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Abstract

The exponential growth of data generated nowadays has created a high demand for novel
solutions to increase efficiency in communication networks and the reliability of large-scale
storage systems. Error-correcting codes with related properties have been studied intensively
in recent years. Error correction is also essential for the development of quantum computers
that can run useful algorithms with negligible miscalculation rate.

This dissertation considers new constructions and decoding approaches for error-correcting
codes based on non-conventional polynomials, with the objective of providing new coding
solutions to the applications mentioned above.

With skew polynomials, we construct codes that are dual-containing, which is a desired
property of quantum error-correcting codes. By considering evaluation codes based on skew
polynomials, a condition on the existence of optimal support-constrained codes is derived and
an application of such codes in the distributed multi-source networks is proposed. For a class
of multicast networks, the advantage of vector network coding compared to scalar network
coding is investigated.

Multivariate polynomials have been attracting increasing interest in constructing codes with
repair capabilities by accessing only a small amount of available symbols, which is required to
build failure-resistant distributed storage systems. A new class of bivariate evaluation codes
and their local recovery capability are studied. Interestingly, the well-known Reed-Solomon
codes are used in a class of locally recoverable codes with availability (multiple disjoint recovery
sets) via subspace design.

Aside from new constructions, decoding approaches are considered in order to increase the
error correction capability in the case where the code is fixed. In particular, new lower and
upper bounds on the success probability of joint decoding interleaved alternant codes by a
syndrome-based decoder are derived, where alternant codes are an important class of algebraic
codes containing Goppa codes, BCH codes and Reed-Muller codes as sub-classes.
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1
Motivation and Overview

Channel coding originates from the seminal work by Shannon [Sha48], which laid the math-
ematical foundation of reliable communication in the presence of noise. The channel coding
theorem by Shannon shows that reliable communication is achievable as long as the code rate is
below the capacity of the (noisy) channel. However, the proof of this result is non-constructive
and focuses on the asymptotic behavior of error-correcting codes in a probabilistic setting. On
the contrary, the work by Hamming [Ham50] around the similar time extracted the combina-
torial basis for the theory of error-correcting codes. Their works are deeply intertwined and
perfectly complementary. Due to the clear difference between the probabilistic, asymptotic
viewpoint of Shannon and the combinatorial, constructive perspective of Hamming, prosper-
ous studies following their footprints are growing into two main respective areas1: information
theory and coding theory. The former focuses on characterizing the capacity (i.e., asymptot-
ically achievable code rate) for various channel models with different statistical behaviors,
while the cornerstone of the latter is the finite behavior of codes for scenarios where error
correction is needed.

Many well-known and widely used codes are based on polynomials. For instance, Reed-
Muller codes, used in deep-space communication [Mas92], wireless communications [Ari08;
MHU14] and probabilistic checkable proofs in computational complexity theory [AS97; STV99],
can be described as low-degree multivariate polynomials. BCH codes, used in satellite commu-
nication [CP88] and solid-state drives [MME+13], are suitable for implementations on small
and low-power hardwares because of their underlying polynomial structure.

Nowadays, error correction is not only used for communications, but also in abundant
scenarios ranging from digital data storage in the daily life to the frontier research on quantum
computing.

As the exponential growth of data generated and exchanged nowadays, large-scale dis-
tributed storage systems are needed to store vast amounts of data. The main goal of such
systems is to guarantee the integrity of the stored data, i.e., to protect the data from loss
even if some storage disks are defective. Instead of simple replication, several distributed stor-
age systems have utilized error-correcting codes to provide reliable services, e.g., Facebook’s
f4 storage system [MLR+14], Baidu’s Atlas Cloud Storage [LJY+15], Hadoop [Fou17] and
Backblaze Vaults cloud storage [Bea19] use Reed-Solomon codes.

In quantum computing, a qubit is the basic unit of quantum information that can carry
richer states beyond just 0 and 1. The challenge is that the qubits are so sensitive that

1We refer the interested reader to [Sle74] and [Ber74] for the influential papers in the development of the
respective areas.
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1 Motivation and Overview

even stray light or slight temperature change can cause errors [CLSZ95]. The state-of-the-art
quantum processors typically have error rates around 10´3 per interaction between physi-
cal qubits [FND+20; WBC+21], which is far beyond the error rate required to run useful
algorithms. Quantum error-correcting (QEC) codes are proposed to suppress error rates of
calculation by constructing logical qubits, where each logical qubit is composed of multiple
physical qubits (i.e., by adding redundancy to reduce the error rate per logic operation).
Surface codes [Kit03] have been thoroughly studied for QEC architectures and have been
demonstrated in small examples by teams at IBM [CYK+22; SYK+23] and Google Quantum
AI [Goo23]. However, surface codes have the drawback that they require too many physical
qubits, possibly 200 million qubits for problems of interest, which makes them impractical due
to the cost and complexity. Recently, low-density-parity-check (LDPC) codes were proposed
as a promising candidate for QEC codes as they feature a more than ten-fold reduction in the
number of physical qubits compared to surface codes under similar error rate level [BCG+23].
Advancements in finding codes with better code rate and fast decoding algorithms suitable
for quantum circuits are still highly demanded.

This dissertation intends to provide new constructions from non-conventional polynomials
and decoding approaches for error-correcting codes with the desired properties in the afore-
mentioned applications. The structure of this dissertation is as follows.

Chapter 2 provides the basics of the polynomials and the metrics used in the remaining
chapters. We first give a brief introduction of multivariate polynomials and present a pow-
erful tool, Gröbner basis, for solving polynomial equation systems. We then introduce skew
polynomials and their properties. Finally, we cover the Hamming, the rank and the sum-rank
metrics.

In Chapter 3 we construct dual-containing codes over rings based on skew polynomials.
We first define pθ, δq-polycyclic codes (in short, pθ, δq-codes) and derive a parity-check matrix of
this class of codes within the framework of skew polynomials. Based on the properties of skew
polynomials and dual-containing codes, we develop an algorithm to compute all Euclidean-
/Hermitian-dual-containing pθ, δq-codes constructed from skew polynomials and apply this
algorithm to several rings A of order 4. Moreover, we give an algorithm to test whether the
dual code is also a pθ, δq-code and apply it to the resulting dual-containing codes found by
the previous algorithm.

Chapter 4 is devoted to a class of evaluation codes of skew polynomials, linearized Reed-
Solomon (LRS) codes, and network coding. LRS codes are maximum sum-rank distance
(MSRD) codes. Motivated by the practical and theoretical interest in support-constrained
codes, we derive a necessary and sufficient condition on the existence of an MSRD code
fulfilling certain support constraints and give an upper bound on the field size to construct
such a code. With the help of the condition, we develop a scheme to design distributed LRS
codes for multi-source networks. The second focus of this chapter is the advantage of vector
network coding versus scalar network coding for a family of multicast networks, generalized
combination networks. The task of this multicast network coding problem is to find the coding
coefficients of the relay nodes at the middle layer of the network, so that all the receivers that
connect to a fixed number of middle layer nodes can decode all the messages. The solution
of such a network is the set of coding coefficients at each relay nodes. We investigate the
advantage by bounding the gap between the minimum required alphabet size of the scalar
solutions and the vector solutions.

Chapter 5 deals with codes with local properties constructed from multivariate polyno-
mials. We first propose a class of bivariate evaluation codes, so called quadratic lifted Reed-
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Solomon (QLRS) codes, where the codeword symbols whose coordinates lie on a quadratic
curve form a local recovery set, so that any missing symbol in the set can be recovered within
the set. We study the dimension and minimum Hamming distance of the QLRS codes and
compare them to other multivariate evaluation codes, linearized Reed-Solomon codes, in terms
of the performance in local recovery. As the second part of this chapter, we investigate an
almost affinely disjoint (AAD) family of subspaces which is motivated by batch codes, a class
of locally recoverable codes with availability. The subspaces in an AAD family form a partial
spread where any affine transformation of any subspace in the family intersects with only
a few other subspaces in the family. We give a construction for the AAD family using the
best-known evaluation codes – Reed-Solomon codes. Aside from the explicit construction, we
also provide upper and lower bounds on the cardinality of this family.

Chapter 6 concerns joint decoding of interleaved evaluation codes. A codeword of an
interleaved code can be seen as s parallel codewords from linear codes. When s additive
errors have a common support with restricted size, we can decode beyond half the minimum
Hamming distance of the code with high probability. Alternant codes are subfield subcodes
of Reed-Solomon. They contain Goppa codes and BCH codes as sub-classes. We apply the
Schmidt-Sidorenko-Bossert joint decoding algorithm, which is known for decoding interleaved
Reed-Solomon codes, to interleaved alternant codes, and derive a necessary and sufficient con-
dition such that this algorithm succeeds. Based on this condition, we derive lower and upper
bounds on the success probability of decoding interleaved alternant codes by the Schmidt-
Sidorenko-Bossert decoder. Moreover, we briefly summarize the results on joint decoding of
interleaved generalized Goppa codes and on improvements in decoding radius by utilizing list
decoding for interleaved alternant codes.
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2
Introduction to Codes based on Polynomials

Polynomials were firstly considered for error control by David E. Muller [Mul54] for sim-
plifying switching circuits with multiple outputs via polynomial representations in Boolean
algebra and by Irving S. Reed [Ree54], who exhibited the ability of Muller’s polynomial codes
to correct multiple errors and proposed the first efficient decoding algorithm. Reed-Muller
codes can be described as evaluations of low-degree multivariate polynomials. Their works not
only constructed one of the oldest classes of codes that have been extensively studied, but also
brought some preliminary indications about a large body of knowledge about finite algebraic
structures (rings, fields, vector spaces) that could be used for error correction. Since then,
various well-known code constructions based on polynomials have appeared. For instance,
Reed-Solomon codes [RS60] can be seen as a set of low-degree univariate polynomials and
BCH codes [Hoc59; BR60] can be seen as principle ideals in a quotient polynomial ring.

This chapter gives an introduction to codes constructed from polynomials. Section 2.1 pro-
vides basic notations used in this thesis. Sections 2.2 and 2.3 contain the basics on multivariate
polynomials and skew polynomials that concern most of this thesis. Section 2.4 provides two
methods of constructing linear block codes from polynomials. In Section 2.5, we present three
metrics for measuring the error-correction capability of a code.

2.1 Basic Notations
Denote by ra, bs the set of integers ta, a ` 1, . . . , b ´ 1, bu, and rbs :“ r1, bs. Let N be the set
of nonnegative integers. For any set A, denote by A˚ :“ Azt0u the set of all the nonzero
elements in A. A ring A is unitary if there exists 1 P A˚, such that 1 ¨ a “ a ¨ 1 “ a, @a P A.
A ring A is commutative if ab “ ba, @a, b P A. Denote by F a finite field, by Fq a finite field
of size q, and by Fqm the extension field over Fq of extension degree m. The integer ring of
size q is denoted by Zq. Note that for a prime p, Zp “ Fp. Denote by rn, ksq a linear block
code of length n and dimension k over an alphabet of size q. If the minimum distance d of
the code is also of importance, we denote the code by rn, k, dsq.

Given two vectors a “ pa1, . . . , anq, b “ pb1, . . . , bnq, we denote the entry-wise multiplication
of a and b by a ‹ b :“ pa1b1, a2b2, . . . , anbnq. For a vector a of length n, we denote by supppaq

the set of indices of the nonzero entries of a and by diagpaq the n ˆ n diagonal matrix with
the entries of a on its diagonal. Given a set E Ď rns, we denote by a|E the restriction of a to
the entries indexed by the set E . For an m ˆ n matrix E, we denote by supppEq the set of
indices of the nonzero columns of E and by ei the i-the row of E. Given a set E Ď rns, we
denote by E|E the restriction of E to the columns indexed by E .
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2 Introduction to Codes based on Polynomials

Denote by Gqpn, kq the Grassmannian of dimension k, which is a set of all k-dimensional
subspaces of Fn

q . The cardinality of Gqpn, kq is the well-known q-binomial coefficient:

|Gqpn, kq| “

„

n

k

ȷ

q

:“
k´1
ź

i“0

qn ´ qi

qk ´ qi
“

k´1
ź

i“0

qn´i ´ 1
qk´i ´ 1 .

Given a ring A, we denote by Arxs the univariate commutative polynomial ring in variable
x with coefficients from A. The degree of a nonzero polynomial f “

ř

iPN aix
i P Arxs is

degpfq :“ maxti P N | ai ‰ 0u. We use the convention that the degree of a zero polynomial
is defined as ´8. The leading coefficient of f is denoted by lcpfq. A polynomial f P Arxs is
monic if lcpfq “ 1. For g, f P Arxs, we denote by g  f if g divides f , by lcmpg, fq the least
common multiplier of g and f , and by gcdpg, fq the greatest common divisor of g and f .

Throughout the thesis, the indices start from 1. For convenience, the indices of the coeffi-
cients of polynomials start from 0. Hence, for vectors associated with polynomials, the indices
of their entries are corresponding to the polynomials, i.e., the coefficient vector pa0, a1, . . . , adq

corresponds to the polynomial f “
řd

i“0 aix
i.

2.2 Multivariate Polynomials

In this thesis, we use multivariate polynomials in a wide range. Hence, we introduce the
basics of multivariate polynomials and a powerful tool – Gröbner bases – in solving polynomial
equations in this section.

Given a field F (may be infinite), we denote by Rn “ F rx1, . . . , xns the commutative
polynomial ring in n variables over F . We associate a vector d “ pd1, . . . , dnq P Nn to the
exponents of a monomial by

xd “ xd1
1 xd2

2 ¨ ¨ ¨ xdn
n P Rn .

Definition 2.1 (Monomial order). A monomial order in Rn “ F rx1, . . . , xns is a relation ă

on Nn such that

• for all a, b P Nn, either a “ b or a ă b or b ă a,

• for all a, b, c P Nn, a ă b ùñ a ` c ă b ` c,

• for all a P Nn, 0 ă a or 0 “ a.

The following orders are monomial orders [VG13, Theorem 21.6]:

• Lexicographic order:

a ălex b ðñ the leftmost nonzero entry in a ´ b is negative.

• Graded lexicographic order:

a ăgrlex b ðñ

n
ÿ

i“1
ai ă

n
ÿ

i“1
bi or

˜

n
ÿ

i“1
ai “

n
ÿ

i“1
bi and a ălex b

¸

.

6



2.2 Multivariate Polynomials

• Graded reverse lexicographic order:

a ăgrevlex b ðñ

n
ÿ

i“1
ai ă

n
ÿ

i“1
bi or

`

n
ÿ

i“1
ai “

n
ÿ

i“1
bi and the rightmost

nonzero entry in a ´ b P Zn is positive
˘

.

Since there are multiple variables in a multivariate polynomial, the properties of a poly-
nomial (such as “degree”) are different from those of a univariate polynomial. We give the
formal definitions of these properties in the following.

Definition 2.2. Let F be a field, Rn “ F rx1, . . . , xns be a polynomial ring, f “
ř

dPNn cdxd P

Rn be a nonzero polynomial with all cd P F , d P Nn, and ă be a monomial order.

• Each cdxd with cd ‰ 0 is a term of f .

• The (total) degree of f is degpfq :“ maxdPNnt
řn

i“1 di | cd ‰ 0u P N.

• The multidegree of f is mdegpfq :“ maxăt d | cd ‰ 0u P Nn, where maxă is the maxi-
mum with respect to ă.

• The xi-degree of f is degxi
pfq :“ maxdPNnt di | cd ‰ 0u P N.

• The leading coefficient of f is lcpfq :“ cmdegpfq P F ˚.

• The leading monomial of f is lmpfq :“ xmdegpfq P R.

• The leading term of f is ltpfq :“ lcpfq ¨ lmpfq P R.

Addition, subtraction, multiplication and division between two polynomials in Rn follow
naturally from univariate polynomials. We present in Algorithm 2.1 a division algorithm with
multiple divisors, which is used in Buchberger’s algorithm (Algorithm 2.2) presented later to
compute a Gröbner basis.

Algorithm 2.1: Multivariate division algorithm (cf. [VG13, Algorithm 21.11])
Input: Nonzero polynomials f, f1, . . . , fs P Rn “ F rx1, . . . , xns where F is a field; a

monomial order ă on Rn.
Output: Quotients q1, . . . , qs P Rn and remainder r P Rn such that

f “ q1f1 ` ¨ ¨ ¨ ` qsfs ` r and @i P rss, ltpfiq ffl r.
1 r Ð 0, p Ð f , qi Ð 0, @i P rss;
2 while p ‰ 0 do
3 if for some i P rss, ltpfiq  ltppq then
4 qi Ð qi `

ltppq

ltpfiq
, p Ð p ´

ltppq

ltpfiq
fi

5 else
6 r Ð r ` ltppq, p Ð p ´ ltppq

7 return q1, . . . , qs, r

The output of this kind of division may not be unique, since there may be more than one
i P rss such that ltpfiq divides ltppq at Line 3. In Algorithm 2.1, if we always chooses the
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2 Introduction to Codes based on Polynomials

smallest possible i at Line 3, then the quotients q1, . . . , qs and the remainder r, denoted by

pq1, . . . , qsq “ f quo pf1, . . . , fsq ,

r “ f rem pf1, . . . , fsq ,

are uniquely determined.

Theorem 2.1 (Combinatorial Nullstellensatz [Alo99, Theorem 1.2]). Let F be an arbitrary
field and f be a nonzero polynomial in F rx1, . . . , xns of total degree degpfq “

řn
i“1 ti, where

ti P N, @i. Then, if X1, . . . , Xn are subsets of F with |Xi| ą ti, then there are x̂1 P X1, . . . , x̂n P

Xn so that

fpx̂1, . . . , x̂nq ‰ 0 .

2.2.1 Ideals and Variety

Let f1, . . . , fs be polynomials in Rn. The polynomials generate an ideal in Rn

I “ xf1, . . . , fsy :“
#

s
ÿ

i“1
pifi

ˇ

ˇ

ˇ

ˇ

ˇ

pi P Rn

+

.

An ideal is principle if it is generated by a single element of the ring. For example, I “ xf1y Ď

Rn is a principle ideal.
The variety of I is

V pIq :“ tu P F n | fpuq “ 0, @f P Iu “ tu P F n | f1puq “ ¨ ¨ ¨ “ fspuq “ 0u .

We also write V pf1, . . . , fsq instead of V pxf1, . . . , fsyq for short. It can be readily seen that the
variety V pIq is the set of all solutions to the system of polynomial equations tf1 “ 0, . . . , fs “ 0u.

Interesting questions about I and V pIq that also concern solving the system of polynomial
equations include:

• How “big” is V pIq? Is V pIq ‰ ∅?

• Ideal membership problem: given f P Rn, is f P I?

The famous Hilbert’s Nullstellensatz [Hil93] says the following: if F is algebraically closed,
then, for f P I “ xf1, . . . , fsy, there is an integer e P N such that fe P I. This implies that for
any ideal I over an algebraically closed field, the variety V pIq “ ∅ if and only if 1 P I.

For n “ 1, R1 “ F rxs, the ideal membership problem is easy to check. Let g “ gcdpf1, . . . , fsq

be the greatest common divisor of f1, . . . , fs. Then, the ideal I “ xf1, . . . , fsy “ xgy [AL22,
Proposition 1.3.8]. Hence, for any f P Rn, f P I if and only if g  f . For n ě 2 and
s “ 1, the ideal membership problem can be solved by Algorithm 2.1: f P xf1y if and only
if f rem f1 “ 0. However, this method fails in general for s ě 2. The next subsection
introduces a special type of bases of an ideal where the ideal membership can be easily (only
conceptually, not computationally) determined (see Theorem 2.2). These special bases are
the analogue to the greatest common divisor for multivariate polynomials.
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2.2 Multivariate Polynomials

2.2.2 Gröbner Bases
A Gröbner basis of an ideal I is a special “basis” for I, in which the questions about V pIq

mentioned in Section 2.2.1 are easy to answer. Heisuke Hironaka introduced in [Hir64] a special
type of basis for polynomial ideals, called “standard basis”. Bruno Buchberger invented them
independently in his dissertation [Buc65] and named them as Gröbner bases after his advisor
Wolfgang Gröbner.

Definition 2.3 (Gröbner basis). Let ă be a monomial order and I Ď Rn be an ideal. A
finite set G Ď I is a Gröbner basis for I with respect to ă if xltpGqy “ xltpIqy, where
ltpGq :“ t ltpgq | g P Gu and ltpIq :“ t ltpgq | g P Iu.

For a polynomial ring Rn “ F rx1, . . . , xns, every ideal I Ď R has a Gröbner basis [VG13,
Corollary 21.26]. The following theorem shows that given a Gröbner basis of an ideal, we can
solve the ideal membership problem.

Theorem 2.2 ([VG13, Theorem 21.28]). Let G be a Gröbner basis for the ideal I Ď Rn with
respect to a monomial order ă, and f P Rn. Then

f P I ðñ f rem G “ 0 .

To present the Buchberger’s algorithm that computes a Gröbner basis of an ideal, we need
the following definition of an S-polynomial.

Definition 2.4 (S-polynomial). Let g, h P Rn, a “ mdegpgq, b “ mdegphq, and c “

pmaxta1, b1u, . . . , maxtan, bnuq. The S-polynomial of g and h is

Spg, hq “
xc

ltpgq
g ´

xc

ltphq
h P Rn .

The following theorem shows the importance of the S-polynomials for computing a Gröbner
basis.

Theorem 2.3 ([VG13, Theorem 21.31]). A finite set G “ tg1, . . . , gsu Ď Rn is a Gröbner
basis of the ideal xGy if and only if

Spgi, gjq rem pg1, . . . , gsq “ 0 for 1 ď i ă j ď s .

We now present a simplified version of Buchberger’s algorithm [Buc65] in Algorithm 2.2.
The extended Euclidean algorithm for computing the greatest common divisor (gcd) of

univariate polynomials in F rxs is a special case of Buchberger’s algorithm. A proof of the
correctness of Algorithm 2.2 can be found in [VG13, Theorem 21.34]. In general, the Gröbner
basis computed by Buchberger’s algorithm is neither unique nor of minimal size. However,
one can further process the polynomials in G to obtain a unique reduced Gröbner basis, which
is defined as follows. Such a unique basis exists for every ideal [VG13, Theorem 21.38].

Definition 2.5. A subset G Ď Rn is a minimal Gröbner basis of I “ xGy if it is a Gröbner
basis for I and for all g P G

(i) lcpgq “ 1 ,

(ii) ltpgq R xltpGztguqy .

9



2 Introduction to Codes based on Polynomials

Algorithm 2.2: Buchberger’s algorithm for Gröbner basis computation (cf. [VG13,
Algorithm 21.33])
Input: Nonzero polynomials f1, . . . , fs P Rn, and a monomial order ă.
Output: A Gröbner basis G Ď Rn for the ideal I “ xf1, . . . , fsy with respect to ă.

1 G Ð tf1, . . . , fsu;
2 repeat
3 S Ð ∅;
4 order the elements in G as g1, . . . , gt according to ă;
5 foreach i P rt ´ 1s, j P ri ` 1, ts do
6 r Ð Spgi, gjq rem pg1, . . . , gtq; /* Apply Algorithm 2.1 */
7 if r ‰ 0 then
8 S Ð S Y tru

9 if S “ ∅ then
10 return G

11 else
12 G Ð G Y S

An element g of a Gröbner basis G is reduced with respect to G if no monomial of g is in
xltpGztguqy. A minimal Gröbner basis G of an ideal I is reduced if all its elements are reduced
with respect to G.

To understand the complexity of Buchberger’s algorithm, we need to know the maximal
total degree of a polynomial occurring during the computation of a Gröbner bases and the
number of polynomials in the Gröbner basis. The choice of the monomial ordering is critical to
these values. Buchberger investigated in [Buc83] the maximal (total) degree and the number
of polynomials occurring in a Gröbner basis G of the ideal I “ xf1, . . . , fsy for a finite set of
bivariate polynomials F “ tf1, . . . , fsu Ď F rx1, x2s. In the case of ăgrlex, the maximum degree
of the polynomials in G is 2 ¨ maxfPF degpfq ´ 1. In the case of ălex, the maximum degree
of the polynomials in G is maxfPF degpfq2. For any valid monomial ordering, the number
of polynomials in G is |G| “ minfPF degpltpfqq ` 1. From a practical point of view, in the
computation of a Gröbner basis in Magma [BCP97] for instance, ăgrevlex is recommended for
faster computation while ălex is hard for computation, though it usually presents the most
information about the ideal.

The worst-case cost of Buchberger’s algorithm is still unknown today. Kühnle and Mayr
[KM96] presented an algorithm for computing the unique reduced Gröbner basis for a given
ideal, which requires exponential space. This gives a lower bound on the worst-case cost of
Buchberger’s algorithm and concludes that finding a reduced Gröbner basis is an EX PSPACE-
complete problem (see [VG13, Section 25.8] for the classification of computation complexities).

In this thesis, we use Gröbner bases for solving a system of equations. Let f1, . . . , fs be
polynomials in Rn. The set of solutions to the set of equations tf1 “ 0, . . . , fs “ 0u is the
variety V pf1, . . . , fsq. Let G be a Gröbner basis of the ideal I “ xf1, . . . , fsy. It can be
shown that the variety V pGq “ V pIq. In Section 3.3, we use the implementation of Gröbner
bases in Magma [BCP97] to solve a system of polynomial equations. In Section 4.4.3, we use
the facilities for multivariate polynomials in SageMath [The22] to solve a systems of linear
equations.
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2.3 Skew Polynomials

2.3 Skew Polynomials
Skew polynomials over division rings1 are non-commutative polynomials that were introduced
and studied by Øystein Ore in [Ore33]. The theory of skew polynomials is quite rich and
widely investigated in the literature. For instance, the division and factorization properties
were studied in [Ore33; Gie98; Bau16]. Evaluation of skew polynomials and sets of roots were
first considered by Tsit-Yuen Lam in [Lam86] and studied in great detail thereafter by Lam
and André Leroy [LL88a; LL88b; Ler95; LL04; LLO08; Ler12]. Faster algorithms for skew
polynomials have been proposed for factorization and counting the number of factorizations
[CB12], interpolation [LMK14; BJR22] and multiplication [CLB17; PW18]. Properties of
multivariate skew polynomial have been studied in [MK19a].

The general definition of skew polynomial rings ArX; θ, δs involves an endomorphism θ of
the base ring A and a derivation associated with the endomorphism. We start with the basics
for the general definition in Section 2.3.1, where A is a general ring. This definition is mainly
used in Chapter 3. In Section 2.3.2 we restrict our focus to a simpler class of skew polynomial
ring FqmrX; σs with the Frobenius automorphism σpaq “ aq, @a P Fqm and the zero derivation
δ “ 0, on which Chapter 4 is based.

2.3.1 The General Definition: ArX; θ, δs

Consider a ring A with addition ` and multiplication ¨ (we may omit the ¨ between two
elements for simplicity). We consider the most general definition, where A is not necessarily
a division ring.

Definition 2.6 (Endomorphism and derivation). An endomorphism of a ring A is a map
θ : A Ñ B Ď A such that, for all a, b P A,

• θpa ` bq “ θpaq ` θpbq,

• θpabq “ θpaqθpbq.

A map θ is an automorphism if B “ A.
A θ-derivation of A is a map δ : A Ñ B Ď A such that, for all a, b P A

• δpa ` bq “ δpaq ` δpbq,

• δpabq “ δpaqb ` θpaqδpbq.

A θ-derivation δ is an inner θ-derivation if there exists β P A such that δpaq “ βa ´ θpaqβ
for all a P A.

It follows from the definition that for any endomorphsim θ and any θ-derivation δ of A, it
holds that

• θp0q “ 0, θp1q “ 1,

• δp0q “ 0, δp1q “ 0.

We denote by id the identity automorphism θpaq “ a, @a P A. For ease of notation, we also
use the exponential notation θpaq “ aθ and δpaq “ aδ.

1A ring is a division ring if all the nonzero elements have a multiplicative inverse.
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Lemma 2.1. If a P A˚ is invertible, then a is not a zero-divisor2 and θpaq invertible.

Proof. We first show that any a P A cannot be both invertible and a zero-divisor. Suppose an
invertible a P A is a zero-divisor. Let 0 ‰ b P A with ab “ 0. Then b “ pa´1aqb “ a´1pabq “ 0,
which is a contradiction. According to Definition 2.6, θpa ¨a´1q “ θpaq ¨θpa´1q. Together with
θpa ¨ a´1q “ θp1q “ 1, it can be seen that θpaq is invertible and its inverse is θpa´1q.

Definition 2.7 (Skew polynomial rings). A skew polynomial ring ArX; θ, δs is a set of poly-
nomials

ArX; θ, δs :“
#

n
ÿ

i“0
aiX

i

ˇ

ˇ

ˇ

ˇ

ˇ

ai P A, n P N

+

with addition ` as for usual polynomials, and multiplication ¨ following the basic rule

Xa “ θpaqX ` δpaq, @ a P A . (2.1)

The multiplication extends to all elements in ArX; θ, δs by associativity and distributivity. The
degree of a nonzero skew polynomial f “

ř

iPN fiX
i P ArX; θ, δs is deg f :“ maxt i | fi ‰ 0u.

By convention, the degree of the zero polynomial is degp0q “ ´8.

Multiplication

Given an endomorphism θ of a ring A, the powers of θ are aθi`1
“ θi`1paq :“ θpθipaqq, for all

i P N, a P A. Given a θ-derivation δ of A and a P A, we denote aθδ “ δpθpaqq.
For any h “

řd
i“0 hiX

i and g “
ře

i“0 giX
i in ArX; θ, δs, the product of the two polynomials

is

h ¨ g “ hdgθd

e Xd`e `

´

hd´1gθd´1
e ` hd

´

gθd´1δ
e ` gθd´2δθ

e ` ¨ ¨ ¨ ` gδθd´1
e

¯¯

Xd`e´1 ` ¨ ¨ ¨ ,

where gθd´2δθ
e “ θpδpgθd´2

e qq and gδθd´1
e “ θd´1pδpgeqq according to the notation introduced

above. It can be seen that the explicit expression of the product is quite messy when a nonzero
derivation is involved. For skew polynomials with a zero θ-derivation, e.g., h “

ř

iPN hiX
i

and g “
ř

iPN giX
i in ArX; θs, the expression of the product is simply

h ¨ g “
ÿ

iPN

ÿ

jPN
hiθ

ipgjqXi`j “
ÿ

sPN

¨

˚

˝

ÿ

iPN
iďs

hiθ
ipgs´iq

˛

‹

‚

Xs . (2.2)

Theorem 2.4. For any h, g P ArX; θ, δs, if the leading coefficient lcpgq is invertible, then
degphgq “ degphq ` degpgq.

Proof. Let d “ degphq and e “ degpgq. It can be seen from the multiplication rule in (2.1) that
commuting the variable X and the coefficients does not increase the degree in X. Therefore,
the coefficient of Xd`e`i “ 0, @i ą 0. It follows from Lemma 2.1 that the coefficient of the
monomial Xd`e is lcphq ¨ θdplcpgqq ‰ 0.

2An elements b P A˚ is a zero divisor if Da P A˚ such that ab “ ba “ 0.
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Division

If the base ring A of R “ ArX; θ, δs is a division ring, then for f, g P R, one can always
perform a right division on f by g, i.e., find the quotient polynomial q P R and the remainder
polynomial r P R such that f “ q ¨ g ` r with degprq ă degpgq [Ore33]. The right division
algorithm is presented in Algorithm 2.3, which is the analogue to the well-known Euclidean
algorithm for skew polynomials.

For a non-division ring A, the following theorem shows that the right division can be done
by Algorithm 2.3 as well, as long as the leading coefficient of the divisor is invertible.

Theorem 2.5. For any f, g P R, if the leading coefficient lcpgq is invertible, then Algo-
rithm 2.3 outputs a unique pair of quotient and remainder q, r P R.

Proof. By Lemma 2.1, it can seen that, with an invertible lcpgq, qi at Line 3 in Algorithm 2.3
is nonzero and Line 5 can always remove the leading term in r. Hence, degprq decreases
in every loop and the algorithm terminates. We show that the outputs q, r are unique by
contradiction. Suppose that f “ hg ` r “ h̃g ` r̃, which implies ph ´ h̃qg “ r ´ r̃. If h ´ h̃ is
nonzero, then degpph´h̃qgq ě degpgq. However, by the termination condition of the algorithm,
degpr ´ r̃q ă degpgq.

Algorithm 2.3: Right division (Euclidean) algorithm for skew polynomials
Input: f, g P ArX; θ, δs where lcpgq is invertible
Output: A unique pair q, r P ArX; θ, δs such that f “ q ¨ g ` r with degprq ă degpgq.

1 q Ð 0, r Ð f ;
2 while degprq ě degpgq do
3 qi Ð lcprqθn´mpg´1

m qXn´m;
4 q Ð q ` qi;
5 r Ð r ´ qi ¨ g;
6 return q, r

Left division between any f, g P R can be performed only if θ is an automorphism of A.
For left division, the repeated procedure from Line 3 to Line 5 in Algorithm 2.3 becomes

qi Ðθ´mpg´1
m lcprqqXn´m

q Ðq ` qi

r Ðf ´ g ¨ qi

and the outputs q, r P R are such that f “ g ¨ q ` r. The inverse map of θ is required in
the computation of qi. Hence, θ needs to be an automorphism in order to perform the left
division.

We say that g right (resp., left) divides f or f is right (left) divisible by g, if the remainder
of the right (left) division on f by g is 0. We denote by g r f (resp., g l f) if f is right (left)
divisible by g.

Definition 2.8 (gcrd and lclm). For any f1, f2 P R, the greatest common right divisor (gcrd)
of f1, f2, denoted by gcrdpf1, f2q, is a monic polynomial g P R of the largest degree such that
g right divides both f1 and f2.

13



2 Introduction to Codes based on Polynomials

The least common left multiplier (lclm) of f1, f2 P R is a monic polynomial m P R of the
lowest degree which is right divisible by both f1 and f2, i.e.,

m “ g1 ¨ f1 “ g2 ¨ f2 for some g1, g2 P R .

It has been shown in [Ore33, Section 2] that for any f1, f2 P R where A is a division ring,
there is a unique g “ gcrdpf1, f2q and it can be computed from the output of Algorithm 2.4:
gcrdpf1, f2q “ rℓ (up to a scalar multiple). If gcrdpf1, f2q “ 1, then f1 and f2 are relatively
prime.

Similarly, it has been shown in [Bau16, Section 2] that for any f1, f2 P R where A is
a division ring, there is a unique m “ lclmpf1, f2q and it can be computed up to a scalar
multiple from the output of Algorithm 2.4: lclmpf1, f2q “ sℓ`1f1 “ ´tℓ`1f2.

The degree of the lclm of f1, f2 and the degree of the gcrd can be related via

deg lclmpf1, f2q “ deg f1 ` deg f2 ´ deg gcrdpf1, f2q .

Algorithm 2.4: Extended Euclidean algorithm for skew polynomials.
Input: f1, f2 P R where A is a division ring.
Output: ℓ P N, ri, si, ti P R, i P rℓ ` 1s, and qi P R, i P rℓs

1 r1 Ð f1, s1 Ð 1, t1 Ð 0;
2 r2 Ð f2, s2 Ð 0, t2 Ð 1;
3 i Ð 2 while ri ‰ 0 do
4 qi, ri`1 Ð right divide ri by ri´1 ; /* Apply Algorithm 2.3 */
5 si`1 Ð si´1 ´ qisi;
6 ti`1 Ð ti´1 ´ qiti;
7 i Ð i ` 1
8 ℓ Ð i ´ 1;
9 return ri, si, ti, @i P rℓ ` 1s, and qi, @i P rℓs

Evaluation

For a commutative polynomial f P Arxs, the process of evaluating f at a P A, denoted by
fpaq, is simply “plugging in” the value a in place of x in f and carry out the proper operation
in A. The result by this simple method coincides with the result by the remainder evaluation,
where fpaq P A is the remainder of dividing f by px ´ aq. In other words, the evaluation
fpaq is such that f “ g ¨ px ´ aq ` fpaq for some g P Arxs. However, for skew polynomials,
simple plugging-in does not always give the same result as the remainder evaluation, as shown
in Example 2.1. Nevertheless, we show in Theorem 2.6 that another way of “plugging-in” is
equivalent to the remainder evaluation.

Definition 2.9 (Remainder evaluation of skew polynomials). Let A be a ring and R “

ArX; θ, δs. For any f P R and a P A, the evaluation of f at a, denoted by fpaq, is the
remainder from the right division on f by X ´ a. In other words, we can write

fpaq “ f ´ g ¨ pX ´ aq for some g P R .

14



2.3 Skew Polynomials

Since X ´ a is monic, it follows from Theorem 2.5 that the remainder evaluation fpaq is
unique.

Example 2.1. Let F4rX; σ, δs be a skew polynomial ring with the Frobenius automorphism
σpaq “ a2, @a P F4 and an inner σ-derivation δpaq “ σpaq ´ a, @a P F4 (recall from Defini-
tion 2.6 that β “ 1). Let α be a primitive element of F4. To evaluate f “ X3 ` X ` 1 at
α P F4, by the “plugging-in” method, we get

fpαq “ α3 ` α ` 1 “ α .

By the remainder evaluation from Definition 2.9, we have

fpαq “ α ` 1 “ f ´ pX2 ` αXqpX ´ αq .

The following theorem shows that the remainder evaluation for skew polynomials has an
equivalent form so that one can perform the evaluation by addition and multiplication, without
applying any division algorithm (e.g., Algorithm 2.3). The form has been proven in [LL88b,
Lemma 2.4] for division rings and applies naturally to general rings.

Theorem 2.6. Let A be a ring, θ be an endomorphism of A and δ be a θ-derivation. For
any a P A, define recursively the i-th truncated norm of a as

N0paq :“ 1 ,

Ni`1paq :“ θpNipaqq ¨ a ` δpNipaqq , @i P N .

Then, for any f “
ř

iPN fiX
i P R, the evaluation of f at a P A is

fpaq “
ÿ

iPN
fiNipaq .

Proof. We first show that for any k P N, pX ´ aq r pXk ´ Nkpaqq by induction. This is trivial
for k “ 0, since X0 ´ N0paq “ 1 ´ 1 “ 0. Assume it is true for some k ě 0. Then

Xk`1 ´ Nk`1paq “ Xk`1 ´ θpNkpaqq ¨ a ´ δpNkpaqq

“ Xk`1 ´ θpNkpaqq ¨ a ` θpNkpaqq ¨ X ´ θpNkpaqq ¨ X ´ δpNkpaqq

“ Xk`1 ` θpNkpaqqpX ´ aq ´ pθpNkpaqq ¨ X ` δpNkpaqqq

“ θpNkpaqqpX ´ aq ` Xk`1 ´ X ¨ Nkpaq (2.3)
“ θpNkpaqqpX ´ aq ` XpXk ´ ¨Nkpaqq ,

where (2.3) follows from the multiplication rule in (2.1) for commuting the variable and the
coefficient. With the induction hypothesis, pX ´ aq r pXk ´ Nkpaqq, we conclude that both
terms on the last line are right divisible by X ´ a.

Then we can see that

f ´ fpaq “
ÿ

iPN
fiX

i ´
ÿ

iPN
fiNipaq

“
ÿ

iPN
fi ¨

`

Xi ´ Nipaq
˘

.

15



2 Introduction to Codes based on Polynomials

Applying the result for Xk`1 ´ Nk`1paq above to each term
`

Xi ´ Nipaq
˘

in the sum, we
conclude that pX ´ aq r pf ´ fpaqq. Therefore, we can write f “ q ¨ pX ´ aq ` fpaq for some
q P R. Since degpfpaqq ă 1 “ degpX ´ aq, it is indeed the remainder of the right division on
f by X ´ a.

So far, we only considered polynomials in the left form, f “
ř

iPN fiX
i. If a polynomial

is given in the right form, i.e., h “
ř

iPN Xihi, then for some a P A, the evaluation hpaq ‰
ř

iPN Nipaqhi. Instead, we must first convert h to the left form
ř

iPN giX
i by the multiplication

rule (2.1) and then compute hpaq “
ř

iPN giNipaq.
With the definition of Nipaq in Theorem 2.6, we define the pθ, δq-Vandermonde matrix on

a set of elements Ω “ ta1, . . . , anu Ď A.

Definition 2.10 (pθ, δq-Vandermonde matrix). Let Nip¨q be the i-th truncated norm as defined
in Theorem 2.6. Given a set Ω “ ta1, . . . , anu Ď A, the pθ, δq-Vandermonde matrix of Ω is
given by

V θ,δpΩq :“

¨

˚

˚

˚

˝

N0pa1q N0pa2q . . . N0panq

N1pa1q N1pa2q . . . N1panq

...
...

. . .
...

Nn´1pa1q Nn´1pa2q . . . Nn´1panq

˛

‹

‹

‹

‚

.

Similar to the evaluation of commutative univariate polynomials, the evaluation of a poly-
nomial f “

řk
i“0 fiX

i P R, k P N at all the elements in Ω “ ta1, . . . , anu can be written
as

pfpa1q, fpa2q, . . . , fpanqq “ pf0, . . . , fkq ¨

¨

˚

˝

N0pa1q N0pa2q . . . N0panq

...
...

. . .
...

Nkpa1q Nkpa2q . . . Nkpanq

˛

‹

‚

looooooooooooooooooooomooooooooooooooooooooon

“:V θ,δ
k

pΩq

.

Next, we seek for a formula for evaluating a product of two polynomials at a point a P A.
For this purpose, we first define the notion of pθ, δq-conjugacy.

Definition 2.11 (pθ, δq-conjugacy). For any two elements a P A, c P A˚, define

ac :“ θpcqac´1 ` δpcqc´1 ,

where the term δpcqc´1 is also known as the “logarithmic derivative” of c P A˚. Two elements
a, b P A are said to be pθ, δq-conjugate if there exists an element c P A˚ such that ac “ b.

It is easy to check that pθ, δq-conjugacy fulfills the following properties of equivalence rela-
tions:

• Reflexivity: a is pθ, δq-conjugate to a, for any a P A.

• Symmetry: If a is pθ, δq-conjugate to b, then b is pθ, δq-conjugate to a, for any a, b P A.

• Transitivity: If a is pθ, δq-conjugate to b and b is pθ, δq-conjugate to c, then a is pθ, δq-
conjugate to c, for any a, b, c P A.
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2.3 Skew Polynomials

Since pθ, δq-conjugacy is an equivalence relation, we can speak of pθ, δq-conjugacy classes. For
instance, the pθ, δq-conjugacy class of 0,

␣

0c “ δpcqc´1 | c P A˚
(

, consists of the logarithmic
derivatives of all the nonzero elements in A.

Definition 2.12 (pθ, δq-conjugacy classes). For any a P A, the pθ, δq-conjugacy class of a is

Cθ,δpaq :“ tac | c P A˚u .

Using the notion of pθ, δq-conjugacy, the next result provides us with a useful formula for
evaluating a product f ¨ g at a P A.

Theorem 2.7 ([LL88b, Theorem 2.7]). Let f, g P R and a P A. Then, pf ¨ gqpaq ‰ fpaq ¨ gpaq

in general. Instead,

pf ¨ gqpaq “

#

0 if gpaq “ 0
f
`

agpaq
˘

¨ gpaq else
,

where agpaq :“ θpgpaqq ¨ a ¨ gpaq´1 ` δpgpaqq ¨ gpaq´1.

Ideals

Since the skew polynomial rings R are non-commutative, we need to differentiate between left
and right ideals of R.

A left ideal xfyl Ď R generated by f P R is a set of skew polynomials

xfyl :“ tgf | g P Ru .

Similarly, a right ideal xfyr Ď R generated by f P R is a set of skew polynomials

xfyr :“ tfg | g P Ru .

Lemma 2.2. For g, f P R, xgyl Ě xfyl if and only if g r f .

Proof. We first show the sufficiency. Suppose g r f , then @p P xfyl, p “ u ¨ f for some u P R
and p “ u ¨ pq ¨ gq for q being the quotient of the right division on f by g. Hence, xgyl Ě xfyl.
For the necessity, assume g fflr f . Then there is a nonzero a P R of degpaq ă degpgq such that
f “ q ¨ g ` a. It can be seen that for any u P R of degpuq “ 0, u ¨ f R xgyl.

2.3.2 With Frobenius Automorphism and Zero Derivation

In this subsection, we present the properties of skew polynomials over an extension field Fqm ,
with the Frobenius automorphism and zero derivation.

The Frobenius automorphism of an extension field Fqm is the map

σ : Fqm Ñ Fqm

a ÞÑ aq .

Let FqmrX; σs be a skew polynomial ring over Fqm with Frobenius automorphism σ and zero
derivation δ “ 0. We follow the notation used in Section 2.3.1 but omit the δ for simplicity.
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2 Introduction to Codes based on Polynomials

For two skew polynomials h “
ř

iPN hiX
i and g “

ř

jPN gjXj in FqmrX; σs, their product
h ¨ g can be computed according to (2.2). Since every nonzero element in Fqm is invertible, it
follows from Theorem 2.4 that degphgq “ degphq ` degpgq.

For any α P Fqm , its i-th truncated norm Nipαq (defined in Theorem 2.6) becomes

Nipαq “

i´1
ź

j“0
σjpαq “ α

ři´1
j“0 qj

“ αpqi´1q{pq´1q .

The evaluation of any f “
ř

iPN fiX
i P FqmrX; σs at α P Fqm becomes

fpαq “
ÿ

iPN
fiNipαq “

ÿ

iPN
fiα

pqi´1q{pq´1q . (2.4)

σ-Conjugacy Classes

For any a P Fqm , its σ-conjugacy w.r.t. c P F˚
qm becomes

ac :“ σpcqac´1 “ acq´1 , (2.5)

and its σ-conjugacy class becomes

Cσpaq :“
␣

acq´1 ˇ

ˇ c P F˚
qm

(

. (2.6)

We say that two elements a, b P Fqm are σ-distinct if b R Cσpaq. The following theorem
shows that the σ-conjugacy classes of Fqm form a partition of Fqm .

Theorem 2.8 (Structure of σ-conjugacy classes [MSK+22, Theorem 2.12]). Let γ P F˚
qm

be a primitive element of Fqm. For the Frobenius automorphism σ, the q ´ 1 elements
1, γ, γ2, . . . , γq´2 are pair-wise σ-distinct. There are q disjoint conjugacy classes in Fqm and

Fqm “ Cσp0q Y Cσpγ0q Y ¨ ¨ ¨ Y Cσpγq´2q ,

where Cσp0q “ t0u and
ˇ

ˇCσpγiq
ˇ

ˇ “
qm´1
q´1 , i P r0, q ´ 2s.

Polynomial Independence

In the following, we discuss the set of roots of skew polynomials, i.e., given f P FqmrX; σs,
we determine tα P Fqm | fpαq “ 0u. Different from commutative polynomials g P Frxs, where
the number of roots of g is at most degpgq, the following example shows that this does not
hold for skew polynomials in general.

Example 2.2. Consider q “ 2, m “ 2 and the skew polynomial ring F4rX; σs with the Frobe-
nius automorphism and zero derivation. Let α be a primitive element of F4. For the polynomial
f “ X2 ` 1 P F4rX; σs, it can be verified that the set of root of f is

t1, α, α ` 1u .

In the commutative case, we count distinct roots. In the case of skew polynomials, we need
a different notion of distinctness, namely, polynomial independence. For this, we need the
following definition.
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2.3 Skew Polynomials

Definition 2.13 (Minimal polynomial). Given a nonempty set Ω Ď Fqm, we say fΩ is a
minimal polynomial of Ω if it is a monic polynomial fΩ P FqmrX; σs of minimal degree such
that fΩpαq “ 0 for all α P Ω.

The following theorem shows that for any nonempty Ω Ď Fqm , its minimal polynomial is
unique. It also implies that FqmrX; σs is a principle left ideal ring3.

Theorem 2.9 ([MSK+22, Theorem 2.5]). Given any nonempty set Ω Ď Fqm, there exists a
unique monic skew polynomial f P FqmrX; σs such that, for any g in the left ideal xfyl,

gpαq “ 0, @α P Ω .

The minimal polynomial can be constructed by an iterative Newton interpolation approach
as follows (cf. [MSK+22, Proposition 2.6]). First, set

g1 “ X ´ α1.

Then for i “ 2, 3, . . . , n, perform

gi “

#

gi´1 if gi´1pαiq “ 0,
`

X ´ αgi´1pαiq
˘

¨ gi´1 otherwise,
(2.7)

where αgi´1pαiq “ σpgi´1pαiqqαigi´1pαiq
´1 is the σ-conjugate of α w.r.t. gi´1pαiq as in (2.5).

Upon termination, we have gn “ fΩ.
It can be shown that the minimal polynomial of a set Ω can be also constructed by com-

puting

fΩ “ lclmαPΩtX ´ αu , (2.8)

where lclm is the least common left multiple as defined in Definition 2.8.
The following theorem summarizes some properties of the minimal polynomial of a set

Ω Ď Fqm .

Theorem 2.10 ([LMK17, Theorem 7]). Let Ω1, Ω2 Ď Fqm and fΩ1 , fΩ2 be their minimal
polynomials. Then

• fΩ1YΩ2 “ lclmpfΩ1 , fΩ2q.

• fΩ1XΩ2 “ gcrdpfΩ1 , fΩ2q.

• degpfΩ1YΩ2q “ degpfΩ1q ` degpfΩ2q ´ degpfΩ1XΩ2q.

With the notion of minimal polynomials, we can now introduce the “distinctness” for the
roots of skew polynomials.

Definition 2.14 (P-independent set). A set Ω Ď Fqm is P-independent in FqmrX; σs if the
degree of its minimal polynomial is equal to |Ω|, i.e., degpfΩq “ |Ω|.

Recall from Definition 2.10 that a σ-Vandermonde matrix can be constructed for a set
Ω Ď Fqm . It has been shown in [Lam86, Theorem 8] that

Ω is P-independent ðñ |Ω| “ rankpV σpΩqq . (2.9)
3A principle left ideal ring is a ring where every left ideal can be generated by only one element in the ideal.
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2 Introduction to Codes based on Polynomials

We can derive the following result from the definition of P-independent sets.

Lemma 2.3. Given a P-independent set Ω, for any subset Z Ă Ω, let fZpxq P FqmrX; σs be
the minimal polynomial of Z. Then, for any element α P ΩzZ, fZpαq ‰ 0.

Proof. Assume fZpαq “ 0, then the minimal polynomial fZYtαu “ fZ and degpfZYtαuq “

|Z| ă |Z Y tαu|, which contradicts to that Z Y tαu Ď Ω is P-independent.

In the early work by Lam, the property of unions and subsets of P-independent sets has
been derived, as summarized in the following theorem.

Theorem 2.11 ([Lam86, Theorem 22–23]). For any two sets Ω1, Ω2 Ď Fqm, let Ω “ Ω1 Y Ω2.

• If Ω1 and Ω2 are P-independent and no element in Ω1 is σ-conjugate to any element in
Ω2, then Ω is P-independent.

• If Ω is P-independent, then Ω1 and Ω2 are P-independent. In other words, any subset
of a P-independent set is P-independent.

The relation between P-independence and linear independence and the structure of roots
of the minimal polynomial fΩ of some special sets Ω Ď Fqm are concluded in the following.

Theorem 2.12 ([LMK17, Lemma 1, Theorem 10]). Let Ω “ tα1, . . . , αnu Ď Cσpγlq for
some l P rms, and a1, . . . , an P Fqm be such that αi “ γlaq´1

i for all i P rns. Then, Ω is
P-independent if and only if a1, . . . , an are linearly independent over Fq. Moreover, let fΩ be
the minimal polynomial of Ω and Ω :“ tα P Fqm | fΩpαq “ 0u be the set of roots of fΩ. Then

Ω “

!

γlaq´1
ˇ

ˇ

ˇ
a P xa1, . . . , anyq

)

Ď Cσpγlq ,

where xa1, . . . , anyq denotes the Fq-subspace of Fqm generated by a1, . . . , an.

2.3.3 Applications of Skew Polynomials in Coding Theory
Codes constructed from skew polynomials were first introduced and studied by Boucher and
Ulmer [BGU07; BU09a; BU11; BU14b]. Various classes of codes based on skew polyno-
mials were constructed thereafter. For instance, codes over rings [AS10], evaluation codes
[BU14a; LMK15], optimal codes in skew and sum-rank metric [Mar18] (well-known as lin-
earized Reed-Solomon codes), skew Reed-Muller codes [GU19], new optimal codes in the rank
metric [She20], skew convolutional codes [SLGK20], skew-cyclic codes [Glu21], sum-rank BCH
and cyclic-skew-cyclic codes [Mar21], quantum codes [AA16; DBU+21], and twisted linearized
Reed-Solomon codes [Ner22]. Skew polynomials have been considered to construct crypto-
graphic schemes [CHH01; BGG+10], Shamir’s secret sharing scheme [Zha10], DNA codes
[GOS17] and maximal-recoverable locally repairable codes (MR-LRCs) [GG22].

2.4 Linear Block Codes Constructed from Polynomials
Let R be a polynomial ring, a polynomial code can be simply defined as a set of polynomials
fulfilling some conditions,

C :“ tf P R | f fulfills certain conditions u .
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For instance, a Reed-Solomon (RS) code of dimension k is a set of univariate polynomials of
degree less than k and a Reed-Muller (RM) code of dimension

`

m`d
m

˘

is a set of m-variate
polynomials of total degree at most d. We denote these two set of polynomials respectively
by

RSqpkq :“ tf P Fqrxs | degpfq ă ku ,

RMqpd, mq :“ tf P Fqrx1, . . . , xms | degpfq ď du .
(2.10)

In most of the coding theory literature, as shown in the transmission model in Fig. 2.1, the
elements in a code, called codewords, are considered to be a vector c of length n over a certain
alphabet A (e.g., Fq for the RSqpkq code) and are mapped from an information vector u of
length k.

encoder ` decoder

e

u P Ak c P An r P An ĉ P An

Figure 2.1: Transmission model via a linear rn, ks block code with an alphabet A.

Depending on how the symbols in u and c are related to a polynomial f in a code C, we
characterize polynomial codes into two categories: evaluation codes and polycyclic codes.

Throughout the thesis, when the code is seen as a set of polynomials as in (2.10), we denote
within the parenthesis “p q” the parameters regarding the polynomials, e.g., k in RSqpkq is the
degree restriction of the polynomials. When the code is seen as a linear block code with fixed
length n and dimension k, we denote within the rectangular brackets “r s” the parameters,
e.g., n and k in RSqrn, ks are the length and the dimension.

