀 𝑗 (𝑡𝑘 ))𝑐ℎ𝜎 (𝜎 𝑗 (𝒙 (𝑡𝑘 )))1−𝑐( ∑
𝑠∈S𝑖 ℎ𝜀 (𝜀 𝑗 (𝑡𝑘 ))

)𝑐 ( ∑
𝑠∈S𝑖 ℎ𝜎 (𝜎 𝑗 (𝒙 (𝑡𝑘 )))

)
1−𝑐 .

Apply (34) into (32), then the result in (31) is derived with the prob-

ability of at least 1− |S𝑖 |𝛿 using union bound. Moreover, employing



union bound again for different agents, the overall prediction error

bound in (30) is obtained. □

4 NUMERICAL EVALUATION
To effectively elucidate the efficacy of our proposed algorithms,

we commence by employing an approximated sine function as a

demonstrative vehicle expounding upon the fundamental principles

of Pri-GP, as explicated in Section 4.1. Furthermore, we showcase

the proficiency of our novel algorithms in identifying the dynamics

characterizing autonomous systems in Section 4.2.

4.1 Function Approximation
In this subsection, we investigate the MAS comprising 4 agents,

each equipped with an identical dataset but possessing distinct

prior knowledge represented as
ˆ𝑓 . The rationale behind this exper-

iment is to facilitate an in-depth analysis of the impact of varying

prior knowledge on predictions when employing an individual

learning strategy. Furthermore, we aim to draw comparisons with

different distributed learning methodologies showing the proposed

algorithms are superior to others.

The target function for approximation in this scenario is chosen

as 𝑠𝑖𝑛(2𝑥). We set the prior function of agent 1 to
ˆ𝑓1 (𝑥) = 0 con-

sidering the agent does not have any knowledge of the unknown

function, which is a general assumption. Moreover, let agent 3 have

the accurate function
ˆ𝑓3 (𝑥) = 𝑠𝑖𝑛(2𝑥) as the target function and the

2-nd agent and the 4-th agent as
ˆ𝑓2 (𝑥) = −1 and

ˆ𝑓4 (𝑥) = 𝑐𝑜𝑠 (2𝑥),
respectively. The adjacency matrix of the communication graph of

this MAS is

A =


1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

 .
Let 𝑆1 = 𝑆2 = 𝑆3 = 𝑆4 = 2, and the 8 identical training input are

randomly selected obeying uniform distribution over the range

[0, 2𝜋). And set the hyperparameters of the kernel function are

chosen as 𝜎𝑟 = 1, 𝑙 𝑗 = 0.2, 𝑗 = 1, 2, 3 and the noise variance of

the noise is 𝜎𝑛 = 0.1 for all agents. The curves presented in Fig. 1

show the results of function approximation. It becomes apparent

that the curve using individual learning with Gaussian Processes

(IGP), i.e., the agent predicts the unknown function independently,

closely approximates the prior function in the absence of training

data. This observation underscores the significant influence of prior

knowledge on predictions when no data are available.

To facilitate a more nuanced comparison of our proposed meth-

ods with existing approaches, we provide the prediction error, de-

noted byΔ𝑒 = | ˜𝑓 (𝑥)−𝑓 (𝑥) |, of all agents with violin plots in Fig. 2 to
analyze the distribution of prediction errors. Furthermore, the aver-

age of the 1000 prediction errors regarding each agent is illustrated

Table 1. It is evident that Pri-GP methods outperform the other

methods, which have the lowest sum of average prediction errors.

Notably, while the overall prediction errors for theMAS letting 𝑐 ≠ 1

may appear less favorable when compared to 𝑐 = 1, a closer exami-

nation reveals that agent 2, in particular, benefits from Pri-GP with

𝑐 = 0.5. The BCM method manifests heightened errors that can be
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Figure 2: Violin plots of prediction errors for different meth-
ods. The red line is the mean value and the top/bottom hori-
zontal blue bar is the maximal/minimal value.

Table 1: Average prediction errors (×10
−2)

Methods Agent 1 Agent 2 Agent 3 Agent 4 Sum

Pri-GP (𝑐 =1) 0.044 22.25 0.048 0.032 22.37
Pri-GP (𝑐 = 1

2
) 0.734 22.13 0.515 0.958 24.34

POE 16.64 24.24 17.83 20.87 79.58

GPOE 16.64 24.24 17.83 20.87 79.58

BCM 38.48 41.12 37.38 45.09 162.07

RBCM 22.26 25.31 21.08 23.11 91.76

MOE 16.64 24.24 17.82 20.87 79.58

IGP 22.26 42.70 0.002 43.65 108.61

attributed to that BCM tends to disproportionately accentuate the in-

fluence of prior variance within the aggregation weights. Moreover,

it is crucial to note that the similarity in results of the POE, POE, and

GPOE methods arises from the identical training datasets employed

by all agents. In order to explore the impact of distinct training

datasets, a more intricate scenario is examined in Section 4.2.

