
Contributions to the Adoption of Deep
Reinforcement Learning Algorithms in
Real-World Robotics

Sven Gronauer





TUM School of Computation, Information and Technology
Technische Universität München

Contributions to the Adoption of Deep
Reinforcement Learning Algorithms in

Real-World Robotics

Sven G. Gronauer
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Abstract

Learning-based methods such as reinforcement learning promise to synthesize control
policies from data, eliminating the need for manual controller design. The field has
witnessed rapid advances since the seminal breakthrough of deep reinforcement learning:
Algorithms have emerged from simulation environments and have been successfully
adopted in real-world robotics. However, applying control policies to physical robots is
intricate, and various challenges must be overcome to render reinforcement learning a
reliable option for robot control.

This dissertation addresses the utilization of reinforcement learning algorithms in
real-world robotics. The emphasis lies on transfer learning, where control policies trained
in simulation are deployed to a physical robot. To this end, this thesis examines three
crucial topics for successful sim-to-real transfer.

First, the performance of control policies is examined with respect to the algorithm
configuration and the design of the control problem. The results evidence that a handful
of carefully selected algorithm components can compete with state-of-the-art algorithm
implementations on common simulation benchmark tasks. Furthermore, the representation
of the policy and the level of abstraction in the action space are studied on a real quadrotor
robot. The experiments show that both have a positive impact on performance.

Second, the robustness of control policies is investigated toward the model mismatch
between the simulation and the real robot. To this end, policies were directly transferred
from the simulation to a quadrotor robot, and the robustness was assessed based on the
abstraction level of the action space and the learning representation of the control policy.
As the experimental results indicate, higher abstraction levels in the action space reduce
the required simulation fidelity and increase robustness. Furthermore, recurrent neural
networks combined with domain randomization facilitate an adaptive control behavior,
which is beneficial in partially observable systems.

The third and last topic covered in this thesis is the safety certification of a reinforcement
learner. A learning-based model predictive method is used to correct potentially unsafe
actions of a control policy through planning. Since the reliable enforcement of safety
constraints requires accurate modeling of the robot, two approaches to improve safety are
investigated. The results indicate that prior knowledge of the dynamics, derived from first
principles, enhances the quality of the learning-based safety certification. Additionally, the
results show that an ensemble of neural networks reduces the number of safety constraint
violations at the expense of rendering the closed-loop control system more conservative.

In summary, this thesis substantiates the recent success stories of deep reinforcement
learning and shows that data-driven paradigms can be used to control robots in the real
world. However, a successful deployment requires careful engineering of the algorithm
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components and proper design of the control problem. This finding refutes the idealistic
notion that reinforcement learning is applicable without prior knowledge about the real-
world system and the structure of the environment. Nevertheless, the recent advancements
are promising, and the interest in adopting reinforcement learning methods in robotics is
increasing.
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Chapter 1

Introduction

Modern industrial progress is driven by a continuously increasing degree of automation
[1, 2]. Automation in technical processes can reduce or even eliminate human supervision
by assigning the decision-making to an entity called a controller or agent, which executes
concrete instructions in specific situations. The conventional engineering approach for
implementing automation is to develop a system description with appropriate inputs and
outputs by deriving a system formulation from physical principles [3]. Then, a feedback
loop is integrated such that the system becomes a closed loop, and a controller can drive
the system to a desired state [4]. Closed-loop control traditionally requires a wide range of
domain knowledge for system formulation, controller design, and high-level algorithms for
planning and decision-making. For that reason, controller design becomes more intricate
with an increasing degree of system complexity and is challenging for systems with only
partially or completely unknown dynamics. Moreover, controllers are mainly implemented
once and remain unchanged after deployment [5], rendering an a priori specification of
controllers a notoriously difficult task for complex systems.

Learning-based methods are a promising direction to address the automated design of
control policies. The showcase example is deep reinforcement learning (RL), a data-driven
paradigm for learning controllers that eludes the necessity of a manual controller design [6,
7, 8]. Deep RL utilizes neural networks (NNs) as parameterized function approximators to
find low-dimensional representations of high-dimensional data [9]. The representations are
trained end-to-end by adjusting the parameters of the learning representation based on
data obtained from trial-and-error interaction with the system. Decisions are inferred from
the learning representation in such a way as to optimize the expected control performance.
What renders the framework of deep RL so powerful is that an agent does not need
explicit instructions in each time step but can find meaningful relationships and patterns
in data, even from sparse feedback. Moreover, an agent improves itself by learning from
experience, even when starting to learn tabula rasa [10], and can adapt online by learning
continually from unknown situations and reusing past interaction data [11].

The rise of deep learning methods in the early 2010s has sparked renewed interest in
learning-based control. Groundbreaking scientific advances in representation learning [12,
13] and algorithm implementation [14, 15] have paved the way for the rapid advances of
the research field. Furthermore, the adoption of RL is driven by the steadily increasing
power of computing resources and communication networks, the mounting availability of
data, and improved physics simulations.
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Chapter 1 Introduction

1.1 Challenges and Motivation

Although deep RL has demonstrated its capabilities as the superior control framework in
several simulation and board-game environments [16, 17, 18], the deployment to robots is
challenging for a number of reasons [19]:

1. Curse of Dimensionality. RL relies on the interaction with the environment to learn
from the consequences of the actions taken. With an increasing state and action
space dimensionality, the number of required data samples rises to develop accurate
representations. In fact, a discrete state-action space grows exponentially with the
dimension and the number of entities in multi-agent environments [20].

2. Generalization. When agents are trained on a single or a set of similar but related
tasks, the ability to learn abstract concepts and reuse skills on new tasks and
in unseen environments is crucial for learning in the real world. Generalization
describes the ability to learn from a limited amount of data and develop meaningful
representations to master novel deployment conditions, preventing overfitting to
the training environment [21].

3. Non-Markovian Systems. The underlying mathematical framework of RL relies
on the idealistic assumption that the environment state is fully observable and
that the operating conditions are stationary. Both assumptions are generally not
applicable to robotic hardware since changes in the dynamics caused by wear, delays
in actuation and sensing, or immeasurable state information render the control
problem non-Markovian [22, 23].

4. Sample Efficiency. Deep RL algorithms are known to be sample inefficient [24].
Large amounts of data are required to find expressive representations and learn
policies with high control performance. Generating large amounts of data is typically
not an issue in simulation but imposes a severe limitation on real-world robot systems,
on which time and monetary constraints exist [25].

5. Safety. Agents require exploration to learn from unseen regions of the state space
and novel situations. At the same time, the safety of the robot’s behavior must
be enforced at all stages of the learning process to avoid failures and damage to
the hardware or its environment. Thus, an unconstrained exploration is neither
tolerable nor affordable for most robot systems [26, 27].

6. Robustness. Control policies deployed in real-world systems require a certain
degree of robustness to ensure reliable performance. In particular, policies are
required to withstand uncertainties resulting from measurement noise and state
estimation, structural changes, and non-stationarity of the environment. Robustness
is generally required in settings where the deployment conditions differ from those
during training [28, 29, 30].

The last half-decade has seen remarkable advances in the adoption of RL to real-world
applications. Examples in the domain of robotics include locomotion with legged robots
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1.2 Scope of Research Work

Performance

Safety Robustness

Sim-to-Real
Transfer

Figure 1.1: The scope of this thesis is centered around sim-to-real transfer learning. In this
context, three topics are addressed: performance, robustness, and safety.

[31, 32], flying quadrotors through cluttered environments and first-person view racing
[33, 34], and solving manipulation tasks with robotic hands or arms [35, 36, 37]. Beyond
robotics, the first successful implementation of RL to control plasma for nuclear fusion was
demonstrated [38], as well as the first use of deep learning and RL for laser welding [39].
RL likewise shows potential for solving abstract problems such as sorting and hashing
[40], matrix multiplication [41], electronic chip layout [42], and chemical drug design [43].

Despite the tremendous progress, RL is not the mainstream methodology for controlling
robots [5]. Engineers favor methods from control theory due to their safety and robustness
guarantees under known operating conditions. In order to render RL a reliable option for
robot control, several challenges must be addressed.

1.2 Scope of Research Work

The theme of this thesis is the adoption of deep RL algorithms in real-world robotic
applications. In most parts, the emphasis lies on zero-shot transfer learning, where
a control policy is exclusively trained in simulation and then deployed on a physical
robot. An apparent advantage of a sim-to-real approach is that a theoretically infinite
amount of data can be leveraged for the training. However, the quantity of simulated
data comes at the cost of the so-called reality gap, a bias imposed on the control policy
since the simulation model cannot perfectly fit reality. The model mismatch can result
from an inaccurate simulation that does not well-characterize the real world, as well
as stochasticity and non-stationarity of the environment. This thesis centers on the
sim-to-real context and addresses three topics, as depicted in Figure 1.1.

First, the performance of a control policy is investigated. It is a well-known issue
that experimental results underlie high variance since several high-level and low-level
implementation decisions affect learning [25, 44, 45]. Hence, algorithm components and
control design choices are evaluated based on their impact on policy performance.

Second, the robustness of policies toward the reality gap is studied. It is vital for
successful sim-to-real transfers that policies are insensitive toward the reality gap, espe-

3



Chapter 1 Introduction

cially in zero-shot settings, where policies are trained exclusively in simulation, and no
real-world data is used for fine-tuning the policies. Robustness is examined with respect
to the level of abstraction in the action space and the learning representation of the
control policy.

Third, the safety of a learning-based policy during the data collection phase is examined.
Since good exploration strategies are highly stochastic and novelty-seeking, a naive
deployment of an RL algorithm is not realizable on a robot, where physical safety is
imperative. Thus, safety mechanisms must be embedded into the RL loop such that
actions with irreversible consequences are averted and control behavior enforces the
given constraints at deployment. To this end, the learning-based safety certification of
potentially unsafe actions is investigated, as well as how to improve it.

1.3 Thesis Outline

This thesis is a cumulative dissertation based on Papers I–V that were published previously.
Papers I–V are peer-reviewed and included as appendices to this thesis. The contributions
of the research work can be divided into two parts. Part A addresses the single-agent
domain and is dedicated to the topics of performance, robustness, and safety. Part B
extends the scope to multiple agents and complements the six challenges introduced in
Section 1.1 by reviewing challenges that arise exclusively in the multi-agent domain. The
remainder of this thesis is structured as follows.

Chapter 2 covers the terminology and underlying concepts used throughout this thesis.
To this end, the formal problem statement is given, followed by an introduction to the
two computational frameworks used in this thesis.

Chapter 3 formulates three research questions (RQs), which are answered accordingly
by verifying or falsifying hypotheses. Each RQ is associated with two or three hypotheses.

Chapter 4 consolidates the methodology used to evaluate the research hypotheses and
briefly outlines the methods proposed in Papers I–V. Algorithm components and control
design choices are introduced in Section 4.1. After that, the methods used to improve the
robustness of control policies for sim-to-real transfer learning are covered in Section 4.2.
Section 4.3 addresses the topic of safe exploration and introduces constrained RL and
predictive safety filters.

Chapter 5 summarizes the context and contributions of Papers I–V. While Section 5.1
covers selected aspects of the single-agent RL problem, Section 5.2 surveys the landscape
of the recent developments in multi-agent reinforcement learning (MARL).

An extended discussion about the three topics covered in this thesis is given in Chapter 6.
Besides the reflection on the research work conducted in Papers I–V, a substantial amount
of literature is included in this discussion. Most importantly, RQs 1–3 are addressed by
providing answers based on the evaluation of the associated hypotheses.

Finally, Chapter 7 concludes this thesis by summarizing the main findings and giving a
brief outlook on the adoption of RL in real-world robotics.
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Chapter 2

Background

The primary purpose of this background chapter is to introduce the terminology, concepts,
and definitions that are used in the subsequent chapters of this thesis. At first, the formal
problem statement is given. After that, the two computational frameworks utilized in
this thesis work are presented: data-driven RL and knowledge-driven model predictive
control (MPC). The last part of this background chapter presents MARL and briefly
introduces two major challenges of the multi-agent domain.

As for the mathematical notation, R denotes the set of real numbers, Rn is the set of
n-dimensional vectors, and Rm×n denotes the set of real-valued m× n matrices. Small
Latin alphabet generally denotes vectors (e.g., x, u) and functions (e.g., f, r), capitalized
letters denote matrices (e.g., A,B) and integer variables (e.g., N,H), blackboard bold
letters are used for sets (e.g., X,U) and Greek letters denote hyperparameters (e.g., α, γ).
Some deviations may occur so that the notation better aligns with the existing literature:
π denotes a policy, θ and φ are NN parameter vectors, and V and Q denote value functions.
Calligraphic font describes geometric objects like ellipsoids E . The symbol ⊕ denotes the
Minkowski sum of two sets and square brackets [1, N ] describe the set of integer numbers
from 1 to N . Finally, the p-norm of a vector is given by ‖ · ‖p.

This thesis borrows the terminology from the RL community but applies the notation
from control theory and dynamic programming [46], e.g., transition tuples are described as
(x, u, r, x′) instead of (s, a, r, s′) used in the RL literature [8]. For the sake of readability,
the time index t is dropped when the time dependency becomes apparent from the context,
i.e., (x, u, r, x′) is used instead of (xt, ut, rt, xt+1).

2.1 Formal Problem Statement

The formal problem is to make a sequence of optimal decisions under uncertainty. Optimal-
ity is determined through a numerical measure called reward, which provides information
about the success or failure of the decisions being made. The decision maker, referred to
as the agent in the remainder of this thesis, stores information about the system in states
and manipulates the state of the system through actions. In this way, the agent is able
to steer the future evolution of the system and drive the system to a desired state.
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Chapter 2 Background

System Description. More formally, dynamical systems are considered in discrete-time
form

xt+1 = f(xt, ut, wt) (2.1)

with states xt ∈ X, actions ut ∈ U, and disturbances wt ∈ W at the time step t. The
behavior of the system and its evolution over time is described by the system dynamics f
and can be manipulated through actions. Unless otherwise stated, the system dynamics
are assumed to be unknown, which prompts the agent to learn about the input-output
behavior of the system through trial and error.

Constraints. In practice, most robot systems impose restrictions in terms of actions
U ⊂ Rnu (e.g., actuator limits) and states X ⊂ Rnx (e.g., joint position and speed
constraints), where nu and nx describe the dimension of the respective space. The system
is assumed to underlie polytopic constraints in the states x ∈ X = {x ∈ Rnx | Hxx ≤ dx}
and actions u ∈ U = {u ∈ Rnu | Huu ≤ du}. The matrices Hx and Hu are of appropriate
size, and the dimensions of the vectors dx and du correspond to the number of constraints
present in the system.

Noise and Uncertainties. Real-world systems are subject to uncertainty, which
results from process noise, corrupted sensor measurements, and inaccurate state estimation.
Process noise arises from the stochastic nature of the dynamical system itself. Furthermore,
robot systems exhibit noise in the actuation and sensing. Non-stationarity is another
source of uncertainty caused by changes in system parameters during operation (e.g.,
due to wear and tear) but is typically neglected in RL for practical reasons. The system
description in (2.1) accounts for all sources of uncertainty with the disturbance vector w.

Objective. To make optimal decisions, the agent manipulates the future evolution of
system states (xt, xt+1, . . . ) through a sequence of actions (ut, ut+1, . . . ) in such a way as
to maximize the cumulative reward

J(ut, . . . , ut+N−1) = rf (xt+N) +
N−1∑

k=0

r(xt+k, ut+k) (2.2)

over the horizon N . The reward function r : X × U → R outputs a scalar signal in
each time step t that contains information about the effectiveness of the agent’s control
behavior, while the scalar function rf : X→ R denotes the terminal reward. The choice
of N is a subtlety of the computational framework: modern RL algorithms mainly apply
the infinite horizon case N →∞, whereas MPC methods utilize a finite N over a receding
horizon.
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2.2 Model Predictive Control

2.2 Model Predictive Control

In MPC, the control problem is set to a finite horizon N and optimizes the objective

maximize
ut,...,ut+N−1

J(ut, . . . , ut+N−1)

subject to z0 = xt,
zk+1 = fprior(zk, ut+k) ∀ k = [0, N − 1],
zk ∈ X ∀ k = [0, N ],
ut+k ∈ U ∀ k = [0, N − 1],
zN ∈ Xterm.

(2.3)

At each time step t, the control problem is solved online with a receding horizon [47].
MPC assumes access to a prior model fprior, which is usually derived from first principles
and may be calibrated with the help of expert knowledge. The initial condition of the
optimization problem is the latest measurement or estimate xt of the actual system (2.1),
and Xterm is the terminal set that must be reached within N steps. The subscript k is
used to denote the planning stage, where a predicted state zk is k stages ahead of xt. By
solving the mathematical program (2.3), the open-loop action sequence (ut, . . . , ut+N−1)
is obtained. However, only ut is applied to the system, and (2.3) is resolved at the next
time step with a shifted horizon.

MPC plans trajectories that, at the same time, optimize the objective given in (2.2)
and satisfy the given constraints. This is a big benefit of MPC since constraints can be
directly enforced in the optimization process.

2.2.1 Robust Model Predictive Control

When the robot is subject to uncertainties, feedback control is superior to open-loop
control [48]. While conventional MPC (2.3) finds an action sequence as a solution to the
open-loop control problem, robust MPC outputs a sequence of policies. Although several
approaches to robust MPC exist, this thesis focuses on tube-based MPC [48].

In tube-based MPC, the model fprior is used to plan a nominal state trajectory
(z0, . . . , zN) produced by the action sequence (v0, . . . , vN−1). In the presence of un-
certainty, it is assumed that the tube contains all possible trajectories of the actual
system (2.1), where each trajectory implements a particular realization of the disturbance
sequence. Since tubes can grow large under uncertainty, the affine feedback

ut+k = vk +K(xt+k − zk) (2.4)

is applied to track the state trajectory (xt, xt+1, . . . ) of the actual system toward the
nominal state trajectory (z0, z1, . . . ). The matrix K ∈ Rnu×nx implements linear feedback
and is chosen such that the error system ek = xt+k − zk becomes stable.

2.2.2 Model Predictive Safety Certification

Model predictive safety certification (MPSC) implements a mechanism that prevents
learning-based systems from executing unsafe actions. A closed-loop system is considered
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Chapter 2 Background

to be safe when predefined safety constraints are satisfied during both the learning and
deployment phases, i.e., x ∈ X and u ∈ U. By predicting the future state trajectory based
on a nominal model, MPSC tries to find an action sequence that complies with the state
and action constraints. Any RL-based control loop can be extended with MPSC so that
potentially unsafe actions are adjusted to safe ones.

More formally, nominal MPSC [49] aims to find a control input v0 that modifies the
action ut as minimally as possible by solving the objective

minimize
v0,...,vN−1

‖ut − v0‖2
2

subject to z0 = xt,
zk+1 = fprior(zk, vk) ∀ k = [0, N − 1],
zk ∈ X ∀ k = [0, N ],
vk ∈ U ∀ k = [0, N − 1],
zN ∈ Xterm.

(2.5)

The MPSC objective is set to a finite horizon N and outputs the nominal state-action
sequence (z0, v0, . . . , vN−1, zN) that satisfies the constraints in states, actions, and the
terminal set. The time index t is used for state measurements and actions from and
applied to the actual system (2.1), whereas k denotes states and actions used for planning
with fprior. Thus, the predicted states zk are k stages ahead of the time step t. MPSC
was introduced for linear dynamical systems [50] and extended to nonlinear systems in
later works [51, 52].

2.3 Reinforcement Learning

In RL terminology, learning describes a closed-loop process wherein the agent interacts
with its environment sequentially and learns from past data, as illustrated in Figure 2.1.
Since the system dynamics of the environment are inherently assumed to be unknown,
the agent can only learn about the system’s behavior through trial and error. At each
time step, the agent observes a snapshot of the system state and selects an action based
on its control policy (or just the policy). The agent learns about the consequences of the
actions taken through rewards that indicate the agent’s capability to complete a control
task. It aims to maximize the cumulative reward by adapting the policy accordingly.
The remainder of this chapter introduces RL as a computational framework to find good
policies through data.

2.3.1 Elements of Reinforcement Learning

The Markov decision process (MDP) is the most common approach for modeling sequential
decision-making with RL [53]. Its name is based on the Markov property that requires a
state to capture all relevant information about the system’s history, decoupling the future
evolution of the system from its past.

Markov Decision Process. An MDP is defined by the tuple (X,U, p, r,X0), where
X and U are the state and action spaces, respectively [54]. The dynamical system f
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2.3 Reinforcement Learning

System f

Control Policy π

Action ut State xt and Reward rt

Figure 2.1: Closed-loop control with RL.

underlies a random disturbance wt, which can be equivalently expressed by the state
transition probability kernel p : X×U→ P (U) that assigns each state-action pair (x, u) a
probability measure over X. The notation p(·|x, u) is rather standard in the RL community
to describe state transitions and is just an alternative formulation to (2.1). The reward
function is r : X× U→ R and X0 denotes the initial state distribution.

Policy. The agent’s behavior is encoded in the policy π : X → P (U) that maps each
state to a probability distribution over the action space, making the action selection
stochastic, i.e., u ∼ π(·|x). Through an optimization process that applies incremental
adjustments, the policy is updated such that the cumulative reward (2.2) is maximized.
This thesis considers only policies that are stationary.

Trajectories. A trajectory, also called episode or rollout in RL terms, describes the
state-action sequence τ = (x0, u0, x1, u1, . . . ). In the remainder of this thesis, the notation
τ ∼ π is used as a shortcut for the trajectories produced under the policy π subject to
xt+1 ∼ p(·|xt, ut), ut ∼ π(·|xt), and x0 ∼ X0.

Return. For the cumulative reward, also called trajectory return or just return, two
formulations exist: finite and infinite. The finite return is given by the sum of rewards

R(τ) = rf (xN) +
N−1∑

t=0

r(xt, ut) (2.6)

over the horizon N . In the infinite horizon, the return becomes

R(τ) =
∞∑

t=0

γtr(xt, ut). (2.7)

An additional discount factor γ ∈ (0, 1) is introduced such that the infinite sum converges,
assuming that the reward function r is bounded. Furthermore, the discount factor can be
seen as a trade-off between immediate rewards and long-term task completion. Note the
slight difference between (2.2) and (2.6): MPC considers the cumulative reward over a
receding horizon whereas RL takes the sum of rewards over the complete trajectory.

9
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Optimization Problem. The agent aims to maximize the expected policy performance

J(π) = E
τ∼π

[R(τ)] , (2.8)

by adapting the policy through small incremental steps. Since the policy performance
can only be sampled when the system dynamics are unknown, Monte Carlo methods
are used to obtain numerical estimates. The policy search problem to be solved through
stochastic optimization [55, 56] has the form

maximize
π

J(π),

where the optimal policy π∗ is sought over the space of policies Π.

Value Functions. In addition to the policy performance, which describes the expected
performance of a policy, the utility of being in a particular state is described by a value
function. The state-value function Vπ : X→ R under the policy π describes the utility
when being in state x and taking actions according to π thereafter, i.e.,

Vπ(x) = E
τ∼π

[ ∞∑

t=0

γtr(xt, ut)
∣∣∣ x0 = x

]
.

In a similar way, the action-value function Qπ : X× U→ R described by

Qπ(x, u) = E
τ∼π

[ ∞∑

t=0

γtr(xt, ut)
∣∣∣ x0 = x, u0 = u

]

expresses the utility of being in state x, performing action u, and following the policy π
thereafter.

Bellman Equation. The value function underlying the policy π is known to satisfy
the Bellman equation

Vπ(x) = E
x′∼p,u∼π

[r(x, u) + γVπ(x′)] (2.9)

for all x ∈ X [54]. Analogously, the action-value function under π satisfies the system of
equations

Qπ(x, u) = E
x′∼p,u′∼π

[r(x, u) + γQπ(x′, u′)] (2.10)

for all (x, u) ∈ X× U. Except for a restricted class of problems, where linear algebraic
recursion can be used [6], value functions are not known a priori and hence must be
found iteratively. Temporal difference (TD) methods can be applied for the iterative
computation of value functions by using bootstrapped values. The updates

Vk+1(x)← Vk(x) + αkδ,

are applied iteratively for all x ∈ X until convergence with a sufficiently small step size
αk > 0, resulting in the fix point limk→∞ Vk = Vπ [7]. The one-step TD error is defined by

δ = r(x, u) + γVk(x
′)− Vk(x), (2.11)

where Vk(x) and Vk(x
′) are bootstrapped values at the k-th iteration of the update process.
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2.3.2 Taxonomy of Reinforcement Learning Algorithms

RL algorithms can be categorized along several dimensions. Possible dimensions are the
data generation process and the type of data used for policy improvement. Another
dimension is whether the data collection is coupled with the learning process, i.e., whether
the data generation and policy improvement are an online process or training is performed
on a fixed data batch.

Model-Free and Model-Based. The most fundamental distinction of RL algorithms
is whether a dynamics model of the environment is leveraged for training. Model-free
methods learn without dynamics knowledge and thus solely rely on interaction data. In
contrast, model-based methods utilize a dynamics model, which can be specified a priori
through domain knowledge [15, 57] or learned from data [58, 59, 60]. In general, model-
based methods are more sample-efficient than their model-free counterparts. However, the
superior sample efficiency typically comes at the cost of reduced asymptotic performance
when utilizing a learned dynamics model [61].

Online and Offline. The classical RL viewpoint is that learning is an online process
where the agent directly interacts with the environment and adapts its behavior to
maximize performance. Data generation and policy improvement depict an alternating
procedure in which the agent first collects data and then updates its policy. The ability
to learn online from experience renders RL algorithms a versatile approach but also poses
a significant challenge. The trial-and-error data collection makes the adoption of RL to
robotic systems demanding due to the high sample complexity. Another line of research
concentrates on offline RL, where data is collected once and before the training [62].
The data are kept fixed throughout the training so that the policy does not actively
interact with the environment. Offline RL is a valuable approach in settings where online
interaction is ineligible, either due to safety concerns or the expense of data [63].

On-Policy and Off-Policy. Another classification of RL algorithms can be seen in the
policy used for the data collection. On-policy algorithms utilize the most recent policy
iteration for creating trajectories and then update the policy consequently on this data
batch. In contrast, off-policy algorithms can incorporate data generated by any controller
in the update procedure. Data samples from former policy iterations are often reused in
the updates of the current policy iteration, rendering off-policy algorithms, in general,
more sample efficient than their on-policy equivalents [25, 64, 65].

2.4 Deep Reinforcement Learning

Even in a finite state-action space, the enumeration of all state-action pairs can easily
exceed the available memory of a computer system. Thus, the visitation of all pairs in a
discretized state-action space through sampling can become infeasible in practice. For
instance, the discretization into ten bins per dimension in a continuous state space of size
R11 and an action space in R4 results in 1011 · 104 = 1015 state-action pairs. The so-called
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curse of dimensionality [66] makes available data samples become sparse and necessitates
the use of function approximators to estimate value functions and interpolate the space
between samples.

2.4.1 Neural Networks

Deep RL copes with high-dimensional spaces by utilizing NNs as universal function
approximators to represent value functions and/or policies. In this thesis, two specific
types of NNs are considered: feed-forward neural networks (FNNs) and recurrent neural
networks (RNNs).

Feed-Forward Neural Networks. The multi-layer perceptron (MLP) belongs to the
class of FNNs since no recursive loops for memorization are used. Information flows
unidirectional from input to output. MLPs are the most common form of FNNs and thus
are adopted in a wide range of applications [67]. The MLP is composed of a series of
layers, where each layer i computes the affine combination

yi = hi(yi−1,Wi, bi) = a
(
Wiyi−1 + bi

)
,

of the input vector yi−1, the weight matrix Wi, and the bias vector bi, followed by the
nonlinear transformation a, which is known as activation function. A complete forward
pass through an MLP network follows a sequence of mappings hi over L layers [68], i.e.,

h(x, θ) = hL(·,WL, bL) ◦ · · · ◦ h2(·,W2, b2) ◦ h1(x,W1, b1).

The input to layer i is the output yi−1 of the previous layer, while the input to the first
layer is y0 = x. For compactness, the parameter vector of an NN is written as a column
vector

θ =
[
wT1 , b

T
1 , . . . , w

T
L , b

T
L

]T
,

which concatenates the NN parameters by stacking the flattened weights wi = vec(Wi)
and biases bi. Note that the terms MLP and FNN are used interchangeably in this thesis.

Recurrent Neural Networks. The second class of NNs considered in this thesis
are RNNs, which extend MLPs with feedback loops that retain their outputs for the
next forward pass. RNNs are designed to process sequential data and are adopted in
applications where temporal relationships must be inferred from data [69, 70]. In this
thesis, only those RNN architectures that can be organized in layers are considered.
Similar to the MLP, each layer implements the nonlinear transformation

y
(t)
i = hi

(
y

(t)
i−1, y

(t−1)
i ,Wi, bi

)

of inputs, weights, and biases, followed by an activation function at time step t. The time
index t− 1 is used to denote the outputs of the previous time step, while i− 1 denotes
the outputs from the preceding layer. Commonly selected recurrent layer units include
long short-term memory (LSTM) [71] and gated recurrent units (GRUs) [72].

12
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2.4.2 Actor and Critic

NNs play a central role in the recent success stories of RL, which can be explained by
their expressiveness and the clever utilization of these function approximators [73]. This
section briefly explains the role of NNs in deep RL.

Policy Representation. Deep RL generally addresses problems in continuous action
spaces with policies represented by NNs, so-called actors. The actor πθ is parameterized
by the vector θ holding the weights and biases of the NN. In order to reinforce the
exploration of the state-action space, stochasticity is induced in the selection of actions,
commonly through the use of a multivariate Gaussian distribution

πθ(·|x) = N (h(x, θ), S) = h(x, θ) +N (0, S), (2.12)

where h parametrizes the mean of the Gaussian and S denotes the covariance matrix.

Value Function Approximation. The value functions

Vφ ≈ Vπ and Qφ ≈ Qπ

are approximated by NNs with parameters φ =
[
wT1 , b

T
1 , . . . , w

T
L , b

T
L

]T
. The RL community

also refers to the functions Vφ and Qφ as critics. Although the Bellman equation does
not hold exactly when using NNs, the system of equations (2.9) can still be solved
approximately by optimizing the mean-squared TD error, i.e.,

minimize
φ

L(φ) = E
τ∼π

[(
r(x, u) + γVφ(x′)− Vφ(x)

)2
]
.

Value estimates V (x′) of the next states are bootstrapped from data that are generated
through the interaction with the environment. As new data samples are collected, the
approximation Vφ can be refined. Since Vφ is a nonlinear map, the solution cannot be
found in closed form but must be computed iteratively. The easiest and predominantly
chosen approach for minimization is taking a step along the descending direction, i.e.,
by going into the direction of the negative gradient −∇φL(φ). The critic parameters are
then successively updated by following the update rule

φk+1 = φk − αk∇φL(φ),

where k describes the current iteration, and αk is the step size.

Actor-Critic Methods. A very effective method to address continuous control prob-
lems with deep RL is the combination of an NN-based value function and an NN-based
policy, both trained interchangeably [9]. An actor-critic method alternates between a
policy evaluation step to improve the critic estimates and a policy improvement step to in-
crease the trajectory return. For this purpose, the actor is updated along an approximate
gradient direction based on the critic estimates. Actor-critics promise improved learning
stability and better convergence behavior than actor-only and critic-only methods [74].
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2.4.3 Policy Gradient Algorithms

A policy gradient method optimizes a policy by taking the gradient of the policy perfor-
mance with respect to the policy parameters and going along the direction of the gradient
[75, 76]. Since the gradients of the return (2.8) can exhibit high variance due to the
accumulation of noisy one-step rewards, critics are used to guide the learning process
[77]. Critics provide long-term value predictions with low variance instead of immediate
reward signals. However, the reduced variance comes at the cost of inducing a bias to the
gradient computation. Recently, the intersection of actor-critics and policy gradients has
gained enormous popularity due to their success in various problems [78, 79, 80]. Hence,
this combination is used as the method of choice throughout this thesis.

Policy gradient methods update the policy parameters θ iteratively by going into the
direction pk with the step size αk, i.e.,

θk+1 = θk + αkpk.

Two common methods exist for determining the direction: line search and trust-region
methods [81]. The direction is given by

pk = B−1
k gk,

where Bk is an approximation to the Hessian and gk = ∇θJ(πθ) |θ=θk denotes the
policy gradient. Since arbitrarily large policy update steps can lead to degenerative
policy performance during the optimization procedure [77, 82], updates must be chosen
carefully. A common measure used in policy gradient methods is the Kullback-Leibler
(KL) divergence

DKL(π ‖ µ) = E
τ∼µ

[∫
π(u|x) log

(
π(u|x)

µ(u|x)

)
du

]
,

which evaluates the displacement in the action selection between the policies π and µ.

Stochastic Policy Gradients. Stochastic policy gradients utilize policies (2.12) that
parameterize probability distributions over the action space. Based on the policy perfor-
mance (2.8) in the infinite horizon case, the stochastic policy gradient is given by

∇θJ(πθ) = E
τ∼πθ

[
∇θR(τ)

]

= E
τ∼πθ

[
R(τ)∇θ log p(τ |πθ)

]

= E
τ∼πθ

[ ∞∑

t=0

R(τ)∇θ log πθ(ut|xt)
]
.

From the first to the second line, the likelihood ratio derivative ∇θπθ = πθ∇θ log πθ is
applied [83]. From the second to the third equation, the likelihood function of a trajectory

p(τ |πθ) = p(x0)
∞∏

t=0

p(xt+1|xt, ut)πθ(ut|xt)
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under π is differentiated with respect to the policy parameters and inserted, i.e.,

∇θ log p(τ |πθ) =
∞∑

t=0

∇θ log πθ(ut|xt).

As the policy gradient estimate is independent of the state transition probability function
and the initial state density function p(x0), only the sum of the gradient log-likelihood of
the policy remains. In a more general context, the policy gradient can be formulated as

∇θJ(πθ) = E
τ∼πθ

[ ∞∑

t=0

Ψt(τ)∇θ log πθ(ut|xt)
]
, (2.13)

where Ψt can take any of the following expressions [84]:

Ψt(τ) =





R(τ) trajectory return (2.7),

δt = rt + γVφ(xt+1)− Vφ(xt) TD residual (2.11),

Qφ(xt, ut) action-value function (2.10),

Aφ(xt, ut) = Qφ(xt, ut)− Vφ(xt) advantage function.

Ψt is commonly set to Aφ for on-policy and to Qφ for off-policy policy gradient methods.
A drawback of the stochastic policy gradient formulation in (2.13) is that the objective
requires data resampling because the data-generating distribution changes with each
policy update step. This flaw can be made obvious when switching the viewpoint of the
objective to the performance difference between two policies defined by

J(π) = J(µ) +

∫

x

dπ(x)

∫

u

π(u|x)Aµ(x, u) du dx,

where dπ(x) = (1− γ)Eτ∼π [
∑∞

t=0 γ
tp(xt = x) | x0 = x] denotes the normalized weighted

state distribution under policy π and Aµ is the advantage function under µ [76, 77,
85]. Since J is difficult to optimize due to its complex dependency on dπ, the local
approximation

Ĵµ(π) = J(µ) +

∫

x

dµ(x)

∫

u

π(u|x)Aµ(x, u) du dx

is used instead to disconnect the optimization variable π from the data distribution dµ

[86]. The local approximation matches the original function to the first order [85], i.e.,

Ĵπθk (πθk) = J(πθk) and ∇θĴπθk (πθ) |θ=θk= ∇θJ(πθ) |θ=θk .

In order to reuse generated trajectory data for multiple update steps, importance sampling
is applied to perform updates based on the surrogate objective

Ĵµ(πθ) = J(µ) + E
τ∼µ

[
πθ(ut|xt)
µ(ut|xt)

Aµ(τ)

]
= J(µ) + E

τ∼µ
[λtAµ(τ)] . (2.14)
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The scalar λt = π(ut|xt)
µ(ut|xt) denotes the importance weighting of the samples reused for

updates. Finally, by taking the derivative of the surrogate objective (2.14) with respect
to θ, the importance-weighted policy gradient (IWPG) is obtained in its general form as

∇θĴµ(πθ) = E
τ∼µ

[ ∞∑

t=0

λtΨt(τ)∇θ log πθ(ut|xt)
]
. (2.15)

Policy gradient algorithms perform multiple update iterations based on the same data
batch before generating a new one. Although the transition samples become off-policy
after the first policy parameter update, the data distribution of the updated policy is
still close to the policy that generated the data samples. The RL community refers to
this modus operandi as on-policy learning, notwithstanding that samples become slightly
off-policy after the first update.

Deterministic Policy Gradients. Different from the previously introduced stochastic
class, deterministic policy gradients

∇θJ(πθ) = ∇θ E
τ∼µ

[
Qφ

(
x, h(x, θ)

)]
, (2.16)

use the deterministic policy output h(x, θ) and no likelihoods for computing the gradient.
Since Qφ is differentiable with respect to the actions, the policy parameters can be
updated along the gradient of objective (2.13) by setting Ψt = Qφ. The benefit is that
long-term critic estimates guide the gradient steps of the actor, and data samples from any
generating policy µ can be leveraged for the policy updates. Updates are thus not required
to incorporate the latest transition data produced by πθ, which renders deterministic
policy gradients a popular choice for off-policy algorithms [87, 88, 89].

2.4.4 Algorithm Overview

In this section, popular algorithms are introduced, and the inner workings of their policy
update computation are outlined. The emphasis lies on the combination of an actor-
critic with a policy gradient method, where updates are calculated iteratively based on
the gradient estimate gk, the step size αk, and the approximation Bk to the Hessian.
The latter two are chosen by the optimization method (or just the optimizer) in most
RL algorithms, e.g., Adam [90] and root mean squared propagation (RMSProp) [91]
use adaptive schemes to approximate the Hessian and automatically tune the step size
whereas stochastic gradient descent (SGD) uses Bk = I and a fixed step size. However,
the gradient computation differs between algorithms:

• IWPG resembles the starting point for all of the on-policy algorithms presented in
this thesis. The policy gradient is given by gk = ∇θĴµ(πθ) |θ=θk based on (2.15).

• Proximal policy optimization (PPO) [92] is an on-policy algorithm that utilizes
clipped importance weighting to maintain the step size in the parameter space. The
policy gradient is described by

∇θĴ
PPO
µ (πθ) = ∇θ E

τ∼µ

[
min

(
λtΨt(τ), clip(λt, 1− ε, 1 + ε)Ψt(τ)

)]
, (2.17)
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where λt is the importance weighting factor and ε is a hyperparameter. The clip
operator projects the values of a variable x onto the set [xmin, xmax].

• Deep deterministic policy gradient (DDPG) is an off-policy algorithm that applies
deep Q-networks to continuous state-action spaces [88]. The policy gradient is given
by gk = ∇θJ(πθ) |θ=θk (2.16), where the long-term prediction capabilities of the
Q-function are exploited. The action-value function is iteratively updated with
respect to the mean squared Bellman error based on (2.10). Additionally, DDPG
utilizes target networks to stabilize the learning process of the actor and critic
networks.

• Soft actor-critic (SAC) is an off-policy policy gradient algorithm [87, 93] that aims
to solve the constrained optimization problem

maximize
θ

JSAC(πθ) = E
τ∼µ

[
min
i=1,2

Q
(i)
φ (x, h(x, θ))

]

subject to E
τ∼µ

[− log πθ(u|x)] ≥ ν,

while regularizing the entropy m(p) = Ex∼p [− log p(x)] to be greater or equal to ν.
Through Lagrangian relaxation, the constrained objective is converted into an
unconstrained one by adding a Lagrangian penalty term to the one-step reward,
i.e., r(xt, ut) + βm(πθ(ut|xt)) with the dual variable β. SAC is based on the
DDPG framework but uses double Q-networks as an important implementation
enhancement to reduce value function over-estimation [89]. Finally, the policy
gradient is given by

gk = ∇θ E
τ∼D

[
min
i=1,2

Q
(i)
φ (x, h(x, θ)) + βm(πθ(u|x))

]
,

where the minimization over the two action-value functions implements the double
Q-network trick. In order to stabilize the training, target networks are utilized.

The algorithm of choice for most of the conducted research work in this thesis is PPO,
primarily due to its learning stability, ease of implementation, and resilience toward the
choice of hyperparameters. PPO has been found to be a ubiquitous on-policy algorithm
that yields strong results across various problems [80, 94]. Although on-policy methods
can require an order of magnitude more data samples than off-policy algorithms in robotics
[25], the benefits outweigh the sample efficiency aspect when training in simulation.

2.5 Multi-Agent Reinforcement Learning

Major success stories with RL have been recorded with a single-agent learning framework
that was applied to a multi-agent problem [95], treating agents as independent learners,
e.g., in board games [10, 17] or video games [18, 96, 97]. However, the multi-agent domain
offers its own extensive framework with algorithms and tools to address high-dimensional
and complex problems, as demonstrated in [16]. The content of this section is a brief
summary of the background material presented in Paper V.
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2.5.1 Framework

The Markov game, together with its partially observable derivatives, serves as the main
framework for addressing multi-agent problems in the RL community. Markov games
generalize MDPs to multiple decision-makers that interact simultaneously within a shared
environment and possibly with each other [98].

Markov Game. The Markov game extends the MDP and is formalized by the tuple
(X, {Ui},N, p, {ri}, γ), where N = [1, N ] denotes the set of N > 1 interacting agents.
X is the set of states observed by all agents. The joint action space is denoted by
U = U1 × · · · ×UN , which is the collection of individual action spaces Ui of agents i ∈ N,
and the transition probability kernel is given by p : X× U→ P (X). Each agent owns an
associated reward function ri : X× U→ R, and γ ∈ (0, 1) describes the discount factor.

Value Functions. Unlike the single-agent case, the value function Vπi,π−i : X → R
depends on the actions taken under πi and the actions selected by the other agents π−i.
Thus, the value function of agent i is given by

Vπi,π−i(x) = E
τ∼π

[ ∞∑

t=0

γtri(xt, ut)
∣∣∣ x0 = x

]
,

where all agents follow the joint policy π : X→ P (U) that is the collection of all individual
policies π = {π1, . . . , πN}. Further, the convention is used that −i denotes all agents
except agent i, resulting in the collection π−i = {π1, . . . , πi−1, πi+1, . . . , πN}.

