
Technical University of Munich
TUM School of Computation, Information and Technology

Guaranteeing Complex

Safety Specifications for Autonomous

Vehicles via Reinforcement Learning with

Formal Methods

Hanna Krasowski

Complete reprint of the dissertation approved by the TUM School of Computation,

Information and Technology of the Technical University of Munich for the award of the

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

Chair:

Prof. Debarghya Ghoshdastidar, Ph.D.

Examiners:

1. Prof. Dr.-Ing. Matthias Althoff

2. Prof. Majid Zamani, Ph.D.

3. Prof. Roderick Bloem, Ph.D.

The dissertation was submitted to the Technical University of Munich on 19.02.2024 and

accepted by the TUM School of Computation, Information and Technology on

18.06.2024.

Acknowledgments

First and foremost, I thank my advisor, Matthias Althoff, for the opportunity to conduct

exciting research and continued guidance and support. I am grateful for the past four years of

productive and intellectually stimulating work together. Thanks to Aaron Ames for inviting

me to his lab and for insightful academic and career advice. I am grateful to Majid Zamani,

Roderick Bloem, and Debarghya Ghoshdastidar for inspiring my research and serving on my

dissertation committee.

It was a pleasure to be part of the exceptional research teams at the CPS group in Mu-

nich and the AMBER lab in Pasadena. Working alongside you has been instrumental in my

professional and personal growth. In particular, I sincerely thank my co-authors, Xiao Wang,

Niklas Kochdumper, Yinqiang Zhang, Marlon Müller, Jakob Thumm, Lukas Schäfer, Prithvi

Akella, and Stanley Bak, and my colleagues, Mark, Gerald, Florian, Josefine, Hannah, Victor,

Philipp, Jonathan, Michael, Roland, Eivind, Marius, Maegan, and Rachel. Thanks also to my

mentor, Alexander, who always had an open ear. Students I advised at TUM created software

that contributed to the success of my research, and I owe special thanks to Andreas, Bruno,

Benedikt, Fabian, Matthias, and Stefan.

I gratefully acknowledge public funding of my research through the DFG research training

group ConVeY, the BMBF project TRAITS, and the DAAD program IFI. This funding enabled

me to attend workshops and conferences and supported my research stay at Caltech. The

researchers I met through these programs raised inspiring questions and helped me to advance

my projects, and I am especially thankful to fellow ConVeY researchers. Further, I thank the

anonymous reviewers, program chairs, and handling editors for constructive feedback on my

manuscripts. I am grateful to Ute, Katja, Elisabeth, Mikaela, Janine, and Amy for managing

administrative matters seamlessly.

On a personal note, I am incredibly thankful to Anja, Anjuli, Charlotte, Elisabeth, and

Moritz for their unwavering and genuine support. Lastly, this dissertation benefited immensely

from contributions by countless people, and I thank everyone who helped create an intellectu-

ally inspiring and pleasant community that made my doctorate exciting and enjoyable. Thank

you.

Munich, February 2024 Hanna Krasowski

iii

Abstract

Reinforcement learning is capable of solving intricate motion planning tasks required for oper-

ation of autonomous vehicles. These real-world motion planning tasks are often safety-critical

since failure would be disastrous for humans and the environment. Existing reinforcement

learning methods typically consider safety aspects softly through the reward function or con-

straint optimization. Yet, these methods achieve safety in expectation only and do not guar-

antee safe behavior of autonomous vehicles in out-of-distribution states encountered during

operation. Thus, ensuring safety of reinforcement learning-based programs for autonomous

vehicles is an open research question.

In this thesis, reinforcement learning methods are combined with verification algorithms

to guarantee compliance with safety specifications. To this end, we formalize safety specifi-

cations and design safety verification algorithms based on formal methods, mainly set-based

reachability analysis. To represent the diverse notions of safety, we derive different safety

specifications, i.e., avoiding unsafe states, staying in safe states, and complying with complex

temporal logic specifications. Our formal safety specifications enable verification via formal

methods to identify safe actions for autonomous vehicles. The integration of our verification

algorithms into reinforcement learning methods guarantees compliance with safety specifica-

tions always or probabilistically. Our safe reinforcement learning approaches are designed for

motion planning environments with static and dynamic obstacles in continuous state space.

Conceptually, the proposed approaches are application-independent. Yet, through exploitation

of application-specific properties, we increase the performance of our motion planners, e.g., for

autonomous driving or autonomous vessel navigation.

Numerical evaluations confirm that our integration of formal verification algorithms into re-

inforcement learning guarantees safety during both training and deployment. We demonstrate

the feasibility of safe reinforcement learning for complex motion planning tasks for the appli-

cations of autonomous driving and autonomous vessel navigation. Additionally, we evaluate

our safe reinforcement learning approaches on hardware, thereby validating real-time capa-

bility. Our safe reinforcement learning agents typically converge similarly fast or faster than

reinforcement learning agents that are informed about safety specifications through the reward

function. In conclusion, our research enables safe motion planning of reinforcement learning-

based autonomous vehicles and ensures compliance with complex safety specifications.

v

Zusammenfassung

Reinforcement Learning ist in der Lage, komplizierte Bewegungsplanungsaufgaben autonomer

Fahrzeuge zu lösen. In realen Umgebungen sind diese Bewegungsplanungsaufgaben meist si-

cherheitskritisch, da ein Versagen zu katastrophalen Folgen für Mensch und Umwelt führen

kann. Bestehende Reinforcement-Learning-Methoden berücksichtigen Sicherheitsaspekte typi-

scherweise in weicher Form entweder in der Belohnungsfunktion oder Nebenbedingungen in

die Reinforcement-Learning-Agentenoptimierung. Diese Methoden erreichen Sicherheit jedoch

lediglich im Erwartungswert der Belohnungsfunktion und bieten keine Garantien für siche-

res Verhalten autonomer Fahrzeuge in Zuständen, die während des Trainierens des Agenten

nicht auftreten. Die Gewährleistung von Sicherheitsgarantien für autonome Fahrzeuge, deren

Bewegungsplanung auf Reinforcement Learning basiert, ist eine offene Forschungsfrage.

In dieser Arbeit entwickeln wir Verifikationsalgorithmen und integrieren diese in Reinforce-

ment-Learning-Algorithmen, um die Einhaltung von Sicherheitsspezifikationen zu garantieren.

Zu diesem Zweck formalisieren wir Sicherheitsspezifikationen und entwerfen Verifikationsalgo-

rithmen mittels formaler Methoden, insbesondere mengenbasierter Erreichbarkeitsanalyse. Aus

verschiedenen Sicherheitsanforderungen leiten wir formale Spezifikationen ab, wie das Vermei-

den unsicherer Zustände, das Verbleiben in sicheren Zuständen und die Einhaltung komplexer

Regeln in temporaler Logik. Unsere Sicherheitsspezifikationen ermöglichen die Verifikation si-

cherer Aktionen autonomer Fahrzeuge mit Hilfe formaler Methoden. Durch Integration der

Verifikation in Reinforcement-Learning-Algorithmen garantieren wir die Einhaltung der Sicher-

heitsspezifikation durch autonome Fahrzeuge entweder immer oder probabilistisch. Unsere

sicheren Algorithmen sind für Bewegungsplanungsumgebungen mit statischen und dynami-

schen Hindernissen im kontinuierlichen Zustandsraum entworfen. Die entwickelten sicheren

Algorithmen sind konzeptionell anwendungsunabhängig. Durch die Ausnutzung anwendungs-

spezifischer Eigenschaften erhöhen wir die Performanz der Bewegungsplanung für autonome

Fahren und autonome Schiffsnavigation.

Experimente bestätigen, dass die Integration unserer Verifikationsalgorithmen in Reinforce-

ment-Learning-Algorithmen Sicherheitsspezifikationen sowohl während des Trainierens als auch

im Einsatz garantiert. Wir demonstrieren die Machbarkeit von beweisbar sicherem Reinfor-

cement Learning für komplexe Bewegungsplanungsaufgaben für autonomes Fahrens und auto-

nome Schiffsnavigation. Darüber hinaus evaluieren wir zwei allgemeine Ansätze für sicheres

Reinforcement Learning auf Hardware und validieren damit deren Echtzeitfähigkeit. Die si-

cheren Agenten konvergieren typischerweise ähnlich schnell oder schneller als Agenten, die

lediglich durch die Belohnungsfunktion über Sicherheitsanforderungen informiert werden. Zu-

sammenfassend ermöglicht unsere Forschung eine auf Reinforcement Learning basierende Be-

wegungsplanung autonomer Fahrzeuge unter Einhaltung komplexer Sicherheitsspezifikationen.

vii

Zusammenfassung

viii

Contents

Abstract v

Zusammenfassung vii

1 Introduction 1

1.1 Literature Review . 2

1.1.1 Safe Reinforcement Learning . 2

1.1.2 Reinforcement Learning with Formal Methods 6

1.1.3 Motion Planning for Cyber-Physical Systems 8

1.2 Contributions . 11

2 Safe Reinforcement Learning with Formal Methods 15

2.1 Preliminaries . 15

2.1.1 Reinforcement Learning . 15

2.1.2 Formal Methods . 18

2.2 Problem Statement . 21

2.3 Solution Concept . 22

3 Discussion and Conclusion 25

3.1 Provably Safe Reinforcement Learning for Guaranteed Collision Avoidance . . 25

3.2 Reinforcement Learning with Temporal Logic Safety Specifications 27

Abbreviations 29

List of Figures 31

Bibliography 33

A Provably Safe Reinforcement Learning for Motion Planning with Collision

Avoidance 45

A.1 Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and Bench-

marking . 46

A.2 Provably Safe Reinforcement Learning via Action Projection using Reachability

Analysis . 86

A.3 Safe Reinforcement Learning for Autonomous Lane Changing using Set-based

Prediction . 102

ix

Contents

A.4 Safe Reinforcement Learning for Urban Driving using Invariably Safe Braking

Sets . 111

B Reinforcement Learning with Safety Specifications via Temporal Logic 121

B.1 Temporal Logic Formalization of Marine Traffic Rules 122

B.2 Safe Reinforcement Learning with Probabilistic Guarantees Satisfying Temporal

Logic . 131

B.3 Provable Traffic Rule Compliance in Safe Reinforcement Learning on the Open

Sea . 140

x

1 Introduction

Reinforcement learning (RL) solved tasks that seemed too difficult for machines only a few

years ago. For instance, the RL-based programs AlphaZero and AlphaGo outperformed hu-

man experts in chess and Go, respectively, and received widespread media attention. The

capabilities of RL to solve complex tasks can also be observed from research on autonomous

cyber-physical systems (CPSs) where an autonomous robot fulfills a task in the physical world.

For example, RL performed significantly better in drone racing tasks than classical control.

These impressive achievements of RL methods are rooted in learning by trial and error and

enable flexible adaption to complex tasks. Conceptually, RL methods entail a reward function

that quantifies success and error with a value: the reward. The objective of RL is to max-

imize the expected reward in order to find the optimal policy, i.e., behavior, for a specified

task. During training, the RL agent learns the policy by combing exploitation of feedback on

previous actions from the reward function and random exploration. The random exploration

in RL inherently contradicts guaranteeing safety specifications. Thus, training and evaluation

of RL agents for autonomous CPSs is to date mainly done in computer simulation. However,

simulation can never feature the fidelity of the real world so that the potential of RL for CPS

is not fully realized. Therefore, safely training and evaluating RL approaches in the real world

is a promising strategy to advance their performance.

Formal verification methods can provide the necessary guarantees for safe training and de-

ployment. Formal verification requires a system model and a safety specification to identify safe

actions for RL agents. The system model includes the autonomous CPS, relevant environment

components like obstacles, and the sets of admissible system states. The safety specification is

a formally evaluable definition of safety. There are two overarching verification concepts: offline

and online verification. For offline verification, the learned policy is verified for all admissible

system states. Yet, this verification approach is infeasible for many tasks of autonomous CPSs

due to the amount of admissible system states requiring verification. For example, one would

need to determine all traffic situations that could potentially occur for an autonomously driving

car and verify the policy for all of them. Even if there is a comprehensive safety specification

and a model for verifying a policy, every policy update necessitates re-verification. Online

verification approaches address this issue by computing safe actions at each time step in which

the RL agent decides for an action given the current system state. Thus, not all admissible

system states have to be known in advance. Integrating online verification approaches into RL

safeguards policies so that guarantees with respect to safety specifications are provided.

In practice, synthesizing a system model and safety specifications for CPSs is challeng-

ing. Autonomous CPSs operate in complex environments with dynamic obstacles, which have

1

1 Introduction

to be reflected in the system model. For the CPS, a model is often available or can be

safety-conformably estimated based on recorded trajectories. Models of dynamic obstacles are

generally more difficult to obtain due to higher uncertainty. For instance, for other traffic

participants, uncertainty is typically large since we do not know their future movements with

certainty. The challenge regarding safety specifications is their formalization. While humans

understand safety intuitively (e.g., “never collide”), specifying safety formally is often tedious.

This is rooted in two issues. On the one hand, the notion of safety is often more complex

than collision avoidance and necessitates for example compliance with various traffic rules. On

the other hand, even for collision avoidance safety must be tightly specified to avoid that only

trivially safe actions are verifyable, e.g., a standstill at an urban intersection.

In this work, we propose different safe RL methods that utilize verification approaches to

achieve probabilistic and hard safety guarantees for motion planning tasks of autonomous

CPSs. We investigate multiple degrees of complexity of the safety specifications. The consid-

ered motion planning tasks include uncertainty through disturbances in the CPSs or dynamic

obstacles like other traffic participants. Our approaches are developed for autonomous vehicles

operating in continuous space such as cars, vessels, and drones. While the physical world is

always modeled by a continuous space, the RL policy learns either high-level decisions de-

scribed by a finite set of discrete actions, or control inputs that are directly executable for the

autonomous vehicle and stem from a continuous action space. We explore both types of action

spaces. Whenever high-level decisions are key for task fulfillment, we use discrete action spaces

for efficient computation. In cases where it is important to leverage the entire action space,

we use continuous action spaces that contain all admissible control inputs.

1.1 Literature Review

To conceptualize our contributions toward safe RL with formal methods for motion planning

tasks of autonomous vehicles, we offer three perspectives on the related literature. In Sec-

tion 1.1.1, we introduce the field of safe RL by clustering the research based on the type of

safety guarantee. In Section 1.1.2, we show how formal methods are combined with RL with

a focus on verification approaches and applications of temporal logic, as these are closely re-

lated to our work. Finally, we give a brief overview of research on motion planning tasks of

autonomous vehicles and the most prominent methods in Section 1.1.3.

1.1.1 Safe Reinforcement Learning

Safe RL approaches were initially categorized and described in 2015 [1]. In this survey, safe RL

is defined as methods for obtaining a policy for tasks in which it is important to ensure safety

and performance during training and/or deployment of RL agents. RL agent paraphrases a

repeatedly updated policy during training, and the final trained policy during deployment.

Note that training in RL is equivalent to the process of learning a policy. Safe RL can be

distinguished in approaches that modify the optimization problem of maximizing the expected

reward and those that modify the exploration of RL agents to ensure safety [1]. Since 2015, the

field of safe RL has grown rapidly due to the development of deep RL algorithms using neural

2

1.1 Literature Review

networks as policies. This development allowed for a broader applicability of RL including

autonomous CPSs [2]. We categorize the growing literature by the degree of safety assurance,

i.e., soft constraints, probabilistic guarantees, and hard guarantees, and exemplify the research

in each categories with a few examples.

Soft constraints RL approaches with soft constraints consider safety in their optimization

problem of maximizing the expected reward as a soft constraint. They do so via integration of

safety objectives into the reward function or as soft constraints of the optimization problem by

using Lagrangian methods to ensure feasibility of the optimization problem. These approaches

usually converge to a safer policy at the end of the training, but are typically unsafe during

training of the policy, especially for the first episodes after randomly initializing the policy. An

illustrative example is provided in Figure 1.1a, where the autonomous vehicle slightly collides

with the dynamic obstacle at time t2.

The vast majority of safe RL research integrates safety aspects through the reward function.

Next to manually defining an application-specific safety component for the reward function [3–

6], there are also more systematic approaches to obtain a reward function. Systematic ap-

proaches include using temporal logic specifications to synthesize reward functions [7, 8] or

learning the reward function from expert demonstrations [9]. Despite its simplicity, the inte-

gration of safety aspects in the reward function can be tedious due to time-consuming manual

tuning or unsuited data for learning the reward function. This problem is often aggravated if

there exists a trade-off between safety and performance objectives. Another prominent method

is constraint RL where safety constraints are included through a Lagrangian dual optimization

problem [10, 11]. In particular, these methods improve the policy based on the optimization

problem of maximizing the expected reward subject to constraints. Safety constraints are

commonly included as constraint functions [12–16] or as temporal logic formulas [17–20]. Gen-

erally, soft constraint RL methods are advantageous for non-safety-critical tasks, where safety

violations are not catastrophic, since they do not require a system model.

Probabilistic guarantees Probabilistic guarantees certify safe behavior in probabilistic

bounds. A motion plan with probabilistic guarantees is illustrated in Figure 1.1b for the

same motion planning task as in Figure 1.1a. The opaque vehicles symbolize the confidence

interval bounds. At time t2, there is a probabilistic guarantee for collision avoidance of the

autonomous vehicle. RL approaches that provide probabilistic guarantees require less system

knowledge than approaches with hard guarantees because a safety specification or a system

model can be learned over time. In particular, one can synthesize a model with a certain con-

fidence from sampled data [21, 22], or iteratively expand a safe state set while only allowing

for violations up to a certain probabilistic budget [23–26]. Additionally, if disturbances are

assumed to follow unbounded probability distributions, only probabilistic safety guarantees

can be provided [27].

Other approaches determine the probability of safety specified via temporal logic for actions

based on discrete system models [28, 29]. In [28], probabilistic model checking is utilized to

synthesize a safety shield. This safety shield blocks actions online if they are riskier than a

3

1 Introduction

Goal

t0

t1

t2
t3, t4

Autonomous
vehicle

t0

t1

t2

t3

t4

Obstacle

(a) Soft safety constraints.

Goal

t0

t1

t2
t3, t4

Autonomous
vehicle

t0

t1

t2

t3

t4

Obstacle

(b) Probabilistic safety guarantee.

Goal

t0

t1
t2t3

t4

Autonomous
vehicle

t0

t1

t2

t3

t4

Obstacle

(c) Hard safety guarantee.

Figure 1.1: Autonomous vehicle solving the motion planning task to reach a goal and avoid a dynamic
obstacle with different degrees of safety assurance.

4

1.1 Literature Review

specified threshold. The authors evaluate their approach on multiple grid world examples where

they observe that adding a safety shield results in higher rewards already at the beginning of the

training. Another method is to describe the safety specification with probabilistic computation

tree logic and determine a safe state set with a network of probabilistic timed automata [29].

The proposed safe set contains all states that fulfill the probabilistic specification. In numerical

experiments on an autonomous driving benchmark, the probabilistic guarantee for avoiding

collisions and keeping the speed of the autonomous vehicle within a specified range is validated.

Hard guarantees Hard guarantees always ensure compliance with safety specification. Fig-

ure 1.1c shows a motion plan with hard safety guarantees. The autonomous vehicle has to

slow down so that the dynamic obstacle can pass in front and reaches the goal later at time

t4 compared to the motion plans in Figure 1.1a and Figure 1.1b. Thus, to ensure hard safety

guarantees, the efficiency of goal reaching is reduced. Conceptually, hard guarantees for RL

agents can be obtained by offline verification of a trained RL agent or by including online

verification to restrict the RL agent to safe actions during training and deployment. Offline

verification approaches [30–32] are usually not suited for motion planning tasks of autonomous

CPSs due to the necessity of specifying all admissible system states. Provably safe RL ap-

proaches provide hard safety guarantees during training and deployment. There are three

conceptual approaches of provably safe RL.

First, action replacement replaces unsafe actions with a safe action that is selected inde-

pendently of the unsafe action, and is the commonly used provably safe RL approach [33–37].

For example, Hunt et al. [37] determine the safety of actions based on a symbolic state rep-

resentation and a model of the system, and replace unsafe actions with a safe action sampled

uniformly at random from the set of safe actions. Second, action projection corrects unsafe

actions proposed by the RL agent to the closest safe action before execution. Action projection

is mainly used when safety specifications can be easily formulated as constraints for an opti-

mization problem that identifies the closest safe action. Thus, action projection approaches

are often based on model predictive control (MPC) [38, 39] or control barrier functions [40–42].

Third, action masking restricts the space of selectable actions to the set of safe actions. In

contrast to action replacement and action projection, action masking requires the set of safe

actions explicitly. This is often only feasible for discrete action spaces as in [43–45].

Challenges To obtain safety guarantees, which are essential for safety-critical tasks, a system

model and specification are necessary. There are usually probabilistic or hard assumptions

for the system model that includes environment components necessary in order to achieve

hard or probabilistic guarantees for safe RL. For most motion planning tasks, an additional

challenge is that dynamic obstacles are part of the environment. For these dynamic obstacles,

safety-conformant prediction methods have to be identified to predict their future behavior in

order to verify actions of RL agents.

The complexity allowed for safety specifications is relatively low when considering safe RL

with hard safety guarantees, i.e., most approaches can only handle safety specifications that

are described through safe sets or unsafe sets. However, this does not reflect the complexity

5

1 Introduction

of safety specifications present for real-world motion planning tasks such as extensive traffic

rules for driving on roads.

1.1.2 Reinforcement Learning with Formal Methods

There is a trend in combining formal methods with RL to reduce the engineering effort nec-

essary for stable and efficient training of agents and to guide the RL process toward the most

relevant regions for learning. The most relevant directions for our work are formal verification

approaches, which verify the safety of actions during training, after training, or during deploy-

ment, and the integration of temporal logic specifications in the RL process. Note that the

integration of temporal logic specifications may consider safety only or, alternatively, the full

task of the RL agent, i.e., include both safety and performance objectives.

Verification of agents Generally, the verification of RL agents either verifies the system

offline, e.g., before deployment, or is integrated online to correct unsafe actions if necessary.

Since RL agents are often represented by deep neural networks, offline verification usually

checks that complex non-linear functions comply with safety specifications [30–32, 46]. For

example, Bastani et al. [30] convert a neural network representing an RL agent into a decision

tree to reduce the complexity for the subsequent verification. This decision tree is human-

interpretable and a standard SMT solver [47] is employed to verify Boolean safety specifications.

In this dissertation, we mostly regard online verification approaches for RL agents operating

in continuous state spaces. The most common methods to verify such agents online are forward

invariant sets [48] where control barrier functions [40–42, 49] are prominent, set-based reacha-

bility analysis [36, 50, 51], Hamiltonian-Jacobi-Issacs (HJI) reachability analysis [33, 52], and

MPC safety filters [38, 39, 53]. For forward invariant sets, there exists a control input that

keeps the system within the set. Control barrier functions represent a forward invariant set for

control-affine systems through a differentiable function. Commonly, control barrier functions

are used to constrain the optimization problem projecting unsafe actions to safe actions. For

example, Marvi and Kiumarsi [41] propose such an approach for linear time-invariant systems

and decrease the conservativeness of the initially specified control barrier function as they be-

come more certain about the system dynamics. Set-based reachability analysis computes the

forward evolution of the system and can be used to determine if this evolution eventually in-

tersects unsafe areas. For example in [36], unsafe actions are replaced by the closest randomly

sampled safe action. The set-based reachability approach for verifying actions is applicable

to general nonlinear systems with uncertainties and evaluated on a high-fidelity autonomous

driving task and an aerial navigation task. In contrast, HJI reachability analysis computes

a backward reachable set that can be used to determine a safe state set for which a goal is

reachable without intersecting with unsafe states. For example, Fisac et al. [52] introduce a

general safe RL framework based on action replacement with a failsafe controller, which inter-

venes whenever the action suggested by the RL agent would lead to leaving the safe state set.

MPC safety filters formulate a model-predictive optimization problem with safety constraints.

Commonly, the optimization objective is a norm on the the distance between the proposed and

the safe action. Thus, MPC safety filters are usually used in action projection as in [39]. Note

6

1.1 Literature Review

4 Autonomous driving

4 Autonomous vessels

� Action masking

� Action projection

� Action replacement

© Advanced safety specifications

© Dynamic obstacles

MPC filters Control barrier functions Set-based reachability analysis

Model checking with LTL HJI reachability

� Provably safe RL approaches © Task complexity 4 Motion planning tasks

Figure 1.2: Capabilities of online verification methods integrated in RL.

that for RL agents with discrete state and action spaces, model checking with Linear Temporal

Logic (LTL) specifications is a common approach [34, 35]. For example, Alshiekh et al. [34]

identify the safe actions given LTL specifications with a safety shield, which is based on model

checking and replaces unsafe actions proposed by the RL agent.

We illustrate our qualitative assessment of the different capabilities of prominent online

verification methods with a spider diagram in Figure 1.2. One group of categories is the ap-

plicability to the three provably safe RL concepts. Here, set-based reachability analysis is

well suited for all three concepts while for action projection control barrier functions and MPC

safety filters are also common. The second group of categories represent the potential complex-

ity of motion planning tasks: applicability with dynamic obstacles and possibility to integrate

advanced safety specifications. While set-based reachability analysis is especially well-suited

for dynamic environments with uncertainties, model checking with LTL seamlessly integrates

advanced safety specifications. The third group of categories indicates the applicability to the

motion planning tasks where MPC and set-based reachability analysis both seem to be promis-

ing. We discuss prominent motion planning approaches for the two applications in detail in

Section 1.1.3.

Temporal logic specifications There are three popular approaches to combine temporal

logic specifications with RL: synthesizing a reward function for the full task based on a tem-

poral logic specification, using temporal logic formulas as constraints when updating the RL

policy, and online and offline verification of temporal logic formulas. Studies for the last cate-

gory, e.g., [34, 35], have already been illustrated in previous sections. To systematically design

RL rewards, temporal logic can be used to formalize the task, potentially including safety spec-

ifications. This temporal logic formula is used to design the reward function either by using

7

1 Introduction

robustness measures associated with the formula [7, 54, 55] or by transforming the temporal

logic formula into an automaton that generates the reward [8, 56–59]. For some algorithms, the

policy is guaranteed to converge to the optimal policy, which maximally satisfies the temporal

logic specification [60, 61].

When temporal logic formulas are used to constrain the policy update, they commonly

describe safety specifications [17–20]. De Giacomo et al. [17] introduce restraining specifications

formalized by a LTL formula, which is interpreted over finite traces. The evaluations of the

specifications can be observed by the agent and the reward is extended with specification

reward components, resulting in a loose integration of the temporal logic specification in the RL

process. In contrast, Hasanbeig et al. [20] introduce a product Markov Decision Process (MDP)

of the original RL MDP and a limit-deterministic Büchi automaton, which is constructed based

on the temporal logic specification. Based on this product MDP they introduce a pessimistic

and an optimistic learner, whereby the pessimistic learner ensures that only low-risk actions

are executed.

Challenges Using temporal logic specifications for generating a reward function, which cap-

tures the full task, is more systematic and automatic than manual design. However, the tem-

poral logic specification then contains components that indicate performance and safety, e.g.,

the goal should be reached in the future and obstacles should always be avoided. Consequently,

the resulting agent finds the best solution with respect to all the components. However, there

are tasks where safety and performance are conflicting, e.g., efficiency and safety in driving

on highways. In these cases, the agent would find a trade-off between safety and performance

where safety might be compromised for performance, which is often undesired.

Verification approaches on the other hand achieve hard or probabilistic guarantees. For

online verification approaches, continuous state and action spaces with environment uncertainty

are challenging due to the infinite amount of potentially unsafe and safe actions and the

influence of the uncertainty. Verification methods for continuous state and action spaces are

computationally more complex than for discrete spaces, thus requiring the design of efficient

algorithms. Further, uncertainty strongly influences the conservatism of the verification result.

Yet, most motion planning systems operate in continuous spaces with significant environmental

uncertainties. Offline verification on the other hand necessitates re-verification whenever the

safety specification or model changes.

1.1.3 Motion Planning for Cyber-Physical Systems

There is a variety of solutions for motion planning tasks of autonomous CPSs. Safety is al-

ways an important part of motion planning tasks as collisions should be avoided. The motion

planning methods are employed, e.g., for robotic manipulation [62], mobile robots [63], and

autonomous vehicles [64–66]. In this dissertation, we regard non-cooperative motion plan-

ning tasks of autonomous vehicles and have an in-depth look into autonomous driving and

autonomous vessel navigation, which we also focus our literature review on.

8

1.1 Literature Review

Autonomous driving There is an immense amount of research on motion planning for

autonomous driving [64, 67, 68]. For conciseness, we will only provide an overview of conceptual

approaches with a few explanatory examples. The literature can be categorized into classical

motion planning and machine learning-based motion planning [64]. Classical motion planning

approaches commonly utilize user-defined cost functions for determining the quality of a motion

plan and compute cost-minimizing trajectories. In particular, the resulting motion plan is

the cost-optimal trajectory when generated with optimization-based methods such as MPC

[69, 70], or the lowest-cost trajectory when identified with search-based [71, 72] or sampling-

based methods [73–76]. For search-based methods, motion primitives are commonly employed.

Motion primitives are samples of the action space and represent a partial kinematic-feasible

movement of the vehicle. The search algorithm connects the motion primitives to a trajectory

so that the lowest-cost trajectory is efficiently found. In contrast, sampling-based approaches

generate multiple potential trajectories in the state space of the autonomous vehicle and then

identify the trajectory with the lowest cost.

The most important machine learning approaches used for motion planning in autonomous

driving are imitation learning and RL. Imitation learning is often conducted as behavior

cloning or inverse optimal control [68]. In behavioral cloning, a policy is learned based on

expert demonstrations [77–79]. For example, Prakash et al. [77] use the driving simulator

CARLA [80] to create realistic driving trajectories and add sampling of critical traffic situations

to further improve the policy. Inverse optimal control approaches learn a reward function

from expert demonstrations. During operation of the autonomous car, the reward-optimal

trajectory provided by a classical sampling method is selected [81–83]. Lee et al. [82] propose

an imitation learning approach that is extended with adversarial training samples to improve

training stability. They evaluate their approach on a racing simulator and on a small racing car.

RL agents for autonomous driving learn by interacting with the traffic situation and receive

feedback on their performance through a reward [40, 84–88]. For instance, Cheng et al. [40]

train an RL agent in a continuous state and action space for a adaptive cruise control task

while ensuring safety via control barrier functions.

Safety in autonomous driving is usually interpreted as avoiding collisions with traffic partic-

ipants and is sometimes extended to traffic rules, e.g., keeping a safe distance to the leading

vehicle [89]. Safe RL approaches often consider one specific operation domain, e.g., highways

[84, 90, 91], intersections [85, 92], and/or single-lane adaptive cruise control [43, 86]. For

example, Bouton et al. [92] achieve safe intersection driving in traffic situations with other

vehicles and pedestrians. They propose a discrete action space, mask out unsafe actions, and

revert to the safest action if no action is guaranteed to avoid collisions. For highway driving,

Wang [90] employs control barrier functions to achieve safe driving in continuous action spaces.

The considered notion of safety is keeping a safe distance to the leading vehicle in the same

lane and to the following and leading vehicle on the target lane of lane-changing maneuvers.

Autonomous vessel navigation In comparison to autonomous driving, there is much less

research on motion planning for autonomous vessels. Yet, this is an important application

where safe autonomy might be achieved earlier. Contributing factors to this could be the

9

1 Introduction

significantly fewer traffic rules specifying safety on the water and the slower movements of

vessels favoring real-time computation requirements. Maritime motion planning approaches

usually consist of three building blocks: a guidance system to generate reference trajectories,

a control system to produce control signals that track the reference trajectory, and an state

observer, which estimates the true state of the vessel [93]. Many recently proposed motion

planning approaches mainly regard the guidance and control system while the state observation

is assumed to be near perfect and often not discussed in detail.

The most prominent motion planning approaches are RL [6, 94–99], MPC [100–103], and

search-based methods with motion primitives [104–107] or sampled trajectories [108]. For

search-based and sampling-based methods, the vessel cannot reach any position in the con-

tinuous state space while their computational efficiency is commonly high. In contrast, MPC

identifies the optimal control input in a continuous space given a cost function by solving an

optimization problem. For example, the study [102] shows promising results for traffic situa-

tions with multiple dynamic obstacles and even validate their control approach in real-world

tests. Most of the recently proposed motion planning approaches for autonomous vessels are

based on RL. For example, the studies [6, 94] consider maritime traffic situations with dy-

namic and static obstacles and design a reward function so that the RL agent follows a path,

avoids collisions, and considers collision avoidance traffic rules. Heiberg et al. [6] even perform

extensive evaluation on realistic maritime traffic scenarios with recorded movements of other

vessels on a marine map with multiple islands.

Safety in motion planning tasks for autonomous vessels is usually specified as collision avoid-

ance with static and dynamic obstacles and/or traffic rule compliance. The most researched

traffic rules for vessel navigation are the collision avoidance rules described in the Convention

on the International Regulations for Preventing Collisions at Sea (COLREGS) [109]. Motion

planning approaches that are based on MPC or RL commonly include components in their

cost or reward function that incentivise compliance with these collision avoidance rules [6, 96,

100, 102, 103].

Challenges Although collision avoidance is the most important safety aspect for motion

planning tasks, legal safety [110] required for autonomous vehicles is often more complex. If

autonomous vehicles do not achieve legal safety, they will likely not be certified for commercial

deployment. For autonomous driving and autonomous vessel navigation, traffic rules specify

legal safety. However, there is limited research on the comprehensive integration of traffic rules

in autonomous vehicles, which is a necessary step to obtain certifiable safety.

Motion planning approaches are similar across applications as demonstrated for autonomous

driving and autonomous vessel navigation. Yet, the individual variant is often tailored to a

specific application as exploiting application-specific knowledge often leads to more efficient

methods and less conservative behavior of the autonomous vehicles with respect to safety

specifications. At the same time, autonomous CPSs are not only conquering transportation

on the road and water, but are also gaining presence in everyday tasks. There are countless

applications for robots performing motion planning tasks in our daily lives. Thus, there is a

need for motion planning approaches that generalize across applications while being safe. In

10

1.2 Contributions

particular, it would be ideal to develop generalizing methods that improve task performance

through interactions with the specific task environment while ensuring safety specifications.

1.2 Contributions

In this dissertation, we address the aforementioned challenges by developing safe RL approaches

with probabilistic and hard guarantees for complex safety specifications. The considered mo-

tion planning applications are autonomous vehicles, in particular, cars, mobile robots, drones,

and vessels. The autonomous vehicles perform their task in environments with static and dy-

namic obstacles. The research reproduced in Appendix A regards safety specifications where

unsafe sets have to be avoided or the system has to stay in a safe set at all times. Since

many motion planning tasks exhibit more complex safety specifications, e.g., traffic rules with

temporal dependencies, we showcase how natural language traffic rules can be formalized with

temporal logic and present safe RL approaches that achieve guarantees with respect to tem-

poral logic specifications in Appendix B.

Appendix A.1 There is an increasing amount of research on safe RL with hard guarantees,

i.e., provably safe RL, while there is no unified terminology and no established benchmark

for provably safe RL approaches, yet. In [K1], we identify and describe the three main con-

ceptual approaches of provably safe RL and introduce a unifying terminology. We conduct a

systematic literature review to survey existing provably safe RL research and categorize them

with respect to our identified conceptual approaches. Additionally, we thoroughly compare

different provably safe RL approaches on two stabilization tasks for a inverted pendulum and

a two-dimensional quadrotor.

Appendix A.2 Many provably safe RL approaches are tailored to specific applications such

as autonomous highway driving. In [K2], we propose a general action projection approach for

CPSs with nonlinear dynamics, which projects unsafe actions so that potentially time-varying

unsafe sets are always avoided. Our approach is based on a set-based reachability analysis

algorithm that preserves the parametrization of the action set such that intersections of the

reachable set of the CPS with unsafe sets can be easily formulated as constraints for an opti-

mization problem. Additionally, we propose several extensions that improve the computational

efficiency and potentially reduce the conservativeness of the action projection. We show the

transferability between CPSs and the real-time capability on four benchmarks with static and

time-varying unsafe sets.

Appendix A.3 and Appendix A.4 RL-based approaches are often proposed for motion

planning tasks of autonomous cars. In [K3] and [K4], we develop provably safe RL approaches

for highway driving and urban intersection driving. We propose a discrete high-level action

space that reflects meaningful decisions for the autonomous vehicle in the specific traffic situ-

ation, e.g., lane-changing and lane-following decisions. Our verification approaches identify all

unsafe actions and mask them out of the RL action space. For situations where no discrete

11

1 Introduction

action can be verified, we engage a failsafe motion planner. We evaluate our approaches on

real-world traffic data sets, i.e., data from highway situations for [K3] and data from urban

intersections for [K4]. We conduct an ablation study for our safety verification in [K4]. Our

ablation study shows that including the safety verification for lane-changing and lane-following

actions improves the goal-reaching rate. However, including the verification of actions for safe

intersection passing significantly reduces the goal-reaching rate.

Appendix B.1 The performance drop observed in [K4] results from a conservative speci-

fication of intersection safety that does not regard right-of-way traffic rules at intersections.

Traffic rules are usually specified in legal text and are not directly machine interpretable. Thus,

we formalize maritime collision avoidance traffic rules with metric temporal logic in [K5] and

parameterize them to ease potential adaptions. To validate the formalized rules, we extract

approximately 500 vessel encounters from recorded maritime traffic data and evaluate the rule

compliance for these encounters. For these traffic situations, we observe a plausibly high rule

compliance.

Appendix B.2 Most safe RL approaches that provide guarantees require an explicit system

model to perform verification. In [K6], we propose a safe RL approach for continuous state

and action spaces that does not require an explicit system model and still achieves probabilis-

tic guarantees for complex safety specifications formalized via temporal logic. To this end, we

combine probabilistic verification with a safe RL approach inspired by continuous action mask-

ing in a three-step process. The iterative process allows to separate safety and performance

objectives in distinct steps. We implement our approach on a mobile robot evasion task and

evaluate our trained agent in simulation and on hardware.

Appendix B.3 We are the first to propose a safe RL approach for autonomous navigation

of vessels on the open sea that guarantees traffic rule compliance [K7]. We build our safety

verification upon the formalization proposed in [K5] and derive a statechart that models the

hierarchy of the formalized rules. To determine safe actions, we develop a maneuver synthesis

algorithm, which searches for maneuvers that comply with the standard collision avoidance

traffic rules. If other vessels do not comply with these rules, an emergency maneuver must

be performed, which is formalized by a novel temporal logic rule. To incorporate the emer-

gency maneuver rule in our verification of safe actions, we introduce an emergency controller

that intervenes in emergency situations similar to the previously used fail-safe planners for

autonomous driving. Our resulting safe RL agent always complies with the maritime traffic

rules during both training and deployment in critical maritime traffic situations.

The respective publications are reprinted in Appendix A and Appendix B and below is the list

of these publications:

[K1] H. Krasowski*, J. Thumm*, M. Müller, L. Schäfer, X. Wang, and M. Althoff. “Prov-

ably safe reinforcement learning: Conceptual analysis, survey, and benchmarking”. In:

Transactions on Machine Learning Research (2023).

12

1.2 Contributions

[K2] N. Kochdumper*, H. Krasowski*, X. Wang*, S. Bak, and M. Althoff. “Provably safe

reinforcement learning via action projection using reachability analysis and polynomial

zonotopes”. In: IEEE Open Journal of Control Systems 2 (2023), pp. 79–92.

[K3] H. Krasowski*, X. Wang*, and M. Althoff. “Safe reinforcement learning for au-

tonomous lane changing using set-based prediction”. In: Proc. of the IEEE Int. Conf.

on Intelligent Transportation Systems (ITSC). 2020, pp. 1–7.

[K4] H. Krasowski*, Y. Zhang*, and M. Althoff. “Safe reinforcement learning for urban

driving using invariably safe braking sets”. In: Proc. of the IEEE Int. Conf. on Intel-

ligent Transportation Systems (ITSC). 2022, pp. 2407–2414.

[K5] H. Krasowski and M. Althoff. “Temporal logic formalization of marine traffic rules”.

In: Proc. of the IEEE Intelligent Vehicles Symposium (IV). 2021, pp. 186–192.

[K6] H. Krasowski, P. Akella, A. D. Ames, and M. Althoff. “Safe reinforcement learn-

ing with probabilistic guarantees satisfying temporal logic specifications in continuous

action spaces”. In: Proc. of the IEEE Conf. on Decision and Control (CDC). 2023,

pp. 4372–4378.

[K7] H. Krasowski and M. Althoff. “Provable traffic rule compliance in safe reinforcement

learning on the open sea”. In: arXiv:2402.08502 (2024).

* Indicates multiple lead authors that contributed equally.

The following publications are excluded from the dissertation as they do not substantially

contribute to the central research questions. The first two publications [K8, K9] introduce

open-source research projects, i.e., CommonOcean1 and CommonRoad-RL2. Both tools were

used as implementation basis for some of the included publications, which is indicated within

the respective publications. The other two publications [K10, K11] investigate control for

underactuated vessels in ocean currents.

[K8] H. Krasowski and M. Althoff. “CommonOcean: Composable benchmarks for motion

planning on oceans”. In: Proc. of the IEEE Int. Conf. on Intelligent Transportation

Systems (ITSC). 2022, pp. 1676–1682.

[K9] X. Wang, H. Krasowski, and M. Althoff. “CommonRoad-RL: A configurable rein-

forcement learning environment for motion planning of autonomous vehicles”. In: Proc.

of the IEEE Int. Conf. on Intelligent Transportation Systems (ITSC). 2021, pp. 466–

472.

[K10] A. Doering*, M. Wiggert*, H. Krasowski, M. Doshi, P. F. Lermusiaux, and C. J.

Tomlin. “Stranding risk for underactuated vessels in complex ocean currents: Analysis

and controllers”. In: Proc. of the IEEE Conf. on Decision and Control (CDC). 2023,

pp. 7055–7060.

1commonocean.cps.cit.tum.de
2commonroad.in.tum.de/tools/commonroad-rl

13

https://commonocean.cps.cit.tum.de
https://commonroad.in.tum.de/tools/commonroad-rl

1 Introduction

[K11] M. Killer*, M. Wiggert*, H. Krasowski, M. Doshi, P. F. Lermusiaux, and C. J. Tomlin.

“Maximizing seaweed growth on autonomous farms: a dynamic programming approach

for underactuated systems navigating on uncertain ocean currents”. In: arXiv:2307.01916

(2023).

The remainder of this dissertation is structured as follows: In Chapter 2, we introduce

preliminaries for our research and describe our solution concepts to integrate formal methods

in RL to achieve safety guarantees. We discuss our work and identify future research directions

in Chapter 3. We contextualize and reproduce our studies [K1–K4] in Appendix A and [K5–

K7] in Appendix B.

14

2 Safe Reinforcement Learning with

Formal Methods

This thesis hypothesizes that we can combine RL with formal methods in order to obtain

effective controllers with safety guarantees. In this chapter, we present preliminary concepts

of RL and formal methods, and sketch our solution concepts to achieve safe RL controllers.

2.1 Preliminaries

We denote sets by calligraphic letters, vectors by lowercase letters, and functions in Italic font.

A task describes the overall problem to be solved by the autonomous CPS, e.g., a mobile robot

has to reach a goal area while avoiding collisions with obstacles. The autonomous CPS is

abbreviated by ego system. We commonly describe the ego system with a dynamic system

model ẋ = f (x (t), u(t)). The dynamic system model specifies how the ego system evolves over

time given an initial state x0 ∈ X 0 and a control function u(t), which produces a control input

for the continuous time t. The state trajectory of the ego system is x (t) while the state of

the ego system is from a continuous domain x ∈ X ⊂ RN . The control input to the dynamic

system model is u ∈ U ⊂ RM .

However, the complete system, which models all components necessary for task fulfillment,

usually consists of the ego system and environment components, i.e., objects that can interact

with the ego system. We often do not know the complete system model as we only observe

environment components such as traffic participants partially. Section 2.1.1 introduces the

concept of RL and provides an overview of utilized RL algorithms. To determine safety of

actions or states, formal methods require a model and specification. Thus, we introduce the

relevant models, safety specifications, and verification methods in Section 2.1.2.

2.1.1 Reinforcement Learning

The fundamental model for RL is the MDP. An MDP is defined by the tuple (S,A,T ,R, γ).

The observation space S is often called state space in the RL literature. However, the obser-

vation space is not necessarily the same as the state space of the ego system X and is fully

observable in the context of this work. Thus, we use x ∈ X to describe the state of the ego

system, e.g., velocity, position, and orientation of a mobile robot, whereas we use s ∈ S to

describe an observation of the environment and ego system, e.g., the position and velocity of

the autonomous vehicle, relative position to an obstacle, and friction coefficient between the

15

2 Safe Reinforcement Learning with Formal Methods

Environment

Agent

Observation st+1

Reward rt
Action at

Figure 2.1: Standard RL process.

autonomous vehicle and the ground. The ego system, i.e., RL agent, selects actions a ∈ A from

the action space A. Examples for actions are high-level actions, such as lane changing or lane

following, or low-level control inputs, such as acceleration and steering angle. Both action and

observation space can be continuous or discrete. The transition function T : S ×A×S → P
returns the transition probability σ ∈ P for the next observation s′ when taking action a given

observation s for a discrete MDP. For an MDP with continuous spaces, T denotes the proba-

bility density function in the observation space. The discount factor γ weights the relevance of

future rewards. The reward function R : S ×A×S → R returns a reward r that indicates how

beneficial a transition was with respect to fulfilling the task. For many tasks, the transition

function T and reward function R are unknown. In these cases, the policy π ∈ Π for task

fulfillment cannot be determined by the MDP but must be learned from interactions with the

environment. This process is called RL and is depicted in Figure 2.1. The RL agent selects an

action at based on the observation st. The selected action is executed in the environment, i.e.,

the ego system and the environment components are evolved for one time step. Then, the RL

agent receives the reward rt as feedback and the next observation st+1, which is used to select

the next action and the cycle repeats. The reward function is usually designed to reinforce the

RL agent’s beneficial behaviors and penalize unwanted behavior. An illustrative example is a

mobile robot that has to avoid static obstacles, i.e., receives a negative reward when it hits an

obstacle, and has to reach the room door, i.e., receives a positive reward when it gets closer to

the door. The goal of RL is to find the optimal policy π∗ that maximizes the expectation of

the discounted reward for infinite time horizons:

π∗ = max
π∈Π

Eπ

[∞∑

t=0

γt rt

]
. (2.1)

In practice, the problem is relaxed to a finite time horizon problem, where after N time steps,

the system is reset to a new initial observation, i.e., a new episode is started. This eases

learning the policy, because even if the RL agent maneuvered itself in a dead-end situation, it

will be eventually reset to a meaningful initial observation for the next episode.

The policy can be explicitly determined or implicitly described by the Q-function Q(s, a).

The best action based on a Q-function for a given observation is the action for which the

Q-function returns the highest value. At the start of the RL training process, the Q-function

or the policy are usually randomly initialized. Thus, initially these functions do not contain

16

2.1 Preliminaries

any knowledge about how to best solve the task. The RL agent explores the environment for

some time steps (see Figure 2.1) and uses the gathered knowledge to update the Q-function

or policy. One important aspect of this training process is the trade-off between exploration

and exploitation of knowledge from past interactions with the environment. In the standard

RL approaches, the exploration is conducted by a random selection of actions.

Neural networks together with increased computation power changed the field of RL sig-

nificantly, because deep RL algorithms were proposed, which learn a neural network to ap-

proximate a policy or Q-function. For the research in this dissertation, we use different deep

RL algorithms. To provide an overview of the used deep RL algorithms, we first define prop-

erties that clarify the fundamental differences between algorithms. Model-based algorithms

learn or utilize a model of the environment. They use this environment model to predict the

future evolution of the environment and increase sample efficiency by adding learning tuples

(st, at, st+1, rt) that are generated by this model. In contrast, model-free algorithms learn a

policy or Q-function solely based on learning tuples generated by the agent interacting with the

environment. These model-free algorithms are distinguished based on the origin of the learning

tuples used for updating a policy or Q-function. On-policy algorithms only use the learning

tuples generated since the last policy update. Off-policy algorithms can use all learning tu-

ples generated in the training process for improving the policy or Q-function. Additionally,

an important concept for many model-free RL algorithms is the actor-critic idea, where the

policy is the actor and the critic is the state value function, for which the Q-function values

are summed over actions. Based on the state value function and the reward function, an ad-

vantage function is computed and integrated in the loss function used for the policy update.

In this work, we consider model-free on-policy and off-policy algorithms, which are the most

commonly employed RL algorithms for motion planning tasks of autonomous vehicles [67].

Figure 2.2 provides an overview of the used model-free algorithms1, and displays the devel-

opment. The core ideas of the algorithms in Figure 2.2 are:

• Deep Q-network (DQN) [111] was the first approach using deep neural networks to ap-

proximate the Q-function. The main idea is to define a temporal difference error, which

serves as a gradient for updating the Q-function.

• Important extensions of DQN are dueling DQN [112], double DQN [113], and experience

replay [114], which mainly improve the robustness and sample efficiency of the original

DQN.

• Trust Region Policy Optimization (TRPO) [115] addresses the instability of vanilla policy

optimization [116] by adding a constraint, which ensures that the policy update is not

too large.

• Asynchronous Advantage Actor-critic (A3C) [117] uses the actor-critic idea for policy

optimization by estimating the policy and the value function with a neural network.

Multiple actor-learners can be run in parallel to increase computational efficiency and

asynchronously update the global actor network.

1Note that we did not utilize TRPO in our research and added it for completeness, as the mainly used PPO
is based on it.

17

2 Safe Reinforcement Learning with Formal Methods

Time
2013 2014 2015 2016 2017 2018

TRPO
A2C /
A3C

PPO

DQN
DQN

extensions

DDPG TD3

SAC

Poliy and state value function learned, on-policy

Q-function learned, off-policy

Policy and Q-function learned, off-policy

Figure 2.2: Evolution of prominent model-free deep RL algorithms. Note that the first algorithm for
policy learning has been proposed in 1999 [116].

• Proximal Policy Optimization (PPO) [118] simplifies the idea of TRPO by introducing

a surrogate objective, for which the maximal value is not too far from the current value,

and thus, the update of the policy is not too large. PPO is normally implemented as an

actor-critic formulation.

• Deep Deterministic Policy Gradient (DDPG) [119] extends the concept of DQN to con-

tinuous action spaces by learning an approximator for maximizing the Q-function. Based

on this approximator, a deterministic policy can be learned by simple gradient ascent.

• The Twin Delayed Deep Deterministic (TD3) policy gradient algorithm [120] robusti-

fies DDPG by taking the pessimistic Q-value of two learned Q-function networks when

calculating the temporal difference error, updating the policy less frequently than the

Q-networks, and adding a noise to the actions, which reduces unwanted exploitation of

the Q-function.

• Soft Actor-critic (SAC) [121] is also based on DDPG, but learns a stochastic policy.

Additionally, the algorithm is robustified by entropy regularization and two Q-function

networks.

For implementation details, we refer the interested reader to the respective publications.

2.1.2 Formal Methods

Formal methods are rigorous methods for specifying and verifying systems [122]. In this section,

we present three concepts for the formal verification methods we employed in Appendix A and

Appendix B: temporal logic specifications, verification with set-based reachability analysis, and

probabilistic verification based on scenario programs. For verification approaches, we need to

provide a model and a specification. The verification algorithm then verifies or falsifies the

18

2.1 Preliminaries

specification for the given model. In particular, for action verification of autonomous CPSs, we

often have an ego system model and a prediction model for the evolution of the environment

components.

Models

Systems are described depending on their operating space, e.g., discrete systems can be modeled

by finite state machines and dynamic systems by differential equations. Motion planning tasks

are usually real-world tasks and, thus, defined in a continuous space. A general nonlinear

continuous-time system can be modeled by

ẋ(t) = f (x (t), u(t),w(t)), (2.2)

where w is a time-dependent disturbance and stems from the disturbance set W ⊂ RZ . Gen-

erally, the disturbance set can be unbounded. Then, often only probabilistic verification is

meaningful. For CPS, which digitally compute control inputs, the control input can only

be changed at discrete time steps. Additionally, digital sensors measure the system state at

discrete times. Therefore, we often describe these systems by a discrete-time system

xt+1 = g(xt, ut, wt), (2.3)

where xt+1 denotes the next state and wt ∈ W the disturbance at time t.

The disturbances for both system models can capture epistemic and aleatory uncertainties.

Aleatory uncertainty describes system inherent uncertainty that cannot be reduced by a refined

model whereas epistemic uncertainty is due to imperfection of the model. Thus, epistemic

uncertainty is often dominating when we employ a model that is significantly simplified with

respect to the true system model. We commonly use such simpler models because verification

complexity reduces for them, leading to lower computation time. Another reason is that for

dynamic obstacles in our systems, we often have to derive a model that encloses the behavior of

multiple dynamic obstacles, e.g. all cars, based on only a few recorded trajectories. Thus, we

need models that overestimate physical limits of dynamic obstacles as the simple point-mass

model can do for cars.

Safety specifications

The most common safety specification is that unsafe states should be globally avoided. For

example, an unsafe state for an autonomous vehicle is being too close to the leading vehicle, so

if the leading vehicle suddenly breaks, a collision is inevitable. These sets of unsafe states are

usually identified based on task knowledge, e.g., potential occupancy of traffic participants, or

off-road states. Another perspective on this type of safety specifications is ensuring that the

system stays within a safe set. In this case, a forward invariant set can be computed [123–126],

which by definition ensures that there always exists a control input that keeps the system

within the set for an infinite time horizon. For the autonomous driving example, this would be

a set of states for which the vehicle can always come to a safe stop with respect to the leading

19

2 Safe Reinforcement Learning with Formal Methods

vehicle, even if the leading vehicle performs emergency braking.

Temporal logic describes a family of languages that can formalize temporal specifications.

Temporal logic specifications are often evaluated on discrete-time traces of predicates where

predicates detect specific system states or system properties. Next to the Boolean operators,

e.g., ∧, =⇒ ,¬, the most common temporal operators are G, F, and U. The future globally

operator G(φ) evaluates to true if and only if the predicate φ is true for all future time steps,

whereas φ only has to be true for at least one future time step for the future operator F(φ).

The until operator φ1 Uφ2 returns true for a trace iff φ1 holds true for all time steps until

φ2 holds true. The exact semantics and syntax are specified for each temporal logic language

individually. However, based on this high-level notion of the global operators, we can introduce

the two safety specifications used in this work.

Safety Specification 1 (Temporal logic). General safety specifications in temporal logic have

the structure G(¬Φ), where Φ is a temporal logic formula describing situations that always

should be avoided.

Safety Specification 2 (Avoid). The avoid specification G(¬in unsafe state) is a spe-

cial case of Safety Specification 1 for which the temporal logic formula Φ is the predicate

in unsafe state. The predicate in unsafe state evaluates to true if and only if the ego sys-

tem is in an unsafe state. This is often computed by checking if the reachable states ego system

intersect with sets of unsafe states.

Commonly used temporal languages are LTL, Computation Tree Logic (CTL), and Signal

Temporal Logic (STL) [127, 128]. Since we consider systems operating in continuous state and

input spaces, we employed STL [129]. Additionally, we used Metric Temporal Logic (MTL)

[130, 131] for time-discrete systems with expressive specifications, because MTL extends the

LTL semantics by allowing for the evaluation of temporal operators for time intervals. The

MTL formulas are based on Boolean predicates. STL evaluates the compliance of continuous

signals while also allowing for temporal operators specified for time intervals. Additionally, a

robustness measure ρ can be identified for a STL or MTL formula. This robustness measure

quantifies the degree of compliance or violation and can be used for formulating optimization

problems, which identify the highest possible system compliance.

Verification methods

We applied two verification methods in this dissertation: set-based reachability analysis [132–

134] and probabilistic verification based on scenario programs [135–137]. Set-based reachability

analysis algorithms compute the evolution of a closed-loop or open-loop dynamic system over

time. The algorithms are based on set operations, which eases the integration of bounded

uncertainties and approximation errors. In this work, we use algorithms that compute the

forward reachable set:

R(tf) = {ξ(tf , x0, u(·),w(·)) ∈ X |x0 ∈ X0,∀t ∈ [t0, tf] : u(t) ∈ U ,w(t) ∈ W}, (2.4)

20

2.2 Problem Statement

where ξ(tf , x0, u(·),w(·)) denotes the state at time tf when solving the models (2.2) or (2.3)

for the control input trajectory u(·) and disturbance trajectory w(·) and the initial state x0.

For discrete-time systems, we can acquire ξ directly from (2.3), whereas for continuous-time

systems, we need to compute a solution of the differential equations modeling the system. To

obtain time-interval forward reachable sets from time-point forward reachable sets, an enclosure

of the reachable sets between two time points is computed. As the physical part of the CPS

evolves continuously, we require time-interval reachable sets to verify that the computed control

input is safe over the entire time horizon. Once the time-interval reachable sets are computed,

we verify that they do not intersect with unsafe sets or are fully contained in a safe set. If this

is the case, the system will not enter an unsafe state or leave the safe set for the evaluated

time horizon. The algorithms for computing reachable sets depend on the system model and

the chosen set representations.

The second verification approach we employ is probabilistic verification based on the concept

of scenario programs. The idea is that we obtain K ∈ N+ trajectories {ζpi}Ki=1 by uniformly

sampling initial conditions pi from a parameter space P, whereby a trajectory ζ is a sequence

of system states xj , ∀j ∈ [t0, tt] with t0 and tt being the initial and last time step. For each

sampled trajectory, we evaluate the robustness measure ρ that corresponds to a STL formula

Ψ. Then, we identify the minimal robustness value ρ∗K . Based on [138, Thm. 2], we can

describe the probability and confidence that ρ∗K underperforms the (1− ε)-percentile:

PKµ
[
Pµ[ρ(ζp) ≥ ρ∗K] ≥ 1− ε

]
≥ 1− (1− ε)K , (2.5)

where µ indicates the distribution from which the trajectory samples are drawn. We only sam-

ple trajectories to obtain the probabilistic guarantee; thus, no explicit knowledge of a system

model is necessary. Additionally, we are not limited to systems with bounded disturbances,

but only require that the underlying distribution from which we generate the trajectories is

time-invariant.

2.2 Problem Statement

Safety is essential for many motion planning tasks of CPS. For most of these tasks, safety is

specified in natural language written in a legal document or as a system requirement. However,

natural language specifications leave room for interpretation, which makes them difficult to

integrate into motion planning approaches for autonomous vehicles.

Problem 1. Safety specifications for real-world motion planning tasks are likely ambiguous and

complex when the intentions and behavior of other agents in the environment are unknown.

Motion planning tasks are often intricate, i.e., multiple dynamic obstacles with unclear in-

tentions are present, there are uncertainties in the observations, and environmental constraints

need to be considered. Model-free RL has shown that it can accomplish impressive and gen-

eralizing performance for such tasks [62, 64, 65]. However, most motion planning tasks are

safety-critical, i.e., collisions should never occur and traffic rules must be respected. This criti-

cality makes standard RL inapplicable due to its inherent randomness and the need to explore

21

2 Safe Reinforcement Learning with Formal Methods

unsafe behavior to learn from it. Even if we can explore unsafe behavior in simulation, we

often cannot test or verify all admissible system states in simulation before deploying a motion

planner on an autonomous vehicle in the physical world. Thus, we are either satisfied with

probabilistic safety guarantees based on a formal safety specification or need a model to employ

online verification algorithms. However, it is challenging to achieve efficient online verification,

especially for complex motion planning tasks with complex safety specifications.

Problem 2. Can we design safe and efficient algorithms for motion planning tasks by com-

bining model-free RL and formal methods?

2.3 Solution Concept

To address these problems, we propose formalizing the notion of safety and integrating formal

methods into the RL training and deployment to provide safety guarantees. We detail the

solution steps in this section.

Formalizing safety

To apply verification algorithms, we need a formal safety specification and a model for the

safety-relevant part of the complete system. We can use Safety Specification 2 to formalize

safety for many motion planning tasks. In practice, we compute unsafe sets based on obstacles,

with which the ego system should not collide, or invariably safe sets based on the ego system

dynamics and obstacles. Yet, some safety specifications are not trivially transformable into

avoidance of unsafe states, e.g., if a specific maneuver has to be performed. In these cases, we

use Safety Specification 1, which allows us to formalize arbitrary temporal safety specifications

based on signals or predicates depending on the temporal logic language. To obtain hard safety

guarantees, a model that conformantly describes all safety-relevant system behaviors needs to

be available. While for the ego system we often know a model, for dynamic obstacles, we usu-

ally employ simple models such as point-mass or kinematic models with bounded disturbance

since they allow for more efficient verification algorithms and conveniently overapproximate

the physical possible behaviors of dynamic obstacles. For the employed probabilistic verifi-

cation approach, we do not require an explicit system model, but only an environment that

generates system trajectories. Based on the safety specification and the model, we can then

use verification methods to verify the safety of actions, states, or trajectories.

Safe reinforcement learning

The RL setup consists of an environment to interact with, a reward function, an observation

space, and potentially a translation of discrete actions from the action space to the input space

of the ego system. A well-tuned reward function reflecting the tasks is essential to train RL

agents successfully, while a task usually consists of safety and performance components. Since

verification algorithms handle the safety objective, one could argue that the reward function

must mainly reflect performance objectives. This assumption would also ease training since

safety and performance can conflict in some situations. Still, including safety objectives in

22

2.3 Solution Concept

Environment

Agent

Safe controller
u(xt)

Expansion set
E

Observation st
State xt

Reward rt

Action at

State set X

Action set A

x0

x1

x′1 x2

x′2

E
u(x0)
a0

E u(x1)

a1

Figure 2.3: Safe RL process guided by a safe controller on the left. On the right is an example
trajectory of an RL agent in the state set and the corresponding action selection in the
action set, which is constrained by the safe controller and expansion set.

the reward can lead to an RL agent that relies less on the verification algorithm. Next to the

reward function, the observation space is designed to inform the agent about its own state

and the environment situation. The environment to interact with includes the ego system

dynamics and the possibility of evolving the environment situation, mainly dynamic obstacles,

over time. In particular, for the dynamic obstacles in the environment, this can be built on a

(reactive) model, e.g., an intelligent driver model [139], on recorded environment trajectories,

or a combination of both. Given such a RL setup, we employ two ideas to achieve safe RL.

Idea 1 (Safe reinforcement learning with probabilistic guarantees). Given a safety specifica-

tion, controller, stochastic disturbance, and environment, we can determine the probabilistic

safety guarantee for the system. We can then use RL to improve performance objectives while

constraining the RL action space to the disturbance set around the control input to approxi-

mately maintain the probabilistic guarantee.

As the controller only needs to be probabilistically verifiable for a safety specification, it

can either be synthesized based on this specification or learned from safe demonstrations. The

reward function of the RL setup does not need to include safety components, because the action

space is constrained based on the previously verified safe controller. Figure 2.3 displays the

guided RL process. The controller provides the control input at each time step. The RL agent

can then select an action in the expansion set around it, which is the same as the disturbance

set used during the previous controller verification step. Due to the distribution shift from

uniform sampling of disturbances to the learned policy, the probabilistic safety guarantee is

only approximately maintained and needs to be re-verified as the last step. We present this

concept in detail and evaluate it for a safe evasion task of a mobile robot in Appendix B.2.

Idea 2 (Provably safe reinforcement learning). Given a safety specification and a model, an

online verification algorithm is developed to identify unsafe actions and safe actions based on

the current state of ego systems. This online verification is integrated into RL during training

and deployment, and ensures by design that only safe actions are executed, i.e., provides hard

guarantees.

23

2 Safe Reinforcement Learning with Formal Methods

Environment

Safety verification

Agent

Observation st+1

Reward rtSafety-relevant
state x′t+1

Agent action at

Safe
action ãt

Environment

Safety verification

Agent

Observation st+1

Reward rtSafety-relevant
state x′t+1

Provably safe
set Asafe

Safe
action at

Figure 2.4: Provably safe RL processes: on the left action projection and action replacement are
summarized by the green path; on the right action masking is described by the blue path.

Since the fundamental learning process of model-free RL algorithms is always as depicted

in Figure 2.1, the online safety verification module can be added between the environment

and agent while still being transferable between RL algorithms. The integration of the safety

verfication module leads to two provably safe RL processes, which are illustrated in Figure 2.4.

Conceptually, the online verification can either provide the safe action set Asafe(x
′) given the

safety-relevant states x′ of the ego system and of environment components or, alternatively,

verify the action a proposed by the agent and correct it to a safe action ã if necessary. Ap-

proaches for which a safe set is computed before the agent selects an action are action masking

approaches. For approaches that correct actions after the agent proposed one, we differentiate

between action projection and action replacement. Action projection identifies the safe action

closest to the action proposed by the agent. In contrast, action replacement corrects unsafe

actions with a safe action independent of the action proposed by the agent. For motion plan-

ning tasks, the safety-relevant states x′ commonly contain uncertain positions and velocities

of other agents or static obstacles in the environment. We use this information to compute

overapproximative unsafe sets, which are then used as an input to the verification algorithm.

Appendix A presents the publications executing provably safe RL for avoidance safety spec-

ifications. In particular, we conceptualize, survey, and benchmark provably safe RL literature

in Appendix A.1. Appendix A.2 proposes an application-independent action projection ap-

proach using set-based reachability analysis such that the closest safe action is identified in a

continuous actions space. In Appendix A.3 and Appendix A.4, we present two action mask-

ing approaches for autonomous driving on highways and at urban intersections. Lastly, in

Appendix B.1, we formalize complex safety specifications, which reflect maritime traffic rules,

and propose an action masking approach for autonomous vessels navigating on the open sea

that complies with these complex safety specifications in Appendix B.3.

24

3 Discussion and Conclusion

3.1 Provably Safe Reinforcement Learning for Guaranteed

Collision Avoidance

Summary The papers reproduced in Appendix A propose provably safe RL approaches for

Safety Specification 2. We introduce the main concepts for provably safe RL and identify

three distinct approaches to correct actions so that only safe actions are executed: action

replacement, action projection, and action masking. The clarified terminology and concepts,

as well as the systematic literature review in Appendix A.1, supports researchers to more clearly

present their provably safe RL approaches and to easily gain an overview of provably safe RL

research. Furthermore, our conceptualization facilitates the identification of research gaps in

provably safe RL. The benchmarking of provably safe RL hints toward significant empirical

differences between the approaches to correct the action and identifies action replacement as

the best-suited approach for the two examined control benchmarks. However, the deciding

factor for selecting a provably safe RL approach is often the ease of integration of the safety

specification into the RL process. Thus, all three approaches are useful.

The article in Appendix A.2 introduces an action projection approach based on set-based

reachability analysis for continuous action spaces. The action projection approach can be

applied for nonlinear continuous systems and potentially time-varying unsafe sets. We use a

zonotope as the action set and perform forward reachability analysis such that the relation

between actions and the reachable sets is preserved. The reachable sets are intersected with

the unsafe sets and result in constraints that depend on the action space parameters. These

constraints are integrated into a constraint optimization problem that identifies the safe action

closest to the action proposed by the RL agent. We evaluate our approach on four motion

planning tasks ranging from avoiding static obstacles with the F1TENTH car to a quadrotor

that tracks a trajectory while avoiding unsafe states. The results show the real-time capability,

positive effects on training convergence, and the feasibility of handling time-varying unsafe sets

for an ego system with nonlinear dynamics.

Finally, we develop two action masking approaches for the application of autonomous driving

in Appendix A.3 and Appendix A.4. We utilize discrete action spaces that reflect meaningful

high-level decisions and transform them into control inputs with a low-level planner. Safety is

ensured if a trajectory corresponding to a high-level decision does not intersect unsafe sets and

is contained in invariably safe sets in the state space. The unsafe and safe sets are computed

with set-based reachability analysis. If no high-level decision can be verified, we engage a fail-

safe planner, which is either a provably safe adaptive cruise controller or a braking trajectory.

