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Abstract

The number of objects in a geocentric orbit is constantly increasing, and so is the number
of objects reentering. While tracking and collision avoidance are crucial in guaranteeing space
safety, another significant task is correctly predicting satellites’ reentries and overall decay to
anticipate potential impacts and intersections with spacecraft trajectories - this knowledge
about the state of the reentries strongly correlated with the state of the atmosphere. The
European Space Agency (ESA) developed the flight dynamics library godot to optimize
and propagate orbits. In this work, we redesign godot’s atmospheric core component
using state-of-the-art software engineering in modern C++ while interfacing a dynamic
plugin that provides the user with an array of new and legacy atmospheric models, such
as Jacchia-Bowman 2008 (JB2008), MSISv2, or DTM2020. In the second step, we build
upon godot by implementing an atmospheric optimization framework. The framework
includes an extensive toolchain for the purpose of atmosphere and reentry optimization
consolidating publicly available data sources like Space-Track, Discos, and the HASDM
(High Accuracy Satellite Drag Model) SET Database to perform fully automatic reentry
prediction for arbitrary satellites by optimizing their ballistic coefficient and the diurnal
density coefficients of JB2008. The optimization framework allows a high degree of freedom
in assembling and combining arbitrary optimization building blocks with one another. With
a modified version of Picone et al.’s TLE density derivation algorithm to optimize ballistic
coefficients, we can achieve median reentry prediction errors as low as ∼ 9% in 2019 for
25 satellites, comparable to the current state-of-the-art errors with only publicly available
resources and within runtimes of minutes by exploiting parallelization. The solution will be
utilized by the ESA’s Space Debris Office as a second toolchain for assessing reentries.
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Zusammenfassung

Die Zahl der Objekte in einer geozentrischen Umlaufbahn nimmt ständig zu, ebenso wie
die Zahl der Objekte, die wieder eintreten. Während Tracking und Kollisionsvermeidung für
die Gewährleistung der Sicherheit im Weltraum von entscheidender Bedeutung sind, besteht
eine weitere wichtige Aufgabe in der korrekten Vorhersage des Wiedereintritts von Satelliten
und des Bahnabfalls. Letzteres dient dazu um potenzielle Kollisionen und Überschneidungen
mit den Flugbahnen von Raumfahrzeugen zu antizipieren. Dieses Wissen korreliert stark
mit dem Zustand der Atmosphäre. Die Europäische Weltraumorganisation (ESA) hat die
Flugdynamik-Bibliothek godot entwickelt, um Trajektorien zu optimieren und zu propa-
gieren. In dieser Arbeit gestalten wir godot’s atmosphärische Kernkomponente von Grund
auf neu unter der Verwendung von State-of-the-Art Software-Engineering Best Practices
in C++. Das neu geschaffene Plugin stellt dem Benutzer eine Reihe von neuen und alten
atmosphärischen Modellen zur Verfügung, wie z.B. Jacchia-Bowman 2008 (JB2008), MSISv2
oder DTM2020. Im zweiten Schritt bauen wir auf godot auf, indem wir ein Framework
zur atmosphärischen Optimierung implementieren. Das Framework umfasst eine umfangrei-
che Toolchain für die Optimierung der Atmosphäre und des Wiedereintritts, die öffentlich
verfügbare Datenquellen wie Space-Track, Discos und die HASDM (High Accuracy Satellite
Drag Model) SET Datenbank zusammenführt, um eine vollautomatische Wiedereintritts-
vorhersage für beliebige Satelliten durch Optimierung ihres ballistischen Koeffizienten und
der täglichen Dichtekoeffizienten von JB2008 durchzuführen. Das Optimierungsframework
erlaubt einen hohen Freiheitsgrad an Konfigurierbarkeit durch die beliebige Kombination
von Optimierungsbausteinen untereinander. Mit einer modifizierten Version des TLE-Dichte-
Ableitungsalgorithmus von Picone et al. zur Optimierung der ballistischen Koeffizienten
können wir im Jahr 2019 für 25 Satelliten mediane Wiedereintrittsvorhersagefehler von nur
∼ 9% erreichen, welche vergleichbar sind mit aktuellen State-of-the-Art-Fehlern. Wir nutzen
dabei nur öffentlich verfügbare Ressourcen und erreichen die Ergebnisse innerhalb einer
Laufzeit von Minuten durch Ausnutzung von Parallelisierung. Die Lösung wird vom Space
Debris Office der ESA als zweite Toolchain für die Bewertung von Wiedereintritten genutzt
werden.
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1. Introduction

“And remember, we have nothing to fear, but the sky falling on our heads!” is a famous
quote from the books of Asterix and Obelix by Albert Uderzo & René Goscinny. The sky
usually does not fall to Earth’s ground. In contrast, satellites and debris in orbit around
Earth usually tend to come back at some point.

Figure 1.1.: Chart displaying the amount of objects per orbit type [1]

Figure 1.1 shows the number of objects around Earth per year and categorized by the
orbit. The amount of tracked objects has increased visibly exponentially with most objects
situated in Low Earth Orbit (LEO). Given Figure 1.1, it is not surprising that the amount
of reentries has also increased rapidly shown by Figure 1.2

Tracking the reentry data of these satellites is usually tightly coupled with overall orbital
lifetime assessment. Objects less massive than 500 kg usually need to be tracked on their
progressive way to reentry due to the potential catastrophic intersection potential with
satellites. Objects in larger size regimes are even more crucial to observe due to the potential
of surviving reentry in parts and impacting the ground - potentially harming infrastructure
or even humans. [2]

The main driver for reentry in the upper atmosphere, consisting of the Thermosphere
ranging from ∼ 120 km to ∼ 600 km1 and Exosphere, is the atmospheric drag. It slowly
decelerates the spacecraft, causing its orbit to decay while the spacecraft travel through
Thermosphere and lower Exosphere. Figure 1.1 shows that the majority of objects is in

1https://www.noaa.gov/jetstream/atmosphere/layers-of-atmosphere, last accessed: 11.02.2024
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Figure 1.2.: Chart displaying the amount of objects reentering per year and their respective
classification (P* = Payload Related, R* = Rocket Body Related, *F or *D =
debris) [1]

LEO. A spacecraft is in LEO if its altitude is ∈ [0; 2000] km [1]. Hence, most spacecraft
around Earth are affected by the decelerating force of atmospheric drag given Figure 1.1.
For active missions, this usually implies station-keeping measurements with their propulsive
systems. If the mission ends, the current policy is to deorbit within 25 years [1].

This work is not about the lifetime assessment in the range of years. It is about reentry
prediction when the reentry is foreseeable within months, with a significant focus on modeling
atmospheric drag. This work is divided into three parts. Part I explores the background of
atmospheric models and the art of reentry prediction. The main focus lies on semi-empirical
models capable of predicting the atmospheric density at a given position and time. We
investigate three prominent density model families: the DTM, Jacchia, and MSIS models.
Further, several approaches to optimize the density output are examined. Part II is about
the integration of twelve density models from these families and three atmospheric wind
models into the flight dynamics library of the European Space Agency (ESA): godot. All
of these models are interfaced into godot in C++17 with a uniform interface facilitating
the use and abstracting of tedious set-up processes like collecting and accumulating solar
and geomagnetic activity data. A comparison of all models compared to the High Accuracy
Satellite Drag Model (HASDM) density values is presented. HASDM is sometimes considered
the gold standard of atmospheric density, as its coefficients are updated on a daily basis.
The model’s details are unavailable to the scientific community due to its military roots, but
its density output has been released for the years 2000 - 2019 [3]. Part III will assemble the
previously implemented atmosphere models with a modern framework for reentry prediction
in Python. The framework can take an arbitrary amount of input satellites and automatically
consolidate publicly available data. We present three different approaches to optimize the
ballistic coefficient and the diurnal density coefficients of the Jacchia-Bowman 2008 (JB2008)

3



1. Introduction

density model. These approaches include the shooting method [4] and density derivation
from TLE data. Moreover, the quality of the implementation is the focus of this work and
not only an accessory. Hence, this work’s major contributions are the extension of ESA’s
flight dynamics library and a universal framework for atmospheric reentry optimization to
be used as a second reference of reentry predictions by ESA’s Space Debris Office.
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2. Theoretical Background

This chapter discusses the foundation of modeling and representing satellite reentries. It
starts by examining how one can model the atmosphere as a whole for the purpose of satellite
reentry and provides a detailed look at some exemplary models in this area in Section 2.1.
Next, the chapter takes in Section 2.2 a deeper look at how one can model the satellite itself
in orbit around a target body. Finally, Section 2.4 will assemble the theory and define how
a satellite reentry can be modeled using the previously gained insights.

2.1. Atmospheric Modeling

By approximation, the atmosphere of the Earth follows the ideal gas law, as given by
Equation 2.1 with pressure p, density ρ, temperature T , the universal gas constant R, and
M as the molecular weight of the gas:

p

ρ
=

R

M
T (2.1)

The atmosphere is an hydrostatic equilibrium. This phenomena can be described as a
balance between the pressure that pushes gas out into space and gravity that pulls it towards
the Earth’s surface. The underlying Equation 2.2 establishes a relationship between the
decrease in pressure p with height h, the density ρ, and the gravitational acceleration g.

dp

dz
= −ρ(z)g(h) (2.2)

Both Equations 2.1–2.2 in relation to each other yields the formulation given by Equa-
tion 2.3.

dρ

ρ
+

dT

T
=

M

R
· g(h) · dh

T (h)
(2.3)

The problem lies with the factors M and T (h). The atmosphere is considered homogeneous
up to an altitude of approximately 120 km, where the temperature and air composition
remain constant. This region is referred to as the homosphere and can be approximated
using the barometric formula in Equation 2.4.

ρ = ρ0 · exp
(
− h

H

)
with ρ0 = 1.752

kg

m3
and H = 6.7 km (2.4)

However, the thermosphere and exosphere (i.e., the atmospheric layers) above ∼ 120 km
have a non-uniform temperature and molecule distribution and are therefore referred to
as the heterosphere. Figure 2.1 shows the variation of temperature and density given the

5



2. Theoretical Background

day-night cycle, as well as high and low solar activity. It is computed using the NRLMSIS-
00 (MSIS00) empirical density model. These layers require more complex methods, which
are the subject of this section. [5, 6]

The section continues listing the atmosphere models incorporated into godot throughout
the thesis while classifying them, describing the origins and phenomena behind them, and
finally distinguishing the three models’ families. The abbreviations introduced for the
individual atmosphere models are consistent with the implementations which are presented
later.

H
et
er
os
ph
er
e

H
om
os
ph
er
e

Figure 2.1.: Altitude profiles of atmospheric temperature (left) and density (right), according
to the MSIS00 model, evaluated for 18:00 on July 15 2000 and 2006, over Delft,
The Netherlands; adapted from [5]

2.1.1. Classification of Atmospheric Models

The heterosphere is challenging to model. This section introduces the available approaches,
while the subsequent Subsection 2.1.2 introduces the effects of interest to be modeled.
Overall, the primary distinction is commonly made between physical and empirical models.
The former are based on the elementary physical equations governing the thermosphere,
while the latter are parameterized mathematical formulations that model observational data.
Nevertheless, both models usually also interoperate elements from the opposing category.
Physical models require the empirical parameters to specify boundary conditions. Empirical
models often include physical constraints to improve their predictions. [7]

In brief, there also exists a variety of fusion models that combine physical and empirical
models using a weighted combination of both. Fusion models are reported to improve overall
accuracy in some cases, like solar minima, but an optimal solution for all cases does not yet

6



2.1. Atmospheric Modeling

exist [8, 9].

“These [physical] models include so-called Thermosphere Global Circulation Models
(TGCMs)” [5] and local high-resolution airflow models. They simulate the temperature,
density, molecular composition, and horizontal winds regarding diverse energy inputs.
The models’ complexity and scope bound the obtainable accuracy, often accompanied by
runtime constraints. The latter also restrain their use cases. As these models are usually
computationally intensive to run due to the numerical methods (like finite differences) being
involved, they are suitable for studying the internals of the atmosphere rather than in the
context of routine applications in the context of orbit and reentry determination [5, 10].
Next to runtime constraints, these models also lack the capabilities for short-term forecasting
of atmospheric density because the thermosphere is mostly affected by external drivers like
solar and geomagnetic activity - thus the boundary conditions - and has a relatively short
internal memory [7]. Hence, their precision is also limited by the forecast of these drivers,
which holds for empirical models as well. Overall, both model categories produce density
forecasts of similar accuracy [7, 9].

The empirical models form the foundation of this work as they provide predictive capa-
bilities and are cheap to-evaluate from a computational point of view. These models are
created using observational data and typically consist of simple functions that attempt to
fit significant atmospheric variations in density, temperature, and sometimes single species
densities (such as molecular oxygen or hydrogen density). The observational data utilized in
the fitting process comes from multiple sources. Figure 2.1 shows several satellite missions
equipped with accelerometers. Given the drag acceleration affecting the spacecraft, they
allow the reverse engineering of atmospheric density. This technique usually has inevitable
errors due to measurement device calibration and missing data, the latter making it diffi-
cult to accurately distinguish the aerodynamic force of drag from, e.g., radiation pressure
or atmospheric winds. One issue is presented in Subsection 2.4.1. The optimization of
the density is conditioned by the knowledge of other parameters involved in aerodynamic
drag, which are often not necessarily known beforehand and an optimization problem by
themselves. Another issue is given by Chapter 7, here we show for the year 2019 that the
accuracy of models that were constructed beforehand degrades. The density models are
usually biased toward the data utilized for fitting, but 2019 has not been part of the fitting
interval for some of the examined models. The current density sets often originate from
the accelerometer data of dedicated missions like CHAMP, GRACE, GOCE, Swarm A, B,
C. Of course, other sources than accelerometers are possible as well. The radar tracking
of satellites allows deducing the atmospheric drag similarly (but less precisely) using the
standard TLE data, containing the orbital state of satellites (see Subsection 4.1.1). Satellites
with mass spectrometers like Atmospheric Explorer allow measuring the molecular species
densities. And, Satellites with ultraviolet imaging capabilities allow for deriving temperature
and composition profiles in the upper atmosphere. Subsection 2.1.2 investigates the phenom-
ena involved in atmospheric variations. Subsection 2.1.3 explains how the phenomena are
modeled using proxy indices for representing atmospheric behavior. Finally, Sections 2.1.4
to 2.1.6 introduces the implemented models and most important model families. [5, 10, 11]

7



2. Theoretical Background

2.1.2. Phenomena affecting the Thermospheric Density

The density in the thermosphere is subject to a great variety of influences, changing its
composition in vertical and horizontal cross-sections. Figure 2.1 shows, for example, the
vertical density variation at a fixed point in time and a fixed location. Looking at it,
one notices that overall, the density is decreasing with increasing altitude. However, the
concrete values can vary dramatically by more than a magnitude depending on external
influences like solar activity or day-night-cycle. Figure 2.2 shows the density for a fixed
location and a fixed altitude given a specific date. It illustrates that the density is -
again - variable by more than magnitude given the solar and geomagnetic activity over time.
Lastly, Figure 2.4 and Figure 2.3 show the horizontal decomposition for a fixed altitude
and a fixed point in time. It also illustrates the upper atmosphere’s wind velocity, whose
strength strongly depends on solar activity.

The following sections introduce the significant individual effects causing these deviations.

Diurnal and Seasonal Variations

The diurnal density variation (i.e., the day-to-night variation) results from the uneven heating
of the Earth by the Sun. Figure 2.1 and Figure 2.2 display the day-to-night difference,
respectively, by the dashed lines in the former and the grey band in the latter. Maximum
density is reached around two hours after noon, while the minimum is approached during
nighttime. The transition in between follows a smooth decrease. The diurnal density
variation can be around a “factor of 5 at 500 km and higher [due to] heating at the bottom of
the thermosphere generally” [5], causing the entire thermosphere above this layer to expand.
The diurnal variation is also subject to seasonal changes because the changing Sun-Earth
geometry causes the sub-solar point to move over the course of a year. [5]

Solar Activity Variation

The Sun also causes the second contribution to the atmospheric variations similar to the
diurnal and seasonal variations. However, the root cause does not result from the revolution
nor the rotation of the Earth, but rather from the processes in the Sun itself. In contrast
to solar radiation in the visible spectrum, the extreme ultra violet (EUV) radiation and
X-ray wavelengths are highly variable. The solar cycle spanning from solar minima to solar
minima approximately covers 11 years, with the Sun’s magnetic field changing its polarity
at the solar maxima in between them. The solar cycle can be monitored by measuring
the amount of sunspots. A sunspot indicates an active region. Thus, the peak number of
solar spots happens at the maxima. As of writing, the current solar cycle 25 has begun
in December 2019 “when the 13-month smoothed sunspot number fell to 1.8” [12]. The
maxima is expected to happen in 2025. The EUV output is on the lower end at solar minima
and is usually relatively stable. The opposite holds for the solar maxima when the Sun’s
emitation of EUV is highly variable and more potent following the Sun’s periodic 27-day
rotation. Overall, the density can alter by up to a factor of 20 at 500 km and higher, with
higher variability in the outer layers of the atmosphere. [5]

8



2.1. Atmospheric Modeling

Geomagnetic Activity Variation

Ejections of coronal mass and solar flares originating from the Sun launch significant
quantities of charged particles into space. Earth’s magnetic field deflects most of the
particles when they arrive. However, a fraction of them may “enter through the so-called
polar cusps and via so-called reconnection processes at the dayside magnetopause” [5]. These
particles then cause geomagnetic storms, which are admirable by the appearance of the
Aurora. The additional energy inside the polar thermosphere and ionosphere (i.e., the
thermosphere and exosphere contain ionized atoms and free electrons, thereby the name)
causes density variations of up to one order of magnitude. [5]

Semiannual Variation

The semiannual density variation is the fourth influence. In 1961, Paethold and Zschörner [13]
first discovered that the thermospheric density has its maxima in the months around April
and October and its minima around January and July [14]. However, the concrete amplitude
and timing of this periodic variation differ annually. The recognized physical theory behind
it was proposed by Fuller-Rowell [15] in 1998. “The global-scale, interhemispheric circulation
at solstice acts like a huge turbulent eddy in mixing the major hemispheric species” [15],
which leads to less increased molecular nitrogen and oxygen densities and reduced atomic
oxygen. This effect leads to a lower density scale at a given height and compresses the
atmosphere. Recent work by Jones et al. [16] supports the hypothesis, and Bowman et
al. [17] also found a correlation to solar activity. “During solar maximum, the semiannual
variation can be as small as 30% at 220 km, and as high as 250% near 800 km” [17]. In
contrast, at solar minimum, the variation is only around 70% in 800 km.

2.1.3. Utilized Proxy Indices

Obviously, the day-to-night-time density variation can be simply modeled by using the local
solar time at a given longitude. The previous Subsection 2.1.2 has shown that the main
drivers for thermospheric temperature and density are the influx of heat through solar EUV
radiation conditioned by solar activity and due to charged particles related to geomagnetic
activity. However, modeling the density variations caused by geomagnetic storms and solar
activity is more complex. In practice, one uses a so-called proxy index, which is easily
measurable and shows a similar behavior to the property one desires to model.

Solar Activity Indices

Most of the atmosphere models use the F10.7 solar flux index in order to model solar
activity (if they model solar activity at all). F10.7 abbreviates 10.7 cm solar radio flux. Its
physical units are solar flux units with 1 sfu = 1 × 10−22Wm−2Hz−1. The F10.7 adopts
values ranging from 70 sfu during solar minima to around 370 sfu during maxima [5].
Radio telescopes have measured the F10.7 solar flux daily since 1947, with the earliest
measurements dating back to the 1930s [18]. This long track of records is one of its most
significant advantages. Earth’s atmosphere does not absorb this solar flux originating from
the solar transition region/ the cool corona, making the F10.7 suitable measurable on the
surface level. Additionally, this ”dependence on few processes, combined with its localized
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2. Theoretical Background

formation in the cool corona, i.e., a region that is closely coupled with magnetic structures
responsible for creating the XUV-EUV irradiances, makes this a good generalized solar proxy
for thermospheric heating” [19]. Also, given that EUV radiation can not be measured on
the ground since it is absorbed in the atmosphere, causing heating, one seeks to model [18].
Overall, primarily due to its availability, the F10.7 is nearly used widely across all empirical
atmospheric density models, with different indices being used appearing some decades ago
[18, 19]. In many models, the F10.7 is utilized in an average form over the last three solar
rotations spanning 81 days. It is usually denoted as F̄10.7

Thanks to satellites like Solar and Heliospheric Observatory (SOHO), Geostationary
Operational Environmental Satellite (GOES), or Solar Radiation and Climate Experiment
(SORCE) in orbit, it has become possible to measure the Lyman-α (121nm ≤ λ < 122nm
with λ as the wavelength), EUV (10nm ≤ λ < 121nm), coronal X-rays (0.1nm ≤ λ <
0.8nm), soft X-ray (0.1nm ≤ λ < 10nm), and far ultraviolet (122nm ≤ λ < 200nm)
radiation directly. All of them affect thermospheric heating - predominantly due to the
EUV radiation - and originate from different parts of the Sun. Thus, this affects the density
variation. This development led to the appearance of new indices capable of more directly
representing the phenomena. These are also measured in solar flux units. The JB2008
density model employs these new indices [20]:

• S10.7 representing EUV from the chromosphere of the Sun. It has been available daily
since 1996.

• M10.7 representing FUV from the photosphere and lower chromosphere. It has been
available daily since 1991.

• Y10.7 representing X-rays and UV from the chromosphere, transition region, and hot
corona. It has been available daily since 1991.

For the precise construction details specification, it is referred to Tobiska et al. [19]. These
indices solve the apparent issue that the F10.7 has become a limiting factor for the obtainable
accuracy in empirical atmosphere models [5].
Another approach is undertaken by de Wit and Bruinsma [21]. They replaced the F10.7

solar flux by the 30 cm solar radio flux, denoted with F30 for the Drag Temperature Model
2013 (DTM2013). The approach is grounded on an extensive database because other
centimetric wavelengths - such as the F30 - have also been continuously monitored since the
1950s. The F30 solar flux contains “a relatively larger proportion of emissions coming from
solar features such as plages, faculae and hot coronal loops, and consequently correlates
better” [21] with the actual UV emission. For that purpose, they scale the F30 to the F10.7

range to replace the latter seamlessly. This approach reduced the error of their density
predictions [21].

Geomagnetic Activity Indices

Either the index Kp (“planetarische Kennziffer”) or the ap represents the geomagnetic
activity in all empirical atmosphere models implemented throughout the thesis. The ap
index is a derivative of the Kp index. The relation between the two numbers is provided by
Table 2.1. The Kp index introduced and standardized by Bartels et al. in 1949 is given in
discrete steps and is not associated with any physical unit. It is used “to monitor subauroral
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2.1. Atmospheric Modeling

Kp 0o 0+ 1- 1o 1+ 2- 2o

ap 0 2 3 4 5 6 7

Freq. [%] 3.55 7.17 8.58 8.87 8.85 8.62 8.49

Kp 2+ 3- 3o 3+ 4- 4o 4+

ap 9 12 15 18 22 27 32

Freq. [%] 8.03 7.40 6.56 5.74 4.59 3.68 2.71

Kp 5- 5o 5+ 6- 6o 6+ 7-

ap 39 48 56 67 80 94 111

Freq. [%] 2.13 1.47 1.09 0.74 0.52 0.36 0.26

Kp 7o 7+ 8- 8o 8+ 9- 9o

ap 132 154 179 207 236 300 400

Freq. [%] 0.18 0.13 0.11 0.07 0.06 0.04 0.01

Table 2.1.: The geomagnetic Kp index and its relation to the ap index [22]

geomagnetic disturbance on a global scale” [22]. The mean value Kp is computed from
the single results of 13 participating observatories at subauroral latitudes, each providing a
K variance. At each station, the horizontal magnetic components are split into a regular
non-K-variation and irregular variations, so-called K variation, with the latter expressed in a
K index every three hours. Here, K variation describes geomagnetic activity or disturbance
caused by “solar particle radiation” [22] within 3 hours. As mentioned, the ap index is
derived using Table 2.1. It has a physical unit: nanoTesla nT . Similar to the three-hourly
Kp index, one can derive a three-hourly ap index. Eight ap values form the global planetary
average index Ap. [22, 5]
Another geomagnetic index employed by the JB2008 density model is the Disturbance

Storm Time (Dst) index [20]. The Dst index indicates the geomagnetic activity at low
latitudes on the Earth’s surface. During a geomagnetic storm, the magnetic field becomes
southward-directed due to the highly energized ring current. “The terrestrial ring current is
an electric current flowing toroidally around the Earth, centered at the equatorial plane at
altitudes of ∼ 10, 000− 60, 000 km” [23]. It is calculated hourly using the measurements of
four off-equatorial observatories. Its physical unit is nanoTesla nT , similar to the ap index.
Thus, it provides a higher resolution index for magnetic storms, increasing the obtainable
accuracy more than the raw usage of just Kp or ap. It allows for a more precise segregation
of storm phases. [19, 23, 24]

The concrete integration in JB2008 is demonstrated by Subsection 2.1.5.
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2. Theoretical Background

Figure 2.2.: Density average ρ as black line with the daily maxima and minima as gray area
in the respective upper plots. F10.7 solar flux as black line and geomagnetic ap
index as gray spikes in the respective bottom plots. The total diagram covers
the time frame in 400 km height above Delft, The Netherlands. The MSIS00
produced the density values; from [5]
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2.1. Atmospheric Modeling

Figure 2.3.: Density (MSIS00) and Wind (HWM93) at 400 km altitude on July 15, 2000 at
18:00 UTC with F10.7 = 213.1 and ap = 400 (High Activity); from [5]
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Figure 2.4.: Density (MSIS00) and Wind (HWM93) at 400 km altitude on July 15, 2006 at
18:00 UTC with F10.7 = 70.2 and ap = 3 (Low activity); from [5]
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2.1.4. Overview of Empirical Atmosphere Models

Empirical 
Atmosphere 

Models

Density Models

Jacchia Family

JACLIN

CIRA72

JB2008
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DTM Family
DTM2013

DTM2020
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US1976

GOST2004

Wind Models HWM Family

HWM93

HWM07

HWM14

Figure 2.5.: Overview of empirical atmospheric models included in this thesis.

