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Abstract

We examine machine learning models in a setup where in-
dividuals have the choice to share optional personal infor-
mation with a decision-making system, as seen in modern
insurance pricing models. Some users consent to their data
being used whereas others object and keep their data undis-
closed. In this work, we show that the decision not to share
data can be considered as information in itself that should
be protected to respect users’ privacy. This observation raises
the overlooked problem of how to ensure that users who pro-
tect their personal data do not suffer any disadvantages as a
result. To address this problem, we formalize protection re-
quirements for models which only use the information for
which active user consent was obtained. This excludes im-
plicit information contained in the decision to share data or
not. We offer the first solution to this problem by propos-
ing the notion of Protected User Consent (PUC), which we
prove to be loss-optimal under our protection requirement.
We observe that privacy and performance are not fundamen-
tally at odds with each other and that it is possible for a de-
cision maker to benefit from additional data while respecting
users’ consent. To learn PUC-compliant models, we devise a
model-agnostic data augmentation strategy with finite sample
convergence guarantees. Finally, we analyze the implications
of PUC on challenging real datasets, tasks, and models.

1 Introduction
While the day-to-day impact of automated data process-
ing is steadily growing, modern regulations such as the
European Union’s General Data Protection Regulation
(GDPR) (GDPR 2016) or the California Consumer Privacy
Act (CCPA) (OAG 2021) strive to give individuals more
control over their personal data. In light of these regulations,
we consider machine-learned classifiers in which individu-
als have the freedom to decide themselves on which data
they would like to provide to an automated decision system.

Such systems are increasingly being deployed (Henning
2022): As a running example, we consider a realistic use-
case of health insurance pricing: Suppose in an automated
pricing model all potential customers are asked to fill out an
application form where they enter certain base features, for
instance information such as their state of residence and age.
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Figure 1: Overview of the relevant stakeholders. We con-
sider a case where users can voluntarily provide information
on optional features or choose to leave them undisclosed.
The goals of sharers, non-sharers, and the decision maker
have to be reconciled.

To improve the pricing model, the insurance offers an ad-
ditional service, a “companion fitness app”, through which
additional health data about the customer’s physical condi-
tion are collected. The customers decide whether to use the
app or not; alternatively, customers can sign up for a pol-
icy without consenting to use the app. The health data that
customers share may however influence the premium of the
insurance policy they receive. We refer to data that provide
additional, non-mandatory information beyond the base fea-
tures as optional features. With fitness trackers and smart-
watches rapidly gaining popularity (Reeder and David 2016;
Zimmer et al. 2020; Statista 2023), such systems are already
being deployed in practice, e.g., by major health insurance
firms in Australia (Henning 2022).

The outlined scenario is challenging as there are three
groups of stakeholders whose interests need to be recon-
ciled: (1) The group of non-sharing individuals who do not
want to provide additional information, for instance due to
privacy concerns. We refer to them as non-sharers. For this
group, the decision maker does not want to or cannot force
them to provide the additional information for legal reasons.
Consequently, the non-sharers do not want the additional in-
formation to be considered in the decision making process;
in return, they are willing to sacrifice some accuracy, but
they do not want to face other systematic disadvantages. (2)



On the other hand, individuals who voluntarily share data
(sharers) explicitly want the additional information to be
considered and want to obtain more accurate predictions.
(3) Finally, the decision makers themselves desire the most
accurate predictions with the lowest overall costs while re-
specting the users’ privacy and legal requirements.

Among these requirements, it is crucial to the non-sharers
to explicitly exclude the information contained in the de-
cision to share or not to share. To see this, we note that
smartwatch users are more likely to exercise in general than
non-wearers (DeMarco 2023) which usually create lower
costs for the insurance company as fitter customers take less
sick days on average. Thus, only through observing the de-
cision to share data, the insurance firm could make infer-
ences about a person’s fitness. This is problematic for two
reasons: First, the company would unethically infer private
data, that the non-sharers explicitly did not give consent to.
Prior work (Wachter and Mittelstadt 2019) has argued for
a “right to reasonable inferences”. This rules out inferences
from unrelated factors that are purely predictive and may
infringe privacy, as they open the door for discriminatory
and invasive decision-making (Mittelstadt et al. 2016). Sec-
ond, this would lead to non-sharers being assigned a higher
insurance premium than the estimate of the legacy model
which only considered their base features. Many countries
have laws that prohibit insurers from raising the base pre-
mium for users who do not share their data, as this is seen
as a coercive and unfair practice. For example, the US only
permits five factors to affect the premium, which are loca-
tion, age, tobacco use, plan category, and dependent cover-
age (US Government. U.S. Centers for Medicare & Medi-
caid Services. 2023). It is however possible for insurers –
and desired by many users – to award bonuses which re-
duce the premium based on participation in optional reward
and incentive programs (Madison, Schmidt, and Volpp 2013;
Henning 2022).

To summarize, we study machine learning models that
can handle optional features and meet legal requirements
and desiderata of three groups of stakeholders: the sharers,
the non-sharers, and the decision makers. We consider it es-
sential for these models to not make inferences based on the
unavailability of a feature value for the non-sharers, a con-
straint that we term Availability Inference Restriction (AIR).
Finally, we are interested in obtaining models with optimal
performance under this requirement.

Contribution. We address the problem of how to fairly
and privately predict outcomes for users who share optional
data and those who do not. We tackle this overlooked issue
by making the following contributions:

• Definition. We introduce models with Protected User
Consent (PUC), which are optimal under our protec-
tion requirement AIR. We derive performance guaran-
tees, which formally show that it is possible to reconcile
the decision maker’s interest in improved predictions and
the non-sharer’s privacy preferences.

• Algorithm. We propose a PUC-inducing data augmenta-
tion (PUCIDA) technique that can be applied to any type
of predictive architecture (e.g., tree or neural network)

and any convex loss function (e.g., mean squared error or
cross-entropy loss) to obtain such models

• Analysis. We prove that predictive models trained with
PUCIDA satisfy PUC asymptotically, and provide fi-
nite sample convergence results that demonstrate that
PUCIDA produces PUC-compliant models in practice.

• Empirical evaluation. We empirically show that with-
out enforcing PUC, the average absolute prediction out-
come (e.g., insurance quote) of users who do not share
data can be almost 20 % worse than justified by their base
data. We then evaluate our data augmentation technique
on various ML models and show that PUC is achieved
regardless of the model.

2 Related Work
In this Section, we review the most relevant streams of re-
lated work (see Appendix A.1 for additional references).

Classification with Missing Values. Classification mod-
els that can handle missing data have been studied previ-
ously with the goal of minimizing costs or increasing perfor-
mance (Zhang et al. 2005; Aleryani, Wang, and De La Igle-
sia 2020), obtaining uncertainty estimates (Kachuee et al.
2020), or fulfilling classical fairness notions (Zhang and
Long 2021; Jeong, Wang, and Calmon 2022; Wang and
Singh 2021; Fernando et al. 2021). However, the mech-
anisms underlying missingness is different in this work,
as missing values indicate explicit non-consent by the
user, leading to different implications. In a related line of
work, classification with noisy (Fogliato, Chouldechova,
and G’Sell 2020) or missing labels (Kilbertus et al. 2020;
Rateike et al. 2022) has been investigated, where the miss-
ingness is often a result of selection bias. The setting con-
sidered in this work is different in the sense that we are not
concerned with fulfilling a fairness notion with respect to a
sensitive attribute, but consider the interests of subjects that
have and have not provided optional information.

Data Minimization. The principle of Data Minimiza-
tion is anchored in the GDPR (GDPR 2016). Data Mini-
mization demands minimal data collection. Several works
are concerned with implementing (Goldsteen et al. 2021)
or auditing compliance with this principle (Rastegarpanah,
Gummadi, and Crovella 2021). Rastegarpanah et al. (Raste-
garpanah, Crovella, and Gummadi 2020) consider decision
systems that can handle optional features from a data min-
imization perspective where the decision maker decides
which features are collected for each individual. This prin-
ciple is distinct from the “right to be forgotten” (Biega et al.
2020), which enables individuals to submit requests to have
their data deleted. In response to these regulations, several
works consider the problem of updating an ML model with-
out the need of retraining the entire model (Wu, Dobriban,
and Davidson 2020; Ginart et al. 2019; Izzo et al. 2021; Go-
latkar, Achille, and Soatto 2020) or the effect of removals
on model explanations (Rong et al. 2022; Pawelczyk et al.
2023). Our work differs from these works as our goal is
to train a model where users decide themselves which data
they deem relevant through sharing one or many optional
features.



Algorithmic Fairness. A multitude of formal fairness
definitions have been put forward in the literature (Verma
and Rubin 2018). Examples include statistical parity (Dwork
et al. 2012), predictive parity (Chouldechova 2017), equal-
ized odds, equality of opportunity (Hardt, Price, and Srebro
2016), and individual fairness (Dwork et al. 2012). How-
ever, they are still a topic of discussion, for instance, be-
cause these definitions are known to be incompatible (Klein-
berg, Mullainathan, and Raghavan 2016; Lipton, McAuley,
and Chouldechova 2018). Additionally, there are a several
definitions that rely on causal mechanisms to assess fair-
ness, e.g., counterfactual fairness (Kusner et al. 2017), and
the notion of unresolved discrimination (Kilbertus et al.
2017). While causal approaches to fairness might be prefer-
able, they require information about the causal structure of
the data generating process. Moreover, it has recently been
shown that causal definitions may lead to adverse conse-
quences, such as lower diversity (Nilforoshan et al. 2022).
We discuss how existing fairness definitions could possibly
be applied to the setting with optional features, but we find
that none of the fairness definitions aligns with our desider-
ata theoretically and experimentally (see Appendix A.2).

Strategic Classification. In an even broader context, this
work also relates to the field of strategic classification (Hardt
et al. 2016). However, it is worth noting that in strategic
classification research, the focus primarily revolves around
users strategically manipulating their features for optimal
outcomes, which may also involve information withholding
(Krishnaswamy et al. 2021). In contrast to our work, privacy
concerns are neglected in this research stream. As far as we
are aware, there are no prior works on the specific problem
of balancing the interests of all three groups of stakeholders
(the non-sharers, sharers, and the decision makers).

3 Problem Formulation
3.1 Formalization and Notation
In this work, each data instance contains a realization of a
number of base features b ∈ X b, where X b ⊆ Rn is the
space of the base features. Furthermore, let there be some
optional information z ∈ X z , where X z ⊆ R is the value
space of the optional feature.1 It is the users’ choice to de-
cide if they want to disclose z to the system, which results
in an availability variable a ∈ {0, 1}. Accordingly, only
imputed samples z∗ = {z if a=1, else N/A} are observed,
where a value of N/A indicates that a user did not reveal the
optional information, e.g., did not use the companion app.
In summary, the data observations are tuples x = (b, a, z∗)
that reside in X = X b×{0, 1}× (X z∪{N/A}). Each train-
ing sample comes with a label y ∈ Y . Further, there is a
data generating distribution p with support X × Y and we
have access to an i.i.d. training sample (x, y) ∼ p. Figure 2
shows such a data sample. We denote the random variables
for the respective quantities by B, A, Z, Z∗, Y . The label is
probabilistically determined through the base features B and
the hidden feature Z but the sharing decision does not influ-

1We extend our definitions to integrate multiple optional fea-
tures a later section.

base features b opt. feat. z∗ a label y

state plan fitness scoreavail. treatment costs

New South Wales basic 87 % 1 3k$
Queensland gold N/A 0 17k$

New South Wales basic 92 % 1 5k$
New South Wales basic N/A 0 64k$

Victoria premium 56 % 1 22k$

Figure 2: Samples for the insurance use-case. We have two
base features b and one optional feature z∗, which either
takes an observed value z, or it takes a value of N/A if un-
observed. The variable a ∈ {0, 1} indicates the availability
of the feature. The goal is to predict the label y.

ence the true label for a given B, Z, such that Y ⊥⊥ A|B, Z.

In many applications, the goal is to find a function f :
X → Y that models the observed data. In particular, f :
X → [0, 1] may predict a probability of a positive outcome
or f : X → R may return a numerical score. The test
data for which the model will be used come from the same
distribution p, though with the label y unobserved, and we
suppose that the information provided is always correct. We
consider a convex loss function L : Y ×Y → R, e.g., mean-
squared-error (MSE) or binary cross entropy (BCE), for
which we minimize the expected loss for a sample from the
data distribution. For instance, using the common MSE loss
L(f(x), y) = (f(x)− y)2, an optimal predictor is given by
f∗
L(x) = argminf(x) Ep(Y |x)

[
(f(x)− Y )2

]
= E[Y |x],

the conditional expectation. However, this notion can be
generalized to other loss functions: An optimal predictor
f∗
L(x) for the loss function L fulfills ∀x:

f∗
L(x) = FL

p [Y |x] := argmin
f(x)

Ep(Y |x) [L(f(x), Y )] . (1)

We use FL[Y |x] to denote a generalized expected value that
minimizes the expected loss conditioned on x. To ease our
derivations, we suppose this minimum to be unique and fi-
nite. Intuitively, it represents the best guess of Y given x. For
the MSE-Loss, FL is equivalent to the expectation operator
E. In the following statements, the reader may thus mentally
replace FL with an expectation E without further ramifica-
tions in order to get the high level intuition. Finally, we in-
troduce two key terms, namely, base feature model and full
feature model. The former refers to a model trained on the
base features only, while the latter refers to a model trained
on all features where some strategy is used to replace un-
available feature values. Typically these strategies are called
imputation and replace unavailable values by zeros, a fea-
ture’s mean or median (Emmanuel et al. 2021).

3.2 Desiderata
Our goal is to learn models f : X → Y that comply with
the desideratum of Availability Inference Restriction, which
we briefly introduced in Section 1, to protect the interests
of the non-sharers. Under this constraint, the model should
provide the best predictive performance to reflect the need



of the sharers and the decision maker for most accurate pre-
dictions.

Desideratum 1: Availability Inference Restriction. We
start by considering the intricate case of individuals who
do not want to share optional information. In this case, the
model should compute the prediction based on the infor-
mation the user gave their consent to. In particular, (a) the
model should only use the base features and (b) should not
use information that could be derived from the unavailabil-
ity of the optional features to compute the prediction to avoid
violating the user’s consent.