25

3 Discussion and Conclusion

Our empirical evaluation validates that our verification approach eliminates collisions caused

by the ego vehicle. For highway driving, we observe that adding the safety verification improves

training convergence while only slightly impairing goal-reaching performance. For urban in-

tersection driving, the safety verification part, which ensures safe behavior for lane-changing

and lane-following, shows higher goal-reaching rates than the unsafe baseline. However, lane

safety is insufficient to guarantee that the ego vehicle does not cause collisions when driving

at urban intersections. Adding intersection safety verification ensures collision avoidance but

significantly reduces the goal-reaching performance. The reduction in performance mainly

originates from the ego vehicle waiting until the intersection is surely free, as the intersection

safety verification does not consider right-of-way traffic rules at intersections. The performance

drop clearly demonstrates the boundaries of safety specifications through safe and unsafe sets

only and motivates our work in Appendix B.

Future work One of the main benefits of provably safe RL is that it is based on online ver-

ification, i.e., we verify the safety of actions based on the current system state, which includes

the states of environment components. This feature makes provably safe RL particularly well-

suited for real world deployment. However, most provably safe RL approaches, including ours,

are mainly evaluated in simulation. We showcase real-time capability on the F1TENTH car

with the action projection approach, but more thorough testing on other physical systems is

needed to evaluate if the runtime efficiency is sufficient for higher-dimensional systems oper-

ating at higher frequencies. Additionally, our approaches assume that computations happen

instantaneously. Thus, future work should extend the online verification to anytime verifica-

tion approaches similar to [140]. To showcase that RL is well-suited for complex tasks such as

autonomous urban driving, the autonomous vehicle EDGAR [141] could be a state-of-the-art

test platform for the proposed provably safe RL approaches.

So far, most provably safe RL approaches are tailored to a specific application. Our bench-

marking of provably safe RL approaches is one of few works that compares different prov-

ably safe RL approaches on benchmarks. Thus, it is theoretically and empirically not well

understood which approaches are best suited or even feasible for which task specifications.

Open-sourcing code together with papers helps other researchers to reproduce and compare

their approaches to existing ones, eventually easing the empirical investigation of differences

and applicability. To this end, we publish the source code whenever we own all necessary in-

tellectual property rights and further contribute by developing the open-source software tools

CommonRoad-RL [K9] and CommonOcean [K8]. There are only limited works [37, 39, 45]

that theoretically investigate the influence of provably safe RL approaches on the learning

process. Future research in this direction might identify levers to improve sample efficiency

and convergence of provably safe RL approaches.

26

3.2 Reinforcement Learning with Temporal Logic Safety Specifications

3.2 Reinforcement Learning with Temporal Logic Safety

Specifications

Summary Temporal logic is well suited to specify safety specifications for motion planning

tasks of CPS since they often include temporal dependencies. Since safety requirements are

typically stated in natural language, which is not directly interpretable for a CPS, safety

specifications need to be formalized with temporal logic in a first step. Our research, which is

reproduced in Appendix B.1, presents how maritime traffic rules for collision avoidance on the

open sea can be transferred from natural language to MTL formulas. We implement a monitor

for the formalized rules and evaluate them on encounter situations of vessels based on recorded

maritime traffic data. Our results align with our expectation that most vessels on the open

sea comply with the specified maritime traffic rules. Given the formalized safety specification

of the traffic rules, it is an open research question how to best ensure that CPS operating in a

continuous state space comply with them. We approach these question with a safe RL approach

for continuous action spaces that generalizes between systems and provides probabilistic safety

guarantees in Appendix B.2. Our second solution, presented in Appendix B.3, is a provably

safe RL approach for discrete action spaces that entails an online verification approach to

identify rule-compliant action for navigation of autonomous vessels on the open sea.

For the safe RL approach with probabilistic guarantees in Appendix B.2, we use probabilistic

verification to obtain probabilistic bounds on the minimal robustness measure for a system.

The robustness measure quantifies the satisfaction or violation of a temporal logic specification.

To address the issue of potentially conflicting performance and safety objectives, our approach

combines probabilistic verification and safe RL in separate steps. First, a stochastic safe

controller is verified with respect to the temporal logic safety objective. This controller is then

used to constrain the RL action space while the RL agent optimizes for performance. The

advantage of our proposed approach is that only limited system knowledge is necessary to

obtain an RL agent that is both safe and performant. Yet, a critical pre-condition is that we

can obtain a safe controller that is initially verifiable.

Our provably safe RL approach for autonomous vessels navigating on the open sea in Ap-

pendix B.3 extends the formalized maritime traffic rules and develops a hierarchical safety

verification approach for discrete action spaces. For that, we introduce a rule-compliant ma-

neuver synthesis and an emergency verification. If all vessels comply with the regular collision

avoidance rules for vessels on the open sea, the synthesized maneuvers lead to collision avoid-

ance. However, if a vessel does not comply with the collision avoidance rules, the other vessel

is obliged to perform an emergency maneuver that minimizes the risk of collision. This emer-

gency maneuvering is reflected by our emergency controller and detected by the emergency

verification. The result of the safety verification is the set of traffic rule compliant actions,

which are subsequently used to constrain the selection of actions of the RL agent. In other

words, unsafe actions are masked out for the RL agent. We evaluate our approach in critical

maritime traffic situations and observe that our approach guarantees traffic rule compliance

and achieves collision avoidance without significantly impairing goal-reaching performance.

27

3 Discussion and Conclusion

Future work The satisfaction of a temporal logic formula often depends on the future states

of environment components. For example, the safety of a collision avoidance maneuver for an

autonomous vessel on the open sea depends on the maneuvering of the other vessel. As the

future can only be coarsely predicted, this poses the challenge of making decisions based

on uncertain predictions. If these predictions enclose all admissible behaviors, they tend to

significantly constrain the decision space. Conversely, if only the most likely prediction is

considered, we might miss out on the consequences of almost equally likely predictions. Thus,

future work should investigate how mixed prediction approaches, e.g., a combination of set-

based prediction and probabilistic predictions [142], can be integrated in safe RL approaches.

Another direction is to design more sophisticated probabilistic predictions that are learned

based on traffic data, e.g., predictions based on neural networks [143–145].

Another open research problem is the identification of efficient and general approaches for

motion planning tasks in continuous state and action spaces with uncontrollable environ-

ment components, e.g., traffic participants, that are always compliant with complex temporal

logic specifications of traffic rules. First approaches in this direction combine capable model

checking techniques available for discrete spaces with set-based prediction methods to obtain

specification-compliant continuous state sets, e.g., for autonomous driving [146]. These safe

state sets could be combined together with a variation of the action projection approach pro-

posed in Appendix A.2 to achieve provably safe action projection. Another solution to this

research problem could involve automaton learning based on a continuous system [147], where

the automaton predicts specification compliance of continuous actions that are abstracted to

discrete actions.

In this dissertation, we propose multiple safe RL approaches that achieve probabilistic or

hard safety guarantees. We consider different degrees of expressiveness for the guaranteed

safety specifications and evaluate our approaches on motion planning tasks for autonomous

vehicles. We show that hard safety guarantees can be achieved given a safety-conformant

system model, and probabilistic guarantees can be realized for arbitrary robustness measures

of temporal logic formulas without an explicit system model. Thus, our work paves the way

toward RL agents for motion planning tasks of CPSs that exhibit guarantees for complex safety

specifications.

28

Abbreviations

A3C Asynchronous Advantage Actor-critic.

COLREGS Convention on the International Regulations for Preventing Collisions at Sea.

CPS cyber-physical system.

CTL Computation Tree Logic.

DDPG Deep Deterministic Policy Gradient.

DQN Deep Q-network.

HJI Hamiltonian-Jacobi-Issacs.

LTL Linear Temporal Logic.

MDP Markov Decision Process.

MPC model predictive control.

MTL Metric Temporal Logic.

PPO Proximal Policy Optimization.

RL reinforcement learning.

SAC Soft Actor-critic.

STL Signal Temporal Logic.

TD3 Twin Delayed Deep Deterministic.

TRPO Trust Region Policy Optimization.

29

List of Figures

1.1 Motion planning with different degrees of safety assurance. 4

1.2 Capabilities of online verification methods integrated in RL. 7

2.1 Standard RL process. 16

2.2 Evolution of prominent model-free deep RL algorithms. 18

2.3 Safe RL process guided by a safe controller. 23

2.4 Provably safe RL process. 24

31

Bibliography

[1] J. Garćıa and F. Fernández. “A comprehensive survey on safe reinforcement learning”.

In: Journal of Machine Learning Research 16.42 (2015), pp. 1437–1480.

[2] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig.

“Safe learning in robotics: From learning-based control to safe reinforcement learning”.

In: Annual Review of Control, Robotics, and Autonomous Systems 5 (2022), pp. 411–

444.

[3] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura. “Navigating oc-

cluded intersections with autonomous vehicles using deep reinforcement learning”. In:

Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA). 2018, pp. 2034–

2039.

[4] B. Lütjens, M. Everett, and J. P. How. “Safe reinforcement learning with model un-

certainty estimates”. In: Proc. of the IEEE Int. Conf. on Robotics and Automation

(ICRA). 2019, pp. 8662–8668.

[5] M. El-Shamouty, X. Wu, S. Yang, M. Albus, and M. F. Huber. “Towards safe human-

robot collaboration using deep reinforcement learning”. In: Proc. of the IEEE Int. Conf.

on Robotics and Automation (ICRA). 2020, pp. 4899–4905.

[6] A. Heiberg, T. N. Larsen, E. Meyer, A. Rasheed, O. San, and D. Varagnolo. “Risk-based

implementation of COLREGs for autonomous surface vehicles using deep reinforcement

learning”. In: Neural Networks 152 (2022), pp. 17–33.

[7] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta. “Q-learning for robust

satisfaction of signal temporal logic specifications”. In: Proc. of the IEEE Conf. on

Decision and Control (CDC). 2016, pp. 6565–6570.

[8] A. Camacho, R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. “LTL and

beyond: Formal languages for reward function specification in reinforcement learning”.

In: Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI). 2019, pp. 6065–6073.

[9] S. Arora and P. Doshi. “A survey of inverse reinforcement learning: Challenges, methods

and progress”. In: Artificial Intelligence 297.103500 (2021).

[10] E. Altman. “Constrained Markov decision processes with total cost criteria: Lagrangian

approach and dual linear program”. In: Mathematical Methods of Operations Research

48.3 (1998), pp. 387–417.

[11] J. Achiam, D. Held, A. Tamar, and P. Abbeel. “Constrained policy optimization”. In:

Proc. of the Int. Conf. on Machine Learning (ICML). 2017, pp. 22–31.

33

Bibliography

[12] Y. Chow, O. Nachum, E. Duéñez-Guzmán, and M. Ghavamzadeh. “A Lyapunov-based

approach to safe reinforcement learning”. In: Proc. of the Int. Conf. on Neural Infor-

mation Processing Systems (NeurIPS). 2018, pp. 8103–8112.

[13] A. Stooke, J. Achiam, and P. Abbeel. “Responsive safety in reinforcement learning by

PID Lagrangian methods”. In: Proc. of the Int. Conf. on Machine Learning (ICML).

2020, pp. 9133–9143.

[14] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge. “Projection-based con-

strained policy optimization”. In: Proc. of the Int. Conf. on Learning Representations

(ICLR). 2020, pp. 1–21.

[15] Z. Marvi and B. Kiumarsi. “Safe reinforcement learning: A control barrier function

optimization approach”. In: Int. Journal of Robust and Nonlinear Control 31.6 (2021),

pp. 1923–1940.

[16] D. Kim and S. Oh. “TRC: Trust region conditional value at risk for safe reinforcement

learning”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 2621–2628.

[17] G. De Giacomo, L. Iocchi, M. Favorito, and F. Patrizi. “Foundations for restraining

bolts: Reinforcement learning with LTLf/LDLf restraining specifications”. In: Proc. of

the Int. Conf. on Automated Planning and Scheduling (ICAPS). 2021, pp. 128–136.

[18] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and I. Lee. “Re-

inforcement learning for temporal logic control synthesis with probabilistic satisfac-

tion guarantees”. In: Proc. of the IEEE Conf. on Decision and Control (CDC). 2019,

pp. 5338–5343.

[19] M. Hasanbeig, D. Kroening, and A. Abate. “Towards verifiable and safe model-free

reinforcement learning”. In: Proc. of the Workshop on Artificial Intelligence and Formal

Verification, Logic, Automata, and Synthesis. 2019, pp. 1–9.

[20] M. Hasanbeig, A. Abate, and D. Kroening. “Cautious reinforcement learning with

logical constraints”. In: Proc. of the Int. Conf. on Autonomous Agents and Multi Agent

Systems (AAMAS). 2020, pp. 483–491.

[21] M. Zanon and S. Gros. “Safe reinforcement learning using robust MPC”. In: IEEE

Transactions on Automatic Control 66.8 (2021), pp. 3638–3652.

[22] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. “Safe

exploration in continuous action spaces”. In: arXiv:1801.08757 (2018).

[23] M. Turchetta, F. Berkenkamp, and A. Krause. “Safe exploration in finite Markov de-

cision processes with Gaussian processes”. In: Proc. of the Int. Conf. on Neural Infor-

mation Processing Systems (NeurIPS). 2016, pp. 4312–4320.

[24] F. Berkenkamp, A. P. Schoellig, M. Turchetta, and A. Krause. “Safe model-based

reinforcement learning with stability guarantees”. In: Proc. of the Int. Conf. on Neural

Information Processing Systems (NeurIPS). 2017, pp. 908–918.

34

Bibliography

[25] T. Mannucci, E.-J. van Kampen, C. de Visser, and Q. Chu. “Safe exploration algorithms

for reinforcement learning controllers”. In: IEEE Transactions on Neural Networks and

Learning Systems 29.4 (2018), pp. 1069–1081.

[26] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan, M. Hwang, J. E. Gon-

zalez, J. Ibarz, C. Finn, and K. Goldberg. “Recovery RL: Safe reinforcement learning

with learned recovery zones”. In: IEEE Robotics and Automation Letters 6.3 (2021),

pp. 4915–4922.

[27] J. H. Gillula and C. J. Tomlin. “Reducing conservativeness in safety guarantees by

learning disturbances online: Iterated guaranteed safe online learning”. In: Robotics:

Science and Systems 8.1 (2013), pp. 81–88.

[28] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem. “Online shielding

for stochastic systems”. In: Proc. of the NASA Formal Methods (NFM). 2021, pp. 231–

248.

[29] C. Yang, J. Liu, H. Sun, J. Sun, X. Chen, and L. Zhang. “Safe reinforcement learning

for CPSs via formal modeling and verification”. In: Proc. of the IEEE Int. Joint Conf.

on Neural Networks Proc. (IJCNN). 2021, pp. 1–8.

[30] O. Bastani, Y. Pu, and A. Solar-Lezama. “Verifiable reinforcement learning via pol-

icy extraction”. In: Proc. of the Int. Conf. on Neural Information Processing Systems

(NeurIPS). 2018, pp. 2499–2509.

[31] H. D. Tran, F. Cai, D. Manzanas Lopez, P. Musau, T. T. Johnson, and X. Koutsoukos.

“Safety verification of cyber-physical systems with reinforcement learning control”. In:

ACM Transactions on Embedded Computing Systems 18.5s (2019), pp. 1–22.

[32] L. M. Schmidt, G. D. Kontes, A. Plinge, and C. Mutschler. “Can you trust your au-

tonomous car? Interpretable and verifiably safe reinforcement learning”. In: Proc. of

the IEEE Intelligent Vehicles Symposium (IV). 2021, pp. 171–178.

[33] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H. Gillula, and C. J.

Tomlin. “Reachability-based safe learning with Gaussian processes”. In: Proc. of the

IEEE Conf. on Decision and Control (CDC). 2014, pp. 1424–1431.

[34] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. “Safe rein-

forcement learning via shielding”. In: Proc. of the AAAI Conf. on Artificial Intelligence

(AAAI). 2018, pp. 2669–2678.

[35] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. “Shield synthesis for reinforce-

ment learning”. In: Proc. of the Int. Symposium on Leveraging Applications of Formal

Methods (ISoLA). 2020, pp. 290–306.

[36] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan. “Reachability-based trajectory

safeguard (RTS): A safe and fast reinforcement learning safety layer for continuous

control”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 3663–3670.

[37] N. Hunt, N. Fulton, S. Magliacane, T. N. Hoang, S. Das, and A. Solar-Lezama. “Verifi-

ably safe exploration for end-to-end reinforcement learning”. In: Proc. of the Int. Conf.

on Hybrid Systems: Computation and Control (HSCC). 2021, pp. 1–11.

35

Bibliography

[38] K. P. Wabersich and M. N. Zeilinger. “A predictive safety filter for learning-based

control of constrained nonlinear dynamical systems”. In: Automatica 129.1 (2021),

pp. 109597–109614.

[39] S. Gros, M. Zanon, and A. Bemporad. “Safe reinforcement learning via projection on

a safe set: How to achieve optimality?” In: IFAC-PapersOnLine 53.2 (2020), pp. 8076–

8081.

[40] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. “End-to-end safe reinforcement

learning through barrier functions for safety-critical continuous control tasks”. In: Proc.

of the AAAI Conf. on Artificial Intelligence (AAAI). 2019, pp. 3387–3395.

[41] Z. Marvi and B. Kiumarsi. “Reinforcement learning with safety and stability guarantees

during exploration for linear systems”. In: IEEE Open Journal of Control Systems 1

(2022), pp. 322–334.

[42] X. Li, Z. Serlin, G. Yang, and C. Belta. “A formal methods approach to interpretable

reinforcement learning for robotic planning”. In: Science Robotics 4.37 (2019).

[43] N. Fulton and A. Platzer. “Safe reinforcement learning via formal methods: Toward

safe control through proof and learning”. In: Proc. of the AAAI Conf. on Artificial

Intelligence (AAAI). 2018, pp. 6485–6492.

[44] N. Fulton and A. Platzer. “Verifiably safe off-model reinforcement learning”. In: Proc.

of the Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS). 2019, pp. 413–430.

[45] S. Huang and S. Ontañón. “A closer look at invalid action masking in policy gradient

algorithms”. In: The Int. Florida Artificial Intelligence Research Society Conf. Proc.

(FLAIRS) 35 (2022).

[46] M. Anand and M. Zamani. “Formally verified neural network control barrier certificates

for unknown systems”. In: IFAC-PapersOnLine 56.2 (2023), pp. 2431–2436.

[47] L. de Moura and N. Bjørner. “Z3: An efficient SMT solver”. In: Proc. of the Int. Conf.

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 2008,

pp. 337–340.

[48] G. Anderson, A. Verma, I. Dillig, and S. Chaudhuri. “Neurosymbolic reinforcement

learning with formally verified exploration”. In: Proc. of the Int. Conf. on Neural In-

formation Processing Systems (NeurIPS). Vol. 33. 2020, pp. 6172–6183.

[49] B. Zhong, S. Liu, M. Caccamo, and M. Zamani. “Towards trustworthy ai: sandboxing

ai-based unverified controllers for safe and secure cyber-physical systems”. In: Proc. of

the IEEE Conf. on Decision and Control (CDC). 2023, pp. 1833–1840.

[50] M. Selim, A. Alanwar, S. Kousik, G. Gao, M. Pavone, and K. H. Johansson. “Safe

reinforcement learning using black-box reachability analysis”. In: IEEE Robotics and

Automation Letters 7.4 (2022), pp. 10665–10672.

36

Bibliography

[51] M. Selim, A. Alanwar, M. W. El-Kharashi, H. M. Abbas, and K. H. Johansson. “Safe

reinforcement learning using data-driven predictive control”. In: Proc. of the Int. Conf.

on Communications, Signal Processing, and their Applications (ICCSPA). 2022, pp. 1–

6.

[52] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin.

“A general safety framework for learning-based control in uncertain robotic systems”.

In: IEEE Transactions on Automatic Control 64.7 (2019), pp. 2737–2752.

[53] O. Bastani. “Safe reinforcement learning with nonlinear dynamics via model predictive

shielding”. In: Proc. of the American Control Conf. (ACC). 2021, pp. 3488–3494.

[54] X. Li, C.-I. Vasile, and C. Belta. “Reinforcement learning with temporal logic rewards”.

In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 2017,

pp. 3834–3839.

[55] P. Varnai and D. V. Dimarogonas. “On robustness metrics for learning STL tasks”. In:

Proc. of the American Control Conf. (ACC). 2020, pp. 5394–5399.

[56] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. “Omega-

regular objectives in model-free reinforcement learning”. In: Proc. of the Int. Conf. on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 2019,

pp. 395–412.

[57] M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan. “Modular deep reinforcement

learning for continuous motion planning with temporal logic”. In: IEEE Robotics and

Automation Letters 6.4 (2021), pp. 7973–7980.

[58] M. Hasanbeig, D. Kroening, and A. Abate. “LCRL: Certified policy synthesis via

logically-constrained reinforcement learning”. In: Proc. of the Int. Conf. on Quanti-

tative Evaluation of Systems (QEST). 2022, pp. 217–231.

[59] R. Alur, O. Bastani, K. Jothimurugan, M. Perez, F. Somenzi, and A. Trivedi. “Policy

synthesis and reinforcement learning for discounted LTL”. In: Proc. of the Int. Conf.

on Computer Aided Verification (CAV). 2023, pp. 415–435.

[60] R. Alur, S. Bansal, O. Bastani, and K. Jothimurugan. “A framework for transforming

specifications in reinforcement learning”. In: Principles of Systems Design. Springer

Nature Switzerland, 2022, pp. 604–624.

[61] C. Yang, M. L. Littman, and M. Carbin. “On the (in)tractability of reinforcement

learning for LTL objectives”. In: Proc. of the Int. Joint Conf. on Artificial Intelligence

(IJCAI) (2022), pp. 3650–3658.

[62] H. Guo, F. Wu, Y. Qin, R. Li, K. Li, and K. Li. “Recent trends in task and motion

planning for robotics: A survey”. In: ACM Computing Surveys 55.13s (2023).

[63] H. Chai, Y. Li, R. Song, G. Zhang, Q. Zhang, S. Liu, J. Hou, Y. Xin, M. Yuan, G.

Zhang, and Z. Yang. “A survey of the development of quadruped robots: Joint config-

uration, dynamic locomotion control method and mobile manipulation approach”. In:

Biomimetic Intelligence and Robotics 2.1 (2022), p. 100029.

37

Bibliography

[64] S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, Z. Xuanyuan, F. Zhu, and

L. Chen. “Motion planning for autonomous driving: The state of the art and future

perspectives”. In: IEEE Transactions on Intelligent Vehicles 8.6 (2023), pp. 3692–3711.

[65] G. Kulathunga and A. Klimchik. “Survey on motion planning for multirotor aerial

vehicles in plan-based control paradigm”. In: Remote Sensing 15.21 (2023).

[66] A. Wibisono, M. J. Piran, H.-K. Song, and B. M. Lee. “A survey on unmanned under-

water vehicles: Challenges, enabling technologies, and future research directions”. In:

Sensors 23.17 (2023).

[67] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Sallab, S. Yogamani, and P.

Perez. “Deep reinforcement learning for autonomous driving: A survey”. In: IEEE

Transactions on Intelligent Transportation Systems 23.6 (2022), pp. 4909–4926.

[68] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li. “End-to-end autonomous

driving: Challenges and frontiers”. In: arXiv:2306.16927 (2023).

[69] A. Liniger, A. Domahidi, and M. Morari. “Optimization-based autonomous racing

of 1:43 scale RC cars”. In: Optimal Control Applications and Methods 36.5 (2015),

pp. 628–647.

[70] P. Scheffe, T. M. Henneken, M. Kloock, and B. Alrifaee. “Sequential convex program-

ming methods for real-time optimal trajectory planning in autonomous vehicle racing”.

In: IEEE Transactions on Intelligent Vehicles 8.1 (2023), pp. 661–672.

[71] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. “Path planning for autonomous

vehicles in unknown semi-structured environments”. In: Int. Journal of Robotics Re-

search 29.5 (2010), pp. 485–501.

[72] W. Xu, J. Pan, J. Wei, and J. M. Dolan. “Motion planning under uncertainty for

on-road autonomous driving”. In: Proc. of the IEEE Int. Conf. on Robotics and Au-

tomation (ICRA). 2014, pp. 2507–2512.

[73] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. “Optimal trajectory generation

for dynamic street scenarios in a Frenet frame”. In: Proc. of the IEEE Int. Conf. on

Robotics and Automation (ICRA). 2010, pp. 987–993.

[74] G. Würsching and M. Althoff. “Sampling-based optimal trajectory generation for au-

tonomous vehicles using reachable sets”. In: Proc. of the IEEE Int. Conf. on Intelligent

Transportation Systems (ITSC). 2021, pp. 828–835.

[75] H. Li, G. Yu, B. Zhou, P. Chen, Y. Liao, and D. Li. “Semantic-level maneuver sampling

and trajectory planning for on-road autonomous driving in dynamic scenarios”. In:

IEEE Transactions on Vehicular Technology 70.2 (2021), pp. 1122–1134.

[76] X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu. “Real-time trajectory planning for au-

tonomous urban driving: Framework, algorithms, and verifications”. In: IEEE/ASME

Transactions on Mechatronics 21.2 (2016), pp. 740–753.

38

Bibliography

[77] A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, and A. Geiger. “Exploring data aggre-

gation in policy learning for vision-based urban autonomous driving”. In: Proc. of the

IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 2020.

[78] J. Zhang and K. Cho. “Query-efficient imitation learning for end-to-end simulated

driving”. In: Proc. of the AAAI Conf. on Artificial Intelligence (AAAI). Vol. 31. 1.

2017, pp. 2891–2897.

[79] F. Codevilla, E. Santana, A. M. Lopez, and A. Gaidon. “Exploring the limitations of

behavior cloning for autonomous driving”. In: Proc. of the IEEE/CVF Int. Conf. on

Computer Vision (ICCV). 2019.

[80] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA: An open

urban driving simulator”. In: Proc. of the Annual Conf. on Robot Learning. 2017, pp. 1–

16.

[81] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao. “ST-P3: End-to-end vision-based

autonomous driving via spatial-temporal feature learning”. In: Proc. of the European

Conf. on Computer Vision. 2022, pp. 533–549.

[82] G. Lee, D. Kim, W. Oh, K. Lee, and S. Oh. “MixGAIL: Autonomous driving using

demonstrations with mixed qualities”. In: Proc. of the IEEE/RSJ Int. Conf. on Intel-

ligent Robots and Systems (IROS). 2020, pp. 5425–5430.

[83] H. Wang, P. Cai, Y. Sun, L. Wang, and M. Liu. “Learning interpretable end-to-end

vision-based motion planning for autonomous driving with optical flow distillation”. In:

Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA). 2021, pp. 13731–

13737.

[84] Z. Cao, S. Xu, X. Jiao, H. Peng, and D. Yang. “Trustworthy safety improvement for

autonomous driving using reinforcement learning”. In: Transportation Research Part

C: Emerging Technologies 138.103656 (2022).

[85] L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng. “Safe reinforcement learning for au-

tonomous vehicles through parallel constrained policy optimization”. In: Proc. of the

IEEE Int. Conf. on Intelligent Transportation Systems (ITSC). 2020, pp. 1–7.

[86] Z. Li, U. Kalabic, and T. Chu. “Safe reinforcement learning: Learning with supervision

using a constraint-admissible set”. In: Proc. of the American Control Conf. (ACC).

2018, pp. 6390–6395.

[87] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley,

and A. Shah. “Learning to drive in a day”. In: Proc. of the IEEE Int. Conf. on Robotics

and Automation (ICRA). 2019, pp. 8248–8254.

[88] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone. “Reward (mis)design

for autonomous driving”. In: Artificial Intelligence 316.103829 (2023).

[89] N. Mehdipour, M. Althoff, R. D. Tebbens, and C. Belta. “Formal methods to comply

with rules of the road in autonomous driving: State of the art and grand challenges”.

In: Automatica 152.110692 (2023).

39

Bibliography

[90] X. Wang. “Ensuring safety of learning-based motion planners using control barrier

functions”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 4773–4780.

[91] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker. “High-level decision

making for safe and reasonable autonomous lane changing using reinforcement learn-

ing”. In: Proc. of the IEEE Int. Conf. on Intelligent Transportation Systems (ITSC).

2018, pp. 2156–2162.

[92] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer. “Safe reinforcement

learning with scene decomposition for navigating complex urban environments”. In:

Proc. of the IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 1469–1476.

[93] T. I. Fossen. Handbook of marine craft hydrodynamics and motion control. John Wiley

& Sons, 2011. isbn: 9781119991496.

[94] E. Meyer, A. Heiberg, A. Rasheed, and O. San. “COLREG-compliant collision avoid-

ance for unmanned surface vehicle using deep reinforcement learning”. In: IEEE Access

8 (2020), pp. 165344–165364.

[95] D.-H. Chun, M.-I. Roh, H.-W. Lee, J. Ha, and D. Yu. “Deep reinforcement learning-

based collision avoidance for an autonomous ship”. In: Ocean Engineering 234.109216

(2021).

[96] X. Xu, P. Cai, Z. Ahmed, V. S. Yellapu, and W. Zhang. “Path planning and dynamic

collision avoidance algorithm under COLREGs via deep reinforcement learning”. In:

Neurocomputing 468 (2022), pp. 181–197.

[97] P. Zhai, Y. Zhang, and W. Shaobo. “Intelligent ship collision avoidance algorithm based

on DDQN with prioritized experience replay under COLREGs”. In: Journal of Marine

Science and Engineering 10.5 (2022).

[98] L. Zhao and M. I. Roh. “COLREGs-compliant multiship collision avoidance based on

deep reinforcement learning”. In: Ocean Engineering 191 (2019), pp. 106436–106450.

[99] S. Guo, X. Zhang, Y. Zheng, and Y. Du. “An autonomous path planning model for

unmanned ships based on deep reinforcement learning”. In: Sensors 20.2 (2020).

[100] T. A. Johansen, T. Perez, and A. Cristofaro. “Ship collision avoidance and COLREGs

compliance using simulation-based control behavior selection with predictive hazard as-

sessment”. In: IEEE Transactions on Intelligent Transportation Systems 17.12 (2016),

pp. 3407–3422.

[101] A. Tsolakis, D. Benders, O. De Groot, R. R. Negenborn, V. Reppa, and L. Ferranti.

“COLREGs-aware trajectory optimization for autonomous surface vessels”. In: IFAC-

PapersOnLine 55.31 (2022), pp. 269–274.

[102] D. K. Kufoalor, E. Wilthil, I. B. Hagen, E. F. Brekke, and T. A. Johansen. “Au-

tonomous COLREGs-compliant decision making using maritime radar tracking and

model predictive control”. In: Proc. of the European Control Conf. (ECC). 2019, pp. 2536–

2542.

40

Bibliography

[103] B. O. H. Eriksen, M. Breivik, E. F. Wilthil, A. L. Fl̊aten, and E. F. Brekke. “The

branching-course model predictive control algorithm for maritime collision avoidance”.

In: Journal of Field Robotics 36.7 (2019), pp. 1222–1249.

[104] J. Zhang, H. Zhang, J. Liu, D. Wu, and C. G. Soares. “A two-stage path planning

algorithm based on rapid-exploring random tree for ships navigating in multi-obstacle

water areas considering COLREGs”. In: Journal of Marine Science and Engineering

10.10 (2022).

[105] P. Stankiewicz and M. Kobilarov. “A primitive-based approach to good seamanship

path planning for autonomous surface vessels”. In: Proc. of the IEEE Int. Conf. on

Robotics and Automation (ICRA). 2021, pp. 7767–7773.

[106] T. T. Enevoldsen, C. Reinartz, and R. Galeazzi. “COLREGs-informed RRT* for col-

lision avoidance of marine crafts”. In: Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA). 2021, pp. 8083–8089.

[107] H. T. L. Chiang and L. Tapia. “COLREG-RRT: An RRT-based COLREGs-compliant

motion planner for surface vehicle navigation”. In: IEEE Robotics and Automation

Letters 3.3 (2018), pp. 2024–2031.

[108] A. Lazarowska. “A trajectory base method for ship’s safe path planning”. In: Procedia

Computer Science 96 (2016), pp. 1022–1031.

[109] COLREGs: Convention on the international regulations for preventing collisions at sea.

International Maritime Organization (IMO), 1972.

[110] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar. “Highly automated

driving on highways based on legal safety”. In: IEEE Transactions on Intelligent Trans-

portation Systems 14.1 (2013), pp. 333–347.

[111] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller. “Playing Atari with deep reinforcement learning”. In: arXiv:1312.5602

(2013).

[112] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. De Freitas. “Dueling

network architectures for deep reinforcement learning”. In: Proc. of the Int. Conf. on

Machine Learning (ICML). 2016, pp. 1995–2003.

[113] H. van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double

q-learning”. In: 2016, pp. 2094–2100.

[114] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized experience replay”. In:

arXiv:1511.05952 (2016).

[115] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust region policy

optimization”. In: Proc. of the Int. Conf. on Machine Learning (ICML). 2015, pp. 1889–

1897.

[116] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. “Policy gradient methods for

reinforcement learning with function approximation”. In: Advances in Neural Informa-

tion Processing Systems (NIPS) 12 (1999).

41

Bibliography

[117] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.

Kavukcuoglu. “Asynchronous methods for deep reinforcement learning”. In: Proc. of

the Int. Conf. on Machine Learning (ICML). 2016, pp. 1928–1937.

[118] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy

optimization algorithms”. In: arXiv:1707.06347 (2017).

[119] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.

Wierstra. “Continuous control with deep reinforcement learning”. In: arXiv:1509.02971

(2015).

[120] S. Fujimoto, H. Van Hoof, and D. Meger. “Addressing function approximation error in

actor-critic methods”. In: Proc. of the Int. Conf. on Machine Learning (ICML). 2018,

pp. 2587–2601.

[121] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor”. In: Proc. of the Int. Conf.

on Machine Learning (ICML). 2018, pp. 1861–1870.

[122] E. M. Clarke and J. M. Wing. “Formal methods: state of the art and future directions”.

In: ACM Computing Surveys 28.4 (1996), pp. 626–643.

[123] L. Schäfer, F. Gruber, and M. Althoff. “Scalable computation of robust control invariant

sets of nonlinear systems”. In: IEEE Transactions on Automatic Control 69.2 (2024),

pp. 755–770.

[124] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada.

“Control barrier functions: Theory and applications”. In: Proc. of the European Control

Conf. (ECC). 2019, pp. 3420–3431.

[125] M. A. Ben Sassi and A. Girard. “Computation of polytopic invariants for polynomial

dynamical systems using linear programming”. In: Automatica 48.12 (2012), pp. 3114–

3121.

[126] M. Korda, D. Henrion, and C. N. Jones. “Convex computation of the maximum con-

trolled invariant set for polynomial control systems”. In: SIAM Journal on Control and

Optimization 52.5 (2014), pp. 2944–2969.

[127] S. Konur. “A survey on temporal logics for specifying and verifying real-time systems”.

In: Frontiers of Computer Science 7.3 (2013), pp. 370–403.

[128] E. Bartocci, C. Mateis, E. Nesterini, and D. Ničković. “Survey on mining signal tem-

poral logic specifications”. In: Information and Computation 289.104957 (2022).

[129] O. Maler and D. Ničković. “Monitoring temporal properties of continuous signals”. In:

Proc. of the Workshop on Formal Techniques, Modelling and Analysis of Timed and

Fault-Tolerant Systems (FTRTFT). 2004, pp. 152–166.

[130] R. Alur and T. A. Henzinger. “Real-time logics: Complexity and expressiveness”. In:

Information and Computation 104.1 (1993), pp. 35–77.

[131] P. Thati and G. Rou. “Monitoring algorithms for metric temporal logic specifications”.

In: Electronic Notes in Theoretical Computer Science 113 (2005), pp. 145–162.

42

Bibliography

[132] M. Althoff. “Reachability analysis and its application to the safety assessment of au-

tonomous cars”. Dissertation. Technische Universität München, 2010.

[133] M. Wetzlinger, A. Kulmburg, A. Le Penven, and M. Althoff. “Adaptive reachability

algorithms for nonlinear systems using abstraction error analysis”. In: Nonlinear Anal-

ysis: Hybrid Systems 46.101252 (2022).

[134] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff. “Fully automated verification

of linear systems using inner and outer approximations of reachable sets”. In: IEEE

Transactions on Automatic Control 68.12 (2023), pp. 7771–7786.

[135] A. Corso, R. Moss, M. Koren, R. Lee, and M. Kochenderfer. “A survey of algorithms

for black-box safety validation of cyber-physical systems”. In: Journal of Artificial

Intelligence Research 72 (2021), pp. 377–428.

[136] B. Weng, G. A. Castillo, W. Zhang, and A. Hereid. “On safety testing, validation, and

characterization with scenario-sampling: A case study of legged robots”. In: Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 2022, pp. 5179–

5186.

[137] V. Murali, A. Trivedi, and M. Zamani. “A scenario approach for synthesizing k-inductive

barrier certificates”. In: IEEE Control Systems Letters 6 (2022), pp. 3247–3252.

[138] P. Akella, M. Ahmadi, and A. D. Ames. “A scenario approach to risk-aware safety-

critical system verification”. In: arXiv:2203.02595 (2022).

[139] I. I. Delice and S. Ertugrul. “Intelligent modeling of human driver: A survey”. In: Proc.

of the IEEE Intelligent Vehicles Symposium (IV). 2007, pp. 648–651.

[140] F. Gruber and M. Althoff. “Anytime safety verification of autonomous vehicles”. In:

Proc. of the IEEE Int. Conf. on Intelligent Transportation Systems (ITSC). 2018,

pp. 1708–1714.

[141] P. Karle, T. Betz, M. Bosk, F. Fent, N. Gehrke, M. Geisslinger, L. Gressenbuch, P.

Hafemann, S. Huber, M. Hübner, S. Huch, G. Kaljavesi, T. Kerbl, D. Kulmer, T.

Mascetta, S. Maierhofer, F. Pfab, F. Rezabek, E. Rivera, S. Sagmeister, L. Seidlitz, F.

Sauerbeck, I. Tahiraj, R. Trauth, N. Uhlemann, G. Würsching, B. Zarrouki, M. Althoff,

J. Betz, K. Bengler, G. Carle, F. Diermeyer, J. Ott, and M. Lienkamp. “EDGAR:

An autonomous driving research platform – From feature development to real-world

application”. In: arXiv:2309.15492 (2024).

[142] D. Greene, J. Liu, J. Reich, Y. Hirokawa, A. Shinagawa, H. Ito, and T. Mikami. “An

efficient computational architecture for a collision early-warning system for vehicles,

pedestrians, and bicyclists”. In: IEEE Transactions on Intelligent Transportation Sys-

tems 12.4 (2011), pp. 942–953.

[143] E. Meyer, L. F. Peiss, and M. Althoff. “Deep occupancy-predictive representations for

autonomous driving”. In: Proc. of the IEEE Int. Conf. on Robotics and Automation

(ICRA). 2023, pp. 5610–5617.

43

Bibliography

[144] Z. D. Guo, B. A. Pires, B. Piot, J.-B. Grill, F. Altché, R. Munos, and M. G. Azar.

“Bootstrap latent-predictive representations for multitask reinforcement learning”. In:

Proc. of the. Int. Conf. on Machine Learning (ICML). 2020, pp. 3875–3886.

[145] S. Recanatesi, M. Farrell, G. Lajoie, S. Deneve, M. Rigotti, and E. Shea-Brown. “Pre-

dictive learning as a network mechanism for extracting low-dimensional latent space

representations”. In: Nature Communications 12.1417 (2021).

[146] E. Irani Liu and M. Althoff. “Specification-compliant driving corridors for motion plan-

ning of automated vehicles”. In: IEEE Transactions on Intelligent Vehicles 8.9 (2023),

pp. 4180–4197.

[147] B. K. Aichernig, M. Tappler, and F. Wallner. “Benchmarking combinations of learning

and testing algorithms for automata learning”. In: Formal Aspects of Computing 36.1

(2024).

44

A Provably Safe Reinforcement

Learning for Motion Planning

with Collision Avoidance

Guarantees for safety specifications are necessary to employ RL-based components in au-

tonomous vehicles performing safety-critical tasks. Motion planning tasks are often safety-

critical since collisions should never happen as they could seriously injure humans, harm the

environment, or damage the autonomous vehicle. Therefore, RL-based components need to be

verified so that safety guarantees are provided.

The publications reproduced in this chapter develop provably safe RL approaches, which

provide hard safety guarantees, based on model-free RL algorithms. Safety verification of

actions is conducted online and safe actions are identified with set-based reachability analysis.

All publications regard variants of Safety Specification 2. In Appendix A.1 and Appendix A.4,

the actions of the RL agents are restricted such that the RL agents never leave an invariably

safe set. In Appendix A.2 and Appendix A.3, we ensure that the RL agents always avoid

unsafe sets. The investigated motion planning tasks are mostly autonomous driving of cars.

Additionally, we examine stabilization and path tracking tasks for autonomous aerial vehicles.

45

A Provably Safe Reinforcement Learning for Motion Planning with Collision Avoidance

A.1 Provably Safe Reinforcement Learning: Conceptual

Analysis, Survey, and Benchmarking

Summary RL is based on random exploration, which often contradicts safety. Yet, for au-

tonomous vehicles performing safety-critical tasks, we have to ensure that safety specifications

are met. To ensure safety for an RL agent, actions have to be verified before allowing execu-

tion. The field of provably safe RL develops methods that achieve hard guarantees for safety

specifications during both training and deployment of RL agents. However, there is no consis-

tent terminology for this field to date and most provably safe RL research lacks comparison to

other provably safe RL methods.

This work structures, surveys, and benchmarks provably safe RL research. In particular,

we identify three conceptual categories to ensure safety during training and deployment: ac-

tion replacement, action projection, and action masking. Action replacement identifies unsafe

actions proposed by the RL agent and replaces them with safe actions before they are exe-

cuted. Action projection also identifies unsafe actions, but instead of replacing them with a

safe action, these approaches project unsafe actions to the closest safe action. Action masking

determines the set of safe actions and restricts the action selection of the RL agent to this set.

Our systematic literature review shows that most research on provably safe RL designs action

replacement or action projection approaches. Additionally, different learning tuples are used to

optimize the policy in the provably safe RL literature. A learning tuple describes the interaction

of the RL agent and environment through the previous and current observation, the action

used for transitioning between the observations, and the corresponding reward. We investigate

the difference between learning tuples proposed in the literature for five RL algorithms on

an inverted pendulum and a two-dimensional quadrotor benchmark. Comparing the three

conceptual approaches shows that action replacement is the most robust and effective across

RL algorithms and learning tuples on the two benchmarks.

Author contributions H.K. and X.W. initiated the project of comparing different provably

safe RL approaches. M.M. implemented the comparison on the inverted pendulum benchmark

and evaluated the experiments. H.K. and J.T. conducted the systematic literature review.

H.K, J.T., and M.A. designed the categorization. H.K. and J.T. implemented, conducted,

and evaluated the experiments on the two-dimensional quadrotor benchmark. L.S. provided

feedback on the implementation and the robust control invariant sets for both benchmarks.

H.K. and J.T. structured the presentation of the manuscript and wrote the manuscript. M.M.,

L.S., X.W., and M.A. provided feedback improving the manuscript.

Copyright notice Publication licensed under CC BY 4.0 license available at

creativecommons.org/licenses/by/4.0/. Version of record available at

openreview.net/pdf?id=mcN0ezbnzO.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

46

https://creativecommons.org/licenses/by/4.0/
https://openreview.net/pdf?id=mcN0ezbnzO

Published in Transactions on Machine Learning Research (11/2023)

Provably Safe Reinforcement Learning:
Conceptual Analysis, Survey, and Benchmarking

Hanna Krasowski∗ hanna.krasowski@tum.de
Jakob Thumm∗ jakob.thumm@tum.de
Marlon Müller marlon.mueller@tum.de
Lukas Schäfer lukas.schaefer@tum.de
Xiao Wang xiao.wang@tum.de
Matthias Althoff althoff@tum.de

School of Computation, Information and Technology
Technical University of Munich

Reviewed on OpenReview: https: // openreview. net/ forum? id= mcN0ezbnzO

Abstract

Ensuring the safety of reinforcement learning (RL) algorithms is crucial to unlock their
potential for many real-world tasks. However, vanilla RL and most safe RL approaches
do not guarantee safety. In recent years, several methods have been proposed to provide
hard safety guarantees for RL, which is essential for applications where unsafe actions could
have disastrous consequences. Nevertheless, there is no comprehensive comparison of these
provably safe RL methods. Therefore, we introduce a categorization of existing provably
safe RL methods, present the conceptual foundations for both continuous and discrete action
spaces, and empirically benchmark existing methods. We categorize the methods based on
how they adapt the action: action replacement, action projection, and action masking. Our
experiments on an inverted pendulum and a quadrotor stabilization task indicate that action
replacement is the best-performing approach for these applications despite its comparatively
simple realization. Furthermore, adding a reward penalty, every time the safety verification
is engaged, improved training performance in our experiments. Finally, we provide practical
guidance on selecting provably safe RL approaches depending on the safety specification,
RL algorithm, and type of action space.

1 Introduction

Reinforcement learning (RL) contributes to many recent advancements in challenging research fields such
as robotics (El-Shamouty et al., 2020; Zhao et al., 2020), autonomous systems (Kiran et al., 2022; Ye et al.,
2021), and games (Mnih et al., 2013; Silver et al., 2017). A vanilla RL agent typically explores randomly
and executes undesired actions multiple times to learn how to achieve the highest possible reward. However,
safety is important for many applications. Therefore, safe RL emerged where the learning process is adapted
such that the agent considers safety aspects next to performance during training and/or operation (García &
Fernández, 2015). There are different degrees of how safety is considered for safe RL approaches. First, some
approaches only incorporate safety aspects without formal guarantees. Here, the agent chooses safe actions
with higher probability, e.g., by adding a reward component that indicates risk or adapting the exploration
such that the agent follows a safe heuristic. Second, some approaches provide probabilistic safety guarantees,
e.g., by using probabilistic models for safe actions (Könighofer et al., 2021). Still, hard safety guarantees for
RL agents are necessary whenever failures are disastrous and need to be avoided at all costs during training
and deployment. Such safety-critical applications include autonomous driving, human-robot collaboration,

∗Equal contribution.

1

Published in Transactions on Machine Learning Research (11/2023)

or energy grids. We refer to this third subcategory of safe RL methods providing hard safety guarantees for
both training and operation as provably safe RL.

We provide for the first time a consistent conceptual framework for provably safe RL in both continuous
and discrete action spaces, a comprehensive literature survey, and a comparison between provably safe RL
approaches on two widely used control benchmarks. The characteristic difference between provably safe
RL approaches is how they adapt the actions of the agent. Therefore, we propose classifying them into
three categories: action replacement, action projection, and action masking. Our proposed categorization
of provably safe RL provides a concise presentation of the research field, supports researchers implementing
provably safe RL through clear terminology and a comprehensive literature review, and outlines ideas for
future research within the three categories. Furthermore, we evaluate the methods experimentally. Our
three main findings of our experiments were that all provably safe RL methods were indeed safe, that action
replacement performed best on average over five tested RL algorithms, and that adding a penalty to the
reward when using the safety function further improved performance.

Our contributions are fourfold. First, we introduce a comprehensive classification of provably safe RL
methods and their formal description. This categorization allows us to compare and benchmark the effects
of choosing a specific type of action modification on the ability of agents to learn. Second, we propose
the first formulation of action masking for continuous action spaces. Third, we provide a structured and
comprehensive survey of previous provably safe RL works and assign them to the three categories. Finally,
we are the first to evaluate the performance of all three provably safe RL methods on two common control
benchmarks. This comparison provides insights into the strengths and weaknesses of the different provably
safe RL approaches and allows us to provide advice on selecting the best-suited provably safe RL approach
for a specific problem independent of the safety verification method used.

The remainder of this paper is structured as follows. First, we briefly review the historical development of
safe RL and provably safe RL in Section 1.1. We describe preliminary concepts in Section 2 and introduce our
proposed categorization. Then, we show how the related provably safe RL literature fits our categorization in
Section 3. Section 4 compares the different provably safe RL categories experimentally on a two-dimensional
(2D) quadrotor stabilization task. Section 5 discusses the results of our experimental evaluation and the
practical considerations following them. Finally, we conclude this work in Section 6.

1.1 Evolution towards provably safe RL

The notion of risk and safety in RL is discussed at least since the 1990s (Heger, 1994). The reasons for
combining safety and RL were to focus the learning on relevant or safe regions and improve the convergence
speed. Thus, the field of safe RL started developing, and in 2015, García & Fernández (2015) were the
first to cluster safe RL. They provide two high-level categories: approaches that modify the optimization
criterion and approaches that modify the exploration. Since 2015, significant advances in model-free RL and
the increased applicability of deep RL changed the research focus of safe RL. Notably, the higher efficiency of
model-free deep RL made its real-world application tangible and amplified the need for formal guarantees in
safe RL. This is also apparent from the survey by Brunke et al. (2022), who investigated recent developments
at the intersection of control and learning for safe robotics. As a goal of the broader field of safe learning
for control, they identify methods with as little as possible system knowledge while ensuring formal safety
guarantees (Brunke et al., 2022, Fig. 4). Among existing safe RL approaches, provably safe RL research
is a growing field located at this frontier as it provides hard safety guarantees during both learning and
deployment. While a few papers mentioned in Brunke et al. (2022) are part of provably safe RL, it is not
a focus of their work. In the following paragraphs, we use the common classification by safety specification
type, which can be soft constraints, probabilistic guarantees, and hard guarantees, to locate provably safe RL
in the field of safe RL.

Soft constraints Approaches with soft constraints consider safety directly in their optimization objective
so that the agent can explore all actions and states regardless of safety. Thus, these methods can be unsafe
during training, especially initially, but usually converge to a safer policy without formal safety guarantees
after sufficiently many training steps. The simplest way to inform an RL agent about safety constraints is
through its reward function. Despite its elegance, the reward function approach has many potential pitfalls.

2

Published in Transactions on Machine Learning Research (11/2023)

First, the reward function might be ill-defined, either from manual tuning or when learned from human
input. When manually defined, the reward function might overlook certain features or fine details, leading
to a hackable reward (Skalse et al., 2022) from which the agent learns an unsafe behavior. Learning the reward
function from human feedback (Christiano et al., 2017) is also error-prone because communicating safety
constraints alongside performance metrics is hard for sparse, nonlinear, conditional, or seldom occurring
constraints. Second, even if the reward function is defined correctly, the trained policy is not guaranteed to
be safe, e.g., it was shown by Packer et al. (2018) that RL agents struggle with out-of-distribution states
during deployment. Third, the agent might learn to perform actions safely but ignore the task objective
due to goal misgeneralization (Langosco et al., 2022). Still, the majority of safe RL research considers
safety aspects as soft constraints, so we provide a short overview of soft constraint methods in the following
paragraph.

To reduce the burden of manual reward specification, a recent line of work formalizes the task and its safety
specifications as a temporal logic formula. Then, the temporal logic formula is transformed into the RL
reward either by directly using the robustness measure associated with the formula as the reward (Aksaray
et al., 2016; Li et al., 2017; Varnai & Dimarogonas, 2020) or by transforming the temporal logic formula
into an automaton that generates the reward (Camacho et al., 2019; Hahn et al., 2019; Cai et al., 2021;
Hasanbeig et al., 2022; Alur et al., 2023). For some algorithms, it can even be ensured that the policy
converges to the optimal policy, which maximally satisfies the temporal logic specification (Alur et al.,
2022; Yang et al., 2022). Another way to inform an RL agent about safety than through the reward is by
formulating a constrained optimization problem. Many recent advances have been made in constrained RL
(Altman, 1998; Achiam et al., 2017; Stooke et al., 2020), for which the policy aims to maximize the reward
while satisfying user-defined specifications. The specifications can be formulated as constraint functions
(Chow et al., 2018; Stooke et al., 2020; Yang et al., 2020; Marvi & Kiumarsi, 2021) or as temporal logic
formulas (De Giacomo et al., 2021; Hasanbeig et al., 2019a;b; 2020). The main advantage of soft constraint
methods over probabilistic or hard constraint methods is that no explicit model of the agent dynamics or
the environment is required as the agent learns the safety aspects through experience. Thus, such safe RL
methods have a high potential in non-critical settings, where unsafe actions do not cause major damage.

Probabilistic guarantees Probabilistically safe RL approaches rely on probabilistic models or synthe-
size a model from sampled data. Here, the action and state space can be restricted based on probabili-
ties. Nonetheless, unsafe actions are sometimes not detected and might occur occasionally. Several works
(Turchetta et al., 2016; Berkenkamp et al., 2017; Mannucci et al., 2018) try to determine the maximal set of
safe states by starting from an often user-defined conservative set and extending it with the gathered learning
experience. Other methods (Könighofer et al., 2021; Thananjeyan et al., 2021; Dalal et al., 2018; Zanon &
Gros, 2021; Yang et al., 2021; Gillula & Tomlin, 2013) are based on formulating probabilistic models that
identify the probability of safety for an action. In general, approaches that rely on probabilistic methods are
especially applicable if one cannot bound measurement errors, modeling errors, and disturbances by sets.

Hard guarantees Provably safe RL features hard safety guarantees, which are fulfilled by integrating prior
system knowledge into the learning process. Here, the agent only explores safe actions and only reaches states
fulfilling the safety specifications. Provably safe RL already fulfills the given safety specifications during the
learning process, which is essential when training or fine-tuning agents on safety-critical tasks in the physical
world. Thus, we exclude approaches that only verify learned policies (Bastani et al., 2018; Schmidt et al.,
2021) from our survey. We focus on model-free RL algorithms that do not explicitly learn or use a model of
the system dynamics to optimize the policy. Generally, deploying learned controllers in the physical world
became increasingly realistic in recent years, and thus, the need for provably safe RL grew, and more provably
safe RL approaches were developed. With this work, we aim to structure and provide practical insights into
this growing field.

3

Published in Transactions on Machine Learning Research (11/2023)

2 Conceptual analysis

We introduce three provably safe RL classes by providing their formal description in one comprehensive
conceptual framework. This framework clarifies the differences between the three classes and eases the
following literature review and benchmarking.

Markov decision process The RL agent learns on a Markov decision process (MDP) that is described by
the tuple (S,A, T, r, γ). Hereby, we assume that the set of states S is fully observable with bounded precision.
Partially observable MDPs can be handled using methods like particle filtering (Sunberg & Kochenderfer,
2018) and are not further discussed in this work. The action space A and state space S can be continuous
or discrete. T (s,a, s′) is the transition function, which in the discrete case returns the probability that the
transition from state s to state s′ occurs by taking action a. In the continuous case, T (s,a, s′) denotes
the probability density function of the transition. We assume that the transition function is stationary over
time. For each transition, the agent receives a reward r : S × A → R from the environment. The discount
factor 0 < γ < 1 weights the relevance of future rewards. The policy or value function that the action learns
can be optimized for an infinite or finite episode horizon p.

Safety of a system For provably safe RL, it is required that the safety of states and actions is verifiable.
Otherwise, no formal claims about the safety of a system can be made. Thus, we first introduce the set
of safe states Ss ⊆ S containing all states for which all safety specifications are fulfilled1. For verifying the
safety of actions, we use a safety function φ : S × A → {0, 1}

φ(s,a) =
{

1, if (s,a) is verified safe
0, otherwise.

(1)

Conceptually, this is mainly done by over-approximating the set of states that are reachable by taking action
a in state s, and then validating if the reachable set of states is a subset of Ss and if all these reachable states
are verified safe until the episode horizon p. In other words, for each of these reachable states, there exists
at least one action that keeps the system within Ss until episode termination. To formalize this concept,
we define the set of provably safe actions Aφ(s) = {a|φ(s,a) = 1} for a given state s. The set of provably
safe actions Aφ(s) is a subset of all safe actions2 As(s), i.e., Aφ(s) ⊆ As(s) ⊆ A. The safe action set As(s)
includes all safe actions, while the provably safe action set Aφ(s) only includes actions that are verified as
safe by the safety function φ(s,a). In other words, the safety function possibly returns that an action is
unsafe, which is indeed safe, while it never predicts truly unsafe actions to be safe. Moreover, we define the
set of provably safe states based on the safety function: Sφ = {s|∃a ∈ A, φ(s,a) = 1} ⊆ Ss. Consequently,
for a verified state-action tuple all reachable next states s′ are in Sφ. All provably safe RL approaches rely
on the availability of provably safe actions and states to achieve a provably safe system:

Proposition 1 Let the system be initiated in a provably safe state sφ
0 ∈ Sφ. Then, there exists a sequence

of provably safe actions that ensures s ∈ Ss at all times until the episode horizon p.

The proof can be easily obtained from the definitions by induction as φ(s,a) = 1 if s′ ∈ Ss ∧ Aφ(s′) ̸= ∅.
Note that if the episode horizon is finite, the last state of an episode is verified safe if it is contained in Ss.
A provably safe action must not necessarily exist for this last state.

We define Ss relatively broad since the safety specifications are usually task-specific and can take various
forms such as stability, not entering a time-invariant or time-varying unsafe set, and temporal logic specifica-
tions. Depending on the safety specification and system under consideration, different verification methods
are applicable and encoded in the safety function φ(s,a). We discuss the concrete verification methods used
by previous works in Section 3. Although φ(s,a) only verifies safety for a given state s and action a, it may
take more than the next state into account. To make this more graspable, we shortly explain two concepts for

1The state space is often augmented from the state space for classical control purposes to a state space that includes other
safety-relevant dimensions.

2Note that “taking no action” is commonly considered to be part of the action space, most often with the action
a = [0, . . . , 0]⊤.

4

Published in Transactions on Machine Learning Research (11/2023)

Environment

Action replacement/projection

Agent
st+1

rt

aφt at

(a) Structure of action replacement / projection

Environment Agent

Mask

st+1

rt

Aφ

aφt

(b) Structure of action masking

st+1 next state

rt reward

at action

aφt safe action

(c) Action replacement (d) Action projection (e) Action masking

A action set

As safe action set

Aφ provably safe action set

ã replaced/projected action

Figure 1: Structure of the three types of provably safe RL methods. The post-posed action replacement or
projection methods (a) alter unsafe actions before sending them to the environment. In contrast, preemptive
action masking approaches (b) allow the agent to only choose from the safe action space and, therefore, only
output safe actions to the environment. Figures (c-e) highlight the differences between the three approaches
in the action space. Here, action replacement (c) replaces unsafe actions with actions from the safe action
space, action projection (d) projects unsafe actions to the closest safe action, and action masking (e) lets the
agent choose solely from the safe action set.

calculating the provably safe states set Sφ. For our benchmarks in Section 4, we compute a control invariant
set as Sφ. Thus, the online verification only consists of checking that all reachable states are contained in
this control invariant set. Another concept is predicting the reachable states until a specified time horizon
while starting from s and applying a for the first time step and an action sequence for the consecutive time
steps. The verification checks that all reachable states are in Ss and that either the reachable set at the
prediction horizon is contained in a safe terminal set or the prediction horizon is the episode horizon. If the
verification succeeds, we know that s ∈ Sφ.

Provably safe RL relies on model knowledge to provide safety guarantees, i.e., a conformant model that
covers the safety-relevant system and environment dynamics. Hereby, the verification process can use an
abstraction of the real system dynamics as long as it is conformant (Roehm et al., 2019; Liu et al., 2023) to
the real system, i.e., it over-approximates both aleatoric and epistemic uncertainties and covers all relevant
safety aspects. This eases efficient verification, as the complexity of the abstraction is usually significantly
lower than the complexity of the underlying MDP. In systems where such a safety model is unavailable,
provably safe RL is not applicable, and only non-provably safe approaches, as discussed in Section 1, can be
used. In practice, the safety specifications are often weakened to legal or passive safety. Hereby, inevitable
safety violations caused by other agents are not considered to be the fault of the agent and are, therefore,
not considered unsafe. Examples of proving legal safety have been presented for autonomous driving (Pek
et al., 2020) and robotics (Bouraine et al., 2012).

There are multiple ways to ensure provable safety for RL systems, which we summarize in three categories:
action replacement, where the safety method replaces all unsafe actions from the agent with safe actions,
action projection, which projects unsafe actions onto the safe action space, and action masking, where the
agent can only choose actions from the safe action space. We choose this categorization, as it represents the
three main approaches found in the literature to modify actions and thereby ensure safety for RL. Action
replacement and action projection alter the action after the agent returns it. In contrast, action masking lets
the agent exclusively choose from the safe action space. Figure 1 displays the basic concept of these methods.
The following subsections describe the concept, mathematical formalization, and practical implications of
each approach.

5

Published in Transactions on Machine Learning Research (11/2023)

2.1 Action replacement

The first approach to ensure the safety of actions is to replace any unsafe action returned by the agent
with a safe action before its execution. The first step of action replacement is to evaluate the safety of the
suggested action a ∈ A using φ(s,a). If the action sampled from the policy π(a|s) is not verified as safe,
it is replaced with a provably safe replacement action ã = ψ(s), where ψ : S → Aφ is called replacement
function. Following this procedure, it is guaranteed that only safe actions aφ with

aφ =
{
a ∼ π(a|s), if φ(s,a) = 1
ψ(s), otherwise

(2)

are executed. We discuss how this action replacement alters the MDP in the Appendix and additionally
refer the interested reader to Hunt et al. (2021).

There are two general replacement functions found in the literature, sampling and failsafe. In sampling, the
replacement function ψsample(s) uniformly samples a random action from Aφ(s). The other approach is to
use a failsafe controller ψfailsafe(s) as replacement action, which could also stem from human feedback. In
time-critical and complex scenarios, where building Aφ(s) online becomes too time-consuming, ψfailsafe(s)
is the only feasible option.

2.2 Action projection

In contrast to action replacement, where the replacement action is not necessarily related to the action of
the agent, action projection returns the closest provably safe action with respect to the original action and
some distance function. For this, we define the optimization problem

ã = arg min
â

dist (a, â) (3)

subject to φ(s, â) = 1,

where dist(·) describes an arbitrary distance function, e.g., a p-norm. Note, that it might not be possible
to define such a distance function, especially in discrete action spaces. The constraints are often defined
explicitly by n constraint functions fi(ã, s) ≤ 0, ∀ i ∈ 1, . . . , n that confine the next state to the set of
provably safe states, i.e., s′ ∈ Sφ. The optimization problem in (3) minimizes the alteration of the actions
while satisfying the safety specification, which is usually expressed through constraints for the optimization
problem. Following Proposition 1, the optimization problem in (3) must always be feasible.

The most prominent ways to formulate the safety constraints for action projection are based on control
barrier functions (CBFs) or robust model predictive control (MPC). For the first method, the constraints
are defined by CBFs (Wieland & Allgöwer, 2007) that translate state constraints to control input constraints.
We formulate the CBFs according to Taylor et al. (2020) as it is an intuitive formulation for RL. Consider
a nonlinear control-affine system

ṡ = m(s) + b(s) ã, (4)
where s ∈ S ⊆ RN is the continuous state with N dimensions, and ã ∈ A ⊂ RM is the continuous control
input with M dimensions and m(s) and b(s) are locally Lipschitz continuous functions. Then, the function
h is a CBF if there exists an extended class K function α such that (Wabersich et al., 2023, Eq. 10)

∇h(s)(m(s) + b(s)ã) ≥ α(h(s)). (5)

If the system dynamics are not exactly known, the nominal model can be extended with bounded disturbances
d to model the unknown system dynamics:

ṡ = m(s) + b(s) ã+ d. (6)

To reduce conservatism, disturbances can be modeled as state and input-depended d(s, ã), and the maximal
occurred disturbance can be learned from data as presented in Taylor et al. (2021). The limitation to control-
affine systems makes formulating the constrained optimization problem efficient, e.g., for a Euclidean norm

6

Published in Transactions on Machine Learning Research (11/2023)

as the distance function, (3) results in a quadratic program. A downside of using CBFs is that h(s) is not
trivial to find, especially in environments with dynamic obstacles.

For the second common projection method, we formulate the optimization problem with MPC according to
Wabersich & Zeilinger (2021). There, the constraint in (3) is satisfied if we find an action sequence that steers
the system from the current state s into the safe terminal set M within a finite prediction horizon L ∈ N
while respecting input and state constraints, which reflect the safety specification (Wabersich & Zeilinger,
2021, Eq. 5):

ã = arg min
â

dist (a, â) (7)

subject to sl+1 = g(sl,al), s0 = s,

∀ l ∈ {1, ..., L − 1} : sl ∈ Ss,

sL ∈ M,

∀ l ∈ {0, ..., L − 1} : al ∈ A,

â = a0,

where sl and al are the predicted state and action l steps ahead of the current time step.3 The function g(·, ·)
is obtained by time discretizing a smooth continuous-time nonlinear system, whose dynamics are governed
by ṡ = f(s,a). The safe terminal set M ⊆ S is control invariant, i.e., after the agent has entered M,
the associated invariance-enforcing controller keeps the agent inside this set indefinitely. If the optimization
problem is solvable, ã is executed. If it is not solvable, the control sequence from the previous state is used as
a backup plan until the safe terminal set is reached or the optimization problem is solvable again (Schürmann
et al., 2018). For perturbed systems of the form ṡ = f(s,a,d) with a bounded disturbance d, robust MPC
schemes, e.g., Schürmann et al. (2018), have to be employed and output-feedback MPC schemes, e.g., Gruber
& Althoff (2021), account for measurement uncertainties. Similar to the CBF approach, conservatism can be
reduced by learning the disturbance bounds from data (Hewing et al., 2020). Note that, for an environment
with dynamic obstacles, the safe terminal set can be time-dependent, and we are unaware of a straightforward
integration where Proposition 1 still holds.

2.3 Action masking

The two previous approaches modify unsafe actions from the agent. In action masking, we do not allow the
agent to output an unsafe action in the first place (preemptive method). Hereby, a mask is added to the
agent so that it can only choose from actions in the provably safe action set. In addition to Proposition 1,
action masking in practice requires an efficient function η(s) : S → P(A), where P denotes the powerset,
that determines a sufficiently large set of provably safe actions Aφ ⊆ A for a given state s. The policy
function π is informed by the function η(s) and the action selection is adapted such that only actions from
Aφ can be selected:

a ∼ π(a|η(s), s) ∈ Aφ. (8)

If η(s) can only verify one or a few actions efficiently, the agent cannot learn properly because the agent
cannot explore different actions and find the optimal one among them. Ideally, the function η(s) achieves
Aφ = As.

The action masking approaches for discrete and continuous action spaces are not easily transferable into
each other, and will therefore be discussed separately in this subsection. For discrete actions, the safety of
each action is typically verified in each state using φ(s,a) and all verified safe actions are added to Aφ(s),
i.e., η iterates over all actions for the current state s with φ(s,a) to identify Aφ(s). Intuitively, the discrete
action mask is an informed drop-out layer added at the end of the policy network. We define the resulting
safe policy πm(a|s) based on Huang & Ontañón (2022, Eq. 1) as

πm(a|s) = φ(s,a) π(a|s)∑
aφ∈Aφ(s) π(aφ|s) . (9)

3We omitted in (7) that s1, ..., sL,a1, ...,aL−1 are decision variables of the optimization problem to improve the readability.

7

Published in Transactions on Machine Learning Research (11/2023)

The integration of masking in a specific learning algorithm is not trivial. The effects on policy optimization
methods are discussed in Krasowski et al. (2020); Huang & Ontañón (2022). For RL algorithms that learn
the Q-function, we exemplary discuss the effects of discrete action masking for deep Q-network (DQN) (Mnih
et al., 2013), which is most commonly used for Q-learning with discrete actions. During exploration with
action masking, the agent samples its actions uniformly from Aφ. When the agent exploits the Q-function, it
chooses only the best action among Aφ, i.e., arg maxa∈Aφ

Q(s,a). The temporal difference error for updating
the Q-function Q(s,a) is (Mnih et al., 2013, Eq. 3)

r(s,a) + γ max
a′

Q(s′,a′) − Q(s,a), (10)

where the action in the next state is a′ ∈ Aφ in contrast to the vanilla temporal difference error where
the maximum Q-value for the next state is searched among actions from A. Using the adapted temporal
difference error in (10), the learning updates are performed only with Q-values of actions relevant in the
next state instead of the full action space.

