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Abstract

The OpenFOAM-preCICE adapter is a plug-in for the CFD software OpenFOAM which
allows it to connect to the open-source coupling library preCICE. Initially, the adapter
only supported coupling over a surface at the interface between two subdomains. Since
there are various cases in practice where the subdomains can overlap, this project adds
the feature of volume coupling, i. e. coupling over cells of the internal field of the
domain.

We review contributions from the community which have implemented volume cou-
pling for specific applications and unify them into a comprehensive long-term com-
ponent of the adapter. We discuss how to best incorporate the new feature into the
adapter and we integrate elements of previous work, resulting in a volume coupling
extension with a configurable coupling region. Finally, we validate our implementation
with a simulation scenario for each coupling direction (data transfer to and from
OpenFOAM).

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 2
2.1 OpenFOAM-preCICE adapter . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 OpenFOAM solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Source terms in OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Related work 6
3.1 Fluid-fluid coupling for a cell region . . . . . . . . . . . . . . . . . . . . . 7
3.2 Temperature volume coupling for casting simulation . . . . . . . . . . . 8
3.3 General volume coupling module . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Other contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Design and implementation 10
4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Scope of applications . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.3 Core idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.4 Restricting to a domain region . . . . . . . . . . . . . . . . . . . . 12

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 Base implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Restrict to domain region . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Limitations of reading fields in OpenFOAM . . . . . . . . . . . . . . . . 16
4.3.1 Issues with reading internal field cells in OpenFOAM . . . . . . 16
4.3.2 Reading fields with finite volume options . . . . . . . . . . . . . 19

5 Validation 21
5.1 Channel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



Contents

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Volume-coupled flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion 26

Bibliography 27

vi



1 Introduction

Multi-physics simulation is an increasingly important tool in science and engineering,
especially when we consider the growth of computational power over time. [1] [2]

preCICE is a coupling library for partitioned multi-physics simulations, namely sim-
ulations where a different solver is responsible for each subpart of the physics. The
goal of preCICE is to allow for the coupling of an arbitrary number of different solvers
in a flexible and convenient way. [3] preCICE provides adapters for software such as
OpenFOAM, CalculiX and FEniCS. [4]

This project focuses on preCICE’s adapter for the fluid dynamics simulation library
OpenFOAM.1 Currently, the adapter only supports surface coupling, i. e. the solvers
can only exchange values over the boundary between each pair of subdomains. The
goal of this project is to implement volume coupling, thereby allowing the adapter to
also handle overlapping subdomains. In other words, the participants should be able
to exchange and enforce source terms in addition to boundary conditions.

This report describes the step-by-step process of the development of a volume cou-
pling extension for the OpenFOAM-preCICE adapter. Chapter 2 guides the reader
through relevant background regarding OpenFOAM and the OpenFOAM adapter, and
Chapter 3 provides a review of related work. In Chapter 4, I present the design of
the extension and the factors which have influenced it, as well as an overview of the
implementation. Finally, Chapter 5 describes validation experiments and evaluates the
correctness of the new extension.

1https://www.openfoam.com/
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2 Background

In this chapter, I’m introducing some relevant background and context which can aid
the reader in understanding the rest of this work. First, I present the OpenFOAM-
preCICE adapter, which is at the core of this project. Additionally, I describe some key
characteristics of OpenFOAM’s solvers and their relevant source terms.

2.1 OpenFOAM-preCICE adapter

The OpenFOAM-preCICE adapter is a plug-in for OpenFOAM which allows the user
to connect an OpenFOAM solver to the preCICE coupling library and thus couple it to
various other solvers. The adapter approach is advantageous because it does not require
the user to modify OpenFOAM’s code, it’s independent of the particular OpenFOAM
solver used, and it supports all recent versions of OpenFOAM. The adapter can be used
for conjugate heat transfer, fluid-structure interaction and fluid-fluid coupling, and it
can also be extended according to each project’s needs. [2] [5]

The general structure of the adapter can be seen on Figure 2.1. The Adapter class
reads the configuration and creates an Interface object for each interface between two
participants’ subdomains. It also handles the control flow of the simulation loop by
calling preCICE methods underneath the hood. The preciceAdapterFunctionObject
is a wrapper for the Adapter object which abstracts the interfacing between OpenFOAM
and preCICE from the core adapter functionality.
Each Interface object configures the coupling mesh, which can be built on either face
centers or face nodes at the interface.
Finally, the modules FF, CHT and FSI contain the logic for the variables relevant to
each respective application. This includes individual implementations for reading and
writing and possible additional operations to be done on the variable. Almost all of
these variables are instances of the CouplingDataUser class, which defines some basic
functionalities needed for coupled variables. [2] [6] [7]
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2 Background

