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Abstract: Coaxial Laser Metal Deposition with wire (LMD-w) is a valuable complement to the
already established Additive Manufacturing processes in production because it allows a direction-
independent process with high deposition rates and high deposition accuracy. However, there is a
lack of knowledge regarding the adjustment of the process parameters during process development
to build defect-free parts. Therefore, in this work, a process development for coaxial LMD-w was
conducted using an aluminum wire AlMg4,5MnZr and a stainless steel wire AISI 316L. At first, the
boundaries for parameter combinations that led to a defect-free process were identified. The pro-
portion between the process parameters energy per unit length and speed ratio proved crucial for a
defect-free process. Then, the influence of the process parameters on the height and width of single
beads for both materials was analyzed using a regression analysis. It was shown that linear models
are suitable for describing the correlation between the process parameters and the dimensions of the
beads. Lastly, a material-independent formula is presented to calculate the height increment per layer
needed for an additive process. For future studies, the results of this work will be an aid for process
development with different materials.

Keywords: Directed Energy Deposition (DED); Additive Manufacturing; annular laser spot; ring-
shaped laser spot; Laser Metal Deposition; coaxial wire feeding

1. Introduction
1.1. Directed Energy Deposition Processes

In recent years, Directed Energy Deposition (DED) processes have contributed to
expand the application fields of metal Additive Manufacturing (AM) [1]. Exemplary appli-
cations are coating surfaces by depositing thin material layers, repairing damaged parts
by reapplying missing material, and producing freeform parts by gradually depositing
multiple layers [2]. Among the distinct advantages of DED processes is the ability to pro-
duce large parts at high material deposition rates [3]. The process involves the controlled
melting of material fed to the process zone as wire or powder. Using a wire as feedstock
offers various advantages over powder use like a facilitated handling, an easy access to
standardized feedstock, a higher material usage, higher deposition rates, and an increased
operational safety [4,5]. Different systems can be utilized to melt the wire. Wire and Arc
Additive Manufacturing (WAAM) processes have the advantage of high deposition rates
and are frequently used to build large structures. However, laser-based and electron-based
processes allow for a more focused energy supply and are preferably used to manufac-
ture near net shape parts [6]. Laser-based processes, also called Laser Metal Deposition
(LMD), with the capacity to accommodate the wire coaxially to the laser beam, provide the
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additional advantage of a direction-independent process that facilitates their use for AM
purposes [7].

Two different solutions have been developed to achieve the coaxial alignment of
the supplied feedstock and the laser. Either multiple laser beams are focused on the
process zone [8–12], or optical elements are used to form a hollow laser beam with a
ring-shaped profile [13–15]. All set-ups aim for an almost uniform distribution of the laser
radiation around the wire in the process zone to provide the same process conditions for
any movement direction. Compared to the process variant with lateral wire feeding, these
set-ups contribute to a higher stability and robustness of the process [16].

1.2. State of the Art
1.2.1. Process Development for LMD with Lateral Wire Feeding

In AM, near net shape parts are desired to reduce post-processing efforts [17]. This
requires a defect-free process. Studies regarding process development for the Laser Metal
Deposition (LMD) with lateral wire feeding can be found in the literature. The processability
of different steel [18–21] and aluminum alloys [22–24] was demonstrated through cross-
sectional analyses that showed defect-free beads. Within the scope of parameter studies,
the influence of different process parameters on the geometry of the bead was evaluated.
It was concluded that the laser spot size, the laser power, the wire speed, and the traverse
speed have the strongest influence on the geometry of the deposition [19,25]. Further
works studied the correlation between several of the mentioned process parameters and
the dimensions of the bead through empirical or numerical models [26–32]. Although the
identified correlations show similarities, comparisons and general conclusions are difficult
to draw since different systems and parameter ranges were used.