To comprehensively compare the different provably safe RL approaches on discrete and continuous action
spaces in Section 4, we propose a simple formulation for continuous masking since there is no existing
approach. We formulate this form of continuous action masking as a transformation of the action of agents
to the provable safe action set. Our approach requires both A and Aφ to be axis-aligned boxes with the
same center. We propose to transform the action space A into Aφ by applying the transformation

ã = (a− min(A)) max(Aφ) − min(Aφ)
max(A) − min(A) + min(Aφ) (11)

to the actions a ∈ A, where min(·) and max(·) return a vector containing the minimal and maximal value
of the given set in each dimension respectively, and all operations are evaluated element-wise. For example,
given a two-dimensional continuous action space A = [0, 1] × [−1, 2], then min(A) = [0, −1]⊤. Note that the
representation of Aφ as an axis-aligned box centered in A can be under-approximative and, thus, lead to
conservative behavior. To overcome this limitation, more complex set representations, such as the zonotopes
(Althoff et al., 2021), for the action spaces (A and Aφ) in combination with solving an optimization problem
that maximizes the size of Aφ could be investigated. A less sophisticated yet possibly effective approach
is searching for a good latent interval representation of and transformation to Aφ by applying principal
component analysis to a set of Aφ for different states as a pre-computing step. Since the action spaces for
RL are defined a priori, there must always be a valid transformation from a to ã ∈ Aφ and such that the
operation is time-invariant for all state-action pairs. In the next section, we discuss the effect of the three
provably safe RL approaches on the policy distribution and exploration.

2.4 Impact on the distribution of actions

The three previously presented provably safe RL methods have different effects on the resulting distribution
of actions, as illustrated for a one-dimensional continuous action space and a probabilistic policy in Figure 2.
For action projection, all actions that are not verified safe a /∈ Aφ are projected to the boundary of the
provably safe action set ∂Aφ. Therefore, actions on ∂Aφ are disproportionately explored compared to the
interior of Aφ. A similar effect can occur in action replacement depending on the replacement strategy,
e.g., with ψfailsafe(s), the failsafe action is explored more often. However, if the random sampling strategy
ψsample(s) is used, as shown in Figure 2 (a), the likelihood of all safe actions being explored increases equally.
The sampling strategy, therefore, fosters exploration and discourages exploitation, as all non-provably safe
actions lead to uniformly distributed exploration in the safe action space. The distribution of actions for
both action replacement and projection differs from the distribution of the current policy, which might be
problematic for on-policy algorithms. In action masking, we only map the exploration from A to Aφ. Thus,
the exploration strategy is not affected by action masking. In this aspect, our approach in (11) is conceptually
similar to action normalization, which is commonly used in RL (Sutton & Barto, 2018, Ch. 16.8).

8

Published in Transactions on Machine Learning Research (11/2023)

Aφ A

a

π(a|s)

(a) Action replacement

Aφ A

a

π(a|s)

(b) Action projection

Aφ A

a

π(a|s)

(c) Action masking

Figure 2: Idealized impact of the provably safe RL methods on the probability density function of the RL
policy for a single action in a given state. The probability density function of the original RL policy π (a|s)
and the provably safe policy π (ã|s) are depicted as the gray area and the blue line respectively. Figure
(a) shows action replacement with the random sampling strategy. Figure (b) displays action projection,
where the vertical arrows are scaled Dirac delta distributions that stem from the fact that the unsafe parts
of the original policy distribution are projected to the boundary of Aφ. Figure (c) depicts our proposed
implementation of continuous action masking.

2.5 Learning tuples

When changing the RL action, the training of the agent can be conducted with four possible learning tuples:

• naive - learning based on the action a returned by the policy network of the agent and the reward
r(s,aφ) corresponding to the executed action aφ, which we denote by the tuple (s,a, s′, r(s,aφ)).
This ensures that the agent is updated according to its current policy. Learning with the original
action a should benefit on-policy learning, where the policy is updated based on experience collected
using the most recent policy.

• adaption penalty - is naive with a penalty r∗(s,a,aφ) = r(s,aφ) + rpenalty(s,a,aφ) if an unsafe
action was selected, which we denote by the tuple (s,a, s′, r∗(s,a,aφ)). In action projection, the
penalty rpenalty can include a term that is proportional to the projection distance dist(a,aφ), as
proposed by Wang (2022).

• safe action - learning based on the safe and possibly adapted action and the corresponding reward,
denoted by the tuple (s,aφ, s′, r(s,aφ)). By using the safe action tuple, we are correctly rewarding
the agent for the actually performed transition. However, this requires updating the agent with an
action that did not stem from its current policy π(a|s), which is an expected behavior in off-policy
but not on-policy learning. So, the safe action tuple might be a better fit for off-policy than for
on-policy RL.

• both - in case the RL agent proposes an unsafe action, both the adaption penalty and the safe action
tuples are used for learning.

In all cases, the next state s′ and reward r are the true state and reward received from the environment
after executing the safe action aφ.

Action masking is always paired with the naive or adaption penalty learning tuple in the literature. The
adaption penalty is related to the reduction of the action space due to masking or a safety component in
the reward function, and not a sparse reward as for action projection and action replacement. For discrete
action masking, the naive and the safe action tuples are equivalent since the agent is only allowed to choose
provably safe actions (see Figure 1). For continuous action masking, using the safe action tuple with the
transformed action ã leads to inconsistencies in learning because every action is transformed if Aφ ̸= A.

9

Published in Transactions on Machine Learning Research (11/2023)

3 Literature review

In this section, we summarize previous works in provably safe RL and assign them to the proposed categories.
To identify the related literature, we used the search string TITLE-ABS("reinforcement learning") AND
TITLE(learning) AND [TITLE(safe*) OR TITLE(verif*) OR TITLE(formal*) OR TITLE(shield*)]
AND LIMIT-TO(LANGUAGE,"English")4 for the Scopus5 and IEEEXplore6 search engine, which led to
620 papers already removing duplicates. Then, we screened papers by title and abstracts to identify 160
seemingly relevant papers. After close inspection, we identified 47 of these 160 papers as provably safe RL
works. We give a condensed overview of all application-independent provably safe RL works in Table 1,
and cluster all 47 provably safe RL works in Table 2 by their application. Some approaches in Table 1 are
presented for unbounded disturbance. In such a setting, hard safety guarantees are generally not achievable.
Still, we include approaches that would be provably safe with the assumption that the disturbance is
bounded.

Action replacement One of the earliest provably safe RL works is Alshiekh et al. (2018), which con-
structed a so-called safety shield from linear temporal logic formulas. For that, they construct the verifi-
cation function φ(s,a) by converting the linear temporal logic formulas into an automaton, on which they
perform model checking. The advantage of online model checking is that linear temporal logic constraints
can be guaranteed for general nonlinear systems, and the online complexity is linear in the number of discrete
states. However, the method is only applicable to small discrete state spaces, as constructing the automa-
ton offline has exponential complexity in the number of discrete states, and the online checking complexity
also increases exponentially with the formula length (Baier & Katoen, 2008). In Alshiekh et al. (2018),
the agent outputs n ranked actions, which are all checked for safety using φ(s,a). The shield executes the
highest-ranked safe action or replaces the action with ψsample(s) if none of the n actions is safe. They update
the agent with the safe action learning tuple but also propose that the both learning tuple can be used to
obtain additional training information. Similarly to Alshiekh et al. (2018), Könighofer et al. (2020) show
that both probabilistic and deterministic shields increase the sample efficiency and performance for both
action replacement and masking methods.

Akametalu et al. (2014) propose action replacement based on Hamilton-Jacobi-Isaacs reachability analysis,
which was later extended by Fisac et al. (2019) to a general safe RL framework. They determine Sφ using
Hamilton-Jacobi-Isaacs reachability analysis given bounded system disturbances. Safety is guaranteed by
replacing any learned action on the border of Sφ with ψfailsafe(s) stemming from an Hamilton-Jacobi-Isaacs
optimal controller to guide the system back inside the safe set. Hamilton-Jacobi-Isaacs reachability analysis
can verify reach-avoid problems with arbitrary non-convex sets (Wabersich et al., 2023) and disturbances
that stem from a compact set. However, constructing the safe set scales exponentially in complexity with the
number of state dimensions, which makes Hamilton-Jacobi-Isaacs reachability analysis infeasible for systems
with more than four state dimensions (Chen & Tomlin, 2018). Fisac et al. (2019) argue that replacing the
unsafe action with the action that maximizes the distance to the unsafe set increases performance in uncertain
real-world environments compared to action projection. However, Hamilton-Jacobi-Isaacs approaches suffer
from the curse of dimensionality and are, therefore, only feasible for systems with specific characteristics
(Herbert et al., 2021).

Shao et al. (2021) use a trajectory safeguard based on set-based reachability analysis for φ(s,a). Set-based
reachability analysis is applicable to reach-avoid problems for general nonlinear systems with uncertainties
in the initial state, system dynamics, and input disturbances as long as they stem from a compact set, see,
e.g., Althoff et al. (2021). Set-based reachability analysis has polynomial complexity in the state dimension
for most set representations, as discussed by Althoff et al. (2021). However, compared to Hamilton-Jacobi-
Isaacs reachability analysis, set-based reachability analysis cannot handle arbitrary non-convex sets but
depends on specific set representations. Shao et al. (2021) sample n new actions randomly in the vicinity of
the action if the action is unsafe. They then execute the closest safe action to the original (unsafe) action. If
none of the n new actions is safe, a failsafe action ψfailsafe(s) is executed. Shao et al. (2021) train their agent

4Documentation at http://schema.elsevier.com/dtds/document/bkapi/search/SCOPUSSearchTips.htm
5scopus.com
6ieeexplore.ieee.org

10

Published in Transactions on Machine Learning Research (11/2023)

Table 1: Comparison of application-independent provably safe RL approaches.

Reference Verification
Method

Space Learning
Tuple

Environment1

State Action

Action replacement

Akametalu et al. (2014) HJI2 reachability analysis cont. cont. special RL alg. 1D quadrotor [stoch.],
cart-pole [stoch.]

Fisac et al. (2019) HJI reachability analysis cont. cont. N/A 1D quadrotor [stoch.]
Alshiekh et al. (2018) model checking of automaton

constructed from LTL3
disc. disc. safe action Grid world [stoch.]

Könighofer et al. (2020) model checking of automaton
constructed from LTL

disc. disc. adaption penalty ACC4 [stoch.]

Anderson et al. (2020) robust control invariant set cont. cont. N/A pendulum [det.], reach-
avoid [det.], others [det.]

Hunt et al. (2021) theorem proving of dL5 formu-
las

disc. disc. naive Grid world [stoch.]

Bastani (2021) MPC6 cont. cont. deployment only bicycle [det.], cart-pole
[det.]

Shao et al. (2021) set-based reachability analysis cont. cont. naive 3D quadrotor [det.],
highway driving [det.]

Selim et al. (2022b) set-based reachability analysis cont. cont. adaption penalty 3D quadrotor [stoch.],
mobile robot [stoch.]

Action projection

Pham et al. (2018) verification of affine constraints
for actions

cont. cont. adaption penalty manipulator [det.]

Cheng et al. (2019) CBF7 cont. cont. safe action ACC [stoch.], pendulum
[stoch.]

Li et al. (2019a) CBF synthesized from LTL cont. cont. adaption penalty manipulator [det.]
Gros et al. (2020) MPC cont. cont. naive 2D LTI8 system [stoch.]
Wabersich & Zeilinger (2021) MPC cont. cont. naive 3D quadrotor [stoch.],

pendulum [stoch.]
Marvi & Kiumarsi (2022) CBF cont. cont. adaption penalty 2D LTI system [det.]
Selim et al. (2022a) set-based reachability analysis cont. cont. naive 3D quadrotor [stoch.],

mobile robot [stoch.]
Kochdumper et al. (2023) set-based reachability analysis cont. cont. adaption penalty 3D quadrotor [stoch.]

Action masking

Fulton & Platzer (2018) theorem proving of dL formulas cont. disc. naive ACC [det.]
Fulton & Platzer (2019) theorem proving of dL formulas cont. disc. naive ACC [stoch.]
Huang & Ontañón (2022) verification of affine equality

constraints for actions
disc. disc. naive Grid world [N/A]

This study set-based reachability analysis cont. cont. naive pendulum [det.], 2D
quadrotor [stoch.]

Abbreviations: 1stoch.: stochastic environment model, det.: deterministic environment model, 2Hamilton-Jacobi-Isaacs
(HJI), 3linear temporal logic (LTL), 4adaptive cruise control (ACC), 5differential dynamic logic (dL), 6model predictive
control (MPC), 7control barrier function (CBF), 8linear time-invariant (LTI).

on the naive learning tuple. Selim et al. (2022b) also verify the safety of actions with set-based reachability
analysis. They propose an informed replacement for ψ(s) such that the reachable set of the controlled system
is pushed away from the unsafe set S \ Ss. The authors further propose a method to account for unknown
system dynamics using a so-called black-box reachability analysis. They use the adaption penalty learning
tuple and showcase that their approach achieves provable safety in three use cases.

Hunt et al. (2021) build the verification function φ(s,a) using theorem proving of differential dynamic logic
formulas. Using φ(s,a), they determine Aφ(s) for discrete action spaces and use ψfailsafe(s) for replacement.
They further show how provably safe end-to-end learning can be accomplished using controller and model
monitors. They train the RL agent using the naive learning tuple on a drone example. The work of Anderson
et al. (2020) proposes to define Sφ as a robust control invariant set and construct the safety function φ(s,a)
based on a worst-case linear model of the system dynamics. A further notable work is Bastani (2021), which
proposes a model predictive shield alongside the trained policy, which uses ψfailsafe(s) for action replacement.

11

Published in Transactions on Machine Learning Research (11/2023)

Table 2: Overview of applications in provably safe RL.

Action Replacement Action Projection Action Masking
Aerial
Vehicles

‡‡Akametalu et al. (2014);
Shyamsundar et al. (2017);
‡‡Fisac et al. (2019);
Anderson et al. (2020);
†Harris & Schaub (2020);
†Shao et al. (2021);
†Selim et al. (2022b);
†Nazmy et al. (2022)

†Wabersich & Zeilinger (2021);
†Selim et al. (2022a);
†Kochdumper et al. (2023)

N/A

Autonomous
Driving

†Chen et al. (2020);
Könighofer et al. (2020);
†Shao et al. (2021);
†Chen et al. (2022a);
†Lee & Kwon (2022);
‡‡Wang et al. (2023);
†Evans et al. (2023)

Cheng et al. (2019);
†Wang (2022);
†Hailemichael et al. (2022b);
†Hailemichael et al. (2022a);
‡‡Kochdumper et al. (2023)

Fulton & Platzer (2018);
†Mirchevska et al. (2018);
Fulton & Platzer (2019);
†Krasowski et al. (2020);
Brosowsky et al. (2021);
†Krasowski et al. (2022)

Power
Systems

†Ceusters et al. (2023) †Eichelbeck et al. (2022);
†Chen et al. (2022b);
†Zhang et al. (2023);
†Yu et al. (2023)

†Tabas & Zhang (2022)

Robotic
Manipulation

†Thumm & Althoff (2022) ‡‡Pham et al. (2018);
‡‡Li et al. (2019a)

N/A

Control
Benchmarks

Akametalu et al. (2014);
Anderson et al. (2020);
Bastani (2021);
Shao et al. (2021)

Cheng et al. (2019);
Gros et al. (2020);
Wabersich & Zeilinger (2021);
Marvi & Kiumarsi (2022)

N/A

Grid World
Games

Alshiekh et al. (2018);
Hunt et al. (2021)

N/A Huang & Ontañón (2022)

Miscellaneous Active suspension:
Li et al. (2019b);
Computing networks:
†Wang et al. (2022);
Mobile robot:
†Selim et al. (2022b)

Mobile robot:
†Selim et al. (2022a);
Engine emission:
†Norouzi et al. (2023)

Computing networks:
Seetanadi et al. (2020);
Traffic signal:
†Müller & Sabatelli (2022)

Note: Studies using high-fidelity simulators are marked with †, and ‡‡ indicates physical experiments. Addi-
tionally, papers occur multiple times in case they demonstrate their approach for different applications.

The most popular method by publications is action replacement. This is also visible from the large variety
of application-specific approaches, e.g., for aerial vehicles (Shyamsundar et al., 2017; Harris & Schaub, 2020;
Nazmy et al., 2022), autonomous driving (Chen et al., 2020; 2022a; Lee & Kwon, 2022; Wang et al., 2023;
Evans et al., 2023), power systems (Ceusters et al., 2023), robotic manipulation (Thumm & Althoff, 2022),
active suspension systems (Li et al., 2019b), and traffic engineering in computing networks (Wang et al.,
2022). In particular, Ceusters et al. (2023) compare fail-safe action replacement and sampling-based action
replacement. They observe that both methods have higher initial performance than the unsafe RL baseline,
and fail-safe action replacement leads to better performance than the sampling-based version.

Action projection Research on action projection is usually conducted on continuous action and state
spaces. The main differentiating factor between studies in this category is the specification of the optimization
problem for the projection. To begin with, the work of Pham et al. (2018) guarantees safety using a
differentiable constrained optimization layer called OptLayer. Their approach is restricted to quadratic
programming problems, so the system model and constraints have to be linear. Despite these limitations,
they show the effectiveness of their approach on a collision avoidance task with a simple robotic manipulator.

Cheng et al. (2019) specify the safety constraint φ(s,a) = 1 of the optimization problem via CBFs. Thus, the
optimization problem in (3) becomes a quadratic program. Theoretically, the CBF approach is applicable to
general control-affine systems with disturbances from a compact set for reach-avoid specifications. However,
finding a CBF is not trivial, and synthesizing them can be exponential in the system dimension (Ames
et al., 2019). To solve (3) more efficiently online, Cheng et al. (2019) add a neural network to the approach

12

Published in Transactions on Machine Learning Research (11/2023)

in Section 2.2, which approximates the correction due to the CBF. The action is then shifted by the
approximated value prior to optimization. This shift improves the implementation efficiency while still
guaranteeing safety, as the action is often already safe after the shift, and no optimization problem needs to
be solved. Their safe learning with CBFs shows faster convergence speed than vanilla RL when learning on
a pendulum and a car following task. Li et al. (2019a) propose a method to construct a continuous CBF
from an automaton, which is defined by linear temporal logic formulas. They further construct a guiding
reward from the given automaton to improve the learning performance. The proposed approach is capable of
learning a high-dimensional cooperative manipulation task safely. The authors of Marvi & Kiumarsi (2022)
define a different problem, where the system model is assumed to be deterministic but unknown. They
learn an optimal controller and the system dynamics iteratively while decreasing the conservativeness of
their CBF in each iteration. The approach is provably safe for linear time-invariant (LTI) systems without
disturbances.

Gros et al. (2020) and Wabersich & Zeilinger (2021) implement the optimization problem as a robust MPC
problem as defined in (7). MPC is applicable to reach-avoid problems with measurement and state dis-
turbances. However, when controlling high-speed systems, robust MPC is often limited to linear systems
(Zeilinger et al., 2014). Gros et al. (2020) mainly discuss how the learning update has to be adapted if action
projection is used for different RL algorithms. For Q-learning, they find that no adaption of the learning
algorithm is necessary when the naive tuple is used. For policy gradient methods, they argue that the
projection must also be included in the gradient for stable learning (Gros et al., 2020, Sec. 3). One downside
of the robust MPC formulation of Gros et al. (2020) and Wabersich & Zeilinger (2021) is that dynamic
constraints originating from moving obstacles or persons in the environment are not trivial to integrate.
They approximate the dynamics of the system with a Gaussian process (GP) so that hard safety guarantees
are impossible to prove. However, they could guarantee hard safety specifications if they would assume
deterministic system dynamics with bounded disturbance as the aforementioned approaches do. Gros et al.
(2020) evaluate their approach on a simple 2D LTI system, and Wabersich & Zeilinger (2021) show the
efficacy of their approach on a pendulum and a quadrotor task.

Contrary to their previous work in Selim et al. (2022b), Selim et al. (2022a) propose to solve an optimization
problem to find the closest safe action instead of using an informed replacement. They again use set-
based reachability analysis to construct φ(s,a). They test their approach on a quadrotor and mobile robot
benchmark. Kochdumper et al. (2023) utilize set-based reachability analysis to verify actions in φ(s,a). They
formulate the projection for a parameterization of the action space and arrive at a mixed-integer quadratic
problem with polynomial constraints. Their approach achieves provable safety for nonlinear systems with
bounded disturbances, and they demonstrate their approach on two quadrotor tasks, autonomous driving
on highways, and a physical F1TENTH car.

Next to the conceptual approaches, action projection algorithms are also specifically proposed for many cyber-
physical systems, such as autonomous driving (Wang, 2022; Hailemichael et al., 2022a;b), power systems
(Eichelbeck et al., 2022; Chen et al., 2022b; Zhang et al., 2023; Yu et al., 2023), and engine emission control
(Norouzi et al., 2023). Wang (2022) compares the deployment of a discrete action masking approach with
her continuous action projection approach. The goal-reaching performance is lower for the discrete action
masking approach. However, this could be due to the coarse discretization of the action space in three
actions.

Action masking To the best of our knowledge, the existing literature considers action masking only for
discrete action spaces. The work Huang & Ontañón (2022) analyzes the effect of discrete action masking on
the policy gradient algorithm in RL, but they assume that As is known, which is typically only the case in
game and grid world environments.

The two main works investigating action masking are Fulton & Platzer (2018) and Fulton & Platzer (2019).
They construct controller and model monitors based on theorem proving of differential dynamic logic speci-
fications, see Platzer (2008). The controller monitor is used to build the mask η(s), and the model monitor
verifies if the underlying system model is correct based on previous transitions. In each state, the agent can
choose from the set of actions that the controller monitor verified as safe. Identifying the correct system can
be challenging, thus an approach to automatically generate candidates is introduced as well. Their approach

13

Published in Transactions on Machine Learning Research (11/2023)

is provably safe if the initial model is correct (Fulton & Platzer, 2018) or multiple models are given, from
which at least one is correct (Fulton & Platzer, 2019) for all times. They validate their provably safe action
masking on adaptive cruise control tasks.

In addition to the works mentioned above, there are works investigating action masking for the specific
application of autonomous driving (Mirchevska et al., 2018; Krasowski et al., 2020; Brosowsky et al., 2021;
Krasowski et al., 2022), power systems (Tabas & Zhang, 2022), adaptive routing in computing networks
(Seetanadi et al., 2020), and urban traffic signal control (Müller & Sabatelli, 2022). The only application-
specific approach that compares action masking with other provably safe RL approaches is Brosowsky et al.
(2021). They observe that their masking approach converges slightly faster than action projection.

4 Experimental comparison

In this section, we evaluate the performance of the three provably safe RL classes and the four learning
tuples introduced in Section 2. For our comparison, we select an inverted pendulum and a 2D quadrotor
stabilization task7, as these benchmarks are commonly evaluated in related works presented in Table 1. The
provably safe state set Sφ is the same for all three approaches and, therefore, comparable. We add system
disturbances to the benchmarks to make them more realistic and show that the provably safe RL approaches
can handle disturbances sampled from a compact disturbance set. Despite their low dimensionality, our
results are likely transferable to real-world systems since real-world complexity is often reduced in practice
by using lower-dimensional abstract models and an additional disturbance term. Conformance checking
techniques (Roehm et al., 2019; Liu et al., 2023) can then guarantee that the abstract model incorporates
recorded real-world behaviors of the system.

The algorithms shown in this section are action replacement with ψsample(s), action projection using affine
constraints, and action masking. We compare each configuration on ten random seeds and five common
RL algorithms8: continuous Twin Delayed Deep Deterministic policy gradient algorithm (TD3) (Fujimoto
et al., 2018), continuous soft actor-critic (SAC) (Haarnoja et al., 2018), discrete DQN (Mnih et al., 2013),
and continuous and discrete proximal policy optimization (PPO) (Schulman et al., 2017).

4.1 Environments

We compare the provably safe RL approaches on an inverted pendulum and a 2D quadrotor stabilization
task.

Inverted pendulum The state of the pendulum is defined as s =
[
θ, θ̇

]⊤, and follows the dynamics

ṡ =
(

θ̇
g
l sin(θ) + 1

ml2 a

)
, (12)

where a is the one-dimensional action, g is gravity, m is the mass of the pendulum, l its length, and friction
and damping are ignored. We discretize the dynamics using the explicit Euler method. The actions are
bounded by |a| ≤ 30rad s−1. The desired equilibrium state is s∗ = [0, 0]⊤. The observation and reward are
identical to the OpenAI Gym Pendulum-V0 9 environment.

2D quadrotor The quadrotor in our experiments can only fly in the x-z-plane and rotate around the y-
axis with angle θ. The state of the system is defined as s =

[
x, z, ẋ, ż, θ, θ̇

]⊤ and the action as a = [a1, a2]⊤.

7Our implementation is available at CodeOcean: doi.org/10.24433/CO.9209121.v1 .
8All implementations are based on stable-baselines3 (Raffin et al., 2021).
9Available at: gymnasium.farama.org/environments/classic_control/pendulum/

14

Published in Transactions on Machine Learning Research (11/2023)

The system dynamics

ṡ =

ẋ
ż

a1k sin(θ)
−g + a1k cos(θ)

θ̇

−d0θ − d1θ̇ + n0a2

+

0
0

w1
w2
0
0

(13)

are based on Mitchell et al. (2019), where w1, w2 represent the system disturbance, and k, d0, d1, and n0 are
constant parameters (see Table 4). We linearize the dynamics using a first-order Taylor expansion at the
equilibrium point s∗ = [0, 1, 0, 0, 0, 0]⊤ and obtain the discrete-time system for the linearized dynamics. We
sample the disturbance w = [w1, w2]⊤ uniformly, independent, and identically distributed from a compact
disturbance set W ⊂ R2. The actions range from amin =

[
−1.5 + g

K , − π
12

]⊤ to amax =
[
1.5 + g

K , π
12

]⊤. The
reward is defined as r(s,a) = exp

(
− ∥s− s∗∥2 − 0.01

2 ∥ a−min(A)
max(A)−min(A) ∥1

)
.

4.2 Computation of the safe state set

To obtain a possibly large set of provably safe states Sφ and a provably safe controller for our environments,
we use the scalable approach for computing robust control invariant sets of nonlinear systems presented
in Schäfer et al. (2023): for every state s0 ∈ Sφ ⊂ Ss, there exists a provably safe action ã0 ∈ A so that
s1 = g (s0, ã0,w0) ∈ Sφ with a bounded disturbance w0 ∈ W ⊂ RO where W has O dimensions. Hence,
φ(s0, ã0) = 1 for every s0 ∈ Sφ. In this work, we assume the disturbance to be constant in between
sampling times. Note that we use the obtained provable safe controller for the failsafe replacement function
ψfailsafe(s). The algorithm in Schäfer et al. (2023) provides an explicit representation of Sφ, which enables a
fair comparison of our provably safe RL implementations. To retrieve Aφ from Sφ at a given state s, we first
convert Sφ from generator representation, which is used in Schäfer et al. (2023), into halfspace representation,
i.e., Sφ = {s|Cs ≤ q}, using the open-source toolbox CORA (Althoff, 2015). We evaluate the safety function
given the state sk ∈ Sφ and an action ak ∈ A by computing the reachable set R(k + 1) at the next time
step, which encloses the states that are reachable for all wk ∈ W (Althoff, 2015). The reachable set can be
represented as a zonotope, i.e., R(k + 1) = {sk+1|sk+1 = c+Gβ, |β|∞ ≤ 1}. If R(k + 1) ⊆ Sφ, the action
a is verified as safe, i.e., φ(sk+1,ak+1) = 1, which holds if and only if (Schürmann et al., 2020, Theorem 2)

Cc+ |CG|1 ≤ q , (14)

where the absolute value is applied elementwise and 1 denotes a vector full of ones of appropriate dimension.
The approach of Schäfer et al. (2023) allows us to compute Sφ for high-dimensional nonlinear systems.
However, the conversion to halfspace representation is computationally too expensive for higher dimensional
systems. Therefore, we plan to develop generator-based versions of our provably safe RL methods in future
work to mitigate this shortcoming.

4.3 Results

The 2D quadrotor task is the main comparison environment in this work as it is more complex and shows
the differences between provably safe RL approaches clearer than the inverted pendulum task. We evaluate
the differences between the provably safe RL algorithms in Figure 3 and the effect of different learning tuples
in Figure 4. All training runs on all individual algorithms and environments are presented in the Appendix,
including a comparison between the ψsample(s) and ψfailsafe(s) replacement function.

Comparison of provably safe RL algorithms The safety violation evaluation of the baselines in Fig-
ure 3d shows that the baseline algorithms fail to guarantee safety during training in the 2D quadrotor
stabilization task. All provably safe RL algorithms guarantee safety as expected. Between the baselines,
TD3 converges significantly faster than all other algorithms.

Figures 3a and 3b show the performance of the three provably safe RL categories (a) action replacement
using ψsample(s), (b) action projection, and (c) action masking together, with the baselines averaged over all

15

Published in Transactions on Machine Learning Research (11/2023)

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(a) Reward using provably safe RL algorithms.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

ra
te

Baseline
Replacement
Projection
Masking

(b) Intervention rate of provably safe RL algorithms.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(c) Reward using baselines.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

Sa
fe

ty
V

io
la

tio
n

Provably safe approaches
PPO (cont.) baseline
PPO (disc.) baseline
TD3 baseline
SAC baseline
DQN baseline

(d) Safety violation rate of baselines.

Figure 3: Training curves for the 2D quadrotor benchmark. Top: Comparison of the three provably safe
RL classes and the unsafe benchmarks averaged over all algorithms trained with the naive tuple. Bottom:
Comparison of benchmark algorithms TD3, SAC, DQN, continuous and discrete PPO. All training runs were
conducted on ten random seeds per algorithm. The left column depicts the reward. The right column shows
the safety violations for the baselines, and the safety intervention rate for the provably safe RL algorithms.

five RL implementations and trained using the naive learning tuple. For a better comparison of the reward
curves in Figure 3a, we added a dashed green line that indicates the final training reward averaged over all
five RL baselines and ten random seeds. The reward comparison shows that action replacement performs
better than action projection and masking on average.

We also compare the intervention rate of the three safety mechanisms. For action replacement and projection,
our intervention rate metric indicates the share of RL steps per episode in which the safety function altered
the action. For action masking, the intervention rate compares the average volume of the provably safe
action set over an episode with the volume of the provably safe action set at the equilibrium point of the
system, e.g., VAφ,episode/VAφ,equilibrium. Figure 3b shows that action replacement relies significantly less on
the safety mechanism than projection and masking. Generally, we report that a lower intervention rate often
coincides with a higher reward.

Comparison of learning tuples We evaluate the impact of different learning tuples on the performance
and intervention rates averaged over all five RL algorithms in Figure 4. When action masking is used,
only safe actions can be sampled, i.e., only the naive tuple is meaningful; so we omit action masking from
this evaluation. For both action replacement and projection, the adaption penalty tuple leads to the highest
performance and lowest safety intervention rate, even outperforming the average over the baselines. In action
projection, the naive tuple performs significantly worse than in action replacement. The safe action and
both tuples seem to be only beneficial when using action projection and decrease performance when using
action replacement.

16

Published in Transactions on Machine Learning Research (11/2023)

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(a) Reward using action replacement.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

ra
te

Replacement (naive)
Replacement (adaption penalty)
Replacement (safe action)
Replacement (both)

(b) Intervention rate of action replacement.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(c) Reward using action projection.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

ra
te

Projection (naive)
Projection (adaption penalty)
Projection (safe action)
Projection (both)

(d) Intervention rate of action projection.

Figure 4: Evaluation of the training tuples for the 2D quadrotor averaged over the five RL algorithms TD3,
SAC, DQN, continuous and discrete PPO on ten random seeds per algorithm. The left column depicts the
reward and the right column the safety intervention rate. The top row shows the different learning tuples
for action replacement and the bottom row for action projection.

5 Discussion

Our experiments confirm the theoretical statement that provably safe RL methods are always safe when
Proposition 1 holds. In the two tested environments, the investigated RL baselines show non-zero safety
violations during training, even after convergence. Subsequently, we discuss five statements resulting from
the experiments, provide intuitions for implementing provably safe RL, summarize the limitations, and
identify future research directions in provably safe RL.

Selecting a provably safe RL approach First, we want to summarize our experience with the three
provably safe RL classes on the two investigated benchmarks. Action replacement was the easiest method
to implement for continuous action spaces. It shows very good performance and low intervention rates.
Hereby, using a failsafe action for replacement with an adaption penalty is simple to implement and was
among the best-performing methods in our experiments. Still, the random sampling of safe actions might
outperform the failsafe action. So, if sampling from the safe action space is readily available, e.g., in
discrete action spaces, a failsafe controller is unnecessary. Action projection tends to be problematic in
practice due to small numerical errors, resulting in infeasible optimization problems. We, therefore, have
to reuse previous optimization results, e.g., as in Schürmann et al. (2018) for robust MPC, or use a failsafe
controller if the optimization problem is not solvable. Together with the higher intervention rates compared
to action replacement and the complex implementation, we would not recommend action projection based
on our experience. However, if one already has a CBF or MPC formulation, it might be the most suitable
solution. Action masking is particularly easy to implement for discrete action spaces and performs well
in that setting. However, for action masking in continuous action spaces, there is no efficient and general
algorithm yet that can handle safe action spaces significantly diverging from an axis-aligned box. Generally,
the different approaches can also be combined to some extent. For example, if the optimization problem for
action projection becomes infeasible, a failsafe controller can be used.

17

Published in Transactions on Machine Learning Research (11/2023)

Selecting a learning tuple The adaption penalty learning tuple performed best, especially when using
action projection. In our experiments, a simple constant reward penalty already improved the performance.
Other environments may require more careful reward tuning, or the adaption penalty tuple could fail alto-
gether due to reward hacking (Skalse et al., 2022) or goal misgeneralization (Langosco et al., 2022). The
results in Figure 4 further show that using the safe action ã in the training tuple, i.e., configurations both
and safe action, benefits the performance of action projection methods but impairs the training with action
replacement. This effect can result from the fact that action replacement alters the action more than action
projection, leading to a lower likelihood that the altered action stems from the RL policy. The evaluations
in the Appendix show that this effect is prominent when using PPO. This on-policy algorithm assumes that
the current batch of training data stems from the current policy. Hence, we would recommend using the
adaption penalty tuple when possible and only using safe action in combination with off-policy methods.

Convergence The training of provably safe RL agents converges similarly fast or faster than the baselines
in our experiments. In contrast, the performance (measured by the reward) at the beginning of the training
is better for provably safe RL agents. One reason for the faster convergence is the exploration setting.
Since Aφ ⊆ A, the provably safe agents learn in a usually smaller action space than the baselines, which
can accelerate training. However, in some cases, the baseline agents might be better informed about the
environment dynamics by exploring unsafe actions. Generally, the verification method should aim for Aφ =
As such that the provably safe agents can explore the full safe action space. Another reason for convergence
differences can be that action replacement and action projection potentially correct the action after the
forward pass through the policy. Thus, the gradient calculation might need correction as well. So far, there
is only little theoretical work on this (Hunt et al., 2021; Gros et al., 2020), and it is unclear if, in practice, a
correction of the gradient is necessary or if using the adaption penalty tuple is sufficient. Furthermore, the
change in the distribution of the actions can impact the exploration strategy, as discussed in Section 2.4.

Computational complexity The computational complexity of the three approaches highly depends on
the scenario-specific implementation. For action projection, the main implementation challenge is to guar-
antee that the optimization problem is always feasible. If the optimization problem can be formulated as
a quadratic program, the computational complexity is polynomial, as shown by Vavasis (2001). On the
contrary, the computational complexity of action replacement and action masking depends highly on the
algorithm that identifies the safety of actions. For discrete action masking, the computational complexity
apparently scales linearly with the total number of actions O(|A|). For action replacement, we only need
a single safe action, so in the ideal case, e.g., using a failsafe controller, the computational complexity is
constant with respect to the total number of actions. Suppose an action replacement approach needs to
determine the entire set of safe actions, it obviously has the same computational complexity as action mask-
ing with respect to the number of actions. The computational complexity for identifying the continuous
safe action space depends on the task-specific implementation. One possibility is to compute the safe action
space using set-based reachability analysis, where we want to point the interested reader to Althoff et al.
(2021) for different approaches.

Online vs. offline implementation Online and offline have two notions in provably safe RL: online vs.
offline safety verification and online vs. offline RL. The safety function usually needs to be evaluated online
since, for continuous state spaces, pre-computing the safe action set for all states is often not feasible. Thus,
the computational complexity of the safety function is important for real-time applications, as discussed in
the previous paragraph. If the state and action space are discrete, it can be possible to pre-compute the safe
actions offline (Alshiekh et al., 2018; Huang & Ontañón, 2022). Generally, safety is only guaranteed if the
safety function is integrated between the agent and environment to correct actions (see Figure 1). In this
study, we compare online on-policy and off-policy RL algorithms (Levine et al., 2020) since they are used for
existing provably safe RL research. Still, provably safe RL can also be used for offline RL where the safety
function would be integrated during deployment and most likely also during the data gathering phase if this
phase is conducted in a safety-critical environment. However, more specific advice on offline provably safe
RL needs to be substantiated with experimental evaluations and, thus, is a topic for future research.

18

Published in Transactions on Machine Learning Research (11/2023)

Limitations of provably safe RL There are limitations of provably safe RL that follow from the concep-
tual analysis in Section 2. Most importantly, safety has to be verifiable, i.e., there must be a safety function
φ(s,a), which complies with Proposition 1. For this safety function, system knowledge is necessary, and
especially for systems with a high number of continuous state variables, the safety function is potentially
complex to compute. Additionally, safety guarantees are strongly tied to the safety function. If the safety
function provides complex guarantees (e.g., ensures temporal logic specifications), it is usually computation-
ally more expensive than for simpler guarantees (e.g., system stays within safe state set). Second, safety can
only be decided if the state of the system is correctly observed within noise bounds. Thus, for a provably safe
autonomous system, the perception module also needs to be verified such that it provides observations that
are correct within the noise bounds. Third, there is often a trade-off between safety and performance since,
for many tasks, these two objectives are only partially aligned. For example, if an automated vehicle drives
faster, it reaches its destination earlier, but collisions are more difficult to avoid at higher speeds. Since
provably safe RL ensures safe behavior, there is no such trade-off as safety is always prioritized over perfor-
mance. Thus, the safety function φ(s,a) should not be too conservative since the agent would only perform
trivial safe actions e.g., standing still at the side of the road forever. Lastly, comparing provably safe RL
approaches is challenging as we need to define a safety function φ(s,a) that is efficiently usable by different
approaches. Furthermore, the notion of safety is usually application-specific, so different application-specific
approaches are hard to compare. We provide the first comparison of provably safe RL on two common
continuous stabilization tasks, but further research is necessary to make more substantial claims about the
most promising provably safe RL approaches.

Future research based on proposed taxonomy Most action projection approaches discussed in Sec-
tion 3 project the RL action on the border of Aφ. In our experiments, we encountered two negative side
effects related to this action projection implementation: First, the projection to the border of Aφ often
leads to a relatively small Aφ in the next RL step, quickly resulting in a very small set Aφ if the RL agent
proposes a few unsafe actions after each other. Second, small numerical errors can cause unsafe actions and
must be considered in the safety verification. Therefore, future action projection research should investigate
objective functions for (3) that achieve a more robust behavior while still depending on the action the RL
agent proposed, e.g., projecting the action not to the border but by a learnable margin inside the provably
safe action set. Action masking is a promising technique but has mainly been used with discrete action
spaces in grid world environments and games, e.g., the Atari benchmark (Huang & Ontañón, 2022). Our
proposed continuous action masking approach only applies to specific environments and performed well for
the pendulum but showed mixed results for the 2D quadrotor. Thus, future research should investigate ways
to extend continuous action masking to general convex or non-convex representations of Aφ to improve its
applicability to more complex benchmarks and reduce the conservativeness of Aφ. Additionally, it should
be investigated if the agent should be informed about the reduction of the action space in action masking.
This could result in improved convergence and an agent that is more aware of the action mask, similar to
the effect of the adaption penalty tuple for action replacement and action projection. The evaluation of the
considered benchmarks shows that action replacement performs better than action projection and masking,
as discussed previously. However, it is still unclear how important the replacement strategy ψ(s) is for the
convergence and performance of the agent, especially when applied to more complex tasks. Thus, future
action replacement research should empirically and theoretically investigate this question.

Improving the applicability of provably safe RL Despite the promising previous work discussed
in Section 3, there are only few works on high-dimensional nonlinear systems and limited real-world ap-
plications. We suggest five major factors where future research would improve applicability. First, some
approaches need to be computationally more efficient to be real-world applicable. The computational effi-
ciency of verification methods is especially relevant and should be improved, as discussed previously. Second,
we observe that the learning tuple used has a significant influence on the performance of the agent for some
RL algorithms. Also, there needs to be more theoretical research on how provably safe RL approaches influ-
ence convergence to an optimal policy. More empirical and theoretical research on the effects of provably safe
RL and its learning tuples for convergence is desirable. Third, common benchmarks are necessary to evaluate
new provably safe RL approaches. Additionally, the three action correction strategies should be compared
on more complex benchmarks to clarify if our observations can be extended to them. Such benchmarking

19

Published in Transactions on Machine Learning Research (11/2023)

would make research on provably safe RL more comparable, ease starting research on provably safe RL, and
provide more evidence to decide on the best-suited provably safe RL approach. Fourth, recent work shows
a low variety of safety specifications, mainly comprising stabilization and reach-avoid specifications. On the
contrary, real-world safety is more complex, e.g., traffic rules such as waiting at a red light and safely but
quickly moving at a green light. Finally, provably safe RL requires expert knowledge of verification methods.
Future research could mitigate this through modular and automatic approaches, where fewer engineering
decisions are necessary and more parameters are tuned automatically. With these advances, provably safe
RL could bring the best elements of RL and formal specifications together towards RL methods that require
as little expert knowledge as necessary and provide formal guarantees for complex safety specifications to
achieve reliable and trustworthy cyber-physical systems.

6 Conclusion

In conclusion, we categorize provably safe RL methods to structure the literature from a machine learning
perspective. We present provably safe RL methods from a conceptual perspective and discuss necessary
assumptions. Our proposed categorization into action replacement, action projection, and action masking
supports researchers in comparing their works and provides valuable insights into the selection process of
provably safe RL methods. The comparison of four implementations of provably safe RL on a 2D quadrotor
and an inverted pendulum stabilization benchmark provides further insights into the best-suited method for
different tasks. We further present practical recommendations for selecting a provably safe RL approach and
a learning tuple, which will be valuable for researchers who are new to RL or formal methods. Lastly, as
discussed in Section 5, our proposed taxonomy and experimental evaluation yield multiple promising future
research directions.

Acknowledgments

The authors gratefully acknowledge the partial financial support of this work by the research training group
ConVeY, funded by the German Research Foundation under grant GRK 2428, by the project TRAITS under
grant number 01IS21087, funded by the German Federal Ministry of Education and Research, by the Horizon
2020 EU Framework Project CONCERT under grant number 101016007, by the project justITSELF funded
by the European Research Council (ERC) under grant agreement number 817629, and by the German Federal
Ministry for Economics Affairs and Climate Action project VaF under grant number KK5135901KG0.

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Proc. of

the Int. Conf. on Machine Learning (ICML), pp. 22–31, 2017.

Anayo K. Akametalu, Shahab Kaynama, Jaime F. Fisac, Melanie N. Zeilinger, Jeremy H. Gillula, and
Claire J. Tomlin. Reachability-based safe learning with Gaussian processes. In Proc. of the IEEE Conf.
on Decision and Control (CDC), pp. 1424–1431, 2014.

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for robust satis-
faction of signal temporal logic specifications. In Proc. of the IEEE Conf. on Decision and Control (CDC),
pp. 6565–6570, 2016.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and Ufuk Topcu.
Safe reinforcement learning via shielding. In Proc. of the AAAI Conf. on Artificial Intelligence (AAAI),
pp. 2669–2678, 2018.

Matthias Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, pp. 120–151, 2015.

Matthias Althoff, Goran Frehse, and Antoine Girard. Set propagation techniques for reachability analysis.
Annual Review of Control, Robotics, and Autonomous Systems, 4(1):369–395, 2021.

20

Published in Transactions on Machine Learning Research (11/2023)

Eitan Altman. Constrained Markov decision processes with total cost criteria: Lagrangian approach and
dual linear program. Mathematical Methods of Operations Research, 48(3):387–417, 1998.

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A Framework for Transforming
Specifications in Reinforcement Learning, pp. 604–624. Springer Nature Switzerland, 2022.

Rajeev Alur, Osbert Bastani, Kishor Jothimurugan, Mateo Perez, Fabio Somenzi, and Ashutosh Trivedi.
Policy synthesis and reinforcement learning for discounted LTL. In Proc. of the Int. Conf. on Computer
Aided Verification (CAV), pp. 415–435, 2023.

Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and Paulo
Tabuada. Control barrier functions: Theory and applications. In Proc. of the European Control Conference
(ECC), pp. 3420–3431, 2019.

Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosymbolic reinforcement learning
with formally verified exploration. In Proc. of the Int. Conf. on Neural Information Processing Systems
(NeurIPS), volume 33, pp. 6172–6183, 2020.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT press, 2008.

Osbert Bastani. Safe reinforcement learning with nonlinear dynamics via model predictive shielding. In
Proc. of the American Control Conf. (ACC), pp. 3488–3494, 2021.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy ex-
traction. In Proc. of the Int. Conf. on Neural Information Processing Systems (NeurIPS), pp. 2499–2509,
2018.

Felix Berkenkamp, Angela P. Schoellig, Matteo Turchetta, and Andreas Krause. Safe model-based rein-
forcement learning with stability guarantees. In Proc. of the Int. Conf. on Neural Information Processing
Systems (NeurIPS), pp. 908–918, 2017.

Sara Bouraine, Thierry Fraichard, and Hassen Salhi. Provably safe navigation for mobile robots with lim-
ited field-of-views in unknown dynamic environments. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), pp. 174–179, 2012.

Mathis Brosowsky, Florian Keck, Jakob Ketterer, Simon Isele, Daniel Slieter, and Marius Zöllner. Safe deep
reinforcement learning for adaptive cruise control by imposing state-specific safe sets. In Proc. of the IEEE
Intelligent Vehicles Symp. (IV), pp. 488–495, 2021.

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and Angela P.
Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement learning. Annual
Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

Mingyu Cai, Mohammadhosein Hasanbeig, Shaoping Xiao, Alessandro Abate, and Zhen Kan. Modular deep
reinforcement learning for continuous motion planning with temporal logic. IEEE Robotics and Automation
Letters, 6(4):7973–7980, 2021.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. LTL
and beyond: Formal languages for reward function specification in reinforcement learning. In Proc. of the
Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 6065–6073, 2019.

Glenn Ceusters, Luis Ramirez Camargo, Rüdiger Franke, Ann Nowé, and Maarten Messagie. Safe reinforce-
ment learning for multi-energy management systems with known constraint functions. Energy and AI, 12,
2023.

Dong Chen, Longsheng Jiang, Yue Wang, and Zhaojian Li. Autonomous driving using safe reinforcement
learning by incorporating a regret-based human lane-changing decision model. In Proc. of the American
Control Conf. (ACC), pp. 4355–4361, 2020.

21

Published in Transactions on Machine Learning Research (11/2023)

Mo Chen and Claire J. Tomlin. Hamilton-Jacobi reachability: Some recent theoretical advances and applica-
tions in unmanned airspace management. Annual Review of Control, Robotics, and Autonomous Systems,
1(1):333–358, 2018.

Shengduo Chen, Yaowei Sun, Dachuan Li, Qiang Wang, Qi Hao, and Joseph Sifakis. Runtime safety assurance
for learning-enabled control of autonomous driving vehicles. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), pp. 8978–8984, 2022a.

Yize Chen, Yuanyuan Shi, Daniel Arnold, and Sean Peisert. SAVER: Safe learning-based controller for
real-time voltage regulation. In Proc. of the IEEE Power and Energy Society General Meeting (PESGM),
pp. 1–5, 2022b.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In Proc. of the AAAI Conf.
on Artificial Intelligence (AAAI), pp. 3387–3395, 2019.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-based
approach to safe reinforcement learning. In Proc. of the Int. Conf. on Neural Information Processing
Systems (NeurIPS), pp. 8103–8112, 2018.

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep rein-
forcement learning from human preferences. In Proc. of the Int. Conf. on Neural Information Processing
Systems (NeurIPS), 2017.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval Tassa. Safe
exploration in continuous action spaces. arXiv, abs/1801.0, 2018.

Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Foundations for restraining bolts:
Reinforcement learning with LTLf/LDLf restraining specifications. In Proc. of the Int. Conf. on Automated
Planning and Scheduling (ICAPS), pp. 128–136, 2021.

Michael Eichelbeck, Hannah Markgraf, and Matthias Althoff. Contingency-constrained economic dispatch
with safe reinforcement learning. In Proc. of the IEEE Int. Conf. on Machine Learning and Applications
(ICMLA), pp. 597–602, 2022.

Mohamed El-Shamouty, Xinyang Wu, Shanqi Yang, Marcel Albus, and Marco F. Huber. Towards safe
human-robot collaboration using deep reinforcement learning. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), pp. 4899–4905, 2020.

Benjamin D. Evans, Hendrik W. Jordaan, and Herman A. Engelbrecht. Safe reinforcement learning for
high-speed autonomous racing. Cognitive Robotics, 3:107–126, 2023.

Jaime F. Fisac, Anayo K. Akametalu, Melanie N. Zeilinger, Shahab Kaynama, Jeremy Gillula, and Claire J.
Tomlin. A general safety framework for learning-based control in uncertain robotic systems. IEEE Trans-
actions on Automatic Control, 64(7):2737–2752, 2019.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In Proc. of the Int. Conf. on Machine Learning (ICML), pp. 2587–2601, 2018.

Nathan Fulton and André Platzer. Safe reinforcement learning via formal methods: Toward safe control
through proof and learning. In Proc. of the AAAI Conf. on Artificial Intelligence (AAAI), pp. 6485–6492,
2018.

Nathan Fulton and André Platzer. Verifiably safe off-model reinforcement learning. In Proc. of the Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 413–430, 2019.

Javier García and Fernando Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(42):1437–1480, 2015.

22

Published in Transactions on Machine Learning Research (11/2023)

Jeremy H. Gillula and Claire J. Tomlin. Reducing conservativeness in safety guarantees by learning dis-
turbances online: Iterated guaranteed safe online learning. Robotics: Science and Systems, 8(1):81–88,
2013.

Sebastien Gros, Mario Zanon, and Alberto Bemporad. Safe reinforcement learning via projection on a safe
set: How to achieve optimality? IFAC-PapersOnLine, 53(2):8076–8081, 2020.

Felix Gruber and Matthias Althoff. Scalable robust output feedback MPC of linear sampled-data systems.
Proc. of the IEEE Conf. on Decision and Control (CDC), pp. 2563–2570, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proc. of the Int. Conf. on Machine Learning
(ICML), pp. 1861–1870, 2018.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik Wojtczak.
Omega-regular objectives in model-free reinforcement learning. In Proc. of the Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 395–412, 2019.

Habtamu Hailemichael, Beshah Ayalew, Lindsey Kerbel, Andrej Ivanco, and Keith Loiselle. Safety filtering
for reinforcement learning-based adaptive cruise control. IFAC-PapersOnLine, 55(24):149–154, 2022a.

Habtamu Hailemichael, Beshah Ayalew, Lindsey Kerbel, Andrej Ivanco, and Keith Loiselle. Safe reinforce-
ment learning for an energy-efficient driver assistance system. In IFAC-PapersOnLine, volume 55:37, pp.
615–620, 2022b.

Andrew Harris and Hanspeter Schaub. Spacecraft command and control with safety guarantees using shielded
deep reinforcement learning. In AIAA Scitech 2020 Forum, volume 1, 2020.

Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessandro Abate, Daniel Kroening, George J. Pappas,
and Insup Lee. Reinforcement learning for temporal logic control synthesis with probabilistic satisfaction
guarantees. In Proc. of the IEEE Conf. on Decision and Control (CDC), pp. 5338–5343, 2019a.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Towards verifiable and safe model-
free reinforcement learning. In Proc. of the Workshop on Artificial Intelligence and Formal Verification,
Logic, Automata, and Synthesis, pp. 1–9, 2019b.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Cautious reinforcement learning with
logical constraints. In Proc. of the Int. Conf. on Autonomous Agents and Multi Agent Systems (AAMAS),
pp. 483–491, 2020.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. LCRL: Certified policy synthesis
via logically-constrained reinforcement learning. In Proc. of the Int. Conf. on Quantitative Evaluation of
Systems (QEST), pp. 217–231, 2022.

Matthias Heger. Consideration of risk in reinforcement learning. In Proc. of the Int. Conf. on Machine
Learning (ICML), pp. 105–111, 1994.

Sylvia Herbert, Jason J. Choi, Suvansh Sanjeev, Marsalis Gibson, Koushil Sreenath, and Claire J. Tomlin.
Scalable learning of safety guarantees for autonomous systems using Hamilton-Jacobi reachability. In Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 5914–5920, 2021.

Lukas Hewing, Kim P. Wabersich, Marcel Menner, and Melanie N. Zeilinger. Learning-based model predictive
control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems,
3(1):269–296, 2020.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient algorithms.
The Int. Florida Artificial Intelligence Research Society Conf. Proc. (FLAIRS), 35, 2022.

23

Published in Transactions on Machine Learning Research (11/2023)

Nathan Hunt, Nathan Fulton, Sara Magliacane, Trong Nghia Hoang, Subhro Das, and Armando Solar-
Lezama. Verifiably safe exploration for end-to-end reinforcement learning. In Proc. of the Int. Conf. on
Hybrid Systems: Computation and Control (HSCC), pp. 1–11, 2021.

B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A.Al Sallab, Senthil Yogamani,
and Patrick Perez. Deep reinforcement learning for autonomous driving: A survey. IEEE Transactions on
Intelligent Transportation Systems, 23(6):4909–4926, 2022.

Niklas Kochdumper, Hanna Krasowski, Xiao Wang, Stanley Bak, and Matthias Althoff. Provably safe
reinforcement learning via action projection using reachability analysis and polynomial zonotopes. IEEE
Open Journal of Control Systems, 2:79–92, 2023.

Bettina Könighofer, Florian Lorber, Nils Jansen, and Roderick Bloem. Shield synthesis for reinforcement
learning. In Leveraging Applications of Formal Methods, Verification and Validation: Verification Princi-
ples, pp. 290–306, 2020.

Bettina Könighofer, Julian Rudolf, Alexander Palmisano, Martin Tappler, and Roderick Bloem. Online
shielding for stochastic systems. In Proc. of the NASA Formal Methods (NFM), pp. 231–248, 2021.

Hanna Krasowski, Xiao Wang, and Matthias Althoff. Safe reinforcement learning for autonomous lane
changing using set-based prediction. In Proc. of the IEEE Int. Intelligent Transportation Systems Conf.
(ITSC), pp. 1–7, 2020.

Hanna Krasowski, Yinqiang Zhang, and Matthias Althoff. Safe reinforcement learning for urban driving
using invariably safe braking sets. In Proc. of the IEEE Int. Intelligent Transportation Systems Conf.
(ITSC), pp. 2407–2414, 2022.

Lauro Langosco Di Langosco, Jack Koch, Lee D. Sharkey, Jacob Pfau, and David Krueger. Goal misgen-
eralization in deep reinforcement learning. In Proc. of the Int. Conf. on Machine Learning (ICML), pp.
12004–12019, 2022.

Dongsu Lee and Minhae Kwon. ADAS-RL: Safety learning approach for stable autonomous driving. ICT
Express, 8(3):479–483, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv:2005.01643, 2020.

Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards. In Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 3834–3839, 2017.

Xiao Li, Zachary Serlin, Guang Yang, and Calin Belta. A formal methods approach to interpretable rein-
forcement learning for robotic planning. Science Robotics, 4(37), 2019a.

Zhaojian Li, Tianshu Chu, and Uroš Kalabić. Dynamics-enabled safe deep reinforcement learning: Case
study on active suspension control. In Proc. of the IEEE Conf. on Control Technology and Applications
(CCTA), pp. 585–591, 2019b.

Zemin Eitan Liu, Quan Zhou, Yanfei Li, Shijin Shuai, and Hongming Xu. Safe deep reinforcement learning-
based constrained optimal control scheme for HEV energy management. IEEE Transactions on Trans-
portation Electrification, 9(3):4278–4293, 2023.

Tommaso Mannucci, Erik-Jan van Kampen, Cornelis de Visser, and Qiping Chu. Safe exploration algorithms
for reinforcement learning controllers. IEEE Transactions on Neural Networks and Learning Systems, 29
(4):1069–1081, 2018.

Zahra Marvi and Bahare Kiumarsi. Safe reinforcement learning: A control barrier function optimization
approach. International Journal of Robust and Nonlinear Control, 31(6):1923–1940, 2021.

Zahra Marvi and Bahare Kiumarsi. Reinforcement learning with safety and stability guarantees during
exploration for linear systems. IEEE Open Journal of Control Systems, 1:322–334, 2022.

24

Published in Transactions on Machine Learning Research (11/2023)

Branka Mirchevska, Christian Pek, Moritz Werling, Matthias Althoff, and Joschka Boedecker. High-level
decision making for safe and reasonable autonomous lane changing using reinforcement learning. In Proc.
of the IEEE Int. Intelligent Transportation Systems Conf. (ITSC), pp. 2156–2162, 2018.

Ian M. Mitchell, Jacob Budzis, and Andriy Bolyachevets. Invariant, viability and discriminating kernel
under-approximation via zonotope scaling. In Proc. of the Int. Conf. on Hybrid Systems: Computation
and Control (HSCC), pp. 268–269, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv, abs/1312.5, 2013.

Arthur Müller and Matthia Sabatelli. Safe and psychologically pleasant traffic signal control with rein-
forcement learning using action masking. Proc. of the IEEE Conf. on Intelligent Transportation Systems
(ITSC), pp. 951–958, 2022.

Islam Nazmy, Andrew Harris, Morteza Lahijanian, and Hanspeter Schaub. Shielded deep reinforcement
learning for multi-sensor spacecraft imaging. In Proc. of the American Control Conf. (ACC), pp. 1808–
1813, 2022.

Armin Norouzi, Saeid Shahpouri, David Gordon, Mahdi Shahbakhti, and Charles Robert Koch. Safe deep
reinforcement learning in diesel engine emission control. Proc. of the Institution of Mechanical Engineers.
Part I: Journal of Systems and Control Engineering, 2023.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song. Assessing
generalization in deep reinforcement learning, 2018.

Christian Pek, Stefanie Manzinger, Markus Koschi, and Matthias Althoff. Using online verification to prevent
autonomous vehicles from causing accidents. Nature Machine Intelligence, 2(9):518–528, 2020.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. OptLayer - practical constrained optimization
for deep reinforcement learning in the real world. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), pp. 6236–6243, 2018.

André Platzer. Differential dynamic logic for hybrid systems. Journal of Automated Reasoning, 41(2):
143–189, 2008.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-Baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021.

Hendrik Roehm, Jens Oehlerking, Matthias Woehrle, and Matthias Althoff. Model conformance for cyber-
physical systems: A survey. ACM Transactions on Cyber-Physical Systems, 3(3):1–26, 2019.

Lukas Schäfer, Felix Gruber, and Matthias Althoff. Scalable computation of robust control invariant sets of
nonlinear systems. IEEE Transactions on Automatic Control, (early acces):1–15, 2023.

Lukas M. Schmidt, Georgios D. Kontes, Axel Plinge, and Christopher Mutschler. Can you trust your
autonomous car? interpretable and verifiably safe reinforcement learning. In Proc. of the IEEE Intelligent
Vehicles Symp. (IV), pp. 171–178, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv, abs/1707.0, 2017.

Bastian Schürmann, Niklas Kochdumper, and Matthias Althoff. Reachset model predictive control for
disturbed nonlinear systems. In Proc. of the IEEE Conf. on Decision and Control (CDC), pp. 3463–3470,
2018.

Bastian Schürmann, Riccardo Vignali, Maria Prandini, and Matthias Althoff. Set-based control for disturbed
piecewise affine systems with state and actuation constraints. Nonlinear Analysis: Hybrid Systems, 36
(Art. no. 100826), 2020.

25

Published in Transactions on Machine Learning Research (11/2023)

Gautham Nayak Seetanadi, Karl-Erik Årzén, and Martina Maggio. Adaptive routing with guaranteed delay
bounds using safe reinforcement learning. In ACM Int. Conf. Proc. Series, pp. 149–160, 2020.

Mahmoud Selim, Amr Alanwar, M. Watheq El-Kharashi, Hazem M. Abbas, and Karl H. Johansson. Safe
reinforcement learning using data-driven predictive control. In Proc. of the Int. Conf. on Communications,
Signal Processing, and their Applications (ICCSPA), pp. 1–6, 2022a.

Mahmoud Selim, Amr Alanwar, Shreyas Kousik, Grace Gao, Marco Pavone, and Karl H. Johansson. Safe
reinforcement learning using black-box reachability analysis. IEEE Robotics and Automation Letters, 7
(4):10665–10672, 2022b.

Yifei Simon Shao, Chao Chen, Shreyas Kousik, and Ram Vasudevan. Reachability-based trajectory safeguard
(RTS): A safe and fast reinforcement learning safety layer for continuous control. IEEE Robotics and
Automation Letters, 6(2):3663–3670, 2021.

Suhas Shyamsundar, Tommaso Mannucci, and Erik-Jan Van Kampen. Reinforcement learning based algo-
rithm with safety handling and risk perception. In Proc. of the IEEE Symp. Series on Computational
Intelligence (SSCI), pp. 1–7, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent
Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Joar Max Viktor Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward hacking. In Proc. of the Int. Conf. on Neural Information Processing Systems
(NeurIPS), 2022.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by PID
Lagrangian methods. In Proc. of the Int. Conf. on Machine Learning (ICML), pp. 9133–9143, 2020.

Zachary Sunberg and Mykel Kochenderfer. Online algorithms for POMDPs with continuous state, action,
and observation spaces. Proc. of the Int. Conf. on Automated Planning and Scheduling (ICAPS), 28(1):
259–263, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Leaning: An Introduction. A Bradford Book, 2nd
edition, 2018.

Daniel Tabas and Baosen Zhang. Computationally efficient safe reinforcement learning for power systems.
In Proc. of the American Control Conf. (ACC), pp. 3303–3310, 2022.

Andrew Taylor, Andrew Singletary, Yisong Yue, and Aaron D. Ames. Learning for safety-critical control
with control barrier functions. In Proc. of the Conf. on Learning for Dynamics and Control, pp. 708–717,
2020.

Andrew J. Taylor, Andrew Singletary, Yisong Yue, and Aaron D. Ames. A control barrier perspective on
episodic learning via projection-to-state safety. IEEE Control Systems Letters, 5(3):1019–1024, 2021.

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho Hwang,
Joseph E. Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery RL: Safe reinforcement
learning with learned recovery zones. IEEE Robotics and Automation Letters, 6(3):4915–4922, 2021.

Jakob Thumm and Matthias Althoff. Provably safe deep reinforcement learning for robotic manipulation in
human environments. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 6344–6350,
2022.

Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in finite Markov decision
processes with Gaussian processes. In Proc. of the Int. Conf. on Neural Information Processing Systems
(NeurIPS), pp. 4312–4320, 2016.

26

Published in Transactions on Machine Learning Research (11/2023)

Peter Varnai and Dimos V. Dimarogonas. On robustness metrics for learning STL tasks. In Proc. of the
American Control Conf. (ACC), pp. 5394–5399, 2020.

Stephen A. Vavasis. Complexity Theory: Quadratic Programming. Springer, Boston, MA., 2001.

Kim P. Wabersich and Melanie N. Zeilinger. A predictive safety filter for learning-based control of constrained
nonlinear dynamical systems. Automatica, 129(1):109597–109614, 2021.

Kim P. Wabersich, Andrew J. Taylor, Jason J. Choi, Koushil Sreenath, Claire J. Tomlin, Aaron D. Ames, and
Melanie N. Zeilinger. Data-driven safety filters: Hamilton-Jacobi reachability, control barrier functions,
and predictive methods for uncertain systems. IEEE Control Systems Magazine, 43(5):137–177, 2023.

Chengyu Wang, Luhan Wang, Zhaoming Lu, Xinghe Chu, Zhengrui Shi, Jiayin Deng, Tianyang Su, Guochu
Shou, and Xiangming Wen. SRL-TR2: A safe reinforcement learning based trajectory tracker framework.
IEEE Transactions on Intelligent Transportation Systems, 24(6):5765–5780, 2023.

Linghao Wang, Miao Wang, and Yujun Zhang. A safe training approach for deep reinforcement learning-
based traffic engineering. In Proc. of the IEEE Int. Conf. on Communications (ICC), pp. 1450–1455,
2022.

Xiao Wang. Ensuring safety of learning-based motion planners using control barrier functions. IEEE Robotics
and Automation Letters, 7(2):4773–4780, 2022.

Peter Wieland and Frank Allgöwer. Constructive safety using control barrier functions. IFAC Proc. Volumes,
40(12):462–467, 2007.

Cambridge Yang, Michael L. Littman, and Michael Carbin. On the (in)tractability of reinforcement learning
for LTL objectives. Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 3650–3658, 2022.

Chenchen Yang, Jing Liu, Haiying Sun, Junfeng Sun, Xiang Chen, and Lipeng Zhang. Safe reinforcement
learning for CPSs via formal modeling and verification. In IEEE Int. Joint Conf. on Neural Networks
Proc. (IJCNN), pp. 1–8, 2021.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based constrained
policy optimization. In Proc. of the Int. Conf. on Learning Representations (ICLR), pp. 1–21, 2020.

Fei Ye, Shen Zhang, Pin Wang, and Ching Yao Chan. A survey of deep reinforcement learning algorithms
for motion planning and control of autonomous vehicles. In Proc. of the IEEE Intelligent Vehicles Symp.
(IV), pp. 1073–1080, 2021.

Peipei Yu, Hongcai Zhang, Yonghua Song, Hongxun Hui, and Ge Chen. District cooling system control
for providing operating reserve based on safe deep reinforcement learning. IEEE Transactions on Power
Systems, pp. 1–13, 2023.

Mario Zanon and Sebastien Gros. Safe reinforcement learning using robust MPC. IEEE Transactions on
Automatic Control, 66(8):3638–3652, 2021.

Melanie N. Zeilinger, Davide M. Raimondo, Alexander Domahidi, Manfred Morari, and Colin N. Jones. On
real-time robust model predictive control. Automatica, 50(3):683–694, 2014.

Jin Zhang, Yuxiang Guan, Liang Che, and Mohammad Shahidehpour. Ev charging command fast allocation
approach based on deep reinforcement learning with safety modules. IEEE Transactions on Smart Grid,
2023.

Wenshuai Zhao, Jorge Pena Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement
learning for robotics: A survey. In Proc. of the IEEE Symp. Series on Computational Intelligence (SSCI),
pp. 737–744, 2020.

27

Published in Transactions on Machine Learning Research (11/2023)

A Appendix

MDP modification with action replacement

Action replacement alters the MDP on which the agent learns. Hunt et al. (2021) discuss this modification
for discrete action spaces and uniformly sampling from the safe action space. We generalize this discussion to
using any replacement function and continuous action spaces. To this end, we define ψ(s) so that it randomly
samples the replacement action ã according to a replacement policy πr (ã|s) with

∑
ã∈Aφ(s) πr (ã|s) = 1 for

the discrete case, and
∫
Aφ(s) πr (ã|s) dã = 1 for the continuous case, and ∀ã ∈ Aφ(s) : πr (ã|s) ≥ 0. In the

example of uniform sampling from Aφ(s), the replacement policy is πr (ã|s) = 1/VAφ(s) where VAφ(s) is the
volume of Aφ(s). By replacing unsafe actions, the transition function of the MDP changes to

Tφ(s,a, s′) =
{

T (s,a, s′), if φ(s,a) = 1
Tr(s, s′), otherwise,

(15)

Tr(s, s′) =
∑

ã∈Aφ(s)

πr (ã|s) T (s, ã, s′). (16)

The reward function of the MDP changes accordingly to

rφ(s,a) =
{

r(s,a), if φ(s,a) = 1
rr(s), otherwise,

(17)

rr(s) =
∑

ã∈Aφ(s)

πr (ã|s) r(s, ã). (18)

In the continuous case, we get Tr(s, s′) by marginalizing the transition probability density function over
Aφ(s):

Tr(s, s′) =
∫

Aφ(s)
πr (ã|s) T (s, ã, s′)dã. (19)

Analogously, we have that

rr(s) =
∫

Aφ(s)
πr (ã|s) r(s, ã)dã. (20)

Environment parameters

We provide an overview of all environment-specific parameters in Table 3 and Table 4.