Figure 2.1: Architecture of the OpenFOAM-preCICE adapter [6]

2.2 OpenFOAM solvers

In this work we focus on the OpenFOAM solvers pimpleFoam [8] and buoyantPimpleFoam
[9], for incompressible and compressible cases respectively. They both employ the
PIMPLE algorithm - an iterative method which uses the momentum equation and the
continuity equation and computes a new state for p (pressure) and U (velocity) in every
iteration. [10] [11] [12]

The core structure of pimpleFoam can be seen in Listing 2.1. In each PIMPLE iter-
ation it solves the momentum equation as specified in UEqn.H and then iterates through
a pressure corrector loop. In pEqn.H the pressure is corrected and then the velocity is
updated according to the new pressure values. [13] [11] [12]

1 while (pimple.loop())
2 {
3 ...
4 #include "UEqn.H"
5
6 // --- Pressure corrector loop
7 while (pimple.correct())
8 {
9 #include "pEqn.H"

10 }
11 ...
12 }

Listing 2.1: Simplified code snippet from pimpleFoam.C [13]

The buoyantPimpleFoam solver has a similar structure, but it additionally solves an
energy equation before entering the pressure corrector loop. Apart from defining

3



2 Background

and solving the energy equation, EEqn.H also propagates the updated energy-related
variables through the thermophysical model to update the temperature T and other
fields. [14]

2.3 Source terms in OpenFOAM

Another relevant OpenFOAM concept are the finite volume options. The fvOptions
structure allows the user to modify the source term of the equation and apply additional
constraints without explicitly modifying the source code of the solvers. The user spec-
ifies the relevant options in the case files, more specifically in constant/fvOptions. [15]

The three main categories of options are sources, constraints and corrections, and
we observe a common pattern in how they are applied in our chosen solvers. Firstly,
each equation is discretized as a matrix and the source term on the right side is fetched
from fvOptions. Then, the constraints are applied before the equation is solved, while
the corrections are applied afterwards. [15]

1 // Solve the Momentum equation
2
3 MRF.correctBoundaryVelocity(U);
4
5 tmp<fvVectorMatrix> tUEqn
6 (
7 fvm::ddt(U) + fvm::div(phi, U)
8 + MRF.DDt(U)
9 + turbulence->divDevReff(U)

10 ==
11 fvOptions(U)
12 );
13 fvVectorMatrix& UEqn = tUEqn.ref();
14
15 UEqn.relax();
16
17 fvOptions.constrain(UEqn);
18
19 if (pimple.momentumPredictor())
20 {
21 solve(UEqn == -fvc::grad(p));
22
23 fvOptions.correct(U);
24 }

Listing 2.2: UEqn.H of pimpleFoam [13]
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2 Background

Listing 2.2 is the implementation of the velocity equation for pimpleFoam. On line 11
in the definition of tUEqn we see the source term. The constraints are applied in line
17, then the equation is solved in line 21 and finally U is corrected in line 23. Since U is
modified again in pEqn.H, the corrections are applied again afterwards. [13]

OpenFOAM provides several types of predefined sources meant for specific appli-
cations and variables. They are grouped into momentum, energy and atmospheric
boundary layer applications. [16]
There are also two types of general sources, which allow for finer control and more
flexibility. The semi-implicit source breaks down the source term into an explicit and
implicit part: S(x) = Su + Spx and the user can consequently choose Su and Sp for each
variable using the keyword injectionRateSuSp. [17]
On the other hand, the codedSource lets the user provide custom C++ implementations
for the source (codeAddSup), constraints (codeConstrain) and corrections (codeCorrect).
Each codedSource is bound to one or several variables. The user can access and modify
the variables and equation matrices directly. OpenFOAM dynamically generates a
class, where the class methods are generated from the three corresponding user-defined
functions in codedSource and then plugged into the solver. [18]
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3 Related work

This project was inspired by several community contributions which implement differ-
ent variants of volume coupling for specific applications.

