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Abstract 

Despite the social and economic impact of pharmacological research, the drug discovery pipeline 

remains an extremely lengthy, complex and expensive process. Recent estimates show that on 

average, the research and development cycle required to produce a new drug costs $1.3 billion over 

a 9 year period. Additionally, only 10% of all drug discovery campaigns succeeds in delivering a new 

therapeutic to the market, thus making pharmacological research an economic high-risk investment.  

In this context, machine learning (ML) can exploit the large amounts of data collected during previous 

High Throughput Screening (HTS) campaigns to provide accurate in silico bioactivity predictions, 

thus accelerating the discovery of new therapeutics. While there is a wealth of different ML 

algorithms for Quantitative Structure-Activity Relationship (QSAR) modelling, constructing reliable 

and efficient ML-based predictors from HTS data continues to be a challenging endeavor. This is 

because these datasets are mostly comprised of inactive molecules, have a large number of false 

positives, are extremely large and are often not sufficiently chemically diverse.  

In this thesis, a broad range of computational methods are developed and investigated to tackle 

these four issues, focusing specifically on the Gradient Boosting Machine (GBM) algorithm for 

modelling HTS datasets. A new approach is presented in Chapter 3 to tackle the issue of class 

imbalance by adjusting the learning objective of GBM to account for the dataset bias towards inactive 

compounds. These modifications push GBM to match or outperform state-of-the-art QSAR 

predictors on a variety of benchmarks, while increasing its computational efficiency. In Chapter 4, 

the three main variants of the GBM algorithm are benchmarked for molecular property prediction. 

The analysis shows that different GBM implementations have different strengths on large datasets, 

e.g. XGBoost has superior performance while LightGBM is orders of magnitude faster than the 

others. Additionally, the set of most important parameters to optimize is established for the GBM 

algorithm. In Chapter 5, a new data valuation algorithm for GBM is developed and its application for 

the efficient prioritization of HTS hits is investigated. The proposed approach demonstrates 

promising performance in false positive and true positive identification on a broad range of HTS 

datasets and could be successfully employed on a retrospective case study. Finally, Chapter 6 

investigates the use of molecular fingerprints for modelling natural products in terms of virtual 

screening and bioactivity prediction. As such, the results of this benchmark provide featurization 

guidelines to consider when training QSAR models on HTS data, if the goal is to perform virtual 

screening beyond the drug-like chemical space.   

In conclusion, this thesis provides novel insights and algorithms for training QSAR models on HTS 

data using GBMs. These findings provide ready-to-use solutions for accelerating early-stage drug 

discovery and act as a foundation for further research in the modelling of this class of datasets.    
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Kurzfassung 

Die Arzneimittelforschung ist trotz der sozialen und wirtschaftlichen Bedeutung nach wie vor ein 

äußerst langwieriger, komplexer und teurer Prozess. Jüngsten Schätzungen zufolge kostet der 

Forschungs- und Entwicklungszyklus, der zur Herstellung eines neuen Medikaments erforderlich ist, 

über einen Zeitraum von neun Jahren durchschnittlich 1,3 Milliarden Dollar. Darüber hinaus gelingt 

es nur in 10 % der Fälle, ein neues Therapeutikum auf den Markt zu bringen. Das macht die 

pharmakologische Forschung zu einer ökonomisch riskanten Investition.  

In diesem Zusammenhang kann Machine Learning (ML) die großen Datenmengen nutzen, die bei 

früheren Hochdurchsatz-Screening-Kampagnen (engl. HTS) gesammelt wurden, um genaue in 

silico Bioaktivitätsvorhersagen zu erstellen und so die Entdeckung neuer Therapeutika zu 

beschleunigen. Es gibt viele verschiedene ML-Algorithmen zur Modellierung quantitativer Struktur-

Wirkungs-Beziehungen (engl. QSAR), aber die Entwicklung zuverlässiger und effizienter ML 

Modellen aus HTS-Daten ist nach wie vor ein komplexes Unterfangen. Dies liegt daran, dass diese 

Datensätze größtenteils aus inaktiven Molekülen bestehen, eine große Anzahl von falsch-positiven 

Ergebnissen aufweisen, außerordentlich groß und oft chemisch nicht ausreichend vielfältig sind.  

In dieser Arbeit wird ein breites Spektrum an Methoden entwickelt und untersucht, um diese vier 

Probleme anzugehen, wobei der Schwerpunkt auf dem Gradient Boosting Machine (GBM)-

Algorithmus zur Modellierung von HTS-Datensätzen liegt. In Kapitel 3 wird ein neuer Ansatz 

vorgestellt, um das Problem des Klassenungleichgewichts anzugehen, indem das Lernziel der GBM 

so angepasst wird, dass die Verzerrung des Datensatzes hin zu inaktiven Verbindungen 

berücksichtigt wird. Diese Modifikationen ermöglichen es mit GBM, bei einer Reihe von Benchmarks 

mit den modernsten QSAR-Modellen zu konkurrieren oder diese sogar zu übertreffen, während 

gleichzeitig die Berechnungseffizienz erhöht wird. Kapitel 4 unterzieht drei Varianten des GBM-

Algorithmus einer Benchmark-Analyse zur Vorhersage von Moleküleigenschaften. Die Analyse 

zeigte, dass die verschiedenen GBM-Implementierungen bei großen Datensätzen unterschiedliche 

Stärken aufweisen, z. B. hat XGBoost eine überlegene Leistung, während LightGBM deutlich 

schneller ist als die anderen. Außerdem wurden die wichtigsten zu optimierenden Parameter für den 

GBM-Algorithmus ermittelt. Kapitel 5 beschäftigt sich mit der Entwicklung eines neuen 

Datenbewertungsalgorithmus für GBM und dessen Anwendung zur effizienten Priorisierung von 

HTS-Treffern. Der vorgeschlagene Ansatz zeigte eine vielversprechende Leistung bei einem breiten 

Spektrum von HTS-Datensätzen und konnte erfolgreich bei einer retrospektiven Fallstudie 

eingesetzt werden. Schließlich wird in Kapitel 6 die Verwendung von molekularen Fingerabdrücken 

für die Modellierung von Naturstoffen im Hinblick auf virtuelles Screening und 

Bioaktivitätsvorhersage untersucht. Die Ergebnisse liefern Richtlinien für die computergestützte 

Darstellung von Molkülen, die beim Training von QSAR-Modellen auf HTS-Daten zu berücksichtigen 
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sind, wenn das Ziel darin besteht, ein virtuelles Screening außerhalb der arzneimittelähnlichen 

chemischen Verbindungen hinaus durchzuführen. 

Zusammenfassend liefert diese Arbeit neue Erkenntnisse und Algorithmen für das Training von 

QSAR-Modellen auf HTS-Daten unter Verwendung von GBMs liefert. Diese Erkenntnisse bieten 

gebrauchsfertige Lösungen zur Beschleunigung der Arzneimittelentdeckung im Frühstadium und 

dienen als Grundlage für die weitere Forschung im Bereich der Modellierung dieser Klasse von 

Datensätze.  
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1.1 A perspective on the societal and economic impact of drug 

discovery 

Small-molecule pharmacological research has been one of the main contributing factors 

to the economic and societal improvement observed across the planet during the 20th 

and 21st century.1 For example, the discovery of Penicillin in 1928 by Alexander Fleming, 

together with the development of Salvarsan (1910) and Prontosil (1935), kickstarted the 

“golden age of antibiotics”, drastically reducing the number of deaths associated to 

bacterial infection.1,2 Another example is the development of Retrovir (1987), the first 

effective treatment for tackling HIV infections.1 After further research on small-molecule 

antiviral agents, what once was considered an epidemic is nowadays a manageable 

chronic condition with good quality of life.3 In terms of its societal impact, pharmaceutical 

research has contributed to more than 60% of the life expectancy increase in the last 20 

years,4 while from an economic point of view it provides per year a total gross value of 

approximately $530 billion and employs over 5.5 million people.5  

To ensure drug safety and efficacy, the development pipeline is usually divided into four 

phases (Figure 1.1):6,7  

1. Early drug discovery (phase 0): Here, the goal is to identify a relevant biological 

target for the disease of interest and find a selection of compounds that elicit the 

desired response (e.g. protein inhibition). Next, the most active molecules 

undergo further optimization, usually with the aim of improving Absorption, 

Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. Finally, the 

first in vivo tests are performed on animal models.8 

2. Phase 1:  The most promising compound is then evaluated on a small cohort of 

healthy volunteers for further pharmacokinetic optimization and establishing 

dosage ranges.9,10 

3. Phase 2: Initial testing is carried out on a small selection of patients in order to 

establish therapeutic dosage and estimate the efficacy of the drug against the 

target disease.11 

4. Phase 3: Additional drug efficacy testing is carried out involving a much larger 

cohort of patients and centers. All instances of adverse effects are recorded and 

evaluated.12 
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Figure 1.1 – Analysis of the contribution each development phase has on the overall budget and 
development time required to deliver a drug on the market. Data adapted from Ref. 6. 

Once a drug successfully undergoes Phase 3, the pharmaceutical company can request 

regulatory approval and begin selling it on the market.6,8 Due to its complexity however, 

the drug discovery pipeline is a particularly lengthy, costly and unpredictable 

endeavor.6,13 Recent estimates indicate that for each new therapeutic to reach the 

market, companies need to invest on average $1.3 billion over a 9 year period.13–15 

Additionally, only 10% of all drug discovery campaigns succeed in producing a 

marketable product, further exacerbating the time and monetary investment required for 

research and development.6,16,17 While researchers have investigated the impact of the 

regulatory and legal framework surrounding the development pipeline,18,19 the discovery 

of new therapeutics remains the main bottleneck in pharmaceutical research.20,21 

Because of these reasons, there is a significant interest in leveraging new technologies 

that can help efficiently identify the most promising compounds for drug discovery 

campaigns. 

In this context, two key innovations have disrupted the drug discovery pipeline. On the 

experimental side, high throughput screening (HTS), initially introduced in the early 

2000s, has revolutionized the way early stage drug discovery is conducted by enabling 

fast screening of hundreds of thousands of compounds for biological activity.22,23 On the 

computational side, artificial intelligence (AI) has recently started gaining traction in the 

pharmaceutical field, enabling in silico molecular property prediction, target identification, 

de novo drug design and automated synthesis planning.24,25 

While these two techniques naturally complement each other, given that one allows to 

generate large amounts of data efficiently while the other improves as the dataset size 

increases, their combination is not straightforward. The aim of this thesis then is to 

investigate how to optimally model HTS data with Gradient Boosting Machine (GBM), a 

promising machine-learning algorithm for molecular property prediction. Developing 

accurate predictive models from the large amount of historical HTS data available today 

is essential for expediting the identification of relevant bioactive molecules, thus reducing 

the time and costs associated with drug discovery campaigns.  
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1.2 High throughput screening in drug discovery 

A HTS campaign consists of measuring a given biochemical property, e.g. a desired 

phenotypic response or target protein inhibition, for a large number of compounds by 

miniaturizing the assay and leveraging robotic equipment.26 Experiments are usually 

performed without replicates at a single concentration (e.g. 10 µM), using less than 2 µL 

per well.27,28 The use of robotic equipment, single measurements and low volumes 

enables fast and cheap screening of compound libraries up to 107 molecules.29 However, 

only a small fraction of screened compounds show meaningful bioactivity and many hits 

are false positives, thus limiting the effectiveness of HTS campaigns for identifying new 

drug candidates.22,30 

The low hit rate of HTS campaigns (<1% on average) is typically a consequence of the 

choice of compounds to screen.29 As such, library design for HTS is an active topic of 

research.31,32 In the early 2000s, the majority of screening libraries prominently featured 

chemical moieties which were easily accessible via combinatorial chemistry. However, 

doing so heavily limited the success rate of screening campaigns, given the lack of 

novelty and diversity of combinatorial compound libraries.29 Since then, a premium has 

been placed on overall molecular diversity, with the aim of covering as much chemical 

space as possible, and on focusing on compounds that have a priori high chance of 

being active against the target of interest.33 Recently, efforts have been made to include 

natural products (NPs) in screening libraries, due to their potency, selectivity and 

chemical diversity.34 

Concerning HTS false positives, one common noise source is related to specific well 

positions (e.g. under or overestimation of the readout for wells at the edge of the plate, 

also known as the “edge effect”), or to particular plates (e.g. incubation time drift).26,28 

Typically, these sources of error are tackled by well position and plate order 

randomization in subsequent screens, readout normalization according to positive and 

negative controls for the assay, position normalization via correction methods and outlier 

detection via statistical testing. Each of these approaches has advantages and 

disadvantages, making it necessary to analyse each HTS on a case-by-case basis.26,28 

Another prevalent source of noise in HTS campaigns are compounds that elicit a 

reproducible readout which does not correlate with the underlying biological activity the 

assay aims to measure. Examples of this class are autofluorescent compounds, colloidal 

aggregators and assay technology interferents (e.g. Firefly Luciferase binders).30,35,36 

Additionally, there are compounds that tend to be active in most HTS campaigns 

regardless of biological target or assay technology. These molecules, named “frequent 
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hitters”, are sometimes false positives, in the sense that they present a fluorescence 

readout that is not correlated with the desired biological response, while in other cases 

they are simply pharmacologically promiscuous.37 Due to the heterogeneity of 

interference mechanisms and the interplay between chemical structure, biological target, 

assay technology and conditions, it is extremely difficult to establish only from primary 

HTS data which compound might be a false positive. As such, most drug discovery 

campaigns employ confirmatory screens (e.g. dose-response measurements) and 

counterscreens (e.g. repeating the assay in a different cell line) to identify the true hits 

among the active compounds in the primary HTS campaign.38  

Stemming from these considerations, HTS datasets pose the following challenges for AI-

based modelling: 

• The low hit rate makes it difficult for data-driven algorithms to learn how to 

distinguish between active and inactive compounds. This issue is tackled in 

Chapter 3 of this thesis. 

• The size of HTS datasets makes training and optimization of AI models 

challenging, making the identification of computationally efficient approaches a 

priority. This aspect is discussed in Chapter 4 of the dissertation. 

• The prevalence of false positives in HTS campaigns reduces their effectiveness 

for data-driven modelling, since the algorithms will learn spurious correlations 

from the training data. A new method for distinguishing between true and false 

positives in HTS data is presented in Chapter 5 of this thesis. 

• The chemical space explored by HTS campaigns might not be sufficiently 

diverse, thus limiting the applicability of data-driven models to other promising 

compound classes such as natural products. How to model natural products for 

molecular property prediction is discussed in Chapter 6.  
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1.3 Leveraging artificial intelligence to expedite drug discovery 

Drug development is fundamentally a multi-objective optimization task, where the goal 

is to design a compound satisfying multiple constraints, e.g. sufficient potency and low 

toxicity.25 Given the complexity of biological systems, the vastness of the chemical space 

and the high cost of experiments, in silico approaches are an ideal tool to support 

medicinal chemists in designing new drugs.25,39 In the last decade, AI has risen to 

prominence in this regard, thanks to a rapid increase in computational power and the 

amount of data available for training data-driven methods.24,40  

A cornerstone application of AI to drug discovery is molecular property prediction, 

defined as the task of predicting in silico molecular properties from the compound 

structure.24 To create molecular property prediction models, it is necessary to first have 

a dataset of molecules (usually between 103 – 106) that have been measured in the 

assay of interest.41 A machine learning (ML) or deep learning (DL) algorithm can then be 

used to learn the relationship between chemical structure and the desired property from 

the training data.41,42 To obtain a broadly applicable predictive model, it is paramount that 

the training set includes a structurally diverse selection of compounds.24,42 

1.3.1 Uses of molecular property prediction in drug discovery 

Typical applications of molecular property prediction include ligand-based virtual 

screening (VS),  active learning  and ADMET property modelling.41  

Ligand-based VS is typically employed to identify in large chemical libraries (up to 109 

molecules) the most potent compounds for a given bioassay.43,44 As such, it is used in 

the earliest stages of the drug discovery campaign in order to prioritize which compounds 

to develop further.45 One crucial difference from structure-based VS methods such as 

docking is that they only rely on chemical information to predict bioactivity.24 Therefore, 

as long as a dataset of sufficient quality has been acquired for the assay of interest, 

having a high-quality crystal structure of the biological target or knowledge of the binding 

mode of the ligands is not required. Because of this, molecular property prediction 

models can also be employed to predict phenotypic activity where the target might be 

unknown, e.g. antibacterial or antiviral activity.46,47 One particularly notable success story 

of the use of ligand-based VS is the discovery of Halicin, a novel broad spectrum 

antibiotic.46 Halicin was identified as a potential antibiotic by a Graph Neural Network 

(GNN)48 while in silico screening of a drug repurposing library. The GNN was trained on 

a HTS dataset for Escherichia coli antibacterial activity which focused on chemical 

diversity and included several natural products to generate the best possible training set 

for the data-driven predictor. Crucially, the study showed that the GNN could identify 
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antibiotic activity beyond the scope of the original assay, as shown by the excellent 

performance of Halicin against other strains (e.g. Mycobacterium tubercolosis). 

Active learning is conceptually similar to ligand-based VS, but differs in its role within a 

drug discovery campaign. While the latter is employed after a dataset has been acquired, 

the former is used to decide which compound to measure next as data is collected.49–52 

In practice, the active learning procedure goes as follows (Figure 1.2): 

1. Measure a small number of compounds in the assay of interest. 

2. Train a molecular property prediction model on the dataset acquired during step 

1. 

3. Predict which compounds are most likely to be active among the remaining 

molecules from the screening library. 

4. Validate experimentally the top-k most promising compounds identified by the 

molecular property prediction model. 

5. Train a new molecular property prediction model including the newly acquired 

data. 

6. Repeat steps 3-5 until a sufficient number of bioactive compounds has been 

found. 

This procedure significantly improves the hit rate of screening procedures, enabling 

detection of active compounds at a much faster rate than by random selection. 

Additionally, the application of active learning is not limited to in vitro screening 

campaigns, but can also be used to accelerate other more computationally demanding 

in silico approaches, such as docking.50,53 

 

Figure 1.2 –Active learning workflow to accelerate structure-based virtual screening. Once a few molecules 
at random have been docked, the ML model is trained to predict docking scores. The predictor is then used 
to identify from the remaining screening library the most promising compounds, which are then validated via 
docking. By repeating this procedure iteratively, it is possible to identify the most promising structure-based 
virtual screening hits without needing to dock the entire library. Figure is adapted from Ref. 53.  

Finally, ADMET prediction models are used to further refine the selection of bioactive 

compounds or to guide the pharmacological optimization of the most promising lead 

molecules.54 As of late, these models are starting to be paired with DL-based generative 
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models.55,56 By linking the two approaches together, it is possible to steer the generative 

process so that it focuses on pharmacologically desirable regions of the chemical space, 

thus producing more lead-like molecular libraries.56 

1.3.2 Algorithms for molecular property prediction 

Many different computational approaches are used for molecular property prediction 

(Figure 1.3). One of the first algorithms used for this task was k-Nearest Neighbors 

(KNN), where a compound’s prediction is calculated on the basis of which compounds 

among the training set it is most similar.57 As such, this algorithm relies on the similarity 

principle, stating that similar compounds tend to have similar molecular properties. 

Afterwards, the field moved from linear models (e.g. linear or logistic regression) to non-

linear models such as Support Vector Machines (SVMs)58 and decision tree ensembles 

such as Random Forest (RF)59 in order to capture more complex dependencies between 

compound structures and molecular properties.24 In the last decade, neural networks 

(NNs) rose to prominence, thanks to their ability to model multiple properties at once and 

model molecular structures without expert-encoded features.41 However, there is no 

consensus yet on whether classical ML approaches such as SVM and RF are 

outperformed by neural networks.60–62 

Finally, Gradient Boosting, a decision tree ensemble algorithm, has recently garnered 

the attention of the cheminformatics community, driven by its outstanding performance 

on tabular data modelling in different fields.63–66 In terms of performance, it typically 

matches or outperforms both machine learning and deep learning algorithms while 

remaining computationally lightweight.65,66 Additionally, its predictions are 

straightforward to explain in terms of feature contributions, e.g. via efficient Shapley 

value calculation.67 Stemming from these considerations, the aim of this thesis is then to 

investigate how to adapt Gradient Boosting for modelling HTS data for molecular 

property prediction, so that it can effectively tackle the class imbalance, computational 

cost, false positive rate and chemical bias typical of this class of datasets. 
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Figure 1.3 – Different machine learning and deep learning strategies commonly used for molecular property 
prediction. Among traditional machine learning algorithms, Random Forest (RF), Gradient Boosting Machine 
(GBM), Support Vector Machine (SVM) and k-Nearest Neighbours (KNN) are the most popular approaches. 
Deep learning methods can be divided depending on whether they embed compounds as graphs or SMILES 
strings. Common graph-based approaches are Message Passing Neural Networks (MPNN), Graph 
Convolution Networks (GCN), Graph Attention Networks (GAT) and Attentive Fingerprints (AFP). To process 
string-based representations, Long Short Term Memory (LSTM) architectures, Convolutional Neural 
Networks (CNN) and Transformers are typically employed. Figure adapted from Ref. 62. 
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2.1 Fundamentals of molecular property prediction 

While there is currently a wealth of different algorithms for molecular property prediction, as 

introduced in Chapter 1.3.2, they can generally be described under the same mathematical 

formalism. Furthermore, the best practices for performance evaluation are independent of the 

chosen modelling algorithm. As such, the aim of this section is to introduce molecular property 

prediction by presenting the key concepts that apply to most algorithms used for this task. 

2.1.1 Quantitative Structure-Activity Relationship modelling 

Molecular property prediction can be expressed with Equation 2.1: 

𝑦 = 𝑓(𝑥) 2.1 

Where 𝑥 = (𝑥1, … , 𝑥𝑚) is the input molecule, expressed with a set of features 𝑚, 𝑦 is the 

property of interest and 𝑓 is the mathematical model establishing a connection between the 

chemical structure and the experimental response.1 This relationship is often unknown or too 

complex to express analytically. As such, data-driven methods such as machine learning and 

deep learning provide a framework for learning a surrogate model 𝑓𝑠 ∶ ℝ𝑚 → ℝ from a dataset 

𝐷 = {(𝑥𝑘, 𝑦𝑘)}𝑘=1…𝑛 of 𝑛 molecule-property pairs, which can be used to approximate 𝑓.1,2 These 

methods fall within the category of supervised learning algorithms since they require that each 

molecule 𝑥𝑘 is associated with its experimental readout 𝑦𝑘.3,4 

In practice, the model is obtained by adjusting the model’s parameters 𝑤 by minimizing the 

expected loss 𝐿 for the training data:3,4 

𝑓𝑠𝑤
= arg min𝑤 𝔼𝐿 (𝑌, 𝑓𝑠𝑤

(𝑋)) 2.2 

𝐿 is a loss function, which measures the discrepancy between the measured experimental 

properties 𝑌 for training compounds 𝑋 and the value predicted by the model 𝑓𝑠𝑤
(𝑋). In 

cheminformatics, these algorithms are called Quantitative Structure-Activity Relationship 

(QSAR) models.1 

Depending on the property 𝑦, different types of QSAR models can be built. If 𝑦 indicates a 

categorical response (e.g. toxic versus non-toxic), the prediction task is called classification. 

Instead, if 𝑦 defines a numerical property (e.g. the IC50 of a molecule in a given assay), the 

prediction task is named regression. As such, a classification model will predict the likelihood 

of a compound belonging to a given class, while a regression model will output the numerical 

value of the property of interest associated to the input molecule.1,2,5 However, in drug 

discovery the distinction between classification and regression is not as clear-cut as it is in 

other fields such as Computer Vision (CV) or Natural Language Processing (NLP). This is 
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because compound classes like “toxicity” usually stem from setting thresholds on biochemical 

assays that would report a numerical readout, e.g. enzyme inhibition, and considering as “toxic” 

every molecule that is for example below the threshold.6,7  

Finally, molecular property values are usually measured with some degree of experimental 

noise.8–10 This is problematic for the development of in silico predictors, since the model cannot 

distinguish between the true structure-activity relationship and spurious correlations from 

measurement uncertainty.11,12 Because of this, the noise of the training set acts as an upper 

bound to the performance of a QSAR model trained on that data, since no data-driven 

algorithm can become more accurate than the measurements used to train it.8,13  

2.1.2 Model evaluation 

Data-driven methods tend to perform extremely well on the training dataset but may have 

limited predictive power on different datasets, a process known as overfitting. To have a more 

unbiased view of the performance of the QSAR model in perspective applications, it is 

customary to remove a fraction of the training dataset (e.g. 10%), named test set, which is then 

only used to evaluate the performance of the QSAR model on molecules not included for 

training.1,2,14 There are three commonly used approaches to split the data into training and test 

sets: 

• Random split: the test set is generated by randomly selecting a user-specified fraction 

of compounds. For classification tasks, the random sampling is usually done so that 

the class distribution is the same both in the training and test sets. This splitting 

approach is typically the least conservative in terms of performance estimation, since 

structural analogues of training set molecules might be present in the test set, 

overestimating the generalization ability of the model across the chemical space.15 

• Scaffold split: the test set is generated by selecting compounds so that there is no 

overlap between the Bemis-Murcko scaffolds present in the training and test sets. This 

method is typically employed in academic benchmarks of QSAR performance, given 

that it allows to evaluate how well a given model generalizes to unseen regions of the 

chemical space. However, it might not be possible to enforce the class distribution ratio 

of the training and test sets to be equal.15,16 

• Time split: the test set is generated by picking compounds that were analyzed in a 

different timeframe than the ones present in the training set, e.g. after one month. This 

method is considered even more challenging than scaffold splitting and it is typically 

used in industry benchmarks, where new measurements are routinely performed for a 

given assay.14,17 

Additionally, the training and testing procedure can be repeated iteratively, generating a series 

of non-overlapping training and test sets. This procedure is called cross validation and allows 
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to obtain less biased performance metrics than the ones obtained by relying on one single test 

set.5 

2.1.3 Performance metrics 

Depending on whether the QSAR model is trained for classification or regression, different 

performance metrics are employed. 