Table 3: Environment parameters of the pendulum.

Parameter Value

Gravity g 9.81 m s−2

Mass m 1 kg
Length l 1 m

Hyperparameters for learning algorithms

We specify the hyperparameters for all learning algorithms (see Table 5 for PPO, Table 6 for TD3,
Table 7 for DQN, and Table 8 for SAC) that are different from the Stable Baselines3 (Raffin et al.,
2021) default values. Additionally, the code for the experiments is available at the CodeOcean capsule
doi.org/10.24433/CO.9209121.v1 to reproduce our results.

28

Published in Transactions on Machine Learning Research (11/2023)

Table 4: Environment parameters of the 2D quadrotor.

Parameter Value

Gravity g 9.81 m s−2

k 1 1/kg
d0 70
d1 17
n0 55
W [[−0.1, 0.1], [−0.1, 0.1]]

Table 5: Hyperparameters for PPO.

Parameter Pendulum 2D quadrotor

Learning rate 1 × 10−4 5 × 10−5

Discount factor γ 0.98 0.999
Steps per update 2048 512
Optimization epochs 20 30
Minibatch size 16 128
Max gradient clipping 0.9 0.5
Entropy coefficient 1 × 10−3 2 × 10−6

Value function coefficient 0.045 0.5
Clipping range 0.3 0.1
Generalized advantage estimation λ 0.8 0.92
Activation function ReLU ReLU
Hidden layers 2 2
Neurons per layer 32 64
Training steps 60k 200k

Table 6: Hyperparameters for TD3.

Parameter Pendulum 2D quadrotor

Learning rate 3.5 × 10−3 2 × 10−3

Replay buffer size 1 × 104 1 × 105

Discount factor γ 0.98 0.98
Initial exploration steps 10 × 103 100
Steps between model updates 256 5
Gradient steps per model update 256 10
Minibatch size per gradient step 512 512
Soft update coefficient τ 5 × 10−3 5 × 10−3

Gaussian smoothing noise σ 0.2 0.12
Activation function ReLU ReLU
Hidden layers 2 2
Neurons per layer 32 64
Training steps 60k 200k

29

Published in Transactions on Machine Learning Research (11/2023)

Table 7: Hyperparameters for DQN.

Parameter Pendulum 2D quadrotor

Learning rate 2 × 10−3 1 × 10−4

Replay buffer size 5 × 104 1 × 106

Discount factor γ 0.95 0.999 99
Initial exploration steps 500 100
Steps between model updates 8 2
Gradient steps per model update 4 4
Minibatch size per gradient step 512 64
Maximum for gradient clipping 10 100
Update frequency target network 1 × 103 1 × 103

Initial exploration probability ϵ 1.0 0.137
Linear interpolation steps of ϵ 6 × 103 1 × 104

Final exploration probability ϵ 0.1 0.004
Activation function tanh tanh
Hidden layers 2 2
Neurons per layer 32 64
Training steps 60k 200k

Table 8: Hyperparameters for SAC.

Parameter Pendulum 2D quadrotor

Learning rate 3 × 10−4 3 × 10−4

Replay buffer size 1 × 106 5 × 105

Discount factor γ 0.99 0.98
Initial exploration steps 100 1000
Steps between model updates 1 32
Gradient steps per model update 1 32
Minibatch size per gradient step 256 512
Entropy coefficient learned 1 × 10−1

Soft update coefficient τ 5 × 10−3 1 × 10−2

Activation function ReLU ReLU
Hidden layers 2 2
Neurons per layer 32 64
Training steps 60k 200k

30

Published in Transactions on Machine Learning Research (11/2023)

Full evaluation

In this section, we present all training results of the five RL algorithms TD3, SAC, DQN, and PPO continuous
and discrete. We compare these algorithms on the inverted pendulum and 2D quadrotor environment on
ten random seeds. The tested algorithms are action replacement with ψsample(s) and ψfailsafe(s), action
projection, and action masking. When action replacement is used with a failsafe controller, we omit safe
action and both because for discrete action spaces, the failsafe controller might use an action that is not in
the discrete action space. This is due to the failsafe controller proposing actions from the continuous action
space.

First, we present the effect of the learning tuples on the on-policy algorithm PPO in Figure 5. This compar-
ison clearly shows the negative effect of the safe action tuple on the training performance of PPO. Figure 6
depicts the aggregated training results for the pendulum as previously discussed for the 2D quadrotor in
Figures 3, 4 and 5. Figures 7 to 10 depict how the reward and intervention rate evolve during training for
all investigated configurations. Finally, the Tables 9 and 10 show statistical results for deploying the learned
models for the two benchmarks.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(a) Reward of action replacement – PPO.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

ra
te

Replacement PPO (naive)
Replacement PPO (adaption penalty)
Replacement PPO (safe action)
Replacement PPO (both)

(b) Intervention rate of action replacement – PPO.

Figure 5: Evaluation of the training tuples for the 2D quadrotor averaged over the continuous and discrete
PPO training runs using action replacement with ten random seeds each. The left column depicts the reward
and the right column the safety intervention rate.

31

Published in Transactions on Machine Learning Research (11/2023)

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(a) Reward of baselines.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

Sa
fe

ty
V

io
la

tio
n

Provably safe approaches
PPO (cont.) baseline
PPO (disc.) baseline
TD3 baseline
DQN baseline

(b) Safety violation rate of baselines.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(c) Reward of provably safe RL algorithms.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

Baseline
Replacement
Projection
Masking

(d) Intervention rate of provably safe RL algorithms.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(e) Reward of action replacement.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

Replacement (naive)
Replacement (adaption penalty)
Replacement (safe action)
Replacement (both)

(f) Intervention rate of action replacement.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(g) Reward of action projection.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

Projection (naive)
Projection (adaption penalty)
Projection (safe action)
Projection (both)

(h) Intervention rate of action projection.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(i) Reward of action replacement – PPO.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

Replacement PPO (naive)
Replacement PPO (adaption penalty)
Replacement PPO (safe action)
Replacement PPO (both)

(j) Intervention rate of action replacement – PPO.

Figure 6: Evaluation of the training tuples for the pendulum averaged over ten random seeds each. The
left column depicts the reward and the right column the safety intervention rate. We would like to refer the
reader to Figures 3, 4 and 5 for the corresponding 2D quadrotor results.

32

Published in Transactions on Machine Learning Research (11/2023)

— Failsafe (naive) — Failsafe (adaption penalty) — Sample (naive) — Sample (adaption penalty)

— Sample (safe action) — Sample (both) — Project (naive) — Project (adaption penalty)

— Project (safe action) — Project (both) — Mask (naive) — Baseline

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(a) TD3.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(b) SAC.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(c) PPO continuous.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(d) PPO discrete.

0 1 2 3 4 5 6
-10

-1

-0.1

Steps (in 104)

R
ew

ar
d

(e) DQN.

Figure 7: Pendulum: Average reward and standard deviation per training step for TD3, SAC, DQN, PPO
discrete, and PPO continuous. For each configuration, ten training runs with different random seeds were
conducted. Each subplot contains all implemented variants. Note that the reward for the adaption penalty
variants is still r and the adaption penalty r∗ is not included in the curves for better comparability.

33

Published in Transactions on Machine Learning Research (11/2023)

— Failsafe (naive) — Failsafe (adaption penalty) — Sample (naive) — Sample (adaption penalty)

— Sample (safe action) — Sample (both) — Project (naive) — Project (adaption penalty)

— Project (safe action) — Project (both) — Mask (naive) — Baseline

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(a) TD3.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(b) SAC.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(c) PPO continuous.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(d) PPO discrete.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.1

Steps (in 104)

R
ew

ar
d

(e) DQN.

Figure 8: 2D quadrotor: Average reward and standard deviation per training step for TD3, SAC, DQN,
PPO discrete, and PPO continuous. For each configuration, ten training runs with different random seeds
were conducted. Each subplot contains all implemented variants. Note that the reward for the adaption
penalty variants is still r and the adaption penalty r∗ is not included in the curves for better comparability.

34

Published in Transactions on Machine Learning Research (11/2023)

— Failsafe (naive) — Project (naive) — Mask (naive)
— Failsafe (adaption penalty) — Project (adaption penalty)— Sample (naive) — Project (safe action)— Sample (adaption penalty) — Project (both)— Sample (safe action)— Sample (both)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(a) Replacement TD3.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(b) Projection TD3.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(c) Masking TD3.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(d) Replacement SAC.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(e) Projection SAC.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)
In

te
rv

en
tio

n
R

at
e

(f) Masking SAC.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(g) Replacement PPO cont.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(h) Projection PPO cont.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(i) Masking PPO cont.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(j) Replacement PPO disc.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(k) Projection PPO disc.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(l) Masking PPO disc.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(m) Replacement DQN.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(n) Projection DQN.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(o) Masking DQN.

Figure 9: Pendulum: Intervention rate for TD3, SAC, PPO discrete, PPO continuous, and DQN.

35

Published in Transactions on Machine Learning Research (11/2023)

— Failsafe (naive) — Project (naive) — Mask (naive)
— Failsafe (adaption penalty) — Project (adaption penalty)— Sample (naive) — Project (safe action)— Sample (adaption penalty) — Project (both)— Sample (safe action)— Sample (both)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(a) Replacement TD3.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(b) Projection TD3.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(c) Masking TD3.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(d) Replacement SAC.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(e) Projection SAC.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)
In

te
rv

en
tio

n
R

at
e

(f) Masking SAC.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(g) Replacement PPO cont.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(h) Projection PPO cont.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(i) Masking PPO cont.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(j) Replacement PPO disc.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(k) Projection PPO disc.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(l) Masking PPO disc.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(m) Replacement DQN.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(n) Projection DQN.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Steps (in 104)

In
te

rv
en

tio
n

R
at

e

(o) Masking DQN.

Figure 10: 2D quadrotor: Intervention rate for TD3, SAC, PPO discrete, PPO continuous. and DQN.

36

Published in Transactions on Machine Learning Research (11/2023)

Table 9: Mean and standard deviation of 30 pendulum deployment episodes.

Approach
Reward Intervention Rate Safety Violation

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

PPO (continuous)

Projection (SafeAction) -1.14 0.42 0.76 0.29 0.00 0.00
Projection (AdaptionPenalty) -0.07 0.07 0.00 0.00 0.00 0.00
Projection (Both) -0.07 0.07 0.00 0.00 0.00 0.00
Projection (Naive) -0.06 0.07 0.00 0.00 0.00 0.00
Sample (SafeAction) -0.13 0.16 0.01 0.02 0.00 0.00
Sample (AdaptionPenalty) -0.07 0.07 0.00 0.00 0.00 0.00
Sample (Both) -0.07 0.07 0.00 0.00 0.00 0.00
Sample (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
FailSafe (AdaptionPenalty) -0.07 0.07 0.00 0.00 0.00 0.00
FailSafe (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
Baseline (Naive) -0.06 0.07 — — 0.00 0.00
Masking (Naive) -0.07 0.07 0.00 0.00 0.00 0.00

PPO (discrete)

Projection (SafeAction) -0.52 0.55 0.28 0.42 0.00 0.00
Projection (AdaptionPenalty) -0.14 0.12 0.00 0.00 0.00 0.00
Projection (Both) -0.09 0.09 0.00 0.00 0.00 0.00
Projection (Naive) -0.15 0.27 0.03 0.10 0.00 0.00
Sample (SafeAction) -0.09 0.08 0.00 0.00 0.00 0.00
Sample (AdaptionPenalty) -0.13 0.16 0.00 0.00 0.00 0.00
Sample (Both) -0.10 0.08 0.00 0.00 0.00 0.00
Sample (Naive) -0.09 0.08 0.00 0.00 0.00 0.00
FailSafe (AdaptionPenalty) -0.09 0.07 0.00 0.00 0.00 0.00
FailSafe (Naive) -0.08 0.07 0.00 0.00 0.00 0.00
Baseline (Naive) -0.08 0.07 — — 0.00 0.00
Masking (Naive) -0.07 0.07 0.00 0.00 0.00 0.00

TD3

Projection (SafeAction) -0.07 0.07 0.00 0.00 0.00 0.00
Projection (AdaptionPenalty) -0.08 0.08 0.00 0.00 0.00 0.00
Projection (Both) -0.07 0.07 0.00 0.00 0.00 0.00
Projection (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
Sample (SafeAction) -0.07 0.07 0.00 0.00 0.00 0.00
Sample (AdaptionPenalty) -0.09 0.07 0.00 0.00 0.00 0.00
Sample (Both) -0.09 0.07 0.00 0.00 0.00 0.00
Sample (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
FailSafe (AdaptionPenalty) -0.09 0.07 0.00 0.00 0.00 0.00
FailSafe (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
Baseline (Naive) -0.07 0.07 — — 0.00 0.00
Masking (Naive) -0.07 0.07 0.00 0.00 0.00 0.00

DQN

Projection (SafeAction) -0.07 0.07 0.00 0.00 0.00 0.00
Projection (AdaptionPenalty) -0.07 0.07 0.00 0.00 0.00 0.00
Projection (Both) -0.07 0.08 0.00 0.00 0.00 0.00
Projection (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
Sample (SafeAction) -0.07 0.07 0.00 0.00 0.00 0.00
Sample (AdaptionPenalty) -0.09 0.07 0.00 0.00 0.00 0.00
Sample (Both) -0.07 0.08 0.00 0.00 0.00 0.00
Sample (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
FailSafe (AdaptionPenalty) -0.07 0.07 0.00 0.00 0.00 0.00
FailSafe (Naive) -0.07 0.07 0.00 0.00 0.00 0.00
Baseline (Naive) -0.07 0.07 — — 0.00 0.00
Masking (Naive) -0.07 0.07 0.00 0.00 0.00 0.00

SAC

Projection (Naive) -0.08 0.07 0.00 0.00 0.00 0.00
Projection (AdaptionPenalty) -0.10 0.09 0.00 0.00 0.00 0.00
Projection (SafeAction) -0.08 0.07 0.00 0.00 0.00 0.00
Projection (Both) -0.10 0.08 0.00 0.00 0.00 0.00
Sample (Naive) -0.08 0.07 0.00 0.00 0.00 0.00
Sample (AdaptionPenalty) -0.10 0.08 0.00 0.00 0.00 0.00
Sample (SafeAction) -0.08 0.07 0.00 0.00 0.00 0.00
Sample (Both) -0.09 0.08 0.00 0.00 0.00 0.00
FailSafe (Naive) -0.08 0.07 0.00 0.00 0.00 0.00
FailSafe (AdaptionPenalty) -0.09 0.09 0.00 0.00 0.00 0.00
Baseline (Naive) -0.11 0.09 — — 0.00 0.00
Masking (Naive) -0.08 0.07 0.00 0.00 0.00 0.00

Note: — indicates that there is no intervention rate for the baselines as they don’t implement a safety verification.

37

Published in Transactions on Machine Learning Research (11/2023)

Table 10: Mean and standard deviation of 30 2D Quadrotor deployment episodes.

Approach
Reward Intervention Rate Safety Violation

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

PPO (continuous)

Projection (SafeAction) -0.44 0.00 0.68 0.00 0.00 0.00
Projection (AdaptionPenalty) -0.33 0.07 0.44 0.05 0.00 0.00
Projection (Both) -0.39 0.07 0.57 0.13 0.00 0.00
Projection (Naive) -0.31 0.10 0.47 0.25 0.00 0.00
Sample (SafeAction) -0.43 0.00 0.86 0.00 0.00 0.00
Sample (AdaptionPenalty) -0.28 0.12 0.10 0.12 0.00 0.00
Sample (Both) -0.36 0.03 0.41 0.20 0.00 0.00
Sample (Naive) -0.39 0.06 0.23 0.13 0.00 0.00
FailSafe (AdaptionPenalty) -0.31 0.11 0.08 0.06 0.00 0.00
FailSafe (Naive) -0.27 0.11 0.27 0.29 0.00 0.00
Baseline (Naive) -0.86 0.01 — — 0.94 0.01
Masking (Naive) -0.43 0.09 0.57 0.28 0.00 0.00

PPO (discrete)

Projection (SafeAction) -0.44 0.01 0.74 0.21 0.00 0.00
Projection (AdaptionPenalty) -0.24 0.13 0.02 0.02 0.00 0.00
Projection (Both) -0.35 0.11 0.16 0.14 0.00 0.00
Projection (Naive) -0.34 0.14 0.46 0.37 0.00 0.00
Sample (SafeAction) -0.42 0.02 0.82 0.01 0.00 0.00
Sample (AdaptionPenalty) -0.11 0.10 0.00 0.00 0.00 0.00
Sample (Both) -0.38 0.09 0.32 0.18 0.00 0.00
Sample (Naive) -0.13 0.16 0.02 0.03 0.00 0.00
FailSafe (AdaptionPenalty) -0.19 0.15 0.01 0.03 0.00 0.00
FailSafe (Naive) -0.34 0.13 0.41 0.21 0.00 0.00
Baseline (Naive) -0.11 0.03 — — 0.00 0.00
Masking (Naive) -0.25 0.14 0.28 0.21 0.00 0.00

TD3

Projection (SafeAction) -0.21 0.03 0.28 0.10 0.00 0.00
Projection (AdaptionPenalty) -0.22 0.03 0.26 0.10 0.00 0.00
Projection (Both) -0.21 0.04 0.28 0.12 0.00 0.00
Projection (Naive) -0.25 0.05 0.26 0.17 0.00 0.00
Sample (SafeAction) -0.18 0.03 0.07 0.01 0.00 0.00
Sample (AdaptionPenalty) -0.21 0.04 0.13 0.05 0.00 0.00
Sample (Both) -0.21 0.06 0.06 0.03 0.00 0.00
Sample (Naive) -0.19 0.04 0.12 0.09 0.00 0.00
FailSafe (AdaptionPenalty) -0.20 0.03 0.05 0.02 0.00 0.00
FailSafe (Naive) -0.26 0.09 0.05 0.02 0.00 0.00
Baseline (Naive) -0.90 0.05 — — 0.95 0.02
Masking (Naive) -0.16 0.03 0.03 0.03 0.00 0.00

DQN

Projection (SafeAction) -0.06 0.02 0.00 0.01 0.00 0.00
Projection (AdaptionPenalty) -0.05 0.00 0.00 0.00 0.00 0.00
Projection (Both) -0.05 0.01 0.00 0.00 0.00 0.00
Projection (Naive) -0.09 0.06 0.12 0.24 0.00 0.00
Sample (SafeAction) -0.07 0.01 0.01 0.02 0.00 0.00
Sample (AdaptionPenalty) -0.06 0.03 0.00 0.00 0.00 0.00
Sample (Both) -0.07 0.02 0.00 0.00 0.00 0.00
Sample (Naive) -0.05 0.01 0.00 0.00 0.00 0.00
FailSafe (AdaptionPenalty) -0.06 0.02 0.02 0.04 0.00 0.00
FailSafe (Naive) -0.07 0.03 0.10 0.10 0.00 0.00
Baseline (Naive) -0.24 0.37 — — 0.20 0.40
Masking (Naive) -0.15 0.16 0.14 0.26 0.00 0.00

SAC

Projection (Naive) -0.20 0.01 0.52 0.02 0.00 0.00
Projection (AdaptionPenalty) -0.19 0.00 0.49 0.01 0.00 0.00
Projection (SafeAction) -0.19 0.00 0.49 0.01 0.00 0.00
Projection (Both) -0.20 0.01 0.49 0.01 0.00 0.00
Sample (Naive) -0.15 0.01 0.05 0.00 0.00 0.00
Sample (AdaptionPenalty) -0.15 0.01 0.05 0.00 0.00 0.00
Sample (SafeAction) -0.15 0.01 0.05 0.00 0.00 0.00
Sample (Both) -0.16 0.02 0.05 0.00 0.00 0.00
FailSafe (Naive) -0.21 0.01 0.17 0.02 0.00 0.00
FailSafe (AdaptionPenalty) -0.17 0.01 0.04 0.00 0.00 0.00
Baseline (Naive) -0.88 0.02 — — 0.96 0.03
Masking (Naive) -0.14 0.02 0.00 0.00 0.00 0.00

Note: — indicates that there is no intervention rate for the baselines as they don’t implement a safety verification.

38

Support our fight for an open global commons. Make a tax deductible gi� to fund our work in 2024. DONATE TODAY!

Canonical URL : https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/ See the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal code

You are free to:

Share — copy and redistribute the material in any medium or format for any purpose, even commercially.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit , provide a link to the license, and indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made . You may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation .

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights may limit

how you use the material.

 Notice

This deed highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. You should carefully review all of the terms and conditions of

the actual license before using the licensed material.

Creative Commons is not a law firm and does not provide legal services. Distributing, displaying, or linking to this deed or the license that it summarizes does not create a lawyer-client

or any other relationship.

Creative Commons is the nonprofit behind the open licenses and other legal tools that allow creators to share their work. Our legal tools are free to use.

• Learn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our work

• Learn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC Licensing

• Support our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our work

• Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.

• Licenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses List

• Public Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain List

Footnotes

appropriate credit — If supplied, you must provide the name of the creator and attribution parties, a copyright notice, a license notice, a disclaimer notice, and a link to the material. CC licenses prior to Version 4.0 also require you to provide the title of the material if

supplied, and may have other slight di�erences.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

indicate if changes were made — In 4.0, you must indicate if you modified the material and retain an indication of previous modifications. In 3.0 and earlier license versions, the indication of changes is only required if you create a derivative.

◦ Marking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guide

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

technological measures — The license prohibits application of e�ective technological measures, defined with reference to Article 11 of the WIPO Copyright Treaty.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

exception or limitation — The rights of users under exceptions and limitations, such as fair use and fair dealing, are not a�ected by the CC licenses.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

publicity, privacy, or moral rights — You may need to get additional permissions before using the material as you intend.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

Contact Newsletter Privacy Policies Terms

CONTACT US

Creative Commons PO Box 1866, Mountain View, CA 94042

info@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.org

+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753

SUBSCRIBE TO OUR NEWSLETTER SUPPORT OUR WORK

Our work relies on you! Help us keep the Internet free and open.

DONATE NOW

Except where otherwise noted noted noted noted noted noted noted noted noted noted noted noted noted , content on this site is licensed under a Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license . Icons by Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome .

MENU

English Search Donate Explore CC

CC BY 4.0 DEED
Attribution 4.0 International

Your email SUBSCRIBE

CC BY 4.0 Deed | Attribution 4.0 International | Creat... https://creativecommons.org/licenses/by/4.0/

1 of 1 1/10/24, 21:00

A Provably Safe Reinforcement Learning for Motion Planning with Collision Avoidance

A.2 Provably Safe Reinforcement Learning via Action

Projection using Reachability Analysis and Polynomial

Zonotopes

Summary Pre-computing a time-invariant set of safe states is efficient for online verification

of safe actions. However, if dynamic obstacles are present in the environment, unsafe states

are time-varying. Thus, the set of safe states is time-varying as well. This safe set is often

indirectly computed by predicting the set of unsafe states online and ensuring that the RL

agent never enters unsafe states. While time-varying unsafe states are challenging for other

online verification approaches like control barrier functions, set-based reachability analysis

unobstructedly integrates time-varying unsafe sets.

This article proposes an action projection approach based on set-based reachability analysis

for CPSs operating in environments with static and dynamic obstacles. Our approach can

be applied to CPSs with control input constraints for continuous action spaces and bounded

uncertainties in the nonlinear system model. The safety specification is verified if potentially

time-varying unsafe state sets, represented by polytopes, are avoided at all times. To this

end, a mixed-integer quadratic program is derived, which projects unsafe actions to safe ac-

tions. Additionally, we propose several extensions to improve the computational runtime of

the optimization problem and provide solutions to incorporate spatial extensions of the CPS

or complex control laws.

We perform extensive numerical experiments and show that our action projection approach

always fulfills the safety specification. In particular, we demonstrate the real-time capability on

the F1TENTH car, the ease of integrating time-varying unsafe sets on an autonomous driving

task, the benefits of adding the action projection already during training on a two-dimensional

quadrotor, and the scalability to high-dimensional systems on a three-dimensional quadrotor.

Author contributions N.K., H.K., and X.W. developed the concept for provably safe rein-

forcement learning in continuous action spaces. N.K. implemented the mixed-integer quadratic

program for projecting actions. The implementation and evaluation for the different bench-

mark systems was distributed as follows: N.K. and X.W. - F1TENTH car, X.W. - autonomous

driving, N.K. - three-dimensional quadrotor, and H.K. - two-dimensional quadrotor. N.K,

H.K., and X.W. structured the presentation of the manuscript and wrote the manuscript. S.B.

and M.A. provided feedback on the concept and helped improving the manuscript.

Copyright notice Publication licensed under CC BY 4.0 license available at

creativecommons.org/licenses/by/4.0/. Version of record available at

doi:10.1109/OJCSYS.2023.3256305.

TUM Graduate School This publication is not a core publication in accordance with

Article 7, section 3 TUM Doctoral Regulations (PromO).

86

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/OJCSYS.2023.3256305

Received 17 October 2022; revised 24 January 2023; accepted 23 February 2023. Date of publication 13 March 2023;
date of current version 31 March 2023. Recommended by Senior Editor Lacra Pavel.

Digital Object Identifier 10.1109/OJCSYS.2023.3256305

Provably Safe Reinforcement Learning via
Action Projection Using Reachability Analysis

and Polynomial Zonotopes
NIKLAS KOCHDUMPER 1,2, HANNA KRASOWSKI 1, XIAO WANG 1, STANLEY BAK 2,

AND MATTHIAS ALTHOFF 1

1Department of Computer Engineering, Technical University of Munich, 85748 Garching, Germany
2Department of Computer Science, Stony Brook University, Stony Brook, NY 11794 USA

CORRESPONDING AUTHORS: NIKLAS KOCHDUMPER; HANNA KRASOWSKI; XIAO WANG (e-mail: niklas.kochdumper@stonybrook.edu;
hanna.krasowski@tum.de; xiao.wang@tum.de)

This work was supported by the European Research Council (ERC) through the Project justITSELF under Grant 817629, in part by the German Research
Foundation through the Research Training Group ConVeY under Grant GRK 2428, and in part by the Air Force Office of Scientific Research and the Office of

Naval Research under Grants FA9550-19-1-0288, FA9550-21-1-0121, FA9550-23-1-0066, and N00014-22-1-2156. (Niklas Kochdumper, Hanna Krasowski, and
Xiao Wang contributed equally to this work.)

This article has supplementary downloadable material available at https://doi.org/10.1109/OJCSYS.2023.3256305, provided by the authors.

ABSTRACT While reinforcement learning produces very promising results for many applications, its main
disadvantage is the lack of safety guarantees, which prevents its use in safety-critical systems. In this
work, we address this issue by a safety shield for nonlinear continuous systems that solve reach-avoid
tasks. Our safety shield prevents applying potentially unsafe actions from a reinforcement learning agent
by projecting the proposed action to the closest safe action. This approach is called action projection and
is implemented via mixed-integer optimization. The safety constraints for action projection are obtained
by applying parameterized reachability analysis using polynomial zonotopes, which enables to accurately
capture the nonlinear effects of the actions on the system. In contrast to other state-of-the-art approaches
for action projection, our safety shield can efficiently handle input constraints and dynamic obstacles, eases
incorporation of the spatial robot dimensions into the safety constraints, guarantees robust safety despite
process noise and measurement errors, and is well suited for high-dimensional systems, as we demonstrate
on several challenging benchmark systems.

INDEX TERMS Action projection, reach-avoid problems, reachability analysis, reinforcement learning.

I. INTRODUCTION
Reinforcement learning has been successfully applied to
find solutions for many challenging applications, such as
robotics [1], autonomous driving [2], and power systems [3].
Many of these applications are safety-critical, so that the
lack of safety guarantees for standard reinforcement learning
controllers prevents their deployment in the real world. We
aim to overcome this limitation with a novel safety shield for
reinforcement learning agents that considers the very general
case of disturbed nonlinear continuous systems with input
constraints that have to avoid dynamic obstacles. Note that
our safety shield can be applied to arbitrary unsafe controllers,
while reinforcement learning is the main focus of this work.

A. STATE OF THE ART
We first provide a summary of the current state of the art in
safety-related methods of reinforcement learning. The term
safe reinforcement learning refers to approaches that aim
to obtain safe agents, but do not provide hard safety guar-
antees. One example for this is constrained reinforcement
learning [4], [5], where the objective of the training phase
is to maximize the reward while satisfying safety constraints.
While advantages of this technique are that no system model
is required and that even complex temporal logic safety spec-
ifications [6], [7] can be considered, the obvious disadvantage
is that hard safety guarantees can be provided during neither
training nor deployment. The same is true for probabilistic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2023 79

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

FIGURE 1. Steps for action projection using parameterized reachability
analysis, where the reachable set is depicted in gray and the unsafe
regions are shown in red: 1) Computation of the reachable set for all
actions starting from the current state x0. 2) Extraction of action
constraints from the intersections between the reachable set and unsafe
regions. 3) Projection of the action ua outputted by the agent to the
closest safe action.

approaches [8], [9] that aim to identify the safety probability
of an action. Overall, safe reinforcement learning techniques
can be used for non-critical applications, where unsafe actions
do not cause major damage; however, these methods are not
suited for safety-critical systems.

In contrast to safe reinforcement learning, provably safe
reinforcement learning approaches provide hard safety guar-
antees. They can be divided into the three main categories: ac-
tion masking, action replacement, and action projection [10].
In action masking [11], [12], a mask that only allows the
agent to choose actions from the set of safe actions is ap-
plied. One disadvantage of this method is that it is often hard
to explicitly compute the set of safe actions, especially for
continuous action spaces, where the set of safe actions often
has a very complex non-convex shape as shown in Fig. 1. In
addition, it is non-trivial to correctly consider the masking
during training so that the reinforcement learning algorithm
is not perturbed [13]. For action replacement [14], [15], [16],
[17], unsafe actions returned by the agent are replaced by safe
actions. As replacement, one can either use a single safe action
obtained from a failsafe planner [14] or via human feed-
back [15] or one can sample from the set of safe actions [16],
[17]. Also the well-known simplex architecture [18], [19],
[20], where a safe controller is used as a backup for an unsafe

controller, can be categorized as action replacement. One dis-
advantage of action replacement is that the difference between
the original action and the replacement action can be very
large, which might prevent the agent from completing its task.
Action projection tries to avoid this issue by finding the safe
action that is closest to the action suggested by the agent.

Since our approach applies action projection, we discuss
this category in more detail. The most prominent methods
for action projection are control barrier functions [21], [22],
model predictive control [23], [24], and parameterized reach-
ability analysis [25]. A control barrier function is a level-set
function that divides the state space into a safe and a poten-
tially unsafe region. Here, action projection is formulated as
an optimization problem, where the correction of the action is
minimized, such that the system stays inside the safe region
defined by the control barrier function. While an advantage
is that control barrier functions can for static environments
guarantee safety for infinite time, the method also has several
disadvantages: 1) It is often not easy to find a suitable control
barrier function, especially in the presence of dynamic obsta-
cles. 2) Control barrier functions are often quite conservative
since they usually exclude many states that are safe. 3) The
approach is often limited to control affine systems because the
optimization problems would otherwise become non-convex.
4) It is challenging to consider input constraints as well as
process noise and measurement errors. The second method is
model predictive control, which also formulates the projection
as an optimization problem, but uses the safety constraint that
the system should not enter any unsafe regions for a certain
finite prediction horizon, which avoids the requirement for a
control barrier function. However, one downside is that it is of-
ten not possible to guarantee that the solution is robustly safe
despite process noise and measurement errors since for non-
linear systems these uncertainties usually cannot be encoded
directly into the optimization problem. Our safety shield is
based on the parameterized reachability analysis approach,
which is visualized in Fig. 1: The first step is to compute the
reachable set for all available actions. Since this reachable set
is parameterized by the actions, one can directly extract the
safety constraints for action projection from the intersection
between the reachable sets and the unsafe regions. Since pro-
cess noise as well as measurement errors can conveniently be
integrated into reachability analysis, this approach is very well
suited for guaranteeing robust safety.

Due to its advantageous properties, several approaches ap-
ply reachability analysis to guarantee safety. One method [26]
uses the Hamilton-Jacobi reachability framework [27] to com-
pute the backward reachable set starting from the unsafe sets
— a state is safe for all possible actions if it is outside of
the backward reachable set. This has the disadvantage that
for each unsafe set a different backward reachable set has
to be computed. Moreover, the Hamilton-Jacobi framework
requires gridding the state space so that the computational
complexity of the approach grows exponentially with the
system dimension. Another method [28] applies reachabil-
ity analysis for black-box systems and uses a differentiable

80 VOLUME 2, 2023

collision check that is based on constrained zonotopes [29]
to efficiently push the reachable set for the proposed action
away from unsafe sets. This, however, has the drawback that
the reachable set has to be recomputed after each correction
update of the action, which is computationally demanding.
The method closest to our approach is a reachability-based
trajectory safeguard [25], which computes the parameterized
reachable set for a simplified trajectory-generating model and
determines a safe action satisfying the constraints extracted
from the reachable set via random sampling. While this ap-
proach can be computationally efficient for some systems,
sampling methods often fail to find feasible solutions, espe-
cially in high-dimensional action spaces.

B. CONTRIBUTIONS AND OUTLINE
We present a novel safety shield that is based on action pro-
jection using parameterized reachability analysis. This safety
shield extends our previous work on dependency preserving
reachability analysis [30], [31], [32] by a method for correct-
ing unsafe actions, and we additionally also study the effect
online verification has on the learning process. Unlike the
related approach in [25], our safety shield directly operates on
the original nonlinear system model rather than on a simplified
trajectory-generating model. Moreover, in contrast to [25], we
use conservative polynomialization [30] instead of conserva-
tive linearization [33] for reachability analysis, which enables
us to efficiently capture the nonlinear effects the actions have
on the system. Another advantage over [25] is that we use
mixed-integer optimization instead of random sampling for
projection, which always finds the action with the smallest
correction. Finally, the various design choices provided by our
safety shield enable the user to fine-tune its performance for
the considered application.

The remainder of this paper is structured as follows: After
introducing some preliminaries in Section II, we provide the
problem definition in Section III. Our main contribution is
the reachability-based safety shield for reinforcement learning
presented in Section IV, for which we discuss several exten-
sions in Section V. Finally, we demonstrate our approach on
several numerical examples in Section VI and conclude with
a discussion of its properties in Section VII.

II. PRELIMINARIES
We first introduce our notation and define the set representa-
tions that we use in this paper.

A. NOTATION
Sets are denoted by calligraphic letters, matrices by uppercase
letters, and vectors by lowercase letters. Given a vector a ∈
Rn, a(i) is the i-th entry and the p-norm is denoted by ‖a‖p.
Given a matrix A ∈ Rn×m, A(i,·) represents the i-th matrix row,
A(·, j) the j-th column, and A(i, j) the j-th entry of matrix row
i. The concatenation of two matrices C and D is denoted by
[C D], In ∈ Rn×n is the identity matrix, and the symbols 0
and 1 represent vectors of zeros and ones of proper dimen-
sion. We further introduce an n-dimensional interval as I :=

[x, x], ∀i x(i) ≤ x(i), x, x ∈ Rn. Given two sets S1,S2 ⊂ Rn,
their Minkowski sum is S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈
S2} and their Cartesian product is S1 × S2 = {[sT

1 sT
2]T

∣∣ s1 ∈
S1, s2 ∈ S2}.

B. SET REPRESENTATIONS
Our approach relies on several different set representations,
which we introduce here. Let us begin with polytopes, for
which we use the halfspace representation:

Definition 1 (Polytope): Given a constraint matrix A ∈
Rs×n and a constraint offset b ∈ Rs, the halfspace represen-
tation of a polytope P ⊆ Rn is

P := {
x ∈ Rn

∣∣A x ≤ b
}
.

We use the shorthand P = 〈A, b〉P.
Zonotopes are a special type of polytopes that can be repre-

sented efficiently using generators:
Definition 2 (Zonotope): Given a center vector c ∈ Rn and

a generator matrix G ∈ Rn×p, a zonotope Z ⊂ Rn is

Z :=
{

c +
p∑

i=1

G(·,i) αi

∣∣∣∣αi ∈ [−1, 1]

}
with so-called factors αi. We use the shorthand Z = 〈c,G〉Z .

An extension to zonotopes are polynomial zonotopes [30],
which can represent non-convex sets. We use the sparse rep-
resentation of polynomial zonotopes [32]:1

Definition 3 (Polynomial Zonotope): Given a constant off-
set c ∈ Rn, a generator matrix of dependent generators G ∈
Rn×h, a generator matrix of independent generators GI ∈
Rn×q, and an exponent matrix E ∈ Np×h

0 , a polynomial zono-
tope PZ ⊂ Rn is

PZ :=
⎧⎨⎩c +

h∑
i=1

(p∏
k=1

α
E(k,i)
k

)
G(·,i) +

q∑
j=1

β jGI (·, j)

∣∣∣∣αk, β j ∈ [−1, 1]

⎫⎬⎭.
The scalars αk are called dependent factors and β j indepen-
dent factors. We use the shorthand PZ = 〈c,G,GI ,E〉PZ .

Polynomial zonotopes can equivalently represent intervals,
zonotopes, polytopes, and Taylor models [32, Sec. II.B].
Moreover, due to their polynomial nature, they are closely
related to polynomial level sets:

Definition 4 (Polynomial Level Set): Given a vector of co-
efficients a ∈ Rh, an offset b ∈ R, and an exponent matrix
E ∈ Nn×h

0 , a polynomial level set LS ⊆ Rn is

LS :=
{

x ∈ Rn

∣∣∣∣ h∑
i=1

(
n∏

k=1

x
E(k,i)
(k)

)
a(i) ≤ b

}
.

We use the shorthand LS = 〈a, b,E〉LS .

1In contrast to [32, Def. 1] we do not integrate the constant offset c into G.
Moreover, we omit the identifier vector used in [32] for simplicity

VOLUME 2, 2023 81

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

III. PROBLEM FORMULATION
We consider general nonlinear disturbed systems with input
constraints defined by the ordinary differential equation

ẋ(t) = f (x(t), u(t),w(t)) , (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control
input, w(t) ∈ Rz is the process noise, f : Rn × Rm × Rz →
Rn is a Lipschitz continuous function, and t ∈ R+ is time. The
process noise is bounded by a compact set w(t) ∈ W ⊂ Rz

and the system has to satisfy the input constraints defined by
the convex set u(t) ∈ U ⊆ Rm. The set W can for example
be determined from measurements of the real physical system
using conformance checking [34].

Given a nonlinear system defined as in (1), the goal is to
solve a reach-avoid problem, where the system state should be
steered from the current state x0 = x(0) to a goal set G ⊆ Rn

while avoiding collisions with potentially time-varying unsafe
sets Fi ⊂ Rn, i = 1, . . . , o, where o denotes the number of
unsafe sets. In case the measurements of the system state are
subject to a measurement error v(t) ∈ V , the goal becomes
to steer all states in the set x0 ⊕ V to the goal set. We aim
to solve reach-avoid problems with reinforcement learning,
where we train an agent to return the control inputs ua(t) for
a given state x(t) steering the system to the goal set while
avoiding obstacles. However, we have no guarantee that the
behavior learned by the agent is safe. Therefore, we add a
safety shield that is based on reachability analysis to obtain
formal guarantees:

Definition 5 (Reachable Set): Let ξ (t, x0, u(·),w(·)) de-
note the solution of (1) at time t for an initial state x0 = x(0),
control input trajectory u(·) and process noise trajectory w(·).
The reachable set at time t is

R(t) := {
ξ (t, x0, u(·),w(·)) ∣∣ x0 ∈ X0,

∀τ ∈ [0, t] : w(τ) ∈ W} ,
where X0 ⊂ Rn is the initial set and W ⊂ Rz is the set of
process noise.

For our safety shield, we consider that U , W , and V are
represented as zonotopes, and G and Fi are represented as
polytopes in halfspace representation. Moreover, we use poly-
nomial zonotopes to represent reachable sets. In case other
agents are present in the environment, we can apply set-based
methods [35] to safely predict their future behavior and obtain
the corresponding time-varying unsafe sets.

IV. SAFETY SHIELD
As visualized in Fig. 1, the high-level idea behind our safety
shield is to compute the reachable set for a time horizon
of t f and the set of all control inputs satisfying the input
constraints ∀t ∈ [0, t f] : u(t) ∈ U rather than a single control
input trajectory u(·). The intersection of this reachable set
with the unsafe sets then yields constraints that define safe
control inputs, which we can use to formulate the projection
of the control input ua provided by the reinforcement policy to
the closest safe control input as an optimization problem. We

first consider input trajectories that are constant over time for
simplicity and discuss more advanced control strategies later
in Section V-A. For constant control inputs, we can compute
the reachable set using the extended system dynamics[

ẋ(t)

u̇(t)

]
=

[
f (x(t), u(t),w(t))

0

]
(2)

together with the initial set X0 = x0 × U , where we omit
the set of measurement errors V for simplicity. For reach-
ability analysis, we use the conservative polynomialization
algorithm [30], which encloses the nonlinear dynamics in
(1) by a differential inclusion ẋ ∈ p(x(t), u(t),w(t)) ⊕ E con-
sisting of a polynomial approximation p(x(t), u(t),w(t)) and
the abstraction error E . This reachability algorithm explic-
itly preserves dependencies between the initial states and the
reachable states [31]. Since with the extended system dynam-
ics in (2), the control inputs become part of the system state,
we can therefore directly determine from the reachable set
which control inputs steer the system to unsafe regions. Let
us demonstrate this dependency preservation by an example:

Example 1: As a running example we consider the system

ẋ1 = 4 + 2 x2 u1 + w1, ẋ2 = 1.7 + u1 u2

with initial state x0 = [0 0]T , set of process noise W =
[−0.01, 0.01], and time horizon t f = 1 s. Moreover,

F = 〈[
[−4 − 1]T [−1 − 4]T]

, [−14 − 8]T 〉
P

is the unsafe set and

U =
{[

−0.5

1

]
+

[
0.5

0

]
α1 +

[
0

1

]
α2

∣∣∣∣α1, α2 = [−1, 1]

}
is the set of control inputs. With the conservative polynomial-
ization algorithm we obtain the final reachable set

R(t f)=

⎧⎪⎨⎪⎩
[

3.4

1.2

]
+
[

0.34

0.5

]
α1+

[
0.25

−0.5

]
α2+

[
−0.49

0.5

]
α1α2

+
[

0.25

0

]
α2

1 +
[

0.25

0

]
α2

1α2+
[

0.1

0

]
β1

∣∣∣∣α1, α2, β1 ∈ [−1, 1]

⎫⎪⎬⎪⎭,
which is visualized in Fig. 2 . Since the reachable set R(t f)
and the input set U are parameterized by the same factors
α1 and α2, we have a direct analytical relation between the
control inputs and the corresponding reachable states.

We now exploit the analytical relation between the control
inputs and the reachable states to determine the set of safe
control inputs. As demonstrated in the example above, the
control input u(t) ∈ U = 〈cu,Gu〉Z is unambiguously defined
by the factors α via the relation u = cu + Guα through the
definition of a zonotope in Def. 2. Instead of determining the
set of safe control inputs directly, we therefore determine the
safe set for α instead, since this simplifies the computations
as it becomes apparent later. The independent generators of

82 VOLUME 2, 2023

FIGURE 2. Reachable set for the system from Example 1, where the initial
state x0 is shown as a black dot, the final reachable set R(tf) is depicted
in blue with a black border, and the unsafe set F is shown in red.

the polynomial zonotope R(t f) represent uncertainties that
results from abstraction errors during reachability analysis
as well as from the process noise. Consequently, a control
input is safe only if the reachable set does not intersect the
unsafe sets for any possible value of the independent factors
β j . We formulate this in the following theorem, which extends
our previous results for unsafe sets given as halfspaces [31,
Sec. 4.1] to the more general case of polytopes:

Theorem 1: Given is an unsafe set F = 〈A, b〉P ⊂ Rn con-
sisting of s halfspace constraints and the reachable set R(t) =
〈c,G,GI ,E〉PZ ⊂ Rn of the system in (2) computed with the
conservative polynomialization algorithm [30] for the initial
set X0 = x0 × U , x0 ∈ Rn, U = 〈cu,Gu〉Z ⊂ Rm and the set
of process noise W ⊂ Rz. The following constraints on the
zonotope factors α that parameterize the control input ensure
that there exists no trajectory that enters the unsafe set:

∀α ∈ [−1, 1] ∩
s⋃

l=1

LS l , ∀w(·) ∈ W :

ξ (t, x0, cu + Guα,w(·)) /∈ F
with

LS l =
〈
− A(l,·)G,A(l,·)c −

q∑
j=1

∣∣A(l,·)GI (·, j)
∣∣ − b(l),E

〉
LS

for l = 1, . . . , s.
Proof: A single point x ∈ Rn is located outside the unsafe

set F if it is fully located outside of at least one halfspace:

s∨
l=1

A(l,·) x > b(l) ⇒ x �∈ F . (3)

Moreover, due to dependency preservation of reachability
analysis, it holds according to [31, Thm. 1] that the disturbed
trajectory ξ (t, x0, cu + Guα,w(·)) for a specific control input
u = cu + Guα is contained inside the reachable subset ob-
tained by restricting the factors αk ∈ [−1, 1] in the definition
of polynomial zonotopes in Def. 3 to the corresponding con-
crete value for α = [α1 . . . αp]T :

∀αk ∈ [−1, 1] : ξ (t, x0, cu + Guα,w(·)) ∈

c +
h∑

i=1

(p∏
k=1

α
E(k,i)
k

)
G(·,i) +

⎧⎨⎩
q∑

j=1

β jGI (·, j)
∣∣∣∣β j ∈ [−1, 1]

⎫⎬⎭ .
Finally, combining this with (3) under the consideration that

the constraints should hold for all values of the independent
factors β j yields

∀αk, β j ∈ [−1, 1] :
s∨

l=1

A(l,·)c +
h∑

i=1

(p∏
k=1

α
E(k,i)
k

)
A(l,·)G(·,i)

+
q∑

j=1

β jA(l,·)GI (·, j) > b(l) ⇒ ξ (t, x0, cu + Guα,w(·)) �∈ F ,

which results in the statement of the theorem after bringing
the constant offset and the independent generators to the other
side of the inequality. �

Remark 1: A geometric interpretation of Theorem 1 is that
we first bloat the obstacle F by the uncertainty given by
the independent generators through pushing each polytope
halfspace outward. Next, we obtain the constraints via in-
tersecting with the part of the polynomial zonotope spanned
by the dependent generators, where the intersection between
each halfspace of the bloated polytope F corresponds to a
polynomial level set constraint for the factors α.

Theorem 1 defines a feasible region α ∈ [−1, 1] ∩ ⋃
l LS l

for the factors α that parameterize the control input such that
the intersection between a reachable set at a specific point
in time and a single unsafe set is empty. However, to guar-
antee safety we have to consider the reachable set for the
whole time horizon t ∈ [0, t f], which consists of a sequence of
reachable sets R(τ0),R(τ1), . . . ,R(τ f) for consecutive time
intervals τ0, τ1, . . . , τ f . Moreover, we might also have more
than one unsafe set. So overall we obtain one feasible region
α ∈ [−1, 1] ∩ ⋃

l LS l for each pair of reachable sets and un-
safe sets resulting in an intersection. The feasible region for
α to guarantee safety for all time intervals and all unsafe sets
is given by the intersection of the feasible regions for single
pairs:

α ∈ [−1, 1] ∩
ν⋂

r=1

sr⋃
l=1

〈arl , brl ,Erl 〉LS︸ ︷︷ ︸
LSrl

,

where the level sets LSrl are obtained from Theorem 1 and
ν is the number of intersecting pairs. To efficiently check if a
reachable set represented by a polynomial zonotope intersects
an obstacle represented by a polytope, the polynomial zono-
tope refinement algorithm [36] can be used. This algorithm
recursively splits the polynomial zonotope along the longest
generator until the intersection with the polytope can either
be proven or disproven using zonotope enclosures of the split
polynomial zonotopes. Overall, given a vector of factors αa ∈
Rp that corresponds to the control input ua = cu + Guαa ∈
U = 〈cu,Gu〉Z provided by the reinforcement learning policy,
we can formulate the projection to the closest safe control

VOLUME 2, 2023 83

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

input as an optimization problem:

min
α∈[−1,1]

‖α − αa‖2
2 s.t. α ∈

ν⋂
r=1

sr⋃
l=1

〈arl , brl ,Erl 〉LS.

This is a disjunctive programming problem, which can be
formulated as a mixed-integer quadratic program with poly-
nomial constraints using the convex hull relaxation [37]:

min
α∈[−1,1]

‖α − αa‖2
2 (4)

subject to

h∑
i=1

(p∏
k=1

α
Erl (k,i)
rl (k)

)
arl (·,k)λrl ≤ −brl λrl ,

λrl ∈ {0, 1}, α =
sr∑

l=1

λrl αrl ,

sr∑
l=1

λrl = 1,

for r = 1, . . . , ν and l = 1, . . . , sr . Here, the disjunction is
realized using the binary variables λrl ∈ {0, 1} which modify
the corresponding polynomial constraints to be either active
(λrl = 1) or inactive (λrl = 0). Let us demonstrate the opti-
mization for our running example:

Example 2: As shown in Fig. 2, for the nonlinear system
in Example 1 only the final reachable set R(t f) intersects the
unsafe set F . We consequently obtain the feasible region for α
by applying Theorem 1 to the sets R(t f) and F , which yields
α ∈ LS1 ∨ LS2 with

LS1 =
{

[α1 α2]T ∈ R2
∣∣ 1.86α1 + 0.5α2 − 1.46α1α2

+ α2
1 + α2

1α2 ≤ −1.2
}

and

LS2 =
{

[α1 α2]T ∈ R2
∣∣ 2.34α1 − 1.75α2 + 1.51α1α2

+ 0.25α2
1 + 0.25α2

1α2 ≤ −0.3
}
.

Given αa = [0.3 0]T , the optimization problem (4) becomes

min
α1,α2∈[−1,1]

(α1 − 0.3)2 + α2
2

subject to

1.86α11(1)λ11 + 0.5α11(2)λ11 − 1.46α11(1)α11(2)λ11

+ α2
11(1)λ11 + α2

11(1)α11(2)λ11 ≤ −1.2 λ11,

2.34α12(1)λ12 − 1.75α12(2)λ12 + 1.51α12(1)α12(2)λ12

+ 0.25α2
12(1)λ12 + 0.25α2

12(1)α12(2)λ12 ≤ −0.3 λ12,

λ11, λ12 ∈ {0, 1}, λ11 + λ12 = 1[
α1

α2

]
= λ11

[
α11(1)

α11(2)

]
+ λ12

[
α12(1)

α12(2)

]
,

which has the optimal solution α = [α1 α2]T = [0.04 0.2]T .
The feasible regions for α1 and α2 are shown in Fig. 3 .

FIGURE 3. Domain (left) and objective function (right) for the optimization
problem from Example 2. For the domain plot the set of infeasible values
is shown in red, the desired value αa is visualized as a black dot, and the
optimal solution to the optimization problem is depicted as a blue dot.

In the presence of measurement errors v(t) ∈ V we can ap-
ply the same overall approach but have to change the initial set
to X0 = (x0 ⊕ V) × U , where the set V has to be represented
by independent generators to ensure that safety is guaranteed
for all possible values of the measurement errors. While we
focused on the conservative polynomialization algorithm [30]
for simplicity, our safety shield is also compatible with other
reachability approaches as long as they preserve dependencies
between initial states and reachable states. This is for example
the case for algorithms that compute reachable sets using the
Picard-Lindelöf iteration together with Taylor models [38].

The safety shield can be used during reinforcement learning
or for a learned agent. For every decision step, the action
suggested by the agent is corrected to the closest safe action
by (4) only if it violates safety constraints. If the safety shield
is used during learning, it can be beneficial to adapt the reward
to inform the agent about corrections of actions [10].

V. EXTENSIONS
We now discuss several extensions for our safety shield.

A. DIFFERENT TYPES OF CONTROL LAWS
For the basic safety shield presented in Section IV, for sim-
plicity we considered that the control input is kept constant
for the whole planning horizon. Since this is very restrictive
and would in practice often prevent us from finding a feasible
solution, we now discuss how to realize more advanced con-
trol strategies. Note that the reinforcement learning agent has
to match the control law used for the safety shield.
a) Piecewise Constant Control Law: One simple but very
effective extension to constant control inputs are piecewise
constant control inputs. Instead of determining a single con-
trol input from the input set U , we determine control inputs
for all piecewise constant segments from the set U × · · · × U .
We can still use the extended system in (2), but have to reset
the initial set for reachability analysis to R(ti) × U after each
of the i = 1, . . . , μ piecewise constant time segments [ti−1, ti]
with ti = i · t f /μ, where R(ti) is the final reachable set from
the previous segment.
b) Polynomial Control Law: Another possibility is to use
control laws that are polynomial functions with respect to

84 VOLUME 2, 2023

FIGURE 4. Final reachable set for the system in Example 1 for a quadratic
control law and piecewise constant control laws with different numbers of
segments μ.

time. We consider the quadratic case for simplicity since the
extension to general polynomials is straightforward. For a
quadratic control law u(t) = c(1) + c(2)t + c(3)t2 parameter-
ized by the vector of coefficients c ∈ R3, we can use the
extended system⎡⎢⎣ẋ(t)

ċ

ṫ

⎤⎥⎦ =

⎡⎢⎣ f
(
x(t), c(1) + c(2)t + c(3)t2,w(t)

)
0
1

⎤⎥⎦
together with the initial set x0 × C × 0. In the optimization
problem (4) we then determine the values for the parameter
vector c, where we add the constraint c(1) + c(2)t + c(3)t2 ∈ U
to ensure that the input constraints are satisfied. The initial
set C ⊂ R3 for the coefficient vector c can be determined by
estimating the feasible values for c such that the constraint
c(1) + c(2)t + c(3)t2 ∈ U is satisfied for the whole time hori-
zon.
c) Feedback Control: We can also apply a feedback control
law u(t) = ure f (t) + K (x(t) − xre f (t)) with a fixed feedback
matrix K ∈ Rm×n, where both piecewise constant or polyno-
mial control inputs can be used for the reference control input
ure f (t) corresponding to the reference trajectory xre f (t). For
the safety shield, we then compute the reachable set for the
extended system⎡⎢⎣ ẋ(t)

u̇re f (t)

ẋre f (t)

⎤⎥⎦ =

⎡⎢⎣ f
(
x(t), ure f (t) + K (x(t) − xre f (t)),w(t)

)
0

f
(
xre f (t), ure f (t),w(t)

)
⎤⎥⎦

using the initial set x0 × U × x0. In the optimization prob-
lem (4) we then determine the optimal parameter for the
reference control inputs ure f (t), where we add the constraint
ure f + K (x(t) − xre f (t)) ∈ U to satisfy the input constraints.

A comparison of the different control laws presented in
this section is shown in Fig. 4 for the system in Example 1.
The results demonstrate that even for a piecewise constant
control law with only μ = 2 segments we already obtain a
larger reachable set than with a quadratic control law, which

increases our chances to find a safe control input. While piece-
wise constant control laws therefore seem to be preferable,
their rapidly changing values often negatively impact comfort
or durability for many systems, which can be avoided with
polynomial control laws.

For all control strategies we apply the following control
scheme: We plan for a time horizon of t f , but execute the
resulting control law for only a shorter time period tc < t f

before planning a new trajectory. This increases the chances
to avoid getting stuck in dead ends and ensures that we can
react quickly to dynamic changes in the environment.

B. SPATIAL DIMENSIONS OF MOBILE ROBOTS
So far we considered the case where the safety constraints
are specified directly by the system state. For collision avoid-
ance, however, this setup is usually not sufficient since we
additionally have to consider the shape and spatial dimension
of mobile robots, e.g., cars, vessels, or drones, which we
want to control safely. While for many other approaches this
poses a huge problem, incorporating spatial dimensions of the
robot into our safety shield is quite straightforward since we
simply have to replace the reachable set with the occupancy
set. Given the reachable set R(t) that typically describes all
possible positions of a reference point on the robot as well as
all possible robot orientations, the occupancy set is defined as

O(t) = {
o(x, d)

∣∣ x ∈ R(t), d ∈ D
}
, (5)

where the function o : Rn × Rδ → Rγ describes how the
space occupied by the robot is computed from the system state
and the set D specifying the spatial dimension of the robot.

Example 3: Let us consider a car where the states x(1) and
x(2) describe the x- and y-position of its center, and state x(3)

describes the orientation of the car. Then the function o(x, d)
that defines the space occupied by the car is given as

o(x, d) =
[

x(1) + cos(x(3)) d(1) − sin(x(3)) d(2)

x(2) + sin(x(3)) d(1) + cos(x(3)) d(2)

]
, (6)

where the shape of the car is for simplicity enclosed by a
rectangle, so that d ∈ D = [−l/2, l/2] × [−w/2,w/2] with
l and w denoting the length and width of the car.

To compute the occupancy set (5) from the reachable set
R(t) and the set D using polynomial zonotopes, we suggest
two approaches:

1) We can compute a Taylor series expansion enclosure of
the function o(x, d) and evaluate it in a set-based way to
obtain the occupancy set O(t) [39, Sec. 4.4].

2) Since polynomial zonotopes can be converted to Taylor
models [32, Prop. 4] we can apply Taylor model arith-
metic [40] to evaluate (5) and then convert the resulting
set back to a polynomial zonotope.

The resulting safety constraints that we obtain from the
intersections between the occupancy set O(t) and obstacles
have to hold for all values d ∈ D. To ensure this, we could
represent the set D with independent generators before com-
puting O(t), similarly as we did for the set of measurement

VOLUME 2, 2023 85

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

errors in Section IV. However, since the set D is in general
much larger than the set of measurement errors V , this would
often yield very conservative results. A better approach is
to project out all factors that correspond to the set D using
Fourier-Motzkin elimination [41, Chapter 4.4]. Let us demon-
strate this by an example:

Example 4: We consider the constraint

∀α3 ∈ [−1, 1] : α1 + α2 + α3 + α2
1α3 ≤ 1.5, (7)

from which we want to eliminate α3. The first step of Fourier-
Motzkin elimination is to solve all constraints for α3, which
yields

α3 ≤ 1.5 − α1 − α2

1 + α2
1

, α3 ≤ 1, α3 ≥ −1. (8)

Next, we have to form all combinations of the constraints in
(8) that result in a non-empty solution, yielding the constraints

1.5 − α1 − α2

1 + α2
1

≥ −1 ⇒ −α2
1 + α1 + α2 ≤ 2.5

1.5 − α1 − α2

1 + α2
1

≤ 1 ⇒ α2
1 + α1 + α2 ≥ 0.5,

which represent an equivalent formulation of (7).
Since Fourier-Motzkin elimination requires that the con-

straints are solvable for the variable that is eliminated, all
terms that violate this condition have to be removed first by
applying a zonotope enclosure [32, Prop. 5].

C. MIXED-INTEGER LINEAR PROGRAM FORMULATION
For some systems, solving the nonlinear mixed-integer opti-
mization problem (4) might be computationally too expensive,
especially when we have to evaluate the safety shield in real-
time for online application. Therefore, we now discuss how to
obtain a feasible and close to optimal solution using mixed-
integer linear programming, which is significantly faster. To
achieve this, we enclose the polynomial zonotopes that rep-
resent the reachable set with zonotopes using [32, Prop. 5].
Since zonotopes are linear in the factors α, the feasible region
for α calculated using Theorem 1 is then given as a union of
polytopes

⋃
l〈Al , bl 〉P instead of a union of polynomial level

sets. Consequently, if we additionally minimize the L1-norm
instead of the L2-norm, we can simplify the optimization
problem (4) to

min
α∈[−1,1]

‖α − αa‖1 s.t. α ∈
ν⋂

r=1

sr⋃
l=1

〈Arl , brl 〉P,

which can be formulated as a mixed-integer linear program
using Balas’ Theorem [42]:

min
α∈[−1,1]

‖α − αa‖1 (9)

subject to

Arl α̂rl ≤ λrl brl , −1 λrl ≤ α̂rl ≤ 1 λrl ,

λrl ∈ {0, 1}, α =
sr∑

l=1

α̂rl ,

sr∑
l=1

λrl = 1,

for r = 1, . . . , ν and l = 1, . . . , sr . The structure of this
optimization problem is very similar to (4), except that
we introduced the new variables α̂rl = αrlλrl to avoid the
bilinear terms and obtain a linear program. Due to the
over-approximation of all nonlinear terms of the polynomial
zonotope by the zonotope enclosure, it holds that every fea-
sible solution for (9) is a feasible solution to the original
problem (4), but some values that are feasible for (4) will
not be feasible for (9). Note that if the system dynamics (1)
is linear, we directly obtain a mixed-integer linear program
in the form of (9). Moreover, we can always first check if
the desired value αa satisfies the original nonlinear constraints
and only perform the simplification to a mixed-integer linear
program if it does not. A mixed-integer quadratic program
can be obtained in a similar way as the mixed-integer linear
program by enclosing all generators that belong to higher-
order polynomials by a zonotope. Finally, since mixed-integer
programming can be highly parallelized, the computation time
for optimization can always be reduced by using a more pow-
erful machine with more cores.

D. CONSTRAINT GROUPING
Since the time step size for reachability analysis is usually
relatively small, it often happens that many reachable sets
for consecutive time intervals intersect the same obstacle,
resulting in a lot of very similar constraints. We can reduce the
computation time by grouping similar constraints together, as
we demonstrate with the following example:

Example 5: The two constraints

1.1α1 + 0.7α1α2 ≤ 0.3

1.3α1 + 0.5α1α2 ≤ 0.3

on α1, α2 ∈ [−1, 1] can be grouped to the single constraint

∀ε1 ∈ [1.1, 1.3], ∀ε2 ∈ [0.5, 0.7] : ε1 α1 + ε2 α1α2 ≤ 0.3.

To eliminate the new variables ε1 and ε2 we represent
their domains as a summation of the center with a zero-
centered uncertainty as ε1 ∈ 1.2 + ε̃1, ε2 ∈ 0.6 + ε̃2 with
ε̃1, ε̃2 ∈ [−0.1, 0.1], which finally yields

1.2 α1 + 0.6α1α2 ≤ min
α1,α2∈[−1,1]
ε̃1 ,̃ε2∈[−0.1,0.1]

0.3 − ε1 α1 − ε2 α1α2,

where a lower bound for the optimal value of the minimization
problem can be computed using interval arithmetic [43].

In addition to the number of constraints, constraints group-
ing also decreases the number of integer variables for the
optimization in (4), which reduces computation time. Since
integer variables are required only if the safe region for the
agent is non-convex, another strategy to accelerate the opti-
mization is to replace non-convex safe regions by the largest
convex subset [44].

86 VOLUME 2, 2023

TABLE 1. States n, control inputs m, planning horizon tf , number of
pre-computed reachable sets, and extensions applied for each
benchmark.

E. REACHABLE SET PRE-COMPUTATION
In order to reduce the computation time for our safety
shield, we can pre-compute the reachable set starting from
an initial set X0 offline, and then apply the reachable sub-
set approach [31] to efficiently extract the reachable set for
the current state x0 ∈ X0 during online execution. Since for
nonlinear systems the accuracy of the reachable set enclosure
depends on the size of the initial set, we cannot make X0 too
large but instead have to divide the relevant state space into
sets of suitable size. The number of required sets for such
a division grows exponentially with the system dimension,
so that this approach is not suited for high-dimensional sys-
tems. However, for many systems the differential equation
ẋ(t) = f (x(t), u(t),w(t)) describing the system dynamics is
invariant with respect to transformations of certain states [45,
Sec. 4.1]. For example, the dynamics of a car are invariant
with respect to translations of the car’s position and with
respect to rotations of the car’s orientation. In this case only
the state space for the states that are not invariant has to
be divided since we can always apply a suitable state space
transformation to set the invariant states to 0.

VI. EXPERIMENTAL EVALUATION
We now demonstrate the performance of our safety shield on
several benchmark systems, where each benchmark highlights
different properties of our approach. If not explicitly stated
otherwise, all computations are carried out in Python on a
2.9 GHz quad-core i7 processor with 32 GB memory. We
use the CORA toolbox [46] to pre-compute reachable sets,
proximal policy optimization [47] for reinforcement learn-
ing, Gurobi to solve the mixed-integer linear and quadratic
programs, and CasADi together with the BONMIN solver
to solve mixed-integer nonlinear programs.2 Benchmark pa-
rameters as well as the applied extensions from Section V
are listed in Table 1. We published our implementation on
CodeOcean3 and created a video showing our results.4

A. F1TENTH RACECAR
To demonstrate that our safety shield is fast and robust enough
to be applied to a real system, we conduct experiments on
an F1tenth racecar [48], whose dynamics are described by

2[Online]. Available: https://www.gurobi.com/ and https://web.casadi.org/
3[Online]. Available: https://codeocean.com/capsule/9949621/tree/v1
4[Online]. Available: https://youtu.be/6ISKxO4DDWA

a kinematic single-track model. Moreover, the car contains
a low-level PI controller with gains kP = 8 and kI = 1 that
takes as input the desired velocity and realizes the required
acceleration. Overall, this results in the model

ṡx = cos(ψ) v, ṡy = sin(ψ) v, ψ̇ = u2 + w2,

v̇ = kP(u1 − v) + kI eI + w1, ėI = u1 − v, (10)

where the system state consists of the x- and y-position of
the center sx, sy, the velocity v, the orientation ψ , and the
integrated error of the PI controller eI . The control inputs are
the desired velocity u1 and the steering angle u2, which are
bounded by the set U = [0, 0.5]m s−1 × [−0.3, 0.3]rad. To
ensure that the model (10) encloses all possible behaviors of
the real system, we performed conformance checking using
the AROC toolbox [49] to determine the process noise as well
as the measurement error from data traces we recorded from
the real car, which results in the sets

W = [−0.007, 0.0035]m s−2 × [−0.0104, 0.0132]rad s−1

V = [−0.0584, 0.0446]m s−1 × [−0.0438, 0.0466]m s−1

× [−0.0933, 0.0561]m s−2 × [−0.0446, 0.0593]rad s−1

× [−0.0005, 0]m s−2.

To incorporate the size of the car, we use the output function
in (6) with length 0.51 m and width 0.31 m.

For control we use a piecewise constant control law with
μ = 2 segments and a planning horizon of t f = 2 s, and
we replan as soon as the previous computation is finished.
Moreover, we simplify the optimization problem for action
projection to a mixed-integer quadratic program, which on
average took 0.14 s to solve during our experiments. The
car uses a 1.9 GHz six-core ARMv8 processor with 7.6 GB
memory and is equipped with a LiDAR sensor. To obtain the
unsafe sets Fi, we enclose all points measured by the LiDAR
by a union of polytopes. Moreover, while the velocity and
the integrated error can be directly obtained from the car’s
internal sensors, we use a particle filter [50] to determine the
position and orientation of the car in the environment from
LiDAR measurements. For our experiments, we then applied
reinforcement learning to train an agent on four environment
maps that were similar to but slightly different from the map
we used for the experiments on the real F1tenth car. In addi-
tion to the system state, we used the LiDAR measurements
and the position of the goal set as observations for the agent,
and we did not use the safety shield during training.

As shown in Fig. 5, without the safety shield, the trained
agent is unsafe since the car crashes into the obstacle. With
our safety shield, however, the car avoids the obstacle and
safely reaches the goal set. This not only demonstrates that
our safety shield successfully works on a real system, but also
that the modifications to the control inputs suggested by the
reinforcement learning policy are small enough for the agent
to still fulfill its objective.

VOLUME 2, 2023 87

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

FIGURE 5. Trajectories driven by the F1tenth racecar with and without the
safety shield, where the green area is the goal set and the orange area is
the obstacle.

TABLE 2. Results for the evaluation of our safety shield on 2000 common
road traffic scenarios.