I focused on the following three contributions as the basis for our approach to volume
coupling. See Figure 3.1 for a general timeline of these projects.
In 2019, Marta Camps Santasmasas from the University of Manchester created a fluid-
fluid module with volume coupling for cell regions in the context of urban wind flow
simulation. [19]
Later on in 2021, Stefan Scheiblhofer, Stephan Jäger and Amir M. Horr from AIT LKR 1

implemented volume coupling for temperature to be used in continuous casting process
simulation. [20]
Based on that project, Prasad Adhav, Xavier Besseron, Alban Rousset and Bernhard
Peters from LuXDEM 2 set out to develop a general-purpose volume coupling module.
[21]

Figure 3.1: Timeline of community contributions

Each of these contributions was made by different teams independently of the preCICE
project, each with their own individual goals. They were not integrated into the adapter
and are largely unmaintained at this point in time. The aim of this project is to unify
these existing approaches and integrate the new feature in a way that aligns with the
long-term goals for preCICE and for the adapter.

1Austrian Institute of Technology, LKR Leichtmetallkompetenzzentrum Ranshofen
2Luxembourg XDEM Research Centre
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3 Related work

3.1 Fluid-fluid coupling for a cell region

Santasmasas’ approach is distinct in that it implements volume coupling for one or
multiple regions of the domain, as opposed to the other approaches which would
always couple the full domain. The cell regions are defined by OpenFOAM’s cellSets
- a collection of cells which can be created in many different ways, e. g. by using a box
to bound a section of the domain. [22] [23]

Her case simulates urban windflow and involves two subdomains which overlap -
one simulated by the Lattice-Boltzmann (LB) solver GASCANS and another by a
Navier-Stokes (NS) solver, namely OpenFOAM’s pisoFoam. Figure 3.2 depicts an exam-

Figure 3.2: Sending and receiving meshes at the overlap between the NS and LB domain
for each coupling direction [19]

ple of sending and receiving meshes for two-way coupling on these subdomains. Each
subdomain has its own boundary conditions and uses different units for the velocity.
The LB to NS boundary cells (right, orange) are in the NS domain and they receive
velocity interpolated from the LB domain. A correction of the velocity can be done here
to prevent a feedback loop of unstable results. The velocity is later interpolated from
the NS domain to the NS to LB boundary (left, blue) and hence back to the LB domain.
[19]
The code in the corresponding PR#88 implements volume coupling with cellSets for
pressure and velocity in the write() direction.

7
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3 Related work

3.2 Temperature volume coupling for casting simulation

The work of the AIT LKR team couples OpenFOAM, which is finite volume-based,
with the finite element-based structural solver LS-DYNA. The goal is to simulate the
casting process, which involves a mix of liquid metal and an ingot which is gradually
solidifying. Initially, this was done with surface coupling only: more specifically,
laplacianFoam was used to solve the heat equation and compute the temperature, then
preCICE was used to write the temperature on the patches to LS-DYNA. In the opposite
coupling direction, OpenFOAM was only reading a dummy value (Tsink = 0). [20]
At a later stage, volume coupling for temperature was implemented in PR#97.

3.3 General volume coupling module

The work of the LuXDEM team partly builds on the temperature volume coupling
implementation from the previous section. However, this approach involves adding a
separate volume coupling module independent of the existing modules and variables,
as can be seen on Figure 3.3. The new module includes generic data handlers, which

Figure 3.3: Class diagram for volume coupling module approach. Adapted from [6]

aim to provide a general implementation of read() and write() for any variable. Only
the type of the field is taken into account, distinguishing between volScalarField and
volVectorField. The corresponding code can be found in PR#183. The limitations of
this approach are discussed in depth in Subsection 4.1.3.
The volume coupling was implemented in the context of a 6-way coupling scenario
for an Abrasive WaterJet Cutting Nozzle. More specifically, three solvers (CFD, finite
elements and discrete elements) are coupled bi-directionally. The coupling involves
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3 Related work

variables such as force, displacement, fluid velocity, and porosity. [21]

3.4 Other contributions

My exploration of related work also featured other project which use the adapter and
implement volume coupling for particular applications.
FERMI [24] is a framework developed in the context of fusion reactor simulation by
researchers from Oak Ridge National Laboratory, Massachusetts Institute of Technology
and Lawrence Livermore National Laboratory. This work helped me understand some
specific practical aspects of volume coupling in OpenFOAM.
Another notable work is a crystal growth simulation framework [25] developed by the
Leibniz Institute for Crystal Growth.
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4 Design and implementation

4.1 Design

In this section I discuss different factors which have influenced the design of our volume
coupling extension, and the decisions we have taken to reflect that. I point out our
design goals and analyse in detail where and when it makes sense to apply volume
coupling. Then, I explain our approach for the extension and finally the addition of
configurable coupling regions.