As part of this thesis, multiple atmospheric density and wind models are merged into the
software godot via a plugin. It goes too far to present every model in detail, but rather,
the coming sections will focus on presenting the three prominent families. The models
of a family usually do not differ much from generation to generation but rather tune the
fitting given the availability of new data. This data can include new density sets or better
proxies modeling the complex energetic input factors that influence the thermal state of the
atmosphere. Figure 2.5 shows the models integrated into the latter presented godotAtmsoph

plugin.

The oldest generation of empirical density models dates back to the 1960s. The Jacchia
family finds its roots in this time frame with the Jacchia-64 model [25], and the empirical
model by Harris and Priester [26]. The Jacchia family is in the later given implementation
represented by the Jacchia-71/ Lineberry Model (JACLIN), the COSPAR International
Reference Atmosphere of 1972 (CIRA72), and the JB2008 with the latter of particular
interest, as it is the target of the optimization process in Chapter 9. In this thesis, the
models of the MSIS family are all denoted with MSIS, which stands for Mass Spectrometer
and Incoherent Scatter radar, giving hints about the data utilized for generating the model
series. Further, they are often referred to as NRLMSISE, which is the combination of
US Naval Research Laboratory (NRL) and Mass Spectrometer and Incoherent Scatter
radar (MSIS). Subsection 2.1.6 presents details about this model family. The DTM family is
given by the two models: DTM2013 and Drag Temperature Model 2020 (DTM2020). They
are presented in Subsection 2.1.7.

The two remaining models are the Upper Earth Atmosphere Density Model for Ballistic
Support of AES Flight (GOST2004) [27] and US Standard Atmsophere of 1976 (US1976) [28].
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2. Theoretical Background

GOST2004 is a Russian model for the upper atmosphere until a height of 1500 km derived
from satellite drag from the Cosmos satellites (1964-2000) [9]. The latter, US1976, technically
covers the full atmosphere. However, the implementation integrated into godotAtmsoph

only provides density to a maximum height of 150 km.

Lastly, the Horizontal Wind Models, whose members are Horizontal Wind Model 1993
(HWM93), Horizontal Wind Model 2007 (HWM07), and Horizontal Wind Model 2014
(HWM14), provide output for zonal and meridional wind speeds in the upper atmosphere.
They are aligned to the specification and inputs of the MSIS density models since they were
created alongside. [29, 30]

2.1.5. The Jacchia Model Series: JB2008

This section presents the procedure of the JB2008 model, which comprises the Jacchia-
Bowman 2006 (JB2006) and older fragments from the Jacchia model series. The JB2008
is largely based on CIRA72, which integrates the diffusion equations using the Jacchia 71
temperature formulation. However, several components were replaced by the formulations
of the Jacchia 70 model to better include the latter explained correction terms. [31]

The JB2008 was “adopted as part of the COSPAR International Reference Atmosphere‘”
and it is the recommended model for Earth’s upper atmosphere according to ISO 1422 for
the purpose of satellite drag calculation [3].

The first step is the computation of the exospheric temperature T∞ comprising the
culmination point temperature Tc and two temperature correction terms denoted with ∆Tc.
Tc can also be referred to as the night-time minimum of the global exospheric temperature
field. It is computed by

Tc = 392.4 + 2.227F̄S + 0.298∆F10.7 + 2.59∆S10.7 + 0.312∆M10.7 + 0.178∆Y10.7 (2.5)

with

F̄S = F̄10.7 ×WT + S̄10.7 × (1−WT ) where WT = 4

√
F̄10.7/240 (2.6)

and the delta values ∆F10.7,∆S10.7,∆M10.7,∆Y10.7 as the differences between daily and
81-day average values. The first of the two correction terms ∆Tc results from the diurnal
density variation given by the formulation in Subsubsection 2.1.5. It is modeled using the
solar activity indices F10.7, S10.7,M10.7, Y10.7. The second correction originates from the
geomagnetic activity. It is modeled using the Dst index. The concrete translation of Dst
to ∆Tc is given by Bowman et al. [20]. Simplified, this translation involves calculating the
difference between the one-hour intervals and scaling, whose concrete parameters depend on
a fitting to available data. It is not necessary to compute it manually since this part of the
correction terms is provided as an index file similar to the S10.7,M10.7, Y10.7 as presented in
Subsection 4.1.4.

Next, the inflection point temperature Tx must be computed given the exospheric temper-
ature T∞. The inflection point resides at an altitude of 125 km and represents the lower end
of the temperature profile. It is computed (with the concrete coefficients inserted from the
Fortran implementation) by
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2.1. Atmospheric Modeling

Tx = 444.3807 + 0.0238T∞ + 392.8292 exp(−0.0021357T∞) (2.7)

Given the complete temperature profile T∞ and Tx, the procedure now computes the single
species number densities by integrating the diffusion equation while incorporating correction
factors ∆ log(ρ) for the semiannual density variation (given by Subsubsection 2.1.5) and the
seasonal-latitudinal variation (given by Jacchia 70 [32]).

Subsubsection 2.1.5 presents the high altitude density correction scaling factor. It is
applied to the final ρ of all previous calculations by a single multiplication.

This collected description of the algorithm is compiled by the author as the concrete
instructions are spread over multiple sources of the JB2006 [31], JB2008 [20], Jacchia 70
[32]. At the same time, some were only found inside the implementation.

Diurnal Density Correction

The diurnal density correction is conducted by computing a temperature correction ∆Tc.
This offset is then added to Tc for the classic Jacchia density computation. The coefficients
Bi and Ci utilized in the polynomials are given by Bowman et al. [31]. However, the
equations of the available implementation of JB2008 do not fit the equations reported in
[31] nor in [20]. Thus, the equations presented in this section are reconstructed from the
present Fortran implementation, which is also incorporated in godotAtmsoph. Note that
the coefficient C2 is never used across the Fortran implementation (so, B2 utilized next
to the Ci is not a printing error). This might be an implementation bug since C2 has an
assigned value by the fitting process of Bowman et al. [20]. In this thesis, we stick to the
given original implementation.

F = (F10.7 − 100)/100

θ = (local solar time)/24

ϕ = cos(latitude)

h = height(km)

1. For an altitude 120 km < h < 200 km

X = C17 + θϕ
[
C18 + C19θ + C20θ

2
]
+

Fϕ
[
C21 + C22θ + C23θ

2
] (2.8)

Y = C1 + F
[
B2 + C3θ + C4θ

2 + C5θ
3 + C6θ

4 + C7θ
5
]
+

θϕ
[
C8 + C9θ + C10θ

2 + C11θ
3 + C12θ

4
]
+

ϕ
[
C13 + C14F + C15Fθ + C16Fθ2

] (2.9)

∆Tc = z2(3X − Y ) + z3(−2X + Y )
with z = (h− 120)/80

(2.10)
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2. For an altitude 200 km < h < 240 km

∆Tc = H
[
C1 +B2F + C3Fθ + C4Fθ2 + C5Fθ3 + C6Fθ4 + C7Fθ5

]
+

Hθϕ
[
C8 + C9θ + C10θ

2 + C11θ
3 + C12θ

4
]
+

Hϕ
[
C13 + C14F + C15Fθ + C16Fθ2

]
+

C17 + C18θϕ+ C19θ
2ϕ+ C20θ

3ϕ+ C21Fϕ+ C22θFϕ+ C23θ
2Fϕ

(2.11)

with

H = (h− 200)/50 (2.12)

3. For an altitude 240 km < h < 300 km, one interpolates between the known previous
formulation

X1 = H
[
C1 +B2F + C3Fθ + C4Fθ2 + C5Fθ3 + C6Fθ4 + C7Fθ5

]
+

Hθϕ
[
C8 + C9θ + C10θ

2 + C11θ
3 + C12θ

4
]
+

Hϕ
[
C13 + C14F + C15Fθ + C16Fθ2

]
+

C17 + C18θϕ+ C19θ
2ϕ+ C20θ

3ϕ+ C21Fϕ+ C22θFϕ+ C23θ
2Fϕ

(2.13)

Y1 = C1 + F
[
B2 + C3θ + C4θ

2 + C5θ
3 + C6θ

4 + C7θ
5
]
+

θϕ
[
C8 + C9θ + C10θ

2 + C11θ
3 + C12θ

4
]
+

ϕ
[
C13 + C14F + C15Fθ + C16Fθ2

] (2.14)

with H given by

H = 40/50 (2.15)

and the later used formulation for heights above 300 km

X2 = B1 +B19ϕ+ F
[
B2 +B3θ +B4θ

2 +B5θ
3 +B6θ

4 +B7θ
5
]
+

θϕ
[
B8 +B9θ +B10θ

2 +B11θ
3 +B12θ

4
]
+

Hϕ
[
B13 +B14θ +B15θ

2 +B16θ
3 +B17θ

4 +B18θ
5
] (2.16)

Y2 = ϕ
[
B13 +B14θ + b15θ

2 +B16θ
3 +B17θ

4 +B18θ
5
]

(2.17)

here, with H is given by

H = 300/100 (2.18)

then final ∆Tc is then given by

∆Tc = X1 + Y1 + z2(3X2 − Y2 + 3X1 − 2X2) + z3(X2 −X1 − Y1 − Y2)
with z = (h− 240)/60

(2.19)
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4. For an altitude 300 km < h < 600 km one uses solely the X2 from the previous step
(3):

∆Tc = B1 +B19ϕ+ F
[
B2 +B3θ +B4θ

2 +B5θ
3 +B6θ

4 +B7θ
5
]
+

θϕ
[
B8 +B9θ +B10θ

2 +B11θ
3 +B12θ

4
]
+

Hϕ
[
B13 +B14θ +B15θ

2 +B16θ
3 +B17θ

4 +B18θ
5
] (2.20)

with H given by

H = h/100 (2.21)

5. For an altitude 600 km < h < 800 km one uses X2 and Y2 from the previous step (3):

X = B1 +B19ϕ+ F
[
B2 +B3θ +B4θ

2 +B5θ
3 +B6θ

4 +B7θ
5
]
+

θϕ
[
B8 +B9θ +B10θ

2 +B11θ
3 +B12θ

4
]
+

Hϕ
[
B13 +B14θ +B15θ

2 +B16θ
3 +B17θ

4 +B18θ
5
] (2.22)

Y = ϕ
[
B13 +B14θ + b15θ

2 +B16θ
3 +B17θ

4 +B18θ
5
]

(2.23)

with H given by

H = 600/100 (2.24)

The final ∆Tc is defined as

∆Tc = X + Y z + z2
(
−3

4X − Y
)
+ z3

(
1
4X + 1

4Y
)

with z = (h− 600)/100
(2.25)

Semiannual Density Correction

The semiannual density variation ∆SA is given by

∆SAlog10(ρ) = F (z) ·G(t) (2.26)

with F (z) representing the amplitude as a function of altitude where with z = h/1000.
And, G(t) represents the normalized periodic average density variation as a function of time
t. [20]. The two functions are given by

F (z) = B1 +B2F̄SMJ +B3F̄SMJ +B4z
2F̄SMJ +B5zF̄

2
SMJ (2.27)

G(t) = C1 + C2 sin(ω) + C3 cos(ω) + C4 sin(2ω) + C5 cos(2ω)+ (2.28)

F̄SM {C6 + C7 sin(ω) + C8 cos(ω) + C9 sin(2ω) + C10 cos(2ω)}

with
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F̄SMJ = 1.00F̄J − 0.70S̄J − 0.04M̄J (2.29)

F̄SM = 1.00F̄10.7 − 0.75S̄10.7 − 0.37M̄10.7 (2.30)

ω = 2πϑ (2.31)

ϑ = (t− 1.0)/365.0 (2.32)

t = day of year (2.33)

where F̄J , S̄J , M̄J are the July averages of the 81-day centered F̄10.7, S̄10.7, ¯M10.7 and Bi

and Ci as coefficients given by Bowman et al. [20]. F̄SMJ in F (z) is based on the yearly
semiannual amplitudes observed from 1997 to 2006. [20]

High Altitude Correction

The high altitude correction factor Fρ of JB2008 for altitudes h > 1500 km is given by

Fρ(h) = C1 + C2F̄10.7 + C3h+ C4hF̄10.7 (2.34)

In the transition regime from 1500 km > h > 1000 km the following spline function is
utilized

Fp(H) = 1 + {3F1500 − 500x− 3}H2 + {500x− 2F1500 + 2}H3 (2.35)

with

x =
δF1500

δh
= 500(C3 + C4F̄10.7) (2.36)

F1500 = density factor at 1500 km (2.37)

H = (h− 1000)/500 (2.38)

and the fitted coefficients Ci given by Bowman et al. [31].

2.1.6. The MSIS Model Series: MSIS00 and MSISv2

Alan Hedin created the first MSIS model in the late 1970s. The MSIS models were initially
only based on the mass spectrometer and incoherent scatter radar observations, which has
the advantage of maintaining “independent observations of both temperature and number
densities for the atmospheric constituents” [5]. MSIS also provides the species densities and
not only the total mass density.
The recent models of the MSIS series are MSIS00 [33] and NRLMSIS 2.0 (MSISv2) [34].

The latter has been updated to MSISv2.1 by adding the species density of nitric oxide (NO).
However, the primary formulations of MSISv2 remained the same. [34] The models span
from the ground upwards to the exobase. They also include accelerometer-derived density
data [5].

The models compute the atmospheric density given the geomagnetic ap index (including
the three-hourly values up to 72 hours before) and the F10.7 proxy for the solar activity. In
MSISv2, the temperature is calculated using a “linear combination of cubic B-splines [..]
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2.2. Satellite State Modeling

below 122.5 km and a Bates thermospheric temperature profile [..] above 122.5 km“[35].
The density is computed using the number densities of the single species whose profile
is “parameterized assuming hydrostatic balance in the lower and middle atmosphere and
species-by-species hydrostatic equilibrium [..] in the upper thermosphere” [35].

Since it has no added value for the understanding of this thesis to unfold the concrete
equations, the interested reader is referred to the original literature by Emmert et al. [35, 34].

2.1.7. The DTM Series : DTM2013 and DTM2020

1978 was the year in which the first Drag Temperature Model was released based on
observational data of satellite drag and atmospheric temperature. Over the years, the
model’s foundation was consequently extended by the addition of more satellite drag,
accelerometer, and mass spectrometer data. [5]

The two latest revisions, both included in godotAtmosph, are DTM2013 and DTM2020.
DTM2013 was first released as DTM2012. It enriches the previous iteration by the high-
resolution density data of CHAMP and GRACE. DTM2013 is an updated version incorpo-
rating the GOCE densities and the alternative solar activity index F30. [36, 21]

The most recent iteration DTM2020 exists in three variations whose backbone are the
densities from GOCE, CHAMP, and Swarm A:

• An operational version using the established solar and geomagnetic indices F10.7 and
Kp and the algorithm of DTM2013 [37]

• An intermediate version using F30 and Kp indices and the algorithm of DTM2013 [36]

• A research version using the - not yet widely as of writing - indices F30 and Hpo (a
higher resolution Kp index) and a new algorithm [37, 38]

Overall, the DTM2020 produces densities which are around 20%− 30% smaller compared
to previous models. These results are concurrent with the results of MSISv2 despite it “using
the assimilation of data in the mesosphere instead of the accelerometer-inferred densities”
[37] like DTM2020. godotAtmosph integrates the operational first version of DTM2020.
Equation 2.39 shows the fundamental equation for calculating the density ρ at a given height
h.

ρ(h) =
∑
i

ρi(120 km)fi(h) exp(Gi(L)) (2.39)

The density ρ is accumulated over the partial densities of the i single species densities. The
latter fi(h) results from integrating the differential equation of the diffusive equilibrium, which
yields the densities propagated to h from 120 km. The density variations of Subsection 2.1.2
are integrated via Gi(L) given the environmental parameters L such as latitude, local solar
time, and activity. [37, 36]

2.2. Satellite State Modeling

This Section 2.2 sets the previously explained atmosphere models into the referential context.
It introduces the available reference frames to describe spatial coordinates and a concrete
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point in time. The knowledge is fundamental as the satellite state propagation is often
numerically integrated using inertial systems, while the atmosphere usually requires positions
with latitude and longitude fixed to the surface. Hence, they require Earth’s rotation to be
resolved within the reference frame.

2.2.1. Fundamental Definition: System vs. Frame

Before describing how to represent the state and properties of a satellite, one first requires a
referential context in which to describe the state. Subsection 2.2.2 introduces the three in
the context of this work utilized spatial frames, as well as the fundamental time frames.

Before going into details, it is first necessary to clarify the terminology of a reference
system and a reference frame. A reference system specifies how to form a celestial coordinate
system in its completeness. This specification covers the origin and the specification of the
fundamental planes and axes while also specifying the underlying required models, e.g., the
algorithms to work with quantities within the system. In contrast, a reference frame is the
concrete instantiation of a reference system and realizes it by specifying concrete, identifiable
fiducial points at a fixed point in time. [39]

2.2.2. Coordinate Reference Systems

This paragraph shall give a brief introduction to give the reader only an overall understanding
as this is sufficient for understanding this thesis; for a complete mathematical description,
refer to references [39, 40, 41] for details. Figure 2.6 outlines the reference systems, frames
and intermediate steps presented in this Subsection 2.2.2.

Translation
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 Motion of CIP in GCRS
(include Precession,

Nutation & Frame Bias)

Include
Precession & Nutation,

but Nutation only for
Equator

GCRS

the same
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 Rotation

around CIP
by ERA 
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ITRFinstantiated inITRS

 Polar Motion
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Translation
to
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Reference System

Legend:

Reference Frame

Intermediate Step

Figure 2.6.: Overview of reference systems, frames and intermediate steps

Reference System Families

To begin with resolution B1.3 of the year 2000, the International Astronomical Union (IAU)
defined two coordinate systems: the Barycentric Celestial Reference System (BCRS) and
the Geocentric Celestial Reference System (GCRS). Both define a system of space-time
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coordinates for, respectively, the solar system and the Earth “within the framework of General
Relativity, by specifying the form of the metric tensors for each and the 4-dimensional space-
time transformation between them.”[39] The BCRS has its origin in the barycenter of the
Solar System. The Solar System’s barycenter is the center of mass of all its enclosing bodies.
In contrast, the GCRS has its origin in the geocenter. Thus, the BCRS is well-suited for
describing positions and motions outside the context of Earth, while the GCRS should be
favored suited for describing objects near Earth.

The axes of BCRS and GCRS do not have a formal orientation. Further, they are described
as kinematically non-rotating (“space-fixed”) [39]. This means that for both systems, no
rotation exists with respect to distant objects in the universe (i.e., objects so far away that
they appear to be fixed using humanity’s available instruments [41]).

These two systems span the families to define the following reference system.

Celestial Reference Systems

Although the BCRS’s axes are not formally defined, if not otherwise stated, they usually
align with the specification of the International Celestial Reference System (ICRS) axes
for all practical applications. The ICRS formalizes the BCRS by using a set of benchmark
objects, observable at radio wavelength, whose adopted coordinates effectively define the
direction of the ICRS axes. The ICRS axes closely approximate the mean Earth equator
and equinox (Earth’s equinox is the moment when the Sun is directly above the Earth’s
equator) of January 1, 2000, 12.00 h TT (J2000) to within 0.02 arcseconds. However, there
is actually no date associated with the ICRS since its axes are kinematically non-rotating,
and the defining sources are so far away that their motion is negligible, as previously already
stated. [39]

The concrete realization of the ICRS is given by a concrete set of 212 defining radio
catalog sources. The realization is called the International Celestial Reference Frame (ICRF),
more specifically ICRF1 [39]. The IAU adopted the current realization ICRF3, covering an
extended and more precise catalog of defining sources in August 2018 [42]. The base plane
of the ICRF is the equatorial plane at J2000, with the x-axis being the quasar 3C273, the
z-axis as the normal to the equatorial plane, and the y-axis as the cross product of x and z
[41].

Terrestrial Reference Systems

Section 2.1 presents several atmosphere models whose evaluation depends on the concrete
position on Earth with respect to its surface. GCRS does not account for Earth’s rotation.
Thus, coordinates in this celestial reference frame are unsuitable as input for these atmosphere
models. So, GCRS needs to be converted beforehand to a reference frame accounting for
the rotation. This is solved in the International Terrestrial Reference System (ITRS), which
finds its realization in the International Terrestrial Reference Frame (ITRF) using the
results of several terrestrial measurement stations across the Earth which provide a list of
precise coordinates fixing the reference frame [43]. The current realization is ITRF2020 [44].
Another widely-used realization of the ITRS is ,e.g., GPS [40].

ITRS co-rotates with the Earth and further accounts for:
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• Precession and Nutation (forced rotation): Earth’s axis of rotation is not fixed in
space due to the gravitational attraction of the Moon, Sun and other major planets.
Instead, it rotates about the pole of the ecliptic (i.e., the orbital plane of the Earth
around the Sun). Precession represents the secular component with a period of 26000
years and nutation represents the periodic component with a period of 18.6 years of
this movement [45]. The forced rotation can also be described as the motion of the
Celestial Intermediate Pole (CIP) in the GCRS [39]. The CIP is the shared z-axis
(along the poles) utilized for transforming ITRS to GCRS and vice-versa.

• Pole Motion (free rotation): “Due to the structure of Earth’s distribution of mass and
its variation, Earth’s axis of rotation is not fixed in relation to Earth’s crust” [45].
This movement has a period of 430 sidereal days, which is referred to as the Chandler
period [45]. The free rotation can also be described as “the motion of Earth’s pole
with respect to the ITRS”‘[39].

The following paragraph investigates one of the two possible transformations from ITRS
to GCRS. The transformation from ITRS to GCRS is trivial using the respective inverse
operations. Figure 2.7 displays the two ways of performing the mentioned conversion. The
main emphasis is on the transformation based on the CIO-based transformation defined by
Equation 2.40.

Figure 2.7.: The two ways to transform coordinates from ITRS to GCRS; from [40]

−−−−→rGCRS = Q(t)R(t)W (t) · −−−→rITRS (2.40)

−−−−→rGCRS is the coordinate vector in the GCRS
−−−→rITRS is the coordinate vector in the ITRS

W (t) is the rotation ITRS to TIRS Eϖ

R(t) is the rotation TIRS Eϖ to CIRS Eσ

Q(t) is the rotation CIRS Eσ to GCRS
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2.2. Satellite State Modeling

The first out of three rotations is conducted with the polar motion (wobble) matrix W (t).
It relates the ITRS and the Terrestrial Intermediate Reference System (TIRS) - also denoted
with Eϖ - and arises from the polar motion (which is also called wobble). The TIRS has its
origin in the Terrestrial Intermediate Origin (TIO), and the z-axis is the CIP. “The TIO
was originally set at the ITRF origin of longitude and throughout 1900-2100 stays within 0.1
mas of the ITRF zero meridian‘” [39]. Thus, W (t) rotates the axes to align with the CIP
The second rotation uses the matrix R(t). It relates TIRS and Celestial Intermediate

Reference System (CIRS) - also denoted as Eσ - by using the Earth Rotation Angle (ERA)
θ at epoch t to incorporate the sidereal rotation of Earth. CIRS has its origin in the
Celestial Intermediate Origin (CIO), which corresponds to the non-rotating origin of the
GCRS [39]. The ERA θ is the angle along the CIP between TIO and CIO positively in
retrograde direction. It is linearly time-dependent to Universal Time No. 1 (UT1) (see
Subsection 2.2.3). This middle of three rotations also demonstrates how the CIP clearly
separates the nutation and precession from polar motion [46].

The third rotation uses the matrix Q(t). It relates CIRS and GCRS and accounts for the
effects of nutation and precession.

(a) Illustration of the mean equator and mean
equinox (= Mean Aries Point) γM of J2000
and the true equator and true equinox (=
True Aries Point) γT at a given time t [45].
The equinox γ is the intersection between the
ecliptic and the Earth’s equator.

(b) The inclusion of the frame bias converts GCRS
to the mean equator and equinox of J2000.
The inclusion of precession at epoch t yields
the mean coordinates at t. The inclusion of
the even smaller oscillating nutation at t yields
the true coordinates at t. [40]

Figure 2.8.: Illustration of true and mean coordinates given a reference epoch t

The whole procedure is summarized in Figure 2.7 on the left side. The second procedure
differs from the explained CIO-based transformation starting from step two. It is displayed
on the right side of Figure 2.7. While the CIO-based procedure utilities the ERA θ, which
is defined using UT1, the equinox-based transformation uses the Greenwich Apparent
Sidereal Time (GAST) to represent the Earth’s angle of rotation, i.e. the angle between
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true equinox and TIO. For the definition of GAST, refer to Subsection 2.2.3. The result
of this transformation yields the coordinates in true equinox and equator Eγ at epoch t
[40]. Figure 2.8a illustrates the meaning of true and mean elements in the orbital plane,
while Figure 2.8b summarizes the concrete steps required to obtain one of them. “True”
means that nutation and precession are covered, while “Mean” implies only the inclusion of
precession at a given epoch t.

The third step in the equinox-based transformation is similar and accounts for precession
and nutation. However, the concrete operations differ. GAST is a sidereal time. Thus,
nutation and precession are already in parts included in the second step. This is also
the main conceptual difference of the CIO-based transformation when compared to the
equinox-based transformation. In the former case, all rotations are independent, whereas in
the later step two and three are coupled.

True Equator Mean Equinox

Subsection 4.1.1 presents the Two Line Element Set (TLE). This format specifies the orbital
elements in the True Equator Mean Equinox (TEME) reference frame. The main goal of
the TEME reference frame at the time of construction was a reduction of computations,
especially trigonometric computations since they were a “formidable challenge to early digital
computers” [47] and key to propagating many objects. It is an Earth-centered inertial (ECI)
reference system [47]. Given the name, the position of the equator is given by the true
elements (including precession and nutation), whereas the equinox is defined only by the
precession. This concept is referred to as Uniform Equinox of Date in literature [47, 48].

For example, in order to convert to ITRF from TEME, one needs to add the polar motion,
and it requires a rotation using the Greenwich Mean Sidereal Time (GMST). The procedure
is widely implemented and not subject to further explanation. For details, refer to [47, 48].
However, it is unclear if the TEME frame is “of date” (meaning that the epoch of the

frame corresponds to the associated ephemeris generation time) or “of epoch” (meaning
that the epoch of the frame is held constant). “Researchers generally believe the ‘of date’
option is correct, but confirmation from official sources is uncertain, and others infer that
the ‘of epoch’ is correct” [48]. TEME is a military development and this subject has never
been clarified. As the following study does not implement the TEME conversion but rather
relies on the provided one by the godot library, this issue is not further of interest.