2.4.1 Evaluation Codes

Evaluation codes are a class of codes obtained by evaluating polynomials at some evaluation
points. The number of evaluation points determines the length of the codes and the degree
restriction on the polynomials determines the dimension of the codes.

The RS codes RSqpkq can be also defined as a block code of length n via evaluating the
polynomials at n distinct points. An rn, ksq RS code is defined as

RSqrn, ks :“ tpfpα1q, . . . , fpαnqq | f P Fqrxs, degpfq ă ku ,

where α1, . . . , αn are distinct elements in Fq and called code locators of the RS codes.
Similarly, an RM code RMqpd, mq is often seen as a set of Fq-vectors of length n “ qm via

evaluating the polynomials at all the points in Fm
q . Hence, RMqpd, mq can be defined as an

rn, ksq block code with n “ qm and k “
`

m`d
m

˘

,

RMqrn, ks :“ tpfpvqqvPFm
q

| f P Fqrx1, . . . , xms, degpfq ď du .

For evaluation codes, with the alphabet A, each information vector u P Ak is associated to
the coefficients of a polynomial of degree k in Arxs, i.e.,

pu0, u1, . . . , uk´1q ÞÑ f “ u0 ` u1x ` . . . , uk´1xk´1 .
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2 Introduction to Codes based on Polynomials

Evaluation codes are an important method to construct block codes from polynomials. One
of the reasons is that the minimum Hamming distance can be derived by studying the roots
of the underlying polynomials. The most studied maximum distance achievable codes in
the Hamming, rank and sum-rank metric are all evaluation codes (see Section 2.5). The
interpolation-based decoders for evaluation codes are essentially developed from interpolating
a polynomial from some of its evaluations.

2.4.2 Polycyclic Codes

Let A be a commutative ring and R “ Arxs be a polynomial ring. Denote by xfy Ď R a
principle ideal of R generated by f P R. The quotient ring (or factor ring) of R modulo the
ideal xfy is defined as

R{ xfy :“ tu mod f | u P Ru .

Informally speaking, a polycyclic code, if seen as a set of polynomial, is an ideal in the
quotient ring R{ xfy. If seen as a set of vectors, it is the vector representation of the ideal.

Definition 2.15 (Polycyclic codes). Let f P R with degpfq “ n, g P R with degpgq “ n ´ k,
and g  f . A polycyclic code w.r.t. g, f is defined as the principle ideal xgy { xfy in R{ xfy,
i.e.,

Cpg, fq :“ tu ¨ g mod f | u P Ru .

A linear rn, ks code is a polycyclic code if

Crn, ks :“
#

c “ pc0, c1, . . . , cn´1q |

n´1
ÿ

i“0
cix

i P Cpg, fq

+

.

The polynomial g is a generator polynomial of C.

An information vector u “ pu0, u1, . . . , uk´1q corresponds uniquely to a codeword c P Crn, ks

such that
´

u0 ` u1x ` ¨ ¨ ¨ ` uk´1xk´1
¯

¨ g “ c0 ` c1x ` ¨ ¨ ¨ ` cn´1xn´1 .

Remark 2.1. The name “polycyclic” is a generalization of the well-known cyclic codes. Poly-
cyclic codes have the following special cases that have been defined and studied in the literature.

• If f “ xn ´ 1, then C is a cyclic code such that

pcn´1, c0, . . . , cn´2q P C for all pc0, c1, . . . , cn´1q P C .

• If f “ xn ` 1, then C is a negacyclic code such that

p´cn´1, c0, . . . , cn´2q P C for all pc0, c1, . . . , cn´1q P C .

• If f “ xn ´ a for some a P A˚, then C is a constacyclic code such that

pacn´1, c0, . . . , cn´2q P C for all pc0, c1, . . . , cn´1q P C .
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Cyclic codes are an important class of codes in both theory and practice. Theoretically,
there is rich mathematical theory in their properties, while practically, they are efficient to
be encoded and decoded. The study of cyclic codes over finite fields started from the re-
ports by Prange [Pra57; Pra85]. BCH codes are a class of cyclic codes with special generator
polynomials which result in good distance property. Cyclic codes over finite rings are exten-
sively studied since the work by Shankar [Sha79], where the Chinese Remainder Theorem was
used to investigate the BCH codes over integer rings. In Chapter 3, we introduce a class of
polycyclic codes where R is a skew polynomial ring.

2.5 Metrics
It can be seen from the last section that a code is simply a set of vectors or polynomials.
In order to design error-correcting codes, we need to measure the distinction between the
elements in the set. A distance measure dMp¨, ¨q on a set A is called a metric if it fulfills the
following conditions for all a, b, c P A:

• Positive definiteness: dMpa, bq ě 0 and the equality holds if and only if a “ b.

• Symmetry: dMpa, bq “ dMpb, aq.

• Triangle inequality: dMpa, bq ` dMpb, cq ě dMpa, cq.
In this thesis, several metrics are used to study the error-correction capability of the codes

constructed from polynomials.

2.5.1 Hamming Metric
The Hamming metric is the most used distance measure for error-correcting codes. It can be
used for any linear block codes.
Definition 2.16 (Hamming metric). The Hamming weight on Fn

q is defined as

wtHp¨q : Fn
q Ñ N
a ÞÑ |ti P rns | ai ‰ 0u| .

The Hamming distance between two vectors is defined as

dHp¨, ¨q : Fn
q ˆ Fn

q Ñ N
a, b ÞÑ |ti P rns | ai ´ bi ‰ 0u| “ wtHpa ´ bq .

For a code C Ď Fn
q , its minimum Hamming distance is

dHpCq :“ min
c1,c2PC
c1‰c2

dHpc1, c2q

“ min
0‰cPC

wtHpcq pIf C is linearq.

Theorem 2.13 (Singleton bound [Sin64]). For any block code C Ď Fn
q (linear or non-linear)

with minimum Hamming distance dHpCq “ d,

|C| ď qn´dHpCq`1 .
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2 Introduction to Codes based on Polynomials

If C is linear, then its dimension k fulfills

k ď n ´ d ` 1 .

A code whose length, cardinality and minimum Hamming distance fulfill the Singleton
bound is called maximum distance separable (MDS). (Generalized) Reed-Solomon (GRS)
codes are the most studied class of MDS codes. They require a field Fq of size at least
the code length n. There are not many other non-trivial (i.e., not rn, 1s or rn, ns) linear codes
with this property and all of them are relatively short compared to their field size. In fact
the famous MDS conjecture ([Seg55][Bal20, Conjecture 6.13]) asserts that within the range
4 ď k ď q ´ 2, a k-dimensional MDS codes of length n satisfies n ď q ` 1.

Theorem 2.14 (Sphere-packing [Ham50] and Gilbert-Varshamov bounds [Gil52; Var57]).
Let AH

q pn, dq be the maximum cardinality of a code C Ď Fn
q with minimum Hamming distance

dHpCq “ d. Then,

qn

řd´1
i“0

`

n
i

˘

pq ´ 1qi
ď AH

q pn, dq ď
qn

řt
i“0

`

n
i

˘

pq ´ 1qi
,

where t “
X

d´1
2
\

. The upper bound is the sphere-packing bound and the lower bound is the
Gilbert-Varshamov (GV) bound.

A code whose parameters fulfill the sphere-packing bound is called a perfect code. The
GV bound is often referred as the random coding bound. Namely, constructing a code by
randomly taking qn

řd´1
i“0 pn

iqpq´1qi
distinct vectors from Fn

q , with high probability, the code has
minimal Hamming distance at least d.

2.5.2 Rank Metric

Fix a basis β “ pβ1, β2, . . . , βmq of Fqm over Fq. We define a mapping from Fn
qm to Fmˆn

q by

extβ : Fn
qm Ñ Fmˆn

q

c “ pc1, c2, . . . , cnq ÞÑ C “

¨

˚

˝

c1,1 c1,2 . . . c1,n

...
...

. . .
...

cm,1 cm,2 . . . cm,n

˛

‹

‚

, (2.11)

where C is unique such that cj “
řm

i“1 ci,jβi, for all j “ 1, . . . , n. The Fq-rank of c is defined
as rankqpcq :“ rankpCq.

Definition 2.17 (Rank metric). The rank weight on Fn
qm is defined as

wtRp¨q : Fn
qm Ñ N
a ÞÑ rankqpaq .

The Rank distance between two vectors is defined as

dRp¨, ¨q : Fn
qm ˆ Fn

qm Ñ N
a, b ÞÑ rankqpa ´ bq.
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2.5 Metrics

For a code C Ď Fn
qm, its minimum rank distance is

dRpCq :“ min
c1,c2PC
c1‰c2

dRpc1, c2q

“ min
0‰cPC

wtRpcq pIf C is linearq.

Theorem 2.15 (Singleton bound in rank metric [Del78, Theorem 5.4]). For a code C Ď Fn
qm

with minimum rank distance dRpCq “ d,

|C| ď qmintnpm´d`1q,mpn´d`1qu “ qmaxtn,mupmintn,mu´d`1q .

If C is Fqm-linear, then its dimension k over Fqm fulfills

k ď n ´ d ` 1 .

A code whose length, cardinality and minimum rank distance fulfilling the Singleton bound
is a maximum rank distance (MRD) code. Gabidulin codes [Del78; Gab85; Rot91] are the most
well-known MRD codes. They are a class of evaluation codes based on linearlized polynomials
(a special class of skew polynomials).

Theorem 2.16 (Sphere-packing and Gilbert-Varshamov bounds in rank metric [GY06]).
Let AR

qmpn, dq be the maximum cardinality of a code C Ď Fn
qm with minimum rank distance

dRpCq “ d. Then,

qmn

ˇ

ˇ

ˇ
Bpd´1q

R

ˇ

ˇ

ˇ

ď AR
qmpn, dq ď

qmn

ˇ

ˇ

ˇ
Bptq

R

ˇ

ˇ

ˇ

,

where t “
X

d´1
2
\

and
ˇ

ˇ

ˇ
Bpτq

R

ˇ

ˇ

ˇ
is a set (often called ball) of all the vectors of rank distance at

most τ to a fixed vector b P Fn
qm (e.g., b “ 0), i.e.,

Bpτq

R :“
␣

a P Fn
qm | wtRpaq ď τ

(

and
ˇ

ˇ

ˇ
Bpτq

R

ˇ

ˇ

ˇ
“

τ
ÿ

i“0

„

m

i

ȷ

q

i´1
ź

j“0
pqn ´ qjq with

„

m

i

ȷ

q

“

i´1
ź

j“0

qm ´ qj

qi ´ qj
.

2.5.3 Sum-Rank Metric

The sum-rank metric was first considered in coding for MIMO (multiple-input multiple-
output) block-fading channels [EGH03; LK05] and the design of PSK-AM (phase-shift keying
with amplitude modulation) constellations [Lu06]. It was then explicitly introduced in multi-
shot network coding [NU09]. An explicit construction of optimal space-time codes in terms of
rate-diversity trade-off from sum-rank metric codes over a finite field was first given in [SK21].
Additionally, sum-rank metric codes have been considered in applications such as network
streaming [MBK16], distributed storage systems [MK19c; MN20; CMST21] and post-quantum
secure code-based cryptosystems [D’A22; HBH22]. Extensive research has been done in recent
years in fundamental coding-theoretical properties of sum-rank metric codes, e.g., [Mar19;
BGR21; OPB21; CGL+22; OLW22; OLW23], constructions of perfect/optimal/systematic
sum-rank metric codes [Mar20; AMN20; Mar22; ALNW22; CD22].
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2 Introduction to Codes based on Polynomials

Given an ordered partition nℓ “ pn1, . . . , nℓq of n P N, we write a vector a of length n with
respect to nℓ as

a “ pa1, a2, . . . , aℓq ,

where ai is of length ni, for all i P rℓs.

Definition 2.18 (Sum-rank metric). The sum-rank weight on Fn
qm, w.r.t. an ordered partition

nℓ “ pn1, . . . , nℓq of n, is defined as

wtSR,nℓ
p¨q : Fn

qm Ñ N

a ÞÑ

ℓ
ÿ

i“1
rankqpaiq .

The sum-rank distance between two vectors is defined as

dSR,nℓ
p¨, ¨q : Fn

qm ˆ Fn
qm Ñ N

a, b ÞÑ wtSR,nℓ
pa ´ bq .

For a code C Ď Fn
qm, its minimum sum-rank distance is

dSR,nℓ
pCq :“ min

c1,c2PC
c1‰c2

dSR,nℓ
pc1, c2q

“ min
0‰cPC

wtSR,nℓ
pcq pIf C is linearq .

It is known that for ℓ “ 1, the sum-rank metric coincides with the rank metric, and for
ℓ “ n, the sum-rank metric is the Hamming metric [MSK+22, Proposition 1.4, 1.5]. The
following lemma gives a relation among the Hamming, the sum-rank and the rank weights of
a fixed vector x P Fn

qm .

Lemma 2.4. For a vector x P Fn
qm and any ordered partition nℓ “ pn1, . . . , nℓq of n, wtRpxq ď

wtSR,nℓ
pxq ď wtHpxq.

Proof. We first show that wtSR,nℓ
pxq ď wtHpxq. Consider x “ px1, . . . , xℓq P Fn

qm with
wtHpxq “ n ´ t “

řℓ
i“1 ni ´ ti where ti is the number of zero entries in xi and

řℓ
i“1 ti “ t.

For any i P rℓs, rankqpxiq ď wtHpxiq since the rank of a matrix is at most the number of
its nonzero columns. By the definition of wtSR,nℓ

, we have wtSR,nℓ
pxq “

řℓ
i“1 rankqpxiq ď

řℓ
i“1 ni ´ ti “ n ´ t “ wtHpxq.
Now we show wtRpxq ď wtSR,nℓ

pxq. Suppose wtSR,nℓ
pxq “ t “

řℓ
i“1 ti, which means each xi

has ti Fq-linearly independent entries for i P rℓs. Then x has at most t Fq-linearly independent
entries, which corresponds to the rank weight of x.

It can be seen that Fn
qm is isometric to Fmˆn

q or Fnˆm
q as Fq-vector spaces. The definition

of the sum-rank metric on Fmˆn
q and Fnˆm

q follows naturally from Definition 2.18. For later
usage, we give the definition of sum-rank metric on these matrix spaces in the following. For
simplicity, we abuse the notation wtSR,nℓ

for the matrix space.
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2.5 Metrics

Let ℓ P N and nℓ “ pn1, . . . , nℓq P Nℓ be an ordered partition of n “
řℓ

l“1 nl. For matrices

A “
`

A1 A2 . . . Aℓ

˘

P Fmˆn
q or B “

¨

˚

˚

˚

˝

B1
B2
...

Bℓ

˛

‹

‹

‹

‚

P Fnˆm
q ,

where Ai P Fmˆni
q and Bi P Fniˆm

q , i P rℓs, we say A has a column-wise partition with respect
to nℓ and B has a row-wise partition w.r.t. nℓ. The sum-rank weights of A and B w.r.t. nℓ

are, respectively,

wtSR,nℓ
pAq :“

ℓ
ÿ

l“1
rankpAlq and wtSR,nℓ

pBq :“
ℓ
ÿ

l“1
rankpBlq .

We can find the following relation between the sum-rank weight and the rank of a matrix.

Lemma 2.5. For a matrix A P Fmˆn
q and an ordered partition nℓ “ pn1, . . . , nℓq of n,

rankpAq ď wtSR,nℓ
pAq ď ℓ ¨ rankpAq. Similarly, for a matrix B P Fnˆm

q , rankpBq ď

wtSR,nℓ
pBq ď ℓ ¨ rankpBq.

Proof. Denote by xAyc the column space of a matrix A. For the first inequality,

rankpAq “ dimpxAycq “ dimpxA1yc ` ¨ ¨ ¨ ` xAℓycq

ď dimpxA1ycq ` ¨ ¨ ¨ dimpxAℓycq

“ rankpA1q ` ¨ ¨ ¨ ` rankpAℓq “ wtSR,nℓ
pAq .

For the second inequality,

wtSR,nℓ
pAq “

ℓ
ÿ

i“1
rankpAiq ď

ℓ
ÿ

i“1
rankpAq “ ℓ ¨ rankpAq .

For the matrix B P Fnˆm
q with a row-wise partition, the proof is similar, by considering the

row space of B and Bi’s.

With the relation between the sum-rank metric and the Hamming metric in Lemma 2.4, the
following Singleton bound for sum-rank-metric codes can be easily derived from the Singleton
bound for Hamming-metric codes in Theorem 2.13.

Theorem 2.17 (Singleton bound in the sum-rank metric [MSK+22, Theorem 1.4]). Let nℓ

be an ordered partition of n P N. For a code C Ď Fn
qm (linear or non-linear) with minimum

sum-rank distance dSR,nℓ
pCq “ d,

|C| ď qmpn´d`1q .

If C is Fqm-linear, then its dimension k over Fqm fulfills

k ď n ´ d ` 1 .

The equality holds in both equations if and only if CA :“ tcA | c P Cu is an MDS code,
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2 Introduction to Codes based on Polynomials

i.e., dHpCAq “ d, for all A “ diagpA1, . . . , Aℓq P Fnˆn
q where every Ai P Fniˆni

q , i P rℓs is
invertible.

A code whose length, cardinality and minimum sum-rank distance fulfilling the Single-
ton bound is a maximum sum-rank distance (MSRD) code. Linearized Reed-Solomon codes
[Mar18; CD18] are a class of MSRD codes which gained a lot of research interest. They are
evaluation codes based on skew polynomials.

Theorem 2.18 (Sphere-packing and Gilbert-Varshamov bounds in sum-rank metric [BGR21]).
Let nℓ be an ordered partition of n P N and ASR

qmpn, dq be the maximum cardinality of a code
C Ď Fn

qm with minimum sum-rank distance dSR,nℓ
pCq “ d. Then,

qmn

ˇ

ˇ

ˇ
Bpd´1q

SR

ˇ

ˇ

ˇ

ď ASR
qmpn, dq ď

qmn

ˇ

ˇ

ˇ
Bptq

SR

ˇ

ˇ

ˇ

,

where t “
X

d´1
2
\

and
ˇ

ˇ

ˇ
Bpτq

SR

ˇ

ˇ

ˇ
is a set (often called ball) of all the vectors of sum-rank distance

at most τ to a fixed vector in Fqm (e.g., 0), i.e.,

Bpτq

SR :“
␣

a P Fn
qm | wtSR,nℓ

paq ď τ
(

and
ˇ

ˇ

ˇ
Bpτq

SR

ˇ

ˇ

ˇ
“

τ
ÿ

s“0

ÿ

ps1,...,sℓqPNℓ

s1`¨¨¨`sℓ“s

ℓ
ź

i“1

„

ni

si

ȷ

q

si´1
ź

j“0
pqm ´ qjq . (2.12)

Due to the second sum over all the ordered partitions of s in (2.12), computing the ball
size is expensive. An efficient algorithm is given in [PRR22, Algorithm 1] for computing the
ˇ

ˇ

ˇ
Bpτq

SR p0q

ˇ

ˇ

ˇ
with complexity O

`

τ
`

ℓd3 ` d4pℓm ` nq logpqq
˘˘

. Simplified forms and asymptotic
behaviors of the sphere-packing bound and the Gilbert-Varshamov bound in the sum-rank
metric are given in [OPB21].

28



3
Dual-Containing Polycyclic Codes over Rings
based on Skew Polynomials

Finite rings are considered to be possible alphabets for linear codes first by Assmus Jr. and
Mattson [AM63]. Blake investigated in [Bla72] the structure of cyclic codes over Zm and
studied in [Bla75] the analogues to Hamming, Reed-Solonmon and BCH codes over Zpr .
Spiegel [Spi77; Spi78] generalized Blake’s results to any integer ring Zm by using the Chinese
Remainder Theorem. The interest in codes over finite rings has been evoked since the works by
Carlderbank et al. [CHK+93; HKC+94], which use linear codes over Z4 to explain the duality
between the nonlinear binary Kerkock and Preparata codes. The works by Wood [Woo99;
Woo08; Woo09] laid a foundation of algebraic coding theory over finite rings by extending
the two classical theorems by MacWilliams [Mac61; Mac62] to codes over finite rings. The
extension theorem is also known as the equivalence theorem and the MacWilliams identities
deal with the relation between the Hamming weight enumerators of a linear code and its dual.

Self-dual codes (or in general, dual-containing codes) have attracted a lot of research interest
since the work by Calderbank et al. [CRSS98], which transformed the problem of constructing
quantum error-correcting (QEC) codes into the problem of finding classical additive codes
which are dual-containing. Several QEC codes have been constructed from classical codes,
such as BCH codes [AKS07], Reed-Solomon codes [LXW08], Reed-Muller codes [Ste99] and
algebraic geometric codes [CLX05]. Many good QEC codes have been constructed from cyclic
codes over finite rings [QMG09; KZ11; GG14; TZKD16; BDUY19]. Constacyclic codes and
negacyclic codes, as generalizations of cyclic codes (cf. Remark 2.1), have also been used to
construct quantum codes [CLZ15; GW18; WLLG20; AIP+21].

Skew-cyclic codes (also called θ-cyclic code) are a class of polycyclic codes Cpg, fq where
g, f are polynomials in a skew polynomial ring ArX; θs and f “ Xn ´ 1, so that the θ-cyclic
shift of any codeword in a skew-cyclic code C is also a codeword, i.e.,

pθpcn´1q, θpc0q, . . . , θpcn´2qq P C for all pc0, c1, . . . , cn´1q P C .

The concept of skew-cyclic codes was introduced over finite fields by Boucher, Geiselmann and
Ulmer [BGU07]. Analogue to Definition 2.15 of the polycyclic codes, each skew-cyclic code
corresponds to a right divisor g of f “ Xn ´1. Since skew polynomials do not necessarily have
unique irreducible factorizations, a polynomial Xn ´ 1 may have a considerable number of
distinct right divisors of the same degree, which leads to many skew cyclic codes. Therefore,
there is better chance to obtain codes with good parameters. This was one motivation of
[BGU07] to introduce the notion of skew-cyclic codes. The works [BSU08; BU09b; BU09a]
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3 Dual-Containing Polycyclic Codes over Rings based on Skew Polynomials

further investigate skew-cyclic codes over finite rings. The notions of skew-constacyclic and
skew-negacyclic are the generalizations with f “ Xn ´a, a P A˚ and f “ Xn `1, respectively.
The skew polynomials ring ArX; θ, δs with nonzero derivation was first considered by Boucher
and Ulmer [BU14a] to construct pθ, δq-cyclic codes, where the following pθ, δq-cyclic shift of a
codeword is also a codeword:

pθpcn´1q ` δpc0q, θpc0q ` δpc1q, . . . , θpcn´2q ` δpcn´1qq P C for all pc0, c1, . . . , cn´1q P C.

Boulagouaz and Leroy [BL13] generalized the notion to pθ, δq-polycyclic codes. These works
both considered codes over finite fields. Since the work [SB18] by Sharma and Bhaintwal,
several works also investigated the pθ, δq-polycyclic codes over finite rings [MGLF21; ST21;
MGF22; PP22; Sup23]. Recently, θ-cyclic codes over various rings have been used to construct
quantum codes [DBU+21; VPIS22; PVS23], as well as pθ, δq-polycyclic codes [PIP22].

This chapter considers constructions of dual-containing codes over finite commutative rings
from skew polynomials with derivations. We first introduce in Section 3.1 the rings over which
we search for dual-containing codes. In Section 3.2, we define the pθ, δq-polycyclic codes
and introduce some properties regarding the codes and their dual codes. We then present
in Section 3.3 an algorithm using Gröbner bases to compute all the dual-containing pθ, δq-
polycyclic codes. The resulting codes found by the algorithm are presented in Section 3.4.

This chapter is based on the work [LOU23], submitted to Advances in Mathematics of Com-
munications.

3.1 Base Rings, Endomorphisms and Derivations

Throughout the chapter, we denote by A a finite commutative ring, θ an endomorphism of
A, δ a θ-derivation of A, and R “ ArX; θ, δs a skew polynomial ring.

For the base ring A over which dual-containing codes are constructed, we consider the
finite commutative ring A that is a free B-algebra, denoted by A “ Brβ1, β2, . . . , βss, where
β1, β2, . . . , βs form a basis of A over B. This means that any element a P A can be written as
a B-linear combinations of β1, β2, . . . , βs, i.e., a “ b1β1 ` ¨ ¨ ¨ ` bsβs for some b1, . . . , bs P B.

In this chapter we consider the following rings A of order 4, which are all free F2-algebras,
to construct self-dual codes C Ď An:

• A “ F2rvs where v2 “ v,

• A “ F2rus where u2 “ 0,

• A “ F4 “ F2rαs where α2 “ α ` 1.

Here we add some insights on the notations. For the finite field F4, it is well-known that it
is also a quotient ring F2rxs{

@

x2 ´ x ´ 1
D

where x2 ´ x ´ 1 is an irreducible polynomial in
F2rxs, and t1, αu constitutes a basis of F4 over F2 (α is often called the primitive element
in the context of finite fields). Analogously, the ring F2rvs (resp. F2rus) is the quotient ring
F2rxs{

@

x2 ´ x
D

(F2rxs{
@

x2D), and v (u) constitutes a basis of the ring over F2. Since x2 ´ x
(resp. x2) is not irreducible in F2rxs, there are zero divisors tv, v ` 1u (tuu) in the ring.

For the endomorphisms θ and θ-derivations δ of A that we use to define the skew polynomial
ring ArX; θ, δs, we consider those that can be written as polynomial maps in the subring
B Ď A.
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Definition 3.1 (Polynomial maps). A polynomial map on a ring B is a map

f : B Ñ B

x ÞÑ

s
ÿ

i“0
bix

i,

where s P N and bi P B.

For the rings F2rvs,F2rus and F2rαs, the endomorphisms θ and derivations δ which are
polynomial maps in the subring B “ F2 are listed in Table 3.1. Note that since θp0q “

0, θp1q “ 1, δp0q “ 0 and δp1q “ 0, it is sufficient to give the map on the basis (v, u or α) of
A over B to determine the value θpaq and δpaq for all a P A.

Table 3.1: Endomorphisms and derivations of the rings. The gray cells indicate the inner
derivations.

(a) The endomorphisms θ and derivations δ of the ring F2rvs.

F2rvs Automorphism Endomorphism
θ1 “ id θ2 : v ÞÑ v ` 1 θ3 : v ÞÑ 0 θ4 : v ÞÑ 1

δ1 “ 0 v ÞÑ 0 v ÞÑ 0 v ÞÑ 0 v ÞÑ 0
δ2 v ÞÑ 1
δ3 v ÞÑ v v ÞÑ v

δ4 v ÞÑ v ` 1 v ÞÑ v ` 1
(b) The endomorphisms θ and derivations δ of the

ring F2rus.

F2rus Automorphism Endomorphism
θ1 “ id θ2 : u ÞÑ 0

δ1 “ 0 u ÞÑ 0 u ÞÑ 0
δ2 u ÞÑ 1
δ3 u ÞÑ u u ÞÑ u

δ4 u ÞÑ u ` 1

(c) The endomorphisms θ and derivations
δ of the ring F2rαs.

F2rαs Automorphism
θ1 “ id θ2 : α ÞÑ α ` 1

δ1 “ 0 α ÞÑ 0 α ÞÑ 0
δ2 α ÞÑ 1
δ3 α ÞÑ α

δ4 α ÞÑ α ` 1

The following examples show that a map which is a polynomial map in B is not necessarily a
polynomial map in A Ą B. The principle to determine whether a map θ (or δ) is a polynomial
map in A is to check whether θ can be written as θpxq “

ř

iPN aix
i with fixed ai P A for all

x P A.

Example 3.1. Consider the ring A “ F2rvs of order 4. As listed in Table 3.1a, there are two
automorphisms θ1 “ id and θ2, and two non-trivial endomorphisms θ3 and θ4.

The automorphism θ1 “ id is trivially a polynomial map on A. Suppose that the automor-
phism θ2 is a polynomial map on A such that for any x P A,

θ2 : x ÞÑ
ÿ

iPN
pbi,0 ` bi,1vq
loooooomoooooon

PA

xi “
ÿ

iPN
bi,0xi `

ÿ

iPN
bi,1vxi pbi,j P F2q .

Then θ2p0q “ 0 ùñ b0,0 “ 0. Since bi,j P t0, 1u, θ2pvq is a sum of positive powers of v. Since
v2 “ v, we have that θ2pvq is a sum of v, which is either v or 0 in this ring of characteristic
2. However, since θ2pvq “ v ` 1, we conclude that θ2 is not a polynomial map on A.
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Example 3.2. Consider the ring A “ F2rus. As listed in Table 3.1b, the only automorphism
of A is θ1 “ id, which is a polynomial map in A. Suppose that a θ1-derivation δ of A is a
polynomial map in A such that for any x P A,

δ : x ÞÑ

t
ÿ

i“0
aix

i pai P Aq .

Since δp1q “ 0, we must have a0 “ 0 in the polynomial map. From u2 “ 0, we obtain
δpuq “

řt
i“1 aiu

i “ a1u. Write a1 “ b1,0 ` b1,1u P A with some b1,0, b1,1 P F2. Then
δpuq “ b1,0u`b1,1u2 “ b1,0u, which can never be u`1 or 1. Hence, δ2puq “ 1 and δ4puq “ u`1
are not polynomial maps on A.

3.2 Polycyclic Codes over Rings based on Skew Polynomials
Denote by xfyl Ď R a left ideal in R generated by f P R. The quotient ring (or factor ring)
of R modulo the left ideal xfyl is defined as

R{ xfyl :“ th mod f | h P Ru ,

where h mod f gives the remainder of right dividing h by f (applying Algorithm 2.3).

Proposition 3.1. Let I be a left ideal in R{ xfyl. Then

(i) There is a unique monic polynomial g P I of minimal degree.

(ii) I is principle with a generator g.

(iii) g r f in R.

Proof. (i) Suppose that there are two monic skew polynomials with minimum degree in I,
say h and g and g ‰ h. Since I forms an additive group, r “ g ´ h P I and degprq ă degpgq “

degphq, which is contrary to the minimal degree assumption on g and h.
(ii) Suppose that there exists an h P I which is not a right multiple of g. Then h “ mg ` r

for some m P R, r P I and degprq ă degpgq. This contradicts the degree minimality of g.
(iii) Suppose that g fflr f . We can then write f “ mg ` r for some m, r P R and degprq ă

degpgq. Since g is a generator of I, mg P I and r “ f ´ mg ” ´mg mod f , which means r is
an additive inverse of mg in R{ xfyl and therefore r P I Ď R{ xfyl. However, this contradicts
the degree minimality of g.

The results above shows that every left ideal in the quotient ring R{ xfyl is a principle left
ideal and different left ideals are generated by different right factors of f .

Analogue to the polycyclic codes (Definition 2.15) which are ideals in the quotient ring
Arxs{ xfy for some f P Arxs, for a non-commutative skew polynomial ring, we define the
polycyclic codes as the left ideals in the quotient ring R{ xfyl for some f P R.

Definition 3.2 (pθ, δq-polycyclic code). Let f P R be a monic skew polynomial with a right
divisor g P R. A pθ, δq-polycyclic code (in short pθ, δq-code) w.r.t. g, f is defined as a left
ideal in R{ xfyl generated by g, i.e.,

Cpg, fq :“ xgyl { xfyl “ tu ¨ g mod f | u P Ru .
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The polynomial g is a generator polynomial of Cpg, fq.
Let n “ degpfq and k “ n ´ degpgq. A linear block code Crn, ks is a pθ, δq-code if

Crn, ks :“
␣

c “ pc0, c1, . . . , cn´1q | c0 ` c1X ` ¨ ¨ ¨ ` cn´1Xn´1 P Cpg, fq
(

.

3.2.1 Module Codes
Linear codes of length n over a finite field F can be seen as subspaces of the vector spaces
Fn. Analogously, linear codes over a finite ring A can be seen as submodules of the module
An :“ tpa0, a1, . . . , an´1q | ai P A, @i P rnsu. Informally speaking, the concept of module is a
generalization of the vector space, in the sense that the set of scalars is a ring instead of a
field.

Definition 3.3 (Module). Let A be a ring. A left A-module M consists of an abelian group
pM, `q and a left scalar multiplication ¨ : AˆM Ñ M such that for all a, b P A and x, y P M,

(i) a ¨ px ` yq “ a ¨ x,

(ii) pa ` bq ¨ x “ a ¨ x ` b ¨ x,

(iii) pabq ¨ x “ a ¨ pb ¨ xq,

(iv) 1 ¨ x “ x.

A right A-module M is defined similarly with a right scalar multiplication ¨: M ˆ A Ñ M.

Vector spaces over a finite field F always have a basis (i.e., every element in the vector space
is a unique F-linear combination of the elements in the basis), and the dimension is unique.
However, modules do not always have a basis. The modules that have a basis are called free
modules.

Proposition 3.2. Let f P R be a monic skew polynomial. The quotient ring R{ xfyl is a left
R-module and a free left A-module. Moreover, R{ xfyl – An.

Proof. By definition, R{ xfyl is a left R-module. Since f is monic, we can perform the right
division (Algorithm 2.3) on any element u P R by f and obtain a unique remainder polynomial
of degree ă n. For any r P R of degprq ă n, there exist u, q P R (possibly infinite pairs)
such that u “ qf ` r. Therefore, R{ xfyl “ tr P R | degprq ă nu. It is easy to see that
tr P R | degprq ă nu is a free A-module with a basis p1, X, . . . , Xn´1q and

␣

pr0, r1, . . . , rn´1q | r0 ` r1X ` ¨ ¨ ¨ ` rn´1Xn´1 P R{ xfyl

(

“ An .

Proposition 3.3. Let f P R be a monic skew polynomial with a right divisor g P R. The
pθ, δq-code Cpg, fq is a left R-submodule of R{ xfyl and a free left A-submodule of dimension
k “ degpfq ´ degpgq.

Proof. By definition, Cpg, fq “ xgyl { xfyl is a left R-submodule of R{ xfyl. Since f is monic,
the leading coefficient lcpgq is a right divisor of 1 and is therefore invertible. For any w P

Cpg, fq, g r w and the quotient polynomial q is unique (Theorem 2.5) and of degree at
most k. This implies that the Cpg, fq is a free A-submodule of dimension k with a basis
pg, Xg, . . . , Xk´1gq.
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The relations between the quotient ring R{ xfyl, the A-module An, the left ideal Cpg, fq in
R{ xfyl, and the block code Crn, ks are illustrated below.

R{ xfyl

Ě

Cpg, fq

– An

Ě

– Crn, ks

The code Crn, ks has a generator matrix of the following form:

G “

¨

˚

˚

˚

˝

g0 g1 ¨ ¨ ¨ gn´k 0 ¨ ¨ ¨

gδ
0 gδ

1 ` gθ
0 gδ

2 ` gθ
1 ¨ ¨ ¨ gθ

n´k 0 ¨ ¨ ¨

...
. . .

. . . ¨ ¨ ¨
. . .

. . .

gδk´1
0 ¨ ¨ ¨ ¨ ¨ ¨ gθk´1

n´k

˛

‹

‹

‹

‚

.

The rows are given by the coefficients of g, Xg, . . . , Xk´1g, which can be computed using the
rule Xa “ aθX ` aδ for a P A. In particular, the code is completely determined by g, θ and
δ.

Example 3.3. Let f P R be a monic skew polynomial of degree 4 and g “ g0 ` g1X be a right
divisor of f . The pθ, δq-code Cr4, 3s – Cpg, fq has a generator matrix

G “

¨

˝

g0 g1 0 0
gδ

0 gδ
1 ` gθ

0 gθ
1 0

gδ2
0 gδθ

0 ` gθδ
0 ` gδ2

1 gθ2
0 ` gδθ

1 ` gθδ
1 gθ2

1

˛

‚ .

If θ is of the form a ÞÑ aq and δ is an inner θ-derivation a ÞÑ βa ´ θpaqβ, which are the
only possibilities if A is a finite field Fqm , then the entries of the generator matrix G become
polynomial expressions in the coefficients of g, which allows sophisticated computations over
A. Hence, most studies on self dual pθ, δq-code so far considered A to be a finite field.

3.2.2 Parity-Check Polynomials/Matrices of pθ, δq-Codes
For A “ Fq, a parity-check matrix of pθ, δq-codes has been derived for δ “ 0 in [BU09a,
Corollary 1] for general δ ‰ 0 in [BL13]. A later work [BD18] derived a parity-check matrix
for A being a finite commutative rings. In [SB18], a parity-check matrix for pθ, δq-codes Cpg, fq

over the ring A “ Z4rus, u2 “ 1 is studied when f “ hg is a central polynomial1. The works
[BL13; BD18] used the framework of pseudo-linear transformations, while we only use the
framework of skew polynomial rings to derive a parity-check matrix in this section.

In order to obtain a parity-check matrix for pθ, δq-codes Cpg, fq, we make the additional
assumption that there exists ℏ P R such that f “ hg “ gℏ (i.e., g is a left and right divisor of
f). This assumption is weaker than the assumption that f is central, which allows us to find
more g, f P R to construct dual-containing codes (see the r6, 4s example in Section 3.4.1).

In the rest of this chapter, we also make the assumptions in following proposition on the
leading coefficients of g, h, ℏ.

Proposition 3.4. For a pθ, δq-codes Cpg, fq, where f is monic and g is a left and right divisor
of f , i.e., f “ hg “ gℏ for some h, ℏ P R,

1A polynomial f P R is called central if hf “ fh, for all h P R. Equivalently, a polynomial f P ArX; θ, δs is
central if Xf “ fX.
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(i) we can assume w.l.o.g. that g and h are monic;

(ii) if θ is an automorphism, then we can also assume w.l.o.g. that ℏ is monic.

Proof. Let g “ gn´kXn´k `¨ ¨ ¨`g0 and h “ hkXk `¨ ¨ ¨`h0. Since f “ hg and f is monic, the
leading coefficient of f “ hg is hkθkpgn´kq “ 1, showing that hk and θkpgn´kq are invertible.
We can write

f “ phkXk ` ¨ ¨ ¨ ` h0q
loooooooooomoooooooooon

h

¨ pgn´kXn´k ` ¨ ¨ ¨ ` g0q
looooooooooooomooooooooooooon

g

“ phkXk ` ¨ ¨ ¨ ` h0q ¨ gn´k
looooooooooooooomooooooooooooooon

h̃

¨ g´1
n´k ¨ pgn´kXn´k ` ¨ ¨ ¨ ` g0q
loooooooooooooooooomoooooooooooooooooon

g̃

.

Note that g̃ is a monic polynomial. Since the endomorphism θ maps 1 to 1, the leading
coefficient of h̃g̃ is the leading coefficient of h̃. Because h̃g̃ “ f is monic, we obtain that
h̃ is also a monic polynomial. The polynomials g differ from g̃ by multiplying an invertible
element. It can be seen that any left multiple of g by a polynomial of degree ď k ´ 1 is
also a left multiple of g̃ by another polynomial of degree ď k ´ 1 and vice versa. Therefore,
Cpg, fq “ Cpg̃, fq and we can assume w.l.o.g. that g is a monic polynomial. With the argument
on h̃ above, we can assume that h is also monic.

We now show that ℏ “ ℏkXk ` ¨ ¨ ¨ ` ℏ0 is monic if θ is an automorphism. The leading
coefficient lcpfq “ lcpgℏq “ gn´kθn´kpℏkq “ 1. Since both f and g are monic, θn´kpℏkq must
be 1. If θ is an automorphism, we obtain that ℏk “ 1.

Proposition 3.4 (ii) implies that if θ is a non-trivial endomorphism (not an automorphism),
the ℏ in the decomposition f “ gℏ may not be monic. In the following we give an example of
such case.

Example 3.4. Consider the ring A “ F2rus where u2 “ 0, the non-trivial endomorphism
θ2puq “ 0 of A and the θ2-derivation δ3puq “ u (Table 3.1b). Let R “ ArX; θ2, δ3s. For the
skew polynomials g “ X2 ` uX ` u ` 1 and f “ X4 ` pu ` 1qX3 ` X ` u ` 1, it can be verified
that g is a left and right divisor of f . For the case g being a right divisor, we found that f
can be decomposed into f “ hg with the unique monic h “ X2 ` pu ` 1qX ` 1. For the case g
being a left divisor, f can be decomposed into f “ gℏ with ℏ “ pu ` 1qX2 ` pu ` 1qX ` u ` 1
or ℏ “ pu ` 1qX2 ` X ` u ` 1, neither of which is monic.

The following shows that the polynomial ℏ plays a role as a “parity-check polynomial”.

Lemma 3.1 (Parity-check polynomial of a pθ, δq-code). Let f P R be a monic polynomial
of degree n, g P R be a monic left and right divisor of f of degree n ´ k (f “ hg “ gℏ for
some h, ℏ P R), and Crn, ks – Cpg, fq be a pθ, δq-code as defined in Definition 3.2. A word
c “ pc0, c1, . . . , cn´1q P An is a codeword of Crn, ks if and only if the corresponding skew
polynomial c “ c0 ` c1X ` cn´1Xn´1 fulfills cℏ “ 0 in R{ xfyl.

Proof. The statement is trivial for c “ 0. Consider any nonzero c P An. If c P Crn, ks, then
c “ wg for some w P R. Then cℏ “ wgℏ “ wphgq “ 0 mod f , which is equivalent to say that
cℏ “ 0 in R{ xfyl. Conversely, if cℏ “ 0 in R{ xfyl, then cℏ “ w̃f “ w̃pgℏq for some w̃ P R.
Since f is monic and ℏ is a right divisor of f , ℏ is not a zero divisor in R and we obtain
c “ w̃g, showing that c P Crn, ks.
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Lemma 3.2 (Parity-check matrix of a pθ, δq-code). We follow the notations in Lemma 3.1.
There is a matrix M P Anˆn such that cM “ 0, @c P Crn, ks, where the entries of M are
images under θ and δ of the coefficients of ℏ and g.

Proof. Note that c “ c0 ` c1X ` cn´1Xn´1 P Cpg, fq is the corresponding skew polynomial of
c P Crn, ks. By Lemma 3.1, we have cℏ “ 0 in R{ xfyl, which is equivalent to

cℏ “

˜

n´1
ÿ

i“0
ciX

i

¸

ℏ ” 0 mod f . (3.1)

By applying the multiplication and the right module by f , we get a system of linear equa-
tions

n´1
ÿ

i“0
ciMijXj “ 0, @j P r0, n ´ 1s , (3.2)

where Mij is the coefficient of Xj in Xi ¨ ℏ mod f , which is the image under θ and δ of the
coefficients of ℏ and f , @i, j “ 0, . . . , n ´ 1. Since f “ gℏ, the coefficients of f can be replaced
by the coefficients of ℏ and g. Let M be an n ˆ n matrix whose entries are Mij ’s. It can be
shown that

(3.2) ðñ cM “ 0 .

The following toy example provides some insights on how such a matrix M may look like.

Example 3.5. Consider a ring A, a skew polynomial ring R “ ArX; θ, δs, f “ X3 `
ř2

i“0 fiX
i, g “ X2 ` g1X ` g0 and ℏ “ ℏ1X ` ℏ0 in R such that f “ gℏ. According

to Lemma 3.1, c “ pc0, c1, c2q P Cr3, 1s – Cpg, fq if and only if cℏ ” 0 mod f , where
c “ c0 ` c1X ` c2X2. Since

cℏ mod f “

´

c2pℏθδ
1 ` ℏδθ

1 ` ℏθ2
0 ´ℏθ2

1 f2q ` c1ℏθ
1

¯

X2

`

´

c2pℏδ2
1 ` ℏθδ

0 ` ℏδθ
0 ´ℏθ2

1 f1q ` c1pℏδ
1 ` ℏθ

0q ` c0ℏ1

¯

X

` c2pℏδ2
0 ´ℏθ2

1 f0q ` c1ℏδ
0 ` c0ℏ0 ,

(3.3)

we obtain the following matrix M P A3ˆ3 such that cM “ 0.

M “

ℏ0 ℏ1 0
ℏδ

0 ℏδ
1 ` ℏθ

0 ℏθ
1

ℏδ2
0 ´ℏθ2

1 f0 ℏδ2
1 ` ℏθδ

0 ` ℏδθ
0 ´ℏθ2

1 f1 ℏθδ
1 ` ℏδθ

1 ` ℏθ2
0 ´ℏθ2

1 f2

¨

˚

˚

˝

˛

‹

‹

‚

. (3.4)

Note that the entry Mij in M corresponds to the coefficient of the term ciX
j in the polynomial

cℏ mod f , e.g., M11 is the coefficient of c1X in (3.3), which is pℏδ
1 ` ℏθ

0q.
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3.2.3 Dual Codes of pθ, δq-Codes
Most dual codes studied in the literature consider the Euclidean inner product to define
duality. In this section, we consider a more general notion of inner product and duality.

Definition 3.4 (Hermitian inner product and Hermitian dual). Let σ be an automorphism of
A of order2 at most 2. The σ-Hermitian inner product of x, y P An is defined as xx, yyσ :“
řn

i“1 xiσpyiq. The σ-Hermitian dual code of a code C is defined as

CKσ :“ tv | xv, cyσ “ 0, @c P Cu .

A code is σ-dual-containing if CKσ Ď C, and σ-self dual if C “ CKσ . In particular, if σ “ id,
we obtain the Euclidean inner product and the Euclidean dual. In this case, we omit the σ
in the notation.

Frobenius rings are promoted by Wood [Woo99] as the most appropriate rings for coding
theory over finite rings, because two classical theorems of MacWilliams – the extension the-
orem (also known as the equivalence theorem) and the MacWilliams identities – generalize
to Frobenius rings. Szabo and Wood [SW17] showed that dual codes have complementary
cardinality for codes over finite Frobenius rings. Note that the rings F2rvs, F2rus and F2rαs

are all Frobenius rings.

Theorem 3.1 (MacWilliams theorems for codes over finite Frobenius rings [Woo99]). Let C
be a linear code over a finite Frobenius ring A, then

• (Extension theorem) Every isometric map C Ñ An that preserves the Hamming weight
of the code can be extended to a monomial transformation.

• (MacWilliams identities) The weight enumerator of the dual code is determined by the
weight enumerator of the code.

Lemma 3.3 (Complementary cardinality of dual codes [SW17, Theorem 3.6]). Let A be a
finite frobenius ring and σ be an automorphism of A of order at most 2. For a linear code C
over A, its σ-Hermitian dual code CKσ has the complementary cardinality of the code, i.e.,
|C| ¨ |CKσ | “ |A|n.

The following is devoted to derive a generator matrix of the Euclidean dual and σ-Hermitian
dual of the pθ, δq-codes, respectively. For the case δ “ 0, the dual codes have been studied
for A being Z4 [BSU08], F4 [BU09a], Fq [BU09a] and general finite rings [BU11; BD18]. For
δ ‰ 0, the dual codes are much less studied.

Theorem 3.2 (Generator matrix of the Euclidean dual). Let A be a finite Frobenius ring.
Let C “ Crn, ks be the linear block pθ, δq-code as defined in Definition 3.2. Then, the Euclidean
dual code CK of C is a linear free A-module code of length n and dimension n´k. A generator
matrix GK P Apn´kqˆn of CK is composed of the transpose of the last n ´ k columns of the
matrix M defined in (3.2).

Proof. It follows from Lemma 3.2 that all the columns of the n ˆ n matrix M are orthogonal
to all the codewords in C. In other words, all the columns of M are in CK. We denote by rC
the code generated by the columns of the n ˆ n matrix M described in (3.2) (see (3.4) for an

2The order of an automorphism σ is the minimum positive integer n such that σn
“ id.
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example). By construction we have that rC Ď CK. In Lemma 3.2 we have shown that a vector
c P C if and only if cM “ 0, which is equivalent to c being orthogonal to all generators of rC.
Therefore, C “ rCK. Since rC is a linear code over A, by Lemma 3.3 we have that |rCK|¨|rC| “ |A|n.
From C “ rCK and |C| “ |A|k we then get |rC| “ |A|n´k. Since C is also a linear code over A,
by Lemma 3.3 we also have |CK| ¨ |C| “ |A|n, which implies that |CK| “ |A|n´k. Since rC Ď CK

and both codes have the same cardinality, we conclude that rC “ CK, i.e., CK is generated by
the columns of the matrix M .

It can be shown from (3.2) that for i “ 0, . . . , n ´ k ´ 1, the i-th row M correspond to
Xiℏ (e.g., the first two rows (the green part) in (3.4)). This shows that the right-upper
pn ´ kq ˆ pn ´ kq submatrix of M is lower triangular with invertible diagonal elements
ℏk, θpℏkq, . . . , θn´k´1pℏkq and the right-most n ´ k columns of M are therefore linearly inde-
pendent. Hence, the A-submodule generated by the right-most n ´ k columns of M contains
|A|n´k elements. This shows that CK is a free A-module generated by the right-most n ´ k
columns of M (e.g., the last two columns (the orange part) in (3.4)).

Corollary 3.1. The first k columns of M are A-linear combinations of the last n´k columns
of M .

Proof. Using the fact that |CK| “ |A|n´k from Lemma 3.3 and Theorem 3.2, the statement is
proven.

Example 3.6. According to Theorem 3.2, the Euclidean dual of the code in Example 3.5 is
generated by the right-most two columns of M in (3.4), i.e.,

GK “

˜

ℏ1 ℏδ
1 ` ℏθ

0 ℏδ2
1 ` ℏθδ

0 ` ℏδθ
0 ´ℏθ2

1 f1
0 ℏθ

1 ℏθδ
1 ` ℏδθ

1 ` ℏθ2
0 ´ℏθ2

1 f2

¸

.

Theorem 3.3 (Generator matrix of the σ-Hermian dual). Let C “ Crn, ks be the linear block
pθ, δq-code as defined in Definition 3.2, and GK P Apn´kqˆn be a generator matrix of the
Euclidean dual code CK of the code C as derived in Theorem 3.2. Denote by σpGKq the matrix
after applying σ to every entry of GK. Then, σpGKq is a generator matrix of the σ-Hermitian
dual code CKσ of C.

Proof. For each row gi “ pgi,0, . . . , gi,n´1q, i P t0, . . . , k ´ 1u of a generating matrix G of C
and each row gK

j “ pgK
i,0, . . . , gK

i,n´1q, j P t0, . . . , n ´ k ´ 1u of a generating matrix of GK

of CK, we have xgi, gK
j y “

řn´1
l“0 gi,l gK

j,l “ 0. Since σ is of order at most 2, xgi, σpgK
j qyσ “

řn´1
l“0 gi,l σpσpgK

j,lqq “
řn´1

i“0 gi,l gK
j,l “ 0. Since GK is an upper triangular matrix with n ´ k

rows as shown in the proof of Theorem 3.2 and σ is an automorphism, the σpGKq is also an
upper triangular matrix with n ´ k rows and therefore generates a free A-module code of
dimension |A|n´k. Finally, Lemma 3.3 implies that they generate CKσ .

Corollary 3.2. Let σpMq be the matrix after applying the automorphism σ to every entry
of M derived in Lemma 3.2. The first k columns of σpMq are A-linear combinations of the
last n ´ k columns of σpMq.

Proof. Denote by mi the i-th column of M . It follows from Corollary 3.1 that for i P

t0, 1, . . . , k ´ 1u, we can write mi “
řn´k´1

j“k ajmj for some aj P A. By the rules of an
automorphism (Definition 2.6), we have σpmiq “ σp

řn´k´1
j“k ajmjq “

řn´k´1
j“k σpamjq “

řn´k´1
j“k σpajqσpmjq, which is an A-linear combination of the last n´k columns of σpMq.
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3.3 Computing All σ-Dual-Containing pθ, δq-Codes
It follows from the definition of a σ-dual-containing code Crn, ks in Definition 3.4 that, k ě

n ´ k. In the rest of this chapter, we implicitly assume this inequality holds when addressing
dual-containing codes. By Definition 3.2, we can see that a pθ, δq-code Cpg, fq is determined
by the polynomials g, f P R. If g is also a left divisor of f (i.e., f “ gℏ), then the code Cpg, fq

is determined by g, ℏ.
Our method to compute σ-dual-containing pθ, δq-codes considers the coefficients of g, ℏ as

unknowns and solves a system of equations derived from the following constraints:

(i) f “ gℏ is monic and g r f ;

(ii) (For Euclidean dual, σ “ id) MJM “ 0, where M is described in Lemma 3.2 and
serves as a parity-check matrix of Cpg, fq;

(iii) (For σ-Hermitian dual) σpMqJM “ 0, where σpMq is the matrix after applying σ to
every entry of M .

Lemma 3.4. Let g, ℏ P R. If the coefficients of g and ℏ fulfill the system of polynomials
equations that are derived from the constraints (i) and (ii) (resp. (iii)), then the pθ, δq-code
Cpg, fq is dual-containing (resp. σ-dual-containing), where f “ gℏ.

Proof. The constraint (i) suffices that Cpg, fq is a pθ, δq-code, ℏ serves as a parity-check poly-
nomial (Lemma 3.1), and we can construct the matrix M that serves as a parity-check matrix
(Lemma 3.2).

The constraint (ii) is equivalent to setting GK ¨ M “ 0 according to Corollary 3.1, where
GK is the transpose of the last n´k columns of M (Theorem 3.2). This ensures that CK Ď C.

Similarly, the constraint (iii) is equivalent to setting GKσ M “ 0 according to Corollary 3.2,
which ensures that CKσ Ď C.

It can be seen in Example 3.5 that the entries in M are symbolic expressions in images
under compositions of θ and δ of the coefficients of ℏ and g (e.g., ℏθ

1, ℏδ
1). However, since some

θ or δ maps are not always polynomial maps in A (see Example 3.1 and Example 3.2), it is
difficult to solve for the coefficients of g and ℏ over A by computers.

If A “ Brβ1, . . . , βss is a free B-algebra and the restriction of δ and θ to B are polynomial
maps, then we can transform the symbolic expressions of images under θ and δ (e.g., ℏθ

1)
into polynomial expressions over B. By representing the unknown coefficients of ℏ and g as a
linear combination of the algebra basis pβ1, . . . , βsq (e.g., ℏ1 “ ℏ1,1β1 ` ¨ ¨ ¨ `ℏ1,sβs), we obtain
multivariate polynomial expressions over B for the entries of M .

The following lemma shows that we can transform a system of symbolic equations over A
into a system of polynomial equations over B.

Lemma 3.5. Let Es be a finite system of symbolic equations over A that are in the images
of θ and δ of a finite number of variables y1, . . . , ym. If A “ Brβ1, . . . , βss is a free B-algebra
and the restriction of θ and δ to B are polynomial maps, then all solutions in Am to Es

correspond to the solutions in Bms to a system Ep of polynomial equations over B in the
variables y1,1, . . . , y1,s, . . . , ym,1, . . . , ym,s, where yi “ yi,1β1 ` ¨ ¨ ¨ ` yi,sβs, i P rms.