4.1.1 Design goals

We defined objectives for this extension which align with the long-term goals for the
adapter and for the preCICE library. They have guided us through the decision-making
in the design phase.
Our aim was to tightly integrate the extension with the existing features and structure
of the adapter. Consequently, this improves the long-term maintainability of the system.
Another important point was configurability, especially in regards to the mesh region
to be coupled. Finally, we wanted to keep the non-invasive approach of the adapter, i.
e. the ability to use its full functionality without needing to modify OpenFOAM.

4.1.2 Scope of applications

An important point in our design was to consider which modules and variables would
be compatible with volume coupling. In the related work we have seen examples for
Temperature (CHT) [20], as well as Pressure and Velocity (Fluid-Fluid) [19]. Thus,
we focused on these two modules, while also developing an extensible design to allow
further implementations for future FSI applications or others.

Apart from Pressure and Velocity, the FF module includes variables for the respective
gradients. Since these gradients are taken on the boundary patches by definition, we
didn’t consider these variables suitable for volume coupling. A possible analogue in
volume could be a type of flux variable, but further discussion is needed regarding the
type of flux (e. g. volumetric flux, mass flux, etc.) and the coupling locations.

10



4 Design and implementation

The CHT module is based on equations that describe heat transfer on a fluid-solid
interface [26], hence most of these variables would not be directly translatable to
volume.

1 const scalarField gradientPatch(
2 (T_->boundaryField()[patchID])
3 .snGrad());
4 ...
5 // For every cell of the patch
6 forAll(gradientPatch, i)
7 {
8 // Copy the heat flux into the buffer
9 // Q = - k * gradient(T)

10 //TODO: Interpolate kappa in case of a turbulent calculation
11 buffer[bufferIndex++] =
12 -getKappaEffAt(i) * gradientPatch[i];
13 }

Listing 4.1: Modified code snippet from CHT/HeatFlux.C [7]

For instance, HeatFlux is computed from the temperature gradient on the boundary
patches (see code snippet in Listing 4.1) and SinkTemperature is already the tem-
perature on specific internal fields (the ones neighboring the boundary patches). [7]
These variables are specifically defined in relation to boundary patches, therefore they
wouldn’t make sense in a volume coupling context. Since the related work [20] demon-
strates a practical application of volume-coupled Temperature, we have included it as
the only CHT variable to support volume coupling.

4.1.3 Core idea

Our approach is based on PR#183 from the LuXDEM team [21] as described in Sec-
tion 3.3. At the core of our implementation is the data transfer: the idea is to iterate
over all inner cell centers of the domain and respectively read or write the values to
preCICE’s buffer. Additionally, the user can still specify patch names with volume
coupling - the boundary patches will then be coupled on face centers in addition to
the volume. Even though we kept the fundamental aspects of LuXDEM’s approach,
we chose a different design for the extension in order to optimally fulfil our design goals.

In terms of architecture, we moved away from the idea of a separate volume cou-
pling module. We consider the centers of the volume as a type of coupling location,
similarly to the existing faceCenters and faceNodes. Since the related work [20] [21]
already adds volume as a type of location, we continue that idea and incorporate it with

11
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4 Design and implementation

existing variables and modules (see Figure 4.1). This approach allows us to integrate
the new feature more smoothly with the rest of the adapter’s functionality.

Figure 4.1: Class diagram for our volume coupling approach. Adapted from [6]

Another significant characteristic of LuXDEM’s approach are the generic data handlers.
While they allow the flexible addition of new variables, in their current state they
constrain how the variables can be treated. The generic data handlers can read and
write variables directly, but cannot deal with variables that need extra computation
on top of the data transfer. For instance, the adapter’s HeatFlux is computed from
the temperature gradient and the thermal conductivity before it can be written, while
reading it involves additionally updating the temperature gradient. [7]
Integrating the generic data handlers with each variable and the individual operations
it requires would create extra complexity. On the other hand, only using it with some
variables would be inconsistent. Thus, this feature could be implemented in the future,
but requires further discussion and is outside the scope of this project.

4.1.4 Restricting to a domain region

We adopted Santasmasas’ [19] idea from PR#88 to use cellSets for volume coupling
regions. In summary, the user can specify one or multiple cellSets to couple. The
data transfer is consequently done not for all internal fields, but only for the cells of
the desired cellSets.