4.2 Dynamical System Identification
To further demonstrate the capability of Pri-GP in the identification

of dynamical systems, this subsection endeavors to exemplify the



x

−10 −5
0

5
10

y
−20

−10

0
10

z

0

10

20

30

40

D1

D2

D3

D4

D5

D6

D7

D8

(a) Training data

−20 −10
0

10
20

30
x −40

−20

0
20

40

y

0

20

40

60

80

z

POE

−10
0

10
20x −20

0

20

40

y

0

20

40

60

z

Pri-GP (c=0.5)

True

Agent1

Agent2

Agent3

Agent4

Agent5

Agent6

Agent7

Agent8

(b) System trajectories

Figure 3: 3 Dimension Plots
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Figure 4: Mean prediction error with standard deviation

performance of Pri-GP with a 3 dimensional nonlinear system

¤𝑥 = 𝑠 (𝑦 − 𝑥),
¤𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧,
¤𝑧 = 𝑥𝑦 −10 sin(𝑧) − 10𝑥 − 0.5(1 + exp(−𝑥𝑦/10))−1︸                                                     ︷︷                                                     ︸

𝑓 (𝜒 )

,

where we assume the unknown component of the system as repre-

sented by 𝑓 (𝜒) : R3 → R, where 𝜒 = [𝑥,𝑦, 𝑧]1. The MAS comprises

8 agents, each equipped with unique datasets with 100 training data

satisfying the conditions specified in Assumption 2 randomly dis-

tributed in the space [−10, 20] × [−25, 30] × [0, 60] (see Fig. 3a). All
agents begin in the same initial states, which are randomly deter-

mined within the range [0, 1]. These simulations are conducted 100

times for Monte-Carlo simulations, with a time step of 0.01, and

each simulation continues for 150 time steps. The hyperparameters

of the kernel function are chosen as 𝜎𝑟 = 1, 𝑙 𝑗 = 1000, 𝑗 = 1, 2, 3

and the noise variance of the noise is 𝜎𝑛 = 0.1. Furthermore, the

selection of diverse prior functions in the MAS are as follows

ˆ𝑓1 (𝜒) = ˆ𝑓3 (𝜒) = −10𝑠𝑖𝑛(𝑧) − 10𝑥 − 0.5(1 + exp(−𝑥𝑦/10))−1,

ˆ𝑓2 (𝜒) = 0, ˆ𝑓4 (𝜒) = −10𝑠𝑖𝑛(𝑧), ˆ𝑓5 (𝜒) = −10𝑥,

ˆ𝑓6 (𝜒) = 10𝑦 − 0.5(1 + exp(−𝑥𝑦/10))−1,

1
For complete results of the simulations, refer to the extended version [30].

ˆ𝑓7 (𝜒) = −0.5(1 + exp(−𝑥𝑦/10))−1,

ˆ𝑓8 (𝜒) = −10𝑐𝑜𝑠 (𝑧) .

Similar to Section 4.1, each agent discharges one neighbor leading

𝑆1 = 𝑆3 = 4, 𝑆2 = 𝑆4 = 𝑆5 = 𝑆8 = 3, and 𝑆6 = 𝑆7 = 2. The trajectories

of the dynamical system using POE and Pri-GP (𝑐 = 0.5) for one
trail are depicted showcasing the spatial states of agents in Fig. 3b,

where the initial state is [0, 1, 1.05]. In the case of POE, there is

no agent that closely follows the true system trajectory, while Pri-

GP (𝑐 = 0.5) enables all agents to accurately identify the system

dynamics. Only the trajectory of agent 8 slightly differs from the

trajectory of the real system. This difference in performance can be

attributed to Pri-GP having an inferior prior function and different

neighbors. Additionally, it may be influenced by the fact that the

training data points of agent 8 are barely aligned with the true

trajectory. Fig. 4 presents a comparative analysis demonstrating

the superior performance of the two Pri-GP methods across the

entire experimental process. The solid lines represent the mean

predictions obtained from 100 simulations, while the light-shaded

areas denote the standard deviation for each method. It is evident

that all alternative approaches exhibit comparable large prediction

errors.

5 CONCLUSION
In summary, Pri-GP emerges as a robust and promising solution

for enhancing distributed cooperative learning within MASs. It

introduces a novel approach that not only significantly improves

prediction accuracy but also addresses the computational burden

is distributed GPR by empowering agents to selectively request

predictions from trusted neighbors. It offers several advantages,

including improved prediction accuracy, reduced computational

complexity, and the establishment of prediction error bounds, mak-

ing it a valuable tool for applications where trustworthiness and

reliability are paramount. The simulation results support the effi-

cacy of Pri-GP, underscoring its superiority over existing methods

in various scenarios, thus validating its potential utility for advanc-

ing the capabilities of MASs across a spectrum of domains, from

safety-critical systems to resource-efficient distributed networks.
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