To properly evaluate classification performance, it is paramount to consider the level of class 

imbalance of the dataset.18 When dealing with extremely imbalanced datasets, e.g. datasets 

where the number of bioactive compounds is less than 1%, correctly identifying the minority 

class is far more important than detecting the majority class.19 Three metrics that are typically 

used to measure the performance on the minority class are recall, precision and specificity: 

Recall =
TP

𝑃
2.3 

Precision =
TP

TP + FP
2.4 

Specificity =
TN

𝑁
2.5 

Where TP is the true positive rate, 𝑃 is the number of samples belonging to the minority class, 

FP is the false positive rate, TN is the true negative rate and 𝑁 is the number of samples 

belonging to the majority class. However, these metrics focus only on one aspect of the overall 

classification performance, e.g. the ability of the model to retrieve all bioactive compounds in 

a library in the case of recall, or how likely are the predicted actives to be validated 

experimentally in the case of precision.20 Because of this, these metrics are typically combined 

to assess the classification performance as a whole.18,21 For example, the Receiving Operator 

Characteristic Area Under Curve (ROC-AUC) combines recall and specificity, while the 

Precision-Recall Area Under Curve (PR-AUC) combines precision and recall.18 Another 

popular global classification metric is the Matthews Correlation Coefficient (MCC),22 expressed 

as follows: 

MCC =
TP ∙ TN − FP ∙ FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
2.6 

Where TP and TN are the true positive and true negative rates, while FP and FN are the false 

positive and false negative rate. Additionally, for some QSAR modelling tasks, e.g. prioritizing 

which compounds to validate experimentally from a large library, it might be more appropriate 

to focus on the ability of the model to prioritize relevant compounds. Examples of metrics that 

measure this aspect are the Boltzmann Enhanced Discrimination of ROC (BEDROC), the 

enrichment factor and the top-𝑘 precision.23  
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Regarding regression, the two most popular metrics are the Root Mean Squared Error (RMSE) 

and the Mean Absolute Error (MAE), shown in Equations 2.7 and 2.8.5 Both measure the 

average discrepancy between the predicted properties and the experimental values, but RMSE 

punishes more harshly large errors, while MAE is more robust to outliers.5  

RMSE = √
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1

𝑁
2.7 

MAE =
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1

𝑁
2.8 
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2.2 Featurization methods 

Converting chemical structures into a numerical format is a crucial task of cheminformatics 

modelling, often having a stronger impact on the performance of QSAR models than the choice 

of the predictive algorithm itself.24–26 Furthermore, molecular encodings perform differently 

depending on the region of the chemical space to be modeled: for example, many algorithms 

have been developed specifically for drug-like compounds, which potentially makes them 

unsuitable for handling different compound classes such as natural products.27,28 This research 

question is investigated in Chapter 6 of this dissertation. 

Within this thesis, two classes of molecular featurization methods were investigated: molecular 

descriptors and fingerprinting algorithms.  

2.2.1 Molecular descriptors 

Molecular descriptors encompass a heterogeneous set of properties that can be quickly 

computed from a compound’s chemical structure (Figure 2.1).29 Depending on the QSAR 

modelling task, different descriptors are used to encode molecules, depending on which one 

correlate the most with the target property.1,2,30 Molecular descriptors can be distinguished in 

three different classes: one-dimensional descriptors (1D), bidimensional descriptors (2D) and 

tridimensional descriptors (3D).29 

 

Figure 2.1 – Classification of different molecular descriptor types. 1D molecular descriptors can be computed from 
the chemical formula of the compound and describe the composition of the molecule. 2D molecular descriptors 
require the structural formula of the compound and capture information about its connectivity. Finally, 3D molecular 
descriptors can be computed from 3D conformers and focus on modelling the shape of the molecule.   

1D molecular descriptors describe properties pertaining to the chemical constitution of a 

compound, irrespective of its connectivity. Examples of this class of descriptors are the 

molecular weight, heteroatom counts and so forth. As such, this class of descriptors can be 
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computed from the molecular formula of the compound, hence the “one-dimensional” 

denomination.29,31 

2D molecular descriptors focus on summarizing the connectivity of the molecular graph of a 

given compound, meaning that they require the structural formula of the molecule to be 

calculated. They can range from simple counts, e.g. the number of rings in a molecule, to more 

complex descriptors obtained by processing the graph of the compound.29,32,33 One example 

of the latter is the Balaban 𝐽 index, computed as follows:34,35 

𝐽 =
𝑞

𝜇 + 1
∑

1

√𝑠𝑖𝑠𝑗𝑎𝑑𝑗𝑎𝑐(𝑖,𝑗)

2.9 

Where 𝑞 is the number of bonds, 𝜇 = 𝑞 − 𝑛 + 1 where 𝑛 is the number of atoms and 𝑠𝑖 is the 

sum of the 𝑖-th row of the distance matrix of the compound. The summation is iterated only 

over connected atoms, and its value is scaled inversely proportional to the bond order.  

Finally, 3D molecular descriptors capture the tridimensional arrangement of the atoms of a 

given compound. While they are more informative than 2D descriptors, they require a 3D 

conformer to be computed.29,31,33 Given that often the relevant conformer for the property 

prediction task is unknown, they are usually computed on the most stable conformation.29,31 

This however can lead to unwanted biases if the relevant conformer differs greatly from the 

most stable one.31 Two examples of 3D molecular descriptors are the Weighted Holistic 

Invariant Molecular (WHIM) descriptors,36 which capture shape and symmetry information, and 

Weighted Holistic Atom Localization and Entity Shape (WHALES) descriptors,37 which model 

the charge distribution of the conformer. The latter are computed from the Atom Centered 

Mahalonobis (ACM) distance matrix, calculated as follows:37 

ACM𝑖,𝑗 = (𝑥𝑖 − 𝑥𝑗)
𝑇

𝑆−1
𝑗(𝑥𝑖 − 𝑥𝑗) 2.10 

Where 𝑥𝑖 is the coordinate of the 𝑖-th atom and 𝑆𝑗 is the entry associated to the 𝑗-th atom in 

the atom-centered weighted covariance matrix: 

𝑆𝑗 =
∑ |𝛿𝑖|(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗)

𝑇𝑛
𝑖=1

∑ |𝛿𝑖|𝑛
𝑖=1

2.11 

Where 𝛿𝑖 is the electronic charge associated to the 𝑖-th atom. 

2.2.2 Fingerprints 

Fingerprints convert molecular structures into bit vectors by decomposing their chemical graph 

with a predefined algorithm.38,39 Each bit encodes whether a given molecular motif is present 

or absent in the target molecule.1,2 Fingerprinting algorithms can be classified into five families 

(Figure 2.2):40 
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• Substructure-based 

• Path-based 

• Circular 

• Pharmacophore 

• String-based 

 

 

Figure 2.2 – Classification of different molecular fingerprint types. Substructure-based approaches use expert-
defined fragments to represent compounds. Path-based and circular algorithms process the topology of the 
chemical graph of the compound. Pharmacophore fingerprints focus on the arrangement of pharmacophores in the 

compound structure. String algorithms identify fragments by processing the SMILES representation of the molecule.  

Substructure-based fingerprinting algorithms are fundamentally a set of functional groups and 

molecular fragments.39 These are typically manually curated by medicinal chemists and 

cheminformaticians, and usually include the most relevant chemical features for 

pharmacological applications.39,41 To generate substructure-based fingerprints, the algorithm 

checks iteratively if each motif is present or absent in the target compound, returning a bit 

vector of the same dimensionality as the number of fragments evaluated. Examples of this 

class of fingerprints are the MACCS keys and the PubChem fingerprints.27,39,42  

Path-based fingerprints have two key differences from substructure-based algorithms. First, 

they do not have a predefined dimensionality. Second, due to how they are computed, each 

bit does not necessarily encode the same molecular fragment for two different compounds. 

These encodings are generated by enumerating the unique paths between two vertexes of the 

molecular graph, which are then stored into a bit vector of fixed size via a a hash function.39,43,44 

For example, the All-Shortest Paths (ASP) fingerprint is computed as follows:39 
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ASP = ⋃{DFS(𝑎𝑖, 𝑑), |𝑝𝑖𝑗|= 𝑡𝑖𝑗}

𝑛

𝑖=1

2.12 

Where 𝑛 is the number of atoms in the molecule, DFS indicates a depth-first search of the 

molecular graph from atom 𝑎𝑖 up to a number of bonds 𝑑, 𝑝𝑖𝑗 indicates the number of bonds 

between the 𝑖-th and 𝑗-th atom and 𝑡𝑖𝑗 denotes the minimum path possible to connect those 

two atoms.  In practice, the algorithm iterates over each atom, collecting the shortest path 

connecting the root atom to another atom up to a bond distance 𝑑, ensuring that for a given 

atom pair only the shortest path is preserved. Then, all the unique paths obtained this way are 

hashed into a fixed-size representation. By changing the criteria for path inclusion and 

calculation, different path-based fingerprints can be computed, such as the Atom Pair (AP) 

fingerprint and the DFS fingerprint.39,45 

Circular fingerprints work similarly to path-based algorithms, in the sense that they dynamically 

compute the fragments for each compound and rely on hashing to convert the set of chemical 

motifs to a fixed-size vector, but encode progressively larger atomic radial neighborhoods 

rather than paths along the chemical graph.39 One key aspect of circular fingerprint 

computation is the concept of atomic identifiers. To generate numerical representations of the 

fragments for a given molecule, it is necessary to aggregate information from all the atoms in 

the radial neighborhood. This operation in turn requires a numerical encoding for the atoms, 

which is usually obtained by choosing a set of atomic properties to represent atoms, such as 

the atomic number, its hybridization state and so forth. These properties are called atom 

identifiers and strongly impact the performance of the molecular fingerprint.39 For example, 

Extended Connectivity Fingerprints (ECFP) and Functional Class Fingerprints (FCFP) only 

differ in terms of atom identifies, but show different behavior in terms of similarity searching 

and QSAR modelling.46 

Pharmacophore fingerprints use similar algorithms as the ones found in path-based 

fingerprints, but focus on encoding the arrangement of pharmacophoric points in the molecule, 

such as hydrogen bond donors and acceptors.39,47 Therefore, these fingerprints aim to capture 

how a given compound interacts with its environment, e.g. with the binding site of a protein, 

rather than accurately encoding the chemical structure of the molecule of interest. Examples 

of this class of fingerprints are Pharmacophoric Pairs (PP2).48  

PP2 = ⋃ 𝑃𝑖⨁𝑡𝑖𝑗⨁𝑃𝑗⨁𝑡𝑗𝑖

𝑛

𝑖,𝑗

2.13 

Where 𝑃𝑖 denotes the set of valid pharmacophore properties for the 𝑖-th atom and 𝑡𝑖𝑗 indicates 

the shortest path between the 𝑖-th and 𝑗-th atom. The calculation of pairwise atomic distances 

along the graph is repeated for each pharmacophore property. 
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Finally, string-based fingerprints generate molecular encodings by decomposing the SMILES 

string of the compound, rather than operating on its graph representation.49 Examples of this 

class of encodings are MinHashed Fingerprints (MHFP),50 a SMILES-based variation of ECFP, 

and MinHashed Atom Pair Fingerprints (MAP4),28 which uses SMILES in combination with a 

path-based algorithm. 
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2.3 Gradient boosting machines 

Gradient boosting is a powerful and efficient tree ensemble algorithm that has found 

widespread success in a variety of fields and is becoming increasingly popular for QSAR 

modelling.24,51–53 In this chapter, the general mechanism behind GBMs is introduced, as well 

as its three most popular implementations: XGBoost, LightGBM and CatBoost.  

While these algorithms are often used interchangeably in the cheminformatics community, they 

have substantial algorithmic differences, which translate in different performance and 

computational efficiency.54 Chapter 4 of this dissertation benchmarks XGBoost, LightGBM and 

CatBoost in terms of molecular property prediction to determine the best practices for their use 

and optimization. 

2.3.1 Constructing ensembles via boosting 

GBM is an ensemble algorithm, meaning that it aims to obtain a highly performant model by 

aggregating a set of weak predictors.55 The resulting QSAR model can be expressed as 

follows:56 

GBM(𝑥) = ∑ 𝜎𝑓𝑖(𝑥)

𝑘

𝑖=1

2.14 

Where 𝑥 is e.g. the set of molecular descriptors for the input compound, 𝜎 is a regularization 

parameter called learning rate and 𝑓𝑖 is the 𝑖-th predictor in an ensemble with 𝑘 predictors. 

While this procedure can be applied using any algorithm for learning 𝑓𝑖, GBMs are typically 

trained by ensembling regression trees. This is because regression trees are non-parametric, 

can handle missing and categorical data and are extremely computationally efficient, making 

it possible to train large ensembles with higher predictive performance.55,56 

Regression trees are constituted by nodes and leaves.57–59 Nodes are used to rout samples 

within the tree structure, each with its own binary decision, e.g. whether the compound has a 

molecular weight above or below 350 Da. The nodes are structured in a hierarchical fashion, 

with each new node further splitting the compounds reaching its parent node within the tree. 

The terminal nodes are called leaves, which use their weights to compute the sample’s 

prediction.57–59 As such, predictions in regression trees are computed by routing the molecule 

within the tree until a leaf is reached, returning the leaf’s weight as the output. The regression 

tree structure, splits and weights are greedily optimized by maximizing a quality-of-fit criterion 

such as variance reduction.57–59 A regression tree example for solubility prediction is shown in 

Figure 2.3. 
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Figure 2.3 – Example of a regression tree for solubility (LogS) prediction. The target molecule has a molecular 
weight (MW) less than 350 Da, an octanol-water partition coefficient (LogP) larger than 0.2 and less than 4 rotatable 
bonds (RB). The compound is therefore routed to the corresponding leaf node, and the predicted solubility 
corresponds to  the weight of the final node.   

To construct an effective ensemble of regression trees, the GBM algorithm fits the weak 

predictors in a sequence, so that each new member of the ensemble compensates for the 

errors of the model in the prior iteration.55 As such, given a loss function 𝐿, at each iteration 𝑖 

the new 𝑓𝑖 with configuration 𝑤 is computed by minimizing the following objective:60 

𝑓𝑤𝑖
= arg min𝑤𝔼 (

−𝜕𝐿(𝑦, 𝑝𝑖−1)

𝜕GBM𝑖−1
− 𝑝𝑖−1) 2.15 

Where 𝑦 are the measured molecular properties to predict and 𝑝𝑖−1 are the predictions of the 

GBM ensemble at the prior iteration. Given that each new predictor is fit according to the 

gradient of the loss function at the previous step, this procedure can be understood as 

performing gradient descent in function space instead of weight space (Figure 2.4).55 

 

Figure 2.4 – Gradient descent in function space, according to the Gradient Boosting Machine algorithm. At each 
optimization step, a new regression tree is fit according to the residuals of the previous model, progressively 
reducing the loss of the ensemble.    
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2.3.2 XGBoost 

The two main contributions of XGBoost to the GBM algorithm are the introduction of a 

regularized learning objective and the use of Newton descent instead of gradient descent for 

model training.56  

The new learning objective adds L2 regularization to the loss of the GBM ensemble, as shown 

in Equation 2.16:56 

𝐿∅ = ∑ 𝐿(𝑦𝑖 , 𝑝𝑖) + ∑ 𝛾𝑇𝑘 +
1

2
𝜆‖𝑤𝑘‖2

𝐾

𝑘=1

𝐼

𝑖=1

2.16 

Where 𝑦𝑖 is the molecular property of the 𝑖-th compound, 𝑝𝑖 is the 𝑖-th model prediction, 𝑇𝑘 is 

the number of leaves in the 𝑘-th tree, 𝛾 is a hyperparameter penalizing tree depth, 𝑤𝑘 are the 

leaf weights of the 𝑘-th tree and 𝜆 is the L2 regularization hyperparameter. This modification 

forces the GBM algorithm to learn shallower trees with smaller weights, reducing the risk of 

overfitting on the training data.56 

Using Newton descent allows faster optimization of the learning objective by leveraging both 

the gradients and the Hessians of the loss function.5 As such, the equations to determine the 

split gain 𝐿split and optimal leaf weights 𝑤𝑗are changed as follows: 

𝑤𝑗 = −
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

2.17 

𝐿split =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)
2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼
] − 𝛾 2.18 

Where 𝑔𝑖 and ℎ𝑖 are the𝑖-th gradient and Hessian, letting 𝐼 = 𝐼𝐿⋃𝐼𝑅and 𝐼𝑗 indicating the set of 

samples being routed to the 𝑗-th leaf. 

2.3.3 LightGBM 

LightGBM includes both the regularized learning objective and Newton descent optimization 

introduced by XGBoost, but further improves the computational efficiency of GBMs by adding 

Exclusive Feature Bundling (EFB) and Gradient-based One Sided Sampling (GOSS).61  

EFB is a variable selection algorithm which enables GBM to identify which input features are 

approximately mutually exclusive, e.g. a pair of binary fingerprint bits that never have a value 

of 0 simultaneously. Given a set of molecular features 𝑀 and two mutually exclusive features 

𝑚𝑖 and 𝑚𝑗, if  𝑚𝑖 ∈ 𝑀 then 𝑚𝑗 is redundant, given that its values can be already inferred from 

𝑚𝑖. Grouping together all mutually exclusive features and all approximately exclusive features 
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up to an approximation error 𝑒 allows to reduce the dimensionality of the inputs of the GBM 

algorithm, thus reducing the computational time required to train the model.61 

GOSS is a modification of the stochastic variation of the GBM algorithm, where at each 

boosting iteration only a fraction of the training samples is used to train the 𝑖-th regression tree. 

Instead of sampling randomly, GOSS prioritizes samples with higher gradients while upscaling 

the contribution of sampled training instances with lower gradients. This procedure avoids 

changing the gradient distribution of the training set while selecting only the most relevant 

samples, leading to an increase in computational efficiency without compromising on 

accuracy.61 

Finally, LightGBM uses a different type of regression trees to construct the GBM ensemble, 

named depth-first trees. XGBoost and other GBM implementations use breadth-first trees, 

where new nodes are added so that the maximum depth of the tree is constant across all 

branches. The regression trees used in LightGBM instead are grown by splitting the most 

optimal node at each iteration, potentially leading to depth imbalance between tree branches. 

This approach is computationally faster but can lead to deeper trees which can have worse 

generalization.61  

2.3.4 CatBoost 

CatBoost builds up from the XGBoost implementation by adding two additional features: a 

novel Target Statistics (TS) algorithm for handling categorical data and the ordered boosting, 

a variation of the procedure typically employed for GBM training.60 

The TS algorithm used by CatBoost enables it to produce better embeddings for categorical 

variables by avoiding overfitting on the training data distribution. However, given that typically 

molecular representations do not use categorical variables, this is of little utility for QSAR 

modelling.60 

Ordered boosting deals with the issue of prediction shift, whereas the ensemble grows in size, 

the distribution of the gradients of the training samples begins to shift away from the one of 

test samples, as a consequence of fitting multiple times on the same training instances.55,62,63 

This leads to a loss of generalization for the GBM model. To tackle this, at each iteration 

ordered boosting computes 𝑔𝑖 and ℎ𝑖 by using a tree trained on a dataset permutation 𝐷𝑖 where 

𝑖 ∉ 𝐷𝑖.
60  

Finally, CatBoost uses oblique trees, a variant of regression trees where at a given depth level, 

all nodes use the same variable and threshold to compute the split. Enforcing this constraint 

acts as a regularization technique on the tree structure, producing less expressive but 

potentially less overfitting regression trees than depth-first or breadth-first trees.60,64 
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2.4 Imbalanced classification 

One of the main challenges of modelling classification dataset is class imbalance, where one 

class is disproportionately more prevalent in the training data than the others.18 This bias tends 

to skew the classifier towards ignoring the minority class, leading to unsatisfactory predictive 

performance.19,65 This issue is even more crucial when modelling HTS bioactivity data, where 

extreme class imbalance is the norm and the identification of the minority class is usually the 

priority for virtual screening campaigns.16,19 To tackle this issue, many approaches have been 

developed. This chapter provides a brief overview of the most popular methods to combat 

class imbalance for molecular property prediction. 

2.4.1 Resampling 

A common approach for imbalanced classification in the context of molecular property 

prediction is resampling, consisting of manipulating the training data so that the class 

distribution is more balanced (Figure 2.5).18,66–68 This can be done in two ways: undersampling 

and oversampling.18 In the case of undersampling, a fraction of majority class compounds are 

removed from the training data, either randomly or according to some heuristic.67 For example, 

Tomek’s links suggests the removal of majority class samples that have a minority class 

instance as its closest neighbor, in an effort to boost the separation between the two classes.69 

The same approach can be expanded to use the top-𝑘 nearest neighbors to further smooth 

the class boundary.69 In the case of oversampling, synthetic minority class samples are added 

to the training data, for example by randomly duplicating existing training instances.67 

Alternatively, artificial samples are typically generated by interpolating between minority class 

instances, either selected at random, e.g. in the case of Synthetic Minority Oversampling 

Technique (SMOTE),70 or by focusing on samples close to the class boundary, as done by 

Adaptive Synthetic Oversampling (ADASYN).71  

Unfortunately, both undersampling and oversampling have significant disadvantages. 

Undersampling, especially when dealing with extreme class imbalance, forces the exclusion 

of a considerable number of molecules from the training data, limiting the applicability domain 

of the QSAR model. On the other hand, oversampling increases training time and can lead to 

overfitting due to the presence of synthetic data.18 
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Figure 2.5 – Example of resampling approaches for modelling imbalanced classification datasets. In the 
undersampling case, training instances belonging to the majority class are removed at random. In the oversampling 
scenario, new synthetic minority class samples are generated by interpolating between instances of the minority 
class, according to the Synthetic Minority Oversampling Technique (SMOTE) algorithm. In both cases, the 
numerical imbalance between majority and minority classes is reduced, thus leading to a more optimal decision 
boundary for the identification of the minority class. 

2.4.2 Custom loss functions 

Because of the issues of resampling approaches, in recent years adjusting the learning 

objective has become a popular solution for handling class imbalance, especially for 

classification in Computer Vision, where datasets often have extremely skewed class 

distributions.72,73 These approaches generally revolve around modifying the cross-entropy loss 

to account for the higher misclassification cost on the minority class (Figure 2.6).67 The simplest 

example of this approach is weighted cross-entropy, where weights are added to the class loss 

terms so that errors on the minority class are weighted by the inverse of the class ratio.21 

Recent research however has shown that this approach is suboptimal and that other 

modifications lead to better performance, such as Focal loss and Logit-Adjusted loss.72,74 The 

former forces the model to focus on hard-to-classify samples, while the latter biases the cross-

entropy loss by incorporating a logit shift proportional to the class frequencies.  



2. Molecular property prediction in drug discovery 

 

32 

 

Figure 2.6 – Behaviour of different loss functions when modelling an imbalanced classification dataset, where the 
minority class (denoted with label “1”) constitutes only a third of the total number of samples. Given a sample 
belonging to class “1”, all losses decrease as the probability predicted by the model approaches 1.0. Focal loss 
already decays to 0 at around 0.6 predicted probability, thus limiting the benefit the model gains from further 
improving the prediction once the sample is classified reasonably well. Logit-adjusted loss and weighted cross-
entropy both upscale the loss associated to samples belonging to class “1”, albeit with different magnitudes 
depending on the predicted probability. Canonical cross-entropy is a middle ground between Focal loss, Logit-
Adjusted loss and weighted cross-entropy. 

While these approaches can theoretically be used by any classifier for which the loss function 

can be changed, e.g. GBMs, using custom loss functions has been limited so far to neural 

network training. Additionally, the use of custom loss functions beyond weighted cross entropy 

hasn’t been popularized yet for cheminformatics applications. This research gap is investigated 

in Chapter 3.  

2.4.3 Thresholding 

Another attractive option for tackling class imbalance is thresholding, a post-training 

adjustment to the outputs of the classifier to improve the reliability of class labels.21,67 One 

example of this method for molecular property prediction is Generalized Threshold Shifting 

(GHOST), which can improve the classification performance of a QSAR model by determining 

the optimal probability threshold to distinguish between active and inactive molecules.65 While 

this approach is computationally lightweight and universal, in the sense that it can be used in 

conjunction with any classification algorithm, it does not push the classifier to learn a better 

class boundary. Additionally, it only improves imbalanced classification performance for 

metrics requiring class labels, e.g. MCC, while it does not have an impact on figures of merit 

requiring probabilities such as ROC-AUC or PR-AUC.  
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2.5 Data valuation for QSAR models 

Data valuation is a new field of machine learning research investigating which training instance 

is most influential on the behavior of a data-driven model (Figure 2.7).75,76 While this subject 

has numerous applications, such as providing instance-based explanations or deepening our 

understanding of how AI algorithms learn, one key finding is that data valuation can help 

identify mislabeled samples in classification tasks.77,78 This is especially important in the 

context of HTS campaigns, where false positives are commonplace.79 While there is a wealth 

of in silico approaches for detecting false actives in HTS data, they all make assumptions on 

the interference mechanism, chemical space or assay technology used during the screen, 

making their applicability limited to specific scenarios.80–83 Data valuation algorithms instead 

can theoretically detect any type of interferent, meaning that they can then also correctly 

prioritize hits with the highest chance of being true positives. As such, this class of algorithms 

is uniquely positioned to boost efficient hit prioritization of HTS campaigns. 

In this chapter, the general theory behind data valuation for machine learning models is 

presented. In chapter 5, a new algorithm for data valuation for GBMs is presented and it is 

benchmarked on a wide variety of HTS datasets on both false positive and true positive 

detection. 

2.5.1 From influence functions to gradient tracing 

An idealized notion of influence could be expressed as the impact a given training sample 𝑧 

has on the loss associated to a test instance 𝑧′. Formally, given a predictor with weights 𝑤 and 

minimizing a loss 𝐿 = ∑ 𝑙(𝑤, 𝑧𝑖)𝐼
𝑖=1 , trained with gradient descent using one sample at a time, 

the importance of 𝑧 on 𝑧′ can be expressed as follows:77 

Importance(𝑧, 𝑧′) = ∑ 𝑙(𝑤𝑡 , 𝑧′) − 𝑙(𝑤𝑡+1, 𝑧′)

𝑡:𝑧𝑡=𝑧

2.19 

Where 𝑡 denotes a gradient descent step performed after processing 𝑧 and 𝑤𝑡 indicates the 

weight configuration of the predictor at the 𝑡-th step. Stemming from this, to compute the 

influence 𝑧 has on the dataset 𝑍, it is possible to iterate equation 2.19 on all 𝑧′ ∈ 𝑍. The 

fundamental issue with this idealized notion of influence is that it involves retraining the model 

for each instance in the training dataset, which quickly becomes unfeasible as the dataset size 

and algorithmic complexity increase.77  To tackle this issue, a number of alternative 

approaches have been suggested. 
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Figure 2.7 – General data valuation workflow for molecular property prediction models. First, a machine-learning 
or deep-learning model is obtained by fitting the training dataset. Then, it is possible to compute which training 
instances impact the prediction of a new test compound the most by using a sample importance estimation 
algorithm. Intuitively, the first molecule from the top in the training dataset has higher importance for the test 
compound given their structural similarity.  

