
Technische Universität München
TUM School of Computation, Information and Technology

Accurate and Lightweight Run-time Power Estimation and
Power Forecasting Models for Multi-core Processors

Mark Balazs Hilary Sagi

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Michael Gerndt

Prüfende der Dissertation:
1. Prof. Dr. sc.techn. Andreas Herkersdorf
2. Prof. Dr.-Ing. Jörg Henkel

Die Dissertation wurde am 09.02.2024 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
01.08.2024 angenommen.

Abstract

The compute performance of today’s multi-core processors are limited due to power and
thermal constraints. To improve performance while adhering to these constraints, many
different reactive and proactive power and thermal management algorithms have been
introduced. These management algorithms rely on accurate and fine-grained — both in
the time domain, e.g. µs to ms, and space domain, e.g. core-level — run-time estimations
of dynamic power consumption. Note, that in the context of this thesis a core refers to
the ALU, BPU etc. as well as private L1 and L2 caches. The dynamic power consump-
tion is directly related to the switching activity of the underlying circuits. In the absence
of fine-grained power sensors for direct power measurement, the power consumption of
a core can be indirectly estimated by using performance counters as surrogate run-time
activity indicators. These performance counters are then used as input to a power model
generated at design-time. However, both the numbers of available performance counters
and their scope, in regard to how much activity is directly observable through them, are
limited. These limitations in observability lead to inaccuracies in the run-time power
estimation if the underlying power model does not account for sources of modeling error.
Such sources are for example the multicollinearity of the performance counter inputs as
well as nonlinear relations between specific performance counters and dynamic power
consumption. In this thesis, multiple statistical methods are proposed to increase the
estimation accuracy of run-time power models. For one, independent component anal-
ysis is proposed to minimize input multicollinearity and the use of FFNNs as well as
non-linear input transformations are proposed to account for non-linear performance
counter / power relations. All methodologies are optimized for low-complexity, i.e. kept
lightweight, to assure that the run-time overhead of the final power models is almost
negligible compared to the processor cores for which power estimations are generated.
In addition to these power modeling methodologies, a power forecasting methodology
based on LSTM recurrent neural networks is proposed with the goal of forecasting fu-
ture dynamic power consumption. The accuracy of the proposed power modeling and
power forecasting methodologies are evaluated on the state-of-the-art Sniper multi-core
simulator using McPAT for simulating fine-grained power consumption. The evaluations
of the proposed power modeling approaches show a decrease of 3.0% - 7.5% in relative
RMSE compared to linear power modeling approaches. The LSTM-based power fore-
casting methodology shows 43%, 38% lower worst-case phase change error compared
to AR-based reference power forecasting techniques for forecast time-intervals of 1 ms
and 10 ms, respectively. In conclusion, the proposed higher accuracy power models en-
able better decision taking of reactive power and thermal management techniques and
the proposed power forecasting model with high phase change accuracy enables specific
proactive power and thermal management techniques.

iii

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Dr. Andreas Herkersdorf. His
tremendous support and academic guidance as well as his patience were instrumental
for making my research possible. I am infinitely grateful for his invaluable advice on our
scientific endeavors but also on my personal growth and his continuous encouragement.
He taught me how to overcome scientific dead-ends, how to effectively collaborate in
complex research projects and how to communicate my ideas.

I would like to thank Dr. Thomas Wild for the countless project related and scientific
discussions which channeled my work and also thank him for his expert feedback on our
publications.

I am very grateful for Dr. Anh Vu Doan and the many research ideas we developed
together, his in-depth knowledge and support for developing the mathematical models
underpinning this thesis. I also want to thank him for the strong motivation to explore
and follow through with the research ideas from their first rough formulation to their
final, well-polished publication.

I also want to thank all my colleagues at the Chair of Integrated Systems at TUM
for the countless, constructive scientific discussions, the great team spirit to accomplish
our goals and the solidarity when carrying out course examinations, especially ”DT
Korrektur” which would have been insurmountable for any one individual alone. In
this regard, I also want to highlight and thank Nael Fasfous for his contributions with
the optimized hardware implementations of the neural network models proposed in this
work.

I would like to acknowledge the intensive collaboration with the Chair of Embed-
ded Systems at KIT, and would thank personally Martin Rapp, Dr. Heba Khdr and
Prof. Dr. Jörg Henkel for their scientific contributions towards developing ideas, evalu-
ating research results and the joint drafting of publications. For me, these collaborations
were not only very fruitful but also highly instructive in regard to methodologies and data
analysis. Also, I want to thank all other colleagues from the DFG ”Invasive Computing”
SFB/Transregio with whom I had the pleasure to work together on demonstrators and
discuss and learn about a wide range of scientific problems. 1

I want to acknowledge and thank the many students I had the privilege to supervise
who contributed with their curiosity and with initial explorations as well as implemen-
tations of some of the research ideas.

Finally, I would like to thank my friends and family who supported me the entire time.

1This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) — Projektnummer 146371743 — TRR 89 ”Invasive Computing”.

v

Contents

Abstract iii

Acknowledgments v

Contents vii

List of Figures ix

List of Tables xi

Acronyms xiii

1 Introduction 1

2 Related Work 7

2.1 Background on Power, Sensors and Managment Algorithms 8

2.1.1 Circuit-level and Microarchitectural-level Power Consumption . . . 8

2.1.2 On-chip Sensor Capabilities . 10

2.1.3 Power and Thermal Management Algorithms 12

2.1.4 Applications for Run-time Power Forecasts 13

2.2 Run-time Power Estimation . 15

2.2.1 Linear Power Models . 15

2.2.2 Nonlinear Power Models . 24

2.2.3 Neural Network-based Power Models 26

2.2.4 Discussion of Methods on Minimizing Multicollinearity 28

2.2.5 Discussion of Linear vs. Nonlinear Modeling Methodologies 29

2.3 Forecasting and Prediction of workload-dependent Processor States 30

2.3.1 Forecasting Models . 32

2.3.2 Prediction Models . 34

2.3.3 Power Forecasting Models . 36

3 Experimental Setup for Power Model Evaluation 39

3.1 Overview Experimental System and Workflow 39

3.2 (Hot)Sniper and Performance Simulation 42

3.3 McPAT and Power Simulation . 43

3.4 PARSEC and SPLASH-II Benchmark Suites as Workloads 46

vii

CONTENTS

4 Novel and Lightweight Power Estimation Models 49
4.1 Independent Component Analysis-based Power Model 49

4.1.1 Independent Component Analysis 50
4.1.2 ICA-based Power Model Generation 52
4.1.3 Estimating Core-level Dynamic Power 54
4.1.4 Experimental Evaluation . 54

4.2 Feedforward Neural Network-based Power Model 61
4.2.1 FFNN Architectures and Hyperparameter Solution Space 62
4.2.2 Single-Objective Neural Architecture Hyperparameter Optimization 66
4.2.3 Multi-Objective Neural Architecture Hyperparameter Optimization 67
4.2.4 Experimental Evaluation . 72

4.3 Nonlinear Transformation-based Power Model 82
4.3.1 Power Model Generation and Lightweight Run-time Usage 83
4.3.2 Experimental Evaluation . 89
4.3.3 Discussion of Nonlinear Performance Counter/Power Relationship 102

4.4 Comparison and Discussion of the Power Estimation Methodologies . . . 106

5 Novel and Accurate Power Forecasting Model based on LSTM RNNs 109
5.1 Methodology for Generating LSTM RNN Power Model 111
5.2 Experimental Evaluation . 116

6 Conclusion and Outlook 123

Bibliography 125

viii

List of Figures

1.1 Motivational example for power modeling and power forecasting: Splash-
2 FFT smaller power phase changes (blue area) require accurate run-time
estimations to allow optimal reactive power management decisions. At
around 340ms (red area), the rapid power phase change leads to a violation
of the thermal constraint (red line). Anticipating such thermal violations
by the means of accurate power forecasts would allow to proactively avoid
the violation. 2

3.1 Experimental setup workflow with a simulated 16-core processor using
HotSniper and Multicore Power, Area, and Timing (McPAT) for gener-
ating performance counter and power consumption data 40

4.1 Example of scattered data analyzed via Principal Component Analysis
(PCA) on the left and Independent Component Analysis (ICA) on the
right, showing the resulting two principal components x̂1, x̂2 and the
resulting two independent components s1, s2 51

4.2 Methodology to generate a ICA-based power model for run-time power
estimations [1] . 53

4.3 Benchmark usage for obtaining performance counter and power data for
ICA-based and reference power model generation [1] 56

4.4 Root-Mean-Square Error (RMSE) of ICA-based power models with in-
creasing number of training workloads compared to a reference-based
power model using synthetic workloads, Figure based on [1] 58

4.5 Overview of the ANN architectures investigated; the blue shaded rectan-
gles indicate the ability to parameterize the number of hidden neurons
per layer, i.e. from at least one hidden neuron per layer up to the given
maximum number [2] . 64

4.6 Flowchart of model hyperparametrization using a first 10-fold cross valida-
tion, final Feedforward Neural Network (FFNN) generation using a second
10-fold cross validation and the final power estimating FFNN estimation
accuracy assessment on holdout data [2] 66

4.7 Flowchart of the multi-objective FFNN optimization of the hyperparam-
eters using Non-dominated Sorting Genetic Algorithm-II (NSGA-II), 10-
fold cross validations and a final FFNN power estimation accuracy assess-
ment on the holdout data [3] . 69

4.8 Average population performance over 50 generations as well as lowest
overhead and RMSE values of the Pareto optimal solutions [3] 74

ix

LIST OF FIGURES

4.9 Power modeling and estimation flow (contributions of this work denoted
with solid rectangles) [4] . 84

4.10 Run-time power estimation accounting for nonlinear performance counter
/ dynamic power relationship [4] . 86

4.11 Multivariate polynomial modeling approach with variable degrees per in-
put performance counters [4] . 88

4.12 Comparison of Akaike Information Criterion (AIC) values for linear model
and nonlinear transformation model with increasing number of perfor-
mance counter inputs [4] . 92

4.13 Relative error values for power models generated with unknown core
power for each Princeton Application Repository for Shared-Memory Com-
puters (PARSEC) (P) and Stanford Parallel Applications for Shared-
Memory (SPLASH-2) (S) benchmarks with benchmark names abbrevi-
ated with first three letters except SPLASH-2 radiosity (S-rao) and radix
(S-rax) [4] . 98

4.14 Overview of the core microarchitecture composed of front end, execution
engine as well as memory subsystem including the private L1 and L2
caches as well as the core’s connection with the processor uncore [4] . . . 103

5.1 Overview of the proposed methodology to create and optimize the Long
Short-Term Memory (LSTM) Recurrent Neural Network (RNN) at design-
time and employ it at run-time [5] . 112

5.2 Selection of the final LSTM RNN neural hyperparameter architecture in
a two-stage Design Space Exploration (DSE). First the depth of the RNN
(number of layers) lopt is selected under the simplifications of having the
same number of neurons per layer (in blue); then the number of neurons
for each layer ni is optimized for the selected lopt (in green) [5]. 114

5.3 Power forecasts over time-frames of τ = 1 ms by reference Autoregressive
(AR) model [6] and the proposed LSTM RNN for the unseen PARSEC
facesim benchmark [5]. 119

5.4 Cross-correlation of forecast and actual power trace demonstrating that
the LSTM RNN model actually forecasts future power [5]. An optimal
oracle shows a peak at time delay 0. The power forecasting LSTM RNN
closely matches this, demonstrating that this model actually forecasts
future power consumption. In contrast, the AR model shows a peak at
time delay −1, indicating that the AR model mostly follows the measured
power with a delay of one sample. 120

x

List of Tables

2.1 Overview and classification of related works on run-time power estimation 16
2.2 Overview and classification of related works on forecasting and prediction

of power, thermal and performance characteristics 31

3.1 Cache architecture of the 16-core processor 39
3.2 Performance counters which are periodically traced from the simulated

16-core processor . 44
3.3 Benchmarks used as generic workloads in this thesis 46
3.4 Benchmark distribution on the combined training/validation data set and

on the holdout data set for evaluation of the power Neural Network (NN)-
based estimation and forecasting methodologies in Section 4.2.4 and Sec-
tion 5.2, respectively . 47

4.1 Belsley collinearity evaluation results on performance counter data ob-
tained through synthetic and generic workloads [1] 55

4.2 RMSE results for power models using ICA-transformation and for a reference-
based power model using synthetic workloads [1] 57

4.3 Example of the encoding of individual solutions within a population in-
cluding the objective performance metrics RMSE and run-time overhead
and the NSGA-II population-relative performance metrics [3] 68

4.4 FFNN architectures found by the single-objective optimization method-
ology with average RMSE on the randomized validation data [2] 73

4.5 FFNN architectures found by the multi-objective optimization methodol-
ogy with average RMSE on the randomized validation data [3] 75

4.6 Necessary computations and memory for a single power estimation, i.e.
FFNN power model inference [2, 3] . 76

4.7 FPGA resource usage, latency and maximum inference rates for an accel-
erator implementation [3] . 78

4.8 Estimation accuracy of FFNNs, linear model, and polynomial model on
the holdout data set [2, 3] . 79

4.9 Set of nonlinear transformations investigated in this section [4] 85
4.10 Transformations maximizing linear correlation of specific performance

counters with dynamic power [4] . 90
4.11 Correlation coefficients for each performance counter after applying the

nonlinear transformation [4] . 91
4.12 Selection order of the performance counters by the Least-Angle Regression

(LARS) algorithm [4] . 92

xi

LIST OF TABLES

4.13 Power Estimation error as absolute RMSE and relative RMSE for the four
power modeling approaches [4] . 95

4.14 Relative power estimation error for power models with reduced perfor-
mance counter inputs [4] . 97

4.15 Correlation coefficients after applying the nonlinear transformation at dif-
ferent frequencies and delta to the correlation coefficients of the regular
performance counters [4] . 99

4.16 Relative RMSE at different operating frequencies and unknown core power
for power estimation model generation [4] 100

4.17 Computational and memory overhead for a single power estimation [4] . . 101
4.18 caption . 103
4.19 Average RMSE estimation errors of different run-time dynamic power

models and their run-time computational overhead per model inference,
e.g. for 10 kHz estimation rates every 0.1 ms, as well as the total memory
to be stored on the processor for each model 107

5.1 Forecasting Mean Absolute Percentage Error (MAPE) values and in-
stantaneous worst case-error values for the LSTM RNN approach and
reference-based approaches [5] . 118

5.2 Forecasting error for the LSTM RNNs trained at 3 GHz operating fre-
quency and and used to forecast power at operating frequencies of 2 GHz
and 1 GHz [5] . 120

xii

Acronyms

AIC Akaike Information Criterion.
APM Application Power Management.
AR Autoregressive.
ARMA Autoregressive–Moving-Average.

BBV Basic Block Vector.
BPU Branch Predictor Unit.

CMOS Complementary Metal-Sxide-Semiconductor.
CPI Cycles Per Instruction.
CPU Central Processing Unit.

DRAM Dynamic Random Access Memory.
DSE Design Space Exploration.
DVFS Dynamic Voltage and Frequency Scaling.

EDP Energy Delay Product.

FFNN Feedforward Neural Network.
FinFET Fin Field-Effect Transistor.
FIVR Fully Integrated Voltage Regulator.

GMM Gaussian Mixture Model.
GPU Graphics Processing Unit.

ICA Independent Component Analysis.
IPC Instructions Per Cycle.
ISA Instruction Set Architecture.

LARS Least-Angle Regression.
LASSO Least Absolute Shrinkage and Selection Operator.
LLC Last Level Cache.
LSTM Long Short-Term Memory.

MAC Multiply-Accumulate.
MAPE Mean Absolute Percentage Error.

xiii

Acronyms

McPAT Multicore Power, Area, and Timing.
MMU Memory Management Unit.
MOB Memory Order Buffer.
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor.
MPC Model Predictive Control.
MSE Mean-Square Error.

NAG Nesterov Accelerated Gradient.
NIC Network Interface Card.
NN Neural Network.
NoC Network-on-Chip.
NSGA-II Non-dominated Sorting Genetic Algorithm-II.

OLS Ordinary Least Squares.
OLS Register-Transfer Level.

PARSEC Princeton Application Repository for Shared-
Memory Computers.

PCA Principal Component Analysis.
PCI Peripheral Component Interconnect.
PCIe Peripheral Component Interconnect Express.
PSU Power Supply Unit.

RAPL Running Average Power Limit.
RF Random Forest.
RL Reinforcement Learning.
RLS Recursive Least Squares.
RMSE Root-Mean-Square Error.
RNN Recurrent Neural Network.

SBX Simulated Binary Crossover.
SGD Stochastic Gradient Descent.
SPEC Standard Performance Evaluation Corporation.
SPLASH-2 Stanford Parallel Applications for Shared-Memory.
SVM Support Vector Machine.

TDP Thermal Design Power.
TLB Translation Lookaside Buffer.

Vf Voltage/frequency.
VIF Variance Inflation Factor.

WC Worst Case.

xiv

1 Introduction

More than half a century ago, Moore’s law [7] first described the trend of exponentially
increasing Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET) integration
density per integrated circuit. In tandem with increasing integration density, the transis-
tor costs of integrated circuits decreased and — by extension — the compute capabilities
of processors also increased exponentially. Moore’s observation was followed nine years
later by the observation on so-called Dennard scaling [8] for MOSFETs which showed
that down-scaling of transistor sizes keeps the power density of transistors constant
through via continuing decreases in the supply voltage. With constant power densities,
the higher transistor densities on newer semiconductor technology nodes allowed for pro-
cessor designs with increasing complexity while keeping chip area and power consumption
manageable.

For decades, processor designers aiming for ever higher compute capabilities used the
availability of these ever higher transistor counts to increase both the Instructions Per
Cycle (IPC) as well as the processor’s operating frequencies leading to higher complexity
of the processor architectures, e.g. highly pipelined, wide-issue and out-of-order designs.
Around the year 2005, Dennard scaling and thus scaling the operating frequencies was
not sustainable anymore for newer technology nodes. Abruptly, the challenge of keeping
processor power consumption under control became a first-class constraint for processor
designers famously forcing Intel to halt and subsequently abandon two of its — then
newest — processor designs under development [9]. Thus, the computing world entered
the multi-core and many-core era where more than one processor core was integrated
within a single chip or a single package, enabling higher computing performance without
increasing the operating frequencies and the associated dynamic power consumption.

Unfortunately, simply following the multi-core design path with ever increasing num-
ber of compute cores alone does not alleviate all of the performance limitations caused
by power and thermal limitations as was predicted by Esmaeilzadeh et al. in their ground
breaking work on dark silicon [10]. Their work showcased the risk that future proces-
sors would have to switch off an ever increasing percentage of their area, i.e. keeping
the silicon dark due to power and thermal limitations. The risk of dark silicon moti-
vated a plethora of new research, both into new architectural designs like heterogeneous
computing as well as into run-time power and thermal management algorithms. Both,
architectural optimizations as well as run-time management algorithms aim to effec-
tively and efficiently manage the limited power budgets of multi-/many-core processors
to keep increasing compute performance with power consumption and the resulting chip
temperature staying fundamental constraints [11]. While novel design-time optimization
techniques reduce power consumption and thus thermal dissipation, e.g. in [12, 13], they
still have to be complemented with effective and efficient run-time power and thermal

1

1 Introduction

0

5

10

P
ow

er
(W

)

320 330 340 350 360

60

70

80

90
Temperature Constraint

Time (ms)

T
em

p
er

a
tu

re
(°

C
)

Figure 1.1: Motivational example for power modeling and power forecasting: Splash-2 FFT
smaller power phase changes (blue area) require accurate run-time estimations to
allow optimal reactive power management decisions. At around 340ms (red area),
the rapid power phase change leads to a violation of the thermal constraint (red
line). Anticipating such thermal violations by the means of accurate power forecasts
would allow to proactively avoid the violation.

management algorithms [14, 15, 16]. Many such run-time power and thermal manage-
ment algorithms rely on accurate run-time power information which is fine-grained in
the spatial domain, e.g. on core-level, and the time domain, e.g. with high time resolu-
tions of around 0.1 ms [17, 18, 19, 20, 21, 22]. Core-level power information is especially
important for resource management as the power densities in a multi-core processor
are highest in the compute cores [23]. The main focus of this thesis is on developing
workload-dependent models to obtain core-level run-time power information at fine-
grained time resolutions with negligible run-time overhead. The power consumption
of the so-called uncore, i.e. chip-level resources not associated with specific cores like
shared caches, on-chip communication and I/O interfaces, are not within the scope of
this thesis as they are secondary for the run-time resource management.

A short example, showcasing the motivation in obtaining accurate run-time power in-
formation in regard to both: estimates of current power consumption as well as forecast-
ing of future power consumption, is given in Figure 1.1. The execution of the SPLASH-2
fft benchmark is shown over an interval of 50 ms with the benchmark’s power consump-
tion to be seen at the top and the corresponding thermal response at the bottom.

For reactive power management — that is a management that reacts to changes in
the workload-dependent power consumption — both the power changes in the blue area
(smaller transients) as well as the red area (large transient) need to be accurately known
by the management algorithm. Without accurate power consumption estimations, sub-
optimal power management decisions will be taken by the integrated power management
algorithm.

2

However, those smaller power transients shown in the green area are not critical enough
to necessarily require proactive power and thermal management. In contrast, the rapid
increase and thus rapid phase change in power consumption indicated in the red area de-
picts the necessity for proactive power and thermal management algorithms as a purely
reactive algorithm would not adapt fast enough (≤ 1 ms) to avoid hitting the thermal
constraint. If the change in power consumption / the thermal gradient were forecast,
hitting the thermal constraint would become avoidable and thus the consequent perfor-
mance degradation could be alleviated.

A multitude of reasons, e.g. shared power grids and challenges in calibration [22]
and potential area overheads [24], have prohibited the use of integrated, fine-grained
power sensors in multi-/many-core processors. Therefore, model-based run-time power
estimation is widely used in today’s processor systems, e.g. for Intel [25], AMD [26]
and IBM [22] processors. Such run-time power estimation models are generated during
design-time and use activity indicators of the currently executed workloads as input
during run-time to estimate the workload-dependent contributions to the dynamic power
consumption while only incurring small run-time overheads.

However, there are multiple causes for model inaccuracies in run-time power estima-
tions. For example, the activity indicators used as power model inputs can show high
levels of multicollinearity [27, 28] and the relation between the observed workload activity
and the actual run-time power consumption can be nonlinear [29, 30]. How to automat-
ically account for multicollinearity during model generation and how to accurately cap-
ture the nonlinear relation between a workload’s activity or current performance and the
resulting power consumption with lightweight modeling techniques, i.e. with sufficiently
low run-time overhead, are still open research questions. The final goal in optimizing the
modeling accuracy lies in improving the performance of run-time processor management
algorithms and thus the available compute performance for end-users.

Furthermore, estimating the current dynamic power consumption is only sufficient
for reactive power and thermal management algorithms. Proactive power and thermal
management algorithms which rely on forecasts of future power consumption values can
offer higher run-time performance [16]. To achieve higher performance, a multi-core
processor’s power and thermal management algorithms are optimizing the processor ex-
ecution by directly affecting different parts of the system’s state, e.g. by changing the
workload-to-core mapping, the core’s voltage-frequency pair or its sleep states, and thus
also indirectly affecting the processor’s instantaneous power consumption, overall energy
efficiency and temperature budget. Learning properties of the system, e.g. the forecast
power behavior of workloads, that are independent of the management algorithm, allow
for reusing the same forecast model. As will be shown, most forecasting models are inte-
grated within specific management algorithms targeting individual resource optimization
objectives. A reusable power forecasting model has the advantage of being employable as
an input for many (changing) resource management policies and algorithms, irrespective
of their objectives and constraints. However, the research question on how to accurately
forecast run-time power phase changes with independent forecast model is still open to
further research.

3

1 Introduction

The aforementioned open research questions in regard to multicollinearity of activity
inputs, nonlinear relations between workload-dependent activity and dynamic power con-
sumption estimation as well as the challenge in forecasting future power phase changes
motivate the research undertaken in this thesis.

Contributions of this Thesis The main contributions of this thesis, which have been
previously published at three international conferences [1, 2, 5] and as two journal arti-
cles [3, 4], are as follows:

� Proposing and evaluating an Independent Component Analysis (ICA)-based method-
ology to automatically reduce multicollinearity of power estimation model inputs.

� Investigating Feedforward Neural Network (FFNN)-based methodologies to gen-
erate nonlinear power models for run-time estimation and proposing a single-
objective as well as a multi-objective optimization approach to optimize the FFNN
neural architectures towards high estimation accuracy and low run-time overhead.

� Investigating a nonlinear transformation-based methodology for generating easily
interpretable nonlinear power estimation models allowing for investigation of the
underlying nonlinear activity/power relations.

� Demonstrating that the FFNN-based and the nonlinear input-transformation-based
methodologies offer a decrease in relative run-time estimation error in the range
of 3.0% - 7.5% compared to linear power and common polynomial modeling tech-
niques while still being sufficiently lightweight to have minor run-time overheads.

� Proposing a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN)-
based power forecasting methodology which can more accurately forecast future
power phase changes compared to other state-of-the-art approaches.

The main research for these contributions was done in the context and in close collab-
oration with researchers of the DFG TCRC/SFB 89 Invasive Computing [31, 32]. Most
notably, on the topic of power modeling and power and thermal-aware resource man-
agement algorithms, there was a close and productive collaboration with the Chair for
Embedded Systems (CES) from KIT with the CES group focusing on novel resource man-
agement algorithms. Within this collaboration, three papers were developed [4, 5, 33]
with the paper on resource management via power- and cache-aware task mapping not
being in the scope of this thesis.

4

Thesis Outline This thesis is structured as follows: First, a short overview on the ne-
cessity for run-time power estimation and forecasting as well as an in-depth review of
related works is given in Chapter 2 where also the short-comings of the related works in
regard to fine-grained power estimation and power forecasting models are described. Af-
terwards, the experimental framework based on state-of-the-art simulators, their configu-
rations and the limitations in using a simulator-based approach are shown and discussed
in Chapter 3. In Chapter 4, the main contributions of this thesis in regard to power
models for run-time estimation are presented including their experimental evaluation as
well as a comparison of the proposed power estimation methodologies. Afterwards, in
Chapter 5 the methodology for generating run-time power forecasting models is shown
and the model’s performance in regard to its forecasting accuracy is experimentally eval-
uated. The thesis is concluded in Chapter 6 which also includes an outlook on future
works.

5

2 Related Work

This thesis is concerned with run-time power estimation and power forecasting for multi-
core processors, where the obtained run-time power information can be used to optimize
the run-time operation. Therefore, this chapter introduces related work on processor
power consumption, the modeling of such power consumption as well as the forecasting
of future power consumption states. First, the mathematical models for circuit-level and
microarchitectural-level power consumption are shown, the capabilities and limitations
of on-chip sensors are introduced, a short overview of state-of-the-art power and ther-
mal management algorithms is given and proactive algorithms using power forecasts are
discussed in Section 2.1. Afterwards, a comprehensive literature overview for run-time
power estimation modeling techniques is given in Section 2.2 with a focus on the under-
lying model types and their resolution in the spatial-domain and time-domain. Finally,
in Section 2.3 the closely related works on power forecasting and the more loosely related
works on power performance prediction are introduced and discussed in detail. In the
following, a short definition relating to the core concepts of this thesis is given.

Definitions of Power Prediction/Estimation/Forecast There is currently no well-
established consensus in the scientific community on the exact meaning of prediction,
estimation and forecast in the context of the performance, power and thermal states of
multi-/many-core processors. Thus, the words prediction, estimation and forecast have
been used as interchangeable concepts until now. This could lead to confusion about the
underlying goals, methodologies and results of the related works and how they relate
to this thesis’ contributions. Therefore, this thesis proposes and applies the following
conceptual definitions for prediction, estimation and forecast, as first presented in [5]:

� Estimation will be used when, based on a mathematical model, the value of a
dependent variable —the output— is derived from other independent variable(s) —
the input(s) — for the same point of time or the same time-interval. For example,
the core-level power consumption at time t is estimated based on the performance
counter values at the same time t. There is no change in the time-domain between
the inputs and the outputs of the estimation model and the output at time t can
usually not be directly observed or measured.