2.2.3. Timescales

Most of the previously presented atmosphere models require their time in Coordinated
Universal Time (UTC), while some require a different input ,e.g., GOST2004 requires GMST.
This section is going to present UTC and the common time frames when working with
celestial or terrestrial reference frames.

Measuring the Date

The Gregorian calendar, which we currently use, is based on the birth of Christ. It defines a
year as 365.2425 days. Thus, the year has 365 full days in a year and a leap day is added
every 4 years to compensate for the reminder. However, the leap day is omitted every 100
years except for every 400 years, where it is added back again. There is no year zero in the
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2.2. Satellite State Modeling

Gregorian calendar, and time is divided into Before Christ (BC) and Anno Domini (AD)
periods. [41]

In contrast, the discipline of astronomy uses the Julian Date (JD). Its point of origin is 12h
noon on January 1, 4713 BC. The JD does not count in years but only in days since its origin.
Thus, the JD does not have consistency problems like the Gregorian calendar introducing
leap days. Equation 2.41 shows the conversion to JD, given a year y ∈ [1901, 2099], month
m, day d, hour h and second s in the Gregorian system [41]

JD = 367 · y − floor

{
1.75 ·

[
y + floor

(
m+ 9

12

)]}
+ floor

(
275 ·m

9

)
+ d+ 1721013.5 +

s/60+m
60 + h

24

(2.41)

For example, the widely used standard reference epoch J2000 has the Julian Date 2451545.0.
In order to tighten the numbers and simplify handling JDs, several different reference origins
were introduced, as shown in Equations 2.42–2.44.

MJD = JD − 2, 400, 000.5 (with origin November 17, 00:00 h, 1858) (2.42)

MJD1950 = JD − 2, 433, 282.5 (with origin January 01, 00:00 h, 1950) (2.43)

MJD2000 = JD − 2, 451, 544.5 (with origin January 01, 00:00 h, 2000) (2.44)

Measuring the Time

Measuring time requires a periodic steady, periodic process since periods are countable [41].
As of now, one can classify three different periodic processes in use for measuring time.
Table 2.2 shows the commonly used periodic processes: Earth’s rotation, Earth’s revolution
around the Sun, and atomic oscillators.
When using Earth’s rotation, one measures the angle between a reference median (e.g.,

Greenwich) and the meridian containing a celestial reference. This celestial reference can be,
e.g., the Sun, in which case one speaks of solar time, or the Aries point, in which case one
speaks of sidereal time. The three Universal Times (UTs) use Earth’s rotation and as the
second reference median Greenwich next to the Sun as celestial reference point.
Similarly to mean and true equinox, one can distinguish between mean and true solar

time. The UTs use the mean solar time which uses a fictitious mean Sun that moves along
the equator of Earth with a uniform speed over the whole course of a year. UT0 is then the
mean solar time at the Greenwich meridian without a correction of the polar motion. UT1
includes the effect of polar motion. UT2 removes periodic seasonal variations of Earth’s
rotation from UT1. The previously introduced ERA θ depends on UT1. This relation is
shown in Equation 2.45 [39]. In practice, only UT1 is used, while the other two are a legacy
of the past. [45]

θ = 0.7790572732640 + 1.00273781191135448 · (JD(UT1)− 2451545.0) (2.45)

Figure 2.9 exemplifies GMST, GAST, Local Mean Sidereal Time (LMST) and Local
Apparent Sidereal Time (LAST). These time frames do not use the movement of the Sun
over the Earth’s equator. Instead, they measure the hour angle between the reference
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Periodic Process Time Frames

Earth’s rotation

Solar Time Frames Sidereal Time Frames

Universal Time (UT0, UT1,
UT2)

Greenwich Mean Sidereal
Time (GMST), Greenwich

Apparent Sidereal
Time (GAST)

Earth’s revolution Terrestial Dynamic Time (TDT) ≡ Terrestrial Time (TT),
Barycentric Dynamic Time (TDB)

Atomic oscillators International Atomic Time (TAI), Coordinated Universal
Time (UTC)

Table 2.2.: Timescales and their underlying periodic process [45]

meridian and the vernal equinox. A mean sidereal day is shorter than a mean solar day
by 24h/365.2422 ≈ 3m56s “due to the relative movement between Sun and Earth as a
consequence of its annual translation” [45].

Figure 2.9.: GMST and GAST are both the hour angle between the Greenwich meridian and
respectively the mean or true equinox. LMST and LAST are the equivalents
using the local meridian where being measured as first reference. [45]

The Earth’s revolution timescale was initially realized with the Ephemeris Time (ET)
and later replaced by two relativistic timescales: TDB and TDT. Both of them are based
on the ET second, which is defined as the fraction of the tropical (solar) year as shown
in Equation 2.46. TDB “is an inertial time in the Newtonian sense and provides the time
variable in the equations of motion for the ephemerides related to the cent[er] of gravity of
the Solar System” [45]. At the same time, TDT is only quasi-inertial with respect to Earth
and utilized as the independent variable of the satellite’s equation of motion.

ET second =
1

31 556 925.9747
(2.46)

TDT was with IAU resolution A4 replaced by TT. However, from the definition side, TT
and TDT are equivalent. Further, beginning in 1967, the ET second (which also served as
SI second until then) was replaced by the TAI second. The TAI second is defined as “the
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2.2. Satellite State Modeling

duration of 9 192 631 770 periods of the radiation corresponding to the transition between
the two hyperfine levels of the ground state of the Caesium 133 atom” [45]. The period is not
chosen randomly. Instead, it makes the ET second and the TAI second equivalently long.
Thus, the definition of the SI second changed, but its length remained the same in 1967.

Equation 2.47 shows the relation between TDT, TT and TAI. The only difference between
the former and TAI lies in the different starting offsets.

TDT ≡ TT = TAI + 32.184s (2.47)

Equation 2.48 exemplifies the conversion between TDT and TDB. This conversion is not
further discussed, as TDB is in the subsequent chapters only required to be defined but not
used. For details, refer to sources [45, 39, 40].

TDB = TDT + 0s· 001658 sin(g + 0.0167 sin g)

with g =
2 π (357o· 528 + 35 999o· 050 T )

360o

T =
JD − 2451545.0

36525

(2.48)

Finally, UTC is a hybrid timescale. Its second is based on TAI. However, it is synchronized
to the rotation-based timescale UT1 by the irregular introduction of leap seconds to be never
more than 0.9s out of the scope of UT1. This relation is displayed in Equation 2.49. [39]

UTC = TAI − leap seconds = UT1± 0.9s (2.49)

2.2.4. Satellite State

Given the in Subsection 2.2.2 presented reference frames, one requires three elements in order
to describe the position r⃗ of a spacecraft inside the frame. In order to describe the orbit one
requires three additional elements, namely the first derivatives providing the velocity v⃗ = ˙⃗r.
These six elements precisely specify the orbit in a three-dimensional coordinate system.
Given an initial state (r⃗0, v⃗0) at an epoch t, it is possible to determine the future motion of
the spacecraft in phase space using the two first-order differential vector equations based
on Newton’s gravitation equation of motion. [41] Equation 2.50 depicts this with µ as the
gravitational constant of the central body and r as the distance between the centers of mass.

˙⃗r = v⃗, ˙⃗v = − µ

r3
· r⃗ (2.50)

The disadvantage of this representation is that each of the six elements constantly changes.
The Keplerian elements give a better, more illustrative representation.

Figure 2.10 shows the Keplerian elements and how they affect the orbit of a satellite
around the Earth. Semi-major axis a and eccentricity e are the two elements describing the
shape of an orbit and are, therefore, called metric elements. a is, as the name suggests, half
of the major-axis of an ellipsoid, whereas the eccentricity reflects how circular the orbit is
(see Equation 2.51).
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Figure 2.10.: The chart shows the semi-major axis a, the inclination i, the right ascension of
ascending node Ω, the argument of periapsis ω and the true anomaly θ; from
[41]

shape =


circular if e = 0

elliptic if 0 < e < 1

parabolic if e = 1

hyperbolic if e > 1

(2.51)

The following three elements characterize the orbit’s orientation around a celestial body;
hence, they are called angular elements. The inclination i is the angle “between the angular
momentum vector h and the z-direction of the reference frame” [41] or the angle between the
reference plane, commonly the equatorial plane, and the orbital trajectory plane. In contrast
to the inclination, the right ascension of ascending node (RAAN) Ω describes the “angle
between the line from the origin O of the reference frame to the vernal [equinox] and from O
to the ascending node” [41]. The last of the three elements is the argument of periapsis ω,
which is the angle “in the orbital plane between the line of nodes and the periapsis measured
in the direction of the motion” [41].

These are the five time-independent orbital elements. The sixth element is the true
anomaly θ, which is time-dependent. It reflects the angle between the periapsis and the
current position r⃗. Alternatively, one can also specify the mean anomaly M given in
Equation 2.52 whose relation to the mean motion n is given in Equation 2.53.
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M = n · (t− tp) with tp = point in time at periapsis (2.52)

n =
2π

T

elliptic
=

√
µ

a3
with T = Orbital Period, µ = gravitational parameter (2.53)

For a detailed description of the conversion between cartesian state vectors and Keplerian
elements, refer to [41].

2.3. Orbit Propagation with Perturbations

A satellite orbiting a body whose mass distribution is radially symmetric follows a conic
section called Keplerian orbit [6]. This orbit is clearly defined by Equation 2.50. However, in
practice, additional forces are affecting a satellite around, e.g., the Earth. These forces are
“called perturbing forces, and one speaks of perturbed Keplerian orbits” [6]. Equation 2.54
adds the perturbation a⃗p into the equation.

˙⃗r = v⃗, ˙⃗v = − µ

r3
· r⃗ + a⃗p (2.54)

These perpetuating forces can be of various origins and add together in a⃗p. To mention a
few:

• the oblateness/ non-radially-symmetric mass distribution of Earth causing perturba-
tions in the gravity field

• other celestial bodies’ attraction (especially due to the Moon and the Sun)

• atmospheric drag

• solar radiation forces

• electromagnetic forces (an electrically charged satellite is affected by Earth’s magnetic
field)

In this thesis, only the atmospheric drag is further investigated (see Subsection 2.4.1). For
a precise mathematical formulation of the other remaining perpetuating influences, refer to
sources [41, 6, 49], as the details are not required to understand the accomplished assignment
further.
It is not possible to solve Equation 2.54 using analytical methods anymore. In order

to solve the problem, three techniques have been established. The special perturbation
methods solve the differential equation using numerical methods. The theory is discussed
in Subsection 2.3.1. For example, the later in detail presented godot provides propagation
by employing numerical methods [50]. In contrast, the general perturbation methods solve
the propagation problem by utilizing approximate analytical methods. A well-established
general propagator designed for use in combination with TLE data is the Simplified General
Perturbations 4 (SGP4) model [51]. SGP4 and the general perturbation theory are examined
in Subsection 2.3.2.
The third option are semi-analytical orbit propagation methods [52]. They combine

the analytical propagation’s advantage of fast runtime with the accuracy of numerical
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propagation. Subsection 2.2.2 discusses precession and nutation. Similarly, the orbital state
of a satellite can be split into a secular, long-term (the mean-motion) and an osculating,
short-term motion. The idea is to propagate the slow dynamics by numerical means with a
large step size and apply the short-period terms afterward at the final epoch in order to
recover the entire state. One realization of this procedure is the Draper Semi-analytical
Satellite Theory (DSST). [53, 54]

2.3.1. Special Perturbation Theory

Implementation Methods

The special perturbation methods perform the computation by a numerical step-by-step
integration process. This chapter first investigates the available numerical methods for
performing the propagation while focusing on the numerical integration procedures in the
second half. The “three classical methods are known as Cowell’s method, Encke’s method
and the method of variation of orbital elements” [6].

Cowell’s method is the simplest one because it is just the plain numerical realization of
Equation 2.54. Thus, it can be directly implemented and does not require any previous
assumptions. However, it also does not take advantage of, e.g., splitting the equation into the
“base” Keplerian orbit and the small perpetuating forces. Rather, the sum of all acceleration
is integrated together in one step, leading to the requirement of small integration steps -
ultimately increasing the numerical error due to floating point arithmetic. [6]

Encke’s method resolves this by only integrating the difference between the major ac-
celeration and all perpetuating forces. In other words, only the difference from a given
reference trajectory (given by Equation 2.54 without a⃗p) is numerically integrated. This
way, the method is about ten times faster [49]. However, the method loses its advantage if
the perpetuating acceleration does not vary but accumulates over time. In this case, the
reference orbit must be adapted (“rectification”). [6]

The method of variation of orbital elements (also known as the “method of variation of
parameters”) uses the orbital elements and considers the perpetuated orbit as a continuous
sequence of Keplerian orbits. Thus, it can be compared to Encke’s method, which also uses
a single (or a set if rectification is required) of Keplerian reference orbits. Depending on
how the set of differential equations yielded by this approach is evaluated, the method falls
in the category of special perturbation or general perturbation techniques. [6, 49]

Cowell’s method is the most widely used today [55], given that it does not come with any
presumptions and can be notably straightforwardly implemented.

Numerical Integration Methods

A great variety of numerical integration procedures exists for solving differential equations.
The analyzed literature agrees that the Gauss-Jackson method is the most suitable if the
integration can be executed with a near-constant step size. However, no definite best method
can be named as soon as one starts to vary the step length. [56] This is reflected by a query
among members of the IAU showing that every method, from Runge-Kutta, multi-step, and
extrapolation methods, is in use [57].

godot provides namely two numerical integration methods: The Runge-Kutta 8(7) method
and an Adams-Bashforth-Moulton predictor-corrector model. The latter multi-step procedure
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is of variable order (in godot from 1 to 12) and variable step-size, both being determined
during runtime [58]. The former Runge-Kutta 8(7) is of eighth order, with an error estimator
of seventh order. It is based on the Runge-Kutta method but improved by Fehlberg in order
to estimate the error using an interpolation of higher order without excessive computational
overhead. This reduced overhead is achieved by embedding the evaluations of the error
estimator of higher order into the actual calculation, effectively re-using the evaluations
of the lower order. This error estimator allows for an adaptive step, i.e., an optimal step
size can be calculated automatically. The coefficients and equations can be found in the
publications by Fehlberg [59, 60]. godot further provides Runge-Kutta 8(7) by Fehlberg
in a different flavor using the improved coefficients by Verner [61]. Further, polynomial
interpolation of order 7 or 8 between propagation steps is offered for dense output by godot.

2.3.2. General Perturbation Theory

This Subsection 2.3.2 first explores some options for using general perturbation theory to
propagate a satellite. The second half focuses on the widely-used SGP4. Subsection 2.3.1
introduced the method of variation of orbital elements. Simplified, applying it on Equa-
tion 2.54 but with Keplerian elements rather than cartesian coordinates yields the Lagrange’s
planetary equations. These cannot be evaluated by a closed-form solution. Nevertheless, an
approximate analytical evaluation is possible in case of small perturbations. [6, 41]

Another approach providing more flexibility is given by Hoots et al. [62, 63]. They are
using the method of averaging to remove the dependence of the fast variable mean anomaly.
Finally, the approach yields an analytical formulation only requiring numerical measures once
at startup. Further, the final analytical form is independent of the utilized density model
(However, it is not entirely free since the density values need to be known at initialization
time)

Hoots also created the Simplified General Perturbations 8 (SGP8) [64] model based on his
previous work [65]. The SGP8 model improves SGP4 regarding atmospheric decay. However,
“there is no evidence to suggest that SGP8/SDP8 was implemented for operational TLE
formation” [48]. So, SGP4 is still the reference for a general perturbation model. SGP4 was
developed in 1970. It is purposed for near-Earth satellites. The drag is based on a power
density model of the atmosphere. Overall, the TLE data published is specifically designed
to be used in combination with the SGP4. [51]

2.4. Reentry Modeling

This section’s first half briefly discusses the foundations and requirements of modeling
atmospheric drag and its impact on a satellite in Subsection 2.4.1, while the second half in
Subsection 2.4.3 finalizes Chapter 2 by gluing everything together.

2.4.1. The Impact of Atmospheric Drag

The determination of the atmospheric drag requires two major operations. First, one must
know the atmospheric state at the target body’s location. Second, one requires the knowledge
of how the atmosphere interacts with the target. The former operation requires, e.g., one of
the in Section 2.1 presented atmospheric density models, while the latter requires information
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about the attributes of the respective target satellite. Figure 2.11 shows this interplay between
satellite and atmosphere. It illustrates the exponential increasing decelerating force with
decreasing altitude resulting from the constant exchange of momentum and energy between
satellite and atmosphere.

Figure 2.11.: Influence of atmospheric drag for a 1000 kg satellite with 100 m2 drag area,
and CD = 2.2 in a Harris-Priester model atmosphere; from [18]

As Equation 2.55 illustrates, the satellites mass m, the drag area A, the drag coefficient
CD and the current state of motion, i.e. the relative velocity to the atmosphere v⃗rel must be
known. One could assume that the evaluation is trivial due to the clearly defined equation.
However, all parameters of Equation 2.55 vary over time and are not necessarily well-known
from the beginning. [18]

a⃗drag = −1

2
ρ
CDA

m
· v2rel

v⃗rel
|v⃗rel|

(2.55)

Equation 2.55 covers three subproblems, two already mentioned at the beginning of the
section. First, The density ρ variation and its involved factors are subject of Section 2.1. As
shown, the density does not only depend on the time but also on other variables like EUV
radiation, F10.7, Kp and ap. Each of these variables can introduce new uncertainties, e.g.,
limited prediction capabilities a priori or limited measurement capabilities a posteriori.

Second, the relative velocity v⃗rel is composed of not only the satellite’s velocity. Commonly,
one assumes that the lower atmosphere rotates with Earth, allowing a vector summation as
shown in Equation 2.56. In the case of the upper atmosphere, wind models are required
to determine the possibly significant effect of winds of more than several hundreds m/s
onto the relative velocity v⃗rel. Section 2.1 introduced several wind models like the HWM14.
However, there remains a large uncertainty [18].

v⃗rel = v⃗sat + v⃗atmos (2.56)
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Third, various variable properties are inherent to the satellite, like drag area, mass,
and attitude, to name a few. These are often also combined and summarized in the
ballistic coefficient B displayed in Equation 2.57 in order to reduce the number of uncertain
parameters and concentrate on a single coefficient [66].

B =
m

CDA
(2.57)

In summary, finding a universally suitable solution for atmospheric drag is complex,
especially since these problems condition and influence each other. Section 2.1 explains
that errors in deriving density from acceleration measurements originate from uncertainty
in the proper modeling of the ballistic coefficient and unknown atmospheric winds. This
section shows the other side of the medal. Errors in choosing the suitable ballistic coefficient
with the goal of ultimately determining the drag acceleration originate from errors in the
underlying atmosphere models (wind and density). The subsequent Subsection 2.4.2 provides
a more detailed investigation of how to determine the ballistic coefficient.

2.4.2. Modeling the Ballistic Coefficient

It becomes evident that the ballistic coefficient B behaves like a scaling factor when inserted
into Equation 2.55.

In order to estimate the ballistic coefficient overall, two approaches can be utilized. Given
the satellites’ geometry, one can estimate the ballistic coefficient by analytical or numerical
modeling of the aerodynamics. For example, the panel method realizes this approach.
It splits the satellite’s geometry into multiple smaller elements. For each element, the
aerodynamic contribution can then be calculated in an analytical fashion. Thereby, it is
computationally efficient, but it is unable to account for “particle–particle interactions or
multiple particle reflections from surfaces” [66]. A computationally expensive approach to
computing the satellite aerodynamic forces lies in the Monte Carlo simulation of rarefied
atmospheric flows using a high-fidelity model of the satellite. [66, 67]

Alternatively, one can find the ballistic coefficient by using satellite tracking data over
a given time span [67]. An optimal ballistic coefficient is calculated for every interval. In
the second step, these values are averaged to find an overall suitable value. This approach
is similar to deriving the density from the acceleration of in-flight satellites but does not
require special knowledge about the shape of the satellite [5]. This fact is advantageous
when working with debris whose precise geometry is unknown. Thus, it is also the technique
used in this thesis, next to setting default values. It follows the so-called shooting method
by [4, 2].

The main idea is minimizing the error between the observed and propagated state. Thus,
one starts at epoch t0 and propagates to t0 +∆t, while the orbital state is known for both
timestamps. One then compares the expected state at t0 +∆t and repeats the procedure.
The procedure is repeated for every pair (t0, t0 +∆T ) until a user-defined accuracy criterion
(e.g. a maximal standard deviation of 15%) is reached. The final B is the mean value
of all calculated candidate ballistic coefficients. The framework in which the procedure
is embedded is called Lifetime Assessment of Catalogued Objects (LASCO). It uses the
above-described procedure if neither mass m nor drag area A are known. Because if they
are known, the ballistic coefficient is simply calculated with Equation 2.57 and a CD = 2.2.
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2. Theoretical Background

Case ↓ Prerequisites Description

1 Drag area A and mass m are known B = m
A·CD

with CD = 2.2

2 Perigee height < 1000 km
Iteratively improve B by fitting the
results of step-wise propagation to

the observed data

3 Otherwise B−1 = 0.011 m2/kg

Table 2.3.: Summary of the Ballistic Coefficient Determination as given by Bunte et al. [4].
One takes the first applicable case.

If not, the procedure is used for a perigee altitude smaller than 1000 km. Otherwise, the
influence of the atmosphere is too small. In this final case, a default B−1 = 0.011 m2/kg is
assumed. [4, 2]. Table 2.3 summarizes the described procedure.

2.4.3. Orbital Lifetime Assessment and Reentry Evaluation

Reentry prediction or the broader topic of orbital lifetime assessment can be split into two
phases: Long- and short-term reentry prediction. The former uses analytical propagators,
as semi-analytical or even numerical propagators would be computationally too expensive.
In cases where the reentry is more than a thousand years in the future, other methods, like
analytical formulations, are considered to estimate the orbital lifetime [4]. Further, one
must consider that every method degrades with increasing time due to accumulating errors.
This holds especially true for numerical propagators. Therefore, our solution for reentry
optimization, as presented in Part III, using godot is only suitable for short-term reentry
predictions. It is used in the first place to get a rough estimate of the reentry epoch by only
using, e.g., simple aerodynamics based only on the first perigee altitude and a simplistic
density model or mean solar activity. Depending on the result of this propagation or orbit
of the satellite (e.g., a high eccentricity), the techniques of short-term reentry prediction
are used to gain a more accurate picture. This included the incorporation of, e.g., solar
radiation pressure, diurnal density terms, or the overall use of a more complex atmosphere
model. [4, 2]

Short-term reentry predictions can further be subdivided into automatic and manually
conducted simulations. While the former is based on routines and available data, the latter
can be more sophisticated - using dedicated sensing only for the reentry - with the goal of
getting a reentry epoch and, additionally, even an estimate for the reentry location.

The prediction error Ep utilized in this context is listed in Equation 2.58 [2] and depends
on the epoch of prediction, the predicted reentry epoch, and the knowledge of the actual
reentry.

Ep =
Epochpredicted reentry − Epochactual reentry

Epochprediction − Epochactual reentry
(2.58)

The values of Ep are typically quite high, with errors of more than 80% a month before
the actual reentry not being a rarity. Such a number is not surprising given the uncertainties
in modeling the ballistic coefficient, atmospheric density, atmospheric wind, and predicting
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the space weather a priori. [4, 2] Even with the previously mentioned manual efforts, values
of 20% are considered state-of-the-art, with errors of below 10% - in case of the Gravity field
and steady-state ocean circulation explorer (GOCE) - being exceptionally good [68].
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3. Related Work

Section 2.1 gives examples of empirical data utilized in the process of deriving a new
atmospheric model involving the choice of suitable proxy indices to model observed behavior.
However, a new model, including a complex set of equations, does not necessarily need to
be invented. Instead, re-fitting an existing model to new data by modifying its coefficients
is also an option.

Searching across the literature, one can mainly find two distinct approaches to predict
thermospheric density without the need to create an explicitly new set of equations. One
is the re-calibration of empirical models, while the other uses neural networks as universal
function approximators. Licata et al. follow the later approach of using machine learning
operating on the density data from the HASDM SET database (see Section 3.4 and Subsec-
tion 4.1.3) [69]. However, this Chapter 3 only focuses on the primary approach of improving
existing atmospheric models by continuously monitoring the state of the atmosphere given
the available satellite data, which often comes with several challenges. For example, Subsec-
tion 2.4.2 teased the problem that the density ρ can only be accurately improved if other
parameters, namely the ballistic coefficient, are well-known. The section will delve into the
underlying techniques that form the basis of model calibration step by step.

3.1. The Basic Idea of Model Calibration

Figure 3.1 demonstrates the basic idea of calibrating an empirical atmosphere model. Rather
than fixing the whole model at creation time t0, one keeps the models parameterized given
a set of coefficients. A fitting routine is then placed to periodically adapt the model’s
coefficients, given the recent observational data. Ideally, this process should run in near real-
time to allow for the most accurate predictions. Hence, potential biases and shortcomings
introduced due to a former overfitt to the reference data can be countered by continuous
re-calibration. [70]

3.2. Early Empirical Model Calibration

Marcos et al. [71] were the first to publish the concept of empirical density calibration [5]
using the tracking data of four satellites in orbits between 400 to 500 km during 1988-1989.
Their basic ansatz to improve the density model lies in the comparison of true and fluctuating
ballistic coefficients. They define the true ballistic coefficient by mass, drag area, and drag
coefficient (inverse of Equation 2.57) and as to be known. This coefficient is set in relation
to the fluctuating ballistic coefficient, which results from the step-wise orbit determination
process using special perturbations and the Jacchia 70 density model. The resulting quotient
allows them to determine if the predicted density of the model is under/ well/ over the
actual value, i.e., the density model error. The improved model then allows for more reliable
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Figure 3.1.: The difference between a traditional empirical density model and a calibrated
density model (including the blue lines) as UML Activity Diagram.

orbital state and decay predictions. Further, the results demonstrate that the quotient
correlates with the in Subsection 2.1.2 reported phenomena of atmospheric density variation.
[71]

Several of the in Section 2.1 presented models have already been subject to approaches for
dynamical calibration. In the early 2000s, a collaborative US-Russian project aimed at the
creation of height-dependent scaling factors with the ultimate goal of improving the density
of the Russian GOST and the American MSIS00 models. Cefola et al. [72] used 250 LEO
objects with perigees below 600 km and available TLEs. Generally, the experiment was
designed to estimate the ballistic coefficients of selected satellites to conclude the density
model error given their true ballistic values. The experiment involved the propagation of
the satellites and, basically, the error estimation between uncorrected and corrected density
models. They concluded that the accuracy can be improved using the TLE data. However,
the approach does not generalize into the far future and only improves the prediction
capabilities up to the order of several days into the future when compared to an uncalibrated
model. From the computational perspective, it is interesting that they could not finalize
the analysis for the MSIS00 model because its runtime is two orders of magnitudes greater
than the Russian GOST model. An argument also used in the context of this work as an
optimization of JB2008 would not be possible if the evaluation of single points took long.
However, as of writing, all tested atmospheric density models can be executed fast with
typical hardware equipment. A runtime comparison is presented later in Figure 7.1. We can
confirm that MSIS00’s evaluation takes more runtime than the evaluation of GOST2004.
However, we don’t have the concrete model implementations nor the hardware of two decades
ago.