For (a), this requires that the predictor does not use the
information as an explicit input, i.e., the predictor should
behave as if it only used base features b via some function
g : X b → Y : f|a=0

(b, a, z∗) = g(b). For (b), although a=0
is not an explicit input to g, a sufficiently complex function
may still be implicitly adapting to the group a = 0 and thus
incorporate information that the user did not give their con-
sent to. We would like to make sure that the predictions of
g cannot use more information than contained in the over-
all conditional distribution, given the base features b. This
overadaption can be prevented by constraining the model’s
loss on the population of non-sharers to match the loss of the
optimal base model f∗

L on this population. The reasoning be-
hind this rationale is that all models that would beat the per-
formance of this model must implicitly use some additional
side knowledge about this group that was not provided by
the users.

Definition 1 (Availability Inference Restriction). For in-
dividuals that choose not to provide the optional feature
(a=0), only the provided data b is used to compute the
outcome in the decision process, i.e., f|a=0

(b, a, z∗)=g(b),
where g : X b → Y is a base feature model. Further, we
require

E [L (g(B), Y )|A = 0] ≥ E [L (f∗
L(B), Y )|A = 0] . (2)

This definition summarizes our intuition that the informa-
tion encoded through the unavailability of feature informa-
tion should neither be used explicitly (a) nor implicitly (b).
We show how this constraint can analogously be derived
from information-theoretic considerations in Appendix B.3.

Desideratum 2: Optimality. Our Definition 1 restricts
the information that the predictor can use when the optional
information is unavailable. To meet the interests of the deci-
sion maker and the sharers, we also want to find models with
optimal performance, i.e., lowest loss, under this constraint.

4 Protecting User Consent
We are therefore looking for an optimal model within the
class of predictors that comply with Availability Inference
Restriction. In this Section, we derive a novel notion called
Protected User Consent (PUC) that fulfills this purpose.

4.1 One-Dimensional PUC
The next result encodes an intuitive notion of protection for
the users that do not want to share data on the optional fea-
tures (a=0): Their prediction under f is then constrained to

the best estimate for a user with the same base characteris-
tics, no matter if additional data was provided. Contrarily,
when additional information through the optional feature is
provided, the predictor returns the best estimate using the
available optional information:
Theorem 1 (1D-PUC). Let f : X → Y ⊆ R be a full fea-
ture model (i.e., including optional features). Among all pre-
dictors compatible with the Availability Inference Restric-
tion, a model f with minimal loss is given by:

f∗
PUC (b, a, z∗) =

{
FL[Y |b], if a = 0

FL[Y |b, A = 1, Z∗ = z∗] if a = 1.

We defer all proofs in this work to Appendix D. PUC
is different from existing notions of group fairness, that do
not fulfill the two desiderata in general (see Appendix A.2
for a discussion). Under the mentioned requirements, there
is no model that can outperform f∗

PUC. We stress that 1D-
PUC-compliant models have performance guarantees. These
models match or improve upon an optimal base feature
model f∗

L(B) = FL [Y |b]. This model can be seen as an up-
per bound for practical models obtained after model selec-
tion. Therefore, models that can beat its performance may
offer improvements even after extensive hyper-parameter
tuning and model selection, a property which we refer to as
Predictive Non-Degradation (PND): a model f fulfills PND
if its loss is smaller than that of the base feature model:

E[L (Y, f∗
L(B))] ≥ E[L (Y, f(B, A, Z∗))]. (3)

We prove the following result:
Corollary 1 (Predictive Non-Degradation of f∗

PUC). For any
density p, a PUC-compliant model f∗

PUC fulfills Predictive
Non-Degradation, i.e., it has a loss upper-bounded by the
optimal base feature model f∗

L.
This is a remarkable result as it testifies that the decision

maker can benefit from additional information in terms of
loss, while protecting the privacy of users. This highlights
that the interests of the different stakeholders are not contra-
dictory and models that benefit all stakeholders do exist.

4.2 PUC under Strategic Considerations and
Monotonicity Constraints

We have initially considered the case where the users desire
the highest possible accuracy under data usage restrictions.
However, in some cases such as our initial insurance exam-
ple, the motivation to receive a lower premium might be a
more important concern to some users than receiving an ac-
curate prediction or their privacy concerns. If all users have
full information (i.e., they see premiums with and without
their optional data) and act strategically by sharing the value
of z only if it would decrease their premiums, we obtain the
following result.
Theorem 2 (Optimality of f∗

PUC under strategic actions). Let
p′(B, Z, Y ) be any prior density on base features, true op-
tional features and labels and let f(b, a = 0, z) = FL[Y |b],
i.e., the decision maker uses the base feature model when
no optional data is available. Further suppose that users



strategically choose to share the optional feature z only if
f(b, a = 1, z) ≤ f(b, a = 0,N/A). Under these condi-
tions, the model f∗

PUC (Theorem 1) has minimal loss among
all predictors.

This result underlines that PUC models remain optimal
if the decision maker cannot increase the premiums be-
yond the predictions of the current base model for the non-
sharers. This is reasonable in many cases, where legal con-
straints mandate that the decision maker cannot implicitly
force users to share data by inflating the base premium, as
outlined in the introduction. The sharing decision can also
be automated for the users by simply dropping the optional
feature if it does not lead to a decrease in premiums. This
would result in the aforementioned bonus systems, where
sharing more data cannot increase the premium. We show
that among the class of models with such a monotonicity
constraint, the outlined PUC-model with automatic sharing
decisions is still optimal under the same conditions as in
Theorem 2 in Appendix D.5.

4.3 r-dimensional PUC
Next, we generalize our notion such that r features can
be provided optionally. For example, the insurance firm
might also accept voluntary results from prior medical ex-
aminations or diagnostic tests. Therefore, let there now
be r optional features such that z∈X z

1 × · · · × X z
r and

a∈{0, 1}r, where X z
i are the respective supports of each

optional feature. By I⊆[r]= {1, . . . , r}, we denote an
index set that contains all feature indices present, i.e.,
I(a)= {i | ai = 1, i = 1, . . . , r}. When we index vectors
with this set, e.g., ZI , we refer to the subvector that only
contains the indices in I.

Definition 2 (Protected User Consent, PUC). Let f : X →
Y ⊆ R be a full feature model. The model f∗

PUC that fulfills
Protected User Consent is given by

f∗
PUC (b,a, z∗) =

FL
(B,A,Z∗)∼p

[
Y
∣∣∣B = b,AI(a) = 1,ZI(a) = z∗

I(a)

]
,

where AI(a) = 1 means that each element that is set to 1 in
a needs to be one in A as well.

For a single feature (r=1), the index set can either be
I=∅ or I= {1} and the definition corresponds to 1D-PUC.
The conditional expectation with AI(a)=1 effectively con-
strains the features in I to be available, but marginalizes over
samples with or without further information.

5 Implementing Protected User Consent
In this section, we derive a model-agnostic approach called
PUC-inducing data augmentation (PUCIDA) to achieve
protected user consent. By using theoretical analysis, we es-
tablish that PUCIDA will result in exact protected user con-
sent. Furthermore, we establish performance guarantees that
provide an upper bound on the deviation between practical,
finite sample-based PUC-compliant models and their theo-
retical infinite sample limits.

state plan score costs
NSW basic 87 % 3k$

+⃝ NSW basic N/A 3k$
NSW basic 92 % 5k$

+⃝ NSW basic N/A 5k$
NSW basic N/A 64k$

Figure 3: Explaining PUCIDA. Our data augmentation pro-
cedure expands each instance with optional information into
two samples: The original instance and a synthetic sam-
ple ( +⃝). The synthetic samples retain the base features and
the labels, but the information on the optional features is
dropped (fitness score −→ N/A). The model sees samples
with the same base features with a missing value and will
thus base its decision only on the base features. In this exam-
ple, given the base features (“NSW”, basic) and no optional
statements, the model would estimate the costs to be 24k$,
which is the dataset average conditioned on these values.

5.1 PUCIDA: PUC-inducing Data Augmentation
Intuitively, we want to prevent the model from making infer-
ence from a feature’s missingness patterns. The core insight
is to leverage synthetic samples that make the distribution of
the labels given missingness equal to the overall label dis-
tribution. Thereby, we prevent the derivation of predictive
information from the missingness itself (see Table 3).

For a single optional feature, extensively enumerating all
samples as in the table is possible while for multiple fea-
tures this may be intractable. Therefore, we do not list all
samples but propose a stochastic, multifeature variant of
the algorithm: (1) Instead of drawing samples with uniform
probability from the distribution p, we use non-normalized
weights w:

w(x) = w(b,a, z∗) = 2|I(a)|. (4)

This step corresponds to the expansion of an instance into
2|I(a)| synthetic ones; e.g., a sample with a single optional
feature is assigned a weight of two (cf. Figure 3). Train-
ing instances are drawn with a probability proportional to
these weights. This results in data instances with optional
information being more frequently sampled. (2) We require
a sample modification where optional features are randomly
dropped from the samples. For each sampled item, we drop
each available optional feature with probability p=0.5:

qi ∼ Bern(0.5), i = 1, . . . , r; a = q⊙ a; (5)
z∗
i = {z∗

i if ai=1, else N/A} , i = 1, . . . , r. (6)

(3) We train the predictive model on the modified samples
(x, y)= ((b,a, z∗), y) ∼ p derived through this procedure.

5.2 Theoretical Analysis
We summarize PUCIDA in pseudo-code in Appendix D.8
and provide the following theorem to demonstrate that
PUCIDA leads to PUC-compliant models.
Theorem 3. The loss-minimal model f (b,a, z∗) =
FL
p [Y |b,A = a,Z∗ = z∗] on the modified distribution p



fulfills Protected User Consent with respect to p, i.e.,

FL
p [Y |B = b,A = a,Z∗ = z∗] =

FL
p

[
Y
∣∣∣B=b,AI(a)=1,ZI(a)=z∗

I(a)

]
= f∗

PUC (b,a, z∗) .

This result is remarkable in its generality as it enables
PUC-compliant models using standard optimization proce-
dures by modifying the distribution of the data; i.e., PUCIDA
can be combined with any existing model and training
pipeline. Next, ‘we’ study the theoretical convergence be-
havior for PUCIDA on finite samples. To this end, we define
the PUC-Gap as the expected squared deviation from PUC:

PUC-Gap2(f,p) = (7)

E(B,A,Z∗)∼p

[(
f(B,A,Z∗)− f∗

PUC(B,A,Z∗)
)2]

.

We will restrict ourselves to L ≡ MSE and thus FL ≡ E,
and study a baseline conditional expectation estimator µ̂
which averages the labels conditional on all observations
with the same features x. For brevity, we refer to Ap-
pendix D.7 (Eqn. 51) for a formal definition of this estima-
tor. Since we usually cannot compute the exact expectation
from Theorem 3, we are interested in the number of samples
required from p to obtain a fixed average estimation error
for which we establish the following result.

Theorem 4 (Finite Sample Convergence). Let X = X b ×
(X z ∪ {N/A}) be finite feature space and let Y ⊆ R be
the label space. All conditional expectations µ(x):=Ep [y|x]
and the conditional variances σ2(x):=Varp [y|x] exist and
are finite. Then there exists a baseline non-parametric re-
gressor µ̂ : X 7→ R from a finite number of N independent,
identically distributed observations (xi, yi)i=1...N from p
with a convergence rate of O(N−1); more specifically

PUC-Gap2(µ̂,p) = EX∼p

[
(µ̂(X)− µ(X))

2
]

≤ 2r|X |2(σ2
max + µ2

max)

N
+O

(
1

N2

)
,

with σ2
max:=maxx∈X σ2(x) and µ2

max:=maxx∈X µ2(x).

In conjunction with Theorem 3, this result provides a
bound on the expected gap to perfect protected user consent
that is dependent of the sample size, which decreases with
a rate of O

(
N−1

)
. Several remarks are in place: We obtain

a multiplicative constant which depends on the number of
optional features r and the size of the feature space |X |. The
square of this quantity enters the result because the number
of samples available to estimate each conditional mean is not
independent, as they need to sum up to N . For large feature
spaces, however, they are almost independent and we expect
the constant to scale almost linearly in |X |. The growth of 2r
is attributed to the re-sampling strategy which might assign
a very low probability to certain inputs, which may only be
well approximated with a high number of samples. As the
number of optional features is typically limited in realistic
use-cases it will be well outgrown by N . Note that more
powerful model (e.g., Tree based model + PUCIDA) usually
outperform this baseline.

data base model Full feature model PUCIDA

diab.(C) 33.84% ±2.47 31.44% ±2.19 34.01% ±1.71
compas (C) 44.47% ±0.37 41.47% ±1.09 44.54% ±0.54

adult (C) 13.37% ±0.07 12.84% ±0.28 13.41% ±0.12

water (C∗) 10.65% ±1.64 10.00% ±1.58 10.97% ±1.21
colic (C∗) 13.81% ±0.82 11.34% ±0.46 15.05% ±0.68

income (R) 109.56 ±1.00 109.11 ±1.29 110.73 ±1.29
calif. (R) 15.79 ±0.10 15.16 ±0.28 16.18 ±0.06

insurance (R) 283.47 ±0.53 279.78 ±0.42 285.31 ±0.39

Table 1: Availability Inference Restriction is violated by
full feature models (Random Forests). As expected, the full
feature models always have lower losses than the base-
models, indicating that Availability Inference Restriction is
violated while PUCIDA fullfils Availability Inference Re-
striction. We report misclassification error rates for classifi-
cation models and MSE loss (× 100) for regression models.

Practical considerations. For smaller datasets, an alter-
native approach to random sampling is to use all possible
samples to approximate the distribution p by a method we
call “exhaustive augmentation”. This involves enumerating
all possible variations of the original samples, including any
optional features, to form a larger dataset D′. The model is
then trained on this expanded dataset.

6 Experimental Evaluation
Here, we empirically validate the effectiveness of our meth-
ods using eight real-world datasets and one synthetic dataset.
In particular, we highlight that (a) full feature models violate
the Availability Inference Restriction and make it harder for
non-sharers to obtain the positive outcome, (b) PUCIDA re-
sults in PUC-compliant models as suggested by our theory,
and that (c) the reduction in terms of model performance
due to using PUC are moderate relative to deploying a full
feature model.