12
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4 Design and implementation

In order to integrate Santasmasas’ work with the base volume coupling implementation,
we make the following case distinction (Figure 4.2): if the user chooses the volume
locationType and doesn’t specify any cellSet names, we use the base case and couple
the full domain; otherwise, we only couple the specified regions.

Figure 4.2: Case distrinction to determine which part of the domain is coupled

4.2 Implementation

This section describes how I implemented the volume coupling extension based on the
design from the previous section. First, I explain the implementation of the basic case,
then I move on to the addition of a coupling region and how the user can configure it.

4.2.1 Base implementation

The core of my implementation is the addition of a new locationType volumeCenters
next to the existing faceCenters and faceNodes from the surface coupling. The code
discussed in this subsection and demonstrated in the snippets can be found on PR#2551.

On the configuration side, the new locationType needs to be integrated in the con-
figuration processing and the new mesh has to be set up and passed to the relevant
variables. First, I add volumeCenters to the LocationType enums and include it as a
permitted value in the parsing of preciceDict.
Next, I integrate previous work from the AIT LKR team [20] (PR#97) and from the
LuXDEM team [21] (PR#183) to implement the new mesh in Interface.C. The number
of coupling locations is counted by summing up the number of cell centers in the
volume and the number of face centers on each patch (if applicable).

1 const vectorField& CellCenters = mesh.C();
2
3 for (int i = 0; i < CellCenters.size(); i++)
4 {
5 vertices[verticesIndex++] = CellCenters[i].x();
6 vertices[verticesIndex++] = CellCenters[i].y();

1The code snippets, descriptions, and results reflect the state of the PR as of 14.08.2023.

13

https://github.com/precice/openfoam-adapter/pull/255
https://github.com/precice/openfoam-adapter/pull/97/
https://github.com/precice/openfoam-adapter/pull/183


4 Design and implementation

7 if (dim_ == 3)
8 {
9 vertices[verticesIndex++] = CellCenters[i].z();

10 }
11 }

Listing 4.2: Code snippet from Interface.C where cell centers are added as coupling
locations

Then, the 2D or 3D coordinates of each mesh point (all cell centers and relevant face
centers) is added to the list of vertices and passed to preCICE. Part of this process can
be seen in Listing 4.2.

Furthermore, we propagate the new locationType to the variables. This involves imple-
menting data handling for the volume-coupled Pressure, Velocity and Temperature,
but also making sure volumeCenters is excluded from the permitted locationTypes for
the rest of the variables. For reading and writing of a volume-coupled variable, I reuse
the generic data handlers from LuXDEM’s work [21] (PR#183) and apply the code to the
individual variables. Essentially, we iterate over each cell of the internal field and copy
it to or from the adapter’s buffer. Listing 4.3 and Listing 4.4 demonstrate how writing
and reading respectively are implemented for Temperature (a volScalarField).

1 for (const auto& cell : T_->internalField())
2 {
3 buffer[bufferIndex++] = cell;
4 }

Listing 4.3: Writing volume-coupled Temperature (CHT/Temperature.C)

1 for (auto& cell : T_->ref())
2 {
3 cell = buffer[bufferIndex++];
4 }

Listing 4.4: Reading volume-coupled Temperature (CHT/Temperature.C)

I use ref() [27] to reference the internal field when writing, and the const-reference
equivalent internalField() [28] when reading into the buffer.
Last but not least, I modify the method isLocationTypeSupported for both variables
that do and do not support volume coupling. Apart from raising an error when
volumeCenters is used with an incompatible variable, I also prevent it from being used
with meshConnectivity. Mesh connectivity is a feature of the adapter used for nearest
projection mapping between meshes, but at this stage I have not implemented it for
volume coupling.

14
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4 Design and implementation

4.2.2 Restrict to domain region

In order to restrict volume coupling to a region instead of the full domain, the user can
specify one or multiple cellSets in system/topoSetDict and execute the command
topoSet in the run-script. [29] An example for the content of topoSetDict can be seen
in Listing 4.5. The user also has to reference the names of the desired cellSets to
be coupled in preciceDict - they can be a subset of all of the cellSets defined in
topoSetDict.

