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Abstract—Non-orthogonal multiple access (NOMA) represents
a promising option for differentiating multiple transmitters using
only a single molecule type in a future diffusion-based molecular
communication (DBMC) network. This paper addresses the
bit error probability optimization of a DBMC-NOMA network
with bio-nano-machines incapable of complex computations for
classical optimization methods. We propose a pilot-symbol-based
algorithm to approximate the optimal detection threshold and
emitted number of transmitter molecules. Our solution is based
on two algorithms for the separate optimization of thresholds and
the number of molecules, which are applied alternatingly. Our
Monte-Carlo simulation results show that the algorithm reliably
approaches the global optimum parameter values regardless of
initial values and signaling-molecule-to-noise ratio. Since it is
composed of only a few basic operations, such as comparisons
and additions, there is potential for an implementation using
stochastic chemical reaction networks in future work.

Index Terms—Molecular communication, non-orthogonal mul-
tiple access, optimization algorithm, bit error probability

I. INTRODUCTION

D IFFUSION-BASED molecular communication (DBMC)
is envisioned to play a significant role in nanoscale

and biological communication networks due to its advantages
over electromagnetic communication with respect to bio-
compatibility, size constraints, and energy efficiency. To enable
complex use cases such as targeted drug delivery and other
advanced medical applications in a future internet of bio-nano-
things (IoBNT) [1], bio-nano-machines (BNMs) must be able
to cooperate and communicate. Individual BNMs are expected
to perform only simple tasks such as emission of and reaction
to surrounding molecules [1]. One step towards the communi-
cation between a large number of BNMs is enabling multiple
access (MA). Multiple approaches to MA for DBMC have
been investigated, such as time-division, molecule-division,
and non-orthogonal multiple access (NOMA). NOMA based
on successive interference cancellation (SIC) was proposed
as an option for DBMC networks since it allows for con-
current transmission from multiple transmitters (TXs) to a
receiver (RX) using a single molecule type [2]. DBMC-
NOMA was shown to match the performance of orthogonal
schemes like molecule-division MA for the optimal choice
of communication parameters [3]. Therefore, optimizing the
system to achieve the lowest possible bit error probability
(BEP) is crucial, but in [3] only an exhaustive search of the
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Fig. 1. DBMC scenario with K point transmitters at distances d1, d2 ... dK
from a spherical receiver.

analytical formula was considered. Related work on param-
eter optimization for DBMC networks exists, for example,
also focused on analytical solutions [4], or using global
optimization algorithms like gradient descent optimization
[5], or data-driven machine learning (ML) approaches [6].
While these methods reliably achieve the optimum value, they
could be infeasible in an IoBNT framework, where we have
to optimize parameters on low-capability BNMs. Stochastic
chemical reaction networks have been proposed to capture
the resulting constraints on possible computation procedures
in DBMC systems more accurately, and implement simple
heuristic methods based on pilot symbols and thresholds [7].

In this paper, we propose a pilot-symbol-based heuristic
optimization algorithm targeted towards the BEP minimization
in a DBMC network using NOMA. In contrast to previous
work on NOMA for DBMC in [2], [3] that assumes accu-
rate channel estimation to facilitate SIC, we frame the SIC
procedure as threshold detection with multiple thresholds per
TX. This allows for simple systematic optimization without
explicit channel estimation. The presented algorithm alternat-
ingly adjusts the detection threshold and emitted number of
molecules per TX across multiple iterations based on decision
rules derived from the mechanisms behind NOMA in a DBMC
network found in [3]. The algorithm works without any knowl-
edge of initial values or the underlying analytical function
and its derivatives as opposed to analytical or gradient descent
methods in previous work [4], [5]. Additionally, considering
the limited capabilities of future BNMs, the algorithm uses
only elementary operations as opposed to ML methods, which
rely on large computational power [6]. We investigate the
convergence of the algorithm for different choices of initial
values and different levels of background noise. Lastly, we
investigate its robustness to changes in channel conditions
during run-time.