Common datasets. We use eight real-world datasets
commonly found in the related literature. For classification
(C), the Diabetes (diab) and the horse colic dataset (colic)
study the prediction of diseases, the COMPAS dataset is
concerned with estimating likelihood of recidivism and UCI
Adult income dataset requires to predict whether individuals
have an income of over 50k$. The water treatment dataset
(water) predicts the operational state of a facility. We also
study the regression tasks (R) of house price estimation in
California (calif), income prediction (income), and inferring
information from insurance claims (insurance) to link to our
initial example. Details about preprocessing, dataset sources
and model hyperparameters are provided in Appendix F.2.

Availability. The colic and the water dataset come with
inherent missing values that we use (indicated through ∗).
For six more datasets we introduce availability dependent
on a feature’s value. We compute the probability of feature
unavailability p(Ai = 0|zi) by applying a sigmoid function
centered at the feature mean and sample the availability a
from the respective conditional distribution. We additionally



Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 60.27% 45.19% -15.08% ±2.01 61.20% 0.93% ±0.93
C compas #priors 51.19% 32.86% -18.33% ±0.89 51.34% 0.15% ±0.59
C adult edu-num 13.86% 11.44% -2.42% ±0.07 13.92% 0.06% ±0.05

C∗ water oxygen. dem. 87.10% 84.52% -2.58% ±2.81 87.42% 0.32% ±1.58
C∗ colic abdom. app. 6.39% 1.24% -5.15% ±0.92 7.01% 0.62% ±1.64

R income WKHP 100.0% 81.2% -18.8% ±0.61 101.2% 1.2% ±0.19
R calif. m income 100.0% 94.4% -5.6% ±0.67 103.8% 3.8% ±0.42
R insurance experience 100.0% 94.8% -5.2% ±0.09 100.1% 0.1% ±0.05

Table 2: Measuring the average predictions for non-sharers. For classification tasks we report the positive outcomes (in %), and
for regression tasks, we report relative predictions to the base feature model (set to 100 %). The non-sharers face disadvantages
for not providing the voluntary information and are assigned less favorable prediction outcomes by the full feature models. This
discrepancy vanishes when PUCIDA is applied.
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Figure 4: PUCIDA is model-agnostic. The PUC-gaps are
close to zero when applying our technique across a variety
of common models on the simulated dataset.
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Figure 5: Convergence rate of models under PUCIDA. The
estimate of PUC converges to the true value at a rate of
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N ) for the baseline estimator µ̂ and other commonly used
models.

study these datasets in the setting of strategic withholding.

6.1 Evaluating PUCIDA
Availability Inference Restriction is violated by full fea-
ture models. First, we demonstrate the effect that full fea-
ture models have on Availability Inference Restriction. We
follow common practices and use zero-imputation to deal
with unavailable feature values (Emmanuel et al. 2021).
Then, we train a Random Forest model on all features of the
dataset where we have introduced stochastic availability into
one feature (see previous paragraph). We also train a base
feature model that fully drops the optional feature from the

dataset. We consider the subset of individuals with unavail-
able feature values (i.e., a=0) and report the average loss
and absolute prediction of the positive class for both models
in Table 2. We observe that the full feature models use the
information contained in the missingness to obtain a lower
loss. This can reduce the chance of obtaining the positive
outcome from the full feature model compared to the base
feature model by significant margin of up to 18 % for non-
sharers. Hence, these results impressively show how the full
feature model implicitly infers information from missing-
ness and thereby violates protection requirements. This stays
the same when applying established fairness constraints on
the models (see Appendix F.1). In contrast, when applying
PUC using PUCIDA this gap vanishes or is significantly re-
duced. We show that the same effect can be observed inde-
pendently of the imputation techniques, the model class, and
the model hyperparameters in Appendix F.3.

6.2 Evaluating the Theoretical Bounds
PUCIDA guarantees Predictive Non-Degradation. Usu-
ally model performance degrades when training models
with additional constraints (e.g., see Corbett-Davies et al.
(2017)). To measure model performance, we use the mis-
classification rate for classification tasks (ROC-AUC scores
lead to qualitatively similar results, see Appendix F.4) and
the MSE for regression tasks. The results in Table 3a confirm
that PUCIDA (using exhaustive augmentation) improves
over the base feature model, suggesting that PUCIDA mod-
els benefits from using optional information. This is the case
even under under strategic actions where users only provide
data if it improves their outcome, and aligns with our the-
oretical result in Corollary 1. Under non-strategic actions,
the performance figures show the same characteristics (Ap-
pendix F.4). As expected, PUC-compliant models fare mod-
erately worse than full feature models which have no protec-
tion requirements.

We now compare two different PUCIDA variants on mul-
tiple optional features: the first strategy ensures a fixed
dataset size, i.e., the number of samples is equivalent to the
original dataset size. The second strategy, which uses ex-



task data opt. feature base model PUCIDA Full feature model

C diab. Glucose 29.30% ±0.62 26.61% ±0.56 23.41% ±0.69
C compas #priors 42.89% ±0.10 40.85% ±0.15 36.67% ±0.36
C adult edu-num 16.05% ±0.03 15.94% ±0.05 14.86% ±0.06

R income WKHP 85.07 ±0.17 80.22 ±0.15 73.25 ±0.16
R calif. m income 15.62 ±0.14 14.79 ±0.08 13.40 ±0.03
R insurance experience 262.43 ±0.21 254.35 ±0.39 236.92 ±0.42

(a) One dimensional case, strategic withholding. Metrics: C: (1-Acc)×100, R: MSE×100

Fair models Full feature model

task data (# opt.) Base feature model PUCIDA (f) PUCIDA (e) (×) zero-imputed

C diab. (2) 29.74 ±2.92 26.23 ±4.42 25.58 ±3.69 2.2 24.16 ±4.18
C compas (5) 40.83 ±0.56 37.65 ±0.23 37.21 ±0.71 7.6 36.86 ±1.20
C adult (5) 17.98 ±0.37 15.35 ±0.36 15.27 ±0.25 7.9 15.15 ±0.33

R income (3) 52.40 ±0.92 49.47 ±1.71 51.21 ±0.86 3.4 46.15 ±1.60
R calif. (4) 6.64 ±0.79 6.83 ±0.32 6.36 ±0.08 5.1 5.69 ±0.22
R insurance (3) 271.72 ±4.14 242.99 ±4.47 260.77 ±2.74 3.2 232.59 ±2.39

(b) r-dimensional case. Metrics: C: (1-Acc)×100, R: MSE×100

Table 3: PUC-compliant models leverage optional information to improve predictive performance relative to base feature mod-
els This is in line with Corollary 1. In the bottom table, two strategies are considered to achieve PUC: fixed-size (f) and
exhaustive (e) PUCIDA. When using exhaustive PUCIDA, the predictive performance is always better than the performance of
the base feature model, and often similar to the performance of the full feature models.

haustive data augmentation, leads to an increased dataset
size. The factor by which the dataset size is increased is in-
dicated by (×) along with the results in Table 3b. We ob-
serve that competitive results can often be obtained without
any dataset increase; fixed-size PUCIDA even outperforms
the exhaustive variant on the larger income and the insur-
ance dataset, whereas the exhaustive augmentation leads to
a more reliable performance increase. We study the perfor-
mance for sharers in Table 6 (Appendix) and find that it re-
mains on par with the full feature model. Overall, our results
demonstrate that optional information can be leveraged in
a conscious way through PUC-inducing data augmentation
without suffering from prohibitive performance decrease for
the decision maker and the sharers.

Convergence of PUCIDA. Finally, we study the conver-
gence behavior of PUCIDA. As a measure of approxima-
tion quality, we use the PUC-Gap2 defined in Equation (7),
which measures the squared deviation from perfect PUC.
As this notion requires the knowledge of the ground truth
distribution, we use a synthetic dataset for this experiment.
The dataset consists of eight binary features (five base, three
optional). All features in this dataset are sampled indepen-
dently. Labels are induced via a logistic distribution, and
availability of the optional information depends on the la-
bel. For experiments on a second synthetic dataset with five
continuous features (two base, three optional) and more de-
tails, see Appendix F.5.

First, we observe that PUCIDA is model agnostic, i.e., it
works with a variety of state-of-the-art models leading to
negligible PUC-gaps (see Figure 4). Second, we verify that
the PUC-Gaps converge to zero at the rate of O( 1

N ) as the

sample size increases (Figure 5), confirming what we de-
rived in Theorem 4. While common models (e.g., Random-
Forest, MLP) have a lower error than the baseline estima-
tor µ̂ the models approach the baseline estimator with larger
datasets and the gap closes at the suggested rate.

7 Conclusion and Future Work
In this work, we studied machine learning predictions where
users have the option to disclose optional information. To
comply with legal regulations and respect user consent, we
introduced the notion of Protected User Consent (PUC)
that strikes a balance between the interests of sharers, non-
sharers, and decision-makers. We demonstrated that lever-
aging optional information from consenting users through
PUC results in superior performance compared to models
that disregard the optional information entirely.

Our work gives raise to several follow-up questions. It
would be interesting to study possible long-term effects of
PUC and how PUC incentivizes improvements. Further-
more, we have only considered users that act entirely strate-
gic or on privacy grounds. Modeling heterogeneous users,
who might be willing to accept a certain increase in costs in
return for their privacy could be a meaningful extension.

Additional Material
An extended version of this work including technical appen-
dices is available online2. We also publish our code as an
open-source project3.

2https://arxiv.org/abs/2210.13954
3https://github.com/tleemann/protectedconsent

https://arxiv.org/abs/2210.13954
https://github.com/tleemann/protectedconsent
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Biega, A. J.; Potash, P.; Daumé, H.; Diaz, F.; and Finck, M.
2020. Operationalizing the legal principle of data minimiza-
tion for personalization. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 399–408.

Bird, S.; Dudı́k, M.; Edgar, R.; Horn, B.; Lutz, R.; Milan, V.;
Sameki, M.; Wallach, H.; and Walker, K. 2020. Fairlearn: A
toolkit for assessing and improving fairness in AI. Technical
Report MSR-TR-2020-32, Microsoft.

Chai, J.; and Wang, X. 2022. Fairness with adaptive weights.
In International Conference on Machine Learning (ICML),
2853–2866. PMLR.

Chouldechova, A. 2017. Fair prediction with disparate im-
pact: A study of bias in recidivism prediction instruments.
Big data, 5(2): 153–163.

Corbett-Davies, S.; Pierson, E.; Feller, A.; Goel, S.; and
Huq, A. 2017. Algorithmic decision making and the cost
of fairness. In Proceedings of the 23rd acm sigkdd interna-
tional conference on knowledge discovery and data mining,
797–806.

Cribari-Neto, F.; Garcia, N. L.; and Vasconcellos, K. L.
2000. A note on inverse moments of binomial variates.
Brazilian Review of Econometrics, 20(2): 269–277.

DeMarco, J. 2023. Nearly 70% of Americans Would Wear
a Fitness Tracker/Smartwatch for Discounted Health Insur-
ance.

Ding, F.; Hardt, M.; Miller, J.; and Schmidt, L. 2021. Retir-
ing adult: New datasets for fair machine learning. Advances
in Neural Information Processing Systems, 34: 6478–6490.

Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel,
R. 2012. Fairness through awareness. In Proceedings of the
3rd innovations in theoretical computer science conference,
214–226.

Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006.
Calibrating noise to sensitivity in private data analysis. In
Theory of cryptography conference, 265–284. Springer.
Emmanuel, T.; Maupong, T.; Mpoeleng, D.; Semong, T.;
Mphago, B.; and Tabona, O. 2021. A survey on missing
data in machine learning. Journal of Big Data, 8(1): 1–37.
Fernando, M.-P.; Cèsar, F.; David, N.; and José, H.-O. 2021.
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A Related Work and other Fairness Notions
A.1 Additional Related Work
Estimation of causal effects in the presence of missing data. The works by Mohan, Thoemmes, and Pearl (2018); Mohan
and Pearl (2021) introduce graphical models for incomplete data and study the consistent estimation of causal effects amidst
missing values. Our work differs as we are not concerned with estimating true causal effects but focus on building a definition
of fairness in the presence of optional data.

Implementing Fairness in ML Systems. There are different strategies to implement fairness and mitigate bias in practical
decision-making systems. This can be done by adding additional constraints to the optimization problem (e.g., Zafar et al.
(2019)). To solve the such an optimization problem, one can employ the reductions approach (Agarwal et al. 2018), where the
fairness constraint is reduced to a series of classification problems with different costs assigned to each sample. Furthermore,
another line of work consists of preprocessing approaches to obtain models that are compliant with classical fairness notions.
These work through sample selection (Roh et al. 2021; Abernethy et al. 2022) and reweighting approaches (Chai and Wang
2022; Li and Vasconcelos 2019; Li and Liu 2022) or through resampling of the sensitive attribute (Romano, Bates, and Candes
2020). While these approaches can help fulfill common fairness notions, they cannot easily be applied to obtain PUC.

Trade-offs between Privacy and Fairness. Possible trade-offs between classical notions of privacy such as Differential
Privacy (DP, Dwork et al. 2006) have been previously studied (Bagdasaryan, Poursaeed, and Shmatikov 2019; Ganev, Oprisanu,
and De Cristofaro 2022; Amiri et al. 2022), showing that imposing DP may lead to disparate outcomes across sensitive groups
or reinforce existing biases. Suriyakumar et al. (2021) recently found that imposing privacy constraints can lead to an undue
influence of majoritiy groups over miniories, thus possibly impacting fairness. Although we are considering personal data in
this work, this paper differs from classical privacy literature because we are not concerned with data leakage. Instead, we strive
to give users a better choice of which data to provide in the first place.

A.2 Common fairness notions are not applicable
As many definitions of fair outcomes between an advantaged and a disadvantaged group exist, we investigate whether existing
definitions can readily be applied or easily adapted to the optional feature setting considered in this work. In other words, here
we study whether existing fairness notions comply with our desiderata of Optimality and Availability Inference Restriction. In
the conventional fairness literature, the impact of a sensitive attribute on the prediction is restricted. However, in the optional
feature setting the point of departure is different since the optional feature may contain discriminative information that we
explicitly want to use in come cases (recall that the sharers would like to obtain the most accurate prediction given their
information). If not stated otherwise, we consider the availability feature A (see Figure 2) to be the sensitive attribute. We
denote the predicted label by Ŷ and discuss binary labels Y ∈ {0, 1} as in most of the original definitions.