1.2.2. Process Development for LMD with Coaxial Wire Feeding

Researchers also studied the process development for LMD with coaxial wire feeding.
The formation mechanisms of the typical process defects—stubbing and dripping—during
the coaxial process were analyzed using high-speed imaging [33]. Process defects that
occur at the critical stage of the process start could be reduced by placing the wire tip at the
beginning of the process directly on the surface of the substrate [34]. Furthermore, it was
shown that analogous to the process with lateral wire feeding, the laser power, the traverse
speed, and the wire speed have a significant influence on the geometry [35]. Analytical
models have been proposed to predict the width and the height of the beads based on the
mentioned process parameters [36]. The influence of the unique laser spot shape on the
process has also been studied. By changing the focal offset, a positive correlation between
an increased size of the laser spot and a wider melt pool could be identified [37,38]. Studies
also show that the size of the ring-shaped laser spot can be deliberately used to partially
or fully hit the wire before it enters the melt pool when a smaller inner diameter than the
diameter of the wire is chosen [39]. Consequently, an additional process parameter, the
workpiece illumination proportion (WIP), was proposed to characterize the distribution of
the energy applied to the part and the wire [40]. The height of the part plays a crucial role for
a defect-free multi-layer process [41] since a non-conformity between the height increment
used in the path planning and the actual growth rate of the part would alter the WIP and
would lead to process failures. Therefore, closed-loop control solutions have been proposed
to adjust the process parameters actively to compensate for height deviations [42–44].

1.3. Problem Statement

The review of the relevant literature reveals that a suitable combination of parameters
is essential to successfully build parts with coaxial Laser Metal Deposition with wire (LMD-
w). Accordingly, dependencies between the process parameters and the resulting deposition
were examined. However, the studies were limited to single materials, small parameter
ranges, and individual systems. The parameter combinations that led to visibly defect-free
test specimens or parts can only restrictively be used for process developments with new
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materials. A study on the transferability of the findings as an aid for process development is
missing. Additionally, the existing approaches considered the height increment during the
multi-layer process more as a fixed value rather than an additional process parameter that
influences the geometry of the deposition. A more profound knowledge of the dependency
between the process parameters and the geometry of the produced part would contribute
to improve the quality of the parts [45]. By analyzing these correlations for materials
with significantly different properties like the melting temperature, basic trends could be
identified that would help during process development with new materials. Furthermore,
using the height increment as an additional parameter would assist in understanding the
process better and complement the previous studies.

1.4. Objectives and Approach

This contribution aims (i) to investigate correlations between the process boundaries
for a coaxial LMD-w process with aluminum and stainless steel, (ii) to develop models
through linear regression that allow assessing the influence of the process parameters
on the height and width of the beads, and (iii) to investigate the influence of the height
increment for each consecutive layer for multi-layer processes. Initially, different parameter
combinations were systematically varied to develop process maps that visualized the
boundaries of a defect-free process. Then, the dimensions of the successfully deposited
beads were measured. This data was subsequently used to perform a regression analysis
of the dependence of the bead width and the bead height on the process parameters.
Lastly, a formula was developed to calculate the needed height increment for a defect-free
multi-layer deposition, and the determined height increment was experimentally tested.

2. Materials, Systems and Methods
2.1. Materials

For the experiments with stainless steel, AISI 304 substrate plates and AISI 316L wire
were used. The size of the substrate plates was 100 mm × 100 mm × 10 mm, and the
diameter of the wire was 1 mm. The experiments with aluminum were conducted using
AlSi1MgMn substrate plates and AlMg4,5MnZr wire with a diameter of 1 mm. The sizes of
the substrate plates were 100 mm × 100 mm × 3 mm and 60 mm × 20 mm × 3 mm. The
different sizes of the substrate plates for the respective materials resulted from the standard
dimensions of the parts provided by the manufacturer. The chemical composition of all the
materials is shown in Table 1. Henceforth, the material combinations will be abbreviated as
stainless steel and aluminum.

Table 1. Chemical composition of the materials used within the investigations.