Proof. The image of the basis pβ1, . . . , βsq of A over B under δ and θ are expressions of the
form βθ

i “ γi,1β1 `¨ ¨ ¨`γi,sβs and βδ
i “ ξi,1β1 `¨ ¨ ¨`ξi,sβs for some γi,j , ξi,j P B. The symbolic
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3 Dual-Containing Polycyclic Codes over Rings based on Skew Polynomials

expressions in the images under θ and δ of the variables yi, i P rms can therefore be written
as

yθ
i “ pyi,1β1 ` ¨ ¨ ¨ ` yi,sβsqθ

“ yθ
i,1βθ

1 ` ¨ ¨ ¨ ` yθ
i,sβθ

s

“ yθ
i,1 pγ1,1β1 ` ¨ ¨ ¨ ` γ1,sβsq ` ¨ ¨ ¨ ` yθ

i,s pγs,1β1 ` ¨ ¨ ¨ ` γs,sβsq ,

yδ
i “ pyi,1β1 ` ¨ ¨ ¨ ` yi,sβsqδ

“ pyi,1β1qδ ` ¨ ¨ ¨ ` pyi,sβsqδ

“ yδ
i,1β1 ` yθ

i,1βδ
1 ` ¨ ¨ ¨ ` yδ

i,sβs ` yθ
i,sβδ

s

“ yδ
i,1β1 ` yθ

i,1pξ1,1β1 ` ¨ ¨ ¨ ` ξ1,sβsq ` ¨ ¨ ¨ ` yδ
i,sβs ` yθ

i,spξs,1β1 ` ¨ ¨ ¨ ` ξs,sβsq .

Using

(i) the algebra relations βiβj “ µi,j,1β1 ` . . . ` µi,j,sβs (where µi,j,s P B are given),

(ii) the additive and multiplicative rules of θ and δ (Definition 2.6),

(iii) the fact that the restriction of δ and θ to B are polynomial maps on B, so that yθ
i,j and

yδ
i,j are polynomials in yi,j over B,

we can recursively transform the system Es of symbolic equations in variables y1, . . . , ym

into a system Ep of polynomial equations in the variables y1,1, . . . , y1,s, . . . , ym,1, . . . , ym,s.
For any solution pŷ1,1, . . . , ŷm,sq P Bms to Ep, we can construct the corresponding solution
pŷ1, . . . , ŷmq P Am to Es by ŷi “ ŷi,1β1 ` ¨ ¨ ¨ ` ŷi,sβs, i P rms.

Now we can proceed by solving a system of polynomial equations over B to get the coeffi-
cients of g, f such that the code Cpg, fq over A is a σ-dual-containing code. We use Gröbner
bases (see Section 2.2.2) for ideals of multivariate polynomials to solve the system of polyno-
mial equations. Algorithm 3.1 summarizes our implementation in Magma [BCP97] to search
for σ-dual-containing pθ, δq-codes. If a Gröbner basis of the ideal generated by the polyno-
mials in the system of equations over B can be computed, we can find all σ-dual-containing
codes Cpg, fq over A for the given parameters rn, ks.

Using the results found by Algorithm 3.1, we can further look into the following properties
of the pθ, δq-codes Cpg, fq:

(i) Do nonzero derivations or non-trivial endomorphisms (not automorphisms) provide new
σ-dual-containing codes that could not be constructed from skew polynomials with au-
tomorphisms or zero derivations?
(The answer is yes. In Table 3.2b and Table 3.6b, we give examples of Hamming weight
distributions of dual-containing pθ, δq-codes that could not be found without considering
either nonzero derivations or non-trivial endomorphisms.)

(ii) Is existing a central f such that g r f a necessary condition for the pθ, δq-code Cpg, fq

being dual-containing?
(The answer is no. In Section 3.4.1 we give an example of a generating polynomial g of
a r6, 4s dual-containing pθ, δq-code where all 8 polynomials f “ hg “ gℏ of degree 6 are
non-central.)
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3.3 Computing All σ-Dual-Containing pθ, δq-Codes

Algorithm 3.1: Computing all σ-dual-containing pθ, δq-codes for given n, k.
Input: A ring B where Gröbner bases can be computed, a ring A “ Brβ1, . . . , βss

which is a free B-algebra, an endomorphism θ and a θ-derivation δ of A which
are polynomial maps on B, an automorphism σ of A of order at most 2, and
code parameters n, k.

Output: A set of solutions P “ tĝ, ℏ̂, f̂ | Cpĝ, f̂q is σ-dual-containingu

1 P1 Ð Brg0,1, . . . , g0,s, . . . , gn´k´1,1, . . . , gn´k´1,s, ℏ0,1, . . . , ℏ0,s, . . . , ℏk´1,1, . . . , ℏk´1,ss ;
/* multivariate polynomial ring over B */

2 P Ð tu ; /* Initialize a set to collect σ-dual-containing codes */
3 foreach ℏk “

řs
j“1 ℏk,jβj P tInvertible element of A} do

4 LSEs Ð tConstraints s.t. gi,j , ℏi,j P B} ; /* gp
i,j “ gi,j , ℏp

i,j “ ℏi,j if B “ Fp */
5 g Ð

řn´k´1
i“0 p

řs
j“1 gi,jβjqXi ` Xn´k ; /* g P P1rX; θ, δs */

6 ℏ Ð
řk´1

i“0 p
řs

j“1 ℏi,jβjqXi ` ℏkXk; /* ℏ P P1rX; θ, δs */
7 f Ð g ¨ ℏ; /* lcpfq may not be monic but does not contain variable */
8 h, r Ð quotient, remainder of right dividing f by g ; /* h, r P P1rX; θ, δs */

9 LSEs Append
ÐÝ {All coefficients of r are 0 } ; /* implies g r f */

10 M Ð the matrix constructed from ℏ according to Lemma 3.2;
11 LSEs Append

ÐÝ {All entries in σpMqJ ¨ M are 0} ; /* implies CKσ Ď C */
12 S Ð {Solutions of g0,1, . . . , gn´k´1,s, ℏ0,1, . . . , ℏk´1,s from a Gröbner basis of LSEs};
13 P Append

ÐÝ tĝ, ℏ̂, f̂ P ArX; θ, δs | @ solution in Su;
/* ĝ, ℏ̂ P ArX; θ, δs are reconstructed by evaluating coefficients of

g, ℏ P P1rX; θ, δs at each solution in S; f̂ “ ĝ ¨ ℏ̂ */

14 return P

3.3.1 Is the Dual Code of a pθ, δq-Code also a pθ, δq-Code?

By Definition 3.2, a pθ, δq-code C is a principle left ideal xgyl { xfyl in the quotient ring R{ xfyl.
The algorithm we introduce in this section allows us to test whether the dual code CK is also
a pθ, δq-code, in other words, whether there exists a generator polynomial gK P R such that
CK “

@

gK
D

l
{
@

fK
D

l
for some fK P R and gK r fK.

Note that the rows of a generator matrix GK of CK derived in Theorem 3.3 correspond to
skew polynomials p1, . . . , pk in R, and they form a basis of the code CK when we see it as an
A-module. If the dual code CK has a monic generator polynomial gK, then gK must be a right
divisor of all the polynomials p1, . . . , pk.

The method is similar to Algorithm 3.1. We see the coefficients of gK as unknowns and
translate the constraints that gK right divides all p1, . . . , pk into polynomial equations. We
then compute a Gröbner basis of the ideal generated by these polynomials. If the Gröbner basis
is t1u, meaning that there is no solution for these constraints, we can conclude that CK is not a
pθ, δq-code. Otherwise, the Gröbner basis gives the solution of the monic generator polynomial
gK of the pθ, δq-code CK. Algorithm 3.2 summarizes our implementation in Magma [BCP97].
The algorithm can be extended to σ-Hermitian dual of a pθ, δq-code by changing the input
GK to a generator matrix GKσ of the σ-Hermitian dual code.

The results of Algorithm 3.2 show that dual codes of pθ, δq-codes are in general not pθ, δq-
codes, see Table 3.3 and Table 3.7 for examples over F2rvs and F2rus, respectively.
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3 Dual-Containing Polycyclic Codes over Rings based on Skew Polynomials

Algorithm 3.2: Testing whether the dual code is a pθ, δq-code.
Input: A ring B where Gröbner bases can be computed, a ring A “ Brβ1, . . . , βss

which is a free B-algebra, an endomorphism θ and a θ-derivation δ of A which
are polynomial maps on B, and a generator matrix GK P Apn´kqˆn of the dual
code CK.

Output: A monic generator polynomial gK of degree k of the dual code CK or False.
1 P1 Ð BrgK

0,1, . . . , gK
0,s, . . . , gK

k´1,1, . . . , gK
k´1,ss ; /* multivariate ring over B */

2 gK Ð
řk´1

i“0 p
řs

j“1 gK
i,jβjqXi ` Xk ; /* gK P P1rX; θ, δs */

3 LSEs Ð tConstraints on gK
i,j such that they are in B} ; /* pgK

i,jqp “ gK
i,j if B “ Fp */

4 foreach pl P ArX; θ, δs corresponding to the l-th row of GK do
5 h, r Ð quotient, remainder of right dividing pl by gK ; /* h, r P P1rX; θ, δs */

6 LSEs Append
ÐÝ {All coefficients of r are 0 } ; /* implies gK r pl */

7 GB Ð a Gröebner basis of LSEs;
8 if GB “ t1u then
9 return False

10 else
11 S Ð {Solutions of gK

0,1, . . . , gK
0,s, . . . , gK

k´1,1, . . . , gK
k´1,s from GB of LSEs};

12 P Ð tgK P ArX; θ, δs | @ solution in Su;
/* the monic ĝK P ArX; θ, δs is reconstructed by evaluating coefficients of

gK P P1rX; θ, δs at each solution in S */

3.4 Computation Results on Dual-Containing pθ, δq-Codes
In this section we present the (σ-)dual-containing codes over the rings F2rvs,F2rus and F2rαs “

F4 found by Algorithm 3.1.

3.4.1 Results for A “ F2rvs with v2 “ v

We keep the notation used in Table 3.1a and compute the (σ-)dual-containing pθ, δq-code over
the ring A “ F2rvs with v2 “ v using the method given in Section 3.3. Codes of small length
over F2rvs are classified in [Huf05]. We follow [DS01] and define the Lee weight of 0, 1, v, v ` 1
respectively as 0, 2, 1, 1 and the Bachoc weight respectively as 0, 1, 2, 2.

Table 3.2a gives an overview of the best (in terms of minimum Hamming, Lee or Bachoc
distance) dual-containing codes Cpg, fq Ă R{ xfyl (Algorithm 3.1 found all such codes). Ta-
ble 3.2b gives detailed Hamming weight distributions that could only been found by some
specific pθ, δq combinations.

Testing Results by Algorithm 3.2

We apply Algorithm 3.2 to verify whether the dual of a dual-containing pθ, δq-code over F2rvs

is also a pθ, δq-code. Table 3.3 presents the results. We list the following two examples to
illustrate that the dual code of a dual-containing pθ, δq-code is not always a pθ, δq-code:

• For n “ 4, k “ 3, we found three g P F2rvsrX; θ2, δ2s that generate dual-containing
pθ, δq-codes: g1 “ X ` v ` 1, g2 “ X ` 1, g3 “ X ` v where only the dual of g2 “ X ` 1
is a pθ, δq-code, with gK

2 “ X3 ` X2 ` X ` 1.
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3.4 Computation Results on Dual-Containing pθ, δq-Codes

Table 3.2: Results on dual-containing pθ, δq-codes over F2rvs. The blue cells mark the code
parameters or the weight distributions that could only been found with nonzero
derivations. The gray cells mark the code parameters or the weight distributions
that could only been found with nonzero derivations and non-trivial endomor-
phisms.

(a) The largest Hamming, Lee and Bachoc distance of dual-containing pθ, δq-codes over F2rvs. The
empty set H indicates that no dual-containing pθ, δq-code exists for the parameter rn, ks. A question
mark indicates that such dual-containing codes exist, but we could not compute the minimal
distance due to the computation limitation.

n k 2 3 4 5 6 7 8 9 10 11 12
3 1, 1, 2
4 2, 2, 4 2, 2, 2
5 H H

6 2, 2, 2 2, 2, 2 2, 2, 2
7 3, 3, 5 H H

8 4, 4, 7 2, 2, 4 2, 2, 2 2, 2, 2
9 H H H 1, 1, 2
10 2, 2, 2 2, 2, 2 H H 2, 2, 2
11 H H H H H

12 4, 4, 6 3, 3, 4 2, 2, ? 2, ?, ? ?, ?, ? ?, ?, ?
13 H H H H H H

(b) Hamming weight distributions of dual-containing pθ, δq-codes over F2rvs.

rn, ks Hamming Weight Distribution Constructed with pθ, δq

r4, 2s
r1, 0, 6, 0, 9s all combinations pθ, δq

r1, 0, 4, 4, 7s pθ2, δ2q, pθ3, δ3q, pθ4, δ4q

r6, 3s r1, 0, 9, 0, 27, 0, 27s all combinations pθ, δq

[6,4]

r1, 0, 9, 24, 99, 72, 51s all combinations pθ, δq

r1, 0, 17, 24, 83, 72, 59s pθ2, δ3q, pθ2, δ3q

r1, 2, 11, 28, 87, 66, 61s pθ3, δ3q, pθ4, δ4q

r1, 0, 13, 24, 91, 72, 55s pθ3, δ3q, pθ4, δ4q

[8,4]

r1, 0, 12, 0, 54, 0, 108, 0, 81s all combinations pθ, δq

r1, 0, 0, 0, 28, 56, 84, 56, 31s pθ2, 0q

r1, 0, 4, 0, 38, 32, 100, 32, 49s pθ2, δ2q, pθ3, δ3q, pθ4, δ4q
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3 Dual-Containing Polycyclic Codes over Rings based on Skew Polynomials

• For n “ 6, k “ 4, we found four g P F2rvsrX; θ3, δ3s that generate dual-containing
pθ, δq-codes: g1 “ X2 ` pv ` 1qX ` v ` 1, g2 “ X2 ` X ` 1, g3 “ X2 ` X ` v ` 1,
g4 “ X2 ` pv ` 1qX ` 1. Only the dual codes of g2 and g4 are pθ, δq-codes, with
gK

2 “ X4 ` X3 ` X ` 1 and gK
4 “ X4 ` pv ` 1qX3 ` X ` v ` 1, respectively.

Table 3.3: Results over F2rvs on whether the dual code of a dual-containing pθ, δq-code is also
a pθ, δq-code.

(a) The entries indicates that None/Some/All of the rn, ks dual-containing pθ, δq-codes whose dual
codes are also pθ, δq-codes.

n k 2 3 4 5 6 7 8 9
3 None
4 All Some
5 / /
6 All Some Some
7 All / /
8 All Some Some Some
9 / / / None
10 All Some / / All

(b) The number of dual-containing pθ, δq-codes whose dual codes are also pθ, δq-codes. Only the pa-
rameters marked with “Some” in Table 3.3a are listed.

rn, ks
# of dual-containing pθ, δq-codes for each pθ, δq

# of dual-containing pθ, δq-codes whose dual codes are also pθ, δq-codes
pId; 0q pθ2, 0q pθ2, δ2q pθ2, δ3q pθ2, δ4q pθ3, 0q pθ3, δ3q pθ4, 0q pθ4, δ4q

r4, 3s
1 1 3 1 1 1 2 1 2
1 1 1 1 1 1 1 1 1

r6, 4s
1 1 1 2 2 1 4 1 4
1 1 1 1 1 1 2 1 2

r6, 5s
1 1 1 2 2 1 1 1 1
1 1 1 1 1 1 1 1 1

r8, 5s
1 3 5 1 1 1 8 1 8
1 3 1 1 1 1 1 1 1

r8, 6s
1 3 5 1 1 1 4 1 4
1 3 3 1 1 1 2 1 2

r8, 7s
1 1 3 1 1 1 2 1 2
1 1 1 1 1 1 1 1 1

r10, 6s
1 1 1 1 1 1 16 1 16
1 1 1 1 1 1 2 1 2

Hermitian Dual-Containing pθ, δq-Codes over F2rvs

It can be verified that the automorphism θ2 of F2rvs is of order 2. We hence use Algorithm 3.1
to find all θ2-dual-containing pθ, δq-codes over F2rvs. Table 3.4a gives an overview of the largest
minimum Hamming, Lee or Bachoc distance of θ2-dual-containing codes Cpg, fq Ă R{ xfyl.
Table 3.4b gives some Hamming weight distributions that could only be found by some specific
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3.4 Computation Results on Dual-Containing pθ, δq-Codes

pθ, δq combinations.

Table 3.4: Results on θ2-dual-containing pθ, δq-codes over F2rvs. The colored cells and special
symbols have the same indications as in Table 3.2.

(a) The largest Hamming, Lee, Bachoc distance of θ2-dual-containing pθ, δq-codes over F2rvs.

n k 2 3 4 5 6 7 8 9
4 2, 2, 4 2, 2, 2
5 2, 2, 2 1, 1, 2
6 3, 3, 4 2, 2, 4 2, 2, 2
7 3, 3, 5 1, 1, 2 1, 1, 2
8 3, 3, 6 2, 2, 4 2, 2, 2 2, 2, 2
9 1, 1, 2 H H H

10 2, 2, 2 2, 2, 2 H H 2, 2, 2
(b) The Hamming weight distributions of θ2-dual-containing pθ, δq-codes over F2rvs.

rn, ks Hamming Weight Constructed with pθ, δq

r4, 2s r1, 0, 6, 0, 9s all combinations pθ, δq

r1, 0, 2, 8, 5s pθ2, 0q

r4, 3s r1, 0, 18, 24, 21s all combinations pθ, δq

r1, 2, 16, 22, 23s pθ2, δ2q, pθ3, δ3q, pθ4, δ4q

r1, 2, 12, 30, 19s pθ2, δ3q, pθ2, δ4q

r5, 3s r1, 0, 8, 14, 23, 18s pθ2, δ3q, pθ2, δ4q

r5, 4s r1, 3, 22, 66, 105, 59s pθ2, δ3q, pθ2, δ4q

r6, 3s r1, 0, 0, 8, 21, 24, 10s pθ3, δ3q, pθ4, δ4q

An Example where f being Central is Not Necessary for Dual-Containing pθ, δq-Codes
Cpg, fq

In most studies on the dual-containing pθ, δq-codes Cpg, fq, e.g., [BSU08; BU11; BD18], f is
assumed to be a central polynomial, since it is easier to derive closed formulas of a generator
polynomial g of the code. With the example below we intend to show that there are dual-
containing codes Cpg, fq where g is not a right factor of any central f .

Note that many f “ hg “ gℏ can exist for the same g, and all pg, fq pairs lead to the
same code, whose generator matrix is determined only by g and the corresponding pθ, δq. To
illustrate this, we present more details of the r6, 4s code with the Hamming weight distribution
r1, 0, 13, 24, 91, 72, 55s in Table 3.2b. There are four possible generator polynomials g of this
code and they are presented in Table 3.5. We consider the first g “ X2 ` X ` v ` 1 P

F2rvsrX, θ3, δ3s in Table 3.5. There are only 8 non-central polynomials f such that f “ hg “ gℏ
for some h, ℏ P R (i.e., g is both a left and right divisor of f):

f1 “ X6 ` vX4 ` vX3 ` vX ` v ` 1 “ pX4 ` X3 ` vX2 ` X ` v ` 1q ¨ g

f2 “ X6 ` X5 ` pv ` 1qX4 ` X3 ` vX ` v ` 1 “ pX4 ` vX2 ` pv ` 1qX ` 1q ¨ g

f3 “ X6 ` pv ` 1qX4 ` vX3 ` vX2 ` X ` v ` 1 “ pX4 ` X3 ` pv ` 1qX2 ` 1q ¨ g

f4 “ X6 ` X5 ` vX4 ` X3 ` vX2 ` X ` v ` 1 “ pX4 ` pv ` 1qX2 ` vX ` v ` 1q ¨ g

f5 “ X6 ` vX4 ` vX3 ` X2 ` pv ` 1qX “ pX4 ` X3 ` vX2 ` X ` vq ¨ g
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Table 3.5: All possible generator polynomials/matrices of the r6, 4s dual-containing pθ, δq-
codes over F2rvs with Hamming weight distribution r1, 0, 13, 24, 91, 72, 55s.

Index g pθ, δq G

1 g “ X2 ` X ` v ` 1 pθ3, δ3q

¨

˚

˚

˝

v ` 1 1 1 0 0 0
v 1 1 1 0 0
v 0 1 1 1 0
v 0 0 1 1 1

˛

‹

‹

‚

2 g “ X2 ` pv ` 1qX ` 1 pθ3, δ3q

¨

˚

˚

˝

1 v ` 1 1 0 0 0
0 v ` 1 1 1 0 0
0 v 1 1 1 0
0 v 0 1 1 1

˛

‹

‹

‚

3 g “ X2 ` vX ` 1 pθ4, δ4q

¨

˚

˚

˝

1 v 1 0 0 0
0 v 1 1 0 0
0 v ` 1 1 1 1 0
0 v ` 1 0 1 1 1

˛

‹

‹

‚

4 g “ X2 ` X ` v pθ4, δ4q

¨

˚

˚

˝

v 1 1 0 0 0
v ` 1 1 1 1 0 0
v ` 1 0 1 1 1 0
v ` 1 0 0 1 1 1

˛

‹

‹

‚

f6 “ X6 ` X5 ` pv ` 1qX4 ` X3 ` X2 ` pv ` 1qX “ pX4 ` vX2 ` pv ` 1qXq ¨ g

f7 “ X6 ` pv ` 1qX4 ` vX3 ` pv ` 1qX2 “ pX4 ` X3 ` pv ` 1qX2q ¨ g

f8 “ X6 ` X5 ` vX4 ` X3 ` pv ` 1qX2 “ pX4 ` pv ` 1qX2 ` vX ` vq ¨ g

For each fi, i “ 1, . . . , 8, there is a unique hi corresponding to fi “ hig (see the decomposition
above) and 16 distinct ℏi such that fi “ gℏi, where one of ℏi is equal to hi. In the following
we present for f1 the other 15 distinct ℏ1 ‰ h1 such that f1 “ gℏ1:

f1 “ g ¨
`

X4 ` X3 ` X ` 1
˘

“ g ¨
`

X4 ` X3 ` vX2 ` pv ` 1qX ` v ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` pv ` 1qX ` v ` 1
˘

“ g ¨
`

X4 ` X3 ` pv ` 1qX ` v ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` vX2 ` X ` v ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` X ` v ` 1
˘

“ g ¨
`

X4 ` X3 ` X ` v ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` vX2 ` pv ` 1qX ` 1
˘

“ g ¨
`

X4 ` X3 ` vX2 ` pv ` 1qX ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` pv ` 1qX ` 1
˘

“ g ¨
`

X4 ` X3 ` pv ` 1qX ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` vX2 ` X ` 1
˘

“ g ¨
`

X4 ` X3 ` vX2 ` X ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` X ` 1
˘

“ g ¨
`

X4 ` pv ` 1qX3 ` vX2 ` pv ` 1qX ` v`1
˘

.

3.4.2 Results for A “ F2rus with u2 “ 0

We keep the notations used in Table 3.1b and compute the dual-containing pθ, δq-codes over
the ring A “ F2rus with u2 “ 0 using the method presented in Section 3.3. We follow [DS01]
and define the Lee weight of 0, 1, u, u ` 1 respectively as 0, 1, 2, 1 and the Euclidean weight
respectively as 0, 1, 4, 1.

Table 3.6a gives an overview of the best (in terms of minimum Hamming, Lee and Euclidean
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distance) dual-containing pθ, δq-codes (Algorithm 3.1 found all such codes). Table 3.6b gives
some Hamming weight distributions that could only been found by some specific pθ, δq com-
binations.

Table 3.6: Results on dual-containing pθ, δq-codes over F2rus. The colored cells and special
symbols have the same indications as in Table 3.2.

(a) The best Hamming, Lee, and Euclidean distances of dual-containing pθ, δq-codes over F2rus.

n k 2 3 4 5 6 7 8 9
4 2, 4, 4 2, 2, 2
5 H 1, 2, 2
6 2, 4, 4 2, 2, 2 2, 2, 2
7 3, 3, 3 H 1, 2, 2
8 4, 4, 4 2, 4, 4 2, 2, 2 2, 2, 2
9 H H H 1, 2, 2
10 2, 4, 6 2, 4, 5 H H 2, 2, 2
(b) Hamming weight distributions of dual-containing pθ, δq-codes over F2rus.

rn, ks Hamming Weight Constructed with pθ, δq

r4, 2s
r1, 0, 2, 8, 5s pid, 0q, pid, δ2q, pid, δ3q, pθ2, δ2q

r1, 0, 6, 0, 9s all combinations pθ, δq

r8, 4s

r1, 0, 4, 0, 30, 64, 52, 64, 41s pid, 0q, pθ2, δ2q

r1, 0, 4, 0, 46, 0, 148, 0, 57s pid, 0q

r1, 0, 4, 16, 14, 32, 84, 80, 25s pid, 0q

r1, 0, 12, 0, 54, 0, 108, 0, 81s all combinations pθ, δq

r1, 0, 0, 0, 26, 64, 72, 64, 29s pid, δ2q

r8, 5s

r1, 0, 4, 16, 94, 224, 308, 272, 105s pid, 0q, pid, δ2q

r1, 0, 4, 16, 110, 160, 404, 208, 121s pid, 0q

r1, 0, 12, 0, 102, 192, 396, 192, 129s all combinations pθ, δq

r1, 0, 16, 8, 114, 176, 360, 200, 149s pid, δ2q

Testing Results by Algorithm 3.2

We apply Algorithm 3.2 to verify whether the dual of the a dual-containing pθ, δq-code over
F2rus is also a pθ, δq-code. Table 3.7 presents the results.

3.4.3 Results for A “ F2rαs “ F4

We keep the notations used in Table 3.1c. Note that θ2 : a ÞÑ a2 is an automorphism of
order 2. We compute the θ2-dual-containing pθ, δq-codes over F4 by Algorithm 3.1. Following
[DS01] we define the Lee weight of 0, 1, α, α ` 1 as 0, 2, 1, 1, respectively, and following [LS01]
we define the Euclidean weight as 0, 1, 2, 1, respectively.

Table 3.8a shows the existence and the best Hamming, Lee and Euclidean distance of the
θ2-Hermitian dual-containing pθ, δq-codes over F4. Table 3.8b provides some examples of the
Hamming weight distributions.
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Table 3.7: Test results over F2rus on whether the dual of a dual-containing pθ, δq-code is also
a pθ, δq-code.

n k 2 3 4 5 6 7 8 9
4 All All

5 / pid, δ2q: None
pid, δ4q: All

6 All All All
7 All / All
8 All All All All

9 / / / pid, δ2q: None
pid, δ4q: Some

10 All All / / All

Table 3.8: Results on θ2-dual-containing pθ, δq-codes over F2rαs “ F4. The colored cells and
special symbols have the same indications as in Table 3.2.

(a) The best Hamming, Lee and Euclidean distance of θ2-dual-containing codes over F4.

n k 2 3 4 5 6 7 8 9
4 2, 2, 2 2, 2, 2
5 3, 3, 3 1, 1, 1
6 4, 4, 4 2, 2, 2 2, 2, 2
7 3, 3, 3 H 1, 1, 1
8 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2
9 H H H 1, 1, 1
10 p4, 4, 4q p3, 3, 3q p2, 2, 2q p2, 2, 2q p2, 2, 2q

(b) Weight distributions of θ2-dual-containing pθ, δq-codes over F4.

rn, ks Hamming Weight Enumerator Constructed with pθ, δq

r4, 3s
r1, 0, 18, 24, 21s all combinations pθ, δq maps
r1, 6, 12, 18, 27s pθ2, δ2q

r5, 4s r1, 9, 30, 54, 81, 81s pθ2, δ2q

r6, 5s
r1, 0, 45, 120, 315, 360, 183s all combinations pθ, δq

r1, 12, 57, 144, 243, 324, 243s pθ2, δ2q
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3.5 Summary and Outlooks
This chapter considers pθ, δq-polycyclic codes that are constructed from principle ideals of
skew polynomials with endomorphisms θ and θ-derivations δ. In particular, we focused on
constructing dual-containing pθ, δq-codes over rings. As a basis, we first derived a parity-check
matrix of a pθ, δq-code within the framework of skew polynomials. For a finite commutative
Frobenius ring A, we then derived generator matrices of the Euclidean dual and the σ-Hermian
dual of a pθ, δq-code. This implies that the (σ-Hermitian) dual codes are A-modules. For
A “ Brβ1, . . . , βss being a free B-algebra, we developed an algorithm using Gröbner bases to
compute all the (σ-)dual-containing pθ, δq-codes over A. We also presented an algorithm to
test whether the dual code is also a pθ, δq-code, in other words, whether there is a generator
polynomial in ArX; θ, δs of the dual code.

With the computational results for several rings of order 4, we obtain the following obser-
vations:

• nonzero derivations and non-trivial endomorphisms (not automorphisms) do give new
(Euclidean/Hermitian) dual-containing pθ, δq-codes that could not been found by zero
derivations or automorphisms. See Table 3.2, Table 3.4, Table 3.6, and Table 3.8.

• The monic generator polynomial g being a right factor of some central polynomial f
is not a necessary condition for the pθ, δq-code generated by g to be a dual-containing
code. See the example in Section 3.4.1.

• The dual code of a dual-containing pθ, δq-code is in general not a pθ, δq-code. See Ta-
ble 3.3 and Table 3.7.

It can be seen that there are dual-containing pθ, δq-codes over rings with large minimum
Hamming distances, e.g., the r6, 3s4 code over F2rvs with dH “ 3 in Table 3.4, and the r8, 4s4
code over F2rus with dH “ 4 in Table 3.6. For future research, it would be helpful to compare
these codes with other existing codes over rings or some bounds on the cardinality or the
distance of codes over rings, such as Singleton-like bounds, sphere-packing bounds. Moreover,
fast decoding algorithms for codes based on skew polynomials with automorphisms and zero
derivations has been extensively studied lately, e.g., in [BJPR21; HB22]. Since both of the
above codes with large Hamming distances can only be found by non-trivial endomorphisms
or nonzero derivations, advanced decoding algorithms based on [Bou20] for such pθ, δq-codes
are relevant to be developed.
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4
Support-Constrained Evaluation Codes based
on Skew Polynomials

Gabidulin codes [Gab85], introduced by Ernest M. Gabidulin, were the first evaluation codes
from a special class of skew polynomials, namely the linearized polynomials, where the Frobe-
nius automorphism and zero derivation are used. Boucher and Ulmer [BU14a] extended the
notion of evaluation codes to skew polynomials over finite fields with inner derivations. Liu,
Manganiello and Kschischang [LMK15] defined generalized skew-evaluation codes that contain
Gabidulin codes as a special class, which combine the maximum distance separable (MDS)
and the maximum rank distance (MRD) properties via a pasting construction. Martínez-
Peñas introduced in [Mar18] linearized Reed-Solomon (LRS) codes, a class of evaluation codes
based on skew polynomials that achieve the maximum sum-rank distance (MSRD) property.

This chapter investigates the support-constrained MSRD codes motivated from multi-source
network coding and the advantage of vector network coding compared to scalar network
coding. We first give brief introductions to support-constrained codes and LRS codes in
Section 4.1 and Section 4.2, respectively. In Section 4.3 we present a necessary and sufficient
condition on a generator matrix G such that it generates an MSRD code. Moreover, if the
required generator matrix G does not satisfy the condition, we give the largest possible sum-
rank distance of the code generated by G. Using these results, we give in Section 4.4 a scheme
to design distributed LRS codes for distributed multi-source unicast networks. Finally, we turn
our focus to a family of multicast networks, namely the generalized combination networks, in
Section 4.5. We investigate the advantages of using vectors as coding coefficients at the relay
nodes in the network compared to using scalars. The advantages are shown via the gap
between the minimum required field size of vector coding solutions and that of scalar coding
solutions.

The results in Sections 4.3 and 4.4 have been submitted to IEEE Transactions on In-
formation Theory (TIT) and partly published in the proceeding of 2023 IEEE Information
Theory Workshop (ITW) [LWWS23]. The results in Section 4.5 were published in IEEE
TIT [LWP+21] and partly in the proceeding of 2020 IEEE Information Symposium on Infor-
mation Theory (ISIT) [LWP+20].

4.1 Support-Constrained Codes
Support-constrained codes are codes that have some codewords having zeros at certain posi-
tions and these codewords form a basis of the code. In other words, a support-constrained
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code has a generator matrix having zeros at certain entries. A formal definition is given as
follows.

Definition 4.1 (Support-constrained codes). Given the support constraints Z1, . . . , Zk Ď

t1, . . . , nu, a linear rn, ksq code is a support-constrained code w.r.t. Z1, . . . , Zk if it has a
generator matrix G P Fkˆn

q fulfilling the support constraints, i.e.,

Gij “ 0 , @i P t1, . . . , ku, @j P Zi . (4.1)

Designing support-constrained error-correcting codes was motivated by its application in
weakly secure network coding for wireless cooperative data exchange [YS11; SWY+12; YSZ14;
LG17], where each node in the network stores a subset of all messages and the nodes commu-
nicate via broadcast transmissions to disseminate the messages in the presence of an eaves-
dropper.

From both, the theoretical and the practical point of view, the objective is to design support-
constrained codes achieving the largest possible minimum distance. In the Hamming metric,
research focused on proving the following necessary and sufficient condition for the existence of
MDS codes fulfilling the support constraints. The condition was first conjectured in [DSY14b]
(known as the GM–MDS conjecture), further studied in [HS17; YH18a], and finally proven
independently by Lovett [Lov18] and by Yildiz and Hassibi [YH18b].

Theorem 4.1 (GM–MDS condition [YH18b; Lov18]). Let Z1, . . . , Zk Ď t1, . . . , nu. For any
q ě n`k´1, there exists an rn, ksq Reed–Solomon (RS) code with a generator matrix G P Fkˆn

q

fulfilling the support constraints in (4.1), if and only if, for any nonempty Ω Ď t1, . . . , ku,
ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ
Zi

ˇ

ˇ

ˇ

ˇ

ˇ

` |Ω| ď k . (4.2)

Moreover, if an MDS code has a generator matrix fulfilling the support constraint (4.1), then
the sets Zi’s satisfy (4.2).

Yildiz and Hassibi adapted the approach for Gabidulin codes in [YH20] and derived the
following GM–MRD condition.

Theorem 4.2 (GM–MRD condition [YH20, Theorem 1]). Let Z1, . . . , Zk Ď t1, . . . , nu. For
any prime power q and integer m ě maxtn, k ´ 1 ` logq ku, there exists an rn, ksqm Gabidulin
code with a generator matrix G P Fkˆn

qm fulfilling (4.1), if and only if, for any nonempty
Ω Ď t1, . . . , ku, the inequality (4.2) holds.

Recently, special cases of support-constrained MDS codes have also been studied. For
instance, the work by Greaves and Syatriadi [GS19] considered the following two special cases
of Z’s:

(i) |
Şs

i“1 Zi| “ k ´ s for all s “ 1, . . . , k. Note that when s “ k ´ 1, it is required that
ˇ

ˇ

ˇ

Şk´1
i“1 Zi

ˇ

ˇ

ˇ
“ 1, which means that there is at least one column of the generator matrix G

containing k ´ 1 zeros. For this case an rn, ksq RS code generated by G exists if q ě n.

(ii) |Zi| ď i´1 for all i “ 1, . . . , k. Note that when i ď k´1, |Zi| ď k´2, which implies that
less zeros are allowed in G than in (4.1). For this case, an rn, ksq RS code generated by
G exists if q ě n ` 1.
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Driven by the requirement of balanced computation load during the encoding process in
wireless sensor networks [DSDY13] and multiple access networks [DSY14a; HHYD14; HHD14],
codes fulfilling sparse and balanced support constraints have been proposed, e.g., in [HLH16;
HLD+18]. In [SC18; CZ22], the existence of an MDS code with a sparse and balanced gen-
erator matrix G has been studied. “Sparse” means that each row of G has the maximum
number of zeros, i.e., k ´ 1 zeros, and “balanced” means that the number of zeros in any two
columns differs by at most one, i.e., the weight of each column is either rkpn ´ k ` 1q{ns or
tkpn ´ k ` 1q{nu. It was shown in [SC18] that for any k P rns, if q ě n ` rkpk ´ 1q{ns, then
there exists an rn, ksq generalized RS code with a sparse and balanced generator matrix. More
recently, it is shown in [CZ22] that for any k ě 3, k

n ě 1
2 , and q ě n ´ 1, there exists an rn, ksq

MDS code with a sparse and balanced generator matrix.

4.2 Linearized Reed-Solomon Codes

LRS codes [Mar18] are a class of evaluation codes based on skew polynomials [Ore33], achiev-
ing the Singleton bound in the sum-rank metric, and therefore known as MSRD codes. They
are the first linear MSRD codes with sub-exponential field sizes (in contrast to Gabidulin
codes, which are MRD codes but require exponential field sizes in the code length). LRS
codes have been applied in network coding [MK19b], locally repairable codes [MK19c] and
code-based cryptography [HBH22]. The decoding of LRS codes has been extensively studied
recently, e.g., [Bou20; PR21; BJPR21; PRR22; HB22; HBP22; JHB22; BP22].

The definition of LRS codes adopted in this chapter follows from the generalized skew
evaluations codes [LMK15, Section III] with particular choices of the evaluation points and
column multipliers.

Definition 4.2 (Linearized Reed-Solomon (LRS) code). For a prime power q and integers
m, n, let ℓ P rq ´ 1s and pn1, . . . , nℓq be an ordered partition of n with nl ď m, @l P rℓs. Let
a1, . . . , aℓ P Fqm be from distinct σ-conjugacy classes of Fqm, called block representatives. Let

b “ pβ1,1, . . . , β1,n1 , . . . , βℓ,1, . . . , βℓ,nℓ
q P Fn

qm

be a vector of column multipliers, where βl,1, . . . , βl,nl
, called the columns multipliers of the

l-th block, are linearly independent over Fq, @l P rℓs.
Let the set of code locators be

L “ta1βq´1
1,1 , . . . , a1βq´1

1,n1 , . . . , aℓβ
q´1
ℓ,1 , . . . , aℓβ

q´1
ℓ,nℓ

u . (4.3)

An rn, ksqm linearized Reed-Solomon code is defined as

Cσ
L,brn, ks :“ tb ‹ pfpαqqαPL | fpXq P FqmrX; σs, deg fpXq ă ku,

where FqmrX; σs is the skew polynomial ring with the Frobenius automorphism σ : a ÞÑ aq

of Fqm, the evaluation fpαq “
řdeg f

i“0 fiNipαq is the remainder evaluation as in Theorem 2.6,
and ‹ is the entry-wise multiplication of two vectors.

The code locator set L of LRS codes has the following properties.

Proposition 4.1 ([LL88b, Theorem 4.5]). Since βl,1, . . . , βl,nl
are linearly independent over
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Fq, the set of code locators in the l-th block, denoted by Lplq “

!

alβ
q´1
l,1 , . . . , alβ

q´1
l,nl

)

, is P-
independent (Definition 2.14).

Proposition 4.2 ([MSK+22, Theorem 2.11]). The union of P-independent sets which are
subsets of different conjugacy classes is P-independent. Hence, the code locator set L given in
(4.3) is P-independent.

A generator matrix of the LRS code in Definition 4.2 is given by

GpLRSq “

´

G
pLRSq

1 . . . G
pLRSq

ℓ

¯

P Fkˆn
qm (4.4)

where for each l P rℓs,

G
pLRSq

l “ V σ
kpLplqq ¨ diagpbplqq

“

¨

˚

˚

˚

˚

˝

1 . . . 1
N1palβ

q´1
l,1 q . . . N1palβ

q´1
l,nl

q

...
. . .

...

Nk´1palβ
q´1
l,1 q . . . Nk´1palβ

q´1
l,nl

q

˛

‹

‹

‹

‹

‚

¨

¨

˚

˝

βl,1
. . .

βl,nl

˛

‹

‚

“

¨

˚

˝

1
. . .

Nk´1palq

˛

‹

‚

¨

¨

˚

˚

˚

˚

˝

βl,1 βl,2 . . . βl,nl

βq
l,1 βq

l,2 . . . βq
l,nl

...
...

. . .
...

βqk´1

l,1 βqk´1

l,2 . . . βqk´1

l,nl

˛

‹

‹

‹

‹

‚

,

where Lplq “

!

alβ
q´1
l,1 , . . . , alβ

q´1
l,nl

)

and bplq “ pβl,1, . . . , βl,nl
q. The last equality holds because

for σpaq “ aq, we have that Nipβ
q´1
l,t q ¨ βl,t “

´

βq´1
l,t

¯pqi´1q{pq´1q

¨ βl,t “ βqi

l,t.

LRS codes C “

A

GpLRSq
E

Ď Fn
qm are MSRD codes [MSK+22, Theorem 2.20] and the

punctured codes Cl “

A

G
pLRSq

l

E

Ď Fnl
qm at any block l “ 1, . . . , ℓ are MRD codes [LMK15,

Section III.C].

Example 4.1 (r12, 3s LRS code over F44with 3 blocks). Let q “ 4, m “ 4, ℓ “ 3, n1 “ n2 “

n3 “ 4, k “ 3. Denote by γ a primitive element of F44. We choose the block representatives to
be a “ p1, γ, γ2q and the basis of each block to be b1 “ p1, γ, γ2, γ3q, b2 “ pγ, γ2, γ3, γ4q, b3 “

pγ2, γ3, γ4, γ5q. Then the code locators are

L “ t1, γ3, γ6, γ9
looooomooooon

first block

, γ4, γ7, γ10, γ13
looooooomooooooon

second block

, γ8, γ11, γ14, γ17
loooooooomoooooooon

third block

u .

The generator matrix of this LRS code is

GpLRSq “

¨

˝

1 γ γ2 γ3 γ γ2 γ3 γ4 γ2 γ3 γ4 γ5

1 γ4 γ8 γ12 γ5 γ9 γ13 γ17 γ10 γ14 γ18 γ22

1 γ16 γ32 γ48 γ21 γ37 γ53 γ69 γ42 γ59 γ74 γ90

˛

‚ .

In [Mar18, Definition 31], LRS codes are defined using linear operator evaluations with
respect to the block representatives a “ pa1, . . . , aℓq and block basis bl “ pβl,1, . . . , βl,nl

q. It
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was shown in [MSK+22, Theorem 2.18] that these two definitions are equivalent.

4.3 GM-MSRD Condition

Motivated by the practical interest in support-constrained codes and the theoretical research
on MSRD codes (in particular, LRS codes), we investigate the existence of support-constrained
MSRD codes in this section and prove the following result.

Theorem 4.3 (GM-MSRD condition). Let ℓ, n be positive integers and pn1, . . . , nℓq be an
ordered partition of n. Given Z1, . . . , Zk Ă rns, for any prime power q ě ℓ ` 1 and integer
m ě maxlPrℓstk ´ 1 ` logq k, nlu, there exists an rn, ksqm linearized Reed-Solomon code with
ℓ blocks, and each block of length nl, l P rℓs such that it has a generator matrix G P Fkˆn

qm

fulfilling the support constraints Gij “ 0, @i P rks, @j P Zi, if and only if, for any nonempty
Ω Ď rks,

ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ
Zi

ˇ

ˇ

ˇ

ˇ

ˇ

` |Ω| ď k . (Recall (4.2))

For the necessity, since the sum-rank weight of any vector in Fn
qm is at most its Hamming

weight by Lemma 2.4, an MSRD code is necessarily an MDS code. Therefore, (4.2) is also a
necessary condition for G to generate an MSRD code.

Now we proceed to show the sufficiency of (4.2) for MSRD codes, in particular, via support-
constrained LRS codes with sufficiently large alphabet size. Note that for any Ω “ tiu, we
have |Zi| ď k ´ 1. One can add elements from rns to each Zi until |Zi| reaches k ´ 1 while
preserving (4.2) [YH20, Corollary 3]. This operation will only put more zero constraints on G
but not remove any. This means that the code we design under the new Zi’s of size k ´ 1 will
also satisfy the original constraints. Therefore, without loss of generality, along with (4.2),
we can assume that

|Zi| “ k ´ 1, @i P rks . (4.5)

Let GpLRSq be a generator matrix of an LRS code as in (4.4). Given the following matrix

G “ T ¨ GpLRSq , (4.6)

if T P Fkˆk
qm has full rank, then G is another generator matrix of the LRS code. Recall that

a1, . . . , aℓ P Fqm are the block representatives, β1,1, . . . , β1,n1 , . . . , βℓ,1, . . . , βℓ,nℓ
P Fqm are the

column multipliers, and L “ tα1, . . . , αnu is the code locator set as defined in (4.3).
Let n0 “ 0. Define the following bijective map between the indices,

φ : N ˆ N Ñ N

l, t ÞÑ j “ t `

l´1
ÿ

r“0
nr .

(4.7)

Then αj “ alβ
q´1
t for j “ φpl, tq. The inverse map φ´1 : N Ñ N ˆ N is j ÞÑ pl, tq, where

l “ max
!

i P rℓs |
ři

r“0 nr ď j
)

and t “ j ´
řl´1

r“0 nr.
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For all i P rks, define the skew polynomials

fipXq :“
k
ÿ

j“1
Ti,jXj´1 P FqmrX; σs , (4.8)

where Ti,j`1 is the entry at i-th (i P rks) row, j-th (j P rks) column in T . The entries of G

are Gij “ fipalβ
q´1
l,t qβl,t, i P rks, j “ φpl, tq P rns. Then, the zero constraints in (4.1) become

the following root constraints on fi’s:

fipalβ
q´1
l,t q “ 0, @i P rks, @j “ φpl, tq P Zi . (4.9)

For brevity, denote by

Zi :“ tαj “ alβ
q´1
l,t | j “ φpl, tq P Ziu (4.10)

the corresponding set of code locators to the zero set Zi. Since L is P-independent, any subset
Zi Ă L is also P-independent [Lam86, Theorem 23]. Then the minimal polynomial fZipXq of
Zi is of degree |Zi| “ k ´ 1. By the properties of fipXq in (4.8) and (4.9), it can be seen that
fipXq “ fZipXq by setting Ti,k “ 1 (as minimal polynomials are monic polynomials). By the
computation of the minimal polynomial in (2.8), the skew polynomials fipXq fulfilling (4.9)
can be written as

fipXq “ fZipXq “ lclmαPZitX ´ αu . (4.11)

Since all Zi Ă L, i P rks are P-independent, it follows from Lemma 2.3 that fipαq ‰ 0, for
all α P LzZi. Hence, there is no other zero entry in G than the required positions in Zi’s.
Moreover, with k ´ 1 P-independent roots of fipXq and setting Ti,k “ 1, the coefficients Ti,j

of fipXq in (4.8) are uniquely determined in terms of a1βq´1
1,1 , . . . , aℓβ

q´1
ℓ,nℓ

.

In the following, we assume that a1, . . . , aℓ are fixed, nonzero, and from distinct σ-conjugacy
classes. We see βl,t’s as variables of the following commutative multivariate polynomial ring

Rn :“Fqmrβ1,1, . . . , βℓ,nℓ
s , (4.12)

and the coefficients Ti,j of fipXq are polynomials in Rn. Then, the problem of finding βl,t’s
such that G generates the same LRS code as GpLRSq becomes finding βl,t’s such that

P pβ1,1, . . . , βℓ,nℓ
q :“ PT pβ1,1, . . . , βℓ,nℓ

q ¨

ℓ
ź

l“1
PM l

pβl,1, . . . , βl,nl
q ‰ 0 , (4.13)

where PT is the determinant of T in (4.6), whose entries are the coefficients of fi’s and
therefore determined by the roots of fi’s, and

PM l
:“ det

¨

˚

˚

˚

˚

˝

βl,1 βl,2 . . . βl,nl

βq
l,1 βq

l,2 . . . βq
l,nl

...
...

. . .
...

βqnl´1

l,1 βqnl´1

l,2 . . . βqnl´1

l,nl

˛

‹

‹

‹

‹

‚

.
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Since the coefficient of the monomial
śnl

i“1 βqi´1

l,i in PM l
is 1, PM l

is a nonzero polynomial in
Rn.

Claim 1. If the condition in (4.2) is satisfied, then PT is a nonzero polynomial in Rn.

With Claim 1, we can conclude that P pβ1,1, . . . , βℓ,nℓ
q is a nonzero polynomial in Rn. We

now proceed to prove Theorem 4.3 assuming that Claim 1 is true. A more general statement
(Theorem 4.5) of the claim is given and proven in Section 4.3.1.

For a fixed l P rℓs, t P rnℓs, the βl,t-degree of PM l
is degβl,t

PM l
“ qnl´1 [LN97, Lemma

3.51]. Moreover, degβl,t
PT ď pk ´ 1qpq ´ 1q ¨ qk´2, which is proven in Appendix A.1. Then,

the βl,t-degree of P pβ1,1, . . . , βℓ,nℓ
q in (4.13) is

degβl,t
P ď pk ´ 1qpq ´ 1q ¨ qk´2 ` qnl´1 .

Proof of Theorem 4.3. Claim 1 implies that P pβ1,1, . . . , βℓ,nℓ
q is a nonzero polynomial. By

the Combinatorial Nullstellensatz [Alo99, Theorem 1.2](see also in Theorem 2.1), there exist
β̂1,1, . . . , β̂ℓ,nℓ

in Fqm such that

P pβ̂1,1, . . . , β̂ℓ,nℓ
q ‰ 0 ,

if

qm ą max
lPrℓs,tPrnls

tdegβl,t
P u

“ max
lPrℓs

tpk ´ 1qpq ´ 1q ¨ qk´2 ` qnl´1u . (4.14)

If m ě maxlPrℓstk ´ 1 ` logq k , nlu, we have

qm “pq ´ 1qqm´1 ` qm´1

ě max
lPrℓs

tkpq ´ 1q ¨ qk´2 ` qnl´1u ą (4.14) .

To have a1, . . . , aℓ from different non-trivial σ-conjugacy class of Fqm , by Theorem 2.8, we
require q ´ 1 ě ℓ.

Remark 4.1. Consider the extreme cases:

(i) For ℓ “ 1, the sum-rank metric is the rank metric and LRS codes are Gabidulin codes.
In this case, the field size in Theorem 4.3 coincides with [YH20, Theorem 1].

(ii) For ℓ “ n and nl “ 1, @l P rℓs, the sum-rank metric is the Hamming metric. In addition,
with σ “ id, LRS codes are GRS codes with distinct nonzero a1, . . . , aℓ as code locators
and nonzero βl,t’s as column multipliers (see [MSK+22, Theorem 2.17], [MK19b, Table
II]). In this case, by adapting the setup in (4.8) to σ “ id, and the proof in Appendix A.1
with the usual evaluation of commutative polynomials, one can obtain the same results
as in [YH18b, Theorem 2].

If the necessary and sufficient condition on Z1, . . . , Zk in (4.2) is not satisfied, then we
cannot obtain an MSRD code fulfilling the support constraints. The following result derives
the largest possible sum-rank distance that can be achieved with the given constraints. In
fact, the largest sum-rank distance can be achieved by subcodes of LRS codes. This result
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4 Support-Constrained Evaluation Codes based on Skew Polynomials

is an analogue to those for MDS codes [YH18b] and MSRD codes [YH20]. The following
upper bound on the minimum Hamming distance of a support-constrained code C is given in
[YH18b, Theorem 1],

dHpCq ď n ´ rk ` 1

where

rk :“ max
∅‰ΩĎrks

ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ
Zi

ˇ

ˇ

ˇ

ˇ

ˇ

` |Ω| . (4.15)

Note that rk ą k if Z1, . . . , Zk do not satisfy the condition in (4.2). For any ordered partition
nℓ “ pn1, . . . , nℓq of n, according to Lemma 2.4, we have

dSR,nℓ
pCq ď dHpCq ď n ´ rk ` 1 . (4.16)

Theorem 4.4. Given Z1, . . . , Zk Ď rns, let rk be as in (4.15). For any prime power q ě ℓ ` 1
and integer m ě maxlPrℓst

rk ´ 1 ` logq
rk, nlu, there exists a subcode of an rn,rksqm linearized

Reed-Solomon code with ℓ blocks, and each block of length nl, l P rℓs such that it has a generator
matrix G P Fkˆn

qm fulfilling the support constraints Gij “ 0, @i P rks, @j P Zi.

Proof. Let Zk`1 “ ¨ ¨ ¨ “ Z
rk

“ ∅. For any nonempty Ω Ď rrks, we have
ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ
Zi

ˇ

ˇ

ˇ

ˇ

ˇ

` |Ω| ď rk .

Then, by Theorem 4.3, there exists an LRS code of dimension rk with a generator matrix
rG P Frkˆn

qm having zeros at the positions specified by Z1, . . . , Z
rk
. Since it is an MSRD code, its

sum-rank distance is n´rk`1. The first k rows of rG will generate a subcode C whose sum-rank
distance is as good as the LRS code, i.e., dSR,nℓ

pCq ě n ´ rk ` 1, where nℓ “ pn1, . . . , nℓq.
Hence, the subcode achieves the largest possible distance given in (4.16).

4.3.1 A More General Result of Claim 1

Let Rn be the commutative multivariate polynomial ring defined in (4.12). Note that R0 “

Fqm . Let σ be the Frobenius automorphism of R0, which we extend to any a “
ř

iPNn ai ¨

βi1
1,1 ¨ ¨ ¨ βin

ℓ,nℓ
P Rn by

σ : Rn Ñ Rn
ÿ

iPNn

ai ¨ βi1
1,1 ¨ ¨ ¨ βin

ℓ,nℓ
ÞÑ

ÿ

iPNn

aq
i ¨ pβi1

1,1qq ¨ ¨ ¨ pβin
ℓ,nℓ

qq .