The first approach employed to compute sample importance used approximations of influence 

functions (IF).84 In short, using the same notation as above, sample importance can be 

expressed as follows: 

ImportanceIF(𝑧) = −
1

𝑛

𝜕𝑤𝜀,𝑧

𝜕𝜀
|

𝜀=0
2.20 

Where 𝑛 is the number of samples in 𝑍 and 𝜀 is an arbitrarily small perturbation of the weights 

of the model. In practice, while Equation 2.20 allows to avoid retraining the model 𝑛 times, it 

involves calculating the inverse of the Hessian for the loss function, which can be prohibitively 

expensive for large models. Additionally, IF approaches have generally performed poorly in 

noisy label detection benchmarks.75,77,85 

A popular alternative to influence functions is Data Shapley (DS).75,85 Originally from game 

theory, this approach estimates the importance of a given training point by framing the training 

process as a cooperative game, where the gains from training (in this context, the performance 

of the model 𝑈) have to be distributed fairly among the samples in the training set.86 This is 

done by evaluating the marginal contribution of 𝑧 to all possible subsets of 𝑍 without it: 

ImportanceDS(𝑧) =
1

𝑛
∑

1

(
𝑛 − 1

𝑛𝑆
)

[𝑈(𝑆 ∪ {𝑧}) − 𝑈(𝑆)]

𝑆⊆𝑍\{𝑧}

2.21
 

Where 𝑛𝑆 is the number of samples in the partition 𝑆. While there is a number of heuristics for 

faster computation of Equation 2.21, such as Monte Carlo approximations75 and replacing the 

underlying classifier with a KNN model,87,88 DS remains difficult to scale effectively past dataset 

sizes above 1000 samples.89 
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Finally, inspection of gradients while training deep learning models has been suggested as an 

effective method for estimating sample importance in neural networks.77 This method, named 

TracIn, can be formally defined as follows: 

ImportanceTracIn(𝑧, 𝑧′) = ∑ 𝜎𝑖 ∗ 𝛻𝑙(

𝑘

𝑖=1

𝑤𝑖 , 𝑧) ∗ 𝛻𝑙(𝑤𝑖, 𝑧) 2.22 

Where 𝑘 is the number of weight snapshots taken during training and 𝜎𝑖 is the learning rate of 

the network at the 𝑖-th snapshot. While this method has achieved remarkable performance for 

noisy label detection, it holds some disadvantages. First, similarly to Equation 2.19, in order to 

compute the global influence of sample z it is necessary to loop Equation 2.22 for each 𝑧′ ∈ 𝑍, 

which can be particularly computationally intensive. Second, the calculation of all partial 

derivatives of the loss function 𝛻𝑙(𝑤𝑖, 𝑧) can be very costly for large networks, and choosing 

which layer to limit the computation of the derivatives on is not straightforward.77,78 Finally, 

TracIn is intrinsically limited to deep learning models, which hampers its versatility for data 

valuation. 

Concerning GBM, little work has been done in terms of data valuation so far. The 

implementation of IF inspired or TracIn-like algorithms is not straightforward, given that this 

class of algorithms has both weights and decision splits, making derivative-based approaches 

complicated. CatBoost offers a leave-one-out re-training approximation, named Object 

Importance, but it can only consider changes on the leaf weights, while the rest of the tree 

structure is kept constant.90 Finally, using DS-like algorithms could potentially work, but it would 

likely be computationally unfeasible, given that its application to simpler methods such as KNN 

already struggles to scale to large datasets.  
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Synopsis 

Although there is currently a wealth of HTS bioactivity data available, most of these datasets 

are extremely imbalanced towards inactive compounds, making the development of molecular 

property prediction models difficult. In this study, we sought to combine Gradient Boosting with 

bespoke loss functions, allowing the model to learn from imbalanced data effectively without 

compromising its applicability domain or increasing the training time. 

To this end, we selected four variations of binary cross-entropy originally developed for neural 

network training and adapted them for training GBMs. Specifically, we considered Focal loss, 

Logit-Adjusted loss, Label Distribution Aware Margin loss and Equalization loss. The first 

downplays the impact well-classified samples have on the overall loss computation, the second 

and third derive a logit shift from the class distribution to apply to the cross-entropy calculation 

and the fourth dynamically adapts class weights according to the distribution of the gradients 

during training. To assess their effectiveness for molecular property prediction we considered 

weighted cross-entropy as the baseline, since it is the most common algorithmic modification 

for tackling class imbalance.   

After evaluation on 42 molecular property prediction tasks and 2 million unique compounds, 

our proposed approach significantly outperformed the baseline on 5 out of 6 datasets. 

Crucially, thanks to this performance improvement we were able to push GBM to match or 

outperform the previous state-of-the-art QSAR models for these datasets, which included more 

computationally costly methods such as graph neural networks. Additionally, custom loss 

functions show much faster convergence rates than weighted cross-entropy, decreasing the 

training time of QSAR models up to a factor of 8. This is especially important for large, 

imbalanced bioactivity datasets such as HTS campaigns, making our approach uniquely suited 

to tackle these molecular property prediction tasks. 

Taken together, the study demonstrates the effectiveness of combining custom loss function 

with Gradient Boosting for QSAR modelling, achieving state-of-the-art performance with 

minimal computational cost on a wide variety of molecular property prediction tasks. In the 

future, this approach could be used to leverage pre-existing bioactivity data for a wide variety 

of property prediction applications, e.g. for antibiotic or antivirulent activity virtual screening. 
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NTP datasets in terms of classification performance and training time. Lukas Friedrich 

evaluated the performance of the approach on the industry dataset using code provided by 

Davide Boldini. Finally, Davide Boldini wrote the first manuscript, which was further edited and 

discussed with input from all authors. 
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Synopsis 

Gradient Boosting is a powerful machine learning algorithm, which has become the de facto 

standard option for modelling tabular data in a wide variety of computational fields and data 

science competitions. To date, there are three main variants of GBMs, namely XGBoost, 

LightGBM and CatBoost, each with its own unique algorithms and implementation details. The 

goal of this study was to critically evaluate and compare each variant for molecular property 

prediction, with the aim of elucidating the best practices for QSAR modelling with GBMs. To 

this end, we designed a large benchmarking study encompassing 16 datasets, 94 molecular 

property prediction tasks, 1.4 million unique compounds and trained 157,590 GBM models.  

In terms of predictive performance, our analysis showed that XGBoost significantly 

outperformed both LightGBM and CatBoost on the majority of datasets by a 5 % margin. This 

performance increase was especially noticeable on larger datasets. However, this comes at 

the cost of computational efficiency, with this GBM variant being up to 100 times slower than 

the others on HTS data. LightGBM and CatBoost were generally equal in terms of predictive 

performance, but the former was much faster than the latter, outperforming it in terms of 

training time by a factor of 50 for large datasets. 

In terms of explainability, our results surprisingly indicated that different GBM variants 

prioritized different chemical moieties for a given molecular property prediction task. This 

further highlights the algorithmic differences between these methods and reinforces the need 

of using expert knowledge to assess data-driven structural insights on bioactivity. 

Finally, we analyzed the hyperparameter optimization process to determine the set of most 

important parameters to tune when using GBM for QSAR modelling. Our findings showed that 

while the optimal set of hyperparameters can change depending on featurization and property 

prediction task, tuning only the most important parameters lead to significantly improved 

performance while lowering the computational cost of hyperparameter optimization. 

In conclusion, our work constituted the first large-scale comparison of GBM algorithms 

specifically for molecular property prediction and outlined the most important considerations to 

keep in mind when modelling QSAR data with this algorithm. Given the rising popularity of 

GBM for cheminformatics applications, this work provides an ideal starting point for its effective 

usage for molecular property prediction. 
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5.  

Machine learning assisted hit  

prioritization for high throughput  

screening in drug discovery 

 

 

 
Accepted open access article in ACS Central Science 10, 4 (2024). 

 

by Davide Boldini, Lukas Friedrich, Daniel Kuhn and Stephan A. Sieber. 

https://doi.org/10.1021/acscentsci.3c01517 

Reprinted under the terms of the Creative Commons Attribution License (CC BY 4.0) 

© 2024 The Authors. Published by ACS Publications. 

 

 

 

 



5. Machine learning assisted hit prioritization for high throughput screening in drug discovery 

50 

Synopsis 

False positives are abundant and heterogeneous in HTS campaigns, making the prioritization 

of true bioactive compounds a difficult endeavor. As such, in silico identification of interferents 

in these datasets is an important open challenge in cheminformatics. While several tools have 

been developed to help with this task, they tend to be inherently restricted to specific 

interference mechanisms, regions of the chemical space or assay technologies, thus limiting 

their effectiveness.  

In this work, we developed a novel data valuation algorithm for the simultaneous identification 

of false positives and the prioritization of true bioactive compounds, named Minimal Variance 

Sampling Analysis (MVS-A). In short, our approach first fits a GBM classifier on the HTS data, 

then computes the importance each molecule has on the GBM predictor using MVS-A and 

finally uses these scores to distinguish between interferents and truly bioactive molecules. 

Thanks to its fully data-driven nature and its reliance on exclusively the HTS campaign of 

interest, MVS-A is not limited in terms of assay technology, compound class or false positive 

type, making it the first global tool for efficient prioritization of hits in HTS data. 

To validate our algorithm, we curated a selection of 20 HTS campaigns and confirmatory 

screens, both from academia and the pharmaceutical industry, encompassing a diverse 

selection of compounds and covering a wide range of protein targets as well as assay types. 

On average, MVS-A significantly outperformed all other approaches both in terms of false 

positive detection and prioritization of true positives, confirming its versatility for processing 

HTS data. Additionally, our results showed that MVS-A identifies an extremely diverse 

selection of interferents in terms of chemical moieties and interference mechanisms. We then 

performed a retrospective study on a HTS campaign for the identification of presynaptic choline 

transporter (CHT) inhibitors, to validate the applicability of MVS-A for real case scenarios. Our 

analysis showed that our algorithm successfully prioritized the 6 most pharmacologically 

relevant inhibitors from the primary screening data from a library of more than 300.000 

molecules. Finally, MVS-A is extremely computationally efficient, requiring less than 30 

seconds to process entire HTS datasets on low-end hardware, further boosting its applicability 

in a wide range of screening campaigns. 

Taken together, our findings showcased the usefulness of MVS-A for processing HTS data for 

hit prioritization and false positive identification. Future work could further investigate other 

data valuation approaches for cheminformatics applications, e.g. for active learning or for 

providing sample-driven model explanations. 
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Synopsis 

Natural products have garnered significant interest for biomedical applications, thanks to their 

high potency, chemical diversity and selectivity. However, they pose unique challenges for 

cheminformatics modelling, making the development of QSAR models and virtual screening 

for this class of compound difficult. This is because most modelling methods were designed 

with drug-like compounds in mind, while natural products have different chemical features, e.g. 

a higher fraction of sp3-hybridized carbons and more stereocenters.  

To tackle this gap, we benchmarked molecular fingerprints for virtual screening and bioactivity 

prediction on natural products. To ensure the comprehensiveness of our findings, we 

evaluated 20 different fingerprinting algorithms from 5 different categories, covering over 40 

years of research. In terms of natural product diversity, we investigated over 100,000 unique 

compounds from the COlleCtion of Open Natural prodUcTs (COCONUT) and Comprehensive 

Marine Natural Product Database (CMNPD) repositories on 13 different bioactivity prediction 

tasks. 

In terms of molecular similarity, our findings showed that there are relevant differences 

between and within fingerprint types when modelling natural products. For example, 

substructure-based algorithms are particularly heterogeneous and tend to have less 

informative bits, due to their focus on substructures typically found in drug-like compounds. 

Additionally, the pairwise similarity between fingerprints changed depending on the considered 

region of the chemical space. For example, MHFP and MAP4 fingerprints were substantially 

more correlated to Avalon fingerprints and less correlated with PubChem fingerprints when 

modelling natural products.  

Regarding molecular property prediction, our results highlighted that while ECFPs are usually 

the standard encoding approach in cheminformatics, they can be matched or outperformed by 

other fingerprints when modelling natural products. While the performance of a given 

fingerprint depends on the chosen classification algorithm and bioactivity prediction task, ASP 

and MHFP were particularly promising for encoding natural products. Conversely, 

substructure-based approaches showed inferior performance, as a byproduct of their 

emphasis on drug-like moieties. 

In conclusion, given the performance variability observed across different bioactivity prediction 

tasks, these findings reinforce the need of evaluating multiple fingerprint types when modelling 

natural products. Additionally, it is crucial to design molecular representations that accurately 

capture the unique chemical characteristics of this class of compounds.  
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While molecular property prediction has the potential of significantly speeding up the early 

stages of the drug discovery pipeline, its successful application for virtual screening hinges on 

efficiently leveraging the wealth of bioactivity data collected by HTS campaigns.1–3 However, 

modelling these datasets is not straightforward due to their class imbalance, size, noisy 

readouts and lack of chemical diversity.3–7 In this thesis, a broad range of computational 

methods are developed and investigated to tackle these four issues, focusing specifically on 

GBM as the modelling algorithm for HTS data.   

In the first major project presented in this work, a new approach for tackling class imbalance 

for molecular property prediction was described (Chapter 3).8 Our results showed that by 

modifying the optimization objective of GBM, it is possible to obtain robust QSAR models for 

imbalanced classification. Furthermore, using custom loss functions improved the performance 

of GBM to match or outperform other state-of-the-art algorithms, while shortening its training 

time. Finally, unlike resampling approaches, our method does not artificially increase the 

dataset size nor it decreases the applicability domain of the resulting QSAR model, making it 

an ideal option to handle class imbalance. 

Chapter 4 investigated the best practices for using GBM for molecular property prediction.9 To 

this end, the three main variants of the GBM algorithm, namely XGBoost, LightGBM and 

CatBoost, were benchmarked on a wide variety of molecular property prediction tasks. For 

large HTS datasets, XGBoost outperformed all alternatives by a 5% margin, while LightGBM 

was vastly more computationally efficient than the other GBM algorithms. Evaluation of the 

most important variables identified by these approaches showed that different GBM 

implementations highlight different chemical features, further underpinning the importance of 

relying on expert knowledge to avoid spurious explanations. Additionally, by analyzing the 

hyperparameter optimization process of GBMs on QSAR datasets, the most relevant 

parameters for modeling specific bioactivity endpoints with GBM were determined.  

These findings were then used for the development of a new algorithm for evaluating sample 

importance for GBM and its application on the efficient prioritization of HTS hits for further 

pharmacological development (Chapter 5).10 The efficacy of this approach was demonstrated 

on 20 HTS campaigns for both assay interferent and true hit identification, with the proposed 

algorithm outperforming rule-based and data-driven baselines. Additionally, the false positives 

detected by this method are both chemically diverse and arising from different interference 

mechanisms, further highlighting the advantage of the proposed approach. To further validate 

the efficacy of combining data valuation and GBM in the context of drug discovery, a 

retrospective study was performed on a HTS campaign to discover new potential Alzheimer’s 

disease therapeutics. Crucially, the algorithm successfully prioritized all pharmacologically 
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relevant molecules from the primary HTS screen, thus confirming the applicability of the 

proposed approach in real case scenarios. 

In Chapter 6, different molecular fingerprints were investigated for natural product modelling.11 

The most significant finding was that the ECFP algorithm, while being the most common 

encoding approach for drug-like molecules, can be matched or outperformed by other 

fingerprints when modelling natural products for bioactivity prediction. This result further 

reinforces the need to carefully consider multiple molecular fingerprints when developing 

robust QSAR models. 

Taken together, the research projects described in this thesis provide a solid foundation for 

modelling HTS data with GBM for molecular property prediction. Using custom learning 

objectives is a novel and versatile approach for handling class imbalance in cheminformatics, 

which is uniquely suited for HTS modelling since it improves the computational efficiency of 

the algorithm (Chapter 3). The guidelines determined in Chapter 4 allow practitioners to select 

the most appropriate GBM variant given the size of the HTS dataset, understand its pitfalls and 

how to optimally tune its parameters. The novel data valuation approach described in Chapter 

5 can then be used to remove problematic molecules in the dataset and to suggest compounds 

for further pharmacological development. Finally, the findings from Chapter 6 suggest 

molecular fingerprints to use when modelling HTS datasets when the target library for virtual 

screening heavily features natural products.   

In terms of further research, the work described in this thesis offers several opportunities. For 

example, the optimization objective of GBM could be further improved by incorporating higher 

order terms of the polynomial expansion of the cross-entropy loss, as shown for deep learning 

methods.12 Another promising research direction would be the use of zero-shot prediction 

models to refine the screening library before performing the HTS analysis, given the text 

description of the assay of interest.13,14 This is currently being evaluated within the TwinBooster 

framework, which combines Large Language Model finetuning, self-supervised representation 

learning and GBM to achieve state-of-the-art zero-shot performance on QSAR datasets.15 

Finally, cheminformatics applications of data valuation algorithms are a particularly promising 

yet unexplored field of research. While this thesis focused specifically on employing it for 

identifying true positives and false positives in HTS datasets, there are many further uses for 

this class of algorithm. Potential applications include active learning for efficient sample 

acquisition during an HTS campaign and importance-driven undersampling. These research 

avenues are currently being investigated in an ongoing project, currently available as a 

preprint.16 

To conclude, this thesis successfully investigated the use of GBMs for modelling HTS datasets 

in drug discovery. The findings and algorithms described in this work can be readily used for 
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accelerating early-stage drug discovery and provide an important foundation for further 

research into modelling strategies for this class of datasets. 
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Abstract 

While in the last years there has been a dramatic increase in the number of available bioassay datasets, many of them 
suffer from extremely imbalanced distribution between active and inactive compounds. Thus, there is an urgent need 
for novel approaches to tackle class imbalance in drug discovery. Inspired by recent advances in computer vision, 
we investigated a panel of alternative loss functions for imbalanced classification in the context of Gradient Boost-
ing and benchmarked them on six datasets from public and proprietary sources, for a total of 42 tasks and 2 million 
compounds. Our findings show that with these modifications, we achieve statistically significant improvements over 
the conventional cross-entropy loss function on five out of six datasets. Furthermore, by employing these bespoke 
loss functions we are able to push Gradient Boosting to match or outperform a wide variety of previously reported 
classifiers and neural networks. We also investigate the impact of changing the loss function on training time and find 
that it increases convergence speed up to 8 times faster. As such, these results show that tuning the loss function for 
Gradient Boosting is a straightforward and computationally efficient method to achieve state-of-the-art performance 
on imbalanced bioassay datasets without compromising on interpretability and scalability.
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Introduction
In the last decade, machine learning (ML) and deep 
learning (DL) have radically transformed the conven-
tional workflow for virtual screening in drug discovery 
[1]. This paradigm shift is strongly related to the sub-
stantial increase in freely available chemical data [2]. 
For example, popular repositories like PubChem and 
ZINC20 currently contain 1.2 million bioactivity assays 
and 1.4 billion unique compounds respectively [3–5]. 
Thanks to these resources, it is straightforward to obtain 
thousands of training points to develop high-performing 
predictive models, which can then be used to screen for 
novel ligands, antibiotics, antivirals and so forth [6–8].

The amount of data available has made it possible 
to use large neural networks, such as autoencoders 
(AE), transformers and graph neural networks (GNN) 
to learn data-driven molecular features, in contrast to 
prior featurization methods such as fingerprints and 
physicochemical descriptors [9–11]. Although these 
architectures have achieved impressive results on many 
benchmarks, they tend to be outperformed by descrip-
tor-based models on class-imbalanced datasets [12–15], 
where the number of inactive compounds can be several 
orders of magnitude larger than the number of actives. 
Among the descriptor-based classifiers, tree ensembles 
such as Random Forest and, more recently, Gradient 
Boosting generally achieve the best performance [13, 15, 
16]. Furthermore, this class of models provides additional 
benefits such as straightforward interpretability [17, 18], 
fewer hyperparameters to optimize and faster training 
speed compared to neural networks. [19]

The issue of class imbalance is of critical importance in 
drug discovery, given that the vast majority of the data-
sets available in this field are imbalanced [20], as high-
lighted by Landrum et al. [21] As such, there is an urgent 
need for novel strategies to tackle class imbalance for 
modelling bioassay data.

Current methods to address this issue usually rely on 
resampling the original class distribution or by employing 
algorithmic solutions such as custom loss functions [22, 
23]. The latter approach has garnered interest in the field 
of computer vision, where the majority of classes in mul-
titask classification have only a handful of positive sam-
ples [24–27]. Overall, these approaches rely on reframing 
the classification objective by reducing the influence 
of well-classified training instances, forcing the classi-
fier to focus on hard-to-model samples, or by adjusting 
the unscaled output logits according to the prior prob-
ability to observe a given class. Research has shown that 
employing these methods provides a significant improve-
ment over the baseline with virtually no additional com-
putational cost. [24–27]

While there are several studies investigating resam-
pling in the context of bioassay modelling [5, 28–30], 
changing the training objective has not been thoroughly 
investigated thus far. This study directly addresses this 
gap by investigating the effectiveness of a variety of 
recently published imbalance-insensitive loss functions 
for training Gradient Boosting classifiers. In this work, 
we considered Focal loss (FC) [24] Logit-adjusted loss 
(LA) [27] Equalization loss (EQ) [26] and Label-Distri-
bution-Aware Margin (LDAM) [25] loss because of their 
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popularity in computer vision and their diversity from a 
theoretical standpoint.

The choice of pairing Gradient Boosting with the loss 
functions is motivated by its strong baseline performance 
across several studies in imbalanced classification tasks 
[13, 15]. Furthermore, its training speed makes [31, 32] 
it an attractive solution for modelling large-scale bioas-
says and its straightforward explicability allows detec-
tion of spurious correlations arising from false positives 
[33], which are known to be frequent in high-throughput 
screens [34, 35]. Therefore, tuning Gradient Boosting 
with bespoke loss functions can result in cheap, inter-
pretable and high-performing models which is ideally 
suited for modelling imbalanced bioassay data.

We benchmark our proposed approach on six data-
sets from public (MoleculeNet [15] and MolData [20]) 
and proprietary (Merck KGaA) sources, comprising of 
approximatively 2 million compounds and 42 tasks with 
varying degrees of imbalance. Our findings show that 
changing the loss function provides a consistent, signifi-
cant improvement, over cross entropy loss on five out of 
six datasets and that thanks to this modification, Gradi-
ent Boosting is able to match or outperform a wide vari-
ety of ML and DL approaches, including multitasking 
networks.

Methods
Gradient boosting
Originally developed by Friedman et  al. [36] Gradient 
Boosting is a tree ensemble method that relies on training 
a sequence of weak learners (generally regression trees), 
each fitted on the residuals of the prior model. The final 
model is obtained by simply combining all the predic-
tions from each individual classifier. Since this procedure 
is prone to overfitting, all Gradient Boosting frameworks 
offer a variety of regularization options, such as learning 
rates to modulate the influence of an individual learner 
on the final prediction, sampling of training samples and 
variables, L1 regularization and other options. [31, 32]

A key difference between Gradient Boosting and Ran-
dom Forest is in the way individual trees are optimized. 
A Gradient Boosting classifier uses regression trees, 
where the individual splits are optimized according to 
the gradient and the Hessian of some loss function (i.e. 
cross-entropy), and converts the sum of predictions into 
a probability by applying the sigmoid function [31]. Ran-
dom Forest instead uses decision trees, where the indi-
vidual splits are optimized using criteria such as the Gini 
impurity or the Shannon entropy [37]. This distinction 

allows implementation of custom loss functions in a 
straightforward manner in any Gradient Boosting frame-
work. [38]

There are several python packages available for train-
ing Gradient Boosting models, the most popular being 
XGBoost [31], CatBoost [39] and LightGBM [32]. In this 
study, we developed all models using the Python version 
of LightGBM 3.3.2.

Loss functions
The default loss function for many gradient-based clas-
sifiers, including LightGBM, when dealing with imbal-
aced classification is the weighted cross-entropy (WCE) 
[22, 23], which measures how close the class probabilities 
predicted by the classifier match the true class labels. It is 
defined as follows:

where m is the total number of samples, yn are the target 
labels, ŷn are the predictions, wi is a tunable parameter to 
account for class imbalance. When handling imbalanced 
datasets, classifiers tend to disregard the first term, cor-
responding to mistakes on the minority class, and only 
focus on minimizing the second term, corresponding 
to mistakes on the majority class, leading to a subop-
timal model [22, 23]. This can be tackled by setting wi 
equal to the ratio of inactive compounds versus active 
compounds.

Focal loss
Focal loss modifies the binary cross-entropy formulation 
by reducing the influence of well-classified samples on 
the overall loss [24, 38]. The formulation goes as follows:

where γ is a tunable parameter that affects the shape of 
the loss function. For high values of γ , the contribution 
of well classified samples to the overall loss approaches 0, 
allowing the gradient to focus more on the minority class. 
If γ is set to 0, the focal loss coincides with the standard 
cross-entropy loss.

Logit‑adjusted loss
Instead of modulating sample influence during the train-
ing process like weighted cross-entropy or Focal loss, 
Logit-adjusted loss scales the raw logits from the classi-
fier according to the a priori probabilities of the classes 
[27], as shown in Formula 3

(1)
LCE = −

∑m
n=1 wiynlog(ŷn)+

(
1− yn

)
log

(
1− ŷn

)

(2)
LF = −

∑m
n=1 yn

(
1− ŷn

)γ
log

(
ŷn
)
+

(
1− yn

)
ŷn

γ log
(
1− ŷn

)

LLA = −
∑m

n=1 ynlog(σ (pn + τ ∗ πm))+
(
1− yn

)
log(1− σ(pn + τ ∗ πM))
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where σ is the sigmoid function, pi is the raw logit predic-
tion, πM and πm are the prior probabilities for the major-
ity and minority classes and τ is a smoothing factor that 
modulates the influence of the logit adjustments on the 
learning process. One key difference of Logit-adjusted 
loss compared to other approaches is that it guarantees 
Fisher consistency for the estimator by design, through a 
Bayes optimal solution for the balanced error. [27]

Label‑distribution‑aware margin loss
Similarly to Logit-adjusted loss, LDAM loss applies an 
offset to the raw logits from the model, but the optimal 
offsets are derived by minimizing a margin-based gener-
alization bound [25]. One key limitation of margin-based 
approaches such as Support Vector Machines is that they 
rely on hinge loss [40], which is problematic to optimize 
for gradient-based methods because of its non-smooth-
ness [25]. To tackle this issue, Cao et  al. opted to use a 
cross-entropy inspired formulation, as shown in Formula 
4:

Where C is an hyperparameter to be tuned and nm and 
nM are the number of samples in the minority and major-
ity class respectively.

Equalization loss
Another way to account for class imbalance is to operate 
at gradient level, for example by up-weighting gradients 
from minority samples and down-weighting the ones 
from majority samples according to the gradient ratio 
between classes. This approach has the theoretical advan-
tage of weighting the minority class not only according 
to the class imbalance, but also according to the intrinsic 
difficulty of the classification problem, which might yield 
better weights compared to simple class counting statis-
tics [26]. Another advantage is that this approach is func-
tion-agnostic, in the sense that it can be implemented to 
adjust any pre-existing loss function, i.e. cross-entropy.

To obtain the weighting coefficients for the gradients 
of the minority and majority classes, Equalization loss 
employs the following formula:

where gr t is the ratio of accumulated gradients between 
the minority and majority classes at iteration t , α is a 
hyperparameter that allows to increase the weight for the 
minority class and f  is a mapping function:

(4)LLDAM = −
∑m

n=1 ynlog
(
σ

(
pn + C

4
√
nm

))
+

(
1− yn

)
log

(
1− σ

(
pn + C

4
√
nM

))

(5)wm
t = 1+ α

(
1− f

(
gr

t
))

(6)wM
t = f

(
gr

t
)

With hyperparameters γ and µ.
To implement this approach, since Gradient Boosting 

is not trained with mini-batches, we considered the addi-
tion of one individual tree as one iteration, we clipped 
the gradients for numerical stability and we used binary 
cross-entropy as the underlying loss function.

Datasets
To evaluate our proposed approach, we collected six 
datasets from publicly available and proprietary sources. 
From MoleculeNet [15] we selected Tox21, HIV and 
MUV, from MolData [20] we chose Phosphatase and 
NTPase and finally we added one high-troughput 
screening (HTS) dataset from Merck KGaA, resulting in 
approximately 2 million compounds and 42 tasks. This 
selection covers a broad imbalance range and dataset 
size, to ensure that our findings are not biased by specific 
dataset conditions.