Optimality. Optimal behavior in Markov games is not solely determined by a single
policy but the joint policy. Assuming for a moment that π−i is fixed, agent i can only
find the best response π∗i to the other agents when maximizing

Vπ∗i ,π−i(x) ≥ Vπi,π−i(x)

over all states x ∈ X and policies πi ∈ Πi. A solution where each π∗i is the best response
to π∗−i is called Nash equilibrium, i.e., the following inequality

Vπ∗i ,π∗−i(x) ≥ Vπi,π∗−i(x)

holds true for all states x ∈ X, policies πi ∈ Πi, and agents i ∈ N. Intuitively spoken, a
Nash equilibrium is a solution where agents cannot improve their own utility as long as
the other agents’ policies are stationary.

2.5.2 Additional Challenges with Multi-Agents

In the single-agent domain, the agent is the only entity that manipulates the environment
state. Thus, state transitions can be unambiguously attributed to the agent, while all
other processes causing state changes are regarded as part of the environment dynamics.
Although the system is subject to aleatoric uncertainty, the underlying learning problem
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remains stationary. On the contrary, the fundamental challenge in the multi-agent domain
is that agents learn alongside each other and adapt their control policies simultaneously,
resulting in the environment dynamics appearing non-stationary from a single agent’s
perspective. The Markov assumption no longer holds, and agents face, without further
treatment, a moving target problem [20]. In the following, two important challenges that
arise in MARL are presented.

Non-stationarity. From the perspective of a single agent, a moving target problem
emerges when the environment dynamics

p
(
x′|x, π(x)

)
6= p
(
x′|x, π̃(x)

)

change due to the co-adaption of agents, i.e., ∃i ∈ N such that πi 6= π̃i .

Partial Observations. Outside an idealized world, information is distributed among
agents, which renders the environment not fully observable since agents cannot instan-
taneously access the internal knowledge state of other agents. Agents thus receive only
a partial observation, which is modeled with individual observation spaces Oi. In order
to comprise relevant information about the environment and its history, the agents are
commonly equipped with history-dependent policies πi : Oi × · · · × Oi → P (Ui) that
map from a history of observations to a distribution over the action space [99, 100].
The partially observable Markov game is formalized by the tuple (X,U,N,O, p, {ri}, γ),
where X is the set of global but unobserved system states, and O = O1 × · · · ×ON is the
collection of individual observation spaces.
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Chapter 3

Research Questions and Hypotheses

This thesis covers the application of RL algorithms to real-world robotics. In this context,
three RQs are formulated and answered accordingly by evaluating research hypotheses.
Each RQ is dedicated to one of the three aspects: performance, robustness, or safety.

Research Question 1

Although most algorithms are conceptually straightforward to implement, a well-known
issue in the RL community is that experimental results are difficult to reproduce [45].
Seemingly minor adjustments to the algorithm implementation can have a stark influence
on the learning and the final policy performance [44]. As these findings are solely based
on studies in simulation, it can be presumed that the sensitivity of RL algorithms is
exacerbated in a sim-to-real transfer learning scenario, where the target domain differs
from the domain on which the agent was trained. This gives rise to the following question:

RQ 1. How do algorithm implementation and problem design choices affect policy perfor-
mance in a zero-shot sim-to-real context?

The first RQ is addressed by evaluating three hypotheses, which are related to the
chosen algorithm components, the level of abstraction in the action space, and the policy
representation.

Hypothesis 1.1. State-of-the-art policy performance can be achieved by deploying a
handful of carefully selected algorithm components.

As recent algorithm improvements can be largely attributed to implementation details
[44, 101], such improvements could be explained alternatively by an increased complexity
in the algorithm design. The conjecture behind this hypothesis is that algorithms could
be tailored to contemporary benchmark tasks, eventually overfitting to the benchmark
specifications. High complexity in the algorithm design is undesirable for two reasons.
On the one hand, overfitting reduces the generalization capabilities and thus could lead
to diminishing policy performance on novel tasks. On the other hand, fewer algorithm
components imply less hyperparameter tuning. Because sim-to-real transfer experiments
usually require considerable testing in both simulation and the real world, a reduced
algorithm design could accelerate experimentation cycles. Hypothesis 1.1 can be associated
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with the minimum description length as an interpretation of the principle of Occam’s
Razor, which states the trade-off between the quality of data fitting and the complexity
of the deployed algorithm model [102]. In that regard, the configuration with the least
number of algorithm components that achieves good control performance is preferable.

Hypothesis 1.2. Low-level control structures achieve superior policy performance com-
pared to higher levels of control when the reality gap is sufficiently small.

The intuition behind the performance superiority of low-level controllers is that low-level
actions show the best reactivity to new situations by being able to directly drive actua-
tors. In contrast, high-level actions represent abstract commands that guide subsequent
controllers, thus being less reactive since motor commands must still be computed in the
lower levels of the control loop. For instance, cascaded control based on proportional-
integral-derivative (PID) controllers can be utilized on a robotic manipulator to transform
an action from the task space into the respective motor instruction: an end-effector
position displacement command is converted from the task space into torques in the joint
space. If Hypothesis 1.2 is true, then low-level controllers will show worse zero-shot policy
performance than high-level control structures when the reality gap is increased. The
larger the model mismatch, the fewer real-world samples could resemble the data known
from the simulation, resulting in a performance loss or transfer failure.

Hypothesis 1.3. Recurrent actor-critics improve the policy performance upon feed-
forward architectures when trained with domain randomization.

A popular technique to improve the sim-to-real policy transfer is domain randomization
(DR), which randomizes simulation parameters during training [31, 103]. Rather than
training on a single system realization, the agent is exposed to a parameter distribution,
which forces the agent to learn from a more diverse set of simulated data. FNN-based
policies can exhibit conservative control behavior under DR since the mean trajectory
return for all parameter realizations is optimized. This conservatism results in diminished
policy performance compared to the training without DR [104] and the use of RNNs [105].
The superiority of RNNs can be explained by the encoding of environment characteristics
in the latent memory [35, 106], which could also improve the transfer performance in a zero-
shot setting. If Hypothesis 1.3 is correct, then RNNs will be superior to FNN architectures
due to the capability to infer the robot’s system realization from temporal data and adapt
the control behavior accordingly, thus yielding improved policy performance.

Research Question 2

The reality gap is inherently inevitable since a simulation is just a simplified replica of the
real world. Because the reality gap reduces the performance once the policy is deployed
on the real robot, a desideratum is to synthesize policies that are robust toward the
domain shift elicited by the transfer [107]. Discrepancies between the training and the
deployment environment are caused, among other things, by an inaccurate simulation,
partial knowledge about the environment, and phenomena that do not occur in simulation.
Robustness is thus a vital requirement for successful sim-to-real policy transfers.
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Although robustness has been investigated extensively in simulation [28, 108, 109, 110],
studies in the sim-to-real context are sparse [111, 112]. This observation leads to the
following question:

RQ 2. What design choices impact the robustness of policies in zero-shot sim-to-real
transfer learning?

Although a plethora of factors could influence the robustness of a policy, RQ 2 is
investigated from two perspectives: the implemented control structure and the NN
representation.

Hypothesis 2.1. High-level control structures are more robust toward the reality gap
than low-level controllers.

The first hypothesis addresses the level of abstraction in the action space. Low-level
control requires the agent to learn the mapping from states to motor commands in an
end-to-end fashion. Hence, low-level controllers must implicitly learn the underlying
robot dynamics, while high-level control encourages the agent to develop a conceptual
understanding of the robot and the learning task. High-level control structures could show
improved robustness since the model mismatch between the simulation and the reality
gap is concealed from the agent through fast stabilizing feedback in the low-level control
loops, as argued in [113]. If the hypothesis is true, then high-level control structures will
show a higher transfer success rate than low-level controllers when the simulation fidelity
is reduced.

Hypothesis 2.2. Policies based on recurrent neural networks are more robust than
feed-forward architectures when trained with domain randomization.

When trained with DR in simulation, recurrent actor-critic architectures learn to encode
valuable information about the system’s realization in the latent memory [35, 106]. It
is hypothesized that RNN-based policies infer a parameter realization similar to one
known from training from temporal data and adapt the policy to the characteristics of
the real-world robot at deployment. However, it was found that RNNs are prone to
overfit the simulation without DR [106]. If Hypothesis 2.2 is correct, then RNN-based
policies trained without DR will produce worse sim-to-real transfer results than FNNs
under enforced domain shifts due to overfitting.

Research Question 3

Agents explore the state space in a trial-and-error fashion, ideally with a highly stochastic
and novelty-seeking strategy to discover large parts of the state space [114, 115]. However,
the major issue of learning-based methods is that, without any further precautions, agents
strive for unsafe actions in order to learn from failure [30]. While unsafe trajectories
can be unhesitatingly generated in simulation without risking real consequences, safety
mechanisms must be integrated into the learning loop of physical systems. The actions
taken by a robot are supposed to satisfy the safety requirements at all times to avoid
damage to the hardware or the robot’s environment.
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Chapter 3 Research Questions and Hypotheses

Despite the wide range of approaches that address safe exploration with RL-based
systems [26, 27], RQ 3 is answered by utilizing a learning-based MPSC method that
aims for safe closed-loop control. To this end, the method proposed in Paper IV, called
ensemble model predictive safety certification (X-MPSC), is taken to investigate learning-
based safety certification exemplarily. X-MPSC acts as a predictive filter that checks
the safety of the agent’s action in each time step through planning. Since learning-based
MPSC cannot guarantee hard safety constraint satisfaction without strict assumptions,
the following question arises:

RQ 3. How can safety be improved in learning-based model predictive safety certification?

Although learning-based MPSC methods exist, the expressiveness of the learning models
applied in related work is limited, e.g., linear regression [51] or linear Bayesian regression
[52] on hand-selected nonlinear system features. On the contrary, X-MPSC deploys deep
NNs as expressive learning representations. Eventually, RQ 3 is addressed by testing two
hypotheses.

Hypothesis 3.1. An ensemble of dynamics models decreases the number of safety con-
straint violations.

A common problem with model-based RL is that NN-based dynamics models exhibit
prediction inaccuracies. These inaccuracies grow over the predictive horizon, which limits
the applicability of NNs to short rollouts and prevents their use for long-term planning
[116]. Ensembles of NN models have been shown to address this issue [58, 117]. If
Hypothesis 3.1 is correct, then the model reliability will increase with the number of
models in the ensemble, which will reduce the total number of safety constraint violations
that occur throughout training.

Hypothesis 3.2. Adding a crude prior model to the learning representation lowers the
number of safety constraint violations.

Learning a dynamics model from scratch is possible, but it does not offer a rigorous
safety certification during training. The use of a prior dynamics model is mandatory
when dealing with strict safety certificates [118, 119]. In lieu of learning a model solely
from interaction data, prior knowledge can be incorporated into the model. Most robot
systems can be formulated by a system description that is derived from the first principles
of physics. Although such a nominal model does not perfectly describe the real-world
robot, the learning model only needs to capture the difference between the nominal model
and the real system. If Hypothesis 3.2 is correct, then a nominal model will guide the
training process of X-MPSC and will result in safer closed-loop control behavior than
starting to learn tabula rasa.
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Chapter 4

Methods

This chapter consolidates the methodology used to evaluate the research hypotheses and
answer the RQs. Furthermore, this chapter also summarizes the methods applied in the
research work of Papers I–V.

The methodology is divided into three sections, each linked to one RQ, respectively.
Section 4.1 addresses RQ 1 and introduces the approach used to quantify the impact of
algorithm components and the control problem design on policy performance. Section 4.2
examines RQ 2 by studying factors that could affect the robustness of policies in sim-
to-real transfer learning. Third and last, RQ 3 is investigated based on an extended
version of MPSC in Section 4.3. The improvement of learning-based safety certification is
addressed by adding prior dynamics knowledge to the learning model and by using an
ensemble of dynamics models. An overview of the methodology is depicted in Figure 4.1.

4.1 Algorithm and Control Problem Design

Despite the conceptually straightforward implementation of most algorithms, it is a widely
known issue in the RL community that experiments are difficult to reproduce. Studies
revealed that different code bases, although describing the same algorithm, produce
divergent experimental results [45, 120]. This inconsistency suggests that subtleties in
the implementation are decisive. In fact, it was found that seemingly minor implementa-
tion adjustments can be made accountable for performance improvements rather than
algorithmic innovations [44, 101].

The policy performance eventuates from a complex entanglement between algorithm
components and hyperparameters [45, 121]. Moreover, several decisions in the control
problem design can have a significant impact on the learning, e.g., the action space
representation or the chosen features of the state space [122]. The study of the RL
algorithms is further complicated by an abundance of tunable hyperparameters and
evaluation protocols that are not fixed across the literature [123].

These observations raise the question of which underlying algorithm mechanisms and
design choices drive the learning performance of RL algorithms. In order to address RQ 1,
the methodology is divided into two parts. First, the impact of algorithm components
is assessed. Therefore, the intricate complexity of on-policy policy gradient algorithms
is disentangled by splitting the analysis into three stages: algorithm core components,
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Section 4.1
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Critic

ActorControl Structure

evaluates

∼
DR

PolicySafety Filter

Measure:

Performance (RQ1)

Robustness (RQ2)

Safety (RQ3)

Sim-to-Real

Zero-shot

Simulation Real World

Figure 4.1: Overview of methodology. Section 4.1 explains the methods used to assess the
impact of algorithm components and control design choices on policy performance. Section 4.2
addresses methods that aim to improve the robustness of policies in the zero-shot transfer
learning context. Last but not least, Section 4.3 covers the approach used to assess safety with
learning-based MPSC.

code-level enhancements, and structural learning components. Each stage is evaluated
separately, and the analysis is conducted chronologically such that the influence of
individual components becomes verifiable. The second part addresses RQ 1 by examining
the impact of the control problem design on the policy performance based on different
action space representations and policy architectures.

4.1.1 Algorithm Core Components

Algorithm core components lie at the heart of new algorithm proposals and aim to
improve learning stability, speed, and convergence behavior. Common innovations in
policy gradient algorithms are the ones that reduce the variance of the gradient estimation
and improve the quality of the update direction. In this section, the following two
components are examined due to their widespread adoption: trust-region enforcement
and variance reduction of critic estimates. While described precisely from the theoretical
point of view, the practical implementation often only becomes apparent from studying
the provided source code.

Trust-Region Enforcement. Poorly chosen steps in the parameter space can deterio-
rate policy performance, which can eventually lead to policy collapse [77, 82]. Instabilities
during training can be alleviated by constraining the distance between successive policy
iterations through the enforcement of a trust region, which describes a careful selection
of the step size αk and the Hessian approximation Bk. The following four methods for
constraining the policy update directions are studied:
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4.1 Algorithm and Control Problem Design

1. IWPG, with an early stopping criterion, measures the KL divergence between
consecutive policy iterations and terminates the update procedure as soon as a
distance criterion δ is exceeded. More formally, the policy parameters are updated
iteratively θ

(j)
k+1 = θ

(j−1)
k+1 +αkp

(j)
k for j ∈ [1, Nupdates] as long as the distance criterion

DKL

(
π

(j)
θk+1
‖ πθk

)
< δ given π

(0)
θk+1

= πθk is satisfied. The direction p
(j)
k is based on

B
(j)
k and α

(j)
k , and gk is given by (2.15).

2. Natural policy gradient (NPG) regards the curvature of the policy parameter
space by approximating the Fisher information matrix Hk = Eτ∼π

[
ψψT

]
using

ψ = ∇θ log πθ(ut|xt) [124]. The update direction is given by pk = B−1
k gk, where

the policy gradient gk = ∇θĴπθ(πθ) |θ=θk is based on (2.15) and Bk = Hk. Since
curvature information is included in the update direction, the step size is set to
α = 1.

3. Trust-region policy optimization (TRPO) [86] optimizes the surrogate objective
(2.14) and extends the NPG algorithm with a trust region. In contrast to NPG,
TRPO explicitly regards the KL divergence between policy iterations by evaluating
the objective function and running a backtracking line search. For this purpose, the
step size α ∈ (0, 1) is exponentiated with j ∈ [1, Nsteps], and the objective is opti-

mized until the criterion DKL

(
π

(j)
θk+1
‖ πθk

)
< δ with θ

(j)
k+1 = θk +αjB−1

k gk is fulfilled.

The inverse of the approximate Hessian is calculated by B−1
k =

√
2δ

gTk H
−1
k gk

H−1
k ,

where Hk denotes the Fisher information matrix and gk is the policy gradient. The
size of the trust region is determined by the hyperparameter δ.

4. PPO [92] utilizes clipped probability ratios to maintain the step size in the parameter
space. The policy gradient (2.17) is applied iteratively for stochastic gradient ascent.
Different from TRPO, the step size αk and the Hessian approximation Bk are chosen
by an optimizer like Adam or RMSProp.

Variance Reduction of Critic Estimates. Low variance gradient estimates are
critical for good policy performance [77, 125]. Thus, three techniques that are used to
reduce the variance of policy gradients are compared with each other:

1. Plain advantage estimation reduces the variance of the gradient estimation by
utilizing bootstrapping. The variance is reduced by estimating the advantage

At = r(xt, ut) + γVφ(xt+1)− Vφ(xt) = δt,

by subtracting the baseline Vφ from the bootstrapped action value, which equals
the TD residual (2.11). Plain advantage estimation is a one-step method, which is
used as a performance baseline for the following n-step methods.

2. Generalized advantage estimation (GAE) [84] aims to reduce the variance of gradient
estimates at the cost of introducing bias. The n-step advantage

A
(n)
t = −Vφ(xt) + rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnVφ(xt+n) =

n−1∑

k=0

γkδt+k
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is exponentially weighted by a scalar factor κ and taken as the sum over the infinite
horizon, resulting in the generalized advantage estimator

AGAE
t = (1− κ)

(
A

(1)
t + κA

(2)
t + κ2A

(3)
t + . . .

)
=
∞∑

k=0

(γκ)kδt+k

at time step t. Note that the notation rt is used instead of r(xt, ut) to improve
readability. The parameters γ and κ contribute a trade-off between variance and
bias in the estimation. The discount factor γ reduces the variance but induces bias
in the policy gradient estimation, while κ regulates only the induced bias.

3. V-trace [126] accounts for off-policy critic updates in distributed architectures and
compensates for policy lags. To reduce variance in gradient estimates, advantages

AVTR
t = rt + γṼφ(xt+1)− Vφ(xt)

are computed based on

Ṽφ(xt) = Vφ(xt) +
n−1∑

k=0

γk

(
k−1∏

i=0

ct+i

)
ρt+kδt+k,

where δt+k is the TD residual. The scalar terms ρt+k = min
(
ρ̃, π(ut+k|xt+k)

µ(ut+k|xt+k)

)
and

ct+i = min
(
c̃, π(ut+i|xt+i)

µ(ut+i|xt+i)

)
are truncated importance sampling weights, where the

hyperparameters ρ̃ and c̃ are chosen such that ρ̃ ≥ c̃.

4.1.2 Code-Level Enhancements

The recent progress in policy gradient algorithms has been backed up by effective imple-
mentation enhancements such as double Q-networks and target networks in the off-policy
setting [89, 127]. Similarly, with on-policy gradients, studies reported that a major share
of performance increments can be attributed to implementation decisions rather than
innovative algorithmic properties [44, 101].

This section is dedicated to the investigation of such decisions in the code implementa-
tion. Code-level enhancements denote augmentations to the algorithmic core that aim to
improve learning quality through better stability or faster learning speed. As indicated by
the name, code-level enhancements are typically not mentioned in the main paper but are
specified in the code implementation or provided as detail in the supplemental materials.
Over the last few years, many of the enhancements described in this section have been
established as good practices in the RL community and are, thus, implemented without
further consideration. Moreover, code-level enhancements are typically not included
in the hyperparameter search, obscuring their effect on performance. The following
code-level enhancements are examined for on-policy policy gradients as they are applied
most frequently [44, 121].

28



4.1 Algorithm and Control Problem Design

Standardization. Standardization is commonly applied to observations and advantage
estimates. The quantity of interest y is made mean-free and re-scaled to unit variance by
subtracting the mean value first and then dividing by the standard deviation, i.e.,

ỹ =
y −mean(y)

std(y)
.

While observation standardization typically considers all collected samples since the
start of training by computing running statistics, it can be beneficial to standardize the
advantage estimates only based on the latest data batch [121]. The latter can be seen as
an instance of batch normalization [128].

Scaling. The received rewards are divided by the standard deviation of a running
discounted sum of rewards, resulting in return-scaled rewards

r̃t =
r(xt, ut)

std(R(τ))
.

Rewards are re-scaled but not shifted to avoid the creation of a moving target problem.

Entropy Bonus Term. Actions with high stochasticity promote the exploration of
the state space. An effective technique to encourage exploration is adding an entropy
bonus term m to the optimization objective [129], i.e.,

Ĵ(πθ) + βm(πθ(ut|xt)).
The hyperparameter β is either fixed or can be tuned automatically through the optimiza-
tion of a Lagrangian objective and dual gradient descent to ensure a minimum expected
entropy throughout the training [93].

Annealing. When using an annealing strategy, the hyperparameter of interest is de-
creased throughout the training. In this thesis, only linear annealing schedules are
considered and applied to two different hyperparameters. Learning rate annealing is used
to decay the learning rate of the policy optimizer toward zero over the training. The
linear decay

αk =

(
1− k − 1

Nepochs

)
α0

is applied with α0 being the initial learning rate and k ∈ [1, Nepochs] being the training
epoch. The second investigated strategy is exploration noise annealing. Good exploration
is risk-seeking and prefers novelty over experience, especially during the early phase of the
training. In order to have high exploration at the beginning and low exploration toward the
end of the training, the entries of the diagonal covariance matrix S = εk diag(s1, . . . , snu)
are decreased for a stochastic policy (2.12). The diagonal entries s1, . . . , snu denote the
initial exploration noise factor for each action dimension and are changed according to
the linear decay schedule

εk =

(
1− k − 1

Nepochs

)

over k ∈ [1, Nepochs] epochs.
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Gradient Clipping. As pointed out in Section 4.1.1, poorly chosen policy parameter
steps can deteriorate the policy performance. An effective technique to control the step
size is limiting the maximum norm of the policy gradient. The gradient is re-scaled to
length ζ if exceeding a threshold, i.e.,

∇θJ(πθ) =

{
ζ ∇θJ(πθ)
‖∇J(πθ)‖2 if ‖∇θJ(πθ)‖2 > ζ,

∇θJ(πθ) else.

Through clipping, the magnitude of the gradients can be maintained, which can eventually
help to avoid policy collapse.

4.1.3 Structural Learning Components

Structural learning components refer to design choices and hyperparameters affecting
the NN-based policy architecture and the optimization procedure. The following three
components are examined since their implementation can vary between different software
frameworks and often lack a detailed description of the experimentation.

Optimizer. The optimizer describes the algorithm that selects the parameter update
direction for optimization. The various flavors of an optimizer are noticeable in how αk
and Bk are chosen. Three optimizers are considered: Adam [90], RMSProp [91], and
SGD without momentum. Besides the actual choice of the optimizer, the impact of an
additive denominator term called Adam epsilon, which is added to the denominator of
the update step to improve the numerical stability of the optimizer, is investigated.

Parameter Sharing. When actor and critic networks are realized with the same NN
architecture, layers of the learning representation can be shared between both. The
intention of parameter sharing is to accelerate the learning since features in the latent
representation used for estimating the long-term value of a state might also be meaningful
for selecting an action in this state.

Parameter Initialization. An essential procedure prior to the training is the initial-
ization of the policy parameters, as it affects the exploration during the initial phase of
learning [121]. The following three initialization schemes are examined: Kaiming uniform
[130], Glorot [131], and orthogonal [132]. At initialization, only the NN parameters of the
weight matrices are set randomly. The bias vectors are not affected by the initialization
scheme and are set to zero values.

4.1.4 Control Structures

Related works demonstrated that decision-making in high-dimensional state-action spaces
requires good representations and abstraction levels [133, 134]. Although NNs are
expressive models that learn features from relationships in data automatically, the
representations of the state and action space are engineered prior to the training. These
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Figure 4.2: Control structures applied to a quadrotor robot.

design decisions can affect both the learning speed and the resulting policy performance
[122, 135, 136, 137]. This section introduces different levels of abstraction in the action
space, so-called control structures.

When the action space representation is implemented for low-level control, then actions
directly drive the actuators of a robot. Low-level controllers learn to map from states
to motor commands in an end-to-end fashion. In contrast, a high-level control structure
maps from states to an intermediate action space. Subsequent controllers transform the
abstract action from the intermediate action space into actual motor commands. For the
remainder of this thesis, a quadrotor robot is used as a running example and hardware
platform to implement control structures. The following three control structures, ordered
from low-level to high-level, are investigated:

1. In pulse-width modulated (PWM) control, policies output motor thrust commands
and map from states to distributions over the action space, i.e., π : X→ P (U).

2. Attitude-rate control produces actions that lie in the intermediate action space
V ⊆ R4, which consists of the mass-normalized collective thrust and the desired
body angle rate. The transformation from V to U is carried out by a PID controller
that calculates the thrust commands u ∈ U based on local feedback from the
measured linear acceleration and the error between the actual and the desired body
angle rate. Agents learn the mapping π : X→ P (V).

3. Attitude control requires policies to learn the map π : X→ P (W), where the policy
output space W ⊆ R4 includes the mass-normalized collective thrust and the desired
body angle. Thereafter, the sequence of mappings W → V → U is handled by
cascaded PID controllers.

The three control structures are illustrated in Figure 4.2.
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4.1.5 Policy Architecture

On real hardware systems, the Markov property is often violated because neither the
environment is fully observable nor the complete state of the robot can be measured
directly. State estimators are a common approach for computing an estimate of the
current robot state based on a dynamics model and sensor fusion. Besides designing a
state estimator, partial observability can be tackled by selecting a policy architecture
capable of reconstructing missing state information from past interaction data [69]. Two
implementations for history-dependent policies are considered in this thesis: (i) the
stacking of the most recent observations into one vector and feeding into an MLP and
(ii) the utilization of an RNN that processes observations sequentially.

4.1.6 Addressing the Performance Hypotheses

The assessment of Hypothesis 1.1 is challenging for two reasons. First, algorithm com-
ponents can cross-correlate such that a component unfolds its effectiveness only when
combined with another algorithm component. Cross-correlations can be alleviated by
adding components randomly in each training run so that the impact is assessed based
on the average performance difference, whether the component was added or excluded.
Second, the combinatorial complexity grows exponentially with the number of algorithm
components. The combinatorial complexity can be addressed by splitting the experimental
evaluation into individual stages that are examined chronologically.

Hypothesis 1.1 was tested empirically in Paper I. Based on IWPG (2.15), code-level
enhancements (Section 4.1.2) were added randomly to each training run with a probability
of 50 % to remedy cross-correlations between different components. After that, the
experimental evaluation succeeded chronologically by endowing the optimization objective
with algorithm core components (Section 4.1.1). A grid search over the learning rates
and the number of policy iterations was conducted to determine the performance impact
of the best component configuration. In the third and last stage, structural learning
components were assessed by applying a hyperparameter grid search and measuring
the final policy performance (Section 4.1.3). Based on the three-staged analysis, the
components with the largest performance gains were selected and assembled to a minimal
configuration that was compared to the algorithm implementations of TRPO and PPO
[138]. The comparison was carried out in simulation environments, which consisted of
five locomotion and three robotic manipulation tasks. These eight tasks are common
benchmark representatives for continuous control problems [139].

The evaluation of Hypothesis 1.2 is based on the comparison of the three control
structures introduced in Section 4.1.4. The experimental evaluation was conducted in
Paper II through real-world experiments on a CrazyFlie drone, where the zero-shot
performance was measured in terms of the mean flight time of the drone. In order to
render the reality gap as small as possible, the simulation parameters were tuned with
simulation optimization.

Hypothesis 1.3 was tested through zero-shot transfers to a CrazyFlie drone in Paper III.
Similar to the previous hypothesis, the performance was evaluated in terms of the mean
flight time and the success rate, which is defined as the number of trials without failure
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relative to the number of total flights. The history-dependency was realized with the two
policy architectures from Section 4.1.5 that were compared to each other.

4.2 Zero-Shot Policy Transfer and Robustness

Transfer learning describes the idea of reusing experience collected in learning to accom-
plish one task in a related but different task [140]. Since sample complexity is a major
concern in RL, sim-to-real transfer learning is a common methodological approach to
alleviate the cost of real-world data collection when dealing with robotics [107]. Control
policies are trained in a simulation that runs multiple times faster than real-time to
gather large amounts of training data. After training on simulated data, the policies are
deployed on the physical robot. Zero-shot transfer methods are an approach to elude the
real-world sampling issue completely since policies are trained entirely on simulated data,
and no real-world data is used for fine-tuning the controller.

Although the simulation shares similarities with the real-world system in the underlying
dynamics and the downstream tasks, the actual realization and the data distributions
differ due to the model mismatch. In the remainder of this section, two approaches that
are used in the literature to mitigate the reality gap are introduced, namely DR and
simulation optimization. To address RQ 2, the evaluation protocol and methods, which
are used to assess the robustness of policies toward the reality gap, are described.

4.2.1 Domain Randomization

The idea behind DR is to randomize the simulation parameters during the training.
By exposing the control policy to a parameter distribution rather than a single system
realization, the policy is expected to generalize across the realizations and, thus, become
more robust toward the reality gap. DR can be seen as a data augmentation technique in
which the diversity of the simulated data is enhanced. Possible targets of the randomization
are parameters affecting the visual appearance of the scene [103, 141] and the robot
dynamics [105, 142]. Throughout this thesis, the latter is applied, and the terms domain
and dynamics randomization are used interchangeably.

More formally, the system parameters ξ are sampled from a uniform distribution Ξ
at the beginning of each episode. This results in the state transition probability being
parametrized by the system parameters under DR, i.e., xt+1 ∼ p(·|xt, ut, ξ). Thus, policy
search aims to optimize the objective

maximize
θ

J(πθ) = Eξ∼Ξ,τ∼πθ [R(τ)]

over the dynamics induced by the distribution of simulation parameters. A larger number
of randomized parameters causes less cumulative reward during the training but increases
the success rate of the transfers to the real robot [35, 105].
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Figure 4.3: Abstract illustration of the simulation optimization approach. Since simulations
are simplified replicas of the real world, the simulation parameter distribution Ξ (illustrated
as light blue disk) is embedded in a plane while the realization of the robot ξreal lies in the
three-dimensional space. The goal of simulation optimization is to minimize the distance between
the system parameter distribution induced by DR and the realization of the real-world system.

4.2.2 Simulation Optimization

Another approach to mitigate the reality gap is simulation optimization, which uses
real-world data to reduce the gap between the simulation and the physical robot [143]. A
great benefit of this technique is that the simulation parameters are tuned data-driven,
which requires less engineering when offline data are available or when data can be
collected effortlessly from a real-world system, e.g., by a human operator or a controller
with low task performance. An illustration of simulation optimization and DR is shown
in Figure 4.3.

Given a real-world trajectory τ = (x0, u0, . . . , uT−1, xT ), a rollout can be simulated
with respect to the action sequence (u0, . . . , uT−1) and the dynamics model

zt+1 = fsim(zt, ut, ξ) ∀t ∈ [0, T − 1],

where the initial state of the simulation is set to the first measurement of the real-
world data, i.e., z0 = x0. The simulated trajectories τ̃ = (z0, u0, . . . , uT−1, zT ) depend
on ξ, which enables the optimization over the parameter space Ξ. In order to align the
simulation trajectories with the measured data of the real system, the objective function
is formulated as a weighted sum of state differences, i.e.,

minimize
ξ

E
τ̃∼fsim

[
T∑

t=0

ηt
(∥∥C

(
zt − xt

)∥∥
1

+
∥∥C
(
zt − xt

)∥∥
2

) ∣∣∣ z0 = x0

]
. (4.1)

With a slight abuse of notation, τ̃ ∼ fsim denotes the trajectories generated according
to the dynamics model fsim and the action sequence (u0, . . . , uT−1) over trajectories of
length T . The hyperparameter η ∈ (0, 1] regulates the accuracy trade-off between one-step
and long-term model prediction error. A small η discounts later stages of the rollout,
in which the discrepancies between the simulation and the real-world trajectory grow.
State differences zt − xt are weighted according to matrix C to include preferences, e.g.,

34



4.3 Safe Exploration

emphasize model accuracy in the angular speed rather than linear velocity. Similar to
Chebotar et al. [144], the objective (4.1) uses the sum of L1 and L2 norm.

The simulation optimization problem can have long evaluation times and may not
be differentiable depending on the physics simulator and the randomized simulation
parameters. In Paper II, Bayesian optimization was used to minimize (4.1) as it is
particularly suited for objective functions with long evaluation times. Moreover, Bayesian
optimization is regarded as a good option for optimization in continuous domains with
less than 20 dimensions and is robust against stochastic function evaluations [145].

4.2.3 Evaluation of the Robustness Hypotheses

The evaluation of Hypotheses 2.1 and 2.2 is based on the assumption that the simulation
parameters are optimized and a change of simulation parameters results in a magnification
of the reality gap. The robustness of different policies was tested in Papers II and III,
where the experiments were carried out on a CrazyFlie drone robot. The robustness of
the policies was tested by manipulating actuator parameters such as the motor lag and
latency. Changing parameter values in simulation enforces a distributional shift through
an increased reality gap. The zero-shot performance on the real robot was measured by
two metrics: (i) the cumulative reward that is identical for simulated and real-world tasks
and (ii) the success rate that relates the number of failure-free trials (e.g., crashing the
drone or violating body angle constraints) to the total number of flights.

Hypothesis 2.1 states that high-level control structures are more robust toward the
reality gap than low-level control structures. Paper II examines this hypothesis by
enforcing a distributional shift until the policy transfer fails. The policy performance is
recorded based on the mean flight time.

Hypothesis 2.2 claims that RNNs are more robust toward the reality gap than FNNs
with observation-history inputs. The hypothesis is approached in Paper III by removing
the latency modeling from the training and measuring the transfer success rate.

4.3 Safe Exploration

In the artificial intelligence community, different concepts exist for defining the safety
of a learning-based system [30, 146, 147]. A tailored definition for RL describes safe
learning as the process of being able to optimize a performance measure while satisfying
constraints during training and at deployment [27]. Constraints in the state space are
typically introduced to prevent so-called error states, which are irreversible points in the
state space from which the original state of the system cannot be restored. For instance,
a quadrotor robot that lies bottom-side up on the ground cannot recover an upright
position by spinning its rotors. Error states are closely linked with the idea of ergodicity
in MDPs [148] and forward invariant sets [149]. This thesis adopts the safety definition
with respect to constraint satisfaction and refers to task-specific and system-imposed
restrictions in the state and action space as safety constraints.

This section explains two algorithm classes that address safe exploration. First, con-
strained RL algorithms, which achieve excellent control performance, are introduced.
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However, good empirical performance comes at the expense of only being able to satisfy
the safety constraints upon algorithm convergence [150]. This algorithm class can be
applied to high-dimensional state-action spaces when safety violations are tolerable during
training and when the enforcement of safety constraints is required only at the end of the
training [151]. Second, predictive safety filters are presented that exhibit more rigorous
safety satisfaction than constrained RL algorithms. In particular, X-MPSC is introduced
as a safety filter method that combines robust MPC with model-based deep RL to correct
potentially unsafe actions taken by a learning agent. X-MPSC is the main subject for
answering RQ 3, while constrained RL algorithms are used as a comparison baseline in
the experiments.

4.3.1 Constrained Reinforcement Learning

The standard formalism for constrained RL is the constrained Markov decision process
(CMDP), which incentivizes policies to maximize task performance while producing
expected costs less or equal to a predefined safety threshold [152]. Costs are commonly
measured by the accumulation of state constraint violations along a trajectory. As a result,
constrained RL algorithms merely encourage safety by aiming for constraint satisfaction
at the end of training and regretting constraint violations during training [26].

The CMDP adds an auxiliary cost function c : X×U→ R to an MDP [153]. Analogous
to the expected return (2.8), the cumulative cost

H(πθ) = E
τ∼πθ

[
N∑

t=0

c(xt, ut)

]

depends on the policy πθ and accounts for long-term constraint satisfaction. Therefore,
the objective function in CMDPs is given by

maximize
θ

J(πθ)

subject to H(πθ) ≤ d,
(4.2)

where d ∈ R is a task-specific cost limit that must be satisfied to provide the desired
safety level. Policy parameter vectors are thus restricted to the set of feasible policies
{πθ ∈ Πθ | H(πθ) ≤ d}.

4.3.2 Ensemble Model Predictive Safety Certification

Ensemble model predictive safety certification (X-MPSC) belongs to the class of predictive
safety filters. Originating from the control theory community, predictive safety filters
leverage a prior dynamics model to predict the future evolution of the actual system over a
receding horizon [154]. Through optimization, an action sequence is found that generates
a nominal trajectory satisfying the safety constraints and leading the system back to a
terminal control invariant set. From the terminal set, the system can be kept safe for
all future time steps. Predictive safety filters can be integrated into any learning-based
control system, as depicted in Figure 4.1.
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Figure 4.4: X-MPSC utilizes multiple NNs and multi-step planning to propagate ellipsoidal
uncertainty estimates forward. An action is certified when all predictive tubes lie within the
state space constraints X and end in the terminal set Xterm. Otherwise, the unsafe action ut
(red) is corrected to v0 (blue), which keeps the system within the specified safety constraints.

Nominal MPSC (2.5) prevents a learning-based system from entering unsafe regions
in the state space by modifying input actions in a minimally invasive fashion while
enforcing safety constraints. However, the MPSC framework has the demerit that a
nominal model is required a priori, which has to be sufficiently calibrated in order to
provide accurate predictions. To account for the deviations between the nominal model
and the actual system, robust MPC is integrated into MPSC to capture the uncertainty
through tube-base predictions [50]. The expansion of MPSC with a data-driven model
follows seamlessly, either by learning a model from scratch or by learning an additive
component to the nominal model [51, 52].

In this section, X-MPSC is introduced as an extension to MPSC, which leverages an
ensemble of probabilistic NNs trained on past interaction data. Each member of the
ensemble is used for multi-step look-ahead rollouts, where the predicted uncertainty
tube of each NN enforces the optimization constraints. The methodological approach of
X-MPSC is illustrated in Figure 4.4.

Model Ensemble. The ensemble f̃φ = (fφ1 , . . . , fφM ) is composed of M models, where
each model is represented by a probabilistic NN with parameters φi. Each dynamics
model fφi : X× U→ P (X) parameterizes a Gaussian probability distribution function

fφi(xt, ut) = N
(
mφi(x, u), Sφi(x, u)

)

with the mean mφi and the diagonal covariance matrix Sφi . The ensemble of dynamics
models aims to approximate the actual system (2.1) and is trained by optimizing the
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maximum likelihood over sampled trajectory data. The parametrization with a Gaussian
allows the alternative formulation of the uncertainty as a level set expressed as an ellipsoid

E(c, S) =
{
x | (x− c)TS−1(x− c) ≤ 1

}
.

Ellipsoids are propagated over multiple time steps and are used to describe the uncertainty
of the NN predictions. The propagated ellipsoids are assumed to construct an uncertainty
tube that captures all realizations of the actual system.

Uncertainty Propagation. The ellipsoidal uncertainty predictions are used for multi-
step look-ahead planning. The nominal trajectory

(
z

(i)
0 , . . . , z

(i)
N

)
is based on the action

sequence (v0, . . . , vN−1), where the nominal states z
(i)
k+1 = mφi

(
z

(i)
k , vk

)
are computed for

each model i and for all stages k ∈ [0, N − 1].

The forward propagation of the uncertainty sets is implemented with a one-step error
prediction. By using the first-order Taylor-series expansion, the next state can be
approximated by

xt+k+1 ≈ mφi

(
z

(i)
k , vk

)
+ Ak

(
xt+k − z(i)

k

)
+Bk(ut+k − vk)

around the fixed point
(
z

(i)
k , vk

)
, where the Jacobians Ak = ∇xmφi(x, u)T

∣∣∣
x=z

(i)
k ,u=vk

and

Bk = ∇umφi(x, u)T
∣∣∣
x=z

(i)
k ,u=vk

are used. The prediction error is given by the expression

e
(i)
k = xt+k − z(i)

k and approximately satisfies the error difference equation

e
(i)
k+1 ≈ Ak

(
xt+k − z(i)

k

)
+Bk(ut+k − vk)

= Ak
(
xt+k − z(i)

k

)
+BkK

(
xt+k − z(i)

k

)

= (Ak +BkK)
(
xt+k − z(i)

k

)

= Fke
(i)
k

to the first order. The matrix Fk = Ak + BkK describes the closed-loop error system
induced by the local feedback ut+k = vk + K

(
xt+k − z(i)

k

)
based on (2.4). Finally, the

one-step ellipsoidal uncertainty propagation for model i is given by

E (i)
k+1 = gφi

(
E (i)
k , vk

)
,

which is propagated forward at each stage k ∈ [0, N − 1] based on the nonlinear map

gφi
(
E (i)
k , vk

)
= E

(
mφi

(
z

(i)
k , vk

)
, FkSkF

T
k

)
⊕ E

(
0, Sφi

(
z

(i)
k , vk

))
.

The evolution of each ellipsoid only depends on the action sequence (v0, . . . , vN−1) and
the NN parameters φi.
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Optimization Problem. The aim of X-MPSC is to certify the action ut of a learning
agent in each time step t of the RL loop by solving the optimization problem

minimize
v0,...,vN−1

‖ut − v0‖2
2

subject to E (i)
0 = E(xt, 0) ∀ i,
E (i)
k+1 = gφi

(
E (i)
k , vk

)
∀ i, k ∈ [0, N − 1],

E (i)
k ⊆ X ∀ i, k ∈ [0, N ],

vk ∈ Ũ
(
E (i)
k

)
∀ i, k ∈ [0, N − 1],

E (i)
N ⊆ Xterm ∀ i.