Let RnrX; σs be the univariate skew polynomial ring with indeterminate X, whose coefficients
are from Rn, i.e.,

RnrX; σs :“
#

ÿ

iPN
ciX

i

ˇ

ˇ

ˇ

ˇ

ˇ

ci P Rn

+

.
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The degree of f “
ř

iPN ciX
i P RnrX; σs is deg f :“ maxti P N | ci ‰ 0u and deg 0 :“ ´8 by

convention.
Similar to skew polynomials over a finite field, addition is commutative and multiplication

is defined using the commutation rule

X ¨ a “ σpaq ¨ X, @a P Rn , (4.17)

and naturally extended by distributivity and associativity. As in (2.2), the product of f, g P

RnrX; σs with deg f “ df and deg g “ dg is

f ¨ g “

df
ÿ

i“0

dg
ÿ

j“0
fiσ

ipgjqXi`j , (4.18)

and the degree of the product is deg pf ¨ gq “ df ` dg. Note that in general, f ¨ g ‰ g ¨ f .
With a bit abuse of the notation, in the following, we also denote by

L “ta1βq´1
1,1 , . . . , a1βq´1

1,n1 , . . . , aℓβ
q´1
ℓ,1 , . . . , aℓβ

q´1
ℓ,nℓ

u Ď Rn

the P-independent set as a subset of Rn. Let Zi Ď L be the set as in (4.10) corresponding to
Zi and fZi P RnrX; σs be the minimal polynomial of Zi as in (4.11).

We note the following properties of RnrX; σs, which will be useful for the proof of the more
general result of Claim 1 in Theorem 4.5. The proofs of these properties can be found in
Appendix A.2.

P1 RnrX; σs is a ring without zero divisors.

P2 For any sets Z1, Z2 Ď Rn s.t. Z1 Y Z2 is P-independent, gcrdpfZ1 , fZ2q “ fZ1XZ2 . In
particular, Z1 X Z2 “ ∅ ðñ gcrdpfZ1 , fZ2q “ 1.

P3 For t P N and any f P RnrX; σs, Xt l f ðñ Xt r f . In this case, we write Xt|f .

P4 For t P N and any f1, f2 P RnrX; σs such that X ffl f2, then Xt  pf1 ¨ f2q ðñ Xt  f1.

In the general result in Theorem 4.5, we are interested in skew polynomials in the following
form: for any Z Ď rns, τ ě 0

fpZ, τq :“ Xτ ¨ lclm
αP

!

alβ
q´1
l,t

ˇ

ˇ

ˇ
φpl,tqPZ

)

tX ´ αu P RnrX; σs , (4.19)

where φpl, tq is defined in (4.7).
Define the set of skew polynomials of the following form:

Sn,k :“ t fpZ, τq | τ ě 0, Z Ď rns s.t. |Z| ` τ ď k ´ 1u Ď RnrX; σs . (4.20)

Note that deg f ď k ´ 1, @f P Sn,k. We also note the following properties of polynomials in
Sn,k, whose proofs are given in Appendix A.2.

P5 For any f1 “ fpZ1, τ1q, f2 “ fpZ2, τ2q P Sn,k, we have

gcrdpf1, f2q “ fpZ1 X Z2, mintτ1, τ2uq P Sn,k .
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P6 Let f “ fpZ, τq P Sn,k and let f 1 “ f |βℓ,nℓ
“0 P Rn´1rX; σs (namely, we substitute

βℓ,nℓ
“ 0 in each coefficient of f). Then f 1 P Sn´1,k and

f 1 “

#

fpZ, τq n R Z ,

fpZztnu, τ ` 1q n P Z .

The following theorem is a more general statement of Claim 1 and it is the analogue of
[YH20, Theorem 3.A] for skew polynomials.

Theorem 4.5. Let k ě s ě 1 and n ě 0. For any f1, f2, . . . , fs P Sn,k, the following are
equivalent:

(i) For any g1, g2, . . . , gs P RnrX; σs such that degpgi ¨ fiq ď k ´ 1, we have
s
ÿ

i“1
gi ¨ fi “ 0 ùñ g1 “ g2 “ ¨ ¨ ¨ “ gs “ 0 .

(ii) For all nonempty Ω Ď rss, we have

k ´ degpgcrdiPΩ fiq ě
ÿ

iPΩ
pk ´ deg fiq . (4.21)

Before proving Theorem 4.5, we first show in Corollary 4.1 that Claim 1 is a special case of
Theorem 4.5. For this purpose, we give an equivalence of Theorem 4.5 in terms of matrices
with entries from Rn.

We first describe the multiplication between skew polynomials in matrix language. Let
u “

ř

iPN uiX
i P RnrX; σs. For b ´ a ě deg u, define the following matrix

Saˆbpuq –

¨

˚

˚

˚

˝

u0 ¨ ¨ ¨ ub´a

σpu0q ¨ ¨ ¨ σpub´aq

. . .
. . .

. . .

σa´1pu0q ¨ ¨ ¨ σa´1pub´aq

˛

‹

‹

‹

‚

P Raˆb
n .

In particular, for a “ 1, denote by RnrX; σsăb the set of skew polynomials of degree strictly
less than b. The map

S1ˆbp¨q : RnrX; σsăb Ñ Rb
n

u ÞÑ pu0, . . . , ub´1q
(4.22)

is bijective and S1ˆbp0q “ 0, @b P N. For any skew polynomial v “
ř

i viX
i P RnrX; σs, we

have

Saˆbpv ¨ uq “ Saˆcpvq ¨ Scˆbpuq , (4.23)

where a, b, c P N are such that c´a ě deg v, b´c ě deg u. As a special case, when v “ Xτ , τ P
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N, we can write

Saˆpb`τqpX
τ ¨ uq “Saˆpa`τqpX

τ q ¨ Spa`τqˆpb`τqpuq

“ p0aˆτ Iaˆaq ¨ Spa`τqˆpb`τqpuq . (4.24)

By the definition in (4.19), we have fpZ, τq “ Xτ ¨ u for some u P RnrX; σs. It can be readily
seen from (4.24) that the first τ columns of Saˆpb`τqpfpZ, τqq are all zero.

For s P rks, i P rss, let fi “ fpZi, τiq P Sn,k. We write Spfiq instead of Spk´τi´|Zi|qˆkpfiq for
ease of notation. By (4.24), Spfiq looks like

Spfiq “

¨

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 ˆ ˆ ¨ ¨ ¨ ˆ

0 ¨ ¨ ¨ 0 ˆ ˆ ¨ ¨ ¨ ˆ

...
...

. . .
. . .

. . .

loomoon

τi

0 ¨ ¨ ¨ 0
looomooon

k´1´τi´|Zi|

loooooomoooooon

|Zi|`1

ˆ ˆ ¨ ¨ ¨ ˆ

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

k´τi´|Zi| ,

where the ˆ’s represent possibly nonzero entries. Then, applying (4.23) to the expression
gi ¨ fi in Theorem 4.5 yields

S1ˆkpgi ¨ fiq “ ui ¨ Spfiq ,

where ui “ S1ˆpk´τi´|Zi|qpgiq is a row vector. Therefore, we can write

S1ˆkp

s
ÿ

i“1
gi ¨ fiq “ pu1, ¨ ¨ ¨ , usq ¨

¨

˚

˝

Spf1q

...
Spfsq

˛

‹

‚

loooomoooon

“:Mpf1,...,fsq

, (4.25)

which is a linear combination of the rows of Mpf1, . . . , fsq.
The following theorem is equivalent to Theorem 4.5 in matrix language and is analogous to

[YH20, Theorem 3.B].

Theorem 4.6. Let k ě s ě 1 and n ě 0. For i P rss, let Zi P rns, τi ě 0 such that
τi ` |Zi| ď k ´ 1 and fi “ fpZi, τiq P Sn,k. The matrix Mpf1, . . . , fsq defined in (4.25) has full
row rank if and only if, for all nonempty Ω Ď rss,

k ´

ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ
Zi

ˇ

ˇ

ˇ

ˇ

ˇ

´ min
iPΩ

τi ě
ÿ

iPΩ
pk ´ τi ´ |Zi|q . (4.26)

Proof. For brevity, we write M instead of Mpf1, . . . , fsq. The logic of the proof is as follows

M has full row rank
(I)

ðñ (iq Theorem 4.5
ðñ (iiq

(II)
ðñ (4.26) holds

where (i) and (ii) are shown to be equivalent in Theorem 4.5. We only need to show the
equivalence (I) and (II).
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(I): Assuming M has full row rank, it is equivalent to writing

@u P R
1ˆ

řs
i“1pk´τi´|Zi|q

n , u ¨ M “ 0 ùñ u “ 0 . (4.27)

Partition u into s blocks pu1, . . . , usq, where ui P R
1ˆpk´τi´|Zi|q
n . Note that u “ 0 ðñ @i P

rss, ui “ 0. For each i P rss, the set tgi | S1ˆpk´τi´|Zi|qpgiq “ ui, @ui P R
1ˆpk´τi´|Zi|q
n u is

RnrX; σsăpk´τi´|Zi|q, which is the set of skew polynomials of degree less than pk ´ τi ´ |Zi|q,
since the map S1ˆ˚p¨q defined in (4.22) is bijective. Therefore, ui “ 0 ðñ gi “ 0, @i P rss.
It can be further inferred that every u P R

1ˆ
řs

i“1pk´τi´|Zi|q
n corresponds to a unique tuple

pg1, . . . , gsq P RnrX; σsăpk´τ1´|Z1|q ˆ ¨ ¨ ¨ ˆ RnrX; σsăpk´τs´|Zs|q. We denote the Cartesian
product by G. Since deg fi “ τi ` |Zi|, @i P rss, for any tuple pg1, . . . , gsq P G, degpgi ¨ fiq ď

k ´ 1, @i P rss.
By the equality in (4.25), u ¨ M “ S1ˆkp

řs
i“1 gi ¨ fiq and S1ˆkp

řs
i“1 gi ¨ fiq “ 0 ðñ

řs
i“1 gi ¨ fi “ 0. Hence (4.27) can be equivalently written as

@g1, . . . , gs P RnrX; σs such that degpgi ¨ fiq ď k ´ 1 ,
s
ÿ

i“1
gi ¨ fi “ 0 ùñ gi “ 0, @i P rss ,

which is exactly the statement (i).
(II): It follows from P5 that for any nonempty set Ω Ď rss,

degpgcrdiPΩ fiq “

ˇ

ˇ

ˇ

ˇ

ˇ

č

iPΩ
Zi

ˇ

ˇ

ˇ

ˇ

ˇ

` min
iPΩ

τi .

Then the left hand side of (4.21), k ´ degpgcrdiPΩ fiq, is equal to k ´ |
Ş

iPΩ Zi| ´ miniPΩ τi,
which is the left hand side of (4.26). By the definition of fi “ fpZi, τiq in (4.19), the right
hand side of (4.21),

ř

iPΩpk ´ deg fiq, is equal to
ř

iPΩpk ´ p|Zi| ` τiqq, which is the right hand
side of (4.26).

As a special case, when s “ k, τi “ 0 and |Zi| “ k ´ 1, @i P rks, each block Spfiq becomes a
row vector with entries being the coefficients of fi “ fpZi, 0q “

řk
j“1 fi,jXj´1 P RnrX; σs and

Mpf1, . . . , fkq “

¨

˚

˚

˚

˝

f11 f12 ¨ ¨ ¨ f1k

f21 f22 ¨ ¨ ¨ f2k

...
...

. . .
...

fk1 fk2 ¨ ¨ ¨ fkk

˛

‹

‹

‹

‚

P Rkˆk
n . (4.28)

Note that Mpf1, . . . , fkq coincides with the matrix T in (4.6). Hence, we have Corollary 4.1
below, which is exactly Claim 1.

Corollary 4.1. For i P rks, let Zi Ď rns with |Zi| “ k ´ 1. Then, det Mpf1, . . . , fkq is a
nonzero polynomial in Rn, if and only if, for all nonempty Ω Ď rks, k ´ |

Ş

iPΩ Zi| ě |Ω|.

Proof of Theorem 4.5

Denote fΩ :“ gcrdiPΩ fi. By P2, fΩ is equal to the minimal polynomial of the set ZΩ :“
Ş

iPΩ Zi.
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We first show the direction (i) ùñ (ii). Suppose (ii) does not hold and w.l.o.g., assume that
for Ω “ t1, 2, . . . , νu Ď rks, k ´ deg fΩ ă

ř

iPΩpk ´ deg fiq. For i P Ω, let fi “ qi ¨ fΩ for some
qi P RnrX; σs. Then, for g1, . . . , gν P RnrX; σs such that degpgi ¨ fiq ď k ´ 1, the equation
ř

iPΩ gi ¨ qi “ 0 gives a homogeneous linear system of equations in the unknowns which are
the coefficients of the gi’s. Since the gi’s are such that degpgi ¨ fiq ď k ´ 1, the number of
unknowns is at least

ř

iPΩpk´deg fiq. The number of equations is at most k´deg fΩ, which is
smaller than the number of unknowns by the assumption. Therefore, one can find g1, . . . , gν ,
not all zero, solving the linear system of equations, which contradicts (i).

We then show the direction (ii) ùñ (i) by induction. We do induction on the parameters
pk, s, nq considered in the lexicographical order ă (page 6).

For the induction basis, when pk ě s “ 1, n ě 0q, (i) always holds due to P1, i.e., g1 ¨f1 “ 0
implies g1 “ 0.

For pk ě s ě 2, n “ 0q, both (i) and (ii) never hold therefore they are equivalent. Note
that n “ 0 ùñ fi “ Xτi for all i P rks. For any fi “ Xτi and fj “ Xτj with τi ‰ τj

(w.l.o.g. assuming τi ą τj), there exist gi “ 1 and gj “ ´Xτi´τj such that gifi ` gjfj “ 0
and hence (i) never holds. Suppose τ1 ď τ2, then for Ω “ t1, 2u, (4.21) becomes k ´ τ1 ě

pk ´ τ1q ` pk ´ τ2q, which contradicts that deg fi “ |Zi| ` τi ď k ´ 1. Hence, (ii) never holds.
For pk ě s ě 2, n ě 1q, we do the induction with the following hypotheses:

H1 Assume that (ii) ùñ (i) is true for all parameters pk1, s1, n1q ă pk, s, nq.

H2 Take any f1, . . . , fs P Sn,k for which (ii) is true for pk, s, nq.

The logic of the proof is summarized in Figure 4.1.

(i) (ii)pk1, s1, n1q
H1

(i) (ii)pk, s, nq H2
Proof Goal

(Step
1)(S

te
p

2)

Figure 4.1: Proof logic for (iiq ùñ (iq with initial hypothesis H1 and H2.

Starting from H2, we have that for all the subsets ∅ ‰ Ω Ď rss, the inequality (4.21) in (ii)
holds. We prove that (i) is true for pk, s, nq via (Step 1) Ñ H1 Ñ (Step 2) under different
cases:

Case 1 For s ě 3 and n ě 2,
Case 1a @i P rss, τi ě 1 (i.e., |Zi| ď k ´ 2). (In this case, we do induction by reducing k.)
Case 1b D a unique i P rss such that τi “ 0. (In this case, we do induction by reducing k.

We may need to reduce s as well.)
Case 1c D Ω Ă rss with 2 ď |Ω| ď s ´ 1 such that (4.21) holds with equality. (In this case,

we do induction by reducing s.)
Case 1d @ Ω Ă rss with 2 ď |Ω| ď s ´ 1, (4.21) holds strictly and D at least two i P rss

such that τi “ 0. (In this case, we do induction by reducing n.)

Case 2 For s “ 2 and n ě 2,
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4 Support-Constrained Evaluation Codes based on Skew Polynomials

Case 2a @i P t1, 2u, τi ě 1 (i.e., |Zi| ď k ´ 2). (The same as Case 1a.)
Case 2b D a unique i P t1, 2u such that τi “ 0. (The same as Case 1b.)
Case 2c @i P t1, 2u, τi “ 0. (In this case, we do induction by reducing n.)

Case 3 For s ě 2 and n “ 1,
Case 3a @i P rss, τi ě 1 (i.e., |Zi| ď k ´ 2). (The same as Case 1a.)
Case 3b D a unique i P t1, 2u such that τi “ 0. (The same as Case 1b.)
Case 3c D at least two i P rss, τi “ 0. (We show that this case cannot happen if (ii) is true

for pk ě s ě 2, n “ 1q.)

We illustrate the reduction of s and n in the induction under these cases in Fig. 4.2. We
omitted the parameter k for clarity and simplicity, since only s, n are essential in classifying
the different cases. The elaborated proofs for each case are presented in Appendix A.3.

1 2 3 4 ¨ ¨ ¨

1

2

3

4

...

C
as

e
1d

Case 1b/Case 1c

Case 2b

C
as

e
2c

Case 3b

s

n

induction basis
s “ 1, n ě 0
(i) and (ii) both
never hold
Case 1
(s ě 3, n ě 2)
Case 2
(s “ 2, n ě 2)
Case 3
(s ě 2, n “ 1)

Figure 4.2: Illustration of the induction for (ii) ùñ (i) under difference cases.

4.4 Applications in Multi-Source Network Coding
Distributed multi-source networks were studied in [HHYD14; HHD14], where supported-
constrained error-correcting codes were used to achieve reliable communication against ma-
licious (or failed) nodes in the network. In this section, we introduce a scheme to design
distributed LRS codes for any such network instance. The scheme illustrates how the nec-
essary and sufficient conditions derived in Section 4.3 can be used as constraints in a linear
programming problem to design the parameters of desired distributed LRS codes.

Consider a distributed multi-source network as illustrated in Fig. 4.3. The receiver at the
sink intends to obtain all the messages in a set M by downloading through an Fq-linear
network from multiple source nodes. Each source node has access to only a few messages in
M. This access is assumed to have unlimited link capacity (e.g., the source nodes store the
subset of M locally). The topology of the Fq-linear network is not known to the source nodes
nor to the sink; therefore, it is a non-coherent communication scenario. This model can find
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its applications in data sharing platforms, sensor networks, satellite communication networks
and MIMO (multiple-input multiple-output) antenna communication systems, etc.

M “ tm1, m2, . . . , mhu

SJ1 SJ2 SJ3
. . . SJs Ji Ă rhs, @i P rss

Fq-Linear network
with a pt, ρq-adversary

access to the messages indexed
in Js

nJ1 nJ2 nJ3 nJs

Sink
Collects N packets to recover all
h messages

N

Figure 4.3: Illustration of the distributed multi-source network model.

The set M contains h messages. The message mj , j P rhs is composed of rj symbols
over Fqm , i.e., mj P Frj

qm . The source node SJi , i P rss has access only to the messages
indexed in Ji, e.g., if J2 “ t3, 6u, then SJ2 only has the access to the messages m3 and
m6. Let S “ tJ1, . . . , Jsu. For any J P S, the source node SJ encodes the messages
mj , j P J , into nJ symbols over Fqm , denoted by cJ P FnJ

qm . It then extends them to
their matrix representation over Fq, denoted by CJ P FmˆnJ

q , and then generates XJ “

p0 ¨ ¨ ¨ InJ 0 ¨ ¨ ¨ CJ
J q P FnJ ˆpn`mq

q , where n “
ř

J PS nJ . We call each row of XJ a packet.

Denote X “

¨

˚

˝

XJ1
...

XJs

˛

‹

‚

P Fnˆpn`mq
q , where the rows are the packets transmitted by all the

source nodes into the Fq-linear network. The task is to design nJ for all J P S such that the
sink can recover all the messages mi. The goal of the design is to minimize the total number
of packets n. A concrete example is given in Section 4.4.2.

In the Fq-linear network, whenever there is a transmission opportunity, a relay node in the
network produces and sends an arbitrary Fq-linear combination of all the incoming packets
they have received. Suppose that there are at most t malicious nodes that inject erroneous
packets and at most ρ frozen nodes that do not send any packet, which we refer as a pt, ρq-
adversary. The sink collects N ě n ´ ρ packets, which are represented by the rows of Y P

FNˆpn`mq
q . The transmitted packets (rows of X) and the received packets (rows of Y ) can

be related via the following network equation:

Y “ AX ` E , (4.29)

where A P FNˆn
q is the transfer matrix of the network and the difference between the number

of columns and its row-rank is at most ρ. In other words, n ´ rankpAq ď ρ. E P FNˆM
q is an

error matrix of rankpEq ď t. Note that the matrices A and E are not known to any of the
source nodes or the sink since we consider a non-coherent communication scenario.

The capacity region of a multi-source network with h messages is a set tpr1, . . . , rhqu Ď Nh

65



4 Support-Constrained Evaluation Codes based on Skew Polynomials

such that the receiver at the sink can recover all the messages mj P Frj

qm , j P rhs. The
capacity region of a multi-source network against a pt, ρq-adversary has been given in [DHJ+11,
Theorem 2] (for ρ “ 0) and [RK18, Corollary 66]. To present the result, we require the
following definitions of min-cut.

Definition 4.3 (Min-cut between a set of nodes and another node). For a directed graph
GpV, Eq composed of a set of nodes V and a set of edges E, a cut between a set of nodes
V 1 Ă V and another node t P VzV 1 is a subset of edges EV 1,t Ď E such that, after removing the
edges in EV 1,t, there is no path from any of the nodes in V 1 to t. The min-cut between V 1 and
t is the smallest cardinality of a cut between V 1 and t.

Definition 4.4 (Min-cut between a subset of messages and the sink). Consider the distributed
multi-source network with h messages as above. Given a subset of messages, J 1 Ď rhs, consider
the set of source nodes V 1

J 1 that contain messages in J 1, namely,

V 1
J 1 “

␣

SJ P S | J X J 1 ‰ ∅
(

.

We define the min-cut between J 1 and the sink as the min-cut between V 1
J 1 and the sink, and

denote it by wJ 1.

Theorem 4.7 ([DHJ+11; RK18]). Consider a multi-source network with h messages. For
any pr1, . . . , rhq P Nh in the capacity region against a pt, ρq-adversary, we have

@∅ ‰ J 1 Ď rhs,
ÿ

iPJ 1

ri ď wJ 1 ´ 2t ´ ρ , (4.30)

where wJ 1 is the min-cut between the set J 1 of messages and the sink.

In addition to the general settings, we further assume the following setup of the non-coherent
network:

• The communication capacity of the non-coherent linear network is large enough so that
the min-cut wJ 1 for all J 1 Ď rhs is determined by the number of encoded symbols nJ
sent by the source node SJ for all J P S, i.e.,

wJ 1 “ n ´
ÿ

J PS
J ĎrhszJ 1

nJ .

Note that the term
ř

J PS
J ĎrhszJ 1

nJ is the total number of encoded symbols that do not

contain any information about the messages in J 1.

• Although the encoding is distributed (since each source node may access only a few
messages), there is a centralized coordination unit designing the overall code, and the
sink knows the distributed code.

4.4.1 Sum-Rank Weight of Error and Erasure with Constrained Rank Weight
In the following, we intend to use LRS codes for the distributed multi-source linear network
model. Note that the errors and erasures in the pt, ρq-adversarial model are measured in the
rank metric. However, LRS codes are used to deal with errors and erasures in the sum-rank
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4.4 Applications in Multi-Source Network Coding

metric. Hence, we first look into the sum-rank deficiency of the network transfer matrix
A P FNˆn

q and the sum-rank weight of the error matrix E P FNˆM
q .

Let ℓ P N and nℓ “ pn1, . . . , nℓq be an ordered partition of n. By Lemma 2.5, we have

wtSR,nℓ
pAq ě rankpAq ě n ´ ρ . (4.31)

Hence the sum-rank weight of the erasure induced by the rank-deficient A is at most ρ.
For the error E, consider an ordered partition N ℓ “ pN1, . . . , Nℓq of N such that

A1,1 A1,2 ¨ ¨ ¨ A1,ℓ

A2,1 A2,2 ¨ ¨ ¨ A2,ℓ

...
...

...
...

Aℓ,1 Aℓ,2 ¨ ¨ ¨ Aℓ,ℓ

¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

X1
X2

...
Xℓ

¨

˚

˚

˚

˝

˛

‹

‹

‹

‚

`

E1

E2

...

Eℓ

¨

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‚

.AX ` E “

n1 n2 nℓ

N1

N2

Nℓ

n1
n2

n4

M
M

N1

N2

Nℓ

Given rankpEq ď t, by Lemma 2.5, we have

wtSR,Nℓ
pEq “

ℓ
ÿ

i“1
rankpEiq ď

ℓ
ÿ

i“1
rankpEq “ ℓt . (4.32)

This upper bound holds for any arbitrary ordered partition N ℓ of N . A lower bound on
PrrwtSR,Nℓ

pEq “ ℓt | rankpEq “ ts (i.e., the probability that (4.32) is tight) for small t (t ď

Ni, @i P rℓs) is given in [SL23, Theorem 1]. In particular, if q ě ℓ ` 1, then PrrwtSR,Nℓ
pEq “

ℓt | rankpEq “ ts ą 1{4 [SL23, Corollary 1].
It can been seen from (4.31) and (4.32) that the network model in (4.29) results in an

erasure of sum-rank weight at most ρ and an error of sum-rank weight at most ℓt. It has been
shown in [MK19b, Theorem 1, Eq.(4), Proposition 2] that a code with sum-rank distance d can
guarantee reliable communication against errors of sum-rank weight at most ℓt and erasures
with sum-rank weight at most ρ in the non-coherent communication if d ě 2ℓt ` ρ ` 1.
Therefore, an LRS code with sum-rank distance d ě 2ℓt ` ρ ` 1 can correct any error and
erasure in the pt, ρq-adversarial model.

4.4.2 Example of Distributed LRS codes

We first give a toy example to show the usage of LRS codes in a distributed multi-source
network, and then provide a general scheme to design distributed LRS codes for arbitrary
distributed multi-source networks in Section 4.4.3.

Consider the following toy example of the network illustrated in Fig. 4.3: There are h “

4 messages in M. The lengths of messages are pr1, r2, r3, r4q “ p1, 3, 2, 3q. There are 4
source nodes and each can access to only 3 messages, i.e., J1 “ t1, 2, 3u, J2 “ t1, 2, 4u, J3 “

t1, 3, 4u, J4 “ t2, 3, 4u. Suppose there is a p2, 2q-adversary in the Fq-linear network.
The number of encoded packets from each source node is pnJ1 , nJ2 , nJ3 , nJ4q “ p6, 7, 2, 8q

(see (i) in Section 4.4.3 for the computation of these values) and n “
ř4

i“1 nJi “ 23. Let
m “ pm1, m2, m3, m4q be a concatenated vector of all the messages. Some entries in a
encoding matrix G are forced to be 0, as shown in Fig. 4.4, so that m ¨ G represents the
overall encoding at all source nodes. For example, the first 6 columns of G, corresponding to
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G “

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 0 0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ 0 0 0 0 0 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ 0 0 0 0 0 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 0 0 0 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 0 0 0 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 0 0 0 0 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Encoding for m1

for m2

for m3

for m4

Encoding at SJ1 at SJ2 at SJ3 at SJ4

First block of LRS code Second block Third block

Figure 4.4: Illustration of the required encoding matrix for the instance of distributed multi-
source networks with h “ 4 messages. This support-constrained matrix is a gen-
erator matrix of a r23, 9s LRS over F49 with ℓ “ 3 blocks.

the encoding at SJ1 , have zero entries in the last 3 rows. This indicates that SJ1 does not
encode m4 since it does not have the access to m4.

We can obtain the support-constrained encoding matrix G from a generator matrix of a
r23, 9s49 LRS code with ℓ “ 3 blocks. The lengths of the blocks are pn1, n2, n3q “ p8, 7, 8q (see
(i) in Section 4.4.3 for the computation of these parameters). Let γ be a primitive element
of F49 . The block representatives of the LRS code are pa1, a2, a3q “ p1, γ, γ2q and the column
multipliers are b “ p1, γ, . . . , γ7, γ, γ2, . . . , γ7, γ2, γ3, . . . , γ9q. We construct a generator matrix
GpLRSq of the LRS code according to (4.4) and find a full-rank matrix T P F9ˆ9

49 such that
the support-constrained encoding matrix G is given by G “ T ¨ GpLRSq. It can be verified
by Theorem 4.3 that such a matrix T exists over F49 and it can be found by solving a linear
system of equations. For this example, we found the following T as a solution (see Section 4.4.3
(iv) for the computation method that we used here).

T “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

γ29883 γ208968 γ19488 γ27791 γ137529 γ135128 γ142532 γ123564 γ199506

γ8272 γ137891 γ117682 γ134830 γ175546 γ199273 γ233167 γ13175 γ75587

γ171183 γ60863 γ88547 γ152810 γ183852 γ129008 γ223733 γ220778 γ215911

γ136657 γ53725 γ187129 γ236279 γ244758 γ124656 γ163100 γ222367 γ245041

γ67172 γ31331 γ217264 γ133630 γ190037 γ228340 γ210873 γ222699 γ102082

γ180377 γ78748 γ71136 γ170404 γ251773 γ44364 γ188627 γ44347 γ145983

γ82368 γ167072 γ210000 γ110692 γ24773 γ69984 γ182180 γ211569 γ24237

γ78461 γ249391 γ68483 γ120459 γ140206 γ243029 γ126875 γ75641 γ12289

γ33368 γ98307 γ247550 γ210053 γ223247 γ103052 γ160318 γ69947 γ42305

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Remark 4.2. With the choice of ℓ and pn1, . . . , nℓq for this toy LRS code we intend to show
that the number of blocks ℓ does not need to be the same as the number of source nodes s. The
value of ℓ determines the upper bound in (4.32) on the sum-rank weight of E. We listed several
other parameters of the LRS codes in Table 4.1 that can be used for this network example. It
can be seen that, the larger ℓ is, the larger error-correction capability is required, which results
in larger sum-rank distance of the LRS code and hence larger total length n and field size qm.
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However, larger ℓ may result in a smaller field size. For instance, suppose that the messages
mi are over F311. According to Table 4.1, setting ℓ “ 1 (i.e., using a distribued Gabidulin
code [HHD14]) requires a field size qm “ 315 while using the distributed LRS codes with ℓ “ 2
requires a field size qm “ 311 (note that the field size of the messages is 311 hence the code
should be over F311).

Table 4.1: Parameters of distributed LRS codes for the toy network example while increasing
ℓ. The q and m are the minimal parameters of the required field over which the
rn,rk, ds distributed LRS code can be constructed, where d “ 2ℓt ` ρ ` 1 is the
sum-rank distance of the distributed LRS code.

ℓ q m rn,rk, ds pn1, . . . , nℓq pnJ1 , nJ2 , nJ3 , nJ4q

1 (Gabidulin code) 2 15 r15, 9, 7s p15q p6, 1, 0, 8q

2 3 10 r19, 9, 11s p10, 9q p6, 5, 0, 8q

3 (Fig. 4.4) 4 9 r23, 9, 15s p8, 7, 8q p6, 7, 2, 8q

4 5 9 r27, 9, 19s p7, 7, 7, 6q p6, 7, 6, 8q

5 7 11 r33, 11, 23s p7, 6, 7, 7, 6q p8, 9, 6, 10q

6 7 12 r38, 12, 27s p7, 6, 6, 7, 6, 6q p9, 10, 8, 11q

7 8 13 r43, 13, 31s p6, 6, 6, 7, 6, 6, 6q p10, 11, 10, 12q

In Table 4.2, we list the parameters of LRS codes for several different S “ tJ1, J2, J3, J4u.
It can be seen that encoding each message independently requires a longer code (hence, a larger
alphabet size) than jointly encoding subsets of messages.

Table 4.2: Parameters of distributed LRS codes for the toy example while changing S.

S ℓ q m rn,rk, ds pn1, . . . , nℓq pnJ1 , nJ2 , nJ3 , nJ4q

tt1u, t2u, t3u, t4uu

1 2 33 r33, 27, 7s p33q p7, 9, 8, 9q

2 3 39 r49, 39, 11s p25, 24q p11, 13, 12, 13q

3 4 51 r65, 51, 15s p22, 22, 21q p15, 17, 16, 17q

tt1, 2u, t1, 3u,
t2, 4u, t3, 4uu

1 2 17 r17, 11, 7s p17q p6, 1, 3, 7q

2 3 15 r25, 15, 11s p13, 12q p10, 1, 3, 11q

3 4 19 r33, 19, 15s p11, 11, 11q p14, 1, 3, 15q

Now we proceed to apply the lifting technique [SKK08] to deal with the non-coherent
situation. Supposing pcJ1 , cJ2 , cJ3 , cJ4q “ pm1, m2, m3, m4q ¨ G. Each source node SJi

generates CJi “ extβpcJiq P FmˆnJi
q by the map defined below and lifts the CJ

Ji
by adding

the identity and zero matrices as in (4.33) to obtain the transmitted packets (rows of X).

X “

InJ1 CJ
J1

InJ2 CJ
J2

InJ3 CJ
J3

InJ4 CJ
J4

¨

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‚

n “
ř4

i“1 nJi

mn

(4.33)
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Each row is a packet of length n ` m (“ 23 ` 9 “ 31 for the toy example) over Fq (F4)
transmitted into the network. Note that for the lifting step, the centralized coordination unit
is also needed to instruct the source nodes where to put the identity matrix in their packets.

4.4.3 The General Scheme: Distributed LRS Codes
In the following we present the general scheme at the centralized coordination unit to design
the overall distributed LRS codes, given:

• the total number of messages h and their lengths r1, . . . , rh;

• the set S “ tJ1, . . . , Jsu, where each Ji Ă rhs contains the indices of the messages that
the source node SJi has access to;

• the pt, ρq-adversarial model: the maximum number t of malicious nodes and the maxi-
mum number ρ of frozen nodes in the network;

• the number of blocks ℓ of the LRS code.
The task is to design the nJ , for all J P S, such that the sink can recover all h messages.
The goal of the design is to minimize n, the total number of the encoded symbols.

The general scheme contains the following steps:
(i) Solving the following integer linear programming problem for pnJ1 , . . . , nJsq

minimize n “ nJ1 ` ¨ ¨ ¨ ` nJs

subject to @∅ ‰ J 1 Ď rhs,
ÿ

iPJ 1

ri ` 2t ` ρ ď n ´
ÿ

J PS
J ĎrhszJ 1

nJ , (4.34)

@∅ ‰ Ω Ď rhs,
ÿ

J PS
rhszJ ĚΩ

nJ `
ÿ

iPΩ
ri ď n ´ 2ℓt ´ ρ , (4.35)

@J P S, nJ ě 0 .

Remark: Recall that we assume that the min-cut wJ 1 “ n ´
ř

J PS
J ĎrhszJ 1

nJ , for all

∅ ‰ J 1 Ď rhs. With the constraints in (4.34), the choice of pnJ1 , . . . , nJsq guarantees
that the message lengths pr1, . . . , rhq are in the capacity region given in Theorem 4.7.
Let

rk :“ max
∅‰ΩĎrhs

ÿ

J PS
rhszJ ĚΩ

nJ `
ÿ

iPΩ
ri .

By Theorem 4.4, there exist a subcode of an rn,rks LRS code whose generator matrix
fulfills the support constraints of the encoding matrix G for the distributed multi-source
network. The constraints in (4.35) guarantee that rk ď n ´ 2ℓt ´ ρ, which ensures that
the rn,rks LRS code can decode the rank-metric errors and erasures induced by the pt, ρq-
adversarial model (see Section 4.4.1).

(ii) Determine the field size qm required for the rn,rks LRS code with ℓ blocks according to
Theorem 4.4.
Remark: The total length should be distributed as evenly as possible into ℓ blocks so that
the extension degree m is minimized.
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(iii) Construct a generator matrix GpLRSq of the rn,rksqm LRS code according to (4.4).

(iv) Find a full-rank matrix T P Fkˆrk
qm (where k “

řh
i“1 ri) such that the support-constrained

encoding matrix G can be obtained from G “ T ¨ GpLRSq.
Remark: This can be done by solving a linear system of equations for the entries of
T . For example, in our implementation, we see the entries of T as variables in a
multivariate polynomial ring R “ FqmrT11, . . . , Tkks and translate the constraints (the
zero entries in G) into a system of linear equations. We use the facilities (Gröbner
bases, variate, etc.) for multivariate polynomials embedded in SageMath [The22] to
solve the system. Note that the variate() function in SageMath avoids computing the
whole solution space when the system is underdetermined. If this is the case, let λ be
the degree of freedom of the system. We assign random values in Fqm to λ variables, so
that it becomes a determined system that is solvable by variate().

4.5 Vector Network Coding for Generalized Combination Networks

A multicast network is a network with exactly one source and multiple receivers demanding
all the messages from the source. In networks that apply routing, every relay node can only
pass on their received data. Network coding has been attracting increasing attention since
the seminal paper by Ahlswede, et. al. [ACLY00], which showed that the throughput of the
network can be increased significantly by not just forwarding packets but also performing
operations on them. We formulate the network coding problem as follows: for each node in
the network, find an encoding function of its incoming messages for each of its outgoing links.
A solution is a set of the encoding functions at all the nodes in the network, such that each
receiver can recover all (or a predefined subset of all) the messages. A network is solvable if
a solution exists.

Although network coding has the advantage of good throughput, the encoding at relay
nodes incurs extra delay and memory occupation than routing. This section considers these
costs from the aspect of the required alphabet size to utilize network coding. Reducing
the alphabet size of the coding operations results in less complexity, hence less delay, and less
memory occupation for practical implementations of network coding [LSB06; LS09; GSRM19].

In the following, we first formally introduce the concepts that are considered in this section.

Generalized Combination Networks

The main object that we study in this section is the class of generalized combination net-
works. An pε, ℓq ´ Nh,r,αℓ`ε generalized combination network is illustrated in Figure 4.5 (see
also [EW18]).

The network has three layers. The first layer consists of a source with h source messages.
The source is connected to each of r middle nodes in the second layer via ℓ parallel links (solid
lines). Any α middle nodes are connected to a unique receiver in the third layer, each via ℓ
parallel links. This implies that there are N “

`

r
α

˘

receivers that receive distinct packets from
the second layer. In addition, each receiver is also connected to the source via ε direct links
(dashed lines). It was shown in [EW18, Theorem 8] that the pε, ℓq ´ Nh,r,αℓ`ε network has a
trivial solution if h ď ℓ ` ε and it has no solution if h ą αℓ ` ε. We only consider non-trivially
solvable networks, hence we assume that ℓ ` ε ă h ď αℓ ` ε throughout the section.
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x “ px1, x2, . . . , xhq

. . .

y1 y2 y3

. . .

yN

ℓ
r middle nodes

N “
`

r
α

˘

receivers

ε

αℓ

Figure 4.5: Illustration of an pε, ℓq ´ Nh,r,αℓ`ε network.

Vector/Scalar Linear Solutions of Network Coding

In linear network coding, the outgoing links of each relay node carry linear functions of the
messages from the incoming links. The linear functions are called coding coefficients. The set
of the coding coefficients is the solution of the linear network.

If the messages are scalars in Fq and the coding coefficients are vectors over Fq, then a
solution is called a scalar linear solution, denoted by pq, 1q-linear solution. If the messages
are vectors in Ft

q, and the coding coefficients are matrices over Fq, then a solution is called a
vector linear solution, denoted by pq, tq-linear solution.

We now formulate a solution to the pε, ℓq ´ Nh,r,αℓ`ε generalized combination network
illustrated in Fig. 4.5. W.l.o.g., we only formulate it with the notations for a vector linear
solution; a scalar linear solution can be obtained by simply setting t “ 1.

Denote by x1, . . . , xh P Ft
q the h source messages and by y1, . . . , yN P Fpε`αℓqt

q the packets
received by each receiver. For each i P rN s, yi is the concatenation of all the packets that the
i-th receiver gets from the α middle nodes and the source node. Since each middle node has ℓ
incoming links and αℓ outgoing links, we assume w.l.o.g. that the middle nodes just forward
their incoming packets and the encoding is done at the source node.

We denote by A1, . . . , Ar P Fℓtˆht
q the coding coefficients used by the source node for

the messages transmitted to the r middle nodes, and by B1, . . . , BN P Fεtˆht
q the coding

coefficients used by the source node for the messages transmitted directly to the receivers.
Then, for each i P rN s,

yi “

¨

˚

˚

˚

˝

Ai1
...

Aiα

Bi

˛

‹

‹

‹

‚

loooooooomoooooooon

pε`αℓqtˆht

¨

¨

˚

˝

x1
...

xh

˛

‹

‚

loomoon

htˆ1

,

where tAi1 , . . . , Aiαu Ă tA1, . . . , Aru.
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Note that the receivers can recover the h source messages x1, . . . , xh if and only if

rank

¨

˚

˝

Ai1
...

Aiα

˛

‹

‚

ě ph ´ εqt, @i P rN s . (4.36)

Hence a solution to the pε, ℓq´Nh,r,αℓ`ε network is a set of the coding coefficients tA1, . . . , Aru

such that (4.36) holds. The coding coefficients for the direct links B1, . . . , BN can be deter-
mined once tA1, . . . , Aru is given.

Gap between Required Alphabet Sizes for Scalar and Vector Solutions

The goal of this section is to investigate the gap between the minimum required alphabet size
for scalar and vector solutions of the generalized combination networks. This gap was shown to
be positive for generalized combination networks [EW18]. We further quantify the advantage
of vector linear solutions versus scalar linear solutions of the generalized combination networks.
For this purpose, we need to fix a metric.

We follow the notations from [CCE+20] to distinguish between optimal scalar and vector
solutions. Given a generalized combination network N , let

qspN q :“ mintq | N has a pq, 1q-linear solutionu .

The pqspN q, 1q-linear solution is said to be scalar-optimal. Similarly, let

qvpN q :“ mintqt | N has a pq, tq-linear solutionu .

Note that qvpN q is defined by the size of the vector space, rather than the field size. For
qt “ qvpN q, the pq, tq-linear solution is called vector-optimal. We define the gap as

gap2pN q :“ log2pqspN qq ´ log2pqvpN qq ,

which intuitively measures the advantage of vector network coding by the amount of extra
bits per transmitted symbol that an optimal scalar linear solution has to pay compared to an
optimal vector linear solution.

Overview of Results

In Section 4.5.1, we give two upper bounds on rmax, the maximal number of nodes in the
middle layer of a generalized combination network (Corollary 4.2 (valid for h ě 2ℓ ` ε) and
Corollary 4.3 (a better bound for α “ 2)). In Section 4.5.2, we give two lower bounds on rmax
(Theorem 4.10 and Corollary 4.4 (h ď 2ℓ ` ε)). In Section 4.5.3, we provide an upper bound
on gap2pN q for any fixed generalized combination network N (Theorem 4.13), and a lower
bound on gap2pN q (Theorem 4.14). We compare the new bounds with some existing bounds
on rmax in Section 4.5.4 and summarize the best known bound on rmax in Table 4.3.
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4.5.1 Upper Bounds on the Maximum Number of Middle Layer Nodes

The Grassmannian of dimension k is a set of all k-dimensional subspaces of Fn
q . Recall that

its cardinality is the well-known q-binomial coefficient:

|Gqpn, kq| “

„

n

k

ȷ

q

:“
k´1
ź

i“0

qn ´ qi

qk ´ qi
“

k´1
ź

i“0

qn´i ´ 1
qk´i ´ 1 .

A good approximation of the q-binomial coefficient can be found in [KK08, Lemma 4]:

qkpn´kq ď

„

n

k

ȷ

q

ă γ ¨ qkpn´kq , (4.37)

where γ « 3.48.

Lemma 4.1. Let α ě 2, h, ℓ, t ě 1, ε ě 0, h ´ ε ě 2ℓ, and let T be a collection of subspaces
of Fph´εqt

q such that

(i) each subspace has dimension at most ℓt, and

(ii) any subset of α subspaces spans Fph´εqt
q .

Then, we have αℓ ě h ´ ε and

|T | ď

ˆZ

h ´ ε

ℓ

^

´ 2
˙

`

ˆ

α ´

Z

h ´ ε

ℓ

^

` 1
˙„

ℓt ` 1
1

ȷ

q

.

Proof. Take arbitrarily
X

h´ε
ℓ

\

´ 2 subspaces from T and a subspace W Ă Fph´εqt
q of dimension

ph ´ εqt ´ ℓt ´ 1 which contains all these th´ε
ℓ u ´ 2 subspaces. Then, for any subspace T P T ,

there is a hyperplane (an pph ´ εqt ´ 1q-dimensional subspace) of Fph´εqt
q containing both W

and T . Note that there are
“

ℓt`1
ℓt

‰

“
“

ℓt`1
1
‰

hyperplanes of Fph´εqt
q containing W and each of

them contains at most α ´ 1 subspaces from T . Thus,

|T | ď

ˆZ

h ´ ε

ℓ

^

´ 2
˙

`

„

ℓt ` 1
ℓt

ȷ

q

ˆ

α ´ 1 ´

ˆZ

h ´ ε

ℓ

^

´ 2
˙˙

“

ˆZ

h ´ ε

ℓ

^

´ 2
˙

`

ˆ

α ´

Z

h ´ ε

ℓ

^

` 1
˙„

ℓt ` 1
1

ȷ

q

.

Theorem 4.8. Let α ě 2, h, ℓ, t ě 1, ε ě 0, h ´ ε ě 2ℓ, and let S be a collection of subspaces
of Fht

q such that

(i) each subspace has dimension at most ℓt, and

(ii) any subset of α subspaces spans a subspace of dimension at least ph ´ εqt.
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Then, we have αℓ ě h ´ ε and

|S| ď

„

pε ` ℓqt

εt

ȷ

q

ˆˆ

α ´

Z

h ´ ε

ℓ

^

` 1
˙

qℓt`1 ´ 1
q ´ 1 ´ 1

˙

`

Z

h ´ ε

ℓ

^

´ 1

ă γ

ˆ

α ´

Z

h ´ ε

ℓ

^

` 1
˙

qℓtpεt`1q`

Z

h ´ ε

ℓ

^

´ 1 . (4.38)

Proof. Take arbitrarily
X

h´ε
ℓ

\

´ 1 subspaces from S and a subspace W Ă Fht
q of dimension

ph´εqt´ℓt such that W contains all these
X

h´ε
ℓ

\

´1 subspaces. Then, for any subspace S P S
there is a subspace of dimension ph ´ εqt containing both W and S.

Let m :“
“

pε`ℓqt
εt

‰

q
. Then, there are m subspaces of dimension ph ´ εqt containing W , say

W1, W2, . . . , Wm. Note that every subset of α subspaces in Wi X S span the subspace Wi.
According to Lemma 4.1, we have

|Wi X S| ď

ˆZ

h ´ ε

ℓ

^

´ 2
˙

`

ˆ

α ´

Z

h ´ ε

ℓ

^

` 1
˙„

ℓt ` 1
1

ȷ

q

.

Hence,

|S| ď

m
ÿ

i“1

ˆ

|Wi X S| ´

ˆZ

h ´ ε

ℓ

^

´ 1
˙˙

`

Z

h ´ ε

ℓ

^

´ 1

ď

„

pε ` ℓqt

εt

ȷ

q

ˆˆ

α ´

Z

h ´ ε

ℓ

^

` 1
˙

qℓt`1 ´ 1
q ´ 1 ´ 1

˙

`

Z

h ´ ε

ℓ

^

´ 1 .

The inequality (4.38) is derived from (4.37).

The following corollary rephrases Theorem 4.8 with network parameters.

Corollary 4.2. Let α ě 2, h, ℓ, t ě 1, ε ě 0, and h ´ ε ě 2ℓ. If pε, ℓq ´ Nh,r,αℓ`ε has a
pq, tq-linear solution then

r ď rmax ă γθqℓtpεt`1q ` α ´ θ ,

where θ :“ α ´
X

h´ε
ℓ

\

` 1 and γ « 3.48.

Proof. If a pq, tq-linear solution exists, then each of the r nodes in the middle layer gets a
subspace of dimension ℓt of the source messages space. Since all receivers are able to recover
the entire source message space, every α-subset of the middle nodes span a subspace of
dimension at least ph ´ εqt. The statement then follows from Theorem 4.8.

Theorem 4.8 and Corollary 4.2 are valid for all α ě 2. However, we derive a tighter upper
bound for α “ 2, as shown in the following theorem.

Theorem 4.9. Let α “ 2, h, ℓ, t ě 1, ε ě 0, and let S be a collection of subspaces of Fht
q such

that

(i) each subspace has dimension at most ℓt, and

(ii) the sum of any two subspaces has dimension at least ph ´ εqt.
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Then, we have

|S| ď

“

ht
2ℓt´ph´εqt`1

‰

q
“

ℓt
2ℓt´ph´εqt`1

‰

q

ă γ ¨ qph´ℓqp2ℓ`ε´hqt2`ph´ℓqt .

Proof. We may assume that each subspace has dimension ℓt. Since the sum of every two
subspaces has dimension at least ph´εqt, their intersection has dimension at most 2ℓt´ph´εqt.
It follows that any subspace of dimension 2ℓt´ph´εqt`1 is contained in at most one subspace
of S. Note that there are

“

ht
2ℓt´ph´εqt`1

‰

q
subspaces of dimension 2ℓt ´ ph ´ εqt ` 1 and each

subspace of dimension ℓt contains
“

ℓt
2ℓt´ph´εqt`1

‰

q
such spaces. We then have

|S| ď

„

ht

2ℓt ´ ph ´ εqt ` 1

ȷ

q

M

„

ℓt

2ℓt ´ ph ´ εqt ` 1

ȷ

q

.

The following corollary rephrases Theorem 4.9 with network parameters.

Corollary 4.3. Let α “ 2, h, ℓ, t ě 1, ε ě 0. If pε, ℓq ´ Nh,r,αℓ`ε has a pq, tq-linear solution
then

r ď rmax ă γ ¨ qph´ℓqp2ℓ`ε´hqt2`ph´ℓqt ,

where γ « 3.48.

Proof. If a pq, tq-linear solution exists, then each of the r nodes in the middle layer gets a
subspace of dimension ℓt of the source messages space. Since all receivers are able to recover
the entire source message space, any two subset of the middle nodes span a subspace of
dimension at least ph ´ εqt. We then use Theorem 4.9.

4.5.2 Lower Bounds on the Maximum Number of Middle Layer Nodes
We now turn to study a lower bound on rmax with the parameters α, ℓ, ε, h being fixed. The
main results are summarized in Theorem 4.10 and Corollary 4.4.

A Lower Bound by Lovász-Local Lemma

Lemma 4.2 (Lovász-Local-Lemma [AS08, Ch. 5], [Bec91]). Let E1, E2, . . . , Ek be a sequence
of events. Each event occurs with probability at most p and each event is independent of all
the other events except for at most d of them. If epd ď 1, where e « 2.718 is the base of
natural logarithms, then there is a nonzero probability that none of the events occurs.

Recall that a solution to the pε, ℓq ´ Nh,r,αℓ`ε network is a set of the coding coefficients
tA1, . . . , Aru such that (4.36) holds. We choose the matrices A1, . . . , Ar P Fℓtˆht

q indepen-
dently and uniformly at random. For 1 ď i1 ă ¨ ¨ ¨ ă iα ď r, we define the event

Ei1,...,iα :“

$

’

&

’

%

pAi1 , . . . , Aiαq | rank

¨

˚

˝

Ai1
...

Aiα

˛

‹

‚

ă ph ´ εqt

,

/

.

/

-

.

76



4.5 Vector Network Coding for Generalized Combination Networks

Lemma 4.3. Let α ě 2, h, ℓ, t ě 1, ε ě 0. Fixing 1 ď i1 ă ¨ ¨ ¨ ă iα ď r, we have

PrpEi1,...,iαq ď 2γ ¨ qph´αℓ´εqεt2`ph´αℓ´2εqt´1 ,

where γ « 3.48.

Proof. The number of matrices A P Fmˆn
q of rank s is

Mpm, n, sq :“
s´1
ź

j“0

pqm ´ qjqpqn ´ qjq

qs ´ qj
ď γ ¨ qpm`nqs´s2

. (4.39)

Then,

PrpEi1,...,iαq “

ph´εqt´1
ř

i“0
Mpαℓt, ht, iq

qαℓht2

ď

ph´εqt´1
ř

i“0
γ ¨ qph`αℓqti´i2

qαℓht2 (4.40)

ď γ ¨
q

q ´ 1 ¨ qmaxitph`αℓqti´i2u´αℓht2 (4.41)

“ γ ¨
q

q ´ 1 ¨ qph`αℓqti´i2|i“ph´εqt´1´αℓht2 (4.42)

ď γ ¨ 2 ¨ qph´αℓ´εqεt2`ph´αℓ´2εqt´1 ,

where (4.40) holds due to (4.39), (4.41) follows from a geometric sum, and (4.42) follows by
maximizing ph ` αℓqti ´ i2.

Lemma 4.4. Let α ě 2, h, ℓ, t ě 1, ε ě 0. Fixing 1 ď i1 ă ¨ ¨ ¨ ă iα ď r, the event Ei1,...,iα is
statistically independent of all the other events Ei1

1,...,i1
α

(1 ď i1
1 ă ¨ ¨ ¨ ă i1

α ď r), except for at
most α

`

r´1
α´1

˘

of them.

Proof. For 1 ď i1 ă ¨ ¨ ¨ ă iα ď r and 1 ď i1
1 ă ¨ ¨ ¨ ă i1

α ď r, the events Ei1,...,iα and Ei1
1,...,i1

α
are

statistically independent if and only if ti1, . . . , iαu X ti1
1, . . . , i1

αu “ H. Thus, having chosen
1 ď i1 ă ¨ ¨ ¨ ă iα ď r, there are at most

`

α
1
˘`

r´1
α´1

˘

ways of choosing ti1
1, . . . , i1

αu such that it is
not independent from ti1, . . . , iαu (including the case ti1

1, . . . , i1
αu “ ti1, . . . , iαu).

Remark 4.3. Lemma 4.4 is a union-bound argument on the number of dependent events.
The exact number is

`

r
α

˘

´
`

r´α
α

˘

. However the exact expression makes it harder to resolve for
r later thus we use the bound instead.

Theorem 4.10. Let α ě 2, ε ě 0, ℓ, t ě 1, and 1 ď h ď αℓ ` ε be fixed integers. If

r ď β ¨ q
fptq

α´1 , (4.43)

where β :“
´

pα´1q!
2eγα

¯
1

α´1
, γ « 3.48 and fptq :“ pαℓ ` ε ´ hqεt2 ` pαℓ ` 2ε ´ hqt ` 1, then

pε, ℓq ´ Nh,r,αℓ`ε has a pq, tq-linear solution.
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Namely, for an pε, ℓq ´ Nh,r,αℓ`ε that has a pq, tq-linear solution, the maximum number of
middle nodes satisfies

rmax ě β ¨ q
fptq

α´1 .

Proof. Let p “ PrpEi1,...,iαq and denote by d the number of other events Ei1
1,...,i1

α
that are

dependent on Ei1,...,iα . We have shown that p ď 2γ ¨ qph´αℓ´εqεt2`ph´αℓ´2εqt´1 in Lemma 4.3
and d ď α

`

r´1
α´1

˘

in Lemma 4.4. By the Lovász Local Lemma, it suffices to show that epd ď 1.
Noting that d ď α

`

r´1
α´1

˘

ď α ¨
pr´1qα´1

pα´1q! , we shall require

e ¨ 2γqph´αℓ´εqεt2`ph´αℓ´2εqt´1 ¨ α
pr ´ 1qα´1

pα ´ 1q! ď 1 .