3.3. Deriving Densities from TLE Data

Two other relevant works are conducted by Shi et al. [73] and Doornbos et al. [70, 5].
The former scales the MSIS00 density model’s output, while the latter works with multiple
models such as MSIS-86/CIRA 1986 Neutral Thermosphere Model (MSIS86), MSIS00 and
CIRA72 (a Jacchia model) and multiple approaches for the optimization. However, when
using TLE data, both approaches make use of the density derivation algorithm described by
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Picone et al. [74]. The idea is that the TLE data encompasses only the mean elements of
the orbit. Thus, if no gravitational perturbations are included, only atmospheric drag and
Solar Radiation Pressure (SRP) remain as the main drivers of a semi-major axis change.
Given the assumption that solar radiation pressure is negligible below a certain altitude
threshold, one can bring the semi-major axis change into relation to the atmospheric drag,
i.e., the density or the ballistic coefficient. For instance, Gondelach et al. also have used
this method to estimate the ballistic coefficient [75]. Shi et al. report this altitude threshold
starting at approximately 600 km since beginning from 800 km SRP may be comparable to
drag in size.

So, the mean semi-major axis aM change is given by

d

dt
aM = −

a2M
µ

BρFv3 +
d

dt
aM

∣∣∣
SRP

(3.1)

with the ballistic coefficient B, the density ρ, the satellites velocity v, the gravitational
constant µ and the dimensionless wind factor F . The wind factor is given by

F =
|v − vw|2

v2
ev−vwev (3.2)

with wind velocity vw, and the unit vectors e of v and v − vw. Equation 3.2 can be
approximated with a relative error of less than 3% when Equation 3.2 is evaluated with
HWM93 [74]. The approximation is given subsequent by Equation 3.3

F ≈
(
1− rw

v
cos(i)

)2
(3.3)

with the distance from Earth’s center r, the angular velocity of Earth’s rotation w, and
the inclination of the orbit i. Sometimes F is trivially assumed to be 1. Equation 3.1 can

be rewritten using aM = 3

√
µ/n2

M where nM is the mean motion. This reformulation yields

Equation 3.4 given by

ρO(tik) =
2
3µ

2
3B [nM (tk)− nM (ti)][

1
2nM (tk) +

1
2nM (ti)

] 1
3
∫ tk
ti

Fv3dt

=
2
3µ

2
3B [nM (tk)− nM (ti)][

1
2nM (tk) +

1
2nM (ti)

] 1
3
∑tk

t=ti
Ftv3t∆t

(3.4)

with the observational density ρO derived from the TLE elements at epochs ti and tk. It
can be quickly evaluated using the nM values from the TLE and the velocities given the
SGP4 propagator. On the other hand, the model density ρM for the same time step is given
by

ρM (tik) =

∫ tk
ti

ρFv3dt∫ tk
ti

Fv3dt

=

∑tk
t=ti

ρtFtv
3
t∆t∑tk

t=ti
Ftv3t∆t

(3.5)
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3.4. The High Accuracy Satellite Drag Model

with ρ as the density from the employed density model. Similarly to Equation 3.4,
Equation 3.5 can be solved using the density model’s output along the trajectory and the
SGP4’s results. The ratio λ given by

λ(tik) =
ρO(tik)

ρM (tik)
(3.6)

can then be used to scale the density model. Some problems still need to be solved. The
scaling factor λ has no associated height, latitude or longitude. It just refers to a coarse step
between epochs ti and tk. For instance, Shi et al. solve this by introducing an equivalent
height, basically weighting Equation 3.5. [5, 70, 73, 74]

In the context of this work, we stick to the raw λ(tik). We will try to step-wise decrease
the ratio to 1 by optimizing either the ballistic coefficient B or the density ρ by respectively
modifying the diurnal density coefficients of JB2008. While optimizing the ballistic coefficient
yields good results, optimizing the diurnal coefficients does not work as initially hoped. These
results are presented in Chapter 10, and the underlying fitness functions are investigated by
Chapter 9.

3.4. The High Accuracy Satellite Drag Model

The High Accuracy Satellite Drag Model (HASDM) is based on the JB2008 density model
and operated by the United States Space Force. It is arguably “the world’s most accurate”
[3] model for the purpose of forecasting the thermospheric density. It brings the average
density modeling error down to 6− 8% “across all heights from 200 to 800 km” [76].
As mentioned, the model is based on the JB2008. Thus, it uses the new solar indices

described in Subsection 2.1.3 and the Jacchia 70 model as a base. The calibration algorithm
is called Dynamic Calibration Atmsophere (DCA). It uses the trajectory data from 75-80
satellites in various different LEOs (nowadays potentially more, i.e., the precise number
is unknown) to estimate 13 correction coefficients for the inflection temperature Tx and
the nighttime minimum exospheric temperature Tc. Effectively, these two corrections to
Tx and ∆Tc are realized by spherical harmonic expansion [77]. Tx is corrected by 2× 2 (9
coefficients) and ∆Tc is corrected using 1 × 1 (4 coefficients) [78]. It is a weighted least
square differential correction “that simultaneously solves for global density corrections and
a state vector for each calibration satellite” [79].
The density correction reflects the “dynamic changes in the diurnal and semi-diurnal

[density] variations” [79]. Its calibration data originates directly from the American Space
Surveillance Network (SSN) without further preprocessing. This is a significant fact that
allows them to run the calibration once every three hours. The calibration coefficients
can be predicted up to three days into the future as a function of solar and geomagnetic
activity. This prediction procedure is included in HASDM, allowing to propagate satellites
respectively for the next interval. [3, 77, 76, 79, 78, 5]

HASDM is not available to the scientific community, nor are the calibrated coefficients
and precise SSN data. However, the computed density values were released to the scientific
community as part of the SET HASDM Database. The database is presented in detail in
Subsection 4.1.3.
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4. Implementation Theory & Data
Methodology

This Chapter 4 introduces the employed services and origins of the data utilized over the
course of experiments. Additionally, Chapter 4 explains the reasoning behind the decision
to use a specific source.

4.1. Data Sources

This section briefly describes the various data sources employed in this work while also
discussing the applicability and limitations.

4.1.1. Space-Track and the Two Line Element Set (TLE)

The Two Line Element Set (TLE) data utilized in this work is provided by the 18th Space
Defense Squadron via their public service Space-Track1.
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Table 4.1.: Example TLE of the satellite Aeolus. The single entries are gray-shaded in an
alternating fashion. White columns are not used.

A TLE consists of two lines, each with 69 characters. The U.S. Strategic Commands
constructs the TLEs by estimating the orbital elements in the TEME reference frame (see
Subsection 2.2.2) using observational tracking data and the SGP4 model (see Subsection 2.3.2)
[70, 5]. As discussed in Subsection 2.2.2, there are some unknown factors involved when
using TLE, e.g., that it is unknown to which reference epoch TEME refers. We ignore these
problems. In the following, we assume that a precision of just over one kilometer [48] for
the input data is precise enough for the use-case of atmospheric optimization.

1https://www.space-track.org, last accessed: 17.12.2023
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Table 4.1 gives an example for a TLE of the satellite Aeolus. Most of the entries are
self-explanatory. Thus, the following paragraphs focus only on some rather than all. The
unique identifier of a satellite, which is also utilized in the later provided implementation,
is the NORAD Catalog ID where NORAD stands for North American Aerospace Defense
Command. In contrast, the International Designator provides a more illustrative way of
identifying a satellite. In order of appearance, it comprises the last two digits of a satellite’s
launch year, the 3-digit number of its launch in the given year, and a fragment identifier of
the initial launch vessel. The epoch of the TLE consists of the last two digits of the year,
the Day of Year (DOY), and the fraction of the epoch’s day.

As previously mentioned, the TLE is specifically designed to be used with the SGP4 model.
It models the atmospheric drag given the starred ballistic coefficient B∗ from the TLE. It is
given in inverse Earth Radii R−1

E . In Table 4.1, B∗ = 58706 · 10−4R−1
E . It is an adjusted

value of the actual ballistic coefficient B using the reference value of the atmospheric density
ρ0 at one Earth radius [48]. The B∗ is estimated by fitting SGP4 to the estimated orbit. It
compensates for SGP4 model deficiencies and cannot be directly interpreted as a physical
quantity. The direct use in non-SGP4-based models is therefore not recommended. However,
one can use the B∗ to generate an initial guess of the actual ballistic coefficient B using
Equation 4.1, as e.g. conducted by Gondelach et al. [75].

B =
RE · ρ0
2B∗ with ρ0 = 2.461× 10−5 kg

m2
(4.1)

This work employs the starred ballistic coefficient and the relation given by Equation 4.1
in order to determine an initial ballistic coefficient in case satellite characteristics from
the Database and Information System Characterising Objects in Space (DISCOS) are not
available. Equation 4.1 has its flaws since unmodeled forces can lead to inconsistent values
like a negative B∗ inside the TLE [80]. In this case, the default value of B−1 = 0.011m2/kg
of the shooting method is taken as initial value. The subsequent Subsection 4.1.2 presents a
potential data source for these values.

4.1.2. DISCOS and Satellite Characteristics

The Space Debris Office of the ESA maintains DISCOS. It is publicly accessible via a Web
Interface2. The database behind aggregates the characteristics of objects originating from a
variety of different catalogs and sources, such as Space-Track’s TLE data, NASA’s history
of on-orbit satellite fragmentations, ESA’s own data, and launch information from providers.
[81] Thus, it facilitates the retrieval of physical attributes like mass and drag area of a
satellite due to its unified interface to otherwise distributed data.

As presented in Subsection 2.4.2, LASCO and its underlying mechanic to determine the
ballistic coefficient (“shooting-method”) rely on DISCOS for the retrieval of drag area and
mass [81]. This work uses DISCOS in its newest iteration DISCOS3 [82], which improved
the power of the employed underlying relational model and its API to retrieve the satellite
characteristics in order to calibrate the ballistic coefficient.

2https://discosweb.esoc.esa.int, last accessed: 20.12.2023
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4. Implementation Theory & Data Methodology

4.1.3. The HASDM Density Set

Section 3.1 introduces the idea of continuously improving the density prediction by continu-
ously calibrating the model using recent observational data. It also introduced HASDM and
the idea behind the model. The model itself is classified and not available to the scientific
community. However, the computed density data was released to the public in the date
range from the 1st of January, 2000, to the 31st of December, 2019, with a step size of three
hours and for altitudes from 175 km to 825 km. Thus, it covers the partial solar cycle 23 and
the full cycle 25. The density was evaluated for the grid in steps of 25 km altitude, 10◦ of
latitude, and 15◦ of longitude. Space Environment Technologies hosts this HASDM density
set3. [3]

Initially, it was planned to use the HASDM density set also to improve the coefficients of
the JB2008 model in this work. However, this plan was dropped in favor of laying a stronger
focus on the calibration using TLE data. Instead, we use the HASDM density data only
as validation data set across the implementation and to evaluate the performance of the
improved density model. In view of the fact that HASDM is calibrated near real-time, its
data can be considered a gold standard of long-term density data. These concrete use-case
scenarios are presented later in Chapters 7 and 10.

4.1.4. Solar Indices

Subsection 2.1.3 introduces the proxy indices utilized in the subsequently presented imple-
mentation.

This work employs the solar and geomagnetic activity data, SOLMAG, provided publicly
by the European Space Agency’s Space Debris Office4 for all atmosphere models except the
JB2008. The concrete index file is named fap day.dat.

The JB2008 is fed using the solar activity and geomagnetic activity data provided by Space
Environment Technologies5. The geomagnetic Dst is not directly utilized, but rather the
already precomputed and provided ∆Tc from it. The concrete index files are SOLFSMY.txt
and DTCFILE.txt.

Another topic to be discussed is the use of interpolation between the measurements
of these indices since all these indices are provided in discrete time steps. This question
especially holds for the geomagnetic indices because they are provided in a three-hourly
fashion (or even one-hourly in the case of Dst). Opinions differ on this. Some argue that
interpolation conflicts with the original definitions of models and indices. Others, on the
other hand, believe that a continuous representation works better with the natural rhythm.
Since continuous functions define the density in these models, continuous input values should
also be necessarily sufficient. [18]

In this thesis, the discrete index values are used. Interpolation is only performed for the
∆Tc values since they are already a product of the actual discrete Dst index. This decision
does not imply that the model input requirements are not fulfilled, e.g., MSIS requires an
average of eight 3-hourly ap from 12 to 33 hours prior to the current time. However, when
computing such an average, the index is not interpolated to the true 12, 15, 18, .., 33 hours

3https://spacewx.com/hasdm/, last accessed: 20.12.2023
4https://sdup.esoc.esa.int/solmag/, last accessed: 11.12.2023
5https://sol.spacenvironment.net/JB2008/index.php, last accessed: 11.12.2023
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before but is used in the respective available discrete values.

This issue also goes hand in hand with using the 81-day center or the moving 81-day
average. This thesis generally uses the 81-day moving average. This average has the
advantage of data availability, especially for a priori prediction. An exception is the JB2008
model, where the centered averages and all inputs are distributed in the above-mentioned
separate index files, ready to be directly used. Another exception is the GOST2004 model,
which requires as input a specially weighted 81-day average assigning the most recent day a
weight of 1.0 and gradually decreasing the weight while going into the past to a weight of
0.5.

4.2. ESA’s flight dynamics library: Godot

godot is the flight dynamics library of the European Space Agency (ESA) employed and
developed at European Space Operations Centre (ESOC). godot is an abbreviation of
General Orbit Determination and Optimisation Toolkit. Regarding functional requirements,
it was designed to perform “orbit related computations for estimation, optimization, and
analysis of orbits for mission analysis and in-flight operations” [58]. In contrast, the main non-
functional requirements focus especially on extensibility and modularity in order to provide
a high-level system of abstraction to solve arbitrary problems with low-effort additions
to the core system. It is written in C++ with a separate pybind11 interface exposing its
functionality to Python. The Python interface is called godotpy. godot is operational
software. Thus, it is actively in use and the contributions to the core are administered by
ESOC [83]. However, as mentioned, the massive focus on modularity facilitates the process
of writing extensions independent of the actual core library. These so-called plugins are
shared libraries linked to godot at runtime extending, e.g., its selection of atmospheric model
like the plugin presented in Chapter 5. The extension functionality is largely based on the
creational Prototype Design Pattern, i.e., new implementations from a plugin are registered
in PrototypeRegistry from which they are then accessible to the client user. [50, 58, 83]

The development is grounded on experience with previous software in the area of flight
dynamics like NAPEOS, AMFIN, and INTNAV. The formerly mentioned legacy software
is utilized to verify the correctness of the new implementation. The reference test cases of
NAPEOS, which include a series of propagation scenarios around Earth, were utilized in the
context of this work to verify the correctness of the new atmosphere system. This testing
procedure is detailed in Chapter 6.

4.2.1. Godot’s Architecture

Figure 4.1 provides a high level UML component overview of godot. It is compiled from
the source code as of the time of writing. Given the diagram, godot could also be described
as an instance of a layered architecture style. The foundation, marked in blue, are the
core components. Independent libraries built for a single purpose like tempo, which offers
timescale and time-system data types and their associated behavior (the realization of
Subsection 2.2.3). Alternatively, they include wrappers facilitating the use of, e.g., the
linear algebra library eigen6, as it is the case for the linalg component. Further, namely

6https://eigen.tuxfamily.org/, last accessed: 10.01.2024

45

https://eigen.tuxfamily.org/


4. Implementation Theory & Data Methodology
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Figure 4.1.: A UML Component Diagram of godot as of version 1.3. The interfaces in-
between the components are omitted on purpose to reduce complexity. Instead,
the components are vertically ordered in a layered manner with different colored
components using the layer beneath/ inside. For example, model uses the compo-
nents of core. The component model contains the components interface and
common. Both of them are displayed enlarged because they respectively define
and implement the core design philosophy: The TimeEvaluables. Components
colored in red are the primary target of the implementation presented in Part II.

to mention due to them being used in this work are: astro, autodif, atmos. The astro

component provides functionality regarding astrodynamic-related quantities like coordinate
transformations or state representation algorithms. The autodif cleverly makes use of
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C++’s expression templates to provide computational capabilities for determining partial
derivatives. It also interfaces to eigen using the custom type xdouble, which tracks the
gradient. Finally, atmos provides the means of determining atmospheric density and winds
before it is replaced by the new godot::model::atmos, presented in Section 5.2, one layer
above. The old design of atmos is examined in detail by Subsection 4.2.2.

The mid layer is the model layer. It can be characterized as the most fundamental layer
from a software design point of view. It contains the definitions (component interface)
and basic implementations (component common) of the TimeEvaluable class. The more
significant share of parameters in godot are modeled as TimeEvaluable. It provides an
overloaded method taking an Epoch or XEpoch and calculates the value in dependence
of that epoch. If the epoch argument is a XEpoch, gradients are tracked, i.e., autodif
is employed. Figuratively spoken, a chain exists through a whole computational process
capable of tracking the derivatives if desired. Another central aspect of the TimeEvaluable
implementation contract is Events. A class usually needs to implement both interfaces.
By implementing Event, the values are “observed” (in the figurative sense), and,e.g., a
propagation can be interrupted if, e.g., zero values appear. Other central components of
the model layer are atmos, dyn, frames, geometry. The frames component keeps track of
the reference systems, axes, and points. Figuratively exemplified, the points do not directly
result in, e.g., Vector3TimeEvaluable, which yields the cartesian position. Instead, the
properties are stored in an abstract way, like the concept of pointers in computer memory.
Thus, a created point is like a null pointer in the beginning. This behavior is, for example,
of great use in the Dynamics component dyn. At creation time, the point to be propagated
is yet unknown. Thus, our AtmosphericDrag is instantiated by a Vector3TimeEvaluable

with the actual two evaluation points being a placeholder. The aliasing to the actual
points is deferred until the concrete evaluation happens. The geometry component provides
the classes to create the aforementioned Vector3TimeEvaluable from concrete axes and
two points. The dynamics component, abbreviated with the namespace dyn, contains the
various dynamics like - previously mentioned - AtmosphericDrag or SRP. Finally, the
atmos component of the model layer is one final implementation artifact of this work and is
presented in Chapter 5.

The top layer is called cosmos. It unifies the layers below and provides the means to set up
a universe of forces and orchestrate a propagation with the whole model of godot as defined
by the universe. It also provides the capabilities to perform optimization and estimation
using pagmo [84]. We do not make use of the latter due to five reasons. First, our data for
optimization resides mainly on the Python side. Second, an explorative implementation is
more straightforward and realized via Python and allows for faster prototyping of approaches.
Third, the documentation of how to perform and use the optimization library still needed
to be fully fleshed out at the time of writing. Fourth, making all coefficients of JB2008
optimization and exposing them turned out to be a difficult task, which was overcome by
injecting the parameter change past godot via a dedicated Python binding. Fifth, we use
the optimization that relies on the Trajectory class, which adds the propagated properties
to the universe instance. This accumulates over time in memory. We switched to the
BallisticPropagator, which does not insert its data into the universe and provides a more
flexible lightweight approach in terms of exchanging the atmospheric model. Nonetheless,
the Trajectory is class is also utilized due to being more robust in terminating when a
reentry event occurs, as discussed in Subsection 8.3.1. The implementation and optimization
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is presented in detail in Part III of this work.

4.2.2. The Issues of the Current Atmospheric Component

The state of the atmospheric component previous to this thesis resides among the core

libraries of godot. This work fundamentally revised this component, as presented in
Section 5.2. Figure 4.2 depicts the original implementation. It basically uncovers five distinct
anti-patterns of software engineering:

• The AtmosphericDrag has, in theory, full access to the frames system of the universe
violating data encapsulation best practices. Thus, an unnecessary coupling to the
frames component.

• The Atmosphere class stores in its base variant properties inherent to the celestial
body, violating the principle of separation of concerns and enforcing the existence of
these might-not-be-needed attributes in its subclasses.

• The Atmsophere class calculates density and wind violating the single responsibility
principle.

• The subclasses of Atmosphere are by design forced to implement wind, density, and
the partial derivatives for both. However, not all of them do. Instead, they return
plain zero values if the functionality is not provided. This circumstance violates the
contract obligated by the superclass. Thus, it violates Liskov’s substitution principle.

• The subclass Nrlmsise00Atmosphere stores several parameters as plain values violating
godot’s own TimeEvaluable based core design philosophy. Further, it handles file
input for solar and geomagnetic activity on its own, violating again separation of
concerns.

The subsequent in Chapter 5 presented implementation refactors the approach in order to
comply with godot’s clever design principle of TimeEvaluables and bring the atmospheric
component in line with other components of its kind.
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godot::model::dyn godot::model::common

godot::atmos

«abstract»
TimeEvaluableT<int>

+ eval(epoch: Epoch): Output

+ eval(epoch: XEpoch): XOutput

mass,
area, cd

AtmosphericDrag

- frames: FramesWeakPtr

- body: PointId

- outputAxes: AxesId

- spacecraft: PointId

- bodyAxes: AxesId

+ eval(epoch: Epoch): Vector3

+ eval(epoch: XEpoch): XVector3

- evalImpl(epoch: EpochT<S>): Vector3T<S>

- getDensity(epoch: Epoch<S>): S

- getRelativeVelocity(epoch: Epoch<S>):
Vector3T<S>

«abstract»
ScalarTimeEvaluable

+ eval(epoch: Epoch): double

+ eval(epoch: XEpoch): xdouble

«abstract»
Vector3TimeEvaluable

+ eval(epoch: Epoch): Vector3

+ eval(epoch: XEpoch): XVector3

godot::cosmos::universe

Plugin

DynamicsPlugin

«abstract»
Atmosphere

- radius: double

- flattening: double

+ density(position: Vector3, epoch: Epoch,
     computePartials: bool): pair<double, Vector3>

+ wind(position: Vector3, epoch: Epoch,
     computePartials: bool) : pair<Vector3, Matrix33>

Nrlmsise00Atmosphere

- dayOfYear: int

- sec: double

- altitude: double

- latitudeRad: double

- latitudeDeg: double

- longitudeRad: double

- longitudeDeg: double

- solarLocalTime: double

- f107a: double

- f107: double

- ap: double*

AveragedEarthAtmosphere

ExponentialAtmosphere

PatchedExponentialAtmosphere

Figure 4.2.: A UML Class Diagram of the showing the interplay between godot::atmos and
godot::model::dyn. The implementation details of Atmosphere’s subclasses
are hidden with exception of the class Nrlmsis00Atmsophere.
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The previous Subsection 4.2.2 showed the issues of the initial atmospheric component in
godot. This Chapter 5 presents the godotAtmsoph plugin and the refactoring inside godot
required to make the new implementation compatible. The engineering process converging
to this solution consisted of two steps. In the first iteration, which is not discussed in
detail, the old atmospheric system, precisely as depicted by Figure 4.2, was kept. A new
atmosphere called FlexAtmosphere was subclassed from Atmsophere and added to the
inheritance hierarchy. It administered its own registry for density and wind models, which
could be arbitrarily switched and combined, as they were stored as std::function.

This first approach was given up in favor of a complete overhaul of the overdue atmospheric
component. Thus, the second approach presented in this Chapter 5 does not only create an
extension to godot’s atmosphere system, but instead also redesigns the base system inside
godot’s core to the TimeEvaluable-based approached presented in Chapter 5.

The verification process is written down in Chapter 6, while Chapter 7 presents the results
and required configurations obtainable with the work presented in the subsequent sections.

In the following, if we refer to atmosphere models, we imply density and wind models.
Design Pattern and Structural Choices are emphasized in italics.

5.1. Overview of Components

Figure 5.1 portrays the realization of the density and wind model inclusion as a UML
Component Diagram. Each outermost component ensembles its own CMake target with the
exception of the atmosph component, i.e., these components are independent libraries (even
though the linkage type differs). The atmosph’s components are, respectively, individual
static libraries. This process facilitates the exclusion of atmosphere models with a more
restrictive copyright.