(4.3)

The objective is solved in a receding horizon fashion and v0 is a safe action that is as close
as possible to the agent’s original action ut. In order to maintain recursive feasibility and
safety in future time steps, the final ellipsoid of each tube is required to lie in the terminal
set Xterm. The action space shrinks vk ∈ Ũ

(
E (i)
k

)
= U	 E

(
0, KS

(i)
k K

T
)

depending on the
uncertainty tubes. For the solver to find a solution, the tubes described by the propagated
ellipsoids must be contained in the polytopic state space X. By solving (4.3), not only
a safe action is obtained but also a sequence of feedback policies (πt, πt+1, . . . , πt+N−1),
where the local controllers πt+k = vk +K(xt+k − zk) track the actual system toward the
nominal trajectory.

4.3.3 Approach to Evaluate the Safety Hypotheses

RQ 3 is investigated using X-MPSC as a predictive safety filter method. The chosen
metric for measuring safety is the total number of safety constraint violations that occur
throughout the training. Once the learning agent leaves the polytopic state space, a
constraint violation is recorded, and the episode terminates early.

Hypothesis 3.1 claims that planning with multiple models decreases the total number of
constraint violations. To test this hypothesis, the ensemble size was varied and evaluated
over a hyperparameter grid search in Paper IV. In order to avoid cherry-picking good
configurations and risking a bias in the general impact of the selected hyperparameter,
the average effect of a hyperparameter configuration was measured.

Hypothesis 3.2 states that an additive prior model reduces the total number of constraint
violations during training. The validity of Hypothesis 3.2 was tested empirically in
Paper IV by comparing the safety violations when training a dynamics model from
scratch to the training using a prior dynamics model. The prior model was implemented
as an additive component to each member of the ensemble, i.e.,

fφi(xt, ut) = fprior +N
(
mφi(x, u), Sφi(x, u)

)
.

The system parameters in fprior were chosen with an error of 20 % compared to the
ground-truth parameters of the actual system (2.1).

Constrained RL algorithms were used as baselines in the experimental evaluation
because they provide an upper bound on the constrained policy performance (4.2) that
can be reached with policy search methods. In particular, the X-MPSC results were
compared with the following three algorithm classes: Lagrangian relaxation methods
[152], constrained policy search [155, 156], and action projection methods [157, 158].
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Contributions

This chapter summarizes the contributions of Papers I–V included in this thesis. In order
to draw the connections to the methodology described in Chapter 4, the context of each
paper is presented, and the main findings are summarized. Furthermore, the author’s
contributions to each paper are outlined.

The contributions of this thesis are divided into two parts. Part A is devoted to the
single-agent RL domain and comprises four conference publications. Part B covers the
learning with multiple agents and provides a journal paper surveying the landscape and
the challenges of the multi-agent domain.

5.1 Part A: Single-Agent Reinforcement Learning

The four papers described in this part address RQs 1–3. Paper I investigates the policy
performance in simulation environments, while Papers II and III examine both the
robustness and performance of policies in a sim-to-real transfer learning setting with a
quadrotor robot. Paper IV addresses the learning-based safety certification of an RL
agent.

Paper I †

S. Gronauer, M. Gottwald, and K. Diepold. “The Successful Ingredients of Policy Gradient
Algorithms”. In: Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI). 2021, pp. 2455–2461. doi: 10.24963/ijcai.2021/338

Context. Despite the sublime advances in the field of RL, the reproducibility of
experimental results is challenging. The reasons for bad reproducibility are manifold.
First of all, numerical results are sensitive to the choice of hyperparameters and can
vary between different experiment runs [123]. Different code implementations produce

† Core publication: a paper is considered as a core publication if (i) it has been accepted for publication
or published as a full paper in an internationally distributed publication organ with peer review
process and (ii) the author is the lead author of the publication and has contributed at least 50% of
the content.
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inconsistent results, despite describing the same algorithm [45, 120]. Besides that,
studies showed that a major share of the performance increments cannot be attributed
to new algorithmic properties but to minor implementation choices [44, 101]. Other
works demonstrated that simple learning representations like linear maps or radial basis
functions show comparable performance to more expressive NNs on locomotion benchmark
tasks in simulation [160, 161]. These observations contest the common implementation
practices of deep RL algorithms and raise the question of which underlying algorithm
components and control design choices are responsible for good policy performance.

Summary. This work examines the impact of individual algorithm components and
problem design choices on the control policy performance by disentangling the intricate
complexity of current policy gradient methods in the on-policy setting. To this end, the
three-staged analysis described in Sections 4.1.1–4.1.3 was applied in the experiments,
and the impact of individual components on the policy performance was assessed within
simulation environments. Based on the results of the three-staged analysis, a minimal
configuration of algorithm components was assembled and benchmarked against baseline
implementations of TRPO and PPO [138].

Own Contributions. I proposed the methodology and categorization into algorithm
core components (Section 4.1.1), code-level enhancements (Section 4.1.2), and structural
learning components (Section 4.1.3). Further, I designed the experimental setup and
conducted the experiments.

Paper II †

S. Gronauer, M. Kissel, L. Sacchetto, M. Korte, and K. Diepold. “Using Simulation
Optimization to Improve Zero-Shot Policy Transfer of Quadrotors”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2022, pp. 10170–
10176. doi: 10.1109/IROS47612.2022.9981229

Context. Many real-world systems cannot afford to learn policies from scratch due to
the expense of data. In order to evade the necessity of real-world samples, simulations are
commonly utilized to synthesize RL-based policies previous to the real-world deployment
[107]. However, the success of a policy transfer is limited when the data at test time differ
largely from those seen during the training [21]. The reality gap is, in general, inevitable
but can be sufficiently narrowed when the actuator dynamics, noise distributions, and
system delays are modeled accurately [31, 105].

Summary. In this paper, the reality gap is addressed from two perspectives: by
reducing the reality gap through simulation optimization and by improving the robustness
of policies. Overall, the contributions of this paper are threefold. First, data-driven
simulation optimization from Section 4.2.2 was applied based on pre-collected real-world
data, demonstrating the potential to narrow the reality gap with minimal manual tuning.
The experiments confirm that zero-shot policy transfers from the simulation to a quadrotor

42

https://doi.org/10.1109/IROS47612.2022.9981229


5.1 Part A: Single-Agent Reinforcement Learning

robot become feasible after proper simulation optimization. Second, the three control
structures described in Section 4.1.4 were tested through real-world experiments with
respect to their performance and robustness. Finally, this paper demonstrates that RL can
be used for low-level decision-making, and zero-shot transfers to a real-world quadrotor
can be successfully accomplished while using onboard sensing and computation only.

Own Contributions. I proposed the three control structures described in Section 4.1.4:
PWM, attitude rate, and attitude. Further, I developed the idea of simulation optimization
and tuned the simulation parameters based on real-world data, which were collected by a
PID controller. Finally, the experiments were carried out under my supervision.

Paper III †

S. Gronauer, D. Stümke, and K. Diepold. “Comparing Quadrotor Control Policies for
Zero-Shot Reinforcement Learning under Uncertainty and Partial Observability”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2023,
pp. 7508–7514. doi: 10.1109/IROS55552.2023.10341941

Context. Although Paper II demonstrates that RL-based policies can be zero-shot
transferred to a real quadrotor robot, certain aspects remain sparsely explored in terms
of practical research. For instance, partial observability is a ubiquitous challenge in real-
world systems [19]. While the ground-truth state of the simulation is directly accessible,
the state of a real-world system must be typically estimated with a filter based on several
sensor readings and a dynamics model [23]. Furthermore, non-stationarity arises as
hardware components are subject to wear, distributional shifts emerge due to sensor
drifts, and system delays are present during actuation and sensing [164]. To address
non-Markovian systems, history-dependent policies are commonly utilized in combination
with DR [31, 113]. This practice is also supported by theoretical work proving the
importance of history-dependent policies under randomized dynamics [165]. However,
there is a lack of practical research about the benefits of using history-dependent policies
with RL.

Summary. This work examines history-dependent policies for controlling a quadrotor
robot in the context of zero-shot transfer learning. The performance and robustness
of the policies are investigated with an emphasis on partial observability and delays in
acting and sensing. Two policy architectures are compared with each other: FNNs with a
stacked observation-action history and RNNs. Further, the paper contrasts two different
observation representations as policy inputs with each other: state estimates provided by
an extended Kalman filter (EKF) and raw sensory data from the onboard sensors. As the
final contribution, the paper examines if an end-to-end learned representation can control
a quadrotor based on raw sensory information only, showing limited yet encouraging
results.
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Own Contributions. I selected the policy architectures, namely FNNs with a stacked
observation-action history and RNNs that process one observation at a time. In addition
to that, I suggested two different observation representations, one using raw sensory data
and another based on state estimates provided by an EKF. As the final contribution, I
designed the experimental setup.

Paper IV †

S. Gronauer, T. Haider, F. Schmoeller da Roza, and K. Diepold. “Reinforcement
Learning with Ensemble Model Predictive Safety Certification”. In: Proceedings of the
23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
2024

Context. The exploratory and novelty-seeking nature of RL algorithms requires ad-
ditional precautions in applications where safety is imperative. Current methods for
safe exploration suffer from an inherent trade-off between rigorous safety guarantees and
scalability. On the one hand, methods derived from MPC theory can provide formal safety
guarantees under known operating conditions by making strict problem assumptions, but
their applicability is often limited to low-dimensional systems [118, 119, 167]. On the
other hand, RL algorithms can scale to high-dimensional spaces but have shortcomings in
terms of hard constraint satisfaction since safety is incentivized and not enforced during
the training [168, 169, 170].

Summary. This paper presents X-MPSC as a method to address safe exploration in
RL-based systems. X-MPSC aims to combine the best of both worlds by combining
robust MPC with model-based RL. As explained in Section 4.3.2, X-MPSC leverages an
ensemble of probabilistic NNs and tube-based planning through a multi-step look-ahead
to correct potentially unsafe actions. An action is certificated as safe when all tube-based
trajectories of the model ensemble enforce the safety constraints during planning. The
ensemble of dynamics models is trained on sampled trajectory data from the actual
system and is leveraged for both policy optimization and planning with uncertainty tubes.
Uncertainty-aware ensemble models are motivated by the prediction inaccuracies that arise
with a growing prediction horizon when using a single model only [116]. A great benefit
of X-MPSC is that only safe offline data are required, compared to related methods that
require mixed safe and unsafe data samples [157, 158, 171]. The experimental results show
that X-MPSC can achieve significantly fewer safety constraint violations than comparable
RL methods.

Own Contributions. I proposed the framework of X-MPSC and the underlying al-
gorithm for safety certification. This includes the uncertainty propagation based on
ellipsoids and the construction of the optimization problem. Further, I led the experimen-
tal evaluation and carried out the experiments of the X-MPSC method.
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5.2 Part B: Multi-Agent Reinforcement Learning

Many real-world applications naturally comprise multiple agents that make decisions
concurrently and adapt control behavior alongside each other [172, 173]. Hence, studying
multi-agent problems is fundamental when applying RL in the real world. To enhance
the viewpoint of Part A, Paper V comprehensively reviews the recent advances of deep
RL in the multi-agent domain and extends upon the challenges introduced in Section 1.1.

Paper V †

S. Gronauer and K. Diepold. “Multi-Agent Deep Reinforcement Learning: A Survey”.
In: Artificial Intelligence Review 55.2 (2022), pp. 895–943. doi: 10.1007/s10462-021-
09996-w

Context. Although being overshadowed by the single-agent domain in the early days
of the deep RL success stories [14, 15], MARL has caught up by demonstrating impressive
results in high-dimensional control problems [16, 18, 97, 113, 175]. Thus, new interest has
ignited the MARL community, and a plethora of literature has been published recently
[95, 176, 177]. Although multi-agent systems enjoy a long record of research and numerous
seminal surveys have been published over the last two decades [20, 178, 179, 180], the
research community lacks a survey paper that holistically overviews the landscape of
multi-agent deep reinforcement learning (MADRL) literature.

Summary. This paper complements the challenges formulated in Section 1.1 and
reviews the challenges that arise exclusively in the multi-agent domain. To this end, a
comprehensive survey of the landscape in MADRL is provided, and the methods proposed
to address these challenges are discussed. The focus is primarily on the recent literature
that combines deep RL methods with a multi-agent scenario. The contents are divided
into three main parts. First, different training schemes are presented, which describe the
synthesis of control policies and the information flow. Second, the emergence of different
agent behaviors based on the task specification is reviewed. Third, challenges in the
multi-agent domain are analyzed, and solution methods, which are leveraged to address
these challenges, are reviewed. The survey paper concludes with an extended discussion
of research advances and identifies recent trends.

Own Contributions. I conducted the literature review and selected publications
related to the survey. In addition to that, I proposed the taxonomy that was used to
classify the literature into the analysis of the training schemes, emergent patterns of agent
behavior, and challenges of the MADRL domain. As the final contribution, I identified
trends that are frequently utilized to address MADRL challenges.
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Chapter 6

Results and Discussion

In this chapter, Hypotheses 1.1–3.2 are evaluated through falsification or verification, and
RQs 1–3 are addressed accordingly. To this end, the results of Papers I–V are briefly
recapitulated, and the empirical findings are discussed based on insights from related
works. Lastly, the perspectives on the use of simulations are argued.

6.1 Performance Impact of Algorithm and Control

Problem Design

The discussion in this section is based on the results presented in Papers I–III and
comprises a mixture of simulation and real-world experiments.

Hypothesis 1.1. State-of-the-art policy performance can be achieved by deploying a
handful of carefully selected algorithm components.

Hypothesis 1.1 was tested empirically in Paper I by disentangling the algorithm
complexity into three stages, where the effect of each component was assessed individually.
Through a three-staged analysis, the components with the largest performance gains were
selected and composed to a minimal algorithm configuration. The minimal configuration
was then benchmarked against the state-of-the-art baseline implementations of TRPO
and PPO [138]. In the following paragraph, the insights of the three-staged analysis are
discussed.

In the first stage, algorithm core components were found to be crucial for reaching
good control performance with on-policy algorithms. Trust-region enforcement methods
boosted the policy performance and improved the robustness of the hyperparameter
selection in all tested environments. The use of variance reduction techniques resulted in
an even greater performance improvement than trust-region enforcement. These results
are supported by the findings from Ilyas et al. [181], who reported that using a critic as
a baseline function effectively reduces gradient variance, although to a smaller extent
than using the true gradient. In the second stage, the impact of code-level enhancements
was investigated. Observation standardization and learning rate annealing significantly
enhanced the policy performance in at least six out of seven environments. These results
are consistent with the ones reported in [44, 121]. Reward scaling showed, on average,
improvements in the locomotion tasks but not in the manipulation tasks. This observation
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coincides with the findings in [44], where the authors found reward scaling beneficial for
learning locomotion tasks. The remaining code-level components showed mixed results,
and their effectiveness depends on the control task. In the third and last stage, the impact
of the structural learning components was examined. Parameter-sharing deteriorated
learning, similar to the results reported in [121]. The choice of the optimizer and the
weight initialization scheme had a positive impact on the performance, which contradicts
the results in [121], where the authors did not recognize performance changes.

Based on the three-staged analysis, a minimal configuration of algorithm components
was assembled and benchmarked against state-of-the-art algorithm implementations of
TRPO and PPO [138]. The comparison was conducted on locomotion and manipulation
tasks of the PyBullet physics simulation [139]. As the results of Paper I demonstrate, a
subset of carefully chosen algorithm components is sufficient to achieve policy performance
that is on par with the baseline implementations. This finding confirms Hypothesis 1.1.

Hypothesis 1.2. Low-level control structures achieve superior policy performance com-
pared to higher levels of control when the reality gap is sufficiently small.

Paper II conducted zero-shot sim-to-real experiments with a quadrotor robot and
compared the policy performance of the three control structures: PWM, attitude rate,
and attitude. All three control structures yielded the best zero-shot performance when
simulation parameters were set to the ones found through simulation optimization, which
are assumed to be closest to the real-world parameters. However, when deviating from the
parameters found by simulation optimization, low-level PWM control quickly dropped in
performance, and the zero-shot transfer attempts failed. PWM control showed the worst
performance compared to the other two control structures when system latency was not
modeled in the simulation. In contrast, attitude-rate control showed better performance
results than PWM control in settings where simulation parameters differed from the ones
found by simulation optimization. Attitude control, although being the highest tested
abstraction level, showed worse results than the other two control structures when the
reality gap was small. Although PWM and attitude-rate controllers showed the best task
performance in the experiments of Paper II, no control level surpassed another in terms
of zero-shot performance.

Related works studied the impact of the action space design within simulation en-
vironments (i.e., settings without a reality gap). In the majority of works, high-level
action space representations showed the best final performance in simulation [135, 137,
182] compared to the literature reporting the best reward performance with low-level
control [183]. There is also a broad consensus in the literature that the selection of a
higher control abstraction generally results in improved learning speed, as shown across
various robot platforms [135, 137, 182, 183]. This is backed up by recent results indicating
that high-level control structures can offer a smoother optimization landscape and thus
can accelerate learning [184]. In sim-to-real experiments, Kaufmann et al. [112] found
attitude-rate control to be the best control approach. Low-level thrust control failed in
their experiments when the communication delay was increased.

The results of Paper II do not indicate the superiority of PWM over attitude-rate
control when the reality gap is narrow. Without the reality gap, simulation-based studies
found higher control levels superior in terms of reward performance across various robot
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systems, e.g., in manipulation tasks [137] and locomotion tasks [135, 182]. Based on these
results, Hypothesis 1.2 is rejected.

Hypothesis 1.3. Recurrent actor-critics improve the policy performance upon feed-
forward architectures when trained with domain randomization.

The experimental evaluation of Paper III showed performance gains when using RNN-
based policies instead of FNNs. Based on state estimates of an EKF, the RNN-based
policies showed a marginally better cumulative reward than FNN architectures when all
system parameters were randomized in simulation. Despite one exception, all policies were
able to fly the quadrotor for at least 20 s, after which the trial was terminated manually.
However, when using raw sensory data as observations, the trials with FNN-based policies
led to unstable control behavior. Most of the trials with FNNs terminated early, resulting
in a success rate of less than 7 %. In contrast, RNN-based policies trained with DR
achieved a success rate of 66.7 % on raw sensory inputs. In further experiments, it was
tested if an MLP classifier could predict the simulated system latency from latent memory
states. The results indicate that RNNs extract and encode useful information about
the latency from the sequence of partial observations in the latent state. Similar results
were found in [106], who were able to recover relevant dynamics parameters from the
state-action history.

Related works on sim-to-real transfer learning reported that RNNs are superior to
FNNs when DR is applied during training. On a hand-in manipulation task, FNNs were
compared with RNNs, demonstrating that LSTM-based actor-critics can considerably
outperform their FNN counterparts [35]. Further, the authors observed that the latent
state of the RNN encodes valuable information about the environment randomization.
In another study about robotic manipulation, recurrent policies achieved a higher zero-
shot success rate than FNN-based policies despite showing similar task performance in
simulation [105]. The authors argue that LSTMs generalize better to the dynamics of the
real-world robot. Similar to the finding of Paper III, FNN-based policies were found to
be on par with RNNs when the reality gap is small and accurate robot state estimates
are available [185].

The results of Paper III confirm Hypothesis 1.3. RNNs can infer the system parameters
from temporal data and encode the realization information in the latent state when
trained with DR. As a result, RNN-based policies are adaptive controllers due to their
implicit system identification at deployment. The validity of the hypothesis is supported
by several related works pointing out the superiority of RNNs when combined with DR
[35, 105, 106].

RQ 1. How do algorithm implementation and problem design choices affect policy perfor-
mance in a zero-shot sim-to-real context?

In summary, the policy performance obtained through RL is the product of an intricate
interplay of various algorithm components and control problem design choices. In what
follows, the merits and demerits of these choices are discussed.

Algorithm components impact the stability and speed of learning, the asymptotic policy
performance, and the resilience toward hyperparameters. However, there are few studies
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in the literature that consider the sim-to-real transfer performance based on algorithm
components. Most findings are based on simulation experiments [44, 45, 121].

The policy representation can significantly impact learning performance. Changing
the NN architecture, such as the depth or width, can degrade training performance
[45]. In contrast, clever NN parameter initialization can foster exploration and improve
learning speed [121]. Similarly, the regularization of the policy parameters can have a
positive impact on control performance [186]. Representations based on RNNs address
not only problems with incomplete information [38, 187] but also provide superior
reward performance in zero-shot sim-to-real transfer learning due to the online adaption
capabilities of RNNs when trained with DR [35, 105, 106, 188]. However, in settings with
a small reality gap and accurate state estimates, FNNs can be on par with RNN-based
policies [163, 185].

The design of the action space affects the learning speed and the final policy perfor-
mance. Since reducing the reality gap requires considerable engineering effort, higher
control structures are generally the preferred choice for deployment. This statement is
substantiated by the majority of works utilizing high-level control structures [33, 34, 35,
36, 105, 113, 188, 189] compared to the works deploying low-level controllers [38, 183,
185, 190]. Low-level control structures can only be applied in control problems where a
simulation with high fidelity is available. Besides the abstraction level, a change in the
action space parameterization can foster the exploration of the state space and improve
performance, e.g., bang-bang controllers based on Bernoulli distributions can outperform
Gaussian action distributions [136].

A thorough observation space design can enhance policy transfer performance. Exper-
iments in simulation showed that a careful selection of observation space features can
boost learning speed and performance [191]. In sim-to-real experiments on a quadrupedal
robot, an observation space with reduced dimensionality was shown to result in lower
performance in simulation but improved the controller performance on the real hardware
[142]. The authors believe that with a small observation space, the policy is more likely to
encounter data samples known from the simulation at deployment, resulting in a higher
transfer success rate.

Other design choices include the reward function design, the initial state distribution,
and the handling of episode resets. A diligent reward function design guides the learning
process and can improve both sample complexity and policy performance [192]. Typically,
domain knowledge is used for engineering the reward function to incentivize success-
oriented behavior, e.g., reward the proximity toward a task goal. The most known
technique is reward shaping, which has been successfully applied in robotics [33, 35] and
video games [193, 194] to tackle the credit assignment problem. Next to the reward
function, small initial state distributions have been shown to boost the learning curve
but fail to generalize in regions that have not been visited during training, whereas wide
initial state distributions can hinder learning performance [122]. Finally, performance
improvements are achieved when bootstrapping at the end of episodes in case of timeouts
[195]. Timeouts cause the infinite horizon assumption to break and can diminish the
prediction accuracy of the critic, which results in decreased policy performance if not
handled carefully [196].
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6.2 Robustness in Zero-Shot Policy Transfers

The experiments of Papers II and III tested the robustness of policies that were zero-shot
transferred to a real quadrotor robot. In order to assess the robustness of a policy, the
reality gap was increased by changing the values of critical simulation parameters to
enforce a distributional shift.

Hypothesis 2.1. High-level control structures are more robust toward the reality gap
than low-level controllers.

In the experiments of Paper II, three different control structures were compared: PWM,
attitude rate, and attitude. Low-level PWM policies were only transferable when the
dynamics of the actuator and the system latency were set close to the values found through
simulation optimization. When the reality gap increased, the trials terminated early since
the drone became unstable, resulting in failure in most cases. Attitude-rate control showed
more robust behavior toward the change of simulation parameters than PWM-based
controllers. Finally, attitude control showed, in settings where simulation parameters
were close to the ones found by simulation optimization, worse reward performance than
the other two control structures. However, when the reality gap was widened, attitude
control showed better results than PWM control.

Related studies investigated the robustness of different action space representations
toward the reality gap. Kaufmann et al. [112] tested the sensitivity toward delays in
zero-shot transfers for drone control, showing that a higher action space abstraction is
more robust toward latency. In a bipedal locomotion task, Haarnoja et al. [113] reported
that the zero-shots failed with torque-based actions but were able to conduct successful
transfers with position-based joint control. The authors argue that fast stabilizing and
local feedback from the PID controllers renders high-level control more robust toward the
reality gap.

The empirical results of Paper II and the evidence found in related works confirm
Hypothesis 2.1. Low-level action representations require a higher simulation fidelity,
which promotes the usage of high-level control structures in settings where the reality
gap is difficult to minimize, e.g., when robot dynamics are partially unknown, or system
parameters are not accurately identified.

Hypothesis 2.2. Policies based on recurrent neural networks are more robust than
feed-forward architectures when trained with domain randomization.

The experiments of Paper III compared RNN-based policies with FNN architectures
regarding the robustness toward system delays. With raw sensory inputs, the success rate
of both architectures dropped to 0 % when latency was not modeled during training in
simulation. Using state estimates as policy inputs, RNNs dropped in terms of the success
rate from 100 % to 20 % and FNNs from 100 % to 66.7 %. The results of Paper III provide
no evidence that the use of RNNs offers robustness benefits over FNN architectures.
However, the experiments of Paper III evidence that RNNs can overfit the simulation
dynamics when DR is disabled during training. With raw sensory data as policy inputs,
this overfitting led to a success rate of 0 % compared to 66.7 % when training with DR.
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A similar observation was made in a bipedal locomotion task, where RNNs overfitted to
the simulation dynamics without DR [106].

Related works demonstrated that RNN-based policies yield better zero-shot performance
than FNNs on robotic manipulation tasks [35, 105]. However, improved policy performance
was also observed during the training in simulation, where recurrent actors learned faster
and achieved higher asymptotic performance. The superiority of RNNs in the zero-shot
transfer context could be justified by a better training performance rather than superior
robustness toward the reality gap.

Although related works evidence the positive performance effects of recurrent policy
representations in various tasks, the performance gains over FNNs can also be attributed
to the improved control performance in simulation rather than superior robustness. When
exposed to an out-of-distribution test scenario, RNN-based policies fail in a similar way
as their feed-forward counterparts, as the experiments of Paper III show. Based on these
observations, Hypothesis 2.2 is rejected.

RQ 2. What design choices impact the robustness of policies in zero-shot sim-to-real
transfer learning?

The evaluation of Hypotheses 2.1 and 2.2 underpins the relevance of using DR to
improve the robustness of policies in a zero-shot context. This insight is supported by the
vast majority of papers that address the sim-to-real transfer with DR during training in
simulation [31, 34, 38, 103, 105, 113, 142, 189] compared to the works that train without
DR [197, 198]. Moreover, ablation studies examined the impact of DR in manipulation
tasks [35, 105, 199] and a quadrotor flight task [200], approving the importance of DR for
successful policy transfers.

Besides DR, the level of abstraction impacts the robustness of policies. Abstraction in
the observation space, where policies operate on a common intermediate representation,
helps to bridge the reality gap, especially in high-dimensional input spaces. Domain
adaptation was successfully used on pixel inputs [34, 36, 201] and feature levels [133, 189].
Furthermore, the right representation of the action space can alleviate the reality gap
and can render policy transfers feasible [198]. High-level control structures require less
simulation fidelity and are more robust toward the reality gap than low-level controllers
[112, 113].

Recurrency in the policy representation helps in situations where systems are only
partially observable [189] or the deployment conditions change over time. However, an
improved robustness of RNNs over FNNs cannot be confirmed.

6.3 Safety Certification of Reinforcement Learning

The results of this section are based on Paper IV, which proposed X-MPSC as an
approach to certify the actions of an RL-based controller. This section discusses how
the ensemble size of probabilistic NNs and the usage of a prior dynamics model impact
the learning-based safety certification of the closed-loop control system when integrating
X-MPSC.
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Hypothesis 3.1. An ensemble of dynamics models decreases the number of safety con-
straint violations.

A hyperparameter search over crucial algorithm hyperparameters was conducted in
Paper IV to assess the impact of the ensemble size. The results demonstrate that the
total number of safety constraint violations decreases with an increasing ensemble size.
However, the improvement in terms of safety constraint satisfaction comes at the cost of
a reduced cumulative reward. This behavior can be explained by the system becoming
more conservative as the ensemble size increases since the constraints imposed by each
individual dynamics model must be satisfied. If a single member of the ensemble deviates
from the remaining members, the agent is enforced to satisfy ambiguous constraints.
This can result in a reduced set of feasible actions, which can lead to diminished policy
performance.

Related works that use an ensemble of NNs for safe RL exist but lack an investigation
into the effect of the ensemble. Luo and Ma [202] utilized barrier certificates together with
an ensemble of NNs, whose usage is argued by the common practice of a well-calibrated
dynamics model to address epistemic uncertainty in the predictions. Lütjens et al. [203]
used an ensemble of RNNs for uncertainty-aware predictions that are used by an MPC
controller to act more cautiously in scenarios with high uncertainty. Similarly, Zhang et al.
[204] used an ensemble of probabilistic NNs to select actions that lead to low-variance
predictions. The visitation of states with high uncertainty can thus be reduced.

The results of Paper IV confirm Hypothesis 3.1. An increasing number of models
improves the learning-based safety certification of actions but also renders the closed-loop
system more conservative.

Hypothesis 3.2. Adding a crude prior model to the learning representation lowers the
number of safety constraint violations.

To assess the validity of this hypothesis, the cumulative constraint violations were
compared between learning a dynamics model from scratch and incorporating a prior
model to the NN ensemble. For this purpose, each member of the ensemble was augmented
with an additive term that described the nominal model. The experiments in Paper IV
demonstrate that the total number of cumulative constraint violations can be reduced
on average by one order of magnitude when a crude prior model is added to the NN
ensemble. The positive impact can be observed in all of the four tested tasks. Moreover,
the usage of a prior model improves the safety certification without reducing the policy
performance.

The positive impact of adding prior model knowledge to the learning agent was also
reported in [205], where the authors showed that a crude prior model in combination
with a control barrier function could ensure safe exploration. Other related works did not
investigate the impact of the prior model but require a sufficiently calibrated prior model
to provide safety guarantees under known operating conditions [118, 119, 206].

The experimental results of Paper IV verify Hypothesis 3.2. The incorporation of
prior knowledge in the form of model priors or domain structure is beneficial whenever
available, as similarly argued in [23]. Beyond safe exploration, related works reported that
prior knowledge about the robot system significantly improves the sample complexity
[207, 208] and learning speed [209].
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RQ 3. How can safety be improved in learning-based model predictive safety certification?

Accurate model predictions are crucial for reliable safety certification. The use of a
prior dynamics model requires the NNs to learn only the residual between the nominal
model and the actual system dynamics, thus helping to improve prediction accuracy. Even
though no data is available from unseen regions, the nominal model can guide the model
rollouts through coarse predictions and improved gradient estimates for the propagation
of the uncertainty tubes. Furthermore, the utilization of multiple models improves the
safety of the closed-loop system since only one model needs to capture the future behavior
of the actual system. Since X-MPSC requires satisfying the state-trajectory constraints
for each ensemble member, safety can be ensured when at least one ensemble member
captures the trajectory of the actual system.

Based on these observations, it can be concluded that approaches enhancing the
prediction capabilities of the nominal model and improving uncertainty estimates enhance
the effectiveness of learning-based MPSC methods. This conclusion is supported by model-
based RL works that found the model quality and the usage of uncertainty during learning
to be essential for task performance [58]. Models with more expressive representations
could further improve the prediction capabilities, e.g., state-space models [59, 210] or
attention-based architectures [211, 212].

6.4 On the Role of Simulation

Despite the possibility of training directly on the real hardware [37, 127, 213, 214], the
majority of works deploy policies that were trained on simulated data [31, 33, 35, 36, 38,
105, 189, 200]. Sim-to-real methods mitigate the problem of gathering costly data on
the robot and enable faster than real-time learning. However, the training in simulation
comes at the expense of the reality gap, as simulation models are often considerably
simpler than their real-world equivalents.

In this section, the drawbacks and benefits of using a simulation for training RL policies
are summarized. To this end, insights that occurred in Papers II and III are discussed
based on the findings of related works.

6.4.1 Drawbacks

Reality Gap. Although the reality gap is inherently inevitable, it can still be approached
from two perspectives. First, the richness and fidelity of the simulation can be improved
data-driven through system identification [113, 142, 198, 215] and parameter distribution
optimization [144]. Both approaches aim to narrow the reality gap by shifting the
simulation model as close as possible to the real-world system. However, it is often
difficult to account for all phenomena and dynamical effects in the simulation because
the modeling of all subtleties can be computationally demanding, e.g., the calculation of
aerodynamic effects in drone flights can result in a significant slowdown of the simulation
speed. Second, the policy can be made robust against the distributional shift caused
by the transfer [105, 141]. Based on the discussion of RQ 2, the use of DR and good
representations of the action and state space improve policy robustness. An instance
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of the latter is domain adaptation, which can close the reality gap through training a
policy on an intermediate space representation instead of the original state space [34, 36,
201]. By making the policy operate on a mutual and uniform representation, disparities
between the simulation and reality can be addressed by aligning both domains.

Actuator Model. Throughout the literature, it has been reported that the accurate
modeling of the actuator dynamics is a crucial component for reliable zero-shot sim-to-real
transfers. The works range from quadrupedal robots [31, 142], bipedal robots [113, 185],
and robotic manipulators [105] to quadrotors [33]. Besides the importance of accurate
actuator dynamics, the main cause of model errors is the lack of latency modeling in the
context of legged robotics [25]. Papers II and III draw a similar conclusion for quadrotors,
where the transfer attempts were only successful when system latency and motor dynamics
were modeled. Further, Paper II showed that adding latency to the simulation acts as a
kind of regularization, preventing high-frequent action changes.

Aggressive Action Selection. Bang-bang control behavior is a phenomenon where
policies favor actions close to the boundaries of the action space [136]. It was found
that bang-bang control behavior can naturally emerge when using RL for policy training
[216, 217]. While jerky actions are not an issue in simulation, they can be prohibitive
on physical robots and can diminish the sim-to-real transfer success. A diligent reward
function design can enforce a smoother action selection and thus foster transferability to
the real-world robot. In the experiments of Paper II, policies produced large changes in
the control outputs without additional reward penalties, resulting in deteriorated control
performance after the transfer. After adding terms to penalize high action rates and
magnitudes to the reward function, policies could reliably be transferred to the quadrotor.

6.4.2 Benefits

Automation of Experiments. Simulations enable the automation of the experimenta-
tion. At the end of each episode, the robot can be easily reset into its initial configuration.
On real hardware, however, human supervision or intervention mechanisms are required
when unexpected events such as failures and breakdowns occur [30] or at episodic re-
sets [218]. Training in simulation accelerates the experimentation cycles through the
automated testing and tuning of algorithm hyperparameters [25].

Data Throughput. Simulators typically run faster than real-time and can speed up
data generation significantly. Moreover, the data throughput is further increased when the
number of simulated robots can be parallelized on the computational resources [196, 219].
High simulation throughput facilitates the usage of on-policy RL algorithms, which require
a higher sample complexity but offer more stable learning than off-policy algorithms.

Safety Aspects. Safety is imperative on robots since failures lead to breakdowns of the
hardware or damage to the robot’s environment. In the simulation, unsafe behavior is not
only tolerated but also desirable to learn from the consequences of failures. Furthermore,
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simulations offer a convenient way to develop safety mechanisms [220, 221] or learn
policies that adhere to safety constraints [155, 222]. For sim-to-real transfer learning,
it can be beneficial to include safety specifications already during the training in the
simulation, i.e., agents can violate constraints during the simulation but must enforce
these before transfer [150].

Non-Markovian Systems. Sensor measurements on real robots are corrupted with
noise and generally comprise only a subset of the state space variables necessary for
modeling the robot. State estimators based on filters are thus common practice to
estimate the robot state and quantify the uncertainty about the estimates [23]. Simulators
bypass partial observations since complete state information is available. For instance,
ground-truth information can be leveraged to train a privileged agent. Imitation learning
can then be used to train a student agent that mimics the behavior of the privileged agent
while having only the sensor capabilities of the hardware platform. Privileged learning is
an effective method to address partial observability and has been successfully applied
to quadrotor robots [34, 133] and legged robots [32, 189]. However, policies can also be
trained on raw sensory data instead of state estimates when using RNNs, as shown in
Paper III. Another challenge in real-world applications is the reward feedback. Robot
systems can require additional sensors to track the task progress and obtain information
about goal completion.
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Conclusion

This thesis addresses the application of deep RL algorithms to robots in a sim-to-real
transfer learning context. Despite the advances in recent years, a plethora of challenges
prevails when deploying RL-based policies to real-world systems. In order to provide
contributions to these challenges, this thesis answers three RQs.

The first question addresses the performance of RL algorithms regarding the selected
algorithm components and the control problem design. As indicated by the experiments,
a minimal configuration of RL algorithm components is sufficient to achieve comparable
policy performance to state-of-the-art baseline implementations. Since experimental
reproducibility is a known deficiency that exacerbates the adoption of RL algorithms to
new tasks, reduced complexity in the algorithm design is beneficial and can accelerate
the experimentation cycles. Through zero-shot policy transfers to a quadrotor robot, the
impact of the action space representation on the policy performance is examined. Actions
in higher abstraction levels are generally favorable due to superior learning speed and final
performance. In experiments examining the policy representation, RNN-based policies
increased policy performance over FNNs on state estimates and surpassed FNN-based
architectures on partial observations. However, RNNs unfold their potential only when
trained with DR in simulation. The experiments also provide evidence that RNNs encode
useful dynamics information in the latent memory when trained with DR, enabling
adaptive control behavior at deployment.

The second question covers the robustness of policies in a zero-shot transfer context.
Robustness is crucial for alleviating the model mismatch between the simulation and
reality to ensure reliable transfer performance. As evidenced in the experiments with a
quadrotor robot, high-level control structures require less simulation fidelity and increase
the robustness toward the reality gap. Based on the performance and robustness findings,
high-level action representations can be recommended as the default choice for most
robotic systems. Regarding the policy representation, RNN-based policies enhance the sim-
to-real transfer success but are not robust toward situations that were not encountered
in simulation. Furthermore, the experiments indicate an overfitting of RNNs to the
simulation when DR is not applied during training.

In the third and last question, the safety certification of actions during the exploration
phase is addressed based on X-MPSC. The results indicate that augmenting the learning
model with prior physics knowledge enhances both the safety and learning speed of the
learning-based system without forfeiting control performance. This suggests incorporating
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Figure 7.1: Number of peer-reviewed RL publications per year. The computer science bib-
liography DBLP (https://dblp.org/) is used as data source to determine the number of
publications per year. Search matching patterns include a paper’s title and publication organ.
Information from the abstract and the paper’s main content is neglected.

prior knowledge whenever available. Furthermore, leveraging an ensemble of probabilistic
NNs mitigates model bias and reduces the number of safety constraint violations that
occur throughout training. However, the ensemble model renders the closed-loop control
system more conservative, which results in reduced cumulative reward.

In summary, the findings of this thesis substantiate the practicability of data-driven
paradigms to control robots. Nevertheless, the successful deployment of an RL algorithm
on a robot requires careful engineering in various aspects. The algorithm components
and hyperparameters must be tuned, and the control problem must be designed properly.
Furthermore, a calibrated model is pivotal for accurate simulation and obtaining high-
quality state estimates on the real robot. This conclusion objects to the idealistic notion
that RL can be adopted in new tasks and robots without prior knowledge and thorough
system design.

However, RL has the potential to substitute conventional control approaches in domains
where the controller synthesis is challenging, e.g., due to high system complexity or
(partially) unknown dynamics. This can be argued for the better optimization objective
in RL since the control performance is maximized on task-level in an end-to-end fashion
and does not require a decomposition into planning and control [223]. Learning-based
methodologies also provide the benefit of continuous adaptation, which is a crucial
property when deploying robots to the real world [224]. These advances may explain
the trend that can be observed in the increasing adoption of RL and NNs in different
robotics areas, e.g., a rising number of NN-based controllers on quadrotors [225] and
the deployment of RL-based policies for robotic manipulation tasks [226]. Prompted by
seminal deep RL works [14, 15], vigorous research efforts have been made, and the rapid
growth of published papers (as depicted in Figure 7.1) underpins the sustained interest
in data-driven control paradigms and the high expectations that come along with an
automated controller design.
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Abstract

Despite the sublime success in recent years, the underlying mechanisms
powering the advances of reinforcement learning are yet poorly understood.
In this paper, we identify these mechanisms - which we call ingredients - in
on-policy policy gradient methods and empirically determine their impact on
the learning. To allow an equitable assessment, we conduct our experiments
based on a unified and modular implementation. Our results underline the
significance of recent algorithmic advances and demonstrate that reaching
state-of-the-art performance may not need sophisticated algorithms but can
also be accomplished by the combination of a few simple ingredients.

c© 2021 International Joint Conferences on Artificial Intelligence. Reprinted, with

permission, from:

S. Gronauer, M. Gottwald, and K. Diepold. “The Successful Ingredients of Policy Gradient

Algorithms”. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence

(IJCAI). 2021, pp. 2455–2461. doi: 10.24963/ijcai.2021/338

81

https://doi.org/10.24963/ijcai.2021/338


The Successful Ingredients of Policy Gradient Algorithms

Sven Gronauer∗ , Martin Gottwald , Klaus Diepold
Technical University of Munich, Germany

{sven.gronauer, martin.gottwald, kldi}@tum.de

Abstract

Despite the sublime success in recent years, the un-
derlying mechanisms powering the advances of re-
inforcement learning are yet poorly understood. In
this paper, we identify these mechanisms - which
we call ingredients - in on-policy policy gradient
methods and empirically determine their impact on
the learning. To allow an equitable assessment,
we conduct our experiments based on a unified
and modular implementation. Our results under-
line the significance of recent algorithmic advances
and demonstrate that reaching state-of-the-art per-
formance may not need sophisticated algorithms
but can also be accomplished by the combination
of a few simple ingredients.

1 Introduction
Reinforcement learning (RL) is a data-driven paradigm that
can be leveraged to learn complex strategies for controlling
dynamical systems. RL algorithms excel at problems that can
be simulated or where exact models are known, but conven-
tional planning is not feasible, e.g. in the game of Go [Silver
et al., 2016]. Although the RL domain has witnessed sig-
nificant advances in recent years [Arulkumaran et al., 2017;
Mnih et al., 2015], the progress is aggravated by various im-
pediments. First, experiments are difficult to reproduce be-
cause numerical results are sensitive to the selection of hyper-
parameters and can vary over different random seeds [Hen-
derson et al., 2018; Islam et al., 2017]. More drastically, dif-
ferent code bases produce inconsistent results, although de-
scribing the same algorithm. Second, a major share of the
claimed performance increments in recently proposed meth-
ods is less achieved by innovative algorithmic properties but
more through clever implementation [Engstrom et al., 2020;
Tucker et al., 2018]. Third, state-of-the-art algorithms based
on neural networks can be disputed by simpler learning mod-
els. Despite their expressiveness, works demonstrated that
representations like radial basis functions or linear func-
tion mappings could achieve similar results on contemporary
benchmarks [Mania et al., 2018; Rajeswaran et al., 2017].