Alloy Part Alloying Elements by Mass Percentage

AISI 304 Substrate C ≤ 0.07; Si ≤ 1.00; Mn ≤ 2.00; P ≤ 0.50; S ≤ 0.02; Cr 17.50–19.50; Ni 8.00–10.50
AISI 316L Wire C ≤ 0.03; Si 0.65–1.20; Mn 1.00–2.50; P ≤ 0.03; S ≤ 0.02; Cr 18.00–20.00; Ni 11.00–14.00

AlSi1MgMn Substrate Si 0.70–1.30; Fe ≤ 0.50; Cu ≤ 0.10; Mn 0.40–1.00; Mg 0.60–1.20; Cr 0.20; Zn 0.20; Ti 0.10

AlMg4,5MnZr Wire Si ≤ 0.25; Fe ≤ 0.40; Cu ≤ 0.05; Mn 0.70–1.10; Mg 4.50–5.20; Cr 0.05–0.25; Zn 0.25;
Ti ≤ 0.15; Zr 0.10–0.20

2.2. Systems
2.2.1. Laser Metal Deposition System

The main system component was the coaxial deposition head (CoaxPrinter, Precitec
GmbH & Co. KG, Gaggenau, Germany) that reshaped the laser beam through a com-
bination of axicons to obtain a hollow laser beam which results in a ring-shaped beam
profile. The hollow laser beam was then split into two halves allowing the wire to be
guided in between. Once the wire and the laser beam were parallelly aligned, the two beam
halves were consolidated and focused on the wire. The caustic of the hollow laser beam
after the deposition head is depicted in Figure 1a. The focal offset describes the distance
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between the focal plane and the process plane (surface of the substrate plate). A focal
offset of −6 mm with the focus below the surface of the substrate plate was chosen, which
resulted in a ring-shaped laser spot with an inside diameter of 1.2 mm and an outside
diameter of 2.6 mm at the process plane. A 4-kW disc laser (TruDisk 4001, TRUMPF GmbH
& Co. KG, Ditzingen, Germany) generated the laser beam with a wavelength of 1030 nm.
The experimental set-up is depicted in Figure 1b. The wire was fed through the deposition
head by a wire feeding unit (DIX FDE-PN 100 L, DINSE GmbH, Hamburg, Germany). This
unit provided an automatic wire positioning at the beginning and a wire retreat at the end
of the process, contributing to the repeatability of the starting and the ending conditions.
A 6-axis robot (KR-60, KUKA AG, Augsburg, Germany) with a maximum load capacity of
60 kg and a maximum radial workspace of 2 m was used to carry and move the deposition
head. The manufacturer specifies the position repeatability to be 60 µm.
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Figure 1. Experimental set-up: (a) main system components and (b) caustic of the hollow laser beam
near the process.

2.2.2. Optical Measurement

A 3-D profilometer (VR 3100, Keyence Corporation, Osaka, Japan) was used for a
three-dimensional measurement of the topography of the samples [46]. Multiple images
with a 38-fold magnification were taken and automatically stitched together to scan the
entire surface of the specimens via the light-section method. The manufacturer indicates
a measurement accuracy of 6 µm. The software provided by the manufacturer and a
MATLAB script were used to compensate for the thermal distortions of the substrate plates
and no additional filters were used [47].

2.3. Methods
2.3.1. Theoretical Considerations

When using LMD-w to fabricate additive parts, the distance between every succes-
sively deposited layer and the substrate increases. Therefore, a height increment per layer
∆h is needed for path planning. The following assumptions and theoretical equations have
been used to calculate the height increment in this work.

The geometry of the cross-section of a weld bead is described by the bead height Hb,
the bead width Wb, and the cross-sectional area of a bead Ab (see Figure 2a). The idealized
geometry of the cross-section of a part produced by LMD-w consists of a stack of rectangles
(see Figure 2b).
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Figure 2. Schematic cross-sectional geometry of (a) a single-layer (bead) and (b) a multi-layer part.