� Forecasting will be used when, based on a mathematical model, the future value of
a dependent variable is derived from other independent variable(s) or the previous
values of the dependent variable itself. For example, the power consumption at time
t+ τ is forecast based on the performance counter values and power consumption
values at time t. There is a change in the time-domain between the inputs and

7

2 Related Work

the outputs of the forecasting model, where the output is a forecast into the future
and is for that reason not yet observable.

� Prediction will be used when, based on a mathematical model, the value of a
dependent variable is derived under the assumption of some future changes in
the system state, e.g. task scheduling, task mapping. For example, the potential
power consumption and performance of a task is predicted for the scenario that
the task is remapped from a little-core architecture onto a big-core architecture.
The prediction is always in regard to the effect of intended changes in the system
state, e.g. through resource management decisions. Although the prediction is
time-domain wise in the future, it would solely happen if actions are taken to
change the system state.

Note, that these definitions will be used consistently throughout this thesis when dis-
cussing the related work even if the referenced works themselves use different definitions
or use these words interchangeably. As stated in the introduction, the contributions of
this thesis are in regard to the estimation and forecast of power consumption values,
thus, the focus in this chapter will be on discussing comprehensively the related work
on power estimation and power forecasting. In addition, related work on the estimation
and forecasting of performance and temperature values will also be discussed in detail
and their similarities and differences will be compared to pure power estimation and
power forecasting to allow for a comprehensive discussion of techniques. The related
works which aim to predict the effect of systems changes will also be discussed, however
in less detail, when their methodologies are similar to methodologies employed in this
thesis and where it is important to clarify the differences between their aims and this
thesis’ contributions.

2.1 Background on Power, Sensors and Managment Algorithms

First, there is a need to understand how and why power is consumed, i.e. converted
into heat, in digital circuits. The leading causes for power consumption will be shown
in the next Section 2.1.1 with a focus on dynamic power consumption. Afterwards, the
limitations on integrating power sensors will be discussed in Section 2.1.2 as easy-to-be-
integrated power sensors would alleviate the necessity for model-based run-time power
estimation. Finally, Section 2.1.3 and Section 2.1.4 give an overview on state-of-the-art
power and thermal management algorithms and applications for power forecasting.

2.1.1 Circuit-level and Microarchitectural-level Power Consumption

In the following, a short introduction to power consumption of digital circuits based on
Complementary Metal-Sxide-Semiconductor (CMOS) technology [34], their relation to
today’s multi-/many-core processors and the challenges in modeling them is given.

The total power consumption Ptotal of CMOS circuits is given as:

Ptotal = Pdyn + Psc + Pleakage (2.1)

8

2.1 Background on Power, Sensors and Managment Algorithms

where Pdyn is the dynamic power consumption of the circuit, Psc is the short circuit
power and Pleakage is the leakage power.

This total power consumption is commonly divided into the three components:

Ptotal = α0/1 · CL · fclk · V x
dd + Isc · Vdd + Ileakage(T) · Vdd, (2.2)

where α0/1 is the probabilistic activity factor of the circuit, i.e. the average percentage
of switches/toggles of the circuit per clock cycle, CL is the aggregate load capacitance,
fclk is the operating frequency of the circuit, V x

dd is the supply voltage with x being
a technology dependent exponent (often approximated as two), Isc is the short circuit
current when both nMOS and pMOS are conductive during a transition and Ileakage
is the temperature-dependent leakage current. Throughout this thesis, the operating
frequency will be referred to simply as f and usually combined with the supply voltage
Vdd and thus referred to as Voltage/frequency (Vf)-level in general.

While Pleakage does not directly depend on the circuits activity, Psc is directly influ-
enced by how often the circuit switches, however, has also become less critical due to
advancements in voltage scaling and new technologies, e.g. Fin Field-Effect Transistor s
(FinFETs). Note that the leakage power Pleakage is also often referred to as static power
consumption Pstatic. The focus of this thesis is on dynamic power consumption and how
to estimate it during run-time with limited information.

In the following, the discussion is generalized towards very large and complex designs
like a multi-/many-core processor. When looking at the equation for dynamic power
consumption in the following:

Pdyn = α0/1 · CL · fclk · V x
dd, (2.3)

the activity factor 0 ≤ α0/1 ≤ 1 plays an integral part in the consumed power although
both the lower and upper limit are theoretical limits of α0/1 which will not be encoun-
tered in the usual operation of a processor. Note, fclk and Vdd can be accurately known
(measured) during run-time operation and x can be experimentally determined after
initial production. However, the activity factor α0/1 is probabilistic in nature and aver-
aged over the activities of millions of basic gates (NOT, NOR, NAND etc.) for a general
purpose processors which varies widely over the range of different executed workloads.
Observing periodically during run-time how often each gate is switched and their known
— simulated or otherwise approximated — load capacitance CL is charged, is not fea-
sible. One might think that measuring Ptotal on an appropriate level and subtracting
approximations of Psc and Pleakage could provide run-time information on the consumed
dynamic power Pdyn, however, on-chip sensors for measuring current are difficult to
integrate on-chip and this will be discussed in more detail in Section 2.1.2.

Overall, this leaves the activity factor α0/1 and the associated load capacitance CL
as critical unknown factors in determining dynamic power consumption of multi-/many-
core processors and their microarchitectural components. On a basic level, the dynamic
power modeling challenge is to approximate accurately and periodically the run-time
average switching activity of millions of circuits through observable activity indicators,
e.g. performance counters. A common approach — discussed in depth in Section 2.2 of

9

2 Related Work

this Chapter — taken to model dynamic power consumption Pdyn,t at time t is denoted
by the following equation [35, 36, 37]:

Pdyn,t = At · β · fclk,t · V x
dd,t. (2.4)

In this equation, the average switching activity factor α0/1 is upgraded towards a more
complex, observable activity vector At and the load capacitance Cl is modeled through
regression coefficients β determined during experimental evaluation of the processor,
or its components, for which a power estimation model is needed. These regression
coefficients are also often referred to as power weights. By necessity, the length of
the vector At, i.e. the overall number of activity indicators, is very limited and many
magnitudes lower than the number of integrated gates. The difficulty in generating
accurate models for run-time power estimations lies in modeling the factor of At · β by
directly and indirectly capturing the activity of a large number of gates, i.e. large die
area, through a very limited set of activity indicators and accurately attribute power
consumption — the dynamic reloading of the total capacitance of the underlying gates
— to each activity indicator.

Note, that in Equation 2.4 the relation between dynamic power consumption Pdyn
and:

� operating frequency fclk is linear,

� supply voltage V x
dd is nonlinear,

� workload-dependent activity A and associated power weights β is linear.

However, this workload-dependent dynamic power contribution has been shown to not
necessarily be linear and more advanced nonlinear modeling techniques can be needed
to accurately capture these relations [30]. How other related works are modeling this
workload-dependent power contribution, i.e. as linear or nonlinear, will also be discussed
in Section 2.2 and this thesis investigates multiple nonlinear modeling methodologies in
Section 4.2 and Section 4.3. In the following, this thesis will refer to activity indicators
as performance counters as that is the most common type of activity indicator used in
related power modeling works on multi-/many-core processor run-time power estimation.

2.1.2 On-chip Sensor Capabilities

As was shown in the previous section, the dynamic power consumption Pdyn,t of the
underlying, power consuming transistors of a processor — or its microarchitectural com-
ponents for which dynamic power information is needed — can be modeled via Equa-
tion 2.4. However, another seemingly obvious approach is to measure the supply voltage
Vdd,t as well as the current draw It at time t to calculate total power consumption
as Ptotal = Vdd,t · It. And when solely the dynamic power component is needed, one
could subtract a model-based leakage/static power consumption from the measured to-
tal power consumption of the processor / microarchitectural components. However, this

10

2.1 Background on Power, Sensors and Managment Algorithms

is unfortunately not straight-forward as measuring current draw on-chip with a reason-
able overhead is an ongoing research topic and therefore, the capabilities and limitations
of on-chip sensors are briefly discussed in the following.

Information on both the operating frequency, set through clock generators, and the
supply voltage, set by voltage regulators, are transparently and accurately known dur-
ing run-time operation of a multi-/many-core processor for each core. For example,
beginning with the Haswell architecture, Intel processors have Fully Integrated Voltage
Regulators (FIVRs) on core-level and can thus configure the supply voltage of each core
[25]. Therefore, the supply voltage is deterministic and can be measured for run-time
power estimation on suitable time-frames and on core-level as well as the package-level
in case of single voltage-island processors.

The difficulties for determining power consumption on a level more fine-grained than
the package level lies in measuring and differentiating the current flow within a package
for different microarchitectural components or different cores of a multi-/many-core pro-
cessor. IBM has been quite transparent in the capabilities of their integrated sensors on
IBM Power 7 architectures in [38]. Currents are measured on package level and combined
with package-level voltage measurements to compute package-level power consumption.
For core-level power information it is stated that ”It is difficult to isolate the power con-
sumption of each processing element attached to a common power plane or to measure
power consumption at the core level using only chip-level current measurements.” [38]
and therefore an activity-based run-time power estimation model was developed and is
used in the Power 7 architecture [38]. An additional challenge, which was mentioned
in [22], is that measuring real power consumption would require the processor to be
periodically stalled to calibrate the analog sensors. Also, for components which share
the same power grid or voltage-island, measuring the individual component’s or core’s
current draw is impossible [22, 39]. In the IBM Power 7 architecture, the digital ther-
mal sensors were also based on models with operating voltage as input and an off-chip
thermal diode for calibration.

There have been some works, e.g. [40, 24], proposing circuits for on-chip power (cur-
rent) sensors with comparatively high time resolution. Voltage drop across a sleep tran-
sistor, which connects the permanent power supply to circuit power supply, is exploited
to measure the current through the sleep transistor by adding an additional capacitance
which is charged proportional to the voltage drop. This is done with fast measurement
intervals of 0.5µs. However, this approach requires specific on-chip resistors and thus the
area overhead at 45 nm is still quite significant and to the best of the author’s knowledge
none of today’s commercially available multi-/many-core architectures have integrated
such fine-grained, on-chip current sensors. Thus, accurate and fine-grained power esti-
mation models are still required for run-time power and thermal management purposes
and other applications of run-time power information as will be discussed in the next
section.

11

2 Related Work

2.1.3 Power and Thermal Management Algorithms

Power consumption and the resulting chip temperature are not only fundamental design
constraints for modern multi-/many-core processors but also require ongoing run-time
monitoring and optimization to achieve high compute performance. In the following, a
brief overview of some power and thermal management algorithms and the their inputs
used for observing the processor state are given. A plethora of algorithms for run-
time power and thermal management which observe and optimize the processor system
state have been published and comprehensive, up-to-date survey papers can be found
in [16, 41]. One of the main scientific challenges for power and thermal management
algorithms is the dynamic behavior of workloads which leads to rapid variations of
the processor’s — and its microarchitectural component’s — power consumption and
thermal response. These rapid variations in power consumption and the temperature
response require continuous optimization of the multi-/-many-core processor system to
the changing conditions. Without continuous optimization, processors will operate in
disadvantageous operating states leading to [16, 41]:

� overheating and emergency thermal throttling with significant performance im-
pacts;

� suboptimal usage of thermal headroom in multi-core architectures leading to avoid-
able performance degradation;

� increased power consumption leading to decreased battery performance for mobile
systems;

� long-term reliability degradation due to unnecessary thermal stress on transistors
and wires.

Many processors integrate so called frequency boosting algorithms which increase the
operating frequency of selected cores and their power consumption above the thermally
safe level of power consumption for short durations of time, i.e. the algorithms increase
the Vf-level above the long-term stable and Thermal Design Power (TDP) of the chip.
This is only possible when the power consumption and temperature response is contin-
uously observed and the boosting algorithm reduces the Vf-level to a long-term stable
operating point before entering the emergency thermal throttling regime. Such fre-
quency boosting algorithms often require core-level power information to decide when to
start/stop the frequency boosting and to chose which boosted frequency level is optimal
in regard to performance, e.g. [17, 18, 19]. An novel power-aware boosting algorithm
was proposed in [42] for FinFET-based multi-core systems. The algorithm uses core-
level power information with estimation rates of 1 kHz to deliberately operate the cores in
higher temperature regions as the delay decreases for FinFETs in super-threshold voltage
regions and therefore the high temperatures allow for higher throughput. However, tar-
geting higher operating temperatures decreases the margin towards emergency thermal
throttling which would substantially decrease performance. Hence, such a methodology
requires very accurate, fine-grained run-time power information to operate the processor

12

2.1 Background on Power, Sensors and Managment Algorithms

on its workload-dependent ”sweet-spots”. If such power information were not accurately
and consistently available, the algorithm would more likely miss these ”sweet-spots” and
increase the risk for emergency thermal throttling.

Another power and thermal management algorithm aims to completely replace TDP
with so called Thermal Safe Power (TSP) which computes maximum core-level power
consumption values based on the current workload-dependent power consumption values
throughout the multi-/many-core processor [20] and sets the Vf-levels accordingly. This
allows for significantly higher compute performance while still guaranteeing that no
individual core exceeds its safe temperature constraint which would damage the core.
However, this approach of course relies on accurate, core-level power information during
run-time to be both effective and safe to use. One would expect similar performance
degradation scenarios as in [42] if the power information were inaccurate. Also in [21], a
novel Dynamic Voltage and Frequency Scaling (DVFS) and task migration algorithm was
proposed which requires core-level power information at time intervals of 5 ms, although,
other DVFS algorithms have been shown to make DVFS decisions on time scales as low
as 32µs [22]. In conclusion, the combination of:

1. power consumption and heat dissipation being fundamental constraints for com-
putational performance of modern multi-/many-core processor designs and

2. the increasingly complex run-time management algorithms being proposed to be
able to fully utilize any potential headroom in regard to power and temperature,

leads to accurate and fine-grained run-time power estimation information becoming even
more important.

2.1.4 Applications for Run-time Power Forecasts

Aside of run-time power estimations, another important topic for efficient and effective
power and thermal management algorithms is in regard to power forecasts, i.e. models
which forecast how future power consumption values will change based on the current
workload characteristics. In this section, the motivation and applications for such power
forecasts are described.

Referring back to the motivational Figure 1.1 from the beginning, where the rapidly-
changing power consumption of the SPLASH-2 [43] fft benchmark is shown. This il-
lustrates the importance of both, proactive management and generating power fore-
casts, which is discussed in more detail in the following. One can observe that around
t=330 ms, the instantaneous power consumption reaches up to 10.4 W, however, because
these peaks are very short and are interleaved with much longer phases of lower power
consumption, the resulting on-chip temperature stays below the temperature constraint,
which is usually 80°C. If no temperature sensor were available and without a power
forecast, the thermal management — based on current power estimations — would need
to throttle the processor to avoid a potential emergency and thus unnecessarily decrease
the core’s compute performance. With available power forecasts in combination with
a design-time temperature model or with available fine-grained temperature sensors—

13

2 Related Work

and their associated area cost, throttling can be avoided. In contrast, at t=339.6 ms,
power suddenly increases sharply and stays high for approximately 3 ms. This results
in a thermal violation at t=340.4 ms, i.e. only 0.8 ms later, which is too fast for a reac-
tive thermal management algorithm to successfully avoid the thermal violation, e.g. by
remapping the task onto a colder core or by proactively decreasing the Vf-level to an
appropriate Vf-level allowing for continuous throughput. Such a thermal violation can
only be avoided if a power phase accurate forecast is available which would avoid a dras-
tic processor-safety related management decisions, i.e. dropping most processor cycles
to avoid overheating and damaging the chip. Only proactive management techniques,
which anticipate future system behavior, lead to optimal behavior in such a scenario,
whereas reactive techniques, which only react after the system behavior has changed,
always lag one step behind [16].

This lagging effect leads to two different detrimental behaviors of the overall multi-core
processor system:

� Power and thermal characteristics changing at time t while the power and thermal
management algorithms by necessity had have to take their decision on manage-
ment actions for time t based on information from time t−τ . These taken actions do
not match the power and thermal characteristics until the management algorithm
reacts again. Therefore, the employed actions when power and thermal charac-
teristics are rapidly changing are not optimal, possibly resulting in performance,
e.g. longer run-time or worse user experience, and energy losses, e.g. inefficient
task mapping in heterogeneous systems leading to higher power consumption for
the same workload [16].

� The system constraints, e.g. maximum temperature for safe operation, can be
violated during the reaction time. To avoid such violations, reactive approaches
can enforce guard bands, e.g. a power guard-band throttling the processor before
the temperature constraint is hit [44]. This is, however, a conservative approach
leading to avoidable performance losses.

A key component to achieve proactive management is the forecast of the future sys-
tem states [16], which means the workload-dependent system states that did not directly
arise from management interventions. Also, the integrated power and thermal manage-
ment of a processor, and of course also on higher level the operating systems, switch
between several different resource management policies focusing on different optimiza-
tion objectives [45]. While it is possible to directly learn the management actions from
system observations, e.g. with reinforcement learning [46], such techniques require sepa-
rate training for each policy [15]. Thus, separately forecasting power and providing such
a forecast to any management algorithm that requires it, is key for the development of
novel management techniques.

14

2.2 Run-time Power Estimation

2.2 Run-time Power Estimation

In this section, the related works in regard to run-time power estimation are discussed
with a focus on works which are closest to the proposed power estimation method-
ologies described in Chapter 4 and which explicitly or implicitly aim to capture also
the workload-dependent power consumption. To understand and compare the different
works, a classification system is used in the following which differentiates the works
according to the following characteristics:

� the model type used for power estimations, e.g. linear regression, polynomial re-
gression, Neural Network (NN),

� the Instruction Set Architecture (ISA), e.g. x86, ARM, PowerPC (PPC), of the
underlying processors,

� the spatial resolution of the models, e.g. core-level, package-level, system-level,

� their time resolution, i.e. for what time-intervals the power consumption is esti-
mated,

� the workloads used to generate the models, e.g. synthetic workloads, general bench-
marks.

Both the spatial resolution and time resolution denote how fine-grained the power models
are. For the spatial resolution, system-level means that aside of the Central Process-
ing Unit (CPU), other system components like the Dynamic Random Access Memory
(DRAM) were also power modeled and micro-comps. denotes that micro-components of
the CPU like the execution engine were modeled, i.e. that the resulting power models
are more fine-grained than core-level. The type of workloads used for generating the
power models show if the power models can be either generated solely through synthetic
workloads — occasionally also called microbenchmarks in the related works — or via a
combination of synthetic workloads and generic workloads or through generic workloads,
e.g. PARSEC and SPLASH-2, alone. An overview of all related works discussed in this
section and their classification is given in Table 2.1.

In the following sections, first an in-depth overview of related works on linear and
classification power models is given in Section 2.2.1, followed by related works on non-
linear and NN-based models in Section 2.2.2 and Section 2.2.3, respectively. Finally, a
discussion on the methods employed in related works on minimizing multicollinearity is
given in Section 2.2.4 as well as a discussion on the differences in related works using
linear vs. nonlinear modeling techniques in Section 2.2.5.

2.2.1 Linear Power Models

Isci and Martonosi were the first to propose a methodology to model a processor’s power
consumption based on performance counters [47]; a fine-grained methodology in regard
to spatial and time resolution. This was still in the single-core era of processor design

15

2 Related Work

Table 2.1: Overview and classification of related works on run-time power estimation

Related ISA Model Spatial Time Workload
Work Type Res. Res. Model Gen.

Linear Models

[47] x86 pw-linear micro-comps. 1 ms synthetic

[48] x86 class./BBV CPU 100 MI generic

[49, 50] x86 linear CPU 20 ms & 10 ms syn.& gen.

[51] x86 linear system, CPU 1 s syn & gen.

[52] x86, PPC linear system, CPU 10 ms syn. & gen.

[53, 36] x86 linear micro-comps. 10 ms synthetic

[39, 22, 38, 37] PPC linear core 32µs synthetic

[27] x86 linear CPU workload syn. & gen.

[54] x86 linear core 200 ms generic

[55] x86 pw-linear core 1 s synthetic

[56] x86 linear (un)core 1 s synthetic

[57] ARM linear system, CPU 10 s synthetic

[58] ARM linear CPU - synthetic

[59, 28] ARM linear core 50 ms syn. & gen.

[60] ARM linear core 10 ms-100 ms syn. & online

[61] ARM linear core 500 ms syn. & gen.

[62, 63, 64, 25] x86 linear core 1 ms synthetic

[65, 66, 26] x86 linear core 10 ms & 1 ms -

[67] ARM linear core cycle synthetic

Nonlinear Models

[30] x86 lin. & nonlin. core 1 s syn. & gen.

[68] x86, PPC nonlinear system - generic

[69] x86 nonlinear system 5 s generic

[70] x86 nonlinear CPU 200 ms synthetic

Neural Network-based Models

[71, 72] x86 FFNN system, CPU 1 s & 333 ms synthetic

[73] x86 RF, NNs system workload generic

[74] x86 NNs system 1 s generic

[75] x86 NNs system 1 s generic

[76] x86 linear, NNs CPU 30 ms synthetic

and done for an x86 ISA Intel Pentium 4 processor and established a fundamental ap-
proach for processor power estimation. They instrumented each of the 17 processor’s
12 V power supply lines with a current probe and periodically measured the current to
compute the total power consumption of the processor. In parallel, specific of perfor-
mance counters were also read and the data gathered for later model generation. To

16

2.2 Run-time Power Estimation

generate a run-time power model, first the single-core processor was subdivided into
22 different microarchitectural-components (micro-comp.), e.g. Branch Predictor Unit
(BPU), caches, Memory Order Buffer (MOB), integer/floating point execution units.
Then, custom-designed synthetic (micro)-benchmarks were executed on the system to
entice a targeted power response of each individual microarchitectural-component. This
allows the regression of a microarchitectural-component’s observed activity level with the
measured processor power which leads to approximate power scaling factors of each com-
ponent in dependence of its activity. This work also identified some nonlinear relations
and used a piece-wise (pw) linear model for a subset of the components. Component-level
power can then be derived by multiplying the microarchitectural-component activity lev-
els with their specific architectural scaling factor, a max power scaling factor and adding
a non-gated-clock power value. Total processor power was derived by adding up the
component-level power consumption as well as the pre-determined idle power of the
processor. Finally, Isci and Martonosi verified their approach by comparing estimated
total power — using their power model with performance counter inputs — with the ac-
tual measured processor power when full Standard Performance Evaluation Corporation
(SPEC) benchmarks and linux desktop applications were executed. They observed good
modeling accuracy of their proposed performance counter approach for total processor
power. This work demonstrated the viability of performance counter-based power esti-
mation, proposed the modeling of microarchitectural-components using synthetic bench-
marks and highlighted the possibility of nonlinear relations between power response and
observable component activity. In regard to nonlinear relations, they specifically high-
lighted that small increases in performance counter values above zero indicated a large
power response. Therefore, for a subset of the 22 used performance counters, a piece-wise
linear modeling approach was chosen. However, no explicit nonlinear modeling approach
was investigated nor used for modeling core power consumption in this work.

The work in [47] was followed up with a work in [48] by the same authors with a
focus on power phase characterization where a performance counter-based approach is
proposed and compared to a Basic Block Vector (BBV)-based approach with the goal
of distinguishing five different power phases. Although power phase characterization
can be interpreted as a form of power estimation where the goal is to characterize and
classify longer program phases — in the range of 100 MI (mega instructions) — and
make such power phases comparable throughout different workloads. These phase char-
acterizations can then be used for power and thermal management as well as software
optimization with a focus on minimizing power consumption, e.g. by adapting the pro-
gram code towards shorter high-power phases. The proposed performance counter-based
phase characterization clusters the observed values of 15 different performance counters
and corresponding power consumption values when SPEC benchmarks are executed on
an Intel Pentium 4 processor. In contrast, the BBV-based approach instruments the
program code and counts the number of touched basic blocks over time, generates a
BBV based on that and afterwards clusters these BBV according to their average power
consumption. The interesting finding of this work in regard of power phase characteri-
zation, is that their proposed performance counter-based power phase characterization
is significantly more accurate compared to also in this work investigated BBV-based

17

2 Related Work

approach. This means that even low-level and detailed program code information yields
less accurate power consumption / power phase information compared to the usage of
performance counters. Thus the actually observed activity on the processor, due to
different operand values in otherwise identical code segments, changing data locality
during execution and possibly other characteristics emerging from complex processor
architectures provide crucial information for modeling run-time power consumption.

Bircher et al. investigated the correlation between power consumption and activity
observed through performance counters in [49] for a single-core Pentium 4 CPU. Al-
though this work does not propose a power model, it provides insights into the relations
of performance counters and power consumption at measurement intervals of 20 ms. Sig-
nificantly differing correlation coefficients between different benchmarks were observed
for the same performance counter and power response combination. Therefore, this work
warns of ”looking at only a limited set or workloads” to determine correlation coefficients
which implies that using also generic benchmarks — if possible — during power model
generation could increase modeling accuracy. Similarly to [29], the conclusion is that
the power consumption of a CPU can be estimated using available performance counter
information. This work was followed up in [50] with a proposal for a linear regression
power model which was generated by using both synthetic as well as generic SPEC
benchmarks. The measurement and estimation interval was decreased to 10 ms while
otherwise keeping the same experimental setup of the previous work. One finding was
that long-latency speculative instruction execution and their contribution to power con-
sumption is not easily modeled and therefore, custom-designed synthetic benchmarks
were proposed to clearly distinguish and incorporate such effects into the linear regres-
sion power model. In contrast, this thesis proposes an approach on how to use purely
generic rather than synthetic workloads to generate run-time power models which would
allow to make the power modeling approach more architecture-agnostic. Both of these
works [49, 50] were extended in [51] with full system power estimation including the
CPU, memory, I/O, chipset, disk and network of computer system with four Pentium
IV Xeon processors. The four processors were modeled as a single CPU and power con-
sumption estimated at a rate of 1 Hz. Notably, the power of all system-level components
could be derived from processor-level performance counter values. Afterwards, in [52]
the previous system-level power estimation methodology was extended to multi-core sys-
tems and evaluated on IBM PowerPC (PPC) server processors and an AMD dual-core
processor where again other parts of the system were also power modeled. This work
also argues for large amounts of generic workloads to generate power models as they
state that: ”Without a sufficiently large range of samples, complex power relationships
may appear to be simple linear ones”. However, the workload-dependent dynamic power
consumption is — similarly to [49, 50, 51] — modeled as a linear regression. Also, the
dynamic power consumption of individual cores is not differentiated in this work.

Another work in [53] aimed for so called decomposable power models, i.e. power models
on microarchitectural-component level similar to the approach in [29], for multi-core pro-
cessors specifically an Intel Core 2 Duo processor with two cores. This work designed 97
different synthetic workloads to isolate and decouple the observed performance counter
values and the overall power responses of the different microarchitectural-components.

18

2.2 Run-time Power Estimation

The necessity for these many different synthetic workloads arises due to the power re-
sponse of some components can be highly correlated and some components do not offer
a directly observable, associated performance counter. In their power model, each of
the individual cores consist of a static power contribution added to the sum of the
core’s components power consumption which are modeled through their activity ratio
multiplied with a so called power weight. These power weights are derived using mul-
tiple linear regressions on the performance counter and power consumption data for
each components associated synthetic workloads, i.e. the overall model again is a lin-
ear power model. Notably, an in-depth knowledge of the processor’s microarchitecture is
needed to generated such a decomposable power model on microarchitectural-component
level. However, in this author’s opinion there has been a trend of processor manufactur-
ing companies towards providing less information on microarchitectural implementation
details and power models being integrated into the processors themselves without in-
depth information on their models. This work [53] was followed up and extended in
[36] with a comparison of the microarchitectural-component level power model with four
other power modeling approaches. The same experimental setup and again 97 synthetic
workloads — unfortunately without many implementation details — were used to gen-
erate the microarchitectural-component level power model with the workload-dependent
core power model being a linear regression model. Core-level power consumption esti-
mations are generated by only adding the specific core’s microarchitectural-component
level power values and splitting the overall static power of the whole processor onto the
cores and the uncore. The models for comparison were linear regression models with
lower numbers of performance counter inputs, e.g. only IPC or IPC+memory associ-
ated performance counters, using a single linear regression over performance counter
and power consumption data. Notably, these comparison models were generated with
data from the generic SPEC CPU2006 benchmarks and resulted in significantly higher
power estimation errors. These results highlight that using only generic benchmarks /
workloads to generate power models needs either a sophisticated method to incorporate
/ reduce the correlation of the observed performance counters or more complex modeling
methodologies, for example nonlinear power models.