∗Contact Author

Until yet, it is poorly understood which underlying mecha-
nisms drive the learning of RL agents. The intricate interplay
between different algorithm components and the abundance
of adjustable parameters render it difficult to study the roots
of the recent progress. Our understanding remains opaque un-
til we assess the importance of new algorithmic innovations
through careful analysis. First works investigated the under-
lying mechanisms by conducting ablation studies in large-
scale experiments [Andrychowicz et al., 2020] or on a se-
lected subset of parameters [Engstrom et al., 2020]. To main-
tain sustainable progress, the RL community must build a
profound understanding of the ingredients and their respec-
tive proportion to the learning success, individually and as a
whole. Empirical as well as theoretical analysis about why an
algorithm surpasses the other is therefore crucial as argued by
Sigaud and Stulp [2019].

In this paper, we shed light on the components - which we
denote as ingredients - powering on-policy policy gradient al-
gorithms in continuous control problems.1 Our contribution
is two-fold: (1) we empirically study the significance of spe-
cific ingredients and show the roots of algorithmic progress
based on a modular and unified code base and (2) identify a
minimal setup of ingredients that challenges state-of-the-art
approaches while exhibiting a manageable size of algorithm
complexity. According to the principle of Occam’s Razor,2 a
simple baseline is preferable because fewer hyper-parameters
must be tuned and, thus, is easier to reproduce.

2 Related Work
A plethora of literature has emerged in recent years that crit-
icizes the reproducibility of RL. First of all, [Islam et al.,
2017] investigated the influence of hyper-parameter choices
and revealed the inherent performance variance of RL algo-
rithms. The authors objected to the under-reporting of hyper-
parameters, which are crucial for a fair comparison between
different algorithms, and provided recommendations for good
research practice. In a similar vein, [Henderson et al., 2018]

1For the supplemental materials and the implementation see:
https://github.com/SvenGronauer/successful-ingredients-paper

2We associate the minimum description length as one form of
interpretation with the principle of Occam’s Razor, which states the
trade-off between the quality of data fitting and the complexity of
the used algorithm model [Rissanen, 1978].
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emphasized the intricate interplay between hyper-parameter
selections and underlined the importance of independent ran-
dom seeds used to evaluate experiment trials. Further, Hen-
derson et al. [2018] pointed out that different code bases, al-
though describing the same underlying algorithm, can yield
inconsistent results, and they gave evidence that these per-
formance deviations can be attributed to implementation de-
tails which are often not neatly reported. Related to perfor-
mance disparities caused by different code bases, Engstrom
et al. [2020] showed that the implementation details indeed
matter. The authors investigated selected code-level ingredi-
ents, which are found only in the implementation or described
in detail in the appendices, and showed that these could be
accounted for the performance gains observed between the
TRPO and PPO algorithm. Alike, Tucker et al. [2018] ob-
served that recent advances in gradient estimation, which
were originally related to algorithmic improvements, can be
attributed to subtle implementation details.

Similar to our empirical research, Reda et al. [2020] inves-
tigated the impact of the environment design on the learned
policy performance in locomotion tasks, showing that the
problem design is at least as important as the selected algo-
rithm. Most related to our work, Andrychowicz et al. [2020]
discussed the effect of ingredients on on-policy RL algo-
rithms through the conduction of large-scale experiments.
They provided practical recommendations for high and low-
level choices and corresponding hyper-parameters values but,
in contrast to our work, conducted only ablation studies and
no incremental approach.

3 Background
We consider model-free policy gradient algorithms in con-
tinuous control problems where a policy is searched by in-
teracting with an environment with unknown dynamics. We
make use of the standard formulation for discounted infinite-
horizon Markov decision processes (MDP) which are formal-
ized by the tuple (X ,U ,P, r, γ), where X and U denote state
and action space, respectively. The system transition proba-
bility is described by P while r is the reward function and
γ denotes the discount factor. The agent’s goal is to learn a
policy π : X → P(U) that maximizes the expected return

J(π) =

∫

X
ρπ(x)

∫

U
π(u|x) r(x, u) du dx. (1)

Under the assumption of an ergodic MDP and an infinite hori-
zon, the problem is stationary and the expected policy perfor-
mance can be calculated over the un-normalized steady state
distribution ρπ(x) = γ0P (x0 = x) + γ1P (x1 = x) + . . .
under policy π. The policy πθ is represented by a neural net-
work that is parametrized by the vector θ and assumed to be at
least once differentiable. We denote the state-value function
as Vπθ

(x) = Eπθ

[∑∞
t=0 γ

tr(xt, ut) | x0 = x
]
, and similarly

Qπθ
(x, u) = Eπθ

[∑∞
t=0 γ

tr(xt, ut) | x0 = x, u0 = u
]

as
the action-value function. Policy gradient methods optimize
the learning objective by building the gradient of the expected
return with respect to the policy parameters∇θJ(πθ) and up-
date the policy parameters by taking a step along the gradient

direction. Likelihood ratio methods require a re-sampling of
data for every gradient step. To reuse generated trajectory
data over multiple iterations, importance sampling can be ap-
plied to perform updates based on a local approximation

Ĵ(πθ) = Eµ
[
πθ(u|x)

µ(u|x)
Ψ(x, u)

]
(2)

that matches J to first order. Off-policy samples can be incor-
porated under the assumption that µ(·|x) = 0⇒ πθ(·|x) = 0
for all x. However, the estimation of the policy gradient can
exhibit high variance. Thus, a reward estimator Ψ is typically
used which can be expressed by several terms as proposed
by Schulman et al. [2016] but typically takes the form of the
advantage function Aπθ

(x, u) = Qπθ
(x, u)− Vπθ

(x).

4 Methodology
In this paper, we consider on-policy gradient methods3

in continuous control domains. We take the importance-
weighted policy gradient (IWPG) objective from Eq. (2) as
the basis and systematically add ingredients to observe their
impact on the learned policy performance. We set up our ex-
periments in an incremental and modular approach such that
the influence of individual ingredients becomes transparent.
In particular, we study ingredients chronologically in three
stages:

1. Code-level ingredients are enhancements to the algo-
rithm, which are provided as supplementary details or
can only be found in the implementation. Most of these
ingredients are considered as good practices in the RL
community and are not regarded in the hyper-parameter
search, leaving their impact on the learning unexplored.

2. Algorithmic ingredients lie at the heart of new algorithm
proposals and depict the core innovation. These ingredi-
ents are precisely described in theoretical terms, but the
realization may only become transparent from the pro-
vided implementation code.

3. Structural ingredients refer to choices and hyper-
parameters that describe the neural network architecture
and the optimization. We consider those ingredients that
can vary between different implementation frameworks
and are often neglected in the experimental description.

Our experiments are conducted in the procedure from
above to cope with two challenges. First, ingredients cross-
correlate, making it difficult to determine their causal direc-
tion of influence. We alleviate cross-correlations by randomly
adding ingredients and assess their impact based on the per-
formance difference, whether an ingredient is applied or not.
Second, the combination of configurations grows exponen-
tially with the number of tunable hyper-parameters. We try to
contain this through the proposed experimental structure in
three stages.

3As on-policy, we also denote policy iteration algorithms that
collect data based on the current policy and update a policy several
times by using the same data through importance weighting before
generating new data with the iterated policy. Transition samples be-
come off-policy after the first policy update but are still close to the
generating policy.
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Figure 1: The impact of code-level ingredients on the policy performance. The normalized scores show the relative change of the policy
performance when a particular ingredient is used. Note that these numbers are generated based on the IWPG objective without algorithmic
ingredients such as trust-regions, which are added thereafter in Experiments 5.2. The Kuka task is excluded since we were not able to improve
upon a random policy without advanced variance reduction methods.

To benchmark the performance in continuous control prob-
lems, we use the five locomotion environments HalfCheetah,
Hopper, Ant, Walker2D, and Humanoid as well as the three
robotic manipulations tasks Reacher, Pusher, and Kuka. We
measure the expected return after 107 environment interac-
tions when exploration noise is disabled. All eight tasks are
evaluated in the PyBullet physics engine [Coumans and Bai,
2016].

5 Experiments
In this section, we explain the details of our experiments and
present the results. We aligned the hyper-parameters to the
ones suggested in Henderson et al. [2018]. We applied a
single learner setup, used as discount factor γ = 0.99, col-
lected batches of size 32000 for each policy iteration, and ran
each seed over a total of 107 environment interactions. For
the neural networks, we used the same structure for both pol-
icy and value networks, i.e. multi-layer perceptrons with two
hidden layers consisting of 64 neurons each followed by tanh
non-linearities. The default optimizer was Adam [Kingma
and Ba, 2015] for the policy and value network, respectively.
Our studied ingredients are only applied to the policy network
but not to the value network. For all experiments, we per-
formed hyper-parameter grid searches to average the effect
of ingredients over a wide range of hyper-parameters (Ex-
periments 5.1) or to determine the best hyper-parameter con-
figuration (Experiments 5.2-5.4). An overview of the used
hyper-parameters and configurations is provided in the sup-
plemental.

5.1 Impact of Code-level Ingredients
Being augmentations to the algorithmic core, code-level in-
gredients are provided as supplementary details or can only
be found in implementations. Although not grounded on
theoretic insights, many code-level ingredients are used as a
heuristic on current benchmarks. We agree on these ingredi-
ents as the first stage since they can be applied to all on-policy
gradient algorithms and are leveraged in the succeeding ex-
periments. We investigated the seven following ingredients:

1. Observation Standardization. Each batch of observa-
tions is made mean-free and re-scaled to unit variance
by first subtracting the mean value and then dividing
through the standard deviation.

2. Advantage Standardization. Analogous to observation
standardization, each batch is transformed into a mean-
free and unit variance distribution.

3. Reward Scaling. The received rewards are divided by
the standard deviation of a running discounted sum of
rewards.

4. Gradient Scaling. To maintain the magnitude, parameter
gradients (as they are concatenated into a single vector)
are re-scaled if they exceed a certain threshold.

5. Entropy Bonus Term. To promote exploration, the en-
tropy bonus term can be added to the optimization ob-
jective, which encourages uniformly distributed actions.

6. Exploration Noise Annealing. Outputs of the policy
networks typically represent the mean of a multivari-
ate Gaussian distribution. Through exploration noise an-
nealing, the entries of the covariance matrix are linearly
decreased over the training.

7. Learning Rate Annealing. The learning rate of the policy
optimizer is linearly decayed to zero over the training.

Approach. To study how code-level ingredients affect
learning, we randomly added each ingredient to the IWPG
objective from (2) by a chance of 50% in each run. We used
the random enabling to remedy cross-correlations between
the investigated ingredients. We conducted experiments over
a 4 × 4 grid of learning rate and number of policy iterations
combinations. Each combination was evaluated over 16 inde-
pendent runs, resulting in a total of 256 random seeds for each
environment. The impact of each code-level ingredients was
determined by (J+

ι − Jχ)/(J−ι − Jχ) where J+
ι denotes the

average policy performance when ingredient ι is applied, and
J−ι when ingredient ι is not used, and Jχ is the performance
of a uniform random policy χ. We used plain advantage esti-
mation Ψ = A as the reward estimator.

Results. As shown in Figure 1, observation standardization
and learning rate annealing significantly affect the learned
policy performance. Both ingredients yield in at least six
out of seven tasks performance gains, where observation
standardization yielded an average performance increase of
34.3% and learning rate annealing an improvement of 30.7%.
Reward Scaling showed in four out of five locomotion tasks
performance gains, while for Humanoid a negative score.
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Figure 2: Impact of the algorithmic ingredients on the policy performance. Different trust-region enforcement methods are compared condi-
tioned on the variance reduction method of the critic estimates. Only the best results obtained through grid search are depicted.

The manipulation tasks did neither profit from reward scal-
ing. The entropy bonus term had a mixed impact, showing
in Pusher and Walker gains of at least 9.7%, whereas Ant
denotes a performance loss of 11.6%. The annealing of the
exploration noise showed in four out of five tasks a negative
impact, but performance gains in Humanoid, Reacher, and
Pusher. In contrast to the former ingredients, both the scal-
ing of policy gradients and the standardization of advantages
showed on average performance losses. Note that we could
not achieve an improvement over a random policy at the Kuka
task without advanced variance reduction methods and, thus,
we excluded the Kuka environment from Figure 1. The plots
visualizing the learning curves and the numerical results of
all eight tasks can be taken from the supplemental.

5.2 Effect of Algorithmic Ingredients
In this section, we elaborate on the former experiment’s code-
level findings and endow the learning objective with algorith-
mic ingredients, which are claimed to be responsible for the
state-of-the-art achievements.

Jumps in policy parameter updates can deteriorate the
learned performance and may eventually cause policy col-
lapse [Duan et al., 2016]. However, well-chosen policy up-
dates can alleviate this issue by constraining the distance
between consecutive policy iterates through trust-region en-
forcement. We investigated the following four methods:

1. IWPG with an Early Stopping Criterion (ESC) measures
the KL divergence between consecutive policy iterates
and terminates the updates when the distance criterion is
met.

2. Natural Policy Gradient (NPG) [Kakade, 2002] regards
the curvature of the policy parameter space by approxi-
mating the Fisher information matrix. The update direc-
tion is given by the matrix-vector multiplication between
the Fisher information matrix and the policy gradient.

3. Trust-region Policy Optimization (TRPO) [Schulman et
al., 2015] optimizes over a surrogate function, which
matches the original objective to first order. In contrast
to NPG, TRPO explicitly regards the KL divergence be-
tween policy iterates by performing a backtracking line
search until the distance criterion is fulfilled.

4. Proximal Policy Optimization (PPO) [Schulman et al.,
2017] utilizes clipped probability ratios to maintain the
step size in the parameter space. The resulting surrogate
objective is then optimized to first order.

Low variance critic estimates are considered as crucial
component for good policy performance [Peters and Schaal,
2008]. In our experiments we studied three techniques for the
Variance Reduction of Critic Estimations:

1. Plain Advantage Estimation is used as baseline where
the advantages are determined by A(xt, ut) =
r(xt, ut) + γVπ(xt+1)− Vπ(xt).

2. Generalized Advantage Estimation (GAE) [Schulman et
al., 2016] aims to reduce variance in critic estimates at
the cost of introducing bias. Advantages are calculated
by the weighted sum A(xt, ut) =

∑n−1
k=0(λγ)k δt+k

of temporal differences δt+k = r(xt+k, ut+k) +
γVπ(xt+k+1) − Vπ(xt+k). The scalar λ governs the
trade-off between variance and bias.

3. V-trace [Espeholt et al., 2018] was introduced to account
for off-policy critic updates in distributed architectures
to compensate policy lags. Updates follow A(xt, ut) =
r(xt, ut) + γv(xt+1)− V (xt) while the values become
v(xt) = V (xt) +

∑t+n−1
s=t γs−t

(∏s−1
i=t ci

)
δsV .

Approach. We continued to apply observation standardiza-
tion and linear learning rate decay as default code-level in-
gredients. Reward scaling was added only to the locomo-
tion tasks but not to the manipulation tasks. The experiments
were run over all possible combinations of trust-region en-
forcement and variance reduction methods. We conducted a
grid search over learning rates and numbers of policy itera-
tions and determined the best configuration according to the
highest mean(J) − std(J) averaged over four independent
seeds (see detailed hyper-parameters in the supplemental). As
a reference for comparison, we used the plain IWPG objective
from Experiments 5.1 which makes no use of a trust-region
enforcement and uses plain advantage estimation.
Results. Figure 2 indicates that low variance critic esti-
mates significantly boost the policy performance. In par-
ticular, for complex domains such as Humanoid and Kuka,
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Figure 3: The CDF line plot of the policy performance smoothed over 64 independent seeds for each configuration in the Ant environment.

all tested algorithms could not accomplish high returns with
plain advantage estimates. The combination of PPO and GAE
showed the best results, scoring in three out of eight tasks
the highest performance. Even when plain advantage esti-
mation is used, PPO showed the most robust results across
all tasks. Surprisingly and despite its simplicity, the IWPG
algorithm performed without trust-region enforcement only
slightly worse than its counterparts but necessitated the use
of GAE or V-trace. ESC adds an early stopping criterion to
IWPG which resulted in a more stable learning and overall
small performance gains. This underlines the importance of
constraining step sizes in the parameter space. The learning
curves of all eight environments can be found in the supple-
mental material.

5.3 Study of Structural Ingredients
In this part, we analyze the effect of structural ingredients
on the learned performance that can vary between different
software frameworks. Some might be neglected in the exper-
imental description and can only be found in the implemen-
tation. We investigated the following four ingredients:

1. Optimizer. Besides Adam, we investigated Stochastic
Gradient Descent (SGD) and RMSprop as optimizers for
the policy network.

2. Initialization scheme. We compared Kaiming Uniform,
Glorot, and Orthogonal which determine the initial val-
ues of the neural network weights. The bias parameters
were initialized as zero vectors.

3. Parameter Sharing. Accelerating the learning of repre-
sentation features, parameters can be shared and updated
by both policy and value network.

4. Adam Epsilon. A term added to the denominator of the
update step to improve the numerical stability of Adam.

Approach. Continuing the stage-wise analysis, we built on
the findings from previous experiments and used IWPG with
observation standardization and learning rate annealing as
well as reward scaling (only for locomotion tasks) as code-
level ingredients and applied GAE for variance reduction. We
performed a grid search over 4 × 4 combinations of policy
learning rate and number of training iterations and accumu-
lated the scores as cumulative distribution functions (CDF)
over four independent seeds, resulting in 64 independent runs
for each environment (see Figure 3).

Results. The scores for the optimizer vary from environ-
ment to environment. RMSprop showed across all environ-
ments the best average CDF score and was the most ro-
bust choice over the grid search, whereas Adam yielded the
highest performing configuration. The weight initialization
scheme showed in Ant, Humanoid, and Kuka large impacts,
whereas in other tasks negligible effects. Overall, the Kaim-
ing Uniform scheme yielded the most robust scores. The
parameter sharing of two hidden layers between the policy
and value network resulted in all tasks to worse performance
scores than separated networks, except for the Pusher envi-
ronment. Surprisingly, the ε term added to the denominator
of Adam’s policy updates showed an influence on the learn-
ing, where ε ∈ {10−8, 10−5} yielded the best average perfor-
mance scores across all tasks. The plots for all eight environ-
ments are provided in the supplemental materials.

5.4 Identifying the Minimal Setup
The second objective of our paper is to find a minimal con-
figuration that can challenge state-of-the-art RL algorithms.
We inferred from our previous findings and used the IWPG
objective with standardized observations, learning rate an-
nealing and GAE as the minimal setup. Reward scaling was
applied in the locomotion tasks but not in the manipulation
tasks. We tested both RMSprop and Adam as policy optimiz-
ers and applied the Kaiming initialization scheme. To vali-
date the reliability of our results, we benchmarked the iden-
tified setup against the popular OpenAI Baselines repository
[Dhariwal et al., 2017]. For each algorithm, we conducted a
grid search over different learning rates, the number of policy
iterations and trust-region sizes, while fixing the other hyper-
parameters such as the batch size of generated trajectories,
networks architectures for policy and value network, etc. We
depict the best score averaged over four independent seeds for
each code base in Figure 4. The results show that our identi-
fied setup of ingredients can keep up with the state-of-the-art
algorithms TRPO and PPO.

6 Discussion
Our experiments showed that observation standardization is
crucial for good policy performance, which was also reported
in Andrychowicz et al. [2020] and Engstrom et al. [2020].
The only task that did not profit was Reacher. We suppose
that this is due to the well-designed observation space with
small magnitudes and that random exploration already dis-
covers the state space sufficiently well. The second essen-
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tial ingredient is learning rate annealing. We utilized a lin-
ear decay scheme which showed in all tasks performance
gains. Our conclusion is similar to the one of Andrychow-
icz et al. [2020], who noticed on average small gains while
using GAE. Our extended analysis showed performance in-
creases independent from the applied advantage estimation
technique. The decay of the learning rate reduces the step
size in the policy parameter space towards the end of learn-
ing, eventually promoting the convergence to better local so-
lutions. Reward scaling was found to be beneficial by En-
gstrom et al. [2020] but showed in our experiments only im-
provements in the locomotion tasks. We claim that reward
scaling can be omitted when environments exhibit dense re-
wards with well-scaled magnitudes. An additional entropy
bonus usage showed mixed outcomes, being preferable in en-
vironments with more unstable dynamics such as Hopper,
Walker, and Pusher over tasks with more stable dynamics
such as HalfCheetah and Ant. In contrast, the standardization
of advantages yielded performance losses in all except one
environment, which was not investigated but used by default
in Engstrom et al. [2020]. Our extended analysis showed that
advantage standardization yields profits when no reward scal-
ing is applied but reduces performance when both are applied.
We recommend to exclusively use the one or the other, where
reward scaling is preferable. We noticed that gradient scaling
hindered learning on average. Since Adam is in-variant to
gradient magnitudes [Kingma and Ba, 2015], we assume that
the non-linear operation of gradient scaling disturbs Adam’s
internal updates.

Our investigation of algorithmic ingredients showed that
those are necessary to reach state-of-the-art results. In fact,
variance reduction techniques for critic estimates deliver sig-
nificant performance increases. A similar assertion can be
made for trust-region enforcement methods, which helped to
improve the policy performance and the robustness towards
the hyper-parameter selection in all tasks, but had less effect
on the learning performance than variance reduction tech-
niques.

Regarding the structural ingredients, we did not find
parameter-sharing useful similar to the results of Andrychow-
icz et al. [2020]. However, the choice of the optimizer and
the weight initialization scheme had an impact, while other
works reported no performance difference [Andrychowicz et
al., 2020]. Our experiments showed that RMSprop is more
robust over a variety of hyper-parameters than Adam.

Overall, the preceding discussion points to a broader prob-
lem of RL algorithms: numerical sensitivity. Many ingredi-
ents aim to improve learning stability through standardized

inputs and regression targets. Many of the discussed ingre-
dients may be obsolete for algorithms if the environment is
already well-specified in terms of input-output range and tai-
lored to the peculiarities of neural networks. This suggests
that environment specifics also matter and demands the prac-
titioner’s carefulness already during the problem design.

7 Conclusion
In this work, we took a step towards a transparent approach
that investigates the inner workings of on-policy policy gra-
dient algorithms. We studied algorithm ingredients in a mod-
ular and incremental approach and empirically assessed their
contribution to the learning. We found that only a subset of
such ingredients is necessary to achieve state-of-the-art re-
sults on contemporary benchmarks. Further, we confirmed
that recent algorithmic advances such as the variance reduc-
tion methods of critic estimates are essential to obtain good
policy performance. To this end, we identified a minimum
setup of algorithm ingredients that can confront state-of-the-
art RL algorithms while promising better reproducibility due
to less algorithm complexity.

Our paper shows that simple algorithms can also perform
well and may not be limited to the currently benchmark-
driven development of new algorithms. For a steady progress,
we suggest that new RL proposals should be assessed on a
unified implementation with a modular structure. Otherwise,
side-effects such as code-level ingredients may be account-
able for the claimed performance gains. Further works on this
topic may investigate off-policy algorithms and test a broader
range of tasks in both continuous and discrete state spaces.
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Using Simulation Optimization to Improve
Zero-shot Policy Transfer of Quadrotors

Sven Gronauer, Matthias Kissel, Luca Sacchetto, Mathias Korte and Klaus Diepold

Abstract— In this work, we propose a data-driven approach
to optimize the parameters of a simulation such that control
policies can be directly transferred from simulation to a real-
world quadrotor. Our neural network-based policies take only
onboard sensor data as input and run entirely on the embed-
ded hardware. In real-world experiments, we compare low-
level Pulse-Width Modulated control with higher-level control
structures such as Attitude Rate and Attitude, which utilize
Proportional-Integral-Derivative controllers to output motor
commands. Our experiments show that low-level controllers
trained with Reinforcement Learning require a more accurate
simulation than higher-level control policies at the expense of
being less robust towards parameter uncertainties.

I. INTRODUCTION

Programming intelligent control strategies for complex
robot systems is a challenging task. Reinforcement learning
(RL) promises the automated generation of control strate-
gies through a data-driven approach instead of explicitly
designing hand-crafted solutions through expert knowledge.
In recent years, the field of RL has witnessed outstanding
successes and raised a surge of interest in the control of
dynamical systems through such a trial-and-error paradigm.
The combination of RL and deep learning methods excel at
problems that can be quickly simulated like robotics [13]
and video games [19] or in domains where the exact model
is known but long-horizon planning is not computationally
tractable, e.g. board games like Go and Chess [26].

Despite the significant advances in recent years, the ap-
plicability of RL algorithms is still limited when the data
at test time differ from those seen during training [10].
Since many real-world systems cannot afford to learn policies
from scratch due to the expense of data, simulations are the
preferred approach to build data-driven control policies in the
RL community. Naturally, a gap between the simulation and
the real world exists because an accurate model either re-
quires in-depth expert knowledge or is simply not desirable,
e.g. calculating all aero-dynamical effects can significantly
increase simulation time. A successful policy transfer thus
requires the reality gap to be small.

In this paper, we address the sim-to-real gap in the domain
of quadrotor control and investigate three different structures
for quadrotor control. Our contributions are:

1) We apply simulation optimization as a data-driven
approach to narrow the reality gap and demonstrate
that zero-shot policy transfers become feasible with
minimal tuning effort. The data used for optimization
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were collected for approximately one hour on the real-
world quadrotor with Proportional-Integral-Derivative
(PID) controllers.

2) We deploy low-level control policies based on Pulse-
Width Modulated (PWM) thrust commands trained
entirely in simulation on the quadrotor without fine-
tuning the policy. To the best of our knowledge, this is
the first work using RL as framework for low-level
decision making that accomplishes successful zero-
shot transfers to a real-world quadrotor using only
onboard sensing and computation.

3) We study three control structures that differ in their
level of abstraction: PWM, Attitude Rate and Attitude
control. Through real-world experiments, we investi-
gate the required fidelity of the simulation with respect
to the deployed control structure.

Throughout this work, we focus on the context of zero-shot
policy transfer, i.e. we train the agent entirely in simulation
and then deploy the controller on a quadrotor robot without
using real-world data to fine-tune the policy.

II. RELATED WORK

A. Quadrotor Control

For attitude control and set-point tracking of quadrotors,
a common approach is a hierarchical control that consists
of nested PID controllers [17]. Approaches like the linear
quadratic regulator are also suitable methods for the stabi-
lization around the hover conditions under reasonably small
roll and pitch angles. However, when more dynamic flight
behaviors are desired, more complex controllers are required
[18]. Due to their highly dynamic movement capabilities,
quadrotors depict an interesting platform to test maneuvers
such as landing [11] and perform acrobatic maneuvers like
loopings and rolls [9], multi-flips [16] or flying through
narrow vertical gaps [18]. While most of the aforementioned
works rely on highly accurate state estimation, only a few
papers have considered quadrotor control based on pure
onboard sensing. In [12], model-based RL was used to train a
policy from real-world data while relying on onboard sensor
measurements to run control with direct motor PWM signals.
The authors in [15] showed that a quadrotor can be navigated
through a variety of cluttered real-world scenarios like forests
or buildings with onboard sensing and computation.

B. Bridging the Reality Gap

To reduce the gap between simulation and real-world,
domain randomization has been proposed to augment the
diversity of data by randomization. One way is to randomize



the dynamics where simulation parameters responsible for
the realization of the system are re-sampled at the beginning
of every trajectory [22]. Another approach is to randomize
the rendering of image-based observations in the simula-
tion [27]. In [14] it was shown that agile drone racing is
possible with convolutional neural networks when trained
on an abundance of image-based data. Besides domain
randomization, another method to overcome the reality gap is
simulation optimization [1] which is a data-driven approach
to identify simulation parameters based on real-world data.
In [2] a simulation parameter distribution was learned based
on collected data from a physical manipulator robot.

C. Zero-shot Policy Transfer

In the area of RL, there have been only a few works that
study the zero-shot policy transfer to real-world quadrotors.
The work of [9] showed that Attitude Rate control based on
image-based and onboard data could perform highly agile
maneuvers such as rolls and loopings. Another work [15]
performed zero-shot transfers into unknown and cluttered
real-world environments while using onboard sensing and
computation only. The policy computed collision-free trajec-
tories based on cameras which are then tracked by a model-
predictive controller. Most similar to our paper is [20] where
low-level PWM-based controllers were able to stabilize and
generalize to multiple sizes of quadrotors. The authors used
an external tracking system to accurately estimate the drone
state and showed that a zero-shot transfer is possbile. In
contrast to the aforementioned works, we study the zero-
shot policy transfer with onboard sensing and computation
while using RL as the only framework for low-level decision
making.

III. PRELIMINARIES

A. Reinforcement Learning

A Markov Decision Process (MDP) is formalized by a
tuple (S,A,P, r, µ), where S and A denote the state and
action spaces respectively. P : S× A→ P (S) describes the
system transition probability, µ denotes the initial state dis-
tribution and r : S×A→ R is the reward function. Let τ =
(s0,a0, s1,a1, . . . ) be a trajectory generated under policy π
with st+1 ∼ P(·|st,at),at ∼ π(·|st) and s0 ∼ µ. We apply
the shortcut τ ∼ π when trajectories are generated under π
and denote the trajectory return by R(τ) =

∑∞
t=0 γ

tr(st,at)
with the discount factor γ ∈ (0, 1). In RL, the goal of
the agent is to learn a control policy π : S → P(A) that
maximizes the expected return J(π) = Eτ∼π[R(τ)]. We
use πθ to denote that the policy is parametrized by a neural
network with weights θ.

In this work, we sample system parameters ξ from a
distribution Ξ at the beginning of each trajectory. This results
in the system transition probability being dependent on the
system parameters st+1 ∼ P(·|st, at, ξ) which is known as
domain randomization. Thus, we seek policy parameters that
maximize the expected return

max
θ

J(πθ) = Eξ∼Ξ [Eτ∼πθ
[R(τ)]] (1)

over the dynamics induced by the distribution of simulation
parameters.

B. Quadrotor

1) Dynamics Model: The dynamics of the quadrotor are
modeled by the differential equation

ẋ = f(x,u) (2)

where the drone state x = [pT , ṗT ,ϕT ,ωT ]T ∈ R13 encom-
passes the position p, the linear velocity ṗ, the body angle ϕ
in quaternions and the angular speed ω. The acceleration of
the drone’s center of mass is described by Newton’s equation

mp̈ =




0
0
−mg


+R


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0
0∑
Fi


 (3)

in the inertial frame O with gravity g. The quadrotor mass
is m and

∑
Fi is the sum of the vertical forces acting on

the rotors. R is the rotation matrix from the body frame B
to the inertial frame. The angular acceleration governed by
Euler’s rotation equations in B is

Iω̇ = η − ω × (Iω) (4)

with the inertia matrix I . The torques η acting in the body
frame are determined by

η =


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1√
2
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2
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
 (5)

with the rotor forces Fi, the corresponding motor torques Mi

and the drone’s arm length L. An overview of the quadrotor
setup and the coordinate frames is depicted in Fig. 1 (Left).

2) Motor Model: The angular speed νi of rotor i produces
a vertical force

Fi =
mg

4
kF ν

2
i (6)

that lifts the quadrotor. We use kF ∈ R to denote the thrust-
to-weight ratio. The rotors also produce a moment according
to

Mi = kM1Fi + kM2 (7)

with kM1
and kM2

being scalars. The motor speeds are
normalized νi ∈ [0, 1] and are modeled ν =

√
u as the

square root of normalized commanded thrusts ui ∈ [0, 1].
For PWM control, the relationship between the action a
taken by the agent and the normalized commanded thrust
is ui = 1

2 [min(max(ai,−1), 1) + 1]. We model the motor
dynamics with a differential equation of first order

Tmν̇i = −νi +
√
ui, (8)

where Tm ∈ R is the motor time constant. A common
approach in related work is to neglect the motor dynamics
and assume an instantaneous thrust acting on the rotors.
However, as we observed in our experiments, an accurate
actuator model is crucial for a successful sim-to-real transfer.
Additionally, we model the overall latency ∆ of the system
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Fig. 1: The CrazyFlie Quadrotor and the investigated control structures. (Left) Overview and coordinates frames of the
CrazyFlie quadrotor. (Right) Applied control structures from low-level PWM to high-level Attitude.

which should capture all delays emerging in the hardware.
Typically, latency arises in the state estimator, in the actua-
tion of the motors and by propagating data through the neural
network policy.

IV. METHODS

We aim to find a policy that reliably transfers from the
simulation to the quadrotor robot without using real-world
data to fine-tune the policy. To render a zero-shot transfer
feasible, we optimize the simulation parameters based on
collected real-world measurements.

Besides simulation optimization, we want to find an
answer to our hypothesis that low-level control structures
demand a higher simulation fidelity. The intuition behind
this assumption is that low-level control requires the policy
to capture the mapping from drone state to motor commands
and thus to understand to underlying quadrotor dynamics.
High-level control, on the other hand, encourages the agent
to learn an abstract understanding of the task since only the
mapping from the drone state to an intermediate space is
required. The mapping from the policy output space to the
motor commands is subsequently handled by PID controllers.

The remainder of this section describes the details of
our simulation environment including the observation and
action space, the procedure of the simulation optimization
using Bayesian optimization and an introduction to the three
control structures that were deployed and evaluated on the
real-world quadrotor.

A. Simulation Environment

We use the physics simulator PyBullet [3] to calculate
the dynamics of the quadrotor akin to the work of [21].
We run the simulator and the motor dynamics with 200Hz
while the agent receives noisy observations with ≤ 100Hz
depending on the selected control structure. The implemen-
tation is publicly available at: https://github.com/
SvenGronauer/phoenix-drone-simulation.

a) Observations: In every time step t, the agent re-
ceives the observation st = [xTt , e

T
t ,a

T
t−1]T ∈ R20 contain-

ing the drone state vector x ∈ R13, the difference vector

e = p−pref ∈ R3 between the drone’s current position and
the set-point position, and the action aTt−1 ∈ R4 taken previ-
ously. Note that the agent has not access to all information of
the drone state because the rotor speeds cannot be directly
measured. To cope with partial observability, the agent is
equipped with a history of observations with size H ≥ 1,
i.e. (st−H+1, . . . , st) ∈ R20H . We conducted a study about
the optimal history size H ∈ [1, 2, 4, 6, 8] in simulation and
found that H = 2 performed best.

b) Actions: Actions represent abstract, possibly high-
level commands which are transformed by the control struc-
ture to the corresponding motor command u ∈ U. The
implementation differs for each control structure and is
explained in Section IV-C.

c) Domain Randomization: Throughout training, we
randomize the following system parameters uniformly in the
range ±10% of the default value: Thrust-to-weight ratio kF ,
physics time-step, quadrotor mass m, diagonal of inertia
matrix I , motor time constant Tm and yaw-torque factors
km1

and km2
.

d) Noise: As sensor noise, we add Gaussian and uni-
form noise for positions p, velocities ṗ and angles ϕ. For
the angle rates, we apply the sensor model proposed in [5]
which adds a Gaussian noise and a time-varying bias to ω.
In a similar vain to [20], we use a discretized Ornstein-
Uhlenbeck process to model actuator noise which we add
to u.

B. Simulation Optimization

Simulation optimization is an approach to tune the param-
eters of a simulation through data [1]. The aim is to bring the
simulation as close as possible to the real-world and ideally
close the reality gap. The objective function which we want
to minimize is

min
ξ∈Ξ

F (ξ,D) =

T∑

t

δt‖W
(
xsimt (ξ)− xrealt

)
‖1

+
T∑

t

δt‖W
(
xsimt (ξ)− xrealt

)
‖2 (9)



where T is the mini-trajectory length, D is the data set and
δ ∈ (0, 1) is a factor to discount later stages of the trajectory
where the divergence increases due to discrepancies between
simulation and real-world. We weight the drone state differ-
ence xsimt (ξ) − xrealt according to the matrix W with the
purpose to scale angle errors and angle rate errors differently.
Similar to [2], we use the sum of L1 and L2 norm.

Prior sim-to-real work reported that the accurate modeling
of the actuators including dynamics, noise and delays is
crucial for a successful transfer. In [22] it was pointed out
that randomizing the latency of the controller and injecting
sensor noise to the simulation are key components for a
high success rate. Similarly, it was demonstrated in [8] that
learned actuator dynamics significantly helped to reduce the
reality gap. Guided by these results, we decided to optimize
those simulation parameters ξ = [kF , Tm,∆]T that describe
the motor behavior as well as the system latency.

Bayesian Optimization (BO) is our method of choice,
as it is regarded as a good option for the optimization in
continuous domains with less than 20 dimensions and is
robust against stochastic function evaluations [4]. BO is
particularly suited for objective functions that have long
evaluation times and can cope with low sample complexity.
In contrast to gradient-based methods, BO is not prone to
converge to local optima.

C. Control Structures

In this work, we investigate the following three control
structures, ordered from low to high-level:

1) PWM Control: The agent is supposed to learn a
mapping π : S → U from observation space to thrust
commands. The agent receives noisy observations from
the Kalman state estimator with 100Hz.

2) Attitude Rate Control: The policy outputs lie in the
space [c,ωTd ]T ∈ V ⊆ R4 which consists of the mass-
normalized collective thrust c and the desired body
angle rate ωd. The PID controller calculates the thrust
commands u ∈ U based on c and the error between
the actual ω and the desired ωd. The agent receives
noisy observations with 50Hz and is supposed to learn
the mapping π : S→ V.

3) Attitude Control: The agent is incentivized to learn the
mapping π : S → W where the policy output space
[c,ϕTd ] ∈ W ⊆ R4 encompasses the mass-normalized
collective thrust c and the desired body angle ϕd.
Subsequently, the mapping W → V → U is handled
by two cascaded PID controllers. Noisy observations
are fed into the policy with 25Hz.

These three control structures are illustrated in Fig. 1. We
test our hypothesis about the fidelity of the simulator based
on the deployed control method in the next section.

V. RESULTS

In this section, we describe our experiments and discuss
the results. First, we elaborate on the setup of the hardware
and the learning task. Second, we explain our simulation
optimization experiments with BO and present our found

simulation parameters. Third and last, we describe our zero-
shot transfer experiments that were conducted on the real-
world quadrotor. After training control policies in simulation,
we studied the three control structures PWM, Attitude Rate
and Attitude in order to test our control level hypothesis of
Section IV.

A. Experimental Setup

As quadrotor robot, we used the CrazyFlie 2.1. Due to
its small size with a motor-to-motor diameter of 13cm and
light weight of 30g, the CrazyFlie is very agile and demands
high control frequencies. Furthermore, due to its low-cost
design, the CrazyFlie exhibits high parameter uncertainties
in its building parts which additionally requires the controller
to be robust over a large system parameter range. The drone
is equipped with a 3-axis gyroscope, a 3-axis accelerometer
and a z-axis LIDAR. The sensor data were fed into an
extended Kalman filter that runs with 100Hz for drone
state estimation. For our experiments, we only used onboard
sensor measurements and did not use an external tracking
system. For evaluation purposes, we transmitted the flight
information via CrazyRadio to a host computer where we
analyzed the logged data.

As learning task, we want the quadrotor to fly a circle
figure with a diameter of 0.5m and with a period of 3s.
Each trajectory starts on a random point of the reference
circle at the height of 1m going in clock-wise direction.
The trajectory length in simulation is 500 time steps. To
incentivize the drone following the set-point trajectory pref ,
the reward function is designed as

r(s,a, t) =− ‖e‖2 − 0.0001‖0.5(at + 1)‖2
− 0.001‖at−1 − at‖2 − 0.001‖ω‖2 + rf (10)

with rf = −100 being the terminal reward if ‖e‖2 > 0.25
else rf = 0. The actions are clipped into [−1, 1] to regard
actuator limits.

B. Simulation Optimization

We used the pre-implemented cascaded PID position con-
troller from the CrazyFlie platform to collect data tuples
(x,u)t while the drone was flying the circle figure as
described in Section V-A. Data were logged with 100Hz and
we collected approximately one hour of real-world data. We
think that less data would be also sufficient but we did not
consider the amount of samples in this work. For building the
data set D, we used every tenth data-point from the collected
real-world data as starting state for a mini-trajectory of length
T . For instance, for T = 50 we obtained a data set of size
D ∈ R37673×50×13.

With BO, we opted to find the global optimum over the
bounded set of system parameters kF ∈ [1.5, 2.5], Tm ∈
[0.01, 0.50] and ∆ ∈ [0.00, 0.05] with respect to D. We ran
the experiment for 250 evaluations on the objective from
(9) and averaged the results over three trials. We tested
different mini-trajectory lengths T ∈ {10, 20, 30, 40, 50}. As
hyper-parameters, we used δ = 0.95 as the discount factor
and as function approximator we used a Gaussian process



TABLE I: Simulation optimization results found by BO. The mean and standard deviation was calculated over three trials.

Parameter T = 10 T = 20 T = 30 T = 40 T = 50
Thrust-weight kF 1.746 ± 0.0050 1.733 ± 0.0093 1.725 ± 0.0018 1.725 ± 0.0081 1.722 ± 0.0027
Time Constant Tm 0.102 ± 0.0110 0.087 ± 0.0087 0.088 ± 0.0006 0.096 ± 0.0035 0.104 ± 0.0012
Latency ∆ 0.006 ± 0.0039 0.014 ± 0.0038 0.018 ± 0.0003 0.018 ± 0.0007 0.018 ± 0.0004

with the acquisition function uniformly chosen from lower
confidence bound, expected improvement and probability of
improvement.

The results obtained by the simulation optimization are
shown in Table I. Contrary to our expectation, the mini-
trajectory length T had only a minor impact on the obtained
results. Except for the results for T = 10, the found
parameters ξ lie in a similar range.

C. Zero-Shot Experiments

We conducted zero-shot experiments on the real quadro-
tor where we first trained policy networks with different
simulation parameters and thereafter measured the transfer
performance. We decided on such experimental setup for
three reasons. First, we wanted to evaluate the performance
of the parameters found by simulation optimization for
an induced reality gap. Second, we intended to study the
robustness of the policies trained in different scenarios. Third
and last, we wanted to test our control level hypothesis as
stated in Section IV.