The idealized width of the part wall Wp was assumed to be equal to Wb. Due to the
volume constancy Ab = An, with An being the cross-sectional area of a single layer within
the part wall, the height of each layer Hl within the part had to differ from Hb due to the
geometry. To calculate Hl, a formula was derived by using the following equations:

The volume of a bead Vb can be calculated using the length of the bead l and the
cross-sectional area of a bead Ab by

Vb = Ab · l. (1)

With the traverse speed vt and the time t, the bead volume deposition rate can be
calculated as

dVb
dt

= Ab ·
dl
dt
= Ab ·vt. (2)

The volume of additional material fed to the process VA is equal to the wire volume
feeding rate, which can be expressed as

dVA
dt

= π · D2
w

4
· vw = Aw · vw, (3)

with the diameter of the wire Dw, the wire speed vw, and the cross-sectional area of the
wire Aw. Assuming volume constancy, the following equation can be set up:

dVb
dt

=
dVA
dt

(4)

Using Equations (2) and (3), Equation (4) can be written as

Ab · vt = Aw · vw. (5)

Taking the initial assumption of Ab = An into account, Ab can be replaced by

Ab = An = Wb · Hl . (6)

The resulting equation
Wb · Hl · vt = Aw · vw (7)

can be solved for the variable Hl as

Hl =
Aw

Wb
· vw

vt
=

Aw

Wb
· vr, (8)

with the speed ratio vr between the wire speed and the traverse speed. In this work, Hl is
used as the height increment per layer ∆h.
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2.3.2. Experimental Procedure
Process Window

First, a process window for single beads was identified. The process was characterized
by the laser power (P), the wire speed, and the traverse speed due to the strong influence
that these parameters have on the process stability [19,35]. The laser power was kept
constant during the experiments at three different levels, and the traverse speed and the
wire speed were varied. All the parameter settings are summarized in Table 2. The param-
eter limits were chosen based on preliminary studies and on literature references [33,42].
For the experiments with aluminum, the highest possible laser power of 3700 W after the
optical system was reached due to typical radiation losses, and the maximal wire speed
level was set to 8 m min−1 to stay within the range of a reliable wire feeding speed of the
wire feeding unit. A shielding gas flow rate of 18 L min−1 was used during the experiments
with aluminum and no shielding gas was used in the experiments with stainless steel.

Table 2. Parameter combinations of the full factorial design used to identify the process window.

Material Laser Power in W Wire Speed in m min−1 Traverse Speed in m min−1

Aluminum 2700; 3200; 3700 1–8; in 1 m min−1 steps 1–4; in 1 m min−1 steps
Stainless steel 1200; 1700; 2200 0.4–2.0; in 0.4 m min−1 steps 0.4–2.0; in 0.4 m min−1 steps

Regression Analysis

The produced weld beads were evaluated by a visual inspection. The parameter com-
binations of the defect-free beads were then used to determine the limits for a subsequent
parameter study within the process window. A full factorial experimental design was cho-
sen to provide the data for a regression analysis with the dependent variables bead width
Wb and bead height Hb, as well as the independent variables laser power, wire speed, and
traverse speed. All the parameter settings are summarized in Table 3. In the studies with
aluminum, each independent variable was examined on five levels and in the experiments
with stainless steel on three. The normalized independent variable values of −1.0, 0, and 1.0
were introduced to compare the results. The natural values of the levels −1.0 and 1.0 were
set at the boundary of each process window to examine the most extensive range of the
parameter values. The independent variable levels 0 for each parameter of the experiments
with aluminum and stainless steel were set in the middle of the inspected process window,
which for the aluminum experiments were P = 3400 W, vw = 4 m min−1, vt = 2 m min−1,
and for the stainless steel experiments P = 1700 W, vw = 1 m min−1, vt = 1 m min−1. The
length of all the beads for the parameter study was 40 mm, and the bead height and width
were measured at three positions (see Figure 3).
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Table 3. Process parameters of the full factorial design for the deposition of single beads with
subsequent height and width measurement.