Namely, if r ď β ¨ q
pαℓ`ε´hqε

α´1 t2`
αℓ`2ε´h

α´1 t` 1
α´1 ` 1, then pε, ℓq ´ Nh,r,αℓ`ε has a pq, tq-linear

solution. We omit the plus one for simplicity.

Remark 4.4. For any α ě 7, (4.43) can be simplified to

r ď q
fptq

α´1 ,

since the prefactor β ą 1 for all α ě 7.

Remark 4.5. For t ě 3, α ě 5 or q ě 4, it can be seen from numerical analysis that
β ¨ q

αℓ`2ε´h
α´1 t` 1

α´1 ě 1. Thus, (4.43) can be simplified to a looser upper bound

r ď q
pαℓ`ε´hqε

α´1 t2
.

However, omitting the term β ¨ q
αℓ`2ε´h

α´1 t` 1
α´1 will cause a loss in estimating the maximum

achievable number of middle nodes. Nevertheless, the loss is negligible when t Ñ 8.

A Lower Bound by α-Covering Grassmannian Codes

Definition 4.5 (Covering Grassmannian Codes [EZ19]). An α-pn, k, δqc
q covering Grassman-

nian code C is a subset of Gqpn, kq such that each subset with α codewords of C spans a subspace
whose dimension is at least δ ` k in Fn

q .

The following theorem from [EZ19] shows the connection between covering Grassmannian
codes and linear network coding solutions.

Theorem 4.11 ([EZ19, Thm. 4]). The pε, ℓq´Nh,r,αℓ`ε network is solvable with a pq, tq-linear
solution if and only if there exists an α-pht, ℓt, ht ´ ℓt ´ εtqc

q code with r codewords.

Let Bqpn, k, δ; αq denote the maximum possible size of an α-pn, k, δqc
q covering Grassmannian

code. Let A be a k ˆ pn´kq matrix, and let Ik be a k ˆk identity matrix. The matrix rIk As

can be viewed as a generator matrix of a k-dimensional subspace of Fn
q , and it is called the

lifting of A. When all the codewords of an MRD code C are lifted to k-dimensional subspaces,
the result is called lifted MRD code, denoted by Clifted.
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Theorem 4.12. Let n, k, δ and α be positive integers such that 1 ď δ ď k, δ ` k ď n and
α ě 2. Then

Bqpn, k, δ; αq ě pα ´ 1qqmaxtk,n´kupmintk,n´ku´δ`1q .

Proof. Let m “ n´k and K “ maxtm, n´mupmintm, n´mu´δ`1q. Since δ ď mintm, n´mu,
an rm ˆ pn ´ mq, K, δsq MRD code C exists. Let Clifted be the lifted code of C. Then Clifted

is a subspace code of Fn
q , which contains qK m-dimensional subspaces as codewords and its

minimum subspace distance is 2δ [SKK08].
Hence, for any two different codewords C1, C2 P Clifted we have

dimpC1 X C2q ď m ´ δ .

Now, let D :“
␣

CK | C P Clifted(. Take α ´ 1 copies of D and denote their multiset union
by Dα´1. We show that Dα´1 is an α-pn, k, δqc

q covering Grassmannian code. Each subspace
D P Dα´1 has dimension n ´ m, since it is the dual of a codeword in Clifted. For any α
subspaces D1, D2, . . . , Dα P Dα´1, there exist 1 ď i ă j ď α such that Di “ Dj . Let Ci “ DK

i

and Cj “ DK
j . By definition, Ci and Cj are two distinct codewords of Clifted. We then have

dim
˜

α
ÿ

ℓ“1
Dℓ

¸

ě dimpDi ` Djq “ n ´ dim
`

DK
i X DK

j

˘

“ n ´ dimpCi X Cjq ě n ´ m ` δ “ k ` δ .

So far we have shown that Dα´1 is an α-pn, k, δqc
q covering Grassmannian code. Then the

statement follows by

Bqpn, k, δ; αq ě |Dα´1| “ pα ´ 1q|D| “ pα ´ 1q|Clifted| “ pα ´ 1qqmaxtk,n´kupmintk,n´ku´δ`1q .

The following corollary rephrases Theorem 4.11 using the result in Theorem 4.12.

Corollary 4.4. Let α ě 2, h, ℓ, t ě 1, ε ě 0, h ď 2ℓ ` ε. For an pε, ℓq ´ Nh,r,αℓ`ε which has
a pq, tq-linear solution, the maximum number of middle nodes is

rmax ě pα ´ 1qqgptq ,

where

gptq :“ maxtℓt, ph ´ ℓqtu ¨ pmintℓt, ph ´ ℓqtu ´ ph ´ ℓ ´ εqt ` 1q

“

#

ℓεt2 ` ℓt h ď 2ℓ

ph ´ ℓqp2ℓ ` ε ´ hqt2 ` ph ´ ℓqt otherwise
.

4.5.3 Bounds on the Gap on Field Size

In the last section, we presented bounds on rmax. The main results in this section are the
upper and lower bounds on gap2pN q in Theorem 4.13 and Theorem 4.14, respectively. To
discuss gap2pN q, we first need the following conditions on the smallest field size qspN q or
qvpN q, under which a network N is solvable.
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Lemma 4.5. Let α ě 2, r, h, ℓ, t ě 1, ε ě 0. If pε, ℓq ´ Nh,r,αℓ`ε has a pq, tq-linear solution
then

qt ě

$

’

&

’

%

´

r`θ´α
γ¨θ

¯
1

ℓpεt`1q
h ě 2ℓ ` ε

´

r
γpα´1q

¯
1

ℓpεt`1q otherwise
,

where θ :“ α ´
X

h´ε
ℓ

\

` 1 and γ « 3.48.

Proof. The first case follows from Corollary 4.2 that for h ě 2ℓ ` ε, qt ě

´

r`θ´α
γ¨θ

¯
1

ℓpεt`1q . The
second case is derived from an upper bound on r in [EZ19] (recalled in Corollary 4.7) in a
similar manner.

Lemma 4.6. Let α ě 2, r, h, ℓ, t ě 1, ε ě 0. There exists a pq, tq-linear solution to pε, ℓq ´

Nh,r,αℓ`ε when

qt ě

$

’

&

’

%

´

r
β

¯

pα´1qt
fptq

h ě 2ℓ ` ε
´

r
α´1

¯
t

gptq otherwise
,

where β and fptq are defined as in Theorem 4.10, and gptq is defined as in Corollary 4.4.

Proof. The proof is similar to that in Lemma 4.5 and the cases follow from Theorem 4.10 and
Corollary 4.4, respectively.

Lemmas 4.5 and 4.6 can be seen as the necessary and the sufficient conditions respectively
on the pair pq, tq such that a pq, tq-linear solution exists.

In the following, we use the lemmas above to derive bounds on the gap2pN q for a given
network N . The bounds are determined only by the network parameters.

Theorem 4.13. Let α ě 2, r, h, ℓ ě 1, ε ě 0. Then for the pε, ℓq ´ Nh,r,αℓ`ε network,

gap2pN q ď

$

&

%

α´1
fp1q

log2

´

r
β

¯

´ A h ě 2ℓ ` ε

1
gp1q

log2

´

r
α´1

¯

´ B otherwise
,

where θ “ α ´
X

h´ε
ℓ

\

` 1, β and fptq are defined as in Theorem 4.10, gptq is defined as in
Corollary 4.4, and

A :“ min
"

log2
`

qt
˘ ˇ

ˇ qt ě

´

r`θ´α
γθ

¯
1

ℓpεt`1q

*

,

B :“ min
"

log2
`

qt
˘
ˇ

ˇ qt ě

´

r
γpα´1q

¯
1

ℓpεt`1q

*

.

Furthermore, for tA :“ min
"

t | 2t ě

´

r`θ´α
γθ

¯
1

ℓpεt`1q

*

ą 2, we have

A ě min
"

tA,
1

ℓpεptA ´ 2q ` 1q
log2

´

r`θ´α
γθ

¯

*

ě tA ´ 1 ,
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and for tB :“ min
"

t | 2t ě

´

r
γpα´1q

¯
1

ℓpεt`1q

*

ą 2, we have

B ě min
"

tB,
1

ℓpεptB ´ 2q ` 1q
log2

´

r`θ´α
γθ

¯

*

ě tB ´ 1 .

Proof. We only prove the bound for the case h ě 2ℓ ` ε. The other case follows analogously.
Lemma 4.6 implies that

qspN q ď

ˆ

r

β

˙
α´1
fp1q

.

By the definition of qvpN q and Lemma 4.5, qt “ qvpN q must fulfill

qt ě

´

r`θ´α
γθ

¯
1

ℓpεt`1q
. (4.44)

Hence, we get a lower bound on qvpN q by determining the smallest qt that fulfills (4.44), i.e.,
the constraint in A. Note that the left-hand side of the inequality is a strictly monotonically
increasing function in t (for a fixed prime power q), and the right side is monotonically
decreasing in t, which imply that A and tA are well-defined.

For the lower bound on A for tA ą 2, consider the case that there is a prime power q ą 2

and a positive integer t with 2tA ě qt ě

´

r`θ´α
γθ

¯
1

ℓpεt`1q . Then we have t ď tA ´ 2 since q ě 3
and tA ě 3. Hence,

qt ě

´

r`θ´α
γθ

¯
1

ℓpεptA´2q`1q
ě

´

r`θ´α
γθ

¯
1

ℓpεptA´1q`1q
ě 2tA´1 ,

which proves the claim.

Corollary 4.5. Let α ě 2, r, h, ℓ ě 1, ε ě 1. Then for the pε, ℓq ´ Nh,r,αℓ`ε network,

gap2pN q ď

$

’

’

&

’

’

%

α´1
fp1q

log2

´

r
β

¯

´ max
"
c

1
ℓε log2

´

r`θ´α
γθ

¯

` 1
4ε2 ´ 2ε`1

2ε , 1
*

h ě 2ℓ ` ε

1
gp1q

log2

´

r
α´1

¯

´ max
"
c

1
ℓε log2

´

r
γpα´1q

¯

` 1
4ε2 ´ 2ε`1

2ε , 1
*

otherwise
.

In particular, if all parameters are constants except for r Ñ 8, then gap2pN q P Oplog rq.

Proof. We only prove the bound for the case h ě 2ℓ ` ε. The other case follows analogously.
We determine tA as defined in Theorem 4.13. Note that 2t is strictly monotonically increasing

in t and
´

r`θ´α
γθ

¯
1

ℓpεt`1q is strictly monotonically decreasing. Hence, we have tA “ rt1s, where
t1 is the unique (positive) solution of

2t1

“

´

r`θ´α
γθ

¯
1

ℓpεt1`1q
.

By rewriting this equation into a quadratic equation in t1, we obtain the following positive
solution for ε ą 0:

t1 “

d

1
ℓε

log2

ˆ

r ` θ ´ α

γθ

˙

`
1

4ε2 ´
1
2ε

.

81



4 Support-Constrained Evaluation Codes based on Skew Polynomials

Using the bound A ě tA ´1 for tA ą 2 (Theorem 4.13) and the trivial bound A ě 1 otherwise,
the claim follows. The asymptotic statement is an immediate consequence.

Theorem 4.14. Let α ě 2, r, h, ℓ ě 1, ε ě 0. Then for the pε, ℓq ´ Nh,r,αℓ`ε network,

gap2pN q ě

$

&

%

1
ℓpε`1q

log2

´

r`θ´α
γθ

¯

´ t∆ h ě 2ℓ ` ε

1
ℓpε`1q

log2

´

r
γpα´1q

¯

´ t‹ otherwise
,

where t∆ is the smallest positive integer such that 2
fpt∆q

α´1 ě r
β and t‹ is the smallest positive

integer such that 2gpt‹q ě r
α´1 . Here, β and fptq are defined as in Theorem 4.10, and gptq is

defined as in Corollary 4.4.

Proof. Let us only consider the first case h ě 2ℓ ` ε. The other case can be proved in the
same manner. According to Lemma 4.5, we have the lower bound on the smallest field size of
a scalar solution,

qspN q ě

ˆ

r ` θ ´ α

γ ¨ θ

˙
1

ℓpε`1q

.

For vector solutions, according to Lemma 4.6, we want to find pq, tq such that q
fptq

α´1 ě r
β . Since

t∆ is the smallest positive integer t such that 2
fpt∆q

α´1 ě r
β , it is guaranteed that a p2, t∆q-linear

solution exists. Therefore, qvpN q (the smallest value of qt) should be at most qvpN q ď 2t∆ .
The lower bound then follows directly from the definition of gap2pN q.

By carefully bounding t‹ and t∆, the following result is obtained.

Corollary 4.6. Let α ě 2, r, h, ℓ, ε ě 1. Then, for the pε, ℓq ´ Nh,r,αℓ`ε network,

gap2pN q ě

$

’

&

’

%

log2

´

r`θ´α
γθ

¯

ℓpε`1q
´

c

pα´1q log2p r
β

q

pαℓ`ε´hqε h ě 2ℓ ` ε,

log2p r
α´1 q´2

ℓpε`1q
´

b

log2p r
α´1 q

ℓε otherwise.

In particular, if all parameters are constants except for r Ñ 8, then gap2pN q P Ωplog rq.

Proof. When h ě 2ℓ ` ε, noting that αℓ ` 2ε ´ h ą 0, we may choose

t “

˜

pα ´ 1q log2p r
β q

pαℓ ` ε ´ hqε

¸1{2

,

such that 2fptq ě 2pαℓ`ε´hqεt2
“ p r

β qα´1. Then we have that

gap2pN q ě
log2

´

r`θ´α
γθ

¯

ℓpε ` 1q
´

˜

pα ´ 1q log2p r
β q

pαℓ ` ε ´ hqε

¸1{2

ě
log2pr ` θ ´ αq ´ log2 θ ´ 2

ℓpε ` 1q
´

˜

log2 r ´ log2 β

pℓ ´ h´ℓ´ε
α´1 qε

¸1{2

.
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Recall that β and θ are determined by α, h, ε, and ℓ. Thus, if α, h, ε, and ℓ are fixed, gap2pN q P

Ωplog rq.
When h ă 2ℓ ` ε, we may choose

t “

ˆ log2p r
α´1q

ℓε

˙1{2
,

such that 2gptq ě 2ℓεt2
“ r

α´1 . It follows that

gap2pN q ě
log2

´

r
γpα´1q

¯

ℓpε ` 1q
´

ˆ log2p r
α´1q

ℓε

˙1{2

ě
log2

´

r
α´1

¯

´ 2
ℓpε ` 1q

´

ˆ log2p r
α´1q

ℓε

˙1{2
.

This shows that gap2pN q P Ωplog rq.

Corollary 4.5 and Corollary 4.6 show that for fixed network parameters, the gap size grows
as

gap2pN q “ Θplog rq pr Ñ 8q .

Example 4.2. We illustrate the proof of Theorem 4.13 and Theorem 4.14 by two network
examples with r “ 8 ˆ 105 in Figure 4.6a and r “ 8 ˆ 106 in Figure 4.6b. Note that the
curves in the figures are not bounds on the gap size. They are the necessary (blue curve) and
the sufficient (green curve) condition on qt such that a pq, tq-linear solution exists. Namely,
there is no pq, tq-linear solution in the region below the blue curve and there must be a pq, tq-
linear solution in the region above the green curve. Thus, the minimum gap of the network
p2, 1q ´ N12,r,20 is determined by the difference between the necessary condition with t “ 1 and
the minimum 2t that is in the region above the sufficient condition. Similarly, the maximum
gap of the network is determined by the difference between the sufficient condition with t “ 1
and the minimum 2t that is in the region above the necessary condition.

By comparing the two plots it can be seen that the gap increases as the number of middle
node in the network increases.

4.5.4 Comparisons of Bounds on rmax

In the following we compare our upper and lower bound on rmax with previously known
bounds.

Other Upper Bound on rmax

We recall the result from [EZ19, Corollary 3] and compare it with our upper bound in Corol-
lary 4.3.

Theorem 4.15 ([EZ19, Corollary 3]). If n, k, δ, and α, are positive integers such that
1 ă k ă n, 1 ď δ ď n ´ k and 2 ď α ď

“

k`δ´1
k

‰

q
` 1, then for an α ´ pn, k, δqc

q covering

83
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5 10 15 20100

101

102

103

max gap2pN q « 6.83 bits

min gap2pN q « 0.78 bits

t

h “ 12, ε “ 2, ℓ “ 1, r “ 8 ˆ 105, α “ 20

´

r`θ´α
γ¨θ

¯
1

ℓpεt`1q (Lemma 4.5)
´

r
β

¯

pα´1qt
fptq (Lemma 4.6)

2t

(a) For the network p2, 1q ´ N12,8e5,20.

5 10 15 20100

101

102

103

max gap2pN q « 8.74 bits

min gap2pN q « 0.89 bits

t

h “ 12, ε “ 2, ℓ “ 1, r “ 8 ˆ 106, α “ 20

´

r`θ´α
γ¨θ

¯
1

ℓpεt`1q (Lemma 4.5)
´

r
β

¯

pα´1qt
fptq (Lemma 4.6)

2t

(b) For the network p2, 1q ´ N12,8e6,20.

Figure 4.6: An illustration of proofs of Theorem 4.13 and Theorem 4.14.

Grassmannian code C, we have

|C| ď

—

—

—

–pα ´ 1q

“

n
δ`k´1

‰

q
“

n´k
δ´1

‰

q

ffi

ffi

ffi

fl .

By combining Theorem 4.15 and Theorem 4.11, the following corollary can be derived.

Corollary 4.7. If the pε, ℓq ´ Nh,r,αℓ`ε network has a pq, tq-linear solution, then

r ď rmax ď

—

—

—

–pα ´ 1q

“

ht
ht´εt´1

‰

q
“

ht´ℓt
ht´ℓt´εt´1

‰

q

ffi

ffi

ffi

fl

ă pα ´ 1q
γqpεt`1qpht´εt´1q

qpεt`1qpht´ℓt´εt´1q

“ γpα ´ 1qqℓtpεt`1q ,

with 1 ă ℓt ă ht, 0 ď ε ď h ´ ℓ ´ 1
t , 2 ď α ď

“

ht´εt´1
ℓt

‰

q
` 1.

Comparison Between the Upper Bounds

We first show that for some parameters, the upper bound in Corollary 4.2 can be tighter than
that in Corollary 4.7. The upper bounds in Corollary 4.2 and Corollary 4.7 can be respectively
written as

UA :“
„

pε ` ℓqt

εt

ȷ

q

ˆ

θ ¨
qℓt`1 ´ 1

q ´ 1 ´ 1
˙

` α ´ θ ,
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where θ “
`

α ´
X

h´ε
ℓ

\

` 1
˘

, and

UB :“ pα ´ 1q

“

ht
ht´εt´1

‰

q
“

ht´ℓt
ht´ℓt´εt´1

‰

q

“ pα ´ 1qqℓtpεt`1q
εt
ź

i“0

qht´i ´ 1
qht´i ´ qℓt

.

Lemma 4.7. Let h ě 2ℓ ` ε and 2 ď α ď
“

ht´εt´1
ℓt

‰

q
` 1. Assume

“

ε`ℓqt
εt

‰

q
ď α, then

logq UA ´ logq UB ă logq

2θα

α ´ 1 ´ ℓεt2 .

Particularly, if 2θα
α´1 ď qℓεt2, then UA ă UB (the upper bound in Corollary 4.2 is tighter than

that in Corollary 4.7).

Proof. Under the assumption
“

pε`ℓqt
εt

‰

q
ď α, we have

logq UA ď logq

ˆ

α

ˆ

θ ¨
qℓt`1 ´ 1

q ´ 1 ´ 1
˙

` α ´ θ

˙

“ logq

ˆ

αθ ¨
qℓt`1 ´ 1

q ´ 1 ´ α ` α ´ θ

˙

“ logq θ ` logq

ˆ

α ¨
qℓt`1 ´ 1

q ´ 1 ´ 1
˙

ă logq θ ` logq

ˆ

α ¨
qℓt`1 ´ 1

q ´ 1

˙

p˚q

ă logq θ ` logq α ` logq

´

2 ¨ qℓt
¯

“ logq θ ` logq α ` ℓt ` logq 2 .

The inequality p˚q holds because qℓt`1´1
q´1 “

ℓt
ř

i“0
qi ă 2 ¨ qℓt. With the bounds on the q-binomial

coefficient in (4.37), we have

logq UB ą logpα ´ 1q ` ℓtpεt ` 1q ,

and therefore

logq UA ´ logq UB ă logq

2θα

α ´ 1 ´ ℓεt2 .

Together with the assumption 2θα
α´1 ď qℓεt2 , the statement follows.

Lemma 4.8. Let h ě 2ℓ ` ε and 2 ď α ď
“

ht´εt´1
ℓt

‰

q
` 1. Assume

“

pε`ℓqt
εt

‰

q
ě α. If h ě 2ε,

then
UA

UB
ď

8θ

α ´ 1 .

Particularly, if 8θ ă α ´ 1, we have UA ă UB (the upper bound in Corollary 4.2 is tighter
than that in Corollary 4.7).
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Proof. Since
“

ε`ℓqt
εt

‰

q
ě α, we have that

UA ď θ ¨

„

pε ` ℓqt

εt

ȷ

q

qℓt`1 ´ 1
q ´ 1 .

Then,

UA

UB
ď

θ

α ´ 1 ¨
qℓt`1 ´ 1

q ´ 1

„

pε ` ℓqt

εt

ȷ

q

¨

„

ph ´ ℓqt

ph ´ ℓ ´ εqt ´ 1

ȷ

q

„

ht

ph ´ εqt ´ 1

ȷ´1

q

“
θ

α ´ 1 ¨
qℓt`1 ´ 1

q ´ 1

„

pε ` ℓqt

εt

ȷ

q

„

ph ´ ℓqt

εt ` 1

ȷ

q

„

ht

εt ` 1

ȷ´1

q

“
θ

α ´ 1 ¨
qℓt`1 ´ 1

q ´ 1 ¨
pqpε`ℓqt ´ 1q ¨ ¨ ¨ pqℓt`1 ´ 1q

pqεt ´ 1q ¨ ¨ ¨ pq ´ 1q
¨

pqph´ℓqt ´ 1q ¨ ¨ ¨ pqph´ℓ´εqt ´ 1q

pqht ´ 1q ¨ ¨ ¨ pqph´εqt ´ 1q

ă
θ

α ´ 1 ¨
qℓt`1

q ´ 1 ¨
qpε`ℓqt ¨ ¨ ¨ qℓt`1

pqεt ´ 1q ¨ ¨ ¨ pq ´ 1q
¨

qph´ℓqt ¨ ¨ ¨ qph´ℓ´εqt

pqht ´ 1q ¨ ¨ ¨ pqph´εqt ´ 1q

“
θ

α ´ 1 ¨
q

q ´ 1 ¨

εt
ź

i“1

ˆ

1 ´
1
qi

˙´1
¨

ht
ź

i“ht´εt

ˆ

1 ´
1
qi

˙´1

ď
θ

α ´ 1 ¨

ˆ

1 `
1

q ´ 1

˙ ht
ź

i“1

ˆ

1 ´
1
qi

˙´1
(assume 2ε ď h)

ă
8 ¨ θ

α ´ 1 ,

and the statement follows.

Now, we compare the upper bound in Corollary 4.3 with that in Corollary 4.7 for α “ 2.

Lemma 4.9. Denote UC :“ γqph´ℓqp2ℓ`ε´hqt2`ph´ℓqt and UD :“ γqℓtpεt`1q. Then,

logq UC ´ logq UD “ rph ´ ℓqp2ℓ ` ε ´ hq ´ εℓst2 ` ph ´ 2ℓqt .

Particularly, if one of the following three conditions is satisfied,

• εt ` 1 ă ℓt, and either h ą 2ℓ or h ă ℓ ` ε ` 1
t ;

• εt ` 1 ą ℓt, and either h ą ℓ ` ε ` 1
t or h ă 2ℓ;

• εt ` 1 “ ℓt and h “ 2ℓ,

then,

logq UC ´ logq UD ă 0 .

In other words, the upper bound in Corollary 4.3 is tighter than the upper bound in Corol-
lary 4.7 for α “ 2, if one of the conditions above holds.

Proof. Denote C “ ph ´ ℓqp2ℓ ` ε ´ hqt ` ph ´ εq and D “ ℓpεt ` 1q. Then logq UC ´ logq UD “

Ct ´ Dt. It suffices to show that C ă D. Note that C “ ´th2 ` 3ℓ ` εth ` h ` ¨ ¨ ¨ is a
quadratic function in h which is symmetric about h “

p3ℓ`εqt`1
2t . We proceed in three cases,

according to the position of the axis of symmetry.
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(i) If εt ` 1 ă ℓt, then p3ℓ`εqt`1
2t ă 2ℓ, i.e., the axis of symmetry is on the left of h “ 2ℓ. In

this case, C is decreasing when h ě 2ℓ. It follows that C ă D for h ą 2ℓ as C “ D when
h “ 2ℓ. Furthermore, according to the symmetry, C ă D also holds for h ă ℓ ` ε ` 1

t .

(ii) If εt ` 1 ą ℓt, then p3ℓ`εqt`1
2t ą 2ℓ. Using the same argument, we can see that C ă D

holds for h ă 2ℓ and h ą ℓ ` ε ` 1
t .

(iii) If εt ` 1 “ ℓt, then p3ℓ`εqt`1
2t “ 2ℓ. The maximal value of C ´ D is taken at h “ 2ℓ,

which is 0. So C ă D for all h “ 2ℓ.

The following example shows that, in some cases, the upper bound in Corollary 4.3 matches
a lower bound from [EKOO20] within a factor of γ « 3.48.

Example 4.3. Let α “ 2, ε “ ℓ, and h “ 2ℓ ` 1. A lower bound from [EKOO20] is

qpℓ2´1qt2`pℓ`1qt ď r .

For the upper bound, Corollary 4.3 shows that

r ď γqpℓ2´1qt2`pℓ`1qt ,

agreeing with the lower bound up to a factor of γ. In contrast, Corollary 4.7 shows that

r ď γqℓ2t2`ℓt ,

which differs from the lower bound by a factor of γqt2´t.

Other Lower Bounds on rmax

Let Bqpn, k, δ; αq denote the maximum possible size of an α-pn, k, δqc
q covering Grassmannian

code. The following lower bounds were proposed on Bqpn, k, δ; αq for δ ď k in [EKOO20].

Theorem 4.16 ([EKOO20, Theorem 21]). Let 1 ď δ ď k, k ` δ ď n and 2 ď α ď qk ` 1 be
integers.

(i) If n ă k ` 2δ, then

Bqpn, k, δ; αq ě pα ´ 1qqmaxtk,n´kupmintk,n´ku´δ`1q.

(ii) If n ě k ` 2δ, then for each t such that δ ď t ď n ´ k ´ δ, we have
a) If t ă k, then

Bqpn, k, δ; αq ě pα ´ 1qqkpt´δ`1qBqpn ´ t, k, δ; αq.

b) If t ě k, then

Bqpn, k, δ; αq ě pα ´ 1qqtpk´δ`1qBqpn ´ t, k, δ; αq ` Bqpt ` k ´ δ, k, δ; αq.
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Discussion of Lower Bounds

Theorem 4.12 improves the lower bounds in Theorem 4.16 [EKOO20] by removing the condi-
tions α ď qk ` 1 and n ă k ` 2δ. For n ě k ` 2δ, the numerical results show that either could
be tighter, depending on the parameters. The theoretical comparison between the two lower
bounds is complicated due to the recursive function.

In the following, we compare the lower bound on rmax in Corollary 4.4 with the upper
bounds in the previous sections.

• When h ď 2ℓ, Corollary 4.4 gives

rmax ě pα ´ 1qqℓtpεt`1q ,

which coincides with the upper bound (up to a constant factor of γ « 3.48) in Corol-
lary 4.7, rmax ă γpα ´ 1qqℓtpεt`1q.

• When h ě 2ℓ and α “ 2, Corollary 4.4 gives

rmax ě qph´ℓqp2ℓ`ε´hqt2`ph´ℓqt ,

which coincides with the upper bound (up to a constant factor of γ) in Corollary 4.3,
rmax ă γqph´ℓqp2h`ε´hqt2`ph´ℓqt.

• The upper bound in Corollary 4.2 cannot be applied here as ph ´ εq{ℓ ď 2.
Based on the comparisons above, we summarize the best known bounds on rmax for different

parameter ranges, in Table 4.3.

Table 4.3: Upper bounds (UBs) and lower bounds (LBs) on rmax of the pε, ℓq ´ Nα,r,αℓ`ε

network with pq, tq-linear solutions. The bounds are valid for α ě 2, h, ℓ ě 1, ε ě 0.
For non-trivially solvable generalized combination networks, one should consider
ℓ`ε ď h ď αℓ`ε. The other parameters are γ « 3.48, β “ ppα ´ 1q!{p2eγαqq

1{pα´1q,
fptq “ pαℓ ` ε ´ hqεt2 ` pαℓ ` 2ε ´ hqt ` 1, θ “ α ´ tph ´ εq{ℓu ` 1, and gptq “

maxtℓt, ph ´ ℓqtu ¨ pmintℓt, ph ´ ℓqtu ´ ph ´ ℓ ´ εqt ` 1q.

UB h ă 2ℓ ` ε Reference h ě 2ℓ ` ε Reference

α ą 2 rmax ă γpα ´ 1q

¨qℓtpεt`1q

[EZ19] (cf.
Corollary 4.7)

rmax ă γθqℓtpεt`1q

`α ´ θ
Corollary 4.2

α “ 2 rmax ă γqmintℓtpεt`1q,ph´ℓqp2ℓ`ε´hqt2`ph´ℓqtu

[EZ19] & Corollary 4.3
(Comparison in
Lemma 4.9)

LB h ă 2ℓ ` ε Reference h ě 2ℓ ` ε Reference
α ě 2 rmax ě pα ´ 1qqgptq Corollary 4.4 rmax ě β ¨ q

fptq

α´1 Theorem 4.10

4.6 Summary and Outlooks
The contributions in this chapter are of two-fold. We first investigated the minimum required
field size to construct an MSRD code (in particular, LRS codes) from a support-constrained
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generator matrix. For this purpose, we proved that the condition on the support constraints
such that a support-constrained MDS/MRD code exists is also a necessary and sufficient
condition for a support-constrained MSRD code, via the framework of skew polynomials.
Given support constraints fulfilling this condition, an rn, ksqm support-constrained LRS code
exists for any prime power q ě ℓ`1 and integer m ě maxlPrℓstk ´1` logq k, nlu, where ℓ is the
number of blocks and nl is the length of the l-th block of the LRS code. If the desired support
constraints do not fulfill the necessary condition, the maximum sum-rank distance of a code
fulfilling these constraints is given. With these results, we proposed a network coding scheme
using support-constrained LRS codes for the distributed multi-source networks. The key of
the scheme is to formulate all the technical requirements into an integer linear programming
(ILP) problem. However, the ILP problem has Ωp2hq constraints, where h is the number of
messages to be cast. For large h, solving (even constructing the constraints) the ILP problem
is computationally expensive. In future research, more specific distributed networks should be
investigated so that the scheme may become more practical while considering other properties
of the networks.

In the second part of this chapter, we quantified the advantage of vector network coding
compared to scalar network coding in a family of multicast networks – generalized combination
networks. By studying necessary and sufficient conditions for the existence of pq, tq-linear
solutions to the generalized combination network pε, ℓq-Nh,r,αℓ`ε. We derived upper and lower
bounds on rmax, the maximum number of nodes in the middle layer. The lower bounds coincide
(up to a constant factor of γ « 3.48) with the upper bounds for h ď 2ℓ or h ě 2ℓ, α “ 2.
With these results, we obtained upper and lower bounds on gap2pN q, which is the number
of extra bits that a scalar solution has to pay compared to a vector solution of a generalized
combination network N . The asymptotic behavior of the upper and lower bound shows that
gap2pN q “ Θplogprqq. Namely, for large generalized combination networks, using a scalar
linear solution over-pays an order of logprq extra bits per symbol, than using a vector linear
solution. A notable observation is, the novel upper and lower bounds on gap2pN q holds for all
parameters range of the generalized combination network, except ε “ 0. This may imply that
the direct links between the source and the receivers are crucial for vector network coding to
have an advantage in generalized combination networks. For future research, the role of the
direct links for a nonzero gap2pN q can be further investigated.
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5
Locally Recoverable Evaluation Codes based
on Multivariate Polynomials

Reed-Muller (RM) codes are a class of well-studied evaluation codes of low-degree multivariate
polynomials. The restrictions to the evaluation points that fall on one line in the evaluation
space can be readily seen to be equivalent to the evaluation of a low-degree univariate polyno-
mial. This property gives RM codes the desired properties of being locally testable1 [RS96] and
locally decodable2 [Lip90; BFLS91], which have been a subject of extensive studies, e.g., [AS97;
AKK+05; BKS+10; RS12; MZ23], in the last years. However, the obvious drawback of RM
codes with the nice local properties is their rather low rate. Concretely, for an RM code based
on m-variate polynomials, the rate is ď 1

m! . In recent years, several new families of codes were
proposed to overcome the rate bottleneck of RM codes while preserving the local properties,
such as, multiplicity codes [KSY14; Kop15], lifted codes [GKS13; KSY14], expander codes
[HOW15; HW18] and tensor product codes [Vid10; KRR+20]. Among these new code con-
structions, multiplicity codes and lifted codes are also evaluation codes based on multivariate
polynomials.

This chapter concerns constructions of codes with local properties based on evaluation
codes. We give a brief introduction of lifted codes based on multivariate polynomials in
Section 5.1. In Section 5.2, we introduce a new class bivariate evaluation codes, the quadratic-
lifted Reed-Solomon (QLRS) codes and study their dimension, distance and local recovery
property. Motivated by a class codes with local properties – batch codes, we introduce a
family of subspaces that can be used to construct such codes and propose a construction of
such subspaces based on the best-known evaluation codes – Reed-Solomon (RS) codes, in
Section 5.3. Aside from the explicit construction, we give an upper and a lower bound on the
growth of the cardinally of such family of subspaces.

The results in Section 5.2 have been published in the proceedings of 12th International Work-
shop on Coding and Cryptography (WCC) [LHP+22] and the results in Section 5.3 have been
published in Finite Fields and Their Applications [LPVW21].

1Locally testable codes are codes where the membership in the code is verifiable with a constant number of
queries (independent from the code length).

2Locally decodable codes are codes that allow a single bit of the original message to be decoded with high
probability by only examining (or querying) a small number of bits of a possible corrupted codeword.
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5 Locally Recoverable Evaluation Codes based on Multivariate Polynomials

5.1 Lifted Codes on Multivariate Polynomials
Lifted codes were introduced by Guo, Kopparty and Sudan [GKS13] as evaluation codes
obtained from multivariate polynomials over finite fields. It is required that the restrictions of
every codeword on subsets of coordinates are codewords of a base code, e.g., an RS code. By
construction, lifted codes are equipped with local properties. A setting of particular interest,
the lifted Reed-Solomon codes [GKS13], is the case where the restrictions of every codeword
on all the lines in the evaluation space form codewords of an RS code. A surprising advantage
of lifted Reed-Solomon codes is that they achieve much larger asymptotic rate compared to
RM codes as the field size grows. The work [GKS13] derived good bounds on the rate of lifted
Reed-Solomon for the bi-variate case. Tight asymptotic bounds for general cases were derived
in [PV19b; HPPV20].

Degree-lifted codes are a class of evaluation codes introduced in [BGK+13]. The codes are
composed of low-weighted-degree polynomials and codewords are evaluations of such poly-
nomials at the rational points of an algebraic curve. A class of lifted codes based on code
automorphisms was introduced in [Guo16]. The works [LW19; Wu15; HPP+21] studied lifted
multiplicity codes. Hermitian-lifted codes, proposed in [LMM+21], are constructed from eval-
uating bivariate polynomials at points on Hermitian curves. The restriction of the codewords
on any line for a codeword of an RS code. Wedge-lifted codes [HKLW21] utilize the trace oper-
ation to obtain binary codes with good locality properties. Weighted η-lifted codes introduced
in [LN20] are a class of multivariate evaluation codes where the restriction on the points on
a higher degree curve (instead of a line) forms a codeword of an RS code. This gives a more
general definition of QLRS codes investigated in Section 5.2.

5.2 Quadratic-Lifted Reed-Solomon Codes
We first give some notations and preliminaries needed to define the code and to present
the results. Our goal is to study the properties of QLRS codes, specifically, dimension,
minimum Hamming distance and local recovery capability, which are respectively investigated
in Section 5.2.1, Section 5.2.2 and Section 5.2.3.

For non-negative integers a, b P N with binary representations a “ pa1, . . . , aℓq2, b “

pb1, . . . , bℓq2, we say that a lies in the 2-shadow of b, denoted by a ď2 b, if ai ď bi, @i P rℓs.
The bit aℓ is the most significant bit in the binary representation of a, i.e., a “ a1 ` a2 ¨ 2 `

a3 ¨ 22 ` ¨ ¨ ¨ ` aℓ ¨ 2ℓ´1.
We call a quadratic curve on F2

q the set of zeros of a bivariate polynomial ppx, yq “ y ´ϕpxq,
where ϕ P Fqrxs with deg ϕ ď 2 is a quadratic function. We denote by Φ the set of all quadratic
functions over Fq,

Φ :“
␣

ϕpxq “ αx2 ` βx ` γ
ˇ

ˇ @α, β, γ P Fq

(

. (5.1)

For a bivariate polynomial f P Fqrx, ys and a quadratic function ϕ P Fqrxs, we define the
restriction of f on ϕ as

f |ϕ :“ fpx, ϕpxqq P Fqrxs .

Note that the definition of the restriction here can be also written as the restriction of the
vector pfpaqqaPFq

P Fq
q on the quadratic curve corresponding to ϕ, so that this is the same

underlying technique as used for the other lifted codes mentioned in Section 5.1.
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5.2 Quadratic-Lifted Reed-Solomon Codes

Define an operation pmod˚ qq that takes a non-negative integer and maps it to an element
in r0, q ´ 1s as follows:

a pmod˚ qq :“

$

’

&

’

%

a, if a ď q ´ 1
q ´ 1, if a pmod q ´ 1q “ 0, a ‰ 0
a pmod q ´ 1q, else

It can be readily seen that if a pmod˚ qq “ b, then xa “ xb pmod xq ´ xq in Fqrxs.

Lemma 5.1 (Lucas’ Theorem [Luc78]). Let p be a prime and a, b P N be written in p-ary
representations a “ pa1, . . . , aℓqp, b “ pb1, . . . , bℓqp. Then

ˆ

a

b

˙

“

ℓ
ź

i“1

ˆ

ai

bi

˙

mod p .

If p “ 2, then
`

a
b

˘

“ 1 if and only if b ď2 a.

QLRS codes generalize lifted Reed-Solomon codes by considering the restriction of bivari-
ate polynomials to quadratic functions rather than only linear functions. This definition is
coincidentally identical to the weighted η-lifted Reed-Solomon codes [LN20, Def. IV.1] with
η “ 2. The formal definition is the following.

Definition 5.1 (Quadratic-lifted Reed-Solomon (QLRS) codes). Let q be a power of 2, r P

rq ´ 1s and Φ be a set of quadratic functions as given in Eq. (5.1). A quadratic-lifted Reed-
Solomon (QLRS) code is defined as

CqpΦ, q ´ rq :“ tf P Fqrx, ys | degpf |ϕq ă q ´ r, @ϕ P Φu .

The integer r can be seen as the local redundancy since it is the redundancy of the Reed-
Solomon code RSqpq ´ rq such that f |ϕ is a codeword polynomial in RSqpq ´ rq.

5.2.1 Dimension of Quadratic-Lifted Reed-Solomon Codes

The dimension of the lifted Reed-Solomon codes is analyzed via the number of good monomials,
which are the multivariate monomials whose restriction to a line results in a codeword of an RS
code. The linear span of these good monomials is shown to generate the lifted Reed-Solomon
code [GKS13; HPPV20]. Similarly, we investigate the dimension of QLRS codes using the
good monomials as the tool. We first derive a necessary and sufficient condition (Lemma 5.2)
on the good monomials for any QLRS code via similar approaches as in [HKLW21]. Then we
show in Theorem 5.1 that these good monomials form a basis of the QLRS code as in [LW19].

Definition 5.2 (pΦ, q´rq˚-good monomial). Given a set Φ of quadratic functions, a monomial
mpx, yq “ xayb is pΦ, q´rq˚-good if degpm|ϕq ă q´r, @ϕ P Φ. The monomial is pΦ, q´rq˚-bad
otherwise.

Lemma 5.2. A monomial mpx, yq “ xayb is pΦ, q ´ rq˚-good if and only if

2i ` j ` a pmod˚ qq ă q ´ r, @i ď2 b, j ď2 b ´ i . (5.2)
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5 Locally Recoverable Evaluation Codes based on Multivariate Polynomials

Proof. Let ϕpxq “ αx2 ` βx ` γ P Φ. The restriction of the monomial mpx, yq “ xayb on ϕ is

m|ϕpxq “ xapαx2 ` βx ` γqb

“ xa
b
ÿ

i“0

ˆ

b

i

˙

αix2i ¨ pβx ` γqb´i

“

b
ÿ

i“0

ˆ

b

i

˙

αix2i`a ¨

b´i
ÿ

j“0

ˆ

b ´ i

j

˙

βjxj ¨ γb´i´j

p˚q
“

ÿ

iď2b

αix2i`a ¨
ÿ

jď2b´i

βjxj ¨ γb´i´j

“
ÿ

iď2b

ÿ

jď2b´i

αi ¨ βj ¨ γb´i´j ¨ x2i`j`a ,

where the equality p˚q follows from the Lucas’ Theorem (Lemma 5.1). If the condition (5.2)
in the statement holds, then deg mϕpxq ă q ´ r. Therefore the sufficiency is proven.

Let m|˚ϕpxq :“ m|ϕpxq mod xq ´ x. The coefficient of xs in m|˚ϕpxq is

rxssm|˚ϕ “
ÿ

iď2b, jď2b´i
2i`j`a pmod˚ qq“s

αi ¨ βj ¨ γb´i´j ,

which can be seen as a multivariate polynomial in Fqrα, β, γs. Assume the condition (5.2)
does not hold but mpx, yq is pΦ, q ´ rq˚-good, i.e., for any s ě q ´ r, rxssm|˚ϕ is not a zero
polynomial but the evaluations at all pα, β, γq P F3

q equal to 0. However, by Theorem 2.1, since
the exponents i, j, b ´ i ´ j ă q, there exists some pα0, β0, γ0q P F3

q such that the evaluation of
rxssm|˚ϕ at pα0, β0, γ0q is nonzero. By contradiction we have proven that the condition (5.2)
is also a necessary condition.

The first important result is that the dimension of the code CqpΦ, q ´ rq is exactly the
number of pΦ, q ´ rq˚-good monomials, which is presented in Theorem 5.1. In order to prove
this, we first discuss in the following lemma a special case that will be excluded in the proof
of Theorem 5.1.

Lemma 5.3. Consider two monomials m1px, yq “ xq´1yb and m2px, yq “ yb with b P r0, q´1s

and a polynomial P px, yq containing m1 and m2, i.e.,

P px, yq “ pξ1xq´1yb ` ξ2ybq ` P 1px, yq

where ξ1, ξ2 ‰ 0 and P 1px, yq does not contain m1 or m2. Then, P is pΦ, q ´ rq˚-bad for any
r P rq ´ 1s.

Proof. Consider the restriction of P on the function ϕpxq “ γ for some γ P Fq and α “ β “ 0,

P |ϕpxq “ P px, y “ γq “ γbpξ1xq´1 ` ξ2q ` P 1px, y “ γq .

First, observe that for this choice of α, β, P |ϕpxq is of degree at most q ´ 1 and we are
only interested in the coefficient of xq´1. Further, the only monomials of P 1px, y “ γq that
contribute to this coefficient are of the form ξ1xq´1γb1 with ξ1 ‰ 0. Since P 1px, yq does not
contain the monomials m1, m2 by definition, we conclude that b1 ‰ b. Now consider the
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5.2 Quadratic-Lifted Reed-Solomon Codes

coefficient of xq´1 in P |ϕpxq:

rxq´1sP |ϕ “ γbξ1
loomoon

from m1`m2

` γb1

ξ1 ` . . .
loooomoooon

from P 1px,yq

.

We view this as a polynomial in Fqrγs. Since b ‰ b1 and ξ1, ξ1 ‰ 0, this is not a zero polynomial.
Also, as b, b1 P r0, q ´ 1s this is a polynomial in Fqrγs of degree ď q ´ 1. By Theorem 2.1,
there exists γ P Fq such that rxq´1sP |ϕ ‰ 0, which means P |ϕpxq is of degree q ´ 1 for some γ.
Therefore, P is pΦ, q ´ rq˚-bad according to Definition 5.2 for any q ´ r ď q ´ 1 (equivalently,
for any r P rq ´ 1s).

Theorem 5.1. Let q be a power of 2, r P rq ´ 1s and Φ be the set of all quadratic functions.
The dimension of the QLRS code CqpΦ, q ´ rq is the number of pΦ, q ´ rq˚-good monomials.

Proof. Assume a polynomial P P Fqrx, ys containing pΦ, q ´ rq˚-bad monomials is pΦ, q ´ rq˚-
good. Let G and B be subsets of indices of all pΦ, q´rq˚-good and -bad monomials, respectively
(assuming the monomials are ordered according to some order). We can write P as

P “
ÿ

cPG
ξcx

acybc `
ÿ

cPB
ξcx

acybc ,

with ξc P F˚
q . Restricting P on the quadratic function ϕpxq “ αx2 ` βx ` γ gives the following

univariate polynomial

P |ϕ “
ÿ

cPGYB
ξcx

acpαx2 ` βx ` γqbc

“
ÿ

cPGYB
ξc

bc
ÿ

i“0

bc´i
ÿ

j“0

ˆ

bc

i

˙ˆ

bc ´ i

j

˙

αi ¨ βj ¨ γbc´i´j ¨ x2i`j`ac .

Let P |˚ϕ :“ P |ϕ mod pxq ´xq. Denote by rxssP |˚ϕ the coefficient of xs in P |˚ϕ. By Lemma 5.1,
we have

rxssP |˚ϕ “
ÿ

cPGYB

ÿ

iď2bc, jď2bc´i
2i`j`ac pmod˚ qq“s

ξc ¨ αi ¨ βj ¨ γbc´i´j .

The pΦ, q ´ rq˚-good monomials do not contribute to the coefficients for s ě q ´ r (see Defi-
nition 5.2), therefore,

rxssP |˚ϕ “
ÿ

cPB

ÿ

iď2bc,jď2bc´i
2i`j`ac pmod˚ qq“s

ξc ¨ αi ¨ βj ¨ γbc´i´j for s ě q ´ r . (5.3)

We view rxssP |˚ϕ as a trivariate polynomial in Fqrα, β, γs. Note that P is pΦ, q ´ rq˚-good
only if

rxssP |˚ϕ pα, β, γq “ 0 , @α, β, γ P Fq, @s ě q ´ r . (5.4)

Now consider two bad monomials xacybc and xadybd with c, d P B. Then the corresponding
terms in (5.3) contributed by them can be added up only if αicβjcγbc´ic´jc “ αidβjdγbd´id´jd ,
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which is true if and only if

ðñ

$

’

’

’

’

&

’

’

’

’

%

ic “ id

jc “ jd

bc ´ ic ´ jc “ bd ´ id ´ jd

2ic ` jc ` ac pmod˚ qq “ 2id ` jd ` ad pmod˚ qq

ùñ

#

bc “ bd

|ac ´ ad| “ 0 or q ´ 1 .

For the case |ac ´ ad| “ q ´ 1, such polynomials are bad according to Lemma 5.3. For the
case |ac ´ ad| “ 0, we can conclude that (5.3) is in its simplest form3.

Assume B is non-empty. Since ξc ‰ 0 for all c, (5.3) is a nonzero polynomial in Fqrα, β, γs.
By Theorem 2.1, since the exponents i, j, bc ´ i ´ j ă q, there exists some α0, β0, γ0 P Fq, such
that rxssP |˚ϕpα0, β0, γ0q ‰ 0. This contradicts the assumption that P is pΦ, q ´ rq˚-good and
implies that (5.4) can be fulfilled only if rxssP |˚ϕ is a zero polynomial, i.e., B is empty. Hence,
a polynomial P is pΦ, q ´ rq˚-good if and only if it only consists of good monomials.

Counting pΦ, q ´ rq˚-Bad Monomials

By Theorem 5.1, we can calculate the dimension by

k “ the number of pΦ, q ´ rq˚-good monomials
“ q2 ´ the number of pΦ, q ´ rq˚-bad monomials.

Since it is hard to directly analyze the pΦ, q ´ rq˚-bad monomials, we first consider a slightly
different notion of pΦ, q ´ rq-bad monomials as given in Definition 5.3. Then, we derive upper
and lower bounds on the number of pΦ, q ´ rq˚-bad monomials in Theorem 5.2 and finally
establish the results on the rate of QLRS codes in Corollary 5.1.

Definition 5.3 (pΦ, q´rq-bad monomials). Let q “ 2ℓ and r P rq´1s. A monomial mpx, yq “

xayb (or the exponents pa, bq) is pΦ, q ´ rq-bad if there exist i ď2 b and j ď2 b ´ i such that
2i ` j ` a pmod qq ě q ´ r. For an integer t ě 0, we define

Stpℓq :“
"

pa, bq P Z2
q

ˇ

ˇ

D i ď2 b, j ď2 b ´ i, such that
2i ` j ` a “ q ´ r1 ` tq, for some r1 P rrs

*

. (5.5)

For r P rq ´1s and t ě 3, the set Stpℓq is empty as 2i`j `a ď i`b`a ď 2b`a ď 3pq ´1q ă

q ´ r ` tq. Hence, if xayb is pΦ, q ´ rq-bad, then pa, bq P S0pℓq Y S1pℓq Y S2pℓq.
In the following, we attempt to derive some recursive relations on S0pℓq, S1pℓq and S2pℓq

for r P rq ´ 1s. We have two observations in Lemma 5.4 and Lemma 5.5.

Lemma 5.4. Consider q “ 2ℓ, r ă
q
2 , a “ pa1, . . . , aℓq2 and b “ pb1, . . . , bℓq2. Let a1 :“

pa1, . . . , aℓ´1q2 and b1 :“ pb1, . . . , bℓ´1q2. If pa, bq P S0pℓq Y S1pℓq Y S2pℓq, then pa1, b1q P

S0pℓ ´ 1q Y S1pℓ ´ 1q Y S2pℓ ´ 1q.

Proof. The condition pa, bq P S0pℓqYS1pℓqYS2pℓq implies that there exist i “ pi1, . . . , iℓq2 ď2 b
and j “ pj1, . . . , jℓq2 ď2 b ´ i such that 2i ` j ` a “ q ´ r1 pmod qq for some r1 P rrs.

3A polynomial is in its simplest form if no terms can be further combined.
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Let i1 :“ pi1, . . . , iℓ´1q2 and j1 :“ pj1, . . . , jℓ´1q2. Clearly i1 ď2 b1 and j1 ď2 b1 ´ i1 and
2i1 ` j1 ` a1 “

q
2 ´ r1 pmod q

2q.

Lemma 5.5. For t “ 1, 2, if pa, bq P Stpℓq, then pa, bq P St´1pℓq.

Proof. We first prove for t “ 1. The condition pa, bq P S1pℓq implies that there exists an i ď2 b
and an j ď2 b ´ i with 2i ` j ` a “ 2q ´ r1 for some r1 P rrs. The statement pa, bq P S0pℓq

means that there exists i1 ď2 i and j1 ď2 j such that 2i1 ` j1 ` a P rq ´ r, q ´ 1s. Note that for
q ´ r ď a ď q ´ 1 the statement holds with i1 “ j1 “ 0. Assuming a ă q ´ r, we claim that
there exists of a pair pi1 ď2 i, j1 ď2 jq such that 2i1 ` j1 ` a “ q ´ r1. This claim would imply
the required statement. Such i1, j1 can be found by Algorithm 5.1 where we replace some ones
in the binary representations of i and j by zeros to get i1 and j1 so that p2i`jq´p2i1 `j1q “ q.
Note that the algorithm outputs the correct i1, j1 for 2i ` j ą q if it enters the δ ď 0 else-
part (Line 9) at some point. Assume the contrary that this does not happen, resulting in
that the algorithm output the all-zero i1, j1 at the end. However, this contrary implies that
δ “ q ´ p2i ` jq ą 0 which contradicts the condition that 2i ` j ` a ě 2q ´ r while a ă q ´ r.

For t “ 2, given i, j such that 2i ` j ` a “ 3q ´ r1, which implies that 2i ` j ą q, we can
find i1, j1 by Algorithm 5.1 such that 2i1 ` j1 ` a “ 2q ´ r1. This completes the proof.

Algorithm 5.1: Deduct q “ 2ℓ from 2i ` j

Input: ℓ ě 1, i, j
Output: i1, j1 such that i1 ď2, j1 ď2

1 Init: i1 Ð i, j1 Ð j, h Ð ℓ, ∆ Ð 1
2 if h “ 1 then
3 return i1, j1

4 Let h Ð h ´ 1 and ∆ Ð 2∆
5 Compute δ Ð ∆ ´ i1

h ´ j1
h`1

6 if δ ą 0 then
7 i1

h Ð 0, j1
h`1 Ð 0

8 Go back to Line 2
9 else

10 Let

$

’

&

’

%

i1
h Ð 0, if ∆ ´ i1

h “ 0
j1

h`1 Ð 0, if ∆ ´ j1
h`1 “ 0

i1
h Ð 0, j1

h`1 Ð 0, if ∆ ´ i1
h ´ jh`1 “ 0

11 return i1, j1

Example 5.1 (A toy example of Lemma 5.5). Consider the parameters q “ 2ℓ “ 24, r “ 2.
It can be seen that pa, bq “ p12, 14q “ pp0011q2, p0111q2q is in S1p4q, since with i “ 2 “

p0010q2, j “ 5 “ p0101q2 we have i ď2 b, j ď2 b´i and 2i`j`a “ 2q´r1 “ 30 “ p01111q2 with
r1 “ 2 P rrs. We now apply Algorithm 5.1 to find i1 ď2 i, j1 ď2 j such that 2i1 ` j1 ` a “ q ´ r1

for some r1 P rrs:

Init: i1 Ð p0010q2, j1 Ð p0101q2, ∆ “ 1 and h Ð 4.