We aligned the hyper-parameters to the ones suggested in
[6] and [7]. We applied a distributed learner setup where
the policy gradients were computed and averaged across
64 workers with a total batch size of 64000. We trained
with the Proximal Policy Optimization [24] algorithm over
500 iterations and applied as discount factor γ = 0.99.
For the neural network architecture, we used multi-layer
perceptrons with two hidden layers. The critic network used
64 neurons each followed by tanh non-linearities whereas
the actor had 50 neurons in each hidden layer with ReLU as
activations. Since the policy network is supposed to run on
the drone micro-controller, we reduced the number of hidden
neurons to achieve an inference time of < 1ms for one
forward pass. The weights were set according to Kaiming
Uniform and biases were initialized as zero vectors. We
did not apply parameter sharing between the actor and the
critic. Both networks were optimized with Adam where the
learning rate of the value network was 0.001 and 0.0003
for the policy. To reduce the variance of critic estimates, we
applied Generalized Advantage Estimation (GAE) [23] with
the weighting factor λ = 0.95. Over the training, we used
stochastic policies where the policy output is the mean of a
multi-variate Gaussian distribution a ∼ N (π(s), εI) with I
being the identity matrix and ε ∈ R the exploration noise that
was linearly annealed from 0.5 to 0.01. Fig. 2 shows in the
top row the learning curves of the RL training. Note that the
return generated by PWM is not comparable to the returns of
Attitude and Attitude Rate since the reward function prefers
negative actions over zero actions. Attitude and Attitude Rate
control typically produce zero outputs for angle stabilization.
Returns larger than the terminal reward rf indicate that the

quadrotor does not crash and tracks the set point. For the
three control structures, all trained policies were capable of
tracking the set-point in simulation.

After training three policies for each combination of motor
time constant Tm ∈ {0.04, 0.08, 0.12}s and latency ∆ ∈
{0, 0.015, 0.02}s in simulation, we tested the policies on the
real quadrotor robot. We applied this evaluation procedure
for each of the three control structures and determined the
flight time of policies over three real-world trials. Overall,
this resulted in 34 = 81 trained neural networks and thus
243 flights. If a policy was able to fly longer than 20s, we
manually stopped the execution of the neural network. If
the policy was not able to stabilize the quadrotor, the trial
was terminated by a stabilizing backup PID controller, which
intervened when the roll or pitch angle was greater than 30◦

or when roll and pitch rates exceeded 800◦/s. We observed
that the rollouts also failed when the distance between the
drone and the set-point exceeded the episode termination
criterion of ‖e‖2 > 0.25m. The results are displayed in the
bottom row of Fig. 2.

The PWM control structure showed good zero-shot perfor-
mance when trained on the motor time constant Tm = 120ms
with latency ∆ ≥ 15ms. The parameter setting Tm = 80ms,
∆ = 20ms closest to the parameters suggested by the
simulation optimization resulted in a median flight time of
20s and two outlier flights. However, outside this parameter
setting, PWM fastly dropped in performance and often failed.
When the latency was set to ∆ = 0ms, PWM yielded
the worst performance compared to the other two control
approaches.

Overall, the Attitude Rate control structure showed the
most robust results over the tested system parameters. The
best performance was observed for the setting Tm = 120ms
and ∆ = 20ms. In contrast to the other control structures,
Attitude Rate was also able to stabilize the quadrotor when
trained on latency ∆ = 0ms, although most flights terminated
early due to the ‖e‖2 > 0.25m termination criterion.

Surprisingly, Attitude control showed the worst perfor-
mance despite being the highest control level structure. Only
the policies that were trained on settings with Tm = 120ms
and latency ∆ ≥ 15ms could achieve a flight duration over
10s.

VI. DISCUSSION

In this section, we discuss our results from the experiments
and draw connections to related work. Further, we point out
important observations that we made during our experiments.

a) Simulation Optimization: The system parameters
closest to the ones found by the simulation optimization
showed a reasonable transfer success for the PWM and
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Fig. 2: Training curves in simulation and evaluation of real-world experiments. (Top) The learning curves of the training in
simulation are shown for the three different control structures and different values for (Tm,∆). Each curve is the avarage
over three independent runs while the shaded area denotes the standard deviation. The difference in return is due to the
action penalties that prefer negative actions over zero actions. All trained policies were able to track the set-point trajectory
in simulation. (Bottom) The flight times in the zero-shot experiments were evaluated for different system parameters and
control structures. Each box represents nine real-world flights with a maximum flight time of 20s after which we manually
stopped the policy execution.

Attitude Rate control. This underlines the potential of data-
driven parameter estimation compared to classical methods
known from system identification. A benefit is the ease of
use since a handful of system parameters can be estimated
simultaneously and no isolated measurements of individual
physical properties must be conducted.

b) Control-level Hypothesis: For low-level PWM con-
trol, we found that good zero-shot performance can only
be achieved when the dynamics of the actuator and the
latency are accurately estimated. However, if the reality gap
is too large, low-level policy control is prone to fail. The
higher-level Attitude Rate control, in contrast, shows high
robustness towards the choice of system parameters. This
confirms our control level hypothesis that low-level control
requires higher simulation fidelity than higher-level control
structures. Merely Attitude control showed disappointing
results in the zero-shot experiments, which we think is due
to the small control frequency of 25Hz.

c) Actuator Model: Related work from quadrupedal
robots [8] and robotic manipulators [22] suggested that
accurate modeling of the actuators is a crucial component
for reliable zero-shot policy transfers. Our experiments con-
firmed that this statement is also valid for quadrotor robots.
In addition to that, we observed that adding latency to the
simulation acts as a kind of regularization which helped to
improve the zero-shot results.

d) Robustness: Due to crashes, we frequently changed
spare hardware parts like propellers and motors. Although
facing a variety of drone parameters, the zero-shot transfers

worked reliably. Moreover, we tested some of the trained
policies also on other CrazyFlie drones which showed similar
flight behavior. This indicates that the trained policies are
robust over a large parameter distribution and different drone
systems.

e) Bang-bang behavior: Bang-bang behavior is a
known issue in RL where policies prefer an action selection
towards the boundaries of the action space [25]. Without
adding penalties to the actions, we observed that agents
produced large changes in the control outputs which caused a
severe performance drop in the transfers. By adding penalties
for actions ‖at‖2 and action rates ‖at−1 − at‖2, we were
able to conduct reliable transfers to the real robot. Similar
conclusions were made in sim-to-sim experiments where
penalties for action and action rate improved both the transfer
and the robustness towards disturbances [25]. Further, we
noticed that the transfers failed when the action range was
selected too high, e.g. an Attitude rate control with the range
[−360, 360]◦/s did not work whereas the range [−60, 60]◦/s
showed the desired results.

VII. CONCLUSION

In this paper, we demonstrated that low-level control
policies trained with Reinforcement Learning entirely in
simulation can be successfully transferred to a quadrotor
robot when the reality gap is small. To render such zero-shot
policy transfers feasible, we narrowed the sim-to-real gap
by collecting real-world data with a pre-implemented PID
controller and applyed simulation optimization. Our neural



network-based policies used onboard sensing and computa-
tion only. Finally, we conducted real-world experiments and
compared three different control structures ranging from low-
level PWM motor commands to high-level Attitude control
based on cascaded PID controllers. The experiments confirm
our hypothesis that low-level control policies require a higher
simulation fidelity, which suggests the use of higher-level
action structures like Attitude Rate control when the robot
system parameters cannot be accurately estimated or are
partially unknown.

APPENDIX

TABLE II: Used drone parameters.

Parameter Value Physical Unit
Gravitational acceleration g 9.81 m·s−2

Inertial Ixx 1.33 · 10−5 kg·m2

Inertial Iyy 1.33 · 10−5 kg·m2

Inertial Izz 2.64 · 10−5 kg·m2

Length L 0.0396 m
Mass m 0.030 kg
Torque-to-weight ratio kM1

5.96 · 10−3 m
Torque-to-weight ratio kM2

1.56 · 10−5 N·m
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Comparing Quadrotor Control Policies for Zero-Shot Reinforcement
Learning under Uncertainty and Partial Observability

Sven Gronauer∗, Daniel Stümke∗ and Klaus Diepold

Abstract— To alleviate the sample complexity of reinforce-
ment learning algorithms, simulations are a common approach
to train control policies before deploying the policy on a
real-world robot. However, a gap between simulation and
reality generally persists, which endorses the aim to train
robust policies already in simulation such that those can be
transferred to a real robot at a high success rate. In this paper,
we investigate history-dependent policies for drone control in
the context of zero-shot transfer learning, where the training
is conducted exclusively in simulation. We compare policies
represented by feed-forward neural networks with recurrent
neural networks and assess both performance and robustness
on a real-world quadrotor. Furthermore, we study if an end-to-
end learned representation can control a quadrotor based on
raw onboard-sensor information only, rendering accurate state
estimation from a Kalman filter obsolete. Our results show
that recurrent control policies achieve similar performance
and robustness as feed-forward policies when acting on state
estimates. With raw sensory data, however, recurrent networks
offer higher success rates for sim-to-real transfer than feed-
forward networks. We also find that recurrent architectures
are advantageous when system parameters such as latency are
uncertain.

I. INTRODUCTION

The design and synthesis of control policies for robot
systems such as drones traditionally require a wide range of
expert knowledge. Expertise might be required to formulate
an accurate system description, construct a feedback con-
troller, and implement high-level algorithms for planning and
decision-making. In cases where neither a system model is
available nor the optimization objective can be formulated a-
priori (e.g., flying through a cluttered environment [17]), re-
inforcement learning (RL) promises an automated approach
to learn control strategies and expressive representations in
an end-to-end fashion through data.

Despite the tremendous success record of RL algorithms
[18], [23], the deployment to real-world robots remains a
challenge [5]. One major problem is the abundance of data
required to train a control policy. A common approach
to elude the sample inefficiency is to pre-train policies in
simulation and thereafter transfer the policies to the real-
world robot. However, a gap between simulation and reality
inherently persists, which demands a certain degree of ro-
bustness in the controller design so that unmodeled effects
and parameter uncertainties can be handled on the real robot.
Although prior work on the subject of RL-based control
has shown potential in real-world robotics, challenges like

∗Authors with equal contribution
The authors are with TUM School of Computation, Information and

Technology, Technical University of Munich, Arcisstr. 21, 80333 Munich,
Germany. Contact author: sven.gronauer@tum.de

partial observability, non-stationarity and delays in acting
and sensing lack of practical investigation. In support of
that, recent theoretical work emphasized the benefits of using
history-dependent policies under randomized dynamics [2].

This paper investigates history-dependent control policies
for a tracking task with a quadrotor robot and addresses
challenges like partial observability, non-stationarity, and
delays in acting and sensing. We focus on the setting of
zero-shot transfer learning, where the control policies are
exclusively trained in simulation and deployed on a real
quadrotor afterward. We use policies that map inputs directly
to motor commands and realize history-dependent inputs
either by a feed-forward neural network (FNN) with a
stacked observation history or by using recurrent neural
networks (RNNs). Furthermore, we consider two different
observation levels as policy inputs. The first provides state
estimates through an extended Kalman filter (EKF), whereas
the second leverages only raw sensory data. We investigate
if an end-to-end learned representation is able to control a
quadrotor based on raw sensor information only, rendering
accurate state estimation from a Kalman filter superfluous.

Our results show that recurrent control policies achieve
comparable results to FNN policies in terms of performance
and robustness when having access to state estimates. On raw
sensory data, however, RNNs show higher success rates for
sim-to-real transfers than their feed-forward counterparts. By
randomizing system parameters, RNNs are capable to adapt
to the characteristics of the real world at deployment and,
hence, can be beneficial when system parameters like latency
are uncertain.

II. RELATED WORK

Learning-based and autonomous drone control is an active
research topic [9]. In this section, we focus on related work
that addresses the sim-to-real transfer with RL.

A. High-level Control

Based on synthetic data generated with simulators like
Flightmare [24] or RotorS [6], the task of drone racing
through moving gates was tackled in [16] and [25]. Both
papers proposed a combination of model-predictive control
(MPC) with RL to navigate the quadrotor through a racing
course based on vision inputs. A policy able to navigate a
drone through real-world settings such as forests or snow-
covered terrains at high speed was presented in [17]. The
authors proposed an end-to-end architecture that maps depth
images and state estimates to receding-horizon trajectories.



The authors concluded that accounting for the task’s multi-
modality and the use of an abstract input representation
enables transfer to real-world environments without the need
to fine-tune with real data.

B. Low-level Control

Similar to our paper, a substantial body of work considers
the data-driven synthesis of control policies that use sensor
readings and state estimation to output either attitude targets
or motor thrust commands [14]. Both works in [8] and [19]
applied proximal policy optimization (PPO) combined with
domain randomization (DR) to learn policies for tracking
tasks that generalize to many out-of-distribution states and
work robustly even when real physical effects were ignored
during training. In the former, the authors also aimed to find
simulation parameters that fit best to the real world using
simulation optimization.

Model-based RL and latent state space models were
used in [1] to learn a take-off and tracking policy. Similar
to our work, the authors applied RNNs and considered
sensor-level observations, but they required a stabilizing
proportional–integral–derivative (PID) controller and did not
investigate the zero-shot setting.

Other works showed that zero-shot transfers are also
possible without DR if simulation parameters are chosen
accurately enough [12], [15] or policies are robustified [3]. In
contrast to our work, the partially observable case with only
raw sensory perception was not investigated in the works
presented so far.

III. PRELIMINARIES

A. Quadrotor Dynamics

The dynamics of the quadrotor are modeled by the differ-
ential equation

ẋ = f(x, u) (1)

where the drone state x = [pT , ṗT , ϕT , ωT ]T ∈ R13 contains
the position p, the linear velocity ṗ, the body angle ϕ in
quaternions and the angular speed ω. The rate of change in
linear and angular velocities are described by the Newton-
Euler equations

p̈ =
R

m




0
0∑
Fi


−




0
0
g


 and Iω̇ = η − ω × (Iω) (2)

in the inertial frame O with gravity g and the inertia matrix
I in the body frame B, respectively. The quadrotor mass is
m and

∑
Fi is the sum of the up-lifting forces. The rotation

matrix R describes the map from B to O. The torques η
acting in the body frame are given by

η =




1√
2
L(−F1 − F2 + F3 + F4)

1√
2
L(−F1 + F2 + F3 − F4)

−M1 +M2 −M3 +M4


 (3)

with the rotor forces Fi, the corresponding motor torques Mi

and the drone’s arm length L. An overview of the quadrotor
setup and the coordinate frames is depicted in Fig. 1.
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M3 M4
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−Z

B X
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p

O

Fig. 1: Illustration and coordinate frames of the quadrotor.

The up-lifting forces Fi = mg
4 kF ν

2
i are produced by the

angular speed νi of each rotor i with thrust-to-weight ratio
kF ∈ R. The rotors also produce a moment according to
Mi = kM1

Fi + kM2
with kM1

and kM2
being scalars.

In many works, the motor dynamics are neglected. How-
ever, we reported in a previous work that an accurate
actuator model is crucial for successful zero-shot transfers
[8]. Thus, we regard the motor lag by Tmν̇i = −νi +

√
ui

with the motor time constant Tm ∈ R and the normalized
commanded thrust ui ∈ [0, 1]. An agent action a is converted
to a thrust command by ui = 1

2 [min(max(ai,−1), 1) + 1].
Additionally, we simulate system latency ∆ which shall
capture all delays emerging in the hardware, e.g., the time
between sensor readouts and motor voltage adjustments.

B. Reinforcement Learning
The standard framework to describe RL problems is the

Markov decision process (MDP) which is formalized by
the tuple (S,A,P, r, µ), where S and A are the state and
action space, P describes the system transition probability,
µ denotes the initial state distribution and r : S×A→ R is
the reward function. The goal is to find a policy π : S→ A
such that the expectation over trajectory returns

Eτ∼π [R(τ)] = Eτ∼π

[
T∑

t=0

γtr(st, at)

]
(4)

is maximized with the discount factor γ ∈ (0, 1) at time step
t. For a trajectory τ = (s0, a0, s1, a1, . . . ) produced under
π with states st+1 ∼ P(·|st, at) and s0 ∼ µ, we use the
notation τ ∼ π as shortcut. We use πθ to denote that the
policy is parametrized by a neural network with weights θ.

Note that we use st = [xTt , e
T
t , a

T
t−1]T ∈ R20 instead of xt

to denote that states include additional task information such
as the difference vector e = p − pref ∈ R3 to the set-point
pref and the action aTt−1 ∈ R4 taken previously.

C. Domain Randomization
During the training in simulation, we sample system

parameters ξ from a distribution Ξ at the beginning of each
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Fig. 2: Methods overview. (a) For the sensor level, raw and noisy sensor readings are used as policy inputs. The network is
supposed to learn a meaningful state representation in an end-to-end fashion. For the state estimates, the sensor readings are
fused with an EKF to provide accurate state estimates as inputs to the policy. (b-c) Feed-forward and recurrent actor-critic
architectures that are compared in our experiments.

trajectory. This results in the system transition probability
st+1 ∼ P(·|st, at, ξ) being dependent on the system param-
eters. Thus, we search for policy parameters θ that maximize
the expected return

max
θ
J(πθ) = Eξ∼Ξ [Eτ∼πθ [R(τ)]] (5)

over the dynamics induced by the distribution of simulation
parameters. This method is known as domain randomization.

D. Partial Observations

In real-world applications, the Markov property rarely
holds because the agent can only perceive noisy and partial
state information. Therefore, the MDP is extended with
a set of observations O and an observation function that
is defined by O : X × U × O → [0, 1]. The resulting
tuple (X,U,O,P,O, r, µ) describes the partially observable
Markov decision processes (POMDP), where policies take
history-dependent actions at ∼ πθ( · | ot, ot−1, ..., ot−H+1).
The parameter H ∈ Z≥0 indicates how many previous
observations are considered.

IV. METHODS

In this paper, we compare history-dependent drone control
policies for a tracking task. Sensing and computation run
entirely onboard and the policies directly map input signals to
motor commands. The history dependence is realized either
by (i) stacking subsequent observations and feeding them
into a multi-layer perceptron (MLP) or by (ii) implementing
the actor-critic as RNN processing one observation at a
time. In addition to that, we compare two observation levels
with each other, where one provides accurate state estimates
through an EKF, and the other leverages only raw sensory
data as policy input. An overview of our methodology can
be seen in Figure 2.

A. Recurrent Actor-Critic

Since sample efficiency is not an issue in simulation,
we selected PPO [21] as learning algorithm due to its
learning stability and simplicity. While a parameterization
with FNNs allows sampling experience (st, at) randomly
from time steps t ∈ [0, T ) from a trajectory τ , recurrent net-
works require updates with consecutive sequences τts:te =
(sts , ats , sts+1

, ats+1
, ..., ste , ate) starting and ending at time

step ts and te of trajectory τ respectively. The sequence
length of sub-trajectories is going to be denoted as L =
te − ts + 1. The mini-batches B are composed of sequences
that are allowed to overlap with K ∈ [0, L − 1) steps, i.e.,
B = {τ0:L−1, τL−K:2L−K−1, ...}. Recurrent PPO intends is
to improve performance by inferring useful information like
system parameters or hidden state values from the temporal
evolution of a trajectory.

Several methods for the initialization of the RNN’s mem-
ory exist [10], [13]. We apply the zero-state initialization,
i.e., the internal memory is set to zero at the beginning of
each forward pass in the update routine. We also tested more
sophisticated initialization methods like the burn-in method,
which did not yield policy performance improvements.

B. Neural Network Architectures

We use the same architecture for the value and policy
networks but do not share parameters. The dimension of a
single observation ot depends on the considered observation
level (see Section IV-C). For the FNN architecture (Figure
2b), the input is the history of the last H observations
concatenated into one vector. After each fully-connected
(FC) hidden layer, ReLU is applied as activation in the policy
and tanh in the critic network. The recurrent architecture
(Figure 2c) has long short-term memory (LSTM) cells in
the first hidden layer followed by one FC layer. After the
FC layers, we use ReLU in the policy and tanh in the value
network as activation. Since the LSTM already contains



non-linearities, no further activations are applied thereafter.
The recurrent architecture is not provided with a history of
previous observations since we expect an RNN to infer useful
information from the temporal progression of observations.

C. Observation Levels

Besides comparing actor-critic architectures, we are also
interested in the information level provided to the agent.
As an EKF requires knowledge about the system dynamics,
which contradicts the classical model-free RL assumption
that no system knowledge is necessary, we study an end-to-
end learning approach with raw sensory data as inputs.

We suppose that incomplete state information requires re-
current structures or a large history size for FNNs. Therefore
the following observation levels and their implication on the
sim-to-real performance are compared:

1) State Estimates. Estimated values of the position, linear
velocity, angular orientation, and velocities are used
as policy inputs. On the real drone, these values are
computed by an EKF fusing on-board sensor readings.

2) Raw Sensor Data. Linear accelerations and angular
velocities measured by an inertial measurement unit
and absolute height measurements from a LiDAR are
fed into the policy.

Both perception models are visualized in Figure 2a.

V. EXPERIMENTS

In our experiments, we want to find answers to the
following research questions:

1) Is it beneficial to use RNNs in terms of performance
and robustness compared to FNNs for zero-shot RL?

2) Can we learn a policy that directly maps raw sensory
data to motor commands in an end-to-end fashion?

3) Does the memory state encode meaningful information
in recurrent architectures?

The first question attempts to get an answer if RNNs
are superior to FNNs for the sim-to-real transfer of low-
level drone control policies. We hypothesize that recurrent
architectures improve sim-to-real performance because they
enable adaptive control by encoding the underlying system
parameters in the memory state at deployment.

In the second question, we hypothesize that recurrent net-
works are essential for low-level sensor-based observations
since they can infer long-term dependencies from the inputs.
Because a control policy needs to capture unknown system
states from noisy sensor data, an FNN policy can require a
large window of previous observations, which exceeds the
computational resources of the hardware platform.

In the third and last question, we seek to find evidence that
an RNN encodes information about the system’s properties
in its latent memory state.

A. Experimental Setup

We conducted experiments for both sim-to-sim and sim-
to-real scenarios to compare history-dependent actor-critic
network architectures for their applicability to low-level
drone control. The real-world experiments were conducted

Ground

(1)

(2)

Take-off (PID)

(3)

Circle (20s)

Recv. flight data

Fig. 3: We bring the drone from the ground (1) to the start
position (2) with a PID controller. At the beginning of each
episode, the motor control is given to the learned policy.

indoors in a laboratory setting. The experimental setup is
depicted in Figure 3.

a) Hardware Platform: As robot, we used the
CrazyFlie 2.1 quadrotor, which is very agile due to its small
size and light weight. The drone is equipped with a 3-axis
gyroscope, a 3-axis accelerometer, and a z-axis LiDAR. In
our experiments, we only used onboard sensor measurements
and no external tracking system. For evaluation purposes, we
transmitted the flight information via CrazyRadio to a host
computer where the logged data were analyzed.

b) Learning Task: The phoenix-drone-simulation1

based on the PyBullet [4] physics engine is used as training
environment. The learning task is to follow a trajectory
described by a circle of 0.25 m radius in clock-wise direction
with a period of 3 s. An episode terminates early if the
drone becomes unstable or gets too far off the reference.
The maximum flight time is set to 5 s in simulation, after
which the environment is reset. At the beginning of each
episode, the drone gets randomly initialized at a point
(±0.05 m) near the reference trajectory at a height of 1 m.
Additionally, the velocities and orientation are drawn from
uniform distributions. To incentivize the drone for set-point
tracking, the reward function is designed as

r(st, at) = rf − ‖e‖2 − 10−4‖1

2
(at + 1)‖2

− 10−3‖ωt‖2 − 10−3‖at−1 − at‖2 (6)

where e is the distance from the drone to the reference. The
terminal reward is rf = −100 if ‖e‖2 > 0.25 else rf = 0.

c) Domain Randomization: Numerous system parame-
ters can be randomized within the simulation to incentivize
robustly trained policies. We resampled the drone mass m,
diagonal entries of the inertia matrix I , first-order motor
time constants Tm, both force-torque-factors kM1

and kM2
,

thrust-to-weight ratio kF and the physics sampling period
Tphys at the beginning of each episode. We draw their value
from a uniform distribution around their nominal value, i.e.,
ξ? + ξ?U(−DR,DR). Also, the system latency ∆ can be

1https://github.com/SvenGronauer/
phoenix-drone-simulation



TABLE I: Sim-to-sim results. The median cumulative reward is obtained over 500 episodes in simulation. The best value
in each column is highlighted with bold font. (a) Results with policies that take as inputs raw sensory data. (b) State-level
observations obtained from an EKF as policy inputs.

(a) Sensor-level observations, ∆ = 20ms

DRS 0 0.1
Actor DRT 0.1 0.2 0.1 0.2
Recurrent H=1 -105.8 -105.8 -39.9 -104.7

Forward
H=2 -111.6 -107.2 -103.9 -103.9
H=4 -44.6 -105.2 -49.2 -105.3
H=8 -40.3 -104.9 -41.0 -103.7

(b) State-level observations, ∆ = 20ms

DRS 0 0.1
Actor DRT 0.1 0.2 0.1 0.2
Recurrent H=1 -15.7 -30.5 -12.9 -22.5

Forward
H=2 -15.9 -28.2 -13.8 -22.7
H=4 -18.9 -33.6 -13.7 -23.8
H=8 -22.8 -53.4 -15.5 -29.3

randomly drawn from a discrete set of values. The physics
simulation runs at 200 Hz while the control loop has an
update frequency of 100 Hz.

d) Actions: The actions at are limited to [−1, 1] to
account for actuator limits. Depending on the selected system
latency ∆, actions are applied instantaneously or with a delay
of ∆/Tphys time steps.

B. Hyperparameters

a) Training: We aligned the hyper-parameters to the
ones suggested in [7] and [11]. A distributed learner setup
was applied where the policy gradients were computed
and averaged across 64 workers with a total batch size
of 64000. We trained with the PPO algorithm over 500
iterations with the discount factor γ = 0.99 and clipping
factor 0.2. Observations were standardized using first and
second-order statistics, which were estimated with Welford’s
algorithm. We stopped updating the mean and variance after
125 iterations since this led to better and more consistent
results.

b) Actor-Critic: Neural networks were optimized with
Adam, where the learning rate of the critic was 0.001
and 0.0003 for the actor. To reduce the variance of critic
estimates, we applied generalized advantage estimation [20]
with the weighting factor λ = 0.95. Over the training, we
used stochastic policies where the policy output is the mean
of a multi-variate Gaussian distribution a ∼ N (π(s), εI)
with I being the identity matrix and ε ∈ R being the
exploration noise that was linearly annealed from 0.5 to 0.01.
Due to the computational limitations of the microcontroller
on the CrazyFlie 2.1, we set the number of hidden units to 32
for FC and 16 for LSTM layers. Further, we used two hidden
layers for all networks. The networks were trained with 32-
bit floats but were quantized to 16-bit on the microcontroller.
As a result, the execution time of a forward pass on the target
hardware is faster than 1.5 ms for all policies. Since the critic
networks were only used during training, we increased their
network size, i.e., our value networks had 300 units in each
FC and 128 neurons in the LSTM layers.

VI. RESULTS AND DISCUSSION

A. Sim-to-Sim Results

We first ran transfer learning experiments from simulation
to simulation to assess the performance and the impact
of the history size H on the learned policies. For this
matter, policies trained with source domain randomization

DRS ∈ {0.0, 0.1} were transferred to environments with
target domain randomization DRT ∈ {0.1, 0.2}. We used a
fixed latency of ∆ = 20ms for this experiment. The results
are reported as the median cumulative reward in Table I.
Each value was computed using 500 episodes with randomly
sampled parameters and initial conditions.

When sensor-level observations are used, the performance
of feed-forward architectures significantly improves with
increasing history size. With H = 8 the FNN architecture
achieves comparable results to the recurrent architecture. At
state level, a smaller history size of H = 2 is sufficient for
the feed-forward architecture to be on par with the RNNs.
A larger value of H deteriorates the cumulative reward,
indicating the importance of tuning this parameter. Further,
recurrent policies improve performance when domain ran-
domization is used during training, i.e., DRS > 0.

B. Sim-to-Real Results

Based on the sim-to-sim results, we selected the FNN
policies H = 2 for state-level observations and H = 8
for sensor-level observations for the deployment on the real
drone. For recording real-world flight data, we trained five
policies with different random seeds for each architecture
configuration. To get the drone into an initial state for
the Circle task, a PID controller was used to take off
the ground. After 20 s of successful flying, the task was
manually stopped. We repeated this procedure three times
for each policy. The resulting flight times and success rates
are presented in Table II.

Almost all policies were able to fly the quadrotor for 20 s
when the state-level observations were used. In cases where
no domain randomization has been applied during training,
the policies produced smoother trajectories but flew at a
lower altitude than 1m. This can be explained by the over-
fitting of the agent to the fixed system parameters in the
non-randomized setup. In contrast, policies in randomized
settings learned to compensate the altitude error by varying
rotor speeds accordingly since the policies have seen dif-
ferent thrust-to-weight ratios and other changing parameters
during the training.

With raw sensory data as observations, the success rates
were lower than with state estimates. Feed-forward architec-
tures led to unstable behavior and, thus, terminated early
in most of the trials, resulting in success rates less than
7%. The best result in terms of flight time was achieved
with the recurrent policy that has been trained with domain
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TABLE II: Sim-to-real results. Real-world flight time and
success rates are shown with a fixed latency ∆ = 20 ms.

Success [%] Flight Time [s]
Obs. DR Actor min max median

State
0

FNN (H=2) 100.0 20.0 20.0 20.0
RNN (H=1) 100.0 20.0 20.0 20.0

0.1
FNN (H=2) 100.0 20.0 20.0 20.0
RNN (H=1) 93.3 5.3 20.0 20.0

Sensor
0

FNN (H=8) 6.7 0.7 20.0 2.1
RNN (H=1) 0.0 3.2 12.1 4.9

0.1
FNN (H=8) 6.7 2.5 20.0 4.3
RNN (H=1) 66.7 7.1 20.0 20.0

randomization. It had a success rate of 66.7% and a median
flight time of 20s.

The results show that a quadrotor control policy can indeed
be learned in an end-to-end fashion. However, the average
performance is worse than using state-based estimates from
a Kalman filter. The performance improvements of RNNs
over FNNs on sensor level can be explained by the RNN
being able to reconstruct the state vector, whereas at state
level the RNN cannot take advantage of this because the
EKF already reconstructs the state. Also, all emerging lag
behaviors seem to be sufficiently captured by an FNN with
H ≥ 2. The results underpin the importance of domain
randomization combined with a recurrent architecture when
only raw sensory data are available.

C. Impact of Latency

As we reported in [8], the correct choice of system
latency ∆ is crucial for a successful zero-shot policy transfer
on quadrotors. While our previous experiment showed that
∆ = 20 ms is a suitable choice for modeling the hardware
latency and yields successful policy transfers, we also want
to investigate if history-dependent policies can handle an
uncertain latency. Hence, we train policies with latency
values drawn from the set {0, 5, 10, 15, 20, 25}ms at the start
of each episode. As an ablation study, we also evaluated
policies that were trained with no latency, i.e., ∆ = 0 ms.

The results from the real-world flights are depicted in
Figure 4, which shows the performance evaluation in terms

of the cumulative reward over 500 time steps. Besides the
learned policies, we used a position PID controller specifi-
cally tuned on the reward function (6) and lag compensation
as a benchmark baseline.

The results demonstrate that randomizing the latency still
leads to transferable policies. For feed-forward architectures,
the cumulative reward decreases, especially when sensor-
based observations are provided as policy inputs. The re-
current architectures benefit from latency randomization and
surpass the previous results under fixed latency. When zero
latency is considered during the training in simulation, none
of the policy architectures achieved satisfying results.

The results confirm our hypothesis that recurrent archi-
tectures can improve sim-to-real performance when using
DR during training. We suppose that is due to the ability
of RNNs to infer the actual system parameters from the
sequence of observations and encode the estimate in the
latent state. This results in a policy that can adapt to varying
system parameters such as latency. Congruent results were
shown for bipedal robots, where RNNs outperformed FNNs
when trained using DR to prevent overfitting [22]. However,
we did not find evidence that the use of RNNs yields
robustness benefits over FNNs when facing uncertain system
parameters.

D. Decoding of Recurrent Memory

Motivated by the former experimental results, we investi-
gated if RNN memory states encode information about the
system latency. Therefore, we trained an MLP classifier that
predicts the simulated system latency from latent memory
states. The train and test data sets were obtained by running
RNN policies in simulation with latency ∆ ∈ {5, 15, 25}ms,
and sampled 75000 data points for both observation levels.
We also trained a baseline classifier for comparison, which
maps single observations to the unknown latency.

With raw sensory observations, the validation accuracy
was 65 % and 59.8 % for the memory and baseline classifier
respectively. This result indicates that the RNN policy ex-
tracts and encodes useful information about the latency from
the sequence of partial observations in the latent memory.



In contrast, we obtained only a minor difference of 1 % in
favor of the memory classifier, with 72.8 % against 71.8 %
for state-based observations. Obviously, a strong prior on
the latency can be found with full state information in
combination with the last selected action. This conclusion is
in accordance with [26], who reported that relevant dynamics
parameters can be recovered from a state-action history.

VII. CONCLUSION

We demonstrated in this paper that the synthesis of history-
dependent drone control policies could be achieved in a
zero-shot transfer learning scenario, using onboard sensor
information only and mapping observations directly to motor
commands. Our results confirm the common practice of
using DR to reduce the reality gap. Without dynamics
randomization, an over-fitting to the simulation parameters
can be observed.

An important hyper-parameter for FNN policies is the
history size of previous observation-action inputs, decreasing
sim-to-real performance if not chosen properly. To discard
this sensitive parameter, recurrent architectures can be used
to process only the most recent observation at the cost of a
higher training time.

Our experiments showed that learning-based drone poli-
cies achieved better performance results than the PID con-
troller baseline. In addition to that, we demonstrated that it
is even possible to control the quadrotor robot with an end-
to-end learning approach, where the agent maps raw sensory
data to low-level motor commands. Albeit our experiments
did not perform as good as the PID baseline in this setup, it
is worth conducting further research in this direction since
the amount of expert knowledge used in the problem design
can be reduced significantly.

Additional experiments with altered system latency values
showed that an artificially introduced reality gap can render
the sim-to-real transfer impossible. When applying DR,
including the latency parameter during training, the tested
recurrent architectures improved the sim-to-real performance
and outperformed a carefully chosen constant value. We
suppose that the ability of RNNs to infer the actual system
parameters from the sequence of observations and encode
them in the latent state is responsible for superior results.
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[15] J. E. Kooi and R. Babuška, “Inclined quadrotor landing using deep
reinforcement learning,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021, pp. 2361–2368.

[16] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun,
and D. Scaramuzza, “Deep drone racing: From simulation to reality
with domain randomization,” IEEE Transactions on Robotics, vol. 36,
no. 1, pp. 1–14, 2020.

[17] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, vol. 6, no. 59, 2021.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529 EP –, 02 2015.

[19] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S.
Sukhatme, “Sim-to-(multi)-real: Transfer of low-level robust control
policies to multiple quadrotors,” CoRR, vol. abs/1903.04628, 2019.

[20] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in Proceedings of the International Conference on Learning
Representations, ICLR, 2016.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[22] J. Siekmann, S. Valluri, J. Dao, L. Bermillo, H. Duan, A. Fern, and
J. Hurst, “Learning memory-based control for human-scale bipedal
locomotion,” in Robotics: Science and Systems, 2020.

[23] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Si-
monyan, and D. Hassabis, “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140–1144, 2021/12/10 2018.

[24] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

[25] Y. Song and D. Scaramuzza, “Policy search for model predictive
control with application to agile drone flight,” IEEE Transactions on
Robotics, vol. 38, no. 4, pp. 2114–2130, 2022.

[26] D. Zhang, A. Loquercio, X. Wu, A. Kumar, J. Malik, and M. W.
Mueller, “Learning a single near-hover position controller for vastly
different quadcopters,” arXiv preprint arXiv:2209.09232, 2023.



Reprint Permission

Comparing Quadrotor Control Policies for Zero-Shot Re-
inforcement Learning under Uncertainty and Partial Ob-
servability

Conference Proceedings: 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS)
Author: Sven Gronauer
Publisher: IEEE
Date: October 01, 2023

Copyright c© 2023, IEEE

Reprint Permission

The IEEE does not require individuals working on a thesis to obtain a formal
reuse license, however, you may print out this statement to be used as a
permission grant:
Requirements to be followed when using any portion (e.g., figure, graph, table, or textual
material) of an IEEE copyrighted paper in a thesis:

1. In the case of textual material (e.g., using short quotes or referring to the work
within these papers) users must give full credit to the original source (author, paper,
publication) followed by the IEEE copyright line c© 2011 IEEE.

2. In the case of illustrations or tabular material, we require that the copyright line
c© [Year of original publication] IEEE appear prominently with each reprinted figure

and/or table.

3. If a substantial portion of the original paper is to be used, and if you are not the
senior author, also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1. The following IEEE copyright/ credit notice should be placed prominently in the
references: c© [year of original publication] IEEE. Reprinted, with permission, from
[author names, paper title, IEEE publication title, and month/year of publication]

2. Only the accepted version of an IEEE copyrighted paper can be used when posting
the paper or your thesis on-line.

3. In placing the thesis on the author’s university website, please display the fol-
lowing message in a prominent place on the website: In reference to IEEE copy-
righted material which is used with permission in this thesis, the IEEE does not
endorse any of [university/educational entity’s name goes here]’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional
purposes or for creating new collective works for resale or redistribution, please
go to http://www.ieee.org/publications_standards/publications/rights/

rights_link.html to learn how to obtain a License from RightsLink.

109

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html




Paper IV

Reinforcement Learning with Ensemble Model

Predictive Safety Certification

Sven Gronauer, Tom Haider, Felippe Schmoeller Roza and Klaus Diepold

Abstract

Reinforcement learning algorithms need exploration to learn. However, unsu-
pervised exploration prevents the deployment of such algorithms on safety-
critical tasks and limits real-world deployment. In this paper, we propose
a new algorithm called Ensemble Model Predictive Safety Certification that
combines model-based deep reinforcement learning with tube-based model
predictive control to correct the actions taken by a learning agent, keeping
safety constraint violations at a minimum through planning. Our approach
aims to reduce the amount of prior knowledge about the actual system by
requiring only offline data generated by a safe controller. Our results show
that we can achieve significantly fewer constraint violations than comparable
reinforcement learning methods.

c© 2024 International Foundation for Autonomous Agents and Multiagent Systems.

Reprinted, with permission, from:

S. Gronauer, T. Haider, F. Schmoeller da Roza, and K. Diepold. “Reinforcement Learning with

Ensemble Model Predictive Safety Certification”. In: Proceedings of the 23rd International

Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2024

111



Reinforcement Learning with Ensemble Model Predictive Safety
Certification

Sven Gronauer
Technical University of Munich (TUM)

Munich, Germany
sven.gronauer@tum.de

Tom Haider
Fraunhofer IKS

Munich, Germany
tom.haider@iks.fraunhofer.de

Felippe Schmoeller da Roza
Fraunhofer IKS

Munich, Germany
felippe.schmoeller.da.roza@iks.fraunhofer.de

Klaus Diepold
Technical University of Munich (TUM)

Munich, Germany
kldi@tum.de

ABSTRACT
Reinforcement learning algorithms need exploration to learn. How-
ever, unsupervised exploration prevents the deployment of such
algorithms on safety-critical tasks and limits real-world deployment.
In this paper, we propose a new algorithm called Ensemble Model
Predictive Safety Certification that combines model-based deep re-
inforcement learning with tube-based model predictive control to
correct the actions taken by a learning agent, keeping safety con-
straint violations at a minimum through planning. Our approach
aims to reduce the amount of prior knowledge about the actual
system by requiring only offline data generated by a safe controller.
Our results show that we can achieve significantly fewer constraint
violations than comparable reinforcement learning methods.
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1 INTRODUCTION
Deep reinforcement learning (RL) is a powerful data-driven par-
adigm for learning control strategies and has recently achieved
remarkable results in various domains [23, 32]. RL is beneficial in
situations where the system dynamics are not known or only par-
tially available, but data can be generated through interaction with
the environment. However, gathering data in safety-critical tasks
and real-world systems is not trivial since the agent is required to
act safely at all times, e.g., the actions taken by a robot are supposed
to satisfy a series of state and control input constraints to avoid
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harm to itself or its environment. On top of the difficulty of provid-
ing safety, other self-imposed challenges, such as the high sample
complexity and the lack of interpretability, impede the adoption of
deep RL in real-world applications that go beyond simulations and
fail-safe academic environments [12].

The majority of safe RL algorithms are designed to merely incen-
tivize safety instead of ensuring hard safety constraint satisfaction
[6]. Policies are encouraged to maximize the task performance
while constraint violations are in expectation less or equal to a
predefined safety threshold, resulting in safety constraint satisfac-
tion at the end but not throughout training. In contrast, methods
derived from model predictive control (MPC) provide formal safety
guarantees by making rather strong assumptions and, thus, are a
popular choice for designing safe controllers. Yet, their applicability
is often limited to low-dimensional systems, as evidenced in [5, 16].
Deep RL, however, has the potential of scaling to high-dimensional
problems [1, 34].

In this paper, we introduce a novel algorithm called ensemble
model predictive safety certification (X-MPSC) that extends model-
based deep RL with tubed-based MPC to certify potentially unsafe
actions taken by a learning agent. The result is an algorithm that
combines the best of both frameworks by leveraging an ensemble
of probabilistic neural networks (NNs) to approximate the system
dynamics trained on data sampled from the environment. To pro-
vide safe exploration, MPC is used to plan multiple tube-based
trajectories that enforce all given safety constraints based on the
NN ensemble. The actions of an RL-based agent are modified to
safe ones if necessary. For initialization, our method only requires
offline data collected by a low-performing but safe controller. The
experimental results demonstrate that our algorithm can signif-
icantly reduce the number of constraint violations compared to
alternative constrained RL algorithms. Constraint violations can
even be reduced to zero when a coarse prior system dynamics model
is incorporated into the learning loop.