Material Laser Power in W Wire Speed in m min−1 Traverse Speed in m min−1

Aluminum 3100; 3250; 3400; 3550; 3700 3; 3.5; 4; 4.5; 5 1; 1.5; 2; 2.5; 3; 3.5; 4
Stainless steel 1300; 1700; 2100 0.7; 1; 1.3 0.7; 1; 1.3

Height Increment

Lastly, the formula derived in Section 2.3.1 was used to calculate the height increment
for the multi-layer processes. All the parameter settings for the experiments can be found
in Table 4. Three different speed ratios for each material were examined. The calculated
height increment was varied by −0.05 mm and +0.05 mm to analyze the effects of different
height increments on the height of the produced cylindrical parts. For all parts, 30 consec-
utive layers were applied. To avoid an overheating of the parts, a power decay strategy
depending on the number of the current layer was chosen based on previous studies and
on literature [33,42]. The sample geometries are indicated in Figure 4. In the end, the final
height of the produced parts was compared with the theoretically calculated height for the
last layer.

Table 4. Process parameters for the build-up of cylinders.

Material Laser Power in W Laser Power Decay Strategy Speed Ratio Height Increment in mm

Aluminum 3700
−150 W for each

layer from layer 4 to layer 9

2.0 0.46; 0.51; 0.56
2.25 0.54; 0.59; 0.64
2.5 0.63; 0.68; 0.73

Stainless steel 1500
−25 W for each layer
from layer 4 to layer 9

1.0 0.25; 0.30; 0.35
1.1 0.28; 0.33; 0.38
1.2 0.30; 0.35; 0.40
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less steel.

2.3.3. Bead Analysis

In the visual inspection, the beads were classified into the commonly used categories
stubbing, dripping, and good [18,33], as shown by examples for both materials in Figure 5.
Stubbing describes the process defect that leads to beads with protuberant short pieces of
unmolten wire and is mainly due to an insufficient energy input. Dripping occurs when the
induced heat causes the melting of the wire before it hits the surface of the substrate. This is
either caused by excessive energy input, an insufficient wire speed, or an inadequate focal
offset. If neither of the two errors occurred, the beads were assigned to the category good.
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3. Results and Discussion
3.1. Process Windows

Through experiments, suitable parameter windows for LMD-w with aluminum and
stainless steel were identified. The results are summarized in process maps shown in
Figure 6. For the inspected ranges of the parameter variations, it can be observed that an
increase of the laser power enlarged the process window regarding the variation of the other
parameters. Since more energy was applied, either larger quantities of supplied wire could
be molten, or higher traverse speeds could be used, especially for aluminum. The processes
with a high wire speed and a high traverse speed resulted in stubbing. The higher amount
of energy needed to melt the increasing amount of wire was not provided since higher
traverse speeds lowered the energy input. Therefore, the unmolten wire was bent due to
the traverse movement and eventually mechanically detached, resulting in the remaining
stubs [33]. The combination of a low wire speed and a high traverse speed led to dripping.
This defect was caused by the melting of the wire above the surface of the substrate plate.
Lower wire speeds lead to a prolonged exposure of the wire to both the laser beam and
the reflected radiation on the melt pool. Therefore, the wire was more prone to reach
the melting temperature above the melt pool. The established bond between molten
wire and melt pool broke and a droplet was formed at the tip of the wire due to surface
tension [33,40]. The increased traverse speeds reduced the energy input, but they also
led to more bending of the wire tip at the initial phase of the process, especially in the
experiments with aluminum. This increased the exposed surface of the wire to the laser
beam and contributed to a premature melting and, again, the formation of a drop.