B. AUTONOMOUS DRIVING
In order to show that our safety shield can handle very com-
plex reach-avoid problems that include dynamic obstacles,
we consider the motion planning benchmarks for autonomous
cars provided by the CommonRoad database [51]. As system
dynamics we use the kinematic single track model from [20,
Sec. VII] with the same input set U and set of process noise
W as in [20, Sec. VII]. This model is very similar to the
model in (10), with the only difference that the acceleration
instead of the desired velocity is used as a control input.
The car we consider is a BMW 320i, which has a length of
4.51 m and a width of 1.61 m. To guarantee safety even though
the intentions of the other cars are unclear, we use the tool
SPOT [52] to compute all possible occupancies of the other
traffic participants that apply to traffic rules using set-based
prediction.

To counteract the large process noise for this benchmark,
we use a feedback controller u(t) = ure f + K (x(t) − xre f (t))
for the safety shield, where the reference input ure f is piece-
wise constant with μ = 2 segments. The feedback matrix K ∈
Rm×n is determined by applying an LQR control approach
with state weighting matrix Q = I4 and input weighting ma-
trix R = I2 to the linearized system. Moreover, we use a
planning horizon of t f = 0.8 s and replan after tc = 0.4 s. We
apply reinforcement learning to train an agent that aims to
safely control the car, where we do not use the safety shield
during training. The observations for the agent are selected
from [53, Table II]. In particular, we use the state of the ego
vehicle, the distances of the ego vehicle to road/lane bound-
aries as well as to the goal set, and the states of surrounding
vehicles.

The effect of the safety shield is highlighted by the results
for 2000 traffic scenarios shown in Table 2: While the original

agent collides with other traffic participants in 10 scenarios,
our safety shield successfully prevents all collisions. More-
over, applying the safety shield does not lead to a reduced
goal-reaching percentage, but instead even increases the num-
ber of scenarios for which the goal set is reached. Table 2
also demonstrates the effect of constraint grouping (see Sec-
tion V-D), which reduces the average computation time for
solving the optimization problem, but slightly decreases the
goal reaching percentage due to the increased conservatism.
In Fig. 6 the results for one specific traffic scenario are visu-
alized. There, the agent without the safety shield changes the
lane too early and collides with the adjacent truck, whereas
the agent with the safety shield changes the lane just in time
and finally reaches the goal set in the end.

C. QUADROTOR 2D
Next, we compare our safety shield with a safe reinforcement
learning approach that modifies the optimization criterion. In
particular, we incorporate the safety specification as a viola-
tion penalty in the reward function. For this, we consider a
benchmark problem from the safe-control-gym [54] featuring
a trajectory tracking task for a two-dimensional quadrotor.
As shown in Fig. 7, the trajectory that should be tracked is
partially located inside an unsafe region, so that there exists a
conflict between tracking performance and safety constraint
satisfaction. The dynamics of the quadrotor are according
to [54, Eq. (3)] given as

s̈x = sin(ψ) (u1 + u2)/m + w1

s̈z = cos(ψ) (u1 + u2)/m − g + w2

ψ̈ = (u2 − u1) a/
(√

2 Iyy

)
+ w3,

where m = 0.027 kg is the mass, g = 9.81 m s−2 is the grav-
itational acceleration, a = 0.0397 m is distance from each
motor pair to the center of mass of the quadrotor, and Iyy =
1.4 · 10−5 kg/m2 is the moment of inertia. The system state
consists of the x- and z-positions sx, sz as well as the pitch
angle ψ of the quadrotor together with the corresponding
velocities. To decouple forward thrust and tilting torque, the
input set for the control inputs u1 and u2 that represent the
thrusts generated by the two rotors is restricted to

U =
〈[

0.1323 N

0.1323 N

]
,

[
0.0125 N 0.0015 N

0.0125 N −0.0015 N

]〉
Z

.

The process noise w1,w2,w3 is bounded by the set W =
0.01 · [−1, 1].

For the safety shield we use a constant control input with
a planning horizon of t f = 0.5 s, where we replan after tc =
0.02 s. To perform action projection, we solve the original
nonlinear optimization problem, which takes 0.004 s on av-
erage during our experiments. The main reason for the fast
computation time is that the safe region for the quadrotor is
convex, which results in an optimization problem without any
integer variables. We train three different agents: A baseline
agent that should track the trajectory and gets no information

88 VOLUME 2, 2023

FIGURE 6. Results for the CommonRoad scenario DEU_LocationALower-33_16_T-1 visualized at times 0 s, 1.2 s, 2.8 s, 4.4 s, and 9.2 s (from top to
bottom), where the agent without safety shield is depicted in purple, the agent with safety shield is depicted in blue, the dynamic obstacles are depicted
in red, and the goal set is depicted in green.

FIGURE 7. Trajectories for the 2D quadrotor benchmark featuring the
baseline agent with and without safety shield, the constraint-penalty
agent, and the agent that is trained with the safety shield. The trajectory
that should be tracked is visualized by the dashed black line and the
unsafe regions are depicted in red.

about the constraints, a constraint-penalty agent where the
reward is extended with a penalty for constraint violation, and
a safe agent that is trained with the safety shield. As shown
in Fig. 8, the safe and baseline agents converge after 400 000
training steps while the agent with constraint penalty needs
2 million training steps to converge. Moreover, only the safe
agent never violates any constraints during training, and could
therefore also be used for training directly on the real physical
system.

The results for deploying the different trained agents are
shown in Fig. 7. As expected, the baseline agent without the
safety shield violates the safety constraints since they were

FIGURE 8. Episode rewards and constraint violations for the 2D quadrotor
benchmark observed during training without safety shield, with safety
shield, and with constraint penalty.

not considered during training. Also, the constraint-penalty
agent violates the constraints, which demonstrates that it is
not sufficient to incorporate the safety constraints into the
training process. Only the two agents that apply our safety
shield stay inside the safe region for all times, where the agent
that uses the safety shield during training achieves a smoother
trajectory compared to the baseline agent.

D. QUADROTOR 3D
To compare our safety shield with reachability-based tra-
jectory safeguard [25], we consider the three-dimensional
quadrotor benchmark from [25, Sec. V.B]. Reachability-
based trajectory safeguard [25] applies the safety shield to a
simplified trajectory-generating model and the resulting tra-
jectory is then tracked by a low-level controller that uses

VOLUME 2, 2023 89

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

the original nonlinear system model. For the quadrotor, the
trajectory-generating model for each of the three spatial di-
rections i ∈ {1, 2, 3} is

ẋi = vi + ai t − (2ai + 3(vi − ui)) t2 + (ai + 2(vi − ui)) t3

v̇i = 0, ȧi = 0, ṫ = 1,

where xi is the quadrotor position, vi and ai are respectively
the velocity and the acceleration at the beginning of the
trajectory, and t is time. The input ui to the system is the
peak velocity reached at time t = 1.5 s, which is bounded
by the set U = {u = [u1 u2 u3]T | ‖u‖2 ≤ 5 m s−1}. To apply
our safety shield, we tightly inner-approximate the set U with
a zonotope using the method described in [55, Sec. IV]. A
similar trajectory-generating model is used to decelerate the
quadrotor from the peak velocity back to velocity 0, so that
the overall planning horizon is t f = 3 s. We consider the same
control task as in [25, Sec. V.B], which is to safely navigate
the quadrotor through a 100 m long tunnel with randomly
generated box obstacles. For our experiments, we deployed
the same trained reinforcement learning agent as used in [25]
on 100 tunnels with different obstacles and compared the
conservatism of the two safety shields in terms of the re-
quired control input correction ‖u − ua‖2 at each intervention
of the safety shield. While both safety shields had to inter-
vene for 5078 out of 5760 time steps, the average control
input modification for our approach is with 1.13 m s−1 smaller
than the average modification 1.22 m s−1 for the safety shield
from [25], which increases the chances that the agent can
successfully complete its task.

VII. DISCUSSION
Finally, let us discuss some properties of our safety shield.

A. SAFETY GUARANTEES FOR INFINITE TIME
Our basic safety shield approach can guarantee safety only
for the finite time horizon t f . To obtain safety guarantees for
an infinite time horizon, one can either combine our safety
shield with a fail-safe planner [56] that takes over when the
safety shield cannot determine a safe trajectory anymore, or
one can modify the safety shield in such a way that the system
always stops in a safe final state at the end of the planning
horizon [25].

B. COMPUTATIONAL COMPLEXITY
The two main steps required for our safety shield are com-
puting the reachable set and solving the mixed-integer opti-
mization problem (4) for action projection. The complexity of
the conservative polynomialization algorithm for reachability
analysis is O(n5) with respect to the system dimension ac-
cording to [57, Sec. 4.1.4]. However, for many benchmarks
one can apply the pre-computation discussed in Section V-E
to avoid computing reachable sets online. Solving a mixed-
integer optimization problem is in general NP-hard [58]. But,
as we demonstrated with the numerical experiments in Sec-
tion VI, by applying the simplification to a mixed-integer

linear program in Section V-C and/or constraint grouping in
Section V-D we can solve this optimization efficiently.

C. SAFE COMPUTATION TIME CONSIDERATION
As demonstrated by the experiments in Section VI, even with
all the speed-ups discussed in Section V, the calculations
required for our safety shield still need a certain amount of
computation time that, depending on the system, might be too
long to simply be neglected. Therefore, in order to consider
the required computation time in a formally correct manner,
we can apply the following well-known procedure [59]: We
allocate a certain computation time tcomp for the calculations
and use reachability analysis to predict the reachable states
for the allocated computation time. By using this set as the
initial set for our safety shield, we can guarantee safety even
though the required calculations are not instantaneous. If the
computation does not finish in the allocated computation time,
we either stick to the safe solution from the previous time step
or apply a failsafe maneuver.

D. CONSERVATISM OF THE SAFETY SHIELD
Due to over-approximation errors, our safety shield might not
be able to always find a feasible solution if one exists. In
particular, there are four sources of conservatism:� Since the exact reachable set cannot be computed for

general nonlinear systems, we compute a tight enclosure
instead (e.g., we aim to minimize the Hausdorff distance
between the enclosure and the exact set).� Due to dependency preservation, the abstraction error for
reachability analysis is computed on the reachable set for
the whole input set rather than the smaller reachable set
for a specific control input, which results in additional
conservatism.� For bloating the obstacles by the set of uncertainties
defined by the independent generators, we use an over-
approximative Minkowski sum in Theorem 1 that simply
pushes the obstacle halfspaces outward.� Since we choose a certain type of control law in advance,
we restrict the space of possible control inputs.

However, all of these over-approximation errors can be
made arbitrarily small: The over-approximation for reach-
ability converges to zero if the time step size is reduced
and/or the reachable set is split, which also eliminates the
error introduced by dependency preservation. Moreover, the
approximative Minkowski sum in Theorem 1 can be replaced
by the exact one and every control law can be approximated
arbitrary close by a piecewise constant control law with an
infinite number of piecewise constant segments.

E. PARAMETER TUNING
Since the settings for reachability analysis can be tuned auto-
matically [60], [61], the main design parameters for our safety
shield in addition to the type of control law discussed in Sec-
tion V-A are the planning horizon t f and the replanning time
tc. A longer planning horizon t f often yields better control
performance due to the larger lookahead, but also increases

90 VOLUME 2, 2023

the computation time. Especially in the presence of dynamic
obstacles, a small replanning time tc is desirable in order to
be able to quickly react to a changing environment. However,
a small tc requires the approach to be faster in order to run
in real-time. Finally, the extensions discussed in Section V-C,
V-D, and V-E all reduce the computation time at the cost of
introducing more conservatism.

VIII. CONCLUSION
We presented a novel safety shield for nonlinear continuous
systems with input constraints that can be added to reinforce-
ment learning agents in order to prevent them from applying
unsafe actions. Since our safety shield uses set-based com-
putations in the form of reachability analysis to determine
which actions are safe and which are unsafe, it can guarantee
robust safety despite process noise and measurement errors.
Moreover, because our approach applies highly parallelized
mixed-integer programming to project the action from the
agent to the closest safe action, it is possible to reduce the
computation time by using a more powerful machine with
more cores. Finally, we demonstrated with several numerical
examples as well as experiments on a real system that our
safety shield modifies the actions proposed by the reinforce-
ment learning agent as little as necessary for robust safety.

ACKNOWLEDGMENT
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the United States Air Force or
the United States Navy.

REFERENCES
[1] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in

deep reinforcement learning for robotics: A survey,” in Proc. Symp. Ser.
Comput. Intell., 2020, pp. 737–744.

[2] B. R. Kiran et al., “Deep reinforcement learning for autonomous
driving: A survey,” Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909–4926, Jun. 2022.

[3] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for
power system applications: An overview,” CSEE J. Power Energy Syst.,
vol. 6, no. 1, pp. 213–225, 2019.

[4] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 22–31.

[5] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, “Projection-
based constrained policy optimization,” in Proc. Int. Conf. Learn.
Representations, 2019.

[6] M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” in Proc. Int. Conf. Auton. Agents
Multiagent Syst., 2020, pp. 483–491.

[7] X. Wang, C. Pillmayer, and M. Althoff, “Learning to obey traffic
rules using constrained policy optimization,” in Proc. Int. Conf. Intell.
Transp. Syst., 2022, pp. 2415–2421.

[8] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem,
“Online shielding for stochastic systems,” in Proc. NASA Formal Meth-
ods Symp., 2021, pp. 231–248.

[9] P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning
applied to control under constraints,” J. Artif. Intell. Res., vol. 24,
pp. 81–108, 2005.

[10] H. Krasowski, J. Thumm, M. Müller, X. Wang, and M. Althoff,
“Provably safe reinforcement learning: A theoretical and experimental
comparison,” 2022, arXiv:2205.06750.

[11] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. Int.
Conf. Intell. Transp. Syst., 2020, pp. 1–7.

[12] D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement learning
on autonomous vehicles,” in Proc. Int. Conf. Intell. Robots Syst., 2018,
pp. 6162–6167.

[13] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” in Proc. Int. FLAIRS Conf., 2022.

[14] J. Thumm and M. Althoff, “Provably safe deep reinforcement learning
for robotic manipulation in human environments,” in Proc. Int. Conf.
Robot. Automat., 2022, pp. 6344–6350.

[15] W. Saunders, G. Sastry, A. Stuhlmüller, and O. Evans, “Trial without
error: Towards safe reinforcement learning via human intervention,” in
Proc. Int. Conf. Auton. Agents MultiAgent Syst., 2018, pp. 2067–2069.

[16] N. Hunt, N. Fulton, S. Magliacane, T. N. Hoang, S. Das, and A.
Solar-Lezama, “Verifiably safe exploration for end-to-end reinforce-
ment learning,” in Proc. 24th Int. Conf. Hybrid Systems: Comput.
Control, 2021, pp. 1–11.

[17] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U.
Topcu, “Safe reinforcement learning via shielding,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 2669–2678.

[18] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The Simplex architecture
for safe online control system upgrades,” in Proc. Amer. Control Conf.,
1998, pp. 3504–3508.

[19] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and S. D.
Stoller, “Neural simplex architecture,” in Proc. NASA Formal Methods
Symp., 2020, pp. 97–114.

[20] B. Schürmann, M. Klischat, N. Kochdumper, and M. Althoff, “Formal
safety net control using backward reachability analysis,” IEEE Trans.
Autom. Control, vol. 67, no. 11, pp. 5698–5713, Nov. 2022.

[21] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 3387–3395.

[22] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control bar-
rier function optimization approach,” Int. J. Robust Nonlinear Control,
vol. 31, no. 6, pp. 1923–1940, 2021.

[23] O. Bastani, “Safe reinforcement learning with nonlinear dynamics
via model predictive shielding,” in Proc. Amer. Control Conf., 2021,
pp. 3488–3494.

[24] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,”
Automatica, vol. 129, 2021, Art. no. 109597.

[25] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (RTS): A safe and fast reinforcement learning
safety layer for continuous control,” IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 3663–3670, Apr. 2021.

[26] J. H. Gillula and C. J. Tomlin, “Guaranteed safe online learning via
reachability: Tracking a ground target using a quadrotor,” in Proc. Int.
Conf. Robot. Automat., 2012, pp. 2723–2730.

[27] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
HamiltonJacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957,
Jul. 2005.

[28] M. Selim, A. Alanwar, S. Kousik, G. Gao, M. Pavone, and K. H.
Johansson, “Safe reinforcement learning using black-box reachability
analysis,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 10665–10672,
Oct. 2022.

[29] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126–136, 2016.

[30] M. Althoff, “Reachability analysis of nonlinear systems using conserva-
tive polynomialization and non-convex sets,” in Proc. Int. Conf. Hybrid
Syst.: Comput. Control, 2013, pp. 173–182.

[31] N. Kochdumper, B. Schürmann, and M. Althoff, “Utilizing dependen-
cies to obtain subsets of reachable sets,” in Proc. Int. Conf. Hybrid Syst.:
Comput. Control, 2020, article 1.

[32] N. Kochdumper and M. Althoff, “Sparse polynomial zonotopes: A
novel set representation for reachability analysis,” IEEE Trans. Autom.
Control, vol. 66, no. 9, pp. 4043–4058, Sep. 2021.

[33] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of
nonlinear systems with uncertain parameters using conservative lin-
earization,” in Proc. Int. Conf. Decis. Control, 2008, pp. 4042–4048.

VOLUME 2, 2023 91

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

[34] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Model confor-
mance for cyber-physical systems: A survey,” Trans. Cyber- Phys. Syst.,
vol. 3, no. 3, 2018, Art. no. 30.

[35] M. Koschi and M. Althoff, “Set-based prediction of traffic participants
considering occlusions and traffic rules,” IEEE Trans. Intell. Veh., vol. 6,
no. 2, pp. 249–265, Jun. 2021.

[36] S. Bak, S. Bogomolov, B. Hencey, N. Kochdumper, E. Lew, and K.
Potomkin, “Reachability of Koopman linearized systems using random
fourier feature observables and polynomial zonotope refinement,” in
Proc. Int. Conf. Comput. Aided Verification, 2022, pp. 490–510.

[37] I. E. Grossmann and S. Lee, “Generalized convex disjunctive program-
ming: Nonlinear convex hull relaxation,” Comput. Optim. Appl., vol. 26,
no. 1, pp. 83–100, 2003.

[38] X. Chen, S. Sankaranarayanan, and E. Ábrahám, “Taylor model flow-
pipe construction for non-linear hybrid systems,” in Proc. Real-Time
Syst. Symp., 2012, pp. 183–192.

[39] N. Kochdumper and M. Althoff, “Reachability analysis for hybrid sys-
tems with nonlinear guard sets,” in Proc. 23rd Int. Conf. Hybrid Syst.:
Comput. Control, 2020, pp. 1–10.

[40] K. Makino and M. Berz, “Taylor models and other validated functional
inclusion methods,” Int. J. Pure Appl. Math., vol. 4, no. 4, pp. 379–456,
2003.

[41] G. Dantzig, Linear Programming and Extensions. Princeton, NJ, USA:
Princeton Univ. Press, 2016.

[42] E. Balas, “Disjunctive programming: Properties of the convex hull of
feasible points,” Discrete Appl. Math., vol. 89, no. 1, pp. 3–44, 1998.

[43] L. Jaulin, M. Kieffer, and O. Didrit, Applied Interval Analysis.
Berlin/Heidelberg, Germany: Springer, 2006.

[44] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Proc. Int. Workshop
Algorithmic Found. Robot., 2015, pp. 109–124.

[45] S. Bak, Z. Huang, F. A. T. Abad, and M. Caccamo, “Safety and progress
for distributed cyber-physical systems with unreliable communication,”
Trans. Embedded Comput. Syst., vol. 14, no. 4, 1–22, 2015.

[46] M. Althoff, “An introduction to CORA 2015,” in Proc. Int. Workshop
Appl. Verification Continuous Hybrid Syst., 2015, pp. 120–151.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” 2017, arXiv:1707.06347.

[48] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An
open-source evaluation environment for continuous control and rein-
forcement learning,” Proc. Mach. Learn. Res., vol. 123, pp. 77–89,
2020.

[49] N. Kochdumper, F. Gruber, B. Schürmann, V. Gaßmann, M. Klischat,
and M. Althoff, “AROC: A toolbox for automated reachset optimal
controller synthesis,” in Proc. 24th Int. Conf. Hybrid Syst.: Computation
Control, 2021, pp. 1–6.

[50] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo lo-
calization for mobile robots,” Artif. Intell., vol. 128, no. 1-2, pp. 99–141,
2001.

[51] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable
benchmarks for motion planning on roads,” in Proc. IEEE Intell. Veh.
Symp., 2017, pp. 719–726.

[52] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of
traffic participants,” in Proc. Intell. Veh. Symp., 2017, pp. 1686–1693.

[53] X. Wang, H. Krasowski, and M. Althoff, “CommonRoad-RL: A con-
figurable reinforcement learning environment for motion planning of
autonomous vehicles,” in Proc. Int. Intell. Transp. Syst. Conf., 2021,
pp. 466–472.

[54] Z. Yuan et al., “Safe-control-Gym: A unified benchmark suite for safe
learning-based control and reinforcement learning in robotics,” IEEE
Robot. Automat. Lett., vol. 7, no. 4, pp. 11142–11149, Oct. 2022.

[55] V. Gaßmann and M. Althoff, “Scalable zonotope-ellipsoid conversions
using the Euclidean zonotope norm,” in Proc. Amer. Control Conf.,
2020, pp. 4715–4721.

[56] C. Pek and M. Althoff, “Computationally efficient fail-safe trajectory
planning for self-driving vehicles using convex optimization,” in Proc.
Int. Conf. Intell. Transp. Syst., 2018, pp. 1447–1454.

[57] N. Kochdumper, “Extensions of polynomial zonotopes and their ap-
plication to verification of cyber-physical systems,” Ph.D. dissertation,
Tech. Univ. Munich, München, Germany, 2022.

[58] C. H. Papadimitriou, “On the complexity of integer programming,” J.
ACM, vol. 28, no. 4, pp. 765–768, 1981.

[59] B. Schürmann, N. Kochdumper, and M. Althoff, “Reachset model pre-
dictive control for disturbed nonlinear systems,” in Proc. Int. Conf.
Decis. Control, 2018, pp. 3463–3470.

[60] M. Wetzlinger, A. Kulmburg, and M. Althoff, “Adaptive parameter
tuning for reachability analysis of nonlinear systems,” in Proc. 24th Int.
Conf. Hybrid Syst.: Comput. Control, 2021, pp. 1–11.

[61] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff, “Fully-
automated verification of linear systems using inner-and outer-
approximations of reachable sets,” 2022, arXiv:2209.09321.

NIKLAS KOCHDUMPER received the B.Sc. de-
gree in mechanical engineering, the M.Sc. degree
in robotics, cognition and intelligence, and the
Ph.D. degree in computer science from Technis-
che Universität München, Germany, in 2015, 2017,
and 2022, respectively. He is currently a Post-
doctoral Researcher with Stony Brook University,
Stony Brook, NY, USA. His research interests in-
clude formal verification of continuous and hybrid
systems, reachability analysis, computational ge-
ometry, controller synthesis, and neural network
verification.

HANNA KRASOWSKI received the B.Sc. de-
gree in mechanical engineering from Technische
Universität Darmstadt, Darmstadt, Germany, in
2017, and the M.Sc. degree in robotics, cogni-
tion and intelligence in 2020 from Technische
Universität München, Munich, Germany, where
she is currently working toward the Ph.D. de-
gree. Her research interests include provably safe
reinforcement learning and motion planning for
cyber-physical systems.

XIAO WANG received the B.Eng. degree in vehi-
cle engineering from Tongji University, Shanghai,
China, in 2015, and the M.Sc. degree in me-
chanical engineering in 2018 from Technische
Universität München, München, Germany, where
she is currently working toward the Ph.D. degree.
Her research interests include motion planning for
autonomous vehicles, formal methods, and safe re-
inforcement learning.

STANLEY BAK received the B.Sc. degree in
computer science from Rensselaer Polytechnic In-
stitute, Troy, NY, USA, in 2007, and the M.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Illinois at Urbana-Champaign, Cham-
paign, IL, USA, in 2009 and 2013, respectively.
He is currently an Assistant Professor in com-
puter science with Stony Brook University in Stony
Brook, NY, USA. His research interests include
verification and testing methods for cyber-physical
systems and neural networks.

MATTHIAS ALTHOFF received the Diploma En-
gineering degree in mechanical engineering and
the Ph.D. degree in electrical engineering from
Technische Universität München, München, Ger-
many, in 2005 and 2010, respectively. He is
currently an Associate Professor in computer sci-
ence with Technische Universität München. From
2010 to 2012 he was a Postdoctoral Researcher
with Carnegie Mellon University, Pittsburgh, PA,
USA, and from 2012 to 2013 an Assistant Profes-
sor with Technische Universität Ilmenau, Ilmenau,

Germany. His research interests include formal verification of continuous and
hybrid systems, reachability analysis, planning algorithms, nonlinear control,
automated vehicles, and power systems.

92 VOLUME 2, 2023

Support our fight for an open global commons. Make a tax deductible gi� to fund our work in 2024. DONATE TODAY!

Canonical URL : https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/ See the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal codeSee the legal code

You are free to:

Share — copy and redistribute the material in any medium or format for any purpose, even commercially.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit appropriate credit , provide a link to the license, and indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made indicate if changes were made . You may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures technological measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation exception or limitation .

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights publicity, privacy, or moral rights may limit

how you use the material.

 Notice

This deed highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. You should carefully review all of the terms and conditions of

the actual license before using the licensed material.

Creative Commons is not a law firm and does not provide legal services. Distributing, displaying, or linking to this deed or the license that it summarizes does not create a lawyer-client

or any other relationship.

Creative Commons is the nonprofit behind the open licenses and other legal tools that allow creators to share their work. Our legal tools are free to use.

• Learn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our workLearn more about our work

• Learn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC LicensingLearn more about CC Licensing

• Support our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our workSupport our work

• Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.Use the license for your own material.

• Licenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses ListLicenses List

• Public Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain ListPublic Domain List

Footnotes

appropriate credit — If supplied, you must provide the name of the creator and attribution parties, a copyright notice, a license notice, a disclaimer notice, and a link to the material. CC licenses prior to Version 4.0 also require you to provide the title of the material if

supplied, and may have other slight di�erences.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

indicate if changes were made — In 4.0, you must indicate if you modified the material and retain an indication of previous modifications. In 3.0 and earlier license versions, the indication of changes is only required if you create a derivative.

◦ Marking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guideMarking guide

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

technological measures — The license prohibits application of e�ective technological measures, defined with reference to Article 11 of the WIPO Copyright Treaty.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

exception or limitation — The rights of users under exceptions and limitations, such as fair use and fair dealing, are not a�ected by the CC licenses.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

publicity, privacy, or moral rights — You may need to get additional permissions before using the material as you intend.

◦ More infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore infoMore info

Contact Newsletter Privacy Policies Terms

CONTACT US

Creative Commons PO Box 1866, Mountain View, CA 94042

info@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.orginfo@creativecommons.org

+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753+1-415-429-6753

SUBSCRIBE TO OUR NEWSLETTER SUPPORT OUR WORK

Our work relies on you! Help us keep the Internet free and open.

DONATE NOW

Except where otherwise noted noted noted noted noted noted noted noted noted noted noted noted noted , content on this site is licensed under a Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license Creative Commons Attribution 4.0 International license . Icons by Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome Font Awesome .

MENU

English Search Donate Explore CC

CC BY 4.0 DEED
Attribution 4.0 International

Your email SUBSCRIBE

CC BY 4.0 Deed | Attribution 4.0 International | Creat... https://creativecommons.org/licenses/by/4.0/

1 of 1 1/10/24, 21:00

A Provably Safe Reinforcement Learning for Motion Planning with Collision Avoidance

A.3 Safe Reinforcement Learning for Autonomous Lane

Changing using Set-based Prediction

Summary The control input space for autonomous vehicles is typically a continuous space.

However, if a set of continuous actions can be easily summarized by one discrete action, this

drastically reduces the complexity of an online verification approach. An example is lane

changing when driving: There are many trajectories that conform with a lane change, but it

is often more important if a lane change is conducted and not how exactly it is performed.

Additionally, there are many controllers for autonomous vehicles that can produce drivable

trajectories based on a rough reference path.

In this work, we develop an action masking approach for autonomous driving on highways.

We regard three discrete high-level actions: keep driving in the current lane and change the

lane to the left or right. We use a low-level planner to transform these high-level actions to

drivable trajectories. The safety of these trajectories is verified by checking if they intersect

with the potential future occupancy of other traffic participants and the road boundary. In

particular, we regard legal safety by verifying that the autonomous vehicle keeps a safe distance

to the leading vehicle of its current lane, and to the leading and following vehicle in the target

lane of a lane change. In case no discrete action is safe, we employ a provably safe adaptive

cruise controller. We also examine the effect of action masking on the applied RL algorithm.

We train and test our approach on recorded highway traffic data and compare different

architectures for the policy neural network. Our proposed approach always guarantees legal

safety, i.e., the RL agent does not cause any collision as it always keeps a safe distance to legally

relevant traffic participants. We observe that including the safety verification of actions only

slightly reduces the goal-reaching performance and that our action masking approach improves

sample efficiency as it converges faster than standard RL.

Author contributions H.K., X.W., and M.A. developed the concept for provably safe RL

on highways. H.K. implemented the RL approach and conducted the numerical experiments.

X.W. cleaned and transformed the recorded traffic data into CommonRoad scenarios. H.K.

and X.W. wrote the manuscript. M.A. provided feedback on the concept and helped improving

the manuscript.

Copyright notice © 2020 IEEE. Accepted version reprinted, with permission, from Hanna

Krasowski, Xiao Wang, and Matthias Althoff, Safe Reinforcement Learning for Autonomous

Lane Changing using Set-based Prediction, Proc. of the IEEE International Conference on

Intelligent Transportation Systems, pp. 1–7, doi:10.1109/ITSC45102.2020.9294259, 2020.

TUM Graduate School This publication is not a core publication in accordance with

Article 7, section 3 TUM Doctoral Regulations (PromO).

102

https://doi.org/10.1109/ITSC45102.2020.9294259

Safe Reinforcement Learning for Autonomous Lane Changing Using
Set-Based Prediction

Hanna Krasowski∗, Xiao Wang∗, and Matthias Althoff

Abstract— Machine learning approaches often lack safety
guarantees, which are often a key requirement in real-world
tasks. This paper addresses the lack of safety guarantees
by extending reinforcement learning with a safety layer that
restricts the action space to the subspace of safe actions. We
demonstrate the proposed approach using lane changing in
autonomous driving. To distinguish safe actions from unsafe
ones, we compare planned motions with the set of possible
occupancies of traffic participants generated by set-based pre-
dictions. In situations where no safe action exists, a verified fail-
safe controller is executed. We used real-world highway traffic
data to train and test the proposed approach. The evaluation
result shows that the proposed approach trains agents that do
not cause collisions during training and deployment.

I. INTRODUCTION

Self-driving techniques have the potential to improve
mobility in terms of safety and traffic efficiency. One of
the most crucial tasks for autonomous vehicles is to plan
their motion through traffic without harming other traffic
participants. The recent development of motion planning
techniques has become more data driven due to the advance-
ment in computation power and the amount of available
traffic data. Compared to rule-based methods, data-driven
approaches require much less expert knowledge based on
the ability to learn complex dependencies from data. Motion
planning tasks can be modeled as Markov decision processes,
for which reinforcement learning (RL) provides potential
solutions. RL’s core idea is that an agent learns to interact
with the environment by exploring different actions and
receiving the next state of the environment and a reward. The
exploration process of RL impedes its applicability to real-
world problems since unsafe actions are possibly executed.

Various approaches have been proposed to increase the
safety of RL methods by modifying the optimality criterion
[1], [2] or by verifying the exploration processes with exter-
nal guidance [3]–[10]. By modifying the optimality objective,
agents behave more cautious than those trained without a risk
measure included in the objective; however, the absence of
unsafe behaviors cannot be proven. In contrast, by verifying
the safety of the action and excluding possible unsafe actions,
we can ensure that the exploration process is safe. Therefore,
we focus on verifying the safety of proposed actions and
ensuring safety if the agent fails to find a safe action.

* The first two authors have contributed equally to this work.
All authors are with the Department of Informatics, Technical University

of Munich, 85748 Garching, Germany.
hanna.krasowski@tum.de, xiao.wang@tum.de,
althoff@in.tum.de

In this paper, we propose a safe RL framework for motion
planning based on our previous work on autonomous lane
changing [6]. Our contributions are threefold:

1) We benchmark state-of-the-art model-free RL algo-
rithms to solve high-level behavior planning problems
for highway driving.

2) We propose a framework to integrate RL methods in
our developed safety layer for autonomous vehicles.

3) We evaluate the proposed approach using a real-world
highway traffic dataset.

The remainder of this paper is organized as follows:
Section II provides an overview of recent developments in
safe RL and safe motion planning techniques. Section III
introduces individual modules of our safe RL framework for
motion planning. In Section IV, we evaluate the proposed
method in real-world highway scenarios. Section V gives
the conclusion.

II. RELATED WORK

Safe RL approaches are distinguished in [11] by ap-
proaches that modify the optimization criterion and by ap-
proaches that modify the exploration process. As previously
discussed, only approaches modifying exploration are verifi-
ably safe; thus, we focus on this technique in the subsequent
literature review.

A. Modification of Exploration Process

One method to alter the action selection process is to
prioritize actions that are estimated to be safer [3]. However,
this approach does not prove the nonexistence of unsafe
behaviors. Another approach starts with a verified agent
model and updates the agent only if the safety requirements
are preserved [4], [5]. However, a verified agent model is not
always available for complex tasks. A third alternative is to
verify which actions are safe and to restrict the action space
to safe actions [6]–[10]. However, if all actions are verified as
unsafe, safety is no longer guaranteed. To guarantee safety,
using the third method, we added a verified fail-safe planner,
which holds available a safe action that is activated when the
agent fails to identify a safe action.

B. Safety Verification for Autonomous Vehicles

Researchers have proposed various approaches to verify
the safety of motion planners for autonomous vehicles. A
common method is to predict the most likely motion of
other traffic participants [12] or a probability distribution
of their future behaviors [13]. The planned trajectories are
executed if they do not collide with a traffic participant

according to its prediction. The limitation of this method
is that collisions still happen if other traffic participants’
behavior deviates from their prediction. In another approach,
a minimum requirement for safe motion planning is that
inevitable collision states are avoided [14]. A system is in
an inevitable collision state if it collides with other traffic
participants irrespective of the action taken. However, the cal-
culation of inevitable collision states suffers from the curse
of dimensionality. Another possibility is to apply logical
reasoning, which uses deduction to prove correct behavior
based on given rules [4], [5], [8]. However, logical reasoning
is typically not appropriate for online verification, which is
required in this work. Furthermore, logical reasoning requires
human intervention.

Reachability analysis verifies the safety of planned trajec-
tories by computing all possible future motions of obstacles
and checking whether they intersect with the occupancy of
the ego vehicle [15]. Since computing the exact reachable
sets of nonlinear systems is impossible, reachable sets are
over-approximated to ensure safety.

III. REINFORCEMENT LEARNING WITH SAFETY
VERIFICATION

A. Framework

We build a safe RL framework to tackle the safe lane-
changing task by integrating a safety layer between the agent
and the environment, as shown in Fig. 1. The safety layer
guides the exploration process by restricting the action space
to the safe subspace of actions. The task of the agent is to
reach a goal area on a multilane highway safely. We define
an agent’s behavior as safe if it does not cause collisions
with other traffic participants.

The safety layer receives the current state of the ego
vehicle sego and the states sobstacles of surrounding obstacles.
Using these states, we predict the possible occupancy areas
of the surrounding obstacles. We generate trajectories from
high-level actions to check for collisions with the predicted
occupancies, thereby determining which high-level actions
are safe, as described in Section III-C.

The safe action mask generated by the safety layer restricts
the agent’s actions to safe actions only, as presented in
Section III-E.

Environment

Safety Layer

Agent

SPOT Safe ACC Low-level Planner

State st
Reward rt

Safe action at

State of obstacles sobstacles
State of ego vehicle sego

Safe action mask mat

Fig. 1. Reinforcement learning with the safety layer.

sensing range of 150 m

ego vehiclevehicle sf vehicle sl

goalvehicle llvehicle lf

vehicle rlvehicle rf

longitudinal distance

driving direction

Fig. 2. Schematic representation of a three-lane road with the ego vehicle,
surrounding vehicles ij, and the goal area. The gray area depicts the sensing
field of the ego vehicle. The obstacle’s lane is specified relative to the lane
of the ego vehicle by i, i.e., l for the left lane, s for the same lane, and
r for the right lane. The relative position of the surrounding vehicle to the
ego vehicle is described by j, i.e., l for leading and f for following.

TABLE I
16-DIMENSIONAL CONTINUOUS STATE SPACE

Dim. State Description

1-6 dij The longitudinal distance of surrounding vehicle ij to
the ego vehicle (Fig. 2)

7-12 vij The relative velocity of surrounding vehicle ij to the
ego vehicle

13 vego Absolute velocity of the ego vehicle
14 aego Absolute acceleration of the ego vehicle
15 dlong Longitudinal distance from ego vehicle to the goal area
16 dlat lateral distance from ego vehicle to the goal area

B. Markov Decision Process for High-Level Planning

The discrete action space contains the high-level actions
for lane-changing decisions: changing to the left lane, chang-
ing to the right lane, continuing in the current lane, and
staying in the current lane by activating a safe adaptive cruise
control (ACC) [16]. The safe ACC is only activated for fail-
safe maneuvers since it ensures safety for an infinite time
horizon.

The 16-dimensional continuous state space is shown in
Tab. I. The agent is provided with the distance to the
goal area, as well as the state of the ego vehicle and the
surrounding vehicles, to reach a goal area on a highway
safely. We consider the relative velocity and longitudinal
distance of six surrounding vehicles in a sensing range of
150m, as illustrated in Fig. 2. Binary variables are introduced
below for further derivations:
• 1reach_goal = 1 when the ego vehicle reaches the goal

area.
• 1goal_lane = 1 when the ego vehicle drives in the lane

of the goal area.
• 1collision = 1 if the ego vehicle collides with other

vehicles.
• 1safe_violation = 1 if the ego vehicle violates the safe

distance to the leading vehicle or during a lane change
to the following vehicle.

We terminate an episode if the time horizon of the current
traffic scenario is reached, the goal area is reached, or the ego
vehicle collides with another vehicle. The reward function is
defined as

r = rreach_goal + rgoal_lane + rcloser + rcrash + rsafe_dist, (1)

where each term is further specified as

rreach_goal = 100 · 1reach_goal (2a)
rgoal_lane = 5 · 1goal_lane (2b)
rcloser = dlong(t− 1)− dlong(t) (2c)
rcrash = −100 · 1collision (2d)

rsafe_dist = −10 · (
dsafe

dij
− 1) · 1safe_violation. (2e)

The sparse rewards rreach_goal and rcrash encourage goal-
reaching or collision avoidance behaviors. Additionally, the
positive rewards rgoal_lane and rcloser are provided if the ego
vehicle gets closer to the goal area in a lateral or longitudinal
direction. The penalty rsafe_dist encourages the agent to keep
a safe distance. The safe distance [17] between two vehicles
is calculated by

dsafe =
1

2amax
(v2
f − v2

l) + vf treact, (3)

where vl and vf are the the leading and following vehicles’
current velocity, respectively, treact = 0.32 s is the reaction
time and amax = 11.5m/s2 is the maximum deceleration of
the vehicles. The value for the reaction time is taken from
[17]. The maximum deceleration is based on common values
for midsize cars like the BMW 320i [18].

C. Safety Layer

To check whether a high-level action might result in a col-
lision, we compute the future occupancy of the ego vehicle
and that of other traffic participants. If both occupancy sets
do not intersect for all consecutive time intervals within a
predefined time horizon and if the ego vehicle reaches an
invariably safe set [19], a collision is impossible. Figure 3
shows an example of a traffic situation with trajectories and
occupancies of two surrounding vehicles. If the occupancy of
the ego vehicle intersects with the obstacles’ occupancy at a
certain time step, e.g., as shown in Fig. 3 c), the correspond-
ing high-level action is regarded as unsafe. The occupancies
of the surrounding traffic participants are obtained by using
our tool SPOT [20]. SPOT considers the physical limits of
surrounding traffic participants and constraints implied by
traffic rules, e.g., vehicles are not allowed to drive backward
on a highway.

The occupancy of the ego vehicle from high-level actions
is obtained by a motion planner and the road network
structure. For the go-straight action, the ego vehicle follows
the center of its current lane. For lane-changing actions, we
assume a duration of 2 s. The precise movement is obtained
by a sampling-based trajectory planner [21], which requires
the total time ttotal, the final velocity of the trajectory
vfinal, and the lateral deviation from the given reference path
dlat_ref . The intervals from which our planner samples are
defined as
• ttotal ∈ [0.2 s, tmax],
• vfinal ∈ [vmin,max

(
vmin, vdesired + 0.25 tmaxamax

)
],

where vmin = max
(
0m/s, vdesired−0.125 tmaxamax

)
,

• dlat_ref ∈ [−2m, 2m].

Fig. 3. Example situation for safety verification using set-based prediction
[20] and sampling-based trajectory planning [21] with two traffic partic-
ipants for three time steps. Blue polygons are the predicted occupancies
of the surrounding vehicles at specified times. Green lines are the feasible
trajectories of the ego vehicle and the gray lines are the appended braking
trajectories. The red rectangles symbolize the occupancies of the ego vehicle
at the specified time steps.

The desired velocity vdesired is defined by the mean velocity
necessary for reaching the goal from the initial state in the
considered dataset. The planning horizon tmax is set to 2.7 s
for go-straight and lane-changing trajectories.

We first exclude meaningless high-level actions that would
result in leaving the road, e.g., we exclude changing to the
left when driving in the leftmost lane. For each combination
of the sampling parameters, a trajectory is generated and
checked with the vehicle’s kinematic constraints. An optimal
trajectory is selected according to the cost function in [21]
after the exclusion of kinematically infeasible trajectories.
Note that the proposed method can be extended to a contin-
uous action space by converting a sequence of continuous
actions to trajectories. We append a braking trajectory with
maximum deceleration to the sampled trajectory (cf. Fig. 3).
The ego vehicle never follows this braking trajectory but it is
utilized to check if the vehicle is in an invariably safe state
at the end of its driving trajectory.

If none of the calculated trajectories are considered safe,
the fail-safe plan is executed. We utilize the safe ACC
from [16] as a fail-safe planner to ensure safety beyond the
planning horizon.

D. Selection of the Reinforcement Learning Algorithm

Before integrating the action masking in our policy model,
we select the RL algorithm for the goal-reaching task on
highways. We benchmark three state-of-the-art RL algo-
rithms with a discrete action space, namely deep Q-network
(DQN) [22], actor-critic with experience replay (ACER) [23],
and proximal policy optimization (PPO) [24]. DQN [22]
is a value-based method where the Q-value is represented
by a neural network. The optimal policy is derived from
the learned Q-value model. PPO [24] is a policy-gradient
method where the policy is represented by a neural network
and is directly sampled from the learned model. ACER
[23] combines the idea of policy gradient and value-based
methods.

We compare the performance of these three methods
without the safety layer to exclude its effect on the learning
algorithms. We perform a grid search for the hyperparameters
for these three methods and select the best hyperparameters
for each model. Table II shows that policies trained with PPO

TABLE II
RESULTS OF PRELIMINARY ALGORITHM COMPARISON

Parameter PPO ACER DQN

Reached goal frequency 93.5% 91.8% 89.7%
Elapsed training time 5.76h 6.41h 11.71h
Multiprocessing True True False

reached the goal most often on the test dataset and have the
shortest computation time. Based on the implementation in
OpenAI [25], PPO and ACER support multiprocessing to
decrease the training time, while the DQN algorithm does
not support parallelization. Therefore, we select PPO as our
learning algorithm.

To be able to differentiate the PPO objective function for
discrete action spaces, we apply the Gumbel noise from [26]
to the output of the policy network:

a(t) = argmax
ai(t)

[log(yi(st))− log(− log(ui))︸ ︷︷ ︸
Gumbel noise

], (4)

where log(yi(st)) is the output of the policy network corre-
sponding to action ai, and ui is a random variable sampled
from a uniform distribution ui ∼ U [0, 1]. We use log(yi(st))
as the output of the policy network instead of yi(st) because
we use a hyperbolic tangent as the activation function.

The optimization objective of PPO JPPO(θ) [24] is

JPPO(θ) = Êt
[
LC
t (θ)− vlL

VF
t (θ)

]
,with (5a)

LC
t (θ) = min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât) (5b)

LVF
t (θ) = (Vθ(st)− V targ

t)2, (5c)

where the probability ratio rt(θ) =
πθ(at|st)
πθold(at|st)

, πθold
is the old policy before the update, vl and ε are scalar
hyperparameters, Vθ is the estimated value function, and
V targ
t is the target value function collected through Monte

Carlo simulations. The operator clip() limits the first
argument to the range which is defined by the following
two arguments, and Êt[...] is the empirical mean over
a finite batch of samples. We denote by θ the trainable
parameters of the network. The main term of the objective
is the clipped objective LC

t (θ), which is easier to implement
than using the Kullback Leibler divergence while showing
stability comparable to trust-region-based methods. The
value loss LV Ft (θ) is necessary because parameters between
policy network and value function network are shared. The
advantage function Ât is estimated by a general advantage
estimator [27].

The gradient of the PPO objective JPPO(θ) is obtained
by differentiation with respect to the trainable parameters θ,
which is derived as in [27]:

∇θJPPO(θ) = Êt
[
∇θ log

(
πθ(at|st)

)
JPPO(θ)

]
, (6)

where ∇θ denotes the gradient with respect to the trainable
parameters.

E. Action Masking

The safety layer generates a mask for the action to restrict
the action space to the safe subspace. The safety mask mai

is a binary vector defined as

mai(t) =

{
1, if ai(t) is verified safe
0, otherwise.

(7)

When we insert the safety mask (7) in (4), we obtain

a(t) = argmax
ai(t)

[log(yi(st))mai(t) − log(− log(uimai(t)))]

= argmax
ai(t)∈Asafe

[
log(yi(st))− log(− log(ui))

]
, (8)

where Asafe is the set of actions which are verified as safe
by the safety layer. The second line of (8) is derived from
the fact that 0 − log(− log(0)) = −∞, i.e., unsafe actions
can never be selected by the argmax operator.

In the following, we show that masking does not affect the
PPO objective and its gradient. All variables in (5) associated
to masking are denoted by �m. First, we obtain the objective
with masking Jm

PPO(θ) based on (5a):

Jm
PPO(θ) = Êt

[
LC,m
t (θ)− vl L

VF
t (θ)

]
, (9)

where LC,m
t (θ) is the clipped objective, and LVF

t (θ) is
the value function loss (see (5c)). The masking of actions
does not alter the value function loss term LVF

t (θ) because
the value function describes the value of a specific state
independent of the actions. The clipped objective LC,m

t (θ)
is based on (5b) and is specified as

LC,m
t (θ) =min(rm

t (θ)Ât, clip(r
m
t (θ), 1− ε, 1 + ε)Ât)

(10)

where

rm
t (θ) =

πm
θ (at,mat |st)

πm
θold

(at,mat |st)
=

πm
θ (at|st)

πm
θold

(at|st)
. (11)

The policy values πm
θ and πm

θold
for safe actions are not

modified as the masking yields that at is always a safe action.
Therefore, rm

t (θ) stays the same as the initial (see rt). The
estimated advantage Ât depends on the value function and
is not affected by the masking. Thus, the action masking
does not affect the clipped objective LC,m

t (θ) and the PPO
objective Jm

PPO(θ). Consequently, the gradient ∇θJm
PPO(θ)

also remains the same as defined in (6).

IV. EXPERIMENTS

We demonstrate the proposed approach using a real-world
highway dataset. To show the safety layer’s effect on an RL
agent, we train two groups of agents with and without the
safety layer, respectively. Furthermore, we investigate the
impact of different neural network structures. We evaluate
the agents’ performance by comparing their learning curves
during training as well as the collision rate and goal-reaching
rate on a test set.

A. Simulation Environment
a) Dataset: We utilize the highD dataset [28] to train

and test the proposed approach. This dataset includes real
traffic scenarios of German highways from six different
locations with three-lane and two-lane roads. The dataset
includes 5.1 h of recorded traffic with a time step size of
0.04 s. The scenarios’ duration ranges from 12.45 s to 12.67 s
in the 95% confidence interval. The scenarios’ duration is
similar because the observed road length is the same for
the six locations, and the scenarios were generated from the
original data. We generated tasks by removing a vehicle from
the recorded data and using its start and the final state as the
initial state and the center of the goal region, respectively.
In particular, the goal area is the occupancy of the removed
vehicle at its final position. The goal is reached if the ego
vehicle intersects with the goal area. We randomly split the
dataset into 80% training set and 20% test set.

b) Policy Network: We conducted experiments with
two different types of policy networks, namely, a multi-
layer perceptron (MLP) network [29] and a long short-
term memory (LSTM) network [30]. The hyperparameters
of the policy networks are determined using a grid search.
The hyperparameter search compares the convergence and
final rewards on the training set. The MLP network consists
of three hidden layers, with 128 neurons in each layer.
We choose an LSTM network as the second type because
the task is time-sequential and recurrent networks are well
suited to solve sequential tasks. However, training an MLP
network is more stable as it converges for a larger variety
of hyperparameters. The LSTM network consists of 128
neurons, and layer normalization is applied. Furthermore,
we compute the running mean and standard deviation of the
states to normalize the state space for both policy networks.

c) Training Mode: We conducted the training in two
modes:
• Safe mode: we train the agent as proposed in Fig. 1.
• Non-safe mode: we exclude the safety layer.

In both modes, we restrict the action space to the correspond-
ing high-level lane change action in case a lane change is
currently conducted. Thereby, we ensure that a lane change
cannot be prematurely aborted. A lane change is considered
finished when the orientation of the ego vehicle differs at
most by 0.2 rad from the orientation of the target lane, and
the center of the ego vehicle is closer than one-fourth of the
lane width to the centerline of the target lane.

B. Results
We trained the MLP and LSTM agents in safe and non-

safe mode, resulting in four different agents. We compared
these agents with respect to training performance, safety
during training, and testing performance. Furthermore, we
evaluated the effect of the safety layer on the agent using
the test dataset.

a) Training Performance: Figure 4(a) shows the reward
curves, which reveals that training in safe mode leads to
faster convergence. Notably, training the agents in the non-
safe mode required three million training steps; in contrast,

0 0.2 0.4 0.6 0.8 1

Training steps in million

−2000

−1500

−1000

−500

0

500

1000

1500

2000

R
ew

ar
d

Non-safe LSTM Non-safe MLP Safe LSTM Safe MLP

0 0.2 0.4 0.6 0.8 1

Training steps in million

0

500

1000

1500

2000

d s
af

e
vi

ol
at

io
n

du
ra

ti
on

[s
]

(a) (b)

Fig. 4. Training results: (a) Reward curves for trained agents, (b) Safe
distance violation for trained agents

one million steps were enough to train the agents in safe
mode. The high negative rewards for non-safe mode agents
originate from scenarios where the agent maintains a safe
distance to the leading vehicle or changes lane close to the
following vehicle on the target lane. The penalty for a safe
distance violation with respect to surrounding vehicles is
computed using (2e). Therefore, the penalty reaches high
values if the agent almost collides with a traffic participant
ahead.

Another indicator of how well the agents are exploring
the action space is the number of lane changes per traffic
scenario. Initially, the lane change frequency for training
is about one lane change per traffic scenario for the safe
agents and five for non-safe agents. The lower lane change
frequency for the safe agents at the beginning of the training
is due to the restriction of the action space. During training,
the lane change frequency converges to about 0.2 lane
changes per scenario, which means that the agent performs
one lane change in every five scenarios with an average
scenario duration of 12 s. This convergence is significantly
faster for the agents trained in safe mode. Note that the
original data in the highD dataset has 0.1 lane changes per
scenario, potentially caused by the low traffic density. Thus,
lane change behaviors are not necessary in most scenarios.

Comparing the network types on the training set, the
performance of MLP agents is almost identical to the
corresponding LSTM agents. In particular, for the non-
safe agents, the training converges marginally faster for the
LSTM agent than for the MLP agent. For safe agents, there
exists no visible difference in training convergence. For all
agents, utilizing an MLP network leads to reaching the goal
marginally more often.

b) Safety during Training: We have to differentiate
between collisions for which the ego vehicle is responsible
and collisions that occur because no interaction between
traffic participants was considered due to prerecorded data.
We exclude scenarios with collisions not caused by the ego
vehicle from our evaluation, e.g., another vehicle colliding
with the rear of the ego vehicle. Furthermore, the ego vehicle
considers the safe distance to the leading vehicle and the
following vehicle after a lane change.

During training, the non-safe agents caused collisions with

TABLE III
FINAL EPISODE STATUS ON THE TEST DATASET

Agent Collision Reached goal

Non-safe LSTM 1.3% 95.0%
Non-safe MLP 0.8% 97.1%
Safe LSTM 0.0% 87.5%
Safe MLP 0.0% 75.4%

0 20 40 60 80 100
Percentile

20

30

40

50

M
ea

n
ve

lo
ci

ti
es

[m
/s

] Non-safe LSTM
Non-safe MLP
Safe LSTM
Safe MLP
Ground truth

Fig. 5. Percentile curve for mean velocities on test scenarios

other traffic participants, while the safe agents did not cause
any collisions. Moreover, the non-safe agents reached the
goal more frequently than safe agents. However, the safe
agents reach the goal in about 80% of the scenarios in the
last 500 000 training steps.

We measure safety using the duration for which the agents
violated the safe distance. Figure 4(b) shows the duration of
safe distance violations during training. The non-safe agents
violate the safe distance while the safe agents never violate
the safe distance.

c) Testing Performance: Table III summarizes the re-
sults of testing the agents. The test dataset’s performance is
similar to the performance of the training dataset, indicating
that the agents are not overfitted. In the test set, the non-safe
agents reach the goal more frequently than the safe agents.
Moreover, the non-safe agents cause collisions in contrast to
the safe agents. The performance of both policy networks is
very similar in general. Based on the frequency of reaching
the goal, the safe LSTM agent performs better than the safe
MLP agent. This performance might be due to the ability
of LSTM to store temporal features, e.g., acceleration of
surrounding vehicles, providing additional information for
planning a safe motion.

Furthermore, to show that the safe models do not drive
too conservatively and impede the traffic flow, we evaluated
the behavior of the agents against the original human driver
trajectory from which the initial state and goal area of the
task were generated. In general, the trained agents show a
behavior similar to the original driver. Figure 5 depicts the
percentile curve of the mean velocity. The mean velocities for
the original human driver and all trained agents are almost
identical. By comparing the safe distance violations to the
leading vehicle, we observe that the original driver violated
the safe distance, and the non-safe agents violated the safe
distance even more. In contrast, safe agents did not violate
any safe distances during testing.

d) Effect of Safety Layer on Learning: We tested the
agents trained in safe mode also in non-safe mode to detect
if training with the safety layer leads to better-performing
agents. The comparison of the agents’ performance in non-
safe mode shows that the agents trained in safe mode perform
worse than the agents trained in non-safe mode. The goal-
reaching rate is 25% less for the safe LSTM and 62%
less for the safe MLP agent than for agents trained in
non-safe mode. Moreover, the agents trained in safe mode
collided in more test scenarios (23% for LSTM and 27%
for MLP). In contrast, the agents trained in non-safe mode
caused collisions in about 1% of the test scenarios. This
performance is because the agents trained in safe mode
did not experience dangerous situations with high penalties
during training and cannot solve them in the non-safe test
setting. Thus, the safety layer is necessary during deployment
to ensure safety.

If training is conducted in a simulation setting and not in
the real world, safety guarantees for real-world deployment
would often suffice. Therefore, we tested the non-safe agents
in safe mode and compared them to the agents trained and
tested in safe mode. The performance of agents trained in
non-safe mode and the safe LSTM agent on the test set
is almost identical because all the agents reached the goal
in 87% of the scenarios. The safe MLP agent performs
marginally worse as it only reaches the goal in 75% of
the scenarios. Due to the safety layer, none of the agents
cause collisions in the test set. The result shows that the
agents can be trained in non-safe mode and deployed in safe
mode without causing performance loss and safety reduction.
However, training in safe mode converges faster, which is a
reason for training in safe mode.

C. Discussion

Although the proposed approach guarantees safety in all
scenarios, the agent drives more cautiously than normal
drivers, especially in dense traffic. In such scenarios, the
predicted occupancy leads to a comparably small free space
for the agent to drive. In this type of scenario, the interaction
between traffic participants is essential. A traffic simulator
can predict interactions between the agent and traffic partic-
ipants to a certain degree.

Moreover, accurate modeling of physical parameters is
crucial for set-based predictions. Too large physical bounds
lead to significant over-approximation errors, limiting model
applicability. Simultaneously, too small physical bounds
cause inaccurate prediction that does not enclose the actual
behavior, leading to unsafe behaviors. To check whether
the modeled physical parameters over-approximate the real
behavior, one can perform a reachset conformance test as
shown for a pedestrian model in [31].

Due to the computational overhead for determining safe
actions, the computation time for training safe agents is
16 times higher than for the non-safe agents. The average
training step for safe agents takes 5.46 s and 0.112 s for
non-safe agents. This significant increase in the training time
is mainly because instead of one trajectory for the selected

action, all possible trajectories are generated and compared to
the predicted occupancies of traffic participants. Optimizing
the current implementation is necessary to benefit from the
faster convergence of safe agents in order to safeguard
machine learning in real vehicles.

V. CONCLUSIONS

In this paper, we present a framework for safeguarding
an RL agent using a safety layer to verify whether the
proposed actions are safe and provide a provably safe fail-
safe controller. Safe actions are determined by set-based
prediction, which considers all possible motions of traffic
participants. We evaluated the proposed approach using a
real-world highway dataset. The result of the evaluation
shows that the trained policy does not cause any collisions.
Furthermore, the safe agent’s ability to reach the goal region
is comparable to that of non-safe agents. The proposed
approach only requires an additional navigation system to
realize basic motion planning on highways.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the German Research Foundation
Grant AL 1185/3-2 and the research training group CON-
VEY funded by the German Research Foundation under
grant GRK 2428.

REFERENCES

[1] B. Lütjens, M. Everett, and J. P. How, “Safe reinforcement learning
with model uncertainty estimates,” in IEEE International Conference
on Robotics and Automation (ICRA), 2019, pp. 8662–8668.

[2] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 2034–2039.

[3] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Safe reinforcement learning with scene decomposition for navigating
complex urban environments,” in IEEE Intelligent Vehicles Symposium
(IV), 2019, pp. 1469–1476.

[4] N. Fulton and A. Platzer, “Verifiably safe off-model reinforcement
learning,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 2019, pp. 413–430.

[5] S. Pathak, L. Pulina, and A. Tacchella, “Verification and repair of
control policies for safe reinforcement learning,” Applied Intelligence,
vol. 48, no. 4, pp. 886–908, 2018.

[6] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker,
“High-level decision making for safe and reasonable autonomous
lane changing using reinforcement learning,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2018, pp.
2156–2162.

[7] D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement learning on
autonomous vehicles,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–6.

[8] G. R. Mason, R. C. Calinescu, D. Kudenko, and A. Banks, “Assured
reinforcement learning for safety-critical applications,” in Doctoral
Consortium at the 10th International Conference on Agents and
Artificial Intelligence, 2017.

[9] A. Akametalu, S. Kaynama, J. Fisac, M. Zeilinger, J. Gillula, and
C. Tomlin, “Reachability-based safe learning with Gaussian pro-
cesses,” in IEEE Conference on Decision and Control, 2015, pp. 1424–
1431.

[10] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[11] J. García and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 42, pp. 1437–1480, 2015.

[12] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2017, pp. 353–359.

[13] T. Gindele, S. Brechtel, and R. Dillmann, “Learning driver behavior
models from traffic observations for decision making and planning,”
IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp.
69–79, 2015.

[14] T. Fraichard and H. Asama, “Inevitable collision states a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[15] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[16] M. Althoff, S. Maierhofer, and C. Pek, “Provably-correct and com-
fortable adaptive cruise control,” IEEE Transactions on Intelligent
Vehicles, 2020.

[17] M. Althoff and R. Lösch, “Can automated road vehicles harmonize
with traffic flow while guaranteeing a safe distance?” in IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC),
2016, pp. 485–491.

[18] M. Althoff, “CommonRoad: Vehicle models.” [Online]. Available:
https://commonroad.in.tum.de/

[19] C. Pek and M. Althoff, “Efficient computation of invariably safe states
for motion planning of self-driving vehicles,” in Proc. of the IEEE Int.
Conf. on Intelligent Robots and Systems, 2018, pp. 3523 – 3530.

[20] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction
of traffic participants,” in IEEE Intelligent Vehicles Symposium (IV),
2017, pp. 1686–1693.

[21] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,” in IEEE
International Conference on Robotics and Automation (ICRA), 2010,
pp. 987–993.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep reinforce-
ment learning,” in Twenty-seventh Conference on Neural Information
Processing Systems – Workshop on Deep Learning, 2013.

[23] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,” in
International Conference on Learning Representations (ICLR), 2017.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[25] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “OpenAI baselines,”
2017. [Online]. Available: https://github.com/openai/baselines

[26] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel-softmax,” in International Conference on Learning Represen-
tations (ICLR), 2016.

[27] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in 4th International Conference on Learning Representations,
ICLR, 2016.

[28] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly automated driving systems,” in
IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2018, pp. 2118–2125.

[29] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed.
Springer, 2007.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cam-
bridge, Massachusetts and London, England: MIT Press, 2016.

[31] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking,
and M. Althoff, “Provably safe motion of mobile robots in human
environments,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sep 2017.

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)

Hanna Krasowski

IEEE

20 September 2020

Copyright © 2020, IEEE

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 1/10/24, 20:55

A.4 Safe Reinforcement Learning for Urban Driving using Invariably Safe Braking Sets

A.4 Safe Reinforcement Learning for Urban Driving using

Invariably Safe Braking Sets

Summary The majority of provably safe RL research that considers the application of au-

tonomous driving is developed for highway driving situations with no intersections. Yet, to

leverage the full potential of autonomous driving, urban traffic situations have to be considered

as the majority of car travel is short distance. Whereas for highway driving a discrete action

space only needs to contain few high-level decisions, a discrete action space for urban traffic

situations has to consider more actions.

In this work, we regard the task of provably safe urban intersection driving. We design a

63-dimensional action space based on the combination of three action types: routing actions,

i.e., routing decisions at an intersection, acceleration actions, i.e., desired accelerations along a

reference path, and lane actions, i.e., lane keeping and lane changing. The RL agent decides for

one action of each action type and a low-level controller computes the corresponding drivable

trajectory. We verify the legal safety of trajectories based on invariably safe braking sets

and regard two safety factors: safety in lanes with the same driving direction and safety for

passing intersections. Safety in lanes is specified as keeping a safe distance to the leading

vehicle and to the following and leading vehicle in a target lane of a lane change. Safe passing

of intersection is defined as entering intersections only if no other traffic participants could

occupy the intersection areas that are also occupied by the trajectory of the autonomous

vehicle. If we cannot verify any discrete action as safe, we employ a fail-safe planner that stops

the vehicle outside of intersections or drives the vehicle off the intersection as fast as possible.

We evaluate our action masking approach on recorded traffic data from three German inter-

sections. In contrast to standard RL, our approach does not cause collisions during training

and deployment. Additionally, we conduct an ablation study for the safety factors by inte-

grating either safety on intersections or safety in lanes. While safety in lanes improves the

goal-reaching performance, safety on intersections leads to a significant drop mainly due to our

conservative definition of safety on intersections, which does not regard right-of-way rules.

Author contributions H.K. and Y.Z. developed the concept for provably safe RL for inter-

section driving. Y.Z. implemented the RL approach. H.K. and Y.Z. designed, conducted, and

evaluated the numerical experiments. H.K. and Y.Z. wrote the manuscript. M.A. provided

feedback improving the manuscript.

Copyright notice © 2022 IEEE. Accepted version reprinted, with permission, from Hanna

Krasowski, Yinqiang Zhang, and Matthias Althoff, Safe Reinforcement Learning for Urban

Driving using Invariably Safe Braking Sets, Proc. of the IEEE International Conference on

Intelligent Transportation Systems, pp. 2407–2414, doi:10.1109/ITSC55140.2022.9922166,

2022.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

111

https://doi.org/10.1109/ITSC55140.2022.9922166

Safe Reinforcement Learning for Urban Driving
using Invariably Safe Braking Sets

Hanna Krasowski∗,1, Yinqiang Zhang∗,2, and Matthias Althoff1

Abstract— Deep reinforcement learning (RL) has been widely
applied to motion planning problems of autonomous vehicles in
urban traffic. However, traditional deep RL algorithms cannot
ensure safe trajectories throughout training and deployment.
We propose a provably safe RL algorithm for urban au-
tonomous driving to address this. We add a novel safety layer to
the RL process to verify the safety of high-level actions before
they are performed. Our safety layer is based on invariably safe
braking sets to constrain actions for safe lane changing and
safe intersection crossing. We introduce a generalized discrete
high-level action space, which can represent all high-level in-
tersection driving maneuvers and various desired accelerations.
Finally, we conducted extensive experiments on the inD dataset
containing urban driving scenarios. Our analysis demonstrates
that the safe agent never causes a collision and that the safety
layer’s lane changing verification can even improve the goal-
reaching performance compared to the unsafe baseline agent.

I. INTRODUCTION

Motion planning in urban areas is challenging because
of different road geometries and frequent interactions with
traffic participants. A method suited explicitly for solving
such tasks is reinforcement learning (RL) [1], [2]. With deep
RL algorithms, vehicles can learn to control their motion
for different tasks, such as lane-keeping and changing [3],
[4], path tracking [5], [6], ramp merging [7], [8], navigating
through intersections [9]–[12], and emergency braking [13],
[14]. However, most deep RL approaches only focus on one
simplified driving sub-tasks. Moreover, learning a driving
policy with conventional deep RL is inherently unsafe. As
shown in Fig. 1, the stochastic exploration process possi-
bly guides the vehicle to unsafe states, where causing a
collision cannot be avoided anymore. Furthermore, frequent
visits to unsafe and meaningless states can decrease learning
efficiency. To mitigate this problem, the exploration of RL
agents can be directed or constrained. Lu et al. [15] designed
risk networks that can guide a safe policy optimization.
However, their approach cannot guarantee safety during
driving. Another method is using control barrier functions
[16], [17]; however, finding suitable control barrier functions
for complex tasks, for example, urban autonomous driving,
is not trivial.

To efficiently guarantee safety for an RL agent, we propose
a safe RL algorithm for autonomous driving in urban scenar-
ios, where safe actions are identified by a safety layer and

∗The first two authors have contributed equally to this work.
1Hanna Krasowski and Matthias Althoff are with the Department of

Informatics, Technical University of Munich, 85748 Garching, Germany,
{hanna.krasowski, althoff}@tum.de

2Yinqiang Zhang is with the Department of Computer Science, University
of Hong Kong, Hong Kong, China zyq507@connect.hku.hk

Collision
during trainingEnvironment

AgentReward rt

State st

Action at

Fig. 1. Conventional RL process including an example collision situation.

the action selection of the RL agent is constrained such that
only safe actions can be selected. Our work generalizes our
pre-study on highway driving [18] so that it is also applicable
in an urban setting. Notably, our contributions are as follows:

• By combining invariably safe braking sets and conflict
zones, we introduce a safety layer that can verify the
safety of junction crossing.

• We propose a generalized high-level action space to
solve various driving tasks in urban scenarios.

• We conducted extensive numerical experiments and an
ablation study to show the validity and efficiency of our
implementation.

The remainder of this paper is structured as follows: Sec-
tion II shows the related literature on RL algorithms for
autonomous driving and the safety guarantees of RL al-
gorithms. Section III describes the details of our proposed
algorithms, particularly the safety layer. Section IV records
the experimental settings, results of conducted experiments,
and an ablation study. Finally, we conclude in Section V.