Line 4: Let h Ð 3, ∆ Ð 2.

Line 5: Compute δ Ð ∆ ´ i1
3 ´ j1

4 “ 2 ´ 1 ´ 1 “ 0.
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Line 9: Since δ ą 0 and ∆ ´ i1
3 ´ j1

4 “ 0,

Line 10: i1
3 Ð 0, j1

4 Ð 0 and output i1 “ p0000q2 “ 0, j1 “ p0100q2 “ 2.

Note that i1 ď2 i ď2 b, j1 ď2 j ď2 b´i and 2i1 `j1 `a “ p0111q2 “ 14 “ q´r1 with r1 “ 2 P rrs.
Hence, pa, bq is also in S0p4q.

It follows from Lemma 5.5 that xayb is pΦ, q ´ rq-bad if and only if pa, bq P S0pℓq. Together
with the observation in Lemma 5.4, we can provide a recursive formula for computing the size
of Stpℓq for t “ 0, 1, 2.

Lemma 5.6. For 1 ď r ă
q
2 , it holds that

|S0pℓq| “ 3|S0pℓ ´ 1q| ` |S1pℓ ´ 1q|,

|S1pℓq| “ |S0pℓ ´ 1q| ` |S1pℓ ´ 1q| ` |S2pℓ ´ 1q|,

|S2pℓq| “ |S2pℓ ´ 1q|.

Proof. We follow the notations in Lemma 5.5. To obtain a valid Stpℓ ´ 1q, we require r ă

qℓ´1 “
q
2 due to the condition in Lemma 5.4. According to Lemma 5.4 and Lemma 5.5, we

know that if pa, bq P S0pℓq, then pa1, b1q P S0pℓ ´ 1q Y S1pℓ ´ 1q Y S2pℓ ´ 1q. The statement can
be proven by counting how many ways to add the most significant bits aℓ and bℓ for a1 and b1

to obtain a and b. Denote them by a “ ra1, aℓs, b “ rb1, bℓs. Recall the definition in (5.5), given
pa1, b1q P Stpℓ ´ 1q, there exist i1 ď2 b1, j1 ď2 b1 ´ i1 such that 2i1 ` j1 ` a1 “

q
2 ´ r1 ` t q

2 with
some r1 P rrs. Construct i, j by appending one most significant bit to i1, j1, i.e., i “ ri1, iℓs and
j “ rj1, jℓs with iℓ ď2 bℓ and jℓ ď2 bℓ. To obtain pa, bq P Stpℓq, we require 2i`j `a “ q´r2 `tq
with some r2 P rrs. We can write

2i ` j ` a “ 2i1 ` j1 ` a1 ` p2iℓ ` jℓ ` aℓq
q

2 .

Since the difference between 2i ` j ` a and 2i1 ` j1 ` a1 is always some multiple of q
2 , we obtain

r2 “ r1. By Lemma 5.5, we have S2pℓ ´ 1q Ă S1pℓ ´ 1q Ă S0pℓ ´ 1q.
We first prove |S0pℓq|. To have pa, bq P S0pℓq, we require 2i ` j ` a “ q ´ r1. Consider three

cases,

• Given pa1, b1q P S0pℓ ´ 1qzS1pℓ ´ 1q, it means 2i1 ` j1 ` a1 “
q
2 ´ r1. To obtain 2i ` j ` a “

q ´ r1, we require 2iℓ ` jℓ ` aℓ “ 1. There are three options of paℓ, bℓq that this can be
fulfilled, i.e., paℓ, bℓq “ p1, 0q, p0, 1q or p1, 1q.

• Given pa1, b1q P S1pℓ´1qzS2pℓ´1q, we have 2i1`j1`a1 “ q´r1. The option paℓ, bℓq “ p0, 0q

makes pa, bq P S0pℓq. Since S1pℓ ´ 1q Ă S0pℓ ´ 1q, we can find i2 ď2 i1 ď2 b1 and
j2 ď2 j1 ď2 b ´ i such that 2i2 ` j2 ` a1 “

q
2 ´ r1 (by Algorithm 5.1). So all the other

three options in the first case are also valid for this case.

• Given pa1, b1q P S2pℓ ´ 1q, we have 2i1 ` j1 ` a1 “ 3
2q ´ r1. Since S2pℓ ´ 1q Ă S1pℓ ´ 1q,

all four options of paℓ, bℓq allow to get pa, bq P S0pℓq.

Then we show |S1pℓq|. We require 2i ` j ` a “ 2q ´ r1. Again, consider the three cases,

• Given pa1, b1q P S0pℓ ´ 1qzS1pℓ ´ 1q, we have 2i1 ` j1 ` a1 “
q
2 ´ r1. This means that

2iℓ ` jℓ ` aℓ “ 3 is required. paℓ, bℓq “ p1, 1q is the only way to add the most significant
bits.
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• Given pa1, b1q P S1pℓ´1qzS2pℓ´1q, we have 2i1 `j1 `a1 “ q ´r1. We need 2iℓ `jℓ `aℓ “ 2
to obtain 2i ` j ` a “ 2q ´ r1. The two options p0, 1q and p1, 1q allow this.

• Given pa1, b1q P S2pℓ ´ 1q, we have 2i1 ` j1 ` a1 “ 3
2q ´ r1. We require 2iℓ ` jℓ ` aℓ “ 1 to

obtain 2i ` j ` a “ 2q ´ r1. The three options paℓ, bℓq “ p1, 0q, p0, 1q or p1, 1q can fulfill
this.

Now we show |S2pℓq|. We require 2i ` j ` a “ 3q ´ r1. Consider the three cases,

• Given pa1, b1q P S0pℓ ´ 1qzS1pℓ ´ 1q, we have 2i1 ` j1 ` a1 “
q
2 ´ r1. This means that

2iℓ ` jℓ ` aℓ “ 5 is required. However, this cannot happen since all iℓ, jℓ, aℓ are in F2.

• Given pa1, b1q P S1pℓ´1qzS2pℓ´1q, we have 2i1 `j1 `a1 “ q´r1. We need 2iℓ `jℓ `aℓ “ 4.
However, due to jℓ ď2 bℓ ´ iℓ, this cannot happen since iℓ and jℓ cannot be one at the
same time.

• Given pa1, b1q P S2pℓ ´ 1q, we have 2i1 ` j1 ` a1 “ 3
2q ´ r1. We require 2iℓ ` jℓ ` aℓ “ 3.

paℓ, bℓq “ p1, 1q is the only option.

To sum up, the statements follow from

|S0pℓq| “ 3p|S0pℓ ´ 1qzS1pℓ ´ 1q|q ` 4p|S1pℓ ´ 1qzS2pℓ ´ 1q|q ` 4|S2pℓ ´ 1q|

|S1pℓq| “ |S0pℓ ´ 1qzS1pℓ ´ 1q| ` 2|S1pℓ ´ 1qzS2pℓ ´ 1q| ` 3|S2pℓ ´ 1q|

|S2pℓq| “ |S2pℓ ´ 1q| .

Lemma 5.6 yields a recurrence relation for |S0pℓq|, |S1pℓq| and |S2pℓq|. For a given r, the
initial value ℓ0 should be chosen such that Sipℓ0q, i “ 0, 1, 2 is a valid set according to the
definition in (5.5). Denote by spℓq “ p|S0pℓq|, |S1pℓq|, |S2pℓq|qJ. We then have

spℓq “ Aℓ´ℓ0 ¨ spℓ0q, where A “

¨

˝

3 1 0
1 1 1
0 0 1

˛

‚ . (5.6)

The recursion enables us to find the asymptotic behavior of the number of pΦ, q ´ rq-bad
monomials, which is exactly |S0pℓq|. Note that the order of |Sjpℓq|, j “ 0, 1, 2 is controlled by
λℓ

1, where λ1 “ 2 `
?

2 is the largest eigenvalue of A in (5.6). Hence,

|S0pℓq| “ Θpp2 `
?

2qℓq . (5.7)

For different r, the exact values of |S0pℓq| can be different, since the initial value |S0pℓ0q|

depends on r. However, the asymptotic behavior is the same for any fixed r.
We provide the exact expressions of |S0pℓq| for r “ 1 and r “ 3, denoted by |S

p1q

0 pℓq| and
|S

p3q

0 pℓq| respectively, which we use later to derive upper and lower bound on the number of
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pΦ, q ´ rq˚-bad monomials:

|S
p1q

0 pℓq| “
5

?
2 ` 7

2p3
?

2 ` 4q
¨ λℓ

1 `
5
?

2 ´ 7
2p3

?
2 ´ 4q

¨ λℓ
2

«0.8536 ¨ λℓ
1 ` 0.1464 ¨ λℓ

2 (5.8)

|S
p3q

0 pℓq| “
65

?
2 ` 92

4p12
?

2 ` 17q
¨ λℓ

1 `
65

?
2 ´ 92

4p12
?

2 ´ 17q
¨ λℓ

2 ´ λℓ
3

«1.3536 ¨ λℓ
1 ` 0.6465 ¨ λℓ

2 ´ 1 (5.9)

where λ1 “ 2 `
?

2, λ2 “ 2 ´
?

2, λ3 “ 1 are the three distinct eigenvalues of the matrix A.

Recall from Lemma 5.2 that a monomial mpx, yq “ xayb is pΦ, q ´ rq˚-bad if and only if
there exist i ď2 b and j ď2 b ´ i such that 2i ` j ` a pmod˚ qq ě q ´ r. For q “ 2ℓ and
r P rq ´ 1s, we define the following set

S˚pℓq :“
"

pa, bq P Z2
q

ˇ

ˇ

ˇ

D i ď2 b, j ď2 b ´ i, s.t. 2i ` j ` a “ q ´ r1 ` tpq ´ 1q,

for some r1 P rrs, t ě 0

*

. (5.10)

It is clear that pa, bq P S˚pℓq if and only if xayb is pΦ, q ´ rq˚-bad.

We first relate |S˚pℓq| with |S0pℓq| in Lemma 5.7 and Lemma 5.8.

Lemma 5.7. Let ℓ ě 2, q “ 2ℓ, 1 ď r ď
q
4 , s “ rlog2prqs and q1 “ 2ℓ´s. Denote by S

p3q

0 pℓ ´ sq

the set of pa, bq such that xayb is pΦ, q1 ´ 3q-bad. Then

|S˚pℓq| ă 4r2 ¨ |S
p3q

0 pℓ ´ sq| .

If r is a power of 2, then

|S˚pℓq| ď r2 ¨ |S
p3q

0 pℓ ´ sq| .

Proof. By definition, we require ℓ ´ s ě 2 to have a valid S
p3q

0 pℓ ´ sq. Therefore, we require
ℓ ě 2 and r ď

q
4 . Let xayb be an arbitrary pΦ, q ´ rq˚-bad monomial. By definition, this

means that there exist i ď2 b and j ď2 b ´ i such that 2i ` j ` a “ q ´ r1 ` pq ´ 1qt for some
r1 P rrs and t P r0, 2s.4 We drop s “ rlogprqs least significant bits in a, b, i and j to obtain a1,
b1, i1 and j1, and write

i “ i1 ¨ 2s ` ri

2i “ 2i1 ¨ 2s ` 2ri

j “ j1 ¨ 2s ` rj

a “ a1 ¨ 2s ` ra

4Note that 2i ` j ` a ď 2b ` a ď 3pq ´ 1q ă q ´ r ` pq ´ 1qt for any t ě 3 and r ă q.
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where the remainders 0 ď ri, rj , ra ă 2s. Recall that q1 “ q{2s “ 2ℓ´s, it is clear that

2i1 ` j1 ` a1 “
2i ` j ` a

2s
´

2ri ` rj ` ra

2s

“
q ´ r1 ` pq ´ 1qt

2s
´

2ri ` rj ` ra

2s

“ q1pt ` 1q ´
r1 ` t

2s
´

2ri ` rj ` ra

2s
.

Since the bits in i, j cannot be both one at the same position, 2ri `rj ď 2p2s ´1q and therefore
0 ď 2ri ` rj ` ra ď 3p2s ´ 1q. In addition, since 1 ď r1 ` t ď r ` 2 ď 2s ` 2, we have

q1pt ` 1q ´ 4 ă 2i1 ` j1 ` a1 ď q1pt ` 1q ´
1
2s

.

As 2i1 ` j1 ` a1 can only be an integer, we have

q1pt ` 1q ´ 3 ď 2i1 ` j1 ` a1 ď q1pt ` 1q ´ 1 .

This implies that pa1, b1q is pΦ, q1 ´ 3q-bad. Therefore, adding arbitrary s least significant bits
to a pair pa1, b1q P S

p3q

0 pℓ ´ sq results in a pair pa, bq that may be pΦ, q ´ rq˚-bad. The number
of pΦ, q ´ rq˚-bad monomials is therefore bounded from above by

2s ¨ 2s ¨ |S
p3q

0 pℓ ´ sq| “ p2rlog2prqsq2 ¨ |S
p3q

0 pℓ ´ sq| ă p2rq2 ¨ |S
p3q

0 pℓ ´ sq| .

If r is a power of 2, we can set s “ log2 r and obtain the tighter bound.

Lemma 5.8. Let ℓ ě 1, q “ 2ℓ, 1 ď r ď
q
2 , s “ tlog2 ru and q1 “ 2ℓ´s. Denote by S

p1q

0 pℓ ´ sq

the set of pa, bq such that xayb is pΦ, q1 ´ 1q-bad. Then

|S˚pℓq| ą
r2

4 ¨ |S
p1q

0 pℓ ´ sq| .

If r is a power of 2, then

|S˚pℓq| ě r2 ¨ |S
p1q

0 pℓ ´ sq| .

Proof. By definition, we require ℓ ´ s ě 1 to have a valid S
p1q

0 pℓ ´ sq. Therefore, we require
ℓ ě 1 and r ď

q
2 . Consider a pair pa1, b1q P S

p1q

0 pℓ ´ sq. According to the definition in (5.5),
there exist i1 ď2 b, j1 ď2 b ´ i such that 2i1 ` j1 ` a1 “ q1 ´ 1.

Construct integers a, b, i, j as a “ a2 ` 2s ¨ a1, b “ b2 ` 2s ¨ b1, i “ 2s ¨ i1 and j “ 2s ¨ j1, where
a2, b2 P r0, 2s ´ 1s. Note that this is equivalent to appending the binary representation of a2

(resp. b2) on the left to the binary representations of a1 (resp. b1), and appending s zeros on
the left to the binary representations of i1 and j1. It can be seen that i ď2 b, j ď2 b ´ i by
construction, and

2i ` j ` a “ p2i1 ` j1 ` a1q2s ` a2

“ pq1 ´ 1q ¨ 2s ` a2

“ q ´ 2s ` a2 . (5.11)
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Since s “ tlog2 ru, q ´ r ď (5.11) ď q ´ 1. Hence any choice of a2, b2 P r0, 2s ´ 1s results in a
pair pa, bq such that xayb is pΦ, q ´ rq˚-bad. In total there are p2sq2 ą

`

r
2
˘2 ways of choosing

a2, b2. If r is a power of 2, we can set s “ log2 r and obtain a tighter lower bound.

In the following theorem we provide upper and lower bounds on the number |S˚pℓq| of
pΦ, q ´ rq˚-bad monomials in terms of ℓ and r.

Theorem 5.2. Let ℓ ě 2, q “ 2ℓ, 1 ď r ď
q
4 , s “ log2 r and S˚pℓq be the set of pΦ, q ´ rq˚-bad

monomials as in (5.10). Then

0.8536 ¨ λ
ℓ´tsu

1 ` 0.1464 ¨ λ
ℓ´tsu

2
4 ă

|S˚pℓq|

r2 ă 4p1.3536 ¨ λ
ℓ´rss

1 ` 0.6465 ¨ λ
ℓ´rss

2 ´ 1q ,

where λ1 “ 2 `
?

2 and λ2 “ 2 ´
?

2.
If r is a power of 2, we obtain

0.8536 ¨ λℓ´s
1 ` 0.1464 ¨ λℓ´s

2 ď
|S˚pℓq|

r2 ď 1.3536 ¨ λℓ´s
1 ` 0.6465 ¨ λℓ´s

2 ´ 1 .

Proof. It follows directly from the estimation of |S0pℓq| in (5.8)–(5.9) and the bounds in
Lemma 5.7 and Lemma 5.8.

For an illustration, we plot in Fig. 5.1 the rate of the code CqpΦ, q ´ rq with q “ 25, which
is done by computer-search according to the necessary and sufficient condition in Lemma 5.2.
The lower and upper bounds on the rates for r P r1, q

4 s are calculated from the bounds on
|S˚pℓq| in Theorem 5.2.
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rate (lb) ℓ “ 5

Figure 5.1: The dimension of QLRS code CqpΦ, q´rq with q “ 25 along with the corresponding
upper bound (ub) and lower bound (lb) for r P r1, q

4 s calculated by 1 ´ |S˚pℓq|{q2.
The lower and upper bound on |S˚pℓq| are given in Theorem 5.2.

Corollary 5.1. Let µ “ log2p2`
?

2q. For q Ñ 8 and 1 ď r ď
q
4 , the number of pΦ, q´rq˚-bad

monomials is

|S˚pℓq| “ Θpr2´µqµq .
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Moreover, the QLRS code CqpΦ, q ´ rq has rate

R “ 1 ´ Θ
`

pq{rqµ´2˘ “ 1 ´ Θ
`

pq{rq´0.2284˘ .

Proof. It can be seen from Theorem 5.2 that the order of |S˚pℓq| is controlled by λℓ
1. Its

asymptotic estimation is obtained by neglecting the other terms and the constant coefficients.
The rate is calculated by dividing the number of good monomials, q2 ´ |S˚pℓq| by the number
of all bi-variate monomials, q2.

Remark 5.1. Recall that the rate of bivariate lifted Reed-Solomon codes given in [HPPV20]
is

R “ 1 ´ Θppq{rqlog2 3´2 “ 1 ´ Θppq{rq´0.4150q .

We compare the performance of QLRS codes with lifted Reed-Solomon codes in terms of local
recovery in Section 5.2.3.

5.2.2 Minimum Hamming Distance of Quadratic-Lifted Reed-Solomon Codes

Similar to RS codes and RM codes, a QLRS code CqpΦ, q ´ rq can be written as a block code
with length n “ q2 and dimension k “ q2 ´ |S˚pℓq|, where ℓ “ log2 q, via evaluations:

QCqrn, ks :“
!

pfpvqqvPF2
q

ˇ

ˇ

ˇ
f P CqpΦ, q ´ rq

)

.

The minimum Hamming distance of a block code is given in Definition 2.16. We define the
minimum Hamming distance of CqpΦ, q ´ rq as the minimum Hamming distance of QCqrn, ks,
i.e.,

dHpCqpΦ, q ´ rqq :“ dHpQCqrn, ksq .

We provide upper and lower bounds on the minimum Hamming distance of QLRS codes in
the following theorem.

Theorem 5.3 (Bounds on minimum Hamming distance). Let q be a power of 2, r P rq´1s and
Φ be the set of all quadratic functions. The QLRS code CqpΦ, q ´ rq has minimum Hamming
distance

qr ` 1 ď dHpCqpΦ, q ´ rqq ď qr ` q .

Proof. We first show the upper bound. Let A Ă Fq be a subset with |A| “ q ´ r ´ 1.
Consider a bivariate polynomial fpx, yq “

ś

αPApx ´ αq P Fqrx, ys. It can be seen that
degpf |ϕq “ q ´ r ´ 1 for any ϕ P Φ therefore fpx, yq is in the code CqpΦ, q ´ rq. The zeros
of fpx, yq in F2

q are tpx, yq | x P A, y P Fqu. Therefore, the evaluations of fpx, yq in F2
q are of

weight q2 ´ qpq ´ r ´ 1q “ qr ` q. Due to the linearity of the code, the upper bound on the
minimum distance is proven.
Now we prove the lower bound. For any nonzero f P CqpΦ, q´rq consider a point p “ pa, bq P F2

q

such that fpa, bq ‰ 0. Denote by Lp Ă Φ the set of lines (i.e., quadratic functions with α “ 0)
in Φ intersecting with each other only at p. It can be seen that |Lp| “ q. By definition, for
any line L P Lp, degpf |Lq ă q ´ r. Therefore there are at least r ` 1 nonzero evaluations of f
at the points on L. Denote by wtHpfq the number of nonzero evaluations of f on F2

q and by

103



5 Locally Recoverable Evaluation Codes based on Multivariate Polynomials

wtHpf |Lq the number of nonzero evaluations of f on L, then

wtHpfq ě
ÿ

LPLp

`

wtHpf |Lq ´1
loomoon

excluding fppq

˘

`1
loomoon

including fppq

ě qr ` 1

Note that the bounds are derived in a similar manner as for lifted Reed-Solomon codes in
[GKS13, Theorem 5.1].

5.2.3 Local Recovery of Erasures

Consider an erasure channel with erasure probability τ . A local recovery set of an erasure
(i.e., a missing codeword symbol) in a codeword is a set of indices where the erasure can be
recovered by accessing only the other codeword symbols whose indices are in the set. Given a
QLRS code over Fq, the number of local recovery sets of any codeword symbol is the number
of quadratic functions over Fq passing through the evaluation point of that codeword symbol,
which is q2. For a lifted Reed-Solomon code, the number of local recovery sets of any codeword
symbol is q ` 1.

In this section, we are interested in correcting a certain erasure within any local recovery
set by QLRS codes. We say a local recovery fails if the erasure cannot be recovered from any
of its local recovery sets. By the structure of a QLRS code CqpΦ, q ´ 1q, this happens if and
only if there are at least r other erasures in each local recovery set of the erased symbol.
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LRS pq “ 8, k “ 10, r “ 4q

QLRS pq “ 8, k “ 10, r “ 3q

LRS pq “ 8, k “ 6, r “ 5q

QLRS pq “ 8, k “ 6, r “ 4q

Figure 5.2: Local recovery performance of lifted Reed-Solomon (LRS) codes and QLRS codes
of length n “ q2 “ 64 and dimension k “ 10 (rate “ k{n “ 0.15625) or k “ 6
(rate “ k{n “ 0.09375).

For a lifted Reed-Solomon code, since all the local recovery sets of a certain codeword symbol
are disjoint, the failure probability of a local recovery for an erasure, denoted by Pf,LRS , is

Pf,LRS “

˜

q´1
ÿ

i“r

ˆ

q ´ 1
i

˙

τ ip1 ´ τqq´1´i

¸q`1

.
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For QC-LRS codes, since the local recovery sets may intersect with each other, a closed form
of the failure probability is still an open problem.

In order to compare the performance of these two codes, we run simulations with both
codes of length n “ 64, dimension k “ 10 and k “ 6, respectively. It can be seen from
Corollary 5.1 and Remark 5.1 that for the same local redundancy r, the dimension of the
lifted Reed-Solomon code is larger than that of QLRS. To have a fair comparison, we choose
different local redundancy r for lifted Reed-Solomon codes and QLRS codes such that their
dimensions are the same. For instance, to obtain the same dimension k “ 10, we need to set
the local redundancy r “ 4 for the lifted Reed-Solomon code and r “ 3 for the QLRS code.

The simulation results are presented in Fig. 5.2. We can see that for both k “ 10 and k “ 6,
the failure probability of a local recovery with QLRS is smaller than or similar to that with
lifted Reed-Solomon codes for τ ď 0.7.

5.3 Almost Affinely Disjoint Subspace Design based on
Reed-Solomon Codes

In this section we show an application of the most well-known evaluation codes – Reed-
Solomon codes – in constructing a family of k-dimensional subspaces of Fn

q . This family
of subspaces was motivated by batch codes, which is a class of local recovery codes with
availability for distributed storage systems. We point out the connection after introducing
the necessary notations.

Definition 5.4 (Almost affinely disjoint (AAD) subspace family). Given positive integers k
and n such that n ą 2k, let F be a family of k-dimensional linear subspaces in Fn

q . This
family is said to be L-almost affinely disjoint, denoted by rn, k, Lsq-AAD, if the following two
properties hold:

(i) The family F is a partial k-spread of Fn
q , i.e., a collection of k-dimensional subspaces

with pairwise trivial intersection.

(ii) For any S P F and u P Fn
q zS, the affine subspace of S w.r.t. u,

u ` S :“ tu ` v | v P Su

intersects at most L subspaces from the family F .

We denote the maximal size of an rn, k, Lsq-AAD family by mAAD
q pn, k, Lq and define the

polynomial growth of the maximal size of an AAD family as

pAADpn, k, Lq :“ lim sup
qÑ8

logqpmAAD
q pn, k, Lqq . (5.12)

AAD subspace families with n “ 2k ` 1 were first introduced by Polyanskii and Vorobyev
in [PV19a] to construct primitive batch codes [IKOS04, Definition 2.3]. A binary primitive
rN, K, ssq-batch code encodes an information vector x P FK

2 into a codeword c P FN
2 , such that

for any multiset tti1, . . . , isuu Ď rKs, there exists s mutually disjoint sets S1, . . . , Ss Ď rN s

(referred to as recovering sets) such that each xij , j P rss can be recovered by the bits in
c whose indices are in Sj . The parameter s is usually called availability and it plays an
important role in supporting high throughput of the distributed storage system.
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It has been shown in [PV19a, Lemma 2] that a systematic rN, K, ssq-batch code can be
constructed from an rn, k, Lsq-AAD subspace family F , where N “ qn ` |F |qn´k, K “ qn and
s “ t|F |{Lu. The explicit encoding procedure is as follows: we associate K “ qn information
bits with K points in Fn

q and let the first K bits in c equal to x. For every affine subspace
u ` S with S P F and u P Fn

q , we compute a parity-check bit as a sum of information bits
associated with the points lying in this affine subspace and append it to c. As the number
of distinct affine subspaces of such a form is |F |qn´k, the constructed systematic code has
length N “ qn ` |F |qn´k. By the definition of the rn, k, Lsq-AAD family, it can be seen that
for every bit in x, each of its recovery sets (composed of a parity-check bit ci for some i ą K
and the information bits that are the other sumands of ci) intersects with at most L recovery
sets of any other bit. Hence, s “ t|F |{Lu.

A naive way to construct AAD families is by exploiting constructions of long linear codes
C with fixed dHpCq. Let H be a parity-check matrix of a linear rN, Ksq code C with dHpCq “

3k`1. Let the subspace Si be the Fq-linear span of k consecutive columns, from the pik`1q-th
to the pi ` 1qk-th column, of H. Then F “ tS1, . . . , StN{kuu is an rN ´ K, k, 1sq-AAD family.
Thus, for a fixed minimum Hamming distance, the longer the code C, the larger the constructed
AAD family. Yekhanin and Dumer have developed a class of long non-binary codes with fixed
Hamming distance in [YD04]. For k “ 1, linear rN, Ksq codes with dH “ 3k ` 1 “ 4 are
known to be equivalent to caps in projective geometries and have been studied extensively
under this name, e.g., in [Muk78; EB99; HS01]. From the results in [EB99; YD04], for fixed
k and large enough n, it holds that pADDpn, k, 1q ě p3k ´ 1qpn ` 1q{p9k2 ´ 9k ` 1q.

In the rest of the section, we present a construction of rn, k, Lsq-AAD families based on
Reed-Solomon codes for k “ 1, 2 in Section 5.3.1, and new upper and lower bounds on the
polynomial growth pADDpn, k, Lq of the maximal size of an AAD family for general L ě 1 in
Section 5.3.2.

5.3.1 Explicit Constructions
Construction 5.1. Let q ě nk, m “ qn´2k and γ be a primitive element of Fq. For i P rms,
let Si be a subspace spanned by the vectors tvi,1, . . . , vi,ku with

vi,t :“
`

et Γtpciq htpciq
˘

P Fn
q , t P rks , (5.13)

where et is a unit vector P Fk
q with a one at the t-th position, ci is a codeword of an RSqrn ´

k ´ 1, n ´ 2ks code having a parity-check matrix as the following

HRS :“

¨

˚

˚

˚

˝

1 1 1 ¨ ¨ ¨ 1
1 γ γ2 ¨ ¨ ¨ γn´k´2

...
...

...
. . .

...

1 γk´2 γ2pk´2q ¨ ¨ ¨ γpn´k´2qpk´2q

˛

‹

‹

‹

‚

, (5.14)

Γtp¨q is a map

Γtp¨q : Fn´k´1
q Ñ Fn´k´1

q

x ÞÑ
`

γt´1x1 γ2pt´1qx2 γ3pt´1qx3 ¨ ¨ ¨ γpn´k´1qpt´1qxn´k´1
˘

,

and htp¨q is a function htpxq :“
řn´k´1

p“1 x
pt´1qpn´k´1q`p`1
p . Then let Fn,k :“ tS1, . . . , Smu.
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Theorem 5.4. The family Fn,k from Construction 5.1 is a partial k-spread in Fn
q . Moreover,

for k “ 1 and k “ 2, Fn,k is rn, k, Lpn, kqsq-AAD with Lpn, 1q “ n ´ 1 and Lpn, 2q “

1 ` 2pn ´ 2qp2n ´ 6q.

Proof. The vectors vi,1, . . . , vi,k P Fn
q are linearly independent as the restriction to the first

k coordinates are unit vectors. Hence, their span defines a k-dimensional subspace in Fn
q .

Suppose that Si and Sj have a non-trivial intersection. Then,

rank

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

vi1
...

vi,k

vj,1
...

vj,k

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ rank

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

e1 Γ1pciq h1pciq

...
ek Γkpciq hkpciq

e1 Γ1pcjq h1pcjq

...
ek Γkpcjq hkpcjq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

ď 2k ´ 1 ,

which yields that

rank

¨

˚

˚

˚

˝

Γ1pci ´ cjq

Γ2pci ´ cjq

...
Γkpci ´ cjq

˛

‹

‹

‹

‚

ă k . (5.15)

Denote by ci,j the jth entry of ci. Since ci´cj is a nonzero codeword of the RSqrn´k´1, n´2ks

code with dH “ k, there exist k coordinates p1, . . . , pk P rn´k´1s such that ut :“ ci,pt ´cj,pt ‰

0 for t P rks. Thus, after restricting each row of the matrix in (5.15) to coordinates p1, . . . , pk,
the rank deficiency of the matrix in (5.15) is equivalent to

det

¨

˚

˚

˚

˝

u1 u2 ¨ ¨ ¨ uk

γp1u1 γp2u2 ¨ ¨ ¨ γpkuk

...
...

. . .
...

γp1pk´1qu1 γp2pk´1qu2 ¨ ¨ ¨ γpkpk´1quk

˛

‹

‹

‹

‚

“

k
ź

t“1
ut

ź

1ďsărďk

pγpr ´ γpsq “ 0 .

However, since γ is a primitive element of the field Fq with q ě nk and all ut’s for t P rks are
nonzero, the determinant cannot be zero, which contradicts the assumption that Si and Sj

intersect non-trivially. Hence, the family Fn,k is a partial k-spread.

Suppose that for the Si P Fn,k and some v P Fn
q R Si, the affine space V :“ v ` Si intersects

more than Ln,k subspaces from the family Fn,k. Let v be a nonzero vector from one of the
Ln,k ` 1 subspaces intersecting V. E.g., assume v P Sj P Fn,k, for some j P rmsztiu. Then we
can write v as a linear combination of the basis of Sj . Namely,

v “ vjpαq :“
k
ÿ

t“1
αtvj,t for some α P Fk

q zt0u ,

where vj,t’s are given in (5.13). In what follows, we estimate the number of other subspaces
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in Fn,k such that there exists a linear combination of their basis in V, i.e.,
ˇ

ˇ

ˇ

!

ℓ P rmszti, ju | vℓpβq P V, for some 0 ‰ β P Fk
q

)ˇ

ˇ

ˇ
. (5.16)

It can be seen that this is the number of subspaces in Fn,k that intersect V. Note that
vℓpβq P V is is equivalent to the property that

rank

¨

˚

˚

˚

˚

˚

˝

vi,1
...

vi,k

vjpαq

vℓpβq

˛

‹

‹

‹

‹

‹

‚

ď k ` 1 .

By the structure of the vectors vi,t’s in (5.13), the rank deficiency above implies that

rank
˜

řk
t“1 αtΓtpcj ´ ciq

řk
t“1 αtphtpcjq ´ htpciqq

řk
t“1 βtΓtpcℓ ´ ciq

řk
t“1 βtphtpcℓq ´ htpciqq

¸

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“:Rβ,ℓPF2ˆpn´kq
q

“ 1 .

Denote

T :“
!

cℓ P RSqrn ´ k ´ 1, n ´ 2ks | rankpRβ,ℓq “ 1 for some 0 ‰ β P Fk
q

)

. (5.17)

Then, (5.16)“ |T |.
Now we show that at least one entry in the first n ´ k ´ 1 entries of the first row of Rβ,ℓ is

nonzero. Observe that for each p P rn ´ k ´ 1s, the p-th entry in
řk

t“1 αtΓtpcj ´ ciq has the
form pcj,p ´ ci,pq

řk
t“1 αtγ

pt´1qp. Since ci and cj are codewords of the RSqrn ´ k ´ 1, n ´ 2ks

code with minimum Hamming distance k, there are at least k indices p P rn ´ k ´ 1s such that
cj,p ´ ci,p ‰ 0. We see

řk
t“1 αtγ

pt´1qp as a polynomial of degree k ´ 1 in the unknown x “ γp.
Then the polynomial has at most k ´ 1 distinct roots in Fq. For each root x0, there is at
most one p P rn ´ k ´ 1s such that γp “ x0, since γ is a primitive element in Fq with q ě nk.
Then for any nonzero α, there are at most k ´ 1 distinct p so that

řk
t“1 αtγ

pt´1qp “ 0. Hence,
there is at least one entry pcj,p˚ ´ ci,p˚q

řk
t“1 αtγ

pt´1qp˚ in the vector
řk

t“1 αtΓtpcj ´ ciq being
nonzero.

To continue, we need the following lemma, whose proof is given later.

Lemma 5.9. Given a nonzero vector β P Fk
q , there are at most kpn ´ kq distinct codeword

cℓ P RSqrn ´ k ´ 1, n ´ 2ks such that rankpRβ,ℓq “ 1.

Let us proceed with proving the remaining statement of this theorem, i.e., the value of Ln,k

for k “ 1, 2. For this purpose, we estimate the number of possible β’s such that the first
n ´ k ´ 1 columns of Rβ,ℓ, are collinear to the p˚-th column and then apply Lemma 5.9.

For k “ 1, note that for any multiple of β “ p1q, the set of cℓ such that rankpRβ,ℓq “ 1 is
the same. By Lemma 5.9, the number of distinct appropriate ℓ’s is at most n ´ 1. Thus, Fn,1
is an rn, 1, n ´ 1sq-AAD family.

Now we discuss the case k “ 2. Note that any nonzero vector β P F2
q is either collinear to
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p1, q ´ 1q or pβ1, 1 ´ β1q, where β1 P Fq. Define a set

B :“
␣

pβ1, 1 ´ β1q P F2
q | β1 ` p1 ´ β1qγp “ 0, for some p P rn ´ 3s

(

,

and it can be readily seen that |B| ď n ´ 3. We assume that for β “ p1, q ´ 1q or β P B, the
set T in (5.17) is not empty. We now estimate the number of suspicious rβ “ prβ1, 1 ´ rβ1q R B
such that the set T may not be empty. If R

rβ,ℓ
has rank 1, then two rows of R

rβ,ℓ
are collinear

and there exists some λ P F˚
q such that

´

rβ1 ` p1 ´ rβ1qγp
¯

pcℓ,p ´ ci,pq “ λpα1 ` α2γpqpcj,p ´ ci,pq
looooooooooooooomooooooooooooooon

“:wp

, @p P rn ´ 3s . (5.18)

From the parity-check equation
řn´3

p“1 pcℓ,p ´ ci,pq “ 0 imposed by the first column of (5.14),
we have

n´3
ÿ

p“1

wp

rβ1 ` p1 ´ rβ1qγp
“ 0 ðñ

n´3
ÿ

p“1
wp

n´3
ź

t“1
t‰p

prβ1 ` p1 ´ rβ1qγtq “ 0 .

Since there is some p P rn ´ 3s such that wp ‰ 0 and rβ1 ` p1 ´ rβ1qγp ‰ 0 for all p P rn ´ 3s,
the left-hand side of the above equation is a nonzero polynomial in Fqrrβ1s of degree at most
n´4. Therefore, there are at most n´4 suspicious rβ’s such that the vector

ř2
t“1

rβtΓtpcℓ ´ciq

is collinear to
ř2

t“1 αtΓtpcj ´ ciq. Let D be the union of the suspicious rβ’s, the set B and the
set tp1, q ´ 1qu. It can be seen that

|D| “

ˇ

ˇ

ˇ

!

rβ
)
ˇ

ˇ

ˇ
` |B| ` |tp1, q ´ 1qu|

ď pn ´ 4q ` pn ´ 3q ` 1 ď 2n ´ 6 .

Hence, by Lemma 5.9, Fn,2 is an rn, 2, Lpn, 2qsq-AAD family with Lpn, 2q “ 1 ` 2pn ´ 2qp2n ´

6q.

Proof of Lemma 5.9. Recall that the entry at the first row, p˚-th column of Rβ,ℓ is nonzero.
If Rβ,ℓ has rank 1, then each of the first n ´ k ´ 1 columns of Rβ,ℓ is linearly dependent on
the p˚-th column. Moreover, the dependency is determined by the first row of Rβ,ℓ. Fix a
cℓ,˚ P Fq. For any p P rn ´ k ´ 1s, let

ϕp “
pcj,p ´ ci,pq

řk
t“1 αtγ

pt´1qp

pcj,p˚ ´ ci,p˚q
řk

t“1 αtγpt´1qp˚

.

Then, having the p-th column collinear to the p˚-th column gives the following system of
equations on the unknowns cℓ,p, p P rn ´ k ´ 1sztp˚u:

pcℓ,p ´ ci,pq

k
ÿ

t“1
βtγ

pt´1qp “ ϕppcℓ,p˚
´ ci,p˚q

k
ÿ

t“1
βtγ

pt´1qp˚ . (5.19)

Note that
řk

t“1 βtγ
pt´1qp “ 0 for at most k ´ 1 distinct p P rn ´ k ´ 1sztp˚u. Therefore, (5.19)

provides at least n ´ k ´ 2 ´ pk ´ 1q “ n ´ 2k ´ 1 equations on the unknown cℓ,p’s.
Since cℓ,p are entries of a codeword of the RSqrn ´ k ´ 1, n ´ 2ks code with a parity-check
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matrix (5.14), we also have the following equations:

n´k´1
ÿ

p“1
γpp´1qpt´1qpcℓ,p ´ ci,pq “ 0, @t P rk ´ 1s . (5.20)

Thus, the system of equations (5.19)-(5.20) gives at least n ´ k ´ 2 linearly independent
equations on the n ´ k ´ 2 unknowns tcℓ,p, p P rn ´ k ´ 1sztp˚uu. This system of equations has
at most one solution. W.l.o.g., for any p P rn ´ k ´ 1sztp˚u, we write cℓ,p “ apcℓ,p˚

` bp with
some ap, bp P Fq for later use. So far, we have shown that given the cℓ,p˚

, the cℓ is uniquely
determined if rankpRβ,ℓq “ 1.

To have Rβ,ℓ has rank 1, we also require that the last column of Rβ,ℓ is collinear to the
p˚-th column, which implies that

det
˜

řk
t“1 αtγ

pt´1qp˚pcj,p˚ ´ ci,p˚q
řk

t“1 αtphpcjq ´ hpciqq
řk

t“1 βtγ
pt´1qp˚pcℓ,p˚

´ ci,p˚q
řk

t“1 βtphpcℓq ´ hpciqq

¸

“ 0 .

Note that the right-bottom entry

k
ÿ

t“1
βtphpcℓq ´ hpciqq “

k
ÿ

t“1
βt

n´k´1
ÿ

p“1

´

papcℓ,p˚
` bpqpt´1qpn´k´1q`p`1 ´ c

pt´1qpn´k´1q`p`1
i,p

¯

is a polynomial in cℓ,p˚
of degree at least p˚ ` 1 and at most kpn ´ k ´ 1q ` 1 ď kpn ´ kq.

Therefore, the determinant is a nonzero polynomial in cℓ,p˚
of degree at least p˚ ` 1 and at

most kpn ´ kq. Since q ě nk, there are at most kpn ´ kq solutions for cℓ,p˚
resulting in a zero

determinant.

Corollary 5.2. For k “ 1, 2, n ą 2k and L “ Lpn, kq, the polynomial growth of the maximum
cardinality of an rn, k, Lsq-AAD family is

pAADpn, k, Lq ě n ´ 2k .

Proof. The statement follows from Theorem 5.5 and the cardinality of the family Fn,k given
in Construction 5.1.

5.3.2 Bounds on Polynomial Growth of the Cardinality

In this section, we give an upper bound and a lower bound on the polynomial growth
pAADpn, k, Lq of the maximal size of an AAD family, which is defined as in (5.12).

An Upper Bound

Theorem 5.5 (Upper bound). Fix arbitrary positive integers L, k, n such that 2k ă n and a
prime power q. Let F be an rn, k, Lsq-AAD family. Then

|F | ď 1 ` L
qn´k ´ 1
qk ´ 1 . (5.21)

For L “ qop1q, it follows that pAADpn, k, Lq ď n ´ 2k.
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Proof. Let m :“ |F | and Si be the i-th subspace in F . For all i P rms, let Gi P Fkˆn
q be a

matrix such that xGiyr “ Si and let H i P Fpn´kqˆn
q be a matrix such that xH iyr “ SK

i , where
x¨yr denotes the row span. Hence, for all i P rms, H iG

J
i “ 0. Note that for any j P rm ´ 1s,

HmGJ
j P Fpn´kqˆk

q has full column rank because Sm and Sj have only trivial intersection by
Definition 5.4 of the AAD family F . For any j P rm´1s, let Ĝj P Fpn´2kqˆpn´kq

q be a full-rank
matrix such that

Ĝj ¨ pHmGJ
j q “ 0 . (5.22)

Now, we prove via contradiction that for any nonzero vector wJ P Fpn´kqˆ1
q , ĜjwJ “ 0

holds for at most L different j P rm ´ 1s. Suppose that for some set J :“ tj1, . . . , jL`1u Ă

rm ´ 1s, we have Ĝjtw
J “ 0 for every jt P J . This implies that wJ is in the column span of

HmGJ
jt

, i.e., wJ “ HmGJ
jt

yJ
jt

for some nonzero yJ
jt

P Fkˆ1
q .

Let vJ :“ GJ
j1yJ

j1 P Fnˆ1
q . Then,

@jt P J , HmGJ
jt

yJ
jt

“ wJ “ HmGJ
j1yJ

j1 “ HmvJ ,

which means
@jt P J , GJ

jt
yJ

jt
“ vJ ` GJ

mxJ
jt

, for some xJ
jt

P Fkˆ1
q .

But this implies that v ` Sm and Sjt intersect non-trivially, for all jt P J . By Definition 5.4,
there are at most L different j’s so that v `Sm and Sj intersect. This leads to a contradiction.

We have derived above a necessary condition for a collection of subspaces to form an
rn, k, Lsq-AAD family F , that is, for any nonzero vector wJ P Fpn´kqˆ1

q , ĜjwJ “ 0 holds for
at most L different j P rm ´ 1s, where the Ĝj ’s are defined in (5.22) and m “ |F |. It can be
seen that the expectation

E
ˇ

ˇ

ˇ

!

j P rm ´ 1s | ĜjwJ “ 0
)ˇ

ˇ

ˇ
“ pm ´ 1q Pr

!

ĜjwJ “ 0
)

“ pm ´ 1q
qk ´ 1

qn´k ´ 1 .

If the condition in (5.21) is not fulfilled, i.e., m ą L qn´k´1
qk´1 ` 1, then the above expectation is

at least L ` 1, violating the necessary condition.

Remark 5.2. Note that if we change the definition of an AAD subspace family by dropping
the first property (being a partial spread) in Definition 5.4, then the matrices HmGJ

j would
have full rank for at least m´L´1 different j’s. This results in the bound m ď L`1`L qn´k´1

qk´1 .

A Lower Bound by Random Construction

The construction proposed in Section 5.3.1 gives a lower bound for k “ 1, 2. For general
k ě q, we give a lower bound via another subspace family, the almost sparse subspace family
defined below.

Definition 5.5 (Almost sparse subspace family). Given positive integers k and n such that
2k ă n, let F be a family of k-dimensional linear subspaces in Fn

q . This family is said to be
L-almost sparse, denoted by rn, k, Lsq-AS, if the two properties hold:

(i) The family F is a partial k-spread of Fn
q .
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(ii) Any pk`1q-dimensional subspace in Fn
q intersects non-trivially at most L subspaces from

the family F .

It can be readily seen that an rn, k, Lsq-AS family is also an rn, k, L´1sq-AAD family. Hence
the following lower bound on the cardinality of AS families holds naturally for AAD families.
Similar to (5.12), we denote the maximal size of an rn, k, Lsq-AS family by mAS

q pn, k, Lq and
define the polynomial growth of mAS

q pn, k, Lq as

pASpn, k, Lq :“ lim sup
qÑ8

logqpmAS
q pn, k, Lqq .

Theorem 5.6 (Lower bound for AS families). For arbitrary positive integers L, n, k such that
2k ă n, and a prime power q, there exists an rn, k, Lsq-AS family F of size

|F | ď m˚
q pn, k, Lq :“ q

n´2k´
pn´kqpk`1q

pL`1q p1 ´ op1qq .

For fixed L, it follows that pASpn, k, Lq ě n ´ 2k ´
pn´kqpk`1q

pL`1q
.

Proof. The number of k-dimensional subspaces in Fn
q is

„

n

k

ȷ

q

“

k´1
ź

i“0

qn ´ qi

qk ´ qi
“

k´1
ź

i“0

qn´i ´ 1
qk´i ´ 1 “ Θpqkpn´kqq .

We form a family of k-dimensional subspaces, F “ tS1, . . . , Smu, of size

m “ q
n´2k´

pn´kqpk`1q

pL`1q

by choosing each subspace Si independently and uniformly with probability 1{
“

n
k

‰

q
. Note that

it is possible that Si “ Sj for some i ‰ j.
Define ξ :“ |tpi, jq | i, j P rms, i ă j, |Si X Sj | ‰ 1u| as the number of pairs pi, jq such

that Si and Sj intersect non-trivially. We now estimate the expectation of ξ. The number of
k-dimensional subspaces that only trivially intersect with a fixed k-dimensional subspace is
equal to

gk :“
k´1
ź

i“1

qn ´ qk`i

qk ´ qi
.

Thus, the probability of two random k-dimensional subspaces having only the trivial inter-
section is gk{

“

n
k

‰

q
. The expectation of ξ is then upper bounded as follows:

Epξq ď
ÿ

1ďiăjďm

Prt|Si X Sj | ‰ 1u

“
ÿ

1ďiăjďm

˜

1 ´
gk
“

n
k

‰

q

¸

ď

ˆ

m

2

˙

˜

1 ´

k´1
ź

i“0

qn ´ qk`i

qn ´ qi

¸
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ă m2

˜

1 ´

˜

qnk ´ qnpk´1q
2k´1
ÿ

i“k

qi

¸O

qnk

¸

“ m2
´

q2k´1´n ` o
´

q2k´1´n
¯¯

ă m
`

q´1 ` o
`

q´1˘˘ .

By the Markov inequality, we have

Pr
␣

ξ ą q0.5Epξq
(

ă
Epξq

q0.5Epξq
“ op1q .

Since q0.5Epξq ă m
`

q´0.5 ` o
`

q´0.5˘˘ “ opmq, we obtain that with probability at least 1´op1q,
there exists a family F of size m, which contains at most opmq pairs of subspaces with non-
trivial intersections. If we delete one of the intersecting subspaces for each pair, then we
obtain a family F 1 Ă F of subspaces of size at least m ´ opmq satisfying the first property in
Definition 5.5 for AS subspace families.

Now we compute the probability of the second property in Definition 5.5 being violated.
For a fixed pk ` 1q-dimensional subspace V, the number of k-dimensional subspaces that only
trivially intersect with V is equal to

uk :“
k´1
ź

i“0

qn ´ qk`1`i

qk ´ qi
.

Thus, the probability that Si only trivially intersects V is uk{
“

n
k

‰

q
. Let FV Ď F be the set

of subspaces in F that non-trivially intersect V, i.e., FV :“ tS P F | S X V| ‰ 1u. Applying
the union bound, we can bound from above the probability that V non-trivially intersects at
least L ` 1 subspaces in F by

Prr|FV | ě L ` 1s ď

ˆ

m

L ` 1

˙

˜

1 ´
uk
“

n
k

‰

q

¸L`1

“

ˆ

m

L ` 1

˙

˜

1 ´

k´1
ź

i“0

qn ´ qk`1`i

qn ´ qi

¸L`1

ă mL`1

˜

1 ´

˜

qnk ´ qnpk´1q
2k
ÿ

i“k`1
qi

¸O

qnk

¸L`1

“ mL`1
´

q2k´n ` o
´

q2k´n
¯¯L`1

ă q´pn´kqpk`1qp1 ` op1qq .

Recall that the total number of pk ` 1q-dimensional subspaces is
“

n
k`1

‰

q
“ Θpqpk`1qpn´k´1qq.

By the union bound,
„

n

k ` 1

ȷ

q

¨ Prr|FV ě L ` 1|s ă q´1´k ` o
´

q´1´k
¯

.

Hence, the probability that the second property is violated is op1q. This completes the proof
of the existence of an rn, k, Ls-AS family of size m ´ opmq.

113



5 Locally Recoverable Evaluation Codes based on Multivariate Polynomials

Corollary 5.3 (Lower bound for AAD families). For arbitrary positive integers L, n, k such
that 2k ă n, and q Ñ 8, there exists an rn, k, Lsq-AAD family of size

|F | ď q
n´2k´

pn´kqpk`1q

pL`2q p1 ` op1qq .

For fixed L, pADDpn, k, Lq ě n ´ 2k ´
pn´kqpk`1q

pL`2q
.

Proof. The statements follows from the fact that an rn, k, L`1sq-AS family is also an rn, k, Lsq-
AAD family.

The relation between an rn, k, L ` 1sq-AS family and an rn, k, Lsq-AAD family holds only
in one direction in general. Nevertheless, for k “ 1, an rn, 1, Lsq-AAD family is also an
rn, 1, L ` 1sq-AS family. To see this, note that any 2-dimension subspace (a plane) that
intersects with a 1-dimensional subspace (a line) from an rn, k “ 1, Lsq-ADD family, must
contain the line. Therefore, any rn, 1, Lsq-AAD family is also an rn, 1, L ` 1sq-AS family and
Construction 5.1 with k “ 1 also gives an rn, 1, L ` 1sq-AS family. Hence, pASpn, 1, nq “

pAADpn, 1, n ´ 1q “ n ´ 2.

Remark 5.3 (Related work on the AS families). The concept of almost sparse subspace
families is closely related to the weak subspace design introduced by Guruswami and Xing
in [GX13] and further studied in [GK16b; GXY18]. A collection F of subspaces in Fn

q is an
rn, k, Lsq-weak subspace design if every k-dimensional subspace in Fn

q intersects non-trivially
at most L subspaces from F . Despite not being required by definition, many known construc-
tions of weak subspace design contain subspaces with a fixed co-dimension at least k. Weak
subspace design and AS families have the following (trivial) relations:

• An rn, k, Lsq-AS family is also an rn, k ` 1, Lsq-weak subspace design.

• For n ě 2k ` 1, a partial k-spread of Fn
q is an rn, k ` 1, Lsq-weak subspace family if and

only if it is also an rn, k, Lsq-AS family.

By the explicit constructions presented in [GK16b], we can derive that pASpn, k, Lq ě

Y

n´k
k`1

]

for L ě
pn´1qpk`1q

tpn´kq{pk`1qu
.

5.4 Summary and Outlooks
The first part of this chapter introduces a new class bivariate evaluation codes, QLRS codes,
which have the local property that the codeword symbols, whose coordinates are lying on a
quadratic curve, form a codeword of an RS code. Hence, for any coordinate in a codeword,
every quadratic curve passing through this coordinate gives a local recovery set of it. For
a QLRS code over Fq, there are q2 local recovery sets for each codeword symbol. We have
presented a necessary and sufficient condition on the monomials which form a basis of the
code. Based on the condition, we give upper and lower bounds on the dimension and show
that the asymptotic rate of a QLRS code over Fq with local redundancy r is 1´Θpq{rq´0.2284.
Moreover, we have provided lower and upper bounds on the minimum distance of this class
of codes and compared QLRS codes with lifted Reed-Solomon codes by simulations in terms
of the probability that a certain erasure cannot be recovered locally. The simulation results
showed that for short block lengths (e.g., n “ 64) and under the same code dimension, QLRS
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codes have better performance than lifted Reed-Solomon codes when the erasure probability
τ ď 0.7.

For future research, error-correcting algorithms of QLRS codes can be developed and ana-
lyzed. A promising candidate is the randomized list decoding algorithm which has been used
for RM codes [AS97; STV99; GRS00; KK16], lifted Reed-Solomon codes [GK16a] and lifted
affine-invariant codes [HP21]. The algorithm uses list decoding in local correction and aggre-
gates the local decoding results with appropriate weight to make a final decision on a symbol.
Moreover, QLRS codes were originally motivated by potential applications in coded caching.
The task of coded caching problems is to find caching and delivery strategies to minimize
delay in a communication system, where K users, each has a cache capability for M files,
demand some of N ą M files stored at a server. QLRS codes have the property that any two
local recovery sets for one coordinate pa1, b1q intersect at another coordinate pa2, b2q. If we
see the symbol at the pa1, b1q as a segment of the file that a user demands from the server,
then symbol at the intersection pa2, b2q can be placed as the cached content and the rest of
symbols in one of the recovery sets should be downloaded to reconstruct the file. New coded
caching schemes can be developed and analyzed based on QLRS codes, or the generalization
– the weighted η-lifted codes [LN20].

The second part studies the AAD family of k-dimensional subspaces, motivated by con-
structions for batch codes – a class of local recoverable codes with availability. The subspaces
in an AAD family form a partial spread and any pk ` 1q-dimensional subspace containing a
subspace from the family non-trivially intersects with at most L subspaces from the family.
We have presented an explicit construction of the AAD family for k “ 1, 2 based on RS codes.
The construction gives rn, k, Lsq-AAD families with cardinality qn´2k and L being polynomial
in n and k. Another question discussed is the polynomial growth pAADpn, k, Lq (with q Ñ 8)
of the maximal cardinality of these families. The upper and lower bounds on this quantity
derived in this section show that

n ´ 2k ´
pk ` 1qpn ´ kq

L ` 2 ď pAADpn, k, Lq ď n ´ 2k, for all 2k ă n .