To compare the process windows for aluminum and stainless steel, a different eval-
uation is proposed, where the three parameters laser power, wire speed, and traverse
speed are combined into the two parameters of the speed ratio and the energy per unit
length El (see Figure 7). Based on the diagrams, it can be deduced that for both materials,
an adequate ratio between the energy per unit length and the speed ratio was crucial to
avoid the defects of dripping and stubbing. This is in accordance with comparable findings
in the literature [38]. A higher energy per unit length was required for higher speed ratios
to avoid stubbing for both materials. However, it can be noticed that defect-free processes
were achieved for higher speed ratios with aluminum than with stainless steel when using
the same amount of energy per unit length. For example, with 100 J mm−1 a speed ratio of
3.5 still led to a defect-free process with aluminum, while the maximal speed ratio with
this energy per unit length with stainless steel was 2.2. The lower melting temperature of
aluminum compared to stainless steel allowed to melt the larger quantities of material that
resulted from higher speed ratios with the same amount of energy. However, the higher
melting temperature of stainless steel allowed defect-free processes for lower speed ratios
than aluminum since the wire had to be heated up more before it melted. For aluminum,
speed ratios below 1 mostly led to dripping, while for stainless steel parameter combina-
tions with a speed ratio of 0.5 were found that resulted in good beads. The process maps
depicted in Figure 7 are helpful when adjusting the process parameters effectively during
process development. For a given speed ratio, the chosen traverse speed can be used to
calculate the laser power needed to provide the right amount of energy per unit length to
stay within the process window.
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Figure 6. Determined process maps for aluminum (a–c) and stainless steel (d–f); the values of the
fixed laser powers are indicated on top of the respective diagrams.
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(a) aluminum and (b) stainless steel.

3.2. Regression Analysis

The influence of the process parameters on the bead width and bead height was
assessed through a multiple linear regression analysis. In Figure 8, the relationship between
the process parameters and the height of the beads for each material is shown. The model
coefficients and the results of the analysis of variance (ANOVA) can be found in the
Appendix A. Similar trends for the influence of all individual parameters on the bead
height for both materials are visible in the diagrams. The influence of the laser power on
the bead height was considered statistically insignificant (p-value above 0.05) and was
therefore not further analyzed. The increase of the wire speed led to higher beads, while
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increasing the traverse speed reduced their height by up to 0.6 mm. For both materials,
the speed ratio, which combines the two parameters, had the most decisive influence on
bead height. The small influence of the laser power on the bead height is also visible in the
minor influence of the energy per unit length on the bead height. An adjusted coefficient
of determination R2 above 0.9 was calculated for all the models. Comparable R2-values
resulted for both the models that used the parameters speed ratio and energy per unit
length, as well as the models that used the laser power, the traverse speed, and the wire
speed. It was concluded that the bead height could be modeled using either one of both
combinations.
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Figure 8. Main effects of the process parameters on the bead height of aluminum (upper row) and
stainless steel (bottom row) samples; the single linear models used the independent variables power,
wire speed, and traverse speed (a–c) and (f–h), as well as the independent variables speed ratio and
energy per unit length (d,e) and (i,j).

The relationships between the process parameters and the width of the beads for each
material are visualized in Figure 9. The diagrams for both materials show similar trends,
except for the wire speed and the speed ratio. According to the p-values above 0.05, the
influence of the wire speed was considered statistically insignificant and was therefore
not further analyzed. The diagrams that visualize the influence of the speed ratio on the
bead width show a negative correlation for aluminum and a positive correlation for steel.
This deviance in the trends could be due to the different material properties, such as the
surface tension, but also due to the different parameter levels chosen for each material.
According to the process windows, a speed ratio from 1 to 5 for aluminum and from 0.5
to 1.9 for stainless steel was chosen. Thus, different amounts of material were fed to the
process. The energy provided by the laser beam either flows into melting the wire or into
melting the substrate. So, for high wire volume feeding rates, such as in the experiments
with aluminum, more energy was used for melting the increasing amounts of wire volume,
and less energy was available for the melt pool on the substrate. Therefore, the melt pool
and bead width decreased. However, for smaller amounts of additional material, especially
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below a speed ratio of 1, an increase of the wire volume feed rate increased the melt pool
volume and led to wider beads [36]. The increased bead width for higher laser power
levels and higher levels of energy per unit length could also be explained by changes
in the energy balance. The models that described the dependency of the bead width on
the process parameters had an acceptable R2 of above 0.84 for aluminum, and for steel
above 0.67.
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Figure 9. Main effects of the process parameters on the bead width of aluminum (upper row) and
stainless steel (bottom row) samples; the single linear models used the independent variables laser
power, wire speed, and traverse speed (a–c) and (f–h) or the independent variables speed ratio and
energy per unit length (d,e) and (i,j).