II. RELATED WORK

RL research on motion planning for autonomous driving
mainly differs in tasks and action specifications. Usually
either high-level actions [19]–[21] or direct control inputs
[5], [9], [17], [22] are learned, which differ depending
on the regarded driving scenario. Furthermore, only some
researchers tried to incorporate safety measures. We review
current research on RL for autonomous driving and methods
for extending RL to safe RL.

A. Reinforcement Learning for Autonomous Driving

To solve various driving tasks in urban scenarios, the
action space should be appropriately designed. One RL
approach is applying learned actions directly to the ego
vehicle. With this end-to-end approach, the agent chooses
an action value from a continuous action space, such as a
speed set-point and steering angle [5], a velocity [22], an
acceleration [9], or a yaw rate [4]. For these continuous
action spaces, the agent often needs more training steps to
learn the optimal policy because of the infinite number of
action values that can be explored.

Other RL approaches use a discrete high-level action
space, where actions typically represent different maneuvers.
For instance, maneuvers [19], [23] are a commonly used
action representation for lane keeping and changing tasks.
A three-layer architecture for the lane-changing and left-
turning tasks was recently proposed by Qiao et al. [20].
The top-level policy chooses a maneuver. An optimal tra-
jectory is then created and tracked by a PID controller.
Isele et al. [21] proposed three discrete action spaces for
driving at intersections. They evaluated their approach on
simulated traffic and found that the action space with a
creep action (i.e., moving slowly) performs the best with
occlusions near the intersection area. Li et al. [12] proposed
a hierarchical framework with a high-level action space
consisting of reference speeds and low-level controllers for
intersection and round-about driving. Their evaluation shows
that their approach can achieve high completion rates but
causes more collisions than more conservative approaches.
Many maneuvers such as lane following, lane changing, and
intersection crossing have to be regarded in urban areas. A
discrete action space can be used to efficiently learn in such
a complex environment.

B. Provably Safe Reinforcement Learning

To guarantee safety, the agent’s exploration must be lim-
ited to the safe state space. For that, two approaches are most
relevant: advising the agent after the action selection with a
possibly adapted safe action or constraining actions to safe
actions before the agent can choose one [24]. For the first
approach, usually, a penalty is given in case a correction is
necessary [16], [17], [25], [26]. Saunders et al. [26] proposed
a trained human-like supervisor in their RL algorithm to
intervene in the agent’s behavior when it tends to go into
unsafe or risky states. Cheng et al. [16] presented an end-
to-end safe RL algorithm, where control barrier functions
restrict exploration and deployment. Similarly, Wang [17]
proposed control barrier functions to achieve end-to-end safe
RL for autonomous highway driving.

The second approach removes unsafe and meaningless
actions in advance [9], [18], [27]–[29]. Only actions that en-
tirely satisfy safety specifications are accessible to the agent.
For instance, the methods in [9], [28] ensure safe intersection
navigation by verifying safety with linear temporal logic and
differential dynamic logic. Additionally, Q-masking removes
meaningless and unsafe actions for Q-learning [23], [29].
For example, Mirchevska et al. [29] used the safe braking

Environment

Safety Layer

Agent

Fail-safe
Planner

Invariably Safe
Braking Sets

Conflict
Zones

State st
Reward rt

Safe action at

Current states of obstacles
Road network

Action mask

Fig. 2. Implementation overview of RL framework.

distance to decide, which actions are unsafe and need to be
masked out. Krasowski et al. [18] built on this work and
present a safety layer for highway driving, which generates
safe action masks for the proximal policy optimization (PPO)
algorithm [30]. They use set-based predictions [31] for the
other traffic participants to identify safe actions. In this work,
we build on the masking approach, which allows us to
ensure safety by identifying safe actions in advance of their
execution.

III. SAFE REINFORCEMENT LEARNING IN URBAN
ENVIRONMENTS

RL problems can be formulated as Markov decision pro-
cesses, which is illustrated in Fig. 1. Our safe RL framework
is extended by a safety layer (see Fig. 2). This safety layer
generates an action mask that indicates the safe actions and
removes unsafe and meaningless actions, e.g., actions that
would lead off-road or actions that violate safe distances to
other traffic participants. As a result, the agent can explore
only safe actions. We use PPO with action masking as our
learning approach and refer the interested reader to [18], [32]
for implementation and theoretical details. The observation
space, action space, and reward function employed in this
work are first introduced in the following parts. The safety
layer, which incorporates the concept of conflict zones [33]
and invariably safe sets [34], is then thoroughly explained.

A. Observation Representation

Our 40-dimensional continuous state space consists of
26 observations from CommonRoad-RL [35] and 14 new
intersection-related observations (see Table I). To define
the intersection-related observations, we need to specify the
intersection area, which is the area that is mutually acces-
sible to vehicles arriving at the intersection from different
entries. Furthermore, intersection-entering vehicles are those
for which the following hold:
• the position is at most the longitudinal distance
sintersection away from the intersection,

• the vehicle is not a lane-based surrounding vehicle [35],
i.e., not surrounding the ego vehicle on the ego vehicle’s
lane or on adjacent lanes in the same driving direction,

• the vehicle is driving toward the intersection.

Fig. 3. Visualization of intersection-related observations: Relative distances
s1int, s

2
int between the vehicle 1, 2 and the orange intersection, absolute ve-

locities v1int and v2int of vehicle 1, 2, and ego vehicle distances to intersection
snear

ego and sfar
ego. The driving directions are indicated by light gray arrows.

The intersection-related observations are illustrated in Fig. 3.
The first intersection-related observations are the absolute
velocities viint and relative distances siint to the intersection
for the intersection-entering vehicles i ∈ 1, ..., nintersection.
The observations are sorted based on the vehicles’ distances
to the intersection so that only the nintersection closest
vehicles are considered. If fewer vehicles are detected, we
set the relative distance and velocity to the predefined values
sintersection (here 50 m) and 0 m s−1, respectively. The re-
maining intersection-related observations are the longitudinal
distances along the reference lane between the ego vehicle
position and the intersection (cf. snear

ego and sfar
ego in Fig. 3).

B. Action Representation

Driving in urban traffic requires various maneuvers. We
used a two-level framework to represent this. The policy
chooses the maneuver on the higher level, and the sampling-
based motion planner from [36] concretizes the maneuver
to a drivable trajectory on the lower level. The high-level
action space consists of three action types. The first action
type alane indicates maneuvers restricted to the current and
adjacent lanes, i.e., change to left (alane = 0), or right

TABLE I
40-DIMENSIONAL CONTINUOUS STATE SPACE

Dim. Description

1-6 distance between ego vehicle and six lane-based surround-
ing traffic participants

7-12 velocity between ego vehicle and six lane-based surround-
ing traffic participants

13-14 velocity and acceleration of the ego vehicle
15-16 longitudinal distance and motion advance to goal area
17-18 lateral distance and motion advance to goal area
19-23 lateral distances from dynamically extrapolated ego vehicle

positions to goal
24 remaining time steps to reach the goal area
25 orientation of goal area
26 remaining time steps in scenario

27-28 longitudinal distances to intersection area (snearego , sfarego)
29-34 distance between intersection and six traffic participants

(siint for i = 1, ..., 6)
35-40 velocity between ego vehicle and six lane-based surround-

ing traffic participants (viint for i = 1, ..., 6)

Note that the upper 26 observations are implemented as in [35] and the
remaining 14 observations are derived in Sec. III-A.

lane (alane = 2), and keep driving in the current lane
(alane = 1). The second action type adir can take three values
and describes the driving directions at the next intersection,
for example, turn left, right, or go straight. Note that if there
is just one possible direction for driving, only adir = 0 is
used; if there are two possible driving directions, adir = 0
corresponds to the left-most action and adir = 1 to the other.
The third action type aacc represents the desired longitu-
dinal accelerations. Seven values can be selected: Aacc =
{0 m s−2,±1.0 m s−2,±2.0 m s−2,±4.0 m s−2}. All possi-
ble combinations of the three action types (alane×adir×aacc)
lead to the action set Aregular, which represent the regular
maneuvers possible at an at most four-legged intersection.
These 63 regular actions plus the fail-safe action lead to
a 64-dimensional discrete action space A. More complex
intersections can be represented by extending the possible
values for alane and adir.

C. Reward Function

We use sparse and dense components for the reward
function. The sparse components are:

rreach goal = 50 · 1reach goal,

rtime out = −10 · 1time out,

rcollision = −50 · 1collision,

rmask = −10 · 1mask,

where 1� denotes binary variables that evaluate to 1 if
the corresponding condition � is satisfied. Particularly, the
reward rmask is given when no regular action is verified as
safe and the fail-safe planner is activated. The dense reward
component guides the agent toward the goal at each time
step:

rgoal guiding =
−40 ·∆dtlat + 20 ·∆dtlon

dtotal
lon

, (1)

where ∆dtlat and ∆dtlon are the position differences toward
the goal in the longitudinal and lateral directions within a
curvilinear coordinate system (introduced in Sec. III-D) at
time step t compared to the previous time step. To reduce the
influence of different distances between the initial state and
the goal, we divide by the longitudinal distance dtotal

lon from
the initial position to the goal. The final reward function is:

r = rreach goal + rtime out

+ rcollision + rmask + rgoal guiding. (2)

D. Preliminaries and Assumptions for the Safety Layer

The road network consists of lanelets [37], which are
atomic, interconnected, and drivable road segments. We
condensate the road network into a set of lanes L. A lane
is defined as a set of longitudinally adjacent lanelets from
a lanelet that has no predecessor to a lanelet that has no
successor [38]. We assign unique identifiers to the lanes and
use Lk to specify the occupancy of the lane with the identifier
k. In addition, K is the set of identifiers of all lanes in the
scenario.

New verification
necessary?

Intersection
safety

Lane
safety

∩

= ∅ ?

Previous
fail-safe action

Agent selects
action

Execute
action

Yes

At
safe,i

At
safe,l

At
safe

No Yes

αat

t→ t+ 1

No

co
nt

in
ue

ex
ec

ut
in

g
pl

an
ne

d
tr

aj
ec

to
ry

Fig. 4. Safety verification flowchart. Orange blocks belong to the safety
layer and blue ones to the RL agent and environment.

We use a curvilinear coordinate system along the lanes
such that the ego vehicle’s state at each time step t is
xt = (s, d, v), where s is the longitudinal position along
the lane, d is the lateral position, and v is the velocity. The
function projs(xt) returns the longitudinal position for a
state xt. The function plan creates the set of ego vehicle
states {(xego,0, 0), ..., (xego,tp , tp), ..., (xego,tf , tf)} for all
time steps until the final time tf . The function uses the
sampling-based planner from [36] to generate the set of states
for action a = (alane, adir, aacc) until the planning horizon
tp and then attaches the fail-safe maneuver indicated by α
until the final time tf . The two types of fail-safe maneuvers
considered in this work are braking with maximum decel-
eration −amax until standstill (i.e., α = 1), or accelerating
with maximum acceleration amax until the ego vehicle fully
left the intersection and then braking until standstill with
maximum deceleration (i.e., α = 0). To adequately address
the computational demands of RL, we only consider on these
two fail-safe maneuvers. Our verification is based on the
assumptions that the absolute acceleration of all vehicles is
less or equal to the maximum acceleration amax. If traffic
participants cause accidents by not respecting traffic rules,
these collisions are considered to be not the fault of the ego
vehicle.

E. Safety Layer

The safety layer (see Fig. 4) identifies the safe discrete
action space At

safe when (a) the time step (tp − ∆t)/∆t
since the last verification cycle is reached, (b) the accessible
road network for the ego vehicle changed since the last time
step, or (c) a lane change finished. Note that we start the
verification at least one time step before the planning horizon

tp is reached to simulate that for real-world experiments
the verification calculations must be finished before the
planning horizon is reached. If a verification is necessary,
the trajectories for all regular actions Aregular are generated,
and we check if safety can be verified in the two relevant
safety dimensions: lane safety verification for distances to
the leading vehicle and lane-changing maneuvers results in
the safe action set At

safe,l and intersection safety verification
for crossing intersections results in the safe action set At

safe,i.
Thus, the set of safe actions at time step t is:

At
safe = At

safe,l ∩ At
safe,i . (3)

Subsequently, the RL agent selects an action from At
safe and

the previously calculated fail-safe action. When no action
from Aregular can be verified as safe, the fail-safe trajectory
attached to the previously chosen action is executed.

a) Identifying meaningful actions: To minimize the ver-
ification effort, first, we identify if the action is meaningful
with the predicate meaningful(at, at−1, xt) where at is the
action to verify, at−1 is the action of the previous time step,
and xt is the ego vehicle’s state. This predicate evaluates to
true if and only if for at, at−1 ∈ Aregular:
• the lane to change to exists for alane, and
• the driving direction of adir is permitted, and
• no lane change is currently conducted.

However, if the action verification determines that it is unsafe
to proceed with the lane change, it will be aborted and the
fail-safe plan will be executed instead.

b) Verifying safe actions: Only for meaningful maneu-
vers, trajectories for the desired accelerations are generated.
To verify the safety of a trajectory, we use a subset of the
invariably safe set St [34, Proposition 1] – the invariably
safe braking set St1 [34, Algorithm 1, line 10]:

St1 ←{(s, d, v)T ∈X | ∀sj ∈ Oj(t) : s ≤ sj−∆t
safe(v, bj)

∧ v ≤ vmax ∧ s ∈ Cbi,bj}, (4)

where X is the state space, Oj(t) is the predicted occupancy
for an obstacle bj , sj is its longitudinal position, ∆t

safe(v, bj)
is its safe distance to the ego vehicle, vmax is the speed
limit, and Cbi,bj is the part of the road network (e.g., a lane)
regarded for the invariably safe braking set calculation of
obstacles bi and bj . In a nutshell, driving in the invariably
safe braking set St1 guarantees safety for a vehicle in a lane
based on its current position and velocity, obstacle dynamics,
and safe distance constraints. We define StLk

as the invariably
safe braking set St1 of a lane k at time step t (Eq. (4) with
Cbi,bj = Lk).

The verification of lane safety is depicted in Algorithm 1.
For a given action a and ego vehicle state xego,0, the function
get current lane(a, xego,0) returns an identifier e, which
indicates the current lane of the ego vehicle and its driving
direction (cf. line 4). Then, the invariably safe braking set
for all vehicles in this lane in front of the ego vehicle is
calculated in line 5. If alane = 1, then the action is a
lane-keeping action. For these lane-keeping actions, we only
verify the safety of the planned trajectories with respect

40 50 60 70 80 90
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

V
el

oc
ity

(m
/s

)

St1 current lane
St1 current and target lane
Predicted occupancy
Predicted maximal velocity

Longitudinal Position (m)

Fig. 5. Safety verification in a lane. Top: scenario with green ego vehicle
and blue occupancy predictions for other vehicles; bottom: velocity and
position for the invariably safe region in green, predicted maximal velocities
and occupancies for traffic participants in blue, and ego state marked with
a star.

to the leading vehicles (cf. line 7). For other actions, the
function get target lane(a, xego,0) returns the identifier
for the target lane of the lane change and we verify the safety
with respect to all vehicles on the target lane and the leading
vehicles on the current lane (cf. line 9-10). The study [39]
describes a similar online verification for fail-safe planning
of autonomous vehicles. In contrast to their work, we only
considered two fail-safe maneuvers and limit the invariably
safe set to the invariably safe braking set. This increases the
efficiency of the implementation, which is necessary because
of the learning setting of our work. Fig. 5 visualizes the
invariably safe sets for an example lane safety situation.

For intersection safety, we verify the agent’s actions at
intersections such that the ego vehicle does not access an
intersection in case another traffic participant could occupy it.

Algorithm 1 laneSafety()
Input: StLk

∀k ∈ K, xego,0, at−1
Output: Safe lane actions At

safe,l

1: At
safe,l := ∅

2: for all a ∈ Aregular ∧ meaningful(a, at−1, xego,0) do
3: for all α ∈ {0, 1} do
4: e := get current lane(a, xego,0)
5: StLe,lead

:= {(s, d, v)T ∈ StLe
|s ≥ projs(xego,0)}

6: if alane = 1 then
7: At

safe,l ← {(a, α)|plan(a, α) ⊂ StLe,lead
}

8: else
9: c := get target lane(a, xego,0)

10: At
safe,l ← {(a, α)|plan(a, α) ⊂ StLe,lead

∧
plan(a, α) ⊂ StLc

}
11: end if
12: end for
13: end for
14: return At

safe,l

Algorithm 2 intersectionSafety()
Input: Aregular, si,start, si,end, O, X , L , xego,0, at−1
Output: Safe intersection actions At

safe,i

1: At
safe,i := ∅

2: for all a ∈ Aregular ∧ meaningful(a, at−1, xego,0) do
3: for all α ∈ {0, 1} do
4: CO := ∅
5: e := get current lane(a, xego,0)
6: for all o ∈ O do
7: Co := get accessible lanes(xo) ∩ Le

8: tcz := get t conflict(xo, Co)
9: CO ← {(s, t)|t ≥ tcz ∧ min

s
(Co) ≤ s ≤

max
s

(Co)}
10: end for
11: At

safe,i ← {(a, α)|plan(a, α) ∩ CO = ∅}
12: end for
13: end for
14: return At

safe,i

In contrast to other research on intersection safety [40], [41],
our approach can deal with arbitrary real-world drivers and
does not assume a cooperative setting. Algorithm 2 specifies
the verification process. For all actions a and fail-safe actions
α, we first identify the current lane e (cf. line 5). Then, we
calculate the conflict zones Co by intersecting the accessible
lanes of each surrounding vehicle o with the lane Le, which
corresponds to the regarded action (cf. line 7). For that, we
use the obstacle set O containing identifiers for all obstacles
within a circle around the ego vehicle’s center with radius
rint. The current state of an obstacle xo is obtained from the
matrix X = [x1, ..., xO] ∈ RN×O where N is the number
of state dimensions. The function get t conflict(xo, Co)
returns the last time step tcz before the surrounding obstacle
o could reach its conflict zone with the ego vehicle Co (cf.
line 8). The reaching time is when the surrounding obstacle’s
occupancy (predicted using the SPOT [31] tool) intersects
with the conflict zone Co. With the conflict zones Co and
the time step tcz , we generate a collision object CO that
describes the potential occupation of the conflict zones Co
for all surrounding obstacles o (cf. line 9). Finally, an action
is safe if its corresponding trajectory, which includes the fail-
safe trajectory, does not intersect with the collision object CO
(cf. line 11).

IV. EXPERIMENTS

We evaluated our implementation with recorded urban
traffic data. First, we exhaustively specify the experimental
setup. Then, we present the results, followed by an ablation
study, and discuss our findings.

A. Experimental Setup

The inD dataset [42] contains recorded traffic data from
four urban locations in Aachen, Germany. Particularly, two
locations are at four-legged intersections (abbreviated by
AAH 1 for Bendplatz and AAH 2 for Frankenburg) and

TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value Parameter Value

amax 8 m s−2 tp 0.4 s

∆t 0.04 s rint 50 m

sintersection 50 m nintersection 6

another at a T-junction (AAH 3 for Heckstraße). In this
study, we excluded the data from the more complex T-
junction at Neuköllner Strasse because without considering
traffic signs and lights, the agent cannot reach the goal
when the safety layer is activated and it mostly stops at
an intersection. An open-source data converter1 was used
to convert the raw data was converted into CommonRoad
scenarios [43]. Pedestrians and bicyclists were excluded for
this study. Furthermore, we exactly detected the positions
and velocities of the vehicles from the scenario data and no
occlusions occured. To generate planning problems for the
RL agent, one vehicle was removed from each scenario and
its initial and finial state enlarged by the spatial dimensions
of the vehicle were used as initial state and goal region
for the planning problem. If the initial state of a generated
scenario is not invariably safe, we did not use this scenario
for learning. Additionally, we excluded scenarios where other
vehicles appear in the scenario within the first planning cycle
of the ego vehicle and close to the ego vehicle. Since these
vehicles were absent for the first safety verification, they
can lead to collisions due to the scenario data. Overall,
we generated approximately 5000 traffic scenarios for the
learning. Particularly, we used 1966 scenarios for AAH 1,
1904 for AAH 2, and 959 for AAH 3. The time step size for
the scenarios is 0.04 s while the agent can decide on a new
action every 10 time steps (i.e., 0.4 s) in case a lane change
did not finish before or the meaningful actions changed (see
Fig. 4). All experimental parameters are specified in Table II.

We trained a safe and baseline agent without safety
verification on each of the three inD locations and eval-
uated them on the test set. The safe agent uses the full
safety layer for action verification. The baseline agent only
uses the safety layer to eliminate meaningless actions (see
Sec. III-E.a), thereby increasing the learning efficiency. For
each experiment, we split the dataset into 70% training
and 30% test sets. The implementation was based on the
CommonRoad-RL2 environment [35] and the stable baselines
algorithm toolbox3. The PPO parameters and policy network
architecture were identified by hyperparameter tuning. We
trained every agent 500 000 training steps, which took
approximately 24 hours for the safe agents with one thread
on a machine with an AMD EPYC 7742 2.2 GHz processor
and 1024 GB of DDR4 3200 MHz memory.

1commonroad.in.tum.de/dataset-converters
2We plan to release the exact implementation of this study with the next

CommonRoad-RL release (commonroad.in.tum.de/commonroad-rl).
3https://github.com/hill-a/stable-baselines

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
oa

l-
re

ac
hi

ng
 r

at
e

Baseline
Safe

Training steps * 1e6

(a) Goal-reaching rate of agents at location AAH 1.

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
oa

l-
re

ac
hi

ng
 r

at
e

Baseline
Safe

Training steps * 1e6

(b) Goal-reaching rate of agents at location AAH 2.

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
oa

l-
re

ac
hi

ng
 r

at
e

Baseline
Safe

Training steps * 1e6

(c) Goal-reaching rate of agents at location AAH 3.

Fig. 6. Goal-reaching rates for agents during training.

B. Results

The goal-reaching performance of the safe and baseline
agent shows a approximately constant gap between 20 %
and 40 % (see Fig. 6). The safe agent reached the goal for
the AAH 1 location most often and the baseline agent for the
AAH 3 location. The baseline agents still collided for 1.4 %
to 7.2 % of the scenarios, whereas the safe agents did not
cause any collision. Evaluation on the test set is similar to the
training results indicating that the agents are not overfitted
to the training set. The detailed training and testing results
are shown in Table III.

C. Ablation Study

We conducted an ablation study to identify the benefits of
the safety layer and its components. Therefore, we trained
two additional safe agents: one restricts the actions only
with the intersection safety (named safe int. agent) and

TABLE III
EVALUATION OF TRAINED AGENTS ON TRAINING AND TEST SETS FOR

GOAL-REACHING RATE (COLLISION RATE).

Agent AAH 1 AAH 2 AAH 3

Training Dataset

Safe 30.4% (0.0%) 27.2% (0.0%) 29.1% (0.0%)
Safe lane 73.0% (3.1%) 55.8% (5.4%) 73.9% (1.5%)
Safe int. 42.1% (4.4%) 33.9% (4.8%) 52.4% (2.4%)
Baseline 65.1% (3.9%) 46.5% (6.8%) 72.6% (2.1%)

Test Dataset

Safe 29.9% (0.0%) 25.3% (0.0%) 28.8% (0.0%)
Safe lane 75.8% (1.9%) 54.6% (4.6%) 71.2% (2.4%)
Safe int. 43.3% (4.5%) 30.4% (4.9%) 51.7% (2.4%)
Baseline 65.9% (4.1%) 44.4% (7.2%) 75.0% (1.4%)

Note: The collision rate is revised by collisions not caused by the ego
vehicle, for example, another vehicle driving into the ego vehicle from
behind, thus, violating the safe distance to the ego vehicle.

the other restricts the actions with the lane safety (named
safe lane agent). The detailed evaluation results for the
trained agents are shown in Table III. For the safe lane
agent, the collision rate reduces to less than 5.5% for the
training and test scenarios. Interestingly, at the same time
the goal-reaching rate increased compared to that of the
unsafe baseline agent. Thus, the agent learns better when
guided by less and safer actions. For the agent whose actions
are only restricted by intersection safety, the collision rate
slightly increases compared to the baseline. Furthermore, the
goal-reaching performance decreases on the training and test
datasets compared to that of the baseline agent. However,
only if the two concepts are combined in the safe agent, no
collision caused by the ego vehicle occurred.

D. Discussion

The goal-reaching rate for the safe agent is comparably
low. This is primarily due to the conservative setting of the
parameters, which is necessary to guarantee safety with the
current assumptions. However, integrating urban traffic rules
in the verification of the safe actions could decrease conser-
vative behavior in crowded intersections. This is supported
by preliminary experiments on the data of the more complex
T-junction at Neuköllner Strasse in Aachen. Furthermore, we
plan to use our more holistic verification approach [44] in
the future to alleviate conservativeness. This study has not
realized this due to the RL’s required low computation times.

Additionally, the current fail-safe planner is optimized for
driving comfort and, thus, has limited capabilities to execute
quick and uncomfortable reactions to maintain safety. There-
fore, an advanced fail-safe planner [45] could be integrated.
This is particularly important when human drivers break
traffic rules since the autonomous agent needs to respond as
quickly as possible to minimize the chances of an accident.
However, the challenge is to decide for the correct time to
use the fail-safe planner [46]. Additionally, formalized traffic
rules could help to efficiently detect when and if a fail-safe
planner should be activated.

To make our approach applicable to the real world, other
traffic participants, such as pedestrians and cyclists, need
to be included in the calculation of the invariably safe
sets. Further, all urban traffic rules must be integrated into
the verification process. Additionally, the current Python
implementation would need to be computationally more
efficient and possibly needs refactoring to C++. These issues
are subject to future research.

V. CONCLUSIONS

We present a provably safe RL approach for urban driving
that can simultaneously handle lane-changing and intersec-
tion crossing. Our general high-level action space can be
applied to various intersection types. We show the capabil-
ities of our approach on real-world traffic data from three
intersections in Germany. These experiments demonstrate
that our safety layer is inherently safe and provides safety
guarantees for the ego vehicle. The ablation study indicates
that compared to the unsafe baseline, adding the lane safety
verification improves the performance while reducing colli-
sions. To boost the provably safe RL agent’s goal-reaching
rate in the future, more traffic rules, a more complex fail-
safe planner, better informed set-based prediction, and online
verification of arbitrary maneuvers should be investigated.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the research training group ConVeY
funded by the German Research Foundation under grant
GRK 2428.

REFERENCES

[1] S. Aradi, “Survey of deep reinforcement learning for motion planning
of autonomous vehicles,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 23, no. 2, pp. 740–759, 2022.

[2] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2022.

[3] Z. Wang, Z. Yan, and K. Nakano, “Comfort-oriented haptic guidance
steering via deep reinforcement learning for individualized lane keep-
ing assist,” in Proc. of IEEE International Conference on Systems,
Man and Cybernetics, 2019, pp. 4283–4289.

[4] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in Proc. of
IEEE Intelligent Vehicles Symposium, 2018, pp. 1379–1384.

[5] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in Proc.
of IEEE International Conference on Robotics and Automation, 2019,
pp. 8248–8254.

[6] I.-M. Chen and C.-Y. Chan, “Deep reinforcement learning based path
tracking controller for autonomous vehicle,” Proc. of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering,
vol. 235, no. 2-3, pp. 541–551, 2021.

[7] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Cooperation-aware reinforcement learning for merging in dense
traffic,” in Proc. of IEEE International Conference on Intelligent
Transportation Systems, 2019, pp. 3441–3447.

[8] S. Triest, A. Villaflor, and J. M. Dolan, “Learning highway ramp
merging via reinforcement learning with temporally-extended actions,”
in Proc. of IEEE Intelligent Vehicles Symposium, 2020, pp. 1595–1600.

[9] D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement learning on
autonomous vehicles,” in Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2018, pp. 1–6.

[10] M. Shikunov and A. I. Panov, “Hierarchical reinforcement learning
approach for the road intersection task,” in Proc. of Biologically
Inspired Cognitive Architectures Meeting, 2019, pp. 495–506.

[11] Y. Guan, Y. Ren, H. Ma, S. E. Li, Q. Sun, Y. Dai, and B. Cheng,
“Learn collision-free self-driving skills at urban intersections with
model-based reinforcement learning,” in Proc. of IEEE International
Intelligent Transportation Systems Conference, 2021, pp. 3462–3469.

[12] J. Li, L. Sun, J. Chen, M. Tomizuka, and W. Zhan, “A safe hierar-
chical planning framework for complex driving scenarios based on
reinforcement learning,” in Proc. of IEEE International Conference
on Robotics and Automation, 2021, pp. 2660–2666.

[13] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W. Choi,
“Autonomous braking system via deep reinforcement learning,” in
Proc. of IEEE International Conference on Intelligent Transportation
Systems, 2017, pp. 1–6.

[14] Y. Fu, C. Li, F. R. Yu, T. H. Luan, and Y. Zhang, “A decision-making
strategy for vehicle autonomous braking in emergency via deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 6, pp. 5876–5888, 2020.

[15] L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng, “Safe reinforcement
learning for autonomous vehicles through parallel constrained policy
optimization,” in Proc. of IEEE International Conference on Intelligent
Transportation Systems, 2020, pp. 1–7.

[16] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. of AAAI Conference on Artificial
Intelligence, 2019, pp. 3387–3395.

[17] X. Wang, “Ensuring safety of learning-based motion planners using
control barrier functions,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4773–4780, 2022.

[18] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. of
IEEE International Conference on Intelligent Transportation Systems,
2020, pp. 1–7.

[19] C. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochen-
derfer, “Combining planning and deep reinforcement learning in
tactical decision making for autonomous driving,” IEEE Transactions
on Intelligent Vehicles, vol. 5, no. 2, pp. 294–305, 2020.

[20] Z. Qiao, J. Schneider, and J. M. Dolan, “Behavior planning at urban
intersections through hierarchical reinforcement learning,” in IEEE
International Conference on Robotics and Automation, 2021, pp.
2667–2673.

[21] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in Proc. of IEEE International Confer-
ence on Robotics and Automation, 2018, pp. 2034–2039.

[22] D. Kamran, C. F. Lopez, M. Lauer, and C. Stiller, “Risk-aware
high-level decisions for automated driving at occluded intersections
with reinforcement learning,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2020, pp. 1205–1212.

[23] T. Tram, I. Batkovic, M. Ali, and J. Sjöberg, “Learning when to
drive in intersections by combining reinforcement learning and model
predictive control,” in Proc. of IEEE International Conference on
Intelligent Transportation Systems, 2019, pp. 3263–3268.

[24] H. Krasowski, J. Thumm, M. Müller, X. Wang, and M. Althoff,
“Provably safe reinforcement learning: A theoretical and experimental
comparison,” arXiv preprint arXiv:2205.06750, 2022.

[25] Z. Li, U. Kalabić, and T. Chu, “Safe reinforcement learning: Learning
with supervision using a constraint-admissible set,” in Proc. of Annual
American Control Conference, 2018, pp. 6390–6395.

[26] W. Saunders, G. Sastry, A. Stuhlmüller, and O. Evans, “Trial without
error: Towards safe reinforcement learning via human intervention,”
in Proc. of International Conference on Autonomous Agents and
MultiAgent Systems, 2018, p. 2067–2069.

[27] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Safe reinforcement learning with scene decomposition for navigating
complex urban environments,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2019, pp. 1469–1476.

[28] N. Fulton and A. Platzer, “Safe reinforcement learning via formal
methods: Toward safe control through proof and learning,” in Proc. of
AAAI Conference on Artificial Intelligence, 2018, pp. 6485–6492.

[29] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker,
“High-level decision making for safe and reasonable autonomous lane
changing using reinforcement learning,” in Proc. of IEEE International

Conference on Intelligent Transportation Systems, 2018, pp. 2156–
2162.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[31] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of
traffic participants,” in Proc. of IEEE Intelligent Vehicles Symposium,
2017, pp. 1686–1693.

[32] C.-Y. Tang, C.-H. Liu, W.-K. Chen, and S. D. You, “Implementing
action mask in proximal policy optimization (PPO) algorithm,” ICT
Express, vol. 6, no. 3, pp. 200–203, 2020.

[33] N. Murgovski, G. R. de Campos, and J. Sjöberg, “Convex modeling of
conflict resolution at traffic intersections,” in Proc. of IEEE Conference
on Decision and Control, 2015, pp. 4708–4713.

[34] C. Pek and M. Althoff, “Efficient computation of invariably safe states
for motion planning of self-driving vehicles,” in Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2018, pp.
3523–3530.

[35] X. Wang, H. Krasowski, and M. Althoff, “CommonRoad-RL: A
configurable reinforcement learning environment for motion planning
of autonomous vehicles,” in Proc. of IEEE International Conference
on Intelligent Transportation Systems, 2021, pp. 466–472.

[36] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenét frame,” in Proc.
of IEEE International Conference on Robotics and Automation, 2010,
pp. 987–993.

[37] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map represen-
tation for autonomous driving,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2014, pp. 420–425.

[38] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2020, pp. 752–759.

[39] C. Pek and M. Althoff, “Fail-safe motion planning for online ver-
ification of autonomous vehicles using convex optimization,” IEEE
Transactions on Robotics, vol. 37, no. 3, pp. 798–814, 2021.

[40] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide
safety in intelligent intersections,” IEEE Transactions on Vehicular
Technology, vol. 60, no. 3, p. 804–818, 2011.

[41] G. R. de Campos, F. D. Rossa, and A. Colombo, “Safety verification
methods for human-driven vehicles at traffic intersections: Optimal
driver-adaptive supervisory control,” IEEE Transactions on Human-
Machine Systems, vol. 48, no. 1, pp. 72–84, 2018.

[42] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein,
“The inD dataset: A drone dataset of naturalistic road user trajecto-
ries at German intersections,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2020, pp. 1929–1934.

[43] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719–726.

[44] C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online
verification to prevent autonomous vehicles from causing accidents,”
Nature Machine Intelligence, vol. 2, no. 9, pp. 518–528, 2020.

[45] S. Magdici and M. Althoff, “Fail-safe motion planning of autonomous
vehicles,” in Proc. of IEEE International Conference on Intelligent
Transportation Systems, 2016, pp. 452–458.

[46] M. Althoff, S. Maierhofer, and C. Pek, “Provably-correct and com-
fortable adaptive cruise control,” IEEE Transactions on Intelligent
Vehicles, vol. 6, no. 1, pp. 159–174, 2021.

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)

Hanna Krasowski

IEEE

08 October 2022

Copyright © 2022, IEEE

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 1/10/24, 20:55

B Reinforcement Learning with

Safety Specifications via

Temporal Logic

Legal safety specifications for autonomous vehicles performing motion planning tasks are often

more complex than only avoiding collisions. If we solely regard collision avoidance, this can lead

to a conservative safety specification, as empirically observed in Appendix A.4. Thus, including

traffic rules in the safety verification of actions could help to reduce the conservatism for motion

planning tasks. Temporal logic is suited to specify complex spatio-temporal properties common

for traffic rules. However, integrating a safety specification formalized via temporal logic in

verification approaches for autonomous vehicles is challenging because these systems operate

in continuous space and a tight model often is only available for a part of the system.

The publications reproduced in this chapter formalize safety specifications via temporal

logic and integrate these specifications in model-free RL algorithms to achieve probabilistic or

hard safety guarantees. The safety specifications are more expressive than the avoid safety

specification regarded in Appendix A and can be described by Safety Specification 1. Since

correctly formalizing safety specifications from natural language to temporal logic is not trivial

for real-world motion planning tasks, we first formalize maritime traffic rules in Appendix B.1.

In Appendix B.2, we present a safe RL approach that achieves probabilistic guarantees without

an explicit system model for an arbitrary temporal logic robustness measure. Finally, we

present a provably safe RL approach for autonomous vessel navigation on the open sea in

Appendix B.3 that always achieves rule compliance with our previously formalized maritime

traffic rules.

121

B Reinforcement Learning with Safety Specifications via Temporal Logic

B.1 Temporal Logic Formalization of Marine Traffic Rules

Summary Most vehicles are operated by humans. To achieve safe operation on roads, on

water, or in the air, there are usually interaction rules, or more specifically, traffic rules, defined.

These rules describe how to act predictably, reducing uncertainty for other humans operating

other vehicles, and thereby avoid collisions. However, these rules are usually specified in natural

language, which may be ambiguous. To incorporate these rules in autonomous vehicles, there

needs to be a precise and unique specification.

In this work, we provide such a specification of maritime traffic rules for power-driven vessels

on the open sea. We utilize MTL since it possesses the expressiveness necessary for formaliza-

tion. First, we rigorously define the predicates that determine the spatial relations between two

vessels and derive temporal logic specifications based on the predicates. Based on the predi-

cates, we obtain six formalized rules, which represent the most important collision avoidance

rules between power-driven vessels specified by the COLREGS. We use parameters within

our formalization so that different instantiations of predicates and rules can capture different

traffic situations or jurisdictions.

To obtain realistic traffic situations, in which our formalized rules apply, we filter maritime

traffic data for US coastal areas for close encounters of vessels. We evaluate our specified

rules for the vessel encounters and observe that the vast majority of vessels adhere to the

formalized maritime traffic rules for our chosen open-sea parametrization of the rules. The

parametrization allows for adjusting the rules to other maritime traffic situations, such as

navigating in channels, without the need of re-formalization.

Author contributions H.K. and M.A. initiated the project of formalizing maritime traffic

rules with temporal logic. H.K. identified the most relevant rules, translated the natural lan-

guage into metric temporal logic specifications, implemented the traffic rule monitor, conducted

the numerical experiments, and wrote the manuscript. M.A. provided feedback improving the

temporal logic formalization and the manuscript.

Copyright notice © 2021 IEEE. Accepted version reprinted, with permission, from Hanna

Krasowski and Matthias Althoff, Temporal Logic Formalization of Marine Traffic Rules, Proc.

of the IEEE Intelligent Vehicles Symposium, pp. 186–192, doi:10.1109/IV48863.2021.9575685,

2021.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

122

https://doi.org/10.1109/IV48863.2021.9575685

Temporal Logic Formalization of Marine Traffic Rules

Hanna Krasowski and Matthias Althoff

Abstract— Autonomous vessels have to adhere to marine
traffic rules to ensure traffic safety and reduce the liability
of manufacturers. However, autonomous systems can only
evaluate rule compliance if rules are formulated in a precise
and mathematical way. This paper formalizes marine traffic
rules from the Convention on the International Regulations
for Preventing Collisions at Sea (COLREGS) using temporal
logic. In particular, the collision prevention rules between two
power-driven vessels are delineated. The formulation is based
on modular predicates and adjustable parameters. We evaluate
the formalized rules in three US coastal areas for over 1,200
vessels using real marine traffic data.

I. INTRODUCTION

Human error is the main contributing factor to half of the
1,801 marine accidents between 2014 and 2019 analyzed
by the European Maritime Safety Agency [1]. Autonomous
vessels are a potential solution to decreasing the number of
accidents caused by humans. These autonomous vessels will
have to consider marine traffic rules and act accordingly.
Thus, formalizing coherent marine traffic rules for machines
is necessary.

The Convention on the International Regulations for Pre-
venting Collisions at Sea (COLREGS1) [2] describes the
marine traffic rules for preventing collisions. The COLREGS
became effective in 1972 and consists of 38 rules grouped
in five parts. In international waters, the COLREGS are the
sole collision avoidance rules2. For the collision avoidance of
autonomous vessels, only the second part, which considers
steering and sailing regulation (i.e., COLREGS rules 4 - 19),
is relevant. The rules of this part define different encounters
and how the encountering vessels should react to prevent a
collision. However, the rules specified in the COLREGS are
formulated for humans and are not directly applicable to and
verifiable for an autonomous vessel.

In this paper, we formalize the marine traffic rules of
the COLREGS which consider collision avoidance between
power-driven vessels. Our main contributions are:

• To the best of our knowledge, we present the first
formalization of COLREGS using temporal logic.

• Our predicates and functions are parameterizable and
usable for additional marine traffic rules.

All authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany.
hanna.krasowski@tum.de, althoff@in.tum.de

1We use this acronym in this work for the Convention on the International
Regulations for Preventing Collisions at Sea. However, in the literature, there
is no consistent orthography, and it is unclear how the acronym is built.

2In national territory, additional rules have to be satisfied, e.g., in German
coastal waters the German Traffic Regulations for Navigable Maritime
Waterways (SeeSchStrO).

• We evaluate our formalized rules on real marine traffic
data for over 1,200 vessels.

The remainder of this paper is structured as follows: Sec-
tion II presents an overview of the related literature. Sec-
tion III describes methodical concepts for rule formaliza-
tion. Sections IV and V introduce the formalized rules and
associated predicates in detail. Section VI presents the eval-
uation of the formalized rules on scenarios generated from
automatic identification system (AIS). Section VII provides
conclusions.

II. RELATED WORK

The COLREGS has been mainly considered implicitly
for motion planning problems so that motion planners com-
ply with the COLREGS. In general, the COLREGS rules
for steering and sailing are integrated in planners through
geometric thresholds [3]–[8], virtual obstacles [9], or cost
functions [10], [11]. Further, most research does not comply
with all COLREGS rules for steering and sailing but instead
focuses on the rules for the give-way vessel in crossing, head-
on, and overtaking situations (see Section IV) [3]–[6], [11].
Some research additionally considers the safe distance [7],
[8], stand-on vessel [7], [8], [10], and last-minute maneuver
rule [7], [8]. However, all of these approaches are directly
integrated in problem representation or motion planner, and
are difficult to extend to include additional marine traffic
rules.

As soon as a collision is possible, the COLREGS section
describing steering and sailing rules for collision prevention
has to be enforced. Therefore, detecting future collision
possibilities is imperative. The simplest approach to detect
potential collisions is by checking if a specified distance is
kept in relation to other traffic participants [6]. This is easy
to implement, however, this disregards the direction in which
the vessel moves and results in many false-positive collision
warnings. Another option is by calculating the closest point
of approach [3], [4], which returns the time when the shortest
distance between two vessels is reached assuming constant
velocity and heading. However, defining thresholds [3] or
constructing a virtual obstacle from the closest point of
approach [4] to determine the risk of collision, which is
not trivial, remains necessary. Another common approach is
using a velocity obstacle [7], [12]. Here, heading and velocity
are also assumed to be constant, but a virtual collision
obstacle is constructed instead of calculating scalar values.
From this object, the ego ship can anticipate which headings
and velocities would lead to a collision without the necessity
of specific thresholds. Further, for crowded scenarios, various
velocity obstacles can be superimposed, and static obstacles

can be included [12]. The most general approach to detect
potential collisions is through reachability analysis, where
detailed kinematic models and measurement uncertainties
can be considered to obtain an over-approximate occupancy
[13]. However, in this study, we focus on formalizing marine
traffic rules for open-sea situations; thus, collision detection
with velocity obstacles is deemed sufficient.

Our approach uses temporal logic to model the COL-
REGS and explicitly checks rule compliance instead of
only determining a contemporaneous traffic situation and
rule-compliant actions. Temporal logic modeling allows for
efficient extensions of rules, and implemented predicates can
be reused. The COLREGS rules regarded in this work are
the subset that regulates collision avoidance between power-
driven vessels. The velocity obstacle concept is used to
determine if a collision is possible.

III. METHODOLOGY

A. Metric temporal logic

Most marine traffic rules have preconditions; e.g., the
possibility of a collision depends on the current relative
position and speed of two vessels. These preconditions can
be formalized by temporal logic. In particular, we use metric
temporal logic (MTL) [14], which can define conditions that
have to hold within a specified time interval.

In this work, MTL is interpreted over finite traces of pred-
icates. The used fragment of MTL can specify propositions
for the future. The temporal operators used in this work are
G, F, X, and U. The future globally operator G(φ) indicates
that the proposition φ has to hold true for all future time
steps, whereas for the future operator F(φ), φ has to be true
only for at least one future time step. The next operator
X(φ) specifies that φ holds true for the next time step.
The until operator φ1Uφ2 specifies that φ1 holds true for
all time steps until φ2 holds true. The formal semantics
of the temporal operators are described in detail in [15].
Given atomic propositions φi, an MTL formula Φ can be
constructed as follows:

Φ := φi|¬Φ|Φ1∧Φ2|Φ1∨Φ2

Φ := GI(Φ) |FI(Φ) |X(Φ) |Φ1UΦ2

The subscript I indicates the time interval for which the tem-
poral operator is applied relative to the current time step. If
no interval is specified, the operator is applied for the whole
trace. The traces regarded in this work are finite. Boolean
operators ¬,∨,∧ are also used. The Boolean implication
operator =⇒ is modeled by Φ1 =⇒ Φ2 ≡ ¬Φ1∨Φ2.

B. Velocity obstacle

The velocity obstacle concept was first introduced in [16]
to extract relevant objects for an autonomous mobile robot
to avoid collisions. A velocity obstacle is a geometric object
from which the currently feasible velocities of robots can be
determined by testing if a velocity intersects with a velocity
obstacle. The basic velocity obstacle approach assumes that
the current position, spatial extensions, and speed of the

n

vn

m rm rn

vm

n

vn

m
vm

CC

n

vn

m′

vm

CC′

(1) (2) (3)
Initial configuration Collision cone construction Final velocity obstacle

Fig. 1. Construction of a velocity obstacle. The robot n and obstacle m
potentially collide as the velocity of the robot vn intersects with the collision
cone CC′

obstacles are known and that they move with constant
speed and heading; there are extensions that eliminate these
assumptions [17]. However, the basic velocity obstacle ap-
proach is sufficient for this study as these assumptions are
valid for checking potential collisions for vessels on the open
sea, where course and speed are usually kept constant.

The construction of the basic velocity obstacle from [16]
follows the three-step process visualized in Fig. 1. First, the
shapes of the robot n and obstacle m are over-approximated
by circles. Since the shape of the robot and obstacle does not
change, it suffices to initialize the robot as a point n and add
the radius of the robot rn to the obstacle m with radius rm.
The collision cone CC is drawn by constructing tangent lines
on the enlarged obstacle, which intersect at point n. Finally,
the cone is translated by the obstacle velocity vector vm. A
collision is possible when the velocity vector of the robot vn
intersects with the translated collision cone CC′.

IV. FORMALIZING COLREGS IN TEMPORAL LOGIC

As mentioned in the introduction, the steering and sail-
ing rules are relevant for specifying collision prevention
maneuvers and are crucial for safe motion planning of
autonomous vessels. We assume the following conditions for
our formalization of the steering and sailing rules:
• The water depth is sufficient for all vessels and does

not restrict the possible maneuvers.
• Fairways and marine traffic marks are absent.
• There is a good visibility.
• All vessels are power-driven.

However, our formalization can easily be extended to other
vessel types by integrating a method (e.g., an automaton)
that selects the rules applicable for the current vessel type
combination as specified in rule 18. The assumptions limit
the formalization to rules 4, 6, 8(d), 11, and 13 - 17.

We formulate the rules from the ego-ship perspective. The
implementation is built on our previous work on road traffic
rules [18], which developed a rule monitor for evaluating
interstate traffic rules. The rule monitor first evaluates the
predicates, which are described in detail in Section V, to
create a finite predicate trace. This trace is then used to
evaluate the specified MTL formulas.

TABLE I
OVERVIEW OF THE FORMALIZED MARINE TRAFFIC RULES

Rule COLREGS reference MTL formula

R1 Rule 4, 8(d) G
(
¬collision possible(xego,xo, tcoll

horizon)
)

R2 Rule 4, 6 G
(

safe speed(xego,vmax)
)

R3 Rule 11, 15, 16
G
((
¬crossing(xego,xo,∗)∧G[∆t,treact]

(
crossing(xego,xo,∗)

))
=⇒

(
F[0,treact+tmaneuver](maneuver crossing(xego,xo,∗))∧F[treact ,treact+2tmaneuver](¬crossing(xego,xo,∗))

))

R4 Rule 11, 14, 16
G
((
¬head on(xego,xo,∗)∧G[∆t,treact]

(
head on(xego,xo,∗)

))
=⇒

(
F[0,treact+tmaneuver](maneuver head on(xego,xo,∗))∧F[treact ,treact+2tmaneuver](¬head on(xego,xo,∗))

))

R5 Rule 11, 13, 16
G
((
¬overtake(xego,xo,∗)∧G[∆t,treact]

(
overtake(xego,xo,∗)

))
=⇒

(
F[0,treact+tmaneuver](maneuver overtake(xego,xo,∗))∧F[treact ,treact+2tmaneuver](¬overtake(xego,xo,∗))

))

R6 Rule 11, 15, 17 G
(

keep(xego,xo,∗) =⇒
(
no turning(xego,∗)U¬keep(xego,xo,∗)

))

Note: Additional arguments are abbreviated by ∗.

Table I shows an overview of the formalized rules and
indicates the corresponding rules of the COLREGS. The state
of vessel i is denoted as xi. We use the subscript ego for the
ego vessel and o for the other traffic participants. Additional
arguments of the predicates are abbreviated by ∗ to ease
readability and are fully specified in Section V. The textual
description of the formalized rules is as follows:

a) Safe distance R1: Vessels always have to keep a
safe distance from one another. This distance depends on the
current speed and traffic scene. Therefore, we determine if
the current distance between two vessels is safe by checking
with the velocity obstacle concept if no collision is possible
within the time horizon tcoll

horizon.
b) Safe speed R2: A vessel shall always maintain a safe

speed depending on the state of visibility, traffic density, and
technical equipment on board.

c) Crossing R3: When (a) two vessels are sailing on
crossing paths in sight of each other, (b) there is a risk of col-
lision, and (c) the other vessel is on starboard (i.e., right side),
the ego vessel is the give-way vessel in the crossing situation.
Therefore, when the ego vessel detects this situation and it is
maintained until the reaction time treact , it has to significantly
change its course to starboard within the sum of the reaction
time treact and maneuver time tmaneuver. Further, the situation
has to be resolved after another maneuver time tmaneuver. The
detection of the changed situation has to happen within the
time step ∆t.

d) Head-on R4: When two vessels approach each other
in sight on opposing or near-opposing courses and there is a
risk of collision, both vessels have to give way. Thus, similar
to rule R3, both vessels have to significantly change their
course to starboard to resolve the situation.

e) Overtake R5: When the ego vessel is faster and
approaching another vessel in sight from its stern (i.e., from
behind), it is in the give-way position of the overtaking sit-

Crossing OvertakingHead-on

Fig. 2. Regulated situations of the COLREGS. Orange colors denote give-
way vessels, and blue colors denote stand-on vessels. A give-way vessel has
to evade the other vessel. A stand-on vessel has to keep its course during
the maneuver of the other vessel.

uation. Therefore, the ego vessel has to significantly change
its course to any side to avoid collision with the other vessel
while overtaking.

f) Stand-on vessel R6: When (a) two vessels are sailing
in sight of each other, (b) the ego vessel has the other vessel
on its port side (i.e., left side) or the ego vessel is overtaken,
and (c) the risk of collision exists, the ego vessel is the stand-
on vessel. Thus, the ego vessel has to keep its course until
the situation is resolved.

Fig. 2 illustrates the situations and appropriate reactions
for rules R3 - R6.

V. PREDICATES

Predicates are used to specify different conditions for
marine traffic rules. We first specify necessary mathematical
functions to model the predicates. Then, we group the pred-
icates regarding position, velocity, and general conditions.

behind

left right

front
∆head-on−∆head-on

112.5◦247.5◦

Fig. 3. Position regions relative to ego vessel.

A. Vessel movements and general functions

Vessel movements are specified through trajectories. Each
trajectory consists of states at discrete time steps. The
trajectory of vessel i is denoted as traji.The state xi of vessel
i consists of the position p∈R2, heading h∈ [0,2π], velocity
v ∈ R, and yaw rate θ̇ ∈ R. The operator proj� projects the
state to the dimension specified by �. We define a clock
cl(traji,xi) which starts at the first time step of a trajectory
and returns the passed time for a state xi. In addition, we
define a function state(traji, tk) which returns the state of
a trajectory at time tk. The Euclidean norm of a vector is
denoted by ‖ · ‖ and the modulo operator mod(a,b) returns
the remainder of a/b for a,b ∈ R using floored division.

B. Position predicates

The important relative position regions for the formalized
rules are visualized in Fig. 3. We use halfspaces to determine
in which sector the other vessel is located. A position pi is
within a halfspace if:

dT
hs pi−bhs ≤ 0

where bhs is the offset to the origin, and dhs is the normal
vector of the halfspace.

The predicate in front sector(xn,xm) is true if and only if
the center of vessel m is in the halfspace left of the ∆head-on
line and in the halfspace right of the −∆head-on line of Fig. 3
for vessel n. The parameter ∆head-on specifies half of the
front sector angle3. The predicates for the other three sectors
can be analogously anticipated from Fig. 3. We consider the
center of the other vessel instead of its entire occupancy
because the spatial dimensions of vessels are negligibly small
compared to the distance between the vessels.

In addition to the occupied sector, the relative orientation
is also relevant. The predicate orientation delta evaluates
if the heading difference of two vessels is larger than a
specified difference ∆orient. Additionally, a constant offset co
is integrated to evaluate the heading difference between two

3Note that the COLREGS do not specify the angle for the front sector
compared to the behind sector. In the literature, ∆head-on is usually set to
5 deg or 10 deg.

π−∆head-on−π +∆head-on

∆head-on−∆head-on

Fig. 4. Relative orientations to ego vessel. The black vessel is the ego
vessel, the orange vessels indicate bounds for relative orientation toward
left and the green vessels toward right.

vessels in a head-on situation:

orientation delta(xn,xm,∆orient,co) ⇐⇒
mod(projh(xm)−projh(xn)+ co,2π) ∈ [∆orient,2π−∆orient].

Checking if the other vessel is heading toward right or
left with respect to the ego vessel is necessary for evalu-
ating the crossing situation. Thus, we define the predicate
orientation towards right(xn,xm,∆head-on) which is true when
the relative orientation between the other vessel m and the
ego vessel n is in [−π+∆head-on,−∆head-on]. Analogously, the
predicate orientation towards left(xn,xm,∆head-on) is true for
[∆head-on,π−∆head-on]. Fig. 4 illustrates the ranges in which
the two predicates are evaluated to true.

C. Velocity predicates

The predicate drives faster evaluates if vessel n drives
faster than vessel m:

drives faster(xn,xm) ⇐⇒ projv(xn)> projv(xm).

For rule R2, we need to determine if the ego vessel drives
at a safe speed. As we assume the vessels to be on the open
sea with a low traffic density, the maximal safe velocity vmax
is the typical engine limit for power-driven vessels. Further,
the minimal safe velocity is zero as backward driving is an
unexpected and thus unsafe behavior on the open sea. Thus,
the predicate that evaluates if a vessel is sailing at safe speed
is as follows:

safe speed(xn,vmax) ⇐⇒ 0≤ projv(xn)≤ vmax.

D. General predicates

To determine if a collision between two vessels is possible,
we use the velocity obstacle concept. Thus, we represent
the velocity of a vessel i as vector vi. The collision cone
CC′(xn,xm) for two vessels n and m is constructed as
described in Section III-B and visualized in Fig. 1. Possible
collisions are detected if the velocity vn intersects with the
collision cone CC′(xn,xm) and if the lower bound of the time

to collision is less than the time horizon t, which is greater
or equal than the time step size ∆t:

collision possible(xn,xm, t) ⇐⇒
vn ∈CC′(xn,xm)∧
‖vn− vm‖ ≤ ‖projp(xn)−projp(xm)‖/t.

We use this predicate for two purposes. First, if t = tcoll
horizon,

we check if the distance between vessels is sufficient, so
that the ego vessel can still avoid a collision by changing
the course or stopping even if the other vessel does not react
properly. Second, if t = tcheck

horizon, the vessels sail on courses
that lead to potential collisions, and a COLREGS collision
avoidance maneuver has to be applied.

For rules R3 - R6, we need to specify a collision avoidance
maneuver. Therefore, we define a predicate that evaluates if
the course has changed since a defined time:

change course(xn,trajn, tstart ,∆course) ⇐⇒

|
cl(trajn,xn)

∑
ti=tstart

projθ̇ (state(trajn, ti))∆t| ≥ ∆course,

where tstart is the staring time of the maneuver, and ∆course
is the change of heading that should be achieved. Further,
for head-on and crossing situations, the give-way vessel has
to evade to starboard. Therefore, we specify a predicate that
indicates the turning direction:

turning to starboard(xn,trajn, tstart) ⇐⇒
mod

(
projh(state(trajn,cl(trajn,xn)))−

projh(state(trajn, tstart)),2π
)
∈ (π,2π).

For both previous predicates, we need the starting time of
a maneuver. Therefore, let us define the operator ts(Ψ) that
returns the time of the last rising edge of a predicate Ψ
relative to the initial time of the trajectory, which can be
formulated as ¬Ψ∧X(Ψ). The arguments of the predicate
are omitted for better readability. If Ψ remained constant
until the current time step, ts(Ψ) returns zero.

An overtaking situation as specified in the COLREGS is
defined by (a) a potential collision, (b) the overtaken vessel m
has the regarded vessel n in its behind sector, (c) the regarded
vessel n has to be faster than the other vessel, and (d) the
heading difference has to be less than 67.5 deg:

overtake(xn,xm, tcheck
horizon) ⇐⇒

collision possible(xn,xm, tcheck
horizon)∧

in behind sector(xm,xn)∧drives faster(xn,xm)∧
¬orientation delta(xn,xm,67.5deg,0).

The angle of 67.5 deg is half of the behind sector angle
and specified in rule 13 of the COLREGS. The appropriate
maneuver for an overtaking situation is significantly turning,
so that the overtaken vessel can detect the maneuver.

maneuver overtake(xn,xm,trajn, t
check
horizon,∆large turn) ⇐⇒

change course(xn,trajn, ts(overtake),∆large turn)∧
overtake(xn,xm, tcheck

horizon),

where ∆large turn is a turning angle that is sufficiently large
to be detected by other vessels. For head-on situations,
the specification is similar, however, there is no velocity
condition, and the vessels have to be on opposing courses
with deviation of at most ∆head-on:

head on(xn,xm, tcheck
horizon,∆head-on) ⇐⇒

collision possible(xn,xm, tcheck
horizon)∧ in front sector(xn,xm)∧

¬orientation delta(xn,xm,∆head-on,π).

The appropriate maneuver in a head-on situation is similar
to the overtaking maneuver, but the vessel has to turn to
the starboard side. Therefore, we define that the maneuver
is conducted as follows:

maneuver head on(xn,xm,trajn, t
check
horizon,∆large turn,∆head-on)

⇐⇒ change course(xn,trajn, ts(head on),∆large turn)∧
turning to starboard(xn,trajn, ts(head on))∧
head on(xn,xm, tcheck

horizon,∆head-on).

A crossing situation is defined by (a) a collision possibility;
(b) the regarded vessel n in the give-way position, i.e., the
other vessel m is in its right sector; and (c) the heading of the
other vessel points toward the left side of the regarded vessel.
Thus, the predicate for the crossing situation is specified as
follows:

crossing(xn,xm, tcheck
horizon,∆head-on) ⇐⇒

collision possible(xn,xm, tcheck
horizon)∧ in right sector(xn,xm)∧

orientation towards left(xn,xm,∆head-on).

The appropriate maneuver in a crossing situation is identical
to the head-on maneuver:

maneuver crossing(xn,xm,trajn, t
check
horizon,∆large turn,∆head-on)

⇐⇒ change course(xn,trajn, ts(crossing),∆large turn)∧
turning to starboard(xn,trajn, ts(crossing))∧
crossing(xn,xm, tcheck

horizon,∆head-on).

For the stand-on vessel, the predicate keep is introduced,
which indicates if the vessel is in the stand-on position and,
thus, has to keep its course. It either evaluates to true when
the other vessel is in the left sector and driving toward the
other vessel m or when the regarded vessel n is overtaken.

keep(xn,xm, tcheck
horizon,∆head-on) ⇐⇒(

collision possible(xn,xm, tcheck
horizon)∧ in left sector(xn,xm)∧

orientation towards right(xn,xm,∆head-on)
)
∨

overtake(xm,xn, tcheck
horizon)

The maneuver of the stand-on vessel is keeping its course,
which is described as follows:

no turning(xn,trajn,∆no turn) ⇐⇒
¬change course(xn,trajn, ts(keep),∆no turn),

where ∆no turn is the maximal heading deviation from the
original course.

VI. NUMERICAL EXPERIMENTS

A. Dataset and preprocessing

Our dataset consists of recorded samples from the AIS, a
radio system designed to improve the safety of marine traffic
by providing information about surrounding vessels. AIS
data consists of static vessel information (e.g., vessel name),
dynamic information (e.g., current position), and voyage
information (e.g., estimated time of arrival). All commercial
vessels with gross tonnage over 300 and all passenger vessels
are obligated to have AIS on board. As the AIS data
providers track about 200,000 vessels per day, which is about
four times the number of the worldwide merchant fleet, it is
assumed that most larger vessels operating on the open sea
are equipped with AIS.

Tu et al. [19] compare different AIS data sources with
respect to their accessibility, time resolution, position pre-
cision, and live broadcasting possibility. For the purposes
of this study, a high precision and time resolution is most
important. Thus, we selected the Marine Cadastre dataset
[20] for generating encounter scenarios. This dataset provides
historic AIS data of US coastal waters from 2009 to 2020 of
which we used data from January 2019. We preprocessed
the data in two steps. First, we searched for encounters
between vessels. Second, we generated the trajectories for
the encountering vessels.

To ensure the validity of our assumptions in the chosen
scenarios, we selected specific open-sea regions listed in Ta-
ble II. For each of the locations, we search for vessels whose
tracks have a distance lower than 0.03 degree of latitude or
longitude, which is approximately 2000 m, within a 10 min
time frame. As the rules have the implicit precondition that
the vessels move, we excluded vessels that did not move.

We use the time stamp, longitudinal and lateral positions,
speed over ground, and length and width of the vessel
from the AIS data. For evaluation, each trajectory needs a
fixed time step size, here 10 s, and the time steps between

TABLE II
SELECTED LOCATIONS OF US COASTAL AREAS

Location Degree latitude Degree longitude #Vessels

Florida [27.51, 32.39] [-80.18, -75.10] 364
Middle East Coast [35.25, 38.89] [-74.96, -73.92] 447
Upper West Coast [37.32, 48.56] [-126.91, -124.85] 487

TABLE III
USER-DEFINED PARAMETERS FOR TRAFFIC RULES

Parameter Value Parameter Value

vmax 20 ms−1 ∆t 10 s
∆head-on 5 deg tcheck

horizon 420 s
∆no turn 10 deg tcoll

horizon 300 s
∆large turn 20 deg treact 60 s

tmaneuver 60 s

R1 R2 R3 R4 R5 R6 all
0

20

40

60

80

100

R
u
le

co
m
p
li
an

ce
[%

]

Florida Middle East Coast Upper West Coast

Fig. 5. Rule compliance for different geographical regions.

vessel have to be synchronous for evaluation. Therefore,
we use linear interpolation to synchronize the time steps
of different vessels. The longitudinal and lateral positions
are converted in a metric coordinate system according to
the Universal Transverse Mercator system. The generated
scenarios are using the CommonRoad representation4. The
scenarios include two, three, or four vessels and the duration
is between 10 min and 106 min. The data and implementation
are available online5.

B. Results

For every location, we evaluate the number of vessels
as indicated in Table II with the parameters specified by
Table III. For each vessel, the rules are evaluated with
respect to all other vessels in the scenario. Fig. 5 shows the
rule compliance for different rules and regions. In general,
the rule compliance at different locations is comparable.
The individual rules R1 - R6 are mostly fulfilled with a
compliance rate between 98 % and 100 %. On average, 98 %
of all investigated vessels obey all formalized rules. As we
investigate open-sea scenarios, where vessel often can easily
keep a large distance to each other and have enough space
to conduct collision avoidance maneuvers, the high rate of
rule compliance confirms our expectations.

C. Discussion

The quantitative evaluation of the presented traffic rules
has some limitations originating from the AIS data. In con-
trast to the vision-based reconstruction of scenarios, AIS data
is less informative, and anomalies are difficult to detect. AIS
data is asynchronously received, which makes interpolation
necessary and, thus, can lead to deviations from the true path.
Further, vessels without an AIS sender might sail in the area
regarded as well, but are not visible in the data.

The user-defined parameters for evaluating the rules are
based on the COLREGS and expert knowledge. For example,
with the current value of tcheck

horizon, the give-way vessel of two
vessels sailing with 15 knots (i.e., 7.7 ms−1) in a rectangular
crossing situation would have to conduct a crossing maneu-
ver when the distance between both vessels is approximately
2.5 nautical miles (i.e., 4500 m). This parameter setting might

4commonroad.in.tum.de/commonroad io
5doi.org/10.24433/CO.8258454.v2

be too conservative for ship encounters close to shore but can
be easily adapted if necessary.

We limited this study to encounters of power-driven ves-
sels on the open sea. The data only includes encounters
of two to four vessels, but the rules can be evaluated on
any number of vessels. However, for these situations, the
COLREGS are sometimes underspecified, e.g., a situation
with three vessels where one vessel is overtaken by another
one, whereas a third vessel crosses the path of the over-
taken vessel from the left. Then, the overtaken vessel is
in the stand-on position and the give-way position at the
same time. Additionally, integrating the collision prevention
hierarchy between vessel types (see rule 18 of COLREGS)
would increase the applicability and could be done by
switching between different rule sets depending on vessel
types. Further, the last-minute-maneuver rule, which applies
when one of the vessels violates the rules presented, highly
depends on the situation (i.e., traffic, static obstacles, and
weather conditions) and is insufficiently specified in the
COLREGS to be readily formalizable. In general, MTL is
very expressive and, thus, can be most likely used for further
marine traffic rules as well. We will continuously update our
formalized rule set and make it available online6.

VII. CONCLUSIONS

We presented a temporal logic formalization of the COL-
REGS rules, which are essential for autonomous vessels.
Without such a formalization, the rule compliance certifica-
tion of autonomous vessels becomes much more difficult.
The formalization is based on predicates and parameters
that can be easily reused for specifying more marine traffic
rules. The evaluation on real marine traffic data shows that
most vessels in the investigated area and time obey the
rules. The presented formalization allows the straightforward
integration of marine traffic rules into motion planning of
autonomous vessels. In addition, it can be used for the
verification of marine traffic rule compliance independent
of the used motion planner, thus demonstrating its general
applicability.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support
of this work by the research training group CONVEY funded
by the German Research Foundation under grant GRK 2428.

REFERENCES

[1] European Maritime Safety Agency (EMSA), “Annual Overview of
Marine Casualties and Incidents 2020,” EMSA, Tech. Rep., 2020.

[2] “COLREGs: Convention on the International Regulations for Prevent-
ing Collisions at Sea,” International Maritime Organization (IMO),
1972.

[3] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger, “Safe
maritime autonomous navigation with COLREGS, using velocity
obstacles,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp.
110–119, 2014.

[4] L. Zhao and M. I. Roh, “COLREGs-compliant multiship collision
avoidance based on deep reinforcement learning,” Ocean Engineering,
vol. 191, pp. 106 436–106 450, 2019.

6gitlab.lrz.de/tum-cps/traffic-rules

[5] S. Guo, X. Zhang, Y. Zheng, and Y. Du, “An autonomous path
planning model for unmanned ships based on deep reinforcement
learning,” Sensors, vol. 20, no. 2, 2020.

[6] X. Zhang, C. Wang, Y. Liu, and X. Chen, “Decision-making for the
autonomous navigation of maritime autonomous surface ships based
on scene division and deep reinforcement learning,” Sensors, vol. 19,
no. 18, 2019.

[7] M. Junmin, L. Mengxia, H. Weixuan, Z. Xiaohan, G. Shuai,
C. Pengfei, and H. Yixiong, “Mechanism of dynamic automatic
collision avoidance and the optimal route in multi-ship encounter
situations,” Journal of Marine Science and Technology, vol. 26, pp.
141–158, 2021.

[8] Y. He, Y. Jin, L. Huang, Y. Xiong, P. Chen, and J. Mou, “Quantitative
analysis of COLREG rules and seamanship for autonomous collision
avoidance at open sea,” Ocean Engineering, vol. 140, pp. 281–291,
2017.

[9] H. T. L. Chiang and L. Tapia, “COLREG-RRT: An RRT-Based
COLREGS-Compliant Motion Planner for Surface Vehicle Naviga-
tion,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2024–
2031, 2018.