Fairness through Unawareness. This notion demands that the availability indicator A is not used as an explicit input in the
decision-making process. Removing explicit information on the availability can be done easily by dropping the feature A. This
makes “Fairness through Unawareness” very easy to implement. However, the group information is still implicitly encoded in
the optional feature through the value N/A (see Fig. 2). A sufficiently complex classifier can infer this group information and
include it into its decision-making. Therefore, this fairness notion cannot be applied in the optional feature setting as it violates
Availability Inference Restriction.

Predictive Parity. This notion of fairness constrains the False Discovery Rates to be equal across groups, i.e., P (Y = 0|Ŷ =

1, A = 0) = P (Y = 0|Ŷ = 1, A = 1). We argue that this definition and other error rate-based ones will not work in our
setup because they bound performance an thus violate Optimality. It is desired by the sharers and the decision maker that the
predictions will be more accurate when the feature z is present (A = 1) because the information in z should explicitly be used
in the decision-making process if users decide to share their data on the optional features. One can make an analogous argument
for other error-rate based notions such as equalized odds and equal opportunity.

Equalized Odds and Equal Opportunity (Hardt, Price, and Srebro 2016). Equalized odds requires the predicted label Ŷ
and the the protected attribute A to be conditionally independent given the true label Y . Formally, this means P (Ŷ |A, Y ) =

P (Ŷ |Y ) for all values of Y,A, Ŷ . This effectively constrains the true and false positive rates to be equal across groups. However,
by the desideratum of Optimality, it is required to use class-discriminative information in the optional feature, which will
necessarily lead to lower missclassification rates for subjects with A=1. Another fairness notion is Equal Opportunity which is
a relaxation of Equalized Odds that only demands P (Ŷ |A=1, Y=1) = P (Ŷ |A=0, Y=1), thus constraining the true positive
rates across groups. To fulfill this notion, for A=1, the true positive rate would have to be kept artificially low to match that of
the case A=0, with less information. This would thus result in a lower P (Ŷ=1|A=0, Y=1), than could be achieved otherwise.
Let Y=1 be the desirable outcome (e.g., being assigned a low insurance quote); this means that less subjects are rewarded with
the justified positive outcome. This is incompatible with our desideratum of Optimality.

Statistical Parity (Dwork et al. 2012; Kusner et al. 2017). This definition is satisfied by a classifier if subjects in both
protected and non-protected groups have an equal probability of getting a positive classification outcome: P (Ŷ=1|A=0) =

P (Ŷ=1|A=1). If the set of people providing additional information has more favorable base features in general, this definition
may lead to different thresholds where people that choose to provide information are getting a lower score to achieve parity. This



definition would even forbid using this base features’ full distinctive power, because one has to equalize over both missingness
classes, thus contradicting Optimality.

Individual fairness (Dwork et al. 2012). Fairness definitions in this category use a distance metric m to define similarities
m(xi,xj) between individuals xi and xj . Considering the application in mind, the sensitive attributes should not play a role
in determining the distance. The classifier output distributions for f(xj) and f(xi) that are compared by some divergence D
should not differ more than the distance between these individuals, i.e., D(f(xj), f(xi)) ≤ m(xi,xj) (Dwork et al. 2012). In
the considered setting, following the proposition by Verma and Rubin (2018), we could define the distance to be 0, if individuals
have the same base features b. This would effectively constrain the classification outcome to be identical independently of the
optional feature specified, effectively prohibiting its use. Even when defining other distance metrics, the classification outcome
will still be constrained to a certain range, again contradicting our desideratum of Optimality.

(Conditional) Statistical Parity. Statistical parity (SP) is known to be notoriously unfair on an individual level (Dwork et al.
2012). Therefore, Corbett-Davies et al. (2017) define the notion of conditional statistical parity (CSP), which is an extension of
SP, where some attributes are allowed to affect the decision. If we allow all base features b, the resulting definition expressed in
expectations would be P [Ŷ |B = b, A = 0] = P [Ŷ |B = b, A = 1]. While this definition can be compliant with Availability
Inference Restriction, we show that CSP-compliant models cannot meet the desire of the sharers for most accurate predictions.
They cannot assign most accurate predictions to sharers or would encounter prohibitively high costs due to the CSP constraint
if they did so. Indeed, they can be worse than the performance of a base feature model, even when we assign the sharers the
most accurate predictions. This is the case even under idealized conditions (i.e., known expectations) and when Incentivization
is perfectly fulfilled. PUC-models do not suffer from this limitations and can assign sharers most accurate predictions while
always matching the performance of the base feature model.

Lemma 1 (CSP-compliant models can degrade model performance over base feature model). There exists a density p for which
a CSP-compliant model f∗

CSP : X → [0, 1] which assigns the most accurate predictions to the sharers, i.e., f∗
CSP|a=1

(b, a, z∗) =

FL [Y |b, A = 1, z∗] leads to higher expected losses (for MSE and BCE losses) than an optimal base feature model g∗BCE :

Ep[L (g∗BCE(B), Y )] < Ep[L (f∗
CSP(B, A, Z∗), Y )]. (8)

A proof is provided in Appendix D.1. There, we give a density p that serves as such a counterexample. We argue that this
fairness notion is incompatible with the desire of the sharers for accurate predictions and the decision makers desire for low
overall costs. Thus, we have established that common fairness definitions fail to conform to our desiderata of Availability
Inference Restriction or result in models with unreasonable performance characteristics.

B Intuition and Additional Examples
In this section, we provide a simple example to show the problem of possible unfairness and provide more intuition for our
notion of Protected User Consent.

B.1 Standard losses may lead to unfair treatment
We revisit the example of college admission, to show how imputation leads to possibly unfair treatment. Suppose we are given
the samples

{
(xi, yi)

}
i=1..N

with N = 5 from Fig. 2. Using the standard Mean-Squared Error (MSE) loss, we solve the
following empirical risk minimization problem:

f∗ = argmin
f∈F

N∑
i=1

(f(xi)− yi)2,

with a sufficiently expressive function class F . For samples in the example data set, this will yield the outcome f∗(x) =
1

|{xi=x}|
∑

{xi=x} yi, the empirical mean. Consider the samples x1 and x4 in Fig. 2. Candidate 1 chose to share an additional
feature, while candidate 4 did not. Although they have the same base features, their classification will be different at test time
(as the data in the training set) with f∗(x1) = 3k$ and f∗(x4) = 64k$.

We argue that in the case of candidate 4, the availability information was implicitly used to compute the score and resulted in
a lower outcome. If only the base features had been available, i.e., f∗ would have been trained on the data set

{
(bi, yi)

}
i=1..k

,
the model outcome would be f∗(b) = 1

|{bi=b}|
∑

{bi=b} y
i with f∗(b4) = 24k$ which is the dataset average for all customers

from NSW with a basic coverage plan. In this work, we argue that the unavailability of certain features itself should not be used
in the determination of the model outcome when no additional information is available.

B.2 Example: Missing at random (MAR) data.
For missing at random data (Rubin 1976), the likelihood of unavailability can be entirely accounted for by the observed base
features b and is not affected by the partially observed z and the label y. Formally, for a single optional feature with random



availability A, p(A = 0|b) = p(A = 0|b, z, y) for every z ∈ X z, y ∈ Y . Therefore,

p (y|b, A = 0) =
p(y,b, A = 0)

p(b, A = 0)
=

p(y)p(b|y)p(A = 0|b, y)∑
y′ p(y′)p(b|y′)p(A = 0|b, y′) (9)

=
p(y)p(b|y)p(A = 0|b)∑
y′ p(y′)p(b|y′)p(A = 0|b) =

p(y)p(b|y)p(A = 0|b)
p(A = 0|b)∑y′ p(y′)p(b|y′)

(10)

=
p(y)p(b|y)∑
y′ p(y′)p(b|y′)

= p(y|b). (11)

Therefore, we also have E [Y |B = b, A = 0] = Ep [Y |B = b], indicating that the missingness does not affect the expected
value of the label (or that of any other functional of p(y|b)) over the entire data distribution. Therefore, a perfect discriminative
model with f(x) = FL

p [Y |x] will fulfill Theorem 1, our definition of PUC, right away.

B.3 A probabilistic derivation of Non-Penalization

First, we require that the predictor does not use the information as an explicit input, i.e., the predictor should behave as if it only
used base features b via some function g : X b → Y:

f|a=0
(b, a, z∗) = g(b). (12)

For (b), although a=0 is not an explicit input to g, a sufficiently complex function may still be implicitly adapting to the group
a=0 and thus incorporate information that the user did not give their consent to. Therefore, on its own, the constraint in eqn.
(12) is insufficient to enforce Availability Inference Restriction, and we need to formally define which predictors g are not
specific to the information provided by the group of non-consenting users. To make matters more concrete, we first consider the
case of binary classification with Y ∈ {0, 1} from a probabilistic perspective and suppose g(b) returns a numerical probability
socre in [0, 1]. We let pg(Ŷ |b) denote stochastic predictions Ŷ defined through g where pg(Ŷ = 1|b) := g(b). We would
like to constrain the information contained in the predictions G(b) to not use any additional information that the users did
not actively consent to. To come up with a suitable constraint, we consider two simple others predictors, where one should be
allowed and the other should be ruled out.

y

p
(y
|b
) non-group

cond. predictor
p(Y |b)

group-conditional
p(Y |b,A=0)

group-specific
predictor

non group-specific ✓group-specific ✗

Figure 6: In our definition, predictors are called group-specific (blue) if they are closer to the group conditional distribution
than to the overall label distribution (pink). Our requirement forbids the use of such group-specific predictors for the group of
users with no additional information.

There are two canonical examples: a probabilistic estimator that is certainly not adapted to a specific group would be the
one matching the ground truth overall conditional probability p (Y |b). On the other extreme, the predictor q equivalent to
q (Y |b) := p (Y |b, A=0) is fully leveraging the protected information and would thus be non-compliant. Generalizing this
insight, we rule out all probabilistic predictors that are closer to the most non-compliant predictor than the overall conditional
predictor, which we consider valid. These forbidden, group-specific predictors are visualized in Figure 6.

To this end, a suitable distance metric is required between the predictive distributions. A common choice is the Kullback-
Leibler divergence DKL, which results in the following requirement for a predictor g:

DKL (p(Y |B, A=0)||pg(Y |B)) ≥ DKL (p(Y |B, A=0)||p(Y |B)) . (13)

The condition from eqn. (13) can be equivalently stated in terms of expected loss for binary classification and regression prob-
lems; i.e., the above condition allows to derive a generalized principle of Availability Inference Restriction (see Appendix D.4
for the proof).



C Effects of user choices in PUC-compliant models
In this section, we provide a brief discussion on the effect a user’s choice to provide or not provide optional information has for
the decision maker and for the affected end users.

Balancing the interests of consenting users, non-consenting users and decision makers. From the user’s viewpoint, we
would like to outline that a user’s choice to provide optional information or not may depend on different factors:

(a) Relevance of information: How relevant does the individual deem the information that is asked for. The user may (cor-
rectly or incorrectly) deem certain information irrelevant for the decision and therefore they may not be willing to provide
information on optional features.

(b) Sensitivity of information: How concerned is the individual about the optional information being unintentionally leaked or
intentionally passed on to a third party.

(c) Prior beliefs and expected outcomes: The user’s mental models of the decision system and the role their information plays
in the system could be essential as a user may be more inclined to provide information which they deem beneficial for their
prediction.

In summary, the utility of an individual for providing data is composed of several factors, including sensitivity, perceived
relevance and anticipated outcomes.

From the perspective of the decision maker, PUC models become increasingly more accurate with more data being voluntarily
provided. Therefore, from the perspective of the decision maker, it is important that users can also benefit from providing
optional information. This desiderata is captured by optimality requirement, which allows the decision maker to make the most
of all voluntarily provided information and allows the users to obtain more accurate decisions when additional information is
provided.

Can less information lead to more favorable predictive outcomes for users? A user’s predictive outcome depends on
which information was provided by the user, and the predictive outcomes do not need to be monotonic in the number of
optional features being provided; i.e., providing more information on optional features does not necessarily lead to a better
outcome for the user.

To see why this behavior is necessary and desired, we consider the two extreme cases on either side of the spectrum, where
(a) optional information may not impact the prediction outcome, and where (b) predictions can only get worse when providing
strictly less features. In case (a), where no changes to the predictions occur, the setup becomes trivial and results in the base
feature model. If this is the goal, then the collection of any additional information is useless for the decision and one should
refrain from collecting these data, directly following the principle of Data Minimization. In case (b), where users can only
get worse predictions with less information, a machine learning model would always have to treat users, who did not provide
information, as if the worst possible value of a feature was provided. This is to make sure that the prediction outcomes of
consenting users remains higher than the outcomes of non-consenting users with identical features. In the real-world setting of
college admission we considered throughout the main text, this would lead to severe penalization of users who did not share
optional test score results. This could de-facto rule them out entirely. We argue that this behavior is not desired as it implicitly
forces users to provide their data. If this is desired, then the decision maker should make this choice explicit and the feature
should then be mandatory. To conclude, for the setting of optional features with a decision maker who is interested in providing
users a real choice, any sensible notion of fairness must allow for differences in the outcomes depending on the provided
information.

D Proofs
D.1 Counterexample: Conditional statistical parity can be inferior to the base model
Expressed in terms of expectations, the notion of conditional statistical parity E[Ŷ |B = b, A = 0] = E[Ŷ |B = b, A = 1]
requires the prediction averages conditioned on b to be equal among groups that provided the optional features and those that
did not. We now consider a non-probabilistic prediction function Ŷ = f(b, a, z∗). Plugging in the functional form would result
in the following definition: f|a=0

(b,a = 0, z∗) = EZ∗∼p(Z∗|b,a=1) [f(b,a = 1, Z∗)] ,∀b. In the case a = 0, z∗ is constrained
to be N/A so we can ignore its value. The subscript is used to indicate the restriction of f on the set of points with a=0. This
definition constrains the output f|m=0

, when no additional features provided, to match the average output of the individuals that
provided features.