With the explicit constructions based on RS codes, we have pADDpn, 1, Lq “ n´2 for L ě n´1
and pAADpn, 2, Lq “ n ´ 4 for L ě 1 ` 2pn ´ 2qp2n ´ 6q, respectively. For future work, the
analysis on the explicit construction (Construction 5.1) can be done for k ě 3 to show whether
the upper bound on pAADpn, k, Lq is also tight for k ě 3.
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6
Joint Decoding of Interleaved Evaluation
Codes

An s-interleaved code is the direct sum of s possible different codes (called constituent codes)
of the same length n, and its codewords can be represented as s ˆ n matrices. A common
error model for these codes are burst errors [Ows88; CO92], where the errors are concentrated
in several columns. As a distance metric, the Hamming weight of such an s ˆ n matrix is
defined as the number of nonzero columns of the matrix.

To decode an interleaved code, a naive approach is to simply decode each constituent
codeword, i.e., each row of the s ˆ n matrix independently. The error-correction capability
of the interleaved code is then tpdH ´1q{2u, where dH is the smallest minimum Hamming
distance of the constituent codes. However, for various algebraic interleaved codes, it is
possible to correct a larger fraction of errors by adopting a joint approach. For this reason,
interleaved codes have many applications in which burst errors occur naturally or artificially,
for instance, replicated file disagreement location [MK90], correcting burst errors in data-
storage applications [KL97; HPW19; HLMV24], outer codes in concatenated codes [MK90;
KL98; HV99; JTH04; SSB05; SSB09], ALOHA-like random-access schemes [HV99], decoding
non-interleaved codes beyond half-the-minimum distance by power decoding [SSB10; Kam14;
Ros18; PRB19; CP20; PRS21], distributed computing [SHN19] and code-based cryptography
[EWZ18; HLPW19; RPW21; PHL+22; AAD+22; ADG+23].

Generalized Reed–Solomon (GRS) codes are among the most-studied classes of constituent
codes for interleaved codes. There are several decoders for interleaved GRS codes [KL97;
BKY03; BMS04; SSB09; Nie13; YL18a] that decode up to tInt :“ s

s`1pn ´ k̄q errors, where
k̄ is the mean dimension of the constituent codes. All of these decoders fail for some error
patterns of weight larger than the unique decoding radius of the constituent code with the
smallest minimum Hamming distance. For errors of a given weight t, the fraction of errors
leading to a unsuccessful decoding is roughly q´m at the maximal decoding radius tInt (where
qm is the field size of the GRS code), and decreases exponentially in tInt ´ t, the difference
between the maximal decoding radius and the actual error weight.

There are also other decoding algorithms for interleaved GRS codes that decode beyond
the radius s

s`1pn ´ k̄q, and even beyond the Johnson radius: [CS03; PV04; Par07; SSB07;
CH13; WZB14; PR17; HLH+22]. For some of these decoders, simulation results suggest that
these decoders can successfully decode a large fraction of error matrices of weight up to the
claimed maximal radius, and in some very special cases, it is possible to derive bounds on
this fraction. However, in general, only little is known about the fraction of decodable errors
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by these decoders, which are therefore not considered in this chapter. Other code classes that
have been considered as constituent codes of interleaved codes are one-point Hermitian codes
[Kam14; PRB19; MMS21] and, more generally, algebraic-geometry codes [BMS05; Nak10].

For interleaved decoders of high order, i.e., where s is at least the number of corrupted
columns in received codewords, a simple linear-algebraic decoder was proposed in [MK90;
HV99] and generalized in [HV00; RV14]. Unlike all decoders mentioned above, this decoder
works for interleaved codes with an arbitrary linear constituent code and guarantees to cor-
rect any error of weight up to d ´ 2 that has full rank, where d is the minimum distance of
the constituent code. This generic decoding approach has been applied to interleaved codes
with arbitrary constituent codes, whose parity-check matrix is known, in the Hamming met-
ric [Sen11; PHL+22], the rank metric [CS96; OJ02; GRS15; AGHT18; BBB+20] and the
sum-rank metric [PRR22; SZHW23; ABD+23], respectively, to enhance the security of the
proposed post-quantum cryptosystems based on codes in these metrics.

This chapter is devoted to the joint decoding approaches applied to interleaved codes with
two classes of evaluation codes as constituent codes. In Section 6.1, we present a syndrome-
based joint decoding algorithm for interleaved RS codes and a necessary and sufficient con-
dition on a successful decoding. In Section 6.2, we apply the joint decoding algorithm to
interleaved alternant codes, where the constituent codes are subfield subcodes of GRS codes
and give a condition of successful decoding tailored for alternant codes. In Section 6.3, we
present lower and upper bounds on the probability of successful decoding of interleaved al-
ternant codes by the joint decoding algorithm. Finally, we give brief summaries on the other
results on joint decoding interleaved evaluation codes in Section 6.4.

The results in Section 6.1 and Section 6.2 were published in IEEE TIT [HLN+21a] and
partly in the proceeding of 2021 Information Theory Workshop [HLN+21b].

6.1 Joint Decoding of Interleaved Reed-Solomon Codes
We first formally introduce the concept of interleaved codes and briefly recap the joint decoding
algorithm for interleaved RS codes from [FT91; SSB09].

Definition 6.1 (Interleaved codes). The s-interleaved code ICpsq with constituent code C is
defined as

ICpsq :“

$

’

&

’

%

¨

˚

˝

cp1q

...

cpsq

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cpiq P C, i P rss

,

/

.

/

-

.

The parameter s is referred to as the interleaving order of the interleaved code.

Consider a channel where burst errors of Hamming weight at most t occur. We transmit a
codeword C of an s-interleaved code ICpsq. The received word is given by

R “ C ` rE P Fsˆn
q ,

where each row of C P Fsˆn
q is a codeword of C and rE P Fsˆn

q has at most t nonzero columns.
An illustration of a corrupted codeword of IC is given in Fig. 6.1.

In the following let C be a (generalized) RS code RSqrn, ks with nonzero code locators
α1, . . . , αn. The joint decoding algorithm that we present is also known as a syndrome-based
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...
...

...
...

...
...
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...

...
...

...

. . .

. . .

. . .

. . .

. . .

cp1q P C

C “ ℓ

n

Nonzero columns of the burst error rE

Figure 6.1: An illustration of a corrupted codeword of an s-code by a burst error rE.

joint decoding algorithm for interleaved RS codes. Such algorithms, to name a few, can be
found in [FT91] for BCH codes and [KL97; BKY03; SSB09] for interleaved RS code. We
briefly recapitulate the decoding method below and summarize a naive version of [SSB09,
Algorithm 2] in Algorithm 6.1.

Let H be a parity-check matrix of the constituent code RSqrn, ks and d “ n ´ k ` 1. From
the received matrix R, we are able to calculate the syndromes of each row of R by

¨

˚

˚

˚

˝

s1
s2
...

ss

˛

‹

‹

‹

‚

“ R ¨ HJ “ rE ¨ HJ , (6.1)

where si “ psi,1, . . . , si,d´1q P Fd´1
qm , for each i P rss.

Assuming that there are exactly t nonzero columns in rE, we define the error locator poly-
nomial as1

Λpxq :“
t
ź

i“1
p1 ´ α´1

ji
xq “ 1 ` Λ1x ` ¨ ¨ ¨ ` Λtx

t , (6.2)

where the t roots αj1 , . . . , αjt of Λpxq are the code locators corresponding to the error positions.
The coefficients of Λpxq fulfill the following linear equations (cf. [Pet60]),

¨

˚

˚

˚

˝

si,1 si,2 . . . si,t

si,2 si,3 . . . si,t`1
...

...
...

si,d´1´t si,d´1´t`1 . . . si,d´2

˛

‹

‹

‹

‚

looooooooooooooooooooooomooooooooooooooooooooooon

Spiqptq

¨

˚

˚

˚

˝

Λt

Λt´1
...

Λ1

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

´si,t`1
´si,t`2

...
´si,d´1

˛

‹

‹

‹

‚

looooomooooon

T piqptq

, @i P rss . (6.3)

Thus, determining the error positions in rE is equivalent to solving the following linear system

1Since αi ‰ 0, the error locator polynomial is well-defined.
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of equations Sptq for t unknowns,
¨

˚

˚

˚

˝

Sp1qptq

Sp2qptq
...

Spsqptq

˛

‹

‹

‹

‚

looooomooooon

Sptq

¨

˚

˚

˚

˝

Λt

Λt´1
...

Λ1

˛

‹

‹

‹

‚

looomooon

Λ

“

¨

˚

˚

˚

˝

T p1qptq

T p2qptq
...

T psqptq

˛

‹

‹

‹

‚

looooomooooon

T ptq

. (6.4)

After determining Λ from (6.4), we may use a standard method for error evaluation such
as Forney’s algorithm [For65] (cf. [Rot06, Section 6.6]) to calculate the error values Ê. Then,
by subtracting the calculated error Ê from R, we obtain the estimated codeword Ĉ “ R´Ê.

Algorithm 6.1: Syndrome-based Joint Decoding Algorithm
Input: received word R
Output: Ĉ or decoding failure

1 Calculate the syndromes si,:, @i P rss // See (6.1)
2 if si,: “ 0 for all i then return Ĉ “ R
3 Find minimal t‹ for which Spt‹q ¨ Λ‹ “ T pt‹q has a solution Λ‹ // See (6.4)
4 if the solution Λ‹ is not unique then return decoding failure
5 if Λ‹pxq has t‹ distinct roots in Fqm then
6 Evaluate the errors Ê by Forney’s algorithm [For65][Rot06, Section 6.6]
7 return Ĉ “ R ´ Ê

8 else
9 return decoding failure

10 end

For the channel where the burst errors occur, the joint decoding algorithm given in Algo-
rithm 6.1 may yield three different results:

• The algorithm returns the correct result, i.e., Ĉ “ C, with success probability Psuc.

• The algorithm returns an erroneous result, i.e., Ĉ ‰ C, with miscorrection probability
Pmisc.

• The algorithm returns a decoding failure, with failure probability Pfail.

Remark 6.1 (Practical Implementations). Algorithm 6.1 is a naive approach. It is mainly
meant for the proof of the successful probability, instead of for an efficient implementation.

For practical implementations, one can use some fast algorithm for Line 3, for instance,
1) [SS11, Algorithm 3] with the complexity of Opsd2q operations in Fqm, 2) the currently
fastest algorithm [RS21] with complexity O„psω´1dq where O„ omits the log-factors in d and
ω is the matrix multiplication exponent, for which the best algorithm allow ω ă 2.38 [CW90;
LG14].

Algorithm 6.1 yields a bounded distance decoder which can decode beyond half of the
minimum distance with high probability. Clearly, the solution Λ‹ cannot be unique if the
number of equations in (6.4) is less than the number of unknowns. Thus, the following
maximum decoding radius of Algorithm 6.1 can be derived.
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Theorem 6.1 ([SSB09, Theorem 3]). Let ICpsq be an s-interleaved code with C “ RSqrn, ks.
For a received word R “ C ` rE, where C P ICpsq and the error rE has t nonzero columns,
Algorithm 6.1 may only succeed, i.e., return Ĉ “ C, if

t ď tmax,RS :“ s

s ` 1pd ´ 1q . (6.5)

By the nature of a bounded distance decoder, where the correction balls of each codeword
inevitably overlap for some error patterns of weight t ą

Y

dH ´1
2

]

, Algorithm 6.1 is unsuccessful

with some probability when t ą

Y

dH ´1
2

]

. The following lemma gives a necessary and suf-
ficient condition such that Algorithm 6.1 is unsuccessful, i.e., returning an erroneous result
or a decoding failure. This will be the foundation to bound the success probability of
Algorithm 6.1 in decoding interleaved alternant codes in Section 6.2. The sufficiency has been
shown in the proof of [SSB09, Lemma 2]. The proof below completes the necessity.

Lemma 6.1 (Necessary and sufficient condition on unsuccessful decoding). Let ICpsq be an
s-interleaved code with C “ RSqrn, ks. For a received word R “ C ` rE, where C P ICpsq and
the error rE has t ą 0 nonzero columns, Algorithm 6.1 is not successful, i.e., returns Ĉ ‰ C
or a decoding failure, if and only if rankpSptqq ă t.

Proof. Denote by Λpxq the true error locator polynomial corresponding to the t error positions
(indices of nonzero columns) in rE. Then Λpxq has t distinct roots in Fqm and Λ is a solution
of the linear system of equations Sptq as in (6.4).

Sufficiency: We show that rankpSptqq ă t implies unsuccessful decoding. Consider two
cases, rankpSptqq “ 0 and 0 ă rankpSptqq ă t. For rankpSptqq “ 0, the algorithm outputs
Ĉ “ R at Line 2. However, since t ą 0, this is apparently a miscorrection. For the latter
case, assume rankpSptqq “ t‹, which is found at Line 3. Then t‹ ă t by assumption. Suppose
the algorithm runs until Line 7, then wtHpÊq “ t‹ ă t “ wtHprEq and hence Ê ‰ rE. Then
the resulting Ĉ is not the sent codeword C. Other termination (Line 4 or Line 9) of the
algorithm results in a decoding failure.

Necessity: We show that unsuccessful decoding implies rankpSptqq ă t. The algorithm
returns decoding failure only on Line 4 or 9. Line 3 determines the minimal t‹ such that
Spt‹q has at least one solution Λ‹, hence t‹ ď t. Note that a solution to Spt‹q is also a
solution to Sptq. If the algorithm fails on Line 4, i.e., the system Spt‹q has many distinct
solutions, then Sptq also has many solutions and therefore rankpSptqq ă t. The failure occurs
on Line 9 if Λ‹pxq does not have t‹ different roots, which implies Λ‹pxq ‰ Λpxq. This means
that the system Sptq has at least two solutions Λ and Λ‹. Hence rankpSptqq ă t.

The algorithm returns a miscorrected codeword only at Line 2 or 7. If the decoder outputs
Ĉ on Line 2, we have Ĉ ‰ C as t ą 0. In this case Sptq “ 0, so rankpSptqq “ 0 ă t. Note
that Sptq “ 0 will not occur if 0 ă t ă dHpCq, since the error rE with wtHprEq “ t cannot
result in R being another codeword in C. Assume the algorithm runs to Line 7 and returns
a Ĉ ‰ C. This implies that either t‹ ă t or, t‹ “ t and Line 3 has two distinct solutions Λ‹.
The former directly implies rankpSptqq ă t and the latter will cause a decoding failure at
Line 4, contradicting the assumption.

Remark 6.2. In the proof of [SSB09, Theorem 7], PrrrankpSptqq ă ts is used to bound the
probability of a decoding failure. Since we have shown in Lemma 6.1 that rankpSptqq ă t
is not only a sufficient condition but also a necessary condition for an unsuccessful decoding
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(either a miscorrection or a decoding failure), the upper bound [SSB09, Theorem 7] is in
fact an upper bound on 1 ´ Psuc “ Pmisc ` Pfail.

6.2 Joint Decoding of Interleaved Alternant Codes

GRS codes are generalizations of Reed-Solomon codes RSqrn, ks with nonzero column multipli-
ers. Alternant code are subfield subcodes of GRS codes. This code family contains some of the
best-known and most-often used algebraic codes over small fields, including the BCH [Hoc59;
BR60] and the Goppa codes [Gop70; Ber73; SKHN76].

6.2.1 Generalized Reed-Solomon Codes and Alternant Codes

We begin by formally defining the GRS codes and the alternant codes, then discuss some
applications and special cases of alternant codes.

Definition 6.2 (Generalized Reed-Solomon codes). For positive integers d and n, let α “

pα1, α2, . . . , αnq P pF˚
qmqn be a vector of distinct code locators and v P pF˚

qmqn be a vector
of column multipliers. A generalized Reed-Solomon (GRS) code GRSd

α,v of length n “ |α|,
dimension k “ n ´ d ` 1 and minimum Hamming distance d is defined as2

GRSd
α,v “ tc P Fn

qm | H ¨ diagpvq ¨ c “ 0u ,

with

H “

¨

˚

˚

˚

˝

1 1 . . . 1
α1 α2 . . . αn

...
...

...

αd´2
1 αd´2

2 . . . αd´2
n

˛

‹

‹

‹

‚

P Fpd´1qˆn
qm .

For a fixed α, denote by Gd
α the multiset of GRS codes with different column multipliers, i.e.,

Gd
α :“ ttGRSd

α,v | v P pF˚
qmqnuu .

Note that the most general definitions of GRS codes allow for the αi “ 0 to be element of
α, but for consistency with [SSB09] and as this complicates the decoding process, we restrict
ourselves to αi ‰ 0 here. GRS codes are well-known to be MDS codes, i.e., they achieve
dH “ n ´ k ` 1, where k is the dimension of the code.

By design, GRS codes must be defined over finite fields Fqm with qm ´ 1 ě n (or qm ě n if
αi “ 0 is allowed as a code locator). In many applications it is desirable to work with codes
of smaller field size, which can be obtained, e.g., by taking subfield subcodes of codes with
good minimum distance.

Definition 6.3 (Subfield subcode). Let C be an rn, ksqm code. We define the Fq-subfield
subcode of C as

C X Fn
q “ tc P Fn

q | c P Cu .

2The results in this section are mostly dependent the minimum Hamming distance, code locators and column
multipliers of GRS codes. Hence, we use the notation depend on d, α and v.
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Equivalently, let H P Fpn´kqˆn
qm be a parity-check matrix of C. Then C X Fn

q is given by the
Fq-kernel of H, i.e.,

C X Fn
q “ tc P Fn

q | H ¨ c “ 0u .

The subfield subcode of a GRS code is referred to as an alternant code [MS77, Ch. 12.2].
For a fixed α and a designed distance d, we denote by Ad

α the multiset of alternant codes, i.e.,

Ad
α :“ ttC X Fn

q | C P Gd
αuu . (6.6)

We define Ad
α as a multiset, as the multiplicities will be important for the bounds on the

probability of successful decoding. An additional advantage is that for a given α of length
n “ |α|, we know the cardinality of Ad

α is

|Ad
α| “ pqm ´ 1qn . (6.7)

For GRS codes it is known (cf. [Del75]) that for a fixed vector α of code locators, it holds
that GRSd

α,v “ GRSd
α,u if and only if v is an Fqm-multiple of u, i.e., any code C P Gd

α occurs
with multiplicity exactly δC

Gd
α

“ qm ´ 1 in Gd
α. This gives a lower bound on the multiplicity

of alternant codes as

δA
Ad

α
ě qm ´ 1, @A P Ad

α . (6.8)

We give some general well-known bounds on the dimension of the Fq-subcode of an Fqm-
linear code C in terms of the parameters of C.

Lemma 6.2. Let C be an rn, ksqm code with minimum Hamming distance d. Then,

maxtn ´ mpn ´ kq, 0u ď dimqpC X Fn
q q ď mintk, kopt.

q pn, dqu ,

where kopt.
q pn, dq is an upper bound on the dimension of a q-ary linear code given the length n

and the minimum Hamming distance d (e.g., Singleton, Griesmer, Hamming bounds, etc.)

Proof. The lower bound 0 is trivial. The lower bound n ´ mpn ´ kq follows from expanding
the n ´ k rows of any parity-check matrix of C via some basis of Fqm over Fq. The resulting
mpn ´ kq ˆ n matrix is a parity-check matrix of the Fq-subcode of C X Fn

q and the bound
follows. The upper bound k is trivial because dimqpC X Fn

q q ď dimqpCq “ k and kopt.
q pn, dq is

an upper bound by definition.

Other Applications of Alternant Codes

In principle, alternant codes can be used as constituent codes in any of the applications of
interleaved codes mentioned at the beginning of this chapter. Several concrete reasons to
specifically consider interleaved alternant codes are also worthy mentioning:

• Alternant codes (especially BCH codes) are widely used in practice, including data
storage and communications. Any system that already uses these codes and is prone to
burst errors may be retroactively upgraded to enable a larger error-correction capability.
For instance, in NOR and NAND flash memory, Hamming and BCH codes are considered
as the standard error-correction approach [LRS06; CLS09; WDPZ11]. Traditionally,
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6 Joint Decoding of Interleaved Evaluation Codes

Hamming codes are used in single-level flash memories to correct single errors as they
have a simple decoding algorithm and use only a small circuit area. For multi-level flash
memories, however, single-error correction is not sufficient and BCH codes with larger
distance are employed. In [SRZ06], the scenario of more than four levels (i.e., storing
more than two bits per flash memory cell) was investigated and it was shown that BCH
codes of larger correction capability are needed. To address the fact that errors in flash
memories might occur over whole bit or word lines, in [YEC11] product codes with
BCH codes were used. This motivates the use of interleaved alternant and in particular
interleaved BCH codes.

• In applications where the cost of encoding is dominant (e.g., in storage systems where
writing occurs more often than reading an erroneous codeword), encoding in a subfield
reduces the complexity. Hence, it might be advantageous to use alternant codes instead
of GRS codes in some of the above mentioned applications of interleaved codes. Note
that decoding is usually done in the field of the corresponding GRS code, so the reduction
in complexity is less significant.

• In some applications, such as code-based cryptography, GRS and algebraic-geometry
codes cannot be used due to their vast structure, which can be turned into structural
attacks on the cryptosystem. However, their subfield subcodes are in many cases un-
broken, e.g., see in [CMP17, Conclusion] and [CR20, Section 7.5.3]. In particular, the
codes proposed in McEliece’s original paper [McE78], binary Goppa codes, have with-
stood efficient attacks for more than 40 years. In a McEliece-type system, the ciphertext
is the sum of a codeword of a public code and a randomly chosen “error” which hides
the codeword from the attacker. If we encrypt multiple codewords in parallel, we may
consider them as an interleaved code and align the errors in bursts of larger weight. This
approach has the potential to increase the designed security parameter, or in turn re-
duce the key size [EWZ18; HLPW19]. This comes at the cost of a (hopefully very small)
probability of unsuccessful decryption/decoding, which corresponds to the probability
of unsuccessful decoding of the interleaved decoder.

Dimension vs. Hamming Distance of Binary BCH and Wild Goppa Codes

Wild Goppa codes [SKHN76; Wir88], which include binary square-free Goppa codes [Gop70;
Gop71; Ber73], are a subclass of Goppa Codes. Along with BCH codes [Hoc59; BR60], Goppa
codes are the best known class of alternant codes, due to their good distance properties in the
Hamming metric. Binary BCH and q-ary wild Goppa codes have been shown to be subfield
subcodes of GRS codes in Gd

α for some α and d.
Consider a binary BCH code that is a subfield subcode of some GRS code in Gd

α with length
n “ |α| and dimension k “ n ´ d ` 1 over F2m . It is well-known (cf. [MS77, Ch. 7]) that
the dimension of the binary BCH code is kBCH ě n ´ mn´k

2 , which exceeds the generic lower
bound in Lemma 6.2.

Wild Goppa codes are often considered as subclasses of alternant codes of Ad
α, but with an

increased lower bound on the distance dGoppa ě
q

q´1d. However, the bounds on the probability
of decoding success that are studied in Section 6.3 depend only on the properties of the
corresponding GRS and, in particular, its distance d, but not on the actual dimension or
distance of the alternant code itself. Therefore, instead of viewing wild Goppa codes as
alternant codes in Ad

α with increased distance, it is convenient to view them as alternant
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codes of AdGoppa
α with a larger dimension than guaranteed by the lower bound in Lemma 6.2.

This is possible because the general improvements of wild Goppa codes compared to alternant
codes were shown by an equivalence between the Goppa codes obtained from different Goppa
polynomials (cf. [SKHN76], [BLP11, Theorem 4.1]). In other words, the wild Goppa code
is in Ad

α X AdGoppa
α . It can be shown that the wild Goppa codes with distance d have an

increased lower bound on the dimension compared to the generic lower bound in Lemma 6.2,
i.e., kGoppa ě n ´ m q´1

q pd ´ 1q “ n ´ m q´1
q pn ´ kq.

6.2.2 Condition on Successful Decoding of Interleaved Alternant Codes

The joint decoder given in Algorithm 6.1 immediately applies to interleaved alternant codes
as well, i.e., the subfield subcodes of interleaved Reed–Solomon codes, but the fraction of
decodable error matrices differs, since the error is now over the subfield. Due to this, the
bounds on the probability of unsuccessful decoding of interleaved GRS codes does not hold
for interleaved alternant codes, which has been shown in the simulation results in [HLPW19].

With the help of Lemma 6.1, we now present the crux in bounding the success probability
of decoding interleaved alternant codes by Algorithm 6.1, which is the basis of the bounds
presented in Section 6.3.

In the rest of this chapter, we denote by Epa,bq
q the set of matrices E without zero columns

in Faˆb
q .

Lemma 6.3. Let ICpsq be an s-interleaved alternant code with C P Ad
α, n “ |α| and E “

tj1, j2, . . . , jtu Ă rns be a set of |E | “ t error positions. For a codeword C P ICpsq, an error
matrix rE P Fsˆn

q with suppprEq “ E and E :“ rE|E P Eps,tq
q , and a received word R “ C ` rE,

Algorithm 6.1 succeeds, i.e., returns Ĉ “ C, if and only if

Ev P Ft
qmzt0u such that H ¨ diagpvq ¨ EJ “ 0 , (6.9)

where H P Fd´t´1ˆt
qm is a parity-check matrix of the rt, 2t ´ d ` 1, d ´ tsqm code GRSd´t

α|E ,1.

Proof. We extend and adapt the proof for interleaved GRS codes from [SSB09].
According to Lemma 6.1, Algorithm 6.1 yields a decoding failure or a miscorrection

Ĉ ‰ C if and only if rankpSptqq ă t, with Sptq as in (6.4). In other words, the decoding may
only be unsuccessful, if there exists a nonzero vector u P Ft

qm such that Sptq ¨ u “ 0, i.e.,

Du P Ft
qmzt0u such that Spiqptq ¨ u “ 0 , @i P rss . (6.10)

It is known (cf. [PW72, Theorem 9.9][SSB09]) that a syndrome matrix Spiqptq can be decom-
posed into

Spiqptq “ H ¨ F piq ¨ D ¨ V ,
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where H is a parity-check matrix of the rt, 2t´d`1, d´tsqm code GRSd´t
α|E ,1 as in Definition 6.2,

V “

¨

˚

˚

˚

˚

˚

˝

1 1 . . . 1
αj1 αj2 . . . αjt

α2
j1 α2

j2 . . . α2
jt

...
...

...

αt´1
j1

αt´1
j2

. . . αt´1
jt

˛

‹

‹

‹

‹

‹

‚

J

P Ftˆt
qm ,

F piq “ diagpeiq P Ftˆt
q ,

D “ diagpv1|Eq P Ftˆt
qm ,

and v1 P
`

F˚
qm

˘n is the vector of column multipliers of the GRS code corresponding to the
alternant code C, i.e., GRSd

α,v1 X Fq “ C.
We observe that the matrices D and V are both square and of full rank. Therefore, the

product v :“ D ¨ V ¨ u defines a one-to-one mapping u Ñ v, such that 0 Ñ 0. Consequently,
the statement (6.10) is equivalent to

Dv P Ft
qmzt0u such that H ¨ diagpeiq ¨ v “ 0 , @i P rss

õ

Dv P Ft
qmzt0u such that H ¨ diagpvq ¨ ei “ 0 , @i P rss ,

and the statement follows.

Note that the upper bound on the probability of unsuccessful decoding interleaved GRS
codes from [SSB09] applies to error matrices rE over Fqm (the field of the GRS code). How-
ever, for interleaved alternant codes, rE is over Fq (the subfield of RS codes) and the bound
from [SSB09] is not valid in this case.

6.3 Bounds on Success Probability of Decoding Interleaved
Alternant Codes

In this section we present lower and upper bounds on the probability of successful decoding
of interleaved alternant codes by Algorithm 6.1. Lemma 6.3 gives a necessary and sufficient
condition for Algorithm 6.1 to succeed for an error rE with fixed E “ suppprEq and rE|E P Eps,tq

q .
With this as the basis, we bound the probability of successful decoding for a random error
matrix rE where rE|E is i.i.d. in Eps,tq

q .

6.3.1 Technical Preliminary Results

Before deriving the bounds, we establish some technical preliminary results which are needed
to prove the bounds.

Maximization of Integer Distributions

To begin, we derive a simple upper bound on the maximization of a sum of integer powers,
under a restriction on the base of the power.
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Definition 6.4 (Majorization relation). Let M “ ttm1, m2, . . . , mcuu and K “ ttk1, k2, . . . , kcuu

be two (finite) multisets of real numbers with the same cardinality. We say that the set M
majorizes the set K and write

M ą K or K ă M

if, after a possible renumeration, M and K satisfy the following conditions:

(1) m1 ě m2 ě ¨ ¨ ¨ ě mc and k1 ě k2 ě ¨ ¨ ¨ ě kc;

(2)
řj

i“1 mi ě
řj

i“1 ki, @ 1 ď j ď c.

We recap the following well-known result on multisets with this majorization relation.

Lemma 6.4 (Karamata’s inequality [KDLM05, Theorem 1]). Let M “ ttm1, m2, . . . , mcuu

and K “ ttk1, k2, . . . , kcuu be two multisets of real numbers from an interval ra, bs. If the set
M ą K, and if f : R Ñ R is a convex and non-decreasing function in the range ra, bs, then it
holds that

c
ÿ

i“1
fpmiq ě

c
ÿ

i“1
fpkiq . (6.11)

For convenience of notation, we define a fixed notation for the set over which we maximize
in the following.

Definition 6.5. Denote by Mra,bs

c,B “ tM, . . .u the set of all multisets M “ ttm1, . . . , mcuu of
cardinality c with b ě m1 ě . . . ě mc ě a and

ř

mPM m “ B.

With these definitions established, we are now ready to give an upper bound on the sum
over the results of a convex non-decreasing function evaluated on the elements of any multiset
in Mra,bs

c,B .

Lemma 6.5. Let a, c ě 1, b ě a, ca ď B ď cb, and Mra,bs

c,B be as in Definition 6.5. For any
function fpxq that is convex and non-decreasing in the interval a ď x ď b, it holds that

max
MPMra,bs

c,B

ÿ

mPM
fpMqď

ˆ

B ´ ca

b ´ a
` 1

˙

pfpbq ´ fpaqq ` cfpaq .

Proof. Let δm
M be the multiplicity of an element m P M. Denote by ĂM the set of distinct

elements in M. By definition,
ÿ

MPM
M “

ÿ

mP ĂM

δm
M ¨ m “ B, @M P Mra,bs

c,B

and it follows that for all M P Mra,bs

c,B we have

δb
M “

1
b

ˆ

B ´
ÿ

mP ĂMztbu

δm
M ¨ m

˙

ď
B ´ pc ´ δb

Mqa

b
, and then,

δb
M ď

B ´ ca

b ´ a
.
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Let Mmax “ tb, . . . , b, a, . . . , au be a multiset with δb
Mmax “

Q

B´ca
b´a

U

and δa
Mmax “ c´δb

Mmax .

It can readily be seen that Mmax ą M, @ M P Mra,bs

c,B (note that Mmax P Mra,bs

c,B if pb´aq|pB ´

caq). Since fpxq is a convex non-decreasing function for a ď x ď b, it follows from Lemma 6.4
that

ÿ

mPMmax

fpmq ě
ÿ

mPM
fpmq , @ M P Mra,bs

c,B . (6.12)

Hence,

max
MPMra,bs

c,B

ÿ

mPM
fpmq ď

ÿ

mPMmax

fpmq

“ δb
Mmaxfpbq ` pc ´ δb

Mmaxqfpaq

“

R

B ´ ca

b ´ a

V

pfpbq ´ fpaqq ` cfpaq

and the statement follows.

Sum of Cardinalities of Alternant Codes

Specific subclasses of alternant codes, such as some BCH and Goppa codes, are known to
have larger dimension [MS77] than the lower bound given in Lemma 6.2. However, in general
it is a difficult and open problem to predict the dimension of an alternant code for arbitrary
column multipliers v. Nevertheless, the sum of the cardinalities of subfield subcodes over all
nonzero column multipliers can be determined, given the weight enumerator of the code, as
we show in the following. This approach works not only for alternant codes, but also for any
linear codes with known weight enumerator.

For a linear rn, k, dsqm code C, denote by Bn,d,wpCq the sum of the number of codewords of
weight w in the Fq-subfield subcodes of C over all nonzero column multipliers, i.e.,

Bn,d,wpCq :“
ÿ

vPpF˚
qm qn

∣∣∣tc ¨ diagpvq | c P C, wtHpcq “ wu X Fn
q

∣∣∣ .

Since every linear code contains the zero codeword and there is no codeword of Hamming
weight ă d in the rn, k, dsqm code, the sum of the cardinalities of the Fq-subfield subcodes
over all nonzero column multipliers is given by

Bn,dpCq :“
ÿ

vPpF˚
qm qn

∣∣∣tc ¨ diagpvq | c P Cu X Fn
q

∣∣∣ “ pqm ´ 1qn `

n
ÿ

w“d

Bn,d,wpCq .

If C is a GRSd
α,v1 code as defined in Definition 6.2 for some v1 P pF˚

qmqn, then Bn,d,w is the
sum of the number of codewords of weight w in all alternant codes Ad

α, and Bn,dpCq is the
sum of the cardinalities of all Ad

α. Interestingly, while the weight enumerator and cardinality
of a specific subfield subcode depend on v, the sum of these values over all v only depends
on the weight enumerators of C.

Lemma 6.6. Let C be an rn, k, dsqm code and denote by AC
w the w-th weight enumerator of

128



6.3 Bounds on Success Probability of Decoding Interleaved Alternant Codes

C. Then,

Bn,d,wpCq “ AC
w ¨ pqm ´ 1qn´wpq ´ 1qw .

Proof. Let c be a codeword of C. We have c ¨ diagpvq P Fn
q if and only if civi P Fq for all

i P rns. If i P supppcq, then there are exactly q ´ 1 choices of vi for which civi P Fq. Else, any
of the qm ´ 1 possible values of vi give civi “ 0 P Fq. Hence, we have

Bn,d,wpCq “
ÿ

vPpF˚
qm qn

ˇ

ˇtc ¨ diagpvq | c P C, wtHpcq “ wu X Fn
q

ˇ

ˇ

“
ÿ

cPC
wtHpcq“w

ˇ

ˇ

␣

v P pF˚
qmqn | civi P Fq, @i P rns

(ˇ

ˇ

“ AC
w ¨ pqm ´ 1qn´wpq ´ 1qw .

If C is an MDS code, then its weight enumerators AC
w, as given in Theorem 6.2, is completely

determined by the code parameters (length, dimension/distance) and independent from the
specific code constructions.

Theorem 6.2 (Weight enumerators of MDS codes [MS77, Ch. 11, Theorem 6]). Let C be an
rn, k, dsqm MDS code. The w-th weight enumerator AMDS

w of C is AMDS
0 “ 1 and for w ‰ 0,

AMDS
w :“ |tc P C | wtHpcq “ wu| “

ˆ

n

w

˙w´d
ÿ

j“0
p´1qj

ˆ

w

j

˙

pqmpw´d`1´jq ´ 1q .

Hence, for an MDS code C, we can write the sum of the cardinalities of the Fq-subfield
subcodes of C without dependence on C as

BMDS
n,d,w :“ Bn,d,wpCq and BMDS

n,d :“ Bn,dpCq . (6.13)

Probability of a Code Containing a Random Matrix

We begin by proving a technical lemma that bounds the probability that all rows of a randomly
chosen matrix with nonzero columns are in a code of a certain dimension. This is a refined
version of [SSB09, Lemma 3]. Recall that Eps,nq

q is the set of matrix without zero columns in
Fsˆn

q .

Lemma 6.7. For some integers s ą 0, n ě k ě 0, let A be an rn, ksq code and denote by AA
w

its w-th weight enumerator. Then, for a matrix E taken independently from Eps,nq
q , we have

Pr
E

tei P A, @i P rssu ď
qkspq ´ 1q ´ pqs ´ 1qpqk ´ 1 ´ AA

n q ´ pq ´ 1q

pq ´ 1qpqs ´ 1qn
,

where ei is the i-th row of E.

Proof. Let L Ă Fsˆn
q the set of matrices whose rows are codewords of A and by L0 Ă L the

subset of all matrices in L with at least one all-zero column. Denote by Ā Ă A the set of
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codewords of A whose first nonzero entry is 1. Then Ā has cardinality |Ā| “
qk´1
q´1 . It can be

seen that
␣

E
ˇ

ˇ e1, . . . , es are Fq-scalar multiples of e P Ā Y t0u, wtHpeq ă n
(

Ď L0 .

If e “ 0 there is only the zero matrix in this set. For all the nonzero e with wtHpeq ă n, each
row ei of E can be an Fq-multiple of e and all such matrices E are unique, if at least one row
is not 0. The number of such choices is qs ´ 1, so

|L0| ě pqs ´ 1qp|Ā| ´ |tc P Ā | wtHpcq “ nu|
loooooooooooooomoooooooooooooon

“
AA

n
pq´1q

q ` 1 “
pqs ´ 1q

pq ´ 1q
pqk ´ 1 ´ AA

n q ` 1 .

Recall that Eps,nq
q does not contain any matrices with all-zero columns by definition, so L0 X

Eps,nq
q “ H. As L0 Ă L, it follows that

Pr
E

tei P A, @i “ rssu “
|L X Eps,nq

q |

|Eps,nq
q |

“
|LzL0|

|Eps,nq
q |

“
|L| ´ |L0|

|Eps,nq
q |

.

The statement follows from |L| “ |A|s “ qks and |Eps,nq
q | “ pqs ´ 1qn.

If |L0| is large, it is worthy to deduct it from |L| as in Lemma 6.7. However, for some
parameters, (our best lower bound on) |L0| becomes negligible compared to |L|. Therefore,
we also define a simplified version of this upper bound, where we only exclude the zero matrix
from L. The difference between L.A and L.A2 in the Figs. 6.2 and 6.3 reflects the difference
between Lemma 6.7 and Corollary 6.1.

Corollary 6.1. For some integers s ą 0, n ě k ě 0, let A be an rn, ksq code. Then, for E

that is i.i.d. in Eps,nq
q , we have

Pr
E

tei P A, @i P rssu ď
|Lzt0sˆnu|

|Eps,nq
q |

“
qks ´ 1

pqs ´ 1qn
.

With all the technical tools established, we are now ready to present the bounds on the
success probability of decoding interleaved alternant codes using the decoder from [FT91;
SSB09] (see also Algorithm 6.1).

Recall that the success probability is given by

Psuc “ 1 ´ Pfail ´ Pmisc ,

where Pfail and Pmisc are the probability of a decoding failure and a miscorrection, respectively.

6.3.2 A Lower Bound on Success Probability

In order to derive a lower bound on the success probability, we first establish a connection
between the multisets Ad´t

α|V
as defined in (6.6) and the probability of successful decoding.
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Theorem 6.3. Let ICpsq be an s-interleaved alternant code with C P Ad
α, n “ |α| and E “

tj1, j2, . . . , jtu Ă rns be a set of |E | “ t error positions. For a codeword C P ICpsq, an
error matrix rE P Fsˆn

q with suppprEq “ E and E :“ rE|E i.i.d. in Eps,tq
q , and a received word

R “ C ` rE, Algorithm 6.1 succeeds, i.e., returns Ĉ “ C, with probability

PsucpICpsq, Eq ě 1 ´

t
ÿ

w“d´t

ÿ

VĎrEs

|V|“w

ÿ

APAd´t
α|V

´

δA
Ad´t

α|V

¯´1
Pr
E

tei|V P A, @i P rssu ,

where ei|V is the i-th row of E restricted to the entries indexed in V and δA
Ad´t

α|V

is the multiplicity

of A in the multiset Ad´t
α|V

.

Proof. By Lemma 6.3 the decoding of rE is unsuccessful if and only if

Dv P Ft
qmzt0u such that H ¨ diagpvq ¨ EJ “ 0 ,

where H P Fpd´t´1qˆt
qm is a parity-check matrix of the rt, 2t ´ d ` 1, d ´ tsqm code GRSd´t

α|E ,1.
Therefore, the probability of unsuccessful decoding is upper bounded by

1 ´ PsucpICpsq, Eq

“ Pr
E

tDv P Ft
qmzt0u s.t. H ¨ diagpvq ¨ EJ “ 0u

“

t
ÿ

w“1
Pr
E

tDv P Ft
qm with wtHpvq “ w s.t. H ¨ diagpvq ¨ EJ “ 0u

“

t
ÿ

w“d´t

Pr
E

tDv P Ft
qm with wtHpvq“w s.t. H ¨ diagpvq ¨ EJ “ 0u (6.14)

“

t
ÿ

w“d´t

ÿ

VĎrEs

|V|“w

Pr
E

tDA P Ad´t
α|V

s.t. ei|V P A, @i P rssu

ď

t
ÿ

w“d´t

ÿ

VĎrEs

|V|“w

ÿ

APAd´t
α|V

ˆ

δA
Ad´t

α|V

˙´1
Pr
E

tei|V P A, @i P rssu ,

where (6.14) holds because any d ´ t ´ 1 columns of H are linearly independent.

With this connection between the multisets Ad´t
α|V

and the probability of successful decoding
PsucpICpsq, Eq established, we now apply the technical results of Section 6.3.1 to obtain a lower
bound.

Theorem 6.4 (Lower bound on Psuc). The probability of successful decoding PsucpICpsq, Eq as
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in Theorem 6.3 is lower bounded by

PsucpICpsq, Eq ě 1 ´

t
ÿ

w“d´t

`

t
w

˘

pqm ´ 1qpqs ´ 1qw
¨

˜

pqs ´ 1q

pq ´ 1q

´

cw ` BMDS
w,d´t,w ´ BMDS

w,d´t

¯

´ cw

`

ˆ

BMDS
w,d´t ´ cwaw

bw ´ aw
` 1

˙

pbs
w ´ as

wq ` cwas
w

¸

,

with

aw “ maxt1, qw´pd´t´1qmu, bw “ qkopt.
q pw,d´tq, and cw “ pqm ´ 1qw ,

where BMDS
w,d´t and BMDS

w,d´t,w are given in (6.13) and kopt.
q pw, d ´ tq is an upper bound on the

dimension of a q-ary code of length w and minimum Hamming distance d ´ t.

Proof. For a q-ary code A denote kA :“ dimqpAq. Starting from Theorem 6.3, we obtain

1 ´ PsucpICpsq, Eq ď

t
ÿ

w“d´t

ÿ

VĎrEs

|V|“w

ÿ

APAd´t
α|V

pδA
Ad´t

α|V
q´1 Pr

E
tpE|Vqi,: P A @ i P rssu

paq

ď

t
ÿ

w“d´t

ÿ

VĎrts

|V|“w

ÿ

APAd´t
α|V

pqm ´ 1q´1 pq ´ 1qqskA ´ pqs ´ 1qpqkA ´ 1 ´ AA
wq ´ pq ´ 1q

pq ´ 1qpqs ´ 1qw

pbq
“

t
ÿ

w“d´t

ÿ

VĎrts

|V|“w

pqm ´ 1q´1

pqs ´ 1qw

˜

pqs ´ 1q

pq ´ 1q
pcw ` BMDS

w,d´t,wq ´ cw `
ÿ

APAd´t
α|V

ˆ

qskA ´
pqs ´ 1q

pq ´ 1q
qkA

˙

¸

pcq

ď

t
ÿ

w“d´t

`

t
w

˘

pqm ´ 1q´1

pqs ´ 1qw

˜

pqs ´ 1q

pq ´ 1q
pcw ` BMDS

w,d´t,wq ´ cw ` max
MPMraw,bws

cw,BMDS
w,d´t

ÿ

MPM

ˆ

M s ´
pqs ´ 1q

pq ´ 1q
M

˙

¸

“

t
ÿ

w“d´t

`

t
w

˘

pqm ´ 1q´1

pqs ´ 1qw

¨

˝

pqs ´ 1q

pq ´ 1q
pcw ` BMDS

w,d´t,w ´ BMDS
w,d´tq ´ cw ` max

MPMraw,bws

cw,Bw,d´t

ÿ

MPM
M s

˛

‚

where paq holds by (6.8) and Lemma 6.7, pbq holds as
ř

APAd´t
α|V

AA
w “ BMDS

w,d´t,w (see (6.13))

and |Ad´t
α|V

| “ cw (see (6.7)), and pcq holds as aw and bw are lower and upper bounds on the
cardinality of all codes A P Ad´t

α|V
(see Lemma 6.2) and

ř

APAd´t
α|V

qkA “ BMDS
w,d´t by Lemma 6.6.

The theorem statement follows by Lemma 6.5.

With the use of Corollary 6.1 instead of Lemma 6.7 for the inequality at paq in the proof
we get a slightly simplified (though worse) lower bound.

Corollary 6.2 (Simplified Lower Bound on Psuc). The probability of successful decoding
PsucpICpsq, Eq as in Theorem 6.3 is lower bounded by

PsucpICpsq, Eq ě 1 ´

t
ÿ

w“d´t

`

t
w

˘

pqm ´ 1q´1

pqs ´ 1qw
¨

˜

ˆ

BMDS
w,d´t ´ cwaw

bw ´ aw
` 1

˙

pbs
w ´ as

wq ` cwpas
w ´ 1q

¸

,
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with

aw “ maxt1, qw´pd´t´1qmu, bw “ qkopt.
q pw,d´tq, and cw “ pqm ´ 1qw ,

where BMDS
w,d´t is given in (6.13) and kopt

q pw, d ´ tq is an upper bound on the dimension of a
q-ary code of length w and minimum Hamming distance d ´ t.

A Lower Bound on Success Probability for Large Interleaving Order s ě t

For large interleaving order s ě t, the Metzner-Kapturowski generic decoder [MK90] guar-
antees to decode any 1 ď t ď d ´ 2 errors if rankpEq “ t in an s-interleaved code with
any rn, k, dsq constituent code. The decoder has been generalized in [HV00] for the case
of rank deficiency when 2t ´ d ` 2 ď rankpEq ă t. However, if the structure of the con-
stituent code is unknown, determining the error positions in a rank-deficient error matrix
E where rankpEq “ µ ă t is equivalent to finding a subset U of columns of a parity-check
matrix H P Fpd´1´µqˆn

qm with rankpH|U q “ t ´ µ. This is known to be a hard problem and
no polynomial-time algorithm is known if the rank deficiency t ´ µ becomes large [RV14].
If the code structure is given, efficient syndrome-based algorithms are proposed in [RV14]
and [YL18b] to correct linearly dependent error patterns with rankpEq ě 2t ´ d ` 2 by inter-
leaved RS codes over Fqm . These decoders also apply to the class of alternant codes over Fq.
Consider an s-interleaved alternant code ICpsq where C P Ad

α, n “ |α| and any set E Ă rns of
|E | “ t error positions. A lower bound on the success probability is given in [RV14, Section
II.C] as

PsucpICpsq, Eq ě 1 ´ PrtrankpEq ă 2t ´ d ` 2u

“ 1 ´ q´ps`d´1´2tqpd´1´tqp1 ` op1qq

“ 1 ´ q´2pt´
3pd´1q`s

4 q2`
pd´1´sq2

8 p1 ` op1qq ,

(6.15)

where op1q is an expression that goes to 0 as q Ñ 8.
Note that though the decoder in [RV14] can be applied to interleaved alternant codes, the

above lower bound is an asymptotic result. For some applications of alternant codes that we
are interested in, e.g., Goppa codes in the McEliece system, the field size q is required to be
finite or rather small. Therefore, in order to be self-contained and have a general expression
on the failure probability, we prove in Lemma 6.8 that Algorithm 6.1 will always succeed in
decoding linearly dependent error patterns if rankpEq ě 2t ´ d ` 2 and we then give a lower
bound in Theorem 6.5 on the success probability for s ě t.

Lemma 6.8. Assume s ě t. Let ICpsq be an s-interleaved alternant code with C P Ad
α, n “ |α|

and E “ tj1, j2, . . . , jtu Ă rns be a set of |E | “ t error positions. For a codeword C P ICpsq, an
error matrix rE P Fsˆn

q with suppprEq “ E and E :“ rE|E i.i.d. in Eps,tq
q , and a received word

R “ C ` rE, Algorithm 6.1 succeeds, i.e., returns Ĉ “ C, if

rankpEq ě 2t ´ d ` 2 .

Proof. Recall from (6.14) in the proof of Theorem 6.3 that the decoding does not succeed if
and only if

Dv P Ft
qmzt0u with wtHpvq ě d ´ t s.t. H ¨ diagpvq ¨ EJ “ 0 , (6.16)

where H is a parity-check matrix of the rt, 2t ´ d ` 1, d ´ tsqm GRSd´t
α|E ,1 code.
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We show that this condition cannot be fulfilled if rankpEq ě 2t ´ d ` 2.
Assume rankpEq ě 2t ´ d ` 2. Denote wtHpvq “ w and L :“ supppvq. Let H̄ “ H|L,

v̄ “ v|L, and Ē “ E|L. Observe the equivalence

H|E ¨ diagpvq ¨ EJ “ 0 ðñ H̄ ¨ diagpv̄q ¨ Ē
J

“ 0 . (6.17)

Note that

rankpĒq ě rankpEq ´ pt ´ wq ě 2t ´ d ` 2 ´ pt ´ wq “ w ´ pd ´ tq ` 2

and H̄ ¨ diagpv̄q is a parity-check matrix of the rw, w ´ pd ´ tq ` 1, d ´ tsqm GRSd´t
α|L,v̄ code.

Assume for some v (6.17) is fulfilled. Then all rows of Ē are codewords of the GRS code.
In other words, the code spanned by Ē is a subcode of the GRS code, i.e.,

@

Ē
D

Ď GRSd´t
α|L,v̄.

However, since dimp
@

Ē
D

q “ rankpĒq ě w ´ pd ´ tq ` 2 ą w ´ pd ´ tq ` 1 “ dimpGRSd´t
α|L,v̄q,

this is a contradiction.

Theorem 6.5 (Lower bound on Psuc for s ě t). Assume s ě t. Let ICpsq be an s-interleaved
alternant code with C P Ad

α, n “ |α| and E “ tj1, j2, . . . , jtu Ă rns be a set of |E | “ t error
positions. For a codeword C P ICpsq, an error matrix rE P Fsˆn

q with suppprEq “ E and
E :“ rE|E i.i.d. in Eps,tq

q , and a received word R “ C ` rE, Algorithm 6.1 succeeds, i.e.,
returns Ĉ “ C, with probability

PsucpICpsq, Eq ě

t
ř

s“2t´d`2
Nps, t, sq

pqs ´ 1qt
,

where

Nps, t, sq :“ |tE P Eps,tq
q | rankpEq “ su| “

t´s
ÿ

j“0
p´1qj

ˆ

t

j

˙ s´1
ź

i“0

pqs ´ qiqpqt´j ´ qiq

qs ´ qi
.

Proof. By Lemma 6.8, it can be readily seen that the success probability is bounded from
below by

PsucpICpsq, Eq ě
|tE P Eps,tq

q | rankpEq ě 2t ´ d ` 2u|

|Eps,tq
q |

“

t
ř

s“2t´d`2
|tE P Eps,tq

q | rankpEq “ su|

pqs ´ 1qt
.

It remains to determine

Nps, t, sq “ |tE P Eps,tq
q | rankpEq “ su| ,

the number of matrices of Fsˆt
q without zero column and of a given rank. The number of

matrices, including those with zero columns, of certain rank is given in [Lan93][FA66, Theo-
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rem 2]:

Mps, t, sq :“ |tE P Fsˆt
q | rankpEq “ su| “

s´1
ź

i“0

pqs ´ qiqpqt ´ qiq

qs ´ qi
.

To obtain Nps, t, sq, we need to exclude the matrices with zero columns from Mps, t, sq. By
the inclusion-exclusion principle, we have

Nps, t, sq “

t´s
ÿ

j“0
p´1qj

ˆ

t

j

˙

Mps, t ´ j, sq .

Comparisons between Theorem 6.5 and Theorem 6.4 for some parameters can be found in
Fig. 6.3 with the labels L.T and L.A respectively.

Remark 6.3 (Upper bound on the miscorrection probability Pmisc). An upper bound on Pmisc
of decoding interleaved alternant code by Algorithm 6.1 is given in [HLN+21a, Appendix A].
We expect the bound to be a rather rough upper bound, as it does not depend on the specific
alternant code, nor the dimension of the alternant code. Nevertheless, we only intend to show
that the probability of unsuccessful decoding of interleaved alternant codes is dominated by the
failure probability, and the bound is sufficient for this purpose, as evident from the numerical
results in Figs. 6.2 and 6.3 under the label M.

6.3.3 An Upper Bound on Success Probability3

To evaluate the performance of the lower bounds of Section 6.3.2, we derive an upper bound
on the probability of a decoding success. The approach is to show that for a certain set of
error matrices, the decoder given in Algorithm 6.1 is never successful, i.e., the condition in
Lemma 6.3 never holds.

Recall from the proof of Theorem 6.3 that

PsucpICpsq, Eq “ 1 ´

t
ÿ

w“d´t

Pr
E

tDv P Ft
qm with wtHpvq “ w s.t. H ¨ diagpvq ¨ EJ “ 0u ,

(Recall (6.14))

where H P Fpd´t´1qˆt
qm is a parity-check matrix of an RSqmrt, 2t ´ d ` 1s code and any d ´ t ´ 1

columns of H are linearly independent. It can be readily seen that

PsucpICpsq, Eq ď 1 ´ Pr
E

tDv P Ft
qm with wtHpvq “ d ´ t s.t. H ¨ diagpvq ¨ EJ “ 0u . (6.18)

Lemma 6.9. Denote by Ed´t
bad the set of matrices E P Eps,tq

q for which there exists a vector
e P Fs

qzt0u that is collinear (i.e., a Fq-scalar multiple) to at least d ´ t columns of E. Then,

E P Ed´t
bad ðñ Dv P Ft

qm with wtHpvq “ d ´ t s.t. H ¨ diagpvq ¨ EJ “ 0 .