Overall, the atmosph component ensembles the density and wind models, which are
completely written in Fortran, even the newer ones like MSISv2 published in 2021. The
concrete Fortran standard differs from model to model. Some of them already use Fortran-
90, while others use the Fortran-77. The component also includes for each atmosphere model
function a wrapper written in Fortran, which makes use of the Fortran-ISO-C-Binding
functionality to provide a binding to the C/C++ world. Fortran 2003 introduced the ISO-C
Binding to the Fortran standard.1 It provides type safety for interoperability with C/C++ and
clarity about the function name and how to reference it from C/C++. The inner components
of atmosph are named after the models they respectively contain, with the exception of
the sdo-atmosph component. The content of this component originates from an internal
repository of ESA’s Space Debris Office (SDO) and encloses all remaining density and wind

1https://gcc.gnu.org/onlinedocs/gfortran/ISO_005fC_005fBINDING.html, last accessed: 10.01.2024
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models listed in Figure 2.5. The jb2008mod component contains the latter for optimization
purposes employing the density model.
The single components of atmosph are statically linked to godotAtmosph, which itself

consists of four major components:

• The input provides a TimeEvaluable-based access to solar or geomagnetic data stored
in index files and is investigated by Section 5.3

• The model component uses the models from atmosph and is investigated by Section 5.4

– The density component encloses each density model into a ScalarTimeEvaluable
and provides the concrete inputs to it

– The wind component encloses each wind model into a Vector3TimeEvaluable

and provides the concrete inputs to it

– The common component provides shared methods utilized across density and
wind component to bring the inputs into the requested format (e.g. correct delay
for solar geomagnetic activity data)

• The util provides functionality non-specific to godotAtmosph like string manipulation
or higher level functions for caching (similarly to e.g. the pythonic cached decorator)

• The plugin does not contain any functionality, but it only purpose is to register the
density and wind evaluables in godot::model::atmos

The above ensemble of godotAtmosph is then dynamically linked to godot. The interior
of the component godot, as depicted in Figure 5.1, demonstrates which components are
required by godotAtmosph as dependencies. These include functionality for timescales,
coordinate transformation, constants, and the partial derivative library. Next, it shows how
the godotAtmosph component interfaces to the new atmosphere component in godot, which
is detailed in the subsequent Section 5.2.
A fourth component resides on the left side of Figure 5.1: godotAtmosphPython. This

module provides direct access to the atmosphere models integrated into godotAtmosph

while still preserving the unified interface, i.e., only position, epoch, and solar geomagnetic
activity index files are required for calculation without the overhead of taking care of godot’s
internal systems. Further, the transformations and everything else are taken care of by
godotAtmosph and hidden. Section 5.5 provides a detailed look at this module and why it
was made in the first place.
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godot

godotAtmosph

atmosph

input

dtm2020

godotAtmosphPython

gost2004

jb2008

jb2008mod

nrlmsis-v2

sdo-atmosph

model util

common

density  

wind

plugin

core

tempo

constants

astro

autodif

linalg

num

model

frames

geometry  dyn

atmos

interface

common

Fortran-ISO-C-Binding
of Models

Constants,
Math

Caching

Solmag
Evaluables

Input Preparation Density & Wind
Registry

Density & Wind
Registry Model and Core Functionality

Density
Models

Density & Wind for
Drag

Position
for Drag

cosmos

pybind11

Python/ C++
Binding

Capabilities

Figure 5.1.: A UML Component Diagram of godotAtmsoph. The bottom shows only the
utilized components of godot (colors match with Figure 4.1), while the upper
two third show the actual godotAtmsoph plugin, the statically linked atmosph

library, and the custom Python Binding.
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5.2. The Refactored Model in Godot

Before godotAtmosph can be described in detail, a detailed look at the redesigned atmospheric
component of godot is necessary.

We describe the new atmosphere component in godot depicted in Figure 5.2. It con-
trasts the former architecture presented in Figure 4.2 and shows the improved refactored
solution. The structure of Figure 4.2 persists only in some small remnants. The former
Atmosphere class and all subclasses are split into a DensityModel and WindModel - with
the latter being omitted in case the Atmosphere only implemented an empty method.
The densities and wind models are administered by their respective registries in the new
AtmosphericFeaturesPlugin. AtmosphericFeaturesPlugin provides a
DensityModelRegistry and WindModelRegistry following the Prototype Pattern. The
new density and wind evaluables defined by godotAtmosph are registered in it and ready
to be instantiated from there. Thereby, they are available to the dynamics (denoted with
dyn) component and ultimately inside a propagation/ the godot::cosmos library. The new
dynamic AtmosphericFeaturesDrag uses the DensityModel and WindModel. It is named
AtmosphericFeaturesDrag instead of the already utilized name AtmosphericDrag since
the old system will continue to co-exist for some time to facilitate the transfer to the new
system. The derivatives and integration to autodif are provided by numerical means in the
top superclass DensityModel or WindModel.

AtmosphericFeaturesDrag does not require any direct access to the frames system.
Instead, it directly gets an Vector3TimeEvaluable called position using godot’s geometry
component from the model layer. Hence, this resolves the unnecessary exposure of the whole
frames system into a small dynamic.

Overall, all problems listed in Subsection 4.2.2 related to separation of concern, single
responsibility and of high importance Liskov’s substitution principle are solved by these new
abstract interfaces. Further, the new approach blends in seamlessly with godot’s core design
philosophy of using TimeEvaluables for every parameter, including density and wind now
being a TimeEvaluables as well.

5.3. Input of Godot-Atmosph

Before continuing with the model of godotAtmosph, a glance over input is required due to
the dependency direction in-between. Figure 5.3 shows a UML Class Diagram of the input
component and its major white-box dependencies (due to inheritance) into godot. The
input component provides the means to model geomagnetic and solar indices by means of a
ScalarTimeEvaluable. Thus, we adapt these indices into the universal system of godot.

Listing 1 gives an example of a typical index file. These standard text files splitting
the values by white spaces are widely employed across the scientific community, at least
from the investigative perspective of this work. In our use case, three such text files
needed to be integrated, as mentioned in Subsection 4.1.4: fap day.dat, SOLFSMY.txt,
and DTCFILE.txt. The files’ schemas are known at compile-time and do not change. The
resolution of this engineering problem is the class IndexReader<T...> using a variadic
template. It can be arbitrarily typed. Columns that are not needed can be denoted with the
empty struct Discard<size t> with size t being the number of consecutive columns to
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godot::model::dyn godot::model::common

godot::model::atmos

«abstract»
TimeEvaluableT<int>

+ eval(epoch: Epoch): Output

+ eval(epoch: XEpoch): XOutput

«abstract»
DensityModel

+ eval(epoch: Epoch): double

+ eval(epoch: XEpoch): xdouble

# evalImpl(epoch: Epoch, position: Vector3): double

«abstract»
WindModel

+ eval(epoch: Epoch): Vector3

+ eval(epoch: XEpoch): XVector3

# evalImpl(epoch: Epoch, position: Vector3): Vector3

bodyState

density,
mass,

area, cdwind

AtmosphericFeaturesDrag

+ eval(epoch: Epoch): Vector3

+ eval(epoch: XEpoch): XVector3

- evalImpl(epoch: EpochT<S>): Vector3T<S>

«abstract»
ScalarTimeEvaluable

+ eval(epoch: Epoch): double

+ eval(epoch: XEpoch): xdouble

«abstract»
Vector3TimeEvaluable

+ eval(epoch: Epoch): Vector3

+ eval(epoch: XEpoch): XVector3

«abstract»
Vector6TimeEvaluable

+ eval(epoch: Epoch): Vector6

+ eval(epoch: XEpoch): XVector6

godot::cosmos::universe

AtmosphericFeaturesPlugin

- densities: DensityBook

- winds: WindBook

+ getRequiredPlugins(): vector<string>

+ setup(uni: Universe, config: json, init: bool):
void

+ densities(): DensityBook

+ winds(): WindBook

Plugin

DynamicsPlugin

Nrlmsise00DensityModel

AveragedEarthDensityModel

ExponentialDensityModel

PatchedExponentialModel

LegacyDensityModel

Nrlmsise00WindModel

Figure 5.2.: A UML Class Diagram of the namespace godot::model::atmos and the major
additions around presenting the new representation of atmospheric drag.

1 #d/mm/yyyy F10 F3M SSN Ap 3-hr Kp-Indices last update: 23-APR-2023

2 #--------- --- --- --- --- --------------- 27d forecast -> nominal

3 01/04/1957 218 208 198 023 4o4+4o3+3o3+4-4-

4 02/04/1957 202 207 215 015 4+2-3o3o2+2+3+3+

5 ...

Listing 1: An example of the fap day.dat containing the solar and geomagnetic indices
distributed by ESA’s SDO

discard. For example, in Listing 1, the sunspot number SSN column is discarded. Listing 2
displays the full instantiation. Every type must provide an istream operator. In the
case of godot::tempo::Date, the istream operator was extra implemented as part of
godotAtmosph. A further advantage, the methods getColumnWise() and getRowWise()

are cached. Thus, repeated access - if required - does not imply further file reads, greatly
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improving the runtime.

1 class SdoSolmagReader

2 : public IndexReader<godot::tempo::Date,

3 double, double, Discard<1>, double, DailyApIndexInstream>;

Listing 2: The declaration of the SdoSolmagReader

The common superclass IndexReaderBase solves the problem that templating is static
and does not allow for polymorphism. The only method the subclasses need to implement is
getEvaluables() due to the fact that the names cannot automatically be determined, as
well as which kind of ScalarTimeEvaluable shall be utilized. The IndexReader<T...> is
the heart of the input component and was used due to its versatility also in the context of
testing, as density data is distributed in index files similarly to the one presented in Listing 1,
too.
Figure 5.3 also depicts the class IndexTimeEvaluable. It offers a TimeEvaluable based

access to the underlying data. It only stores the starting epoch and the step size (in
seconds) to reduce the memory footprint acting like a flyweight. The two subclasses
basically either return the last discrete value (DiscontinousIndexTimeEvaluable) or a
linearly interpolated value (ContinousIndexTimeEvaluable). In September 2023, there was
a discussion to include this functionality into core godot. However, at that time, internal
plans were already on the way to include an even more universal TimeSeries class. Thus,
the functionality depicted here is exclusive to godotAtmosph.

The last class of input is the IndexTimeEvaluableBuilder. It facilitates the creation of
the actual TimeEvaluable employing the Builder Pattern. The client only needs to hand over
the file paths. The rest is taken care of, including caching the evaluables and error handling
in case of duplicated data. Hence, from the outside, the IndexTimeEvaluableBuilder could
either be described as an instance of a Proxy Pattern or a Singleton.
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godotAtmosph::input

«abstract»
IndexReaderBase

+ getEvaluables(): map<string, ScalarTimeEvaluablePtr>

IndexReader<T...>

- filepath: filesystem::path

- cache: optional<tuple<vector<T>...>>

+ getRowWise(): vector<tuple<T...>>

+ getColumnWise(): tuple<vector<T>...>

+ countEntries(): size_t

«struct»
Discard<size_t>

+ operator>>(istream: istream): istream

«abstract»
IndexTimeEvaluable

- values: vector<double>

- startEpoch: Epoch

- stepSize: size_t

- evalInternal(epoch: Epoch): double

«struct»
DailyApIndexInstream

+ ap3Hourly: array<int16_t, 8>

+ operator>>(istream: istream): istream

SdoSolmagReader

+ PREFIX: string

+ FILE_TIMESCALE: string

+ DAY_START: Time

SetSfuReader

+ PREFIX: string

+ FILE_TIMESCALE: string

+ DAY_START: Time

SetDstdtcReader

+ PREFIX: string

+ FILE_TIMESCALE: string

+ DAY_START: Time

IndexTimeEvaluableBuilder

- filenames: set<string>

+ addIndex(filename: string): void

+ addIndex<Container>(filenames: Container):
void

+ getEvaluables():
map<string, ScalarTimeEvaluablePtr>

1*

*

1

ContinuousIndexTimeEvaluable DiscontinuousIndexTimeEvaluable

godot
ScalarTimeEvaluable

+ eval(epoch: Epoch): double

+ eval(epoch: XEpoch): xdouble

TimeEvaluableT<int>

NoEvent

Figure 5.3.: A UML Class Diagram of the namespace godotAtmosph::input. Types are
abbreviated using the namespaces std and the respective ones from godot.
Templating is depicted as inheritance (e.g. the Reader all inherit from
IndexReader<T...>, while in practice the concrete templating creates for each
subclass its own distinct superclass).

57



5. Architecture

5.4. Model of Godot-Atmosph

Figure 5.4 depicts the godotAtmosph::model and how it relates to godot::model::atmos,
previously seen in Figure 5.2.

In order to obtain a degree of independence, godotAtmosph subclasses its own DensityModel
and WindModel. This bridge ensures that godotAtmosph keeps working even if the actual
base class should change with a newer version.
Figure 5.4 lists the concrete density and wind models inheriting from their abstract

counterparts. Each of these subclasses overwrites the evalInternal(epoch, position)

method. In each of these methods:

1. The model specific transformations are conducted, e.g., including the weighting of
solar and geomagnetic activity data exclusive to that specific model

2. The Fortran-ISO-C function of atmosph is called

3. The output is converted into the right unit

The MSIS and HWM models are unique, as they provide the same signature over multiple
model generations with the only distinct characteristic of the employed floating point
precision. In these cases, a standard template superclass is introduced while the subclass
is templated with its concrete std::functional<FloatType(...)> calling the respective
model.
The common module contains a selection of utility or often used shortcuts required for

the models but not provided by godot at the implementation time. To summarize, the
model component of godotAtmosph mainly serves the purpose of transforming a signature
like Listing 3 to a more usable method like Listing 4 by converting all different inputs and
outputs to the concrete required ones. Further, the model provides the integration into
godot’s TimeEvaluable-based system.

1 extern "C" void c_jb2008(

2 const double &amjd, const double *sun, const double *sat,

3 const double &f10, const double &f10b, const double &s10,

4 const double &s10b, const double &xm10, const double &xm10b,

5 const double &y10, const double &y10b, const double &dstdtc,

6 double *temp, double *rho

7 );

Listing 3: The signature of JB2008’s Frotran-ISO-C Interface.

1 double evalImpl(const Epoch &epoch, const Vector3 &position);

Listing 4: The signature of a JB2008 evaluation in godotAtmosph.
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godotAtmosph::model

godot::model::atmos

«abstract»
DensityModel

# evalImpl(epoch, position)

«abstract»
WindModel

# evalImpl(epoch, position)

US1976DensityModel

CIRA72DensityModel

JACLINDensityModel

DTM2013DensityModel

DTM2020DensityModel

JB2008ModDensityModel

JB2008DensityModel

MSISv2DensityModel

MSIS00DensityModel

MSIS86DensityModel

MSIS77DensityModel

MSIS90DensityModel

GOST2004DensityModel

LegacyMSISDensityModel<FloatType>

HWMWindModel<FloatType>

HWM07WindModel

HWM93WindModel

HWM14WindModel

«abstract»
DensityModel

+ evalAt(epoch, position)

common

«namespace»
tempo

+ solarTime<T>(secOfDay, longDeg, angularUnit)

«namespace»
sun

+ getRightAcensionAndDeclination(julianDays)

+ longitudeToRightAcension(longitude, julianDays)

«namespace»
tempo

+ numberOfDaysBetween(date1, date2)

+ indexInIntervall(startEpoch, epoch, delta)

+ areNeighbors(date1, date2)

+ toGMST(epoch)

+ getSecondsOfDay(epoch)

+ getYearDate(epoch)

«namespace»
transform

+ cartesianToGeodetic(position, angularUnit)

+ geodeticToCartesian(geo, angularUnit)

+ windToCartesian(lat, lon, windVec, angularUnit)

«namespace»
angle

+ fromTo(angularFrom, angularTo, value)

«namespace»
solmag

+ convertApToKp(ap)

+ convertKpToAp(kp)

+ getGeomagneticMSIS(ap, ap3Hourly, epoch)

+ getGeomagneticGOST2004(ap3Hourly, epoch)

+ getGeomagneticDTM(ap3Hourly, epoch)

+ getSolfuxGOST2004(solFlux, epoch)

+ getSolfluxJB2008(solFluxEvaluables, epoch)

«enumeration»
AngularUnit

RADIAN, DEGREE, HOURS

«enumeration»
GeomagneticUnit

AP, KP

«abstract»
WindModel

+ evalAt(epoch, position)

Figure 5.4.: A UML Class Diagram of the namespace godotAtmosph::model and the core
inheritance relation to the new namespace godot::model::atmos. Types are
omitted for clarity. Templating is collapsed and depicted as inheritance (e.g.
LegacyMSISDensityModel<FloatType> represents float and double template
instantiation). Free namespace functions are denoted in classes with the stereo-
type namespace. Each concrete DensityModel and WindModel implements its
own evalInternal(epoch, position) method.
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5.5. Python Binding of Godot-Atmosph

godot_atmosph Python Interface

+

+ __init__(model_name: str, filenames: List[str]): None

+ __call__(): List[List[float]]

+ evaluate(): List[List[float]]

+ zip_evaluate(): List[float]

+ zip_evaluate_time(): List[float]

+ zip_evaluate_diurnal_correction(): List[float]

+ set_coefficients(coefficient_name: str, coefficients: List[float]): None

+ get_coefficients(): Tuple[List[float]]

+ reset_coefficients(): None

«free functions»
godot_atmosph

+ set_coefficients(model_name: str,
     coefficient_name: str,
     coefficients: List[float]): None

+ get_coefficients(model_name: str): Tuple[List[str]]

+ reset_coefficients(model_name: str): None

+ get_registered_models(): List[str]

WindModel

+ __init__(model_name: str, filenames: List[str]): None

+ __call__(): List[List[Vector3]]

+ evaluate(): List[List[Vector3]]

+ zip_evaluate(): List[Vector3]

«abstract»
AbstractModel

+ evaluation_epochs: List[str]

+ evaluation_points: List[Vector3]

+ __repr__(): str

+ set_evaluation_epochs(epochs: List[str]): None

+ set_evaluation_points(positions: List[Vector3], is_geodetic: bool): None

Figure 5.5.: A UML Class Diagram of the independent Python binding of godotAtmosph.
The type names are slightly adapted to improve readability (e.g. Vector3 is a
list of size 3 and value float).

The described C++ implementation does not extend godotpy by any means and is subject
to godot’s architectural constraints. This circumstance is accompanied by the following two
issues:

1. The new atmosphere models dynamically linked as plugin godotAtmosph to godot are
only available in the context of a Universe. However, there is no way to instantiate
the model directly via godotpy. One needs to instantiate the Universe, and then,
one can get the density evaluable from the evaluables book of the Universe. In order
to evaluate the model at a given position, one is now required to manually intervene
in the frames system and align the placeholder positions of the density model to the
desired location. This is a tedious procedure.

2. Second, while in theory, an extension of godotpy would be possible, given that
DensityModel and WindModel are now part of godot itself. The realization still would
require a substantial effort. Further, it is questionable if an independent atmosphere
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model implementation only for the purpose of wind and density evaluation fits into
the design approach of core godot/ godotpy.

To summarize, the atmosphere models are easily used in the bigger context of satellite
propagation, i.e., a Universe set-up in godot. However, single access to evaluate the density
or wind at a specific point without the need for boilerplate code is not possible.

Hence, this work is accompanied by a small Python binding named godot atmosph, which
offers the same unified, easy-to-use interface as in the C++ (see Listing 4) version to quickly
evaluate an arbitrary atmosphere model at a given epoch and position. Figure 5.5 displays
the Python binding exposing the C++ functionality to Python. It consists of an abstract base
class AbstractModel, which stores the evaluation points and evaluation epochs. The storage
of points inside the C++ class enables fast subsequent evaluations, especially regarding an
optimization process where grid points remain constant, i.e., the setup time amortizes to a
constant cost in the beginning. The need to transfer the epoch and point vectors repeatedly
to the evaluation function is omitted. This is of particular importance as epochs are handed
over as strings (to expose as little as possible from godot) and only converted to type
godot::tempo::Epoch on the C++ side.

The two subclasses DensityModel and WindModel respectively specialize the base class for
either density or wind evaluation. The function evaluate or call returns the evaluated
results at the cartesian product of epochs and points while zip evaluate returns the inner
product of the input. The density subclass also enables the manipulation of the coefficients
of the underlying density model. This is only implemented for the manipulable version of
the JB2008 model, abbreviated with JB2008 Modified (JB2008MOD). In every other case,
the methods throw an exception.
The free functions in godot atmosph enable the manipulation of the coefficients of a

JB2008MOD created in the context of a godot Universe by effectively injecting the correct
parameters during runtime in an instance of JB2008MOD. This technique is obviously not
optimal. However, we can save the runtime of re-creating a fully populated universe instance
with an JB2008MOD instance containing a different set of parameters. This time savings are
beneficial for small propagation of around several hours to a few days where the initializing
takes more time than the propagation. Secondly, the approach allows for faster prototyping,
as new coefficients can quickly be exposed without the need to modify overlaying client code.
For example, a coefficient modeled as TimeEvaluable would be required to be modified in
either C++ or Python context with associated new production code. The current setup allows
this to be just a different string for coefficient name in godot atmosph without the need
to add anything different in client code on top.
Two functions remain to be explained. The method zip evaluate time() enables to

efficiently measure the runtime of the raw Fortran atmosphere model (e.g., Listing 3) using
a singleton recorder instance. It returns the time for each zipped evaluation in microseconds.
A preprocessor macro MEASURE RUNTIME OR NOP(fun) inserts time measurements into the
singleton when set to recording. The macro only adds O(1) realized by an additional condition
to the whole evaluation when disabled and nothing at all when the time measurement is not
compiled. It is utilized in the context of Section 7.2.
The method zip evaluate diurnal correction enables the raw evaluation of JB2008

diurnal density correction function with the current set of coefficients, positions, and epochs.
Chapter 8 explains why this functionality is required.
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6. Verification & Validation

The implementation is continuously integrated into the GitLab1 instance of ESA. The
implementation around godotAtmosph encloses an extensive amount of unit tests, which
can be classified into three categories.

First, the standard unit tests exist for the in Chapter 5 presented classes. These tests
verify the correctness of every class, including, but not limited to, the I/O operations, the
solar and geomagnetic indices processing, and the correctness of the Fortran-ISO-C binding.

The second category of tests verifies the correctness of the atmosphere model integration.
Further, they re-validate the correctness of the atmospheric models as a whole, that the
implementation is correct. The publishing authors of MSISv22 and HWM143 distribute
reference data with their models. Thus, a parameterized test checks the implementation of
all released data points in both cases. In case of DTM20134, JB20085, MSIS006, MSISv27

and HWM148 and online evaluation service exists. This service is kindly made available
by the Community Coordinate Modeling Center (CCMC). We utilized this service to
produce reference data. In an initial verification of the MSISv2 and MSIS00 model, we
found deviations when compared to the CCMC data. We found our implementation correct,
and the CCMC’s containing slight deviations when compared to the previously mentioned
reference data - luckily available for MSISv2. In 67 of 200 cases, the CCMC’S data deviated
by at least 1% from ours and the reference of the MSISv2’s authors. In 13 out of these
67 cases, the deviation lied between 5% and 9%. Sometime later in the year, the CCMC’s
results were aligned to ours. These tests are performed with a relative epsilon of 10−2 to
10−4 depending on the reference data’s precision, which is usually given by an analogous
amount of digits. Every other density model, including the above mentioned again, is further
compared to 600 random samples from the HASDM density set with a generous epsilon
for the purpose of checking that the magnitude is similar. The later test also revealed an
implementation error in MSIS86 leading to nan values when compiled in Release mode.
The root cause was found to be non-initialized variables. This bug was fixed in the MSIS86
version in godotAtmosph.

Both of these first two test categories are written using GoogleTest9.

The third category is written using pytest. It is an integration test based on the NAPEOS
test case (see Section 4.2). In NAPEOS, a spacecraft (Cryosat-2 ) is propagated around
the Earth for twelve hours, and the final positions are compared. We get identical results

1https://gitlab.esa.int/sdo/godot-atmosph/, last accessed: 11.01.2024
2https://map.nrl.navy.mil/map/pub/nrl/NRLMSIS/NRLMSIS2.0/, last accessed: 11.01.2024
3https://map.nrl.navy.mil/map/pub/nrl/HWM/HWM14/, last accessed: 11.01.2024
4https://ccmc.gsfc.nasa.gov/models/DTM~2013/, last accessed: 11.01.2024
5https://ccmc.gsfc.nasa.gov/models/JB2008~2008/, last accessed: 11.01.2024
6https://ccmc.gsfc.nasa.gov/models/NRLMSIS~00/, last accessed: 11.01.2024
7https://ccmc.gsfc.nasa.gov/models/NRLMSIS~2.0/, last accessed: 11.01.2024
8https://ccmc.gsfc.nasa.gov/models/HWM14~2014/, last accessed: 11.01.2024
9https://github.com/google/googletest, last accessed: 11.01.2024
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to the previous implementation with the new implementation using MSIS00 and the same
parameter set. The epsilon for NAPEOS is 5 · 10−4. The other density and wind models are
also tested for completeness in the integration test. However, those tests are conducted with
a decently bigger test epsilon of 5 · 10−3.

The changes in godot itself are tested by their already existing test toolchain. The existing
test base of godot::atmos has been migrated and refactored to fit the new structure of
godot::model::atmos.
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7. Use Cases, Results & Discussion

This Chapter 7 presents runtime measurements of the aforementioned implementation, and
results obtainable using the presented godotAtmosph Plugin.

7.1. Use Case Example of Atmospheric Models in Godot

1 "atmospheric_features": {

2 "density":

3 [

4 {

5 "name": "MyDensity",

6 "type": "JB2008",

7 "config": {

8 "solmag":

9 [

10 "path/to/DTCFILE.TXT",

11 "path/to/SOLFSMY.TXT"

12 ]

13 }

14 }

15 ],

16 "wind":

17 [

18 {

19 "name": "MyWind",

20 "type": "HWM14",

21 "config":

22 {

23 "solmag": "path/to/fap_day.dat"

24 }

25 }

26 ]

27 }

Listing 5: An example of how to use the new atmospheric models in the context of a godot

universe configuration to instantiate a concrete Universe.
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7.2. Runtime Measurements

1 "dynamics":

2 [

3 {

4 "name": "EarthAtmosphere",

5 "type": "AtmosphericFeaturesDrag",

6 "config": {

7 "point": "Earth",

8 "axes": "ITRF",

9 "density": "MyDensity",

10 "wind": "MyWind",

11 "mass": "SC_mass",

12 "area": "SC_drag_area",

13 "cd": "SC_drag_cd"

14 }

15 }

16 ]

Listing 6: This example assembles a density and wind model to a dynamic in the context of a
godot universe configuration. The parameters wind and density are configured in
the atmospheric features plugin (see Listing 5). The parameter axes is defined
in the frames plugin. The parameter point is implicitly added to the frames

plugin by adding the Earth to the bodies plugin. The remaining parameters are
defined in the spacecraft plugin. Details can be found in the documentation
[58] or the Software Specification Document [50].

Section 5.2 presented the changes in godot. Listing 5 demonstrates how the new density
and wind models are incorporated into the elementary universe configuration of godot,
which specifies the equally named Universe instance. A density model is created by selecting
a type and - if required - handing over a list of files from which the respective evaluables for
solar and geomagnetic activity can be created.

The density and optionally the wind model are then embedded into a dynamic of type
AtmosphericFeaturesDrag as shown by Listing 6. The latter also requires mass, drag
area, and the coefficient of drag to be handed over. These properties are defined in
the SpacecraftPlugin, which is not displayed here. It is sufficient to know that the
SpacecraftPlugin defines all properties inherent to a spacecraft, e.g., like characteristics
or the propulsive system [58]. The name of the dynamics (here: EarthAtmosphere) can
then be utilized to, e.g., propagate a spacecraft, by defining the boundary conditions of the
respective trajectory in a separate configuration file. For interested reader is referenced to
the official documentation [58].