1 actions
2 (
3 {
4 name box1;
5 type cellSet;
6 action new;
7 source boxToCell;
8 box (3.0 1.0 0.0) (3.5 1.5 1.0);
9 }

10 );

Listing 4.5: Creating a coupling region in a box of cells defined by two points. Source:
topoSetDict as of 14.08.2023.

The main aspects of the implementation are again extending the configuration and
adapting the variables. I adopt Santasmasas’ previous work and update it to fit with
the adapter’s current state. The code described in this subsection, including Listing 4.6,
can be found on PR#2702.

In the configuration, the cellSet names are added to a list and passed to the re-
spective Interface object. There they are used for the mesh setup: similarly to the full
domain case, for each cellSet name we find the corresponding cells on the mesh and
they are reflected in the number of coupling locations, and respectively in the list of
vertices for preCICE.

Additionally, I extend the volume coupling implementation for Pressure, Velocity
and Temperature. If there are any cellSetNames specified, for each name we find
the respective region of overlapping cells and read from or write the values to the
buffer. Listing 4.6 shows how this is implemented for Temperature, more specifically
the cellSets iteration is covered in lines 10-20.

1 if (cellSetNames_.empty())
2 {
3 for (const auto& cell : T_->internalField())

2The code snippets, descriptions, and results reflect the state of the PR as of 14.08.2023.
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4 Design and implementation

4 {
5 buffer[bufferIndex++] = cell;
6 }
7 }
8 else
9 {

10 for (const auto& cellSetName : cellSetNames_)
11 {
12 cellSet overlapRegion(T_->mesh(), cellSetName);
13 const labelList& cells = overlapRegion.toc();
14
15 for (const auto& currentCell : cells)
16 {
17 // Copy temperature into the buffer
18 buffer[bufferIndex++] = T_->internalField()[currentCell];
19 }
20 }
21 }

Listing 4.6: Volume-coupled writing for Temperature with case distinction
(CHT/Temperature.C)

Finally, both in the configuration and in data handling, we fall back on the implementa-
tion from the previous section if the list of cellSet names is empty - we assume that
means the user wants to couple the full domain.

4.3 Limitations of reading fields in OpenFOAM

In this section, I examine issues with reading internal fields in OpenFOAM. After
describing the limitations and pointing out examples, I suggest how they can be
mitigated. I use OpenFOAM’s variable names p, U and T for pressure, velocity, and
temperature respectively.

4.3.1 Issues with reading internal field cells in OpenFOAM

When reading cells of the internal field in OpenFOAM, we expect that the value at the
end of OpenFOAM’s iteration is the same value that was read during the coupling.
However, it is necessary to utilize OpenFOAM’s fvOptions [15] in order to enforce that
value. Without this additional configuration step, OpenFOAM overwrites the value it
has received from the coupling, and this is demonstrated by the following experiment.
I used a dummy solver to write constant values to a region of the domain for different
variables. The scenario coupled the dummy solver to OpenFOAM’s buoyantPimpleFoam
uni-directionally. An example of this setup for U.x() is depicted on Figure 4.3 and
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Figure 4.3: Setup for reading experiment on OpenFOAM’s internal field

Figure 4.5 shows how this looks on the OpenFOAM side. Although the scenario is only
concerned with the x coordinate of U, I use U for simplicity.

The results show different behaviors depending on the coupled variable. Reading
p and U shifts OpenFOAM’s values in the right direction, but not necessarily to the
exact value written by the dummy participant. For example, Figure 4.4 shows the
average values and ranges of U.x() on the coupled region (in OpenFOAM) over time.
The dummy solver writes U.x() = 10.0 to a domain initialized with U.x() = 0.1. The
values do increase compared to the initial value, but they are in the range between 7.0
and 10.0, whereas we expect a constant at U.x() = 10.0.

Figure 4.4: Average value and ranges of U.x() on the coupled cell region over time.
The initial value was U.x() = 0.1, the value read in OpenFOAM was
U.x() = 10.0

This behavior can be explained by examining inner workings of the solver. The
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Figure 4.5: Surface plot of U.x() in OpenFOAM. The cells of the coupled region are
highlighted.

equations are solved through an iterative method (see Section 2.2 and Listing 2.1),
which means the value from the previous iteration vold influences the current value
vnew. When the reading is done in OpenFOAM, this essentially overwrites vold before
the equation is solved, instead of overwriting vnew at the end. A visualization of this
workflow is depicted on Figure 4.6.