To access the publicly available data, we downloaded 
the cleaned MoleculeNet datasets from Jiang et  al. [13] 
and the MolData ones from Arshadi and coworkers. [20]

The datasets are summarized in Table 1, reporting the 
average number of compounds and imbalance ratios 
across tasks. The individual values pertaining each end-
point can be found in Additional file  1: Table  S1. Since 
the HTS benchmark is a proprietary dataset from Merck 
KGaA, the exact number of compounds is confidential.

Metrics
A critical step of developing classifiers for imbalanced 
classification is the choice of metric to measure perfor-
mance [41, 42]. For example, evaluating machine learn-
ing models according to accuracy when dealing with 

(7)f (x) = 1
1+e−γ (x−µ)

Table 1  Summary of the datasets employed in this study

For a given dataset, the number of compounds per task and imbalance ratio are 
reported as averages across all tasks

Name Source Tasks Compounds 
per task

Imbalance ratio

Tox21 MoleculeNet 12 6400 1:16

HIV MoleculeNet 1 40748 1:27

MUV MoleculeNet 17 14000 1:511

Phosphatase MolData 5 330000 1:325

NTPase MolData 6 330000 1:2963

HTS Merck KGaA 1  > 330000 1:140
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imbalanced data can lead to misleading conclusions, 
since it does not properly account for the performance 
on the minority class [5, 41, 42]. To allow for compari-
sons against the results previously reported in the lit-
erature for these benchmarks, we opted to evaluate all 
datasets using all metrics used by Arshadi et al. [20] and 
Jiang and coworkers [13], with the addition of balanced 
accuracy, F1 score and the Matthews correlation coef-
ficient (MCC). Therefore, for each benchmark receiver 
operating characteristic area under curve (ROC-AUC), 
precision-recall area under curve (PR-AUC), accuracy, 
balanced accuracy, recall, precision, F1 score and MCC 
were measured. A more in-depth discussion on the 
choice of metrics and their definition can be found in: 
Sect. 1 of the. Given the number Additional file 1 infor-
mation of classifiers and metrics involved in our study, 
for conciseness we show in the main text only the metrics 
reported by the authors of the respective benchmarks. 
The performance tables with all metrics employed in this 
study can be found in: Sect. 3, 4 and 5 of the Additional 
file 1 information

Benchmarking procedure
After downloading the datasets from the respective 
repositories, all compounds were sanitized using RDKIT 
(version 2022.03.01) as described in the original papers 
and featurized using Extended-Connectivity Fingerprints 
(ECFP) with bit size 1024 and radius 2.

To develop the models, we followed two different 
benchmarking procedures depending on the dataset 
source. This way, the results obtained in this study are 
directly comparable to the performance of other classifi-
ers reported in the respective papers. This enables us to 
put in perspective the improvements our approach pro-
vides over the default LightGBM implementation in a 
more conventional classifier comparison study.

For Tox21, HIV and MUV, we optimized each classi-
fier in cross-validation using random splits, with a ratio 
of 80:10:10 for the training, validation and test set. Each 
model used early stopping on the loss of the validation 
set, while the test set was used to evaluate the perfor-
mance of the model. To optimize the models we used 
Hyperopt (version 0.2.7) [43] for 20 iterations. Once the 
optimization was finished, we ran the model with opti-
mal hyperparameters on 50 random splits, with a ratio of 
80:10:10 for the training, validation and test set. Similar 
to the optimization phase, we used the validation set for 
early stopping and the test set for performance assess-
ment. Regarding the choice of metrics, when comparing 
our approach to results from the literature we followed 
the guidelines from Wu et al. [15]: Tox21 and HIV were 
evaluated according to ROC-AUC, while MUV with 
PR-AUC.

For the Phosphatase and NTPase datasets, we 
employed the scaffold splits provided by Arshadi et  al. 
[20] For each task, we optimized each model on the vali-
dation set and reported the performance on the test set. 
In all instances we used early stopping on the validation 
set to determine the optimal number of trees. All classi-
fiers were optimized using Hyperopt [43] for 20 iterations 
and then evaluated 5 times using different random seeds. 
For comparisons with other machine learning algo-
rithms, we reported the metrics employed by Arshadi 
et  al. (accuracy, ROC-AUC, precision, recall) with the 
addition of the F1 score, to estimate the tradeoff between 
high precision and high recall.

For the Merck KGaA HTS dataset we employed the 
evaluation procedure for the MolData benchmarks. We 
created training, validation and testing sets using scaffold 
splitting with an 80:10:10 ratio. Then, we optimized all 
classifiers with Hyperopt for 20 iterations on the valida-
tion set using early stopping. Finally, we retrained each 
model with optimal parameters 5 times and measured all 
metrics on the test set.

To assess the efficacy of the custom loss functions, we 
use as baseline in all our benchmarks the performance 
of weighted cross-entropy and we evaluate whether the 
improvement is significant with 1-tailed Welch t-tests 
with Bonferroni correction. Furthermore, to contextual-
ize the performance of LightGBM with custom loss func-
tions, we compare the best performing model from our 
study to the models reported by Jiang et al. for Molecu-
leNet and by Arshadi et al. for MolData. All models from 
these papers employed weighted cross-entropy or class 
balancing schemes to model activity imbalance, depend-
ing on the underlying classification algorithm.

In the first study, four descriptor-based machine-learn-
ing methods and four graph-based neural networks were 
investigated. The descriptor-based models were Random 
Forest (RF), Support Vector Machine (SVM), XGBoost 
(XGB) and a neural network with dense layers (DNN), 
using a combination of 1D and 2D descriptors as well as 
two sets of fingerprints [13]. For the graph-based models, 
they considered a graph convolutional network (GCN), a 
graph attention network (GAT), a message-passing neu-
ral network (MPNN) and attentive fingerprints (AFP) 
[13]. For conciseness, for each MoleculeNet dataset we 
report the performance of the best descriptor-based 
model and graph-based model and we compare them 
to the best-performing LightGBM model using 2-tailed 
Welch t-tests with Bonferroni correction.

In the second study, the authors developed a multitask 
DNN on ECFP fingerprints with bit size 1024 and radius 
2 and a multitask GCN. For these baselines, we omit sta-
tistical tests since the authors did not report standard 
deviations for their results.
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The benchmarking details for all datasets are summa-
rized in Table 2.

Results
Moleculenet benchmarks
The results for the datasets from MoleculeNet are sum-
marized in Table 3 and Fig. 1, while the p-values for the 
statistical tests are outlined in Additional file 1: Tables S8, 
S9, S10 and S14. The performance across all metrics for 
these datasets is shown in Additional file 1: Tables S2, S3 
and S4.

Focal loss, Logit-adjusted loss and LDAM loss signifi-
cantly outperform the weighted cross-entropy baseline 
for the HIV dataset. The best performing loss function is 
LDAM loss (0.833 ROC AUC), closely followed by Focal 
loss. Equalization loss achieves the lowest ROC-AUC 
out of all custom loss functions. Considering all met-
rics, Focal loss achieves the best performance in terms of 
PR-AUC, accuracy, F1 score and MCC and Equalization 
loss achieves the best precision value. With the excep-
tion of the F1 score, all differences are statistically signifi-
cant. In terms of recall and balanced accuracy however, 

WCE outperforms all alternatives. Compared to the best 
descriptor-based model (SVM) and graph-based model 
(GCN) from Jiang et  al., the LightGBM model with 
LDAM loss significantly outperforms the former and 
matches the ROC-AUC from the latter. The improve-
ment on this dataset is especially significant, given that 
the weighted cross-entropy baseline is outperformed by 
both alternatives from Jiang et al.

For Tox21, similarly to the previous dataset, all custom 
losses with the exception of Equalization loss significantly 
outperform the weighted cross-entropy baseline in terms 
of ROC-AUC. Logit-adjusted loss achieves the best ROC-
AUC with 0.812, narrowly outperforming LDAM loss 
and Focal loss. In terms of global performance however, 
LDAM loss has the most success, outperforming all alter-
natives on four metrics (PR-AUC, accuracy, precision, 
MCC), but except for precision and accuracy the differ-
ences are not statistically significant compared to the 
baseline. WCE achieves the best performance in terms 
of balanced accuracy, recall and F1 score. When compar-
ing to the best models from Jiang et al., both options (RF 
and AFP) significantly outperform the Gradient Boosting 

Table 2  Summary of the benchmarking procedure for each dataset employed in this study

Name Split Replicates Metrics for external comparison External baselines

HIV Random 50 ROC-AUC​ RF, SVM, XGB, DNN, GCN, GAT, MPNN, AFP

Tox21 Random 50 ROC-AUC​ RF, SVM, XGB, DNN, GCN, GAT, MPNN, AFP

MUV Random 50 PR-AUC​ RF, SVM, XGB, DNN, GCN, GAT, MPNN, AFP

Phosphatase Scaffold 5 Accuracy, precision, recall, F1 score, ROC-AUC​ DNN, GCN

NTPase Scaffold 5 Accuracy, precision, recall, F1 score, ROC-AUC​ DNN, GCN

HTS Scaffold 5 Not applicable Not applicable

Table 3  Summary of the results for the datasets belonging to the MoleculeNet repository

The best values for each metric in each dataset are highlighted in bold

Name Metric WCE FC LA EQ LDAM Best descriptor-based Best graph-based

HIV ROC-AUC​ 0.811 ± 0.02 0.831 ± 0.01 0.823 ± 0.03 0.809 ± 0.02 0.833 ± 0.02 0.822 ± 0.02 0.833 ± 0.02
Tox21 ROC-AUC​ 0.790 ± 0.01 0.808 ± 0.01 0.812 ± 0.01 0.781 ± 0.02 0.808 ± 0.01 0.838 ± 0.01 0.852 ± 0.01
MUV PR-AUC​ 0.152 ± 0.03 0.127 ± 0.02 0.140 ± 0.03 0.126 ± 0.03 0.141 ± 0.03 0.112 ± 0.04 0.061 ± 0.03

Fig. 1  Summary of the benchmarking results for the MoleculeNet datasets. Error bars represent the standard error of the mean (N = 50), while the 
asterisks denote whether the difference is significant (one indicates α < 0.05, two α < 0.01). The statistical tests with Bonferroni correction are carried 
out with respect to WCE or to the best performing loss function. We define the differences between loss functions within LightGBM as performance 
comparisons, while classifier comparisons refer to the benchmarking of the best loss function against the classifiers from Jiang et al. a Loss function 
comparison on the HIV dataset. b Comparison between the best loss function and the best models from Jiang et al. on the HIV dataset c Loss 
function comparison on the Tox21 dataset. d Comparison between the best loss function and the best models from Jiang et al. on the Tox21 
dataset. e Loss function comparison on the MUV dataset. f Comparison between the best loss function and the best models from Jiang et al. on the 
MUV dataset

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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classifier with Logit-adjusted loss, possibly pointing to 
the fact that LightGBM might not be a good option for 
this dataset. Unlike XGBoost, LightGBM employs a leaf-
wise tree splitting procedure, which is known to poten-
tially lead to more complex structures that might overfit 
on small datasets [31, 32]. Among the datasets tested, 
Tox21 has the least compounds per task, which might 
explain why LightGBM performs comparatively poorly.

Regarding MUV, none of the custom losses are able to 
outperform the weighted cross-entropy baseline in any 
metric except accuracy. This is especially surprising con-
sidering that MUV is the most imbalanced dataset con-
sidered in this study, where one would expect to observe 
the greatest improvement over the baseline. This could 
be explained by the fact that the custom loss functions 
must optimize additional hyperparameters related to the 
loss, which have a strong impact on the performance of 
the classifier [27]. Since all classifiers generally achieve 
low PR-AUC values for this dataset, tuning these addi-
tional parameters could lead to a very noisy optimization 
process leading to an inferior optimum for a given num-
ber of iterations. Increasing the number of optimization 
evaluations could mitigate this issue.

Among the custom loss functions, LDAM loss per-
forms the best with a PR-AUC value of 0.141, closely fol-
lowed by Logit-adjusted loss. Interestingly, all LightGBM 
models are able to outperform all models from Jiang et al. 
Indeed, for this dataset LightGBM achieves more than 
double the performance reported for XGBoost in their 
paper. This again could be related to the differences in 
the tree-splitting procedure between the two implemen-
tations. Finally, the dataset also highlights the issues of 
data-driven representations when dealing with extreme 
imbalance, since in this benchmark all graph-based 
approaches achieve substantially lower performance than 
descriptor-based classifiers.

Moldata benchmarks
The custom loss functions were next evaluated using the 
MolData datasets.

All custom loss functions significantly outperform the 
weighted cross-entropy baseline for the Phosphatase 
dataset in terms of accuracy, precision (except Logit-
adjusted loss) and ROC-AUC (Table 4, Additional file 1: 
Table  S5 and Fig.  2, p-values for the statistical tests 
outlined in Additional file  1: Table  S11). The only met-
rics where the baseline still outperforms the alterna-
tives are recall and balanced accuracy. The F1 score for 
Logit-adjusted loss is higher, indicating that the trade-
off between precision and recall is generally favorable, 
however the difference is not statistically significant. In 
terms of MCC and PR-AUC, LA loss achieves the best 
performance, significantly outperforming the baseline on 
both metrics. Compared to the multitask networks from 
Arshadi and coworkers, Focal loss outperforms them in 
all metrics except recall. The improvement is especially 
noticeable in terms of precision, achieving more than 
double the value reported for the GCN model.

For the NTPase benchmark, Logit-adjusted loss stands 
out as the best option, significantly outperforming the 
baseline in terms of precision, ROC-AUC and MCC 
(Table 4, Additional file 1: Table S6 and Fig. 2, p-values 
in Additional file  1: Table  S12). LDAM loss and Focal 
loss also improve over the baseline, but the trend is not 
as consistent as for Logit-adjusted loss across all metrics. 
When comparing it to the baselines from Arshadi and 
coworkers, similarly to the results for the Phosphatase 
dataset, Logit-adjusted loss outperforms both multitask 
networks in all metrics except recall. The improvement is 
especially noticeable for ROC-AUC, going from 0.76 to 
0.85.

Table 4  Summary of the benchmarking results for the datasets in the MolData repository

The best values for each metric in each dataset are highlighted in bold

Name Metric WCE FC LA EQ LDAM DNN—Arshadi GCN –Arshadi

Phosphatase Accuracy 0.989 ± 0.0005 0.992 ± 4E-4 0.992 ± 3E-4 0.992 ± 7E-4 0.992 ± 2E-4 0.885 0.984

Precision 0.356 ± 0.01 0.455 ± 0.05 0.431 ± 0.06 0.571 ± 0.01 0.567 ± 0.05 0.027 0.144

Recall 0.139 ± 0.006 0.125 ± 0.01 0.135 ± 0.01 0.085 ± 0.02 0.109 ± 0.03 0.459 0.191

F1 score 0.200 ± 0.003 0.196 ± 0.01 0.206 ± 0.01 0.148 ± 0.01 0.182 ± 0.02 0.052 0.164

ROC-AUC​ 0.814 ± 0.0005 0.830 ± 0.001 0.830 ± 0.01 0.821 ± 0.0003 0.825 ± 0.0008 0.739 0.815

NTPase Accuracy 0.945 ± 0.001 0.945 ± 0.004 0.945 ± 0.0004 0.899 ± 0.02 0.946 ± 0.005 0.854 0.933

Precision 0.381 ± 0.01 0.417 ± 0.01 0.472 ± 0.01 0.344 ± 0.04 0.488 ± 0.006 0.138 0.267

Recall 0.300 ± 0.007 0.294 ± 0.005 0.267 ± 0.003 0.250 ± 0.02 0.255 ± 0.005 0.526 0.095

F1 score 0.336 ± 0.003 0.345 ± 0.004 0.341 ± 0.005 0.289 ± 0.03 0.335 ± 0.003 0.219 0.141

ROC-AUC​ 0.821 ± 0.01 0.787 ± 0.01 0.852 ± 0.01 0.764 ± 0.007 0.827 ± 0.02 0.763 0.763
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Fig. 2  Summary of the benchmarking results for the MolData datasets. Error bars represent the standard error of the mean (N = 5), while the 
asterisks denote whether the difference is significant (one indicates α < 0.05, two α < 0.01). The statistical tests with Bonferroni correction are 
carried out with respect to WCE. We define the differences between loss functions within LightGBM as performance comparisons, while classifier 
comparisons refer to the benchmarking of the best loss function against the classifiers from Arshadi et al. a Loss function comparison on the 
Phosphatase dataset. b Comparison between the best loss function and the best models from Arshadi et al. on the Phosphatase dataset c Loss 
function comparison on the NTPase dataset. d Comparison between the best loss function and the best models from Arshadi et al. on the NTPase 
dataset
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Proprietary dataset benchmark
All loss functions, except Equalization loss, achieve excel-
lent performance on the real-world industrial dataset, 
with ROC-AUC values above 0.9 (Fig.  3 and Additional 
file 1: Table S14, p-values for the statistical tests can be 
found in Additional file 1: Table S15). Focal loss, LDAM 
loss and Logit-adjusted loss significantly outperform the 
weighted cross-entropy baseline, consistently with the 
trends observed in the academic datasets. However, the 
relative increases between the baseline and the custom 
loss functions are minimal in terms of magnitude. This is 
likely because these classifiers already achieve near per-
fect performance, making it difficult to achieve substan-
tial improvements. Considering the other metrics, Focal 
loss achieves the best performance on all metrics except 
balanced accuracy and recall, significantly outperforming 
the baseline in PR-AUC, precision, F1 score, MCC and 
accuracy. Logit-adjusted loss performs similarly to Focal 
loss, matching its performance in terms of MCC and PR-
AUC while obtaining higher balanced accuracy.

Influence on convergence speed
To assess whether changing the loss function affects the 
number of boosting iterations required for convergence, 
we analyzed the number of trees and time required to 
fit the HIV dataset for each loss function. To do so, we 
optimized the hyperparameters of each classifier and 
measured the training time and number of trees on five 
80:20 training-validation splits, using the external set 
for early stopping. The whole procedure was repeated 
three times, to ensure that the findings are independ-
ent of specific optima obtained during the optimization 
phase, for a total of 15 measurements per loss function. 
The results are summarized in Fig.  4, Additional file  1: 

Table S16 and Additional file 1: Table S17.  Interestingly, 
the weighted cross-entropy baseline is the most compu-
tationally expensive option on average, requiring on aver-
age around 4900 boosting iterations and 59  s to fit the 
dataset. LDAM loss is the fastest loss function on average 
(7  s), closely followed by Logit-adjusted loss (13  s) and 
Focal loss (19 s). Equalization loss has the widest spread 
in terms of boosting iterations and training time, likely 
arising from training instability for this loss function.

Discussion
Remarkably, on five out of six datasets investigated, 
at least one custom loss function outperformed the 
weighted cross-entropy baseline. These findings display 
that our approach is robust to a wide variety of end-
points, dataset sizes and imbalance rates, including real 
world data. On average, the Equalization loss performed 
the worst, while Logit-adjusted loss achieved consist-
ently strong performance across all datasets, followed by 
LDAM loss and Focal loss.

One possible explanation for the lower effectiveness of 
Equalization loss might be that approximating one mini-
batch with the fitting of one boosted tree is not appro-
priate, thus rendering the accumulated gradient ratios 
unreliable. This is further confirmed by the high instabil-
ity of the gradients we observed while implementing this 
loss for Gradient Boosting, which we attempted to cor-
rect using gradient clipping. Moreover, it is interesting 
that this custom loss function, which is the most similar 
to weighted cross-entropy since it relies on dynamically 
weighting the two class contributions, is also the one 
achieving the poorest performance. This further high-
lights the need for alternative approaches such as apply-
ing a class-specific offset to the raw logits (LDAM loss 

Fig. 3  Benchmarking results for the proprietary HTS dataset. Error 
bars represent the standard error of the mean (N = 5), while the 
asterisks denote whether the difference is significant (one indicates 
α < 0.05, two α < 0.01). The statistical tests are carried out with respect 
to WCE

Fig. 4  Convergence speed comparison between weighted 
cross-entropy and the custom loss functions. Each dot represents a 
fit iteration in terms of boosting iterations required to trigger early 
stopping and computational time
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and Logit-adjusted loss), or dampening the influence of 
well-classified samples (Focal loss).

When analyzing our results across all metrics, one rel-
evant finding is that using custom loss functions leads to 
an overall increase in precision at the expense of recall 
when comparing to the weighted cross-entropy baseline. 
Depending on the context and purpose for which these 
datasets are modeled, the increase in precision might 
be extremely beneficial, i.e. in settings where experi-
mental testing is expensive so it is paramount to reduce 
the number of false positives. Another interesting trend 
is the systematic increase in accuracy compared to the 
baseline, however this is not significant considering the 
inadequacy of this metric for imbalanced classification. 
In terms of global performance however, our proposed 
modifications still lead to better models overall, as indi-
cated by generally higher MCC, ROC-AUC, PR-AUC and 
F1 scores across five out of six datasets. Furthermore, the 
increase in performance in terms of MCC is especially 
significant, given that this metric is known to perform 
extremely well in ranking classifiers when dealing with 
class imbalance [41]. It should be noted however that if 
the target metric is balanced accuracy, the baseline would 
be a more indicated choice of loss function since it con-
sistently outperforms all alternatives.

Regarding the comparison with the external base-
lines from Arshadi et  al. and Jiang et  al., implementing 
the custom loss functions discussed in this study allows 
LightGBM to match or outperform the best models from 
those studies in four out of five datasets. This result is 
noteworthy considering the wide variety and complexity 
of the approaches employed by Jiang et  al. and the fact 
that Gradient Boosting does not benefit from multitask 
learning, unlike the approaches from Arshadi et al. These 
findings highlight the importance of properly addressing 
imbalance with bespoke approaches rather than relying 
on simpler loss weighting schemes.

Regarding the convergence time, all losses required 
less iterations and training time than the weighted cross-
entropy baseline, speeding up the computation by a fac-
tor of 8 for LDAM loss, 4 for Logit-adjusted loss, 3 for 
Focal loss and 1.2 for Equalization loss. One possible 
explanation for this could be that the modifications of 
cross-entropy investigated in this study provide more 
informative gradients, leading to faster convergence [44, 
45]. This phenomenon could be caused by the inclusion 
of prior class probabilities in the loss formulation (Logit-
adjusted and LDAM losses), or by forcing the total loss to 
be more dependent on hard to classify examples (Focal 
loss).

In summary, considering both the performance 
improvement and the influence on convergence time, 
Logit-adjusted and LDAM loss are the best options 

for tuning Gradient Boosting for imbalanced bioassay 
modelling. Interestingly, both approaches rely on logit 
shifting, which seems to indicate that this strategy is pref-
erable than weighting approaches like Equalization loss 
or Focal loss, in agreement with the findings from Menon 
and coworkers [27]. Furthermore, both options, given 
sufficient hyperparameter optimization, can converge 
back to the original cross-entropy formulation, meaning 
that they are a suitable option even on datasets where the 
baseline might achieve better performance.

Finally, LightGBM with these modifications is a strong, 
efficient and interpretable baseline for future works on 
ligand-based virtual screening. This will provide an out-
of-the-box solution for quickly modelling large bioassay 
data and will serve as a meaningful benchmark for more 
complex algorithms on imbalanced datasets.

Conclusion
In this study, we investigated the effectiveness of custom 
loss functions applied to Gradient Boosting for modelling 
extremely imbalanced bioassay data. To answer this ques-
tion, we evaluated our approach against weighted cross-
entropy, the current de-facto standard for imbalanced 
data classification, and a variety of classifiers from previ-
ous studies involving approximately 2 million compounds 
and 42 tasks from public and proprietary sources.

Our results show that all bespoke loss functions achieve 
statistically significant improvement over weighted 
cross-entropy across 5 out of 6 benchmarks, the most 
promising being Logit-adjusted loss and LDAM loss. Fur-
thermore, thanks to these modifications, Gradient Boost-
ing is able to match or outperform the best classifiers of 
other benchmarks for four out of five datasets. Addition-
ally, the use of custom loss reduces the training time and 
computational cost for gradient boosting, as highlighted 
in our convergence iteration comparison.

The significance of these results is three-fold. First, 
they show the importance of appropriately tackling class 
imbalance with custom loss functions, an approach that 
has not been thoroughly investigated in the context of 
drug discovery until now. These modifications are par-
ticularly promising considering their widespread success 
in computer vision and could substitute or complement 
resampling-based approaches, which are already well 
established for bioassay modelling [5, 29, 30]. Second, 
they highlight the efficacy of Gradient Boosting cou-
pled with proper loss functions for modelling extremely 
imbalanced bioassay data. This is relevant because Gradi-
ent Boosting has a unique set of advantages over other 
classifiers such as excellent scalability to large datasets 
[31, 32, 39], straightforward interpretability [17] and 
ease of optimization [19]. Third, our analysis shows that 
logit-shifting modifications of the cross-entropy loss 
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are generally more performant than weighting-based 
approaches for gradient boosting. This provides a solid 
foundation for developing novel loss functions and sim-
plifies the choice of loss function when modelling imbal-
anced data.

Finally, our implementation, available at https://​github.​
com/​dahvi​da/​gradi​ent_​boost​ing_​CLF, is designed to 
handle any function definition with minimal external 
package dependencies to streamline the implementation 
of alternative loss functions for Gradient Boosting. We 
hope this will accelerate further research on newer loss 
functions for class imbalance, i.e. combo losses [46], as 
well as for regular classification, for example 0–1 losses 
with Langevin gradient descent [47].
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Abstract 

Decision tree ensembles are among the most robust, high-performing and computationally efficient machine 
learning approaches for quantitative structure–activity relationship (QSAR) modeling. Among them, gradient boost-
ing has recently garnered particular attention, for its performance in data science competitions, virtual screening 
campaigns, and bioactivity prediction. However, different variants of gradient boosting exist, the most popular being 
XGBoost, LightGBM and CatBoost. Our study provides the first comprehensive comparison of these approaches 
for QSAR. To this end, we trained 157,590 gradient boosting models, which were evaluated on 16 datasets and 94 
endpoints, comprising 1.4 million compounds in total. Our results show that XGBoost generally achieves the best pre-
dictive performance, while LightGBM requires the least training time, especially for larger datasets. In terms of feature 
importance, the models surprisingly rank molecular features differently, reflecting differences in regularization tech-
niques and decision tree structures. Thus, expert knowledge must always be employed when evaluating data-driven 
explanations of bioactivity. Furthermore, our results show that the relevance of each hyperparameter varies greatly 
across datasets and that it is crucial to optimize as many hyperparameters as possible to maximize the predictive per-
formance. In conclusion, our study provides the first set of guidelines for cheminformatics practitioners to effectively 
train, optimize and evaluate gradient boosting models for virtual screening and QSAR applications.
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Graphical abstract

Introduction
Quantitative structure–activity relationship (QSAR) 
modelling occupies a vital role in cheminformatics 
research [1–5]. QSAR aims to link the molecular struc-
ture with experimentally measurable properties, and it 
is routinely used to predict molecular properties such as 
bioactivity [6–9], toxicity [10–13] and absorption, distri-
bution, metabolism and excretion (ADME) [3, 14], thus 
covering a fundamental role in both hit discovery and 
hit-to-lead optimization.