7.2. Runtime Measurements

Section 5.5 presents the Python interface. Figure 7.1 compares the runtime in seconds for
100 000 randomly generated pairs of points around the globe with random epochs between
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7. Use Cases, Results & Discussion

the years 2000 and 2020. It also demonstrates the overhead added to the raw Fortran
evaluation required for input and output transformation/ solar and geomagnetic indices
preparation. Overall, the density models perform similarly given the complete comparison,
with no model being a full magnitude faster or slower. However, the situation changes
dramatically when only observing the raw Fortran runtime. The raw Fortran runtime is
measured by the dedicated time measurement function of a DensityModel, as presented in
Section 5.5. MSISv2 performs the worst, probably due to the model’s build-up of several
spline functions being expensive. It is also significantly slower than its predecessors, which
makes sense, as MSISv2 is built from the ground new, whereas its predecessors are increments
of each other. This fact is reflected in the step-wise increase from generation to generation.

GOST2004 is among the fastest to evaluate. However, a significant bulk of time is spent
in input preprocessing. This can be explained by the fact that GOST2004 requires a special
form of weighted solar F10.7 index. For each evaluation, this requires iterating over the last
81 days of solar activity. Nonetheless, due to godot’s TimeEvaluable-based design, this
is not efficiently possible even though the values are stored consecutively in memory. A
TimeEvaluable only provides the evaluate function taking a single epoch. Thus, iterating
over the last 81 days requires the repeated build of full Epoch objects with whom to call the
evaluate method. Removing this single calculation significantly improves the runtime of
GOST2004 by more than a third.

The same problem solidifies in the evaluation of the MSIS models but is less severe.
Dedicated averages require the last eight three-hourly ap values.

The problem could be resolved in three ways:

1. The caching of already computed solar and geomagnetic activity data, mainly the
averages

2. The full precomputing of the averages and storing them in a new index file in the
persistent memory

3. A more efficient bulk/ range-based access for TimeEvaluables

The first idea is realized in the existing implementation of MSIS00 in godot. It achieves
better runtime performance around factor two in a satellite propagation scenario. However,
it would fail in the here presented runtime comparison, as we sample randomly unique
non-consecutive epochs. Thus, a cache for already-seen data would not help in this concrete
situation. Nevertheless, it would be beneficial because real applications usually require
consecutive temporal and spatial data.

The second idea would be overall the fastest, but somehow also counters the idea of a
general purpose software like godot when one requires a unique file for every use case.

The third idea is currently being discussed internally to be integrated into godot’s core
but was not finished at the time of writing. The introduction of a TimeSeries class, as
mentioned in Section 5.3. Also, a self-brewed solution only for godotAtmosph was found to
be unneeded with a core solution on the horizon. Moreover, the runtimes measured here are
sufficiently good for the use cases of this work.
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7.3. Global Density and Wind Model Evaluation

Figure 7.1.: Average Runtime Comparison between the major density model. The measure-
ment has been conducted on the laptop specified in Appendix. The Python
Interface/ Atmosphere Models have been compiled with Apple Clang 15. The
plot shows that the input processing takes in several cases the greater share of
runtime (especially to mention e.g. GOST2004) than the actual density model
function evaluation.

7.3. Global Density and Wind Model Evaluation

Chapter 3 and Chapter 4 introduced HASDM. It is often refereed to as “gold standard” of
the atmospheric density models. While the model itself is disclosed, the density data is
available to the public from 2000 to 2019. Figure 7.2 plot the relative error of each density
model compared to the HASDM database using respectively one million randomly sampled
points in the years 2000, 2006 and 2019.

2000 and 2006 are chosen because they represent years of high and low solar activity. 2019
is chosen since it is the most recent one available in the HASDM database. Further, none of
the models (with exception of DTM2020 and MSISv2) could purpose 2019’s data for fitting.
All box-plots include the mean and standard deviations, but exclude outliers and are cut-off
at 2.5.

The more recent models perform most of the time better than the older ones. JB2008
performs overall the best. This performance is not surprising because HASDM is based on
JB2008 with the only difference being the coefficient utilized. However, it also part of the
justification why we will focus on JB2008 in context of Part III’s optimization.

Lastly, the Figures 7.3 and 7.4 show the global density situation in altitude of 400 km. The
dates are not randomly sampled, but fixed to the ones in Chapter 2. The pairs of Figures 2.3
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7. Use Cases, Results & Discussion

and 7.3 and Figures 2.4 and 7.4 depict respectively the same situation. Figures 2.3 and 2.4
utilize MSIS00 and one can partially see the similarities to Figures 7.3d and 7.4d using
MSIS00.
The HASDM Reference uses interpolation in between grid points in Figures 7.3 and 7.4.

This visibly explains the round shapes in the global density map. New models, namely
JB2008, MSISv2, MSIS00, DTM2013, and DTM2020, are closer to the HASDM reference.
The relative errors in Figure 7.2 confirm this. Further, the older MSIS models from 1977,
1986, and 1990 have a distinctly different density distribution. This is also mirrored in the
bigger relative errors of Figure 7.2. An outlier is the Russian GOST2004, which has its
density maxima at very different positions than all other models thourghout Figures 7.3
and 7.4 Nonetheless, as no reference or description exists to the author’s knowledge, we
cannot say if this might be due to wrong inputs in the implementation or if this is just the
model. All statements are consistent through low and high solar activity in Figures 7.3
and 7.4.

For completeness, Figure 7.5 shows the wind models comparing the situation for high and
low solar activity.
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7.3. Global Density and Wind Model Evaluation
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Figure 7.2.: Description on the next page
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Figure 7.2.: The box plots show the distribution of the respective density model’s relative
error to the HASDM reference. For each model, one million reference points
were randomly sampled from the HASDM density dataset. The plots are cut
off at 2.5 for better readability and comparability, and outliers are not shown.
As compensation, mean µ and standard deviation σ are given, revealing, e.g.,
the existence of significant outliers for GOST2004. Three years are shown: 2000
and 2006 to demonstrate the performance of each model during low and high
solar activity, as well as 2019, whose data was unavailable when some of the
models were constructed. Each box spans from Q1 (median of the lower half
of the dataset) to Q3 (median of the upper half of the dataset). Q2 marks the
median with a horizontal line.
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Figure 7.3.: Atmospheric density in an altitude of 400 km on 15.07.2000 at 18:00 UTC.
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Figure 7.4.: Atmospheric density in an altitude of 400 km on 15.07.2006 at 18:00 UTC.
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7.3. Global Density and Wind Model Evaluation

180 120 60 0 60 120 180
90

60

30

0

30

60

90

(a) HWM93 - High Solar Activity

180 120 60 0 60 120 180
90

60

30

0

30

60

90

(b) HWM93 - Low Solar Activity

180 120 60 0 60 120 180
90

60

30

0

30

60

90

(c) HWM07 - High Solar Activity

180 120 60 0 60 120 180
90

60

30

0

30

60

90

(d) HWM07- Low Solar Activity

180 120 60 0 60 120 180
90

60

30

0

30

60

90

(e) HWM14 - High Solar Activity

180 120 60 0 60 120 180
90

60

30

0

30

60

90

(f) HWM14 - Low Solar Activity

Figure 7.5.: Atmospheric wind in an altitude of 400 km on 15.07.2000 or 15.07.2006 at 18:00
UTC. 2000 was a year of high solar activity. 2006 was a year of low solar activity.
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7. Use Cases, Results & Discussion

7.4. Reproducibility of the Plots

The subsequent Part III introduces the Atmosphere & Reentry Optimization Framework.
It provides a wide variety of features, such as the capability to plot results automatically.
All plots of Chapter 7 are fully made with the framework and the configuration presented
in Listing 7. The subsequent Part III explains the Atmosphere & Reentry Optimization
Framework and how this tight integration of subsystems is achieved to enable the user to
perform complex operations, including I/O with a single configuration file.

1 ---

2 atmosopt:

3 hasdm:

4 altitudes: [ 175, 300, 400, 500, 600, 700, 800 ]

5 years: [ 2000, 2006, 2019 ]

6 save_path: "./path/to/hasdm"

7

8 model:

9 density_ground_truth: "./path/to/hasdm"

10

11 plot:

12 - name: density

13 with_model: model

14 params:

15 density_model: HASDM

16 epoch: 2000-07-15T18:00:00.000

17 altitude: 400

18 save_path: "./path/to/Density_HASDM_2000_400km.pdf"

19 - name: wind

20 with_model: model

21 params:

22 wind_model: HWM14

23 epoch: 2000-07-15T18:00:00.000

24 altitude: 400

25 save_path: "./path/to/Wind_HWM14_2000_400km.pdf"

26 # ... other plots of type "density" or "wind"

27 - name: density_relative_error

28 with_model: model

29 params:

30 sample_size: 1000000

31 seed: 42

32 from: 2000-01-01T00:00:00

33 to: 2000-12-31T23:59:00

34 plot_mean_std: True

35 save_path: "./path/to/Density_RMSE_2000_all.png"

36 # ... other plots of type "density_relative_error"

37 - name: runtime

38 with_model: model

39 params:

40 sample_size: 100000

41 save_path: "./plots/runtime.pdf"

Listing 7: YAML configuration for the plots of Chapter 7 using atmosopt
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Part III.

The Atmosphere & Reentry
Optimization Framework
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8. Architecture & Application

This chapter introduces the architecture of the Atmosphere & Reentry Optimization Frame-
work, which is in the following abbreviated with the name of the Python package atmosopt.
An example configuration file accompanies the explanations to continuously illustrate how the
configuration file is mirrored in the architecture and vice-versa. Beforehand, the subsequent
section presents a high-level overview of components and the leitmotif.

In the following, if we refer to atmosphere models, we only refer to density models since
wind models are not of further interest in the context of atmosopt. Design Pattern and
Structural Choices are emphasized in italics.

8.1. Overview of Components

atmosopt

plot

clientsmodel

optimization

metrics

physics

transformation

discoshasdm

spacetrack

propagator hasdm
numpy

godotpy godotAtmosphPython

pygmo

pandas
requests

matplotlib

seaborn

Input

Data Container & Manipulation
Interface to Godot

Optimzation
Algorithms

Tabular Data Format

Array Operations

Propagation & Simulation Density Evaluation

Web Requests API

Statistical Plotting

Plotting

atmosphere

strategies

loguru

Logging

Figure 8.1.: A UML Component Diagram of atmosopt displaying its major dependencies
in gray. The inner components are colored differently for better visibility. The
model is central and unifies the capabilities of godot with the automatic retrieval
of data. The relation from model to clients is realized by a higher level driver
program of atmosopt. However, there exists no actual inter-dependency between
the plain two components. The connections only serves the understandability.

The Atmosphere & Reentry Optimization Framework breaks down into four sub-components:

• The clients component handles the raw input retrieval from publicly available sources.
It is subdivided into three independent modules:
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– The spacetrack component handles the retrieval of satellite state data from
Space-Track (see Subsection 4.1.1)

– The discos component handles the retrieval of satellite characteristics from
ESA’s DISCOS (see Subsection 4.1.2)

– The hasdm component handles the retrieval of density data from the SET HASDM
Database (see Subsection 4.1.3)

• The models component is the central storage container and provides (parallel) propa-
gation, conversion, and more functionality. Its foundation consists of the two classes
SatelliteCollection and Satellite

– the hasdm component provides an efficient storage container for the SET HASDM
Data

– The propagator component provides the interface to one of godot’s core compe-
tences: Satellite Propagation

– The atmosphere component provides a unified interface to the godot atmosph

Python binding

– The remaining component transformation, metrics, physics provide minor
utility functionality

• The optimization component provides the capabilities to assemble a ballistic coeffi-
cient or atmospheric optimization problem by arbitrarily combining satellites, epoch
ranges, and concrete strategies into a single problem. Further, it enables the parallel
execution of these tasks.

• The plot component provides ways to visualize the interior of the mode component

The core philosophy of atmosopt is the complete decoupling of optimization, plot and
clients. The only interplay occurs via the model. The model contains the satellites and
density data provided as instantiated objects to the other components on request. The
output of the optimization, plot, and clients is written to the hard drive. An exchange
of optimized parameters from optimization to plot only happens via file paths if atmosopt
is utilized like an executable. This design choice allows for interruption of the process without
losing intermediate optimization results. If atmosopt is utilized as a library, functional
interfaces allow the user to hand over parameters within Python from one component to
another.

Thus, a configuration file consists of six independent steps:

1. Download data from Space-Track

2. Download data from DISCOS

3. Download data from the SET HASDM Database

4. (Lazily) assemble the model(s) as specified by the user by consolidating the data from
step 1 to 3

5. Run all specified optimizations and save the result of each single optimization task,
making it available as input for the next optimization in order

6. Run all requested plotting activities
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The configuration file is executed by the Runner class. Due to the independence of each
step, it is possible to, e.g.,

• fully ignore/ omit certain parts like the download parts if the files are already present

• specify multiple models with different input files

• reuse the results of previous optimizations

• recover gracefully as every single (end-)result is saved to persistent memory

• incrementally add full steps or single tasks to a configuration file while still reusing
already computed results (e.g., starting with ten satellites and adding run by run more
satellites)

• easily conduct comparisons between results of different methods

For instance, the configuration presented in Section 7.4 demonstrates a configuration
entirely omitting satellite data and optimization tasks. In the following, a configuration
file, utilized in Chapter 10, accompanies the descriptions and rationale of the architectural
design step by step. The configuration leads to the results given by Figure 10.3.

8.2. Clients Component

The clients component is split into three subcomponents, namely discos, hasdm,
spacetrack. They all provide a similar handling experience. From the first view on
Figure 8.2, it is tempting to add abstract classes for the Client, Error, and Query class.
It would make sense structurally, but it is pointless from an operative point of view since
the accept methods have highly different return types. If one had introduced an abstract
superclass, all subclasses would have violated the contract, which they should obligate. Thus,
we remain at this clean triple split. All clients are implemented as singleton. Thus, a
repeated instantiation will return the same instance.

For Space-Track, an excellent implementation exists installable via pip1. For this work,
we decided to reinvent the wheel for one reason. The class hierarchy can be directly re-found
in the configuration depicted in Listing 8. The configuration parsing is basically for free
as a side effect of the class hierarchy. The Space-Track client implements rate limiting
and lazily authenticates the user on the first actual request. Six methods are implemented
listed in SpaceTrackMethod with three of them of particular importance and also used in
Listing 8. GENERAL PERTURBATION HISTORY returns the historic TLE data, DECAY returns the
decay date(s) and their creation times, while TRACKING AND IMPACT PREDICTION MESSAGE

is superior and also contains the concrete latitude and longitude of reentry. The former two
are None for active satellites. The SATCAT is helpful to get an initial estimate of satellites
fulfilling launch and decay criteria without the need to process TLE state data.

The discos client returns the satellite characteristics, given a set of Norad Catalog IDs,
including mass and drag area boundaries - if available. This information is one option for
the initial ballistic coefficient of every satellite.

1https://github.com/python-astrodynamics/spacetrack, last accessed: 08.02.2024

78

https://github.com/python-astrodynamics/spacetrack


8.2. Clients Component

discos

hasdm

spacetrack

DiscosClient

- instance: Self

- token: str

+ accept(query: DiscosQuery): list[dict]

DiscosQuery

+ key: str

+ value: str | int | list[str | int]

+ as_payload(): dict[str, str]

DiscosClientError

HasdmClient

- instance: Self

+ accept(query: HasdmQuery): Bytes

HasdmQuery

+ year: int

+ altitude: int

+ parquet_filename: str

HasdmClientError

SpaceTrackClient

- instance: Self

- username: str

- password: str

- session: request.Session | None

- authenticated: bool

- authenticate(): requests.Response

+ __enter__(): Self

+ __exit__(...): None

+ accept(query: SpacetrackQuery): dict

SpaceTrackQuery

+ limit: int | None

+ url(): str

+ __str__(): str

SpaceTrackClientError

SpaceTrackValue

- content: list[tuple[STPred, str] | tuple[str, STPred, str]]

+ __str__(): str

- content_from_str(...): ... how

SpaceTrackOrder

+ by: str

+ __str__(): str

«enumeration»
SpaceTrackSortingOrder

ASCENDING, DESCENDING

«enumeration»
SpaceTrackMethod

GENERAL_PERTURBATION

GENERAL_PERTUBATION_HSITORY

DECAY

TRACKING_AND_IMPACT_PREDICTION_MESSAGE

TLE

SATCAT

«enumeration»
SpaceTrackPredicate

EQUAL, GREATER, LESS, 

NOT_EQUAL, INCLUSIVE_RANGE

method

params

*

str

order

Figure 8.2.: A UML Class Diagram of the clients component of atmosopt. It illustrates
the three major clients capable of retrieving data from Space-Track, DISCOS,
and the HASDM SET Density Database. The handling from a user-centric
perspective is similar, with the main entrance point being the accept(..)

method, consuming a query.

The hasdm client accepts a request for a single altitude ∈ {175, 300, 400, 500, 600, 700, 800}
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and year ∈ [2000; 2019]. The client returns a byte object representing the content of a zip-
compressed text file. The bytes object is written to a temporary directory, uncompressed,
and further prepared for use in the implementation by the mentioned Runner instance.
Details about the HASDM processing can be found in Subsection 8.3.2.
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8.2. Clients Component

1 ---

2 atmosopt:

3 spacetrack:

4 credentials:

5 username: <e-mail>

6 password: <password>

7 run:

8 - name: Satellites decayed in 2019-05, and available in 2019-04 for optimization

9 query:

10 method: "gp_history"

11 params:

12 NORAD_CAT_ID: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

13 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

14 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

15 EPOCH: "2019-03-01T00:00:00.000--2019-07-01T00:00:00.000"

16 order:

17 by: "EPOCH"

18 how: "desc"

19 save_path: "./2019-05-04/input/tle_data.json"

20 - name: Reentry Data

21 query:

22 method: "decay"

23 params:

24 NORAD_CAT_ID: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

25 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

26 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

27 save_path: "./2019-05-04/input/decay_data.json"

28 - name: TIP

29 query:

30 method: "tip"

31 params:

32 NORAD_CAT_ID: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

33 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

34 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

35 save_path: "./2019-05-04/input/tip.json"

36

37 discos:

38 credentials:

39 token: <discos-api-token>

40 run:

41 - norad_cat_id: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

42 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

43 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

44 save_path: "./2019-05-04/input/discos.json"

45

46 hasdm:

47 altitudes: [ 175, 300, 400, 500, 600, 700, 800 ]

48 years: [ 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,

49 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 ]

50 save_path: "./data/hasdm"

Listing 8: Configuration of the clients to download Satellite State & Characteristics and the
HASDM Set Density Data. The configuration is case-insensitive. The configuration
of Space-Track and DISCOS client consists of a list of queries, while the HASDM
client takes several altitudes and years and builds queries by forming the cartesian
product.
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8.3. Model Component

1 ---

2 atmosopt:

3 model:

4 satellite_ground_truth:

5 satellite_data:

6 - "./2019-05-04/input/tle_data.json"

7 decay_data:

8 - "./2019-05-04/input/decay_data.json"

9 - "./2019-05-04/input/tip.json"

10 attribute_data:

11 - "./2019-05-04/input/discos.json"

12 density_ground_truth: "./data/hasdm"

Listing 9: Configuration of a model. A model is not related to any of the inputs. An
arbitrary JSON file with the same format could be insert into any of the lists.
The model configuration requires the files specifying the input satellites to be
categorized by their content: state data, decay data, and satellite characteristics.
The density data is specified by a directory containing the HASDM Parquet files
(see Subsection 8.3.2). The top-level entry must not be named “model”, but only
must contain the string.

The model component is the core component of atmosopt It consolidates the available
data and provides methods to work with the data. Its setup is by design as simple as possible,
and the consolidation happens fully automatic. Listing 9 illustrates the simple configuration.
A model only requires the orbital state data (TLEs) downloaded from Space-track in JSON
format. Optionally, one can add decay data, attribute data, and a density ground truth,
with the latter being a directory of HASDM Density Data Files.

Figures 8.3 and 8.4 provide a UML Class Diagram of the model component. First,
Figure 8.3 illustrates what previously has been visible in Listing 9. A Model object consists
of SatelliteCollection and a DensityContainer.

The SatelliteCollection merges the files of a group to a single pandas DataFrame with
the exception of the decay data. The decay data is stored in a dictionary mapping Norad
Catalog IDs to DecayData objects if a decay data could be derived from either the TLE state
data (e.g., the last state may contain a reentry date) or the most recent reentry message.
The SatelliteCollection ignores columns of the TLE data that are not required by the
implementation.

A Satellite is lazily constructed on request via getitem (..). The Satellite

instances are cached. A shallow copy of the cached instance is returned in case of repeated
access. A shallow copy is sufficient because the Satellite’s state data is private and not
mutable from outside. Robustness testing revealed one case in which Space Track returned
every TLE entry twice. Thus, during construction, the state data for the requested satellite
is checked for duplicates. Further, the initial ballistic coefficient is determined by either
using DISCOS’s data with Equation 2.57 or the starred ballistic coefficient of the latest TLE
with Equation 4.1. Figure 9.1 illustrates this as a UML Activity Diagram.
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The Satellite class offers mainly two functionalities:

• Retrieving the observed TLE state, either raw or resolved using godot’s polynomial
SGP4 interpolation

• Propagating the satellite state with one of the available propagators, namely by one of
godot’s numerical propagation procedures

The first function is realized by the method known state, while the second is realized by
the method propagated state. In case no SGP4 resolution is requested, the raw TLE state
is returned. However, in any other case, one of the implemented propagators is required.
These are presented in the subsequent Subsection 8.3.1. Both methods allow the arbitrary
decoration of the output with additional information or switching the units or reference
frame. This is outfactored in the SatelliteStateDecorator. The class builds upon a given
state DataFrame like a Builder while providing a similar handling as chained Decorator
functions. Hence, it can be described as a mixture of both software patterns.

Figure 8.4 presents the other content of the module. These are mainly grouped utility
functions or wrapper functions. For instance, the transformation module provides pseudo
vectorized access to godot’s conversion functionality, while atmosphere provides an interface
to the Python binding godot atmosph. The orange emphasized contents are subject to the
next Subsection 8.3.1.

8.3.1. Propagator Component - The Interface to Godot

Figure 8.5 states the propagator component and its relation to the outer scope. The compo-
nent implements four different propagators. All of them inherit from the AbstractPropagator.

The two simple propagators are the KeplerPropagator and the SGP4Propagator. The
former only requires an initial state and propagates this state without any perturbation by ne-
glecting perturbations. The latter adds a TLE-backed point to the frames system of the single-
ton godot Universe instance. The SGP4Propagator uses a simple Vector6TimeEvaluable
constructed between the freshly created TLE point and the Earth’s center to return the
satellite state at a given epoch.

The more interesting parts are, without doubt, the two propagators using the full dynamic
model of godot. Both of them use the same configuration for a godot Universe and deliver
similar results. However, the implementation works differently.

Before going into details, a few words about the universe configuration utilized in the
context of this work. The spacecraft is affected by Earth, Sun, and Moon. For the Earth,
we use a gravity model using spherical harmonics expansion up to order and degree 12. The
concrete model is called “EIGEN-05C”, and details can be found in the explanations by
Förste et al. [85]. The dynamics are enriched only by atmospheric drag, simulated with the
respective density model. Hence, solar radiation pressure and other factors are excluded
from the study.

The GodotBallisticPropagator uses the singleton instance GODOT UNIVERSE INSTANCE

since it relies on the BallisticPropagator of godot. It allows the propagation of the
state consisting of position and velocity, and it does not insert its results into the Universe
instance. Thus, repeated utilization with the same instance is possible without any pollution.
This is sufficient for a typical use case and saves the runtime overhead of repeated re-creation
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of the full Universe with all its enclosed dynamic models. However, there is one drawback
in the case of atmospheric reentries. Here, the propagator needs to stop the propagation
out-of-schedule beforehand. In godot, this is realized via interrupting events that trigger
when a condition reaches a (lower than) zero value. However, in one of our test cases with
around 60 satellites, godot started to freeze nondeterministically with an enabled reentry
event in rare cases (1 out of 120 propagation).
Given this problem, we created a second propagator using godot’s robust Trajectory

class. The configuration is created via create trajectory cfg(..). For the computation,
the Trajectory class requires a Universe instance in which the propagation data is inserted.
Thus, a re-propagation requires each time a fresh new Universe instance. The trajectory is
configured with the final epoch and propagated. In case of an error likely due to a reentry
event, the propagation is retried with a reentry altitude similar to the previously mentioned
events. In contrast to the former approach, this is more expensive due to the Universe

creation and potential second propagation. Nevertheless, it is robust, and no errors have
occurred. At the time of writing, it is not yet possible to propagate a reentry using a
single condition like: Stop the propagation below 100 km or at epoch t like it is possible
with the events system. However, the current work proved itself to be good enough. Both
propagators offer methods to reconfigure the atmospheric coefficients in case the density
model is JB2008MOD.

The propagators allow the selection of the integration method and the maximal amount of
integration steps. In our use cases, the Adams integration method was usually by about factor
two faster. Hence, the Adams integrator is utilized across all experiments in Chapter 10.
When propagation spans multiple weeks, nearly all experiments utilize a step size of at least
one million integration steps.

8.3.2. HASDM Component

Figure 8.3 introduces the hasdm component. It contains an efficient container that lazily
loads the requested year and altitude data. Further, it provides several functions to store
the data even more compressed. The zip files are extracted to the textiles by the Runner.
Subsequently, they are read with pandas, and unnecessary data is dropped, while each
column uses the minimal sufficient data type for storage. For instance, the latitude can be
conveniently stored in an 8-bit type. The standard HASDM density text file has a size of
around 412 MB, and the corresponding DataFrame with minimal types only has 120 MB.

The Apache Parquet2 proved to be the most efficient way among the tested formats to store
the data on a hard drive. Further, the loading time to retrieve the data was negligible fast
from an solid state drive. Using Parquet, the original index file of 412 MB can be efficiently
reduced to only 12 MB since it is capable of choosing an optimal compression scheme per
column3 and our data being redundant except for the density column. For instance, the
latitude, longitude, or epochs are the same for many rows. The DensityContainer starts
with a directory containing these parquet files and loads them on-demand.