As previously mentioned, IBM has described the difficulties in integrating power sen-
sors on microarchitectural-component or core level and therefore only measures power
on package/CPU-level and for other parts of their IBM Power 7 computing systems,
e.g. memory and I/O [38]. Due to the necessity of fine-grained power information, a run-
time power estimation model — in this case so called power proxies — was implemented
on IBM’s 8-core Power 7 chip line-up [39, 22, 37]. These core-level power estimation
models rely on more than 50 architectural performance events, corresponding to perfor-
mance counters in other works but not described in detail, to provide run-time activity
information. The dynamic power model itself is a linear model in regard to the workload-
dependent power consumption with an added power offset factor to derive total core-level
power consumption. In-depth knowledge of the processor microarchitecture was used to
choose an optimal set of performance events/counters. The final core-level power model
is constituted again of small power regression models for each pre-selected microarchi-
tectural component for which the performance / power relation was determined by using

19

2 Related Work

a set of — not further specified — targeted benchmarks, i.e. synthetic workloads. This
core-level power information obtained at very high estimation rates of 32µs is then used
in a DVFS power and performance management algorithm to optimize overall power
consumption, e.g. with steep power take-down curves in case of lower loads. In addi-
tion, the power information is used for rebalancing of the power consumption between
compute cores and on-chip memory as well as for frequency boosting. This approach
relies on in-depth microarchitectural knowledge, similarly to other approaches [53, 36],
to find maximum correlation between activity information and power consumption for
many different microarchitectural components of a processor’s core.

A statistical approach for performance counter selection for a CPU-level power model
of an Intel Xeon (Haswell) processor was proposed in [27]. To determine which perfor-
mance counters to incorporate into the power model, the Variance Inflation Factor (VIF)
of each performance counter in relation to all other performance counters is computed,
i.e. each performance counter is once the dependent variable while the other performance
counters function as independent variables. The VIF is used as an indicator for multi-
collinearity, the higher the VIF value the higher the multicollinearity, and performance
counters with too high multicollinearity are removed as input to the power estimation
model. This approach leads to a systematically simpler power model, i.e. less inputs, and
resulted in high total power consumption estimation accuracy. The workload-dependent
part of the power model itself is again a linear regression model and both synthetic as
well as generic workloads were used to generate the power model. Finally, no specific
estimation rate could be found throughout this work and it is assumed by this thesis’
author that this work does not necessarily describe or evaluates a run-time power model,
but rather a power model for full workload executions, i.e. how much power a specific
workload at a specific Vf-level consumed on average. This could potentially be extended
and be implemented as a fine-grained run-time power estimation model. The authors
also highlighted the challenge of multicollinearity and that an approach solely using syn-
thetic workloads is not sufficient to reduce multicollinearity and the associated modeling
errors.

A run-time power estimation and power prediction for different Vf levels — which
will be discussed in Section 2.3 — methodologies were presented and evaluated on AMD
CPUs in [54]. The power estimation model is a linear regression model on core-level using
eight performance counter inputs and solely uses generic benchmark suits to generate
the data for model generation. This is interesting as other works — at least partially —
required some form of synthetic workloads to accurately capture the power behavior for
wide ranges of workloads. The reason for this likely lies with the low time resolution of
only 200 ms and the types of benchmarks used for both training and evaluation where the
authors describe that specific PARSEC benchmarks showed very high average error of up
to 49%. Such high average errors for single benchmarks might be an indication that the
power behavior of more complex workloads was not accurately captured by this power
modeling methodology with this affect being masked due to the large amount of older
(and usually) simpler employed benchmark suites with overall 156 different benchmarks
being used in this work.

20

2.2 Run-time Power Estimation

An early work on multi-core power modeling of AMD and Intel processors investi-
gating nonlinear, core level power models is shown in [55]. The idea of using nonlinear
transformations for the performance counters is mentioned in the methodology with
the authors deciding to use piece-wise linear functions — similar to [29] — to generate
the workload-dependent, i.e. dynamic power, portion of the run-time power model with
the reasoning that this offers lower modeling complexity. Again, synthetic benchmarks
are used to elicit targeted power responses of the different systems. The mentioned
nonlinear transformation functions and their possibility for nonlinear modeling of the
workload-dependent power consumption are not further investigated in this work. Over-
all, good estimation accuracy of total system power measured with a wall-meter was
achieved by this approach. However, the coarse-granularity of the methodology in the
time-domain (1 s estimation intervals) and the mentioned but missing investigation of
the nonlinear transformation functions motivates this thesis to further investigate non-
linear transformation based approaches for very fine-grained run-time power estimation
models in Section 4.3. The work in [55] was followed up later on in [56] systematically
generating explicit power models for the dynamic/static, uncore/core power consump-
tion using a set of synthetic benchmarks for an Intel Haswell multi-core system. For the
dynamic core power model, a simple linear regression approach rather than the previous
piece-wise linear approach was used again with a time-resolution of 1 s.

With ARM processor designs becoming ever more prevalent in the computing space,
e.g. in smartphones and other embedded systems, determining their run-time power
consumption also gained research interest with one of the first works proposed by Zhang
et al. in [57] where the authors described their so called PowerBooter. A system-level
power modeling approach incorporating separate power models for each of an HTC
mobile phone with an ARM11 CPU was proposed. The workload-dependent power
contributions are again modeled as linear. To derive accurate regression coefficients, a
set of synthetic workloads is used which periodically varies the utilization of each mobile
phone component (e.g. CPU, LCD display, Wi-Fi, GPS, cellular) over its operating
range, i.e. from zero to maximum activity. The CPU power model itself is very simple
with two workload / activity-dependent regression coefficients and one static, additive
coefficient. This seems to be an accurate approach as the integrated ARM CPU is still
low architectural complexity and thus has low variance in regard to its dynamic power
consumption.

Another methodology for power estimation of embedded systems using comparatively
simple ARM9 cores and more complex ARM Cortex-A8 and ARM Cortex-A9 cores
was published in [58]. The power behavior of these ARM processors was characterized
by executing synthetic workloads on them, measuring board power and performance
counters and using the such generated data for multivariate linear regression analyses
for each ARM core architecture with the time resolution of the generated power model
not being explicitly stated. However, the time resolution or accuracy in regard to power
consumption attributed towards performance counter values is sufficiently high to allow
the resulting power models to be then incorporated into a cycle accurate simulator
for fast design space explorations. The evaluation of this cycle accurate simulator with
power simulation is then done again on workload-level, i.e. how close the mean simulated

21

2 Related Work

power consumption is to the mean measured power consumption of different workloads.
One interesting result of this work is that the variation in mean power consumption
between different benchmarks on the ARM processors is quite low (≤ 10%) which implies
that this approach might not be easily transferable towards fine-grained run-time power
estimation of more complex x86 architectures.

These investigations of ARM processor architectures were followed by Walker et
al. in [59] which was substantially extended in [28] investigating ARM Cortex-A7 and
Cortex-A15 CPU clusters. Core-level, medium high estimation rate power models where
generated which in addition also distinguishes between static and dynamic power con-
sumption. Both synthetic and generic workloads where used to generate the experi-
mental data for generating the linear regression power estimation models. In addition,
a similar methodology to the work in [27] is provided to minimize the multicollinear-
ity of the performance counter input information. In a first stage, only performance
counters are included in the model which have low level of multicollinearity, quantified
by computing the VIFs between each possible performance counter input in relation to
all other performance counters. In a second stage, performance counters which would
have been discarded in the first stage due to their high VIFs are manually transformed
— using in-depth microarchitectural knowledge — to reduce their multicollinearity and
then evaluated for model inclusion. In contrast, our approach generates core level power
models and does not use any synthetic workloads. Besides, it minimizes multicollinear-
ity through microarchitecture agnostic statistical methods and does not rely on manual
transformations of the activity information which requires knowledge of a system’s prop-
erties.

A notable approach with online updates of a combined power estimation model and
performance estimation model for a mobile platform with ARM Cortex-7 cores, ARM
Cortex-A15 cores and a Mali Graphics Processing Unit (GPU) is given by Mandal et
al. in [60]. At first, linear workload-dependent power and performance estimation model
are generated — similarly to the other related works — during design-time using a set
of synthetic workloads. During run-time, each executed application is subdivided into
epochs of 10 to 100 millions of instructions based on their performance characteristics
with the power-performance estimation model being updated after each epoch using an
online Recursive Least Squares (RLS) algorithm. Although the power model itself is
linear in regard to performance counters, high online power modeling accuracy is still
achieved for unknown applications after observing multiple epochs, i.e. the results show
convergence after 10 epochs the latest. This run-time power-performance estimates are
feed into a NN-based policy maker deciding the number of simultaneously active ARM
Cortex-7 cores and ARM Cortex-A15 cores as well as their Vf-levels to optimize power
consumption and performance. However, the power dynamics of the mobile platform
with ARM Cortex cores seems comparably low — as can also be seen in [58] — and
the estimation rate is per variable application epoch, i.e. in the range of 10 Hz-100 Hz.
For higher estimation rates, the regression coefficients of the power estimation model
would have to be updated with higher frequencies using the RLS algorithm. With 6µs
computational overhead per estimation (on the mobile platform), this would add 6%

22

2.2 Run-time Power Estimation

computational overhead at an estimation rate of 10 kHz which is computationally cost
prohibitive.

In [61], a power estimation model for the heterogeneous ARM big.LITTLE multi-core
architecture as well as cross-core power prediction techniques are proposed. For the
power estimation models, generic benchmarks and targeted synthetic benchmarks are
executed on the system to generate varying performance counter and power consumption
data. The total power consumption of the small ARM Cortex-A7 cores is modeled as
basically static due to the workload-dependent power changes being very small with less
than 10% variation throughout different workloads, while the dynamic power of the big
cores is modeled as a linear regression model. This work also indicates that for embed-
ded, mobile computing systems the power consumption can still be modeled well through
linear models and nonlinear modeling approaches with higher model complexity and thus
possibly higher estimation accuracy are not yet required. However, with the increasing
architectural complexity and computational performance of embedded systems, nonlin-
ear modeling approaches might also be required for future embedded systems when a
high degree of power estimation accuracy is desired.

Due to the importance of run-time power consumption information, major processor
designers — in addition to the already discussed IBM power proxies — like Intel and
AMD also integrate their own power measurement and power modeling approaches in
their products. Intel integrates so called Running Average Power Limit (RAPL) [62, 63]
in their processor line-up providing run-time power consumption information on core-
level, the uncore-level, the package-level and the -level. The power information on core-
level and uncore-level was at least in the early generations derived from linear power
estimation models using performance counter inputs. In contrast to for example IBM
processors, there is less public information on how the power model is generated, however,
the use of synthetic benchmarks was confirmed in [62]. There are multiple independent
research works investigating the Intel RAPL power models [64, 66, 25] in regard to
their capability as well as possible security risks due to side-channel attacks. With
the spatial resolution being quite high on core-level, the time resolution is reported at
an similarly fine-grained resolution of 1 ms for end-users with CPU internal power and
thermal management possibly having access to an even higher time resolution which
is not communicated off-chip at that those high rates. Note that DVFS decisions can
be taken on the same Intel processor platform with 0.5 ms periodicity. Independent
measurements on package and system level show that the estimate of the total power
consumption — added up from the core and uncore power estimates — has substantial
room for improvement in regard to its accuracy and error variance for different workloads.

AMD also integrates a power estimation model in their processor line-up called Ap-
plication Power Management (APM) [65, 66] and has been removed for the newer Zen
architecture which now also integrates RAPL [26]. The core-level power information is
in both cases derived from power models using performance counters as for IBM and
Intel processors. Unfortunately, in-depth information on the used power models is not
publicly available and it is not known what type of workloads (synthetic or generic) were
used to generate the underlying power models. However, due to the inaccuracies of the
power estimations on package level which were measured independently in [66, 26] as

23

2 Related Work

well as the fact that IBM and Intel use linear power models for the workload-dependent
power contributions, one can assume AMD has also integrated linear power models.

Finally, a very interesting combined design-time and run-time power modeling ap-
proach, so called APOLLO, was presented in [67]. Note that this work has been pub-
lished after all power estimation related papers which were contributing towards this
thesis had already been submitted or been published and thus was not discussed and
incorporated into those papers. The approach is kept generic in regard to the ISA for dif-
ferent processors with a final evaluation of the obtained design-time and run-time power
models on simulated ARM Cortex-A77 and ARM Neoverse N1 processors. Compre-
hensive data for model generation is obtained through an automated synthetic workload
generation methodology which generates over 1,000 different synthetic workloads to pro-
voke a wide range of different power behaviors of the given processor architecture. First,
based on Register-Transfer Level (OLS)-level performance and power simulations and
using Least Absolute Shrinkage and Selection Operator (LASSO), activity indicators
are chosen from the available signal set to accurately capture the workload-dependent
dynamic power behavior while minimizing the number of needed activity indicators,
i.e. these basically take over the function of performance counters as discussed for previ-
ous works. This step also generates the power weights for each selected activity indicator
signal. Less than 0.05% of all available OLS signals are selected as activity indicator
signals for the power estimation model and are used as binary toggle activity indicators
which do not count performance events like previously used performance counters. The
final power model is again a linear power model, however, defined as a binary cycle-
level power model, i.e. each cycle the toggling of activity indicators are observed and
associated if the respective activity indicators where toggled, power weights are added
towards that specific cycle’s dynamic power consumption. This approach allows the
power model to be integrated on-chip through relatively few XOR and NAND gates and
low bit-width ADDERs while avoiding costly large bit-width MULTIPLIERs and COUNTERs;
resulting in area/power overhead of less than 1% compared to the area/power require-
ments of the cores themselves. Overall, this approach promises a low-overhead, high
accuracy integrated run-time power estimation model.

2.2.2 Nonlinear Power Models

McCullough et al. [30] were the first to identify and highlight the importance of non-
linear relations between observable performance counters and power consumption due
to changing workloads and the associated dynamic power response on core-level. There-
fore, this work argued for and investigated both a set of linear (Ordinary Least Squares
(OLS), LASSO) power modeling approaches as well as nonlinear power modeling ap-
proaches (polynomial, exponential and Support Vector Machine (SVM)-based) power
models, to account for such nonlinear performance / power relations. First, they traced
the power consumption of an Intel Core i7 multi-core processor, broke down power con-
sumption on core-level, and explored both linear and nonlinear modeling techniques
(polynomial regression and support vector regression) to model power consumption on
core-level. Interestingly, the power measurement setup was able to distinguish core

24

2.2 Run-time Power Estimation

power, uncore power and integrated graphics power of the processor based on the Intel
Capella platform. Although the spatial resolution of the power model is well-suited for
power and thermal management purposes, the time resolution with a sampling rate and
estimation rate at 1 Hz was comparatively low. Overall, their results showed that their
nonlinear models did not significantly improve upon the linear models in regard to their
accuracy of modeling total power consumption. More detailed investigation yielded that
estimation accuracy degraded on core-level for both linear and nonlinear models. How-
ever, the nonlinear models yielded overall lower estimation rates, especially in regard
to worst case estimation errors. Furthermore, the results indicated that the proposed
nonlinear modeling techniques still suffered from not capturing the nonlinear relations
well enough, i.e. possibly due to overfitting parts of the performance counter and power
consumption data which then leads to worse power estimations in other parts of the data.
Another possible explanation for these inaccuracies mentioned by the authors might be
hidden power states. Overall, these results yields the question if a more complex non-
linear modeling approach could lead to higher accuracy power estimations, especially
on core-level. Also, two additional questions arise in regard to higher power estimation
rates: how is the accuracy of nonlinear power models affected when one has estimation
rates applicable for fast power and thermal management algorithms, e.g. 10 kHz? What
would be the run-time overhead of such a nonlinear power estimation model at such high
estimation rates and would its integration into a processor be feasible? These questions
will be tackled in Section 4.2 and Section 4.3.

Hsu and Poole analyzed the power response in regard to utilization over a wide range of
aggressively power managed — including DVFS — server systems from different vendors
and using Intel, AMD and IBM processors which were executing SPECpower benchmark
suite in [68]. Different linear functions and nonlinear functions were compared in regard
to overall system-level power modeling with utilization/activity as input and how ac-
curately one can fit the shape of the system-level power curve of servers when both
utilization and the voltage/frequency operating points change dynamically. However,
this work does not propose a run-time power modeling approach, i.e this work is for
server system power consumption comparison, nor are specifically nonlinear workload-
dependent power responses at fixed Vf operating points investigated.

Another work [70] generated stochastic power models for an AMD and Intel processor
using only the CPU utilization as model input rather than a larger set of performance
counter inputs. Both, utilization of the processors as well as their power consump-
tion were modeled as random stochastic variables based on experimental data and the
stochastic relationship between both was modeled as rather simple linear and quadratic
functions. This power model incorporates the different Vf-levels of the processors as
well as implicit power and thermal management decisions, i.e. Vf-levels are not explic-
itly modeled but the processor usually set optimized Vf-levels based on utilization and
with utilization being the only input to the power model, it is implicitly captured by the
power model. This is an interesting approach towards power modeling, likely well-suited
for server-level power modeling used for power budgeting and power accounting. How-
ever, due to the models spatial and time coarseness and Vf-levels being model-implicit,

25

2 Related Work

the power estimations are not suited as input for run-time power and thermal manage-
ment.

Another coarse-grained (server-level and 5 s estimation time intervals) machine learn-
ing was proposed by Dhiman et al. to model the power consumption of virtual ma-
chines [69]. Gaussian Mixture Models (GMMs) were proposed to identify and classify
operating points in the performance / power space based on performance counter char-
acteristics of an application which are then used to attribute the corresponding run-time
power consumption when similar performance operating points are identified during run-
time. This work shows that even at identical utilization levels, power consumption can
deviate by a factor of 2 due to differing workload behavior at least on this specific coarse-
grained spatial and time resolution. Notably, the nonlinear GMM-based model trained
solely with generic workloads performed better than linear regression models although it
also required a large number of operating points to be classified. This again leads to the
question if nonlinear modeling approaches and/or using generic workloads are suitable
for fine-grained run-time power estimation models.

2.2.3 Neural Network-based Power Models

Further nonlinear modeling techniques gained traction in the research space for more
coarse-grained power/energy modeling for use on data-center systems and cloud servers.
Neural networks in general and especially deep learning NN are well-suited for nonlinear
modeling. The first to propose the use of FFNN for power modeling and run-time power
estimation were Cupertino et al. in [71]. They investigated FFNN architectures with two
hidden layers for modeling the power consumption of an Intel multi-core CPU with the
training data in regard to performance counters and power consumption were generated
with synthetic benchmarks. The neurons per layer were subsequently increased in the
first and second layer while keeping the second layer smaller than the first layer to opti-
mize the neural architecture for power modeling. A neural architecture with 20 neurons
in the first layer and five neurons in the second layer provided the highest accuracy
improvements compared to state-of-the-art linear power modeling techniques. However,
the very low sampling rates, and thus time resolution of 1 Hz - 3 Hz for power and perfor-
mance counter data, limits the applicability to energy accounting and load balancing in
data-centers as power and thermal management algorithms require far core-level spatial
resolution and estimation rates in the magnitude of up to 10 kHz. Also, the run-time
overhead of the FFNN-based power model in regard to necessary FFNN inference was
not evaluated and the solution space of the neural architecture search was rather limited.
In contrast, 4.2 proposes a FFNN-based power modeling approach for high rate power
estimations of 10 kHz and provides two different methodologies to systematically gener-
ate well-suited FFNN architectures with both high power estimation accuracy and low
run-time overhead with a software and a hardware based proposal for run-time inference
of the power estimating FFNN model. The work in [71] was extended and embedded
in a thermal management algorithm in [72] using the FFNN-based power models of the
different system components (CPU, DRAM, Network Interface Card (NIC)) during run-

26

2.2 Run-time Power Estimation

time to manage heat dissipation, to manage energy and optimize data-centers towards
more cost-effective operation of the cooling operations.

Another work investigating NN-based power models for multi-cores is [73] where Ran-
dom Forest (RF)-based and NN-based power models were generated and compared to
linear regression models for two Intel multi-core server platforms. The so-called additiv-
ity of performance counters regarding power modeling of multi-cores is explored where
additivity denotes the robustness of reusing a performance counter as model input for a
wide range of applications. It was found that even highly correlated performance coun-
ters can be used as long as their input to the power model is also highly additive, at
least in case of the NN-based power models as these showed highest accuracy for highly
correlated and highly additive performance counter inputs. This could be an indication
that NN-based power models are also well suited even for performance counter inputs
with high multicollinearity. However, this work did not investigate optimization of the
neural network architectures for power modeling. Time resolution was only on workload
level, i.e. power estimations for full workload/benchmark runs and thus not periodic
power estimations. Also the spatial resolution was on system-level and thus for spatial
and time resolution not applicable for power and thermal management but applicable
for data-center management and power accounting.

The work in [74] also investigates NN-based power modeling approaches (FFNN, El-
man NN and LSTM RNN) for server and data-center management and optimization for
an Intel multi-core system. Neural architectures of the different NNs were not explicitly
optimized with the FFNN and the Elman NN parameterized with a single 25 neuron
hidden layer and the LSTM RNN parameterized with two hidden layers and ten neurons
per layer. The resulting NN-based power models provided high power estimation accu-
racy at course-grained spatial (system-level) and time (1 Hz) resolution with the FFNN
and LSTM RNN offering the highest accuracy, also when compared to multiple linear
regression power models as well as a SVM-based power model. Notably, both Elman
NNs and LSTM RNNs are able to learn from time-series information, however, it was
not clear from this work if this additional modeling capacity contributed towards better
power modeling accuracy in case of the LSTM RNN which noted to have had the highest
run-time overhead of all investigated NNs.

Elman NNs for power modeling were also investigated in [75] for data-center and
server-level power estimation with the goal of capturing potential time-series effects
in the power consumption and performance counter data which included performance
counter data on CPU, DRAM, I/O and hard disk. The neural architecture of the Elman
NN was optimized by comparing architectures with six, nine, twelve and fifteen neurons
in the single-layered Elman architecture as well as step back, i.e. how far back previous
inputs are used for the current power estimation, values of one, two and three. A
comparatively simple architecture of twelve neurons and a step back of one offered the
highest power estimation accuracy. This indicates that for such coarse-grained power
estimation models based on NNs, low complexity NN work quite well which leaves open
the question what kind of NN architectures would be needed for fine-grained NN-based
power models applicable for power and thermal management.

27

2 Related Work

A run-time power estimation model as well as a performance prediction model for
multi-core system under multi-threading inference were explored in [76]. In addition to
a linear regression model for power estimation, also a three-layered FFNN with sigmoid
activation function was investigated. High modeling accuracies were found on the train-
ing data for both the linear power estimation model as well as the FFNN-based power
estimation model, however, due to the FFNN model not performing significantly better
while being more complex than the linear model, the FFNN power estimation approach
was not further investigated. No details were given on how/if the neural architectural
hyperparameters were optimized and the power models are coarse-grained in the spa-
tial domain and thus less relevant in regard to their application for power and thermal
management. In contrast, this thesis will investigate the hyperparameter optimization
for fine-grained — in the spatial and time domain — FFNN-based power estimation
models.

In another work [77], which is less related to the aims to this thesis as it concerns
the power consumption of the GPU and its memory, three different machine learning
techniques are investigated — sequential minimal optimization regression, simple linear
regression, and decision trees — for power consumption estimation for different Vf-levels.
Notably, the nonlinear machine learning approaches yield far higher estimation accura-
cies than linear regression models which are further improved by combining different
machine learning approaches into ensemble models, i.e. averaging the estimated power
values. However, no information for a potential run-time application and its associated
overhead of the thus generated power estimation models is provided.

Besides run-time estimation models discussed above, there are also a multitude of
design-time power models which are simulation based, e.g. McPAT [78], for architec-
tural power modeling used for architecture-design, the development of run-time power
and thermal management and modeling algorithms. Although, such power simulators
are highly accurate, they cannot be used for run-time power estimation due to their
large computational overhead, e.g. one invocation of McPAT takes 40 seconds on an
Intel Core i5-3470 to estimate the power consumption of an Alpha 21364 processor.
However, simulation-based power modeling and its trade-offs will be discussed in more
detail in Chapter 3 as this thesis also relies on design-time power simulations to evaluate
methodologies for run-time power estimation.

2.2.4 Discussion of Methods on Minimizing Multicollinearity

One of the goals of this thesis in regard to run-time power estimation is to avoid min-
imize multicollinearity of the performance counter inputs for model generation. Some
works [59, 28, 27] have dealt with this problem through automated identification of
multicollinearity and either removing inputs with low information value and high mul-
ticollinearity and manually transforming performance counter inputs with high multi-
collinearity and high information value for power modeling into derived variables with
low multicollinearity. One downside of this approach is that still manual transformation
of the performance counters is needed. Many works, as can be seen in Table 2.1, are us-
ing synthetic benchmarks to successfully avoid or reduce multicollinearity by generating

28

2.2 Run-time Power Estimation

power models from many microarchitectural components which target those specific mi-
croarchitectural components such that the resulting performance counter and power data
cannot show multicollinearity. There are, however, multiple downsides to this approach
when relying purely on manually-generated synthetic workloads:

� they do not capture a wide range of workload behavior,

� they do not capture the interaction of microarchitectural components when those
are active in parallel,

� they do not allow for online refinement of the power model,

� they rely on in-depth microarchitectural knowledge and are not easily reproducible.

Some works, e.g. [49, 52, 79, 51, 50], combine generic workloads with synthetic workloads
to achieve both low multicollinearity and large workload coverage. The downsides of
needing in-depth microarchitectural knowledge of the processor design — which might
not be publicly available — and the problem of reproducibility remain. Overall, it would
be advantageous to have a methodology which automatically reduces multicollinearity
when generating power models and which does not rely on manual fine-tuning of the
power model and or the workloads used for generating the performance counter and
power data. One such ICA-based methodology will be presented in Section 4.1. A
final observation from the above discussion of these related works is that also when
generating coarse-grained NN-based power models with generic workloads and not using
any proactive measures to remove/reduce multicollinearity seems to have lead to accurate
run-time models in [73, 74, 75]. This could indicate that the added complexity of NN
models is sufficient to also automatically account for multicollinearity in the performance
counter input data.

2.2.5 Discussion of Linear vs. Nonlinear Modeling Methodologies

As can be seen in Table 2.1, most related works on run-time power estimation model
the relationship between performance counters and dynamic power consumption as lin-
ear, i.e. when the Vf-levels are held constant and the workload’s activity varies, the
dynamic power contribution to total power is assumed to be linear. Already in the be-
ginning of run-time power modeling and estimation research, even before the advent of
multi-/many-core processors, possible nonlinearities in the workload-dependent perfor-
mance and power relationship had been identified [29]. However, most following works
did not aim to model or account for possible nonlinearities until a work on multi-core
processors [30] again highlighted the possibility of nonlinearities and investigated multi-
ple nonlinear modeling techniques (polynomial, exponential and SVM-based) to capture
these effects with no significant accuracy improvement over linear regression models.