3.3. Height Increment

The z-position of the process plane (see Figure 1) must be adjusted by a specific height
increment with every successive layer to obtain a constant laser spot size throughout a
multi-layer process. To calculate the needed height increment, the formula developed in
Section 2.3.1 was used. In Figure 10, the final heights of the cylindrical parts produced with
the calculated height increment and the parts produced with the varied height increments
of +0.05 mm and −0.05 mm are visualized. The diagrams show that the calculated height of
the part is below the measured final height when a smaller height increment than calculated
is used. On the contrary, the calculated height of the part is above the measured height
when the height increment is greater than the calculated value. In both cases, the deposition
of consecutive layers would eventually lead to a process failure due to the discrepancy
between the height of the part and the adjusted height of the process plane. Using the
theoretically calculated height increment, parts were produced for which the final height
closely matched the height of the last process plane, especially with the two lower speed
ratios for both materials. The close match means that the height increment was adequate,
leading to a defect-free multi-layer process. However, larger deviations were visible at
higher speed ratios, especially for the aluminum parts. The deviations could be due to a
heat accumulation that resulted from an unsuitable power decay strategy and the different
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material properties. Since heat accumulation is influenced by the height and the volume of
the parts [42], the thermal conditions also changed for the different speed ratios. Higher
speed ratios led to more material deposition and more heat accumulation, resulting in a
progressively thicker wall [48]. The contour shapes of the cross-sections of the parts are
shown in the Appendix A.

Metals 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. Height of the produced cylinders with a fixed speed ratio as indicated at the top of the 
respective diagrams and three different height increments for aluminum (a–c) and stainless steel 
(d–f). 

4. Conclusions and Outlook 
In this study, the process development for coaxial Laser Metal Deposition with wire 

was investigated using a stainless steel material combination of AISI 304 substrate plates 
with AISI 316L wire and an aluminum material combination of AlSi1MgMn substrate 
plates and AlMg4,5MnZr wire. First, a process window was identified for both material 
combinations. Then, the influence of the process parameters laser power, wire speed, and 
traverse speed on the geometry of the depositions was studied. Lastly, the influence of the 
height increment per layer on the produced parts was analyzed to use the process for 
Additive Manufacturing purposes. The following conclusions were drawn based on the 
results of the investigations conducted: 
• A suitable combination between the speed ratio and the energy per unit length plays 

a crucial role in establishing a defect-free process. Therefore, these parameters offer 
a material-independent valid alternative to the more widely used parameters of the 
laser power, wire speed, and traverse speed for process development. For both ma-
terials, the minimal amount of energy per unit length for a defect-free process was 50 
J mm–1. Due to the lower melting temperature of aluminum, a defect-free process 

0.28 0.33 0.38

vr = 1.1

Height increment
Δh in mm →

0.30 0.35 0.40

vr = 1.2

Height increment
Δh in mm →

0.25 0.30 0.350
6
7
8
9
10
11
12
13
14
15

vr = 1

Height increment
Δh in mm →

H
ei

gh
t 

in
 m

m
 →

0.46 0.51 0.56
0
13
14
15
16
17
18
19
20
21
22

H
ei

gh
t 

in
 m

m
 →

Height increment
Δh in mm →

vr = 2

0.54 0.59 0.64
Height increment
Δh in mm →

vr = 2.25

0.63 0.68 0.73
Height increment
Δh in mm →

vr = 2.5

A
lu

m
in

um
St

ai
nl

es
s s

te
el

M
ea

n 
fin

al
 h

ei
gh

to
ft

he
pa

rt
St

an
da

rd
 d

ev
ia

tio
n

C
al

cu
la

te
d

he
ig

hta) b) c)

d) e) f)

Figure 10. Height of the produced cylinders with a fixed speed ratio as indicated at the top of the
respective diagrams and three different height increments for aluminum (a–c) and stainless steel
(d–f).