2https://parquet.apache.org, last accessed: 09.02.2024
3https://parquet.apache.org/docs/overview/motivation/, last accessed: 14.02.2024
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model

propagator

1

*

SatelliteCollection

+ satellite_data: DataFrame

+ attribute_data: DataFrame

- construct_satellite(norad_cat_id): Satellite

- process_decay_data(decay_data, state_data): dict[int, DecayData]

+ __getitem__(norad_cat_id): Satellite | list[Satellite]

+ available_satellites(): list[int]

+ from_json(path, index_col, epoch_col): DataFrame

1

*

Satellite

+ norad_cat_id: int

+ name: str

+ ballistic_coefficient: float

+ mass: float | None

+ drag_area: float | None

+ drag_coefficient: float | None

- tle_state: DataFrame

- tle_state_file(): str

- sgp4_propagator(): SGP4Propagator

+ get_propagator(initial_epoch, propagator_type, **kwargs): AbstractPropgataor

+ known_state(epoch, angular_unit, reference_frame, sgp4_resolved): DataFrame

+ propagated_state(epoch, propagator, angular_unit, reference_frame,
 with_kepler, with_geodetic, **kwargs): DataFrame

+ known_epochs(in_interval): DateTimeIndex

+ first_epoch(): Timestamp

+ last_epoch(): Timestamp

+ decay_epoch(): Timestamp | None

+ decay_position(): tuple[float, float] | None

SatelliteStateDecorator

+ df: DataFrame

+ get(): DataFrame

+ with_angles_in(new_angular_unit): Self

+ with_reference_frame(new_reference_frame): Self

+ with_kepler(): Self

+ with_cartesian(): Self

+ with_geodetic(): Self

«abstract»
AbstractPropagator

+ __call__(epoch):
tuple[array, Timestamp | DatetimeIndex]

hasdm

DecayData

+ decay_epoch: Timestamp

+ latitude: float | None

+ longitude: float | None

decay_data

1

int

Model

decay_data

DensityContainer

- files: dict[int, dict[int, Path]]

- available_years: list[int]

- available_alts: list[int]

- read_file(year, alt): DataFrame

- load_data(year_range, alt_range): DataFrame

+ getDensity(start_time, end_time): DataFrame

«free functions»
hasdm

+ read_txt_file(filename): DataFrame

+ process_file(input_file, output_file): Path

+ read_parquet_file(filename): DataFrame

+ memory_usage(df): float

Figure 8.3.: A UML Class Diagram of the model component of atmosopt showing the central
classes. Types are omitted for function arguments to improve readability. The
core ensembles are Satellite and SatelliteCollection. The former yields
the latter in a lazy fashion. The Satellite offers unified access to godot

propagation and state conversion. The calls are respectively delegated to a
Propagator object or SatelliteStateDecorator.
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model

«module»
metrics

+ relative_prediction_error(predicted_rrentry_epoch, true_rrentry_epoch, prediction_epoch): array | float

+ relative_error(y_true, y_hat): array | float

«module»
physics

+ time_to_periapsis(current_true_anomaly, semimajor_axis): float | array

+ ballistic_coefficient_from_tle(starred_ballistic_coefficient): float | array

+ ballistic_coefficient(mass, drag_area, drag_coefficient): float | array

+ drag_acceleration(ballistic_coefficient, density, velocity): array

+ gravitational_acceleration(position): array[float]

+ derivative(n0, n1, *, dt, t0, t1): array[float]

«module»
transformation

+ convert_epoch(epoch, out_type): Timestamp | Epoch

+ convert_epoch_range(epoch_range): list[Epoch]

+ kepler_to_cartesian(kepler_elements): array[float]

+ cartesian_to_kepler(cartesian_state): array[float]

+ cartesian_to_geodetic(cartesian_state): array[float]

+ geodetic_to_cartesian(geodetic_state): array[float]

+ convert_reference_frame(cartesian_state,
 epoch, in_ref, out_ref): array[float]

+ mean_to_true_anomaly(mean_anomaly, eccentricity): float

+ orbital_period(semimajor_axis): float

«module»
atmosphere

+ evaluate_single_density_model(epochs, points,
density, geodetic, zip_eval, coefficients): array[float]

+ evaluate_single_wind_model(epochs, points,
wind, geodetic, zip_eval): array[float]

+ modify_coefficients(coefficients, *,
density_model, density_model_name): None

+ benchmark_density_model(epochs, points,
density, include_preprocessing): float

«enumeration»
ReferenceFrame

ICRF, ITRF, TEME

«enumeration»
AngularUnit

DEGREE, RADIAN

«free functions»
model

+ GODOT_UNIVERSE_INSTANCE: Universe

- GODOT_UNIVERSE_CFG: dict

- populate_template_values(element, replacements): dict

+ create_universe_cfg(): dict

+ create_trajectory_cfg(..): dict

+ propagate_parallel(satellite, epoch_range, configurations, ...): DataFrame

Figure 8.4.: A UML Class Diagram of the model component of atmosopt showing the utility
of various categories. The diagram emphasizes the interfaces to godot utilized
by atmosopt.model.propagator in orange. Types are omitted for function
arguments to improve readability.
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model

propagator

KeplerPropagator

- initial_epoch: Epoch

- kepler_elements: array[float]

- eval_internal(epoch): tuple[array, Epoch | XEpoch]

SGP4Propagator

- evaluable: Vector6

- eval_internal(epoch): tuple[array, Epoch | XEpoch]

GodotTrajectoryPropagator

- universe: Universe

- mass: float

- drag_area: float

- drag_cd: float

- stop_altutde: float

- eval_internal(epoch): tuple[array, Epoch | XEpoch]

+ modify_spacecraft(*, mass, area, cd, bc): None

+ modfiy_coefficients(coefficients): None

«abstract»
AbstractPropagator

+ __call__(epoch): tuple[array, Timestamp | DatetimeIndex]

+ eval(epoch): tuple[array, Timestamp | DatetimeIndex]

+ raw_eval(epoch): tuple[array, list[Epoch | XEpoch]]

- eval_internal(epoch): tuple[array, Epoch | XEpoch]

«free functions»
model

+ GODOT_UNIVERSE_INSTANCE: Universe

- GODOT_UNIVERSE_CFG: dict

- populate_template_values(element, replacements): dict

+ create_universe_cfg(): dict

+ create_trajectory_cfg(..): dict

+ propagate_parallel(satellite, epoch_range, configurations, ...): DataFrame

«abstract»
GodotAbstractPropagator

- evaluable: Vector6

- density: str

- wind: str

- initial_epoch: Epoch

- initial_position: array[float]

- final_epoch: Epoch

- max_steps: int

- eval_internal(epoch): tuple[array, Epoch | XEpoch]

+ modify_spacecraft(*, mass, area, cd, bc): None

+ modfiy_coefficients(coefficients): None

GodotBallisticPropagator

- mass_evaluable: ScalarTimeEvaluable

- drag_area_evaluable: ScalarTimeEvaluable

- drag_cd_evaluable: ScalarTimeEvaluable

- stop_trigger: Event

- eval_internal(epoch): tuple[array, Epoch | XEpoch]

+ modify_spacecraft(*, mass, area, cd, bc): None

+ modfiy_coefficients(coefficients): None

«enumeration»
GodotIntegrator

RungeKutta787, RungeKutta788, Adams

+ literal(): str

+ godot_type(): Any

Figure 8.5.: A UML Class Diagram of the propagator component of atmosopt.model

showing the available propagators. The GodotBallisticPropagator uses
a singleton Universe instance GODOT UNIVERSE INSTANCE, whereas the
GodotTrajectoryPropagator needs to re-create the instance for every propa-
gation via create universe cfg().
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8.4. Optimization Component

The optimization component has been the most challenging design. The framework’s
vision is that several Norad Catalog IDs, previously assembled from several building blocks,
are sufficient to start an optimization run. Multiple questions were open beforehand:

• How to work with arbitrary data when the amount and quality are unknown?

• How to integrate multiple different optimization strategies without creating clutter
while maintaining a degree of independence in between?

• How to allow the user to mix combinations arbitrarily?

• How to allow the chaining of multiple optimizations?

This section answers these questions and explains how the software architecture works as
an enabler to achieve the necessary degree of flexibility. Figure 8.6 shows the optimization
component and its content. The description follows Figure 8.6 top-down, with the starting
points marked in orange.

The OptimizationSpecification class reflects the example configuration presented in
Listing 10. An optimization task consists of a human-readable name, a model instance
made of satellite data and density data, one or several Norad Catalog IDs, optimizations
that shall be applied beforehand to the existing model instance, a list of one or multiple
optimization intervals, and finally, parameters specifying the concrete optimization strategy.
The execute(..) function calls orchestrate optimization(..) with the aforementioned
parameters. Hence, OptimizationSpecification is the object-oriented way to run an
optimization task, while orchestrate optimization(..) offers the same functionality via
a functional interface.

The ParameterRepository is filled with the results of previous optimizations and, de-
pending on the chosen settings, utilized to patch the model instance by updating ballistic
coefficients/ or providing a set of density coefficients.

Next, there is the class AbstractProblem. It describes - in our context - always either
a ballistic coefficient optimization or density coefficient optimization. The first subclass
is ProblemTemplate. It is a composite of multiple different strategies. A Strategy is a
single part of the optimization function. Each Strategy has one satellite and one epoch
range. Depending on the concrete subclass, the Strategy’s call (..) function expects
a candidate ballistic coefficient or candidate density coefficients and computes the fitness
value for its satellite and epoch range. The call (..) function, i.e., its evaluation, is
the variable and distinction characteristic between all strategies. They can be subdivided
into three classes using propagation, the drag acceleration along a reference trajectory, or
TLE-derived densities. Chapter 9 elaborates on the details of each strategy implemented
throughout this work.

The ProblemTemplate calculates its fitness by combining the fitness values of its contained
strategies. This accumulation function is configurable, similar to combining multiple strate-
gies with the same goal into one ProblemTemplate. To summarize, the ProblemTemplate
is a composite of multiple replaceable strategies.

In order to facilitate the creation of a ProblemTemplate, the ProblemBuilder has been
created. It builds the problem by adding the cartesian product of satellites, epoch ranges, and
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optimization
OptimizationSpecification

+ name: str

+ model: str

+ norad_cat_ids: list[int]

+ optimization_patches: list[str]

+ epoch_ranges: list[DatetimeIndex]

+ params: dict[str, Any]

+ save_path: Path

+ execute(satellites, coefficients): dict[str, Any]

problem

«abstract»
AbstractOptimizer

+ optimize(): None

+ get(): tuple[array[float], array[float]]

«abstract»
AbstractProblem

+ fitness(x): array[float]

+ gradient(x): array[float]

+ get_bounds(): tuple[array[float], array[float]]

+ get_name(): str

SingleOptimizer

MultiOptimizer

TwoStepDTCOptimizer

- run_step1(..): dict

- run_step2(..): tuple[array[float], array[float]]

ProblemTemplate

- bounds: tuple[array[float], array[float]]

- name: str

- accumulative_function: Callable

DTCProblem

- optimized_dtc_values: dict

- model_computation(): tuple[DensityModel, list]

strategies

«abstract»
Strategy

- satellite: Satellite

- epochs: DatetimeIndex

- data: dict

# godot_propagator(): GodotTrajectoryPropagator

# density_model(): DensityModel

+ initial_guess(): array[float]

+ requires(): list[str]

+ __call__(x): array[float]

BallisticCoefficientAccelerationStrategy

DiurnalAccelerationStrategy

BCTLEDensityStrategy

DiurnalTLEDensityStrategy

DeltaTcTLEDensityStrategy

ModifiedBCTLEDensityStrategy

ModifiedDiurnalTLEDensityStrategy

BallisticCoefficientPropagationStrategy

DiurnalPropagationStrategy

TLEDensityStrategy

+ model_density(): array[float]

+ observed_density(): array[float]

*

1

ProblemBuilder

+ add_multiple(satellites, epoch_intervals, strategies, coefficients): Self

+ add_satellite(satellite, epoch_interval, strategy, coefficients): Self

+ set_name(name): Self

+ set_accumulative_function(function): Self

+ build(): ProblemTemplate

- compute_reference(..): dict

ParameterRepository

+ insert_optimization(optimization): None

+ apply_and_get_patches(names, satellites): tuple

«free functions»
optimization

+ orchestrate_optimization(..): tuple[array[float], array[float]]

+ orchestrate_and_save(..): dict

strategies

*

2

ModifiedDeltaTcTLEDensityStrategy

Figure 8.6.: A UML Class Diagram of the optimization component of atmosopt showing
the strategies and implemented approaches of optimization. The diagram em-
phasizes the objected oriented entry and functional entry into the optimization
control flow. Types are omitted for function arguments to improve readabil-
ity. The diagram partially hides public methods and simplifies the content
of certain classes to focus on the core design. The diagram’s core is the vari-
ous strategies representing a subset of a problem consisting of satellite, epoch
range, and solution approach, which can be arbitrarily combined via the class
ProblemTemplate.
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concrete strategic methods. Including other satellites in the ballistic coefficient optimization
of a single satellite does not make sense. Thus, the logic beforehand knows to exclude the
satellites from the cartesian product and create a problem instance for each satellite using
the ProblemBuilder. For instance, Listing 10 shows a configuration of three optimization
tasks. The first two of them optimize the ballistic coefficient. Hence, the following problems
are created:

BC-PROP For every satellite, one ballistic coefficient optimization problem with a single
strategy “bc-prop” mapping to the class BallisticCoefficientPropagationStrategy.

BC-MIXED For every satellite, one ballistic coefficient optimization problem with two
strategies of classes BCTLEDensityStrategy and ModifiedBCTLEDensityStrategy

where both fitness functions are merged via the operation “sum”.

JB2008-DTC-Diurnal-TLE One problem atmosphere diurnal coefficient optimization prob-
lem containing all satellites.

The following steps involve pygmo [84]. Each problem is wrapped into pygmo.problem

and is optimized with a subclass of AbstractOptimizer. Subclasses of AbstractProblem
qualifies themselves as pygmo.problem due to the presence of fitness and get bounds

method. The subclasses of AbstractOptimizer, in turn, use the AbstractProblem and
evolve its internal population of candidate solution vectors.
To begin, the SingleOptimizer is the most straightforward case. It uses one of the

available algorithms in pygmo, with a starting population of initial candidate solutions, and
tries to minimize the fitness function. Depending on the option “gradient”, an algorithm
omitting or using the gradient is chosen. In our implementation, we fixed the algorithms to
be Extended Ant Colony Optimization Algorithm4 or in case gradient is enabled to Sequential
Quadratic Programming (SQP) Algorithm5. The former uses a heuristic approach, whereas
the latter uses the derivatives to find the optimum. It was not examined if these algorithms
are the best choices. In order to compensate for that, the MultiOptimizer was created,
which uses multiple algorithms for the minimization and allows the sharing of solutions
between each algorithm’s single candidate solution pool. However, extensive experimenting
has yet to be conducted due to time constraints. The investigation of alternative fitness
functions using different methods to compare ground truth and model was prioritized - more
on this topic in Chapter 9.

The “JB2008-DTC-Diurnal-TLE” in Listing 10 has a unique role in the implementation.
It is a two-step optimization procedure, which was created to reduce dimensionality (see
Chapter 9). As such, it uses two instances of the SingleOptimizer. The first optimizes
the ∆Tc of the JB2008 model for each configured trajectory. The second problem uses
these optimal values to operate on the diurnal density function directly and optimizes its
coefficients to fit the ∆Tc values. Since the latter problem DTCProblem does not use satellites
at all, it does not fit into the inheritance hierarchy of Strategy.
In conclusion, the key takeaway of this section is that any combination of strategies

(consisting of satellite, time range, and method) is possible due to the generality-trimmed
architecture.
4https://esa.github.io/pygmo2/algorithms.html, last accessed: 09.02.2024
5https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms, last accessed: 09.02.204
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8.4. Optimization Component

1 ---

2 atmosopt:

3 optimization:

4 - name: "BC-MIXED"

5 with_model: "model"

6 for_satellites: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

7 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

8 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

9 in_time_range:

10 - from: "2019-04-06T00:00:00.000"

11 to: "2019-04-30T23:59:59.000"

12 params:

13 population_size: 30

14 generations: 100

15 method: ["bc-tle", "bc-mod-tle"]

16 accumulative_function: "sum"

17 gradient: True

18 bounds: [[1e-8], [400]]

19 save_path: "./2019-05-04/optimization/bc_tle_mixed.npy"

20 - name: "BC-PROP"

21 with_model: "model"

22 for_satellites: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

23 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

24 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

25 in_time_range:

26 - from: "2019-04-06T00:00:00.000"

27 to: "2019-04-30T23:59:59.000"

28 frequency: "3h"

29 params:

30 population_size: 15

31 generations: 10

32 method: "bc-prop"

33 gradient: True

34 bounds: [[1e-8], [400]]

35 save_path: "./2019-05-04/optimization/bc_prop.npy"

36 - name: "JB2008-DTC-Diurnal-TLE"

37 with_model: "model"

38 with_patches: [ "BC-MIXED" ]

39 for_satellites: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

40 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

41 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

42 in_time_range:

43 - from: "2019-04-06T00:00:00.000"

44 to: "2019-04-30T23:59:59.000"

45 params:

46 population_size: 15

47 generations: 10

48 method: "dtc-diurnal-tle"

49 gradient: True

50 alpha: 0.2

51 save_path: "./2019-05-04/optimization/jb2008_dtc_diurnal_tle.npy"

52 # ... other configurations

Listing 10: Configuration of the optimization. Each optimization requires a model, and
optionally a list of optimizations to be applied beforehand. Each optimization
requires satellites, a epoch range and a list of methods.

91



8. Architecture & Application

8.5. Plotting Component

plot

Plot

+ name: str

+ model: str

+ norad_cat_ids: list[int]

+ params: dict[str, Any]

+ save_path: Path

+ execute(satellites_data, density_data): Any

«free functions»
plot

+ plot_property(..): Any

+ plot_groundtrack(..): Any

+ plot_density(..): Any

+ plot_wind(..): Any

+ plot_density_relative_error(..): Any

+ plot_reentry_prediction_error(..): Any

+ plot_semimajoraxis_prediction_error(..): Any

+ plot_runtime(..): Any

+ plot_fitness(..): Any

+ plot_satellite_data(..): Any

Figure 8.7.: A UML Class Diagram of the plot component of atmosopt showing the object
oriented and functional interface to the plotting capabilities. Function arguments
are mostly omitted to improve readability.

The last component plot is kept simple. It consists of a number of plotting functions, as
illustrated in Figure 8.7. Similarly, to the optimization component, a object oriented and
a functional interface exists. The former to be used via the configuration file (for instance in
Listing 11), while the latter is to be preferred from within Python.
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8.5. Plotting Component

1 ---

2 atmosopt:

3 plot:

4 - name: density_relative_error

5 with_model: model

6 params:

7 sample_size: 100000

8 seed: 42

9 from: 2019-04-01T00:00:00

10 to: 2019-04-30T23:59:00

11 plot_mean_std: True

12 density_models: [ "JB2008" ]

13 configurations:

14 JB2008MOD:

15 diurnal: "./2019-05-04/optimization/jb2008_dtc_diurnal_tle.npy"

16 save_path: "./2019-05-04/output/jb2008mod_density_relative_error_30d.pdf"

17 - name: reentry_prediction_error

18 with_model: model

19 params:

20 norad_cat_id: [22503, 24905, 25171, 34294, 38743, 42706, 42712, 42715, 42820,

21 42821, 42822, 42823, 42824, 43033, 44121, 44123, 44128, 44136,

22 44144, 44145, 44148, 44163, 44168, 44169, 44171 ]

23 initial_epoch: 2019-05-01T00:00:00.000

24 overhang: "62D"

25 stop_altitude: 100

26 max_steps: 1000000

27 uniform_color: True

28 save_data: True

29 configurations:

30 NO-OPT:

31 density: "JB2008"

32 BC-PROP:

33 density: "JB2008"

34 ballistic_coefficient_source: "./2019-05-04/optimization/bc_prop.npy"

35 # ... other configurations

36 JB-BC-MIXED:

37 density: "JB2008MOD"

38 density_coefficients:

39 diurnal: "./2019-05-04/optimization/jb2008_dtc_diurnal_tle.npy"

40 ballistic_coefficient_source: "./2019-05-04/optimization/bc_tle_mixed.npy"

41 save_path: "./2019-05-04/output/prediction_error_start2.pdf"

Listing 11: Configuration of the plotting. The configuration specifies for each plot the type
(denoted with name), the model and the parameters. The parameters usually
specify the density models to use, the epoch range, and the satellites to be
incorporated into the plot. Plots taking satellites usually also accept single
IDs instead of lists. The configurations specify as a dictionary all propagation
cases with results from previous optimizations. It contains the special case
ballistic coefficient source. In this case, for every single satellite propaga-
tion, the Norad Catalog ID is appended to the file name. When these files are
created, this convention is applied in the optimization component, too.
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9. Optimization Strategies & Discussion

Figure 8.6 showed the strategies implemented throughout this work. These were the focus
of this last part of the work. Thus, the primary assumption is that not the optimization
algorithm is key, but the fitness function and the underlying method are needed to generate
the required data. This chapter outlines the three methods to generate a fitness value.
Fitness based on the comparison of

1. the semi-major axes given the TLE reference data and propagated results using the
atmospheric model in godot

2. the drag acceleration along a reference trajectory spanned by the SGP4 propagation
(computed by subtracting the gravitational acceleration) to the acceleration computed
with the density of the atmospheric model

3. the TLE derived observed density to the model density (the approach by Picone et al.
presented in Section 3.3)

Equation 2.55 states that atmospheric drag is computed by density and ballistic coefficient.
Hence, all approaches are applicable for both optimization goals where only the free
parameter varies.
Figure 9.1 demonstrates the overall structure of a ballistic coefficient optimization. The

structure optimizing the diurnal coefficients Bi, Ci is identical, without the ballistic coefficient
initialization. All fitness functions are presented as summations over the respective grid
points. However, different reducer functions, for instance, min or max norm, are also
conceivable. In our manual test cases, namely, the satellites with IDs 43600, 35867, and
32764, the summation was usually the best choice. Fregat, the satellite with Norad Catalog
ID 35867, is also the object of interest in Section 10.1.

9.1. Ballistic & Diurnal Coefficients Optimization by Propagation

The first strategy uses the propagation capabilities of godot. Equation 9.1 shows the
elementary fitness function utilized for a single strategy consisting of one satellite and
an epoch interval with a configurable frequency of grid points. The relative error of the
semi-major axes of propagated aprop and SGP4 reference trajectory aref is computed and
accumulated as fitness value. Thus, the optimization goal is the minimization of the relative
semi-major axis difference at the grid points. If the propagation terminates earlier, indicating
too much dag, the propagated semi-major axes aprop of the missing entries are set to 0. The
semi-major axis aprop depends on propagation results computed with a solution candidate
ballistic coefficient or diurnal coefficients.∑

∀Epochs

∣∣∣∣aref − aprop
aref

∣∣∣∣ (9.1)
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9.2. Ballistic & Diurnal Coefficients Optimization by Acceleration

In case the gird points lie on the TLE observation points, the method corresponds to
the shooting method, presented in Subsection 2.4.2. Under the condition of a suitable
parameter choice, namely the step size between temporary gird points, this method should
always converge towards the optimal ballistic coefficient B. The method can be used with
a gradient-based function, which approximates the derivative numerically using a finite
difference. Gradient-based procedures are only advisable when the optimization goal is
the ballistic coefficient. In the case of the 42 diurnal coefficients, the gradient’s numerical
evaluation becomes too expensive runtime-wise. The same fact holds for optimizing the
diurnal coefficients without gradient when multiple satellites are part of the fitness function.

Each strategy evaluation implies one propagation with the full godot dynamic model
over multiple weeks. Potentially, if the satellite is close to reentry, a second propagation is
required (as discussed in Subsection 8.3.1).

For 15 satellites, a ballistic coefficient optimization with gradient takes around 20 minutes
on the hardware specified in Appendix using as many parallel processes as available with
Python’s multiprocessing. In our case, this corresponds to ten processes.

When the same experiment is conducted for a diurnal optimization, the optimization does
not finish in hours, even without a gradient. While the evaluation remains of the theoretical
same size, i.e., 15 strategies, they are now part of the same problem. The major difference
is the missing parallelization. The aforementioned scenario allows parallelization over every
single problem. One could parallelize the evaluation of the single strategies. However,
Python’s multiprocessing limits parallelism to full process parallelism, which induces much
overhead when starting new processes. For each iteration, all processes would be required to
join for the evaluation of the shared fitness function in every single iteration - only to be
re-created with a new work distribution afterward. This approach was tested but found to
be not more performant than keeping everything in a single process. The scheduling and
process creation induce too much overhead. Further, the propagator in its current state
is not thread-safe. Thus, an approach different from process parallelism is not possible.
The best solution would be a complete solution on the C++ side, migrating large parts of
the current Python setup. On the C++ side, a thread-safe solution is possible. Further,
the C++ side can take full advantage of less overhead inducing thread-level parallelism.
To summarize, the propagation strategy is suitable for one-dimensional problems like the
ballistic coefficient but is too expensive runtime-wise for higher-dimensional problems or
problem combinations.

To overcome the issue, the idea was to search for algorithmic alternatives that do not
require expensive propagation or propagation only once in the beginning. This investigation
led to the subsequent presented idea, in Section 9.2.

9.2. Ballistic & Diurnal Coefficients Optimization by Acceleration

The second optimization strategy aims to compare the drag accelerations. Therefore, we
make the strong assumption that the spacecraft is only affected by gravitation and drag
acceleration. Other perturbations are ignored by assuming they are zero.

The spacecraft’s trajectory is defined by godot’s polynomial spline SGP4 interpolation
incorporating the TLE grid points in between the start and end epochs. The reference
acceleration a⃗ref along the trajectory is computed using a numerical finite difference. Given
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the initial assumption, the expected reference drag a⃗drag is assumed to be the total acceler-
ation affecting the spacecraft minus the gravitation. Since we do not want to propagate,
we assume a⃗grav to be defined as given by Equation 2.50. The actual drag of our model
is computed along the reference trajectory using the selected density model and ballistic
coefficient. The whole relation is given by Equation 9.2. Depending on the optimization goal,
either the ballistic coefficient B is variable or the density ρ parameterized by the diurnal
coefficients.