Some works [55, 70, 69], with rather coarse-grained spatial and time resolution and
server-level power modeling, also used piece-wise linear or nonlinear power modeling
approaches. Other works [71, 72, 73, 74, 75], on the same coarse-grained resolution, use

29

2 Related Work

NN-based models. Such NN-based models, which are by definition nonlinear power esti-
mation models due to the effective nonlinear modeling capabilities of NNs, also showed
high run-time estimation accuracy. Nonlinear models are by definition more complex
than linear models and thus will necessarily lead to higher run-time overhead when
making periodic power estimations which might be one of the reasons why fine-grained
(core-level and high estimation rates) nonlinear power models have not been further
investigated. In summary, to the best of this author’s knowledge, no work has been
published which accurately models the nonlinear relationship between a processor’s per-
formance counters and dynamic core-level power consumption at high estimation rates.

This leads to the question if nonlinear power modeling approaches for fine-grained
power estimation models might improve estimation accuracy while still keeping run-time
overhead low enough. If single invocations of the power model are too computationally
costly, the run-time overhead at sufficiently high estimation rates for run-time power
and thermal management algorithms will become cost-prohibitive in regard to power
or area overhead negating any advantages of possible improvements in estimation ac-
curacy. In Section 4.2, FFNN-based fine-grained power models will be generated and
optimized towards estimation accuracy and low run-time overhead and in Section 4.3 a
nonlinear transformation-based fine-grained power model is proposed and its accuracy
and overhead evaluated.

2.3 Forecasting and Prediction of workload-dependent
Processor States

In the following, the related works in regard to power forecasting are reviewed while
focusing on methodologies which are run-time applicable, i.e. provide information on
future system states and metrics during the run-time operation of a multi-/many-core
processor. As per the proposed nomenclature for this thesis in regard to estimation,
prediction and forecasting, none of the techniques in the prediction category forecast the
workload characteristics in the future. All in the following discussed related works will
be categorized — similarly to the power estimation related works in Section 2.2 — in
regard to their:

� outputs and inputs of the forecast or prediction model,

� time resolution, i.e. forecast or prediction rate,

� spatial resolution, e.g. core-level, package level,

� model type, e.g. table-based, NN-based, SVM-based,

� applicability for unknown workloads, i.e. can the model be used for workloads it
was not trained for,

� model inputs, e.g. previous power, previous performance counter values.

30

2.3 Forecasting and Prediction of workload-dependent Processor States

Machine learning provides powerful and well-established means to build prediction and
forecasting models, with many works employing machine learning in multi-core systems
to predict workload power/performance, while only a few of them propose to forecast the
workload in the future. Forecasting problems are in general a difficult set of problems,
especially for forecasts of non-periodic behavior. Due to the complexity of forecast-
ing workload-dependent power, thermal and performance characteristics, comparatively
fewer works have tackled the problem of forecasting in contrast to estimation and pre-
diction problems despite its general relevance. To give a more comprehensive overview
of forecasting of workload-dependent compute system states, some works in regard to
performance, energy and thermal forecasting will also be discussed. In addition, some
prediction methodologies will also be discussed although such works are less closely
related to the overall topic of power forecasting, they are useful to gain a more compre-
hensive picture of the forecasting and prediction techniques used for multi-/many-core
resource management.

An overview of the related works and their classification according to above charac-
teristics is given in Table 2.2 starting with forecasting works in the upper half and with
prediction works in the lower half.

Table 2.2: Overview and classification of related works on forecasting and prediction of power,
thermal and performance characteristics

Related Model Model Model Spatial Time Unknown
Work Out In Type Res. Res. Workloads

Forecasting Models

[80] perf P , ∆t table sys. 100 MI no

[79] P PC table core var. no

[6] P P AR core 2µs yes

[81] P , perf PCGPU class. GPU var. yes

[82] T , perf T , perf ARMA core 100 ms yes

[83] nr nr ARMA cloud 1 h yes

[84] perf PC SVM core 0.5 ms yes

[85] perf PC LSTM core 1 ms yes

Prediction Models

[86] perff PCGPU RLS GPU 50 ms yes

[87] perfmig PC FFNN core 10 ms yes

[88] perfmig PC FFNN core 0.25 s yes

[89, 90] perfmig PC SVM core 10 ms yes

[91] perff/th. PC Markov core 100 ms yes

[54] Pf PC func. core 200 ms yes

[61] Pmig PC func. core 500 ms yes

In the following sections, first an in-depth overview of related works on forecasting
different processor system states is given in Section 2.3.1, followed by related works on

31

2 Related Work

predicting the effect of not-yet-executed resource management decisions on the system
state in Section 2.3.2 and Section 2.3.3 discussing specifically related works on power
forecasting.

2.3.1 Forecasting Models

An early work in [80] proposed to classify workloads on a single-core system into program
phases (very compute-bound to very memory-bound) with performance counters as input
which are encoded in a so-called global phase history table. The history table encodes
phase patterns which are constituted of the compute/memory boundlessness of each
individual phase corresponding to 100 million executed instructions (100 MI). When a
workload has been observed once, its phase pattern is stored and a repeat of the starting
pattern is used to recognize the full-length phase pattern. The output of the history
table forecast methodology is the forecast of the next following program phase (and
its compute/memory boundlessness) from the already recognized phase pattern. These
forecasts are then used for a proactive power management, in this case proactive DVFS,
scheme. This work is also one of the first arguing for proactive power management
for better processor performance compared to a reactive power management scheme.
Although the forecasts concern performance states, this is one of the first works to
introduce workload-dependent forecasts for proactive power management and is one of
the fundamentals for this problem.

The aforementioned history table-based approach was re-targeted and simplified in [79]
towards power-forecasting by identification of program phase patterns based solely on
their active phase lengths ∆t. In this work, the history table encodes average power
consumption for each observed program phase. If a recurring program phase pattern is
recognized, the following program phase in this pattern and its encoded program phase
power-level are used as the power forecast for the full duration of the program phase. In
contrast to [80], the phase duration is not a fixed number of executed instructions but
depends on the changing performance counter information which is used to identify the
start times and end times of the phase. The main limitation of this work is its coarse
granularity in regard to the length of identified power phases — usually varying between
10 ms - 100 ms — which does not allow for modeling with any accuracy the substantial
intra-phase variation of power consumption.

The main drawback of these table-based works [80, 79] is that they are designed for
known applications. In contrast, this thesis tries to tackle the problem of forecasting
power for unknown workloads. There have been related works which also tackle fore-
casting of workload characteristics for unknown workloads which are discussed in the
following.

More recently, the work proposed in [6], so-called SmartDPM, employs a linear AR-
based predictor to capture sporadic variations in the workload. Previous power con-
sumption values as well as the current power consumption of the core are used as input
to the model which forecasts the power consumption for the upcoming time period.
This modeling approach is very lightweight and allows for dynamic readjustment of the
model coefficients during run-time to improve forecasting accuracy with the forecasts

32

2.3 Forecasting and Prediction of workload-dependent Processor States

then being used to select appropriate Vf-levels that minimize the power consumption,
i.e. it enables a proactive DVFS management. A limitation of this work which will be
discussed in more detail through experimental results in Section 5.2 is the inaccuracy in
forecasting rapidly changing power phases due to the very low model complexity and its
resulting limitations to have any capacity for in-depth phase recognition.

A classification methodology to forecast the power consumption and performance of
GPU kernels and to adapt the GPU hardware states (DVFS) to minimize overall power
consumption was proposed in [81]. The inputs of the classification-based forecasting
model are GPU performance counters PCGPU and the outputs are forecasts of future
power consumption of the executed kernel and its performance characteristics. These
outputs are then used in a Model Predictive Control (MPC)-based approach for dynamic
GPU power management. The forecasting model operates on individual GPU kernel level
and thus the time-resolution is variable and dependent on the kernel length, i.e. there is
no fixed periodicity of the power forecasts. This is a run-time model which was generated
at design-time and classifies the different kernel characteristics using a forest regression
algorithm. Based on these design-time classes and the identification of run-time kernels
— also of unknown kernels — and their classification, the future GPU kernel power
consumption values are forecast. The forecasting methodology achieves a MAPE of 25%
for performance characteristics and 12% for power levels. In contrast to the work in
[81], this thesis tackles the problem of CPU core-level power forecasting with a fixed
periodicity.

Another Autoregressive–Moving-Average (ARMA)-based work on forecasting of fu-
ture temperature T values as well as some performance values, e.g. core utilization was
presented in [82] and compared to history-based, OLS-based and exponential moving
average forecasting methodologies. These forecasts where then used as input to a ther-
mal management algorithm which was thus able to operate proactively leading to far
fewer on-chip thermal hotspots. In regard to the accuracy of the thermal and perfor-
mance forecasts, the ARMA-based approach showed the lowest temperature error. This
work further motivates the search for power forecasting methodologies where the same
forecast model can be re-used for different power and thermal management algorithms.
An overview for on-chip thermal estimation techniques can be found in [92] which also
highlights the importance of accurate estimation methodologies for safe operation of
processors.

Many forecasting techniques rely on rather lightweight models, in contrast, [84] em-
ploys a deep learning SVM to forecast the next low-throughput of the workload, in order
to downscale proactively the Vf-level such states state, i.e. a targeted, proactive DVFS
algorithm. The overall goal is to reduce power consumption. Inputs of the SVM model
are again performance counters — which were dimensionality reduced with a PCA —
and the output is the likelihood for a low-throughput state in the next time-step(s). The
SVM-based approach is compared to a linear regression and a last value forecaster, i.e. if
a dip is observed this is also the forecast for the future time-step, with the SVM-based
approach showing the highest forecast accuracy. Interestingly, the look-ahead window,
i.e. how many time-steps into the future is forecast, is investigated up to a value of 16
time-steps and the forecast accuracy diminishes with larger look-ahead windows showing

33

2 Related Work

the difficulties of forecasting further into the future. In regard to the run-time overhead
of such a deep learning approach, no further details were given. However, this work still
motivates further research into more complex forecasting models, i.e. also the proposed
complex LSTM-based power forecasting methodology in this thesis.

Another work [85], focusing on performance forecasting, proposes the use of LSTM
RNNs to generate forecasting models and compares them to a Kalman filtering approach.
As inputs, again performance counters are used which allow the characterization of the
workloads and the output of the forecasting LSTM RNN models is the forecast Cycles
Per Instruction (CPI) and total number of instruction for the upcoming time-interval.
The parametrization of the LSTM RNN in regard to the input data format is closely
modeled on a previous Kalman filtering approach and the overall LSTM RNN neural
architecture is kept comparatively simple with a single layer and four LSTM neurons.
This performance forecasting model is trained with 20,000 training samples (time steps)
of different benchmarks and is embedded in a DVFS control loop optimizing each core’s
Energy Delay Product (EDP). Unfortunately, there is no specific discussion in this work
of the forecasting accuracy/errors with the main evaluation showing improved EDP when
using the LSTM RNN as forecasting model rather than a Kalman filter. However, this
work using comparatively small — neural architecture-wise — LSTM RNNs motivates
further research into LSTM RNN-based power forecasting methodologies.

On a higher forecasting level in [83] — for the provisioning of virtual machines in cloud
environments — an ARMA-based model was proposed to predict the future workload
demand, i.e the number of requests nr for virtual machine resources as well as their
specific type, e.g. gaming and web hosting. The input to this forecasting model are
past requests and their specific associated type and workload demand. Although this
is on a far higher abstraction level than the other works discussed in this section, it is
interesting to see that AR/ARMA models are successfully used on such a cloud level to
identify patterns in user needs to anticipate computational resource requirements.

2.3.2 Prediction Models

As can be seen, the amount of works on forecasting is rather limited, therefore, a selection
of interesting prediction works are discussed in the following. The state-of-the-art tech-
niques in the prediction category employ machine learning methodologies to predict how
potential management decisions, such as DVFS, scheduling and task migration would
affect the performance, power or thermal characteristics of — often currently executing
— workloads.

For instance, the technique proposed in [86] uses a RLS algorithm to predict the change
in the graphics performance perff , i.e. the frame processing time, for graphics applica-
tions if DVFS management changes the Vf-levels of the GPU. This models the sensitivity
of the currently executed graphics application’s performance towards changes in the op-
erating frequency of the GPU and thus predicts how the performance would change for
different operating frequencies. Based on this performance prediction, suitable Vf-level
for each graphics application can be proactively selected to optimize for performance
and power consumption. This work shows that even lightweight regression algorithms

34

2.3 Forecasting and Prediction of workload-dependent Processor States

are able to accurately predict GPU performance sensitivity towards frequency changes
and was later on extended with an online learning methodology — so called STAFF,
in [93]. Note that the frequency sensitivity is workload dependent but does not infer
any information on how the workload characteristics itself would change in the future
by itself.

In [87], an FFNN-based model is proposed which uses performance counters to predict
the performance of a thread perfmig if it were to be migrated to another core in an S-
NUCA architecture. The FFNN-based model is sufficiently lightweight to be executed,
i.e. running periodic inferences, during run-time to generate performance predictions
which are used in combination with power budgets and task mapping information to
obtain optimal future task mappings in regard to task performance and power consump-
tion.

Another FFNN-based model is presented in [88] to predict both power and perfor-
mance of a thread observed on one core, e.g. a small core, once migrated to another core,
e.g. a big core, on a heterogeneous platform. As inputs, again performance counters are
used to assess the workload behavior. For the prediction itself, multiple FFNNs with a
single hidden layer and 100 hidden neurons are trained for each target core architecture
and with individual FFNNs distinguishing power and performance prediction. Inter-
estingly, this low complexity FFNN architecture already achieves a high cross-platform
prediction accuracy. In addition, this work also implements a power estimation method-
ology based on a linear power model on core-level, however, the power estimation itself
is only a smaller contribution of this work and therefore not discussed in detail as other
estimations works in the previous section.

SVM and linear regression models have been employed in [89], which was later ex-
tended in [90], to predict thread performance indicators, like IPC and last level cache
misses, for potential core type — in this work Intel i7 cores and Intel Atom cores —
changes. An SVM-based model and a linear regression model is generated for each to-
be-predicted performance indicator with the SVM-based model offering consistently far
better prediction accuracy with negligible overhead at a prediction rate of 10 ms.

In [91], periodic workloads like video encoding with a high dependency on the input
data, i.e. frames to be encoded, and their program phases are classified into different
performance classes based on performance counters. The class of the workload is pre-
dicted with a Markov (MK) model which is also updated at run-time to capture workload
transitions. This classification enables a prediction of the throughput of the workload
at different operating frequencies and levels of multi-threading, i.e. perff/th. . Using
this predicted throughput information, a proposed DVFS manager in combination with
scheduler is able to optimize the system for high quality of service video encoding with
frame-rate guarantees.

The work of [54] was already mentioned in the previous section as it also proposed a
power estimation methodology which is used together with a power prediction method-
ology. This power prediction methodology aims to predict the power consumption of
workloads observed at a one Vf-level for different Vf-levels to guide a power management
DVFS algorithm. The prediction model itself is purely analytical in form of different

35

2 Related Work

linear and nonlinear functions and their parametrization derived from in-depth microar-
chitectural knowledge of the AMD processor design.

As discussed in Section 2.2, the work in [61] proposed both a power estimation ap-
proach as well as a cross-core power prediction approach for the heterogeneous ARM
big.LITTLE multi-core architecture. The goal of prediction approach is to predict how
the performance and power consumption would change when a task, mapped and ob-
served on the small/large ARM Cortex-A7/Cortex-A15, would be migrated onto the
corresponding other core architecture. The challenge is to account for the differing com-
pute capabilities and memory architectures of the two core architectures and a linear
mathematical model is derived to predict how performance and power would change due
to task migration in the heterogeneous processor.

Finally, for further reading on related works on these topics, the two comprehensive
literature surveys of methodologies for predicting and forecasting power, performance
and temperature in [94, 95] can be recommended.

2.3.3 Power Forecasting Models

As mentioned, previously one of the aims of this thesis is to provide a methodology for
forecasting future workload-dependent power consumption values for the use of power
and thermal management algorithms for unknown, potentially non-periodic workloads.
Referring back to Table 2.2, one can see that few works [80, 79, 6, 54, 61] are targeting
the forecasting or prediction of power values on processors, and only a subset [80, 79, 6]
of those target the forecasting of power values. All presented prediction techniques rely
— at least partially — on run-time performance counter inputs for classification and
prediction of their target prediction outputs and, notably, all of these works are suitable
prediction of unknown/untrained workloads. Also, one can observe that there is a wide
range of machine learning and NN-based techniques [87, 88, 88, 89, 90, 91] deployed for
predicting the impact of potential multi-/many-core resource management decisions on
workload and system states. However, for the problem of forecasting fewer works [84, 85]
employ NN-based methodologies and most works are either table-based [29, 79] or AR-
based [83, 82, 6]. This implies that predicting the effects of management actions in regard
to a specific, previously unknown/untrained workload can be well modeled through
machine learning and NN models. In contrast, for forecasting either rather simple models
are used for unknown workloads or table-based models are used for known workloads,
i.e. encoding previously encountered and periodic workloads. The question arises how
well such simple models truly anticipate and forecast future power phase changes which
will be tackled in Section 5.2.

Overall, including both the forecasting and prediction categories, the closest related
works in Table 2.2 in regard to forecasting future power consumption levels on core-level
are [80, 79, 6]. However, [80] is the oldest of these works, was proposed for single-core
processors and has a rather coarse-grained time and spatial resolution for its power fore-
casts while [79] is newer, has more fine-grained time-resolution and is also table-based.
In addition, [6] is very new, on core-level with high time-resolution and complements [79]
well as reference model as it uses an AR-model. The two works [79, 6] forecast future

36

2.3 Forecasting and Prediction of workload-dependent Processor States

power states of workloads, irrespective of potential actions of the power and thermal
management algorithms, on the CPU core-level. The main limitation of history table-
based methodology [79] is that a workload has to be observed at least once before its
power can be forecast for future occurrences of the same workload. A possible limitation
of the AR-based methodology [6], which will be shown in detail in Section 5.2, is its
very low model complexity which might not allow it to capture the dynamic of rapid
power phase changes. These two works will be used as reference models for the pro-
posed standalone power forecasting methodology enabling proactive power and thermal
management.

37

3 Experimental Setup for Power Model
Evaluation

The methodologies on run-time power estimation as well as run-time power forecasting
— which will be presented in detail in Chapter 4 — are evaluated with the experimental
setup as described in the following. For different models there are only minor differences
in the generation and evaluation steps which will also be highlighted in the later chap-
ters. Section 3.1 gives an overview of the simulated system and the workflow for data
generation and model training and evaluation. This is followed by a more in-depth dis-
cussion of the used performance and timing simulator in Section 3.2 which also discusses
the performance counters used throughout this thesis as model inputs. Section 3.3 then
discusses the power simulator providing power consumption data and its limitations. Fi-
nally, in Section 3.4 the benchmarks suites used as workloads on the processors system
are described.

3.1 Overview Experimental System and Workflow

A simulated 16-core multi-core system, as shown in Figure 3.1, is used for the evaluation
of the proposed power estimation and power forecasting methodologies in this thesis. The
multi-core system has a 2 × 2 tile architecture with four cores — each having an Intel
Nehalem/Gainestown architecture — per tile and shared L3 caches on tile-level. This is
a homogeneous multi-core system. Intra-tile communication between the four cores and
the L3 cache happens through a bus interconnect. All of the tiles are inter-connected
via a Network-on-Chip (NoC) for inter-tile communication and the NoC also connects
to the memory controller which accesses the DRAM. The available cache memory and
its distribution throughout the processor is given in Table 3.1. Note, that the power
consumption of the private L1 and L2 caches will be included in the power consumption
values of their respective cores.

Table 3.1: Cache architecture of the 16-core processor

Arch. Level Type Size Access

Per core L1 Cache 32 KB private

Per core L2 Cache 256 KB private

Per tile L3 Cache 8 MB shared

The general experimental workflow, as can be seen in Figure 3.1, is the following:

39

3 Experimental Setup for Power Model Evaluation

Synthetic workloads &
generic workloads

SPLASH-2 [43] and PARSEC [96]

Required
Vf-levels

Generation & evaluation of power estimation and forecasting models
using MATLAB and Python/Tensorflow

16-core processor in HotSniper [23] / McPAT [78]

Memory
controller

core 0 core 1

core 2 core 3

L3 cache

tile 0

NoC
R.

core 4 core 5

core 6 core 8

L3 cache

tile 1

NoC
R.

core 8 core 9

core 10 core 11

L3 cache

tile 2

NoC
R.

core 12 core 13

core 14 core 15

L3 cache

tile 3

NoC
R.

execute configure

performance counter trace power trace

Figure 3.1: Experimental setup workflow with a simulated 16-core processor using HotSniper
and McPAT for generating performance counter and power consumption data

40

3.1 Overview Experimental System and Workflow

1. The required Vf-levels for the specific experiments are configured.

2. Both synthetic workloads and the generic workloads SPLASH-2 [43], PARSEC [96]
are executed on the 16-core processor.

3. The 16-core processor itself is simulated with HotSniper [23] which generates the
performance counter data and which uses an integrated McPAT [78] to generate
the power consumption data.

4. The traced performance counter and power data is then used in a MATLAB environ-
ment to generate different power estimation models and in a Python/Tensorflow

environment to generate the power forecasting models.

5. The generated power estimation/forecasting models are evaluated on traced per-
formance counter and power data with the specific distribution onto training data
set, validation data set and holdout data set described in the respective sections
of Chapter 4.

As mentioned, the experimental setup is simulation-based in contrast to many of the
related works discussed in Chapter 2 which instrumented individual physical comput-
ing systems mostly on processor-level, Power Supply Unit (PSU)-level or system-level
(e.g. through wall socket power meters). However, development, improvement and evalu-
ation of different power modeling methodologies — including run-time power estimation
— have also been done through simulation-based experimental setups, e.g. in [97, 67,
98, 99, 100, 101], although more rarely than through instrumentation of physical com-
puting systems. The use of simulation-based trace data has a few distinct advantages
as it offers separate information on power consumption, distinguished between dynamic,
static and short power, of microarchitectural components with very high time-resolution
rather than for example a single aggregated measurement at platform-level. This al-
lows generated power models to be directly evaluated on very fine-grained level under
full knowledge of the operational Vf-levels and not through the otherwise necessary,
more indirect, coarse-grained levels of the physical instrumentation of the computing
system/processor — as there are no integrated, fine-grained power sensors available to
validate power models directly. However, using simulation-based trace data has also
distinct disadvantages. Mainly, the validity of the evaluation and comparison of the
different proposed power estimation/forecasting models hinges on the accuracy of the
underlying simulators which is one major limitation of this experimental setup, i.e. one
major underlying assumption for this thesis is that the inaccuracies of the employed sim-
ulators distort the evaluated power models the same way and do not inadvertently favor
specific power models. This thesis will refer to this assumption as neutral-distortion
assumption.

In the following sections, the specific performance and power simulators and their
configuration for this thesis will be described and discussed in detail. Also independent
accuracy assessments of the simulators done by other research groups as well as reasons
for and against the assumption of neutral-distortion will be discussed. The performance

41

3 Experimental Setup for Power Model Evaluation

counters used as power model inputs and the specific power information traced from the
simulator framework will be shown.

3.2 (Hot)Sniper and Performance Simulation

The focus of this section is on how the performance and timing data is generated and
obtained from HotSniper [23]. Although McPAT is integrated into HotSniper, McPAT
will be discussed separately in Section 3.3 due to its importance for this thesis.

HotSniper itself is an extension of the Sniper multi-core simulator [102] which adds
a native integration of HotSpot [103] — a state-of-the-art thermal simulator — to the
base capabilities of Sniper, hence its name HotSniper. First, the base capabilities of the
Sniper multi-core simulator, which was proposed and developed by Carlson et al. at the
Ghent University and at Intel ExaScience Lab, are discussed in regard to performance
and timing simulation of workloads. The main idea behind the Sniper multi-core simula-
tor is to only do interval simulations and only switch to cycle-accurate simulation when
the program flow is interrupted. This is in contrast to for example gem5 [104] — an also
often used and configurable simulator of processor microarchitectures — which simulates
each program cycle individually. Interval simulation is an intermediate level of abstrac-
tion between cycle-accurate simulation, e.g. gem5, and so-called one-IPC simulation
where it is assumed that the IPC of an executed program is always one as long as there
is no memory-bottleneck in the system. The Sniper multi-core simulator, as well as its
derivative HotSniper, focus on accurately simulating inter-core miss events, e.g. branch
and cache misses, and miss-events which concern intra-core and off-chip DRAM commu-
nication, e.g. Translation Lookaside Buffer (TLB) and Last Level Cache (LLC) misses.
While such miss events which impact the program flow are cycle-accurately simulated,
and thus by extension also for later power simulation, in regard to the changing run-time
performance, program phases with continuous program flow are simulated by averaging
the performance of the executed instructions over longer than a single-cycle intervals.
Thus, the simulator achieves high accuracy for both rapidly changing program phases
as well as for the average execution of an application when the program flow is continu-
ous [105, 102].

Instruction traces are obtained by the Sniper simulator by instrumenting the appli-
cation’s binary, the application which should be executed on the simulated multi-core
system, with the Intel PIN tool and then executing the application on the host sys-
tem where the Sniper simulator is also running. Thus, the number and type of ex-
ecuted instructions is highly accurate during the simulation while the interval-based
approach only changes the timings of the application progress depending on the when
and where miss events impacting the processor performance would occur due to the
underlying processor architecture. Further improvements in simulation accuracy were
obtained by extending the interval simulations towards instruction-window centric sim-
ulations which more breaks down the out-of-order processing of instructions into more
fine-grained out-of-order processing of micro-ops. A detailed description of this extension
as well as accuracy validation against a physical Intel Server processor with a Nehalem/-

42

3.3 McPAT and Power Simulation

Gainestown core architecture can be found in [106]. The main advantage of using such an
interval/instruction-window simulator in contrast to common cycle-accurate simulators
is that its natively multi-threaded, with one thread representing one core, and allows the
simulation of many different workloads over a large Vf-space in a reasonable time-frame.

As mentioned, HotSniper [23] integrates HotSpot [103] with the base Sniper simulator
and was used due to the thus readily available thermal information of application runs
for power and thermal management algorithm development with colleagues from the
Karlsruhe Institute for Technology (KIT). To obtain the highest available simulation
accuracy, HotSniper is configured for detailed simulation using Nehalem/Gainestown
core architecture — as the accuracy of this architecture has been verified against a
physical system. General overview of the microarchitectural components of this core ar-
chitecture can also be found in Figure 4.14 in Section 4.3.3 where nonlinear performance
/ power effects are discussed. For the on-chip NoC in the processor architecture, the
base configuration of HotSniper/Sniper for NoCs is used.

The traced performance counters are specified in Table 3.2 and were chosen based on
commonly used performance counters in previous works on run-time power estimation
modeling. The C0 performance counter describes the percentage of time an individ-
ual core remained in the C0 power state, i.e. is fully operational and not clock-gated
or power-gated. Values of C0 smaller than 100 imply that the core spent some time
in lower, energy-saving power states. The L2CLK and L3CLK performance counters
count the number of cycles lost due to cache access (read and write) misses per individual
core. Note that all L3 cache performance counters still count the cache related events
towards individual cores similarly to actual performance counters available in today’s
multi-core processors. This performance counter data is gathered through instrumenta-
tion of the mcpat.py script of the HotSniper simulator which was configured to be called
with microsecond intervals in simulation time to write out the values of the described
performance counters. In contrast to some common performance counter implementa-
tions which count upwards until wrap-around, this setup directly outputs the specific
counts for the last intervals, i.e. the counter resets to zero after each read operation and
directly starts counting again. For actual integrated or software-based implementations
of power estimation or power forecasting models, the same behavior could be achieved
by adding an additional register holding the previous performance counter value and
subtracting it from the current performance counter value to calculate the delta count
for the last interval. No performance counters regarding the NoC nor the I/O interface of
the chip itself were traced due to such performance counters not being readily associated
with the performance, and indirectly power consumption, of specific cores.