Figure 4.6: Flow of information when U is read in OpenFOAM without using fvOptions

I also performed this experiment for T, but this time the values on the OpenFOAM
side were completely unaffected by the values received in the coupling. On Figure 4.7
we see that T is constant at the initial value of T = 300.0. The temperature is a special
case, because it is involved with a thermophysical model. Namely, its value depends
on multiple other variables, such as enthalpy (he) (e. g. see [30]). Since we are not
updating those variables, the model enforces that the temperature also stays the same.
These results motivate the usage of fvOptions(see Section 2.3), which would provide
finer control and more precision over where we want to "inject" our code and how we
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Figure 4.7: Average value and ranges of U.x() on the coupled cell region over time.
The initial value was T = 300, the value read in OpenFOAM was T = 600.
The result is a constant at T = 300.

can enforce source terms.

4.3.2 Reading fields with finite volume options

Out of the possible specific fvOptions sources referenced in Section 2.3, none seems to
fit our application. Thus, I implemented a codedSource [18] and focused specifically
on the codeCorrect function. The correction is done after solving the equation and this
guarantees that the desired value will not be overwritten.

It is worth noting that the codedSource is not always activated - it depends on the
combination of solver and bound variables. For example, I found that p and T (and
additionally p_rgh) cannot be updated through a codedSource, while I succeeded with
U (tested with buoyantPimpleFoam and pimpleFoam).
Additionally, the preset constraint fixedTemperatureConstraint also succeeded in
enforcing the correct value for T, even though it is a constraint and not a correction. In
constrast to a T-bound codedSource, this constraint updates the enthalpy he in order to
enforce the new T value through the thermophysical model (see [31]).
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I succeeded in enforcing values for U through fvOptions. In order to carry over
the value through the adapter to OpenFOAM, it is necessary to create a "mirror" vari-
able of U and use it in the fvOptions. This allows us to keep the value buffered and
apply it at the right time to modify the "real" U. In order for this to work, we require
the user to specify an alternative name for the coupled velocity in the OpenFOAM case
files - since OpenFOAM uses U, we need an alternative name for our buffer variable.
Essentially, OpenFOAM sees two velocity variables - one to receive the coupled velocity,
and one for its own velocity. Figure 4.8 demonstrates a graphical explanation of this
workflow, and the case itself is introduced in PR#3503 under volume-coupled-flow.

Figure 4.8: Flow of information when U is read in OpenFOAM using a codedSource

3The code snippets, descriptions, and results reflect the state of the PR as of 14.08.2023.
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5 Validation

In this chapter, I describe two experiments and how they validate different aspects of
the volume coupling extension. First, the channel transport case is used to validate a
basic volume coupling scenario where the full domain is coupled and OpenFOAM is
writing the source terms. In contrast, in volume-coupled flow only a region of the domain
is coupled, and the source terms are read and enforced in the OpenFOAM domain.
Additionally, I present and interpret the results of those experiments.

5.1 Channel transport

To validate the basic volume coupling implementation, I adapted the existing preCICE
tutorial channel transport [32]. The case originally coupled two Nutils participants. I
replaced one of them with an OpenFOAM participant and compared the new result to
the reference result.

5.1.1 Setup

The channel transport tutorial scenario involves a blob travelling through a channel with
an obstacle. Two participants are involved: one fluid participant, which controls the
fluid flowing in the channel, and a transport participant responsible for the movement
of the blob. The coupling is uni-directional, wherein the fluid participant writes velocity
U to the transport participant. [32] [33] I extended the tutorial by adding another variant

Figure 5.1: Setup for channel transport tutorial with an OpenFOAM fluid participant

for the fluid participant, namely OpenFOAM’s pimpleFoam. Thus, the version with
the Nutils fluid participant can be used as a reference, while the OpenFOAM version
serves to validate the volume coupling extension of the adapter. This setup is depicted
on Figure 5.1. The extended tutorial can be found in PR#3151.

1The code snippets, descriptions, and results reflect the state of the PR as of 14.08.2023.
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5.1.2 Results

The line plots in Figure 5.2 and Figure 5.3 depict the density of the transported species
over a line at y = 1.5 (parallel to x). The figures are a comparison of the reference
output and the new output side by side. In Figure 5.2 at timestep 25 the results look
similar, but the peak is a bit sharper on the reference graph. The density reaches 0.95
in the reference and only about 0.85 in the new result.