4. Conclusions and Outlook

In this study, the process development for coaxial Laser Metal Deposition with wire
was investigated using a stainless steel material combination of AISI 304 substrate plates
with AISI 316L wire and an aluminum material combination of AlSi1MgMn substrate
plates and AlMg4,5MnZr wire. First, a process window was identified for both material
combinations. Then, the influence of the process parameters laser power, wire speed, and
traverse speed on the geometry of the depositions was studied. Lastly, the influence of
the height increment per layer on the produced parts was analyzed to use the process for
Additive Manufacturing purposes. The following conclusions were drawn based on the
results of the investigations conducted:
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• A suitable combination between the speed ratio and the energy per unit length plays a
crucial role in establishing a defect-free process. Therefore, these parameters offer a
material-independent valid alternative to the more widely used parameters of the laser
power, wire speed, and traverse speed for process development. For both materials,
the minimal amount of energy per unit length for a defect-free process was 50 J mm−1.
Due to the lower melting temperature of aluminum, a defect-free process could only be
achieved using speed ratios above 1, while lower speed ratios resulted in a defect-free
process with stainless steel.

• The correlation between process parameters and the bead width and height for both
investigated materials can be approximated by linear models.

• Independent of the used material, the following observations regarding the influence
of parameter variations within the respective process windows on the bead height and
width were made:

# The bead height increases with higher wire speeds and speed ratios, decreases
for higher traverse speeds, and is not affected by the laser power nor the energy
per unit length.

# The bead width increases with a higher laser power and energy per unit length,
decreases with higher traverse speeds, and is marginally affected by the wire
speed. A higher speed ratio leads to narrower beads for aluminum and wider
beads for stainless steel.

• The height increment required for a layer-wise additive process can be chosen based
on the presented formula that uses the dimensions of the wire, the speed ratio, and
the width of single beads.

In future research, the identified process windows will be further studied to enhance
the production efficiency of the process. Based on the presented correlations, the process
parameters will be deliberately adapted to improve and to optimize the quality of the
produced parts. To further qualify the process for a broad industrial application, an in-
depth study of the mechanical and microstructural properties of the parts produced will
be conducted in future work. Moreover, thermal models will be developed to predict
the temperature fields that result from the process and thus help better comprehend the
effects of the process on the produced parts. Furthermore, the production of more complex
geometries requires attention. For example, a constant traverse speed is often not given at
turning points. Therefore, solutions are needed to cope with the effects that abrupt changes
in the traverse speed have on the resulting geometry of the part.
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Appendix A

Table A1. Results of the ANOVA for the individual regression models.

Dependent
Variable Material R2 of the

Model SSR SSE Independent
Variable Variable Value Standard

Error p-Value

Height

A
lu

m
in

um 0.92 8.57 0.69
P 7.75 × 10−6 3.17 × 10−5 0.81
vt −0.34 9.51 × 10−3 1.06 × 10−65

vw 0.15 9.51 × 10−3 4.61 × 10−32

0.98 9.10 0.15
vr 0.26 6.77 × 10−3 6.39 × 10−71

El −0.19 × 10−3 0.14 × 10−3 0.18

St
ai

nl
es

s
st

ee
l

0.94 0.53 0.02
P −2.25 × 10−6 1.96 × 10−5 0.90
vt −0.42 0.03 3.97 × 10−14

vw 0.38 0.03 4.42 × 10−13

0.95 0.53 0.02
vr 0.35 0.02 1.65 × 10−15

El 0.21 × 10−3 0.21 × 10−3 0.33

Width

A
lu

m
in

um 0.84 6.10 1.11
P 0.22 × 10−3 4.04 × 10−3 1.53 × 10−7

vt −0.30 0.01 7.62 × 10−50

vw −0.018 0.01 0.14

0.87 6.30 0.91
vr −0.05 0.02 1.87 × 10−3

El 5.53 × 10−3 0.35 × 10−3 3.18 × 10−3

St
ai

nl
es

s
st

ee
l

0.67 0.93 0.37
P 0.17 × 10−3 7.56 × 10−5 0.03
vt −0.70 0.10 4.41 × 10−7

vw 0.17 0.10 0.11

0.68 0.93 0.38
vr 0.22 0.07 8.92 × 10−3

El 3.50 × 10−3 0.83 × 10−3 0.27 × 10−3
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