3.3 McPAT and Power Simulation

The well-known traditional multi-core power simulation technique is McPAT [78] which
has been used by the majority of the power and thermal DSE as well as run-time man-
agement literature. As stated previously, the accuracy of the power data, especially in
regard to core-level dynamic power consumption, used for the generation and evaluation

43

3 Experimental Setup for Power Model Evaluation

Table 3.2: Performance counters which are periodically traced from the simulated 16-core pro-
cessor

Performance related information

Processor Performance
Unit Counter

Core Instructions per Cycle IPC
Branch Instructions BPU

Floating Point Instructions FP
% C0 State Residency of a Core C0

L2 private # Load Instructions L2LI
cache # Store Instructions L2SI

Load Misses L2LM
Store Misses L2SM

% Cycles Lost due to Cache Misses L2CLK
L3 shared # Load Instructions L3LI

cache # Store Instructions L3SI
Load Misses L3LM
Store Misses L3SM

% Cycles Lost due to Cache Misses L3CLK

of the various power estimation models as well as the power forecasting models is highly
important for the contributions of this thesis. Also, the type and consistency of error
sources for the power data has to be discussed to be able to assess if the assumption
of neutral distortion is tenable. McPAT [78] is a power consumption and area simula-
tor for multi-core and many-core processor architectures which provides dynamic power
Pdyn, short power Pshort and leakage power Pleak for technology nodes starting from
90 nm down to 22 nm. Power simulations for processing cores are fine-grained down to
the wire, array, logic and clock network with detailed simulations of microarchitectural
components, e.g. instruction fetch unit, execution unit and load and store unit. Caches
are modeled as coherent, and the power simulation of the NoC is broken down into
basic components like flit buffers, arbiters and crossbars. The clock distribution net-
work, which commonly consumes a significant portion of power on-chip, is simulated as
a separate circuit model on the global, domain and local levels.

The McPAT power simulator was, among other physical processors, validated against
an Intel Xeon processor (Tulsa core architecture on 65) and there were deviations for
the simulated microarchitectural components for the absolute power consumption, see
Figure 3(d) in [78]. Some of these absolute power deviations are likely due to compo-
nents, e.g. I/O and internal management logic, of the processor not being simulated
due to missing publicly available information on their implementation. However, most
importantly the relative power consumption of dynamic and static power consumption
compared to total power consumption between the physical system and the simulation

44

3.3 McPAT and Power Simulation

results were negligibly ≤ 1%, e.g. simulated dynamic core power as a percentage of total
simulated processor power consumption and actual dynamic core power as percentage of
total physical power consumption were basically the same. This shows high relative ac-
curacy for the dynamic/static core-level power consumption values of the simulator and
implies that the assumption of neutral distortion of thus generated run-time power mod-
els can be valid. Basically, one has to expect the absolute values of the simulated power
data to deviate from any actual physical system, however, the relative power values be-
tween dynamic/static (intra)-core power consumption are shown to be accurate. This
minimizes the risk that any of the differently proposed and evaluated run-time power
models are unexpectedly favored due to the usage of this simulated power data, i.e. all
will be similarly distorted in regard to absolute estimation/forecast values while their
relative performance compared to each other should be accurate. However, this assump-
tion is still based on qualitative investigations and not on quantitative investigations and
therefore one major limitation of this thesis.

The work in [107] also investigates the power simulation accuracy, limitations and error
sources of McPAT for an IBM Power 7 CPU and highlights the importance of calibra-
tion using microarchitectural implementation details when deviating from pre-calibrated
power simulation configurations like the Intel Nehalem architecture. For example, miss-
configurations on the read/write ports of register files can lead to highly conservative
dynamic power consumption assumptions when accessing register files. Also, dedicated
logic which is assumed to be duplicated in McPAT is not duplicated in the IBM core
architecture and thus leads to avoidable inaccuracies in the power simulations. Overall,
there is no specific error source which would invalidate the assumption that the power
data from McPAT would systematically favor any kind of — low-complexity compared
to power simulations — run-time power estimation/forecasting model, i.e. all derived
power models should be distorted in the same way and thus a comparison of their rela-
tive performance between each other should hold true.

The technology node parameter is set to 22 nm as this was the newest available pa-
rameterized technology node for McPAT at the time when most of the work of this thesis
had been done. For future work, it would be advisable to use newer variants of McPAT
like McPAT-Calib [108] which updates the power simulation framework for simulating
a 7 nm technology node. There are also other extensions of McPAT like WattWatcher
or PowerTrain which use dynamic calibration approaches against physical processors to
minimize the absolute power error for different microarchitectures and thus provide very
high simulation accuracy [109, 110]. Unfortunately, these techniques have not yet been
closely integrated into state-of-the-art multi-core performance and timing simulators like
HotSniper or base Sniper.

The simulated dynamic and static power consumption values on core-level, l3 cache
level and package level are traced with the same microsecond periodicity as the per-
formance counter values. For the power estimation, the target power estimation rate
is 10 kHz so the power and performance counter data to be used as model input is
averaged over 100µs time intervals, the same as the inputs for the power forecasting
models while in contrast, the outputs for the power forecasting models are averaged
power consumption values over time-intervals of 1 ms and 10 ms.

45

3 Experimental Setup for Power Model Evaluation

3.4 PARSEC and SPLASH-II Benchmark Suites as Workloads

In the following, a short overview of the two parallel benchmark suites PARSEC [96]
and SPLASH-2 [43] used in this thesis is given. Both of these benchmarks suites are in-
tegrated with HotSniper/Sniper simulator and their performance characteristics in the
simulator were validated against physical processors in [102]. SPLASH-2 is the older
of these benchmarks suites and covers a range of scientific, graphical and optimization
workloads, some of which have been superseded by newer algorithms, and was developed
when multi-processor, single-core systems were dominating the high performance com-
puting industry. However, SPLASH-2 is still widely used in the scientific community
to have a large workload coverage during experiments and due to the benchmark suite
being open source and free to use in contrast to for example SPEC benchmark suites.
Although SPLASH-3 [111] had been made available since this thesis work has been
started, it mostly provides smaller bug fixes and reducing compiler warnings and does
not provide conceptually different workloads. With SPLASH-2 being validated within
HotSniper, it was decided to use SPLASH-2 rather than SPLASH-3 for the experiments
in this thesis.

PARSEC is a newer, parallel and open source, free to use benchmark suite devel-
oped at the Princeton university by C. Bienia. It covers a set of well-known scientific
and graphical workloads as well as emerging workloads from the domains of financial
analysis, enterprise storage, animation and data mining. Emphasis has been put on high
diversity in the parallelism of the workloads, i.e. data-parallel, pipeline and unstructured,
their granularity and their diversity in data and memory usage. PARSEC gained very
significant section in the scientific community where high performance benchmarking
over widely different application domains is needed for experiments, i.e. where there is
not sufficient to solely benchmark specific application domains like video encoding/de-
coding, physics simulation or networking applications. When this thesis work started,
the follow up version of PARSEC 2.1 — PARSEC 3.0 which adds additional networked
versions of the dedup, ferret and streamcluster benchmarks — was still in beta status and
therefore, PARSEC 2.1 was used throughout this thesis for the experimental evaluations.

All the individual benchmarks used in this thesis are given in Table 3.3 and were
executed with problem size of simmedium. Note, that the PARSEC benchmarks vips,
ferret as well as SPLASH-2 benchmarks volrend, water-nsquared and water-spatial had to
be left out due to errors with the PIN tool used by Sniper for benchmark instrumentation.

Table 3.3: Benchmarks used as generic workloads in this thesis

PARSEC 2.1 [96] blackscholes, bodytrack, canneal, dedup, facesim, fluidanimate,
freqmine, raytrace, streamcluster, swaptions, x264

SPLASH-2 [43] barnes, cholesky, fft, fmm, lu, ocean, radiosity, radix, raytrace

46

3.4 PARSEC and SPLASH-II Benchmark Suites as Workloads

The above benchmarks are used in combination of various cross-validation techniques
for generating and evaluating the proposed power estimation methodologies in the fol-
lowing Chapter in Section 4.1 and Section 4.3, i.e. each benchmark is used — usually in
different combinations of other benchmarks — either for generating the power estimation
models or for evaluating their accuracy. For the NN-based power estimation and power
forecasting methodologies proposed and evaluated in Section 4.2.4 and Section 5.2, a
holdout data set as specified in Table 3.4 for final model evaluation is pseudorandomly
chosen. The remainder of these benchmarks are then used for both training and valida-
tion of a set of FFNN and LSTM hyperparameters with no overlap of conceptually similar
benchmarks between the holdout data set and training/validation data set, e.g. both the
PARSEC raytrace as well as the SPLASH-2 raytrace benchmarks are put into the same
set. This difference in the usage of the benchmarks and the associated performance and
power data is due to the need for optimizing the hyperparameters of NNs where any
data used interchangeably between optimizing the architecture and later evaluating the
NN model performance would contaminate the final evaluation results.

Table 3.4: Benchmark distribution on the combined training/validation data set and on the
holdout data set for evaluation of the power NN-based estimation and forecasting
methodologies in Section 4.2.4 and Section 5.2, respectively

Data Set PARSEC SPLASH-2

Training/ bodytrack, dedup, x264, fft, fmm, lu, ocean,
validation streamcluster, fluidanimate, radiosity, radiy, raytrace

swaptions, freqmine, raytrace

Holdout blackscholes, canneal, facesim cholesky, barnes

47

4 Novel and Lightweight Power Estimation
Models

This chapter introduces and evaluates the proposed run-time power estimation and
power forecasting models and is organized as follows: First, Section 4.1 investigates
an ICA-based linear power estimation methodology for automatically minimizing the
multicollinearity of performance counter inputs. Afterwards, Section 4.2 investigates
FFNN-based nonlinear power estimation methodologies to account for potential non-
linear relations between performance counters and dynamic power consumption and
thus increase estimation accuracy. Following up on nonlinear power estimation method-
ologies, Section 4.3 investigates a nonlinear methodology using nonlinear functions for
transforming performance counter inputs and thus reducing nonlinear relations to in-
crease estimation accuracy. Finally, the proposed linear and nonlinear power estimation
methodologies are compared in regard to their estimation accuracy, run-time overhead
and other model characteristics in Section 4.4.

4.1 Independent Component Analysis-based Power Model

This section presents and evaluates the methodology for ICA-based power modeling [1].

Motivation and Contributions Chapter 2 showed that many related power modeling
approaches rely on synthetic workloads which are tailored to specific processor microar-
chitectures and their sub-components. While executing such synthetic workloads, the
observed package/system level power consumption can be attributed to the activity of
different sub-components of the processor. This allows for a bottom-up approach of
power modeling where ideally all sub-components of the processor have been activated
by custom synthetic workloads and their power consumption values are then summed
up towards core/processor/system power values.

However, as discussed in Section 2.2.4, solely relying on synthetic workloads to mini-
mize multicollinearity of the performance counter inputs has multiple drawbacks in re-
gard to: the availability of synthetic workloads for reproducing power models, their ease-
of-reuse for newer processor architectures and the risk of overlooking interdependencies
of sub-components when more general workloads are executed. To circumvent the limi-
tations of relying on synthetic workloads, this thesis first proposes a methodology using
standard benchmarks to derive core-level power models. One reason for using synthetic
workloads is to minimize the multicollinearity of the performance counter information in
regard to core sub-components. Rather than minimizing this multicollinearity by relying
on synthetic workloads, the proposed methodology executes standard benchmarks and

49

4 Novel and Lightweight Power Estimation Models

reduces the multicollinearity of the obtained performance counter data by using ICA
which minimizes the mutual information of a set of signals [112]. This methodology for
multicollinearity reduction allows for the generation of core-level power model which do
not rely on neither specific microarchitectural knowledge nor synthetic workloads.

This section on ICA-based power models makes the following contributions:

1. Showing that ICA is an effective method to minimize multicollinearity of multi-core
activity information from general workloads.

2. Using the transformed performance counter data to generate a per core power
model.

3. Demonstrating that the generated core-level models achieve similar or even better
accuracy compared to state-of-the-art power models without relying on synthetic
workloads and microarchitectural information.

First, the background on PCA and ICA in Section 4.1.1 is given. Afterwards, the ICA-
based power model generation is introduced in Section 4.1.2 and the power model estima-
tion is described in Section 4.1.3. The results in regard to the accuracy of the ICA-based
power models as well as their dependency on changing workloads, their responsiveness
to power phase changes and their run-time overhead are presented in Section 4.1.4.

4.1.1 Independent Component Analysis

A short introduction of the well-established multivariate statistical analysis methods,
ICA [112] and PCA [113] used in the proposed power modeling methodology, is given
in the following. Note, that this description of ICA [112] and PCA [113] is not a novel
contribution of this thesis and is solely added to this section for the convenience of the
reader. Only a short description of PCA is given as it is solely used for dimensionality
reduction of the performance counters. In contrast, a more thorough description of ICA
is given due to its usage being one of the main contributions towards the proposed power
modeling approach. Both ICA and PCA are used as specific statistical transformations
of data sets. An example showing the principles behind both transformations is shown
in Figure 4.1 for the same data points with PCA shown in the left half and ICA shown in
the right half. As a first step in a PCA, the subspace describing the greatest variance in
the data set is determined, i.e. principal component 1. Afterwards, the second subspace
orthogonal to the first subspace, which describes the remaining variance, is determined,
i.e. principal component 2. For n-dimensional data, n subspaces and described by n prin-
cipal components, which are denoted as x̂ in this section, are determined. These principal
components correspond to the eigenvectors of the covariance matrix of the original data
set. Through this transformation, the subspaces of the principal components in the data
set are linearly uncorrelated. Furthermore, PCA can be used for dimension reduction
by removing principal components of lower variance as these describe less of the data
set, i.e. the eigenvalues of the covariance matrix Kxx are zero or close to zero.

Similarly to PCA, ICA transforms the data set and generates independent compo-
nents with maximized statistical independence by reducing higher order dependencies

50

4.1 Independent Component Analysis-based Power Model

Figure 4.1: Example of scattered data analyzed via PCA on the left and ICA on the right,
showing the resulting two principal components x̂1, x̂2 and the resulting two inde-
pendent components s1, s2

in the data. As shown in Figure 4.1 on the left side, and in contrast to principal com-
ponents, the independent components are not orthogonal. Also in contrast to PCA, all
independent components are equally important in describing the underlying data. By
removing the higher order dependencies, the multicollinearity of the different predictors
or signals within the activity information of the multicore system can be minimized. To
achieve this, ICA minimizes the mutual information between multivariate signals. In
the following, the information theoretic concepts of an ICA are shortly described with
the observed signal being denoted as x = (x1, x2, ..., xm)T , the independent components
as s = (s1, s2, ..., sn)T and the so-called unmixing matrix as W where n ≤ m. The goal
of ICA is to derive an unmixing matrix W , such that

s = Wx (4.1)

yields independent components s which are as statistically independent as possible [112].
To determine the unmixing matrix W , the differential entropy H is used which can

be computed for a random vector y with a given density function f(.) as [112]:

H(y) = −
∫
f(y)log(f(y))dy. (4.2)

The differential entropy H describes the amount of information generated by the con-
tinuous variable y.

ICA only works on nongaussian variables as the unmixing matrix cannot be derived
for Gaussian, uncorrelated variables. To determine the non-gaussianity of variables, the
negentropy J is used:

J(y) = H(yGauss)−H(y), (4.3)

which is a measure of the random vector y’s distance to normality, i.e. a Gaussian
random variable ygauss having the same covariance matrix as y. Negentropy is always

51

4 Novel and Lightweight Power Estimation Models

non-negative, invariant to linear transformations and becomes zero only if the signal
y is Gaussian. The more variable y is structured or ”least random”, the bigger the
negentropy J(y). In contrast, a Gaussian distribution is the least structured or ”most
random” distribution [112]. The mutual information I(y1, y2, ..., ym) of a set ofm random
variables is defined as

I(y1, y2, ..., ym) =
m∑
i=1

H(yi)−H(y). (4.4)

If two variables are statistically independent, their mutual information is zero. In regard
to ICA, it is helpful to describe mutual information using negentropy [112]:

I(y1, y2, ..., ym) = J(y)−
m∑
i=1

J(yi) +
1

2
log

∏m
i=1 cii
detCy

, (4.5)

where Cy is the covariance matrix of y and cii being its diagonal elements, i.e. the i-
th variable’s variance. The objective for the unmixing matrix W is then to minimize
the mutual information of the independent components s = (s1, s2, ..., sn)T . Thus,
determining such an unmixing matrix W is a search for directions where the negentropy
is maximized. Hyvarinen et al. proposed a novel way for maximizing negentropy [112]:

JG(w) = [EG(wTx)− EG(v)]2, (4.6)

withw as anm-dimensional weight-vector, v as a standardized Gaussian random variable
and G as contrast function. By maximizing JG, one independent component can be
determined. This approach is then extended to n contrast functions G where each
weight-vector w is one of the rows of the unmixing matrix W . Hyvärinen discussed
different contrast functions G and how to choose them in [112, pp. 11-12] and proposed
a fixed-point algorithm for computing the independent components. This proposed fixed-
point algorithm is used throughout the remainder of this section on ICA-based power
modeling.

4.1.2 ICA-based Power Model Generation

The proposed methodology in this thesis is to use ICA as a preprocessing step before
generating linear power models. An overview of the methodology is shown in Figure
4.2. Rather than executing a wide range of highly specific synthetic workloads, only
generic benchmarks, e.g. PARSEC [96] and SPLASH-2 [43], are executed. In parallel,
the performance counters PCi, i = 1, ...,m are traced for the system as well as the
package power Ppack. The performance counters used as activity information are shown
in Section 3.2. The first preprocessing step is using a PCA to reduce the dimensionality
of the activity information by removing all eigenvalues λi of the covariance matrix Kxx

— where x stands for the performance counter features — for which λi ≤ λthres. The
value of λthres is empirically chosen by balancing the robustness of the power model
against sporadic divergences with the power model’s prediction accuracy. If λthres is

52

4.1 Independent Component Analysis-based Power Model

chosen too large, performance counters necessary to accurately describe the per-core
power consumption will be removed. In contrast, when λthres is chosen too small, per-
formance counters which do not significantly contribute to the modeling of the power
consumption are left as input to the ICA. This negatively impacts the robustness of
the resulting power models as independent components with marginal relation to power
consumption are generated. Such marginal independent components can then lead to
unstable power models where small changes in the performance counter values result in
large and erroneous deviations in the power estimation.

Standard
Benchmarks /

Generic Workloads

Multi-core
System

PCA

ICA

OLS
Regression

ICA Power Model
β, Pidle,W

Performance
Counters
PC

Performance
Counters
PCR

Independent
Components

s

Package
Power
Ppack

Figure 4.2: Methodology to generate a ICA-based power model for run-time power estima-
tions [1]

Afterwards, the reduced performance counter information PCR,j with j = 1, ..., n and
1 ≤ n ≤ m, denoted as vector PCR, is transformed via an ICA into its independent
components sj where n is the number of independent components equal to the number
of principal components. The unmixing matrix W of the ICA is stored to be able to
use the same ICA transformation for estimating run-time power.

For generating the power model, aside of the activity information, the package power
is needed for the linear regression model and modeled such that:

Ppack = sTβ + ε, (4.7)

where β denotes the regression coefficients and ε the error term. For this linear re-
gression, solely activity information and power information is used when only a single
core is active at a time. Inter-application inference on shared resources is thus ignored.

53

4 Novel and Lightweight Power Estimation Models

However, as the final power model is only concerned with the core-power consumption
and disregards the power consumption of shared resources, limiting the data used for
model generation, on time intervals when only a single core is active and generates a
power response, seems reasonable. The average idle power including the uncore power
consumption Pidle+uncore of the multicore system is computed by filtering for short time
frames when no cores are active and averaging the power consumption for those idle
durations. A limitation of the proposed methodology is that dynamic uncore power is
not explicitly modeled which can introduce estimation errors when cores are active and
parts of the dynamic uncore power are counted towards core power. Finally, the core-
level power model is fully described with the regression coefficients β, static idle power
including uncore power Pidle+uncore and the unmixing matrix W .

4.1.3 Estimating Core-level Dynamic Power

For run-time power estimation of per-core power for an arbitrary workload, the dimensionality-
reduced — after executing the PCA — performance counter information is transformed
by the previously obtained unmixing matrix W into its independent components:

s = WPCR. (4.8)

Afterwards, the independent components are multiplied with the regression coefficients
and the idle system power is subtracted from the intermediate power-estimate to obtain
per core level power as:

Pdyn = sTβ − Pidle+uncore (4.9)

Compared to other state-of-the-art methodologies, the usage of synthetic workloads
and/or manual transformations of performance counter inputs for minimizing multi-
collinearity are replaced with generic workloads. To achieve high accuracy while having
correlated model inputs in form of performance counter (activity information), a PCA
and an ICA is used for data preprocessing before generating the linear regression power
model.

4.1.4 Experimental Evaluation

The aim of this section is to assess the accuracy and overhead of the proposed ICA-based
power model. To do this, the experimental setup described in detail in Chapter 3 is used
to generate the underlying power and performance data. First, the multicollinearity of
the performance counter input data using ICA and synthetic workloads is investigated.
Afterwards, run-time power estimation models using the proposed ICA methodology
and using synthetic workloads are generated and their estimation accuracy evaluated
and compared. Then, the dependency of the ICA power models on the number of
generic training workloads used for model generation is assessed. Finally, the added
run-time overhead of the ICA step is discussed.

54

4.1 Independent Component Analysis-based Power Model

Multicollinearity Results using ICA and Synthetic Workloads

As a preliminary investigation, the multicollinearity in the performance counter infor-
mation, when using synthetic benchmarks and generic benchmarks to generate the data
as well as when the synthetic and generic benchmark data is transformed via the ICA,
is assessed. David Belsley proposed a method for multicollinearity diagnostics and pro-
vides a guideline on interpreting the resulting information on the magnitude of mul-
ticollinearity in [114]. Synthetic workloads, as described in [56, 36], and the generic
workloads (SPLASH-2 and PARSEC benchmarks) were executed on the experimental
system to generate performance counter data. Afterwards, this performance counter
data is transformed with an ICA as proposed in Section 4.1.2. The built-in MATLAB
function collintest is used to compute the so called condition indices of the multicore
activity information. The larger the value of these condition indices, the larger the
multicollinearity of the underlying data and the worse it is suited for linear regression
modeling. The resulting two largest condition indices for the different performance
counter data using synthetic and generic workloads and transforming them with an ICA
are shown in Table 4.1.

Table 4.1: Belsley collinearity evaluation results on performance counter data obtained through
synthetic and generic workloads [1]

Condition Condition
Index 1 Index 2

Synthetic workload 98 120

Generic workloads 3.92 · 1014 1.06 · 1016

Synthetic workloads after ICA 38 48

Generic workload after ICA 1.9 2.5

As defined in [114], condition indices above 30 often indicate multicollinearity levels
which can lead to modeling errors. Note that this is a best practice threshold. One can
see that the performance counter data from synthetic workloads, both before and after
applying the ICA transformation, have some degree of multicollinearity above this best
practice threshold. The performance counter data from generic workload leads to very
high levels of multicollinearity making the data badly suited for direct regression-based
linear power modeling purposes. However, after the ICA transformation, the perfor-
mance counter datan is well suited for linear regression analysis and thus for generating
power estimation models.

Statistical Accuracy Analysis

While the experimental setup in regard to the multi-core system and performance coun-
ters used, is the same for all proposed power and forecasting models in this thesis, the
specific usage of the benchmarks for model generation and model evaluation differs. The
specific benchmark usage is shown in Figure 4.3. Overall, the 20 different PARSEC [96]

55

4 Novel and Lightweight Power Estimation Models

and Splash-2 [43] benchmarks as specified in Section 3.4 are used as either the input
to the ICA model generation or to evaluate the final model performance. The training
set for model generation consists of 9 benchmarks and the evaluation set consists of 11
benchmarks with the two sets being disjunct which results in

(
20
9

)
= 167960 evaluations.

These sizes for the training and evaluation set were chosen, to make the evaluation of
the ICA methodology in regard to its capability to generate accurate power models with
limited amount of observed benchmarks, on balance conservative.

PARSEC / Splash-2
Training Set (9/20)

PARSEC / Splash-2
Evaluation Set (11/20)

Synthetic
Workloads

Evaluate &
Compare

ICA
Power Models

Reference-based
Power Model

generate generate

loop

Figure 4.3: Benchmark usage for obtaining performance counter and power data for ICA-based
and reference power model generation [1]

The evaluation flow then loops over all possible sets training/evaluation distributions
and generates for each possible training set an ICA power model and evaluates it on the
remaining benchmarks in the evaluation set. In addition, a linear power model based on
a combination of reference works, mostly based on information from [36] and [56] and will
in the following be referred to as based on [36], using synthetic benchmarks is generated
and evaluated on the same evaluation sets as the ICA power models. The final evaluation
and comparison of the accuracy of ICA power models and reference-based power model
is then done on core-level power values.

In the following and throughout the thesis, comparisons of error values will be given
in absolute values also when comparing relative error values, e.g. relative RMSE values.
For example, if two relative RMSE values A = 50% and B = 30% are given, this
thesis will denote B having 20% lower relative RMSE rather than a relative decrease of
1 − 30%

50% = 60% percentage points. This is in contrast to the original paper [1], where
relative decreases / increases were given which might lead the reader to overestimate the
absolute change in error values.

To assess the accuracy of the generated ICA power models, the average RMSEs over
all evaluation sets as well as instantaneous worst case error are given in Table 4.2. The
comparison between the ICA power model using generic workloads and the reference-
based power model using generic workloads, yields an improvement of the RMSE of 2
percentage points while the instantaneous worst case error of the ICA power model is
10 percentage points worse compared to the reference-based power model. Note, that
the instantaneous worst case error is by definition outlier data, however, it can still be
important for power and thermal management if a single large deviation from the actual
core-level power consumption leads to an incorrect management decision. Multiple ob-
servations can be made from these results. First, the relative error values for the power
estimations are overall similar to the error values in similar works, e.g. [22]. Notably,

56

4.1 Independent Component Analysis-based Power Model

Table 4.2: RMSE results for power models using ICA-transformation and for a reference-based
power model using synthetic workloads [1]

RMSE Power model using ICA Power Model
synthetic workloads using generic workloads

Average 0.73 W 0.55 W

Worst Case 2.1 W 2.7 W

Relative Error Values

Average 12% 10%

Worst Case 35% 45%

this is achieved without any synthetic workload activating specific sub-components of
the processor and evoking a specific sub-component power response. Secondly, the re-
maining average errors of both the ICA power model as well as the reference-based power
model can be due to nonlinearities in the power response for specific core activities. Both
modeling approaches are fully linear and assume linear relations between performance
counters and core power. For example, a high number of branch mispredictions could
lead to a higher than average core power consumption which would not be captured by
either model. These inaccuracies, likely due to nonlinear relations, will be investigated
in later sections. An additional likely source of estimation error is that dynamic uncore
power is not directly modeled in these ICA models and thus implicitly, evenly divided
onto each core’s dynamic power estimation. Thirdly, the increase in the instantaneous
worst case error for the ICA power model could be due to instability of the ICA transfor-
mation for certain processor states, i.e. the observed performance counter combinations.
Finally, the training workloads used to generate the ICA power models might not cover
all core activity characteristics and the resulting models would then misestimate power
consumption when they encounter unknown core activities. This potential effect is in-
vestigated in the following section.

Dependency on Training Workload Coverage

As the avoidance of synthetic workloads for model generation is the main advantage of
using the ICA methodology, it is useful to investigate how many generic benchmarks are
needed to sufficiently cover core activity to achieve high modeling accuracy. To assess
the dependency of the ICA power models on the coverage of the training workloads
used to generate aforementioned models, exhaustive sets of models are generated with
different number of training workloads. For this, the number of training benchmarks in
the training set is varied from 1 to 19 and the accuracy of the resulting ICA power models
is assessed on the evaluation test workloads. As before, the training and evaluation sets
are kept disjunct. Starting with a training set size of 1, the evaluation set contains 19
workloads. For this first set, an ICA power model is generated for each of the 20 possible
training sets, i.e. individual benchmarks being in the training set of size 1. In the next
step, the training set size is 2 and the evaluation set size is 18 and so forth.