QSAR aims to link the molecular structure (numeri-
cally encoded as the so-called molecular descriptors) 
[15–17] with experimentally measurable properties. For 
this application, decision tree ensembles are among the 
most used machine learning methods thanks to their 
excellent performance, ability to rank features in terms 
of importance and their ability to scale to large datasets 
[18, 19], alongside other popular frameworks like support 
vector machines (SVM) [20, 21].

Among decision tree ensembles, gradient boosting 
machines (GBM) have seen a strong surge in popularity 
in the last years, driven by excellent results in data sci-
ence competitions and state-of-the-art performance in 
modelling tabular data [22, 23]. GBM iteratively aggre-
gates predictive models so that each one compensates the 
errors from the previous step, thus yielding a high-per-
formance ensemble.

In cheminformatics, GBM has already found wide-
spread use in several QSAR tasks such as toxicity 

prediction [12], drug sensitivity analysis [24], anti-can-
cer activity modelling [25] and drug-target interaction 
identification [26], as well as showing competitive per-
formance with deep learning approaches in recent large-
scale benchmarking studies [16, 27–30].

However, several implementations of the GBM algo-
rithm exist, each with unique modifications to the origi-
nal formulation and employing different decision tree 
structures [23], such as XGBoost [31], LightGBM [32] 
and CatBoost. [33] While the importance of these dif-
ferences has been recognised in other fields [23], these 
algorithms are used interchangeably in chemoinformat-
ics, and to our knowledge their respective advantages are 
not well documented. Thus, there is an urgent need for 
a rigorous benchmarking of these different implementa-
tions for QSAR applications. This is further warranted by 
the uniqueness of cheminformatics datasets compared to 
other typical tabular datasets like finance and real estate 
price prediction [22, 23]. For example, datasets in this 
field tend to have a much higher number of features, they 
are often extremely imbalanced [34] and might contain 
false positives or false negatives [35].

The aim of this paper is to provide the first set of practi-
cal guidelines for the use of gradient boosting in QSAR 
applications, such as toxicology and drug discovery, by 
answering the following questions:

1.	 Which gradient boosting implementation performs 
the best for QSAR?
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2.	 Which package scales the best to large datasets, such 
as high throughput screens (HTS)?

3.	 Do they produce similar feature importance rank-
ings, or do they highlight different molecular fea-
tures?

4.	 Is it possible to identify the most important hyperpa-
rameters to optimize for these algorithms to acceler-
ate further the development and deployment of these 
methods for QSAR?

To answer these questions, we carried out a large-
scale benchmark of these three implementations on 16 
classification and regression datasets with 94 different 
endpoints commonly considered for virtual screening, 
covering a wide range of dataset size and class-imbalance 
ratios. To ensure the robustness of our results, we exten-
sively optimized each algorithm according to the guide-
lines set up by the respective authors of the packages and 
recent studies, constructing 157,590 individual QSAR 
models.

Methods
GBM is an ensemble algorithm, which aims to aggregate 
several decision trees into a single more performant pre-
dictor. Decision trees are a machine-learning algorithm 
that learns a flowchart-like structure of hierarchical 
binary decisions [36]. The terminal nodes of the graph 
are generally named leaves, which are used to assign 
sample predictions [36]. To explain how GBM constructs 
the decision tree ensemble, we first present the original 
implementation of the algorithm [37] followed by a sys-
tematic analysis of the changes introduced by XGBoost, 
LightGBM and CatBoost.

Gradient boosting
Given an input matrix X and a vector Y  of molecular 
properties (e.g., biological activity), the gradient boost-
ing algorithm approximates the underlying function 
F(x) , which maps the relationship between the molecular 
descriptor xi and the biological activity yi , with a function 
F̂(x) , constructed in an additive manner:

where σ is the learning rate, a constant regularization 
parameter limiting the influence of a given predictor 
within the ensemble, and F̂m(x) is the m th tree. Given a 
loss function L

(
yi, pi

)
 , such as the binary cross-entropy, 

that measures the quality of predictions pi with respect 
to real readouts yi , after the first iteration each new tree 
F̂m is learned by minimizing the following objective:

(1)F̂(x) =
M∑

m=1

σ ∗ F̂m(x)

where the derivative of the loss with respect to the 
ensemble output represents the prediction residuals of 
F̂(x) at the previous iteration, and Pm are the predictions 
at the current iteration. As such, each new decision tree is 
constructed so that it compensates the prediction errors 
of the model during the previous iteration, essentially 
conducting gradient descent in function space instead of 
parameter space.

The original formulation of GBM is the one employed 
by the popular machine learning package Scikit-learn 
[38]. Unfortunately, this implementation lacks many 
of the regularization and optimization methods imple-
mented by XGBoost, CatBoost and LightGBM and can-
not be parallelized across multiple CPU cores. For this 
reason, we did not include the Scikit-learn version of 
GBM in the benchmarking study.

XGBoost
XGBoost introduces a regularized learning objective [31]. 
At a given iteration m , instead of being computed accord-
ing to the loss function L

(
yi, pi

)
 , the residuals are calcu-

lated with the following formula:

where γ and � are regularization hyperparameters, Tm 
is the number of leaves in the m th tree and ‖wm‖

2 is the 
L2 norm of its leaf weights. Thanks to this modification, 
XGBoost learns simpler trees with smoother weights, 
which leads to better generalization [31]. Additionally, 
XGBoost employs Newton descent instead of gradient 
descent to optimize its trees, which leads to faster con-
vergence [39]. Finally, XGBoost also introduced a new 
feature split finding algorithm to speed up training [31].

LightGBM
This implementation also adopts many solutions pro-
posed by XGBoost to improve the performance such as 
the regularized learning objective and Newton descent. 
However, LightGBM introduces three new strategies to 
make training more efficient: a histogram-based split 
finding method, Exclusive Feature Bundling (EFB) and 
Gradient-based One-Side Sampling (GOSS) [32]. EFB 
employs heuristics to find groups of mutually exclu-
sive features and merges them together, thus reducing 
the dimensionality of the dataset, while GOSS relies on 
gradients to sample at each iteration the most impor-
tant dataset instances without changing the training set 
distribution. Each of these algorithms simplifies differ-
ent aspects of the original minimization objective, thus 

(2)F̂m = argminE
(
−∂L(Y ,Pm−1)

∂Pm−1
− Pm

)

(3)L∅
(
y, p

)
=

I∑
i=1

L
(
yi, pi

)
+ γTm + 1

2
��wm�

2
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speeding up training time with negligible loss in accu-
racy. Furthermore, LightGBM employs a different tree 
growth strategy compared to XGBoost. In most cases, 
trees are generated in a “breadth-first” fashion, where 
every time a new split is found, all other splits at the same 
level are first considered before increasing further the 
depth of the tree. This yields tree structures that have the 
same depth across all branches. In contrast, LightGBM 
grows trees in a “depth-first” fashion (Fig. 1), where the 
algorithm splits nodes exclusively according to the larg-
est performance gain [40]. This procedure leads to asym-
metric trees, where certain branches might be very deep 
while others might be shallow. This approach tends to 
converge faster, but might be susceptible to overfitting on 
small datasets [32].

Catboost
There are three main features that distinguish CatBoost 
from LightGBM and XGBoost. First, it provides a novel 
Target Statistics (TS) algorithm to handle categorical 
variables, which leads to more robust performance on 
unseen data by addressing the issue of target leakage dur-
ing training [33]. However, categorical inputs are very 
rarely found in molecular descriptors [41], therefore this 
aspect is not of big relevance for cheminformatics appli-
cations. Second, it introduced ordered boosting, a vari-
ation of gradient boosting where each model is trained 
on a different partition of the training dataset, tackling 
the issue of prediction shift that arises by fitting trees 
on gradients obtained from samples already used dur-
ing training. In principle, this approach reduces the risk 
of overfitting, especially on small datasets [33]. Third, 
CatBoost employs “oblivious decision trees”, where the 
same variable and threshold are used to generate splits at 
a given depth level (Fig. 1) [33, 42]. This enforced symme-
try acts as regularization, constraining the expressiveness 
of tree models, and can be leveraged to provide uncer-
tainty estimates on predictions, similarly to Gaussian 

Processes models [43]. Finally, the authors of this library 
have researched extensively the theoretical properties of 
gradient boosting and proposed several new features like 
Langevin gradient descent [44] and sample importance 
analysis [45], which are only available in the CatBoost 
package [42].

Experiments
Datasets
To provide a robust evaluation framework for our bench-
mark analysis, we evaluated XGBoost, LightGBM and 
CatBoost on 16 classification and regression datasets 
from three well-established repositories: MoleculeNet, 
[27] MolData [1] and the ChEMBL benchmarking study 
from Cortés-Ciriano et  al [46] (Table 1). From the first, 
we included Tox21, MUV, HIV, ClinTox, BBBP, BACE 
and SIDER. From the second, we chose the Phosphatase, 
NTPase, Oxidoreductase and Fungal datasets. From the 
third, we selected HERG, Acetylcholinesterase, COX-2, 
erbB1 and JAK-2. We retrieved the MoleculeNet data-
sets from a recent benchmarking study [16], while we 
referred to the original publications for the MolData 
repository and the ChEMBL datasets [1, 46]. This selec-
tion entails approximately 1.4 million unique compounds 
and 94 endpoints on a wide variety of protein families 
and biological responses, ensuring that our findings are 
broadly applicable for cheminformatics applications. Our 
selection covers an extensive range of compounds per 
endpoint (from 2000 to 330,000) and imbalance ratios 
between compounds classified as either ‘positive’ or ‘neg-
ative’ (from 1:2 to 1:500), reflecting the diversity of data-
sets typically encountered in cheminformatics (Table 1).

Performance metrics
For each classification dataset, we evaluated the Receiver 
Operating Characteristic Area Under Curve (ROC-AUC) 
and Precision-Recall Area Under Curve (PR-AUC). Our 
selection is consistent with the figures of merit used in 

Fig. 1  Different tree structures and split indexes (shown inside each node) generated by XGBoost, LightGBM and CatBoost. XGBoost adopts 
a “breadth-first” search, maintaining constant tree depth across branches. LightGBM uses a “depth-first” criterion, yielding asymmetric trees. CatBoost 
relies on oblivious trees, where at a given depth the same split is used across all branches, as indicated by the constant split indexes
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the literature when evaluating these datasets and ensures 
that the results are not skewed by high imbalance ratios 
[1, 16, 27, 47, 48]. For the regression datasets, we evalu-
ated the Root Mean Squared Error (RMSE). To assess 
whether differences in performance are statistically sig-
nificant, we used the two-tailed Mann–Whitney test with 
Bonferroni correction [49].

Molecular descriptors
We featurized all compounds using the Extended-Con-
nectivity Fingerprints (ECFP) with radius of 2 and bit size 
of 1024 [50]. To ensure that bit collision is not a factor in 
any of our findings, we have investigated the change in 
vector sparsity when using larger bit sizes. Given that the 
number of unique fragments remains approximately con-
stant for all datasets when increasing the bit size (Addi-
tional file  1: Table  S1), we can exclude that bit collision 
plays a role for the benchmarks in this study.

Performance analysis
We used three different optimization and evaluation pro-
tocols, depending on whether the dataset is from Mol-
eculeNet, MolData or ChEMBL. The reason for this is 
to keep our analysis consistent with prior studies from 
the scientific literature, and because the datasets from 
MolData are several orders of magnitude larger than 
the ones in the MoleculeNet repository or from Cortés-
Ciriano et al [46].

For MoleculeNet datasets, we replicated a previously 
proposed procedure [16], whereby for each endpoint, 
each classifier is optimized with Hyperopt [51] for 100 

iterations using an extensive hyperparameter grid, deter-
mined according to existing guidelines and benchmarks 
[22, 39, 40, 42]. The full hyperparameter grid is available 
in the Supporting Information. Each optimization itera-
tion measured the average PR-AUC with a given hyper-
parameter setting across three random train-test splits 
with an 80:20 ratio. Then, the model was run with the 
optimal hyperparameters on 50 independent evaluations 
with random splits, using the same ratio between train-
ing and test set. After each run, the ROC-AUC and PR-
AUC were measured on the test set as well as the training 
time. Finally, for a given dataset, the performance metrics 
and training times were averaged across replicates and 
across endpoints.

For the MolData benchmarks, we used the scaffold 
splits provided by Arshadi and coworkers during opti-
mization and evaluation [1]. As such, for each endpoint, 
each classifier was optimized for 100 iterations using 
Hyperopt [51] with the same grid as above. Each iteration 
measured the PR-AUC obtained by the classifier with a 
given hyperparameter setting on the validation set. Then, 
the model was run with optimal hyperparameters on five 
independent evaluations with different random seeds, 
measuring the ROC-AUC and PR-AUC on the test set 
as well as the training time. As above, the results were 
reported as averages across replicates and endpoint for a 
given dataset.

For the regression datasets from Cortés-Ciriano et  al. 
[46], we adopted the procedure employed in the original 
publication. In short, each dataset was split into train-
ing, validation and test sets with a 70:15:15 ratio using 

Table 1  Datasets employed in this study. For datasets with multiple endpoints, we reported the ranges between minimum and 
maximum values regarding the compounds per endpoint and imbalance ratios

Name Type Source Endpoints Compounds per endpoint Class imbalance ratio

Tox21 Classification MoleculeNet 12 5810–7265 1:5–1:33

HIV Classification MoleculeNet 1 40,748 1:27

MUV Classification MoleculeNet 17 14,415–14,903 1:486–1:613

BACE Classification MoleculeNet 1 1513 1:1

BBBP Classification MoleculeNet 1 2039 1:3

SIDER Classification MoleculeNet 27 1427 1:12–1:63

ClinTox Classification MoleculeNet 2 1478 1:12–1:14

Phosphatase Classification MolData 5 260,322–298,215 1:121–1:576

NTPase Classification MolData 6 251,895–301,932 1:3–1:16,265

Oxidoreductase Classification MolData 10 79,853–325,083 1:9–1:9847

Fungal Classification MolData 7 152,880–302,256 1:135–1:640

HERG Regression Cortés-Ciriano et al. 1 5207 N.A

Acetylcholinesterase Regression Cortés-Ciriano et al. 1 3159 N.A

COX-2 Regression Cortés-Ciriano et al. 1 2855 N.A

erbB1 Regression Cortés-Ciriano et al. 1 4868 N.A

JAK-2 Regression Cortés-Ciriano et al. 2655 N.A



Page 6 of 13Boldini et al. Journal of Cheminformatics           (2023) 15:73 

random splits. We then performed hyperparameter tun-
ing via Hyperopt, optimizing RMSE on the validation 
split for 100 iterations, using the same grid as above. 
Finally, we repeated training on the training split and 
evaluation of RMSE on the test set for 50 iterations. As 
such, the final RMSE values were indicated as averages 
across replicates for each dataset.

Feature ranking analysis
One of the advantages of GBM is that it can provide 
information on the feature importance, which can be 
used as a tool to provide indication of what drives the 
model predictions, and, in certain cases, to achieve model 
explainability [52]. We used Shapley values [19, 53] to 
assess which molecular features are the most important 
according to each GBM predictor. Shapley values quan-
tify the importance of each feature (‘feature attribution’ 
[37]) by evaluating the change in a model’s predictions 
across all possible permutations [19, 52]. To obtain fea-
ture rankings for each dataset, we collected the Shapley 
values from each model with optimal hyperparameters 
during the evaluation procedure. Then, we averaged them 
across independent runs and dataset endpoint, obtaining 
one ranked list of variables per dataset for each model. 
To compare the variable rankings between pairs of GBM 
implementations, we employed the following formula:

where k is the cut-off for the number of most important 
variables to consider (set to k = 20 in the present study) 
and Vsk is the number of unique variables when consid-
ering both importance rankings. Intuitively, this metric 
measures the agreement of the two rankings, irrespective 
of the specific ordering, among the top 20 most impor-
tant variables. For example, a score of 50 indicates that 
two GBM models have 10 molecular features in com-
mon when looking at their respective top 20 most impor-
tant variables, regardless of whether these 10 features 
received the same rank in both lists. This score there-
fore shows whether the use of different gradient boost-
ing algorithms would highlight the same features as most 
important, without being influenced by the ranking of 
less informative variables. However, it should be kept in 
mind that for many molecular representations such as 
hashed fingerprints, translating feature importance rank-
ings into chemical insights is not a trivial task [54].

Finally, to evaluate the influence of converging to dif-
ferent hyperparameter configurations, regardless of 
algorithmic differences in the gradient boosting imple-
mentation, we also evaluated the feature ranking over-
lap between two independent LightGBM optimization 
runs. The analysis was limited to LightGBM due to 

(4)Overlap% =
(
1−

Vsk
k

)
∗ 100, k = 20

computational costs and that considering one GBM is 
sufficient to evaluate the variability in feature ranking 
overlap induced by the stochasticity in the hyperparam-
eter optimization process.

Hyperparameter analysis
To evaluate the influence of each hyperparameter on 
the optimization process, we employed the Functional 
ANOVA (fANOVA) [55]. To acquire a sufficient collec-
tion of hyperparameter combinations, we optimized 
LightGBM with Hyperopt for 500 iterations on each 
endpoint, using the same hyperparameter grid and 
evaluation criteria as above. Because of the high compu-
tational cost for this analysis, we limited our study only 
to one GBM implementation and exclusively to classifi-
cation datasets. Then, after pruning the worst 150 itera-
tions, we processed the resulting parameter-performance 
pairs using fANOVA, yielding individual hyperparameter 
importance scores and their first-order interactions. By 
limiting the analysis to well-performing configurations, 
we ensured that the importance estimates for the param-
eters reflect their importance on reaching the optimum, 
and not on causing large oscillations in performance [55]. 
We excluded the SIDER and Fungal datasets from this 
analysis, since they were reserved as test sets to evalu-
ate whether selecting hyperparameters according to 
their fANOVA importance score generalizes to unseen 
datasets. Furthermore, to assess the influence of molecu-
lar descriptors on the optimal hyperparameters, we also 
repeated this procedure using the MACCS keys [56] 
and an assortment of 207 physical–chemical descriptors 
from RDKit as featurization options. The complete list 
of descriptors is available in the Supporting Information 
(Additional file 1: Table S2).

Software and implementation
Molecular descriptors were computed using RDKit (Ver-
sion 2022.09.4) for python. [50] For training the models, 
XGBoost (Version 1.7.1) [39], LightGBM (Version 3.3.5) 
[40] and CatBoost (Version 1.1.1) [42] were employed. 
Scikit-learn (Version 1.2.1) [38] was used to split the 
MoleculeNet datasets and compute ROC-AUC and PR-
AUC values. Each model was tuned via Bayesian hyper-
parameter optimization using the Hyperopt package 
(Version 0.2.7) [51]. Finally, SHAP (Version 0.41.0) [19] 
was utilized to compute Shapley values and the fANOVA 
package (Version 2.0.5) [55] was employed for the hyper-
parameter importance analysis. All calculations were 
performed on an AMD Ryzen Threadripper 3970X CPU 
with 32 cores and 64 threads. Training of the gradient 
boosting models was parallelized across all cores avail-
able. The code to reproduce the results is available at 
https://​github.​com/​dahvi​da/​GBM_​Bench​marki​ng.

https://github.com/dahvida/GBM_Benchmarking
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Results and discussion
Predictive performance
Overall, XGBoost achieves the best performance on 
most of the datasets (Fig.  2a, b and Additional file  1: 
Figure S1), with statistically significant differences in 
most cases. Interestingly, there seems to be a correla-
tion between the improvement provided by XGBoost 
over the alternatives and dataset size. For smaller clas-
sification datasets (e.g., BACE, BBBP and ClinTox), 

CatBoost performs worse, with LightGBM being able 
to match or outperform XGBoost. This aspect is seem-
ingly in contradiction with the concerns of overfitting 
due to its depth-first tree structure reported elsewhere. 
[40] For medium-sized datasets (e.g., Tox21, MUV and 
HIV, ranging from approximately 7000 compounds to 
40,000), CatBoost tends to perform better than Light-
GBM, and it outperforms XGBoost on the Tox21 
dataset. Finally, for large datasets (NTPase, Phos-
phatase and Oxidoreductase datasets, having more 
than 300,000 molecules per endpoint), XGBoost out-
performs both LightGBM and CatBoost. When con-
sidering all datasets, XGBoost provides roughly a 5% 
improvement on average over LightGBM and CatBoost 
in terms of ROC-AUC and PR-AUC.

Regarding the regression datasets, LightGBM tends 
to achieve worse RMSE scores, while XGBoost ranks 
as the best performing algorithm on most benchmarks 
(Fig.  2b). CatBoost is generally able to match the per-
formance of XGBoost, although the differences are sta-
tistically significant.

When considering the training times across all data-
sets (Fig. 2c), a similar dependence on the dataset size 
can be observed. LightGBM is the fastest algorithm 
on all benchmarks, due to the algorithm’s focus on 
reducing computational load. CatBoost is the slowest 
algorithm for small and medium sized datasets, while 
XGBoost requires significantly more time to train for 
larger datasets than both alternatives. While the abso-
lute difference of training times for a single model is 
not particularly great (i.e., 5 versus 140 s on a CPU with 
32 cores), it can significantly impact hyperparameter 
optimization procedures, where the model needs to 
be retrained many times. Furthermore, this difference 
will also grow significantly if less cores are available for 
training.

In summary, XGBoost provides the best predictive 
performance for cheminformatics out of all gradient 
boosting implementations, at the cost of training speed 
for larger datasets. LightGBM and CatBoost have com-
parable performance, but the former provides substan-
tial benefits in terms of training time over the other 
algorithms.

Feature ranking comparison
We observed a remarkable variability between the impor-
tance rankings across different implementations, espe-
cially when comparing them to the overlap scores of 
two independent optimization and training runs for the 
same GBM algorithm (Fig.  3). For MUV, for example, 
there is approximately only a 20% overlap for any imple-
mentation pair, while for other datasets the agreement 
reaches up to 90%. The reason for the variability across 

Fig. 2  Performance comparison of all gradient boosting 
implementations in terms of a PR-AUC, b RMSE and c training time. 
All calculations were performed on an AMD Ryzen Threadripper 
3970X CPU. Statistical tests are carried out with respect to XGBoost. 
Error bars represent the standard deviation (N = 50 for MoleculeNet 
datasets, N = 5 for MolData datasets), while the asterisks denote 
whether the difference is significant (*: α < 0.05, **: α < 0.01, 
with Bonferroni correction)
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implementations could be due to the use of different tree 
structures, as well as converging to different hyperpa-
rameter optima. For example, tuning the minimum split 
gain can lead to the selection of different splits, which 
in turn would yield different variable importance scores. 
This would explain the results obtained when comparing 
two runs of the same GBM algorithm across all datasets, 
since even in that scenario the variable overlap scores are 
distributed between 70 and 90% (Fig.  3). Another pos-
sible explanation for this pattern is that the algorithms 
highlight similar molecular fragments, but those frag-
ments are mapped to different bits in the ECFP repre-
sentation, thus producing semantically similar rankings 
despite not focusing on the same variables. To investigate 
this hypothesis, we calculated the top 20 ranked frag-
ments for all GBM algorithms for the BACE datasets 
and manually inspected them (Additional file  1: Figure 
S2). When comparing the most important fragments 
between pairs of GBM predictor, each model had approx-
imately ten unique substructures, which did not have 
any analogues in the other rankings. As such, it seems 
that each implementation indeed generates semanti-
cally distinct explanations for a given dataset, highlight-
ing potential differences in the learned structure–activity 
relationships.

The main takeaway from this analysis is that using gra-
dient boosting to evaluate which molecular features or 
fragments are the most influential is a non-trivial task, 
given the low agreement between different implemen-
tations of the same algorithm. Expert knowledge must 
always be employed to evaluate each fingerprint bit or 
molecular descriptor and to assess whether the expla-
nations provided by the model are reasonable. Finally, 
averaging the Shapley scores on different hyperpa-
rameter optima or across different gradient boosting 

implementations might yield better estimates of feature 
importance.

Hyperparameter importance
After calculating the hyperparameter importance across 
datasets for LightGBM, we evaluated their distribution 
on different endpoints (Fig.  4). The analysis was limited 
to one GBM implementation due to the high number 
of optimization iterations required per endpoint. We 
focused our analysis on the following hyperparameters:

•	 “colsample_bytree”: fraction of features to sample 
at the beginning of the construction of a given tree. 
Tuning it helps with regularization of the ensemble.

•	 “learning_rate”: regulates how much each tree affects 
the overall performance of the ensemble, or in other 
words how many boosting rounds are required to 
converge. Large learning rates help with underfitting, 
small learning rates can help with regularization.

•	 “max_depth”: defines the maximum depth for con-
structing individual trees. Large values help with 
underfitting, small values can help with regulariza-
tion.

•	 “min_child_samples”: minimum number of samples 
for a given leaf node. Affects tree construction and 
can help with regularization.

•	 “min_child_weight”: minimal sum of hessians for a 
given leaf node. Affects tree construction and can 
help with regularization.

•	 “min_split_gain”: minimal decrease in loss required 
to further split a node. Affects tree construction and 
can help with regularization.

•	 “neg_subsample”: fraction of majority class samples 
to use for bagging when constructing a given tree. 
Helps with class imbalance and regularization.

•	 “num_leaves”: Maximum number of leaves a given 
tree can have. Similar to max_depth but provides 
more fine-grained control on the shape of the tree 
since LightGBM uses depth-first trees.

•	 “reg_alpha”: L1 norm regularization coefficient of the 
leaf weights.

•	 “reg_lambda”: L2 norm regularization coefficient of 
the leaf weights.

•	 “scale_pos_weight”: scaling coefficient for the minor-
ity class when computing the cross-entropy loss. 
Large values can offset class imbalance.

•	 “subsample_freq”: affects how often to perform bag-
ging when training the ensemble. If set to k, bagging 
is performed every k trees.

Generally speaking, the importance of the individ-
ual hyperparameters in the optimization process var-
ies greatly across datasets. Furthermore, 1st order 

Fig. 3  Box-plot distribution of overlap scores across all datasets 
for each gradient boosting implementation pair. The length 
of the box denotes the interquartile range, the diamond indicates 
the mean and the horizontal line defines the median. The comparison 
between two independent optimization runs using the same 
algorithm was limited to LightGBM due to its computational cost
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interactions between parameters play a more significant 
role in reaching the global optimum than tuning them in 
isolation, as highlighted by their larger importance score. 
This is consistent with the strong correlations between 
parameters and their non-linear effects on model 

behavior [39, 40, 42], which make Bayesian hyperparam-
eter optimization necessary in the first place [51].

Looking at individual contributions (Fig. 4a), it is pos-
sible to identify highly influential hyperparameters, such 
as the learning rate and the minimum split gain, as well 

Fig. 4  Violin plot distribution of the importance scores across all endpoints for the Tox21, MUV, HIV, BBBP, BACE, ClinTox, Phosphatase, NTPase 
and Oxidoreductase datasets. aThe distribution of individual contributions for each hyperparameter, denoted by a numerical identifier. b The score 
variation of pairwise interactions. Each interaction is defined by the combination of two numeric identifiers for conciseness
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as less relevant ones, such as tree-wise feature sam-
pling. However, all importance score distributions are 
remarkably skewed, highlighting that each contribution 
can strongly vary across different datasets. When look-
ing at the top ten most influential pairwise interactions 
(Fig.  4b), most of them are related to the learning rate 
and the scaling coefficient for the contribution of the 
minority class to the global loss, highlighting the impor-
tance of tuning weighted cross-entropy when dealing 
with imbalanced classification. While some of these find-
ings are consistent with the optimization guidelines from 
the literature, such as tuning the learning rate and the 
minimum split gain, others appear to contradict them. 
For example, while stochastic sampling of instances and 
features is believed to be an effective regularization tech-
nique for gradient boosting [31], in this analysis tuning it 
seems to be not influential in converging to the param-
eter configuration optimum.