2 RELATED WORK
The artificial intelligence community has different notions of what
constitutes a safe system [4, 18]. For RL, safety can be achieved
by preventing error states, i.e., undesirable states from which the
system’s original state cannot be recovered. Error states are tightly
coupled to the concepts of reachability [24] and set invariance [3].
Another perspective is to define an RL system to be safe when it
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is able to maximize a performance measure while fulfilling or en-
couraging safety constraints during both learning and deployment
phases [13, 26, 29]. In this paper, we adopt the latter safety defi-
nition as an instance of the constrained Markov decision process
(CMDP) framework [2].

In a recent survey, Brunke et al. [6] unify the perspectives from
both control theory and RL and provide a systematic overview of
safe learning-based control in the context of robotics. The authors
classify the task of achieving safe learning-based control into three
main categories: (1) the formal certification of safety, (2) RL ap-
proaches that encourage safety, and (3) the improvement of system
performance by safely learning the uncertain dynamics. Because
our proposed algorithm addresses safety certification but compares
to safety-encouraging RL methods, we limit the following literature
review to these two categories.

Formal Certification. Methods from this category utilize prior
system dynamics knowledge to provide rigorous safety through
hard constraint satisfaction. One way to achieve this is to use safety
filters such as model predictive safety certification (MPSC) that
adapt input actions as minimal as possible to fulfill safety con-
straints [37, 38]. Another kind of safety filter is a control barrier
function (CBF), which is a mechanism to prevent the system from
entering unsafe regions. A CBF maps the state space to a scalar
value and is defined to change signs when the system enters an
unsafe region of the state space [3]. Cheng et al. [7] showed that
CBFs could be integrated into model-free RL to achieve safe ex-
ploration for continuous tasks, while Robey et al. [30] learned a
CBF from expert demonstrations. Luo and Ma [21] used barrier
certificates to certify the stability of a closed dynamical system.
By iteratively learning a dynamics model and a barrier certificate
alongside a policy, they can ensure that no safety violations occur
during training. However, their experimental evaluation was con-
ducted on very low-dimensional state spaces. Similar to our work,
Koller et al. [16] used learning-based stochastic MPC for multi-step
look ahead predictions to correct any potentially unsafe actions
based on a single probabilistic Gaussian process (GP) model. An-
other work by Pfrommer et al. [27] proposed a chance-constrained
MPC approach that uses a safety penalty term in the objective to
guide policy gradient updates.

Encouraging Safety. The standard formulation in safe RL is to
model the environment as a CMDP [29] to learn how to respect
safety thresholds while learning the task, leading to soft constraint
satisfaction in most cases. One instance is Lagrangian relaxation
methods, which add a penalty term for constraint violations to
the objective such that an unconstrained optimization problem is
solved instead [8, 20, 34]. Another common approach is to perform a
constrained policy search where typically the cost objective function
is linearized around the current policy iterate [1, 39]. Lastly, action
projection methods are applied to correct actions taken by an agent
and turn the actions into safe ones, e.g., via Lyapunov functions [9],
in closed form with linearized cost models [11] or by evaluating
risk-aware Q-functions [33]. Thananjeyan et al. [35] simultaneously
learned a task policy, focused solely on task performance, and a
recovery policy, activated when constraint violation is likely, which
guides the agent back to a safe state. By separating task performance

and constraint satisfaction into two separate policies, safety and
reward maximization are balanced more efficiently.

Our algorithm extends previous methods based on MPC by relax-
ing the requirement of prior knowledge about the system dynamics
or knowing the terminal set a priori. To the best of our knowledge,
this is the first work that integrates an NN ensemble into the tube-
based MPC framework. Luo and Ma [21] utilized an NN ensemble
together with barrier certificates, while Lütjens et al. [22] deployed
an ensemble of recurrent NNs for predictive uncertainty estimates
realized by Monte Carlo dropout and bootstrapping.

3 PRELIMINARIES
Throughout this work, we consider the dynamics of a system in
discrete time described by

xt+1 = f (xt ,ut ,wt ), (1)

with states x ∈ X, actions u ∈ U, and disturbances w ∈ W at
time step t . We assume that the disturbances are bounded and
that the system dynamics are Lipschitz continuous. Further, we
assume that the system is subject to polytopic constraints in the
states and actions, i.e., x ∈ X = {x ∈ Rnx | Hxx ≤ dx } and
u ∈ U = {u ∈ Rnu | Huu ≤ du }.

3.1 Deep Reinforcement Learning
The standard framework for RL problems is the Markov decision
process (MDP) which is formalized by the tuple (X,U, f , r ,X0),
where the system f underlies a random disturbance wt with the
transition probability distribution given by xt+1 ∼ p(·|xt ,ut ). The
set X0 denotes the initial state distribution, and r : X × U → R
is the reward function. Note that the dynamics model from Equa-
tion (1) is equivalently described by the state probability function
p(xt+1 |xt ,ut ). The optimization objective of RL is given by

maximize
θ

JRL(πθ ) = Eτ∼πθ
[ ∞∑
k=0

γkr (xt ,ut )
]
,

where the expected return along the trajectories τ = (x0,u0, x1, . . . )
produced under the policy πθ is optimized. A policy πθ : X→ P(U)
describes the mapping from states to a distribution over actions,
where the vector θ parameterizes the NN representing the policy.
The shortcut τ ∼ πθ describes trajectories generated under policy
πθ given xt+1 ∼ p(·|xt ,ut ), ut ∼ πθ (·|xt ), and x0 ∼ X0. Finally,
γ ∈ (0, 1) denotes the discount factor.

3.2 Model Predictive Safety Certification
The nominal MPSC problem as introduced in [36] seeks a control
input v0 that changes the learning input ut as minimal as possible
by solving the objective

minimize
v0, ...,vN−1

∥ut −v0∥22
subject to z0 = xt

zk+1 = fprior(zk ,vk ) ∀k = [0,N − 1]
vk ∈ U ∀k = [0,N − 1]
zk ∈ X ∀k = [0,N ]
zN ∈ Xterm

(2)

over a finite horizon N such that the nominal state-action sequence
(z0,v0, . . . ,vN−1, zN ) lies within the given state-action constraints.
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Note that we use t as the time index for state measurements and
actions that are applied to (1), whereas k indicates states and actions
used for planning such that the predicted states zk are k stages
ahead of time step t . The terminal setXterm acts as a constraint that
must be reached from xt within N stages. MPSC assumes access
to a model fprior, which is usually derived from first principles.
MPSC was initially proposed for linear systems [37] and extended
to systems with nonlinear dynamics in later works [36, 38].

3.3 Tube-based Model Predictive Control
If uncertainties and disturbances exist in the system under control,
feedback control is superior to open loop control. While conven-
tional MPC finds a nominal action sequence as a solution for the
open loop control problem, robust MPC returns a sequence of feed-
back policies. In this paper, we focus on tube-based MPC [28] as
implementation to approach robustness. Tube-based MPC utilizes
a model fprior to plan a nominal state trajectory (z0, . . . , zN ) asso-
ciated with the action sequence (v0, . . . ,vN−1) based on the latest
measurement xt from (1). In presence of uncertainty, it is assumed
that the tube contains all possible realizations of the actual system,
where each realization implements a series of disturbances. Since
tubes can grow large under uncertainty, a closed loop feedback

ut+k = vk + K(xt+k − zk ) (3)

is used to track the state trajectory (xt , xt+1, . . . ) of the actual
system toward the nominal trajectory. The matrix K ∈ Rnu×nx
implements the feedback and is chosen such that the error system
ek = xt+k − zk is stable.

3.4 Ellipsoidal Calculus
An ellipsoid E(c, S) = {

x | (x − c)T S−1(x − c) ≤ 1
}
describes an

affine transformation of the unit ball with center c ∈ Rnx and pos-
itive definite shape matrix S ∈ Rnx×nx . Ellipsoids are preserved
under affine transformations since AE(c, S) = E(Ac,ASAT ). Al-
though the result of a set addition of two ellipsoids is, in general,
not ellipsoidal, we can outer approximate the operation [17]. The
over-approximated ellipsoid can be computed through

E(c1, S1) ⊕ E(c2, S2) ⊆ E(c, S+) (4)

with shape matrix S+ = (1 + α−1)S1 + (1 + α)S2 and center c+ =
c1 + c2 given by α =

√
Tr(S1)/Tr(S2). Another useful expression is

to check whether the ellipsoid E(c, S) is contained in the polytope
P = {x | Hx ≤ d}, where Hx ≤ d describes a system of linear
inequalities. The inscription is evaluated by

hTj c − dj +
√
hTj Shj ≤ 0 ∀ j, (5)

where hj is the j-th row of H and dj is the j-th vector component.
Ellipsoids have favorable geometrical properties compared to

polytopes, e.g., under uncertainty the computational complexity is
linear over the predictive horizon. Also, the analytical expressions of
(4) can be exploited to maintain differentiability along the predicted
trajectory.

4 ENSEMBLE MODEL PREDICTIVE SAFETY
CERTIFICATION

Our proposed algorithm integrates an ensemble of NNs and tube-
based MPC into (2) to certify the actions of a model-based RL agent.
Trained on trajectory data from the environment, the ensemble of
dynamics models is leveraged for both RL policy optimization and
planning with tube-based MPC. The ensemble is represented by
probabilistic NNs and parametrizes state-action dependent ellip-
soidal predictions, propagated over multiple time steps. An action
is certified as safe when the planned tubes satisfy the given state-
action constraints and capture the trajectory of the actual system.

In the remainder of this section, we first describe our approach
for a single dynamics model in Sections 4.1–4.2 and then extend to
ensembles in Section 4.3. We finally present the X-MPSC optimiza-
tion problem and our algorithm in Sections 4.4–4.5.

4.1 Neural Network Parametrization
To approximate the system dynamics, we use probabilistic NNs

fϕ (xt ,ut ) = N(mϕ (x,u), Sϕ (x,u)) (6)

parametrized by Gaussian probability distribution functions with
the mean mϕ (x,u) and the diagonal covariance matrix Sϕ (x,u).
The predicted uncertainties are state- and action-dependent and
are determined by the vector ϕ that holds the flattened weights and
biases of the NN. Similar to [10], we train a dynamics model by
optimizing the maximum-likelihood

minimize
ϕ

(mϕ − xt+1)T S−1ϕ (mϕ − xt+1) + log det Sϕ , (7)

over trajectory data sampled from (1). An apparent advantage of us-
ing probabilistic over deterministic NNs is that aleatoric uncertainty
can be captured, i.e., the stochasticity inherent to a system.

4.2 Single-Model Uncertainty Propagation
To predict the future evolution of (1), we use a probabilistic dynam-
ics model fϕ for multi-step look ahead rollouts. The nominal state
trajectory described by (z0, z1, . . . , zN ) is produced by the action
sequence (v0,v1, . . . ,vN−1) with respect to the nonlinear model
zk+1 =mϕ (zk ,vk ) for all k ∈ [0,N −1]. In addition to the mean, the
probabilistic model provides an ellipsoidal uncertainty estimate Sϕ
that is propagated over multiple time steps. However, the resulting
tube can grow large when an open loop action sequence rather
than a closed loop feedback is used for planning [28]. Thus, we
employ the affine control law from (3) to keep the actual system
close to the nominal trajectory.

We now consider the uncertainty tube along the nominal tra-
jectory (z0,v0, . . . ,vN−1, zN ). For a one-step error prediction, we
make use of the first-order Taylor-series expansion

xt+k+1 ≈mϕ (zk ,vk ) +Ak (xt+k − zk ) + Bk (ut+k −vk ),

around a fixed point (zk ,vk ) given Ak = ∇x mϕ (x,u)T |x=zk ,u=vk
and Bk = ∇umϕ (x,u)T |x=zk ,u=vk as the Jacobians. The predicted
error ek+1 = xt+k+1 − zk+1 between the nominal state and the
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Figure 1: X-MPSC uses multi-step planning with ellipsoidal uncertainty estimates. (Left) Ellipsoidal uncertainty propagation
with a single model. (Right) Tube-based predictions generated by an ensemble of NNmodels. By utilizing multiple models, an
unsafe action ut (red) is corrected to v0 (blue) that keeps the system within the safety constraints over the horizon N .

actual system state satisfies the error difference equation
ek+1 ≈ Ak (xt+k − zk ) + Bk (ut+k −vk )

= Ak (xt+k − zk ) + BkK(xt+k − zk )
= (Ak + BkK)(xt+k − zk )
= Fkek

that is accurate to the first order, given zk+1 = mϕ (zk ,vk ). The
matrix Fk = Ak + BkK describes the closed loop error system. To
account for state-action dependent uncertainties Sϕ , we combine
the nonlinear nominal trajectory with the linearized error dynamics.
A one-step ellipsoidal forward propagation is computed by

Ek+1 = дϕ (Ek ,vk )
with the non-linear mapping

дϕ (Ek ,vk ) = E
(
mϕ (zk ,vk ), FkSkFTk

)
⊕ E

(
0, Sϕ (zk ,vk )

)
,

where the evolution of Ek ’s only depends on the action sequence
(v0, . . . ,vN−1) and the NN parameters ϕ. Note that E(zk , Sk ) is
abbreviated to Ek to improve readability. An illustration of the
one-step uncertainty propagation is depicted in Figure 1 (Left).

4.3 Ensemble Uncertainty Propagation
A frequent problem in model-based RL is that NN predictions ex-
hibit inaccuracies that grow with the length of the predictive hori-
zon, limiting the applicability to short rollouts [25]. Ensembles,
however, demonstrated their effectiveness in preventing the ex-
ploitation of inaccuracies during planning [10]. Therefore, we adopt
an NN ensemble f̃ϕ = { fϕ1 , . . . , fϕM } composed ofM models. The
ellipsoidal uncertainty propagation for each model i is described by

E(i)k+1 = дϕi
(
E(i)k ,vk

)
,

resulting inM tubes used for planning.

4.4 Safety Certification
In this section, we introduce the optimization problem that is solved
by X-MPSC. More formally, X-MPSC extends nominal MPSC from
(2) with tube-based MPC and a probabilistic ensemble of NNs (the
modified parts are highlighted in blue color). The goal of X-MPSC
is to certify an action ut proposed by an RL-based policy in each
time step t by solving the optimization problem

minimize
v0, ...,vN−1

∥ut −v0∥22
subject to E(i)0 = E(xt , 0) ∀ i

E(i)k+1 = дϕi (E
(i)
k ,vk ) ∀k ∈ [0,N − 1], i

vk ∈ Ũ(E(i)k ) ∀k ∈ [0,N − 1], i
E(i)k ⊆ X ∀k ∈ [0,N ], i
E(i)N ⊆ Xterm ∀ i

(8)

over the horizon N . The objective is solved in a receding horizon
fashion, where a safe action v0 that deviates as minimally as pos-
sible from the learning input is obtained. For (8) to be feasible, a
series of constraints must be satisfied. All propagated ellipsoids
must be contained in the polytopic state space, which is checked
through (5). Further, every member of the ensemble is subject to the
constraints. If a single member violates a constraint, the optimiza-
tion problem becomes infeasible. The final ellipsoid of each tube
is required to be contained in the terminal set Xterm. Depending
on the ellipsoidal uncertainty estimates, the set of feasible actions
shrinks vk ∈ Ũ(Ek ) = U ⊖ E(0,KSkKT ).

When (8) is feasible, we do not only obtain a safe action but
also a sequence of feedback policies Πt = (πt , πt+1, . . . , πt+N−1)
that can steer the system back to Xterm within N steps. Here, each
πt+k (xt+k ) = vk + K(xt+k − zk ) is an affine controller that tracks
the actual system toward the nominal trajectory. In case of infeasi-
bility, the solution of the former solver iteration Πt−1 is reused. An
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illustration of the optimization problem and the safety certification
can be seen in Figure 1 (Right).

4.5 Proposed Algorithm
The solution to the optimization problem in (8) provides a safe
action in each step. However, to provide safe exploration for an RL
agent throughout the training, we rely on certain assumptions.

Assumption 4.1. There exists a safe backup policy πb ∈ Πb such
that when following πb the states

xt ∈ S⇒ xt+k ∈ X ∀k > 0

are contained in X. The set S is called safe set.

The safe set S is a control-forward invariant set that allows us
to gather safely offline data when having access to a safe backup
controller. We utilize offline data collected by such a safe backup
controller for pre-training the ensemble of dynamics model f̃ϕ and
the initial policy πθ before starting the RL training. In practice,
we can satisfy this assumption through a simple stabilizing local
controller, which has low task performance but keeps the system
safe within a small region of the state space.

Assumption 4.2. The set of initial states is inscribed in the safe
set, i.e., X0 ⊆ S. Also, the terminal set is a subset of the safe set, i.e.,
Xterm ⊆ S. Both sets are convex.

Since all initial states lie in the safe set, a safe backup policy is
able to keep the system safe for all future time steps.

Assumption 4.3. The actual system (1) underlies bounded distur-
bances and is Lipschitz continuous.

The predictions of the dynamics models (6) can be also bounded
by this assumption.

Assumption 4.4. The ensemble of dynamics models f̃ϕ is suffi-
ciently accurate such that it captures the trajectories of the actual
system (1).

A trajectory is captured by the ensemble when all states of the
actual system are contained in any of the predicted ellipsoids, i.e.,

∀k ∈ [0,N ] ∃i s. t. xt+k ∈ E(i)k .
Even though a state xt+k is not contained in any of the predicted
ellipsoids but lies in between the tube-based rollouts, i.e.,

xt+k ∈ conv
(⋃
i
E(i)k

)
,

safety constraints can be still enforced. We consider the ensemble
of dynamics to be sufficiently accurate in such a scenario. The
assumption of an accurate dynamics model is very strong since the
model can only be a good approximation in regions where data is
available. Since the terminal set acts as a natural regularizer to the
exploration in (8), i.e., the agent must reach Xterm within N steps,
exploration relies on the terminal set growing throughout training
to acquire novel samples. However, the growth must happen at an
appropriate speed so that new data is informative (i.e., from regions
where prediction uncertainty is high) and safe (the system can be
steered back to the terminal set).

Algorithm 1 Safe Reinforcement Learning with X-MPSC
1: Input: Initial data D0 collected by a safe policy πb (and option-

ally a prior model fprior)
2: Pre-train πθ on D0 and set D← D0
3: for epoch j = 1, . . . do
4: Train actor-critic and ensemble model f̃ϕ via (7) on D
5: Estimate S̃j based on (9) and set Xterm ← S̃j−δ
6: for time step t = 1, . . . do
7: Sample (possibly unsafe) ut ∼ πθ (xt ) from RL policy
8: Obtain (feasible,Π) by solving X-MPSC problem (8)
9: Retrieve sequence of controllers

Πt ←
{
Π = (πt , πt+1, . . . , πt+N−1) if feasible
Πt−1 = (πt , . . . , πt+N−2) otherwise

10: Get safe action vt = πt (xt ) and apply vt to system (1)
11: Store D← D ∪ (xt ,vt , xt+1, feasible)
12: end for
13: end for

We claim that when the Assumptions 4.1–4.4 are fulfilled, then
Algorithm 1 becomes itself a safe backup policy due to its recursive
feasibility and, hence, can safely certify the actions of an RL-based
agent. In the next paragraph, we will give an intuition of this claim
and show empirical evidence with the experiments conducted in
Section 6. Our method is summarized in Algorithm 1.

At the beginning of each episode, we obtain x0 ∈ X0. By Assump-
tions 4.1 and 4.2, there always exists a solution Π0 = {πb , . . . , πb }
at t = 0 since x0 ∈ X0 ⊆ S ⇒ xt ∈ X ∀t > 0 when following a
safe backup controller πb ∈ Πb . We can now show by induction
that the system can be kept safe ∀t ≥ 0. Let the previous step t − 1
have the feasible solution Πt−1 = (πt−1, πt , πt+1, . . . ) that holds
the system safe for all future time steps t ≥ 0. Then, there exists also
a solution at step t because either X-MPSC will find it by solving
(8) or the solution Πt−1 from the former step gives a sequence of
policies (πt , πt+1, . . . , πt+N−2) as a fallback solution that leads to
a safe state xN ∈ Xterm ⊆ S within N − 1 steps, from where a safe
backup controller πb can keep the system safe.

5 PRACTICAL IMPLEMENTATION
In the previous section, we did not specify how the terminal set
Xterm can be obtained nor how the safe set S can be determined.
In this section, we elaborate on the estimation of both sets and
introduce prior systemmodels that we used to improve the accuracy
of the NN dynamics models.

Estimation of the Safe Set. The safe set S is difficult to compute
in practice. However, from the data D collected so far over the
training, we can build the outer approximation

S̃ = conv {xt | (xt , ·, ·, feasible = true) ∈ D} (9)

as convex hull over all states where X-MPSC found a solution to
(8), which is polytopic and convex. Here we use the fact that all
states xt kept the system within X under the model f̃ϕ . Note that
S̃ is just an approximation of S and changes as soon as new data
samples are collected in the training process.
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Figure 2: Experimental results. Thick lines show the average over five independent seeds and the shaded area denotes the
standard deviation. (Top) The cumulative reward of one episode reported over the total environment steps. (Bottom) Total
constraint violations over the whole training.

Terminal Set. Since the terminal set naturally limits exploration,
the terminal set is supposed to grow throughout the training to
learn about the areas of the state space that have not been visited
yet. Due to Assumption 4.2, we can set Xterm ← X0 as the first
choice for the terminal set. The initial state distribution can be
estimated by building the convex hull of all initial states from D0.
As new samples are collected, the safe set S̃j is re-estimated at each
epoch j. In order to prevent model exploitation, we use a safe set
estimation of a former epoch, i.e., Xterm ← S̃j−δ such that the
estimated safe set is delayed by δ epochs.

Handling of Infeasibility. Due to divergence in the model ensem-
ble predictions or large uncertainty ellipsoids, the X-MPSC problem
might not always be feasible, i.e., the solver cannot find an action se-
quence that keeps all tubes within the constraints. In such cases, the
solution Πt−1 found in the former solver iteration returns a policy
sequence that steers the system back to Xterm in N − 1 steps. Safety
can still be guaranteed due to recursive feasibility. In practice, how-
ever, a single failure event can lead to a series of infeasibility events.
When the solver fails to find a solution to (8) in N consecutive
steps, we transform the hard constraints to soft constraints with
high penalty terms. The number of infeasibility events depends on
the selected hyper-parameters and varied between 0.0 % (for the
best seeds) and 2.0 % (worst case) of the time steps. However, in the
TwoLinkArm task, we could also observe a worst-case failure rate
of approximately 39 %.

Prior Model. To improve the validity of Assumption 4.4, we tested
the use of a prior model. Thus, we extended each ensemble member

fϕi (xt ,ut ) = N(mϕi (x,u), Sϕi (x,u)) + fprior

with an additive component fprior that is derived from first princi-
ples. We set the system parameters of the prior model with an error
of 20% (offset) compared to the actual system’s parameters of (1).

6 EXPERIMENTS
Our experimental evaluation is intended to give empirical evidence
that X-MPSC can certify the actions taken by an RL agent and that
the Assumptions 4.1–4.4 apply to typical RL problem settings. The
software implementation is published on GitHub and can be found
at: https://github.com/SvenGronauer/x-mpsc.

6.1 Environments
We tested X-MPSC on four tasks that differ in complexity and
dynamics. (1) Simple Pendulum (X ⊂ R2,U ⊂ R) describes a swing-
up task with restricted angle and input constraints. (2) In Cart
Pole (X ⊂ R4,U ⊂ R), the agent is supposed to balance the pole
in an upright position without violating cart position and pole
angle constraints. (3) Two-Link-Arm (X ⊂ R8,U ⊂ R2) is a two-
joint manipulator where a target point should be reached with
end-effector position limits. (4) The Drone (X ⊂ R12,U ⊂ R4)
environment describes the task to take off the ground and fly to
position [0, 0, 1]T with a restricted body angle. All environments
terminated early when state constraint violations occurred. We
denote the episodic reward as task performance while we refer to
the total number of constraint violations as safety performance.

6.2 Algorithm Setup
In general, X-MPSC can be combinedwith any RL algorithm. For our
experiments, we chose model-based policy optimization (MBPO)
proposed by Janner et al. [15] for two reasons. First, we can use the
NN ensemble for both planning with X-MPSC and for generating
short model-based rollouts to train the policy. Second, MBPO has
been shown to be more sample efficient than other RL algorithms,
which reduces the wall clock time since the computational bottle-
neck is finding a solution to (8). For training, we used an ensemble
size of M = 5, where each NN was implemented as a multi-layer
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Figure 3: Impact of X-MPSC hyper-parameters on safety and performance in Simple Pendulum.

perceptron (MLP) with two hidden layers. The actor-critics were
also MLPs with two hidden layers.

The optimization problem in (8) was solved with a primal-dual
interior point method, for which we used CasADi and the IPOPT
software library. Two relevant hyper-parameters of X-MPSC are the
delay factor δ and the horizon N , which depend on the character-
istics of the environment. We adjusted both hyper-parameters for
each environment individually. The feedback matrix K was hand-
tuned, and all matrix entries were set to 0.5 for all environments.
We expect that tuning this hyper-parameter individually for each
environment will reduce the number of constraint violations but
did not test this. An overview of all selected hyper-parameters can
be found in the Appendix at: https://arxiv.org/abs/2402.04182.

We collected for each task |D0 | = 8000 initial samples, which
equals less than three minutes of real-world experience on systems
with a 50Hz sampling rate. The safe backup controller used for
initial data collection is specific to the environment dynamics and
was implemented by a low-performing but stabilizing linear qua-
dratic regulator (LQR) or proportional–integral–derivative (PID)
controller. We compare our results with several baselines, namely
constrained policy optimization (CPO) [1], safety Q-functions for
RL (SQRL) [33], safety layer (SL) [11], Lyapunov barrier policy
optimization (LBPO) [31], and Lagrangian trust-region policy opti-
mization (Lag-TRPO). For SL and SQRL, we collected initial data
samples that deliberately contained safety violations to pre-train
their safety-aware functions.

6.3 Results
Figure 2 depicts the episodic reward as well as the total number of
constraint violations over the course of training for each algorithm
and environment. For each algorithm, we identified the best hyper-
parameter choice via a coarse grid search and report only the best
configuration. Each experiment was averaged over five independent
random seeds. Additionally, we report the performance of the safe
controller that was used to collect the initial data for X-MPSC. Note
that MBPO and SQRL converge faster due to their off-policy nature.

We observe that, even without using a prior model, X-MPSC can
significantly reduce constraint violations compared to the other
algorithms while achieving only a slightly worse final reward than
Lag-TRPO, the strongest baseline in terms of task performance.
The on-policy algorithms CPO, SL, and LBPO show less consistent
results across the experiments, with SL demonstrating comparable
performance to X-MPSC only in the Drone task. The off-policy
SQRL displays a good performance-safety ratio by learning poli-
cies with fewer violations than the other algorithms in most cases,
excluding X-MPSC. However, when an inaccurate prior model is
added to the NN ensemble, the total constraint violations with the
X-MPSC can be reduced by approximately an order of magnitude
without performance losses in terms of episodic reward.

6.4 Impact of Hyper-Parameters
We studied the impact of selected X-MPSC hyper-parameters on
performance and constraint violations in the Simple Pendulum task.
Since hyper-parameter settings can cross-correlate and influence
each other, we deliberately do not fix all hyper-parameters except
the one of interest to avoid cherry-picking good hyper-parameter
settings and distorting the general impact of the selected hyper-
parameter. Instead, we are interested in the average effect of the
hyper-parameter choice and, thus, measure the impact overmultiple
random seeds and various hyper-parameter settings. To this end,
we tested 54 different hyper-parameter configurations, where each
configuration was averaged over five independent trials.

Figure 3 shows each configuration in pale color, while the aver-
age of the selected hyper-parameter is shown as a solid line. The
plots indicate that a larger ensemble size results in fewer total con-
straint violations. Further, the usage of a coarse prior model can
reduce the number of constraint violations on average by one order
of magnitude. The delay factor regulates the speed of the termi-
nal set updates, with a higher factor diminishing the number of
violations at the expense of fewer cumulative rewards. Finally, a
longer predictive horizon N can accelerate the learning progress
but produces more costs.
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7 DISCUSSION
The results show that our proposed X-MPSC algorithm is able to
provide safe exploration when certain assumptions are fulfilled. We
discuss our experimental results based on those assumptions first
and then give reasons for the success or failure of X-MPSC. After
that, we discuss the most critical limitations of our method.

7.1 Discussion of Results
Safety. As shown in Figure 2, our method offers a better safety

operation in terms of constraint satisfaction, with the violations
kept at zero in the Simple Pendulum and nearly zero in the Drone
environment when prior knowledge is used. Note that the Cart
Pole task is particularly challenging since the starting pole upward
position is an unstable equilibrium point, and expanding the safe
set will rapidly reach states where the controller is not yet able
to stabilize it. X-MPSC was able to learn a safe policy faster, but
collecting the data necessary to approximate the dynamics model
around unstable regions is a challenge that remains unsolved.

Performance. A safety-performance trade-off is reflected in the
results. Slowly expanding the safe set and using ensembles based
on tube-based MPC, which ensures that all tubes are contained in
the safety constraints, result in a conservative system. X-MPSC’s
performance without prior model is relatively close to the best
baseline algorithms in the Cart Pole and Drone environments but
presents a more significant difference to Lag-TRPO in the other
two environments. When adding a prior dynamics model, we do
not only see a significant decrease in constraint violations, but
also slight improvements in terms of task reward in the Drone and
Two-Link-Arm environments. In the Simple Pendulum environ-
ment this increase was even more substantial. We argue that the
usage of a prior model leads to more accurate nominal trajectories,
which facilitates learning in terms of reward performance as well
as improved safety satisfaction capabilities.

7.2 Limitations of Our Method
In the remainder of this section, we list the limitations of the X-
MPSC algorithm, which are ordered from weak to strong. We see
these limitations as a starting point to be addressed in future work.

Conservatism. With a larger ensemble size, the safety certifica-
tion can lead to more conservative behavior since the constraints
imposed by every single dynamics model must be satisfied. As soon
as a single model deviates from the rest of the ensemble, the agent
is enforced to satisfy wrong constraints, and, hence, the set of fea-
sible actions is reduced, which can result in diminished reward
performance. With an increasing number of models, the safety
certification becomes safer but also more conservative.

Safe Backup Controller. Our algorithm only requires offline data
to be collected within the safe set to pre-train the ensemble and
estimate the initial safe and terminal sets. In contrast to our work,
related methods require offline data to contain mixed safe and
unsafe trajectories (e.g., SL [11], SQRL [33] and Recovery RL [35]),
which can be a limiting factor for the deployment on real-world
robots. In practice, the safe backup controller can be implemented
as a local control law that has low task performance but keeps the

system close to the initial state and within the safe set. The time
required to develop a safe backup controller largely depends on the
task and the robot dynamics. For CartPole and Simple Pendulum,
we used an LQR, while we used P-controllers for Drone and Two-
Link-Arm. Because a safe backup controller does not aim for good
task performance but only for stabilizing within a small region of
the state space, the design can be achieved with a few trial-and-
error attempts. Conversely, the design of a safe backup controller
with high reward performance can take considerably more time and
requires accurate prior knowledge about the robot system. X-MPSC
can be used, however, with relatively little prior knowledge about
the system and can thus offer an approach to safely learn about the
system while being able to improve task performance.

Accurate Dynamics Model. The access to an accurate model is a
strong assumption since the model is only a good approximation
in regions where data samples are available. Through the termi-
nal set constraint, we naturally limit the exploration of the state
space since the terminal set must be reached within N steps and,
hence, force the agent to stay close to regions where data exists.
Incorporating prior models helped significantly reduce the number
of constraint violations, although we only used inaccurate models
with parameters deviating by 20% from the ground-truth.

Computation Time. The bottleneck in the training loop is finding
a solution to (8). The X-MPSC problem has cubic computational
complexity, i.e., O (

N 3(nx + nu + nc )3
)
with N being the predic-

tive horizon and nx ,nu ,nc being the dimensions of the state, action
spaces and number of constraints, respectively. Note that the com-
putational complexity grows linearly with the ensemble sizeM and
quadratically with the number of neurons in each layer. Thus, we
use at most 20 neurons in the hidden layers of the NNs. Further-
more, the estimation of the safe set involves the computation of the
convex hull, which also grows with the number of state constraints.
Thus, we limited the number of constrained state space variables
to two, e.g., position and velocity.

8 CONCLUSION
We proposed X-MPSC, a novel algorithm that integrates an en-
semble of NNs and tube-based MPC into nominal MPSC to correct
the actions taken by an RL agent. To provide safe exploration, we
utilized an ensemble of probabilistic NNs trained on sampled envi-
ronment data to plan multiple tube-based trajectories that satisfy a
priori defined safety constraints. The experimental results demon-
strate that our method can achieve significantly fewer constraint
violations than comparable RL methods, requiring only offline data
with safe trajectories. When an inaccurate prior dynamics model is
added to the NN ensemble, the constraint violations can be reduced
by an order of magnitude without forfeiting reward performance.

Although the results indicate an improvement over other state-
of-the-art algorithms, the scalability to higher dimensional state-
action spaces and larger NN models remains a research frontier.
Future work may improve upon the computational speed of solving
the X-MPSC problem such that it can be implemented on a real
robot or applied to high-dimensional tasks, as presented in the
Safety Gym [29] or Bullet Safety Gym [14].
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Abstract

The advances in reinforcement learning have recorded sublime success in
various domains. Although the multi-agent domain has been overshadowed by
its single-agent counterpart during this progress, multi-agent reinforcement
learning gains rapid traction, and the latest accomplishments address problems
with real-world complexity. This article provides an overview of the current
developments in the field of multi-agent deep reinforcement learning. We focus
primarily on literature from recent years that combines deep reinforcement
learning methods with a multi-agent scenario. To survey the works that
constitute the contemporary landscape, the contents are divided into three
parts. First, we analyze the structure of training schemes that are applied
to train multiple agents. Second, we consider the emergent patterns of
agent behavior in cooperative, competitive and mixed scenarios. Third, we
systematically enumerate challenges that exclusively arise in the multi-agent
domain and review methods that are leveraged to cope with these challenges.
To conclude this survey, we discuss advances, identify trends, and outline
possible directions for future work in this research area.
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Abstract
The advances in reinforcement learning have recorded sublime success in various domains. 
Although the multi-agent domain has been overshadowed by its single-agent counterpart 
during this progress, multi-agent reinforcement learning gains rapid traction, and the latest 
accomplishments address problems with real-world complexity. This article provides an 
overview of the current developments in the field of multi-agent deep reinforcement learn-
ing. We focus primarily on literature from recent years that combines deep reinforcement 
learning methods with a multi-agent scenario. To survey the works that constitute the con-
temporary landscape, the main contents are divided into three parts. First, we analyze the 
structure of training schemes that are applied to train multiple agents. Second, we consider 
the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. 
Third, we systematically enumerate challenges that exclusively arise in the multi-agent 
domain and review methods that are leveraged to cope with these challenges. To conclude 
this survey, we discuss advances, identify trends, and outline possible directions for future 
work in this research area.

Keywords  Multi-agent systems · Multi-agent learning · Machine learning · Reinforcement 
learning · Deep learning · Survey

1  Introduction

A multi-agent system describes multiple distributed entities—so-called agents—which 
take decisions autonomously and interact within a shared environment (Weiss 1999). Each 
agent seeks to accomplish an assigned goal for which a broad set of skills might be required 
to build intelligent behavior. Depending on the task, an intricate interplay between agents 
can occur such that agents start to collaborate or act competitively to excel opponents. 
Specifying intelligent behavior a-priori through programming is a tough, if not impossible, 
task for complex systems. Therefore, agents require the ability to adapt and learn over time 
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by themselves. The most common framework to address learning in an interactive environ-
ment is reinforcement learning (RL), which describes the change of behavior through a 
trial-and-error approach.

The field of reinforcement learning is currently thriving. Since the breakthrough of 
deep learning methods, works have been successful at mastering complex control tasks, 
e.g. in robotics (Levine et al. 2016; Lillicrap et al. 2016) and game playing (Mnih et al. 
2015; Silver et  al. 2016). The key to these results is based on learning techniques that 
employ neural networks as function approximators (Arulkumaran et  al. 2017). Despite 
these achievements, the majority of works investigated single-agent settings only, although 
many real-world applications naturally comprise multiple decision-makers that interact at 
the same time. The areas of application encompass the coordination of distributed systems 
(Cao et al. 2013; Wang et al. 2016b) such as autonomous vehicles (Shalev-Shwartz et al. 
2016) and multi-robot control (Matignon et  al. 2012a), the networking of communica-
tion packages (Luong et al. 2019), or the trading on financial markets (Lux and Marchesi 
1999). In these systems, each agent discovers a strategy alongside other entities in a com-
mon environment and adapts its policy in response to the behavioral changes of others. 
Carried by the advances of single-agent deep RL, the multi-agent reinforcement learning 
(MARL) community has been surged with new interest and a plethora of literature has 
emerged lately (Hernandez-Leal et al. 2019; Nguyen et al. 2020). The use of deep learning 
methods enabled the community to exceed the historically investigated tabular problems 
to challenging problems with real-world complexity (Baker et al. 2020; Berner et al. 2019; 
Jaderberg et al. 2019; Vinyals et al. 2019).

In this paper, we provide an extensive review of the recent advances in the area of multi-
agent deep reinforcement learning (MADRL). Although multi-agent systems enjoy a rich 
history (Busoniu et al. 2008; Shoham et al. 2003; Stone and Veloso 2000; Tuyls and Weiss 
2012), this survey aims to shed light on the contemporary landscape of the literature in 
MADRL.

1.1 � Related work

The intersection of multi-agent systems and reinforcement learning holds a long record of 
active research. As one of the first surveys in the field, Stone and Veloso (2000) analyzed 
multi-agent systems from a machine learning perspective and classified the reviewed lit-
erature according to heterogeneous and homogeneous agent structures as well as commu-
nication skills. The authors discussed issues associated with each classification. Shoham 
et al. (2003) criticized the ill-posed problem statement of MARL which is in the authors’ 
opinion unclear and called for more grounded research. They proposed a coherent research 
agenda which includes four directions for future research. Yang and Gu (2004) reviewed 
algorithms and pointed out that the main difficulty lies in the generalization to continuous 
action and state spaces and in the scaling to many agents. Similarly, Busoniu et al. (2008) 
presented selected algorithms and discussed benefits as well as challenges of MARL. Ben-
efits include computational speed-ups and the possibility of experience sharing between 
agents. In contrast, drawbacks are the specification of meaningful goals, the non-station-
arity of the environment, and the need for coherent coordination in cooperative games. In 
addition to that, they posed challenges such as the exponential increase of computational 
complexity with the number of agents and the alter-exploration problem where agents must 
gauge between the acquisition of new knowledge and the exploitation of current knowl-
edge. More specifically, Matignon et al. (2012b) identified challenges for the coordination 
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of independent learners that arise in fully cooperative Markov Games such as non-station-
arity, stochasticity, and shadowed equilibria. Further, they analyzed conditions under which 
algorithms can address such coordination issues. Another work by Tuyls and Weiss (2012) 
accounted for the historical developments of MARL and evoked non-technical challenges. 
They criticized that the intersection of RL techniques and game theory dominates multi-
agent learning, which may render the scope of the field too narrow and investigations are 
limited to simplistic problems such as grid worlds. They claimed that the scalability to 
high numbers of agents and large and continuous spaces are the holy grail of this research 
domain.

Since the advent of deep learning methods and the breakthrough of deep RL, the field 
of MARL has attained new interest and a plethora of literature has emerged during the last 
years. Nguyen et al. (2020) presented five technical challenges including nonstationarity, 
partial observability, continuous spaces, training schemes, and transfer learning. They dis-
cussed possible solution approaches alongside their practical applications. Hernandez-Leal 
et al. (2019) concentrated on four categories including the analysis of emergent behaviors, 
learning communication, learning cooperation, and agent modeling. Further survey litera-
ture focuses on one particular sub-field of MADRL. Oroojlooyjadid and Hajinezhad (2019) 
reviewed recent works in the cooperative setting while Da  Silva and Costa (2019) and 
Da Silva et al. (2019) focused on knowledge reuse. Lazaridou and Baroni (2020) reviewed 
the emergence of language and connected two perspectives, which comprise the conditions 
under which language evolves in communities and the ability to solve problems through 
dynamic communication. Based on theoretical analysis, Zhang et  al. (2019) focused on 
MARL algorithms and presented challenges from a mathematical perspective.

1.2 � Contribution and survey structure

The contribution of this paper is to present a comprehensive survey of the recent research 
directions pursued in the field of MADRL. We depict a holistic overview of current chal-
lenges that arise exclusively in the multi-agent domain of deep RL and discuss state-of-the-
art solutions that were proposed to address these challenges. In contrast to the surveys of 
Hernandez-Leal et al. (2019) and Nguyen et al. (2020), which focus on a subset of topics, 
we aim to provide a widened and more comprehensive overview of the current investiga-
tions conducted in the field of MADRL while recapitulating what has already been accom-
plished. We identify contemporary challenges and discuss literature that addresses such. 
We see our work complementary to the theoretical survey of Zhang et al. (2019).

We dedicate this paper to an audience who wants an excursion to the realm of MADRL. 
Readers shall gain insights about the historical roots of this still young field and its current 
developments, but also understand the open problems to be faced by future research. The 
contents of this paper are organized as follows. We begin with a formal introduction to 
both single-agent and multi-agent RL and reveal pathologies that are present in MARL in 
Sect. 2. We then continue with the main contents, which are categorized according to the 
three-fold taxonomy as illustrated in Fig. 1.