57

4 Novel and Lightweight Power Estimation Models

However, for the training set sizes 2-19 it is computationally not feasible to iterate
over all possible training set / evaluation set distributions as the number of combinations
increases exponentially with a maximum when both sets are of equal size. Therefore, for
each step from 2 to 18, pseudorandomly 100 training workload combinations are chosen
such that there is no repetition in the training / evaluation set distributions within each
step. For the last step of 19 where only one workload remains in the evaluation step, again
all 20 possible combinations are evaluated. With this approach, outlier distributions of
the workloads onto the training and evaluation set, which could lead inadvertently to
highly accurate or highly inaccurate power models, should not dominate the resulting
accuracy results. The estimation errors on each evaluation run are then averaged for each
step such that an average error depending on the number of used training workloads is
determined. Both average RMSE for the ICA power model estimations and the standard
deviation of the error values for each step, i.e. increase of training set by one, are shown
in Figure 4.4. Please note, that this figure is based on an original figure first published
in [1] which had an erroneous y-axis scaling due to incorrect operation of a MATLAB
script for figure generation. The erroneous y-axis scaling has been fixed in this thesis. In
addition, the static error line for the reference-based power model for model generation
is also shown. It is a static line as that power model is generated only once using the
set of synthetic workloads to generate a fixed bottom-up power model.

RMSE ICA Model
RMSE Reference Model

Number of Training Workloads

A
ve

ra
ge

 R
M

S
E

 (
W

)

0 2 4 6 8 10 12 14 16 18 20

1

2

0.
5

1.

5

2.
5

Figure 4.4: RMSE of ICA-based power models with increasing number of training workloads
compared to a reference-based power model using synthetic workloads, Figure based
on [1]

One can observe that the accuracy of the ICA power models rapidly increases until
the training workload set size reaches 7. Afterwards, the improvement in accuracy is
more gradual until the maximum of 19 training workloads in the training set is reached.
There is one unexpected behavior in the accuracy graph when going from a training set

58

4.1 Independent Component Analysis-based Power Model

size of 16 to 17 with accuracy becoming worse after the increase in training size. This
is probably due to an outlier at training set size 16 which, likely due to a distribution
of random, above-average-performing matches between training and evaluation sets, has
unexpectedly good average accuracy. However, overall the behavior shows a gradual
trend towards better accuracy when increasing training set sizes, i.e. allowing the ICA
power model to observe more different performance counter and power data. These
results show on one hand that the ICA power model is able to improve effectively with
increasing number of training workloads. On the other hand, if less than seven training
workloads are used on average, this leads to worse accuracy than existing power modeling
techniques using synthetic workloads.

In addition to above analysis, the power estimation accuracy for known workloads was
also analyzed as follows. First, the estimation accuracy for workloads in the evaluation
set was determined, then these unknown workloads were added to the existing training
workload set, thus became known workloads, and the estimation accuracy for the newly
known/trained set of workloads was reevaluated. In such cases, the estimation accuracy
consistently improved for the previously unknown/untrained workloads. This reaffirms
that the ICA power modeling approach would be able to improve its estimation accuracy
in a run-time environment by observing package power and readjusting the power model.

Run-time Overhead of the ICA Unmixing Step

Finally, it is interesting to investigate the run-time overhead of the ICA power model.
The power model itself is constituted of two parts which have to be executed during run-
time to obtain a power estimation based on the performance counter inputs. First, the
statistical transformation using ICA, i.e. multiplying the unmixing matrix W with the
performance counter inputs. Second, multiplying the transformed input vector s with the
regression coefficients and adding Pidle+uncore. The second part is identical to state-of-
the-art linear power modeling approaches using synthetic workloads. Therefore, only the
first part of the ICA power model — using the unmixing matrix W — adds additional
run-time overhead compared to state-of-the-art linear power models. The unmixing
matrix W is an n × n matrix with n being the PCA-reduced number of performance
counters. In computational overhead terms, multiplying the unmixing matrix W with
the vector PCR to obtain s translates to n2 Multiply-Accumulate (MAC) operations.

Within the experimental setup of this thesis, see Chapter 3, n ≤ 14 leading to a maxi-
mum of 196 MAC operations per run-time estimate as well as an additional 6 kBit to hold
the coefficients of the unmixing matrix. Although, this is an overhead compared to the
minimum of 14 MAC operations needed for the linear regression part, although, it still
fits easily into an on-chip micro-controller dedicated for estimating per-core power con-
sumption. Such a dedicated micro-controller implementation is discussed in Section 4.2.4
and can support up-to 830 MAC operations at a power estimation rate of 10 kHz. How-
ever, the quadratic scaling of the ICA transformation makes the run-time application
of ICA for much larger numbers significantly more difficult. This is a limitation on the
general applicability of the proposed ICA approach.

59

4 Novel and Lightweight Power Estimation Models

Summary In this section, a methodology was presented to generate multicore power
models using the statistical PCA and ICA methods with the goal of minimizing the
collinearity of multi-core performance counter information when generating power mod-
els. This methodology allows the generation of core-level, linear regression power models
with high accuracy without using any synthetic workloads or in-depth microarchitectural
knowledge of the system. The estimation accuracy of the such generated ICA-based
power models was on average better compared to a state-of-the-art approach using syn-
thetic workloads. In worst case scenarios, when the randomly chosen generic workloads
to train the ICA-based model did not exhibit a wide-range of performance and power
behaviors, the ICA-based power models were performing worse than the state-of-the-art
power models. However, this can effectively be countered by increasing the amount of
training workloads, as one would use all available workloads for training for an actual
deployment in a multi-core processor. The proposed ICA-based approach is limited in
regard to its ability to generate power models on finer spatial resolution below core-level,
however, such even finer-grained power information is not commonly used for run-time
power and thermal management. The run-time overhead of the ICA-based power models
is within a reasonable amount for an on-chip power estimating micro-controller, how-
ever, for larger numbers of performance counter inputs, it scales quadratically which
can become cost-prohibitive in regard to overhead. Finally, this section opens up the
question of nonlinear modeling approaches for higher accuracy power models, as ICA
is a linear transformation not allowing for modeling nonlinear performance counter /
power relations.

60

4.2 Feedforward Neural Network-based Power Model

4.2 Feedforward Neural Network-based Power Model

This section presents and evaluates the methodology for FFNN-based power modeling [2,
3].

Motivation and Contributions As discussed in Chapter 2, previous [30] work has shown
that the relationship between performance counters and dynamic core power can also
be nonlinear at core-level, at least for large time-intervals of 1 s. The need for accu-
rate fine-grained power models for power and thermal management, see Section 2.1.3,
motivates the investigation of high estimation rates, core-level nonlinear power models
which account for possible nonlinear performance counter / power relationships. Al-
though multiple works, e.g. [71, 73, 74, 75], have already proposed using FFNNs for
power/energy modeling to capture such nonlinear relationships, these were on compar-
atively coarse-grained server-level with time resolutions of 0.5 Hz-1 Hz. Therefore, the
use of FFNNs for fine-grained power estimation and the associated run-time inference
overhead are investigated in the following. In contrast to previous work, this paper
focuses on generating FFNN-based power models accounting for nonlinear effects with
fine-grained spatial resolution, i.e. on core-level, and time resolution, i.e. time intervals
of 0.1 ms / estimation rates of 10 kHz. Extending the power estimations to the core-level
and increasing the time resolution by four orders of magnitude, make a thorough inves-
tigation of the needed FFNN complexity — regarding the number of hidden layers and
hidden neurons per layer — and their associated overhead for run-time inference nec-
essary. As throughout this thesis, the power estimation models are optimized both for
model accuracy and low run-time overhead with the resulting power estimations being
applicable for run-time power and thermal management purposes.

This section on FFNN-based power models makes the following contributions:

1. Investigation of FFNNs for power estimation on core-level with an estimation rate
of 10 kHz.

2. Optimizing the FFNN architectures, i.e. number of layers and neurons, with the
objective of minimizing estimation error.

3. Additionally, optimizing the FFNN architectures with the two concurrent objec-
tives of minimizing estimation error and minimizing run-time overhead.

4. Showing that relative estimation error decreases by 7.5% compared to a state-of-
the-art linear modeling approach and by 5.5% compared to a multivariate polyno-
mial regression model.

5. Proposing a micro-controller as well as a dedicated hardware implementation for
run-time inference and discussing its overhead.

First, the FFNN architectures and hyperparameter solution space, a single-objective
optimization in Section 4.2.1. Sections 4.2.2 and 4.2.3 introduce a single-objective and

61

4 Novel and Lightweight Power Estimation Models

multi-objective neural architecture hyperparameter optimization methodology, respec-
tively. The results of these hyperparameter optimizations, the accuracy of the final power
estimating FFNNs as well as their run-time overhead are presented in Section 4.2.4.

Notation and Definitions As discussed previously, power modeling for run-time power
dynamic core-level estimation is inherently a regression problem. The desired power in-
formation is a dependent variable and the performance counters are the independent vari-
ables. First, the single-objective optimization methodology [2] for FFNN-based power
modeling is described. The dynamic core-level power information is denoted as Pdyn,core
for each of the cores of the multi-core processor. The core power is estimated during
run-time through the observation of n performance counters PCi with 0 ≤ i ≤ n per
core. With actual dynamic Pdyn,core not being observable for each individual core, the
following approximation for the model generation step is used when only one of the cores
is active at a time:

Pdyn,core = Ppack − Pidle+uncore. (4.10)

For physical processors, package-level power Ppack can be observed through instrumen-
tation of the mainboard or the CPU, e.g. current sensors at power supply pins, and
Pidle+uncore is the idle power of the processor when the full chip is powered-on, however,
where none of the cores is actively computing and the uncore including L3 caches, NoC,
I/O interface etc. is also mostly idling, i.e. the uncore power consumption is counted
towards Pidle+uncore. With only Ppack being observable, different models (FFNN, poly-
nomial, linear) are generated for Ppack and Pidle+uncore is subtracted to derive core-level
power consumption. Therefore, the PCi and Ppack data used for model generation is
filtered to time intervals where only a single core is active at a time, similarly to the
ICA-based approach, as the core-level power models are not aiming to capture shared
resource power consumption. This allows to mostly capture the power response of that
particular active core. However, there is an error term regarding the dynamic uncore
power consumption, mostly due to data movements, could be partially counted towards
the dynamic core power during model generation. With homogeneous multi-core pro-
cessors being investigated in this thesis, the power models for the j-th core can be
generalized to any core of the system by using the respective performance counters of
those cores as model input. The error cost function for generating the subsequent power
models is then:

Ppack,error = |Ppack,act − Ppack,est| (4.11)

where the subscripts est and act indicate estimated power and actual observed power,
respectively.

4.2.1 FFNN Architectures and Hyperparameter Solution Space

There exists a multitude of NN architectures, e.g. FFNN, Elman, LSTM, for modeling
and estimating nonlinear functions and systems. With most fine-grained power mod-
els using linear regression models and the limited computational resources realistically
available for run-time power estimation, the following analysis is kept to comparatively

62

4.2 Feedforward Neural Network-based Power Model

simple NN architectures. Overall, the goal is to achieve higher estimation accuracies
than with purely linear modeling techniques while adding as little additional modeling
complexity and run-time overhead as possible. For this reason, well-known feedforward
networks are chosen which can theoretically model any nonlinear function according to
the universal approximation theorem [115]. Similar to previous works, no delays are
used on the PCi inputs, i.e. the generation of AR models is avoided. This is due to
the assumption that the performance counter inputs, which effectively are used to ap-
proximate the switching factor α, are time-invariant over the scale of a single power
estimation. In other words, previous performance counter changes — in contrast to cur-
rently changed performance counter values — do not hold additional information about
the current power consumption in the current power estimation time step. While linear
regression models are at risk of underfitting the underlying dynamic power relationship,
FFNNs are at risk of both underfitting and overfitting the power/performance relation-
ship. With a finite amount of training data, FFNNs of sufficient size and thus can fit
each data point perfectly, i.e. memorize the data, while not actually learning the under-
lying relationship. In that case, the PCi data is overfitted and the estimation errors on
Pcore for untrained/novel PCi input data could be significant. Therefore, careful consid-
eration has to be taken regarding the chosen hyperparameters of the FFNN which are
distinguished between algorithm hyperparameters (learning related) and model hyper-
parameters (architecture-related). For the algorithm hyperparameters, a multitude of
networks for dynamic power estimation are trained and both the resulting power estima-
tion accuracy as well as the needed training time are compared. This heuristic approach
yields the conjugate gradient backpropagation with Polak-Ribière updates providing the
best training time/ estimation accuracy trade-off. As stop conditions for training the
FFNNs, the following algorithm hyperparameters were set:

� stop after 1000 training epochs OR,

� an MSE below 1% on the training data OR,

� a minimum performance gradient of 1 · 10−5 OR,

� five subsequent failed validation tests, i.e. additional training leads to higher esti-
mation errors on the validation data.

After sweeping over a set of different activation functions and comparing the resulting
estimation accuracy, tanh was chosen as activation function for all hidden neurons.
The question of how to determine the optimal FFNN model hyperparameters is still
an ongoing topic of research, therefore, best practices for hyperparametrization were
followed. As a first step, the model hyperparameters have to be confined which is
described in detail in the following.

Single-objective Hyperparameter Solution Space The goal of the single-objective op-
timization methodology is to find FFNN architectures which effectively minimize the
power estimation error for untrained performance counter and power data, i.e. are well-
suited to avoid underfitting and overfitting. The run-time overhead is then simply a

63

4 Novel and Lightweight Power Estimation Models

direct consequence of the architecture chosen for it having the lowest estimation error.
The proposed single-objective methodology exhaustively searches through a constrained
solution space of FFNN architectures. Therefore, the solution space of FFNN architec-
tures should be both representative and well-constrained such that the necessary training
time falls within a given computational limitation for training the FFNN models.

In regard to the number of hidden layers and hidden neurons per layer, the solutions
space is aligned with the related work for coarse-grained power models for servers/data-
centers. The number of hidden layers and hidden neuron hyperparameters are confined
as shown in Figure 4.5.

Input
Layer

Ouput
Layer

Hidden Layers

Shallow
FFNN

Number of hidden
neurons per layer

1,2,...,30

... ...
...

PC1

PC2

PC14

h1,1

h1,2

h1,30

h2,1

h2,2

h2,30

Pest

Mid-sized
FFNN

Number of hidden
neurons per layer

1,4,7,...,28

... ...
...

...

PC1

PC2

PC14

h1,1

h1,2

h1,28

h2,1

h2,2

h2,28

h3,1

h3,2

h3,28

Pest

Deep
FFNN

Number of hidden
neurons per layer

1,8,15,22,29

... ...
...

...
...

...

PC1

PC2

PC14

h1,1

h1,2

h1,29

h2,1

h2,2

h2,29

h3,1

h3,2

h3,29

h4,1

h4,2

h4,29

h5,1

h5,2

h5,29

Pest

Figure 4.5: Overview of the ANN architectures investigated; the blue shaded rectangles indicate
the ability to parameterize the number of hidden neurons per layer, i.e. from at least
one hidden neuron per layer up to the given maximum number [2]

Overall, there are three different layer sizes explored during the single-objective opti-
mization. The smallest is a two-layered shallow network with 1-30 neurons per hidden

64

4.2 Feedforward Neural Network-based Power Model

layer. Note, that all possible combinations of the number of hidden neurons per layer are
explored, i.e. 900 differently parameterized two-layered FFNNs are the solution space
for the two-layered network architectures. Furthermore, a mid-sized network with three
hidden layers is part of the overall solution space. Here, the number of neurons per layer
can be any number of 1, 4, 7, 10, 13, 16, 19, 22, 25, 28 spanning a solution space of 1000.
Finally, a deep network with fibe hidden layers is explored where the number of neurons
per layer can be 1, 8, 15, 22, 29.

The number of neurons per layer is constrained through a more coarse-grained stepping
of the possible number of neurons per layer for the mid-sized and deep networks. This is
done to keep the amount of training time on a reasonable level. Although adding layers
and increasing the number of neurons per layer increases the risk of overfitting, it also
decreases the risk of underfitting due to an undersized FFNN.

Overall, the three different layer sizes and possible neurons-per-layer of the FFNN
neural architectures constitutes 302 + 103 + 55 = 5025 different FFNN architectures.
These 5025 FFNN architectures are the overall solution space for the single-objective
optimization. This solution space is well-constrained in regard to training time due to
skipping four as well as higher-layered FFNN architectures and skipping neuron distri-
butions within the three-layered and five-layered architectures. However, the downside
is that possible more optimal architectures are missed during the optimization. In the
following, the extension of the single-objective optimization methodology is presented,
beginning with the extended multi-objective solution space.

Multi-objective Hyperparameter Solution Space The goal for the proposed multi-
objective optimization methodology is to find neural architectures minimizing both the
power estimation error as well as the run-time overhead. To find solutions simultaneously
optimal for both objectives, a larger solution space has to be explored than for the single-
objective optimization as the 5025 possible solutions described previously would likely
not contain architectures optimal in both objectives. Due to the needed increase in the
solution space, an exhaustive optimization of the FFNN architectures is cost-prohibitive
in regard to training time. Therefore, a heuristic architectural optimization methodology
is proposed and described later in this section.

The solution space is constrained to FFNN architectures with two, three, four or five
hidden layers with up to 30 neurons per layer without any intermediate, i.e. skipping,
constraints on the number of neurons per layer. Therefore, the solution space grows
302+303+304+305 = 25, 137, 900 different neural architectures which is four magnitudes
larger than for the single-objective optimization. With the multi-objective approach
being an extension of the single-objective approach, it was possible to use the results of
the single-objective optimization to determine that optimal solutions will likely not lie
outside of these constraints.

In the following, both the proposed single-objective as well as the multi-objective
methodologies to find well-performing FFNN architectures for run-time power estimation
will be described in detail.

65

4 Novel and Lightweight Power Estimation Models

4.2.2 Single-Objective Neural Architecture Hyperparameter Optimization

The methodologies for the hyperparametrization of the model parameters and for the
final training and computation of expected estimation accuracy are shown in Figure 4.6.
At two stages, 10-fold cross validations are used to obtain statistically reliable interme-

Split performance counter and power data into:
training/validation data (75%) and holdout data (25%)

Set model
hyperparameters

(hidden layers and
neurons per layer)

First
10-fold cross

validation

Compute RMSEavg1
for given set

of hyperparameters

Hyperparameter
combinations

fully exhausted?

Choose
hyperparameters

with minimal
RMSEavg1

Second
10-fold cross

validation

Compute RMSEavg2
of FFNNs

on validation folds

Choose single FFNN
with lowest
RMSEavg2
of each size

(shallow, mid-sized,
deep)

Assess final FFNN
accuracy
(RMSE)

on holdout data

yes

no

repeat 10 times

Figure 4.6: Flowchart of model hyperparametrization using a first 10-fold cross validation, fi-
nal FFNN generation using a second 10-fold cross validation and the final power
estimating FFNN estimation accuracy assessment on holdout data [2]

diate accuracy results, i.e. to avoid random accuracy outliers for random architectures
to negatively steer the end result of the architecture search. These 10-fold cross vali-
dations are used at the model hyperparametrization stage as well as the final training
stage where the final FFNNs of each layer-size (shallow, mid-sized, deep) are trained for
actual deployment, i.e. in this thesis for holdout data accuracy assessment.

For the overall methodology, at first the traced PCi and Ppack data is partitioned
into a training/validation data set (75%) and a holdout data set (25%) such that the
holdout data set contains benchmarks from different benchmark suites covering diverse
performance / power behaviors. The holdout data set is neither used for optimizing
the hyperparameters nor for training the three final FFNNs. It can thus be used to
determine the actual performance of these FFNNs for data they have not been directly
trained for or indirectly been steered towards during the hyperparametrization.

66

4.2 Feedforward Neural Network-based Power Model

For the hyperparametrization itself, all possible hidden neuron per layer combinations
for each FFNN layer-size (shallow, mid-sized, deep) are iterated over and the first cross
validation loop is executed. In this loop, the training data set is further partitioned into
10 folds and each fold is used once for validation with the remaining folds being used
as consecutive training data for training the FFNN based on the architecture associated
with that specific loop iteration. This step is repeated for each fold ten times to produce
statistically significant results and to be able to remove outliers, i.e. diverging FFNNs.
Thus, overall a 100 different FFNNs of the same architecture are generated for each
possible model hyperparameter combination. After a full hyperparametrization run, the
estimation error on the validation data is averaged for each hyperparameter / neural
architecture over all folds. Then the hidden neuron parametrizations for each FFNN
layer-size with the lowest average RMSE are chosen under the assumption that these
neuron parametrizations provide the best general fit for the given performance / power
data. The benefit of the repeated 10-fold cross validations lies in the robustness of
the average RMSE for the different hyperparameters and thus in choosing with high
confidence good hyperparameters for generating the final FFNNs.

The hidden neuron parametrizations are then used in the second 10-fold cross val-
idation step. In this step, an FFNN is trained for each training/validation fold com-
bination, i.e. 10 FFNNs for each FFNN layer-size (shallow, mid-sized and deep) and
those FFNNs which performed best on their corresponding validation data are chosen
for final evaluation. The second cross validation is used to minimize the risk of select-
ing an overfitting-FFNN from the first cross validation where 100 different FFNNs were
generated for each neuron parametrization. The risk of, the FFNN with the highest
accuracy on their respective validation fold, overfitting is higher when 10 such FFNNs
are available to choose from, rather than just one. In the final step, the three chosen
FFNNs of layer-size shallow, mid-sized and deep are evaluated on the holdout data to
assess their potential dynamic power estimation performance in a potential deployment
environment.

4.2.3 Multi-Objective Neural Architecture Hyperparameter Optimization

Multi-objective optimizations of neural network architectures based on NSGA-II [116]
have been proposed in several works [117, 118, 119], usually for image classification tasks.
To the best of this author’s knowledge, this work is the first to propose using NSGA-II to
optimize FFNN neural architectures for multi-core run-time power estimation models.
For the multi-objective optimization of the neural hyperparameters for the proposed
power modeling FFNNs, NSGA-II [116] with Simulated Binary Crossover (SBX) [120]
and polynomial mutation [121] are adapted. As the basis for the crossover operation
SBX [120] was chosen, as it enables gradual changes close to the chosen parent neural
architectures. By this, the solution space is searched by the crossover operation with
higher probability in the vicinity of existing solutions and with lower probability in
larger distances. To ensure diversity of the population and to avoid being stuck in
a local minima, polynomial mutation was chosen. In addition, a comparatively large
percentage of the offspring populations are generated by this mutation operator.

67

4 Novel and Lightweight Power Estimation Models

The goal is to find neural architectures minimizing the modeling error while also mini-
mizing the run-time inference overhead. In addition, the aim is to make our methodology
generic in regard to the neural architecture solution space, especially the number of lay-
ers. This has the advantage, that neural architectures with different number of layers
can be searched in a single optimization run allowing for faster convergence towards
more optimal architectures within the same training time. The disadvantage of this ap-
proach is that in case of small population numbers, some layer values might be excluded
too early from the population without the chance of getting back into the population,
i.e. the optimization of the neural architecture gets stuck in a local optimum without
the chance of escaping it.

An explicit encoding of the neural architecture is proposed. It contains the num-
ber of layers and the number of neurons per layer as illustrated in Table 4.3. This
encoding also contains the used performance metrics as shown in the table. The per-
formance metrics are each neural architecture individual’s modeling error (RMSE) and
its run-time overhead counted in MAC operations. The final dense FFNN layer after
the last hidden layer is not explicitly encoded as its specification is fully derived from
the last non-zero hidden layer. Thus, it can not be influenced by the optimization and
encoding it explicitly is superfluous. In the following, a population size of 50 is used
to keep sufficiently large numbers of individual neural architectures in the population
while also keeping the necessary compute time for each generational step in a reasonable
range. With more computational resources available, a larger population size could be
set to increase population diversity throughout the generations. Also an archive of all
populations generated over the different generations is kept and cross-referenced with
the currently by the crossover and mutation operations generated neural architecture
individuals. This is done to avoid computationally costly re-training and re-evaluation
of the same neural architecture in the case that it is generated multiple times over the
generations by crossover or mutation. An overview of the multi-objective methodology

Table 4.3: Example of the encoding of individual solutions within a population including the
objective performance metrics RMSE and run-time overhead and the NSGA-II
population-relative performance metrics [3]

Architecture Encoding Objective Performance Relative Performance NSGA-II

Number Neuron RMSE Overhead Rank Crowding
of Layers Distribution (MACs) Distance

3 6-4-17-0-0 0.55 389 1 Inf

2 25-16-0-0-0 0.45 962 1 0.25

...

generating and optimizing the neural architecture population is shown in Figure 4.7.

First, the performance counter data is split the same way as previously into training/-
validation data as well as holdout data. Afterward, an initial population is generated
with a random number of layers and neurons per layer for each individual constrained

68

4.2 Feedforward Neural Network-based Power Model

Split performance counter and power data into:
training/validation data (75%) and holdout data (25%)

Initialize random
population of hyperparameters

(number of hidden layers
and neurons per hidden layer)

10 times
10-fold cross

validation

Compute
overhead

Performance Assessment

Determine ranks and
crowding distance

NSGA-II [116]

Layers Neurons RMSE Overhead Rank CD

2 25-16 0.45 962 1 Inf

3 6-4-17 0.55 389 1 0.25

...

Current
population

Simulated
binary crossover
operator [120]

Mutation
operator [121]

Offspring
individuals

10 times
10-fold cross

validation

Compute
overhead

Performance Assessment

Offspring
population

+

Determine ranks and
crowding distance

NSGA-II [116]

Select new population
based on ranks and
crowding distance

NSGA-II [116]

Another
generation?

Take
Pareto optimal

hyperparameters

Final
10-fold cross

validation

Compare RMSE of FFNNs
on their validation folds

Choose one FFNN
for each hyperparameter

with lowest RMSE
on validation data

Assess final FFNN
performance

(RMSE / MAPE)
on holdout data

10% 90%

Yes

No

Figure 4.7: Flowchart of the multi-objective FFNN optimization of the hyperparameters using
NSGA-II, 10-fold cross validations and a final FFNN power estimation accuracy
assessment on the holdout data [3]

69

4 Novel and Lightweight Power Estimation Models

within the overall limits on number of layers and neurons per layer. The random pop-
ulation of neural architectures is then assessed with the same repeated 10-fold cross
validation as in the previous section to get consistent estimation errors, i.e. RMSE, for
each neural architecture dependent mostly on the underlying architecture and not on
random deviations. In addition, the run-time overhead is calculated in MAC operations
for a single inference of the neural network architecture generating a power estimate.
Based on the error and overhead values, the individual ranks and crowding distance is
computed using NSGA-II [116]. With this, the initial starting population is complete
and functions as the current population.

In the next step, the proposed genetic algorithm optimizes the population over a mul-
titude of generations by applying a mutation and a crossover operation, both discussed
in detail in the next paragraph. Overall, 50 new neural architectures, i.e. the offspring
population, are generated with 10% (5) neural architectures generated by the mutation
operation and 90% (45) generated by the crossover operation. The decision on this
distribution of the mutation/crossover likelihood is motivated in trying to ensure suffi-
ciently high randomness in the offspring population throughout the optimization while
also having sufficiently high convergence towards improved neural architectures. In case
a newly generated neural architecture has already been evaluated, i.e. is in the gener-
ational archive, we reapply the crossover or mutation operation to get a novel neural
architecture while ensuring the above mutation/crossover distribution.

Crossover and Mutation Operation The crossover operation operating on the neu-
ral architectures is shown in Algorithm 4.2.3. Note, that the two parent architectures
used for a single crossover operation are chosen by binary tournament from the current
population using the crowded distance operator as described in NSGA-II [116]. The pa-
rameter regarding the probability distribution is set as 20 resulting in a wide probability
distribution for the neuron values.