II. SYSTEM MODEL

Figure 1 depicts a communication scenario with K TXs
TXi at distances d1 ≤ d2 ≤ · · · ≤ dK from a central
spherical, passive RX with radius r. The TXs are modeled
as points emitting instantaneous pulses of molecules. The
received signal nRX(t) is the number of molecules within the
RX volume at time t. With NTX,i, the number of molecules
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emitted by TXi per pulse, VRX, the RX volume, and the
diffusion coefficient D, the impulse response between one TXi

and the RX can be modeled as a Poisson-distributed random
variable nRX(t) ∼ P(λi(t)) [8] with time-varying mean

λi(t) =
NTX,iVRX

(4πDt)
3
2

exp

(
− d2i
4Dt

)
. (1)

Eq. (1) is valid under the uniform concentration assump-
tion [8], and if nRX(t) is sufficiently small in comparison to a
sufficiently large NTX,i [9]. If additionally λi(t) is sufficiently
large, the received signal can be further approximated by
a Gaussian distribution nRX(t) ∼ N (µi, σ

2
i ) with mean

µi(t) = λi(t) and variance σ2
i (t) = λi(t) [9].

The TXs use on-off-keying, where a pulse of NTX,i

molecules is emitted for a ’1’ and nothing for a ’0’ with both
symbols equally likely. The emitted number of molecules is
limited by a maximum molecule budget NTX,max per symbol
per TX. We assume that the system is fully synchronized
and that the symbol period T is sufficiently large such that
inter-symbol interference (ISI) is negligible. Therefore, we
consider only the current symbol, where all TXi send a pulse
of siNTX,i molecules at t = 0, with the symbol from TXi

denoted by si ∈ {0, 1}. For decoding, the RX takes one sample
per time slot at the peak time tp of the received signal.

In this paper, we implement the DBMC-NOMA scheme
described in [3]. Therefore, with respect to the current time
slot, all TXs transmit simultaneously using the same molecule
type. The overall received signal at tp is a sum of multiple
independent random variables. For Poisson variables, the sum
can be modeled as a single Poisson distribution with combined
mean and variance λNOMA = λn +

∑K
i=1 siλi(tp), where

λi(tp) represents the expected value of the contribution from
TXi and λn is an additive noise term. The sample at the RX
is a realization of the Poisson distribution ns ∼ P(λNOMA).

To differentiate the symbols from each TX at the RX,
successive interference cancellation (SIC) is used. TXs are
considered for detection by the RX one by one from the
highest expected signal value λi(tp) to the lowest. Going
forward, we assume that the TX indexing is ordered according
to the values of λi(tp), i.e., λ1(tp) ≥ λ2(tp) ≥ · · · ≥ λK(tp).
Usually, for NOMA in classical communications as well as
for DBMC, it is assumed that the contribution of the currently
considered TX to the received signal is removed from the
sample value ns after each detection using channel estimation
information [3]. In this paper, we propose to model SIC as
threshold detection with multiple thresholds per TX instead.
To detect the symbol sent by TXi, the RX employs threshold
detection on the sample ns with the decision rule

ŝi =

{
1 ns ≥ τ

ŝi−1

i

0 ns < τ
ŝi−1

i

, (2)

where ŝi is the detected symbol for TXi, and ŝi−1 =
[ŝ1, . . . , ŝi−1] is the vector of all previously detected symbols
for the TXs up to and including TXi−1. Thereby, we end up
with a set Ti = [τ0...000i , τ0...001i , τ0...010i , . . . , τ1...110i , τ1...111i ]
of 2i−1 different possible thresholds for TXi.

We will evaluate the performance of the network using the
system bit error probability (BEP), i.e., the average BEP across

all TXs, denoted as Pe,sys, derived for a DBMC-NOMA sys-
tem in [3]. For the sake of the scalability of our Monte Carlo
simulations (MCSs), we approximate the Poisson distribution
with the Gaussian as described at the beginning of the section.
Otherwise, the calculations are exactly the same. To introduce
the notion of channel quality and noise, we use the signaling-
molecule-to-noise ratio (SNR): SNR =

maxi λi(tp)
λn

.