[10] M. R. Benjamin and J. A. Curcio, “COLREGS-based navigation of
autonomous marine vehicles,” in Proc. of the IEEE/OES Autonomous
Underwater Vehicles, 2004, pp. 32–39.

[11] T. A. Johansen, T. Perez, and A. Cristofaro, “Ship collision avoidance
and COLREGS compliance using simulation-based control behavior
selection with predictive hazard assessment,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 12, pp. 3407–3422,
2016.

[12] X. Geng, Y. Wang, P. Wang, and B. Zhang, “Motion plan of maritime
autonomous surface ships by dynamic programming for collision
avoidance and speed optimization,” Sensors, vol. 19, no. 2, 2019.

[13] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[14] R. Alur and T. A. Henzinger, “Real-Time Logics: Complexity and
Expressiveness,” Information and Computation, vol. 104, no. 1, pp.
35–77, 1993.

[15] P. Thati and G. Rou, “Monitoring Algorithms for Metric Temporal
Logic Specifications,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 113, pp. 145–162, 2005.

[16] P. Fiorini and Z. Shiller, “Motion Planning in Dynamic Environments
Using Velocity Obstacles,” The International Journal of Robotics
Research, vol. 17, no. 7, pp. 760–772, 1998.

[17] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-Body Collision Avoidance,” Springer Tracts in Advanced Robotics,
vol. 70, pp. 3–19, 2011.

[18] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2020, pp. 752–759.

[19] E. Tu, G. Zhang, L. Rachmawati, E. Rajabally, and G. B. Huang,
“Exploiting AIS Data for Intelligent Maritime Navigation: A Com-
prehensive Survey from Data to Methodology,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 5, pp. 1559–1582,
2018.

[20] “Marine Cadastre - Vessel Traffic Data,” U.S. Coast Guard Navigation
Center, Alexandria, USA, 2009 - 2020, https://marinecadastre.gov/ais/.

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

2021 IEEE Intelligent Vehicles Symposium (IV)

Hanna Krasowski

IEEE

11 July 2021

Copyright © 2021, IEEE

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 1/10/24, 20:56

B.2 Safe Reinforcement Learning with Probabilistic Guarantees Satisfying Temporal Logic

B.2 Safe Reinforcement Learning with Probabilistic

Guarantees Satisfying Temporal Logic Specifications in

Continuous Action Spaces

Summary Temporal logic is capable of specifying complex notions of safety. While for dis-

crete action and state spaces there are already powerful model checking methods that directly

integrate temporal logic specifications with RL, the seamless integration with continuous spaces

is an open research problem.

We use a probabilistically verified controller to guide the exploration of the RL agent whereby

the agent employs a continuous action and observation space. We define the safety specification

with STL and design a three-step process to achieve safe RL: verification of the controller on a

system with stochastic disturbances from a compact set, safe RL with exploration constraint by

the verified controller, and probabilistic verification of the learned RL agent. In particular, the

RL exploration is bounded to the compact disturbance set used in the first step of verifying a

controller. The probabilistic verification steps determine a probabilistic safety guarantee for the

STL specification, whereas the RL agent improves other objectives such as efficiently fulfilling

a task. We initially require a probabilistically verifiable controller for our approach. Such a

controller is often available, e.g, a black-box controller learned from expert demonstrations.

We evaluate our approach on a proof-of-concept system, where a mobile robot has to evade

a dynamic obstacle with unknown behavior in a specific manner and at the same time has to

reach a goal area. We implement this system in a computer simulation and validate the learned

RL agent in the physical world on mobile robots of the Robotarium. Our safety specification is

a STL formula describing situations in which the safe evasion maneuver is necessary and how

it needs to be executed. Results show that our approach maintains the probabilistic safety

guarantees while improving the goal-reaching performance.

Author contributions H.K. and P.A. came up with the initial idea of combing probabilistic

verification with safe RL and identified a proof-of-concept system. H.K. implemented the

approach. H.K. and P.A. conducted the numerical experiments. H.K. wrote the majority of

the manuscript with support from P.A. for Sec. II and the Corollaries 1 and 2. A.A. and M.A.

provided feedback improving the manuscript.

Copyright notice © 2023 IEEE. Accepted version reprinted, with permission, from Hanna

Krasowski, Prithvi Akella, Aaron D. Ames, and Matthias Althoff, Safe Reinforcement Learning

with Probabilistic Guarantees Satisfying Temporal Logic Specifications in Continuous Action

Spaces, Proc. of the IEEE Conference on Decision and Control, pp. 4372–4378,

doi:10.1109/CDC49753.2023.10383601, 2023.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

131

https://doi.org/10.1109/CDC49753.2023.10383601

Safe Reinforcement Learning with Probabilistic Guarantees
Satisfying Temporal Logic Specifications in Continuous Action Spaces

Hanna Krasowski, Prithvi Akella, Aaron D. Ames, and Matthias Althoff

Abstract— Vanilla Reinforcement Learning (RL) can efficiently
solve complex tasks but does not provide any guarantees on
system behavior. To bridge this gap, we propose a three-
step safe RL procedure for continuous action spaces that
provides probabilistic guarantees with respect to temporal logic
specifications. First, our approach probabilistically verifies a
candidate controller with respect to a temporal logic specification
while randomizing the control inputs to the system within
a bounded set. Second, we improve the performance of this
probabilistically verified controller by adding an RL agent
that optimizes the verified controller for performance in the
same bounded set around the control input. Third, we verify
probabilistic safety guarantees with respect to temporal logic
specifications for the learned agent. Our approach is efficiently
implementable for continuous action and state spaces. The
separation of safety verification and performance improvement
into two distinct steps realizes both explicit probabilistic safety
guarantees and a straightforward RL setup that focuses on
performance. We evaluate our approach on an evasion task
where a robot has to reach a goal while evading a dynamic
obstacle with a specific maneuver. Our results show that our
safe RL approach leads to efficient learning while maintaining
its probabilistic safety specification.

I. INTRODUCTION

Reinforcement Learning (RL) has the potential to solve in-
tricate tasks by learning complex policies efficiently. However,
vanilla RL cannot provide (probabilistic) safety guarantees,
which is essential for real-world applications. Formal methods
can eliminate this problem when integrated into the learning
process. The most prominent formal methods approaches
achieving safety guarantees for RL with continuous action
spaces are control-theoretic methods such as model predictive
control [1], [2], control barrier functions [3], or reachability
analysis [4]–[6]. However, all these methods only handle
reach-avoid safety specifications since they either determine
unsafe state sets and prohibit the RL agent from entering
them or determine safe state sets and force the RL agent to
remain within those. Other methods are needed whenever the
safety specification is more complex and cannot be seamlessly
translated into a reach-avoid problem.

One way of expressing more complex safety specifications
is via temporal logic. Indeed, there has been significant work

The authors gratefully acknowledge the partial financial support of this
work by the research training group ConVeY funded by the German Research
Foundation under grant GRK 2428, by the project TRAITS funded by
the German Federal Ministry of Education and Research, and by an IFI
scholarship funded by the DAAD. Prithvi Akella was supported the Air Force
Office of Scientific Research, grant FA9550-19-1-0302, and the National
Science Foundation, grant 1932091.

H. Krasowski and M. Althoff are with the Technical University of Munich,
Munich, Germany {hanna.krasowski, althoff}@tum.de

H. Krasowski, P. Akella and A. D. Ames are with the California Institute
of Technology, Pasadena, USA {pakella, ames}@caltech.edu

that combines RL with logical specifications for discrete
action spaces [7]–[9]. For example, Alshiekh et al. [7] filter
all unsafe actions proposed by the RL agent with a safety
shield synthesized from linear temporal logic specifications.
Hasanbeig et al. [9] include the temporal logic specifications
in the RL process through a pessimistic and an optimistic
learner where the pessimistic learner limits the exploration
to low-risk actions. Still, applying approaches for discrete
action spaces to real-world systems with continuous control
inputs requires a low-level controller that converts the discrete
actions to continuous inputs.

Other RL approaches realize continuous actions and guide
the agent by a temporal logic specification that includes
safety and performance objectives [10]–[12], i.e., the temporal
logic specification describes the entire task. For example,
Cai et al. [12] transform linear temporal logic into a Büchi
automaton, which is integrated into RL and yields probabilis-
tic guarantees. Although specifying the task via temporal
logic for RL is promising, safety and performance objectives
included in the task are potentially not aligned. Possible
solutions are to provide feedback to the user whenever the
temporal logic specification becomes infeasible [11] or to
trade off between safety and performance [12]. The first
solution is usually not practical for autonomous real-world
systems, and the second one does not provide an explicit
probabilistic guarantee for the safety specification, which
might be required. Instead, our approach separates safety
and performance objectives such that we obtain probabilistic
safety guarantees while the feasibility is ensured by utilizing
a probabilistically verified safe controller.

To provide probabilistic safety guarantees, we leverage ex-
isting work in the probabilistic verification literature taking a
scenario approach to risk-aware probabilistic verification [13],
[14]. Here, the standard approach as described in [15] is to
pose verification as an optimization problem minimizing a
quantifiable satisfaction measure provided by either a temporal
logic specification or another method.
Contribution: We propose a three-step safe RL approach that
improves the performance of a probabilistically verified black-
box controller and results in probabilistic safety guarantees
for the learned agent. Our key idea is to separate safety
and performance objectives in distinct steps (see Fig. 1
with probabilistic verification steps for safety and RL for
performance), which leads to efficient RL while providing
explicit safety guarantees. In contrast to existing methods,
our approach is suited for complex real-world systems since
it is tailored to continuous action spaces, can probabilistically
verify arbitrary Signal Temporal Logic (STL) specifications,

Pu

E
u

ψ, ρ

Pa
πa

Step 1

Probablistic verification
(Safe Controller)

xk+1 = f(xk,u + ξ)

Step 3

Probablistic verification
(Learned Agent)

xk+1 = f(xk, πa)

Step 2

Reinforcement
learning

0 1 2 3 4 5 6 7 8 9 10

-4

-2

0

2

4

Steps (in 105)
R

ew
ar

d

ξ sample from expansion set

u safe controller

Pu, Pa probability of
STL satisfaction

ψ STL specification
ρ STL robustness

πa learned policy

Validation
Safe real-world behavior

Fig. 1. Safe RL process for STL safety specification ψ with robustness measure ρ using a safe controller u and a system model xk+1 = f(xk, ·) where ·
can be replaced by any controller.

and does not require a system model to predict the safety of
future actions. We validate our approach on an evasion task
in a simulated dynamic environment and show that it can
be translated to real-world systems as demonstrated through
experiential results on the Robotarium [16].
Structure: The remainder of this paper is organized as
follows. First, we introduce preliminary concepts in Sec. II.
Second, we present our safe RL approach in Sec. III. Then,
we explain the details of our safe evasion task and its
experimental validation in Sec. IV. Finally, we discuss our
approach in Sec. V and conclude in Sec. VI.

II. PRELIMINARIES

Signal Temporal Logic STL is a language by which rich,
time-varying system behavior can be expressed succinctly and
concisely. STL is based on predicates τ which are Boolean-
valued functions taking a truth value for each state x ∈ X .
Predicates τ and specifications ψ are defined in Backus-Naur
notation [17, Section 2.1] with respect to predicate functions
hτ that define subsets of a state space X where τ evaluates
to True:

τ(x) = True ⇐⇒ hτ (x) ≥ 0, hτ : X → R, (1)

ψ ≜ τ | ¬ψ | ψ1 ∨ ψ2 | ψ1 U[a,b] ψ2,

where, ψ ∈ S, and a, b ∈ R≥0 ∪ {∞}, b ≥ a. Here, S is the
set of all STL specifications which are evaluated over signals
s : R≥0 → Rn, and the space of all signals Sn = {s | s :
R≥0 → Rn}. Finally, we denote that a signal s satisfies ψ at
time t via (s, t) |= ψ. Furthermore, every STL specification
ψ has a robustness measure ρ [18]:

Definition 1. A function ρ : Sn× R+ → R is a robustness
measure for an STL specification ψ if it satisfies: ρ(s, t) ≥
0 ⇐⇒ (s, t) |= ψ.

Example 1. Let ψ = ¬(TrueU[0,2] |s(t)| > 2), then any
real-valued signal s : R≥0 → R satisfies ψ at time t, i.e.
(s, t) |= ψ if ∀ t′ ∈ [t, t+2], |s(t′)| ≤ 2. A possible robustness
measure is ρ(s, t) = mint′∈[t,t+2] 2− |s(t′)|.

Note that while defining a robustness measure as per Defini-
tion 1 aligns with prior works [19], [20] and our predicate
definition in (1), it is not the only way of defining such a
measure, e.g. see Definition 3 in [21] or Section 2.3 in [22].
Probabilistic Controller Verification As expressed in Sec-
tion 3 in [15], STL provides a natural way of phrasing black-
box controller verification as an optimization problem over a
space of parameters p ∈ P affecting signal generation. More
specifically, let P be a space of parameters denoting different
environmental states in which we expect our closed-loop
system to operate. For example, for warehouse robotics, these
environmental states could be package and drop-off locations,
the floor plan, etc. Additionally, for any specific environment
parameter p, there may exist disturbances affecting system
behavior. Thus, we expect the closed-loop trajectory ϕp,
which is realized by our system for a specific environment
parameter p, to be a sample of a p-parameterized random
variable Φp with corresponding distribution πp. To formulate
the theorem used in this work, let us introduce U[·] as uniform
distribution and P△ denoting a probability where △ indicates
the underlying distribution.

Theorem 1. (Adapted from [13, Thm. 7]) Let P be a space
that admits a uniform distribution and let D = {ri =
ρ(ϕpi

)}Ni=1 be a set of N closed-loop system robustnesses ri,
evaluating the robustness of one closed-loop trajectory sample
ϕpi

per i.i.d. sample pi drawn from the uniform distribution
over P . Furthermore, define ρ∗N = min{ri ∈ D}. For any
ϵ ∈ [0, 1], the probability that ρ∗N underperforms the 1− ϵ-th
quartile of possible robustness values is bounded below by
1− (1− ϵ)N , i.e. with µ ≜ U[P]× πp,

PN
µ [Pµ[ρ(ϕp) ≥ ρ∗N] ≥ 1− ϵ] ≥ 1− (1− ϵ)N . (2)

For a more detailed derivation of this theorem and its
implications on dimensional scaling, we refer the interested
reader to [13].
Overarching Problem Statement: We assume that we have
a safety specification ψ expressed in STL and an associated
robustness measure ρ as per Definition 1. We also assume

that a model and black-box controller u are available:

xk+1 = f(xk, uk), xk, xk+1 ∈ X ⊆ Rn,

uk ∈ U ⊆ Rm, u : X → U , (3)

where u(xk) = uk and the subscripts denote the time step.
Additionally, we assume that the distribution of system
behavior πp is time-invariant. Note that we do not need
to explicitly know the model f but can also employ a
black-box simulation environment. The problem is to ensure
probabilistic safety guarantees specified via STL for the given
system while using RL for improving the performance.

III. SAFE RL PROCESS

Step One: Our safe RL concept consists of three steps as
shown in Fig. 1. Our first step is to follow the probabilistic
verification procedure outlined in Sec. II to verify whether the
controller u realizes safe behavior when adding the uniformly
sampled disturbance ξ:

xk+1 = f(xk,u(xk) + ξ), ξ ∼ U[E], E ⊆ Rm. (4)

Here, U[E] corresponds to the uniform distribution over the
set E , which we assume to be fixed and independent of
the system state x ∈ X . Per Theorem 1, we can determine
the following probabilistic lower bound on the robustness
measure value achievable by the closed-loop system (4).

Corollary 1. Let the system dynamics be as per (4), the
safety specification ψ have robustness measure ρ as per
Definition 1, and D = {ri = ρ(ϕxi

0
)}Ni=1 be the robustnesses

of N trajectories ϕxi
0

where the initial conditions xi0 were
uniformly sampled over X . Define ρ∗N = min{ri ∈ D},
then for some ϵ ∈ [0, 1], ρ∗N underperforms the 1 − ϵ-th
quartile robustnesses achievable by the stochastic closed-
loop system in (4) with minimum confidence 1 − (1 − ϵ)N ,
i.e. with µ = U[X]×U[E]×U[E]× . . . ,

PN
µ

[
Pµ [ρ(ϕx0

) ≥ ρ∗N] ≥ 1− ϵ
]
≥ 1− (1− ϵ)N .

Proof: This is an application of Theorem 1.
Following Corollary 1, we can identify the robustness set
D by sampling N trajectories of the closed-loop system
with controller u under bounded input disturbance from
E . Given the robustness set D and a specified ϵ, we can
evaluate the probabilities in Corollary 1 and obtain ρ∗N . We
abbreviate this probabilistic verification process with the
function probv(f, u, E , N, ϵ). The first step concludes once
we verified that a candidate controller u achieves safe behavior
with a high probability, i.e. ρ∗N ≥ 0 with 1− ϵ ≈ 1.
Remark on Maximizing E: The second step in our safe RL
process will be to learn a policy that chooses disturbances
within the expansion set E . As such, maximizing the size of
this set has a direct impact on the ability of our procedure to
learn a performant policy. To that end, we propose a possible
algorithm to expand E in Alg. 1.

In more detail, in line 2 of Alg. 1, the initial expansion set
is verified. If this initial set is not verifiable, a smaller initial
set must be provided. Otherwise, the expansion set Etemp,
increased iteratively through ∆f (line 5), is subsequently

Algorithm 1 findExpansionSet()
Input: executable system f , controller u, initial expansion

interval set Einit, vector of fractions to increase set
∆f ∈ Rm, number of samples N , quartile parameter ϵ

Output: Final expansion set E
1: i = 1
2: ρ∗N = probv(f, u, Einit, N, ϵ)
3: while ρ∗N ≥ 0 do
4: E = (1m + (i− 1)∆f) Einit
5: Etemp = (1m + i∆f) Einit
6: ρ∗N = probv(f, u, Etemp, N, ϵ)
7: i← i+ 1
8: end while
9: if i ̸= 1 then

10: return E
11: else
12: return Reduce Einit as too large to verify
13: end if

verified (line 6). Once the verification is not successful
anymore, the algorithm terminates and returns the largest
verified expansion set E (line 10). Note that we use an interval
for E for simplicity. However, other set representation such as
zonotopes would be possible. To identify a more expressive
expansion set, conformance checking [23] could be used.

Step Two: The second step in our safe RL process is to learn a
controller that improves for performance of the safe controller
u we verified in the prior step. To constrain the learning based
on the safe controller, we define a state-dependent action
space A(x) around the safe control input u(x) inspired by
continuous action masking [24]:

A(x) = u(x)⊕ E , (5)

where ⊕ denotes the Minkowski sum. Based on Corollary 1,
we can compute the probabilistic guarantee (usually ≈ 1) for
the closed-loop system when perturbing the safe input u(x)
with uniformly sampled noise within the expansion set E .
Therefore, if we continuously choose actions a ∈ A(x), our
learned agent will with high probability yield safe behavior
that also fulfills the probabilistic safety specification. Conse-
quently, the agents can focus on optimizing for performance
when learning within E around the safe controller. Thus,
our three-step process delineates the safety (step one and
three) and performance aspects (step two). This simplifies
the reward and observation definitions as we only need to
consider performance. Fig. 2 depicts this learning process
and shows how the RL agent can effect a system trajectory
in the state space by changing the control input within A(x).
Step Three: The third step is to verify the learned agent with
a deterministic policy πa : X → U , to ensure the preservation
of safety after optimizing for performance through learning.
This is necessary since the learned agent (obtained by step
two) will be different from the probabilistically verified
safe controller with disturbance uniformly sampled from
E (verified in step one). Thus, the probabilistic verification

Environment

Agent

Safe Controller
u(xt)

Expansion Set
E

Observation ot
Reward rt

Action at

X

U

x0
x1

x′1
x2

x′2

E
u(x0)

a0

E u(x1)
a1

Fig. 2. RL within expansion set E around the safe controller u(x) with
trajectories for state space X and input space U . The states x are reached
by the RL actions, and x′ are states that would be reached by the safe
controller.

result is likely to hold but still needs to be verified for the
learned agent. This verification, however, amounts to one
more implementation of Theorem 1:

Corollary 2. Let the system dynamics be as per (3) with a
learned RL agent πa : X → U as controller, let the system
safety specification ψ have a robustness measure ρ as per
Definition 1, and let D and ρ∗N be as in Corollary 1. Then
for some ϵ ∈ [0, 1], ρ∗N underperforms the 1−ϵ-th quartile of
robustnesses achievable by the learned system with minimum
confidence 1− (1− ϵ)N .

PN
U[X]

[
PU[X] [ρ(ϕx0

) ≥ ρ∗N] ≥ 1− ϵ
]
≥ 1− (1− ϵ)N .

Proof: This is an application of Theorem 1.

IV. SAFE EVASION TASK WITH EXPERIMENTAL
VALIDATION

To make our high-level approach more tractable, we define
a problem with a safety specification that is more complex
than a simple reach-avoid specification. Specifically, the
mobile robot’s task is to follow an optimal path to the goal
while complying with a temporal logic safety specification –
whenever a collision is possible with the dynamic obstacle of
the environment within the next few time steps, the mobile
robot has to evade in a specified manner. Relevant examples
for real-world applications where only a specific evasion is
safe are: autonomous vehicles that have to overtake another
traffic participant in a specific lane [25] or autonomous vessels
that have to perform specific collision avoidance maneuvers in
order to be predictable for other ships [26]. We first describe
the safety specification and RL problem. Our experiments
are conducted on the Robotarium [16] and its simulation.

A. Safety Specification

The state of the robot is r = [xr, yr, θr, vr] ∈ R4 where xr
and yr describe the position of the robot, θr is its orientation,
and vr is its velocity aligned with its orientation. There is
always one dynamic obstacle present and it is described by
the state o = [xo, yo, θo, vo] ∈ R4. The time step is ∆t. We
assume a unicycle model for the robot for which control
inputs u are velocity and turning rate. Note that for the
Robotarium, we provide the same control inputs and their
robot controller generates the corresponding actuator signals.

Our safety specification is as follows: When the projected
positions of the robot and any obstacle are closer than 0.4m
for any time steps within 1 s, then the robot should evade
in a specific manner that depends on the relative positions
and orientations of the obstacle and agent. To formalize
the specification with STL, we first need to define a few
predicates and functions.

We can convert heading angles to unit vectors via a2v(ϕ) =
[cos(ϕ), sin(ϕ)]. The rotation matrix for an angle α is

Rα =

[
cos(−α) sin(−α)
− sin(−α) cos(−α)

]
.

The function sgn(x) returns −1 if x < 0, 1 if x > 0 and 0
otherwise. The minimum distance function MD(r, o,∆t) is
defined as:

MD(r, o,∆t) = min
t∈{0,∆t,...,1 s}

(∥∥∥∥∥

([
xr
yr

]
+ a2v(θr)vrt

)

−
([
xo
yo

]
+ a2v(θo)vot

)∥∥∥∥∥
2

)
,

where the time step size is ∆t = 0.033 s. The minimum
distance prediction assumes that the robot and the obstacle
will move in their current directions with their current speeds,
which is often a reasonable prediction. The predicate IH(r, o)
checks if the obstacle is in the halfspace in front of the vehicle,
i.e. it evaluates to true iff [xo, yo] · a2v(θr)− br ≥ 0 where
br is the offset. Safe evasion is specified by the predicate:

EV(θ̇r,∆θ, sign) =

True, iff (|θ̇r| ≤ 1.5 rad s−1

∧ sgn(θ̇r) = sign)∨
((∆θ ≥ 0 rad

∨|∆θ| ≤ 0.01 rad)

∧0.01 rad s−1 ≥ |θ̇r|)
False, otherwise,

where ∆θ ∈ [−π, π] is the orientation difference to the
orientation perpendicular to the direction of the straight path
between the initial state and goal in the direction of turning;
sign is −1 if the robot should turn to the left and 1 in case
the robot should turn to the right. See Fig. 3 for a depiction
of the case-by-case evasion situations. Note that for our task
specification with one non-reactive dynamic obstacle, the four
cases are exhaustive for identifying the direction of evasion.
To give an intuition, a safe evasion maneuver is that the
robot turns until its orientation is perpendicular to the straight
path between the initial state and goal. If this orientation is
reached, the robot is no longer required to turn1 and continues
driving away from the direct path between the initial state
and goal to evade further.

With these predicates and functions, the STL formula is:

G
(
(IH(r, o) ∧MD(r, o,∆t) ≤ 0.4m) =⇒

EV(θ̇r,∆θ, sign)
)
.

(6)

1No turning would be an impossible requirement due to the stochasticity
needed for the input space, which includes the turning rate.

[xr, yr]

θr

[xo, yo]
1,2

θ1o
θ2o

[xo, yo]
3,4

θ3o

θ4o

Case 3

Case 4

Case 1

Case 2

Fig. 3. Visualization of the four different relative orientations and position cases. The obstacle is depicted in orange and the robot in blue, and the case
is indicated by the superscript. For cases 1 and 3, the robot should turn right (i.e., sign = 1) and for the cases 2 and 4, the robot should turn left (i.e.,
sign = −1).

The robustness measure for this STL formula is:

ρ =

{
−1, iff eq. (6) = False∑K

k=1 prfm(rK , r0, goal,K), otherwise,

where K is the length of the trajectory, goal is the position
of the goal, rK is the position of the robot at the end of
the trajectory, r0 is the initial position of the robot, and the
performance objective is defined by

prfm(rK , r0, goal,K) =max

((
1− ∥rK − goal∥2∥r0 − goal∥2

)
, 0

)

+

(
1− K

Kmax

)
,

with the maximal length of a trajectory Kmax = 300. Note
that although the objective of this safety specification is
collision avoidance, which can also be achieved with other
formal methods such as control barrier functions, these meth-
ods cannot easily be used to guarantee a specific avoidance
behaviour as defined in the predicate EV. Additionally, note
that this particular safety specification can also be expressed
with Linear Temporal Logic (LTL). However, as STL is more
expressive than LTL, STL can be utilized to express more
complex specifications, e.g. for marine traffic rules [26].

B. Reinforcement Learning Problem

We obtain the action space as described in (5). The reward
function R is the difference between the achieved state with
the RL control input and only with the safe control input

R = rdiff · (∥goal − [xsc, ysc]∥2 − ∥goal − [xr, yr]∥2),
where rdiff ∈ R+ scales the reward, and [xsc, ysc] is the
agent’s position if the input from the safe controller would be
used in the previous state, i.e. at−1 = ut−1. Our agent can
observe its relative position to the goal, the relative position to
the closest point on the optimal path, the orientation difference
to the optimal orientation calculated from the initial position
to the goal, and the relative position to the obstacle. Note
that this observation differs from the state.

We used Proximal Policy Optimization (PPO) [27] as our
RL algorithm and scaled the reward R with the factor rdiff

0 1 2 3 4 5 6 7 8 9 10

-4

-2

0

2

4

Steps (in 105)

R
ew

ar
d

(a)

0 1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

Steps (in 105)

A
ct

io
n

D
iff

er
en

ce

(b)

Fig. 4. Training curves for (a) reward function and (b) Euclidean norm
difference between the learned agent’s action and the safe control input
scaled between 0 and 1. The action difference of a step is one if the agent
selects an action on the border of the expansion set and zero if the agent does
not alter the safe control input. The curves depict the mean and standard
deviation for five different random seeds with the same hyperparameters.

such that the reward is approximately between −5 and 5
per episode. We identified the best hyperparameters for PPO
with a small search of eight different configurations and three
random seeds. However, all tested hyperparameters showed
a converging behavior. The hyperparameters that differ from
the default PPO configuration of stable-baselines3 [28] are
the network architecture (two-layer multi-layer perceptron
with 128 neurons in each layer), the value function coefficient
(0.05), and the entropy coefficient (0.01). We train the agent
for one million training steps.

Verification of Safe Controller (Step 1): We want to
verify whether our safe controller with uniformly sampled

robustness measure ρ(s)

0.0

0.5

1.0
1.5

pr
ob

ab
lit

y
de

ns
ity

0.0

0.5

1.0

1.5

stochastic safe controller

learned agent

deterministic safe controller

t=0s

t=0s

t=7.4s
t=12s

t=9.6s

t=3.6s

t=3.6st=7.4st=9.6st=12s

t=0s

t=3.8s

t=3.8s

t=12s

t=12s
t=5s

t=0s t=2s

t=2s

t=5.2s

t=5.2s
t=0s

t=0s

t=0s t=1.8s

t=1.8s

t=0s

t=8.8s

t=15s

t=15s
t=8.8s

t=7.2s

t=7.2s

Fig. 5. Center: Robustness measure ρ(s) histograms for 200 samples; Robotarium trajectories for different robustness values for learned agent (left top
0.114, bottom 1.62) and for safe controller (right top: 0.089, bottom: 1.21).

perturbations from the expansion set E achieves safe behavior
with 95% probability (ϵ = 0.05), i.e. has a probabilistic
cutoff ρ∗N > 0 as per Theorem 1 with N = 50 samples.
We apply Alg. 1 with Einit = [−0.0002, 0.0002]m s−1 ×
[−0.005, 0.005]rad s−1 and ∆f = [10, 1.0] and obtain E =
[−0.002, 0.002]m s−1 × [−0.01, 0.01]rad s−1. Verifying the
safe controller on the unicycle model with N = 50 samples,
yielded a probabilistic cutoff ρ∗50 = 0.276 (see Fig. 5).
This indicates that our chosen safe controller successfully
exhibits safe behavior with 95% probability, and we are 92.3%
confident in this statement — probabilities were calculated
via substitution in (2).

Reinforcement Learning (Step 2): We expect that if we
define our action space as in (5), the previous verification
result will most likely hold for the learned agent. Fig. 4 depicts
the episode reward and action difference to the safe control
input over the training steps. A reward above zero indicates
that the agent performs better with respect to goal reaching
than the safe controller. This is the case after approximately
50000 training steps. Additionally, the difference between the
safe control input and the agent’s action increases over the
training towards the agent mainly selecting actions close to
its action space boundary.

Verification of Learned Agent (Step 3): Following the same
verification procedure as for the stochastic safe controller
yielded probabilistic cutoffs ρ∗50 = 0.276 for the safe
controller without perturbations and ρ∗50 = 0.221 for the
learned agent. Additionally, Fig. 5 shows the robustness
measure histograms for 200 samples. For the learned agent,
the distribution is shifted to slightly higher robustness values
(robustness measure mean is 0.78 and standard deviation
is 0.32) in comparison to the deterministic safe controller
(robustness measure mean is 0.76 and standard deviation
is 0.35). Since positive robustness measure values encode
faster goal reaching, our numerical results imply that the
learned agent improves the performance of the deterministic

safe controller, while still exhibiting the same probabilistic
level of STL specification compliance. The histogram for the
stochastic safe controller has the same range and a similar
shape as the histogram for the learned agent, which indicates
that the verification result of the perturbed safe controller is,
in fact, a good approximator of learned system behavior.
Testing on Robotarium Robot: Although our implementation
is in Python and did not focus on efficiency, it was not
necessary to improve the computational efficiency to be
real-time capable for the Robotarium robot [16]. This is
because we mainly run the forward evaluation of the policy
network and safe controller online, which are computationally
lightweight, and there is no need to predict and incorporate
the safety of actions online which is often computation
heavy. Fig. 5 shows example trajectories from the Robotarium
experiments2. We observe that for high robustness values the
robot only has to evade shortly or not at all. The main reason
for low robustness values is that the robot has to evade and
the final time for our experiment is reached before the robot
can return to the optimal path and reach the goal.

V. DISCUSSION

Our implementation is a proof of concept for our probabilis-
tically safe RL approach and shows that for the safe evasion
task probabilistic safety guarantees are not jeopardized by
improving the performance with RL. Since other approaches
using RL with temporal logic for safety specifications tackle
a different problem (see Sec. I), we compare our approach
only with the baseline of the safe controller’s performance.
A more complex problem would be autonomous driving
on highways, where it is very hard to fulfill performance
and safety specifications simultaneously during controller
synthesis but often a safe controller exists. In the future such
more complex problems should be investigated but are out
of scope for this paper.

2Video of example trajectories: https://youtu.be/8WWmKfh6WSM

An important assumption of our approach is that a safe
(black-box) controller is available. This assumption can be sat-
isfied through the utilization of existing methods to synthesize
safe controllers from temporal logic specifications [29], [30]
or from expert data via imitation learning [31]. Note that, we
only require this controller to satisfy a safety specification, e.g.
avoid obstacles, and operate within safe bounds. Furthermore,
as in the case of our experiment, it can be relatively easy to
implement a safe controller. In particular, our safe controller
consists of a high-level algorithm that provides waypoints to
prevent a collision or track the optimal path as the situation
requires. A low-level controller then tracks these waypoints
and provides control inputs for the unicycle model. Note that
we do not need to know the architecture of the safe controller
as our approach regards it as a black-box.

VI. CONCLUSION

The proposed three-step safe RL approach achieves ef-
fective behavior that satisfies a desired probabilistic STL
specification. Our results on a safe evasion task show that
the separation of safety and performance leads to lean and
efficient learning and the probabilistic STL guarantees can
easily be verified. The architecture of our approach removes
the necessity of online predictions for the safety of actions,
which, as a consequence, reduces the computation time and
allows us to effortlessly run the controller in real-time.

REFERENCES

[1] S. Gros, M. Zanon, and A. Bemporad, “Safe reinforcement learning
via projection on a safe set: How to achieve optimality?” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 8076–8081, 2020.

[2] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,”
Automatica, vol. 129, no. 1, pp. 109 597–109 614, 2021.

[3] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. of the AAAI Conf. on Artificial
Intelligence, 2019, pp. 3387–3395.

[4] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H. Gillula,
and C. J. Tomlin, “Reachability-based safe learning with Gaussian
processes,” in Proc. of the IEEE Conference on Decision and Control,
2014, pp. 1424–1431.

[5] N. Kochdumper, H. Krasowski, X. Wang, S. Bak, and M. Althoff,
“Provably safe reinforcement learning via action projection using
reachability analysis and polynomial zonotopes,” IEEE Open Journal
of Control Systems, vol. 2, pp. 79–92, 2023.

[6] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-Based
Trajectory Safeguard (RTS): A safe and fast reinforcement learning
safety layer for continuous control,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3663–3670, 2021.

[7] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proc. of the
AAAI Conf. on Artificial Intelligence, 2018, pp. 2669–2678.

[8] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem, “Shield synthesis
for reinforcement learning,” in Leveraging Applications of Formal
Methods, Verification and Validation: Verification Principles, 2020, pp.
290–306.

[9] M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” in Proc. of the International
Conference on Autonomous Agents and Multiagent Systems, 2020,
pp. 483–491.

[10] A. Lavaei, F. Somenzi, S. Soudjani, A. Trivedi, and M. Zamani,
“Formal controller synthesis for continuous-space MDPs via model-
free reinforcement learning,” in Proc. of the ACM/IEEE International
Conference on Cyber-Physical Systems, 2020, pp. 98–107.

[11] D. Gundana and H. Kress-Gazit, “Event-based signal temporal logic
synthesis for single and multi-robot tasks,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3687–3694, 2021.

[12] M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan, “Modular deep
reinforcement learning for continuous motion planning with temporal
logic,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7973–
7980, 2021.

[13] P. Akella, A. Dixit, M. Ahmadi, J. W. Burdick, and A. D. Ames,
“Sample-based bounds for coherent risk measures: Applications to
policy synthesis and verification,” arXiv preprint arXiv:2204.09833,
2022.

[14] B. Weng, G. A. Castillo, W. Zhang, and A. Hereid, “On safety testing,
validation, and characterization with scenario-sampling: A case study
of legged robots,” in Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2022, pp. 5179–5186.

[15] A. Corso, R. Moss, M. Koren, R. Lee, and M. Kochenderfer, “A survey
of algorithms for black-box safety validation of cyber-physical systems,”
Journal of Artificial Intelligence Research, vol. 72, pp. 377–428, 2021.

[16] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The Robotarium: A remotely accessible swarm robotics
research testbed,” in Proc. of the IEEE International Conference on
Robotics and Automation, 2017, pp. 1699–1706.

[17] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Nick-
ović, and S. Sankaranarayanan, Specification-Based Monitoring of
Cyber-Physical Systems: A Survey on Theory, Tools and Applications.
Springer, 2018.

[18] O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[19] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Systems Letters, vol. 3,
no. 1, pp. 96–101, 2018.

[20] ——, “Barrier function based collaborative control of multiple robots
under signal temporal logic tasks,” IEEE Transactions on Control of
Network Systems, vol. 7, no. 4, pp. 1916–1928, 2020.

[21] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Proc. of the International Conference on Formal
Modeling and Analysis of Timed Systems, 2010, pp. 92–106.

[22] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications for continuous-time signals,” Theoretical Computer
Science, vol. 410, no. 42, pp. 4262–4291, 2009.

[23] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Model
conformance for cyber-physical systems: A survey,” ACM Transactions
on Cyber-Physical Systems, vol. 3, no. 3, pp. 1–26, 2019.

[24] H. Krasowski, J. Thumm, M. Müller, L. Schäfer, X. Wang, and
M. Althoff, “Provably safe reinforcement learning: A theoretical and
experimental comparison,” arXiv preprint arXiv:2205.06750, 2022.

[25] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2020, pp. 752–759.

[26] T. R. Torben, J. A. Glomsrud, T. A. Pedersen, I. B. Utne, and A. J.
Sørensen, “Automatic simulation-based testing of autonomous ships
using Gaussian processes and temporal logic,” Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, 2022.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[28] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-Baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021.

[29] C. Belta and S. Sadraddini, “Formal methods for control synthesis: An
optimization perspective,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 115–140, 2019.

[30] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proc. of the IEEE Conference on
Decision and Control, 2014, pp. 81–87.

[31] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys, vol. 50, no. 2,
2017.

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

2023 62nd IEEE Conference on Decision and Control (CDC)

Hanna Krasowski

IEEE

13 December 2023

Copyright © 2023, IEEE

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 1/22/24, 14:34

B Reinforcement Learning with Safety Specifications via Temporal Logic

B.3 Provable Traffic Rule Compliance in Safe Reinforcement

Learning on the Open Sea

Summary Most provably safe RL approach only regard safety as avoiding unsafe states, i.e.,

Safety Specification 2. However, legal safety for autonomous vehicles is often more complex

and defined by traffic rule compliance. To integrate traffic rules into verification approaches,

they need to be formalized, for which temporal logic is well suited.

To this end, we propose a safe RL approach that guarantees maritime traffic rule compliance

during training and deployment for motion planning of autonomous vessels on the open sea. In

order to integrate traffic rules in verification approaches, we first formalize them using temporal

logic. To this end, we extend and adapt the maritime traffic rules formalized via temporal

logic in Appendix B.1. We design a discrete action space and develop an online verification

approach to determine all rule-compliant actions given the current system state. In particular,

we introduce a statechart which entails the traffic rule specification of the COLREGS and

design an efficient maneuver synthesis to obtain rule-compliant actions. Further, we introduce

an emergency controller that reflects the last-minute maneuver rule of the COLREGS, i.e.,

the controller mitigates the collision risk by performing an evasive maneuver whenever other

vessels do not take appropriate collision avoidance measures. We prove that our safe RL agent

only selects verified actions that comply with the formalized legal safety specification of the

COLREGS. Our verification approach is built on parameterized temporal logic rules and

predicates. Thus, if parameters change due to traffic situations other than open-sea situations,

they can be easily adapted.

We train and test the safe RL agent on critical traffic situations, which are either handcrafted

or based on recorded maritime traffic data. We compare our safe RL agent with two baseline

RL agents, which are informed about traffic rule compliance through the reward function only.

We observe that the baseline RL agents violate safety and collide even after training, whereas

our safe RL agent never collides and always complies with the formalized maritime traffic rules.

Further, our results show that RL agents trained on handcrafted data generalize well to traffic

situations based on recorded maritime traffic data.

Author contributions H.K. initiated the project of safe RL with maritime traffic rules

formalized via temporal logic. H.K. formalized the last-minute maneuver rule and designed

the emergency controller. H.K. developed the online verification approach, implemented the

RL environment for autonomous vessels, conducted the numerical experiments, and wrote the

article. M.A. provided feedback advancing the verification approach and the manuscript.

Copyright notice All rights retained by the authors. Preprint published on arXiv under

non-exclusive license available at arxiv.org/licenses/nonexclusive-distrib/1.0/. Ver-

sion of record available at doi:10.48550/arXiv:2402.08502

TUM Graduate School This publication is not a core publication in accordance with

Article 7, section 3 TUM Doctoral Regulations (PromO).

140

http://arxiv.org/licenses/nonexclusive-distrib/1.0/
https://doi.org/10.48550/arXiv.2402.08502

1

Provable Traffic Rule Compliance in
Safe Reinforcement Learning on the Open Sea

Hanna Krasowski and Matthias Althoff

Abstract—For safe operation, autonomous vehicles have to
obey traffic rules that are set forth in legal documents formulated
in natural language. Temporal logic is a suitable concept to
formalize such traffic rules. Still, temporal logic rules often result
in constraints that are hard to solve using optimization-based
motion planners. Reinforcement learning (RL) is a promising
method to find motion plans for autonomous vehicles. However,
vanilla RL algorithms are based on random exploration and do
not automatically comply with traffic rules. Our approach accom-
plishes guaranteed rule-compliance by integrating temporal logic
specifications into RL. Specifically, we consider the application
of vessels on the open sea, which must adhere to the Convention
on the International Regulations for Preventing Collisions at
Sea (COLREGS). To efficiently synthesize rule-compliant actions,
we combine predicates based on set-based prediction with a
statechart representing our formalized rules and their priorities.
Action masking then restricts the RL agent to this set of verified
rule-compliant actions. In numerical evaluations on critical
maritime traffic situations, our agent always complies with the
formalized legal rules and never collides while achieving a high
goal-reaching rate during training and deployment. In contrast,
vanilla and traffic rule-informed RL agents frequently violate
traffic rules and collide even after training.

Index Terms—Safe reinforcement learning, autonomous ves-
sels, temporal logic, provable guarantees, collision avoidance.

I. INTRODUCTION

Reinforcement learning (RL) has provided promising results
for a variety of motion planning tasks, e.g., autonomous
driving [1], [2], robotic manipulation [3], [4], and autonomous
vessel navigation [5]–[7]. RL algorithms learn a capable
policy through random exploration. As random exploration is
inherently unsafe, RL agents are mainly trained and tested
in simulation only. To transfer the capabilities of RL-based
motion planning systems to the physical world, the agents have
to be safe. Safe RL extends RL algorithms with safety con-
siderations. Most safe RL approaches constrain the learning
softly, e.g., by integrating risk measures in the reward function
or by adapting the optimization problem for obtaining a policy
considering constraints [8]. However, for safety-critical tasks,
such as motion planning in the physical world, hard safety
guarantees are necessary, which most safe RL approaches
cannot provide.

Provably safe RL achieves hard safety guarantees during
training and operation by combining RL with formal methods
[8]. The safety specifications regarded in provably safe RL are
so far mainly avoid specifications, i.e., it is ensured that unsafe

All authors are with Technical University of Munich, Germany; TUM
School of Computation, Information and Technology, Department of Com-
puter Engineering; Munich Center for Machine Learning (MCML).
{hanna.krasowski, althoff}@tum.de

areas and actions are always avoided. However, the notion of
safety for real-world tasks is often more complex than avoiding
unsafe sets. For autonomous vehicles, legal safety is usually
required, meaning that vehicles do not cause collisions by
obeying traffic rules [9], [10]. To apply formal methods, these
traffic rules need to be formalized. Temporal logic is suited to
formalize traffic rules [9], [11]–[15], as it can capture their
spatial and temporal dependencies well. Still, efficient and
generalizable integration of formalized traffic rules in motion
planning approaches is an open research problem.

In this work, we propose a provably safe RL approach that
ensures legal safety by complying with traffic rules formalized
in temporal logic for the application of autonomous vessel
navigation. Fig. 1 displays the concept of our approach. We
develop a statechart that reflects the formalized traffic rules
and their hierarchy. Regular collision avoidance rules are
followed as long as there is no immediate collision risk, and
an emergency operation that executes a last-minute maneuver
is immediately activated once a collision becomes likely. For
the regular collision avoidance rules, an application-specific
maneuver synthesis method based on a search algorithm is
developed to efficiently identify actions that are compliant with
traffic rules. For emergency operation, we detect imminent
collision of the vessels using set-based reachability analysis
and design an emergency controller that aims to prevent
collisions as much as possible. Rule-compliant actions for both
regular and emergency operation are computed online based
on our statechart and are used to constrain the RL agent so it
can only select verified actions. Our main contributions are:

• We are the first to introduce a safe RL approach that
ensures provable satisfaction of open-sea maritime col-
lision avoidance rules, which are formally specified via
temporal logic;

• We improve our previously formalized maritime traffic
rules [15], newly formalize the last-minute maneuver
rule from the Convention on the Convention on the
International Regulations for Preventing Collisions at Sea
(COLREGS), and develop a rule-compliant emergency
controller;

• Our provably safe maneuver synthesis for discrete action
spaces efficiently identifies safe actions online;

• We train provably safe RL and safety-informed RL agents
on critical maritime traffic situations and evaluate their
performance in different deployment configurations on
handcrafted and recorded maritime traffic data.

The remainder of this article is structured as follows: We
present and discuss related literature in Sec. II, introduce

2

Environment

Safety verification (see Fig. 3)

Agent

Normal
operation

Emergency
operation

Observation ot
Reward rt

Safe action at

Safety-relevant states

Safe action set As

Reinforcement learningFormal safety specification

Traffic rule:

Stand on

Give way

Avoidance
maneuver

G
(

crossing_persistent(xego, xobs, ∗)
)

=⇒(
F[0,treact+tmaneuver](maneuver_crossing(xego, xobs, ∗))∧

F[treact,treact+2tmaneuver](¬collision_possible(xego, xobs, ∗))
))

Temporal logic formula:

Agent behavior

Ego vessel

Obstacle vessel

Goal

Crash

without safety verification
rule-compliant and collision-free

Fig. 1. Proposed provably safe RL approach for autonomous vessels. First, traffic rules for collision avoidance are formalized with temporal logic (see
Sec. III). Based on the formal specification, the set of rule-compliant actions is identified (see Sec. IV and Sec. V), which are integrated in the RL process so
that the agent can only select actions that are rule-compliant (see Sec. VI). Note that the statechart in Fig. 3 details the computation of verified rue-compliant
actions and comprises two modes: normal operation and emergency operation. The resulting safe agent achieves rule compliance and collision avoidance
during training and deployment, while agents without the safety verification of actions violate the formalized traffic rules and collide still after training (see
Sec. VII).

relevant concepts published preliminarily to this article and
state the problem in Sec. III. We present the formalized traffic
rules and prove that a statechart models the traffic rules in
Sec. IV. We describe our rule-compliant maneuver synthesis
in Sec. V. The RL approach is detailed in Sec. VI. In Sec. VII,
we discuss our experimental results on critical maritime traffic
situations and conclude in Sec. VIII.

II. RELATED WORK

We categorize related work into safety specifications for
maritime motion planning, motion planning approaches for
autonomous vessels, and provably safe RL.

a) Safety specification for maritime motion planning:
The notion of safety in maritime motion planning is usually
rule compliance with maritime traffic rules describing collision
avoidance maneuvers [16]. The most relevant maritime traffic
rules for collision avoidance are specified in the COLREGS
[17]. Often, these traffic rules are indirectly integrated in the
motion planning approach, e.g., through geometric thresholds
[18]–[23], virtual obstacles [24], or cost functions [6], [25]–
[29]. However, these approaches usually do not capture the
temporal properties of collision avoidance rules, and the imple-
mented interpretation of the COLREGS is often intransparent.

Another concept is to formalize the traffic rules and di-
rectly use them in motion planning. This is a more faithful
consideration of traffic rules than the previously mentioned
indirect integration. Additionally, the rule formalization is
usually parameterized, which eases adaptions. Temporal logic
is suited to formalize COLREGS since it captures temporal
dependencies and thus can model sophisticated specifications
of encounter situations. There are two relevant studies that
formalize maritime traffic rules with temporal logic. Torben et
al. [30] formalize COLREGS with signal temporal logic for
automatic testing of autonomous vessels. This has the advan-
tage that robustness measures specified through signal tempo-
ral logic formulas can be used as costs for motion planning
approaches, since they quantify rule compliance. Krasowski
et al. [15] formalize COLREGS with metric temporal logic
and evaluate their compliance on real-world maritime traffic

data. They discuss that the COLREGS are currently not well
posed for more than two vessels, which needs to be addressed
by regulators to make autonomous vessels admissible for
commercial deployment in the real-world. How to best employ
temporal logic formalizations for motion planning approaches
as presented by [15], [30] is an open research question, for
which we propose a solution in this work.

b) Motion planning for vessels: The motion planning
literature can be categorized into single-agent and multi-agent
motion planning problems [31], where multi-agent settings
are often distinguished into cooperative [32]–[34] and non-
cooperative [35], [36] settings. In this article, we regard single-
agent motion planning. Maritime motion planners are often
divided into three building blocks [37]: a guidance system
generating reference trajectories, a control system for tracking
reference trajectories, and a state observer1. For example, one
line of single-agent motion planning research employs search-
based algorithms based on motion primitives, e.g., rapidly-
exploring random trees [29], [38], [39]. Other studies employ
model predictive control (MPC) [26], [28], [40] to obtain an
optimal control signal. In contrast to using search algorithms
based on a finite amount of motion primitives, MPC directly
optimizes the controller in the continuous state and input
space. In particular, the studies [26], [28] show promising
results on multi-obstacle scenarios and Kufoalor et al. [28]
even evaluate their approach in real-world experiments with
two obstacle vessels. However, for MPC an optimization prob-
lem must be solved repeatedly, which can be computationally
costly.

RL is a well-suited machine learning approach to solve
single-agent motion planning tasks in uncertain environments
[6], [7], [41]–[44]. Regarded scenarios are usually on the open
sea with other non-reactive dynamic obstacles [7], [42], [43]
and static obstacles [6], [41], [44]. To achieve a behavior that
adheres to maritime traffic rules, the reward function considers
rule compliance to minimize risks, but does not guarantee
compliance because the reward function is only maximized

1Often referred to as a navigation system in the maritime literature.

3

[6], [7], [41]–[44]. In contrast, provably safe RL approaches
ensure safety [8].

c) Provably safe RL: Provably safe RL approaches en-
sure safety during training and operations. There are three
conceptual approaches for provably safe RL [8]: action re-
placement, action projection, and action masking. In this
article, we present an action masking approach, for which
the agent can only choose actions that are verified as safe.
Most research on action masking considers discrete action
spaces; common applications are autonomous driving [45]–
[50] and power systems [51]. Usually, the action verification is
tailored to the specific application and, thus, cannot be directly
transferred to other applications.

Another way to distinguish provably safe RL approaches is
by the safety specification. Most approaches consider safety
specifications that can be formalized as containment in a safe
set or avoiding intersection with unsafe sets. A few works
regard safety specifications based on temporal logic [52]–[54],
which can additionally model temporal dependencies in safety
specifications. The studies [52], [53] use model checking to
determine whether a given action fulfills a linear temporal
logic formula, which expresses the safety specification. Their
approaches are transferable between applications but limited
to discrete action and state spaces. In contrast, Li et al. [54]
leverage linear temporal logic specifications to synthesize
control barrier functions, which are used to project unsafe
actions proposed by the agent to safe actions. This allows them
to apply their approach to continuous action and state spaces.
However, their approach cannot deal with dynamic obstacles
that are not controllable, such as other traffic participants. To
the best of our knowledge, we are the first to formulate a
provably safe RL approach for the application of autonomous
vessels and to include temporal safety specifications in the
online safety verification of RL agents while operating in a
continuous state space.

III. PRELIMINARIES AND PROBLEM STATEMENT

a) Notation and dynamics: We denote sets by calli-
graphic letters, vectors are boldfaced, and predicates are writ-
ten in Roman typestyle. The Minkowski sum is defined as
Y1 ⊕ Y2 = {y1 + y2 | y1 ∈ Y1, y2 ∈ Y2} and the set-based
multiplication is defined as Y1Y2 = {y1y2|y1 ∈ Y1, y2 ∈ Y2}.
A traffic rulebook 〈Φ,≤〉 is a tuple where Φ is the set of
formalized rules and ≤ is the order [55]. We denote that the
model Ξ and its initial state ξ entail the rulebook 〈Φ,≤〉 by
Ξ, ξ |= 〈Φ,≤〉.

The state of a vessel s ∈ R4 consists of the position
p = [px, py] ∈ R2 in the Cartesian coordinate frame as
well as the orientation θ ∈ R, and the orientation-aligned
velocity v ∈ R. The operator proj� projects a state to the
state dimensions indicated by � and R(Υ) = {R(υ)|υ ∈ Υ}
denotes the set of rotation matrices for the angles Υ with R(υ)
being the rotation matrix for the angle υ. To model the ego
vessel (i.e., the autonomous vessel we control), we use a yaw-
constrained model Ωyc with orientation-aligned acceleration

a ∈ R and turning rate ω ∈ R as control inputs:

ṡ =

ṗx

ṗy

θ̇
v̇

 =

cos(θ) v
sin(θ) v
ω
a

 . (1)

The control input is denoted as u(t) = [a(t), ω(t)] and the
initial state as s0.

b) Set-based prediction of vessels: To obtain predictions
that enclose all possible behaviors of a traffic participant, the
concept of set-based predictions for road traffic participants
[56] can be transferred to maritime traffic. The fundamental
idea is to define abstract models and perform reachability
analysis for them. We first specify the dynamics used for
the prediction, and then introduce the reachable sets and
occupancy sets. Finally, we discuss the special case of a
closed-loop system.

For vessels, we assume that the abstract model is a point-
mass model Ωpm with velocity and acceleration constraints:

ṗx(t) = vx(t), ṗy(t) = vy(t), (2)
v̇x(t) = ax(t), v̇y(t) = ay(t),

subject to
√
vx(t)2 + vy(t)2 ≤ vpm,max

√
ax(t)2 + ay(t)2 ≤ apm,max .

The maximum velocity and maximum acceleration are denoted
by apm,max and vpm,max, respectively. To ensure formal safety
of our approach, the two constraints must be chosen such
that the point-mass model over-approximates the behavior of
vessels using reachset conformance [57]. The state of the
model Ωpm is abbreviated by x = [px, py, vx, vy].

The time-point reachable sets for the model Ωpm are
calculated with set-based reachability analysis [58] based on
the initial state s0, time step size ∆t, and the time horizon
tpred. Note that the state s0 is transformed into x0 by using
trigonometry to convert [v, θ] into [vx, vy]. The time-interval
reachable sets are computed as in [58], [59] and are denoted
byR∆t(s0,Ωpm, tpred). To obtain the occupancy sets from the
time-interval reachable sets, the reachable sets are projected
to the position domain and enlarged by the spatial extensions
of the vessel V rotated by all possible reachable orientations
using the Minkowski sum:

Opm(s0,Ωpm, tpred,V) = (3)
projp (R∆t(s0,Ωpm, tpred))⊕(

R (projθ (R∆t(s0,Ωpm, tpred))) V
)
.

For a detailed derivation of the occupancy sets, we refer the
interested reader to [56, Sec. V-A].

The occupancy sets Opm are calculated for the open-loop
system Ωpm since we do not have access to the control input
of other traffic participants. However, for an ego vessel, we
have a precise model Ωyc and access to the control input.
Thus, the forward simulation of our closed-loop system with
the control input u(t) provides the time-point reachable sets.
The occupancy is denoted by:

Otraj(s0,Ωyc, tpred,V,u(t)). (4)

4

c) Problem statement: The COLREGS specify the traffic
rules for collision avoidance on the open sea for power-driven
vessels in natural language. These traffic rules are satisfiable
for two vessels. For more than two vessels, unsatisfiable traffic
situations can occur, e.g., a vessel needs to keep its course and
speed with respect to one vessel and perform an avoidance
maneuver with respect to another vessel. The COLREGS
do not specify how to adequately resolve such conflicting
situations with more than two vessels. Due to the lack of legal
specifications, we regard traffic situations with two vessels
only. In particular, we assume:

1) The traffic situation is an open-sea situation without
traffic signs, traffic separation zones, or static obstacles;

2) There is one traffic participant vessel obs and one
autonomous vessel ego, which are both power-driven;

3) The dynamics of the autonomous vessel is modeled by
(1);

4) The current state of the traffic participant vessel sobs is
observed without measurement errors;

5) In the initial state of the traffic situation, none of the
collision avoidance rules specified in the COLREGS
apply.

We define the traffic rulebook 〈Φ,≤〉 that describes the
legally relevant collision avoidance rules of the COLREGS
given our assumptions 1) and 2). The formal traffic rules are
denoted by Φ and the hierarchy between them by ≤. Based
on the traffic rules, we search for an RL approach, which
ensures that the RL agent only selects safe, i.e., rule-compliant,
actions leading to rule-compliant trajectories. Thus, the overall
problem is to find

πs : S → As (5)
where ζπs

|= 〈Φ,≤〉 .

The observation space of the RL agent is S, the set of provably
rule-compliant actions is As, and the trajectories ζπs

are
solutions of (1) when following the RL policy πs. To address
this problem, we first introduce the rulebook 〈Φ,≤〉, and prove
that a statechart Γ entails the rulebook in Sec. IV. Then,
we describe the synthesis of rule-compliant maneuvers and
detail the safe-by-design action selection in Sec. V. Finally,
we describe the RL specification in Sec. VI.

IV. SPECIFICATION

Our previous work [15] formalizes the COLREGS rules
specifying collision avoidance between two power-driven ves-
sels on the open sea. The temporal operators used are G, F,
and U, and if there is a subscript, the temporal operator is
evaluated over the time interval indicated by the subscript.
The operator G(φ) evaluates to true iff φ is true for all future
time steps. In contrast, for the operator F(φ), φ only has to be
true for at least one future time step. The until operator φ1Uφ2

is true iff φ1 holds true for all time steps until φ2 holds true.
In this section, we introduce the legal specification through a
rulebook and detail the novel formalization of the emergency
rule. Finally, we introduce the statechart Γ and show that it
models the specification.

(a) Crossing (c) Overtaking(b) Head-on

stand-on vesselgive-way vessel

Fig. 2. Encounter situations and rule-compliant maneuvers specified in the
COLREGS (adapted from [15]).

A. Traffic Rulebook

Table I lists all formalized rules considered in this work.
While the predicates can be evaluated on any two vessels, the
predicate arguments are set to be evaluated for the ego vessel
with respect to an obstacle vessel according to the COLREGS.
The traffic rule R2 enforces a safe speed, which is trivially
ensured through the ego vessel dynamics. Thus, we do not
include this rule in the traffic rulebook.

Definition 1 (Rules Φ). The rulebook consist of rules R1 and
R3 −R6 specified in Table I.

We introduce the emergency rule R1 to reflect the
COLREGS specification that if the other vessel does not take
appropriate actions for collision avoidance, the ego vessel has
to react and perform a last-minute maneuver for collision risk
minimization.

COLREGS Requirement 1 (Rulebook order ≤). Rule R1 is
always prioritized over rules R3 - R5, and R6 has the lowest
priority. Rules R3 - R5 are all of equal priority.

The predicates of rule R1 are detailed in Sec. IV-B. Note
that we use the emergency maneuver to describe the last-
minute maneuver, through which the ego vessel minimizes
the collision risk and thereby achieves legal safety. Yet, in the
literature, the term failsafe planning is also frequently used
[8], [60].

Rules R3 - R6 describe how vessels have to behave in a
COLREGS encounter situation. In these encounter situations,
the vessels are on a collision course meaning that the vessels
would collide in the near future if no appropriate collision
avoidance measures are taken. There are three different en-
counter situations specified in the COLREGS as illustrated in
Fig. 2: overtaking (R5, R6), crossing (R3, R6), and head-on
encounters (R4). In an encounter, a vessel can be a give-way
or a stand-on vessel. A give-way vessel is required to change
course and perform a collision avoidance maneuver. A stand-
on vessel has the obligation to keep its course and speed.
The predicate for determining a stand-on vessel is keep (see
Appendix-A). The stand-on rule R6 has the lowest priority
since whenever the other vessel changes its course so that the
ego vessel becomes the give-way vessel, the give-way rules
R3 to R5 are applied (see COLREGS Requirement 1).

5

TABLE I
OVERVIEW FORMALIZED MARINE TRAFFIC RULES INTEGRATED IN THE SAFETY VERIFICATION

Rule Temporal logic formula

R‡1 G(is_emergency(sego, sobs, ∗) =⇒ (emergency_maneuver U is_emergency_resolved(sego, sobs, ∗)))

R2 G
(

safe_speed(sego, vmax)
)

R†3
G
(

persistent_crossing(sego, sobs, ∗) =⇒
(
F[0,treact+tmaneuver](maneuver_crossing(sego, sobs, ∗)) ∧ F[treact,treact+2tmaneuver](¬collision_possible(sego, sobs, t

check
horizon))

))

R†4
G
(

persistent_head_on(sego, sobs, ∗) =⇒
(
F[0,treact+tmaneuver](maneuver_head_on(sego, sobs, ∗)) ∧ F[treact,treact+2tmaneuver](¬collision_possible(sego, sobs, t

check
horizon))

))

R†5
G
(

persistent_overtake(sego, sobs, ∗) =⇒
(
F[0,treact+tmaneuver](maneuver_overtake(sego, sobs, ∗)) ∧ F[treact,treact+2tmaneuver](¬collision_possible(sego, sobs, t

check
horizon))

))

R6 G
(

keep(sego, sobs, ∗) =⇒
(
no_turning(sego, ∗)U¬keep(sego, sobs, ∗)

))

Note: Additional arguments are abbreviated by ∗, rules adapted from [15] are marked with †, and new rules are marked with ‡.

To formalize that a give-way encounter is persistent for
at least the reaction time, we use the following temporal
logic specification, where {give_way} can take the values
from {crossing, head_on, overtake} (see Appendix-A) and
∗ denotes additional arguments for the predicates:

persistent_{give_way}(sego, sobs, ∗) =

¬{give_way}(sego, sobs, ∗)∧
G[∆t,treact]({give_way}(sego, sobs, ∗)).

We assume that both vessels keep their course and speed to
obtain rule-compliant predictions for their future states. These
predicted states allow us to evaluate ahead of time if the
encounter situation will persist long enough so that the ego
vessel has to perform a collision avoidance maneuver. The
reaction time treact does not indicate the minimum required
reaction time of a human operator but instead specifies how
much time the human operator would require to decide if the
encounter situation persists. Given a give-way encounter is
detected, a rule-compliant collision avoidance maneuver has to
be conducted until ¬collision_possible evaluates to true (see
Table I R3 - R5). The time interval for performing a rule-
compliant maneuver is treact + 2tmaneuver, where 2tmaneuver

approximates the time required for the maneuvering.

COLREGS Requirement 2 (Maneuvering priority). Given a
rule Ri for i ∈ {3, ..., 5} applies, rules Rj for j 6= i ∧ j ∈
{3, ..., 5} are not applied until ¬collision_possible is true.

B. Emergency Rule Predicates

We use the predicate collision_possible to determine if two
vessels are on a collision course for rules R3 - R6. Because the
rules R3 - R6 assume a constant velocity, we use the velocity
obstacle concept [61] for this predicate. However, the velocity
obstacle concept is not sufficient for detecting imminent risk
as necessary for R1. Thus, we present four predicates in this
section that are relevant for our formalization of rule R1.

First, we define an auxiliary position predicate determining
if vessel m is in a relative orientation sector of vessel l:

in_sector(sl, sm, β, β) ⇐⇒
hTβ projp(sm)− bl,β ≤ 0 ∧
hT
β
projp(sm)− bl,β > 0,

where the lower relative orientation is β and the upper relative
orientation is β relative to the orientation of vessel l. The
normal vector hi is the unit vector in the direction i − π/2
and bl,i is the offset to the origin for a line through the position
of vessel l in the direction i. We illustrate the sector predicate
with two specific usages in Fig. 4.

Second, we use set-based prediction for rule R1 to detect
potential collisions in the near future. In particular, we predict
the future occupancy of the obstacle vessel until the time
horizon tpred as described in (3) and that of the ego vessel as
in (4), for the control sequence ukeep(t) = [0 m s−2, 0 rad s−1]
to keep course and speed as demanded for stand-on vessels. If
the ego occupancy and the predicted occupancy of the obstacle
vessel intersect, the ego vessel is in an emergency situation:

is_emergency(sego, sobs,Vego,Vobs, tpred,ukeep(t)) ⇐⇒
∃t ∈ [t0, t0 + tpred] : Opm(s0,Ωpm, t,Vobs)∩
Otraj(sego,Ωyc, t,Vego,ukeep(t)) 6= ∅,

where t0 is the current time.
Third, the predicate emergency_maneuver describes a

maneuver that minimizes the risk of collision for the
specific traffic situation. We detail our interpretation of
emergency_maneuver in Sec. V-A.

Fourth, an emergency situation is resolved when the obstacle
vessel is behind the ego vessel, is moving away from the ego
vessel, and the Euclidean distance between both is larger than

6

ρ0

No conflict

ρ1

Stand-on
(Alg. 3)

ρ3

Crossing
(Alg. 3)

ρ4

Overtake
(Alg. 3)

ρ2

Head-on
(Alg. 3)

ρ5

Emergency operation
(Alg. 1)

Normal operation

¬keep keep

keep

persistent_crossing ¬collision_possible

is_emergency

emergency_resolved

¬collision_possible

persistent_overtake

persistent_head_on

¬collision_possible

Fig. 3. Statechart Γ modeling the legal safety specification with predicates
at the transitions. The states for the regular collision avoidance rules R3 -
R6 are depicted in blue and the emergency operation state for rule R1 in
red. For safety verification of actions, the algorithms identifying the set of
rule-compliant actions (indicated in brackets) are employed given the current
state ρi of the statechart.

a specified minimum distance dresolved:

is_emergency_resolved(sego, sobs, dresolved) ⇐⇒
in_sector(sego, sobs, 3π/2, π/2)︸ ︷︷ ︸

obstacle is behind

∧

unit_v(sobs)
T unit_v(sego) ≤ 0︸ ︷︷ ︸

moving away

∧

‖projp(sobs)− projp(sego)‖2 ≤ dresolved︸ ︷︷ ︸
distance between vessels is large enough

where the unit orientation vector of a state is
unit_v(s) = [cos(projθ(s)), sin(projθ(s))].

C. Specification-compliant Statechart

The overall rule specification is modeled by the statechart
Γ in Fig. 3. Due to assumption 5), the initial state in every
traffic situation is the state ρ0. There are two main states for
normal operation and emergency operation. During normal
operation, whenever the predicate collision_possible is true,
the corresponding maneuver state for R3 - R6 (see blue states
in Fig. 3) is entered and the collision avoidance maneuver is
started.

Proposition 1. For the states ρi, ∀i ∈ {1, ..., 4}, the predicate
collision_possible is true.

Proof: This follows directly from the definition of the
predicates keep, head_on, crossing, and overtake (see Ap-
pendix-A), which are true for the states of the statechart
ρ1 − ρ4, respectively.

Lemma 1. For two specific vessels, at most one of the
predicates keep, head_on, crossing, or overtake can be true
at the same time.

Proof: The predicates keep, head_on, crossing, and
overtake cannot apply at the same time due to their mutually
exclusive specification. The detailed proof is in Appendix-B.

If an emergency situation is detected, the statechart tran-
sitions to the emergency operation state until the emergency
situation is resolved.

Theorem 1. It holds that Γ, ρ0 |= 〈Φ,≤〉 for the statechart
Γ, its initial state ρ0, and the rulebook 〈Φ,≤〉.

Proof: The initial state ρ0 fulfills the rulebook by assump-
tion 5) (see Sec. III.c). We continue proving the compliance
with each rule:

(I) R1: If is_emergency is true, R1 applies and R3 - R6

do not (see COLREGS Requirement 1), which is realized by
transitioning to ρ5 (see Fig. 3). The state ρ5 can only be
exited iff is_emergency_resolved evaluates to true. Thus, the
transition to and from ρ5 directly represents R1.

If collision_possible ∧ ¬is_emergency is true, then Γ has
to represent rules R3 - R6. Whenever collision_possible be-
comes true, it can be deduced from Lemma 1 and Proposition 1
that the statechart transitions to a state ρi, i ∈ {1, ..., 4}.