With the number of layers being an explicit part of the solution space and thus op-
timization, the crossover operator has to differentiate two cases. In the first case, both
parents have the same number of layers allowing to simply use that as the number of
layers for the two child architectures to be generated. In the second case, both parents
have different number layers and we designate randomly, with equal probability, one of
the parents as the dominant parent. The dominant parent’s layer number is then set
for both child architectures. If the dominant parent architecture has fewer layers than
the other parent architecture, the crossover of the neuron values is only executed up
to the dominant (smaller) layer number generating two children architectures. If the
dominant parent architecture has more layers than the other parent architecture, the
crossover of the neuron values is again only executed for the neuron values up to the
now non-dominant (smaller) layer number and the dominant parent architecture’s neu-
ron values of the remaining layers is copied for the two children architectures. Finally,
the real-valued neuron values of the children architectures are rounded to the closest
integer values and in case the neuron limits (1 or 30) are underflown or overflown, the
neuron values are set to the respective neuron limits.

70

4.2 Feedforward Neural Network-based Power Model

Algorithm 1: Crossover operation for optimizing the neural architecture hy-
perparameters [3]

Input : 2 parent architectures p1 and p2 chosen by binary tournament
Output: 2 child architectures c1 and c2

if both parents have same number of layers n1 == n2 then
foreach layer i = 1 : n1 do

Generate real-valued neuron distributions for c1,i and c2,i using [120]
end

else
Randomly choose dominant parent from p1 and p2 if dominant parent pd
has more layers nd than other parent no then

foreach layer i = 1 : no do
Generate real-valued neuron distributions for c1,i and c2,i using [120]

end
foreach layer i = no + 1 : nd do

c1,i = pd,i and c2,i = pd,i
end

else
foreach layer i = 1 : no do

Generate real-valued neuron distributions for c1,i and c2,i using [120]
end

end

end
Round neuron values of to c1,i and c2,i to closest integer values
if a neuron value exceeds min/max neuron limits then

Set neuron values to limit values

For the mutation operation, random individual neural architectures are chosen from
the current population and the number of neurons per layer mutated using polynomial
mutation with the same probability parameter set to 20 as for the crossover operation
[121]. Neuron values are increased and decreased with equal probability and the resulting
neuron values rounded to the nearest integer value, with the value saturating in case it
exceeds the neuron limit upwards or set to one in case of values below 1.

The performance of the offspring population in regard to modeling error and overhead
is then assessed and the individual ranks and crowding distance are determined. After
both objectives have been evaluated, the current and the offspring population are com-
bined and their relative performance, i.e. their relative ranks and crowding distance, is
computed according to NSGA-II. In the final step of a generation, the best individuals
— according to ranks and crowding distance — are selected for the next generation.

In this proposed methodology, the only stopping criteria is a maximum number of gen-
erations limit as the computational requirements for training the FFNNs are the crucial

71

4 Novel and Lightweight Power Estimation Models

limit for the evaluation in this thesis. However, other stopping criteria could be sensible
in case of larger computational resources. For example, a convergence limit when the
population is not adding new individuals from the offspring population to the new pop-
ulation generation, might be advantageous to not waste larger computational resources
which allow for far larger maximum number of generations. After reaching the maximum
number of generations — or other possible stopping criteria — the performance of the
individual neural architectures of the final generation in the Pareto front is evaluated
on the holdout data. For this last step, the approach is similar to the single-objective
methodology with FFNNs generated for the different validation folds and the ones with
the lowest RMSE chosen for assessment on the holdout data with the only difference
that there can be multiple neural architectures in the Pareto front and thus multiple
final FFNNs.

4.2.4 Experimental Evaluation

The results of the proposed single-objective and multi-objective optimizations for gen-
erating power estimating FFNNs are shown and discussed in the following. Again, the
experimental setup described in detail in Chapter 3 is used to generate the underlying
power and performance data. First, the reference power models used for comparison with
power estimating FFNNs are introduced. Afterwards, the resulting FFNN architectures
from the optimizations and their run-time inference overhead for a micro-controller-
based approach and custom logic approach are shown. Finally, the accuracy results on
the holdout data set for the different power models are presented and discussed.

Reference Power Models

The estimation accuracy of the final FFNNs are compared with a state-of-the-art linear
approach based on a proposal by Bertran et.al. [36] and a polynomial regression model
based on proposal by McCullough et al. [30]. For the linear model, a set of microbench-
marks and the PARSEC/SPLASH-2 benchmarks are executed on the multi-core system,
Ppack and PCi are traced and the results combined into a core-level linear regression
model. Although [30] argues that a polynomial regression model was not able to accu-
rately capture the nonlinear power relationships; possibly due to overfitting. This thesis
uses a polynomial model to test the hypotheses that the available performance/power
data could potentially be described well through polynomial regression and therefore
obviating the need for more complex NN methodologies. To generate the polynomial
regression model, a similar methodology as described in Section 4.2.1 for FFNNs is used,
and described in more detail in Section 4.3.1. First, repeated 10-fold cross validations are
executed to determine the best polynomial order and to then generate the final polyno-
mial regression model through another 10-fold cross validation choosing the polynomial
model with the highest accuracy on its respective validation fold. The maximum polyno-
mial orders explored for the independent PCi inputs were one to six. It was found that
a maximum polynomial order of two offered the best average estimation performance on

72

4.2 Feedforward Neural Network-based Power Model

Table 4.4: FFNN architectures found by the single-objective optimization methodology with
average RMSE on the randomized validation data [2]

FFNN Number of Neurons per Average Relative
Hidden Layers Hidden Layer RMSE Error

Shallow 2 14-29 0.31 W 5%

Mid-sized 3 25-28-25 0.36 W 6%

Deep 5 22-08-22-15-15 0.33 W 6%

the validation data. These two reference-based linear and polynomial models are then
used in the final accuracy comparison of the power estimating models.

Single-Objective Hidden Neuron Architecture Results

The single-objective optimization solely optimizes the estimation accuracy for the three
fixed layer-sizes shallow, mid-sized and deep. In the following, the model hyperparam-
eters of the three hidden layer-sizes minimizing the RMSE on the validation data from
the 10-fold cross validations are investigated. For these three different FFNN layer-sizes,
the hidden neuron parametrizations with the lowest average RMSE are shown in Ta-
ble 4.4. In addition, the relative error compared to the average core power is computed
as RMSE

Pavg
.

The first observation is that the shallow FFNNs with two hidden layers and 14 neurons
in the first hidden layer and 29 neurons in the second hidden layer offer on average the
best performance on the validation data. Both the mid-sized and deep FFNN offer
worse performance than the shallow FFNN on the validation folds. Notably, all FFNNs
steer towards the previously set upper limit on the number of neurons per layer of 30
within the available solution space. However, for the mid-sized and deep FFNNs these
higher neuron counts can also be due to the coarse granularity of the solution space for
these layer-sizes. Smaller FFNN architectures with specific neuron-distributions might
be outside of the solution space but still offer similar or better accuracy for FFNNs with
three or four layers. This is also a motivation to avoid course-grained solution spaces
for such power estimating FFNNs where run-time inference overhead is critical and any
avoidable architectural complexity — which roughly translates to run-time overhead,
should be avoided.

Multi-Objective Hidden Neuron Architecture Results

With the proposed optimization being a multi-objective metaheuristic, first its conver-
gence properties towards good FFNN architectures over time are investigated. In Fig-
ure 4.8, the average RMSE and overhead values of the neural architectures are shown
over 50 generations of genetic optimization. Also, the smallest RMSE and overhead
values of the Pareto-optimal (rank 1) solutions in the population are shown. One can
observe that the average overhead values are steadily decreasing while the average RMSE

73

4 Novel and Lightweight Power Estimation Models

values tend to fluctuate over the generations. After further investigating the population
composition from generation to generation, it was found that small numbers of neural
architectures with above-average RMSE and very small overheads are introduced and
kept in the population on the lower ranks. For example, neural architectures with only
one to three neurons on a single layer drastically decrease overhead while simultaneously
increasing the modeling error and thus stay in the population as they are still optimal
on the overhead objective while underperforming the error objective. This leads to av-
erage RMSE values fluctuating with due to such individual solution outliers. However,
this behavior is not in itself problematic as an overall increase in population diversity
is seen when inspecting manually the populations over the different generations. This
higher population diversity can lead to more optimal solutions further down the genera-
tional timeline. As was to be expected for the solutions in the actual Pareto front of the
population, the minimal values observed for either the RMSE or the overhead are both
decreasing steadily. This thesis concludes that our heuristic multi-objective optimization
successfully optimizes the initial random neural architectures.

0 5 10 15 20 25 30 35 40 45 50

0.35

0.4

0.45

0.5

0.55

0.6

400

600

800

Number of Generations

R
M

S
E

(W
)

on
V

al
id

at
io

n
F

ol
d

s

R
u

n
-t

im
e

O
v
er

h
ea

d
(M

A
C

s)Avg. Population Overhead
Min. Pareto Front Overhead

Avg. Population RMSE
Min. Pareto Front RMSE

Figure 4.8: Average population performance over 50 generations as well as lowest overhead and
RMSE values of the Pareto optimal solutions [3]

The Pareto optimal solutions obtained after 50 generations are given in Table 4.5. In
addition, each solutions corresponding RMSE values on the validation folds and their
run-time overhead are specified. All four solutions have quite similar neuron architec-
tures with small trade-offs between overhead and modeling error. This is not a large
diversity in the Pareto optimal front of the population and could mean that either the
overall optimization converged towards a local optimum quite early in the optimization
or that these are solutions close to a global optimum for a power estimating FFNN
architecture with the given training and validation data. The convergence towards a
global optimum cannot be proven due to necessity of sweeping the whole solution space
to achieve a provable conclusion. However, within the lower ranks of the final population

74

4.2 Feedforward Neural Network-based Power Model

only neuron architectures with different layer numbers and significantly different neuron
distributions were found. This at least lowers the risk that the arising solutions where
only found within a local optimum of the solution space. When comparing these archi-
tectures with the results of the single-objective optimization methodology, as shown in
Table 4.4, one can see that the overhead values were successfully minimized. However,
the power estimation errors are slightly larger for the heuristically optimized architec-
tures. In conclusion, the proposed methodology is at least able to converge towards
optima in both the accuracy as well as the run-time inference overhead objective.

Interestingly, the heuristic methodology has not found the same or similar neural ar-
chitectures in regard to lowest RMSE as the exhaustive single-objective methodology.
However, this is not unexpected as the solution space for the heuristic methodology
is four magnitudes larger than for the far more constrained exhaustive optimization
methodology. In regard to compute/training time for the optimization, the heuristic
optimization evaluated 2500 different neural architectures, while the single-objective
optimization evaluated 5025 architectures. This means that the multi-objective opti-
mization found solutions with similar accuracy on the training/validation data and far
lower run-time overhead within half of the training time.

Table 4.5: FFNN architectures found by the multi-objective optimization methodology with
average RMSE on the randomized validation data [3]

FFNN Number of Neurons per Average Relative Run-time
Hidden Layers Hidden Layer RMSE Error Overhead

Multi-1 3 5-4-8 0.32 W 5% 326 MACs

Multi-2 3 3-4-8 0.34 W 6% 290 MACs

Multi-3 3 3-2-8 0.37 W 6% 268 MACs

Multi-4 3 4-4-8 0.34 W 6% 308 MACs

Run-time Inference Overhead for an on-chip Micro-controller Implementation

In the following, the computational and memory overhead of run-time inference of the
FFNNs for producing a single power estimation is assessed. This run-time overhead
is critical in regard to the viability of fine-grained FFNN-based power models. Due
to the fact that the power models cannot require any substantial amount of on-chip
area or computational resources and the estimation rates of 10 kHz, the computational
complexity of a single run-time inference has to be marginal to make the models viable.

This thesis assesses run-time overhead always in regard to the necessary number of
MAC operations and the required memory; in the case of FFNN-based power models the
memory needed to store the 32-bit neuron weights. An overview of both the compute
overhead and memory overhead is given in Table 4.6 for all the different FFNN archi-
tectures generated through both single-objective and multi-objective optimization. The
number of necessary MAC operations is derived from the needed input computations
and the computations in the hidden layers and the output layer.

75

4 Novel and Lightweight Power Estimation Models

Table 4.6: Necessary computations and memory for a single power estimation, i.e. FFNN power
model inference [2, 3]

Model Number of Memory
MAC Operations in kBit

Single-Objective Optimization

Shallow FFNN 827 20

Mid-sized FFNN 1971 56

Deep FFNN 1426 39

Multi-Objective Optimization

Multi-1 FFNN 326 10

Multi-2 FFNN 290 9

Multi-3 FFNN 268 8

Multi-4 FFNN 308 10

Reference-based

Linear Model [36] 14 0.5

Poly. Model 36 0.8

Compared to the linear regression model, the shallow FFNN needs approximately 60
times more MAC operations and 40 times more memory The multi-x FFNNs, which were
optimized for both accuracy and overhead simultaneously, need on average 21 times more
MAC operations and 20 times more memory compared to the linear regression model.
Both, the computational and memory overhead, are at least one magnitude higher for
any FFNN implementation and, therefore, the feasibility and area overhead of a run-time
inference implementation of the different FFNNs is discussed in the following.

At least on IBM multicore processors, small micro-controllers are integrated for both
power estimation — so-called power proxies — and for power management purposes
[37]. Under the assumption of a similar integrated micro-controllers being available for
run-time inference of the shallow FFNN for power estimation, an approximation of the
transistor overhead is made. As a reference micro-controller the 32-bit ARM Cortex M0
— a well established and very minimalistic micro-controller— is used. It can conserva-
tively be operated at 50 MHz with an implementation using less than 100 k transistors
[122]. Besides these transistors needed for the compute logic, additional SRAM is needed
to store the weights for the shallow FFNN. This will add an additional 120 k transistors
to the transistor / area overhead. Each MAC operation and its associated load/store
instructions take 6 cycles on the M0 leading to approximately 5 k cycles for a single infer-
ence of the shallow FFNN. Therefore, at a clock frequency of 50 MHz power estimations
could be executed with a periodicity of 100µs. One micro-controller would be needed
per core if a power estimation rate of 10 kHz power estimations is required.

Such a micro-controller implementation leads to an overhead of approximately 250 k
transistors under conservative assumptions and has to be compared to these power es-
timations being used for a complex out-of-order core having hundreds of millions of

76

4.2 Feedforward Neural Network-based Power Model

transistors. The area overhead of— at maximum 0.25% —would decrease the average
relative power estimation error by 7.5%, translating to better power and thermal man-
agement and thus the possibility of higher compute performance and/or higher energy
efficiency. Area overhead could be further decreased by custom logic for FFNN inference
which would however remove the programmability of the power estimation model. With
a micro-controller implementation, both the neural architecture as well as the neural
weights are simply defined as program code and can be adapted through the firmware
of the multi-core processor. Depending on the requirements of the power and thermal
management algorithms employed in the multi-core processors, however, multiple cores
could also share a single micro-controller if the required estimation rate is substantially
lower than 10 kHz.

In conclusion, the multi-x FFNNs and the shallow FFNN can be implemented for
run-time power modeling on today’s multicore processors. The multi-x FFNNs have,
due to the multi-objective optimization approach which takes overhead directly into
account and steers the architectures towards low run-time overhead, a clear advantage
with run-time overhead being on average 60% smaller compared to the shallow FFNN
which was generated with the single-objective optimization approach.

Run-time Inference Overhead for an Accelerator Implementation

The following accelerator implementation and evaluation as published in [3], was done
by Nael Fasfous and should not be seen as a contribution of this thesis’ author. The
discussion of the accelerator implementation in comparison to the micro-controller im-
plementation itself was done by the thesis’ author. In this section, it is kept for the
convenience of the reader, to give a fuller picture of how the power estimating FFNN
architectures can be effectively implemented as hardware accelerators.

The implementation of the proposed FFNN architectures on hardware is investigated
as an alternative to the micro-controller execution in Section 4.2.4. The simplicity of the
FFNN architectures facilitates their synthesis as computation graphs on FPGA fabric.
This follows a dataflow-style architecture where all the weights remain on-chip while
the activations flow through the network. The compute graph is pipelined, therefore
successive inputs can be processed in different parts of the graph at any point in time.
This leads to large improvements in latency and throughput, but requires more on-chip
memory to hold the intermediate results between the layers, as well as the weights of
the FFNN. The implemented designs follow the method proposed in [123], but offer a
higher numerical precision of 8-bit for weights and activations.

The resulting inference rates and FPGA resource usage numbers are given in Table 4.7.
The FPGA 6-input LUTs can be very conservatively translated to a transistor count
of 3.8 million transistors per 10,000 LUTs, assuming worst case truth tables and no
optimization of the logic functions. Of the different FFNN architectures, the multi-x
architectures offer significantly higher inference rates and simultaneously lower compute
logic and memory usage compared to the shallow, mid-sized, deep architectures.

When comparing the overheads of the possible on-chip micro-controller implemen-
tation in Section 4.2.4 with the FFNN accelerator approach, one can observe that the

77

4 Novel and Lightweight Power Estimation Models

Table 4.7: FPGA resource usage, latency and maximum inference rates for an accelerator im-
plementation [3]

Model LUTs Memory Latency Inference
in kBit in us Rate in kHz

Single-Objective Optimization

Shallow FFNN 15,763 88 6.3 158

Mid-sized FFNN 21,937 111 17.8 56

Deep FFNN 32,810 156 12.3 81

Multi-Objective Optimization

Multi-1 FFNN 18,622 69 1.3 769

Multi-2 FFNN 17,272 49 0.9 1,064

Multi-3 FFNN 17,148 49 0.7 1,389

Multi-4 FFNN 17,151 48 1.1 893

accelerator approach for the multi-x architectures offers approximately a 100 times higher
inference rate at a cost of approximately 20 times more transistors, under worst case
transistor usage assumptions. Due to the very high inference rate of the accelerator, a
single accelerator could be used for a 100-core processor computing the power estima-
tions for all cores at an effective per-core inference rate of 10kHz. This would translate
to five times lower area overhead compared to the per-core micro-controller implemen-
tation. Also, future very large core architectures might require higher power estimation
rates than today’s multi-core processors, making such an accelerator implementation on
a per-core/compute tile/chiplet level even more advantageous.

Estimation Accuracy on Holdout Data

The neural architecture hyperparameters gained from the single-objective optimization
and shown in Table 4.4 are used to generate the first three final FFNNs (shallow, mid-
sized, deep) using the second round of 10-fold cross validation as presented previously in
Section 4.2.2. Four additional FFNNs (multi-1/2/3/4) are generated in the same way.
They are based on the Pareto optimal neural architecture hyperparameters gained from
the multi-objective optimization as presented in Section 4.2.3 and shown in Table 4.5.
Note, that for an actual deployment in a multicore processor, one would only generate
either the shallow FFNN or one of the four multi-x FFNNs as they all occupy the same
Pareto front with the shallow FFNN having lowest error values on the validation data
and the other FFNNs having slightly higher error values but also lower overhead.

However, for providing an extensive performance review and analysis of the power
estimating FFNNs, additionally the performance of the mid-sized and deep FFNN is
presented. The final estimation accuracy comparison, i.e. what one would reasonably
expect in an actual deployment, of all seven resulting FFNNs is determined on the
holdout data. This is data that has neither been used for the neural architecture hyper-
parametrization nor for training the FFNNs. Table 4.8 shows the RMSE and percentage

78

4.2 Feedforward Neural Network-based Power Model

Table 4.8: Estimation accuracy of FFNNs, linear model, and polynomial model on the holdout
data set [2, 3]

Model RMSE Relative MAPE
Error

Single-Objective Optimization

Shallow FFNN 0.26 W 4.5% 5.4%

Mid-sized FFNN 0.50 W 8.4% 8.0%

Deep FFNN 0.40 W 6.8% 7.0%

Multi-Objective Optimization

Multi-1 FFNN 0.31 W 5.3% 5.9%

Multi-2 FFNN 0.43 W 7.2% 7.7%

Multi-3 FFNN 0.47 W 7.9% 8.2%

Multi-4 FFNN 0.36 W 6.1% 6.0%

Reference-based

Linear [36] 0.75 W 12% 12%

Poly. Model 0.60 W 10% 11%

errors of the seven power estimating FFNNs as well as the model linear and the multi-
variate polynomial model as a comparison.

From the FFNNs, the shallow one has the best estimation performance with the
remaining six FFNNs having worse error results as was to be expected from the previous
validation data results. Compared to the linear model based on the state-of-the-art [36],
a decrease in the relative error by 7.5% can be observed for the shallow FFNN. Such
an improvement in estimation accuracy can be significant for both short-term power
(density) management and long-term thermal management and energy management.
For example, an overestimation of the power consumption of 7.5% over a time range
of ten milliseconds can lead to power-inefficient mapping and scheduling of tasks or an
early end to frequency boosting by the power management.

The best polynomial model had an RMSE of 0.01 W on the validation data but an
RMSE of 0.60 W on the holdout data which is not significantly better than the per-
formance of the linear power model. Compared to the polynomial power model, the
relative estimation error of the power estimating shallow FFNN still offers a decrease by
5.5%. The result that the best performing FFNNs have two or three layers similar to
the best-suited polynomial order being 2, can be interpreted as meaning that the under-
lying nonlinear performance counter/power relationship in itself is probably not overly
complex. The comparatively bad polynomial model performance reconfirms the find-
ings of McCullough et al. [30] that polynomial regression modeling very easily overfits
the underlying performance/power data and is not well-suited to capture the nonlinear
relationships. The multi-x FFNN power models perform between 0.8% to 3.4% worse
concerning the relative error compared to the shallow FFNN but all perform still sig-
nificantly better than the linear and polynomial models. However, these multi-x FFNN

79

4 Novel and Lightweight Power Estimation Models

power models also have far fewer hidden neurons compared to the shallow FFNN and
thus lower complexity and run-time overhead.

In addition to the RMSE values and relative error values compared to average core
power, the MAPE values which are defined as:

MAPE = 100% · E
(∣∣∣∣Pforecast − PactualPactual

∣∣∣∣) , (4.12)

are also provided in the final comparison shown in Table 4.8. Compared to the rela-
tive error, MAPE penalizes underestimations of the core power consumption stronger
than overestimations of core power which could be advantageous for power management
algorithms operating on conservative assumptions. Although no significant qualitative
differences between the relative error values and the MAPE values can be observed, the
MAPE values have been included for sake of completeness.

On the final choice of which of these power models — FFNN-based, linear or poly-
nomial — to use in a multicore processor, all come with a trade-off between modeling
accuracy and complexity which directly translates to run-time overhead. If high accu-
racy is the most important objective during the design process of the multi-core system,
the shallow FFNN would be a natural choice. If a slight degradation of 0.8% in accuracy
is acceptable, the multi-1 FFNN would allow for 61% lower run-time overhead compared
to the shallow FFNN. If run-time overhead is the most important objective, i.e. if the
cores are less complex or power consumption and power management is not a driving
concern, the linear model is a straight-forward choice with its minimal complexity and
run-time overhead.

Summary In this section, the usage of FFNN-based models were investigated for the
same fine-grained run-time power estimation as aimed for in this thesis, i.e. on core-level
with an estimation rate of 10 kHz. Suitable hyperparametrizations of the number of
hidden neurons per layer for three different FFNN sizes (two, three and five hidden lay-
ers) were explored through a single-objective optimization of the neural architecture. In
addition, a multi-objective optimization was proposed to optimize the hyperparameters
for both high estimation accuracy and low run-time overhead for FFNNs with two to
six hidden layers using an adapted NSGA-II methodology. To avoid underfitting nonlin-
ear relations between performance counters and dynamic power, and to avoid overfitting
the training data, 10-fold cross validations were applied throughout the two optimization
methodologies. The shallow FFNN with two hidden layers proved to be the most accu-
rate on the validation data and decreased relative power estimation errors on the holdout
data — data which was not used for training the FFNN — by 7.5% compared to a state-
of-the-art linear model and by 5.5% compared to a multivariate polynomial regression
model. In comparison, the FFNNs derived from the multi-objective optimization fared
slightly worse in regard to estimation accuracy than the shallow FFNN, however, they
offer a decrease in run-time overhead of a factor of more than two compared to the
shallow FFNN. Furthermore, a micro-controller-based implementation was again inves-
tigated, as previously in Section 4.1 which allows the FFNN inference / power estimation

80

4.2 Feedforward Neural Network-based Power Model

to be executed at 10 kHz for each core with a maximum area overhead of 0.25% for large
out-of-order cores. In conclusion, it was shown that FFNN-based power modeling is
a viable approach for capturing nonlinear relations between performance counters and
dynamic power, providing significant improvements in accuracy for fine-grained, high-
rate power estimations. However, the FFNN-based approach is a black-box approach
which does not allow for a straight-forward interpretation on where the nonlinear re-
lations occur and what could be the underlying micro-architectural reasons for them.
The next section will present a methodology for generating more transparent nonlinear
power models which allow such micro-architectural investigations.

81

4 Novel and Lightweight Power Estimation Models

4.3 Nonlinear Transformation-based Power Model

This section presents and evaluates the methodology for nonlinear transformation-based
power modeling [4].

Motivation and Contributions While Section 4.2 and Section 4.1 showed an ICA-based
and an FFNN-based power modeling methodology, this section will present a nonlinear
function-based power modeling methodology. The goal is again to develop fine-grained,
highly accurate power models using performance counters as input while having low
run-time overhead. As discussed previously in Section 4.2, one promising avenue to
increase modeling accuracy is to effectively — in regard to overfitting and underfitting
— and efficiently — in regard to run-time overhead — account for nonlinear effects
in the underlying performance / power relationship. These nonlinear performance /
power relations had been consistently shown for large processor architectures at power
estimation rates of 1 Hz [30].

This section will propose an explicit and lightweight nonlinear power modeling ap-
proach for core-level power estimation at high estimation rates of 10 kHz; and demon-
strate the advantages thereof. To account for nonlinear performance counter / core
power relationships, nonlinear functions for performance counter input transformation
are determined which maximize the linear correlation between transformed performance
counters and power. Afterwards, a power model consisting of a nonlinear transformation
block and a linear estimation block is generated which achieves higher power estimation
accuracy compared to the state-of-the-art while still maintaining an overall low run-time
overhead. To assess the run-time overhead, two different approaches of implementing
the power model are investigated in this section: either periodically executing the power
estimations on the available cores of the processor or a micro-controller implementation
which lead to 0.11% computational overhead or 0.1% area overhead, respectively. Fur-
thermore, this proposed nonlinear transformation methodology allows an investigation
into the causes for nonlinear power responses. The following contributions are made in
this section:

� Proposing a novel and lightweight methodology for power modeling which trans-
forms performance counters with nonlinear functions, such that linear correlation
with core power is maximized.

� Using LARS to make a DSE of the performance counter inputs with regard to
the accuracy of the resulting model, i.e. select the most important performance
counters.

� Showing that the generated nonlinear model reduces the relative error by up to 7%
and 10% over a state-of-the-art linear model and an input-optimized polynomial
model.

� Demonstrating how the proposed methodology can reveal the underlying microar-
chitectural causes for nonlinear effects.

82

4.3 Nonlinear Transformation-based Power Model

First, the nonlinear modeling methodology, the usage of LARS for the DSE and the
parametrization for the polynomial model are described in Section 4.3.1. The results in
regard to the significance of the different performance counter inputs, the best polynomial
order and the accuracy of the different power models are shown in Section 4.3.2. In
Section 4.3.3, the nonlinear effects and their possible origin from the microarchitectural
design of the multi-core system are discussed.

4.3.1 Power Model Generation and Lightweight Run-time Usage

The main basis for this work is that when complex workloads are executed on a multi-core
processor, the relationship between specific performance counters PCi,t and switching
activity Xt of all related logic gates and resulting dynamic power is nonlinear:

PCi,t ∼ f(Xt), (4.13)

with f being a nonlinear function. As the actual core-level switching activity Xt cannot
be observed on-chip, this thesis proposes to use nonlinear transformations ftrans to reduce
such nonlinear dependencies for more accurate power modeling:

Pdyn,t = β · ftrans(PCt) · ft · V x
t , (4.14)

where β are linear power weights. Such an approach enables the generation of a very
lightweight, yet more accurate model compared to a purely linear modeling approach.
Suitable nonlinear transformations ftrans are obtained by observing the performance
counters and the related power consumption response of the multi-core system. An
overview of the flow in regard to the nonlinear power modeling and run-time estimation
methodology is shown in Figure 4.9. The first fundamental step of data acquisition is
the same as for ICA-based and FFNN-based power models as in Sections 4.1 and 4.2.
First, a set of workloads is executed on the multi-core system at a static voltage and
frequency. In parallel, package power is traced in a 1 × n vector Ppack with n discrete
points in time. Processor activity with m different performance counters, i.e. activity
signals, are traced in a m× n matrix PC.