We follow the requirement most accurate predictions by the sharers which requires f|a=1
to be the best approximation of

E [Y |B, A = 1, Z∗]. Thus, we would have to set f|a=0
to be f|a=0

(b, a, z∗) = EZ∗∼p(z∗|b,a=1) [E [Y |B = b, A = 1, Z∗]] =
E [Y |B = b, A = 1] when marginalizing over Z∗. Overall, this derivation results in a function fcsp of the following form:

fcsp(b, a, z
∗) =

{
E[Y |b, A = 1] if a = 0

E[Y |b, A = 1, Z∗ = z∗], if a = 1
. (14)

In this section we present a simple example to show that this function fcsp derived from notion of conditional statistical parity
may lead to an increased Mean-Squared-Error (MSE) and Binary Cross Entropy (BCE) loss compared to the base model (not



using the optional feature) even when the estimators of the conditional means are perfect. Note that in a binary space Y = {0, 1}
for both losses, predicting the conditional expectation is optimal.

For the example, we take any value b and suppose p(y|b, A, Z) depends on A but that Z is useless and does not contribute
any new information, i.e. ∀z ∈ X z, A ∈ {0, 1} : p(y|b, A, z) = p(y|b, A). Furthermore, we set the outcome to be deterministic
of A:

E [Y |b, A = 0] = 0 (15)
E [Y |b, A = 1] = 1 (16)

E [Y |b] = p(A = 1|b)E [Y |b, A = 0] + p(A = 0|b)E [Y |b, A = 1] = p(A = 1|b) := α. (17)

Let p(A = 1|b) = α be in the range 0 < α < 1. The optimal base feature model g∗ would predict:

g∗(b) = α, (18)

whereas the model based on CSP is given by:

fcsp(b) = 1, (19)

independently of the realization of A (because it is not allowed to use this information). The expected MSE Loss is given by:

Lbase,MSE = p(A = 0|b)(α− 0)2 + p (A = 1|b) (α− 1)2 (20)

= (1− α)α2 + α(1− α)2 = (1− α)α(α+ 1− α) = (1− α)α, (21)

Lbase,BCE = −p(A = 0|b) log(1− α)− p(A = 1|b) logα <∞. (22)

If the notion derived from Conditional statistical parity is used, we would use fcsp(b) = E [Y |b, A = 1] = 1 to predict in both
cases and obtain:

Lcsp,MSE = p(A = 0|b)(0− 1)2 + p(A = 1|b)(1− 1)2 = p(A = 0|b) = 1− α, (23)

Lcsp,BCE = −p(A = 0|b) log(1− 1)− p(A = 1|b) log 1 = p(A = 0|b) =∞. (24)

For the BCE, we already see that the loss is unbounded in the case of CSP. One can construct the same example with non-infinite
losses by adding a slight probability of the other outcome, i.e., setting E [Y |b, A = 1] = 1 − ϵ with some small ϵ > 0 and
obtain an analogous result.

For the MSE, in every case with α = p(A = 1|b) < 1 this results in:

Lcsp = 1− α > (1− α)α = Lbase. (25)

We have now shown that for an arbitrary b, the loss can be higher that of the base feature model. We can complete the example
to the overall loss over a distributions of b’s by supposing p(B = b) = 1, which would however be a degenerate distribution.
As a broader alternative, one can assume the above for a set of b ∈ B and suppose any probability distribution with support in
B, i.e., p(B /∈ B) = 0.

D.2 Proof: The notion of Protected User Consent is optimal in the set of predictors conforming to the two
desiderata

We can consider both predictors (for the case with and without optional features) independently. On the one hand, the notion
of Availability Inference Restriction demands that the base predictor f|a=0

(b) = g(b) should not outperform the optimal base
predictor f∗

L trained on the full data set,

Ep [L (f∗
L(B), Y )|A = 0] ≤ Ep [L (g(B), Y )|A = 0] . (26)

This directly provides us with one predictor g(b), that is optimal in terms of loss for these individual namely, g ≡ f∗
L where

f∗
L(b) = FL [Y |b]

On the other hand, for the group of individuals with optional information, we face no constraints and thus use the best
predictor possible, i.e.,

f|a=1
(b, a, z∗) = FL [Y |b, A = 1, z∗] = argmin

f(b,a,z∗)

Ep(Y |b,A=1,z∗) [L(f(b, a, z∗), Y )] . (27)

Together, this results in the given definition of PUC. □



D.3 Proof: 1D-PUC obeys Predictive Non-Degradation
For the case of optional features (A = 1), we have:

fPUC
|a=1

(b, a, z∗) = FL [Y |b, A = 1, z∗] = argmin
f(b,a,z∗)

Ep(Y |b,A=1,z∗) [L(f(b, a, z∗), Y )] . (28)

As is is the optimal predictor, its loss on these samples is smaller than that of any model, including the optimal model on the
base features. Therefore, for each b, z∗, we have:

Ep(Y |b,A=1,z∗)

[
L(fPUC(b, a=1, z∗), Y )

]
≤ Ep(Y |b,A=1,z∗) [L (f∗

L(b), Y )] . (29)
Averaging over the entire class of samples with A = 1, we obtain:

Ep

[
L
(
fPUC(B, A, Z∗), Y

)∣∣A = 1
]
≤ Ep [L (f∗

L(B), Y )|A = 1] . (30)
On the other hand, the definition of PUC demands that the predictor in case A = 0 is equivalent to the optimal predictor on

the base features. Thus they have equal loss and:

Ep

[
L
(
fPUC(B, A, Z∗), Y

)∣∣A = 0
]
= Ep [L (f∗

L(B), Y )|A = 0] . (31)
In total, we have

LPUC = Ep

[
L
(
fPUC(B, A, Z∗), Y

)∣∣A = 0
]
p(A=0) + Ep

[
L
(
fPUC(B, A, Z∗), Y

)∣∣A = 1
]
p(A=1) (32)

≤ Ep [L (f∗
L(B), Y )|A = 0]p(A=0) + Ep [L (f∗

L(B), Y )|A = 1]p(A=1) (33)

= Ep [L (f∗
L(B), Y )] = Lbase. (34)

□

D.4 The Generalized Principle of Availability Inference Restriction
We can reformulate the probabilistic definition of Availability Inference Restriction in terms of loss functions, which allows for
generalization. We define p0 = p(B|A = 0). We start by the notion given in the definition:

DKL (p(Y |B, A=0)||pg(Y |B)) ≥ DKL (p(Y |B, A=0)||p(Y |B)) (35)
Eb∼p0DKL (p(Y |b, A=0)||pg(Y |b)) ≥ Eb∼p0DKL (p(Y |b, A=0)||p(Y |b)) . (36)

The Kullback-Leibler divergence can be decomposed as DKL(p||q) = H(p) + CE(p||q), which results in:
⇐⇒ Eb∼p0

CE (p(Y |b, A=0)||pg(Y |b)) + Eb∼p0
H [Y |b, A=0] (37)

≥ Eb∼p0
CE (p(Y |b, A=0)||p(Y |b)) + Eb∼p0

H [Y |b, A=0] (38)
⇐⇒ Eb∼p0CE (p(Y |b, A=0)||pg(Y |b)) ≥ Eb∼p0CE (p(Y |b, A=0)||p(Y |b)) (39)

⇐⇒ Eb∼p0
EY∼p(Y |b,A=0) [− logpg(Y |b)] ≥ Eb∼p0

EY∼p(Y |b,A=0) [− logp(Y |b)] (40)
The inner expectation is equivalent to the BCE loss for a specific b. Averaged over all b ∼ p0 we obtain.

⇒ Ep [BCE (g(B), Y )|A = 0] ≥ Ep [BCE (f∗
BCE(B), Y )|A = 0] . (41)

This notion allows for generalization by replacing BCE with some general loss function L. Doing so results in
Ep [L (g(B), Y )|A = 0] ≥ Ep [L (f∗

L(B), Y )|A = 0] , (42)
the version of the desideratum of Availability Inference Restriction mentioned in the main paper. □

D.5 PUC under strategic withholding of data
To prove Theorem 2, we first note that the decision maker can only realize improvements over the base model in the setup of
strategic interactions for individuals by offering them a lower premium than the prediction of the base model. Otherwise, they
would strategically not provide their data.

It is only beneficial for the decision maker to do so if there exists an y′ ≤ ybase := FL[Y |b] with a lower expected loss, i.e.,
EY [L(y′, Y )|B = b, Z = z] ≤ EY [L(ybase, Y )|B = b, Z = z] (43)

Due to the convexity of the loss L, this expected value will as well be convex in the prediction y′ and we will also have
FL[Y |b, z] ≤ FL[Y |b]. The loss-minimal prediction would be f(b, a = 1, z) = FL[Y |b, z], which will not be hindered
through strategic actions. This however results in a PUC-model again, as FL[Y |b, z] = FL[Y |b, A = 1, z], because the sharing
decision does not influence the label given B, Z. □

PUC with monotonicity constraints. A similar argument can be made when monotonicity constraints need to be enforced,
i.e., the outcome can only decrease over the base model with more information provided. We can consider each optional feature
value z separately for sharers. If the sample comes with a better average FL[Y |b, z] ≤ FL[Y |b] than the base prediction, we can
confidently return this full-feature optimal prediction. In the contrary case, where FL[Y |b, z] > FL[Y |b], the best prediction
that the decision maker is allowed to make is the base feature models prediction (due to the convexity of the loss function). This
is equivalent to dropping the optional feature in this case and using the corresponding PUC model.



D.6 Equivalence of Expectations for the Resampling model
In this section, we show that the resampling technique proposed in this work converges to the desired outcome. Therefore, we
show that in the infinite sample-limit, the optimum reached when optimizing the loss over the modified distribution corresponds
to the desired PUC model.

We introduce the usual mapping I(a) := {i | ai = 1, i = 1, . . . , r} to denote the set of all indices that are 1 in the vector a
but also use IS to denote the binary indicator vector where all components corresponding to indices in S are set to 1 and to zero
otherwise, i.e., (IS)i = {1 if i ∈ S, else 0}. Note that these operations invert each other such that II(a) = a. We can show that
the optimal prediction ŷ = ŷ(b,a, z∗) is given by:

ŷ =FL
((b,a,z∗),y)∼p [Y |b,A = a,Z∗ = z∗] = argmin

ŷ
E((b,a,z∗),y)∼p [L(ŷ, y)|b,A = a,Z∗ = z∗] (44)

= argmin
ŷ

∑
I(a)⊆S

p(A=IS |B=b,ZI(a)=zI(a))Ep

[
L(ŷ, y)

∣∣A = IS ,B = b,ZI(a) = zI(a)
]

(45)

= argmin
ŷ

Ep

[
L(ŷ, y)

∣∣I(a) ⊆ I(A),B = b,ZI(a) = zI(a)
]

(46)

= argmin
ŷ

Ep

[
L(ŷ, y)

∣∣AI(a) = 1,B = b,ZI(a) = zI(a)
]

(47)

= FL
p

[
Y |B = b,AI(a) = 1,ZI(a) = zI(a)

]
. (48)

In Equation (45), we use the fact that we can express the distribution p for a subset of inputs with A = a as a mixture of p,
averaged over all subsets of inputs S with more optional features than a, weighted equally but with the optional information
erased. This is a result of the data augmentation procedures that defines p. The total weight is just a factor and does not play a
role in the argmin operation. The following steps are just reformulations of the expression. □

D.7 Proof: Convergence of the sample approximation for a finite feature space
In this section we provide a general estimation of the error of a non-parametric regressor from a finite number of samples on
a finite feature space X (e.g., finite, discrete features) and a label space Y that can be either continuous or discrete. Before we
can prove the main result, we establish the following lemma.
Lemma 2. The density p that is obtained from p by applying the augmentation strategy described in the paper (PUCIDA) is
related to the original density through the following relation:

∀x ∈ X : p(x) ≥ 1

2r
p(x).

In particular, this implies that the support of p is at least as big as the support of p.
Proof. The resampling procedure consists of two steps. First, a reweighting is done. As we state in the main text, this

reweighting from p can be implemented through rejection sampling with samples from x = (b,a, z∗) ∼ p. Samples are
passed on the the next stage with a probability of 2|I(a)|

2r . Using this scheme, we know that for a certain x = (b,a, z∗), the

probability of the sample to be observed after applying only the reweighting step is bounded by 2|I(a)|

2r p(x). To see this, we
can consider the worst case, where all other samples are passed on with probability 1 and only the considered vector x is
downweighted by a factor of 2|I(a)|

2r . If the other samples are also downweighted, this is a strict lower bound. In the second step,
some optional features are dropped at random with a probability of 1

2 . We are interested in p(x), the probability of obtaining
the exact original sample with all its optional features still present. The probability that all optional features remain present with
the Bernoulli distribution used, is given by 1

2|I(a)| . Bringing it all together we obtain:

∀x ∈ X : p(x) ≥ 2|I(a)|

2r
1

2|I(a)|
p(x) =

1

2r
p(x). (49)

Theorem 5 (Convergence of Finite Sample Approximation). Suppose a finite feature space X and a numerical label space
Y ⊆ R. Suppose all conditional expectations µp(x) := Ep [y|x] and the conditional variances σ2

p(x) := Varp [y|x] exist (and
thus are finite). We can estimate a (discrete) non-parametric regressor µ̂D : X 7→ R from a finite number N of independent,
identically distributed observations D = (xi, yi)i=1...N from p which satisfies:

Ex∼p,D∼p

[(
µ̂D(x)− µp(x)

)2] ≤ 2r|X |2(σ2
max + µ2

max)

N
+O

(
1

N2

)
, (50)

where σ2
max := maxx∈X σ2

p, (x) and µ2
max := maxx∈X µ2

p(x). The expected squared deviation to the optimal estimator
converges at an order of O

(
1
N

)
.