To evaluate the robustness of our importance esti-
mates, we chose to optimize LightGBM again on all 
datasets, tuning only the most influential parameters 
according to the fANOVA analysis. To do so, we selected 
only the parameters that appeared at least once among 
the top 10 most important interaction terms, yielding a 
grid of 7 hyperparameters instead of 12 (available in the 
Supporting Information). To test whether this reduced 
selection leads to faster convergence of the optimization 
process, we used 30 iterations instead of 100. As a nega-
tive control, we also evaluated the performance achieved 
by optimizing all hyperparameters for the same number 
of iterations. Finally, we expressed the ROC-AUC and 
PR-AUC values achieved by these benchmarks as a frac-
tion of the performance of the optimization process with 
all parameters and 100 iterations. This evaluation scheme 
allows us to assess how well quickly tuning only the most 
important hyperparameters approximates the original 
large-scale optimization procedure.

As shown in Fig.  5, given the same number of itera-
tions, using only the best parameters for the optimization 
process leads to consistent performance gains compared 
to tuning all hyperparameters. This indicates that the 
scores from fANOVA accurately reflect the importance 
of tuning a given hyperparameter for reaching the opti-
mum. Interestingly, in some cases the optimal hyperpa-
rameter grid is able to outperform the results obtained 
tuning all hyperparameters for 100 iterations, such as 
for the NTP dataset in terms of PR-AUC and ROC-AUC 
(Fig. 5 and Additional file 1: Figure S2).

However, when evaluating the effectiveness of adjust-
ing only the most important parameters on holdout 
datasets, the performance improvements are inconsist-
ent. This indicates that the hyperparameter importance 
scores obtained by analysis of a set of endpoints do not 

generalize on external endpoints (Additional file 1: Figure 
S1). Therefore, deciding which parameters to tune must 
be determined on a case-by-case basis. A similar pattern 
is also observed when evaluating the influence of chang-
ing molecular representation for constructing the QSAR 

Fig. 5  LightGBM PR-AUC comparison between carrying 
out hyperparameter tuning according to the optimal grid obtained 
from fANOVA and tuning all hyperparameters. a Performance 
on the datasets used for the fANOVA analysis. b Performance 
on the holdout datasets and with different molecular representations. 
Each approach was optimized for 30 iterations. The performance 
is reported in relation to the results obtained by tuning all parameters 
for 100 iterations. Error bars represent the standard deviation 
(N = 50 for MoleculeNet datasets, N = 5 for MolData datasets), 
while the asterisks denote whether the difference is significant (*: 
α < 0.05, **: α < 0.01, with Bonferroni correction)
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model, indicating that the parameter importance scores 
are highly feature-specific (Fig.  5 and Additional file  1: 
Figure S2).

In conclusion, optimization analysis tools such as 
fANOVA can be useful to further improve gradi-
ent boosting in cases where QSAR models need to be 
retrained periodically as new data is collected, for exam-
ple for ADME prediction toolkits [3, 57]. However, the 
importance estimates provided by fANOVA do not gen-
eralize to unseen endpoints or different molecular rep-
resentations, and limiting the optimization process to a 
handful of parameters can affect the performance of the 
classifier by up to 20%. Therefore, our recommendation 
is to tune all possible parameters when training gradi-
ent boosting models for QSAR, if the computational 
time to do so is not prohibitive. If optimizing all param-
eters is too costly, adjusting the learning rate, the weight 
of the minority class and the minimum gain to split will 
likely lead to the best results on a limited computational 
budget.

Conclusions
This work investigated the differences between popu-
lar gradient boosting implementations in the context of 
cheminformatics, to guide future QSAR modelling pro-
jects. Specifically, our analysis focused on predictive per-
formance and training time, as well as on feature ranking 
consistency among methods. Furthermore, we investi-
gated which hyperparameters are the most important to 
tune for gradient boosting machines to reach better per-
formance faster. To achieve these goals, we evaluated 11 
different datasets, encompassing approximately 1.4 mil-
lion unique compounds with a diverse selection of data-
set sizes and imbalance ratios.

XGBoost generally outperformed all alternatives in 
terms of predictive performance by approximately 5%, at 
the cost of longer training times for larger datasets (e.g. 
above 100,000 compounds). LightGBM and CatBoost 
achieve similar performance, but the former requires sig-
nificantly less time to be trained compared to the other 
implementations. The improvement is especially signifi-
cant for datasets with more than 100,000 compounds, 
where LightGBM could be trained approximately 100 
times faster than XGBoost and 50 times faster than 
CatBoost. In terms of feature importance, each imple-
mentation tends to rank molecular features differently. 
This not only indicates that each approach might learn 
slightly different structure–activity relationships, but 
also that caution must be exercised when using these 
tools to assess which fragments or properties are relevant 
for the biological response modelled. In this context, 
expert knowledge is key to critically evaluate whether 
these explanations could be due to chance correlation. 

Finally, our hyperparameter importance analysis high-
lights that there is significant variability in how much a 
given parameter affects convergence to the optimum 
between datasets. As such, our indication is to tune as 
many parameters as possible when optimizing gradient 
boosting models. If the computational budget is limited, 
our recommendation is to focus on the learning rate, the 
minimum split gain and the weight of the minority class 
if the dataset is imbalanced.

In conclusion, our study provides a set of practical 
guidelines for the use of gradient boosting for molec-
ular property prediction. Given the rising popularity 
of this algorithm for virtual screening and QSAR, we 
believe our study will provide useful advice in its opti-
mization, its use cases and limitations, thus benefitting 
the cheminformatics community as a whole.
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ABSTRACT: Efficient prioritization of bioactive compounds from
high throughput screening campaigns is a fundamental challenge
for accelerating drug development efforts. In this study, we present
the first data-driven approach to simultaneously detect assay
interferents and prioritize true bioactive compounds. By analyzing
the learning dynamics during training of a gradient boosting model
on noisy high throughput screening data using a novel formulation
of sample influence, we are able to distinguish between compounds
exhibiting the desired biological response and those producing
assay artifacts. Therefore, our method enables false positive and
true positive detection without relying on prior screens or assay
interference mechanisms, making it applicable to any high throughput screening campaign. We demonstrate that our approach
consistently excludes assay interferents with different mechanisms and prioritizes biologically relevant compounds more efficiently
than all tested baselines, including a retrospective case study simulating its use in a real drug discovery campaign. Finally, our tool is
extremely computationally efficient, requiring less than 30 s per assay on low-resource hardware. As such, our findings show that our
method is an ideal addition to existing false positive detection tools and can be used to guide further pharmacological optimization
after high throughput screening campaigns.

■ INTRODUCTION
High throughput screening (HTS) has significantly accelerated
drug discovery efforts by allowing researchers to test large
chemical libraries for bioactivity in a time and cost efficient
manner, thus providing a crucial starting point for synthesizing
small molecules with suitable pharmacological properties.1−4

However, one fundamental issue with HTS is its tendency to
provide false positive readouts, either because the experimental
response for a given hit compound is not reproducible or
because it is not correlated with the intended biological
activity.5−9 The underlying causes for the false positive readout
can be extremely heterogeneous, including colloidal aggrega-
tion,10 autofluorescence,11 interference with assay technol-
ogy,5,8 chemical reactivity,12 metal impurities,13 and measure-
ment uncertainty.14

For these reasons, choosing which active compounds to
prioritize for further pharmacological development after an
HTS campaign still relies on further experimental profil-
ing,15−17 thus increasing the time and resources necessary to
identify true hits and subsequently deliver a drug to the market.
This issue has garnered significant attention in the

cheminformatics community, leading to the development of
several in-silico tools for false positive detection in HTS
data.6,7,18−22 These methods are generally based on expert rule
based approaches, for example Pan-Assay Interferent (PAINS)
substructure filters,5,8 or machine learning models trained on
historical HTS data.7,18,19 However, there are two main

limitations to the use of these tools. First, they generally
make assumptions concerning the assay interference mecha-
nism, limiting their applicability to a narrow selection of false
positives.6,18 Furthermore, this aspect also limits their trust-
worthiness in identifying true positives since they can only
prioritize compounds that are unlikely to be interferents
according to that specific mechanism. For example, given an
autofluorescence predictor for HTS interferent detection, even
if it classifies a compound as nonfluorescent, that molecule
might still be a false positive due to other phenomena, e.g.,
statistical fluctuations or colloidal aggregation. Second, these
approaches depend on the chemical, biological, and techno-
logical space evaluated to generate them.5,7 As such, their
performance might be unreliable when evaluating compounds
outside of the applicability domain of the model or when
applied to HTS campaigns targeting unseen protein families,
relying on new assay technologies and so forth.7

To speed up HTS hit triaging, we propose herein minimal
variance sampling analysis (MVS-A), the first machine learning
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approach to simultaneously identify false positive compounds
and prioritize true biologically active molecules in HTS data.
Our approach is inspired by recent findings in gradient-based
data valuation,23−25 which showcase how tracing sample
gradients during the training process can highlight mislabeled
data in computer vision and natural language processing
applications.23,26 To make gradient-based data valuation more
applicable out-of-the-box and reduce computational complex-
ity, MVS-A is based on a novel formulation of sample influence
for gradient boosting, thus enabling processing of large HTS
data sets (e.g., above 300.000 compounds) in mere seconds.
Because of this, MVS-A operates in an orthogonal fashion to
prior false positive detection tools for HTS data: instead of
requiring a preexisting library of assay interferents, it only
requires training on the HTS itself, avoiding out-of-domain
(OOD) applicability issues altogether. Additionally, since it
does not make any assumptions about the interference
mechanism, it can be used to successfully prioritize true
positives.
To evaluate our approach, we curated a selection of 17

publicly available HTS data sets and 3 industrial ones with
different sizes, class imbalance, biological targets, assay
technology, and false positive rates. Our results show that
MVS-A can outperform a variety of rule-based and data-driven
baselines both at true positive and false positive identification.

■ RESULTS AND DISCUSSION
Using MVS-A to Prioritize Hits from HTS Campaigns.

In recent years, analyzing sample gradient dynamics during
supervised neural network training has attracted significant
interest for modeling noisy data sets.23−28 These methods
enable quantification of the influence of each sample on the
neural network weights once the model has been trained.

When training on noisy data, such as HTS campaigns, it has
been shown that sample influence correlates with the
likelihood of being mislabeled, thus enabling the identification
of both trustworthy and problematic samples. However, neural
network based approaches are computationally expensive and
sensitive to hyperparameters, especially for large, imbalanced
molecular data sets such as HTS data,29,30 making their use for
nonexperts particularly challenging.
To tackle these limitations, we have developed minimum

variance sampling analysis (MVS-A) to estimate sample
influence in gradient boosting machines (GBM). GBM is a
machine learning algorithm that fits an ensemble of decision
trees in a sequence, each compensating for the mistakes of the
previous tree. The advantages of using GBM instead of neural
networks for computing sample influence are faster computa-
tion of importance scores, robust out-of-the-box performance,
and classification performance on imbalanced HTS data, thus
providing a good inductive bias for detecting false positive
compounds.31,32 In practice, the way MVS-A works is by
quantifying how “unusual” a certain active compound is
according to the GBM model when comparing it to the
boundary it has learned to separate active and inactive
molecules. If a compound is labeled as active in the training
set, but the pattern learned by the GBM model contradicts
that, it will have a high MVS-A score. Vice versa, if a bioactive
molecule is easily identified as such by the classifier, it will have
a low MVS-A score. These scores can be used accordingly to
prioritize compounds for further testing, or a threshold can be
set to label true positives and false positives depending on the
hit validation budget. In this study, we consider for all data sets
the bottom 10% of the hits as true positives and the top 10% as
false positives, as done in another ranking evaluation study.33

Figure 1. Illustration of our proposed approach. After an HTS campaign is carried out, the most active compounds in the primary screen are usually
prioritized for further testing. However, this strategy often does not distinguish well between true positives (TP) and false positives (FP), leading to
high false positive rates in the confirmatory screens. In our approach, we first fit a Gradient Boosting Machine classifier on the primary HTS screen
data and compute MVS-A scores for each active compound. Problematic compounds according to the classifier will have high MVS-A scores and
are likely false positives and vice versa for true hits. Selecting compounds according to their MVS-A score leads to reduced false positive rates in
subsequent confirmatory screens and enables the identification of false positives in the primary HTS screen.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.3c01517
ACS Cent. Sci. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acscentsci.3c01517?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c01517?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c01517?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.3c01517?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.3c01517?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


As such, our proposed approach for ranking HTS hits goes
as follows (Figure 1):
(1) We train a GBM classifier on the HTS data set of

interest to distinguish hits from inactive compounds.
(2) We compute sample influence estimates for all hits via

MVS-A.
(3) We sort all HTS hits according to their MVS-A score.

False positives are likely to have high MVS-A scores and
vice versa for true positives.

Thanks to its computational efficiency, this pipeline takes
only a few seconds on low-end hardware, even for large HTS
data sets. Crucially, our approach relies exclusively on the HTS
data set of interest. As such, it does not rely on historical
information on which compounds tend to be false positives for
that assay technology (like, e.g., PAINS), nor on assumptions
of which biophysical process is causing the interference (e.g.,
aggregation or autofluorescence predictors). This means that
our method is inherently applicable to any assay technology
and any region of the chemical space while being able to detect
any type of interferent.
Finally, we provide a more in-depth discussion of the theory

behind MVS-A in chapter 1 of the Supporting Information.
Constructing a Benchmark for HTS Hit Prioritization.

To evaluate our proposed approach, we curated a selection of
17 data sets from publicly available HTS data,34,35 for a total of
471370 unique compounds measured against 10 different
protein families, using a variety of readout measurements and
activity thresholds (Table 1, Table S1, Table S2, Table S3, and

Table S4). We focused on HTS data sets where more than 200
hits were investigated both in primary and confirmatory
screens, excluding campaigns where the false positive rate was
above 95% or below 5%. Where possible, we prioritized the
selection of assays targeting different protein families and
confirmatory screen protocols.

As a result of this selection process, the false positive rates in
our benchmark range from 11% to 91%, and the screened
libraries evaluate different regions of the chemical space
(Figure S1), thus covering a broad spectrum of HTS
campaigns.
Each data set is generated from a primary screen, relying on

single-dose measurements, and a confirmatory screen, which
either adds replicates or assesses the dose−response activity
against the same biological target. To define which molecules
are considered bioactive in a given primary or confirmatory
screen, we employed the original activity thresholds defined by
the authors of the screening campaign. This ensures that our
analysis accurately reflects real drug discovery campaigns as
close as possible, where bioactivity criteria vary on a case-by-
case basis, depending on the biological target and the purpose
of the drug.
We define a compound as false positive if it was reported to

be active in the primary screen but was found to be inactive or
inconclusive in the confirmatory screen. Depending on the
protocol employed for the confirmatory screen, different false
positive types can be identified. When adding replicates, only
errors associated with readout fluctuations or systematic errors
(e.g., dust in the well plate) can be identified, while dose−
response measurements enable detection of autofluorescence,
colloidal aggregation, assay technology interference, and so
forth.

Defining a Protocol to Assess HTS Hit Prioritization
Strategies. For a given HTS data set, we run the MVS-A
pipeline exclusively on the primary screening data. Then, we
measure how effective our approach is at separating true
actives and false positives by comparing its compound ranking
to the confirmatory screening data. To evaluate the sorting
performance, we measure top-K Precision, Enrichment Factor,
and Boltzmann-Enhanced Discrimination of Receiver Operat-
ing Characteristic (BEDROC).33 Since Precision is sensitive to
the amount of noise in the data set, we scale it with respect to
the false positive and true positive rate for each data set,
making this metric more consistent across data sets. Therefore,
a relative top-K precision score of 0.0 indicates that a given
ranking is equal to random sorting, while values above 0.0
denote percent improvements over assay noise. We further
discuss our metric selection in chapter 4 of the Supporting
Information.
To contextualize the performance of MVS-A, we provide the

following baselines:

• Detecting false positives according to REOS and GSK
structural filters, two well-established rule-based ap-
proaches to detect false positives in HTS data.36,37 We
rank compounds in terms of the total number of flags
according to both criteria.

• Prioritizing compounds for further screening according
to activity in the primary HTS assay, the defacto
approach for ranking hits both in academia and in the
industry.15 The underlying assumption here is that if a
compound is very active in the primary screen, it is likely
to have similar bioactivity in the confirmatory screen as
well.

• Ranking according to CatBoost object importance,38

another sample influence approach based on GBM
relying on a different algorithm to compute importance
scores. We discuss this method further in the Supporting
Information.

Table 1. Summary Information for the Datasets Employed
in This Studya

name source
number of
compounds

false
positive %

number of
hits

transporter ref 33 306252 29% 2625
transcription ref 33 344724 47% 2336
transcription_2 ref 33 301125 76% 2325
GPCR_2 ref 33 196068 79% 1980
GPCR_3 ref 33 63643 56% 2176
ion_channel ref 33 305411 15% 2580
ion_channel_2 ref 33 104663 21% 4227
ion_channel_3 ref 33 305401 32% 1642
kinase ref 34 321563 21% 234
GPCR ref 34 325747 51% 5742
serine ref 34 214071 91% 1262
transcription_3 ref 34 363477 81% 1790
ubiquitin ref 34 330197 70% 1533
splicing ref 34 293183 11% 2189
channel_atp ref 34 343522 48% 1229
cysteine_protease ref 34 344098 48% 1842
zinc_finger ref 34 301590 48% 1132

aThe number of hits defines the number of active compounds in the
primary screen. The false positive percentage identifies the fraction of
active compounds in the primary screen that were found to be
inactive in the confirmatory screen.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.3c01517
ACS Cent. Sci. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscentsci.3c01517/suppl_file/oc3c01517_si_001.pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.3c01517?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


• Ranking according to Isolation Forest, a well-established
anomaly detection algorithm based on decision tree
ensembles.39 We use the default parameters from the
Scikit-Learn package.40

• Ranking according to the reconstruction error of a
Variational Autoencoder (VAE), a popular deep learning
approach for anomaly detection.41−43 We implement a
SMILES-based VAE using the architecture described by
Goḿez-Bombarelli et al.44

Additionally, to compare our approach with publicly
available HTS interference predictors, we add the following
baselines for false positive identification:

• Hit Dexter 3 (HD) for frequent hitter prediction.6,18,45

• SCAM Detective for colloidal aggregator identifica-
tion.46

• An in-house autofluorescence predictor based on the
models used by InterPred.22 We discuss how we
reproduced their featurization and optimization proce-
dure in the Supporting Information.

MVS-A Achieves Best Performance in HTS False
Positive Detection. In terms of false positive detection,
MVS-A matches or outperforms, on average, all alternative
methods across all metrics (Figure 2). The performance of our
approach is mostly consistent across different metrics, meaning
that MVS-A provides the best performance both when
considering the top 10% predictions, as indicated by relative
precision and enrichment factor, and when evaluating the
entire ranking, as measured by BEDROC. Crucially, MVS-A
outperforms all baselines across all metrics and data sets on 12
out of 17 data sets, while achieving second best performance

on the remaining 5, making it an ideal option for out-of-the-
box scenarios.
CatBoost object importance is the most competitive

alternative; however, MVS-A still outperforms it on 16 out
of 17 data sets across all metrics. Compared to this baseline,
MVS-A provides an improvement of 29%, 6%, and 10% for
relative precision, enrichment factor, and BEDROC respec-
tively. Considering the differences in sample importance
formulation between these methods, this result supports our
method’s assumption that focusing on the splitting decisions
provides a better inductive bias for discovering mislabeled data.
Both anomaly detection methods, namely, Isolation Forest

and VAE, struggle on this benchmark. Specifically, MVS-A
outperforms them across all metrics on 16/17 and 15/17 data
sets, respectively. Concerning VAE, this is likely due to the fact
that these algorithms require large data sets (e.g., 106

compounds) to be trained properly,44 while the number of
hits per HTS is much lower. Regarding Isolation Forest, its
performance is likely affected by the high dimensionality of the
input molecular representations, rendering the use of random
splits less effective.39 In contrast, data valuation approaches like
MVS-A object importance select the subset of informative
features by first fitting a supervised classifier to distinguish
active and inactive compounds, thus mitigating the issue of
high dimensionality.
In comparison to GSK and REOS structural filters, MVS-A

outperforms them on 16/17 data sets across all metrics.
However, these alerts do not only detect false positives, but
also focus on chemical moieties associated with target
promiscuity or other undesirable pharmacological proper-
ties.36,47,48 This mismatch then could explain the poor

Figure 2. False positive detection performance across all data sets. Asterisks denote significance according to one-tailed Wilcoxon Signed Rank tests
with Bonferroni correct (one asterisk corresponds to α = 0.05, two asterisks to α = 0.01). P-values are reported in Table S5. (a) Distribution of
relative precision scores across all data sets. The dotted gray line denotes random performance. (b) Distribution of enrichment factor scores across
all data sets. (c) Distribution of BEDROC scores across all data sets.
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performance observed in identifying false positives in this
benchmark.
Finally, Hit Dexter, SCAM Detective, and the autofluor-

escence predictor show subpar false positive detection
performance when compared to MVS-A, with our approach
outperforming them across all metrics on 16/17, 17/17, and
15/17 data sets, respectively. This is likely because these
approaches, unlike MVS-A, focus on specific interference
mechanisms, while our benchmark makes no assumptions
about the false positive origin. Furthermore, the performance
of these baselines is likely degraded by applicability domain
issues, while MVS-A is tailored to each specific screening
campaign.

MVS-A Provides the Most Efficient HTS True Hit
Prioritization Strategy. In line with the false positive
retrieval benchmark, MVS-A on average matches or outper-
forms all other approaches across all metrics in terms of true
hit detection (Figure 3) Specifically, it achieves the best

performance in 13 data sets out of 17 across all metrics, and it
ranks second best in the remaining 4 data sets, further
highlighting its potential as an optimal out-of-the-box solution.
On average, the most competitive baseline is again CatBoost

object importance; however, MVS-A still outperforms it on
16/17 data sets. This further highlights that MVS-A is more
effective at assessing sample influence than the previous state-

of-the-art GBM algorithms since it detects high fidelity data
more efficiently.
As for the false positive detection benchmark, anomaly

detection methods provide subpar performance for true
positive identification, with VAE showing slightly better
performance than Isolation Forest. This is likely a consequence
of the low data available for training the VAE and the high
dimensionality of the input in the case of the Isolation Forest.
Finally, in comparison to the primary readout ranking, MVS-

A outperforms it on 15 data sets, with average improvements
of 50%, 13%, and 14% in terms of relative precision,
enrichment factor, and BEDROC. This is especially impressive
considering that ranking compounds according to their
primary HTS readout is the industry standard for hit triaging
in HTS campaigns. The relatively low performance of this
method could be due to the fact that assay interferents can be
outliers in terms of primary readout, for example, by exhibiting
very strong autofluorescence, causing them to be at the top of
the primary readout ranking. As such, this benchmark shows
that our data-driven approach is more efficient at finding true
actives than the currently used criteria for HTS hit triaging

MVS-A Identifies Structurally Diverse Interferents.
While being able to correctly prioritize true positives and
exclude false positives is a fundamental requirement for an
HTS hit triaging strategy, retrieving a diverse set of compounds
is also crucial. To assess this, we investigated the ability of our
approach to identify heterogeneous true actives and assay
interferents by measuring the fraction of unique Murcko
scaffolds among the hits for both categories in each data set.
In terms of false positive variety, MVS-A selects the most

diverse selection of interferents, peaking at around 95%
scaffold diversity, closely followed by Hit Dexter and CatBoost
object importance (Figure 4a). In general, data valuation
algorithms such as MVS-A naturally tend to identify more
varied interferents since they do not rely on the presence of
specific molecular motifs in the false positives but rather
highlight any active that deviates from the pattern they learned
while training on the primary screening data. This more
flexible definition of what constitutes a false positive then leads
to the identification of more structurally different interferents,
outperforming even anomaly detection algorithms. On the
contrary, structural filters and assumption-based predictors are
inherently biased toward specific chemical scaffolds, thus
flagging more homogeneous compounds. One exception to
this seems to be frequent hitters, which likely encompass
several different interference mechanisms in their definition
and, as such, have more diverse chemical structures.
This trend is inverted for true positive discovery, where both

data valuation approaches tend to yield less diverse selections
of true hits, centered around 60% scaffold diversity (Figure
4b). In this case, the true positives identified by MVS-A and
CatBoost are the ones that fit well the learned class boundary
between actives and inactives in the primary data. The
boundary in this case tends to include only a limited region
of the chemical space, leading to more structurally similar true
actives. In contrast, primary readout ranking has no chemical
bias in its selection criteria, thus retrieving the most diverse
true positives. Finally, the scaffold diversity rate distribution
across all data sets for the anomaly detection baselines is
comparable with the one observed to randomly picking hits
from each HTS (Table S4). This is because the true positives
identified by these methods correspond to distribution inliers,

Figure 3. True positive detection performance across all data sets.
Asterisks denote significance according to one-tailed Wilcoxon Signed
Rank tests with Bonferroni correct (one asterisk corresponds to α =
0.05, two asterisks to α = 0.01). P-values are reported in Table S6. (a)
Distribution of relative precision scores across all data sets. The
dotted gray line denotes random performance. (b) Distribution of
enrichment factor scores across all data sets. (c) Distribution of
BEDROC scores across all data sets.
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thus approximating the distribution of chemical motifs present
in the training data.

MVS-A Identifies False Positives Belonging to Differ-
ent Interferent Classes. By design, MVS-A makes no
assumption concerning the interference mechanism of the false
positive compounds in the primary screen; therefore, it should
cover all types of interferents. To test this assumption, we
measure across all data sets the fraction of compounds
predicted to be false positives by our method that were also
identified by the other assumption-based predictors (Figure
S2).
MVS-A shows the highest overlap across all data sets with

the autofluorescence predictor, with a median of 66%. This
however is likely due to the nonselectivity of the autofluor-
escence predictor, which tends to flag the majority of
compounds as fluorescent across all data sets (Table S7).
These overconfident predictions could be due to applicability
domain issues given that the training set used for this model
originated from assays related to toxicological screening.
Compared to the remaining in-silico predictors, MVS-A
shows a median overlap of 51% with the colloidal aggregators
identified by SCAM Detective, 33% with the structural filters
from GSK and REOS and 8% with the frequent hitters
detected by Hit Dexter.
Taken together, these results confirm the hypothesis that

MVS-A can identify different classes of false positives while
showing complementary performance with tools covering also
compound promiscuity, such as frequent hitter predictors and
general nuisance compound structural alerts.