(a) Density of species over x (y = 1.5) at
timestep 25: reference output (Nutils
fluid)

(b) Density of species over x (y = 1.5) at
timestep 25: new output (OpenFOAM
fluid)

Figure 5.2: Density of species over x (y = 1.5) at timestep 25: comparison of reference
output (Nutils fluid) and new output (OpenFOAM fluid)

A similar observation can be made about Figure 5.3 at timestep 50, but the differences
become more noticeable. The peak of the reference results reaches just over 0.55,
whereas for the OpenFOAM participant it’s between 0.35 and 0.4. Here we see that the
peak also seems to be at slightly different positions: around x = 4 for the reference
output and x = 5 for the new output.
From these results it seems that the blob in the OpenFOAM variant is moving slightly
faster than the one in the Nutils variant. A plausible explanation for this discrepancy is
that OpenFOAM uses finite-volume methods, while Nutils is a finite-element solver.
[34] Nevertheless, the results do show enough similarity to conclude that the experiment
is successful and the volume coupling extension is functioning correctly.
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(a) Density of species over x (y = 1.5) at
timestep 50: reference output (Nutils
fluid)

(b) Density of species over x (y = 1.5) at
timestep 50: new output (OpenFOAM
fluid)

Figure 5.3: Density of species over x (y = 1.5) at timestep 50: comparison of reference
output (Nutils fluid) and new output (OpenFOAM fluid)

5.2 Volume-coupled flow

This case couples a "dummy solver" with OpenFOAM (buoyantPimpleFoam), this time
putting OpenFOAM in the reading position. The experiment serves to validate the
volume coupling over a domain region, as well as the correctness of reading source
terms in OpenFOAM with the help of fvOptions.

5.2.1 Setup

The volume-coupled flow tutorial case is derived from the reading experimentation as
described in Section 4.3. A dummy solver, which only writes a constant value of
U.x() = 10.0 to the domain, is coupled with OpenFOAM over a square cellSet. The
coupled cellSet is created from a bounding box as defined in topoSetDict. Figure 5.4
depicts the OpenFOAM domain and the coupled cellSet is highlighted. Additionally,
I utilize fvOptions as described in Subsection 4.3.2 to enforce the desired values on the
coupled region. This new case can be found on PR#3502 under volume-coupled-flow.

2The code snippets, descriptions, and results reflect the state of the PR as of 14.08.2023.
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Figure 5.4: Surface plot of U.x() at t = 0.5, volume-coupled flow tutorial.

5.2.2 Results

For this experiment, we once again look at the averages and ranges of U.x() on the
coupled region over time. In contrast to the experiments in Subsection 4.3.1, Figure 5.5
clearly shows a constant value at U.x() = 10.0, which indicates the values are being
read and applied correctly in OpenFOAM. Additionally, looking back on Figure 5.4

Figure 5.5: Average value and ranges of U.x() on the coupled cell region over time.
The initial value was U.x() = 0.1, the value read in OpenFOAM was
U.x() = 10.0. The result is a constant at U.x() = 10.0.

we can see that the coupling is restricted to the specified region and the values evolve
over time ouside of that region. These results confirm that the extension supports
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reading and enforcing of source terms, and it also successfully allows for coupling over
a domain region.
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6 Conclusion

In this report, I have described the development of a volume coupling extension for
the OpenFOAM-preCICE adapter. I have highlighted related work and its role in our
design, as well as other considerations relating to our design goals and the architectural
decisions we took to adhere to them. Then, I have discussed the most important
points of the implementation of the volume coupling base, and the addition of a con-
figurable mesh coupling region. I have presented problems encountered in relation
to source terms in OpenFOAM, and some ways they can be mitigated. Finally, I have
demonstrated two validation experiments. The results show that the volume coupling
extension works as intended in both coupling directions (reading and writing), and for
the coupling of domain regions.

Throughout this project, a few potential ideas for future work have emerged. For
instance, the idea for generic data handlers from the related work is promising and
could be implemented for the adapter in the future.
Additionally, the volume coupling can be expanded to other existing variables in the
adapter by creating volumetric equivalents of them. For example, I discussed the
possibility to add flux variables which would serve as the volume-coupled equivalent
to gradients.
Another possible task for the future would be to integrate the adapter’s mesh connec-
tivity feature with the volume coupling.
Finally, it would be interesting to experiment further with the reading of internal fields
in OpenFOAM. It is worth examining other aspects of the finite volume options (e. g.
comparing the capabilities of contraints as opposed to corrections), or exploring the
capabilities of other solvers and variables.
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