∑
∀Epochs

∣∣∣∣∣ a⃗drag −
−0.5ρ|v⃗|

B

adrag

∣∣∣∣∣ where a⃗drag = a⃗ref − a⃗grav (9.2)

The strategy is similar to the approach presented in Section 3.3 by Gondelach et al. with
one big exception. They use a fully dynamic model and propagate with it to generate new
candidate solutions. During testing, this approach initially showed some good results. This
initial success turned out to be misleading. With an increasing number of satellites, it became
apparent that the optimization always optimized towards the interval’s bounds. This is a
reason why the ballistic coefficient’s optimization’s bounds are set to B ∈

[
10−8, 400

]
where

the bounds are comparably low and high in Chapter 10. Hence, a misguided optimization
scheme stands out quickly due to the extreme values appearing in the result. Also, a
modification only using the prograde component of the drag did not help. The initial
assumption may be too strong.

To summarize, this acceleration-based idea did not bring any success, but it put the
investigation on the right track to a better working approach. The usage of these strategies
in the implementation framework is discouraged.

9.3. Ballistic & Diurnal Coefficients Optimization using TLE
Derived Densities

The third approach derives an atmospheric density from the TLE itself. It is the approach
by Picone et al., introduced in Section 3.3. Equation 9.3 shows the fitness function utilized
in the context of this work. Its central core is the scaling factor λ(tik) computed from
the observed TLE density ρO(tik) (see Equation 3.4) and the model density ρM (tik) (see
Equation 3.5). The observed and modeled density match if the λ(tik) is one. A deviation
marks that the model density ρM is either too high or too low.∑

∀TLE Intervals tik

(1− λ(tik))
2 (9.3)

One can use this approach to optimize the model density, respectively, the coefficients of
the density-producing model. Further, optimizing the ballistic coefficient is also possible
since ρM depends on the ballistic coefficient B.

Chapter 10 shows that the computation of TLE Densities produces acceptable results with
low runtime costs compared to the techniques involving propagation with the full dynamic
model of godot. Hence, it is suitable for continuous optimization of large amounts of data.

In the implementation, we also make use of a slightly modified procedure.
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• Equation 3.4 is multiplied by 6.66231957e− 11, which results from consequent straight
usage of the TLE unit format, e.g., mean motion in rev

day , instead of SI units.

• The velocity in both Equation 3.4 and Equation 3.5 is only utilized linearly and in km
s

instead of m
s .

This modification was originally an implementation error. However, it turned out to
work better, i.e., producing smaller errors in all observed experimental cases compared to
the unmodified version. Hence, we left the modified version as an option to remain in the
implementation framework.

9.4. Diurnal Coefficients Optimization - Resolving The Problem of
Dimensionality

As previously discussed, the runtime cost has been a primary concern in optimizing the
diurnal coefficients throughout this work. All the above-presented strategies, even the
ones involving propagation with the full dynamic model, are suitable for optimization
with numerical gradient computation under the condition that the optimization variable
is one-dimensional. The diurnal coefficients of the JB2008 model have a dimensionality of
42. Optimization with a numerical gradient gets too costly runtime-wise. The optimization
does not necessarily have to be conducted in as little time as possible. A diurnal density
correction ideally should run, as the names suggest, daily - hence, potentially overnight
using a set of calibration satellites like in the case of HASDM.

As mentioned, a migration of large parts of the implementation to C++ to better exploit
thread-level parallelization and to tighten the connection to godot capable of providing
gradients would be one suitable option. This option was rejected since this implies the
transferal of large systems of the existing framework. Further, this approach is less flexible
regarding changes, given that implementation needs to comply with its architecture and
enforced constraints. Finally, the learning curve to get into godot’s problem optimization
module is steep. Instead of searching for a more performant solution, the algorithmic side
was improved by reducing dimensionality.

The JB2008 diurnal density variation is realized by an offset ∆Tc computed in its own
function given by Equations 2.8–2.25. It uses the fitted diurnal coefficient Bi and Ci. It
depends on the solar activity F10.7, the local solar time θ, the latitude ϕ and the height
h. We first optimize JB2008 regarding the output ∆Tc of the diurnal density function.
This procedure yields a mapping of satellite, TLE interval start and end to optimal offset
{satellite, ti, tk} → ∆Tc. Thereby, we reduce the expensive full-density evaluation to a
one-dimensional problem. This optimization can be executed with numerical gradient
information with any of the above techniques. Due to the good results, we use the modified
TLE-density-based strategy for this first step, even though any strategy would be applicable.
Using these optimal ∆Tc, we optimize the computational cheap Equations 2.8–2.25 in a
second step, which explains why the diurnal function was exposed from Fortran to Python
in Section 5.5. Since the function resides inside the DensityModel class, we consistently
take advantage of caching computation points and epochs on the C++ side. The UML
Activity Diagram in Figure 9.2 illustrates the entire procedure.
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Figure 9.1.: A UML Activity Diagram displaying the determination of the final value as
ballistic coefficient B for the atmospheric optimization process. The optimization
of the diurnal coefficients Bi, Ci works similar by replacing the ballistic coefficient
B with them in the diagram. The initial value is taken from the definition of
the JB2008 model.
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Figure 9.2.: A UML Activity Diagram displaying the two step optimization scheme to find
suitable diurnal coefficients Bi, Ci. The first step only requires a single ∆Tc

and a gradient can be computed by numerical means with only one additional
evaluation. The second step can also be evaluated with a numerical gradient
since the underlying 42-dimensional function is computationally cheap compared
to the full JB2008 density model.
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10. Results & Discussion

This chapter contains two examples. Section 10.1 focuses on qualitatively improving a
single historic reentry of the debris fragment Fregat. Section 10.2 takes a more quantitative
approach by comparing the implemented techniques for multiple satellites in 2014, 2018,
and 2019. Like all plots of this work, the plots of this chapter are the automatic output of
the atmosopt framework. All results are based on historic reentry events. Thus, we always
have the actual solar and geomagnetic activity data available. Further, all results use the
JB2008 without any diurnal coefficient correction if not differently specified in the plot.

The reentry prediction error is slightly adapted compared to Equation 2.58, as given by
Equation 10.1. We set a minimal value of one day in the denominator. In the large-scale
quantitative comparison, the propagation of all satellites starts at a uniform epoch. However,
the amount of satellites can contain (varies) some satellites that actually decay on the
first day of propagation. In such cases, a minor deviation by only a few minutes leads
to extremely high relative errors. The maximum constraint introduced by Equation 10.1
prevents this from happening.

Ep =
Epochpredicted reentry − Epochactual reentry

max
(
Epochprediction − Epochactual reentry, 1Day

) (10.1)

Given Equation 10.1, a negative error indicates a too-early decay. A positive error indicates
a reentry event happening too late. The negative error is bounded to minimally −1 in
case the target reenters immediately on propagation start. Although the positive error
is unbounded in theory, in practice, the plots presented here always limit the maximal
propagation duration so that it does not stretch into the far future until the propagator times
out. Hence, the error is bound. Chapter 8 illustrated that the implementation framework
support arbitrary combinations of strategies. In this Chapter 10, we decided to use the
approaches given by Table 10.1. This includes one application of the acceleration strategy of
Section 9.2, four applications of the propagation strategy of Section 9.1 and three use cases
of the TLE-density-based approach given in Section 9.3. Due to runtime constraints, this
Chapter 10 does not contain an atmosphere optimization with one of the base strategies,
but only the reduced two step optimization of Section 9.4 using ∆Tc as intermediate value.

10.1. Optimizing a single Reentry Prediction: Fregat

This Section 10.1 optimizes the reconstruction of the reentry of the satellite Fregat with
Norad Catalog ID 35867. It decayed on 13.03.2021 at 09:56 UTC somewhere over the Pacific
Ocean, given its Tracking and Impact Prediction (TIP) message.

Figure 10.1 shows the results using ballistic coefficient optimization along the data available
from 13.01.2021 to 13.02.2021 and all implemented techniques. The propagation starts on
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Abbreviation Method Goal Frequency Grad.
Runtime
(hh:mm:ss)

BC-ACC Acceleration

B ∈
[10−8;
400]

1 Minute

True

00:00:02

BC-PROP-S

Propagation

1 Hour 00:05:27

BC-PROP 3 Hours 00:06:15

BC-PROP-L 6 Hours 00:04:50

BC-PROP-XL 24 Hours 00:04:27

BC-TLE

TLE-Derived Density

10 seconds
Integration
Step-size ∀

TLE intervals
[ti, tk]

00:00:47

BC-TLE-MIXED 00:02:30

BC-TLE-MOD 00:00:46

JB-BC-MIXED

Diurnal Two Step
Optimization Bi, Ci

indirect via ∆Tc with
previously optimized
B by BC-TLE-MIXED

Bi, Ci

with
maxi-
mally
±20%
devia-
tion to
initial
values

03:28:59
(for N = 45
satellites
given in
Fig-

ure 10.5)

NO-OPT No Optimization, B from DISCOS or TLE, Standard Bi, Ci of JB2008

Table 10.1.: The methods and their specification utilized in this Chapter 10. The runtime is
reported for the procedures in Figure 10.1 for the satellite Fregat with exception
of the JB-BC-MIXED procedure. It would make little sense to try an atmosphere
optimization with a single satellite and only one month of data. Hence, the
runtime is reported for the procedure in Figure 10.5 with N = 45 satellites.
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13.02.2021 in Figure 10.1 and is cut off on 13.05.2021 if no reentry occurred until then. The
optimization took place with all available data ranging 13.01.2021 until 13.02.2021.
DISCOS contains characteristic data for Fregat. Thus, the initial values are pretty good,

and we achieve, even with no optimization, a reentry error of only −18.6%.
We employed the propagation strategy with different interval sizes. This interval size for

the fit is essential, as Lemmens et al. [2] found out. In this scenario, BC-PROP-L performs
the best with an interval frequency between grid points of six hours. It achieves a relative
reentry prediction of 8.7%. The worst propagation strategy is BC-PROP-XL with an error of
97.2%. Overall, this strategy contrasts the “shooting method” in Subsection 2.4.3, which
uses a variable interval based on the distance between known TLE epochs. Due to the
generality of atmosopt, we decided not to include this concrete strategy here but rather
make the interval size a configurable parameter. This allows us to conduct experiments
similar to Lemmens et al. [2], who searched for an optimal fitspan ∆T ∈ [5; 110] and interval
size δt ∈ [1; 36] to optimize B and reduce the reentry prediction error depending on the
orbital region of the satellite. They report median reentry errors ranging from 14% to 134%.
Hence, our relative errors conform to the values found in the literature.
As previously reported, Figure 10.1 shows that BC-ACC optimizes towards the bounds

of the interval. This misguided optimization leads to an extreme value of the ballistic
coefficient. Figure 10.1b illustrates the relative error. The satellite immediately decays when
propagation starts.
The original TLE density-based approach BC-TLE performs interestingly the worst with

an error of 226%. Our modified version BC-TLE-MOD produces overall the best results
and decreases the error to −6.9%. A accumulative mixture of both mentioned techniques
BC-MIXED shifts the prediction towards a positive error of 9.2%.
Table 10.1 also shows the runtime results. The mixed BC-TLE-MIXED procedure has

approximately 2-3 times the runtime of the single TLE-density based procedures. Given
that, it contains two of them and needs to reduce the result, this seems to be reasonable.
Overall, the BC-TLE-MOD produces a good result while being considerable faster than BC-PROP

or its kind of strategies.
Virgili et al. conducted the reentry of Fregat similarly to us with multiple atmospheric

models and approaches [86]. Their relative errors 25 days before reentry range from 10% to
30% with a single exceptional good result for the DTM2013 at around 3%. Consequently,
our results fit the reported values, with our best case being BC-TLE-MOD with a relative error
of −6.9%.
Figure 10.2 shows a ground-track using the best B from BC-TLE-MOD. The propagation

starts on the day of reentry at midnight. In theory, one would fit here again using data
from March closely before the reentry. Nonetheless, we used the previously best B from the
optimization.
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Figure 10.1.: Plots of the satellite Fregat 35867. The ballistic coefficient optimization has
been run from 13.01.2021 to 13.02.2021. The actual reentry happened on the
13.03.2021 at around 09:56:00.

103



10. Results & Discussion

180 120 60 0 60 120 180
Longitude (deg)

90

60

30

0

30

60

90
La

tit
ud

e 
(d

eg
)

Ground Track of FREGAT/IRIS

Ground Track
Initial Epoch 2021-12-03 00:00:00

Final Epoch 2021-12-03 10:46:19
Decay Epoch 2021-12-03 09:56:00

Figure 10.2.: The ground track of Fregat’s reentry beginning at 00:00:00 UTC on the day of
reentry. We use the best ballistic coefficient from BC-TLE-MOD

10.2. Large-Scale Optimization Techniques Comparison

A quantitative comparison of more than 60 satellites available in August 2019 with their
ballistic coefficients optimized yielded no difference compared to a scenario without any
optimization. The performance was then measured by checking the semi-major axis error
between improved prediction with the optimized ballistic coefficient and the reference
trajectory derived from the TLEs. The experiment showed no significant difference using
ballistic coefficient optimization compared to no optimization. This was later tracked down
to the concrete satellite selection. All 60 satellites still had a lifetime of at least multiple
months, and their altitudes were too high. Thus, atmospheric drag did not play a significant
role for any of the satellites, leading to no differences in the results. Another source of
distortion holds for satellites that conduct maneuvers. Space-Track does not provide details
about conducted maneuvers. Our selection of satellites might always contain some satellites
whose orbit is influenced by maneuvers. These distort the optimization and lead to wrong
optimization results.

The first problem can be countered by selecting only satellites that are known to be
decayed anytime soon after the optimization interval. This usually implies that atmospheric
drag has a sufficiently significant impact on the satellite’s orbital state. However, the second
problem of distortions due to maneuvers might still exist in the data presented hereafter.

Figures 10.3 to 10.5 show the same results but different satellites at different epochs:
2014, 2018, and 2019. In all cases, every satellite was optimized with all available TLE data
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for the whole month before reentry. The start prediction epoch for the relative prediction
error is the first day after the optimization epoch, i.e., the first day of the month in which
the satellites decayed. The propagation for the relative reentry error is capped at 62 days
after the satellite with the last decay date actually decayed. Due to runtime constraints,
only BC-PROP and BC-PROP-L are evaluated. Further, we optimize the JB2008’s diurnal
coefficients using the two-step optimization scheme from Section 9.4. The JB2008’s diurnal
optimization uses the satellites with optimized ballistic coefficients from BC-TLE-MIXED.

The year 2014, depicted in Figure 10.5, is chosen for being the year of high solar activity
during solar cycle 24, while the year 2019, depicted in Figure 10.3 is chosen for being the
year of low solar activity. Finally, Figure 10.4 depicts the situation during a different year’s
season.
In all case, all potential satellites from Space-Track fulfilling the following criteria have

been selected:

• The satellite has one TLE available before the optimization interval and at least 2
TLEs inside the optimization interval (e.g., for Figure 10.5, all satellites have at least
two TLEs in March 2014, and one TLE available in February 2014)

• The satellite decayed in the month after the optimization interval (e.g., for Figure 10.5,
all satellites decayed in April 2014)

The number of satellites fulfilling the selected criteria varies from scenario to scenario—for
instance, N = 17 in 2018 and N = 45 in 2014.

The results in Figures 10.3 to 10.5 show that, usually, every method has its outliers. Each
method performs differently for every satellite. This way, the median |m| is included in the
Figures 10.3 to 10.5, which is also commonly used across literature in this area due to being
more stable towards outliers. Figures 10.3 to 10.5 contain the mean |µ|, standard deviation
σ, and median |m| values to support the visual distinction. In order to not produce distorted
results, mean |µ| and median |m| value are computed from all errors |Ep| without sign.
The propagation method BC-PROP-L performs well in 2019 with a median of only 14%,

depicted in Figure 10.3. Also, its 3-hour companion BC-PROP performs decently. Nonetheless,
both methods struggle in the 2014 scenario, depicted in Figure 10.5 with median errors above
237%. As mentioned, Lemmens et al. [2] report that the frequency is critical to an optimal
ballistic coefficient optimization. Thus, in our cases, the method might be non-suitable
parameterized. One can also argue that the difference lies in solar activity, as 2019 and 2018
are years of low solar activity while 2014 is a year of high solar activity. More experiments
would need to be conducted to make a strong statement about solar activity.

Similarly to the results observed for Fregat, the base BC-TLE method performs in all cases
worse compared to the modified variant. In contrast, the modified approach performed
in 2019 excellently with an BC-TLE-MIXED achieving a relative error median of 9%, and
even the mean value is small with only an error of 22%. These are exceptionally good
results comparable to the state-of-art in reentry prediction, as discussed in Subsection 2.4.3.
The median for the combined technique BC-TLE-MIXED remains good with a value of 24%
in 2014, depicted by Figure 10.5, but drops to a value of 43% in November 2018. The
2018 scenario depicts a period of different semiannual density variation, as discussed in
Subsection 2.1.2. Again, to make a strong claim about the relation to semiannual density
variation, the experiment should be repeated for every year available. Nonetheless, given the
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accuracy and runtime of BC-TLE-MIXED, one concludes that this is overall the best approach
developed in this thesis.
The diurnal atmospheric optimization of JB2008 was only conducted with the two-step

optimization scheme. Given that the procedure BC-TLE-MIXED is the foundation of the
approach, one would expect further improvement. Nonetheless, in all observed cases, the
accuracy of the reentry prediction worsens. Figures 10.3 to 10.5 also depicts the optimized
density model using the optimized set of diurnal coefficients and the base JB2008 model.
Both of them are compared to the HASDM data set inside the optimization interval. The
modified JB2008 is worse in all cases and produces even unrealistic density value in large
amounts in Figure 10.4, leading to extremely high mean relative errors. This behavior
indicates that the density was not optimized, but rather, the optimization converged towards
a different goal. Over the course of this work, multiple such optimizations were conducted.
However, similarly to these results, none of them could improve the global density prediction.
Some improved at least the reentry error, but most did little to nothing compared to the
good results achieved with the ballistic coefficient optimization.

To conclude, the diurnal atmospheric optimization of JB2008 with the chosen methods did
not work. This remains the subject of future work, even though it is considerably simplified
due to the software framework on which one can build. In contrast, the more significant
topic of reentry optimization overall can be treated as a success. One has to restrict that
all results reported here are conducted a posterior, with geomagnetic and solar activity
being known. We achieve reentry errors comparable to the current state of the art using an
efficient propagation-less method to optimize the ballistic coefficient in an interval before
the re-entry.
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Figure 10.3.: The optimization includes all satellites (N = 25) available via Space-Track
which decayed in May 2019. All satellite have at least two TLE states during
the optimization interval in April, and minimally one TLE before and after
the optimization interval in April 2019.
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(b) Standard JB2008 vs. JB2008 with modified diurnal coefficients inside the optimization interval

Figure 10.4.: The optimization includes all satellites (N = 17) available via Space-Track
which decayed in November 2018. All satellite have at least two TLE states
during the optimization interval in October, and minimally one TLE before
and after the optimization interval in October 2018.
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Figure 10.5.: The optimization includes all satellites (N = 45) available via Space-Track
which decayed in April 2014. All satellites have at least two TLE states during
the optimization interval in March, and minimally one TLE before and after
the optimization interval in March 2014.
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11. Conclusion & Summary

Over the course of this thesis, we presented the topic of atmospheric reentry in the context
of two software projects aiming to extend atmosphere-related functionality in godot and
to enhance the predictability of the atmosphere on satellite states with atmosopt. Part I
presented the background of major density model families: DTM, Jacchia, and MSIS. It laid
the foundation for modeling reentries and which properties are of significant interest when
modeling atmospheric drag. These are namely the ballistic coefficient and the atmospheric
density. It also provided a first look at the later incorporated approach by Picone et al. [74],
which was utilized to derive density values from TLE values.

Next, the key contributions of this work regarding Part II are:

• The refactoring of the atmospheric core component of the flight dynamics library
godot of the European Space Agency by refactoring a separate wind and density
TimeEvaluable class

• The integration of several well-known historic and current density & wind models as
Plugin godotAtmosph given a uniform straightforward to use interface easily extendable
by new models and sources of solar activity data

• A slim python wrapper to evaluate an arbitrary density or wind model

These additions lay the foundation for the godot community to more easily conduct
experiments with atmospheric density models, while the godotAtmosph plugin already
allows from now on to propagate anything with a wide variety of established models - even
more easily with the framework implemented in Part III. Chapter 7 has presented some
maps of the global atmospheric density distribution during high and low solar activity years.
The JB2008 model comes the closest to predicting the density of the HASDM SET Density
Database. Part III stands out for the creation of a comprehensive framework for the goal of
reentry prediction with a focus on JB2008 including:

• A unified approach to access and efficiently store TLE data, satellite characteristics
and SET HASDM density data

• A model capable of quickly propagating and predicting a satellite trajectory without
much configuration overhead

• An optimization framework allowing the arbitrary combination of strategies, satellite
inputs, and time ranges, which can be easily configured to optimize the ballistic
coefficient or diurnal coefficients of JB2008 quickly

• A wide selection of plots to quickly visualize the data directly configurable from the
configuration file

• Overall, an effortless way to make a reentry prediction
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Both parts are written in a way that facilitates future extension and modifications. The
overall optimization of the diurnal coefficients of JB2008 has not been successful. The density
data produced by the optimized JB2008MOD fits the satellites utilized for optimizing but
does not generalize to the global density model. In most cases, propagation with the
optimized coefficients even leads to degraded reentry prediction performance, indicating
an inadequate selection of input satellites or an insufficiently designed fitness function.
So, while this part did not bring the desired success, the reentry optimization does. We
have implemented three ways to optimize satellite drag: propagation, acceleration, and
TLE-derived densities. Especially the last method proved highly valuable due to the low
runtime costs and the associated speed to optimize a large mass of satellites simultaneously
compared to the existing shooting method using propagation. The median reentry error of
the sub-method with best accuracy BC-TLE-MIXED lies at around 9% in 2019, comparable
to the state-of-the-art reentry error obtainable with public data and without dedicated
resources. The method generalizes well to data in 2014, with a median of 24%, but struggles
on the satellite selection in November 2018, with a median reentry error of 43%. Nonetheless,
even the latter values can be considered respectable given the usual reentry prediction errors
from literature.

To conclude, the novelty of this approach lies in something other than the utilized strategies.
These existed beforehand. The novelty is the software framework, which fulfills the entrance
vision of “all one needs is a satellite ID” - the implementation framework with minimal
configuration automatically determines the rest. Further, the implementation is not yet
another script working for a dedicated preselected quantity of satellites but designed to
function and deliver for any input, allowing to try out methods and arbitrary parameter
combinations - simply implementable as a new strategy - on a large scale.
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While the thesis is split into two major parts, so can be future work divided into two parts.

The development of the godotAtmosph plugin, presented in Part II, is software-wise
limited by the capabilities and architectural constraints of godot. Two major improvements
can be identified.

First, Section 7.2 showed the high runtime overhead enforced by input processing compared
to the raw Fortran atmosphere model. The introduction of per-atmosphere model caching
could improve the runtime for timeline-wise continuous propagation. This is a low-effort
addition. However, it needs to be implemented for every atmosphere model individually
because the data required to be cached varies. Another improvement is the introduction of
ranged-based access to a TimeEvaluable in godot. This core feature is internally discussed
at the time of writing and hopefully available in the future due to its significant usefulness in
the context of consecutive solar and geomagnetic index data. When this update is available,
an update to godotAtmosph would also be beneficial.

Second, the atmosphere models do not implement a derivative. The current and previous
implementations in godot compute the derivative by a simple numerical finite difference.
This process could be improved as there are libraries that can do this task with less overhead.
Thus, a valuable contribution could be the replacement of these code fragments using, e.g.,
Enzyme AD1, which provides an automatic derivative for the Fortran implementations
[87]. If this is correctly set up, it would also be beneficial for computing partial derivatives
regarding properties other than the position, such as the solar indices or the coefficients of
an atmosphere model.

The other area of improvement is atmosopt, presented in Part III. The current imple-
mentation is primarily based in Python, with the only exceptions being the propagation and
atmosphere evaluation. This decision had the great advantage that ideas could be quickly
prototyped as convenient I/O functions are directly usable from the language standard or
reputable libraries like numpy or pandas. However, the decision also limits the obtainable
performance significantly, as Python’s GIL does not allow proper parallelism. Further,
all user-defined problems in pygmo are by default not thread-safe, disallowing any other
parallelization than the one on the process level. Therefore, an improvement of the imple-
mentation could focus on two areas. Either the capabilities of godot’s Problem class are
further investigated and made usable. Or alternatively, the atmosopt’s optimization module
is largely migrated into godot atmosph. The primary beneficiaries of both approaches are
the optimization strategies involving propagation with godot’s full dynamic model. In
contrast, the other strategies would only benefit from faster setup times because propagation
only happens once in the beginning.

The latter idea promises quicker realization as no considerations regarding godot’s ar-
chitecture need to be made beforehand godot would be only used as a library. Instead,

1https://github.com/EnzymeAD/Enzyme, last accessed: 07.01.2024
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pygmo’s C++ backbone pagmo is utilized together with thread-level parallelism for, e.g.,
the propagation. The optimization would then be a single function call delegating to C++
and returning the results of the optimization. This way, most components of atmosopt
would remain the same, with only notable changes inside the internals of the optimization
component.
The former idea of using godot’s Problem has already been investigated on the surface

level in the context of optimizing the ballistic coefficient. The main challenge is the automatic
setup of the problem’s configuration. This configuration process has improved with godot

1.5. However, a more extensive package of work would still be required to achieve a similar
degree of customizability and adaptability to arbitrary tasks. This contribution would
then result in a new ensemble of AbstractOptimizer and AbstractProblem. More work is
required in order also to optimize the diurnal coefficients. They need to be incorporated
into the TimeEvaluable-based system. Further, the configuration of the problem would be
complex as many trajectories need to be combined in a single problem - something better
implemented via builder/ assembler interface in core godot.
While the above suggestions focus only on implementation ideas, other directions are

also possible. Here, an investigation of the available strategies and parameters could be
desirable. While this work implemented an extensive framework, the large-scale try-out
phase came short, with only a limited selection of strategy combinations presented. However,
the implementation invites us to try the optimization with different methods, to vary the
fitness function, or to explore different scenarios. The possibilities are endless, and the
implementation framework is designed to be built upon and to be used.
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Computational Hardware

All experiments are conducted on an Apple MacBook Pro with

• M1 Pro Chip with 10 (8 performance, 2 efficiency) cores

• 16 GB of LPDDR5 RAM
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