Proof. Before we proof the rate of convergence, we first define the estimator for which we establish this bound. We can draw
N samples D ∼ (xi, yi) ∼ p. Then, we split these into |X | equal batches of size M =

⌊
N
|X |

⌋
samples. We can thus assign

each possible feature value x ∈ X a batch Batch(x) ⊂ [N ], of samples, although the value the features xi for i in the batch
corresponding to x are still randomly distributed according to p. We only use M different samples to estimate each conditional
mean. Denoting the true conditional mean by µx := µp(x) and its estimate by µ̂D

x := µ̂D(x) for the feature x ∈ X , we
estimate:

µ̂D
x =

∑
(xi,yi)∈Batch(x) yiδxi=x

1 +
∑

(xi,yi)∈Batch(x) δxi=x
, (51)

where δxi=x = {1 if xi = x, else 0} denotes the indicator function. Depending on the number bx =
∑

(xi,yi)∈Batch(x) δxi=x of
samples with matching feature values that are used in the estimation of µ̂x, the estimator is slightly biased as E

[
µ̂D
x

∣∣bx = q
]
=

qµx

q+1 but the bias will vanish as bx → ∞. Note that bx is a random variable. The variance of the estimator on iid samples

is Varp
[
µ̂D
x

∣∣bx = q
]
=

qσ2
x

(q+1)2 . Without loss of generality, we will suppose px := p(x) > 0: By Lemma 2, we obtain
p(x) ≥ 1

2rp(x). Thus, p(x) = 0 implies p(x) = 0 and the error of the estimator will not play a role in expected squared error
we are interested in obtaining. By the well-known Bias-Variance decomposition, the square error of the single estimator µx for
a given bx = q can be written as:

ED∼p

[(
µ̂D
x − µx

)2∣∣∣bx = q
]
=
(
Ep

[
µ̂D
x

∣∣bx = q
]
− µx

)2
+ Varp

[
µ̂D
x

∣∣bx = q
]

(52)

=

(
qµx

q + 1
− µx

)2

+
qσ2

x

(q + 1)2
=

(
1

q + 1

)2

µ2
x +

qσ2
x

(q + 1)2
(53)

≤ 1

q + 1
µ2
x +

(q + 1)σ2
x

(q + 1)2
=

1

q + 1

(
µ2
x + σ2

x

)
. (54)

Due to the sampling procedure, the bx are independently binomially distributed with bx ∼ Bin (M,px). Therefore, we can first
aggregate the results for a single x and then average over the entire distribution over X . We obtain:

ED∼p

[(
µ̂D
x − µx

)2]
=

M∑
q=0

p(bx = q)ED∼p

[(
µ̂D
x − µx

)2∣∣∣bx = q
]

(55)

≤
M∑
q=0

Bin(q;M,px)
1

q + 1

(
µ2
x + σ2

x

)
=
(
µ2
x + σ2

x

)
Ebx∼Bin(M,px)

[
1

q + 1

]
(56)

=
(
µ2
x + σ2

x

)( 1

px(M + 1)

)(
1− (1− px)

M+1
)

(57)

≤
(
µ2
x + σ2

x

)( 1

px(M + 1)

)
<
(
µ2
x + σ2

x

)( 1

pxM

)
, (58)

where Bin(q;M,px) =
(
M
q

)
(px)

q(1−px)
M−q is the probability given by the binomial law and the equality in Equation (57) is

provided in (Cribari-Neto, Garcia, and Vasconcellos 2000, p.271). We aggregate this result to an expected value over samples
from the original distribution p. The sample x ∼ p that the estimator is evaluated on and the data set D ∼ p are independent,
and we can derive an expected error for the distribution p over all features x, as:

Ex∼p,D∼p

[
(µ̂(x)− µ(x))

2
]
=
∑
x∈X

pxED∼p

[(
µ̂D
x − µx

)2]
(59)

<
∑
x∈X

px
(
µ2
x + σ2

x

)( 1

pxM

)
≤
∑
x∈X

2r px
(
µ2
x + σ2

x

)( 1

pxM

)
(60)

≤
∑
x∈X

2r(µ2
max + σ2

max)

M
(61)

= |X |2
r(µ2

max + σ2
max)

M
=
|X |2(2r(µ2

max + σ2
max))

M |X | ≤ 2r|X |2(µ2
max + σ2

max)

N − |X |+ 1
(62)

=
2r|X |2(σ2

max + µ2
max)

N
+O

(
1

N2

)
, (63)

where we use the fact that 2r px ≥ px and the definitions of µ2
max, σ

2
max as specified in the theorem.

□



Algorithm 1: PUC-SGD: SGD with Protected User Consent

Require: Data set D, Loss function L, predictor fθ with parameters θ
w← {Distribution over D with w(x) ∝ w(x)}
while r ̸= 0 do

Sample batch (x(1), y(1)), . . . , (x(k), y(k)) ∼ w
for j = 1, . . . , k do ▷ x(j)=(b(j),a(j), z∗(j))

q← Bernoulli(0.5) ▷ iid. Bernoulli vector
a(j) = q⊙ a(j)

z
∗(j)
i =

{
z
∗(j)
i if a(j)

i =1, else N/A
}
, i ∈ [r]

x(j) ← (b(j),a(j), z∗(j))
end for
dθ ← ∇θ

(
1
k

∑k
j=1 L

(
fθ(x

(j)), y(j)
))

θ ← θ − γdθ
end while
return θ

D.8 Algorithms
An example of how Protected User Consent through data augmentation can be incorporated in an SGD-type algorithm is
provided in Algorithm 1.

E Protected User Consent on Simulated Distributions
In this section we introduce two types of parametric data distributions with optional information that we use in our experiments
with simulated data. They allow to independently control the complexity and to obtain as many samples as needed to study
the convergence behavior. The first family is based on a Naive Bayes model (Appendix E.1) with binary features, whereas the
second one introduced in Appendix E.2 allows for continuous features with logistic distributions.

E.1 Naı̈ve Bayes models revisited
We can also consider a Naı̈ve Bayes models with binary features which can possibly be unavailable as in Poole et al. (Poole,
Mehr, and Wang 2020). Suppose that we have a Naive Bayes model with independent availability mechanisms, i.e., the
availability of feature i is only dependent on the label y and the corresponding feature value zi and thus p(b,a, z, y) =
(
∏n

i=1 p(bi|y)) (
∏r

i=1 p(zi|y)p(ai|zi, y))p(y). A graphical representation of this model can be found in Figure 7. In this case,
we can express the odds ratio as:

odds(Y = 1|b, z∗
I ,AI = 1) =

p(Y = 1,b, zI ,AI = 1)

p(Y = 0,b, zI ,AI = 1)
= (64)(

n∏
i=1

p(bi|Y = 1)

p(bi|Y = 0)

)(∏
i∈I

p(zi|Y=1)p(Ai=1|zi, Y=1)

p(zi|Y=0)p(Ai=1|zi, Y=0)

)
p(Y = 1)

p(Y = 0)
. (65)

As we furthermore suppose the features are binary, the odds are specified through the ratios p(bi|Y=1)
p(bi|Y=0) for bi ∈ {0, 1} and

p(zi|Y=1)
p(zi|Y=0)

p(Ai=1|zi,Y=1)
p(Ai=1|zi,Y=0) for zi ∈ {0, 1}. This requires only 2r + 2n parameters to be specified in total.

E.2 A parametric familiy of distributions with logistic subset models
In this section, we describe a set of conditions that can be used to construct a family of densities that will have a logistic form
when applying PUC. Formally, this means that for each I ⊆ [r] of optional features being present, there exists a w ∈ Rn,
β ∈ R|I|, and s ∈ R that allow to represent the odds(Y = 1|b, z∗

I ,AI = 1) in the form:

p (Y = 1|B = b,Z∗
I = z∗

I ,AI = 1)

p (Y = 0|B = b,Z∗
I = z∗

I ,AI = 1)
= exp

[
w(I)⊤b+ β(I)⊤z∗

I + s(I)
]
.

This allows for complex dependencies (e.g., the base feature can influence availability and value of the optional features), while
also allowing to compute the ground truth PUC model relatively easy. Formally, we suggest the following assertions and show
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Figure 7: The Naive Bayes model with independent availability mechanisms. We observe the Label Y , the base features B1 to
Bn and the possibly unavailable features Z∗

i = Ai · Zi

· · ·

Y {Bi}
i=1...n

Z1 ZrA1 Ar

Z∗
1 Z∗

r

Figure 8: The relaxed graphical model with independent missingness mechanisms given the the Label Y and the base features
B1 to Bn. The observed, possibly missing features are Z∗

i = Mi · Zi.

that they will result in logistic models for each set of features present:

C1: Base model is logistic: p(Y = 1|b) = σ(w⊤b+ t)

C2: Availability is cond. independent ∀I ⊆ [r] : p(AI = 1|b, y) =
∏
i∈I

p(Ai = 1|b, y)

C3: Mut. independence when present: ∀I ⊆ [r] : p(zI |b, y,AI = 1) =
∏
i∈I

p(zi|b, y, Ai=1)

C4: Availability is sigmoidal: p(Ai = 1|b, Y = 1) = N(b)σ
(
u⊤
i b+ λi

)
p(Ai = 1|b, Y = 0) = N(b)− p(Ai = 1|b, Y = 1)

C5: Base-dependent Normal distributions: p(zi|b, y, Ai = 1) ∼ N
(
v⊤
i b+ τi(y), η

2
)
.

Intuitively, after ensuring that the base feature model has a logistic form (C1), the next two assumptions follow directly from
the graphical dependency model (C2, C3), see Figure 8. C4 suggests the availability should sigmoidally depend on the base
features with a different offset for each class. The last condition (C5) allows the zi to depend on the base features b with the
same vi for both classes y. However, a different offset by the coefficient τi can be added for each class. The entire distribution
can be specified through the parameters w, t, and ui, vi, λi, τi(0), τi(1) and si for each missing feature in i = 1 . . . r.

In this special case, we can show that each of the models required will have the form of logistic regression again. We start by
determining some density ratios that will arise later:

p(Ai = 1|b, Y=1)

p(Ai = 1|b, Y=0)
=

N(b)σ
(
u⊤
i b+ λi

)
N(b)

(
1− σ

(
u⊤
i b+ λi

)) = exp
(
u⊤
i b+ λi

)
, (66)



where the identity σ(x)
1−σ(x) = exp(x) was used. Furthermore,

p(zi|b, Y = 1, Ai = 1)

p(zi|b, Y = 0, Ai = 1)
=

exp

(
− (zi−v⊤

i b−τi1)
2

2η2

)
exp

(
− (zi−v⊤

i b−τi0)
2

2η2

) (67)

= exp

[
−
(
zi − v⊤

i b− τi1
)2 − (zi − v⊤

i b− τi0
)2

2η2

]
(68)

= exp

[(
zi − v⊤

i b
)2 − 2

(
zi − v⊤

i b
)
τi1 + τ2i1 −

(
zi − v⊤

i b
)2

+ 2
(
zi − v⊤

i b
)
τi0 − τ2i0

−2η2

]
(69)

= exp

[
2 (τi1 − τi0)

(
zi − v⊤

i b
)
+ τ2i0 − τ2i1

2η2

]
(70)

= exp

η−2 (τi1 − τi0)︸ ︷︷ ︸
βi

zi − η−2 (τi1 − τi0)v
⊤
i︸ ︷︷ ︸

γ⊤
i

b+
1

2
η−2

(
τ2i0 − τ2i1

)
︸ ︷︷ ︸

θi

 . (71)

Let I ⊆ [r] be the set index set of of present features once again. We can insert the previous results and obtain:

odds(Y = 1|b,ZI ,AI=1) =
p(Y = 1,b,ZI ,AI=1)

p(Y = 0,b,ZI ,AI=1)
(72)

=
p(Y = 1|b)
p(Y = 0|b)

p(AI = 1|b, Y=1)

p(AI = 1|b, Y=0)

p(ZI |b, Y=1,AI=1)

p(ZI |b, Y=0,AI=1)
(73)

=
p(Y = 1|b)
p(Y = 0|b)

(∏
i∈I

p(zi|b, Y=1, Ai=1)p(Ai=1|b, Y=1)

p(zi|b, Y=0, Ai=1)p(Ai=1|b, Y=0)

)
(74)

= exp(w⊤b+ t+
∑
i∈I

(ui − γi)
⊤︸ ︷︷ ︸

ω⊤
i

b+ βizi + λi + θi︸ ︷︷ ︸
si

). (75)

As this derivation shows, each subset model will again be of the logistic form. On a sidenote, the probability of a true model
with no fairness constraints can be estimated as:

odds(Y = 1|b,Z,A) =
p(Y = 1,b,ZI ,AI=1),AI=0)

p(Y = 0,b,ZI ,AI=1,AI=0)
(76)

=
p(Y = 1|b)
p(Y = 0|b)

p(AI = 1|b, Y=1)

p(AI = 1|b, Y=0)

p(ZI |b, Y=1,AI=1)

p(ZI |b, Y=0,AI=1)

p(AI=0|b, Y=1)

p(AI=0|b, Y=0)
. (77)

F Additional Experimental Results and Details
F.1 Comparing PUC to existing fairness notions
In this section, we visually show the effect of not compensating for information contained in the decision to share data. We
refer Figure 9, were we compute probabilities for positive outcomes for a standard model (”fairness through unawareness”)
and other fairness-constrained models. The figure shows that all models apart from PUC, are not calibrated with respect to
the data explicitly provided. The data set used to create the Figure was sampled according to the logistic family described in
Appendix E.2. The feature value distributions follow a logistic form. There were two base features and one optional feature.
The availability and the values of this feature was dependent on the label and the value of the base features as described in the
mentioned section. Specifically, the following parameters were used to instantiate the logistic family described in Appendix E.2:

base features n=2, b ∼ N (0, 5I), w=(−1.5, 1.0)⊤, t=0
opt. feature 1 u1 = (0.8, 0.4)⊤, v1 = (0, 1)⊤, λ1=0.7, τ1(0)=− 0.25, τ1(1)=0.25

The models used in these experiments were sklearn RandomForests with default parameters. To incorporate the Fairness
constraints of Statistical Parity and Equalized Odds, we leverage the fairlearn4 library (Bird et al. 2020), which implements
the ExponentiatedGradient algorithm by Agarwal et al. (2018). Although this algorithms only returns an approximate solution,
we verified that the corresponding fairness gaps for Statistical Parity and Equalized Odds were substantially improved.

4https://fairlearn.org/

https://fairlearn.org/
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Figure 9: Standard models treat users who do not share optional information not according to the data they provided. In
this work, users can provide information on optional features and only the provided information should be used in the decision
making. We show calibration curves for a model without fairness considerations (a) and with common fairness constraints
enforcing statistical parity (b) and equalized odds (c) with respect to a model that uses only the explicity provided information
(base feature model in case of no optional information, full feature model in case of optional information). The first three models
can penalize users not sharing the optional information (fairness gap in left panel), whereas a model trained with Protected User
Consent through PUCIDA (d) exhibits no systematic bias. Models are probabilistic Random Forests trained on a synthetic data
set (see Appendix F.1).