(II) R3 - R5: Based on COLREGS Requirement 2, once
a rule R3 - R5 applies, i.e., the statechart is in either of the
states ρi, i ∈ {2, ..., 4}, the respective avoidance maneuver has
to be conducted until ¬collision_possible ∨ is_emergency is
true. For is_emergency, we showed in case (I) of this proof
that Γ models 〈Φ,≤〉. For ¬collision_possible, the statechart
Γ transitions to ρ0.

(III) R6: Once rule R6 applies, i.e., keep is true,
the statechart transitions to ρ1 and stays there until
¬keep ∨ ¬collision_possible ∨ is_emergency. If ¬keep ∧
collision_possible, an encounter of higher priority is present
(see COLREGS Requirement 1) and R3 - R5 apply. In
this situation, the statechart transitions to the states ρi for
i ∈ {2, ..., 4} and the remaining proof steps are stated in
case (III). Identically to case (III), if ¬collision_possible is
true, the statechart Γ transitions to ρ0 and if is_emergency
the statechart transitions to ρ5.

V. RULE-COMPLIANT MANEUVER SYNTHESIS

Given our specification-compliant statechart Γ, we need to
identify rule-compliant actions for the individual states ρi of
the statechart. Trivially, for the state ρ0 all actions are rule-
compliant since no rules apply. We introduce the synthesis of
emergency maneuvers in Sec. V-A and of encounter maneuvers
in Sec. V-B. Finally, we detail how we ensure a selection of
only safe actions for the RL agent in Sec. V-C.

A. Emergency Maneuver

Once we detect an emergency situation, i.e., the state-
chart is in ρ5, the ego vessel is legally required to evade
the obstacle vessel in a manner that minimizes the risk of
collision. In similar motion planning applications, such as
autonomous driving [10], autonomous aerial traffic [62], or
human-robot environments [63], states that are safe for infinite

7

∆stern

(b) Ahead(a) Base (c) Stern

hβ
hβ

hβ

hβ

bego,β
bego,β

bego,β
bego,β

∆ahead

Fig. 4. Emergency controller modes with set-based occupancy prediction
of obstacle vessel in orange and the occupancy of the ego vessel in blue
for several time intervals. The orientation of the ego vessel and the obstacle
vessel are indicated with dashed lines and emergency maneuver is depicted
by green arrows or occupancies. The green cross indicates the target position
for the base and ahead modes. The sectors, for which the predicate in_sector
is true, are shown in gray for the ahead and stern mode. The visualization of
the sectors includes the arguments of predicate in_sector in dark blue and
the point of origin in black.

time are used to identify a legally safe emergency maneuver.
In contrast, the current COLREGS do not state specifically
how to interpret “minimize risk” or the characteristics of
an invariably safe state. Thus, we cannot provide a formal
specification. Consequently, we cannot verify risk minimizing
behavior. Nevertheless, we identify three situations in which
different emergency maneuvers are appropriate: base mode,
ahead mode, and stern mode (see Fig. 4).

In the ahead case (see Fig. 4b), the obstacle vessel is in
the ahead sector in front of the ego vessel, and the orientation
difference between the ego vessel orientation and the reversed
orientation of the obstacle vessel is at most ∆ahead. This can
be formalized as:

ahead_emergency(sego, sobs,∆ahead) ⇐⇒ (6)
in(ρ5) ∧ ¬orientation_delta(sego, sobs,∆ahead, π)∧
in_sector(sego, sobs,−∆ahead,∆ahead),

where the predicate in(ρ5) evaluates to true if and only if
the statechart Γ is in base state ρ5. In this ahead situation,
steering to the stern of the obstacle vessel would lead to an
even more critical situation, as both vessels would encounter
each other head-on, given the obstacle vessel approximately
keeps its speed and course. Thus, we instead require the ego
vessel to turn 90°. The direction of turning is determined as
presented in Fig. 5. Depending on the situation, turning 90°
can be enough to resolve the emergency situations. Yet, if
the emergency is not resolved and the traveled distance of
the ego vessel from the start of the maneuver is larger than
dmin,ahead, the emergency controller switches to the base mode
(see Fig. 4a) and steers the ego vessel behind the stern of the
obstacle vessel.

The stern case is necessary for situations where the obstacle
vessel is almost astern of the ego vessel and still relatively far

projp(sego)

θego

projp(sobs)
1,2

θ1
obs

θ2
obs

projp(sobs)
3,4

θ3
obs

θ4
obs

Fig. 5. Visualization of turning direction cases. The obstacle vessel is
depicted in orange and the ego vessel in blue. Arrows indicate orientations
and positions are marked with dots. The turning direction case is indicated
by the superscript. For cases 1 and 3, the ego vessel should turn right and for
the cases 2 and 4, the ego vessel should turn left.

away (see Fig. 4c):

stern_emergency(sego, sobs,∆stern,uacc(t),Vego,Vobs, (7)
tpred) ⇐⇒

in(ρ5)∧
in_sector(sego, sobs, 3π/2 + ∆stern, π/2 + ∆stern)∧
¬is_emergency(sego, sobs,Vego,Vobs, tpred,uacc(t)),

with the control sequence uacc(t) = [astern, 0 rad s−1], ∀t ≤
treact and then 0 m s−2, 0 rad s−1], ∀t ≤ treact < t ≤ tpred.
By using the set-based prediction within this predicate, we
ensure that we only use this controller mode if it is certain that
accelerating would resolve the situation. In such a situation,
performing an emergency maneuver that navigates the ego ves-
sel to the stern of the obstacle vessel would be an unnecessarily
long detour, given that a short acceleration period would also
resolve the emergency situation.

For the base case (see Fig. 4a), the emergency situation
can be safely resolved by steering to a position behind the
stern of the obstacle vessel. The base emergency situation is
formalized by:

base_emergency ⇐⇒
in(ρ5) ∧ ¬ahead_emergency ∧ ¬stern_emergency∧
¬is_emergency_resolved.

Alg. 1 summarizes the control mode selection when entering
the emergency operation state (see Fig. 3) and is an instan-
tiation of the predicate emergency_maneuver of rule R1 in
Table I for our problem statement. For base and ahead modes,
the target positions are depicted in Fig. 4 and obtained with
the functions get_target_ahead and get_target_base,
respectively. Given the target position, a reachable desired
position given the current state is identified and a control
input toward this desired position is generated (for details
on the controller design see Appendix-C). The controller is
abbreviated by the function tracking_controller.

B. Encounter Maneuvers

Given a persistent give-way encounter is detected (i.e., the
statechart in Fig. 3 transitions to one of the respective blue

8

Algorithm 1 emergency_maneuver(sego, sobs, ∗)
Input: current state of ego vessel sego, current state of ob-

stacle vessel sobs, emergency mode mode, initial time t0,
time step size ∆t, acceleration control sequence uacc(t)

Output: control input u(ti)
1: sego,0 = projp(sego), sobs,0 = projp(sobs), ti = t0
2: while ¬emergency_resolved do
3: if ‖projp(sego,0) − projp(sego)‖2 > dmin,ahead ∧

mode = ahead then
4: mode← base
5: end if
6: if mode = stern then
7: a, ω ← uacc(ti)
8: else if mode = ahead then
9: ptarget ← get_target_ahead(sego, sego,0, sobs,0)

10: a, ω ← tracking_controller(sego,ptarget)
11: else
12: ptarget ← get_target_base(sego, sobs)
13: a, ω ← tracking_controller(sego,ptarget)
14: end if
15: return u(ti) = [a, ω]
16: sego, sobs ← step_environment(a, ω)
17: ti ← ti + ∆t
18: end while

states ρ1, . . . , ρ4), we identify safe actions that result in safe
maneuvers resolving the encounter.

Set-based predictions are well suited to verify that no
collisions can occur if not all vessels comply with the regular
collision avoidance rules R3 - R6. Still, for the regular colli-
sion avoidance rules, the implicit assumption in the COLREGS
is that both vessels comply with them. Thus, for identifying
actions of the ego vessel that are rule-compliant with these
rules, we can use a rule-compliant prediction for the obstacle
vessel. For the three encounter situations specified (see Fig. 2),
we differentiate between the ego vessel being the give-way (R3

- R5 apply) and stand-on vessel (R6 applies). First, we detail
the verification of actions given the ego vessel is the stand-
on vessel, i.e., in(ρ1). Then, we describe the more intricate
synthesis given that the ego vessel is the give-way vessel (ρi
where i ∈ {2, ..., 4}), and finally, summarize our encounter
action synthesis.

a) Stand-on maneuver synthesis for ρ1: The trivial action
for the predicate keep is akeep = [a = 0 m s−2, ω =
0 rad s−1], i.e., keeping course and speed. Note that for this
trivial action there is no explicit maneuver time and the action
space needs to be restricted to this action until the ego vessel
is not the stand-on vessel anymore or an emergency is detected
(see Fig. 3).

b) Give-way maneuver synthesis for ρ2 − ρ4: For all
give-way maneuvers, a significant change of orientation (i.e.,
∆large_turn) is required so that other traffic participants can
identify give-way maneuvers (see Fig. 2). For head-on and
crossing encounters, the give-way vessel is always obliged to
turn toward the right. For the overtake encounter, the suited
turning direction depends on the orientation of the obstacle
vessel, but this is not further specified in the COLREGS. For

our maneuver synthesis, the turning direction is to the left
if the orientation of the obstacle vessel is more to the right
than the orientation of the ego vessel, and otherwise turning
direction is to the right.

Given the turning direction, we identify candidate actions,
construct maneuvers based on them, and verify if a maneuver
complies with the rules. Candidate actions lead to trajectories
that already fulfill the minimal turning requirement within the
maneuver segment time tm. A maneuver is verified if the
predicate collision_possible is false at the end of the maneuver
and the occupancies of both vessels do not intersect during the
maneuver:

maneuver_verified(um(t), sego, sobs, t
check
horizon,ukeep(t), (8)

Vego,Vobs +) ⇐⇒
¬collision_possible(sego,tend , sobs,tend , t

check
horizon)∧

∀t ∈ [t0, t0 + tend] : Otraj(sego,Ωyc, t,Vego,um(t))∩
Otraj(sobs,Ωyc, t,Vobs +,ukeep(t)) = ∅,

where t0 is the current time, tend ∈ n tm is the time horizon
of the maneuver with n ∈ N+, sego,tend is the final state
of the maneuver, and um(t) is the control sequence for the
maneuver trajectory. The predicted obstacle state at tend is
sobs,tend and the set Vobs + is the spatial extensions of the
obstacle enlarged by the safety factor dobs,safety for width and
length. The occupancy of the obstacle vessel is based on the
assumption that the obstacle vessel will keep its speed and
course, i.e., the control sequence ukeep(t). This assumption is
compliant with the COLREGS collision avoidance rules for
the crossing and overtake encounter. In case of the head-on
encounter, the predicted trajectory for the obstacle vessel is a
conservative prediction since the obstacle vessel would also
need to evade to the right to be rule-compliant. Assuming that
the obstacle vessel will keep its course and speed leads to
the fact that the ego vessel has to turn more to resolve the
encounter situation.

With the turning direction and the maneuver verification
predicate defined in (8), we want to determine all actions
that lead to verified maneuvers. The generation of maneuvers
based on candidate actions is computed by a breadth-first
search with rule-compliant pruning. The search algorithm is
detailed in Alg. 2. Note that to obtain a control sequence
for multiple actions, we introduce the function a2u. For a
maneuver segment trajectory, the control input corresponding
to an action, is held constant for a maneuver segment time
tm while (1) is forward simulated. We initialize a search
tree with a maneuver segment trajectory resulting from the
candidate turning action ac. A candidate action ac ensures that
the orientation of the ego vessel changes at least ∆large_turn

within tm. Potentially, this first maneuver segment trajectory
results already in a verifiable maneuver (cf. Alg. 2, line 2–3).
If not, the search tree is extended by (a) a maneuver segment
trajectory based on the candidate action ac (cf. Alg. 2, line
17–18), and (b) with maneuver segment trajectories for each
action a ∈ Aacc, which keep the speed or accelerate the ego
vessel (cf. Alg. 2, line 19–21). If the action of the maneuver
segment trajectory that should be extended (obtained with the
function last) does not correspond to ac, the maneuver is only

9

Algorithm 2 build_st
Input: candidate action ac, accelerating actions Aacc, current

state of obstacle vessel sobs, current state of ego ves-
sel sego, maneuver segment time tm, maneuver horizon
tmax,m, control sequence ukeep(t)

Output: verified part of search tree G
1: tend ← tm,G ← {ac}
2: uc(t) = a2u(ac)
3: if maneuver_verified(uc(t), ...) then
4: return G
5: else
6: Um ← {uc(t)}
7: while ¬maneuver_verified(um(t), ...) ∀um(t) ∈ Um

do
8: Um ← ∅
9: Gtemp ← ∅

10: if tend < tmax,m then
11: tend ← tend + tm
12: else
13: return G ← ∅
14: end if
15: for a′ ∈ G do
16: if last(a′) = ac then
17: um(t)← a2u(a′) + a2u(ac)
18: Um ← um(t),Gtemp ← [a′, ac]
19: for aacc ∈ Aacc do
20: um(t)← a2u(a′) + a2u(aacc)
21: Um ← um(t),Gtemp ← [a′, aacc]
22: end for
23: else
24: um(t)← a2u(a′) + a2u(last(a′))
25: Um ← um(t),Gtemp ← [a′, last(a′)]
26: end if
27: end for
28: G ← Gtemp

29: end while
30: end if
31: return G

extended with the previously used action (cf. Alg. 2, line 24–
25). This has the effect that the vessel does not switch between
different accelerations during the maneuver. The expansion
of the search tree is stopped (a) if at least one trajectory
sequence is verified for the current search tree depth, i.e., for
time horizon tend, or (b) if the maneuver horizon tmax,m is
reached. Note that tmax,m follows from the rule specification
and is treact + 2tmaneuver. The search tree generation is
illustrated in Fig. 6 for three give-way encounters. Due to
the rule-compliant pruning, our search algorithm has the time
complexity O(nNcNacc) for tree generation where Nc ∈ N+

is the number of candidate actions ac, and Nacc ∈ N+ is the
number of actions in Aacc.

c) Actions for encounter maneuvers: Alg. 3 summarizes
the action verification to achieve rule-compliant maneuvers
for rules R3 - R6 given the statechart Γ is in an encounter
state (i.e., ∃i ∈ {1, ..., 4} : in(ρi)). We denote the search tree
generation with build_st (see Alg. 2) and the detection of

(a) Head-on (b) Crossing (c) Overtake

atr,1 atr,1

atr,2
atr,2

3

3
3 3

7
7

7 7

7

7

7

3
3

3

3
3

3

3

3

atl,2
atl,1

Fig. 6. Example search trees for the three give-way encounter situations, in
which the ego vessel has to give way. The prediction of the obstacle vessel is
depicted in orange and the maneuver segment trajectories in green with a dot
for the final state. The trajectories based on actions from Aacc are displayed
as dashed line. Note that we display only one trajectory based on actions
from Aacc for visualization purposes. The candidate actions initializing the
search trees are ad,1 and ad,2 where d is either tr for turning right and
tl for turning left. The mark 3 indicates that the maneuver is verified for
the maneuver_verified predicate and 7 indicates that the maneuver is not
rule-compliant.

Algorithm 3 Encounter action verification
Input: stand-on action akeep, turning to right actions Atr,

turning to left actions Atl, accelerating actions Aacc,
current state of obstacle vessel sobs, current state of ego
vessel sego, encounter predicate ψe

Output: set of safe actions As, verified part of search tree G
1: As ← ∅,G ← ∅
2: if ψe = keep then
3: As ← {akeep}
4: else
5: if ψe = head_on ∨ ψe = crossing then
6: Atemp ← Atr
7: else
8: Atemp ← get_turning_act(sego, sobs,Atr,Atl)
9: end if

10: for a ∈ Atemp do
11: Gtemp ← build_st(sego, sobs, a,Aacc, tm, tmax,m)
12: if Gtemp 6= ∅ then
13: G ← Gtemp,As ← a
14: end if
15: end for
16: end if
17: return As,G

actions in the correct turning direction for overtake situations
is abbreviated by the function get_turning_act. The result
of Alg. 3 is the safe action set As and the verified part of the
search tree G.

In an encounter situation, in which the ego vessel has to
give way, a maneuver of the verified part of the search tree
G is performed until there is no collision risk with respect
to the obstacle vessel. In particular, the actions are conducted
for at least the maneuver segment time tm. At the end of a
maneuver segment, the encounter situation is either resolved,
or the action selection is constrained to the children of the

10

selected search tree node. If G is an empty set, the ego vessel
is a stand-on vessel and the only selectable action is akeep.

C. Safe-by-design Action Selection

We utilize a discrete action space for RL since this realizes
efficient online safety verification and makes the encounter
action verification feasible. In particular, we define an action
set A of 49 discrete actions. One action represents the emer-
gency action aem and the others result from the combination
of turning rates and accelerations:

A = {aem,Aregular} where (9)
Aregular = {a×ω | a ∈ Aa, ω ∈ Aω},

where Aa is the finite set describing the allowed normal
accelerations and Aω is the finite set describing the allowed
turning rates.

In the previous sections, we derived the verification of rule-
compliant actions. By constraining the RL agent to these
rule-compliant actions, we ensure by design that only safe
actions are executed, and consequently only safe trajectories
are performed. Theorem 2 states the solution to our problem
statement in (5).

Theorem 2. Legal safety specified by 〈Φ,≤〉 can be ensured
through constraining the action space of the RL agent toAs(ρ̂)
since all actions in As(ρ̂) are specification-compliant actions.

Proof: To prove this statement, we derive the safe action
set As for all states of the statechart Γ.

(I) Initial state ρ0: Since no rules apply in this state
as proven in Theorem 1, any action is compliant with the
specification and As(ρ0) = Aregular.

(II) Emergency state ρ5: We constrain the actions of the
RL agent to the emergency action aem returned by Alg. 1, i.e.,
As(ρ5) = aem.

(III) Encounter states ρ1 − ρ4: Based on Theorem 1 the
maneuver predicates for the respective encounter situations
must hold in these states to comply with the specification.
Alg. 3 returns the synthesized rule-compliant maneuvers and
respective actions As(ρi) where i ∈ {1, ..., 4}.

Given As(ρ), we can constrain the action selection of the
RL agent to As(ρ) with standard action masking [8] to obtain
the safe policy πs. Since the safe policy πs only allows rule-
compliant actions from As, the trajectories ζπs

are compliant
with the legal safety specification 〈Φ,≤〉.

VI. REINFORCEMENT LEARNING

For the task of autonomous vessel navigation on the
open sea, we design a simulation environment based on
CommonOcean benchmarks [64] and the yaw-constrained
dynamics in (1). The CommonOcean benchmarks contain a
planning problem which specifies the goal area and initial
state of the ego vessel as well as a scenario which specifies
the traffic situation, i.e., for this study the trajectory of the
obstacle vessel and the navigational area. At the start of an
episode, a CommonOcean benchmark is randomly selected
from the training set and the agent is provided with the initial

aego, vego, θego, ωego

front (1)
left (2)

initial position

t− 1
t

right (4)

behind (3)
sensing distance

goal area

dlat

dlong

dgoal

β2

βgoal

d2

ḋ2

Fig. 7. Illustration of observations with sensing range and four sectors in
gray, goal region in green, initial position with direct path to goal region in
blue, and obstacle vessel for the previous time step t−1 and the current time
step t in orange.

observation. Based on the observation, the agent selects an
action from the action set and receives the corresponding
reward and next observation of the environment (see Fig. 1).
If the safety verification is activated, the agent can only select
from the verified safe action set As as derived in Sec. V.
We regard a setting with finite time horizon episodes and
terminate the episode in specified situations (see Sec. VI-A).
The observation space, termination conditions, action space,
action selection constraints, and reward function are detailed
in the following paragraphs.

A. Observation Space and Termination

The observation space has 27 dimensions. We specify
four types of observations: ego vessel observations, goal
observations, surrounding traffic observations, and termination
observations. Fig. 7 visualizes the ego vessel observations,
goal observations, and surrounding traffic observations for the
time step t.

The four ego vessel observations are the velocity vego and
orientation θego of the ego vessel state sego, the acceleration
aego, and turning rate ωego corresponding to the ego vessel
control input. The five continuous goal observations are the
Euclidean distance to the goal dgoal, the remaining time
steps until the maximal time step of the episode kmax, the
orientation difference to the goal orientation range βgoal, and
the longitudinal dlong and lateral dlat position with respect to
the line from the initial state to the center of the goal state.
The observations dlong and dlat are relevant since they indicate
the deviation of the ego vessel from the optimal path when no
other vessels need to be avoided. Additionally, we provide
one Boolean goal observation that evaluates to true whenever
min(|dlat|, |dlong|) is larger than the distance dhull, i.e., the
ego vessel is far away from the path between the initial state
and goal area.

The surrounding traffic observations are the distance dj ,
angle βj and distance rate ḋj for the detected vessel in the
sector j ∈ {1, ..., J}, where J is the number of sectors. The

11

vessels are only detected if the Euclidean distance to the ego
vessel is at most the sensing distance dsense. For this study, we
align the sectors with the sectors specified for the COLREGS
collision avoidance rules. Thus, we obtain the four sectors
front, left, right, and behind and twelve observation variables,
as depicted in Fig. 7.

The five termination observations are Boolean observations
and indicate if
• the maximal time step was reached 1time = 1,
• the vessel is outside of the navigational area 1area = 1,
• the vessel velocity is zero 1stopped = 1,
• the vessel collided 1collision = 1,
• the vessel reached the goal area 1goal = 1.

We terminate the episode when the ego vessel stopped, as
reverse driving is not meaningful on the open sea and the
termination leads to the agent being reset to a much more
meaningful initial state of another CommonOcean benchmark.
The termination conditions follow directly form the termina-
tion observations, as we terminate the episode if one of these
observations is present.

B. Reward

The reward is designed such that the vessel is reinforced in
goal reaching behavior and penalized for unsafe or inefficient
behavior. In particular, we design a reward function based on
sparse and dense components. The sparse rewards are related
to termination conditions and using the emergency planner:

rsparse = ctime1time + carea1area + cgoal1goal +

cstopped1stopped + ccollision1collision +

cemergency1emergency,

where ci indicate the reward coefficients, which are all negative
except for cgoal.

Additionally, we define four types of dense rewards for
COLREGS compliance, advancing to the goal, keeping the
velocity, and deviation from the path between initial state
and goal. To incentivise behavior that is compliant with the
collision avoidance rules specified in the COLREGS, we
utilize a reward component specified in [41, Eq. (26)]:

rcolregs = − α

1 + exp(γφ,dyn|φ|)
exp((ζvvobs,φ − ζobs,d)dobs).

The angle φ ∈ [−π, π] specifies the relative angle between
the ego orientation and the orientation toward the obstacle
vessel, vobs,φ specifies the velocity component of the obstacle
vessel velocity in the radial direction from the ego vessel
to the obstacle vessel, and dobs is the distance observed to
the obstacle vessel, i.e., the respective dj . The parameters
α, γφ,dyn, ζv , and ζobs,d are set to the same values as defined
in [41].

Further, we define a reward component that supports the
agent in learning how to reach the goal by providing a reward
that is proportional to the advance or retreat from the goal
since the previous time step:

rgoal =creach

(
‖pego,t−pgoal ‖2 − ‖pego,t−1−pgoal ‖2

)
.

TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value Parameter Value

Safety verification

∆ahead 45 deg ∆stern 20 deg

vpm,max 10 m s−1 apm,max 0.045 m s−2

dresolved 2 lego astern 0.2 amax

dobs,safety 2 lobs dmin,ahead 3 lobs
∆head-on 5 deg tcheckhorizon 420 s

∆no_turn 10 deg tmaneuver 70 s

∆large_turn 20 deg treact 60 s

tpred 180 s tm 40 s

tmax,m 200 s

Ego vessel

lego 175 m ωmax 0.03 rad s−1

amax 0.24 m s−2 vmax 9.5 m s−1

Reinforcement learning

vlow 2.5 m s−1 vhigh 8 m s−1

ctime −25 carea −5

cgoal 50 cstopped −40

ccollision −50 cemergency −0.5

creach 1.5 cv −2

cdeviate −0.001 dsense 8000 m

dhull 2000 m J 4

Aa = {−0.048,−0.032,−0.016, 0, 0.016, 0.032, 0.048}m s−2

Aω = {−0.018,−0.012,−0.06, 0, 0.06, 0.012, 0.018}rad s−1

The center position of the goal area is pgoal, and pego,t is the
current ego position, pego,t−1 is the ego vessel position at the
previous time step, and creach is a scaling coefficient.

On the open sea, vessels typically navigate in a narrow
speed range. To enforce this also for the RL agent, the reward
component rvelocity provides a penalty proportional to the
deviation from the desired speed range:

rvelocity =

cv(vego − vhigh) if vego > vhigh

cv(vlow − vego) if vego < vlow

0 otherwise.

The parameters vlow and vhigh define the speed range bounds,
and cv is the reward coefficient.

The last reward component informs the agent about its
deviation from the direct path between the initial state and
the goal area:

rdeviate = cdeviate min(|dlat|, dhull),

where the coefficient cdeviate scales the penalty proportional
to the absolute lateral deviation |dlat|, and cdeviatedhull is
the maximum of the reward component rdeviate. Finally, the
reward function is given by the sum of all components:

r = rsparse + rcolregs + rgoal + rvelocity + rdeviate. (10)

12

VII. NUMERICAL EXPERIMENTS

Critical encounter situations are rare in maritime traffic data.
Thus, this data is not well suited for training RL agents that
should learn how to handle encounter situations. Therefore,
we construct random CommonOcean benchmarks [64] that
represent critical encounters as a foundation of our simulation
environment. In particular, we initialize the ego vessel and
the other vessel approximately 2000 m - 3500 m away from
their closest encounter position. The initial velocity range for
both vessels is [3 m s−1, 7 m s−1]. For the obstacle vessel,
we generate a trajectory that is close to constant velocity
and speed, and disturb the initial orientation and velocity
with values sampled uniformly from [−0.05 rad, 0.05 rad] and
[−0.1 m s−1, 0.1 m s−1], respectively, to make the trajectory
more realistic. The goal area is approximately 4500 m away
from the initial position of the ego vessel. The goal area
is 400 m long and 60 m wide. The time horizon for the
scenario is kmax = 170 time steps where the time step size
is ∆t = 10 s. In total, we constructed 2000 CommonOcean
benchmarks [64] and randomly split them in a 70 % training
and 30 % testing set. The model of the ego vessel is the
yaw-constrained model in (1) and we use the parameters of a
container vessel2. We reduce the maximum velocity specified
in the vessel parameters to 9.5 m s−1 to better match a realistic
velocity range for open sea maneuvering.

Next to the simulation environment, we need to specify
values for the parameters of the safety verification approach,
ego vessel, and reinforcement learning. Table II summarizes
the parameters. Note that the emergency controller can use the
full control input space specified for the ego vessel through
the intervals [− amax, amax] and [−ωmax, ωmax]. For normal
operation, we reduce the control input limits to a more
reasonable range for open sea maneuvering. This is reflected
by the sets of allowable accelerations Aa and turning rates
Aω (see Table II). As model-free RL algorithm, we used
proximal policy optimization (PPO) [65]. Our implementation
is based on stable-baselines3 [66] and the action masking
implementation in [8]. The agent networks are multi-layer
perceptron networks with two layers and 64 neurons in each
layer.

A. Evaluation concept

To comprehensively evaluate our approach, we introduce
two benchmark agents next to our provably safe agent and
compare different deployment setups. We train all three agents
in our simulation environment, which is based on the training
data of critical CommonOcean benchmarks [64]. The trained
agents are:

1) the baseline agent with the reward function r = rsparse+
rgoal + rvelocity + rdeviate, i.e., rcolregs = 0 in (10), and
no safety verification,

2) the rule-reward agent, which is informed by the
COLREGS reward rcolregs, i.e., reward function (10),
and

2The container vessel is the vessel type 1 from
commonocean.cps.cit.tum.de/commonocean-models.

3) the safe agent with safety verification and reward func-
tion (10).

The baseline agent represents a straightforward RL implemen-
tation for which the agent is informed about unsafe actions
only sparsely with a collision penalty. The rule-reward agent
models the state-of-the-art for traffic-rule-informed open-sea
vessel navigation [6], [7], [41], [42], because the reward
function includes a COLREGS reward rcolregs. For each agent
type, we use ten random seeds and train an agent per seed for
three million environment steps.

We evaluate the deployment performance of the trained
agents on the testing set of the handcrafted critical scenar-
ios and on scenarios from recorded traffic data3. For the
rule-reward and baseline agent, we investigate performance
without, i.e., as trained, and with safety verification enabled.
Including the safety verification after training allows us to
evaluate if guaranteeing traffic rule compliance after training
is sufficient. Note that the action space of the two benchmark
agents is Aregular, except for deployment with safety verifica-
tion.

We consider critical scenarios from recorded traffic data
to examine the generalization of the agents to real-world
situations. To this end, we use marine traffic data from three
large open-sea areas off the US coast from [15] and extract
critical encounters. In particular, we only use scenarios where
the distance between two vessels drops to 5000 m or lower.
Further, we ensure that the paths of both vessels cross each
other. Then, we replace one vessel by an ego vessel to generate
the initial state and goal area. The initial state is part of
the recorded trajectory and is selected about 2000 m before
the closest encounter. The position of the goal area is also
part of the recorded trajectory and is about 2000 m after
the closest encounter. We use the same shape for the goal
area as in our handcrafted scenarios. In total, we identify 49
critical scenarios in the three large open-sea areas off the US
coast from traffic data of January 2019 (about 30 GB of raw
Automatic Identification System (AIS) data).

We evaluate our agents based on the goal-reaching rate,
reward, episode lengths, collisions, emergency controller usage
and rule violations. Rule violations reflect how often per
episode the regular collision avoidance rules are violated. For
that, we count:
• every time step of violating the stand-on vessel position

results;
• every crossing, overtaking and head-on encounter for

which no proper collision avoidance maneuver is taken.

B. Results

a) Training evaluation: Fig. 8 shows the training curves
for the three agent types. The average reward curves show
similar convergence across agent types, although the baseline
and rule-reward agents achieve slightly higher rewards after
three million training steps. Note that for the displayed reward
curves, the emergency penalty and COLREGS reward term
rcolregs are subtracted for comparability. The goal-reaching

3All scenarios are publicly on the CommonOcean website with ids
ZAM_AAA-1_20240121_T-[0,...,1999].

13

0 6 12 18 24 30
-5

0

5

10

15

Steps (in 105)

Baseline
Rule-reward
Safe

0 6 12 18 24 30
0

0.2

0.4

0.6

0.8

1

Steps (in 105)

(a) Average reward (b) Goal-reaching rate

0 6 12 18 24 30
0

0.1

0.2

Steps (in 105)
0 6 12 18 24 30

0

2

4

6

8

Steps (in 105)

(c) Collision rate (d) Rule violations

Fig. 8. Mean and bootstrapped 95 % confidence interval for training curves
for baseline, rule-reward, and safe agents averaged over ten random seeds.

rate curves mirror the reward curves and the agents reach goals
in about 90 % of all scenarios at the end of the training. We
observe that the agent types without safety verification reach
the goal slightly more often.

Importantly, there are no collisions and rule violations for
the safe agent (see Fig. 8c and Fig. 8d). For the baseline
and rule-reward agent, the collision rate is relatively stable
around 5 % during the full training time. Rule violations for
the baseline and rule-reward agent slightly decrease but never
reach zero. This suggests that complying with the COLREGS
effectively achieves collision avoidance.

b) Deployment evaluation: The results averaged over
ten random seeds for each agent type are summarized in
Table III. For the handcrafted scenarios, the rule-reward agents
reach the goal for 90.7 % of the scenarios. This is about 5 %
higher than for the baseline and safe agent. Yet, only the
safe agent achieves zero collisions and no rule violations. The
rule-reward agent collides and violates the rules fewer times
than the baseline agent. If the safety verification is enabled
for the baseline and rule-reward agent, the goal-reaching rate
drops significantly by approximately 40 %. Additionally, for
the safe agent, the emergency controller intervenes on average
in 6 % of the time steps in an episode, whereas for the rule-
reward and baseline agents with activated safety verification,
the emergency controller is needed in approximately 10 % of
the time steps in an episode.

Table III displays the testing results on the 49 critical
recorded traffic scenarios for the different agent types. The
rule-reward agent reaches the goal most often and exhibits the
lowest average episode length. Interestingly, the goal-reaching
rate for the baseline and rule-reward agent drops only by
about 5 % when activating our safety verification approach.
The collision rate and rule violation rate are smaller than for
the handcrafted scenarios. With activated safety verification,
we observe no collisions and no rule violations. Note that
the differences in the reported means for goal-reaching rate
and emergency steps between the agents with activated safety
verification are statistically insignificant4.

4The p-values for paired t-tests between the safe agent and the rule-
reward and baseline agents for the goal-reaching rate are 0.248 and 0.951,
respectively. The p-values for agents with respect to emergency steps are
0.211 and 0.381.

TABLE III
TESTING RESULTS ON 600 HANDCRAFTED AND 49 RECORDED SCENARIOS

Setup Efficiency Safety

Agent Verify Goal-
reach

Ep.
length Collided Rules

violated
Emerg.
steps

Handcrafted testing scenarios

Base 7 86.8 % 566 s 3.13 % 2.65 –
RR 7 90.7% 544 s 2.85 % 2.24 –
Base 3 44.0 % 678 s 0.0% 0 10.06 %

RR 3 47.6 % 702 s 0.0% 0 9.96 %

Safe 3 86.3 % 647 s 0.0% 0 6.18%

Recorded maritime traffic scenarios

Base 7 83.1 % 563 s 0.41 % 0.75 –
RR 7 84.7% 550 s 0.41 % 0.82 –
Base 3 78.3 % 591 s 0.0% 0 2.35 %

RR 3 82.4 % 565 s 0.0% 0 1.84%

Safe 3 78.2 % 630 s 0.0% 0 2.98 %

Note: The rule-reward and baseline agents are abbreviated with RR and
base. Ep. length is the average episode time horizon. Emerg. steps denote

the percentage of steps for which the emergency controller intervened.

C. Discussion

a) Safety in handcrafted scenarios: The safety verifica-
tion ensures that the encounter traffic rules are never violated
and we empirically observe that no collisions occur. However,
this results in a lower goal-reaching rate than for the soft-
constrained rule-reward agent. One reason for this observation
might be that with safety verification, the task is more difficult
to solve since the agent is often constrained to avoidance
maneuvers before it can maneuver freely again. Thus, the safe
agent can explore less freely compared to the baseline and
rule-reward agents. The drop in the goal-reaching rate when
the safety verification is enabled after training is likely due to
the distribution shift, as the baseline and rule-reward agents
are probable led to states that they explored less frequently or
not at all during training.

b) Safety on recorded scenarios: In contrast, testing the
rule-reward and baseline agent with safety verification on the
scenarios from recorded traffic data does not lead to such a
significant drop. At the same time, the agent setups without
safety verification exhibit fewer rule violations and fewer
collisions on the recorded maritime traffic scenarios. Both
observations indicate that the scenarios based on recorded
data are less critical than the handcrafted situations and, thus,
easier to solve for the agents that were not constrained to
rule-compliant actions during training. Generally, the agents
generalize well to the scenarios based on recorded data. Since
identifying critical situations in recorded maritime traffic data
is computation-heavy and critical situations are very rare,
this small gap between realistic recorded and randomly hand-
crafted situations is compensated by being able to create many
scenarios: The 49 critical situations resulted from one month of
maritime traffic data at the coast of the US, whereas the 2000
handcrafted critical situations were generated in a matter of
minutes. Yet, recorded scenarios are not fully representing the
variety of the real world. Thus, future work should investigate

14

if our safe agent also performs well on a real-world test bed.
c) Requirements for multi-vessel traffic situations: Real-

world traffic situations can include more than two vessel on a
collision course. Our formalized traffic rules can be evaluated
for these more complex traffic situations as demonstrated in
[15]. Yet, the current version of the COLREGS does not
provide a clear collision avoidance specification if more than
two vessels are involved. Thus, a formal verification cannot
be developed due to the lack of a clear specification. Future
work should investigate extensions of the COLREGS to fill
this specification gap and consequently realize provably rule-
compliant motion planning in multi-vessel traffic situations.

d) Action space choice: The discrete action space makes
it possible to efficiently identify rule-compliant actions. How-
ever, a continuous action space would allow the agent to
explore all possible actions. This significantly increases the
challenge of identifying safe actions, because there are in-
finitely many individual continuous actions in a continuous
action space. Yet, one approach to investigate in future work
could be obtaining rule-compliant state sets as proposed in [67]
and correcting actions proposed by the agent to safe actions,
e.g., with action projection as in [68].

e) Satisfiablity of rules: The parametrization of the tem-
poral logic rules eases re-adjusting to regulation changes. Yet,
these parameters must be manually tuned to ensure that the
temporal logic rules are satisfiable. For example, it is important
that the detection of an encounter situation happens early
enough so that no emergency situation is detected during
a give-way maneuver. For instance, theorem provers could
help to verify that the chosen rule parameters guarantee that
the rules are satisfiable. However, formulating this proof is
challenging due to the continuous state and action space, and
subject to future work.

VIII. CONCLUSION

We are the first to propose a provably safe RL approach
for autonomous power-driven vessels on the open sea that
achieves provable compliance with traffic rules formalized
with temporal logic. For that, we introduced an online ver-
ification approach based on our formalized rules identifying
the set of safe actions. Our formal emergency detection and
emergency controller achieves collision avoidance for the
regarded traffic situations even if other vessels do not comply
with traffic rules. In critical maritime traffic situations, our
safe RL agent achieves rule compliance, in contrast to state-
of-the art agents that are informed about safety only through
the reward. At the same time, all agents achieve a satisfactory
goal-reaching performance on critical traffic situations. Our
evaluation on recorded traffic situations shows that our safe RL
agent generalizes beyond the distribution of training data. This
study is a first step toward learning-based motion planning
systems complying with traffic rules for autonomous vessel
navigation.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the research training group ConVeY

funded by the German Research Foundation under grant GRK
2428 and by the project TRAITS funded by the German
Federal Ministry of Education and Research.

REFERENCES

[1] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Sallab, S. Yogamani,
and P. Perez, “Deep reinforcement learning for autonomous driving:
A survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 6, pp. 4909–4926, 2022.

[2] F. Ye, S. Zhang, P. Wang, and C. Y. Chan, “A survey of deep reinforce-
ment learning algorithms for motion planning and control of autonomous
vehicles,” in Proc. of the IEEE Intelligent Vehicles Symposium, 2021,
pp. 1073–1080.

[3] M. El-Shamouty, X. Wu, S. Yang, M. Albus, and M. F. Huber, “Towards
safe human-robot collaboration using deep reinforcement learning,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation, 2020, pp.
4899–4905.

[4] D. Han, B. Mulyana, V. Stankovic, and S. Cheng, “A survey on deep
reinforcement learning algorithms for robotic manipulation,” Sensors,
vol. 23, no. 7, 2023.

[5] P. Sarhadi, W. Naeem, and N. Athanasopoulos, “A survey of recent
machine learning solutions for ship collision avoidance and mission
planning,” IFAC-PapersOnLine, vol. 55, no. 31, pp. 257–268, 2022.

[6] A. Heiberg, T. N. Larsen, E. Meyer, A. Rasheed, O. San, and D. Varag-
nolo, “Risk-based implementation of COLREGs for autonomous surface
vehicles using deep reinforcement learning,” Neural Networks, vol. 152,
pp. 17–33, 2022.

[7] X. Xu, P. Cai, Z. Ahmed, V. S. Yellapu, and W. Zhang, “Path planning
and dynamic collision avoidance algorithm under COLREGs via deep
reinforcement learning,” Neurocomputing, vol. 468, pp. 181–197, 2022.

[8] H. Krasowski, J. Thumm, M. Müller, L. Schäfer, X. Wang, and M. Al-
thoff, “Provably safe reinforcement learning: Conceptual analysis, sur-
vey, and benchmarking,” Transactions on Machine Learning Research,
2023.

[9] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar,
“Highly automated driving on highways based on legal safety,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp.
333–347, 2013.

[10] N. Mehdipour, M. Althoff, R. D. Tebbens, and C. Belta, “Formal
methods to comply with rules of the road in autonomous driving: State
of the art and grand challenges,” Automatica, vol. 152, 2023.

[11] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-based
adversarial test generation for autonomous vehicles with machine learn-
ing components,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2018, pp. 1555–1562.

[12] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scLTL motion planning for mobility-on-demand,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2017, pp. 1481–1488.

[13] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “Formal-
ization of interstate traffic rules in temporal logic,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2020, pp. 752–759.

[14] K. Esterle, L. Gressenbuch, and A. Knoll, “Formalizing traffic rules for
machine interpretability,” in Proc. of the IEEE Connected and Automated
Vehicles Symposium, 2020, pp. 1–7.

[15] H. Krasowski and M. Althoff, “Temporal logic formalization of marine
traffic rules,” in Proc. of the IEEE Intelligent Vehicles Symposium, 2021,
pp. 186–192.

[16] X. Zhang, C. Wang, L. Jiang, L. An, and R. Yang, “Collision-avoidance
navigation systems for maritime autonomous surface ships: A state of
the art survey,” Ocean Engineering, vol. 235, no. 109380, 2021.

[17] “COLREGs: Convention on the International Regulations for Preventing
Collisions at Sea,” International Maritime Organization (IMO), 1972.

[18] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger, “Safe
maritime autonomous navigation with COLREGS, using velocity obsta-
cles,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 110–119,
2014.

[19] L. Zhao and M. I. Roh, “COLREGs-compliant multiship collision
avoidance based on deep reinforcement learning,” Ocean Engineering,
vol. 191, pp. 106 436–106 450, 2019.

[20] S. Guo, X. Zhang, Y. Zheng, and Y. Du, “An autonomous path planning
model for unmanned ships based on deep reinforcement learning,”
Sensors, vol. 20, no. 2, 2020.

15

[21] X. Zhang, C. Wang, Y. Liu, and X. Chen, “Decision-making for the
autonomous navigation of maritime autonomous surface ships based on
scene division and deep reinforcement learning,” Sensors, vol. 19, no. 18,
2019.

[22] M. Junmin, L. Mengxia, H. Weixuan, Z. Xiaohan, G. Shuai, C. Pengfei,
and H. Yixiong, “Mechanism of dynamic automatic collision avoidance
and the optimal route in multi-ship encounter situations,” Journal of
Marine Science and Technology, vol. 26, pp. 141–158, 2021.

[23] Y. He, Y. Jin, L. Huang, Y. Xiong, P. Chen, and J. Mou, “Quantitative
analysis of COLREG rules and seamanship for autonomous collision
avoidance at open sea,” Ocean Engineering, vol. 140, pp. 281–291, 2017.

[24] H. T. L. Chiang and L. Tapia, “COLREG-RRT: An RRT-based
COLREGS-compliant motion planner for surface vehicle navigation,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2024–2031,
2018.

[25] M. R. Benjamin and J. A. Curcio, “COLREGS-based navigation of
autonomous marine vehicles,” in Proc. of the IEEE/OES Autonomous
Underwater Vehicles, 2004, pp. 32–39.

[26] T. A. Johansen, T. Perez, and A. Cristofaro, “Ship collision avoidance
and COLREGS compliance using simulation-based control behavior
selection with predictive hazard assessment,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 12, pp. 3407–3422, 2016.

[27] B. O. H. Eriksen, M. Breivik, E. F. Wilthil, A. L. Flåten, and E. F.
Brekke, “The branching-course model predictive control algorithm for
maritime collision avoidance,” Journal of Field Robotics, vol. 36, no. 7,
pp. 1222–1249, 2019.

[28] D. K. Kufoalor, E. Wilthil, I. B. Hagen, E. F. Brekke, and T. A.
Johansen, “Autonomous COLREGs-compliant decision making using
maritime radar tracking and model predictive control,” in Proc. of the
European Control Conference, 2019, pp. 2536–2542.

[29] P. Stankiewicz and M. Kobilarov, “A primitive-based approach to good
seamanship path planning for autonomous surface vessels,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2021, pp. 7767–7773.

[30] T. R. Torben, J. A. Glomsrud, T. A. Pedersen, I. B. Utne, and A. J.
Sørensen, “Automatic simulation-based testing of autonomous ships
using Gaussian processes and temporal logic,” Proceedings of the Insti-
tution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
vol. 237, no. 2, pp. 293–313, 2023.

[31] Y. Liu and R. Bucknall, “A survey of formation control and motion
planning of multiple unmanned vehicles,” Robotica, vol. 36, no. 7, pp.
1019—-1047, 2018.

[32] W. Wu, Z. Peng, L. Liu, and D. Wang, “A general safety-certified
cooperative control architecture for interconnected intelligent surface ve-
hicles with applications to vessel train,” IEEE Transactions on Intelligent
Vehicles, vol. 7, no. 3, pp. 627–637, 2022.

[33] W. Wu and S. Tong, “Collision-free finite-time adaptive fuzzy output-
feedback formation control for unmanned surface vehicle systems,”
IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp. 1094–.1103,
2024.

[34] Y. Zhao, Y. Ma, and S. Hu, “USV formation and path-following
control via deep reinforcement learning with random braking,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 12,
pp. 5468–5478, 2021.

[35] Y. Zhang, W. Wu, and W. Zhang, “Noncooperative game-based coopera-
tive maneuvering of intelligent surface vehicles via accelerated learning-
based neural predictors,” IEEE Transactions on Intelligent Vehicles,
vol. 8, no. 3, pp. 2212–2221, 2023.

[36] G. Wen, X. Fang, J. Zhou, and J. Zhou, “Robust formation tracking
of multiple autonomous surface vessels with individual objectives: A
noncooperative game-based approach,” Control Engineering Practice,
vol. 119, 2022.

[37] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons, Ltd, 2011.

[38] J. Zhang, H. Zhang, J. Liu, D. Wu, and C. G. Soares, “A two-stage
path planning algorithm based on rapid-exploring random tree for
ships navigating in multi-obstacle water areas considering COLREGs,”
Journal of Marine Science and Engineering, vol. 10, no. 1441, 2022.

[39] T. T. Enevoldsen, C. Reinartz, and R. Galeazzi, “COLREGs-informed
RRT* for collision avoidance of marine crafts,” in Proc. of the IEEE
Int. Conf. on Robotics and Automation, 2021, pp. 8083–8089.

[40] A. Tsolakis, D. Benders, O. De Groot, R. R. Negenborn, V. Reppa, and
L. Ferranti, “COLREGs-aware trajectory optimization for autonomous
surface vessels,” IFAC-PapersOnLine, vol. 55, no. 31, pp. 269–274,
2022.

[41] E. Meyer, A. Heiberg, A. Rasheed, and O. San, “COLREG-compliant
collision avoidance for unmanned surface vehicle using deep reinforce-
ment learning,” IEEE Access, vol. 8, pp. 165 344–165 364, 2020.

[42] D.-H. Chun, M.-I. Roh, H.-W. Lee, J. Ha, and D. Yu, “Deep reinforce-
ment learning-based collision avoidance for an autonomous ship,” Ocean
Engineering, vol. 234, 2021.

[43] W. Xie, L. Gang, M. Zhang, T. Liu, and Z. Lan, “Optimizing multi-vessel
collision avoidance decision making for autonomous surface vessels:
A colregs-compliant deep reinforcement learning approach,” Journal of
Marine Science and Engineering, vol. 12, no. 3, 2024.

[44] Y. Fan, Z. Sun, and G. Wang, “A novel intelligent collision avoidance
algorithm based on deep reinforcement learning approach for usv,”
Ocean Engineering, vol. 287, 2023.

[45] N. Fulton and A. Platzer, “Safe reinforcement learning via formal
methods: Toward safe control through proof and learning,” in Proc. of
the AAAI Conf. on Artificial Intelligence, 2018, pp. 6485–6492.

[46] ——, “Verifiably safe off-model reinforcement learning,” in Proc. of the
Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, 2019, pp. 413–430.

[47] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker,
“High-level decision making for safe and reasonable autonomous lane
changing using reinforcement learning,” in Proc. of the IEEE Int.
Intelligent Transportation Systems Conference, 2018, pp. 2156–2162.

[48] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. of
the IEEE Int. Conf. on Intelligent Transportation Systems, 2020.

[49] M. Brosowsky, F. Keck, J. Ketterer, S. Isele, D. Slieter, and M. Zöllner,
“Safe deep reinforcement learning for adaptive cruise control by impos-
ing state-specific safe sets,” in Proc. of the IEEE Intelligent Vehicles
Symposium, 2021, pp. 488–495.

[50] H. Krasowski, Y. Zhang, and M. Althoff, “Safe reinforcement learning
for urban driving using invariably safe braking sets,” in Proc. of the IEEE
Int. Conf. on Intelligent Transportation Systems, 2022, pp. 2407–2414.

[51] D. Tabas and B. Zhang, “Computationally efficient safe reinforcement
learning for power systems,” in Proc. of the American Control Confer-
ence, 2022, pp. 3303–3310.

[52] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proc. of the
AAAI Conf. on Artificial Intelligence, 2018, pp. 2669–2678.

[53] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem, “Shield synthesis for
reinforcement learning,” in Leveraging Applications of Formal Methods,
Verification and Validation: Verification Principles, 2020, pp. 290–306.

[54] X. Li, Z. Serlin, G. Yang, and C. Belta, “A formal methods approach
to interpretable reinforcement learning for robotic planning,” Science
Robotics, vol. 4, no. 37, 2019.

[55] A. Censi, K. Slutsky, T. Wongpiromsarn, D. Yershov, S. Pendleton,
J. Fu, and E. Frazzoli, “Liability, ethics, and culture-aware behavior
specification using rulebooks,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2019, pp. 8536–8542.

[56] M. Koschi and M. Althoff, “Set-based prediction of traffic participants
considering occlusions and traffic rules,” IEEE Transactions on Intelli-
gent Vehicles, vol. 6, no. 2, pp. 249–265, 2021.

[57] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Model con-
formance for cyber-physical systems: A survey,” ACM Transactions on
Cyber-Physical Systems, vol. 3, no. 3, pp. 1–26, 2019.

[58] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Dissertation, Technische Universität
München, 2010.

[59] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff, “Fully au-
tomated verification of linear systems using inner and outer approxi-
mations of reachable sets,” IEEE Transactions on Automatic Control,
vol. 68, no. 12, pp. 7771–7786, 2023.

[60] S. Magdici and M. Althoff, “Fail-safe motion planning of autonomous
vehicles,” in Proc. of the IEEE Int. Conf. on Intelligent Transportation
Systems, 2016, pp. 452–458.

[61] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments us-
ing velocity obstacles,” The International Journal of Robotics Research,
vol. 17, no. 7, pp. 760–772, 1998.

[62] T. Schouwenaars, J. How, and E. Feron, “Decentralized cooperative
trajectory planning of multiple aircraft with hard safety guarantees,” in
Proc. of the AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2004.

[63] S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for
mobile robots with limited field-of-views in dynamic environments,”
Auton. Robots, vol. 32, no. 3, pp. 267–283, 2012.

[64] H. Krasowski and M. Althoff, “CommonOcean: Composable bench-
marks for motion planning on oceans,” in Proc. of the IEEE Int. Conf.
on Intelligent Transportation Systems, 2022, pp. 1676–1682.

16

[65] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[66] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

[67] E. Irani Liu and M. Althoff, “Specification-compliant driving corridors
for motion planning of automated vehicles,” IEEE Transactions on
Intelligent Vehicles, 2023.

[68] N. Kochdumper, H. Krasowski, X. Wang, S. Bak, and M. Althoff, “Prov-
ably safe reinforcement learning via action projection using reachability
analysis and polynomial zonotopes,” IEEE Open Journal of Control
Systems, vol. 2, pp. 79–92, 2023.

APPENDIX

A. Predicates specified [15]

In Table IV, we briefly recapitulate the predicates speci-
fied in [15]. We refer the interested reader to our previous
work [15] for detailed explanations. Subsequently, the nec-
essary notation that was not yet introduced in this article
is introduced and the re-parametrization of the predicate
collision_possible is explained.

The trajectory of vessel i consists of states at discrete time
steps and is denoted as Ti. The velocity vector based on
the state of the vessel is vi = projv(si) unit_v(si). We
define a clock cl(Ti, si) that starts at the initial time step of a
trajectory and returns the elapsed time for a state si. Further,
we require a function state(Ti, tk) which returns the state of
a trajectory at time tk. The modulo operator mod(a, b) returns
the remainder of a/b for a, b ∈ R using floored division.
The function ts returns the time for a predicate trace where
the respective predicates changed last from false to true. The
collision cone CC ′ is based on the velocity obstacle concept
[61] and the construction is detailed in [15, Fig. 1].

For this work, we made two re-parametrizations of the
predicate collision_possible, which determines if two vessels
l and m are on a collision course and, thus, could collide
within the time thorizon. First, we also want to detect a collision
course if the vessels would pass each other with insufficient
distance. Thus, we use rm = 3 lm for the collision cone CC ′

instead of rm = lm in [15, Fig. 1]. This results in detecting
a collision possibility if the vessels would not keep a safe
distance of at least two lengths of the vessel m. Second, we
evaluate the set of vessel velocities Vl with respect to their
collision possibility instead of only the current velocity vl. In
particular, we check the collision possibility for

Vl = {λ unit_v(sl)|λ ∈ [projv(sl)− vε, projv(sl) + vε]}.

We set the velocity difference vε to 1 m s−1 for our numerical
evaluations.

B. Proof of Lemma 1

Proof: To prove that only one predicate of keep, crossing,
head_on, and overtake can evaluate to true, we show for each
combination that the conjunction is false when evaluated for
two vessels l and m. For the combination of crossing and
head_on, it directly follows that the predicates cannot be true

at the same time from the relative position detected by the
respective sector predicates.

(I) crossing ∧ head_on:

crossing(sl, sm, ·) ∧ head_on(sl, sm, ·)
= (in_right_sector(sl, sm) ∧ ...) ∧

(in_front_sector(sl, sm) ∧ ...)
=⊥

For the combination of crossing and overtake, let us assume
that crossing predicate is true. Then, the vessel m is oriented
towards left and in the right sector of vessel l (see Fig. 3 and
Fig. 4 in [15]). Thus, it is geometrically impossible for vessel
l to be in the behind sector of vessel m and overtake cannot
be true.

(II) crossing ∧ overtake:

crossing(sl, sm, ·) ∧ overtake(sl, sm, ·)
=
(
in_right_sector(sl, sm)∧

orientation_towards_left(sl, sm,∆head-on) ∧ ...
)
∧

(in_behind_sector(sm, sl) ∧ ...)
=⊥

The predicates head_on and overtake cannot be true simul-
taneously as the relative positions and orientations contradict
each other similar to case (II). In particular, if the vessel m
is in the front sector of vessel l and their relative orientation
is in [π −∆head-on, π + ∆head-on], then vessel l cannot be in
the behind sector of vessel m.

(III) head_on ∧ overtake:

head_on(sl, sm, ·) ∧ overtake(sl, sm, ·)
=
(
in_front_sector(sl, sm)∧
¬orientation_delta(sl, sm,∆head-on, π) ∧ ...

)
∧

(in_behind_sector(sm, sl) ∧ ...)
=⊥

The predicate keep is a disjunction of two cases in which the
vessel has to keep its course and speed. Thus, we have to show
that for both statements of the disjunction that they evaluate to
false. The explanation for the equation steps are marked with
small letters in round brackets, e.g., (a), and follow after the
respective equations.

(IV) overtake ∧ keep:

overtake(sl, sm, ·) ∧ keep(sl, sm, ·)
(a)
= (overtake(sl, sm, ·) ∧ (in_left_sector(sl, sm) ∧ ...))∨

(overtake(sl, sm, ·) ∧ overtake(sm, sl, ·))
(b)
=
((

in_behind_sector(sl, sm) ∧ ...
)
∧

(
in_left_sector(sl, sm) ∧ ...

))
∨

(overtake(sl, sm, ·) ∧ overtake(sm, sl, ·))
(c)
= ⊥ ∨⊥
=⊥

17

(a) We distribute the disjunction in keep over the conjunction
with overtake.
(b) We insert the relevant parts of the predicates (see Table IV).
(c) For the first part of the disjunction, the vessels cannot be
simultaneously in two sectors as in case (I). For the second
part of the disjunction, the two overtake predicates cannot be
true at the same time, as both vessels cannot overtake each
other at the same time.

(V) crossing ∧ keep:

crossing(sl, sm, ·) ∧ keep(sl, sm, ·)
(a)
= (crossing(sl, sm, ·) ∧ (in_left_sector(sl, sm) ∧ ...))∨

(crossing(sl, sm, ·) ∧ overtake(sm, sl, ·))
(b)
=
((

in_right_sector(sl, sm) ∧ ...
)
∧

(
in_left_sector(sl, sm) ∧ ...

))
∨

((
in_right_sector(sl, sm) ∧ ...

)
∧

(
in_behind_sector(sl, sm) ∧ ...

))

(c)
= ⊥ ∨⊥
=⊥

(a) We distribute the disjunction in keep over the conjunction
with crossing.
(b) We insert the relevant parts of the predicates (see Table IV).
(c) For both parts of the disjunction, the vessels cannot be
simultaneously in two sectors as in case (I).

(VI) head_on ∧ keep:

head_on(sl, sm, ·) ∧ keep(sl, sm, ·)
(a)
= (head_on(sl, sm, ·) ∧ (in_left_sector(sl, sm) ∧ ...))∨

(head_on(sl, sm, ·) ∧ overtake(sm, sl, ·))
(b)
=
((

in_front_sector(sl, sm) ∧ ...
)
∧

(
in_left_sector(sl, sm) ∧ ...

))
∨

((
in_front_sector(sl, sm) ∧ ...

)
∧

(
in_behind_sector(sl, sm) ∧ ...

))

(c)
= ⊥ ∨⊥
=⊥

(a) We distribute the disjunction in keep over the conjunction
with head_on.
(b) We insert the relevant parts of the predicates (see Table IV).
(c) For both parts of the disjunction, the vessels cannot be
simultaneously in two sectors as in case (I).

C. Position Tracking Controller

We design a Lyapunov controller to track a desired position
pdes to realize the emergency maneuver control. This desired
position is either the target position ptarget to be reached or
generated based on the current position pt and the desired
position so that the vessel approximately maintains the desired

velocity vdesired. The Lyapunov function for turning rate Vω
and acceleration Va are:

Vω = 1− ([cos(θt), sin(θt)]w
T
des)

2,

Va = 0.5 (pdes−pt)(pdes−pt)
T ,

with the desired orientation vector

wdes = (pdes−pt)/‖pdes−pt ‖2.
With these Lyapunov functions, we obtain the control:

ω = −λ1
Vω

−2 ([− sin(θ), cos(θ)]wT
des) ([cos(θ), sin(θ)]wT

des)
,

a = −λ2
Va

−(pdes−pt)[vt cos(θt), vt sin(θt)]T
.

If Vω is larger than a threshold ∆Vω , then the acceleration
control is set to zero so that the vessel only turns. For our
numerical evaluations, we use the following parameter values:
vdesired = 6 m s−1, λ1 = 4, λ2 = 0.04, and ∆Vω

= 0.3.

Hanna Krasowski is currently a Ph.D. candidate
at the Technical University of Munich. She re-
ceived her B.Sc. degree in mechanical engineering
from Technical University of Darmstadt in 2017
and her M.Sc. degree in robotics, cognition and
intelligence from Technical University of Munich
in 2020. Her research interests include provably
safe reinforcement learning and motion planning for
cyber-physical systems.

Matthias Althoff received the Diploma Engineering
degree in mechanical engineering and the Ph.D.
degree in electrical engineering from Technical Uni-
versity of Munich, Germany, in 2005 and 2010,
respectively. He is currently an Associate Professor
in computer science with Technical University of
Munich, Germany. From 2010 to 2012 he was a
Postdoctoral Researcher with Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, and from 2012 to 2013
an Assistant Professor with Technische Universität
Ilmenau, Germany. His research interests include

formal verification of continuous and hybrid systems, reachability analysis,
planning algorithms, nonlinear control, automated vehicles, and power sys-
tems.

18

TABLE IV
PREDICATES FOR TRAFFIC RULE SPECIFICATIONS FROM [15] WITH ADAPTIONS FOR THIS WORK

Predicate Arguments Definition Detects ...

Position and orientation predicates

in_front_sector sl, sm in_sector(sl, sm,−∆head-on,∆head-on)
relative position in
front sector

in_left_sector sl, sm in_sector(sl, sm,−112.5°,−∆head-on)
relative position in
left sector

in_right_sector sl, sm in_sector(sl, sm,∆head-on, 112.5°) relative position in
right sector

in_behind_sector sl, sm in_sector(sl, sm, 112.5°, 247.5°) relative position in
behind sector

orientation_delta
sl, sm,
∆orient, co

mod(projθ(sm)− projθ(sl) + co, 2π)
∈ [∆orient, 2π −∆orient]

if relative orientation
is in defined range

orientation_towards_right
sl, sm,
∆head-on

mod(projθ(sm)− projθ(sl), 2π)
∈ [−π + ∆head-on,−∆head-on]

if relative orientation
of vessel m is toward right

orientation_towards_left
sl, sm,
∆head-on

mod(projθ(sm)− projθ(sl), 2π)
∈ [∆head-on, π −∆head-on]

if relative orientation
of vessel m is toward right

Velocity predicates

drives_faster sl, sm projv(sl) > projv(sm)
if vessel l is faster
than vessel m

safe_speed sl, vmax 0 ≤ projv(sl) ≤ vmax safe speed of vessel l

General predicates

collision_possible sl, sm, thorizon
Vl ∈ CC′(sl, sm)∧
‖vl − vm‖2 ≥ ‖projp(sl)− projp(sm)‖2/thorizon

if vessels l and m are
on a collision course

change_course
sl, Tl,
tstart,∆course

|∑cl(Tl,sl)
ti=tstart

projω(state(Tl, ti)) ∆t| ≥ ∆course
if course has changed
significant since tstart

turning_to_starbord sl, Tl, tstart mod
(
projθ(state(Tl, cl(Tl, sl)))−

projθ(state(Tl, tstart)), 2π
)
∈ (π, 2π)

if course has changed to
starboard since tstart

overtake sl, sm, t
check
horizon

collision_possible(sl, sm, t
check
horizon)∧

in_behind_sector(sm, sl)∧
drives_faster(sl, sm)∧
¬orientation_delta(sl, sm, 67.5°, 0)

give-way vessel of overtaking
encounter situation

maneuver_overtake
sl, sm,
Tl, tcheckhorizon,
∆large_turn

change_course(sl, Tn, ts(overtake),∆large_turn)
correct maneuver of give-way
vessel in overtaking
encounter situation

head_on
sl, sm, t

check
horizon,

∆head-on

collision_possible(sl, sm, t
check
horizon)∧

in_front_sector(sl, sm)∧
¬orientation_delta(sl, sm,∆head-on, π)

give-way vessel of head-on
encounter situation

maneuver_head_on
sl, sm,
Tl, tcheckhorizon,
∆large_turn,∆head-on

change_course(sl, Tn, ts(head_on),∆large_turn)∧
turning_to_starboard(sl, Tn, ts(head_on))

correct maneuver of give-way
vessel in head-on
encounter situation

crossing
sl, sm, t

check
horizon,

∆head-on

collision_possible(sl, sm, t
check
horizon)∧

in_right_sector(sl, sm)∧
orientation_towards_left(sl, sm,∆head-on)

give-way vessel of crossing
encounter situation

maneuver_crossing
sl, sm,
Tl, tcheckhorizon,
∆large_turn,∆head-on

change_course(sl, Tn, ts(crossing),∆large_turn)∧
turning_to_starboard(sl, Tn, ts(crossing))

correct maneuver of give-way
vessel in crossing
encounter situation

keep
sl, sm, t

check
horizon,

∆head-on

(
collision_possible(sl, sm, t

check
horizon)∧

in_left_sector(sl, sm)∧
orientation_towards_right(sl, sm,∆head-on)

)
∨

overtake(sm, sl, t
check
horizon)

stand-on vessel

no_turning sl, Tl,∆no_turn ¬change_course(xn, Tn, ts(keep),∆no_turn) correct stand-on maneuver

We gratefully acknowledge support from the Simons Foundation,

member institutions, and all contributors.

Reuse Requests

This FAQ is an attempt to collect answers to your common questions surrounding reusing content from arXiv in your materials.

• Can I reuse �gures from an arXiv paper?

• Do I need arXiv's permission to repost the full text?

• How can I determine what license the version was assigned?

• I want to include a paper of mine from arXiv in my thesis, do I need speci�c permission?

• I want to include a paper of mine from arXiv in an institutional repository, do I need permission?

• Can I harvest the full text of works?

Can I reuse �gures from an arXiv paper?

The short answer is "it depends". More speci�cally: - If the license applied to the work allows for remixing or reuse with citation, then yes. - If not, then the

version is assigned one of the arXiv perpetual non-exclusive licenses, and you will need to contact the submitter or copyright holder (if published) to

determine applicable permissions.

Do I need arXiv's permission to repost the full text?

Note: All e-prints submitted to arXiv are subject to copyright protections. arXiv is not the copyright holder on any of the e-prints in our corpus.

In some cases, submitters have provided permission in advance by submitting their e-print under a permissive Creative Commons license. The

overwhelming majority of e-prints are submitted using the arXiv perpetual non-exclusive license, which does not grant further reuse permissions directly.

In these cases you will need to contact the author directly with your request.

How can I determine what license the version was assigned?

All arXiv abstract pages indicate an assigned license underneath the "Download:" options.

The link may appear as just the text (license) , such as at arXiv:2201.14176 . Articles between 1991 and 2003 have an assumed license. These are

functionally equivalent to the arXiv non-exclusive license.

If the license applied by the submitter is one of the Creative Commons licenses, then a "CC" logo will appear, such as at arXiv:2201.04182 .

I want to include a paper of mine from arXiv in my thesis, do I need speci�c permission?

If you are the copyright holder of the work, you do not need arXiv's permission to reuse the full text.

I want to include a paper of mine from arXiv in an institutional repository, do I need permission?

You do not need arXiv's permission to deposit arXiv's version of your work into an institutional repository. For all other institutional repository cases, see

our help page on institutional repositories.

Can I harvest the full text of works?

Plase see our bulk data help page, and the API Terms of Use for speci�c options. Note that the license for the full text is not a part of the current search API

schema. The license is, however, provided within arXiv's output from the OAI-PMH in either arXiv or arXivRaw formats.

About

Help

Copyright

Privacy Policy

Contact

Subscribe

Report a documentation issue

Web Accessibility Assistance

arXiv Operational Status

Get status noti�cations via email or slack

Permissions and Reuse - arXiv info https://info.arxiv.org/help/license/reuse.html#i-want-to...

1 of 1 2/14/24, 13:43

	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Literature Review
	1.1.1 Safe Reinforcement Learning
	1.1.2 Reinforcement Learning with Formal Methods
	1.1.3 Motion Planning for Cyber-Physical Systems

	1.2 Contributions

	2 Safe Reinforcement Learning with Formal Methods
	2.1 Preliminaries
	2.1.1 Reinforcement Learning
	2.1.2 Formal Methods

	2.2 Problem Statement
	2.3 Solution Concept

	3 Discussion and Conclusion
	3.1 Provably Safe Reinforcement Learning for Guaranteed Collision Avoidance
	3.2 Reinforcement Learning with Temporal Logic Safety Specifications

	Abbreviations
	List of Figures
	Bibliography
	A Provably Safe Reinforcement Learning for Motion Planning with Collision Avoidance
	A.1 Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and Benchmarking
	A.2 Provably Safe Reinforcement Learning via Action Projection using Reachability Analysis
	A.3 Safe Reinforcement Learning for Autonomous Lane Changing using Set-based Prediction
	A.4 Safe Reinforcement Learning for Urban Driving using Invariably Safe Braking Sets

	B Reinforcement Learning with Safety Specifications via Temporal Logic
	B.1 Temporal Logic Formalization of Marine Traffic Rules
	B.2 Safe Reinforcement Learning with Probabilistic Guarantees Satisfying Temporal Logic
	B.3 Provable Traffic Rule Compliance in Safe Reinforcement Learning on the Open Sea