We analyze training architectures in Sect. 3, where we categorize approaches accord-
ing to a centralized or distributed training paradigm and additionally differentiate into 
execution schemes. Thereafter, we review literature that investigates emergent pat-
terns of agent behavior in Sect. 4. We classify works in terms of the reward structure 
(Sect.  4.1), the language between multiple agents (Sect.  4.2), and the social context 
(Sect.  4.3). In Sect.  5, we enumerate current challenges of the multi-agent domain, 
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which include the non-stationarity of the environment due to simultaneously adapting 
learners (Sect.  5.1), the learning of meaningful communication protocols in coopera-
tive tasks (Sect. 5.2), the need for coherent coordination of agent actions (Sect. 5.3), the 
credit assignment problem (Sect.  5.4), the ability to scale to an arbitrary number of 
decision-makers (Sect.  5.5), and non-Markovian environments due to partial observa-
tions (Sect.  5.6). We discuss the matter of MADRL, pose trends that we identified in 
recent literature, and outline possible future work in Sect.  6. Finally, this survey con-
cludes in Sect. 7.

Sect. 3

Agent 1 Agent N

Environment

Centralized

Distributed

Training Paradigm Execution Scheme

Centralized

Decentralized

Sect. 5

Sect. 4

Communication

Coordination

Partial Observability

Non-Stationarity

Emergent Patterns of
Agent Behavior

Credit Assignment

Scaling

Fig. 1   Schematic structure of the main contents in this survey. In Sect.  3, we review schemes that are 
applied to train agent behavior in the multi-agent setting. The training of agents can be divided into two 
paradigms which are namely distributed (Sect. 3.1) and centralized (Sect. 3.2). In Sect. 4, we consider the 
emergent patterns of agent behavior with respect to the reward structure (Sect. 4.1), the language (Sect. 4.2) 
and the social context (Sect. 4.3). In Sect. 5, we enumerate current challenges of MADRL which include 
the non-stationarity of the environment due to co-adapting agents (Sect. 5.1), the learning of communica-
tion (Sect. 5.2), the need for a coherent coordination of actions (Sect. 5.3), the credit assignment problem 
(Sect. 5.4), the ability to scale to an arbitrary number of decision-makers (Sect. 5.5), and non-Markovian 
environments due to partial observations (Sect. 5.6)
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2 � Background

In this section, we provide a formal introduction into the concepts of RL. We start with 
the Markov decision process as a framework for single-agent learning in Sect.  2.1. We 
continue with the multi-agent case and introduce the Markov Game in Sect. 2.2. Finally, 
we pose pathologies that arise in the multi-agent domain such as the non-stationarity of 
the environment from the perspective of a single learner, relative over-generalization, and 
the credit assignment problem in Sect. 2.3. We provide the formal concepts behind these 
MARL pathologies in order to drive our discussion about the state-of-the-art approaches in 
Sect. 5. The scope of this background section is deliberately focusing on classical MARL 
works to reveal the roots of the domain and to give the reader insights into the early works 
on which modern MADRL approaches rest.

2.1 � Single‑agent reinforcement learning

The traditional reinforcement learning problem (Sutton and Barto 1998) is concerned 
with learning a control policy that optimizes a numerical performance by making deci-
sions in stages. The decision-maker called agent interacts with an environment of unknown 
dynamics in a trial-and-error fashion and occasionally receives feedback upon which the 
agent wants to improve. The standard formulation for such sequential decision-making is 
the Markov decision process, which is defined as follows (Bellman 1957; Bertsekas 2012, 
2017; Kaelbling et al. 1996).

Definition 1  Markov decision process (MDP) A Markov decision process is formalized 
by the tuple (X,U,P,R, �) where X  and U  are the state and action space, respectively, 
P ∶ X ×U → P(X) is the transition function describing the probability of a state transi-
tion, R ∶ X ×U ×X → ℝ is the reward function providing an immediate feedback to the 
agent, and � ∈ [0, 1) describes the discount factor.

The agent’s goal is to act in such a way as to maximize the expected performance on 
a long-term perspective with regard to an unknown transition function P . Therefore, the 
agent learns a behavior policy � ∶ X → P(U) that optimizes the expected performance 
J throughout learning. The performance is defined as the expected value of discounted 
rewards

 over the initial state distribution �0 while selected actions are governed by the policy � . 
Here, we regard the infinite-horizon problem where the interaction between agent and 
environment does not terminate after a countable number of steps. Note that the learning 
objective can also be formalized for finite-horizon problems (Bertsekas 2012, 2017). As an 
alternative to the policy performance, which describes the expected performance as a func-
tion of the policy, one can define the utility of being in a particular state in terms of a value 
function. The state-value function V� ∶ X → ℝ describes the utility under policy � when 
starting from state x, i.e.

(1)J = �x0∼�0, xt+1∼P, ut∼�

[
∞∑
t=0

� tR(xt, ut, xt+1)
]
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 In a similar manner, the action-value function Q� ∶ X ×U → ℝ describes the utility of 
being in state x, performing action u, and following the policy � thereafter, that is

 In the context of deep reinforcement learning, either the policy, a value function or both 
are represented by neural networks.

2.2 � Multi‑agent reinforcement learning

When the sequential decision-making is extended to multiple agents, Markov Games1 are 
commonly applied as framework. The Markov Game was originally introduced by Littman 
(1994) to generalize MDPs to multiple agents that simultaneously interact within a shared 
environment and possibly with each other. The definition is formalized in a discrete-time 
setting and is denoted as follows (Littman 1994).

Definition 2  Markov Games (MG) The Markov Game is an extension to the MDP and 
is formalized by the tuple 

(
N,X, {Ui},P, {Ri}, �

)
 , where N = {1,… ,N} denotes the set 

of N > 1 interacting agents and X  is the set of states observed by all agents. The joint 
action space is denoted by U = U

1 ×⋯ ×U
N which is the collection of individual action 

spaces from agents i ∈ N  . The transition probability function P ∶ X ×U → P(X) 
describes the chance of a state transition. Each agent owns an associated reward func-
tion Ri ∶ X ×U ×X → ℝ that provides an immediate feedback signal. Finally, � ∈ [0, 1) 
describes the discount factor.

At stage t, each agent i ∈ N  selects and executes an action depending on the indi-
vidual policy �i ∶ X → P(Ui) . The system evolves from state xt under the joint action ut 
with respect to the transition probability function P to the next state xt+1 while each agent 
receives Ri as immediate feedback to the state transition. Akin to the single-agent problem, 
the aim of each agent is to change  its policy in such a way as to optimize the received 
rewards on a long-term perspective.

A special case of the MG is the stateless setting X = � called strategic-form game2. 
Strategic-form games describe one-shot interactions where all agents simultaneously 
execute an action and receive a reward based on the joint action after which the game 
ends. Significant progress within the  MARL community  has been accomplished by 
studying this simplified stateless setting, which  is still under active research to cope 
with several pathologies as discussed later in this section. These games are also known 

(2)V�(x) = �xt+1∼P, ut∼�

[
∞∑

t=0

� tR(xt, ut, xt+1) ∣ x0 = x

]
.

(3)Q𝜋(x, u) = �xt+1∼P, ut>0∼𝜋

[ ∞∑

t=0

𝛾 tR(xt, ut, xt+1) ∣ x0 = x, u0 = u

]
.

1  Markov games are also known as Stochastic Games (Shapley 1953), but we continue to use the term 
Markov Game to draw a clear distinction between deterministic Markov Games and stochastic Markov 
Games.
2  The strategic-form game is also known as matrix game or normal-form game. The most commonly stud-
ied strategic-form game is the one with N = 2 players, the so-called bi-matrix game.
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as matrix games because the reward function is represented by an N × N matrix. The 
formalism which extends to multi-step sequential stages is called extensive-form game.

In contrast to the single-agent case, the value function Vi ∶ X → ℝ does not only 
depend on the individual policy of agent i but also on the policies of other agents, i.e. 
the value function for agent i is the expected sum

 when the agents behave according to the joint policy � . We  denote the joint policy 
� ∶ X → P(U) as the collection of all individual policies, i.e. � = {�1,… ,�N} . Further, 
we make use of the convention that −i denotes all agents except i, meaning for policies that 
�−i = {�1,… ,�i−1,�i+1,… ,�N}.

The optimal policy is determined by the individual policy and the other agents’ strat-
egies. However, when other agents’ policies are fixed, the agent i can maximize its own 
utility by finding the best response �i

∗
 with respect to the other agents’ strategies.

Definition 3  Best response The agent’s i best response �i
∗
∈ Πi to the joint policy �−i of 

other agents is

for all states x ∈ X  and policies �i ∈ Πi.

In general, when all agents learn simultaneously, the found best response may not be 
unique (Shoham and Leyton-Brown 2008). The concept of best response can be leveraged 
to describe the most influential solution concept from game theory: the Nash equilibrium.

Definition 4  Nash equilibrium A solution where each agent’s policy �∗
i
 is the best 

response to the other agents’ policy �−i
∗

 such that the following inequality

holds true for all states x ∈ X  and all policies �i ∈ Πi ∀i is called Nash equilibrium.

Intuitively spoken, a Nash equilibrium is a solution where one agent cannot improve 
when the policies of other agents are fixed, that is no agent can improve by unilaterally 
deviating from �∗ . However, a Nash equilibrium may not be unique. Thus, the concept 
of Pareto-optimality might be useful (Matignon et al. 2012b).

Definition 5  Pareto-optimality A joint policy � Pareto-dominates a second joint policy �̂ 
if and only if

A Nash equilibrium is regarded to be Pareto-optimal if no other has greater value 
and, thus, is not Pareto-dominated.

Classical MARL literature can be categorized according to different features, such as 
the type of task and the information available to agents. In the remainder of this section, 

(4)Vi

�i,�−i (x) = �xt+1∼P,ut∼�

[
∞∑

t=0

� tRi(xt, ut, xt+1) ∣ x0 = x

]

Vi

�i
∗
,�−i (x) ≥ Vi

�i ,�−i (x)

Vi

�i
∗
,�−i

∗

(x) ≥ Vi

�i,�−i
∗

(x)

Vi
�(x) ≥ Vi

�̂(x) ∀i, ∀x ∈ X and Vj
�(x) > V

j

�̂(x) ∃j, ∃ x ∈ X.
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we introduce MARL concepts based on the taxonomy proposed in Busoniu et al. (2008). 
For one, the primary factor that influences the learned agent behavior is the type of task. 
Whether agents compete or cooperate is promoted by the designed reward structure.

(1) Fully cooperative setting All agents receive the same reward R = Ri = ⋯ = RN for 
state transitions. In such an equally-shared reward setting, agents are motivated to col-
laborate and try to avoid the failure of an individual to maximize the performance of the 
team. More generally, we talk about cooperative settings when agents are encouraged to 
collaborate but do not own an equally-shared reward.

(2) Fully competitive setting Such problem is described as a zero-sum 
Markov Game where the sum of rewards equals zero for any state transition, i.e. 
R =

∑N

i=1
Ri(x, u, x�) = 0 . Agents are prudent to maximize their own individual reward 

while minimizing the reward of the others. In a loose sense, we refer to competitive 
games when agents are encouraged to excel against opponents, but the sum of rewards 
does not equal zero.

(3) Mixed setting Also known as general-sum game, the mixed setting is neither fully 
cooperative nor fully competitive and, thus, does not incorporate restrictions on agent 
goals.

Beside the reward structure, other taxonomy may be used to differentiate between the 
information available to the agents. Claus and Boutilier (1998) distinguished between 
two types of learning, namely independent learners and joint-action learners. The former 
ignores the existence of other agents and cannot observe the rewards and selected actions 
of others as considered  in Bowling and Veloso (2002) and Lauer and Riedmiller (2000). 
Joint-action learners, however, observe the taken actions of all other actions a-posteriori as 
shown in Hu and Wellman (2003) and Littman (2001).

2.3 � Formal introduction to multi‑agent challenges

In the single-agent formalism, the agent is the only decision-instance that influences  the 
state of the environment. State transitions can be clearly attributed to the agent, whereas 
everything outside the agent’s field of impact is regarded as part of the underlying system 
dynamics. Even though the environment may be stochastic, the learning problem remains 
stationary.

On the contrary, one of the fundamental problems in the multi-agent domain is that 
agents update their policies during the learning process simultaneously, such that the envi-
ronment appears non-stationary from the perspective of a single agent. Hence, the Markov 
assumption of an MDP no longer holds, and agents face—without further treatment—a 
moving target problem (Busoniu et al. 2008; Yang and Gu 2004).

Definition 6  Non-stationarity A single agent faces a moving target problem when the 
transition probability function changes

 due to the co-adaption 𝜋i ≠ 𝜋̄i ∃ i ∈ N  of agents.

Above, we have introduced the Nash equilibrium as a solution concept where each 
agent’s policy is the best response to the others. However, it has been shown that agents can 
converge, despite a high degree of randomness in action selection, to sub-optimal solutions 

P(x� | x, u,𝜋1,… ,𝜋N) ≠ P(x� | x, u, 𝜋̄1,… , 𝜋̄N),
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or can get stuck between different solutions (Wiegand 2004). Fulda and Ventura (2007) 
investigated such convergence to solutions and described a Pareto-selection problem called 
shadowed equilibrium.

Definition 7  Shadowed equilibrium A joint policy �̄ is shadowed by another joint policy 
�̂ in a state x if and only if

An equilibrium is shadowed by another when at least one agent exists who, when uni-
laterally deviating from �̄ , will see no better improvement than for deviating from �̂ (Mat-
ignon et al. 2012b). As a form of shadowed equilibrium, the pathology of relative over-
generalization describes that a sub-optimal Nash equilibrium in the joint action space is 
preferred over an optimal solution. This phenomenon arises since each agent’s policy per-
forms relatively well when paired with arbitrary actions from other agents (Panait et  al. 
2006; Wei and Luke 2016; Wiegand 2004).

In a Markov Game, we assumed that each agent observes a state x, which encodes all 
necessary information about the world. However for complex systems, complete infor-
mation might not be perceivable. In such partially observable settings, the agents do not 
observe  the whole state space but merely a subset Oi

⊂ X  . Hence, the agents are con-
fronted to deal with sequential decision-making under uncertainty. The partially observable 
Markov Game (Hansen et al. 2004) is the generalization of both MG and MDP.

Definition 8  Partially observable Markov Games (POMG) The POMG is mathemati-
cally denoted by the tuple 

(
N,X, {Ui}, {Oi},P, {Ri}, �

)
 , where N = {1,… ,N} denotes 

the set of N > 1 interacting agents, X  is the set of global but unobserved system states, and 
U  is the set of individual action spaces Ui . The observation space O denotes the collection 
of individual observation spaces Oi . The transition probability function is denoted by P , 
the reward function associated with agent i by Ri , and the discount factor is �.

When agents face a cooperative task with a shared reward function, the POMG is then 
known as decentralized Partially Observable Markov decision process (dec-POMDP) 
(Bernstein et  al. 2002; Oliehoek and Amato 2016). In partially observable domains, the 
inference of good policies is extended in complexity since the history of interactions 
becomes meaningful. Hence, the agents usually incorporate history-dependent policies 
𝜋i
t
∶ {Oi}t>0 → P(Ui) , which map from a history of observations to a distribution over 

actions.

Definition 9  Credit assignment problem In the fully-cooperative setting with joint reward 
signals, an individual agent cannot conclude the impact of its own action towards the 
team’s success and, thus, faces a credit assignment problem.

In cooperative games, agents are encouraged to maximize a common goal through a 
joint reward signal. However, agents cannot ascertain their contribution to the eventual 
reward when they do not experience the taken joint action or deal with partial observa-
tions. Associating rewards to agents is known as the credit assignment problem (Chang 
et al. 2004; Weiß 1995; Wolpert and Tumer 1999).

(5)V𝜋i ,�̄−i (x) < min
j,𝜋j

V𝜋j ,�̂
−j (x) ∃ i,𝜋i.
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Some of the above-introduced pathologies occur in all cooperative, competitive, and 
mixed tasks, whereas some pathologies like relative over-generalization, credit assign-
ment, and miss-coordination are predominant issues in cooperative settings. To cope with 
these pathologies, still commonly studied settings are tabular worlds such as variations of 
the climbing game where solutions are not yet found, e.g. when the environment exhib-
its reward stochasticity (Claus and Boutilier 1998). Thus, simple worlds remain a fertile 
ground for further research, especially for problems like shadowed equilibria, non-sta-
tionarity or alter-exploration problems3 and continue to matter for modern deep learning 
approaches.

3 � Analysis of training schemes

The training of multiple agents has long been a computational challenge (Becker et  al. 
2004; Nair et al. 2003). Since the complexity in the state and action space grows exponen-
tially with the number of agents, even modern deep learning approaches may reach their 
limits. In this section, we describe training schemes that are used in practice for learning 
agent policies in the multi-agent setting similar to the ones described in Bono et al. (2019). 
We denote training as the process during which agents acquire data to build up experience 
and optimize their behavior with respect to the received reward signals. In contrast, we 
refer test time4 to the step after the training when the learned policy is evaluated but is no 
further refined. The training of agents can be broadly divided into two paradigms, namely 
centralized and distributed (Weiß 1995). If the training of agents is applied in a centralized 
manner, policies are updated based on the mutual exchange of information during the train-
ing. This additional information is then usually removed at test time. In contrast to the cen-
tralized scheme, the training can also be handled in a distributed fashion where each agent 
performs updates on its own and develops an individual policy without utilizing foreign 
information.

In addition to the training paradigm, agents may deviate in the way of how they select 
actions. We recognize two execution schemes. Centralized execution describes that agents 
are guided from a centralized unit, which computes the joint actions for all agents. On 
the contrary, agents determine actions according to their individual policy for decentralized 
execution. An overview of the training schemes is depicted in Fig. 2 while Table 1 lists the 
reviewed literature of this section.

3.1 � Distributed training

In distributed training schemes, agents learn independently of other agents and do not 
rely on explicit information exchange.

4  Note that test and execution time are often used interchangeably in recent literature. For clarity, we use 
the term test for the post-training evaluation and the term execution for the action selection with respect to 
some policy.

3  The alter-exploration dilemma, also known as the exploration-exploitation problem, describes the trade-
off an agent faces to decide whether to choose actions that extend experience or take decisions that are 
already optimal according to the current knowledge.
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Definition 10  Distributed training decentralized execution (DTDE) Each agent i has an 
associated policy �i ∶ O

i
→ P(Ui) which maps local observations to a distribution over 

individual actions. No information is shared between agents such that each agent learns 
independently.

The fundamental drawback of the DTDE paradigm is that the environment appears 
non-stationary from a single agent’s viewpoint because agents neither have access to 
the knowledge of others, nor do they perceive the joint action. The first approaches in 
this training scheme were studied in tabular worlds. The work by Tan (1993) investi-
gated the question if independently learning agents can match with cooperating agents. 
The results showed that independent learners learn slower in tabular and deterministic 
worlds. Based on that, Claus and Boutilier (1998) examined both independent and joint-
action learners in cooperative stochastic-form games and empirically showed that both 
types of learning can converge to an equilibrium in deterministic games. Subsequent 
works elaborated on the DTDE scheme in discretized worlds (Hu and Wellman 1998; 
Lauer and Riedmiller 2000).

More recent works report that distributed training schemes  scale poorly with the 
number of agents due to the extra sample complexity, which is added to the learning 
problem. Gupta et al. (2017) showed that distributed methods have inferior performance 
compared to policies that are trained with a centralized training paradigm. Similarly, 
Foerster et  al. (2018b) showed that the speed of independently learning actor-critic 
methods is slower than using  centralized training. In further works, DTDE has been 
applied to cooperative navigation tasks (Chen et al. 2016; Strouse et al. 2018), to par-
tially observable  domains (Dobbe et  al. 2017; Nguyen et  al. 2017b; Srinivasan et  al. 
2018), and to social dilemmas (Leibo et al. 2017).

Due to  limited information in the distributed setting, independent learners are con-
fronted with several pathologies (Matignon et al. 2012b). Besides non-stationarity, envi-
ronments may exhibit stochastic transitions or stochastic rewards, which further compli-
cates learning. In addition to that, the search for an optimal policy influences the other 
agents’ decision-making, which may lead to action shadowing and impacts the balance 
between exploration and knowledge exploitation.

A line of recent works expands independent learners with techniques to cope with 
the aforementioned MARL pathologies in cooperative domains. First, Omidshafiei et  al. 
(2017) introduced a decentralized experience replay extension called Concurrent Experi-
ence Replay Trajectories (CERT) that enables independent learners to face a cooperative 

Env EnvEnv

Agent 1 Agent N Agent 1 Agent N Agent 1 Agent N

Information

Update
Update

UpdateUpdate Update

Fig. 2   Training schemes in the multi-agent setting. (Left) CTCE holds a joint policy for all agents. (Middle) 
Each agent updates its own individual policy in DTDE. (Right) CTDE enables agents to exchange addi-
tional information during training which is then discarded at test time
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and partially observable setting by rendering samples more stable and efficient. Similarly, 
Palmer et  al. (2018) extended the experience replay of Deep Q-Networks with leniency, 
which associates stored state-action pairs with decaying temperature values that govern 
the amount of applied leniency. They showed that this induces optimism in value func-
tion updates and can overcome relative over-generalization. Another work by Palmer et al. 
(2019) proposed negative update intervals double-DQN as an mechanism that identifies 
and removes generated data from the replay buffer that  leads to mis-coordination. Alike, 
Lyu and Amato 2020 proposed decentralized quantile estimators which identify non-sta-
tionary transition samples based on the likelihood of returns. Another work that aims to 
improve upon independent learners can be found in Zheng et  al. (2018a) who used two 
auxiliary mechanisms, including a lenient reward approximation and a prioritized replay 
strategy.

A different research direction can be seen in  distributed population-based training 
schemes where agents are optimized through an online evolutionary process such that 
under-performing agents are substituted by mutated versions of better agents (Jaderberg 
et al. 2019; Liu et al. 2019).

3.2 � Centralized training

The centralized training paradigm describes agent policies that are updated based on 
mutual information. While the sharing of mutual information between agents is enabled 
during the training, this additional information is then discarded at test time. The central-
ized training can be further differentiated into the centralized and decentralized execution 
scheme.

Definition 11  Centralized training centralized execution (CTCE) The CTCE scheme 
describes a centralized executor � ∶ O → P(U) modeling the joint policy that maps the 
collection of distributed observations to a set of distributions over individual actions.

Some applications assume an unconstrained and instantaneous information exchange 
between agents. In such a setting, a centralized executor can be leveraged to learn the 
joint policy for all agents. The CTCE paradigm allows the straightforward employment 
of single-agent training methods such as actor-critics (Mnih et al. 2016) or policy gradi-
ent algorithms (Schulman et  al. 2017) to multi-agent problems. An obvious flaw is that 
state-action spaces grow exponentially by the number of agents. To address the so-called 
curse of dimensionality, the joint model can be factored into individual policies for each 
agent. Gupta et al. (2017) represented the centralized executor as a set of independent sub-
policies such that agents’ individual action distributions are captured rather than the joint 
action distribution of all agents, i.e. the joint action distribution P(U) =

∏
i P(U

i) is fac-
tored into independent action distributions. Next to the policy, the value function can be 
factored so that the joint value is decomposed into a sum of local value functions, e.g. the 
joint action-value function can be expressed by Q�(o

1,… , oN , u1,… , un) =
∑

i Q
i
�
(oi, ui) as 

shown in Russell and Zimdars (2003). A recent approach for the value function factoriza-
tion is investigated in Sunehag et al. (2018). However, a phenomenon called lazy agents 
may occur in the CTCE setting when one agent learns a good policy but a second agent has 
less incentive to learn a good policy, as his actions may hinder the first agent, resulting in a 
lower reward (Sunehag et al. 2018).
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Although CTCE regards the learning problem as a single-agent case, we include the 
paradigm in this paper because the training schemes presented in the subsequent sec-
tions occasionally use CTCE as performance baseline and conduct comparisons.

Definition 12  Centralized training decentralized execution (CTDE) Each agent i holds 
an individual policy �i ∶ O

i
→ P(Ui) which maps local observations to a distribution over 

individual actions. During training, agents are endowed with additional information, which 
is then discarded at test time.

The CTDE paradigm presents the state-of-the-art practice for learning with multiple 
agents (Kraemer and Banerjee 2016; Oliehoek et al. 2008). In classical MARL, such set-
ting was utilized as joint action learners which has the advantage that perceiving joint 
actions a-posteriori discards the non-stationarity in the environment (Claus and Boutilier 
1998). As of late, CTDE has been successful in MADRL approaches (Foerster et al. 2016; 
Jorge et  al. 2016). Agents utilize shared computational facilities or other forms of com-
munication to exchange information during training. By sharing mutual information, the 
training process can be eased and the learning speed can become superior when matched 
against independently trained agents (Foerster et al. 2018b). Moreover, agents can bypass 
non-stationarity when extra information about the selected actions is available to all agents 
during training such that the consequences of actions can be attributed to the respective 
agents. In what follows, we classify the CTDE literature according to the agent structure.

Homogeneous agents exhibit a common structure or the same set of skills, e.g. the same 
learning model or share common goals. Owning the same structure, agents can share parts 
of their learning model or experience with other agents. These approaches can scale well 
with the number of agents and may allow an efficient learning of behaviors. Gupta et al. 
(2017) showed that policies based on parameter sharing can be trained more efficiently 
and, thus, can outperform independently learned ones. Although agents own the same 
policy network, different agent behaviors can emerge because each agent perceives differ-
ent observations at test time. It has been thoroughly demonstrated that parameter sharing 
can help to accelerate the learning progress (Ahilan and Dayan 2019; Chu and Ye 2017; 
Peng et  al. 2017; Sukhbaatar et  al. 2016; Sunehag et  al. 2018). Next to parameter shar-
ing, homogeneous agents can employ value-based methods where an approximation of the 
value function is learned based on mutual information. Agents profit from the joint actions 
and other agents’ policies that are available during training and incorporate this extra infor-
mation into centralized value functions (Foerster et al. 2016; Jorge et al. 2016). Such infor-
mation is then discarded at test time. Many approaches consider the decomposition of a 
joint value function into combinations of individual value functions (Castellini et al. 2019; 
Rashid et al. 2018; Son et al. 2019; Sunehag et al. 2018). Through decomposition, each 
agent faces a simplified sub-problem of the original problem. Sunehag et al. (2018) showed 
that agents learning on local sub-problems scale better with the number of agents than 
CTCE or independent learners. We elaborate on value function-based factorization more 
detailed in Sect. 5.4 as an effective approach to tackle credit assignment problems.

Heterogeneous agents, on the contrary, differ in structure and skill. An instance for het-
erogeneous policies can be seen in the extension of an actor-critic approach with a cen-
tralized critic, which allows information sharing to amplify the performance of individual 
agent policies. These methods can be distinguished from each other based on the repre-
sentation of the critic. Lowe et al. (2017) utilized one centralized critic for each agent that 
is augmented with additional information during training. The critics are provided with 
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information about every agent’s policy, whereas the actors perceive only local observa-
tions. As a result, the agents do not depend on explicit communication and can overcome 
the non-stationarity in the environment. Likewise, Bono et  al. (2019) trained multiple 
agents with individual policies that share information with a centralized critic and demon-
strated that such setup might improve results on standard benchmarks. Besides the utiliza-
tion of one critic for each agent, Foerster et al. (2018b) applied one centralized critic for all 
agents to estimate a counterfactual baseline function that marginalizes out a single agent’s 
action. The critic is conditioned on the history of all agents’ observations or, if available, 
on the true global state. Typically, actor-critic methods underlie a variance in the critic 
estimation that is further exacerbated by the number of agents. Therefore, Wu et al. (2018) 
proposed an action-dependent baseline which includes  information from other agents to 
reduce the variance in the critic estimation function. Further works that incorporate one 
centralized critic for distributed policies can be found in Das et al. (2019), Iqbal and Sha 
(2019) and Wei et al. (2018).

Another way to perform decentralized execution is by employing a master-slave archi-
tecture, which can resolve coordination conflicts between multiple agents. Kong et  al. 
(2017) applied a centralized master executor which shares information with decentralized 
slaves. In each time step, the master receives local information from the slaves and shares 
its internal state in return. The slaves compute actions conditioned on their local obser-
vation and the master’s internal state. Similar approaches that make use of different lev-
els of abstraction are hierarchical methods (Kumar et  al. 2017) that  operate at different 
time scales or levels of abstraction. We elaborate on hierarchical methods in more detail in 
Sect. 5.3.

4 � Emergent patterns of agent behavior

Agents adjust their policy to maximize the task success and react to the behavioral changes 
of other agents. The dynamic interaction between multiple decision-makers, which simul-
taneously affects the state of the environment, can cause the emergence of specific behavio-
ral patterns. An obvious way to influence the development of agent behavior is through the 
designed reward structure. By promoting incentives for cooperation, agents can learn team 
strategies where they try to collaborate and optimize upon a mutual goal. Agents support 
other agents since the cumulative reward for cooperation is greater than acting selfishly. 
On the contrary, if the appeals for maximizing the individual performance are larger than 
being cooperative, agents can learn greedy strategies and maximize their individual reward. 
Such competitive attitudes can yield high-level strategies like manipulating adversaries to 
gain an advantage. However, the boundaries between competition and cooperation can be 
blurred in the multi-agent setting. For instance, if one agent competes with other agents, it 
is sometimes useful to cooperate temporarily in order to receive a higher reward in the long 
run.

In this section, we review the literature that is interested in developed agent behaviors. 
We differentiate occurring behaviors according to the reward structure (Sect. 4.1), the lan-
guage between agents (Sect. 4.2), and the social context (Sect. 4.3). Table 2 summarizes 
the reviewed literature based on this classification. Note that we focus in this section not 
on works that introduce new methodologies but on literature that analyzes the emergent 
behavioral patterns.
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4.1 � Reward structure

The primary factor that influences the emergence of agent behavior is the reward struc-
ture. If the reward for mutual cooperation is larger than individual reward maximization, 
agents tend to learn policies that seek to collaboratively solve the task. In particular, Leibo 
et al. (2017) compared the magnitude of the team reward in relation to the individual agent 
reward. They showed that the higher the numerical team reward is compared to the indi-
vidual reward, the greater is the willingness to collaborate with other agents. The work by 
Tampuu et al. (2017) demonstrated that punishing the whole team of agents for the failure 
of a single agent can also cause cooperation. Agents learn policies to avoid the malfunction 
of an individual, support other agents to prevent failure, and improve the performance of 
the whole team. Similarly, Diallo et al. (2017) used the Pong video game to investigate the 
coordination between agents and examined how developed behaviors change regarding the 
reward function. For a comprehensive review of learning in cooperative settings, one can 
consider the article by Panait and Luke (2005) for classical MARL and Oroojlooyjadid and 
Hajinezhad (2019) for recent MADRL.

In contrast to the cooperative scenario, one can value individual performance greater 
than the collaboration among agents. A competitive setting motivates agents to outperform 
their adversary counterparts. Tampuu et al. (2017) used the video game Pong and manipu-
lated the rewarding structure to examine the emergence of agent behavior. They showed 
that the higher the reward for competition, the more likely an agent tries to outplay its 
opponents by using techniques such as wall bouncing or faster ball speed. Employing such 
high-level strategies to overwhelm the adversary maximizes the individual reward. Simi-
larly, Bansal et al. (2018) investigated competitive scenarios, where agents competed in a 
3D world with simulated physics to learn locomotion skills such as running, blocking, or 
tackling other agents with arms and legs. They argued that adversarial training could help 
to learn more complex agent behaviors than the environment can exhibit. Likewise, the 
works of Leibo et al. (2017) and Liu et al. (2019) investigated the emergence of behaviors 
due to the reward structure in competitive scenarios.

If the rewards appear in sparse frequency, agents can be equipped with intrinsic reward 
functions that provide denser feedback signals and, thus, can overcome the sparsity or even 
the absence of external rewards. One way to realize this is with intrinsic motivation, which 
is based on the concept of maximizing an internal reinforcement signal by actively dis-
covering novel or surprising patterns (Chentanez et al. 2005; Oudeyer and Kaplan 2007; 
Schmidhuber 2010). Intrinsic motivation encourages agents to explore states that have been 
scarcely or never visited and to perform novel actions in those states. Most approaches of 
intrinsic motivation can be broadly divided into two categories (Pathak et al. 2017). First, 
agents are encouraged to explore unknown states where the novelty of states is measured by 
a model that captures the distribution of visited environment states (Bellemare et al. 2016). 
Second, agents can be motivated to reduce the uncertainty about the consequences of their 
own actions. The agent builds a model that learns the dynamics of the environment by 
lowering the prediction error of the follow-up states with respect to the taken actions. The 
uncertainty indicates the novelty of new experience since the model can only be accurate in 
states which it has already encountered or can generalize from previous knowledge (Hout-
hooft et al. 2016; Pathak et al. 2017). For a recent survey on intrinsic motivation in RL, 
one can regard the paper by Aubret et al. (2019). The concept of intrinsic motivation was 
transferred to the multi-agent domain by Sequeira et al. (2011), who studied  the motiva-
tional impact on multiple agents. Investigations on the emergence of agent behavior based 
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on intrinsic rewards have been abundantly conducted in Baker et al. (2020), Hughes et al. 
(2018), Jaderberg et al. (2019), Jaques et al. (2018), Jaques et al. (2019), Peysakhovich and 
Lerer (2018), Sukhbaatar et al. (2017), Wang et al. (2019) and Wang et al. (2020b).

4.2 � Language

The development of language corpora and communication skills of autonomous agents 
attracts great attention within the community. For one, the behavior that emerges during the 
deployment of abstract language as well as the learned composition of multiple words to 
form meaningful contexts is of interest (Kirby 2002). Deep learning methods have widened 
the scope of computational methodologies for investigating the development of language 
between dynamic agents (Lazaridou and Baroni 2020). For building rich behaviors and 
complex reasoning, communication based on high-dimensional data like visual perception 
is a widespread practice (Antol et al. 2015). In the following, we focus on works that inves-
tigate the emergence of language and analyze behavior. Papers that propose new method-
ologies for developing communication protocols are discussed in Sect. 5.2. We classify the 
learning of language according to the performed task and the type of interaction the agents 
pursue. In particular, we differentiate between referential games and dialogues.

The former, referential games, describe cooperative games where the speaking agent 
communicates an objective via messages to another listening agent. Lazaridou et al. (2017) 
showed that agents could learn communication protocols solely through interaction. For 
a meaningful information exchange, agents evolved semantic properties in their language. 
A key element of the study was to analyze if the agents’ interactions are interpretable for 
humans, showing limited yet encouraging results. Likewise, Mordatch and Abbeel (2018) 
investigated the emergence of abstract language that arises through the interaction between 
agents in a physical environment. In their experiments, the agents should learn a discrete 
set of vocabulary by solving navigation tasks through communication. By involving more 
than three agents in the conversation and by penalizing an arbitrary size of vocabulary, 
agents agreed on a coherent set of vocabulary and discouraged ambiguous words. They 
also observed that agents learned a syntax structure in the communication protocol that 
is consistent in vocabulary usage. Another work by Li and Bowling (2019) found out that 
compositional languages are easier to communicate with other agents than languages with 
less structure. In addition, changing listening agents during the learning can promote the 
emergence of language grounded on a higher degree of structure. Many studies are con-
cerned with the development of communication in referential games grounded on visual 
perception as it can be found in Choi et al. (2018), Evtimova et al. (2018), Havrylov and 
Titov (2017), Jorge et  al. (2016), Lazaridou et  al. (2018) and Lee et  al. (2017). Further 
works consider the development of communication in social dilemmas (Jaques et al. 2018, 
2019).

As the second category, we describe the emergence of behavioral patterns in com-
munication while conducting dialogues. One type of dialogue are negotiations in which 
agents pursue to agree on decisions. In a study about negotiations with natural language, 
Lewis et  al. (2017) showed that agents could master linguistic and reasoning problems. 
Two agents were both shown a collection of items and were instructed to negotiate about 
how to divide the objects among both agents. Each agent was expected to maximize the 
value of the bargained objects. Eventually, the agents learned to use high-level strategies 
such as deception to accomplish higher rewards over their opponents. Similar studies con-
cerned with negotiations are covered in Cao et  al. (2018) and He et  al. (2018). Another 
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type of dialogue are scenarios where the emergence of communication is investigated in 
a question-answering style as shown by Das et al. (2017). One agent received an image as 
input and was instructed to ask questions about the shown image while the second agent 
responded, both in natural language.

Many of the above-mentioned papers report that utilizing a communication channel can 
increase task performance in terms of the cumulative reward. However, numerical perfor-
mance measurements provide evidence but do not give insights about the communication 
abilities learned by the agents. Therefore, Lowe et al. (2019) surveyed metrics which are 
applied to assess the quality of learned communication protocols and provided recommen-
dations about the usage of such metrics. Based on that, Eccles et al. (2019) proposed to 
incorporate inductive bias into the learning objective of agents, which could promote the 
emergence of a meaningful communication. They showed that inductive bias could lead to 
improved results in terms of interpretability.

4.3 � Social context

Next to the reward structure and language, the research community actively investigates the 
emerging agent behaviors in social contexts. Akin to humans, artificial agents can develop 
strategies that exploit patterns in complex problems and adapt behaviors in response to oth-
ers (Baker et al. 2020; Jaderberg et al. 2019). We differentiate the following literature along 
different dimensions, such as the type of social dilemma and the examined psychological 
variables.

Social dilemmas have long been studied as conflict scenario in which agents gauge 
between individualistic and collective profits (Crandall and Goodrich 2011; De Cote et al. 
2006). The tension between cooperation and defection is evaluated as an atomic decision 
according to the numerical values of a pay-off matrix. This pay-off matrix satisfies inequal-
ities in the reward function such that agents must decide between cooperation, to benefit as 
a whole team, or defection, to maximize selfish performance. To temporally extend matrix 
games, sequential social dilemmas have been introduced to investigate long-term strategic 
decisions of agent policies rather than short-term actions (Leibo et al. 2017). The arising 
behaviors in these dilemmas can be classified along psychological variables known from 
human interaction (Lange et al. 2013) such as the gain of individual benefits (Lerer and 
Peysakhovich 2017), the fear of future consequences (Pérolat et al. 2017), the assessment 
of the impact on another agent’s behavior (Jaques et  al. 2018, 2019), the trust between 
agents (Pinyol and Sabater-Mir 2013; Ramchurn et  al. 2004; Yu et  al. 2013), and the 
impact of emotions on the decision-making (Moerland et al. 2018; Yu et al. 2013).

Kollock (1998) divided social dilemmas into commons dilemmas and public goods 
dilemmas. The former, commons dilemmas describe the trade-off between individualistic 
short-term benefits and long-term common interests on a task that is shared by all agents. 
Recent works on the commons dilemma can be found in Foerster et  al. (2018a), Leibo 
et al. (2017) and Lerer and Peysakhovich (2017). In public goods dilemmas, agents face 
a scenario where common-pool resources are constrained and oblige a sustainable use of 
resources. The phenomenon called the tragedy of commons predicts that self-interested 
agents fail to find socially positive equilibria, which eventually results in the over-exploita-
tion of the common resources (Hardin 1968). Investigations on the trial-and-error learning 
in common-pool resource scenarios with multiple decision-makers are covered in Hughes 
et al. (2018), Pérolat et al. (2017) and Zhu and Kirley (2019).
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5 � Current challenges

In this section, we depict several challenges that arise in the multi-agent RL domain and, 
thus, are currently under active research. We approach the problem of non-stationarity 
(Sect.  5.1) due to the presence of multiple learners in a shared environment and review 
literature regarding the development of communication skills (Sect. 5.2). We further inves-
tigate the challenge of learning coordination (Sect.  5.3). Then, we survey the difficulty 
of attributing rewards to specific agents as the credit assignment problem (Sect. 5.4) and 
examine scalability issues (Sect. 5.5), which increase with the number of agents. Finally, 
we consider environments where states are only partially observable (Sect.  5.6). While 
some challenges are omnipresent in the MARL domain, such as non-stationarity or scal-
ability, others like the credit assignment problem or the learning of coordination and com-
munication are prevailing in the cooperative setting.

We aim to provide a holistic overview of the contemporary challenges that constitute 
the landscape in reinforcement learning with multiple agents and survey treatments that 
were suggested in recent works. In particular, we focus on those challenges which are cur-
rently under active research and where progress has been accomplished recently. There are 
still open problems that have not been or partially addressed so far. Such problems are dis-
cussed in Sect. 6. Deliberately, we do not regard challenges that also persist in the single-
agent domain, such as sparse rewards or the exploration-exploitation dilemma. We refer 
the interested reader for an overview of those topics to the articles of Arulkumaran et al. 
(2017) and Li (2018). Much of the surveyed literature cannot be assigned to one particular 
but rather to several of the proposed challenges. Hence, we associate the subsequent litera-
ture to the one challenge which we believe best addresses it (Table 3).

5.1 � Non‑stationarity

One major problem resides in the presence of multiple agents that interact within a shared 
environment and learn simultaneously. Due to the co-adaption, the environment dynamics 
appear non-stationary from the perspective of a single agent. Thus, agents face a moving 
target problem if they are not provided with additional knowledge about other agents. As 
a result, the Markov assumption is violated, and the learning constitutes an inherently dif-
ficult problem (Hernandez-Leal et al. 2017; Laurent et al. 2011). The naïve approach is to 
neglect the adaptive behavior of agents. One can either ignore the existence of other agents 
(Matignon et al. 2012b) or discount the adaptive behavior by assuming the others’ behav-
ior to be static or optimal (Lauer and Riedmiller 2000). By making such assumptions, the 
agents are considered as independent learners, and traditional single-agent reinforcement 
algorithms can be applied. First attempts have been studied in Claus and Boutilier (1998) 
and Tan (1993), which showed that independent learners could perform well in simple 
deterministic environments. However, in complex or stochastic environments, independent 
learners often result in poor performance (Lowe et al. 2017; Matignon et al. 2012b). More-
over, Lanctot et al. (2017) argued that independent learners could over-fit to other agents’ 
policies during the training and, thus, may fail to generalize at test time.

In the following, we review literature, which addresses the non-stationarity in a multi-
agent environment, and categorize the approaches into those with experience replay, cen-
tralized units, and meta-learning. A similar categorization proposed Papoudakis et  al. 
(2019). We identify further approaches which cope with non-stationarity by establishing 
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communication between agents (Sect.  5.2) or building models (Sect.  5.3). However, we 
discuss these topics separately in the respective sections.