Case Study I: Choline Transporter Inhibitor Screen
from Vanderbilt University. To assess how well MVS-A

would perform in a real drug discovery campaign, we
investigated whether the true actives identified by our method
are biased toward chemical moieties that would make them
unsuitable for further pharmacological optimization. To do so,
we re-evaluated the data set with the codename “transporter”
from the publicly available HTS assays evaluated in this work.
This assay was conducted in order to identify novel inhibitors
for the presynaptic choline transporter (CHT), a potential
therapeutic target for Alzheimer’s disease and schizophrenia.49

We chose this data set from our collection as a case study
because the hits from its primary HTS screen were extensively
validated by additional counterscreens and confirmatory assays
(PubChem AID 488997). The goal of these experimental
validation efforts was to identify potent selective CHT
inhibitors eliciting the desired phenotypic response from
primary HTS hits.
After 11 rounds of screening, only six compounds that were

present in the primary HTS made it to the end of the pipeline,
one of which, CHT4, was a false negative (Figure 5a).
Crucially, all five true positives were immediately flagged as
more promising than most other hits from the HTS campaign
by MVS-A (Figure 5b), ranking within the top 20 primary
HTS according to our method. Notably, among these five
compounds there was also ML352, the best inhibitor from the
screening campaign, which also showed suitable ADME
properties.49 In contrast, ranking by experimental readout
from the primary screen is far less efficient, with ML352,
CHT5, and CHT3 ranking between 150th and 500th, CHT1
around 750th, and CHT2 around 2300th (Figure 5b,d).
We then used MVS-A to rank primary inactive compounds

in terms of false negative likelihood by sorting inactive

Figure 4. Structural diversity distribution analysis. White diamonds indicate the median of the distribution. (a) Distribution of the scaffold diversity
scores across all data sets for false positive detection. (b) Distribution of the scaffold diversity scores across all data sets for true positive detection.
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compounds in terms of importance to the underlying GBM
classifier according to our method. Crucially, our approach
correctly identified CHT4 as the most likely false negative
compound out of all primary inactives (Figure 5b). This
finding is especially relevant, since mining dark chemical
matter in HTS data is a promising but largely unexplored
starting point for drug discovery,50 given the lack of in-silico
approaches to determine which samples to reinvestigate.
To summarize, in this case study MVS-A was able to identify

the 6 most biologically relevant compounds just by observing
the primary HTS data, including a false negative, while
prioritizing molecules according to their experimental readout
in the primary screen was a less efficient selection strategy.
Additionally, this finding shows that MVS-A is not biased

toward undesirable chemical moieties in terms of further
pharmacological development.

Case Study II: Industrial HTS Campaigns from Merck
KGaA. To further evaluate the applicability of MVS-A on real
scenarios, we investigated three currently ongoing HTS
campaigns from Merck KGaA, aimed at different biological
targets (Table S8). Each of these data sets is larger than the
largest publicly available data set we included in our study so
far, thus providing a realistic benchmark for how our method
would fare in industrial applications. Due to computational
limitations, we could only test MVS-A, CatBoost and primary
readout ranking on these data sets.
In terms of false positive detection, on average, MVS-A

outperforms all baselines across all metrics (Table S9).
Regarding true positive detection, on average, CatBoost and

Figure 5. (a) Structures of the most relevant true positive compounds from the choline transporter inhibitor screening campaign. (b) Rank
percentiles for the lead compounds according to MVS-A and the experimental readout from the primary HTS. (c) Compound ranking for the
primary hits according to MVS-A. (d) Compound ranking according to the experimental readout for the primary hits.
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MVS-A achieve similar performance, while primary readout
ranking outperforms all alternatives in terms of precision and
BEDROC (Table S10). In general, primary readout ranking
performs much better as a baseline in these data sets, likely due
to less assay noise compared to publicly available data, making
the initial HTS screen more predictive of a compound’s
performance in further validation screens.

Limitations and Practical Guidelines for the Use of
MVS-A. While MVS-A achieved excellent performance in
terms of false positive and true positive detection, it still
requires careful deployment for real use cases.
First, the performance of MVS-A can fluctuate from data set

to data set, and it can be difficult to forecast how effective it
will be for a given HTS data set. While we investigated the
relationship between its performance and the HTS of interest,
such as the protein target family, structural diversity of the data
set (Figure S3), and the cross-validation performance of the
GBM classifier (Figure S4), we could not detect meaningful
correlation between these factors. As such, although MVS-A
never performs worse than random picking in our benchmarks,
the bias toward specific scaffolds in terms of true positive
prioritization can be problematic if it is not associated with an
improved true hit rate. This issue can be tackled, however, by
hybrid hit selection strategies aimed at selecting diverse
chemical scaffolds according to the MVS-A true hit likelihood.
Another factor that can influence the performance is the

choice of molecular representation for the analysis. However,
we observed only a 3% performance variation when using
different molecular fingerprints and molecular descriptors
(Figure S5), consistently with the results observed for
molecular property prediction tasks.
In terms of computational cost, unlike other false positive

predictors, MVS-A requires to be retrained for each new HTS
data set. However, our testing shows that the algorithm is
extremely efficient and lightweight, taking less than 5 s per data
set on a server with an AMD Ryzen Threadripper 3970X 32-
Core Processor and less than 30 s on a laptop with an AMD
Ryzen 5 3600 6-Core Processor (Figure S6).
Finally, while MVS-A accurately distinguishes between

interferents and true positives, it does not account for other
relevant factors for hit prioritization such as promiscuity. As
such, the ideal application of our approach is not as a stand-
alone tool, but in conjunction with other in-silico tools, e.g.,
structural alerts or frequent hitter predictors, to get a global
view of the pharmacological potential of each primary HTS hit.
To highlight this, we revisited the top 20 ranked compounds
from the CHT inhibitor screening campaign according to
MVS-A, as discussed in Case Study I, focusing on the 15
compounds our approach incorrectly selected as the true hit.
Six of those could be removed according to REOS and GSK
filters, one according to Hit Dexter and one according to
InterPred, while SCAM Detective flagged most compounds as
potential colloidal aggregators (Table S10). As such, the
synergistic combination of these approaches could have
brought the true positive rate from 25% when using MVS-A
on its own to 38%.

■ CONCLUSIONS
High throughput screening holds a key role in current drug
discovery research, but its impact is limited by the presence of
many false positive compounds, making further pharmaco-
logical development of bioactive compounds slower and more
expensive. In this study, we introduced minimal variance

sampling analysis, a novel approach inspired by data valuation
methods to simultaneously prioritize true positive compounds
and detect assay interferents in HTS data.
To test our proposed method, we have constructed a new

benchmark consisting of 17 primary-confirmatory HTS data
set pairs, encompassing a variety of biological targets, assay
technologies, number of compounds, and false positive rates.
MVS-A consistently matches or outperforms the other

baselines in terms of both false positive and true positive
detection. Crucially, it provides average improvements up to
50%, 13%, and 14% in terms of relative precision, enrichment
factor, and BEDROC against primary readout sorting, a
popular heuristic used in the pharmaceutical industry for HTS
hit prioritization. Concerning false positive discovery, our
method can identify a wide range of structurally diverse
interferents with low overlap with the predictions of prior in-
silico tools focusing on compound promiscuity, making our
method an excellent addition to HTS false positive detection
pipelines.
Regarding hit prioritization, MVS-A was able to identify the

most biologically relevant hits from a primary HTS campaign
in a retrospective case study on publicly available data.
Interestingly, one of the hits correctly detected by MVS-A was
a false positive, highlighting the potential of our approach to
detect promising compounds from dark chemical matter.
On the three data sets provided by Merck KGaA, MVS-A

performs competitively in terms of false positive detection and
false positive retrieval, indicating that our approach is also
reliable in the chemical space typically explored in industrial
screening campaigns.
Finally, our method is extremely computationally efficient,

allowing processing of HTS data on a laptop in under 30 s with
minimal RAM usage. In light of these results, we are confident
MVS-A will help accelerate HTS hit triaging and will stimulate
further research into data valuation approaches for handling
large chemical data sets. We provide this tool as an open
source package at https://github.com/dahvida/AIC_Finder.
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Effectiveness of molecular fingerprints 
for exploring the chemical space of natural 
products
Davide Boldini1*, Davide Ballabio2, Viviana Consonni2, Roberto Todeschini2, Francesca Grisoni3,4 and 
Stephan A. Sieber1 

Abstract 

Natural products are a diverse class of compounds with promising biological properties, such as high potency 
and excellent selectivity. However, they have different structural motifs than typical drug-like compounds, e.g., 
a wider range of molecular weight, multiple stereocenters and higher fraction of sp3-hybridized carbons. This makes 
the encoding of natural products via molecular fingerprints difficult, thus restricting their use in cheminformatics 
studies. To tackle this issue, we explored over 30 years of research to systematically evaluate which molecular finger-
print provides the best performance on the natural product chemical space. We considered 20 molecular fingerprints 
from four different sources, which we then benchmarked on over 100,000 unique natural products from the COCO-
NUT (COlleCtion of Open Natural prodUcTs) and CMNPD (Comprehensive Marine Natural Products Database) data-
bases. Our analysis focused on the correlation between different fingerprints and their classification performance 
on 12 bioactivity prediction datasets. Our results show that different encodings can provide fundamentally different 
views of the natural product chemical space, leading to substantial differences in pairwise similarity and performance. 
While Extended Connectivity Fingerprints are the de-facto option to encoding drug-like compounds, other finger-
prints resulted to match or outperform them for bioactivity prediction of natural products. These results highlight 
the need to evaluate multiple fingerprinting algorithms for optimal performance and suggest new areas of research. 
Finally, we provide an open-source Python package for computing all molecular fingerprints considered in the study, 
as well as data and scripts necessary to reproduce the results, at https://​github.​com/​dahvi​da/​NP_​Finge​rprin​ts.

Keywords  Fingerprint, Natural products, Virtual screening, Similarity, Supervised classification

Introduction
Natural products (NPs) are a source of inspiration for 
drug discovery due to their high potency and biologi-
cal selectivity, which has translated in remarkable suc-
cess in treating infectious diseases and cancer [1]. 
However, cheminformatic modeling of NPs has been 
limited because of their diversity from typical drug-like 
molecules (on which computational pipelines are usu-
ally developed), e.g., in terms of their broader molecular 
weight distribution, multiple stereocenters, a higher frac-
tion of sp [3]-hybridized carbons and extended ring sys-
tems [2, 3]. This issue is further compounded by a lack 
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of biological annotations for NPs [4] and the widespread 
presence of activity cliffs due to their highly specialized 
biological functions [1].

One of the key steps of cheminformatics pipelines is 
how to encode structural information into ‘machine-
readable’ formats for further processing. This can be 
achieved through the so-called molecular descriptors [5], 
which convert selected molecular features into one or 
more numbers via a pre-defined algorithm. Among vari-
ous descriptors applied to natural products [6, 7], molec-
ular fingerprints—which convert a molecular structure 
into a vector—bear promise to capture structural infor-
mation on natural products (e.g., presence or absence of 
certain substructures). In fact, fingerprints generally pro-
vide satisfactory performance for quantitative structure–
activity relationship (QSAR) modeling [8–10], even in the 
presence of activity cliffs [11]. Given the relevance of fin-
gerprints in cheminformatics, over 30  years of research 
in the field have led to a broad and diverse selection of 
fingerprinting algorithms [12, 13]. However, while exten-
sive research exists on the performance of these algo-
rithms on synthetic, drug-like molecules, little is known 
about the best practices for natural products encoding.

Stemming from these observations, the aim of this 
study is to comprehensively compare and evaluate how 
different types of molecular fingerprints perform for 
modeling the NP chemical space, and ultimately to (a) 
provide effective recommendations to cheminformat-
ics practitioners in the field of NPs, and (b) underscore 
future directions for the development of molecular fin-
gerprints. We systematically compared 20 different 
molecular fingerprinting algorithms from four packages 
[14–18], on two cheminformatics tasks. First, we evaluate 
the similarity of fingerprints encoding using the COCO-
NUT database [4], containing over 400,000 unique NPs 
from 52 different sources, and a wide variety of organ-
isms, geographic locations and applications. Then, we 
evaluated the selected fingerprints for quantitative struc-
ture–activity relationship (QSAR) modeling, using 12 
datasets from the CMNPD database. [19]

The diverse fingerprint behavior in similarity searches 
and QSAR modelling using NPs allowed us to shed on 
their effect in representing the chemical space of natural 
products.

Materials and methods
Dataset curation
Unsupervised analysis
We used the COCONUT database [4], which contains 
over 400,000 unique NPs from 52 different sources, 
including compounds from a wide variety of organ-
isms, geographic locations and applications. We con-
sidered those natural products whose source organism 

was reported, as done in a previous study [20]. Solvent 
exclusion, salt removal and charge neutralization were 
performed with the ChEMBL structure curation pack-
age [21]. Compounds that failed this standardization step 
or have SMILES could not be parsed with RDKIT were 
removed. The resulting dataset included 129,869 unique 
natural products (Table 1), divided into six sources: plant, 
fungi, bacteria, marine, animal and mixed (defined for 
cases where the same natural product is produced by 
multiple organisms). Additional file  1: Table  S1 details 
how many compounds were removed at each preproc-
essing step. Each class was characterized by a differ-
ent diversity in terms of percentage of atomic scaffolds, 
which was computed by dividing the number of unique 
Bemis Murcko [22] scaffolds by the total number of com-
pounds in each class (Table 1).

The distribution into classes (NP sources) is strongly 
skewed towards the plant class, encompassing 67.1% of 
total compounds, followed by fungi, bacteria, marine, 
mixed and animal (0.5%). In terms of compound diver-
sity, there are four compounds per scaffold on average. 
The only outlier in this regard is the animal class, which 
has a much higher scaffold diversity rate (51.3%). This 
behavior might be related to the low number of NPs 
annotated for this class, or to the presence of acyclic nat-
ural products (e.g. linear peptides), making the Murcko 
scaffolds not as informative.

To compare the chemical space of NPs to typical drug-
like compounds, we also included the Drug Repurposing 
Hub library in our analysis [23]. We preprocessed this 
dataset following the same procedure as for COCONUT, 
yielding 6776 unique drugs.

QSAR modeling
Concerning the supervised classification datasets, we 
standardized the natural products from the CMNPD 
database (Comprehensive Marine Natural Products 
Database) [19] as described above. We considered 12 dif-
ferent molecular property prediction tasks. To construct 

Table 1  Summary of the data used in this study, collected and 
curated from COCONUT

Class Number of 
compounds

Dataset % Number of 
scaffolds

Scaffold 
diversity %

Plant 87,135 67.1 21,546 24.7

Fungi 15,516 11.9 4905 31.6

Bacteria 12,338 9.5 3824 31.0

Marine 8876 6.8 2443 27.5

Mixed 5290 4.1 1744 33.0

Animal 714 0.5 366 51.3

All 129,869 100 31,567 24.3
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each task, we selected all NPs annotated with the desired 
property as the positive class and a random sample of 
NPs from CMNPD as the negative class, enforcing a min-
imum dataset size of 1000 compounds (Table 2).

Similar dataset generation procedures have been pop-
ularized for evaluating ligand-based virtual screening 

approaches [24–26], but they have the drawback of 
potentially introducing noise in the labels of the inactive 
compounds, since the negative class is constructed by 
sampling unlabeled molecules. However, this was neces-
sary for our benchmark due to the scarcity of biological 
annotations for NPs, making it difficult to generate classi-
fication datasets where negative data had also been meas-
ured [3, 27].

Molecular fingerprints
In total, we analyzed 20 different fingerprinting algo-
rithms belonging to five different categories (Table 3). We 
used the default calculation parameters provided by the 
source package for each fingerprint.

Five categories of fingerprints were considered, based 
on the type of molecular information they capture:

•	 Path-based fingerprints generate molecular fea-
tures by analyzing the paths through the molecular 
graph given a pair of atoms and hashing them inside 
a fixed-size vector [16]. For example, Depth First 
Search (DFS) represents a compound by storing all 
unique paths in its graph, obtained by using each 
atom as the path starting point and moving away up 
to a number of bonds d. [32] Another example of this 

Table 2  Summary of the classification datasets used in this 
study, collected and curated from CMNPD

Dataset Number of 
compounds

Active 
compounds

Antibiotic 1000 112

Antiviral 1000 106

Antitumoral 1000 154

Antimalarial 1000 92

Antileishmanial 1000 20

Kinase C inhibition 1000 22

Serine Protease inhibition 1000 29

ATPase inhibition 1000 78

HIV 1000 178

Antifungal 1000 364

Anti-inflammatory 1000 156

Phosphatase inhibition 1000 95

Table 3  List of molecular fingerprints evaluated in this study, detailing for each the original publication year, the algorithm category, 
bit information type, number of bits, source package and parameters used for the calculation

Name Year Category Type Size Source Parameters

Topological Torsion (TT) [28] 1987 Path Count 4096 RDKIT [14] targetSize = 4

Atom Pair (AP) [29] 1985 Path Count 4096 RDKIT [14] N.A

Avalon [30] 2006 Path Count 1024 RDKIT [14] N.A

Daylight [31] 1973 Path Binary 1024 CDK [15] Depth = 7

Depth First Search (DFS) [32] 2005 Path Binary 4096 jCompoundMapper [16] Depth = 7

All Shortest Paths (ASP) [16] 2011 Path Binary 4096 jCompoundMapper [16] Depth = 7

RDKIT [14] 2012 Path Binary 2048 RDKIT [14] Depth = 7

Pharmacophore Pairs (PH2) [33] 2006 Pharmacophore Binary 4096 jCompoundMapper [16] N.A

Pharmacophore Triplets (PH3) [33] 2006 Pharmacophore Binary 4096 jCompoundMapper [16] N.A

MACCS [34] 2002 Substructure Binary 166 RDKIT [14] N.A

PubChem [35] 2009 Substructure Binary 881 CDK [15] N.A

ESTATE [36] 1995 Substructure Binary 79 CDK [15] N.A

Klekota-Roth (KR) [37] 2008 Substructure Binary 4860 CDK [15] N.A

Extended
Connectivity (ECFP) [38]

2010 Circular Binary 1024 RDKIT [14] Radius = 2

Functional Class (FCFP) [38] 2010 Circular Binary 1024 RDKIT [14] Radius = 2

RAD2D [39] 2004 Circular Binary 4096 jCompoundMapper [16] N.A

LSTAR [16] 2011 Circular Binary 4096 jCompoundMapper [16] N.A

LINGO [40] 2005 String Binary 1024 CDK [15] N.A

MinHashed (MHFP) [18] 2018 String Categorical 1024 Ref. [19] Radius = 3

MinHashed Atom
Pair (MAP4)17

2020 String Categorical 1024 Ref. [18] Radius = 2
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class of algorithms are Atom Pair fingerprints (AP), 
where a molecule is described by collecting all pos-
sible triplets of two atoms and the shortest path con-
necting them [29].

•	 Pharmacopohore fingerprints, which are a variation of 
path-based fingerprints, where atoms are described 
by whether they are a pharmacophore point (e.g. 
whether they are hydrogen bond donors or accep-
tors) [33]. This leads to bit vectors that are less 
related to the compound structure, but instead try to 
encode how the molecule interacts with its chemical 
environment. Examples of this class of algorithms are 
Pharmacophore Pairs (PH2) and Pharmacophore Tri-
plets (PH3) [33].

•	 Substructure-based fingerprints, in which each bit 
encodes whether the compound contains a prede-
fined structural moiety [34, 37]. Examples of this 
class of algorithms are the MACCS structural keys 
and the PUBCHEM fingerprints [34, 35].

•	 Circular fingerprints also break up a target compound 
into different fragments like substructure-based fin-
gerprints, but instead of relying on expert-defined 
structural patterns, they construct them dynami-
cally from the molecular graph for each compound 
[38, 39]. To do so, they initially represent each atom 
according to some properties, such as atomic mass 
or valence. Then, for each atom, the numerical iden-
tifier of neighboring atoms is added, thus generating 
a fragment identifier. This process can be repeated 
several times, progressively increasing the radius 
of the neighborhood to consider when aggregating 
information. Finally, all unique fragments for a given 
molecule are hashed into a fixed-size vector. Typi-
cally, the difference between fingerprints belonging 
to this class lies in using different properties for the 
atom identifiers. For example, Extended Connectivity 
fingerprints (ECFP) use features such as the atomic 
number, atomic charge and so forth, while Functional 
Class fingerprints (FCFP) consider whether the atom 
is basic, acid, a hydrogen bond donor/acceptor etc 
[38].

•	 String-based fingerprints generate molecular repre-
sentations by operating on the SMILES string of the 
compound, instead of its graph representation [18, 
40]. For example, for a given dataset, LINGO fin-
gerprints fragment the SMILES strings in fixed-size 
substrings and compute the total number of unique 
substrings across all compounds [40]. Then, each 
compound is encoded according to which SMILES 
substrings in the set it contains, using either counts 
or binary values. Another example of string-based 
algorithms are the MinHashed fingerprints (MHFP) 
[18]. This method works similarly to circular finger-

prints, but instead of using atom identifiers, it con-
siders the SMILES substring of a given fragment as 
its identifier. Each fragment identifier is then stored 
in a fixed-size vector via MinHash. MinHashed Atom 
Pair fingerprints (MAP4) [17] work similarly, but also 
consider the topological distance between atom pairs 
in the fragment for generating the fragment identi-
fier.

Molecular fingerprints can be further characterized 
according to the information they encode in each element 
of the vector: binary fingerprints indicate the presence or 
absence of a given molecular pattern, count-based fin-
gerprints have integer values specifying the number of 
occurrences of a given fragment and categorical finger-
prints use numerical identifiers to describe the chemical 
motifs in the compound. [15–18]

Similarity metrics
We used the Jaccard-Tanimoto similarity [41] to assess 
pairwise similarities between compounds for all finger-
prints. For categorical fingerprints (MAP4 and MHFP), 
we used a modified version of the Jaccard-Tanimoto sim-
ilarity which considers two bits as a match if they con-
tain exactly the same integer, as introduced in a previous 
study [17, 18, 20]. To ensure comparability, count-based 
fingerprints were converted into binary bits, by only 
encoding whether a fragment is present or absent, and 
then pairwise similarities were measured as for the other 
encodings. This ensures that any variation in pairwise 
similarities between two fingerprint types is exclusively 
related to differences in how the vectors are computed, 
and not due to using different metrics.

Pairwise distribution correlation analysis
For each type of fingerprint, evaluating all pairwise simi-
larities on all compounds from the preprocessed version 
of the COCONUT dataset would be computationally 
infeasible, given that this would require calculating 
more than 8 billion similarity values. To mitigate this, we 
adopted a repeated resampling procedure which consid-
ered batches of 10,000 randomly selected NPs to com-
pute the similarity, as:

•	 Given a sample of n = 10, 000 compounds, we com-
puted their fingerprints according to the 20 consid-
ered algorithms (Table 1), and for each type of finger-
print all the corresponding pairwise similarities.

•	 We concatenated the pairwise similarities in a matrix 
B(m× p) , with m =

10000∗9999
2

= 49995000 and 
p = 20 , and calculated mean, standard deviation, 
median and percentiles of the distribution of the 
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compound pairwise similarities for each type of fin-
gerprint.

•	 Then, we computed the correlation matrix of B , 
yielding a matrix C(20× 20) , which describes how 
well each fingerprint correlates with one another 
in terms of pairwise similarities for a given natural 
product batch.

•	 Finally, once all batches were processed, we averaged 
all statistics across all 50 iterations.

The same procedure was repeated for the Drug Repur-
posing Hub dataset, but since it only has 6776 unique 
compounds, the procedure was carried out without the 
use of batches.

Unsupervised embeddings
We computed Uniform Manifold Approximation and 
Projection (UMAP) [42] embeddings for each finger-
print, using different metrics for each fingerprint numeri-
cal type as described in the Similarity metrics section. 
Each other parameter was set to its default value from 
the UMAP package [43]. We focused our analysis on the 
first batch of 10,000 molecules we used for the pairwise 
correlation analysis, since using the entire dataset would 
have been computationally infeasible. We verified that 
the class distribution and the chemical diversity for each 
batch is consistent with the values obtained for the whole 
dataset (Additional file 1: Tables S1-S2), ensuring that the 
UMAP analysis of the batch is representative of the entire 
chemical space we investigated.

Classification
To assess how well each fingerprint can be used for 
QSAR modeling of natural products, we evaluated them 
on 12 different bioactivity prediction datasets. Each clas-
sification dataset (Table  2) was divided in three folds 
using an 80:10:10 ratio between training, validation and 
test set with scaffold split [44]. For each fingerprint type, 
we then trained two models:

•	 Random Forest classifier (RF) [45]. Bayesian hyper-
parameter optimization for 20 iterations, training on 
the training split and measuring the ROC-AUC on 
the validation set (hyperparameters: number of trees 
between 50 and 500 with a step of 50, maximum tree 
depth between 5 and 12 with a step of 2, the mini-
mum number of samples per split between 2 and 20, 
minimum number of samples per leaf between 2 and 
100, number of features as a choice between the loga-
rithm, the square root or 10% of the fingerprint size). 
We finally trained on the training set and evaluated 
the performance on the test set with 5 replicates.

•	 Dense Neural Network (DNN) [46] with 2 hidden lay-
ers, batch normalization and dropout. Each DNN 
was trained for 100 epochs using AdamW as the opti-
mizer and binary cross-entropy as the loss function 
on the training set. The parameters were optimized 
via Bayesian optimization for 20 iterations accord-
ing to the ROC-AUC on the validation set. We tuned 
the number of units per layer (between 128 and 512 
with a step of 128), the dropout rate (between 0 and 
0.4), the learning rate (between 0.0001 and 0.05) and 
the batch size (between 16 and 64 with a step of 8). 
Once the optimal hyperparameters were determined 
on the validation set, we retrained on the training set 
and measured all metrics on the test set, repeating 
the procedure 5 times.

The classification performance was quantified using 
precision, recall, specificity, Matthews Correlation Coef-
ficient (MCC), F1 score, balanced accuracy, ROC-AUC 
and PR-AUC [47]. Our selection ensures that our evalu-
ation encompasses all aspects of a given classifier’s per-
formance and is robust to class imbalance [48, 49]. To 
assess whether the any fingerprint was ranked differently 
than the others across all datasets, we first performed a 
Friedman test for each classification metric and classifi-
cation model [50]. If the outcome of the Friedman test 
was statistically significant (α < 0.05), we then performed 
post-hoc tests (2-tailed Wilcoxon signed rank test with 
Benjamini–Hochberg correction, α < 0.05) to identify 
which fingerprint pair was significantly different [51, 52].

Hardware and software
The analysis and calculation pipelines were implemented 
in Python 3.8, using JPype 1.4.1 to access packages origi-
nally written in Java. We used RDKIT 2022.9.5, CDK 2.2 
and jCompoundMapper 1.0 for computing fingerprints, 
scipy 1.8.1 and numpy 1.22.3 for computing Tanimoto 
similarity and performing statistical tests, statsmodels 
0.15 for adjust p-values with the Benjamini–Hochberg 
correction [53], RDKIT 2022.9.5 and chembl_structure_
pipeline 1.2.0 for compound standardization, hyperopt 
0.2.7 for Bayesian hyperparameter optimization [54], 
Pytorch 2.1.0 [55] for training the DNN models and 
scikit-learn 1.2.2 [56] for training the RF models and 
computing classification metrics. All calculations were 
carried out on a server with an AMD Ryzen Threadrip-
per 3970 × 32-core CPU and 128GB of RAM, using all 
threads available. The code for reproducing the results, 
calculating all the considered fingerprints, along with the 
performance metrics for each individual dataset and clas-
sifier are provided for free in the following Github reposi-
tory: https://​github.​com/​dahvi​da/​NP_​Finge​rprin​ts.

https://github.com/dahvida/NP_Fingerprints
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Results and discussion
Pairwise similarity distribution
We first analyzed the distribution of pairwise similari-
ties across the COCONUT dataset (Fig.  1 and Table  4) 
and the Drug Repurposing Hub compounds (Additional 
file  1: Figure S1) to understand which fingerprints pro-
vide a more granular view for NPs and whether these pat-
terns differ with drug-like molecules.