F.2 Data Sets and Preprocessing
The diabetes data set5 was collected by the National Institute of Diabetes and Digestive and Kidney Diseases. It contains
diagnostic measurements of female patients that are at least 21 years old. The target variable ”Outcome” describes whether or
not a person has diabetes.

The COMPAS data set6 was originally collected by ProPublica and contains features describing criminal defendants in
Broward County, Florida. It also contains their respective recividism score provided by the COMPAS algorithm and whether
or not they reoffended within the following two years. For our analysis, we only kept features relevant for the prediction
of recividism within the next two years and dropped irrelevant features such as name or date. Furthermore, we turned the
categorical features race, sex and charge degree into numerical features by encoding the categories with integers.

The UCI adult data set7 is one of the most poplar tabular data sets and has appeared in over 300 publications (Ding et al.
2021). The goal is to predict whether an individuals yearly income is above 50k$ (worth of 1994).

The California Housing data set8 contains infomration and average prices of properties in certain areas in the state of Cali-
fornia, USA. The regression target is to predict the value of a property. Because the income values range over several values of
magnitudes, we apply log normalization to the label.

The ACSIncome data set (“income”) is derived from US census data in the work of Ding et al. (2021). Code to download it
is available online9. As for Adult, the goal is to predict an inviduals yearly income. It features are similar from the one used in
the Adult data set, however the exact incomes of each person are reported, and the data set can therefore be used in a regression
setting. Because the income values range over several values of magnitudes, we apply log normalization to the labels.

The Health Insurance (“insurance”) dataset10 contains insurance data from individuals. It is a regression dataset, where
inferences about the number of hours worked are to be made (whrswk, hours worked per week). We use the experience (years
of potential work experience) as optional feature in the task.

We furthermore use two datasets with natural missing features. The UCI horse colic dataset11 (“colic”) is a database of
leasion surgeries on horses and contains a number of health attributes such as temperatures, pulse, respiratory rate and others.
The target feature describes the outcome of the pathology. We use the feature abdominocentesis appearance as optional feature,
which describes the appearance of fluid that is obtained from the abdominal cavity. This information is not available for each
horse in the database and thus comes with natural missingness.

5https://www.kaggle.com/s/mathchi/diabetes-data-set
6https://www.kaggle.com/s/danofer/compass
7https://archive.ics.uci.edu/ml/datasets/Adult/
8https://www.kaggle.com/datasets/camnugent/california-housing-prices
9https://github.com/zykls/folktables/tree/main/folktables

10https://api.openml.org/d/44993
11https://archive.ics.uci.edu/ml/datasets/Horse+Colic

https://www.kaggle.com/s/mathchi/diabetes-data-set
https://www.kaggle.com/s/danofer/compass
https://archive.ics.uci.edu/ml/datasets/Adult/
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://github.com/zykls/folktables/tree/main/folktables
https://api.openml.org/d/44993
https://archive.ics.uci.edu/ml/datasets/Horse+Colic


The water treatment dataset12 contains features describing the operational state of a water treatment plant, which is to be
classified as either postive or negative. We use the feature RD-DBO-P (“oxygen demand”) as optional feature, which describes
the Biological demand of oxygen in primary settler and comes with missing values.

Across all data sets, multi-value categorical features were one-hot encoded. We provide an overview of the characteristics of
the different data sets in Table 4.

Data Sets Label Num. features Num. samples (N )

diabetes Outcome 8 768
compas two year recid 9 7192

adult ZFYA 5 21791
california housing med house val 9 20640

income income 10 19567
insurance whrswk 11 22272

water binaryClass 36 527
colic pathology cp data 26 368

Table 4: Characteristics of the data sets studied in this work.

Stochastic Availability: We make values available by the following scheme over continuous features zi ∈ X z:

p(Ai = 0|zi) = sigmoid (λi(zi − z̄i)) =
1

1 + exp(−λi(zi − z̄i))
, (78)

where we denote the empirical feature mean by z̄i and λi ∈ R denotes a parameter that specifies how quickly the probability
of unavailability (A1 = 0) increases with higher feature values (for positive values of λi). For negative values of λi, values of
the feature that are lower than the mean are more likely to be unavailable. We chose λi such that values which were negatively
influcing the prediction were more likely to be missing. We show the probabilities curves used of the feature distribution with
the corresponding values of λi in Figure 10.

Adversarial Availability: We also experiment with adversarial sharing decision as discussed in the paper. To this end, we
first train a full feature model (with no missing data) and a base feature model. We then modify the dataset and drop all optional
feature values where the full feature model would lead to a lower regression score or chance of the positive outcome and retrain
the corresponding classifiers on this dataset. As a final check, we replace all PUCIDA prediction that are higher than the base
model’s predictions by the base model’s prediction to arrive at the aformentioned bonus system.

Models. We use standard models from the sklearn library (Pedregosa et al. 2011). Across all experiments, we used these
models with the following parameters:

model parameters

RandomForestClassifier / RandomForestRegressor default parameters
ExtraTreesClassifier / ExtraTressRegressor min samples split=10

GradientBoostingClassifier / GradientBoostingRegressor min samples split=10
DecisionTreeClassifier / DecisionTreeRegressor min samples split=10

MLPClassifier / MLPRegressor hidden layer sizes= [30,40], max iter=500

If not stated otherwise, we report averages over 5 runs with a random 80/20 test split. Code to reproduce experiments is
provided in the supplementary material and will be publicly released in case of acceptance.

F.3 Experiment 1: Protecting User consent on real-world data sets
This section provides additional results for Experiment 1 (Table 2) showing that Availability Inference Restriction is violated.

Ablation studies To test the robustness of the results shown in Table 2, we performed three ablation studies. For all alternative
parameters tested, the results are not qualitatively different from the original ones.

Imputation Values. In Table 2, imputed data points are replaced by zeros. Alternatively, one could also use the mean or the
median of the voluntary feature as imputation values, which does not lead to substantial changes as expemplarily shown for
classification datasets in Table 8. We conclude that it is hard to stop Penalization through simple imputation. Note: Our current
implementation of the data augmentation strategy is implicitly converts missing values to zero for all missing values, so the
results are the same as in the main paper for PUCIDA.

Random forest hyperparameters. In Table 2, the default parameters of random forest are used (min samples split=2,
n estimators=100, max depth=None). The ablation studies with different hyperparameters are shown in Tables 9 –11.

12https://api.openml.org/d/940

https://api.openml.org/d/940


Different models. As an alternative to random forest, we test gradient boosting models (see Table 12) and ExtRaTrees by
Geurts, Ernst, and Wehenkel (2006) (see Table 13). While the extent of change differs to some extent, for every model and
hyperparameter configuration, the full feature model uses the information in the sharing decision and the individuals that do
not have feature values are rated worse. Occasionally, PUC models can be non-significantly better than base models, but this is
due to statistical errors (as indicated through the standard deviations).

task data opt. feature Base feature model PUC Full feature model

C diab. Glucose 24.75% ±1.78 20.22% ±2.01 19.90% ±2.35
C compas #priors 42.02% ±0.20 36.89% ±0.42 36.81% ±0.51
C adult edu-num 18.75% ±0.08 17.95% ±0.07 17.85% ±0.12

R income WKHP 63.56 ±1.08 54.66 ±0.83 56.22 ±1.13
R calif. m income 12.76 ±0.11 8.51 ±0.16 8.60 ±0.17
R insurance experience 245.00 ±0.47 223.53 ±0.45 230.95 ±0.34

Table 5: Performance for sharers is maintained with PUCIDA. For the setup corresponding to Table 2, we montior perfor-
mance measures for the subgroup of sharers. We report missclassification rate (1-Acc) for classification task and MSE (×100)
for regression tasks. We show that the performance in this group is close to the unconstrained model, an indication that their
optional information is used.

task data opt. feature base model imputed PUCIDA

C diab. Glucose 29.30% ±0.62 25.83% ±0.41 26.95% ±0.82
C compas #priors 42.89% ±0.10 38.51% ±0.59 39.55% ±0.37
C adult edu-num 16.05% ±0.03 15.38% ±0.11 15.62% ±0.09

R income WKHP 85.09 ±0.12 79.76 ±0.47 81.52 ±0.28
R calif. m income 13.98 ±0.06 11.90 ±0.15 12.55 ±0.05
R insurance experience 262.43 ±0.21 249.31 ±0.27 254.84 ±0.13

Table 6: Costs for PUC with non-adversarial sharing decisions. Otherwise the setup is equivalent to Table 4a.

task data opt. feature base model imputed PUCIDA

Non-Adversarial Sharing

C diab. Glucose 23.96 ±0.11 20.35 ±0.43 21.85 ±0.69
C compas #priors 40.85 ±0.06 34.88 ±0.54 36.85 ±0.21
C adult edu-num 11.90 ±0.03 11.18 ±0.07 11.10 ±0.05
C water oxygen. dem. 3.97 ±0.42 3.47 ±0.25 3.19 ±0.25
C colic abdom. app. 12.07 ±0.31 9.08 ±0.30 9.13 ±0.28

Adversarial Sharing

C diab. Glucose 23.96 ±0.11 18.25 ±0.85 19.91 ±0.46
C compas #priors 40.85 ±0.06 32.03 ±0.35 34.86 ±0.26
C adult edu-num 11.90 ±0.03 10.26 ±0.05 10.57 ±0.03

Table 7: Costs for PUC when using 100×(1-ROCScores) as cost functions for the classification models instead of accuray.
Setup as in Table 4a.

F.4 Experiment 2: Validating Non-Degradation and costs of fairness with respect to optional information
This section contains additional details on the experiments leading up to Table 3.

Single optional feature. We first investigate the performance of the models in the setup corresponding to Table 2, i.e., with
only a single optional feature. In Table 6 we show the cost setup when non-stategic sharing decisions are taking, which leads to
qualitatively equivalent results as in the main paper. Table 7 shows the results for the classification models when using the area
under the 1-ROC-curve as a cost function.



C: (1-Acc)×100, R: MSE×100
task data opt. feature base model Full feature model PUCIDA

C diab. Glucose 35.00% ±1.57 32.24% ±1.67 34.67% ±1.07
C compas #priors 44.55% ±0.45 41.84% ±0.96 44.56% ±0.51
C adult edu-num 13.40% ±0.13 13.02% ±0.27 13.37% ±0.20

R income WKHP 109.09 ±1.05 107.80 ±1.09 110.12 ±1.27
R calif. m income 17.83 ±0.25 16.41 ±0.34 19.04 ±0.18
R insurance experience 282.99 ±0.78 278.27 ±0.46 284.88 ±0.93

(a) Corresponding to Table 1, costs, mean imputation.

Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 64.17% 51.17% -13.00% ±3.51 63.12% -1.05% ±2.92
C compas #priors 51.39% 33.77% -17.63% ±0.84 51.18% -0.21% ±0.14
C adult edu-num 13.77% 11.35% -2.42% ±0.16 13.77% 0.01% ±0.03

R income WKHP 100.0% 81.5% -18.5% ±0.48 101.4% 1.4% ±0.18
R insurance experience 100.0% 94.9% -5.1% ±0.10 100.1% 0.1% ±0.05
R calif. m income 100.0% 95.3% -4.7% ±0.28 104.2% 4.2% ±0.42

(b) Corresponding to Table 2, absolute predictions, mean imputation.
C: (1-Acc)×100, R: MSE×100

task data opt. feature base model Full feature model PUCIDA

C diab. Glucose 35.00% ±1.57 32.22% ±1.18 34.67% ±1.07
C compas #priors 44.55% ±0.45 41.70% ±0.97 44.56% ±0.51
C adult edu-num 13.40% ±0.13 12.99% ±0.22 13.37% ±0.20

R income WKHP 109.09 ±1.05 107.70 ±1.18 110.12 ±1.27
R calif. m income 17.83 ±0.25 16.28 ±0.31 19.04 ±0.18
R insurance experience 282.99 ±0.78 278.29 ±0.64 284.88 ±0.93

(c) Corresponding to Table 1, costs, median imputation.

Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 64.17% 50.83% -13.34% ±4.10 63.12% -1.05% ±2.92
C compas #priors 51.39% 33.53% -17.86% ±0.92 51.18% -0.21% ±0.14
C adult edu-num 13.77% 11.29% -2.48% ±0.17 13.77% 0.01% ±0.03

R income WKHP 100.0% 81.9% -18.1% ±0.60 101.4% 1.4% ±0.18
R insurance experience 100.0% 94.9% -5.1% ±0.09 100.1% 0.1% ±0.05
R calif. m income 100.0% 94.9% -5.1% ±0.52 104.2% 4.2% ±0.42

(d) Corresponding to Table 2, absolute predictions, median imputation.

Table 8: Same setup as Table 2 using mean imputation (upper line) and median imputation (lower line). The differencees
between the two imputation techniques are minimal.

C: (1-Acc)×100, R: MSE×100
task data opt. feature base model Full feature model PUCIDA

C diab. Glucose 34.38% ±1.60 33.52% ±1.30 34.25% ±1.01
C compas #priors 42.53% ±0.40 39.21% ±0.60 42.92% ±0.43
C adult edu-num 12.04% ±0.11 11.75% ±0.19 11.99% ±0.19

R income WKHP 104.62 ±0.56 103.15 ±0.80 105.85 ±0.60
R calif. m income 17.84 ±0.23 16.15 ±0.50 19.11 ±0.46
R insurance experience 260.05 ±0.29 256.41 ±0.19 262.31 ±0.54

(a) Corresponding to Table 1 (costs).

Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 64.86% 52.13% -12.73% ±2.15 66.11% 1.25% ±1.89
C compas #priors 51.89% 29.92% -21.97% ±0.97 52.11% 0.22% ±0.57
C adult edu-num 12.08% 9.49% -2.59% ±0.06 12.18% 0.10% ±0.09

R income WKHP 100.0% 81.4% -18.6% ±0.36 101.3% 1.3% ±0.31
R insurance experience 100.0% 94.8% -5.2% ±0.06 100.2% 0.2% ±0.07
R calif. m income 100.0% 94.6% -5.4% ±1.00 104.1% 4.1% ±0.75

(b) Corresponding to Table 2 (absolute predictions).