Experience replay mechanism Recent successes with reinforcement learning methods 
such as deep Q-networks (Mnih et  al. 2015) rest upon an experience replay mechanism. 
However, it is not straightforward to employ experience replays to the multi-agent setting 
because past experience becomes obsolete with the adaption of agent policies over time. To 
encounter this, Foerster et al. (2017) proposed two approaches. First, they decay outdated 
transition samples from the replay memory to stabilize targets and then use importance 
sampling to incorporate off-policy samples. Since the agents’ policies are known during 
the training, off-policy updates can be corrected with importance-weighted policy likeli-
hoods. Second, the state space of each agent is enhanced with estimates of the other agents’ 
policies, so-called fingerprints5, to prevent non-stationarity. The value functions can then 
be conditioned on a fingerprint, which clears the age of data sampled from the replay mem-
ory. Another extension for experience replays was proposed by Palmer et al. (2018) who 
applied leniency to every stored transition sample. Leniency associates each sample of the 
experience memory with a temperature value, which gradually decays by the number of 
state-action pair visits. Further utilization of the experience replay mechanism to cope with 
non-stationarity can be found in Tang et al. (2018) and Zheng et al. (2018a). Nevertheless, 
if the contemporary dynamics of the learners are neglected, algorithms can utilize short-
term buffers as applied in Baker et al. (2020) and Leibo et al. (2017).

Centralized Training Scheme As already discussed in Sect. 3.2, the CTDE paradigm can 
be leveraged to share mutual information between learners to ease training. The availability 
of information during the training can loosen the non-stationarity of the environment since 
agents are augmented with information about others. One approach is to enhance actor-
critic methods with centralized critics over which mutual information is shared between 
agents during the training (Bono et al. 2019; Iqbal and Sha 2019; Wei et al. 2018). Lowe 
et al. (2017) embedded each agent with one centralized critic that is augmented with all 
agents’ observations and actions. Based on this additional information, agents face a sta-
tionary environment during the training while acting decentralized on local observations at 
test time. Next to the equipment of one critic per agent, all agents can share one global cen-
tralized critic. Foerster et al. (2018b) applied one centralized critic conditioned on the joint 
action and observations of all agents. The critic computes an agent’s individual advantage 
through estimating the value of the joint action based on a counterfactual baseline, which 
marginalizes out single agents’ influence. Another approach to the CTDE scheme can be 
seen in value-based methods. Rashid et  al. (2018) learned a joint action-value function 
conditioned on the joint observation-action history. The joint action-value function is then 
divided into agent individual value functions based on monotonic non-linear composition. 
Foerster et  al. (2016) used action-value functions that share information through a com-
munication channel during the training but then discarded it at test time. Similarly, Jorge 
et  al. (2016) employed communication during training to promote information exchange 
for optimizing action-value functions.

Meta-Learning Sometimes, it can be useful to learn how to adapt to the behavioral 
changes of others. This learning-to-learn approach is known as meta-learning (Finn and 
Levine 2018; Schmidhuber et  al. 1996). Recent works in the single-agent domain have 
shown promising results (Duan et al. 2016; Wang et al. 2016a). Al-Shedivat et al. (2018) 

5  Fingerprints draw their inspiration from Tesauro (2004) who eluded non-stationarity by conditioning each 
agent’s policy on estimates of other agents’ policies.
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transferred this approach to the multi-agent domain and developed a meta-learning based 
method to tackle the consecutive adaptation of agents in non-stationary environments. 
Regarding non-stationarity as a sequence of stationary tasks, agents learn to exploit 
dependencies between successive tasks and generalize over co-adapting agents at test time. 
They evaluated the resulting behaviors in a competitive multi-agent setting where agents 
fight in a simulated physics environment. Meta-learning can also be utilized to construct 
agent models (Rabinowitz et al. 2018). By learning how to model other agents and make 
inferences on them, agents learn to predict the other agent’s future action sequences. They 
embedded this principle into how one agent learns to capture the behavioral patterns of 
other agents efficiently.

5.2 � Learning communication

Agents capable of developing communication and language corpora pose one of the vital 
challenges in machine intelligence (Kirby 2002). Intelligent agents must not only decide 
on what to communicate but also when and with whom. It is indispensable that the devel-
oped language is grounded on a common consensus such that all agents understand the 
spoken language, including its semantics. The research efforts in learning to communicate 
have  intensified because many pathologies can be overcome by incorporating communi-
cation skills into agents, including non-stationarity, coherent coordination among agents, 
and partial observability. For instance, when an agent knows the actions taken by others, 
the learning problem becomes stationary again from a single agent’s perspective in a fully 
observable environment. Even partial observability can be loosened by messaging local 
observations to other participants through communication, which helps compensate for 
limited knowledge (Goldman and Zilberstein 2004).

The common framework to investigate communication is the dec-POMDP (Oliehoek 
and Amato 2016) which is a fully cooperative setting where agents perceive partial obser-
vations of the environment and try to improve upon an equally-shared reward. In such dis-
tributed systems, agents must not only learn how to cooperate but also how to communicate 
in order to optimize the mutual objective. Early MARL works investigated communication 
rooted in tabular worlds with limited observability (Kasai et al. 2008). Since the spring of 
deep learning methods, the research of learning communication has witnessed great atten-
tion because advanced computational methods provide new opportunities to study highly 
complex data.

In the following, we categorize the surveyed literature according to the message 
addressing. First, we describe the broadcasting scenario where sent messages are received 
by all agents. Second, we look into works that use targeted messages to decide on the 
recipients by using an attention mechanism. Third and last, we review communication in 
networked settings where agents communicate only with their local neighborhood instead 
of the whole population. Figure  3 shows a schematic illustration of this categorization. 
Another taxonomy may be based on the discrete or continuous nature of messages and the 
frequency of passed messages.

Broadcasting Messages are addressed to all participants of the communication channel. 
Foerster et al. (2016) studied how agents learn discrete communication protocols in dec-
POMDPs in order to accomplish a fully-cooperative task. Being in a CTDE setting, the 
communication is not restricted during the training but bandwidth-limited at test time. To 
discover meaningful communication protocols, they proposed two methods. The first, rein-
forced inter-agent learning (RIAL), is based on deep recurrent Q-networks combined with 
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independent Q-learning where each agent learns an action-value function conditioned on 
the observation history as well as messages from other agents. Additionally, they applied 
parameter sharing so that all agents share and update common features from only one 
Q-network. The second method, differentiable inter-agent learning (DIAL), combines the 
centralized learning paradigm with deep Q-networks. Messages are delivered over discrete 
connections, which are based on a relaxation to become differentiable. In contrast, Sukh-
baatar et al. (2016) proposed CommNet as an architecture that allows the learning of com-
munication between agents purely based on continuous protocols. They showed that each 
agent learns the joint-action and a sparse communication protocol that encodes meaning-
ful information. The authors emphasized that the decreased observability of vicious states 
encourages the importance of communication between agents. To foster scalable commu-
nication protocols that also facilitate heterogeneous agents, Peng et al. (2017) introduced 
the bidirectionally-coordinated network (BiCNet) where agents learn in a vectorized actor-
critic framework to communicate. Through communication, they were able to coordinate 
heterogeneous agents in a combat game of StarCraft.

Targeted communication When agents are endowed with targeted communication pro-
tocols, they utilize an attention mechanism to determine when, what and with whom to 
communicate. Jiang and Lu (2018) introduced ATOC as an attentional communication 
model that enables agents to send messages dynamically and selectively so that commu-
nication takes place among a group of agents only when required. They argued that atten-
tion is essential for large-scale settings because agents learn to decide which information 
is most useful for decision-making. Selective communication is the reason why ATOC 
outperforms CommNet and BiCNet on the conducted navigation tasks. A similar conclu-
sion was drawn by Hoshen (2017) who introduced the vertex attention interaction network 
(VAIN) as an extension to the CommNet. The baseline approach is extended with an atten-
tion mechanism that increases performance due to the focus on only relevant agents. The 
work by Das et al. (2019) introduced targeted multi-agent communication (TarMAC) that 
uses attention to decide with whom and what to communicate by actively addressing other 
agents for message passing. Jain et  al. (2019) proposed TBONE for visual navigation in 
cooperative tasks. In contrast to former works, which are limited to the fully-cooperative 
setting, Singh et al. (2019) considered mixed settings where each agent owns an individual 

Fig. 3   Schematic illustration of communication types. Unilateral arrows represent unidirectional messages, 
while bilateral arrows symbolize bidirectional message passing. (Left) In broadcasting, messages are sent to 
all participants of the communication channel. For better visualization, the broadcasting of only one agent 
is illustrated but each agent can broadcast messages to all other agents. (Middle) Agents can target the com-
munication through an attention mechanism that determines when, what and with whom to communicate. 
(Right) Networked communication describes the local connection to neighborhood agents
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reward function. They proposed the individualized controlled continuous communication 
model (IC3Net), where agents learn when to exchange information using a gating mecha-
nism that blocks incoming communication requests if necessary.

Networked communication Another form of communication is a networked communica-
tion protocol where agents can exchange information with their neighborhood (Nedic and 
Ozdaglar 2009; Zhang et al. 2018). Agents act decentralized based on local observations 
and received messages from network neighbors. Zhang et  al. (2018) used an actor-critic 
framework where agents share their critic information with their network neighbors to pro-
mote global optimality. Chu et  al. (2020) introduced the neural communication protocol 
(NeurComm) to enhance communication efficiency by reducing queue length and intersec-
tion delay. Further, they showed that a spatial discount factor could stabilize training when 
only the local vicinity is regarded to perform policy updates. For theoretical contributions, 
one may consider the works of Qu et al. (2020), Zhang et al. (2018) and Zhang et al. (2019) 
whereas the paper of Chu et al. (2020) provides an application perspective in the domain of 
traffic light control.

Extensions Further methods approach the improvement of coordination skills by apply-
ing intrinsic motivation (Jaques et al. 2018, 2019), by making the communication protocol 
more robust or scalable (Kim et al. 2019; Singh et al. 2019), and maximizing the utility of 
the communication through efficient encoding (Celikyilmaz et  al. 2018; Li et  al. 2019b; 
Wang et al. 2020c).

The above-reviewed papers focus on new methodologies about communication proto-
cols. Besides that, a bulk of literature considers the analysis of emergent language and the 
occurrence of agent behavior, which we discuss in Sect. 4.2.

5.3 � Coordination

Successful coordination in multi-agent systems requires agents to agree on a consensus 
(Wei Ren et  al. 2005). In particular, accomplishing a joint goal in cooperative settings 
demands a coherent action selection such that the joint action optimizes the mutual task 
performance. Cooperation among agents is complicated when stochasticity is present in 
system transitions and rewards or when agents observe only partial information of the envi-
ronment’s state. Mis-coordination may arise in the form of action shadowing when explor-
atory behavior influences the other agents’ search space during learning and, as a result, 
sub-optimal solutions are found.

Therefore, the agreement upon a mutual consensus necessitates the sharing and collec-
tion of information about other agents to derive optimal decisions. Finding such a consen-
sus in the decision-making may happen explicitly through communication or implicitly by 
constructing models of other agents. The former requires skills to communicate with others 
so that agents can express their purpose and align their coordination. For the latter, agents 
need the ability to observe other agents’ behavior and reason about their strategies to build 
a model. If the prediction model is accurate, an agent can learn the other agents’ behavioral 
patterns and direct actions towards a consensus, leading to coordinated behavior. Besides 
explicit communication and constructing agent models, the CTDE scheme can be lever-
aged to build different levels of abstraction, which are applied to learn high-level coordina-
tion while independent skills are trained at low-level.

In the remainder of this section, we focus on methods that solve coordination issues 
without establishing communication protocols between agents. Although communication 
may ease coordination, we discuss this topic separately in Sect. 5.2.
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Independent learners The naïve approach to handle multi-agent problems is to regard 
each agent individually such that other agents are perceived as part of the environment and, 
thus, are neglected during learning. Opposed to joint action learners, where agents expe-
rience the selected actions of others a-posteriori, independently learning agents face the 
main difficulty of coherently choosing actions such that the joint action becomes optimal 
concerning the mutual goal (Matignon et al. 2012b). During the learning of good policies, 
agents influence each other’s search space, which can lead to action shadowing. The notion 
of coordination among several autonomously and independently acting agents enjoys a 
long record, and a bulk of research was conducted in settings with non-communicative 
agents (Fulda and Ventura 2007; Matignon et al. 2012b). Early works investigated the con-
vergence of independent learners and showed that the convergence to solutions is feasi-
ble under certain conditions in deterministic games but fails in stochastic environments 
(Claus and Boutilier 1998; Lauer and Riedmiller 2000). Stochasticity, relative over-gener-
alization, and other pathologies such as non-stationarity and the alter-exploration problem 
led to new branches of research including hysteretic learning (Matignon et al. 2007) and 
leniency (Potter and De  Jong 1994). Hysteretic Q-learning was introduced to encounter 
the over-estimation of the value function evoked by stochasticity. Two learning rates are 
used to increase and decrease the value function updates while relying on an optimistic 
form of learning. A modern approach to hysteretic learning can be seen in Palmer et al. 
(2018) and Omidshafiei et al. (2017). An alternative method to adjust the degree of applied 
optimism during learning is leniency (Panait et al. 2006; Wei and Luke 2016). Leniency 
associates selected actions with decaying temperature values that govern the amount of 
applied leniency. Agents are optimistic during the early phase when exploration is still high 
but become less lenient for frequently visited state-action pairs over the training so that 
value estimations become more accurate towards the end of learning.

Further works expanded independent learners with enhanced techniques to cope with 
the MARL pathologies mentioned above. Extensions to the deep Q-network can be seen in 
additional mechanisms used for the experience replay (Palmer et al. 2019), the utilization 
of specialized estimators (Zheng et  al. 2018a) and the use of implicit quantile networks 
(Lyu and Amato 2020). Further literature investigated independent learners as benchmark 
reference but reported limited success in cooperative tasks of various domains when no 
other techniques are applied to alleviate the issue of independent learners (Foerster et al. 
2018b; Sunehag et al. 2018).

Constructing models An implicit way to achieve coordination among agents is to cap-
ture the behavior of others by constructing models. Models are functions that take past 
interaction data as input and output predictions about the agents of interest. This can be 
very important to render the learning process robust against the decision-making of other 
agents in the environment (Hu and Wellman 1998). The constructed models and the pre-
dicted behavior vary widely depending on the approaches and the assumptions being made 
(Albrecht and Stone 2018).

One of the first works based on deep learning methods was conducted by He et  al. 
(2016) in an adversarial setting. They proposed an architecture that utilizes two neural 
networks. One neural network captures the opponents’ strategies, and the second network 
estimates the opponents’ Q-values. These networks jointly learn models of opponents by 
encoding observations into a deep Q-network. Another work by Foerster et  al. (2018a) 
introduced a learning method where the policy updates rely on the impact on other agents. 
The opponent’s policy parameters can be inferred from the observed trajectory by using a 
maximum likelihood technique. The arising non-stationarity is tackled by accounting only 
recent data. An additional possibility is to address the information gain about other agents 



922	 S. Gronauer, K. Diepold 

1 3

through Bayesian methods. Raileanu et al. (2018) employed a model where agents estimate 
the other agents’ hidden states and embed these estimations into their own policy. Inferring 
other agents’ hidden states from their behavior allows them to choose appropriate actions 
and promotes eventual coordination. Foerster et  al. (2019) used all publicly available 
observations in the environment to calculate a public belief over agents’ local information. 
Another work by Yang et al. (2018a) used Bayesian techniques to detect opponent strate-
gies in competitive games. A particular challenge is to learn agent models in the presence 
of fast adapting agents, which amplifies the problem of non-stationarity. As a countermeas-
ure, Everett and Roberts (2018) proposed the switching agent model (SAM), which learns 
a set of opponent models and a switching mechanism between models. By tracking and 
detecting the behavioral adaption of other agents, the switching mechanism learns to select 
the best response from the learned set of opponent models and, thus, showed superior per-
formance over single model learners.

Further works on constructing models can be found in cooperative tasks (Barde et al. 
2019; Tacchetti et al. 2019; Zheng et al. 2018b) with imitation learning (Grover et al. 2018; 
Le et al. 2017), in social dilemmas (Jaques et al. 2019; Letcher et al. 2019), and by pre-
dicting behaviors from observations (Hong et al. 2017; Hoshen 2017). For a comprehen-
sive survey on constructing models in multi-agent systems, one may consider the work of 
Albrecht and Stone (2018).

Besides resolving the coordination problem, building models of other agents can cope 
with the non-stationarity in the environment. As soon as one agent has knowledge about 
others’ behavior, previously unexplainable transition dynamics can be attributed to the 
responsible agents, and the environment becomes stationary again from the viewpoint of 
an individual agent.

Hierarchical methods Learning to coordinate can be challenging if multiple decision-
makers are involved due to the increasing complexity (Bernstein et al. 2002). An approach 
to deal with the coordination problem is by abstracting low-level coordination to higher 
levels. The idea originated in the single-agent domain where hierarchies for temporal 
abstraction are employed to ease long-term reward assignments (Dayan and Hinton 1993; 
Sutton et  al. 1999). Lower levels entail only partial information of the higher levels so 
that the learning task becomes simpler the lower the level of abstraction. First attempts for 
hierarchical multi-agent RL can be found in the tabular case (Ghavamzadeh et  al. 2006; 
Makar et al. 2001). A deep approach was proposed by Kumar et al. (2017), where a higher-
level controller guides the information exchange between decentralized agents. Grounded 
on the high-level controller, the agents communicate with only one other agent at each 
time step, which allows the exploration of distributed policies. Another work by Han et al. 
(2019) is built upon the options framework (Sutton et  al. 1999) where they embedded a 
dynamic termination criterion for Q-learning. By adding a termination criterion, agents 
could flexibly quit the option execution and react to the behavioral changes of other agents. 
Related to the idea of feudal networks (Dayan and Hinton 1993), Ahilan and Dayan (2019) 
applied a two-level abstraction of agents to a cooperative multi-agent setting where, in con-
trast to other methods, the hierarchy relied on rewards instead of state goals. They showed 
that this approach could be well suited for decentralized control problems. Jaderberg et al. 
(2019) used hierarchical representations that allowed agents to reason at different time 
scales. The authors demonstrated that agents are capable of solving mixed cooperative and 
competitive tasks in simulated physics environments. Another work by Lee et al. (2020) 
proposed a hierarchical method to coordinate two agents on robotic manipulation and loco-
motion tasks to accomplish collaboration such as object pick and placement. They learned 
primitive skills on the low-level, which are guided by a higher-level policy. Further works 
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cover hierarchical methods in cooperation tasks (Cai et al. 2013; Ma and Wu 2020; Tang 
et al. 2018) or social dilemmas (Vezhnevets et al. 2019). An open challenge for hierarchi-
cal methods is the autonomous creation and discovery of abstract goals from data (Schaul 
et al. 2015; Vezhnevets et al. 2017).

5.4 � Credit assignment problem

In the fully-cooperative setting, agents are encouraged to maximize an equally-shared 
reward signal. Even in a fully-observable state space, it is difficult to determine which 
agents and actions contributed to the eventual reward outcome when agents do not have 
access to the joint action. Claus and Boutilier (1998) showed that independent learners 
could not differentiate between the teammate’s exploration and the stochasticity in the 
environment even in a simple bi-matrix game. This can render the learning problem dif-
ficult because agents should be ideally provided with feedback corresponding to the task 
performance to enable sufficient learning. Associating rewards to agents is known as the 
credit assignment problem (Weiß 1995; Wolpert and Tumer 1999). This problem is intensi-
fied by the sequential nature of reinforcement learning where agents must understand not 
only the impact of single actions but also the entire action sequences that eventually lead 
to the reward outcome (Sen and Weiss 1999). An additional challenge arises when agents 
have only access to local observations of the environment, which we discuss in Sect. 5.6. In 
the remainder of this section, we consider three actively investigated approaches that deal 
with how to determine the contribution of agents jointly-shared reward settings.

Decomposition Early works approached the credit assignment problem by applying fil-
ters (Chang et al. 2004) or modifying the reward function such as reward shaping (Ng et al. 
1999). Recent approaches focus on exploiting dependencies between agents to decompose 
the reward among the agents with respect to their actual contribution towards the global 
reward (Kok and Vlassis 2006). The learning problem is simplified by dividing the task 
into smaller and, hence, easier sub-problems through decomposition. Sunehag et al. (2018) 
introduced the value decomposition network (VDN) which factorizes the joint action-value 
function into a linear combination of individual action-value functions. The VDN learns 
how to optimally assign an individual reward according to the agent’s performance. The 
neural network helps to disambiguate the joint reward signal concerning the impact of the 
agent. Rashid et al. (2018) proposed QMIX as an improvement over VDN. QMIX learns 
a centralized action-value function that is decomposed into agent individual action-value 
functions through non-linear combinations. Under the assumption of monotonic relation-
ships between the  centralized Q-function and the  individual Q-functions, decentralized 
policies can be extracted by individual argmax operations. As an advancement over both 
VDN and QMIX, Son et al. (2019) proposed QTRAN, which discards the assumption of 
linearity and monotonicity in the factorization and allows any non-linear combination of 
value functions. Further approaches about the factorization of value functions can be found 
in Castellini et al. (2019), Chen et al. (2018), Nguyen et al. (2017b), Wang et al. (2020a), 
Wang et al. (2020c) and Yang et al. (2018b).

Marginalization Next to the decomposition into simpler sub-problems, one can apply 
an extra function that marginalizes out the effect of agent individual actions. Nguyen 
et al. (2018) introduced a mean collective actor-critic framework which marginalizes out 
the actions of agents by using an approximation of the critic and reduces the variance of 
the gradient estimation. Similarly, Foerster et  al. (2018b) marginalized out the individ-
ual actions of agents by applying a counterfactual baseline function. The counterfactual 
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baseline function uses a centralized critic, which calculates the advantage of a single agent 
by comparing the estimated return of the current joint-action to the counterfactual baseline. 
The impact of a single agent’s action is determined and can be attributed to the agent itself. 
Another work by Wu et  al. (2018) used a marginalized action-value function as a base-
line to reduce the variance of critic estimates. The marginalization approaches are closely 
related to the difference rewards proposed by Tumer and Wolpert (2004) who determine 
the impact of an agent’s individual action compared to the average reward of all agents.

Inverse reinforcement learning Credit assignment problems can be evoked by a bad 
design of the reinforcement learning problem. Misinterpretations of the agents can lead to 
failure because unintentional strategies are explored, e.g. if  the reward function does not 
capture all important aspects of the underlying task (Amodei et  al. 2016). Therefore, an 
important step in the problem design is the reward function. However, designing a reward 
function can be challenging for complex problems (Hadfield-Menell et  al. 2017) and 
becomes even more complicated for multi-agent systems since different agents may accom-
plish different goals. Another approach to address the credit assignment problem is by 
inverse reinforcement learning (Ng and Russell 2000) that describes how an agent learns a 
reward function that explains the demonstrated behavior of an expert without having access 
to the reward signal. The learned reward function can then be used to build strategies. The 
work of Lin et  al. (2018) applied the principle of inverse reinforcement learning to the 
multi-agent setting. They showed that multiple agents could recover reward functions that 
are correlated with the ground truths. Related to inverse RL, imitation learning can be used 
to learn from expert knowledge. Yu et al. (2019) imitated expert behaviors to learn high-
dimensional policies in both cooperative and competitive environments. They were able to 
recover the expert policies for each individual agent from the provided expert demonstra-
tions. Further works on imitation learning consider the fully cooperative setting (Barrett 
et al. 2017; Le et al. 2017) and Markov Games with mixed settings (Song et al. 2018).

5.5 � Scalability

Training a large number of agents is inherently difficult. Every agent involved in the envi-
ronment adds extra complexity to the learning problem such that the computational effort 
grows exponentially by the number of agents. Besides complexity concerns, sufficient scal-
ing also demands agents to be robust towards the behavioral adaption of other agents. How-
ever, agents can leverage the benefit of distributed knowledge shared and reused between 
agents to accelerate the learning process. In the following, we review approaches that 
address the handling of many agents and discuss possible solutions. We broadly classify 
the surveyed works into those that apply some form of knowledge reuse, reduce the com-
plexity of the learning problem, and develop robustness against the policy adaptions of 
other agents.

Knowledge reuse The training of individual learning models does scale poorly with the 
increasing number of agents because the computational effort increases due to the combi-
natorial possibilities. Knowledge reuse strategies are employed  to ease the learning pro-
cess and scale RL to complex problems by reutilizing previous knowledge into new tasks. 
Knowledge reuse can be applied in many facets (Silva et al. 2018).

First, agents can make use of a parameter sharing technique if they exhibit homogene-
ous structures, e.g. the weights in a neural network for sharing parts or the whole learn-
ing model with others. Sharing the parameters of a policy enables an efficient training pro-
cess that can scale up to an arbitrary number of agents and, thus, can boost the learning 
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process (Gupta et  al. 2017). Parameter sharing has proven to be useful in various appli-
cations such as learning to communicate (Foerster et al. 2016; Jiang and Lu 2018; Peng 
et al. 2017; Sukhbaatar et al. 2016), modeling agents (Hernandez-Leal et al. 2019), and in 
partially observable cooperative games (Sunehag et al. 2018). For a discussion on different 
parameter sharing strategies, one may consider the paper by Chu and Ye (2017).

As the second approach, knowledge reuse can be applied in form of transfer learning 
(Da Silva et al. 2019; Da Silva and Costa 2019). Experience obtained in learning to per-
form one task may also improve the performance in a related but different task (Taylor and 
Stone 2009). Da Silva and Costa (2017) used a knowledge database from which an agent 
can extract previous solutions of related tasks and embed such information into the cur-
rent task’s training. Likewise, Da Silva et al. (2017) applied expert demonstrations where 
the agents take the role of students that ask a teacher for advice. They demonstrated that 
simultaneously learning agents could advise each other through knowledge transfer. Fur-
ther works on transfer learning can be found in the cooperative multi-agent setting (Omid-
shafiei et al. 2019) and in natural language applications (Luketina et al. 2019). In general 
multi-agent systems, the works of (Boutsioukis et al. 2012; Taylor et al. 2013) substantiate 
that transfer learning can speed up the learning process.

Besides parameter sharing and transfer learning, curriculum learning may be applied 
for the scaling to many agents. Since tasks become more challenging to master and more 
time consuming to train as the number of agents increases, it is often challenging to learn 
from scratch. Curriculum learning starts with a small number of agents and then gradually 
enlarges the number of agents over the training course. Through the steady increase within 
the curriculum, trained policies can perform better than without a curriculum (Gupta et al. 
2017; Long et al. 2020; Narvekar et al. 2016). Curriculum learning schemes can also cause 
improved generalization and faster convergence of agent policies (Bengio et  al. 2009). 
Further works show that agents can generate learning curricula automatically (Sukhbaatar 
et al. 2017; Svetlik et al. 2017) or can create arms races in competitive settings (Baker et al. 
2020).

Complexity reduction Many real-world applications naturally encompass large numbers 
of simultaneously interacting agents (Nguyen et  al. 2017a, b). As the quantity of agents 
increases, the requirement to contain the curse of dimensionality becomes inevitable. Yang 
et al. (2018b) addressed the issue of scalability with a mean-field method. The interactions 
between large numbers of agents are estimated by the impact of a single agent compared 
to the mean impact of the whole or local agent population. The complexity reduces as the 
problem is broken down into pairwise interactions between an agent and its neighborhood. 
Regarding the average effect to its neighbors, each agent learns the best response towards 
its proximity. Another approach to constrain the explosion in complexity is by factorizing 
the problem into smaller sub-problems (Guestrin et al. 2002). Chen et al. (2018) decom-
posed the joint action-value function into independent components and used pairwise inter-
actions between agents to render large-scale problems computationally tractable. Further 
works studied large-scale MADRL problems with graphical models (Nguyen et al. 2017a) 
and the CTDE paradigm (Lin et al. 2018).

Robustness Another desired property is the robustness of learned policies to perturba-
tions in the environment caused by other agents. Perturbations are fortified by the number 
of agents and the resulting growth of the state-action space. In supervised learning, a com-
mon problem is that models can over-fit to the data set. Similarly, over-fitting can occur 
in RL frameworks if environments provide little or no deviation (Bansal et al. 2018). To 
maintain robustness over the training process and to the other agents’ adaption, several 
methods have been proposed.
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First, regularization techniques can be used to prevent over-fitting to other agents’ 
behavior. Examples can be seen in policies ensembles (Lowe et al. 2017), where a collec-
tion of different sub-policies is trained for each agent, or can be found in best responses to 
policy mixtures (Lanctot et al. 2017).

Second, adversarial training can be applied to mitigate the vulnerability of polices 
towards perturbations. Pinto et  al. (2017) added an adversarial agent to the environment 
that applied targeted disturbances to the learning process. By hampering the training, the 
agents were compelled to encounter these disturbances and develop robust policies. Simi-
larly, Li et al. (2019a) used an adversarial setting to reduce the sensitivity of agents towards 
the environment. Bansal et  al. (2018) demonstrated that policies, which are trained in a 
competitive setting, could yield behaviors that are far more complex than the environment 
itself. From an application perspective, Spooner and Savani (2020) studied robust decision-
making in market making.

The observations from above are in accordance with the findings of related studies 
about the impact of self-play (Raghu et  al. 2018; Sukhbaatar et  al. 2017). Heinrich and 
Silver (2016) used self-play to learn approximate Nash equilibria of imperfect-information 
games and showed that self-play could be used to obtain better robustness in the learned 
policies. Similarly, self-play was used to compete with older versions of policies to ren-
der the learned behaviors more robust (Baker et al. 2020; Berner et al. 2019; Silver et al. 
2018). Silver et  al. (2016) adapted self-play as a regularization technique to prevent the 
policy network from over-fitting by playing against older versions of itself. However, 
Gleave et al. (2020) studied the existence of adversarial policies in competitive games and 
showed that complex policies could be fooled by comparably easy strategies. Although 
agents trained through self-play proved to be more robust, allegedly random and uncoordi-
nated strategies caused agents to fail at the task. They argued that the vulnerability towards 
adversarial attacks increases with the dimensionality of the observation space. A further 
research direction for addressing robustness is to render the learning representation invari-
ant towards permutations, as shown in Liu et al. (2020).

5.6 � Partial observability

Outside an idealized setting, agents neither can observe  the global state of the environ-
ment, nor do they have access to the internal knowledge of other agents. By perceiving 
only partial observations, a single observation does not capture all relevant information 
about the environment and its history. Hence, the Markov property is not fulfilled, and the 
environment appears non-Markovian. An additional difficulty elicited by partial observ-
ability is the lazy agent problem which can occur in cooperative settings (Sunehag et al. 
2018). As introduced in Sect. 2.2, the common frameworks that deal with partial observ-
ability are POMPDs for general settings and dec-POMDPs for cooperative settings with 
a shared reward function. Dec-POMDPs are computationally challenging (Bernstein et al. 
2002) and still intractable when solving problems with real-world complexity (Amato et al. 
2015). However, recent work accomplished promising results in video games with imper-
fect information (Baker et al. 2020; Berner et al. 2019; Jaderberg et al. 2019; Vinyals et al. 
2019).

A natural way to deal with non-Markovian environments is through information 
exchange between the decision-makers (Goldman and Zilberstein 2004). Agents that are 
able to communicate can compensate for their limited knowledge by propagating informa-
tion and fill the lack of knowledge about other agents or the environment (Foerster et al. 
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2016). As we already discussed in Sect. 5.2, there are several ways to incorporate commu-
nication capabilities into agents. A primary example is Jiang and Lu (2018) who used an 
attention mechanism to establish communication under partial observations. Rather than 
having a fixed frequency for the information exchange, they learned to communicate on-
demand. Further approaches under partial observability have been investigated in coopera-
tive tasks (Das et al. 2019; Sukhbaatar et al. 2016) or mixed settings (Singh et al. 2019).

In the following, we review papers that cope with partial observability by incorporating 
a memory mechanism. Agents, which have the capability of memorizing past experiences, 
can compensate for the lack of information.

Memory mechanism A common way to tackle partial observability is the usage of deep 
recurrent neural networks, which equip agents with a memory mechanism to store informa-
tion that can be relevant in the future (Hausknecht and Stone 2015). However, long-term 
dependencies render the decision-making difficult since experiences that were observed in 
the further past may have been forgotten (Hochreiter and Schmidhuber 1997). Approaches 
involving recurrent neural networks to deal with partial observability can be realized with 
value-based approaches (Omidshafiei et al. 2017) or actor-critic methods (Dibangoye and 
Buffet 2018; Foerster et al. 2018b; Gupta et al. 2017). Foerster et al. (2019) used a Bayes-
ian method to tackle partial observability in cooperative settings. They used all publicly 
available features of the environment and agents to determine a public belief over the 
agents’ internal states. A severe concern in MADRL is that the memorization of past infor-
mation is exacerbated by the number of agents involved during the learning process.

6 � Discussion

In this section, we discuss findings from previous sections. We enumerate trends that we 
have  identified in recent literature.  Since these  trends are useful for addressing current 
challenges, they may also be an avenue for upcoming research. To the end of our discus-
sion, we point out possible future work. We elaborate on problems where only a minority 
of research has been conducted and pose two problems which we find the toughest ones to 
overcome.

Despite the recent advances in many directions, many pathologies such as relative over-
generalization combined with reward stochasticity are not yet solved, even in allegedly 
simple tabular worlds. MADRL has taken profit from the history of MARL by scaling up 
the  insights to more complex problems. Approaches where strong solutions exist in sim-
plified MARL settings may be transferable to the MADRL domain. Thus by enhancing 
older methods with new deep learning approaches, unsolved problems and concepts from 
MARL continue to matter in MADRL. An essential point for MADRL is that reproduc-
ibility is taken conscientiously. Well-known papers from the single-agent domain underline 
the significance of hyper-parameters, the number of independent random seeds, and cho-
sen code-base towards the eventual task performance (Henderson et al. 2018; Islam et al. 
2017). To maintain steady progress, the reporting of all used hyper-parameters and a trans-
parent conduction of experiments is crucial. We want to make the community aware that 
these findings may also be valid for the multi-agent domain. Therefore, it is inevitable that 
standardized frameworks are created in which different algorithms can be compared along 
with their merits and demerits. Many individual environments have been proposed which 
exhibit intricate structure and real-world complexity (Baker et al. 2020; Beattie et al. 2016; 
Johnson et al. 2016; Juliani et al. 2018; Song et al. 2019; Vinyals et al. 2017). However, 
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no consistent benchmark yet exists that provides a unified interface and allows a fair com-
parison between different kinds of algorithms grounded on a great variety of tasks like the 
OpenAI Gym (Brockman et al. 2016) for single-agent problems.

6.1 � Trends

Over  the last years, approaches in the multi-agent domain achieved successes based on 
recurring patterns of good practice. We have identified four trends in state-of-the-art litera-
ture that have been frequently applied to address current challenges (Table 4).

As the first trend, we observe curriculum learning as an approach to divide the learning 
process into stages to deal with scalability issues. By starting with a small quantity, the 
number of agents is gradually enlarged over the learning course so that large-scale train-
ing becomes feasible (Gupta et al. 2017; Long et al. 2020; Narvekar et al. 2016). Alterna-
tively, curricula can also be employed to create different stages of difficulty, where agents 
face relatively easy tasks at the beginning and gradually more complex tasks as their skills 
increase (Vinyals et al. 2019). Besides that, curriculum training is used to investigate the 
emergence of agent behavior. Curricula describe engineered changes in the dynamics of the 
environment. Agents adapt their behaviors over time in response to the strategic changes of 
others, which can yield arms races between agents. This process of continual adaption is 
referred to autocurricula (Leibo et al. 2019), which have been reported in several works 
(Baker et al. 2020; Sukhbaatar et al. 2017; Svetlik et al. 2017).

Second, we recognize a trend towards deep neural networks embedded with recurrent 
units to memorize experience. By having the ability to track the history of state transitions 
and the decisions of other agents, the non-stationarity of the environment due to multiple 
decision-makers and partially observable states can be addressed in small problems (Omid-
shafiei et al. 2017), and can be managed sufficiently well in complex problems (Baker et al. 
2020; Berner et al. 2019; Jaderberg et al. 2019).

Third, an active line of research is exploring the development of communication skills. 
Due to the rise of deep learning methods, new computational approaches are available to 
investigate the emergence of language between interactive agents (Lazaridou and Baroni 
2020). Despite the plethora of works that analyze emergent behaviors and semantics, 
many works propose methods that endow agents with communication skills. By express-
ing their intension, agents can align their coordination and find a consensus (Foerster et al. 
2016). The non-stationarity from the perspective of a single learner can be eluded when 
agents disclose their history. Moreover, agents can share their local information with others 
to alleviate partial observability (Foerster et al. 2018b; Omidshafiei et al. 2017).

Table 4   Our identified trends in MADRL and the addressed challenges

Trend Addressed challenge(s)

Curriculum learning Scalability
Memory Non-stationarity, partial observability
Communication Non-stationarity, coordination, partial observability
CTDE Non-stationarity, coordination, partial observabil-

ity, credit assignment, scalability
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Fourth and last, we note a clear trend towards the CTDE paradigm that enables the sha-
ing of  information during the training. Local information such as the observation-action 
history, function values, or policies can be made available to all agents during the train-
ing, which renders the environment stationary from the viewpoint of an individual agent 
and may diminish partial observability (Lowe et al. 2017). Further, the credit assignment 
problem can be addressed when information is available about all agents, and a centralized 
mechanism can attribute the individual contribution to the respective agent (Foerster et al. 
2018b). Further challenges that can be loosened are coordination and scalability when 
the lack of information of an individual agent is compensated, and the learning process is 
accelerated (Gupta et al. 2017).

6.2 � Future work

Next to our identified trends, which are already under active research, we recognize areas 
that have not been sufficiently explored yet. One such area is multi-goal learning where 
each agent has an individually associated goal that needs to be optimized. However, global 
optimality can only be accomplished if agents also allow others to be successful in their 
task (Yang et al. 2020). Typical scenarios are cooperative tasks such as public good dilem-
mas, where agents are obliged to the sustainable use of limited resources, or autonomous 
driving, where agents have individual destinations and are supposed to coordinate the 
path-finding to avoid crashes. A similar direction is multi-task learning where agents are 
expected to perform well not only  on one single but  also on related  other tasks (Omid-
shafiei et  al. 2017; Taylor and Stone 2009). Besides multi-goal and multi-task learning, 
another avenue for future work is present in safe MADRL. Safety is a highly desired prop-
erty because autonomously acting agents are expected to ensure system performance while 
holding to safety guarantees during learning and employment (García et al. 2015). Several 
works in single-agent RL are concerned with safety concepts, but its applicability to mul-
tiple agents is limited and still in its infancy (Zhang and Bastani 2019; Zhu et al. 2020). 
Akin to the growing interest in learning to communicate, a similar effect may happen in 
the multi-agent domain, where deep learning methods open new paths. For an application 
perspective on safe autonomous driving, one can consider the article by Shalev-Shwartz 
et al. (2016). Another possible direction for future research offers the intersection between 
MADRL and evolutionary methodologies. Evolutionary algorithms have been used in ver-
satile contexts of multi-agent RL, e.g. for building intrinsic motivation (Wang et al. 2019), 
shaping rewards (Jaderberg et al. 2019), generating curricula (Long et al. 2020) and analyz-
ing dynamics (Bloembergen et al. 2015). Since evolution requires many entities to adapt, 
multi-agent RL is a natural playground for such algorithms.

Beyond the current challenges and reviewed literature of Sect. 5, we identify two prob-
lems that we regard as the most challenging problems to overcome by future work. We 
primarily choose these two problems since they are the ones that matter the most when 
it comes to the applicability of algorithms to real-world scenarios. Most research focuses 
on learning within homogeneous settings where agents share common interests and opti-
mize a mutual goal. For instance, the learning of communication is mainly studied in dec-
POMDPs, where agents are expected to optimize upon a joint reward signal. When agents 
share common interests, the CTDE paradigm is usually a beneficial choice to exchange 
information between agents, and problems like non-stationarity, partial observability, and 
coordination can be diminished. However, heterogeneity implies that agents may have 
their own interests and goals, individual experience and knowledge, or different skills and 
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capabilities. Limited research has been conducted in heterogeneous scenarios, although 
many real-world problems naturally comprise a mixture of different entities. Under real-
world conditions, agents have only access to local and heterogeneous information on which 
decisions must be taken. The fundamental problem in the multi-agent domain is and ever 
has been the curse of dimensionality (Busoniu et  al. 2008; Hernandez-Leal et  al. 2019). 
The state-action space and the combinatorial possibilities of agent interactions increase 
exponentially by the number of agents, which renders sufficient exploration itself a difficult 
problem. This is intensified when agents have only access to partial observations of the 
environment or when the environment is of continuous nature. Although powerful function 
approximators like neural networks can cope with continuous spaces and generalize well 
over large spaces, open questions remain like how to explore large and complex spaces suf-
ficiently well and how to solve large combinatorial optimization problems.

7 � Conclusion

Even though multi-agent reinforcement learning enjoys a long record, historical approaches 
hardly exceeded the complexity of discretized environments with a limited amount of 
states and actions (Busoniu et al. 2008; Tuyls and Weiss 2012). Since the breakthrough of 
deep learning methods, the field is undergoing a rapid transformation, and many previously 
unsolved problems have become step by step tractable. Latest advances showed that tasks 
with real-world complexity could be mastered (Baker et al. 2020; Berner et al. 2019; Jader-
berg et al. 2019; Vinyals et al. 2019). Still, MADRL is a young field which attracts growing 
interest, and the amount of published literature rises swiftly. In this article, we surveyed 
recent works that combine deep learning methods with multi-agent reinforcement learn-
ing. We analyzed training schemes that are used to learn policies, and we reviewed patterns 
of agent behavior that emerge when multiple entities interact simultaneously. In addition, 
we systematically investigated challenges that are present in the multi-agent context and 
studied recent approaches that are under active research. Finally, we outlined trends which 
we have identified in state-of-the-art literature and proposed possible avenues for future 
work. With this contribution, we want to equip interested readers with the necessary tools 
to understand the contemporary challenges in MADRL by providing a more holistic over-
view of the recent approaches. We want to emphasize its potential and reveal opportunities 
as well as its limitations. In the foreseeable future, we expect an abundance of new litera-
ture to emanate and, hence, we want to encourage the community for further developments 
in this interesting and young field of research.
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