3The main contribution of this upper bound is by the co-author L. Holzbaur of the work [HLN+21a], we
include it here for completeness.
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Proof. We first show the sufficiency ðù. Given a matrix E P Eps,tq
q , let L “ supppvq and

|L| “ d ´ t such that H ¨ diagpvq ¨ EJ “ 0. Let H̄ :“ H|L P Fpd´t´1qˆpd´tq
qm , v̄ :“ v|L P Fd´t

qm ,
and Ē :“ E|L P Fsˆpd´tq

q . We have the equivalence

H ¨ diagpvq ¨ EJ “ 0 ðñ H̄ ¨ diagpv̄q ¨ Ē
J

“ 0 . (6.19)

As any d´ t´1 columns of H̄ ¨diagpv̄q P Fpd´t´1qˆd´t
qm are Fqm-linearly independent (therefore

Fq-linearly independent), the right Fq-kernel of H̄ ¨ diagpv̄q is of dimension at most 1. Since
(6.19) holds by assumption and there is at least one nonzero row in Ē, the dimension of the
right Fq-kernel of H̄ ¨diagpv̄q is at least 1. Together with the last argument, the right Fq-kernel
of H̄ ¨ diagpv̄q is of dimension exactly 1 and generated by a P

`

F˚
q

˘d´t. It then follows from
(6.19) that all the nonzero rows of Ē are collinear to the vector a. Hence, rankpĒq “ 1 and
we conclude that there exists a vector e P Fs

qzt0u that is collinear to all the nonzero columns
of Ē, and E P Ed´t

bad by definition.
Now we show the necessity ùñ . Given a matrix E P Ed´t

bad , let L Ă rts with |L| “ d ´ t
be some set of columns of E that are collinear to a vector e P Fs

qzt0u. Let H̄ :“ H|L P

Fpd´t´1qˆpd´tq
qm and Ē :“ E|L P Fsˆpd´tq

q . By assumption rankpĒq “ 1 and at least one row ēi

of Ē must be a nonzero scalar multiple of some vector e P pF˚
q qd´t, since E does not have any

zero column. Note that any d´t columns of H form a parity-check matrix of an RSqmrd´t, 1s

code (different sets of columns correspond to different code locators) and so does H̄. Denote
by RSH̄ the RS code defined by H̄. Since wtHpeq “ d ´ t “ dHpRSH̄q, we can always find a
v̄ P

`

F˚
qm

˘d´t such that the entry-wise multiplication of v̄ and e is a codeword of RSH̄ , i.e.,

H̄ ¨ pv̄1e1, v̄2e2, . . . , v̄d´ted´tq
J “ 0 .

The v P Ft
qm with v|L “ v̄ and 0 entries elsewhere results in H ¨ diagpvq ¨ EJ “ 0 and hence

the necessity is proven.

Similar to Ed´t
bad , we defined Ew

bad with w ď t to be the set of matrices E P Eps,tq
q for which

there exists a vector e P Fs
qzt0u that is a scalar multiple to at least w columns of E. We give

a general quantification on the cardinality of the set Ew
bad.

Lemma 6.10. For w ď t, the cardinality of Ew
bad is bounded by

max
wďξďt

tZξu ď |Ew
bad| ď pt ´ w ` 1q max

wďξďt
tZξu , where

Zξ “

t t
s u
ÿ

j“1
p´1qj´1

ˆ qs´1
q´1
j

˙

Dξ
j , and

Dξ
j “

˜

j´1
ź

z“0

ˆ

t ´ zξ

ξ

˙

¸

pq ´ 1qjξpqs ´ qjqt´jξ .

Proof. Consider the equivalence relation ”q on Fs
qzt0u defined by v ”q u if there exists

λ P F˚
q such that v “ λu. For a fixed vector e P Fs

qzt0u and a matrix E P Eps,wq
q , denote by

δe
E :“ |ti | Er:,is ”q eu| the number of columns of E that are equivalent to e under ”q. For a
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set of representatives S Ă Fs
qzt0u under the given equivalence relation, we have

Dξ
|S|

:“ |tE P Eps,wq
q | δe

E “ ξ, @e P Su| “

¨

˝

|S|´1
ź

z“0

ˆ

t ´ zξ

ξ

˙

˛

‚pq ´ 1q|S|ξpqs ´ q|S|qt´|S|ξ ,

where the first term counts the ways to position the equivalent (under ”q) vectors to e P S
into E, the second term is the number of choices for the scalar coefficients of these positions,
and the third term is the number of choices for the remaining columns, namely any nonzero
vector that is not equivalent to any vector in S. By the principle of inclusion-exclusion we
get that the size of

Zξ :“
!

E P Eps,wq
q | De P Fs

qzt0u s.t. δe
E “ ξ

)

is given by

Zξ :“ |Zξ| “

tt{ξu
ÿ

j“1
p´1qj´1

ˆ qs´1
q´1
j

˙

Dξ
j .

The statement follows from the observation that

Ew
bad “

t
ď

j“w

Zj .

Using the lower bound on the cardinality of Ew
bad, we now derive an upper bound on the

probability of successful decoding.

Theorem 6.6 (Upper bound on Psuc). Let ICpsq be an s-interleaved alternant code with
C P Ad

α, n “ |α| and E “ tj1, j2, . . . , jtu Ă rns be a set of |E | “ t ě d
2 error positions. For

a codeword C P ICpsq, an error matrix rE P Fsˆn
q with suppprEq “ E and E :“ rE|E i.i.d. in

Eps,tq
q , and a received word R “ C ` rE, Algorithm 6.1 succeeds, i.e., returns Ĉ “ C, with

probability

PsucpICpsq, Eq ď 1 ´
|Ed´t

bad |

pqs ´ 1qt
ď 1 ´

maxpd´tqďξďttZξu

pqs ´ 1qt
,

where Zξ is given in Lemma 6.10.

Proof. The statement follows directly from (6.18), Lemma 6.9, Lemma 6.10, and |Eps,tq
q | “

pqs ´ 1q
t.

6.3.4 Discussion and Numerical Results
In Sections 6.3.2 and 6.3.3 we have established lower and upper bounds on the probability

Psuc “ 1 ´ Pfail ´ Pmisc
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Table 6.1: Overview of the bounds shown in Figs. 6.2 and 6.3

Label Defined in Description

L.RS Theorem 6.7 Lower bound on the probability of successful decoding
for interleaved RS codes

L.A Theorem 6.4 Lower bound on the probability of successful decoding
for interleaved alternant codes where the minimum of
the Singleton, Griesmer, Hamming, Plotkin, Elias, and
Linear Programming bound is used for kopt

q .
L.A1 Theorem 6.4 Lower bound on the probability of successful decod-

ing for interleaved alternant codes, where the Singleton
bound is used for kopt

q .
L.A2 Corollary 6.2 Simplified version of Theorem 6.4. The minimum of

the Singleton, Griesmer, Hamming, Plotkin, Elias, and
Linear Programming bound is used for kopt

q .
L.T Theorem 6.5 Lower bound on the probability of successful decoding

for interleaved alternant codes with s ě t

M [HLN+21a, Appendix A] Upper bound on the probability of a miscorrection for
interleaved alternant codes. We assume that the decod-
ing radius of the interleaved decoder is

Y

s
s`1pd ´ 1q

]

,
i.e., the largest number of errors for which the RS inter-
leaved decoder, given in Algorithm 6.1, would succeed
(see Remark 6.4).

U Theorem 6.6 Upper bound on the probability of successful decoding
for interleaved alternant codes.

SIM Remark 6.4 Threshold number of errors such that for all numbers
of errors left of the indicated line, the interleaved alter-
nant decoder succeeds with a probability of Psuc ą 0.9
obtained by simulation with 100 decoding iterations
per parameter set.

of successful decoding of interleaved alternant codes by the decoding algorithm from [FT91;
SSB09] (see also Algorithm 6.1), assuming uniformly distributed burst errors of a given weight.
In the following we present and discuss some numerical results, where we compare these upper
and lower bounds4. In order to better emphasize the individual contributions of failures and
miscorrections, we further include an upper bound on the probability of miscorrection Pmisc
from [HLPW19, Appendix A], in the plots of Figs. 6.2 and 6.3. We label, summarize, and
describe the different bounds and versions thereof in Table 6.1 and, for convenience and clarity,
refer to them by their respective label for the remainder of this section. Further, we fix the
code length to be n “ qm ´ 1, i.e., given the base field size q and extension degree m we
construct the longest possible RS/alternant codes, while excluding αi “ 0 as a code locator

4For better presentation, we plot the respective bounds on the probability 1 ´ Psuc of unsuccessful decoding
instead of the bounds on Psuc.
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(see Definition 6.2).
Aside from the comparison of the lower and upper bounds on the success probability, it is

also interesting to see how the probability of successful decoding of an interleaved alternant
code compares to that of the corresponding interleaved GRS code over Fqm . Such a bound
was derived5 and shown to be close to the probability of successful decoding obtained from
simulation in [SSB09]. For the readers’ convenience we restate it in Theorem 6.7 and assign
it the label L.RS. Note that the decoder employed in [SSB09] is equivalent to the decoder
presented in Algorithm 6.1. The difference is that the error matrix rE is assumed to be over
Fqm (the field of the RS code) in Theorem 6.7.

Theorem 6.7 (Probability of successful decoding for interleaved RS codes [SSB09, Theo-
rem 7]). Let ICpsq be an s-interleaved GRS code with GRSd

α,v P Gd
α as in Definition 6.2,

n “ |α| and E “ tj1, j2, . . . , jtu Ă rns be a set of |E | “ t error positions. For a codeword
C P ICpsq, an error matrix rE P Fsˆn

qm with suppprEq “ E and E “ rE|E i.i.d. Eps,tq
qm , and a

received word R “ C ` rE, Algorithm 6.1 succeeds, i.e., returns Ĉ “ C, with probability

PsucpICpsq, Eq ě 1 ´

˜

qms ´ 1
qm

qms ´ 1

¸t

¨
q´mps`1qptmax,RS´tq

qm ´ 1 , (6.20)

where tmax,RS “ s
s`1pd ´ 1q as given in Theorem 6.1.

Before we discuss the numerical evaluations of the bounds, we make an important observa-
tion based on the simulation results.

Remark 6.4. For most parameters, the provided lower bounds on the success probability
(i.e., upper bounds on 1 ´ Psuc) of decoding interleaved alternant codes do not provide a non-
trivial bound for the same decoding radius as the bounds for interleaved RS codes in [SSB09].
To determine the real decoding threshold, i.e., the smallest number of errors for which the
decoder succeeds with non-negligible probability6, we rely on simulation results. This threshold
is indicated in the plots and labeled SIM. Notably, for all tested parameters, the threshold for
interleaved alternant codes is the same as for interleaved RS codes, i.e., the simulation results
imply that the joint decoding of interleaved alternant codes succeeds w.h.p. in presence of burst
errors of weight t with

t ď
s

s ` 1pd ´ 1q “ tmax,RS .

The numerical evaluations of the bounds are given in Figs. 6.2 and 6.3 for different base
field size q, extension degree m, and distance d, each for varying interleaving order s:

• q “ 2, m “ 10, d “ 51: The parameters are chosen such that the rate of the constituent
alternant code is « 0.5, assuming the dimension is k “ n ´ pd ´ 1qm (which tends to
be true for most alternant codes). For wild Goppa and BCH codes the rate is « 0.75
(see Page 124). The bounds for codes with these parameters are compared for different
interleaving order s in Figs. 6.2a (s “ 2), 6.2c (s “ 5), 6.2e (s “ 10) and 6.2g (s “ 25).
Figs. 6.3a and 6.3b are included to show the comparison between L.A and L.T.

5The bound in [SSB09] is presented as a bound on the probability of failure, but it is in fact a bound on the
probability of unsuccessful decoding (see Remark 6.2).

6We arbitrarily choose this probability to be Psuc ą 0.9 and run 100 decoding iterations for each parameter
set to determine the decoding threshold.
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• q “ 2, m “ 11, d “ 101: We compare to the parameters above by changing the exten-
sion degrees m in Figs. 6.2b, 6.2d, 6.2f and 6.2h. The designed distance d changes
accordingly such that the rate of the constituent alternant code is « 0.5 (for wilde
Goppa and BCH codes the rate is « 0.75).

• q “ 32, m “ 2, d “ 51: To illustrate the influence of the base field size q, we show some
evaluations of the bounds for q “ 32 in Figs. 6.3c and 6.3d.

We now briefly discuss the main observations we have taken from the numerical results.
As L.A1 and L.A2 are simplifications of L.A and therefore strictly worse, we leave their com-
parisons to a later point in the section, and begin by only comparing L.RS, L.A, L.T, M, and
U. All statements on the decoding failure, miscorrection, and success probability refer to the
syndrome-based joint decoder of [FT91; SSB09] given in Algorithm 6.1.

• For fixed q, m and s, the success probability for interleaved (q-ary) alternant codes is
significantly smaller than that for interleaved (qm-ary) RS codes, since even the upper
bound U on the success probability for interleaved alternant codes is in most cases
smaller than the lower bound L.RS on the success probability for interleaved RS codes.

• The probability of unsuccessful decoding interleaved alternant codes 1 ´ Psuc is dom-
inated by the probability of failure Pfail, as Pmisc ! 1 ´ Psuc, i.e., the bound on the
probability of a miscorrection Pmisc, labeled M, is multiple orders of magnitude smaller
than 1 ´ Psuc “ Pmisc ` Pfail for the best bound on Psuc among L.A and L.T. This is
consistent with the numerical results from [SSB09] for the case of decoding interleaved
RS codes.

• For most parameters, L.A provides the best lower bound on the success probability Psuc.
In particular, for higher interleaving order s (“ 10, 25 for example) and relatively small
number of errors t, it essentially matches the upper bound of Theorem 6.6 (see Figs.
6.2e, 6.2f, 6.2g, and 6.2h for example).

• For fixed q, m, and d, the relative gap between the number of errors for which the
lower bounds on the success probability become non-trivial, i.e., give Psuc ą 0, and
the simulated decoding threshold decreases for increasing interleaving order s (compare
Fig. 6.2a, 6.2c, 6.2e and 6.2g or Fig. 6.2b, 6.2d, 6.2f and 6.2h).

• The lower bound L.T on the success probability for s ą t improves upon the bound of L.A
for large number of errors that is close to the maximum decoding radius (see Figs. 6.3a
and 6.3b).

Now consider the different versions of the lower bound on Psuc in Theorem 6.4 labeled
by L.A (using the best upper bound on dimension of linear codes for kopt

q ), L.A1 (using the
Singleton bound for kopt

q ), and L.A2 (Corollary 6.2, a simplified version of L.A).

• For small q, the performance of Theorem 6.4 is significantly worse when using the field-
size-independent Singleton bound for kopt

q , as evident from comparing L.A and L.A1 in
Figs. 6.2a to 6.2h, 6.3a and 6.3b. This can be expected due to the large gap between
the field-size-dependent bounds and the Singleton bound for kopt

q when q is small.

• For larger interleaving order s (ě 10 for example), the simplified lower bound L.A2
approaches the most accurate version of the bound L.A (see Figs. 6.2e to 6.2h, 6.3a and
6.3b).
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Figure 6.2: Comparison of the bounds for different interleaving order s and extension degree
m. Rows are with different s while the two columns are with different m. For the
bounds L.RS, L.A, L.A1, L.A2, L.T, and U on the success probability we show the
respective probabilities of unsuccessful decoding 1 ´ Psuc. The references of the
bounds can be found in Table 6.1.
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Figure 6.2: (Cont’d.) Comparison of the bounds for different s and m.

6.4 Other Results on Joint Decoding of Interleaved Codes

This section briefly summarizes a selection of other works on joint decoding of interleaved
codes. For more details the interested reader is referred to the respective publications.

6.4.1 Joint Decoding of Generalized Goppa Codes

This abstract summarizes the results of the work [LPZW21] published in the proceeding of
2021 IEEE International Symposium on Information Theory (ISIT).

Generalized Goppa codes (GGCs) are an extension of Goppa codes, which are defined by a
set of code locator polynomials and a Goppa polynomial [SM81; BS97]. In [NB20a], a code-
based cryptosystem using binary GGCs with code locator polynomials of degree 1 and 2 is
proposed. A special class of binary GGCs which is perfect in the weighted Hamming metric
was introduced in [BS13] and cyclic GGCs were investigated in [Bez14; Bez15].

In this work, basic properties, decoding and potential cryptographic applications of binary
GGCs are investigated. First, we derive a parity-check matrix for GGCs with code locators
of any degree (an instance for GGCs with code locator polynomials of degree 2 was presented
in [NB20b],[NB20a]). We provide a formal proof for the lower bound on the minimum Ham-
ming distance of binary GGCs, which was stated in [NB20b],[NB20a], and we show that the
lower bound for GGCs with even-degree code locator polynomials is improved compared to
the general lower bound. Then, a quadratic-time decoding algorithm that can decode errors
up to half of the minimum Hamming distance is presented. We further consider GGCs as the
constituent code of interleaved codes. An explicit decoding algorithm based on Algorithm 6.1
and extended Euclidean algorithm is presented, and new maximum decoding radius for inter-
leaved GGCs are derived. Finally, we list some code parameters of GGCs and discuss their
applicability to the McEliece cryptosystem. By comparing the public key sizes for several code
parameters, it can be observed that, under the same security level, the GGCs with degree-2
code locator polynomials provides smaller public key size than the binary Goppa codes.
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Figure 6.3: Comparison of the bounds for large interleaving order s ě t (a and b) and different
base field size q (c and d). For the bounds L.RS, L.A, L.A1, L.A2, L.T, and U on the
success probability we show the respective probabilities of unsuccessful decoding
1 ´ Psuc. The references of the bounds can be found in Table 6.1.

6.4.2 List Decoding of 2-Interleaved Binary Alternant Codes

This abstract summarizes the results of the work [HLH+22] published in the proceeding of 2022
IEEE International Symposium on Information Theory (ISIT).

Parvaresh [Par07] combined list and interleaved decoding by adapting the Guruswami-
Sudan algorithm to the decoding of 2-interleaved GRS codes. Trivariate polynomials are
used to set up the interpolation constraints and resultants of polynomials are used to recover
the codeword. By combining the approaches of interleaved decoding and the Guruswami-
Sudan algorithm, this decoder achieves a larger decoding radius than the Guruswami-Sudan
algorithm, however, at the cost of a small probability of failure.

In this work, a list decoding algorithm for 2-interleaved binary alternant codes is proposed.
The new algorithm combines the approach in [ABC11] that applies the Koetter-Vardy list
decoding algorithm [KV03] to alternant codes, with the Parvaresh’s algorithm for interleaved
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6 Joint Decoding of Interleaved Evaluation Codes

GRS codes [Par07]. Similar to Parvareh’s algorithm, it is difficult to make a precise statement
on the decoding radius of this code. Instead, we present an upper bound on the decoding
radius, along with simulation results showing that the decoding radius of the algorithm exceeds
the decoding radii of all other algorithms known in literature for the chosen parameters. The
drawback of the presented algorithm is that decoding is not guaranteed to succeed (similar
to [Par07]). However, the simulation results indicate that this probability of failure is small,
if the parameters of the algorithm are chosen suitably.

6.5 Summary and Outlooks
In this chapter, we investigated joint decoding of interleaved evaluation codes, in particular, of
interleaved alternant codes by the decoder from [FT91; SSB09] in occurrence of burst errors.
We first recapped the syndrome-based joint decoding algorithm for interleaved Reed-Solomon
from [FT91; SSB09] and showed that a sufficient condition on decoding success given in
[SSB09] for interleaved Reed-Solomon codes is also a necessary condition. After adapting the
condition to the crux of jointly decoding interleaved alternant codes, we provided a framework
for characterizing the probability of decoding success. Within this framework, we derived a
lower bound and an upper bound on the success probability that holds for any interleaving
order. Inspired by a generic decoding method from [MK90; RV14], we derived another lower
bound that works for the interleaving orders that are larger than the number of error positions.
Moreover, we numerically evaluated the obtained bounds for different code parameters, which
show that one of the new lower bounds is tight for some parameters, as it matches the
corresponding newly derived upper bound. Finally, other two works related to joint decoding
interleaved evaluation codes are summarized.

It can be seen from the plots of the bounds that there is a gap between the number of errors
t, where the upper bound 1 ´ L.A on 1 ´ Psuc provides a non-trivial value, and the tmax, where
simulated decoding succeeds with high probability. For future research, the most apparent
open problem is to improve the general lower bound L.A, in particular for smaller interleaving
order, to close this gap. On the other hand, the current upper bound U on decoding success is
derived by considering one out of 2t ´ d ` 1 cases that the decoding never succeeds, where d is
the designed distance of the alternant code. Therefore improvements upon the upper bound
should be further investigated. Another closely related question, out of purely theoretical
interest, is to determine the distribution of the dimensions of all alternant codes for a given set
of code locators. For specific applications, such as code-based cryptography, improvements of
the bounds for specific error distributions, e.g., full-rank errors, could be of practical relevance.

Although we only briefly summarized the recent results on list decoding of interleaved
alternant codes, many open problems are left to be investigated. For example, the bottle neck
of extending the algorithm to larger interleaving order s ě 3 is the recovery step (root-finding)
step. Efficient algorithms in eliminating variables in Fqrxsry1, . . . , yss are needed. Moreover,
the upper bound given in [HLH+22] on the list decoding radius is quite far above the simulated
number of decodable errors. Tighter upper bound or estimation by simulating on more code
parameters should be further studied.
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7
Concluding Remarks

This dissertations concerns new code constructions with properties that are desired in quan-
tum error-correction, distributed storage system and network coding based on non-conventional
classes of polynomials, and joint decoding on evaluation codes to decode beyond half the min-
imum distance.

Chapter 3 is devoted to constructing Euclidean and σ-Hermitian dual-containing pθ, δq-
polycyclic codes over finite commutative Frobenius rings from skew polynomials. We have
developed an algorithm to find all dual-containing codes by transforming the problem of
searching for dual-containing codes into a system of polynomial equations and using Gröbner
bases to solve it. By applying this algorithm to several rings of order 4, the results show that
there are dual-containing pθ, δq-codes that can only be constructed from skew polynomials
with non-trivial endomorphisms θ (not automorphisms) or nonzero derivations δ. Moreover,
we have presented another algorithm with the usage of Gröbner basis to test whether the dual
code is also a pθ, δq-polycyclic code. Applying this algorithm to the resulting dual-containing
codes found by the previous algorithm, we find some of those dual-containing codes whose
dual is not a pθ, δq-code.

Chapter 4 focuses on the condition of constructing support-constrained codes from evalu-
ation codes based on skew polynomials (i.e., the linearlized Reed-Solomon (LRS) codes) and
network coding. We have derived a necessary and sufficient condition on the existence of an
LRS code fulfilling given support constraints and give an upper bound on the field size to
construct such a code. With the help of the condition, we have proposed a scheme to design
distributed LRS codes for multi-source unicast networks via solving an integer linear program-
ming problem. For a class of multicast networks, the generalized combination networks, we
have derived upper and lower bounds on the gap between the minimum required alphabet size
of scalar solutions and vector solutions. The asymptotic behavior of the newly derived upper
and lower bounds on the gap show that the number of bits that scalar solutions overpay is
increasing sub-linearly with the size of the network.

Chapter 5 contains two new results on locally recoverable codes from evaluation codes
based on multivariate polynomials. The first is on the rq2, 1 ´ Θ

`

pq{rq´0.2284˘sq quadratic
lifted Reed-Solomon codes (QLRS), where each codeword symbol has q2 local recovery sets
and within each local set r erasures can be corrected locally. We have compared its local
recovery performance with the rq2, 1´Θ

`

pq{rq´0.4150˘sq lifted Reed-Solomon codes which has
q local recovery sets for each codeword symbol. Simulation results showed that, for a fixed
dimension, QLRS codes are more likely to locally recover an erasure at a certain position in
the presence of other erasures, if the erasure probability is ď 0.7. The second result is on the
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7 Concluding Remarks

almost affinely disjoint (AAD) subspace family motivated by batch codes. We have given a
construction based on Reed-Solomon codes of such family for k “ 1, 2. The newly derived
upper bound on the asymptotic growth of the cardinality of the family shows the optimality
of this construction.

Chapter 6 is dedicated to joint decoding of interleaved evaluation codes. We have derived
a necessary and sufficient condition on decoding success by the Schimidt-Sidorenko-Bossert
joint decoding algorithm for interleaved alternant codes and lower and upper bounds on the
probability of decoding success based on this condition. Numerical evaluations show that one
of the provided lower bounds is tight for some parameters, as it matches the corresponding
newly derived upper bound. The short summary on utilizing list-decoding for interleaved
codes has shown the potential of this approach to further increase the decoding radius of
evaluation codes in the presence of burst errors.

Various future research directions are presented in the outlooks at the end of each chapter.
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Appendix

A.1 Derivation of degβl,t
PT

This proof is an extension of the analysis on linearized polynomials for Gabidulin codes in
[YH20, Section II.F] to skew polynomials.

From (4.8), the entry Ti,j in T is the coefficient of Xj´1 in fipXq. Note that we have set
Ti,k “ 1 in order to have the other entries in T uniquely determined given the roots of fi’s.
For h P rk ´ 1s, Ti,h is a commutative multivariate polynomial in Rn (see (4.12)) and

degβl,t
Ti,h ď degβl,t

fipXq .

For any l P rℓs and t P rnls, to find degβl,t
fipXq, consider the definition of fipXq in (4.11).

Suppose that j “ φpl, tq P Zi, otherwise degβl,t
fipXq “ 0. Recall that αj “ alβ

q´1
l,t and

Zi’s, i P rks are as defined in (4.10). Let f 1
i P FqmrX; σs be the minimal polynomial of

Z 1
i :“ Ziztαju, i.e.,

f 1
ipXq “ lclm

αPZ 1
i

tX ´ αu ,

whose X-degree is degX f 1
ipXq “ |Z 1

i| “ k ´ 2. Since j “ φpl, tq R Z 1
i, the coefficients of f 1

ipXq

are independent of βl,t, i.e., degβl,t
f 1

ipXq “ 0.
By the remainder evaluation of skew polynomials in (2.4),

f 1
ipalβ

q´1
l,t q “

k´1
ÿ

h“1
f 1

i,hNh´1palβ
q´1
l,t q ,

and

degβl,t
f 1

ipalβ
q´1
l,t q “ degβl,t

Nk´2palβ
q´1
l,t q

“ degβl,t
palβ

q´1
l,t qpqk´2´1q{pq´1q

“ qk´2 ´ 1 .

By the Newton interpolation in (2.7), we can write

fipXq “

ˆ

X ´ σpf 1
ipalβ

q´1
l,t qq ¨ alβ

q´1
l,t ¨

´

f 1
ipalβ

q´1
l,t q

¯´1
˙

¨ f 1
ipXq

“

ˆ

X ´

´

f 1
ipalβ

q´1
l,t q

¯q´1
¨ alβ

q´1
l,t

˙

¨ f 1
ipXq

“ X ¨ f 1
ipXq ´

´

f 1
ipalβ

q´1
l,t q

¯q´1
¨ alβ

q´1
l,t ¨ f 1

ipXq .
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Since degβl,t
f 1

ipXq “ 0 and so is degβl,t
pX ¨ f 1

ipXqq, we have

degβl,t
fipXq “ pq ´ 1q ¨ degβl,t

f 1
ipalβ

q´1
l,t q ` degβl,t

palβ
q´1
l,t q

“ pq ´ 1q ¨ pqk´2 ´ 1q ` pq ´ 1q

“ pq ´ 1q ¨ qk´2 ,

for all l, t such that φpl, tq P Zi. Hence, degβl,t
Ti,h ď degβl,t

fipXq “ pq ´ 1qqk´2, @h P rk ´ 1s.
Then,

degβl,t
PT “ degβl,t

det T

ď max
πPξk

k
ÿ

h“1
degβl,t

Tπphq,h

ď pk ´ 1qpq ´ 1q ¨ qk´2 , (A.1)

where ξk denotes the set of permutations of rks and the pk ´ 1q in (A.1) is because Tik “ 1
and hence degβl,t

Tik “ 0.

A.2 Proofs of Properties of Skew Polynomials over Rn

P1: RnrX; σs is a ring without zero divisors.

Proof. The ring properties of RnrX; σs are trivial, we only need to show that it has no zero
divisors.

Note that for any a, b P Rn, σpa ` bq “ σpaq ` σpbq. It can be seen from (4.18) that if
f, g ‰ 0, then f ¨ g ‰ 0 since the leading coefficients of fdf

, gdg are nonzero and therefore
fdf

σdf pgdg q is nonzero. Hence, RnrX; σs does not have zero divisors.

P2: For any sets Z1, Z2 Ď Rn s.t. Z1 Y Z2 is P-independent, gcrdpfZ1 , fZ2q “ fZ1XZ2 . In
particular, Z1 X Z2 “ ∅ ðñ gcrdpfZ1 , fZ2q “ 1.

Proof. This property has been proven as a part of [LMK17, Theorem 7] (cf.. Theorem 2.10)
for FqmrX; σs. For completeness, we also include our proof here. We can write the minimal
polynomial of the set Z1 X Z2 by the least common left multiplier as in (2.8), i.e., fZ1XZ2 “

lclm
αPZ1XZ2

tX ´αu. Then we can write fZ1 “ g1 ¨ lclm
αPZ1XZ2

tX ´αu and fZ2 “ g2 ¨ lclm
αPZ1XZ2

tX ´αu,

for some g1, g2 P RnrX; σs. Therefore, it is clear that fZ1XZ2 | gcrdpfZ1 , fZ2q.
Now we only need to show that deg fZ1XZ2 “ deg gcrdpfZ1 , fZ2q. Since Z1 Y Z2 is P-

independent, Z1, Z2 and Z1 X Z2 are also P-independent. Then deg fZ1YZ2 “ |Z1 Y Z2|,
deg fZ1 “ |Z1|, degZ2 “ |Z2| and deg fZ1XZ2 “ |Z1 X Z2|. It follows from [Glu21, Proposition
5.12] that the minimal polynomial of Z1 Y Z2 is

fZ1YZ2 “ lclmpfZ1 , fZ2q
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and from [Ore33, Eq.(24)] that

deg gcrdpfZ1 , fZ2q “ deg f1 ` deg f2 ´ deg lclmpfZ1 , fZ2q

“|Z1| ` |Z2| ´ |Z1 Y Z2|

“|Z1 X Z2| “ deg fZ1XZ2 .

Together with fZ1XZ2 | gcrdpfZ1 , fZ2q, the property is proven.

P3: For t P N and any f P RnrX; σs, Xt|lf ðñ Xt|rf . In this case, we write Xt|f .

Proof. If Xt|lf , then with some g P RnrX; σs we can write f “ Xt ¨ g “ σtpgq ¨ Xt, where
σtpgq “

ř

i σtpgiqX
i. Then it is obvious that Xt|rf . Similarly, if Xt|rf , we can write f “

g ¨Xt “ Xt ¨σ´tpgq and it is obvious that Xt|lf . This property has been also shown in [Ore33,
Theorem 7].

P4: For t P N and any f1, f2 P RnrX; σs such that X ffl f2, then Xt|pf1 ¨ f2q ðñ Xt  f1.

Proof. We first show Xt  pf1¨f2q ðù Xt  f1. Suppose Xt  f1, then we can write f1 “ Xt¨f 1
1

with some f 1
1 P RnrX; σs. Then f1 ¨ f2 “ Xt ¨ f 1

1 ¨ f2 and it can be seen that Xt l pf1 ¨ f2q. By
P3, we have Xt  pf1 ¨ f2q.

For the other direction, we first show that X  pf1 ¨ f2q ùñ X  f1 by contradiction.
Assume X ffl f1, then we can write f1 “ f 1

1 ` a with some f 1
1 P RnrX; σs such that X  f 1

1
and a P Rnzt0u. Since X ffl f2, we can write f2 “ f 1

2 ` b, with some f 1
2 P RnrX; σs such that

X  f 1
2 and b P Rnzt0u. Then,

f1 ¨ f2 “ pf 1
1 ` aqpf 1

2 ` bq

“ f 1
1 ¨ f 1

2 ` a ¨ f 1
2 ` f 1

1 ¨ b ` a ¨ b

where the first three summands are all divisible by X but a ¨ b ‰ 0 (since Rn is a ring without
zero divisor) and X ffl a ¨ b. This implies X ffl pf1 ¨ f2q, which is a contradiction. Note that
X2  pf1 ¨ f2q ùñ X  pf1 ¨ f2q ùñ X  f1. Write f1 “ X ¨ g with some g P RnrX; σs, then

X2  pf1 ¨ f2q ùñ X  pg ¨ f2q ùñ
Xfflf2

X  g

ùñ pX ¨ Xq  pX ¨ gq ùñ X2  f1 .

We can extend steps above t times and the property is proven.

For any Zi Ď rns, i P rks, l P rℓs, we denote Z
plq
i – tt | φpl, tq P Ziu and Zplq

i “ talβ
q´1
l,t | t P

Z
plq
i u, where φpl, tq is defined in (4.7). We need the following results on the set of roots of

skew polynomials in order to prove P5. It follows from Lemma 2.3 that fZi only vanishes on
Zi while evaluating on L. The following lemma gives the structure of the roots of fZi while
evaluating on Rn.

Lemma A.1 ([LMK15, Theorem 4]). For l “ 1, . . . , ℓ, let f
plq
i be the minimal polynomial of
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Zplq
i and Zplq

i – tα P Rn | f
plq
i pαq “ 0u. Then, for all l “ 1, . . . , ℓ,

Zplq
i “ talβ

q´1 | β P xβl,tytPZ
plq

i

zt0uu Ď Cσpalq (A.2)

|Zplq
i | “ q|Z

plq

i | ´ 1 (A.3)

where Cσpalq is the σ-conjugacy class of al as defined in (2.6).

Theorem A.1. Let fi be the minimal polynomial of Zi. Denote the set of roots of fi while
evaluating on Rn by Zi – tα P Rn | fipαq “ 0u. Then

Zi “

ℓ
ď

l“1
Zplq

i , where Zplq
i is as in (A.2) (A.4)

|Zi| “

ℓ
ÿ

l“1
|Zplq

i | “

ℓ
ÿ

l“1
q|Z

plq

i | ´ ℓ . (A.5)

Proof. Note that for all l P rℓs, Zplq
i are P-independent and they are from different conjugacy

classes. It follows from [LL04, Corollary 4.4] that for such sets,
Ťℓ

l“1 Zplq
i “

Ťℓ
l“1 Zplq

i .

It is clear that the α’s in (4.19) are P-independent. It follows from Definition 2.14 that
deg fpZ, τq “ |Z| ` τ . By Theorem A.1, the set of roots of fpZ, τq is

t0uτ Y

ℓ
ď

l“1

␣

alβ
q´1 | β P xβl,tytPZplq zt0u

(

(A.6)

where Zplq “ tt | φpl, tq P Zu. The notation t0uτ is to imply that Xτ  fpZ, τq and Xτ`1 ∤
fpZ, τq.

P5: For any f1 “ fpZ1, τ1q, f2 “ fpZ2, τ2q P Sn,k, we have

gcrdpf1, f2q “ fpZ1 X Z2, mintτ1, τ2uq P Sn,k .

Proof. We prove the property by showing that the skew polynomials on both side have the
same set of roots. Denote by ĎZ1, ĎZ2, ĚZ1,2 Ď Rn the set of all roots in Rn of f1, f2, fpZ1 X

Z2, mintτ1, τ2uq, respectively. By the structure of roots of fpZ, tq given in (A.6),

ĎZi “ t0uτi Y

ℓ
ď

l“1

!

alβ
q´1 | β P xβl,tytPZ

plq

i

zt0u

)

, i “ 1, 2

ĚZ1,2 “ t0umintτ1,τ2u Y

ℓ
ď

l“1

"

alβ
q´1 | β P xβl,tytPZ

plq

1,2
zt0u

*

where Z
plq
i – tt | φpl, tq P Ziu and Z

plq
1,2 – tt | φpl, tq P Z1 X Z2u. The set of roots of

gcrdpf1, f2q is

ĎZ1 X ĎZ2 “ t0umintτ1,τ2u Y

ℓ
ď

l“1

!

alβ
q´1 | β P xβl,tytPZ

plq

1 XZ
plq

2
zt0u

)

.
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It can be seen that Z
plq
1 X Z

plq
2 “ Z

plq
1,2, @l P rℓs. Hence, ĎZ1 X ĎZ2 “ ĚZ1,2.

P6: Let f “ fpZ, τq P Sn,k and let f 1 “ f |βℓ,nℓ
“0 P Rn´1rX; σs (namely, we substitute

βℓ,nℓ
“ 0 in each coefficient of f). Then f 1 P Sn´1,k and

f 1 “

#

fpZ, τq n R Z

fpZztnu, τ ` 1q n P Z
.

Proof. Denote by Z the subset of L corresponding to Z as in (4.10). It is trivial that
f 1 P Sn´1,k and f 1 “ fpZ, τq when n R Z. Suppose n P Z, then aℓβ

q´1
ℓ,nℓ

P Z. Let
g “ lclm

αPZztaℓβℓ,nℓ
u
tX ´ αu, then

f 1 “ Xτ ¨

´

lclm
αPZ

tX ´ αu

¯ˇ

ˇ

ˇ

βℓ,nℓ
“0

“ Xτ ¨

ˆˆ

X ´ paℓβ
q´1
ℓ,nℓ

q
gpaℓβq´1

ℓ,nℓ
q

˙

¨ g

˙ˇ

ˇ

ˇ

ˇ

βℓ,nℓ
“0

“ Xτ ¨ X ¨ g

“ Xτ`1 ¨ g

“ Xτ`1 ¨

¨

˝ lclm
αPZztaℓβq´1

ℓ,nℓ
u

tX ´ αu

˛

‚

“ fpZztnu, τ ` 1q P Sn´1,k ,

where the second line holds by the Newton interpolation in (2.7).

A.3 Induction Proof of Theorem 4.5

In the part we elaborate the induction proof of Theorem 4.5 for all the cases on page 63.
Case 1 For s ě 3 and n ě 2,

Case 1a @i P rss, τi ě 1 (i.e., |Zi| ď k ´ 2).

Proof. For convenience we denote k1 “ k ´ 1. For all i P rss, we can write fi “ X ¨ f 1
i , where

f 1
i “ fpZi, τi ´ 1q P Sn,k´1 “ Sn,k1 . Note that since miniPrss τi ě 1, we have deg fΩ ě 1 for any

Ω Ď rss. For Ω “ rss, (ii) implies k ´ 1 ě k ´ deg frss ě
ř

iPrsspk ´ deg fiq ě s.
(Step 1) (ii) holds for pf 1

1, . . . , f 1
sq because for any nonempty Ω Ď rss,

k1 ´ deg f 1
Ω “ k ´ deg fΩ

ě
ÿ

iPΩ
pk ´ deg fiq (A.7)

“
ÿ

iPΩ
pk1 ´ deg f 1

iq

where (A.7) holds because (ii) holds for pf1, . . . , fsq by H2. By H1, (i) then holds for
pf 1

1, . . . , f 1
sq P Sn,k1 . Note here that we used the induction hypothesis by reducing k to k1.
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(Step 2) We then show that (i) also holds for pf1, . . . , fsq. Suppose that for g1, . . . , gs P

RnrX; σs with degpgi¨fiq ď k´1, we have
řs

i“1 gi¨fi “ 0 “
řs

i“1 gi¨pX ¨f 1
iq

P1,P3
ùñ

řs
i“1 gif

1
i “ 0,

which implies that g1 “ ¨ ¨ ¨ “ gs “ 0 since (i) holds for pf 1
1, . . . , f 1

sq P Ss
n,k1 .

Case 1b D a unique i P rss such that τi “ 0.

Proof. Suppose w.l.o.g. τs “ 0 and write f 1
s “ fs P Sn,k. For i P rs ´ 1s, τi ě 1, then we can

write fi “ X ¨ f 1
i , where f 1

i “ fpZi, τi ´ 1q P Sn,k´1. Note that f 1
s “ fs P Sn,k´1 if and only if

deg fs ď k ´ 2, in which case for Ω “ rss, H2 implies

k ě k ´ deg fΩ ě
ÿ

iPΩ
pk ´ deg fiq ě s ` 1.

(Step 1) We show that (ii) holds for pf 1
1, . . . , f 1

sq when k is replaced by k1 “ k ´ 1. First
consider the case of Ω Ď rs ´ 1s. Since @i P rs ´ 1s, τi ě 1, the claim follows similarly
to Case 1a. Additionally, by the induction hypothesis for pk1 “ k ´ 1, s ´ 1, nq we get
that (i) is true for pf 1

1, . . . , f 1
s´1q. Then consider the case of Ω such that s P Ω. Since

fs “ lclm
αPtalβ

q´1
l,t

|φpl,tqPZsu
tpX ´ αqu has no factor X, we have gcrdtfs, fiu “ gcrdtf 1

s, f 1
iu, @i P

rs ´ 1s, hence fΩ “ f 1
Ω where we define f 1

Ω “ gcrdiPΩtf 1
iu. Then

k ´ 1 ´ deg f 1
Ω “ ´1 ` k ´ deg fΩ

ě ´1 `
ÿ

iPΩ
degpk ´ deg fiq (A.8)

“ k ´ 1 ´ deg fs `
ÿ

iPΩztsu

pk ´ deg fiq

“ k ´ 1 ´ deg f 1
s `

ÿ

iPΩztsu

pk ´ 1 ´ deg f 1
iq

“
ÿ

iPΩ
pk ´ 1 ´ deg f 1

iq ,

where (A.8) holds from H2. By H1, (ii) ùñ (i) is true for pf 1
1, . . . , f 1

sq with parameters
pk1 “ k ´ 1, s, nq if deg f 1

s ď k ´ 2., which implies k ě s ` 1.
(Step 2) Suppose that for some g1, . . . , gs P RnrX; σs with degpgi ¨ fiq ď k ´ 1 we have

řs
i“1 gi ¨ fi “ 0. Then 0 “

řs
i“1 gi ¨ fi “ gs ¨ fs `

řs´1
i“1 gi ¨ pX ¨ f 1

iq, which implies X  pgs ¨ fsq.
However, since X ffl fs, by P4, X  gs. Then we can write gs “ g1

s ¨ X for some g1
s P RnrX; σs

with deg g1
s “ deg gs ´ 1.

If deg fs “ k ´ 1, then deg g1
s “ ´1, implying gs “ 0. Since (i) holds for pf 1

1, . . . , f 1
s´1q P

Ss´1
n,k´1 with the parameter tuple pk ´ 1, s ´ 1, nq, g1, . . . , gs´1 are also zero. Note that here we

used the induction hypothesis by reducing k to k ´ 1 and s to s ´ 1.
If deg fs ď k ´ 2, we have

0 “

s
ÿ

i“1
gi ¨ fi

“ pg1
s ¨ Xq ¨ fs `

s´1
ÿ

i“1
gi ¨ pX ¨ f 1

iq
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“ pg1
s ¨ Xq ¨ f 1

s `

s´1
ÿ

i“1
pgi ¨ Xq ¨ f 1

i .

Then g1 “ ¨ ¨ ¨ “ gs´1 “ g1
s “ 0 since (i) holds for pf 1

1, . . . , f 1
sq P Ss

n,k´1 with the parameter
tuple pk ´ 1, s, nq. Hence, all g1 “ ¨ ¨ ¨ “ gs “ 0. Note that here we used the induction
hypothesis by reducing k to k ´ 1.

Case 1c D Ω Ă rss with 2 ď |Ω| ď s ´ 1 such that (4.21) holds with equality.

Proof. W.l.o.g., assume that (4.21) holds with equality for Ω1 “ t1, . . . , νu, 1 ă ν ă s, i.e.,

k ´ deg f0 “
ÿ

iPΩ1

pk ´ deg fiq , (A.9)

where f0 “ fΩ1 “ gcrdiPΩ1 fi. Since f0 r fi, @i P Ω1, there exists f 1
i P RnrX; σs such that

fi “ f 1
i ¨f0. Since ν ă s and s´ν `1 ă s, we split pf1, . . . , fsq P Ss

n,k into two smaller problems
pf1, . . . , fνq P Sν

n,k with the parameter tuple pk, ν ă s, nq and pf0, fν`1, . . . , fsq P Ss´ν`1
n,k with

the tuple pk, s ´ ν ` 1 ă s, nq.
(Step 1) Note that by H2, (ii) is true for pf1, . . . , fνq and for pf0, fν`1, . . . , fsq when 0 R

Ω2 Ď t0, ν `1, . . . , su. We show in the following that (ii) is also true for pf0, fν`1, . . . , fsq with
0 P Ω2:

k ´ deg fΩ2 “ k ´ deg gcrdtf0, fΩ2zt0uu

“ k ´ deg gcrdtfΩ1 , fΩ2zt0uu

“ k ´ deg gcrdiPΩ1YΩ2zt0u fi

ě
ÿ

iPΩ1YΩ2zt0u

pk ´ deg fiq (A.10)

“
ÿ

iPΩ1

pk ´ deg fiq `
ÿ

iPΩ2zt0u

pk ´ deg fiq

“ k ´ deg f0 `
ÿ

iPΩ2zt0u

pk ´ deg fiq (A.11)

“
ÿ

iPΩ2

pk ´ deg fiq

Note that Ω1 Y Ω2zt0u is a subset of Ω. Therefore, the inequality in (A.10) follows from H2.
The equality (A.11) follows from (A.9). Now we can conclude that (ii) is true for pf1, . . . , fνq

and for pf0, fν`1, . . . , fsq.
By H1, (i) is true for both smaller problems pf1, . . . , fνq P Sν

n,k and pf0, fν`1, . . . , fsq P

Ss´ν`1
n,k .
(Step 2) Then we show (i) is also true for pf1, . . . , fsq. Suppose that for some g1, . . . , gs P

RnrX; σs with deg gi ¨ fi ď k ´ 1, @i P rss, we have
s
ÿ

i“1
gi ¨ fi “ 0 . (A.12)

Since f0 r fi for all i P Ω1 “ rνs, f0 is a right factor
řν

i“1 gi ¨ fi and we can then write
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řν
i“1 gi ¨ fi “ g0 ¨ f0, for some g0 P RnrX; σs. Then

0 “

s
ÿ

i“1
gi ¨ fi

“

ν
ÿ

i“1
gi ¨ fi `

s
ÿ

i“ν`1
gi ¨ fi

“ g0 ¨ f0 `

s
ÿ

i“ν`1
gi ¨ fi (A.13)

From the conclusion that (i) is true for pf0, fν`1, . . . , fsq, (A.13) holds only if g0 “ gν`1 “

¨ ¨ ¨ “ gs “ 0. Similarly, since (i) is true for pf1, . . . , fνq, 0 “ g0 ¨ f0 “
řν

i“1 gi ¨ fi only if
g1 “ ¨ ¨ ¨ “ gν “ 0. Therefore, (A.12) holds only if g1 “ ¨ ¨ ¨ “ gs “ 0 and (i) is proven for
pf1, . . . , fsq P Ss

n,k with the parameter tuple pk, s, nq.

Case 1d @ Ω Ă rss with 2 ď |Ω| ď s ´ 1, (4.21) holds strictly and D at least two i P rss

such that τi “ 0.

Proof. Assume w.l.o.g. that τs´1 “ τs “ 0. Then for i “ s ´ 1, s, deg fi “ |Zi|. If Zs´1 “ Zs,
then for Ω “ ts ´ 1, su, (ii) implies

k ´ deg fs “ k ´ deg fs´1

“ k ´ deg gcrdtfs´1, fsu

ě k ´ deg fs´1 ` k ´ deg fs

which contradicts with deg fi ď k ´ 1 for any i P rss. Hence, Zs´1 ‰ rns or Zs ‰ rns. W.l.o.g.,
assume Zs ‰ rns and n R Zs.

Note that n “ φpℓ, nℓq. We will substitute the variable βℓ,nℓ
“ 0. For all i P rss, let

f 1
i :“ fi|βℓ,nℓ

“0. Since n R Zs, we have f 1
s “ fs P Sn´1,k. For other i P rs ´ 1s, by P6,

f 1
i P Sn´1,k and

f 1
i “

#

fpZi, τiq n R Zi

fpZiztnu, τi ` 1q n P Zi

. (A.14)

In the first case of (A.14) we denote Z 1
i “ Zi and τ 1

i “ τi, whereas in the second we denote
Z 1

i “ Ziztnu and τ 1
i “ τi ` 1. Additionally, we define f 1

Ω “ gcrdiPΩ f 1
i .

(Step 1) We will first show that pf 1
1, . . . , f 1

sq satisfies (ii). That is, we show that @∅ ‰ Ω1 Ď

rss, k ´ deg f 1
Ω1 ě

ř

iPΩ1pk ´ deg f 1
iq.

For |Ω1| “ 1, it is trivial.
For 2 ď |Ω1| ď s ´ 1,

k ´ deg f 1
Ω1 “ k ´ |

č

iPΩ1

Z 1
i| ´ min

iPΩ1
τ 1

i

ě k ´ |
č

iPΩ1

Zi| ´ min
iPΩ1

τi ´ 1 (A.15)

“ k ´ deg fΩ1 ´ 1
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ě
ÿ

iPΩ1

pk ´ deg fiq (A.16)

“
ÿ

iPΩ1

pk ´ deg f 1
iq . (A.17)

The inequality (A.15) is because |
Ş

iPΩ Z 1
i| ď |

Ş

iPΩ Zi| and miniPΩ τ 1
i ď miniPΩ τi ` 1. The

inequality (A.16) is because we assume the inequality (4.21) in (ii) holds strictly for all 2 ď

|Ω| ď s ´ 1. The equality (A.17) holds because deg f 1
i “ deg fi, @i P rss by observing (A.14).

For |Ω1| “ s, (4.21) is not necessarily strict. However, since

n R Zs ùñ n R
č

iPrss

Zi

ùñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

č

iPrss

Z 1
i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

č

iPrss

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ùñ f 1
rss “ frss,

we have

k ´ deg f 1
rss “ k ´ deg frss

ě
ÿ

iPrss

pk ´ deg fiq

“
ÿ

iPrss

pk ´ deg f 1
iq .

Hence, (ii) holds for pf 1
1, . . . , f 1

sq P Ss
n´1,k. By H1, (i) holds for pf 1

1, . . . , f 1
sq P Ss

n´1,k with
the parameter tuple pk ě s ě 3, n ´ 1q where n ě 2. Note that here we used the induction
hypothesis by reducing n to n ´ 1.

(Step 2) Suppose that for some g1, . . . , gs P RnrX; σs, not all zero, with degpgi ¨ fiq ď k ´ 1,
we have

řs
i“1 gi ¨ fi “ 0. Let g1

i “ gi|βℓ,nℓ
“0 P Rn´1rX; σs. Further assume that at least one

coefficient of some gi is not divisible by βℓ,nℓ
(otherwise, divide them by βℓ,nℓ

). Then g1
i are

not all zero. We can write
s
ÿ

i“1
g1

i ¨ f 1
i “

˜

s
ÿ

i“1
gi ¨ fi

¸
ˇ

ˇ

ˇ

ˇ

ˇ

βℓ,nℓ
“0

“ 0|βℓ,nℓ
“0 “ 0 .

However, this contradicts (i) being true for pf 1
1, . . . , f 1

sq with the parameter tuple pk, s, n ´ 1q.
Therefore, g1, . . . , gs P RnrX; σs must be all zero to have

řs
i“1 gi ¨ fi “ 0.

Case 2 For s “ 2 and n ě 2,
Case 2a @i P t1, 2u, τi ě 1 (i.e., |Zi| ď k ´ 2).
The proof for this case is the same as for Case 1a. We use the induction hypothesis by

reducing k.
Case 2b D a unique i P t1, 2u such that τi “ 0.
The proof for this case is the same as for Case 1b. We use the induction hypothesis by

reducing k. We may need to reduce s, too.
Case 2c @i P t1, 2u, τi “ 0.

Proof. In this case we have Ω “ t1, 2u and τ1 “ τ2 “ 0. Similar to Case 1d, Z1 ‰ rns or
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Z2 ‰ rns. W.l.o.g., assume Z2 ‰ rns and n R Z2. Note that n “ φpℓ, nℓq. We substitute
the variable βℓ,nℓ

“ 0. For i “ 1, 2, let f 1
i :“ fi|βℓ,nℓ

“0 and f 1
Ω – gcrdtf 1

1, f 1
2u. Since n R Z2,

f 1
2 “ f2. By P6, f 1

1 P Sn´1,k and

f 1
1 “

#

fpZ1, 0q n R Z1

fpZ1ztnu, 1q n P Z1
.

(Step 1) We first show that pf 1
1, f 1

2q P S2
n´1,k satisfies (ii). That is, we show that @∅ ‰ Ω1 Ď

Ω, k ´ deg f 1
Ω1 ě

ř

iPΩ1pk ´ deg f 1
iq.

For |Ω1| “ 1, it is trivial.
For Ω1 “ t1, 2u, since

n R Z2 ùñ n R Z1 X Z2 ùñ |Z 1
1 X Z 1

2| “ |Z1 X Z2|

ùñ deg f 1
Ω1 “ deg fΩ1 ,

we have

k ´ deg f 1
Ω1 “ k ´ deg fΩ1

ě
ÿ

iPΩ1

pk ´ deg fiq

“
ÿ

iPΩ1

pk ´ deg f 1
iq .

Hence, (ii) holds for pf 1
1, f 1

2q P S2
n´1,k. By H1, (i) holds for pf 1

1, f 1
2q P S2

n´1,k with parameter
tuple pk ě s “ 2, n ´ 1q where n ě 2. Here we used the induction hypothesis by reducing n
to n ´ 1.

(Step 2) This step can be shown in the same manner as in Case 1d.

Case 3 For s ě 2 and n “ 1,
Case 3a @i P rss, τi ě 1 (i.e., |Zi| ď k ´ 2).
The proof for this case is the same as for Case 1a. We use the induction hypothesis by

reducing k.
Case 3b D a unique i P t1, 2u such that τi “ 0.
The proof for this case is the same as for Case 1b. We use the induction hypothesis by

reducing k. We may need to reduce s, too.
Case 3c D at least two i P rss, τi “ 0.

Proof. W.l.o.g., assume that τ1 “ τ2 “ 0. Since n “ 1, |Zi| ď n “ 1, @i P rss. By the definition
of fi P S1,k in (4.20), deg fi ď n “ 1. Assume (ii) is true for this case, then for Ω “ t1, 2u, we
have

k ´ deg fΩ ě k ´ deg f1 ` k ´ deg f2 . (A.18)

If Z1 “ Z2 “ ∅ or t1u, then deg fΩ “ deg f1 “ deg f2 ď n “ 1 and (A.18) implies deg f1 ě k,
which contradicts k ě s ě 2. Otherwise, w.l.o.g., assume Z1 “ ∅ and Z2 “ t1u, then
deg fΩ “ 0 and (A.18) implies 1 “ deg f2 ě k, which contradicts k ě s ě 2. Therefore, if (ii)
is true for pk ě s ě 2, n “ 1q, this case cannot happen.
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