Table 9: Availability Inference Restriction is violated by full feature models. Same setup as Table 2 using a Random Forest
model with min samples split = 10.

Having verified these results for a single feature, we now continue with the more challenging setup of multiple optionality.
Introducing multiple optionality. For the real data experiment, we apply the following preprocessing steps to induce

stochastic availability:

• We identify the most discriminative numerical features by dropping each feature from the data set and reporting the decline
in predictive performance of a model trained without the feature with respect to a model trained on all features. We rank the
features starting with the one resulting in the highest performance loss.

• We select the r most discriminative features, such that on average, each subset of missing pattern has at least 150 samples
out of the initial data set size of N to be fitted with, i.e.,

r = inf

{
r′ ∈ N :

N

2r
> 150

}
.

• We do not consider numerical features were the relation to the label is not clear (i.e., is there a positive or negative correla-
tion). The optional features are listed in Table 17.

• We independently induce stochastic availability into each feature using the sigmoidal strategy. We use a λi = ± 1√
Var [fi]

,

which is effectively equivalent to applying a sigmoid over normalized feature values. The signs are determined by the context
such that negative indicators are more likely to be not provided and are also reported in the Table 17.

We show the corresponding results of Table 3b using 1-ROC as cost function in Table 14. We provide ablations with the two
other models in Table 15 and Table 16

F.5 Experiment 3: Convergence to analytical PUC
In this section, we provide additional details regarding the experiment where we study the gaps to analytical Protected User
Consent on our simulated data sets.



C: (1-Acc)×100, R: MSE×100
task data opt. feature base model Full feature model PUCIDA

C diab. Glucose 36.49% ±0.45 34.27% ±0.99 37.87% ±0.95
C compas #priors 43.99% ±0.70 37.34% ±0.45 50.43% ±0.96
C adult edu-num 13.29% ±0.23 13.96% ±0.13 13.18% ±0.10

R income WKHP 117.24 ±0.73 115.76 ±0.79 123.08 ±1.01
R calif. m income 26.08 ±0.10 20.29 ±0.21 25.51 ±0.12
R insurance experience 251.99 ±0.13 251.21 ±0.12 258.73 ±0.16

(a) Corresponding to Table 1 (costs).

Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 73.66% 58.45% -15.22% ±4.23 79.07% 5.41% ±2.30
C compas #priors 65.82% 27.97% -37.85% ±4.26 79.98% 14.16% ±0.75
C adult edu-num 2.34% 1.54% -0.80% ±0.41 2.54% 0.20% ±0.27

R income WKHP 100.0% 75.5% -24.5% ±0.78 108.6% 8.6% ±0.38
R insurance experience 100.0% 94.6% -5.4% ±0.09 103.5% 3.5% ±0.04
R calif. m income 100.0% 83.9% -16.1% ±0.30 99.4% -0.6% ±0.21

(b) Corresponding to Table 2 (absolute predictions).

Table 10: Availability Inference Restriction is violated by full feature models. Same setup as Table 2 using a Random Forest
model with max depth = 4.

C: (1-Acc)×100, R: MSE×100
task data opt. feature base model Full feature model PUCIDA

C diab. Glucose 34.07% ±0.87 33.61% ±0.43 33.58% ±0.92
C compas #priors 44.64% ±0.20 41.40% ±0.61 44.78% ±0.42
C adult edu-num 13.31% ±0.06 12.83% ±0.14 13.31% ±0.05

R income WKHP 107.98 ±0.37 106.71 ±0.32 109.29 ±0.54
R calif. m income 17.70 ±0.10 16.11 ±0.31 18.93 ±0.20
R insurance experience 281.96 ±0.12 277.03 ±0.51 283.79 ±0.19

(a) Corresponding to Table 1 (costs).

Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 63.30% 51.63% -11.67% ±1.20 63.21% -0.09% ±1.14
C compas #priors 51.31% 32.62% -18.69% ±1.27 51.36% 0.05% ±0.43
C adult edu-num 13.93% 11.47% -2.46% ±0.24 13.91% -0.02% ±0.09

R income WKHP 100.0% 81.4% -18.6% ±0.46 101.3% 1.3% ±0.12
R insurance experience 100.0% 94.8% -5.2% ±0.08 100.1% 0.1% ±0.02
R calif. m income 100.0% 94.1% -5.9% ±0.86 103.8% 3.8% ±0.48

(b) Corresponding to Table 2 (absolute predictions).

Table 11: Availability Inference Restriction is violated by full feature models. Same setup as Table 2 using a Random Forest
model with n estimators = 500.

Synthetic data sets We initially conduct a synthetic data experiment to verify our theory.
First Synthetic Data Set. For the data set used in Figure 5 and Figure 4, we create binary features according to the Naive

Bayes scheme described in Appendix E.1. The probabilities of each feature pointing to the corresponding class were drawn
randomly, we made the three features with the highest discriminatory power optional. We then drew probabilities of the feature
values being missing also at random. FOr this example, the missingness did not depend on the feature value, but only on the
label. The resulting parameters are given in Table 18 for the sake of completeness.

Second Synthetic Data Set. We create a more complicated data set with continuous features as describeb by the familiy
in Appendix E.2. We create two normally distributed base features and three optional features to test interesting dependency
combinations by using the parameters in Table 19. This distribution includes cases where:
• the availability distribution depends on the base features (u ̸= 0, feature 1)
• the availability distribution depends on the class value (λ ̸= 0, feature 1, feature 2)
• the feature value depends on the base features and the class value (v ̸= 0, τ(0) ̸= τ(1), feature 1, feature 2, feature 3)

We draw increasing numbers of samples from the known distribution and fit the corresponding estimators. The test set on which
the PUC-Gap2 is estimated on 5000 independently drawn samples. For Figure 4, we use 50000 samples to train each model.

Additional Results We also conduct the approximation experiment on the more complicated continuous data set. The results
can be found in Figure 11. Note that on this continuous data sets the models will not perfectly converge. However, we show
that the PUC-Gap is in range of the irreducible, random estimation error, by computing the average squared estimation error
without PUC on the unfair data set and adding the ranges of this error to the plot.



C: (1-Acc)×100, R: MSE×100
task data opt. feature base model Full feature model PUCIDA

C diab. Glucose 34.07% ±0.87 33.61% ±0.43 33.58% ±0.92
C compas #priors 44.64% ±0.20 41.40% ±0.61 44.78% ±0.42
C adult edu-num 13.31% ±0.06 12.83% ±0.14 13.31% ±0.05

R income WKHP 107.98 ±0.37 106.71 ±0.32 109.29 ±0.54
R calif. m income 17.70 ±0.10 16.11 ±0.31 18.93 ±0.20
R insurance experience 281.96 ±0.12 277.03 ±0.51 283.79 ±0.19

(a) Corresponding to Table 1 (costs).

Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 62.80% 52.96% -9.84% ±2.46 63.75% 0.95% ±1.35
C compas #priors 62.82% 21.29% -41.54% ±1.69 64.14% 1.32% ±0.22
C adult edu-num 9.73% 5.98% -3.76% ±0.10 9.31% -0.43% ±0.07

R income WKHP 100.0% 79.6% -20.4% ±0.13 100.0% 0.0% ±0.09
R insurance experience 100.0% 94.4% -5.6% ±0.05 101.2% 1.2% ±0.02
R calif. m income 100.0% 91.1% -8.9% ±0.36 102.9% 2.9% ±0.75

(b) Corresponding to Table 2 (absolute predictions).

Table 12: Availability Inference Restriction is violated by full feature models. Same setup as Table 2 using a Gradient
Boosting model.

C: (1-Acc)×100, R: MSE×100
task data opt. feature base model Full feature model PUCIDA

C diab. Glucose 35.27% ±0.89 33.20% ±1.46 35.68% ±1.54
C compas #priors 42.22% ±0.41 36.69% ±0.29 42.66% ±0.56
C adult edu-num 11.25% ±0.09 11.37% ±0.07 11.27% ±0.12

R income WKHP 104.79 ±0.72 100.90 ±0.75 106.02 ±0.66
R calif. m income 16.99 ±0.10 15.50 ±0.22 17.74 ±0.34
R insurance experience 243.33 ±0.12 242.30 ±0.12 246.22 ±0.12

(a) Corresponding to Table 1 (costs).

Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 71.27% 48.73% -22.54% ±5.84 68.78% -2.49% ±1.27
C compas #priors 53.53% 29.53% -24.00% ±1.16 53.39% -0.14% ±0.18
C adult edu-num 12.27% 9.58% -2.69% ±0.27 12.33% 0.06% ±0.06

R income WKHP 100.0% 80.1% -19.9% ±0.60 101.0% 1.0% ±0.08
R insurance experience 100.0% 94.6% -5.4% ±0.07 100.1% 0.1% ±0.02
R calif. m income 100.0% 90.9% -9.1% ±0.55 104.0% 4.0% ±0.28

(b) Corresponding to Table 2 (absolute predictions).

Table 13: Availability Inference Restriction is violated by full feature models. Same setup as Table 2 using a Extra Trees
model

Fair models Full feature model

task data (# opt.) Base feature model PUCIDA (f) PUCIDA (e) (×) zero-imputed

C diab. (2) 73.14 ±2.59 77.13 ±3.67 77.22 ±3.92 2.3 78.42 ±2.61
C compas (5) 61.32 ±0.92 61.90 ±0.96 62.32 ±0.86 7.6 62.69 ±1.58
C adult (5) 84.90 ±0.46 90.39 ±0.35 89.68 ±0.33 7.4 90.57 ±0.21

Table 14: PUC-compliant models improve predictive performance. Same setup as in to Table 3b, but in this case we use
ROC-AUC as the performance metric. A higher ROC-AUC is preferable.

Fair models Full feature model

task data (# opt.) Base feature model PUCIDA (f) PUCIDA (e) (×) zero-imputed

C diab. (2) 29.87 ±2.25 28.70 ±2.37 28.18 ±2.74 2.3 27.14 ±2.67
C compas (5) 40.78 ±0.63 37.71 ±0.63 37.79 ±0.90 7.6 35.62 ±0.60
C adult (5) 17.84 ±0.41 13.43 ±0.49 13.43 ±0.48 7.4 13.31 ±0.45

R calif. (4) 11.01 ±1.89 9.45 ±0.19 9.32 ±0.34 5.1 9.04 ±0.17
R income (3) 46.31 ±2.02 45.00 ±2.42 44.28 ±1.86 3.4 41.89 ±1.52
R insurance (3) 230.00 ±0.72 212.30 ±1.73 211.27 ±2.13 3.2 210.72 ±1.55

Table 15: PUC-compliant models improve predictive performance. Same setup as in to Table 3b, but in this case we use
Gradient Boosted Decision Trees.
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Figure 10: Value distribution of the respective optional features per data set and corresponding function p(Ai = 0|zi) with
parameter λ used to introduce stochastic availability.



Fair models Full feature model

task data (# opt.) Base feature model PUCIDA (f) PUCIDA (e) (×) zero-imputed

C diab. (2) 27.79 ±4.22 28.18 ±2.48 27.92 ±2.63 2.3 26.88 ±3.50
C compas (5) 40.83 ±0.53 39.82 ±0.75 39.33 ±1.38 7.7 39.74 ±1.39
C adult (5) 18.00 ±0.37 15.21 ±0.52 15.31 ±0.51 7.4 15.15 ±0.37

R calif. (4) 5.83 ±0.27 9.21 ±0.64 7.86 ±0.27 5.0 7.01 ±0.23
R income (3) 48.99 ±1.60 47.32 ±1.87 46.98 ±1.85 3.4 43.78 ±1.83
R insurance (3) 251.47 ±2.57 238.28 ±1.18 249.41 ±2.21 3.2 226.85 ±1.75

Table 16: PUC-compliant models improve predictive performance. Same setup as in to Table 3b, but in this case we use
Extra Trees.
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Figure 11: PUCIDA converges independently of the ML model on the second simulated data set with optional features. The
fairness gaps are close to the irreducible model estimation error (due to imperfect models on this continuous data set) when
applying our technique across a variety of common models on the continuous simulated data set.

data set optional features

insurance experience (−), kidslt6 (−), kids618 (−)
adult age(−) , educational-num (−), hours-per-week (−), capital-gain (−), capital-loss (−)

compas priors count (+), age (−), c days from compas (−), c charge degree (+), juv misd count (+)
diabetes Glucose (+), age (+)

california housing housing median age (+), population (−), households (−), median income (−)
income AGEP (−), SCHL (−), WKHP (−)

Table 17: Features made optional in the experiment with multiple optional features. Direction: (+) means higher values more
likely to be unavailable, (−) indicates lower values to be more likely to be unavailable. The direction was chosen such that
feature values that lead to more negative outcomes tend to be undisclosed more frequently.

feature p(xi = 1|y = 0) p(xi = 1|y = 1) p(ai = 0|y = 0) p(ai = 0|y = 1)

1 0.090 0.141 – –
2 0.915 0.930 – –
3 0.225 0.020 – –
4 0.771 0.377 – –
5 0.202 0.347 – –
6 0.968 0.322 0.920 0.345
7 0.874 0.239 0.647 0.294
8 0.723 0.159 0.508 0.207

Table 18: Parametric distribution parameters used in the first synthetic data set. Features are all binary. Features 1–5 are base
feature which are always available. Features 6 –8 are unavailable with a certain probability given the class label.



base features n=2, b ∼ N (0, 5I), w=(−1.5, 1.0)⊤, t=0
opt. feature 1 u1 = (0.8, 0.4)⊤, v1 = (0, 1)⊤, λ1=0.7, τ1(0)=− 0.25, τ1(1)=0.25
opt. feature 2 u2 = 0, v2 = (0,−0.15)⊤, λ2=1.0, τ2(0)=0.4, τ2(1)=− 0.4
opt. feature 3 u3 = 0, v3 = (0.1, 0.2)⊤, λ3=0.0, τ3(0)=− 0.2, τ3(1)=0.2

Table 19: Parametric distribution parameters used in the synthetic data experiment. The used density covers all possible depen-
dencies between availability, feature values and the base features that are allowed by the graphical model.
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