On the COCONUT dataset, Pharmacological finger-
prints (PH2 and PH3) have the broadest distribution of 
pairwise similarities as well as the highest median Jac-
card-Tanimoto similarity. Crucially, both distributions 
consistently reach similarity scores above 0.95, especially 
for PH2, indicating that even though the dataset is with-
out replicates, according to these embedding many com-
pounds are nearly indistinguishable. This is consistent 
with how this class of fingerprint is computed: instead 
of capturing information pertaining to the molecular 

structure, these embeddings try to describe molecules 
in terms of how they interact with their biological envi-
ronment through their pharmacophores. As such, com-
pounds that have very different chemical structures can 
still have identical pharmacophoric points, which is 
reflected by their high similarity scores in terms of PH2 
and PH3 fingerprints. This shows that these featuriza-
tion approaches are well suited for scaffold hopping in 
the NP chemical space, but their inability to separate 
structurally different compounds might be problematic 
for other QSAR applications. On the Drug Repurpos-
ing Hub both fingerprints achieve significantly lower 
median Jaccard-Tanimoto similarities (Mann Whitney 
test with Benjamini–Hochberg correction, α = 0.05), 
especially PH3. This might be due to the smaller dataset 
size and higher scaffold diversity compared to COCO-
NUT (62% instead of 24%), which generally lowers all 
median Jaccard-Tanimoto similarities for all fingerprints. 

Fig. 1  Jaccard-Tanimoto similarity distribution for each fingerprint across all possible pairwise comparisons in the natural product dataset. 
Violin plots indicate the percentiles of the distribution of Jaccard-Tanimoto similarities, with the circle indicating the median similarity value. The 
fingerprints where the similarity distribution on natural products is significantly different than the one obtained for drug-like compounds are 
highlighted in bold (Mann Whitney tests with Benjamini–Hochberg correction, α = 0.05)
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Another factor could be a larger range of pharmacoph-
oric arrangements between the drugs considered for the 
analysis, consistently with the broad range of therapeu-
tic targets of the molecules of this library. In that case, 
this pattern would affect PH3 more since it considers tri-
plets instead of pairs, which leads to a higher number of 
potential combinations.

Next, substructure-based fingerprints like MACCS, 
ESTATE, PubChem and KR tend to achieve the high-
est Jaccard-Tanimoto similarity scores. This is consist-
ent with their reliance on predefined fragments, rather 
than processing each molecular graph individually. Since 
the fragments chosen by these fingerprints were defined 
for small molecules, only a fraction of them is usually 
found in NPs, while other highly informative NP-like 
substructures are not encoded. This reduces the aver-
age bit variance across the fingerprints, leading to more 
similar vectors overall. These types of embeddings can 
therefore be problematic for the NP chemical space, 
unless custom fragments are added to account for the 
molecular distribution shift and feature selection is used 
to remove uninformative bits. This issue seems especially 
pronounced for MACCS and KR, since they achieve sig-
nificantly lower median similarity scores (Mann Whitney 
test with Benjamini–Hochberg correction, α = 0.05) on 
the Drug Repurposing Hub, shifting from 0.40 and 0.21 
to 0.32 and 0.13. In contrast, PubChem and ESTATE 

remain comparable. This trend reflects the focus MACCS 
and KR have on drug discovery, thus biasing the frag-
ment choice on relevant motifs for the drug-like chemical 
space. [34, 37]

Both path-based and circular fingerprints have median 
values of Jaccard-Tanimoto similarity around 0.1, and 
narrower score distributions. Two exceptions to this pat-
tern are RDKIT, which has a comparable distribution to 
substructure-based encodings, and LSTAR, which has a 
very narrow distribution with a lower median similarity 
than other circular or path-based fingerprints. A similar 
trend is observed on the Drug Repurposing Hub, with 
path-based and circular fingerprints being distributed 
between 0.2 and 0.1 median Jaccard-Tanimoto similarity 
scores.

When it comes to MinHashed fingerprints, the low 
median Jaccard-Tanimoto scores obtained by MAP4 
on both COCONUT and the Drug Repurposing Hub 
(less than 0.02) could be related to two factors. First, 
this fingerprint uses categorical encodings, which 
means that their similarity is computed via the modi-
fied Jaccard-Tanimoto similarity. According to that 
metric, for two bits to be considered a match it is not 
enough that they are both non-zero, but they must 
have the same integer value. As such, the fraction of 
matching bits given two fingerprints of this type tends 
to be much lower compared to binary fingerprints. 

Table 4  Distribution statistics for the pairwise Jaccard-Tanimoto similarity scores obtained by each fingerprint across all batches of the 
COCONUT dataset

Fingerprint Minimum 25th percentile 50th percentile 75th percentile Maximum

MAP4 0.000 0.002 0.011 0.026 0.067

LSTAR​ 0.026 0.039 0.048 0.059 0.080

MHFP 0.000 0.028 0.052 0.082 0.141

TT 0.000 0.023 0.055 0.103 0.212

ASP 0.020 0.043 0.064 0.090 0.140

DFS 0.026 0.054 0.077 0.107 0.169

ECFP 0.046 0.082 0.108 0.137 0.190

LINGO 0.018 0.065 0.114 0.173 0.279

RAD2D 0.047 0.087 0.118 0.154 0.226

FCFP 0.053 0.099 0.139 0.186 0.275

Daylight 0.059 0.111 0.171 0.249 0.404

AP 0.042 0.113 0.184 0.267 0.399

KR 0.047 0.125 0.210 0.317 0.504

RDKIT 0.062 0.166 0.261 0.371 0.550

Avalon 0.084 0.211 0.326 0.467 0.648

PubChem 0.167 0.294 0.396 0.516 0.706

MACCS 0.168 0.313 0.410 0.511 0.667

ESTATE 0.186 0.364 0.500 0.615 0.799

PH3 0.036 0.322 0.638 0.830 0.952

PH2 0.228 0.500 0.875 1.000 1.000
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Second, it could be that MinHashing paths rather than 
circular fragments lead to more potential categorical 
values for each bit, reducing the number of bit matches 
when comparing two fingerprints. This would explain 
why MHFP has higher median pairwise Jaccard-Tani-
moto similarity.

To further analyze the distribution of pairwise simi-
larity scores, we evaluated the average “bit saturation” 
[57] of each fingerprint on the COCONUT and Drug 
Repurposing Hub datasets (Additional file 1: Table S5). 
On average, most fingerprints have higher saturation 
scores for natural products than for synthetic drugs, 
indicating the presence of larger, and more complex 
molecular structures [1]. One exception to this trend 
is substructure fingerprints, which have lower bit satu-
ration on natural products than drug-like compounds. 
This is caused by the presence of uninformative frag-
ments for natural products in the fingerprint defini-
tion, leading to less bits being set when encoding a 
given compound.

Fingerprint correlation analysis
To better evaluate which fingerprints provide different 
views of the NP chemical space, we calculated the Pear-
son correlation coefficient between each pairwise similar-
ity score across all fingerprints (Fig. 2a). It is immediately 
apparent that both pharmacological fingerprints (PH2 
and PH3) are outliers, given that they are extremely cor-
related between each other and almost completely uncor-
related with all others. This could be related to the fact 
that, unlike the other fingerprints analyzed, these finger-
prints describe the occurrence of ‘fuzzy’ pharmacophoric 
points, rather than focusing on the presence or occur-
rence of functional groups and substructures.

When evaluating the correlations between the other 
fingerprints, it becomes clear that some fingerprints are 
highly correlated (above 0.8) with each other. MAP4 
and MHFP (string fingerprints), as well as DFS and ASP 
(pharmacophore fingerprints) show high Pearson cor-
relation coefficients (0.85 and 0.92 respectively). This 
is consistent with the fact that they belong to the same 
class, and hence are based on a similar featurization 

Fig. 2  Jaccard-Tanimoto similarity correlation analysis for all fingerprints. a Correlation matrix for all fingerprints evaluated in this study 
on the COCONUT dataset. b Difference between the correlation matrix obtained for the COCONUT dataset and for the Drug Repurposing Hub. 
Positive values indicate higher fingerprint correlation in the NP space, while negative values denote higher correlation in the drug-like space. 
Asterisks denote statistical significance according to one-sample Mann Whitney tests with Benjamini–Hochberg correction (α = 0.05). c MST 
constructed from the fingerprint correlation matrix obtained for the NP chemical space. Each encoding is colored on the basis of its category
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strategy. The first pair is especially interesting, given 
that while they both rely on SMILES substrings, MAP4 
relies on topological distances between atom pairs, while 
MHFP considers circular neighborhoods around atoms 
for its fragments. This difference is also consistent when 
looking at their correlation with other circular finger-
prints, such as ECFP and FCFP: MHFP strongly corre-
lates with both (0.77 and 0.88), while MAP4 to a lesser 
extent (0.67 and 0.77).

To quantitatively assess which fingerprint correlation 
pairs change the most when considering the NP chemi-
cal space specifically, we first computed the correlation 
matrix for the Drug Repurposing Hub dataset (Additional 
file 1: Figure S2) and then calculated the Pearson R differ-
ence between the values obtained for NPs and the ones 
for drugs (Fig.  2b). For most encoding pairs, the differ-
ence is statistically significant, as shown in Fig. 2b (one-
sample Mann Whitney tests with Benjamini Hochberg 
correction, α = 0.05). Most fingerprints are more corre-
lated in the NP space than in the drug-like space, with 
an average Pearson R difference of around 0.1, except for 
PH2 and PH3, which instead are less correlated to the 
others. The correlation increase for the majority of fin-
gerprints likely reflects the fact that many bits are less 
informative for NPs than they are for drugs, thus reduc-
ing the ability of different fingerprints to capture molecu-
lar similarity from different perspectives. Notably, the 
correlation difference between Avalon and KR, MAP4 
and MHFP is especially high (0.4), indicating that their 
chemical space mapping is very similar with NPs but not 
with drug-like compounds. On the other hand, the cor-
relation decrease observed for PH2 and PH3 hints at the 
fact that similarities computed using these encodings 
tend to be outliers in the NP chemical space, as observed 
when evaluating their distribution and as discussed 
below when analyzing their unsupervised embeddings.

Another key difference between natural products and 
drug-like compounds is that the former tend to have a 
higher number of repetitive chemical moieties, which can 
be accurately captured by using count-based fingerprints. 
To evaluate how using counts affects the encoding of nat-
ural products, we repeated the Pearson correlation analy-
sis for all count-based fingerprints (AP, TT and Avalon) 
for both COCONUT and Drug Repurposing Hub data-
sets (Additional file  1: Table  S6). While there is a con-
sistently high similarity score correlation between using 
counts and binary bits for a given fingerprint (e.g. AP has 
a Pearson R of 0.75 on the COCONUT dataset), there 
is a statistically significant difference for all fingerprints 
in how correlated counts and bits are when comparing 
natural products and drug-like compounds. Specifically, 
AP and Avalon show less correlation on natural products 
than on drug-like molecules, decreasing by 0.01 and 0.03 

in terms of Pearson R respectively. In contrast, TT shows 
higher Pearson R on medicinal chemistry compounds. 
These results suggest therefore that count-based AP and 
Avalon fingerprints are more appropriate at capturing 
repetitive chemical moieties found in natural products, 
since there is larger disagreement between counts and 
binary fingerprints in terms of molecular similarity.

Visualizing fingerprint similarity via minimum spanning 
tree
To further aid in the visualization of the similari-
ties between fingerprints, we constructed a Minimum 
Spanning Tree (MST) [58] from the correlation matrix 
(Fig.  2c). The Minimum Spanning Tree was performed 
by calculating the Pearson correlation distance from the 
correlation matrix (Fig. 2a), as P = 1− C , where C is the 
correlation matrix with all positive values.

Path-based encodings are in proximity of each other 
except for Daylight, which is linked to PubChem and 
FCFP, and RDKIT, which is only connected to Avalon. 
DFS is the fingerprint of this category that is most cor-
related within its category, reaching all other path-based 
algorithms in at most two steps within the MST. Circular 
and string-based fingerprints are mostly interconnected 
with each other, apart from LSTAR. MHFP connects with 
FCFP, ECFP and RAD2D, consistently with the fact that 
it also relies on circular fragments, while MAP4 connects 
with ASP, which likely reflects the fact that it encodes 
topological distances between atom pairs. FCFP is 
unique among all fingerprints, given that it connects with 
a fingerprint from all other categories except for pharma-
cophore-based encodings. This is especially surprising 
given that FCFP uses pharmacophoric information for 
the atom identifiers, which one might assume would lead 
to higher correlation with PH2 and PH3. Furthermore, it 
is notable that ECFP and FCFP correlate more strongly 
with MHFP than with each other, despite using the same 
algorithm except for the atom definitions. This seems to 
suggest that MinHashing SMILES substrings provide a 
hybrid representation that captures both chemical and 
pharmacophoric properties of the molecule. Substruc-
ture-based fingerprints are the most diverse, with only 
KR not connecting to algorithms belonging to different 
categories. PubChem and MACCS are linked to Daylight 
and AP respectively, while ESTATE is related to FCFP. 
This indicates that the fragment choices of these encod-
ings are mostly orthogonal with each other and that, 
overall, this category is correlated to path-based and 
circular approaches. Pharmacophore fingerprints are 
separated from all other categories, consistently with the 
correlation matrix and their pairwise similarity distribu-
tion. The closest neighbor from a different class is AP, 
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which is connected to PH2, reflecting the fact that that 
both algorithms rely on distances between atom pairs.

Finally, this analysis confirms the assumption that, 
when deciding which fingerprint to use for similarity 
searches or QSAR modeling, the optimal strategy is to 
consider approaches belonging to different categories in 
order to minimize redundancy.

Similarity search ranking comparison
Similarity searching is often employed to identify the top 
K most similar compounds to a query molecule, e.g. to 
identify new bioactive molecules given a ligand for a pro-
tein of interest according to the similarity principle [59–
61]. To examine whether different fingerprints would 
produce the same hits when used for similarity-based 
virtual screening, we repeated the sampling procedure 
described for the correlation comparison analysis and 
calculated for each compound the top 1% most similar 
molecules. We performed this procedure for each fin-
gerprint and given a pair of encodings, we measured how 
many hits were ranked in the top 1% by both approaches. 
Finally, to evaluate whether natural products and drug-
like compounds yield different results, we repeated this 
procedure for both the COCONUT and Drug Repurpos-
ing Hub datasets (Additional file 1: Figure S3).

Most fingerprint pairs exhibit an overlap score of 
approximately 25% on natural products, meaning that 
given a query molecule, 25% of the virtual screening hits 
are the same using both fingerprints. DFS and ASP show 
higher overlap than average (62%), consistently with the 
use of similar path enumeration algorithms to encode 
chemical graphs. When comparing the results obtained 
on COCONUT with the ones from Drug Repurposing 
Hub, the change in overlap percentage is between − 4% 
and 10% and is statistically significant for most finger-
print pairs (Additional file  1: Figure S3b). Finally, the 
ranking overlap difference is mostly consistent with the 
change observed in terms of similarity score correlation. 
For example, ESTATE and RAD2D fingerprints are gen-
erally more diverse from other encodings in the natural 
product space both in terms of top 1% ranking and over-
all pairwise Tanimoto correlation.

Exploring the natural product chemical space 
via dimensionality reduction
To analyze the effect that fingerprints have on captur-
ing the distribution of NPs in the chemical space, we 
compared their bidimensional embeddings via UMAP 
(Fig.  3). Additionally, we investigated whether any 
embedding could separate NPs according to different tax-
onomical classes, given that different organisms produce 
biomolecules in different ranges of molecular weight, 
fraction of sp3-hybridized carbon and logP [20]. To do so, 

we colored the UMAP projections of NPs according to 
their taxonomy, after removing all compounds originat-
ing from multiple organisms.

Overall, no fingerprint can visually separate NPs 
according to their taxonomy, indicating that while differ-
ent organism types generally produce compounds with 
different molecular properties, there is a significant over-
lap between these distributions. This is also consistent 
with the non-negligible fraction of NPs which are pro-
duced by multiple taxonomical classes found in COCO-
NUT (4%).

Concerning the quality of the embeddings, PH2 and 
PH3 have atypical behaviors compared to all other fin-
gerprints, with the former having one large compound 
group separated from everything else, while the latter 
showing none. These patterns are likely caused by the 
very broad similarity distribution observed for these fin-
gerprints, making it difficult for the UMAP algorithm to 
preserve the manifold correctly.

Substructure-based fingerprints provide clear grouping 
of compounds according to their chemical structure, as 
shown by the clearly separated clusters in their embed-
dings, although this does not necessarily correlate with 
taxonomical information.

Path-based and circular fingerprints instead seem to 
provide much more uniform embeddings, causing most 
clusters to be closer together than for substructure-based 
approaches and making the manifold internal structure 
less distinct.

Finally, MAP4 and MHFP have comparable embed-
dings to path-based and circular fingerprints, albeit with 
a larger number of isolated compounds.

Classification performance
Depending on the classifier, metric and assay of inter-
est, different fingerprints perform the best, with no clear 
favorite across the board. The only consistent pattern 
across all analyses is that pharmacophore fingerprints 
tend to underperform for classification, likely due to their 
inability to precisely distinguish chemical motifs.

When considering RF, in terms of global classifica-
tion metrics, on average RAD2D achieves the best MCC 
(0.506), LSTAR outperforms all alternatives in terms 
of ROC-AUC (0.900) and MHFP performs the best in 
terms of PR-AUC (0.669), as shown in Additional file 1: 
Table S7. ASP is also a competitive option, ranking first 
in terms of ROC-AUC on 3 datasets out of 12 (Additional 
file 1: Table S9). In terms of individual datasets, LSTAR 
is especially promising for antiviral activity prediction 
(0.90 ROC-AUC, 0.71 PR-AUC), while MHFP excels at 
modeling the antitumor dataset (0.89 ROC-AUC, 0.82 
PR-AUC). To further inspect the classification behav-
ior of each fingerprint, we visualized their performance 
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in terms of precision, recall and specificity scatter plots 
(Fig.  4a and b), with contour lines indicating F1 score 
and balanced accuracy respectively. From these plots, 
we can conclude that MAP4, MHFP and LSTAR tend to 
have less false positives, while PubChem, MACCS and 
ESTATE generate less false negatives. Substructure fin-
gerprints also rank particularly highly in terms of bal-
anced accuracy (Fig.  4b), achieving a good balance of 
recall and specificity. When considering the post-hoc 

pairwise comparison tests, the situation differs from 
metric to metric (Additional file 1: Figure S5). Most fin-
gerprints have statistically significant differences when 
considering precision, recall and specificity, while they 
are more comparable in terms of MCC, ROC-AUC and 
PR-AUC. This indicates that the false positive and true 
positive rate of RF models is significantly affected by the 
choice of molecular encoding, while the overall classifica-
tion performance is less influenced.

Fig. 3  Plot of UMAP embeddings for each fingerprint. Chemicals are colored on the basis of their source organism
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When considering DNNs, ASP achieves the best 
MCC (0.562), ROC-AUC (0.8787) and PR-AUC (0.713), 
as shown in Additional file 1: Table S8. LSTAR is also a 
promising alternative, ranking first for anti-inflamma-
tory activity modeling (0.96 ROC-AUC, 0.74 MCC) 
and achieving the highest precision in 3/12 datasets 
(Additional file 1: Table S10). One interesting difference 
between DNN and RF is the change in behavior of sub-
structure-based fingerprints: while they generally lead to 

high recall for RF, they have more diverse performance 
when using DNNs. For example, PubChem here scores 
highly in precision, while ESTATE maintains high recall 
instead (Fig.  4c and d). One notable similarity between 
RF and DNN is that both have good performance with 
the MHFP fingerprint (Additional file 1: Figure S6). Given 
that its bit values are categorical, the expectation would 
be that this fingerprint would be a poor encoding choice 
for QSAR modeling with DNNs, since they generally 

Fig. 4  Mean classification performance of each fingerprint across all datasets. a Recall versus precision plot for Random Forest, contour lines denote 
F1 scores. b Recall versus specificity plot for Random Forest, contour lines indicate balanced accuracy. c Recall versus precision plot for Dense Neural 
Networks, contour lines denote F1 scores. d Recall versus specificity plot for Dense Neural Networks, contour lines indicate balanced accuracy
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assume feature cardinality. In light of these results, it is 
likely that the performance could be increased even fur-
ther with additional preprocessing, e.g. one-hot encoding 
of categorical bits. Finally, when considering the post-hoc 
statistical tests, all methods are equal in terms of recall, 
while there are many significant differences in PR-AUC 
compared to RF (Additional file 1: Figure S6).

Conclusions
Natural products are a promising class of compounds 
for drug discovery which is steadily becoming a crucial 
focus for biomedical research, thanks to their structural 
diversity, potency and selectivity in biological pathways. 
However, the best practices for molecular featurization 
of natural products is still an open question, given how 
different they are from typical drug-like molecules, thus 
limiting their use in cheminformatics applications.

Our analysis of molecular fingerprints in the natural 
product chemical space shows that algorithms belong-
ing to the same category tend to be highly correlated, 
but they strongly diverge in terms of classification per-
formance, pairwise similarities and chemical space rep-
resentation when comparing them across categories. 
This finding suggests that when choosing which encod-
ing to use for cheminformatics applications, it is benefi-
cial to sample multiple fingerprints belonging to different 
classes to maximize diversity.

Concerning bioactivity prediction, our results show 
that the choice of molecular fingerprint has a significant 
impact on the classification performance across data-
sets (Additional file 1: Table S11). While ECFP has been 
the de-facto standard fingerprint for encoding drug-like 
compounds, our analysis indicates that other encod-
ings can match or outperform them—the most promis-
ing ones being ASP, LSTAR and MHFP. Additionally, we 
highlight that while some approaches tend to perform 
better than others, no encoding significantly outperforms 
all others across all QSAR datasets in our study. This 
finding indicates that it is necessary to evaluate multiple 
fingerprints in order to obtain the best performance pos-
sible when constructing molecular property prediction 
models for the NP chemical space.

In terms of further fingerprint development, our study 
highlights two key findings. First, substructure-based 
fingerprints can be competitive with path and circu-
lar algorithms on NP modeling, even though they were 
developed for different types of molecules. As such, it 
would be interesting to specifically create substructure-
based encodings for NPs, considering the most fre-
quent motifs of NPs. The recently developed Natural 
Compound Molecular Fingerprints (NC-MFP) could 
be an interesting starting point for the investigation of 

substructure-based approaches for this class of com-
pounds. [62]

Second, different graph traversal algorithms lead to 
substantially different fingerprints in terms of QSAR 
performance. As such, it would be interesting to pair 
new atom identifiers or fragment encoding algorithms 
with the most promising path and circular fingerprints. 
One particularly intriguing possibility would be to use 
data-driven approaches to process SMILES substrings 
obtained by e.g. LSTAR or ASP, potentially combin-
ing the robustness of expert-defined encodings with the 
expressiveness of learned molecular representations.

Scientific contribution statement
This work is to our knowledge the first benchmarking 
study of molecular fingerprints for similarity searches 
and bioactivity prediction on natural products, a biologi-
cally relevant class of compounds that has seen limited 
cheminformatics modeling so far. Crucially, our findings 
indicate that Extended Connectivity Fingerprints, the 
most common encoding for drug-like compounds, can 
be outperformed by other molecular fingerprints, high-
lighting the importance of evaluating multiple encod-
ing approaches and suggesting new research directions. 
Finally, we provide an open-source Python package to 
compute all molecular fingerprints investigated in this 
study to streamline their use in further cheminformatics 
applications.
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information contained any predefined keywords, as done in a previous 
study by Capecchi et al. Table S2. Class distribution of each batch of 
the preprocessed subset of the COCONUT database used in this study. 
Table S3. Murcko scaffold diversity for each batch of the preprocessed 
subset of the COCONUT database used in this study. Table S4. P-values 
for the Mann Whitney tests with Benjamini-Hochberg correction between 
the similarity score distributions arising from the COCONUT and Drug 
Repurposing Hub datasets for each fingerprint. Table S5. Fingerprint 
saturation percentage for the COCONUT and Drug Repurposing Hub 
datasets. Table S6. Pearson correlation between using count or binary 
bits for a given fingerprint on the COCONUT and Drug Repurposing Hub 
datasets. P-values are calculated according to one-sample Mann Whitney 
tests with Benjamini-Hochberg correction. Table S7. Mean classification 
performance of each fingerprint using Random Forest across all datasets. 
Table S8. Mean classification performance of each fingerprint using a 
Dense Neural Network across all datasets.Table S9. Best performance 
rank counts for each fingerprint across all datasets for Random Forest. 
Table S10. Best performance rank counts for each fingerprint across all 
datasets for Dense Neural Networks. Table S11. Friedman test p-values 
evaluating the presence of significant differences in the performance of 
fingerprints across all datasets.  Figure S1. Jaccard-Tanimoto similarity 
distribution for each fingerprint across all possible pairwise comparisons 
in the Drug Repurposing Hub dataset.  Violin plots indicate the percen-
tiles of the distribution of Jaccard-Tanimoto similarities, with the circle 
indicating the median similarity value.Figure S2. Correlation matrix of all 
pairwise similarities for all fingerprints evaluated in this study on the Drug 
Repurposing Hub dataset.Figure S3. Similarity search ranking overlap 
between fingerprints, focusing on the top 1% most similar compounds. 
a Rank overlap between fingerprints on the COCONUT dataset. b Differ-
ence in rank overlap between fingerprints when comparing the values 
obtained on the COCONUT and Drug Repurposing Hub datasets. Positive 
overlaps mean that a given fingerprint pair has a higher overlap on natural 
products than on drug-like compounds. Asterisks denote significance 
(α=0.05) according to a one-sample Mann Whitney U test with Benjamini 
Hochberg correction. Raw p-values are available on the Github repository 
of this article.Figure S4. Significance of the Random Forest performance 
differences between fingerprint pairs across all datasets, according to 
a 2-tailed Wilcoxon test with the Benjamini-Hochberg correction. Red 
denotes whether the difference is significant (α=0.05 ).Figure S5. Signifi-
cance of the Dense Neural Network performance differences between 
fingerprint pairs across all datasets, according to a 2-tailed Wilcoxon 
test with the Benjamini-Hochberg correction. Red denotes whether the 
difference is significant (α=0.05).Figure S6. Performance comparison for 
each fingerprint depending on the classifier. The x-axis shows the mean 
ROC-AUC performance of a Random Forest classifier trained with a given 
fingerprint. The y-axis shows the mean ROC-AUC performance of a Dense 
Neural Network using different fingerprints as inputs.
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