III. PILOT-SYMBOL-BASED BEP OPTIMIZATION

The BEP of a DBMC-NOMA system depends on many
different parameters. The detection thresholds and the emitted
number of molecules from each TX are two primary factors
due to their effect on the detection performance and the
received number of molecules, respectively, as shown in [3].
Therefore, we will also focus on the optimal choice of de-
tection thresholds τ

ŝi−1

i and the emitted number of molecules
NTX,i for the proposed algorithms.

Analytical solutions and global optimization algorithms [3]–
[5] can often lead us to the optimal values. However, these
methods require capabilities from the nodes in the network,
such as accurate channel estimation, storage of pre-computed
solutions, or computation of functions or their derivatives,
for example, for a gradient descent algorithm. Compared to
the current and even future capabilities of synthetic cells
that will act as BNMs in DBMC networks, these tasks are
very complex. Therefore, we aim to find possibly greedy
heuristics that rely on simpler operations. Previously, pilot-
symbol-based approaches have been shown to work together
with stochastic chemical reaction networks to approximate a
real-world implementation of DBMC using simple operations
like threshold comparisons [7].

We propose pilot-symbol-based optimization algorithms,
first separately for the detection thresholds and the number
of molecules. Ultimately, we combine the two for a joint
optimization of the BEP in a DBMC-NOMA system. In the
following, for the sake of brevity and simplicity of the depicted
algorithms, we will assume a network with 2 TXs, i.e., K = 2.

A. Optimizing the Detection Thresholds

For the design of the algorithm optimizing the detection
thresholds, we assume that the number of molecules NTX,i is
static. The scheme is based on a sequence of pilot symbols
from Spilot = {s = [s1s2]; sj ∈ {0, 1}}, which is known to
both TXs and the RX. As with the DBMC-NOMA scheme,
all symbols in each pilot symbol vector s are sent simulta-
neously from all TXs. Starting from a set of initial values[
τ1,init, τ

0
2,init, τ

1
2,init

]
, the thresholds are adjusted after the

transmission, sampling, and decoding of a pilot symbol s as
defined in Section II. The detected symbols are then compared
to the correct symbols in the pilot sequence. If the symbol is
detected correctly, the threshold stays the same. If the symbol
is incorrectly detected as a ’1’, the threshold is increased to
make the detection of a ’0’ more likely. Consequently, the
threshold is decreased for a symbol incorrectly detected as
’0’. Note that for a certain pilot symbol vector s, only the
applicable threshold is altered for TX2, for example, τ12 in the
case s1 = 1. Importantly, we apply τs12 for the detection of
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ŝ2 based on the pilot symbol s1, not the detected symbol ŝ1.
Thereby, for the purposes of the threshold optimization, we
assume correct detection for all previous TXs. The scheme is
described in detail in Algorithm 1.

Algorithm 1 Detection Threshold Optimization Algorithm
INPUT: τ1, τ02 , τ

1
2

for i = 1 to Npilot do
CHOOSE: s← [s1, s2] ∈ Spilot
TRANSMIT: TX1 → s1NTX,1, TX2 → s2NTX,2

RECEIVE: ns ← nRX(tp) ∼ N (λNOMA, λNOMA)
DECODE TX1 : Use τ1 to obtain ŝ1, Eq. (2)
if ŝ1 ̸= s1 AND s1 = 0 then

τ1 ← τ1 +∆τ
else if ŝ1 ̸= s1 AND s1 = 1 then

τ1 ← τ1 −∆τ
DECODE TX2 : Use τs12 to obtain ŝ2, Eq. (2)
if ŝ2 ̸= s2 AND s2 = 0 then

τs12 ← τs12 +∆τ
else if ŝ2 ̸= s2 AND s2 = 1 then

τs12 ← τs12 −∆τ
OUTPUT: τ1, τ02 , τ

1
2

B. Optimizing the Emitted Number of Molecules

Similarly to Algorithm 1, we now assume that the detection
thresholds are static and the number of molecules is adjusted
based on the transmission, sampling, and decoding of a pilot
sequence known to both TXs and RX. Here, we assume to
know the order in which the RX will decode the TXs and,
therefore, also the order of the magnitude of their contribution
λi to the received signal. This could, for example, be achieved
by a preliminary step involving pilot symbols from each TX
with a specified amplitude to order them at the RX. As a result,
it is possible to assign the maximum molecule budget per TX
NTX,max as NTX,1 and focus on optimizing NTX,2 relative
to that maximum starting from an initial value NTX,init.
After detecting the symbols from both TXs, we propose to
use a set of decision rules determining the adjustment of
NTX,2. Firstly, there is only a reason for changing NTX,2,
if s2 = 1. Otherwise it stays the same. If s2 = 1, we will
now describe two example cases to illustrate the rationale
behind the decision rules. If ŝ1 ̸= s1 = 0, and ŝ2 = s2 = 1,
this means that we should decrease NTX,2 since we observed
enough molecules to classify s2 = 1, but there were too many
molecules such that we incorrectly crossed the threshold for
TX1. If ŝ1 = s1 = 0, and ŝ2 ̸= s2 = 1, it means that we should
increase NTX,2 since we incorrectly did not observe enough
molecules to cross the threshold for TX2, but the detection
for TX1 is still not affected by too much interference from
TX2. We make one important additional assumption: there
is a feedback mechanism from the RX back to the TX2 to
communicate the necessary adjustment, for example, via a
separate control signaling molecule, which we do not explicitly
model. The details of the scheme can be found in Algorithm 2.

C. Alternating Joint Optimization of the BEP

Given Algorithm 1 and Algorithm 2, we need either
knowledge of the optimal number of molecules or detection
thresholds, respectively, to arrive at the joint optimal solution.
Therefore, we propose a joint BEP optimization scheme in
Algorithm 3 based on alternating between Algorithms 1 and 2

Algorithm 2 Number of Molecules Optimization Algorithm
INPUT: NTX,2

for i = 1 to Npilot do
CHOOSE: s← [s1, s2] ∈ Spilot
TRANSMIT: TX1 → s1NTX,1, TX2 → s2NTX,2

RECEIVE: ns ← nRX(tp) ∼ N (λNOMA, λNOMA)
DECODE TX1 : Use τ1 to obtain ŝ1, Eq. (2)
DECODE TX2 : Use τs12 to obtain ŝ2, Eq. (2)
if s2 = 1 then

if s1 = 0 AND ŝ1 ̸= s1 AND ŝ2 = s2 then
NTX,2 ← NTX,2 · (1− αN )

if [s1 = 0 AND ŝ1 = s1 AND ŝ2 ̸= s2]
OR [s1 = 1 AND ŝ1 ̸= s1 AND ŝ2 ̸= s2]
OR [s1 = 1 AND ŝ1 = s1 AND ŝ2 ̸= s2] then
NTX,2 ← NTX,2 · (1 + αN )

OUTPUT: NTX,2

using arbitrary initial values for both detection thresholds and
number of molecules. Both partial optimization algorithms are
run once for Npilot pilot symbols, and this is repeated for Niter

iterations. After each set of pilot symbols, the algorithm output
is used as the input for the other algorithm.

Algorithm 3 Joint BEP Optimization Algorithm
INITIALIZE

[
τ1[0], τ02 [0], τ

1
2 [0]

]
← [τ1,init, τ

0
2,init, τ

1
2,init] = τ init

NTX,1 ← NTX,max, NTX,2[0]← NTX,init

for it = 1 to Niter do
RUN: Algorithm 1 for Npilot symbols

INPUT: τ1[it− 1], τ02 [it− 1], τ12 [it− 1]
OUTPUT: τ1[it], τ02 [it], τ

1
2 [it]

RUN: Algorithm 2 for Npilot symbols
INPUT: NTX,2[it− 1]
OUTPUT: NTX,2[it]

IV. NUMERICAL RESULTS

In the following, the proposed algorithm will be evaluated
using Monte Carlo simulations (MCSs) based on the Gaus-
sian stochastic channel model described in Section II. The
optimization process with Niter iterations of Algorithm 3 is
repeated 100 times. An overview of the simulation parameters
can be found in Table I.

Firstly, Figure 2 depicts the development of all parameters
for two choices of the initial number of molecules, either
NTX,init = 1 or NTX,init = NTX,max = 106. The results show
that the BEP is reliably optimized without any knowledge of
the current or optimal BEP itself. There is a convergence to-
wards the optimal parameters τsi

∗, N∗
TX,2 (obtained separately

via exhaustive search) and therefore also the optimal BEP,
P ∗
e,sys. Additionally, the difference for an initial value at either

end of the applicable spectrum is visible but does not disturb

TABLE I

Parameter Symbol Values (Default)
TX distances {d1, d2} {10, 11, 12} µm
RX radius r 1 µm
Diffusion coefficient D 10−9 m2 s−1

Signaling-molecule-to-noise ratio SNR {∞, 3.16}
Molecule budget per TX NTX,max 106 molecules
Number of pilot symbols Npilot 1000
Number of iterations Niter 1000
Threshold step ∆τ 1molecule
Number of molecules multiplier αN 0.1
Initial thresholds τ init [1, 1, 1] molecules
Initial number of molecules NTX,init {1, 106}molecules
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Fig. 2. Performance of Algorithm 3 for two choices of initial value
NTX,init. Median (bold line) and 5th–95th percentile (shaded area) of bit
error probability Pe,sys, detection thresholds τsi , and emitted number of
molecules from TX2 NTX,2 shown across 1000 iterations repeated 100 times.

the overall convergence. This shows the robustness of the
algorithm towards the choice of initial value. We also observe
that when the thresholds and NTX,i are far from the optimum
at the beginning, there are a lot of errors and, therefore, a
lot of adjustments to the values by the algorithm, causing
more drastic changes, followed by smaller adjustments as we
approach the optimum.

Secondly, in Figure 3, we also look at the performance
of the algorithm under varying levels of background noise,
comparing the results for SNR = ∞ to SNR ≈ 3. The plots
show that the optimization also works for the case with noise.
Crucially, the optimal values are significantly influenced by
the added noise, but the algorithm approximates them without
knowledge of the noise level. We can observe some increased
variability and jitter in the median and percentiles, and it seems
as if the algorithm slightly overestimates both the optimal
threshold and the number of molecules for the case of added
noise. A rigorous investigation of the underlying reasons is
left for further work.

Lastly, Figure 4 evaluates the reaction of the algorithm
to changes in the channel conditions during run-time. The
sequence of 1000 iterations is split into three parts, where after
every 333 iterations, the distance of both TXs is changed from
10 µm to 12 µm and subsequently to 11 µm. We can observe
that although the instantaneous BEP jumps up at the time of
the change, the subsequent speed of the optimization is quick.
Especially for the first few iterations after the change, the BEP
is reduced by orders of magnitude towards the optimum. This
shows the potential of this type of algorithm to work in a
running DBMC system.

V. CONCLUSION

In this paper, we proposed a BEP optimization algorithm for
a DBMC network using NOMA based on the transmission of
pilot symbols. We have shown that the algorithm can reliably
approximate the optimal values for the detection threshold
and the number of molecules in a system with 2 TXs and
1 RX, requiring no prior knowledge of the initial values.
This provides a promising perspective for the use of MA
schemes in a real MC network. Additionally, the algorithm
deliberately uses simple steps without the computation of more
complex functions. We plan to address the implementation

Fig. 3. Performance of Algorithm 3 for two different values of SNR. Median
(bold line) and 5th–95th percentile (shaded area) of bit error probability
Pe,sys, detection thresholds τsi , and emitted number of molecules from TX2

NTX,2 shown across 1000 iterations repeated 100 times.

Fig. 4. Median (bold line) and 5th–95th percentile (shaded area) of bit error
probability Pe,sys for 100 runs of 1000 iterations of Algorithm 3. After 333
and 666 iterations the distance of the TXs to the RX was changed from 10
µm to 12 µm and again to 11 µm, respectively.

of the algorithm using stochastic chemical reaction networks
in future work. A more detailed analysis of the effect of
the step size and the necessary synchronization and feedback
mechanisms will be considered, and a generalization to more
transmitters will be conducted.
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