At the next step, the methodology becomes different from the previous power modeling
methodologies in this thesis. The pairwise Pearson correlation coefficient ρi between
power P and each performance counter PCi with 1 ≤ i ≤ m is computed as:

ρi(P ,PCi) =

∑n
t=1(Pt − P)(PCi,t − PCi)√∑n

t=1(Pt − P)2
∑n

t=1(PCi,t − PCi)2
(4.15)

whereX denotes the arithmetic mean of a vectorX over time t. The resulting correlation
coefficients ρi(P, PCi) are used to first compute — between a performance counter and
the overall power consumption response — the baseline level of linear correlation. This
baseline level of linear correlation is later used to assess if a nonlinear transformation is
suitable to improve the modeling capability of that performance counter input. Many
performance counters have a nonlinear dependency with power and therefore, show a low

83

4 Novel and Lightweight Power Estimation Models

Performance
counters PC

Power

Determine
nonlinear ftrans

Apply ftrans

Linear
modeling

Performance
counters PC

Apply ftrans

Linear
model

Power

Offline
benchmarking

Offline
statistical analysis

Run-time
estimation

Figure 4.9: Power modeling and estimation flow (contributions of this work denoted with solid
rectangles) [4]

(but not zero) linear correlation with power. Equation 4.15 is also used in the proposed
algorithm determining which nonlinear functions ftrans are best suited to transform a
nonlinear relationship between performance counter PCi and power P into a linear
relationship.

The pseudocode of the proposed algorithm to find such nonlinear transformations is
shown in Algorithm 4.3.1. The algorithm iterates over a set F of nonlinear functions to
transform the performance counters, compute the resulting correlation coefficients and
keep the most effective ftrans which maximizes correlation for each transformed perfor-
mance counter. These functions will afterwards be used to transform the performance
counter data for both, regression modeling and run-time power estimation.

The set F of nonlinear functions as given in Table 4.9 are investigated to determine
if these functions increase the linear correlation between a transformed performance
counter and the observed power consumption. The exponential, root and logarith-
mic transformations can uncover nonlinear relationships where, e.g. small performance
counter value variations in certain ranges lead to disproportional (nonlinear) dynamic
power responses. In addition, trigonometric functions are also investigated to achieve
a high coverage of possible nonlinear transformations although the expectation is that
the subset of periodic trigonometric functions will not lead to any improvement in the
linear correlation metric. The stepsize denotes for each applicable function how fine-

84

4.3 Nonlinear Transformation-based Power Model

Algorithm 2: Selecting nonlinear transformations [4]

Input : Activity information PC, power P and a set F of nonlinear functions
Output: Suitable nonlinear functions maximizing ρ(P, PCi)
foreach PCi ∈ PC do

Compute ρi,base(P ,PCi), ; // Baseline

end
foreach f(.) ∈ F do

foreach PCi ∈ PC do
PCi,trans ← f(PCi) ; // Transformation

Compute ρi,trans(P ,PCi,trans)
if |ρi,trans| > |ρi,base| then

Store f(.) for PCi as ftrans,i(.)
ρi,base ← ρi,trans

end

end

Table 4.9: Set of nonlinear transformations investigated in this section [4]

Function Type Function Range Stepsize

Exponents PCj 1 < j < 10 0.1

j-th root j
√
PC −10 < j < 10 0.1

j-th logarithm logj(PC) 1.1 < j < 20 0.1

Exponential expPC -

Trigonometric sin(PC), sinh(PC), arcsin(PC), arcsinh(PC),
cos(PC), cosh(PC), arccos(PC), arccosh(PC)
tan(PC), tanh(PC), arctan(PC), arctanh(PC)

cotan(PC), cotanh(PC), arccotan(PC), arccotanh(PC)

85

4 Novel and Lightweight Power Estimation Models

At ftrans(.) ×β Pdyn,t
Atrans,t

Figure 4.10: Run-time power estimation accounting for nonlinear performance counter / dy-
namic power relationship [4]

grained the value of j is varied within its given constrained range. This range constraint
was determined roughly through heuristic variation of possible maximum values for the
specific functions where it is applicable. Each variation of a function by the stepsize
can also be interpreted as a distinct function f(.) ∈ F . It is important to note that for
each performance counter a different transformation may be selected by the algorithm.
The performance counter input data is also normalized and offset by one to have stable
results for the logarithm and specific trigonometric functions, e.g. for arcsin.

After determining the most effective functions for maximizing linear correlation, these
functions are used to transform the individual performance counters PCi into trans-
formed input data PCtrans,i for 1 ≤ i ≤ m. The vector containing all transformed
performance counter for a point in time t is then denoted as PCtrans,t. To have a
complete power model for run-time estimation, another modeling step is needed which
generates a regression model based on the transformed performance counters PCtrans
with power P . In this nonlinear transformation-based power modeling approach, an OLS
regression is used — similarly to other state-of-the-art works as well as the ICA-based
power modeling approach — and static power is subtracted from the package power to
complete the dynamic power model as:

Pdyn,t = PCtrans,t · β · ft · V 2
t . (4.16)

where β denotes the OLS regression coefficients. The nonlinear dynamic power model
is then fully described by:

Pdyn,t =

m∑
i=1

(ftrans,i(PCi,t) · βi) · ft · V 2
t . (4.17)

Such a nonlinear model is also called Hammerstein model [124] with both the nonlin-
ear transformation block at the beginning and the corresponding correlation coefficients
for run-time power estimation of the linear block afterwards being shown in Figure 4.10.
The non-linear block introduces additional run-time overhead, however, processors usu-
ally execute the power estimation on dedicated on-chip logic [22]. The actual run-time
overhead when then non-linear block is generated through function approximations —
which incur a small area or computational overhead — will be discussed in more detail
in Section 4.3.2. The application of the proposed methodology is shown in Section 4.3.2
where a nonlinear model of the core dynamic power is generated and run-time power is
estimated based on the nonlinear model.

86

4.3 Nonlinear Transformation-based Power Model

Least Angle Regression

LARS is a computationally efficient regression model selection algorithm [125] which
allows to iteratively generate regression models based on the statistically most important
inputs. In this thesis, it is also used to analyze the effect of the proposed nonlinear input
transformations. The advantage of building power models with less than the maximum
available performance counter inputs is both lower run-time overhead and the power
model being more descriptive in regard to the underlying performance counter / power
relations. With performance counters PCi with 0 ≤ i ≤ m as independent variables and
Pdyn as dependent variable, LARS in its first step sets all power weights βi to zero:

Pdyn = 0 + 0 · PC1 + ...+ 0 · PCi + ...+ 0 · PCm (4.18)

LARS then identifies the performance counter PCi most correlated to Pdyn over all
available measurements with 1 ≤ t ≤ tmax, computes corresponding β0 and βi and adds
PCi to the active set of independent variables, i.e. the power model’s inputs. The first
such power model with a single performance counter as input is then defined as:

P̂dyn = β0 + βi · PCi, (4.19)

where P̂dyn denotes the power estimate compared to the actual power Pdyn over time.
Afterwards, the power weight βi is increased in direction of sgn(ρi(Pdyn,PCi)) until
another performance counter PCk has the same linear correlation with the residual
error r = |P̂dyn − Pdyn|2, i.e. until ρr,PCi = ρr,PCk

. The new performance counter
is then added to the active set of independent variables and the resulting model is as
follows:

P̂dyn = β0 + βi · PCi + βk · PCk, (4.20)

Both βi and βk are then increased in their joint least squared direction to find the next
performance counter input βl with the same correlation with the residual error. This is
repeated until all performance counters have been added to the regression model which
is an OLS model with all performance counters as input:

P̂dyn = β0 +

m∑
i=1

βi · PCi. (4.21)

The main advantage of LARS for modeling purposes is that it provides a linear solution
path, i.e. different linear regression models, along the increasing number of performance
counters as input.

In addition to the presented linear approach, LARS is also used to generate nonlinear
power models with transformed performance counter PCtrans,t as input with the final
model being

P̂dyn =
m∑
i=1

βi · PCtrans,i · f · V 2, (4.22)

where β0 has been subtracted under the assumption that it closely resembles static
power. These additional nonlinear LARS generated power models provide insights, into

87

4 Novel and Lightweight Power Estimation Models

Performance counter PC
and power data Pdyn

Set dmax in range of
2 ≤ dmax ≤ 6

5-fold
cross validation

Average RMSE
for each dmax,opt

Choose best
dmax,opt

Set di for 1 ≤ i ≤ m in range of
1 ≤ di ≤ dmax,opt

5-fold
cross validation

Average RMSE for each
d = (d1, ..., dm)T

Choose d
with lowest RMSE

next dmax next di

dmax,opt

Figure 4.11: Multivariate polynomial modeling approach with variable degrees per input per-
formance counters [4]

the power model behavior as well as the performance counter / power relations when the
solution path of the purely linear input models is compared to the solution path of the
proposed nonlinear transformation input models. In addition, LARS gives an intuitive
ranking of the performance counter inputs which is used to generate differently sized
polynomial models as comparison to the linear and nonlinear transformation models.

Multivariate Polynomial Regression

To compare the proposed nonlinear transformation approach with another comparatively
lightweight nonlinear modeling approach, additional multivariate regression models are
generated. Previous work [30] has also explored polynomial regression for power mod-
eling, however, the generated nonlinear models did not consistently and significantly
improve power modeling accuracy. As this thesis is mostly focused on the relation of
specific performance counters and dynamic power consumption; and to be able to im-
prove modeling accuracy while decreasing the risk of overfitting, an extended polynomial
modeling approach is used in the following. Figure 4.11 shows the proposed multivariate
polynomial modeling approach.

In contrast to [30], this approach is a two-staged heuristic to avoid overfitting the
performance counter / power relations. This is achieved by determining specific poly-
nomial orders for each performance counter input which try to optimally fit the linear
or nonlinear relations. In the first stage, the maximum polynomial order dmax is set to

88

4.3 Nonlinear Transformation-based Power Model

increasing values within the range of 2 ≤ dmax ≤ 6 and polynomial models are generated
using 5-fold cross validation. Based on this stage, the resulting polynomial models have
the following form:

Pdyn,t = (

m∑
i=1

dmax∑
d=1

βi,d · PCdi) · ft · V 2
t . (4.23)

Afterwards, for each dmax bracket the RMSE values are averaged over all validation
folds and a dmax,opt value is chosen for the second stage based on which dmax value offered
the lowest average RMSE. In the second stage, the maximum orders for each performance
counter input PCi are differentiated using dmax,i as each performance counter’s specific
polynomial order with 1 ≤ dmax,i ≤ dmax,opt. This means that each performance counter
input can be a either a linear input with di,max = 1 or any polynomial input with orders
2 ≤ dmax,i ≤ dmax,opt. This exhaustive search for optimal specific input orders leads
to (dmax,opt)

m different polynomial model orders which are encoded in an input order
vector d = (d1, ..., di, ..., dm)T . Furthermore, for each possible model order again a 5-fold
cross validation is used to generate statistically reliable model performance data, thus
generating 5 · (dmax,opt)m different polynomial power models. The exhaustive search for
specific polynomial orders is computationally intensive. This computational intensity
is the main reason for introducing the first stage of this methodology which limits the
necessary computations in case of dmax,opt < 6.

After generating all power models, the RMSE values are averaged over the 5 different
validation folds for each specific input order d. Based on these average RMSE values,
d with the lowest average RMSE is chosen as the final polynomial model order. The
resulting multivariate polynomial model is then:

Pdyn,t = (

m∑
i=1

di∑
d=1

βi,d · PCdi) · ft · V 2
t . (4.24)

While [30] had the model order fixed at dmax = 3, the proposed polynomial approach
in this section allows us to differentiate the polynomial order for each specific perfor-
mance counter input. Although being far more computationally intensive, this approach
minimizes the risk of overfitting the underlying performance counter / power consump-
tion data during model generation. In addition, this approach allows the comparison of
the polynomial order of each performance counter input with the nonlinear transforma-
tions found to be maximizing the linear correlation of the performance counter inputs
with power consumption; enabling further interpretation of the performance counter /
power relations.

4.3.2 Experimental Evaluation

In this section, the results of the experimental evaluation are shown and the possible
reasons for the effectiveness of nonlinear power modeling discussed. Again, the ex-
perimental setup described in detail in Chapter 3 is used to generate the underlying
power and performance data. First, the results of the nonlinear transformation search is

89

4 Novel and Lightweight Power Estimation Models

shown. Afterwards, the linear solution path obtained from LARS is presented for linear
and nonlinearly transformed inputs and the best-suited multivariate polynomial orders
are shown. Finally, the accuracy of the different power models under different operating
conditions and their relative software and hardware overhead are discussed.

Nonlinear Transformations

The experimental evaluation first gathers power and performance counter data by ex-
ecuting the 20 different benchmarks on the simulated multicore system as described in
detail in Chapter 3 at a frequency of 3.0 GHz. Based on this data, the level of linear
correlation with between individual performance counters and dynamic core power is
computed. All cache related performance counters (LxLI, LxSI, LxLM, LxSM, LxCLK)
showed low linear correlation |ρ| ≤ 0.25 with core power. Medium level of correlation
0.25 < |ρ| ≤ 0.75 was observed for BPU, FP, and C0. The only performance counter
showing high correlation 0.75 < |ρ| was IPC. These linear correlation results are the base-
line for optimizing the power model by transforming performance counters via suitable
nonlinear functions.

After determining this baseline, the most effective nonlinear functions for maximizing
linear correlation between each performance counter and power are searched according to
Algorithm 4.3.1. The most suitable functions to transform the performance counters for
power modeling are shown in Table 4.10. The remaining performance counters, e.g. IPC
and C0, are best kept as a linear input in the power model with ftrans,i(PCi) = PCi

as no nonlinear function increased the level of linear correlation with core power.
As was to be expected, periodic trigonometric functions like sin and cos did not yield

any positive results in regard to increasing linear correlation. This is likely due to the
performance counter / power relation being time-invariant. In contrast, linear correlation
with power is improved when using tanh and arcsinh for cache related performance
counters. Note, that all nonlinear functions to be found to improve linear correlation are
monotonically increasing and that both arcsinh(PC) and

√
PC are unbounded functions

while tanh saturates with increasing values of its input.

Table 4.10: Transformations maximizing linear correlation of specific performance counters
with dynamic power [4]

Function Performance Counter PC with (j)

tanh(PC) L2LI, L2LM, L3LI, L3LM

arcsinh(PC) L2SI, L2SM, L3SI, L3SM
j
√
PC BPU(2), L2CLK(8), L3CLK(4)

The correlation coefficients for all performance counters before and after applying
the respective nonlinear transformation maximizing the linear correlation are shown in
Table 4.11. Aside of L3LM and L2CLK, one can observe increases in the absolute linear
correlation coefficients computed as the Pearson correlation coefficient. Although, no
performance counter experiences an increase in the linear correlation such that its linear

90

4.3 Nonlinear Transformation-based Power Model

Table 4.11: Correlation coefficients for each performance counter after applying the nonlinear
transformation [4]

Performance Counter Correlation coefficients

PC |ρ(PC, Pdyn)| |ρ(PCtrans, Pdyn)|
L2LI 0.06 0.40

L2LM 0.04 0.31

L3LI 0.01 0.24

L3LM 0.05 0.09

L2SI 0.13 0.43

L2SM 0.16 0.42

L3SI 0.05 0.41

L3SM 0.15 0.38

BPU 0.74 0.80

L2CLK 0.03 0.14

L3CLK 0.14 0.29

correlation coefficient values |ρ(PCtrans, Pdyn)| reach the absolute values of IPC or BPU,
the increases are still very substantial compared to raw |ρ(PC, Pdyn)| values. These
increases can be exploited in the linear regression model which is afterwards generated
using such nonlinearly transformed performance counter inputs.

Results of Using LARS

LARS is used to generate OLS linear regression models using either the performance
counters PC as independent variables or the transformed performance counters PCtrans
as independent variables. Both PC and PCtrans were normalized before using them as
inputs in LARS. The dependent power variable P was centered beforehand. The selection
order of the two different variants of inputs PC and PCtrans is given in Table 4.12.

IPC is chosen by LARS as most significant power model input both for the linear
power model and the nonlinear transformation power model. Afterwards, one observe
that LARS gives higher modeling priority to the cache relevant performance counters in
case that the performance counters have been transformed with the linear correlation
maximizing nonlinear functions. This implies that these performance counters hold
significant modeling information but are not as usable for linear modeling compared
to the C0, BPU and FP performance counters. The benefit of transforming specific
performance counters is further supported when comparing the AIC for both the linear
and the nonlinear transformation power models. The AIC is computed as:

AIC = 2m− 2ln(L̂), (4.25)

with L̂ as the maximum of the likelihood function for the underlying model. The AIC is
a means to compare different models in regard to their estimation ability for unknown

91

4 Novel and Lightweight Power Estimation Models

Table 4.12: Selection order of the performance counters by the LARS algorithm [4]

Order Performance Transformed Performance
of Selection Counter PC Counter PCtrans

1. IPC IPC

2. C0 L2SM

3. BPU L3SI

4. L2SM L3SM

5. FP L3LM

6. L2LI L2LM

7. L3LM L3LI

8. L2SI L2SI

9. L2CLK L2CLK

10. L3SM L2LI

11. L3SI BPU

12. L2LM FP

13. L3LI L3CLK

14. L3CLK C0

2 4 6 8 10 12 14

0.6

0.8

1

1.2

1.4

·104

Number of Performance Counter Model Inputs

A
IC

V
al

u
e

Linear Model [36]
Nonlinear Model

Figure 4.12: Comparison of AIC values for linear model and nonlinear transformation model
with increasing number of performance counter inputs [4]

92

4.3 Nonlinear Transformation-based Power Model

data and computes the trade-off between simple models, i.e. lower number of inputs, and
the goodness-of-fit of the models. A lower AIC value signifies a better model in regard
of both the risk of overfitting and the risk of underfitting the underlying data.

Figure 4.12 shows the AIC values for increasing number of performance counter inputs
for the respective power models beginning at two inputs – due to IPC being the same
optimal first input for the linear and the nonlinear transformation models – and finishing
at the full complement of 14 performance counter inputs. Note, that the dependent
variable Pdyn is not transformed by a nonlinear function, only centered for both modeling
approaches. Therefore, the AIC values of the linear and nonlinear transformation model
are directly comparable.

One can observe that the AIC is consistently lower for the nonlinear transformation
power model at the sample complexity level compared to the linear model. The linear
modeling quality improves until a total number of nine performance counters are used
as model inputs and stagnates afterwards. In contrast, the nonlinear model improves
until all available transformed performance counters are included in the power model
as independent input variables. Based on this, a comparison of the accuracy of linear
and nonlinear transformation models when all performance counters are used as inputs
will be shown. In addition, in Section 4.3.2, the linear and nonlinear models will be
compared when the number of performance counter inputs is reduced, e.g. for lowering
modeling complexity and thus run-time overhead.

Multivariate Polynomial Model Orders

As described in detail in Section 4.3.1, the proposed methodology to generate multi-
variate polynomial power models consists of two steps. First, the general polynomial
order minimizing modeling error was determined and it was found that dmax,opt = 2
produces polynomial power models with lowest average RMSE. For the specific polyno-
mial order d, the best polynomial power models were generated when the performance
counters IPC, FP and L2LI are set to a maximum order of d = 1, i.e. these performance
counters are used as linear inputs for the polynomial models. For the remaining perfor-
mance counters, the polynomial models performed best with d = 2, and are thus being
used as both linear as well as quadratic model input. When comparing these results
with the nonlinear transformations, partial overlaps in regard to the inputs being used
as polynomial input or being transformed can be observed. While both the nonlinear
transformation approach and the optimized, multivariate polynomial model keep IPC
and FP as a purely linear input, the proposed transformation approach transforms L2LI
with a monotonically increasing function while keeping C0 as a purely linear input.

To have a baseline comparison to the approach in [30] where the polynomial order
was the same for all power model inputs, a polynomial model with a fixed dmax = 3
for all performance counter inputs were generated and is used as an additional reference
polynomial model. This complements the final power model comparison with a state-
of-the-art linear model, the proposed nonlinear transformation model and the proposed
multivariate polynomial model.

93

4 Novel and Lightweight Power Estimation Models

Accuracy Analysis

Modeling Accuracy with Known Core Power For assessing the different power mod-
eling methodologies in regard to modeling accuracy, two different scenarios are investi-
gated. The first scenario, described in the following, is a synthetic scenario where actual
core power consumption is known / measurable during model generation which likely
is not applicable a real-world deployement, however, still gives insights into the capac-
ity of the different methodologies to capture nonlinear performance counter / power
relations. Note that this scenario with known core power is only possible due to using
simulator-based performance counter and power data. The other more realistic scenario
of unknown core power for model generation, will be shown in the next paragraph.

Starting with known core power for generating the power model, a 5-fold cross-
validation is used for model generation to get statistically reliable results. The per-
formance and power data of each executed benchmark is distributed into one of five
groups; each group containing the performance and power data of four benchmarks.
Each group is used once as validation data set with the remaining groups constituting
the model generation data set. The performance counters are transformed according to
the functions shown in Table 4.10 for generating the nonlinear model with its nonlin-
ear transformation block and linear regression block. For comparison, linear regression
models with the original performance counters as input are also generated.

During the model generation step, a linear model, the reference polynomial model [30]
(Poly-3), the proposed multivariate polynomial model (Poly-d) and the proposed nonlin-
ear transformation model are generated. Afterwards, during the evaluation step, all four
models are used to estimate power based on the performance counter data from the cur-
rent validation group. To determine estimation errors, this estimated power derived from
the models is compared with the actual power values from the validation group. The
5-fold cross-validation is repeated 6000 times with benchmarks chosen pseudorandomly
such that no identical combination is repeated out of the

(
20
5

)
possible combinations.

The resulting average estimation error over all validation groups and the worst case
estimation error are given in Table 4.13.

Two error metrics are distinguished: total RMSE and relative RMSE compared to
average core power for that validation group. The thus gained results show that for
the proposed nonlinear model, the estimation error decreases significantly for the mean,
median and worst case error compared to the linear model and compared to both poly-
nomial models. While the proposed Poly-d model, with performance counter specific
polynomial degrees, performs better than the linear model and the Poly-3 model, the
nonlinear transformation model is still significantly better on average and also in the
worst case than the Poly-d model. Interestingly, the worst case performance of the
Poly-3 model is slightly worse than the worst case of the linear model; this is probably
due to overfitting in specific scenarios with disadvantageous validation groupings. As
mentioned in the beginning, however, for an actual multicore system, one cannot usually
use measured or simulated core power information to train a core power model.

94

4.3 Nonlinear Transformation-based Power Model

Table 4.13: Power Estimation error as absolute RMSE and relative RMSE for the four power
modeling approaches [4]

Estimation Error when Core Power is
Known for Model Generation

Total RMSE Linear [36] Poly-3 [30] Poly-d Nonlinear

Mean 0.57 W 0.56 W 0.52 W 0.44 W

Median 0.58 W 0.53 W 0.49 W 0.43 W

Worst Case 1.4 W 1.6 W 1.4 W 0.9 W

Relative RMSE

Mean 8.9% 8.7% 8.1% 6.8%

Median 9.0% 8.2% 7.6% 6.7%

Worst Case 21% 25% 21% 13%

Estimation Error when Core Power is
Unknown for Model Generation

Total Linear [36] Poly-3 [30] Poly-d Nonlinear
RMSE

Mean 0.84 W 0.80 W 0.68 0.58 W

Median 0.77 W 0.82 W 0.70 0.52 W

Worst Case 1.9 W 2.1 W 1.8 W 1.5 W

Relative RMSE

Mean 13% 12% 10% 9.0%

Median 12% 13% 11% 8.1%

Worst Case 30% 33% 28% 23%

Modeling Accuracy with Unknown Core Power To model core power consumption
without needing core power as modeling input, one usually uses package or system
level power information and identifies correlations with performance counter data. As
shown in Section 2.2, most power estimation approaches use some form of linear model
generation to correlate performance with power consumption and build a regression
power model. To generate power models using only package power, the methodology as
proposed in [36] is applied in this thesis. In addition to the previously used (generic)
benchmarks, i.e. PARSEC and SPLASH-2, synthetic workloads were executed on the
multicore processor to isolate particular microarchitectural units of the cores, their power
consumption and corresponding power weights β. The processor’s baseline idle power
including uncore power is determined and then subtracted from the modeled package
power to derive the dynamic core power as shown in the following equation:

Pcore−0,t = Ppack,t − Pidle+uncore, (4.26)

where Pcore−0,t describes the indirectly derived power of core-0 to generate the power
models, Ppack,t is the power consumed by the processor on package-level and Pidle+uncore
is the idle power when core-0 is halted but not yet power gated nor in a sleep state.

95

4 Novel and Lightweight Power Estimation Models

For the nonlinear transformation model and the polynomial models, the same approach
was used and the performance counter inputs PC were exchanged with the transformed
performance counter inputs PCtrans for model generation and run-time estimation. The
generic benchmarks were again distributed into groups of 4 benchmarks and each group
used either for model generation or evaluation/validation through a 5-fold cross valida-
tion which was again repeated 6000 times.

For this scenario, where core power is unavailable for model generation, the estima-
tion errors for the linear and nonlinear model are also given in Table 4.13 below the
estimation errors with known core power during model generation. Overall, estimation
accuracy decreases for all models — as was to be expected — however, the nonlinear
transformation model still provides higher accuracy compared to the state-of-the-art
linear power model, the state-of-the-art polynomial power model and the polynomial
Poly-d power model.

Although the decreases in relative RMSE of 4% / 3% on average and 7% / 10%
in worst case scenarios compared to the reference linear/polynomial power model might
seem small, these can have significant impacts on the effectiveness of run-time power and
thermal management. For example, a continuously overestimated power consumption
on a core can lead to unnecessary remapping of tasks or a premature stop of frequency
boosting of the afflicted core.

Reduced Number of Performance Counter Inputs

Decreasing the number of performance counters as input, decreases the model complexity
and run-time estimation overhead but also increases the risk that the power model cannot
accurately describe the run-time power behavior. When looking at the information
criterion AIC values in Figure 4.12, distinct improvements / jumps can be seen for
the linear power model when the number of performance counter inputs is increased
to four inputs, then to six inputs, and then to nine inputs. To have a fair comparison
with the nonlinear model, number of inputs were chosen as 4 and as 9 for the accuracy
investigations of the other power models with reduced number of performance counter
inputs, i.e. the expectation is that the linear model will perform best at these input sizes
making these input sizes conservative assumptions for the other models. Due to time and
space limitations, the power model input size of six performance counters was not further
investigated; also due to input sizes four and nine covering roughly 1/3 and 2/3 of the
maximum input size of 14. For the linear model and polynomial models, the selection
order was the same as previously determined by LARS for the linear power model;
while using the selection order determined for transformed performance counters for the
nonlinear model as given in Table 4.12. To get statistically reliable model performance
data, the same procedure of 5-fold cross validation with 6000 runs and model generation
based on unknown core power is repeated as in the previous paragraph. The resulting
estimation errors for power models with reduced performance counter inputs are shown
in Table 4.14.

As was to be expected, all power models perform on average worse when less per-
formance counter inputs are allowed for model generation, i.e. the power models have

96

4.3 Nonlinear Transformation-based Power Model

Table 4.14: Relative power estimation error for power models with reduced performance counter
inputs [4]

Relative Linear [36] Poly-3 [30] Poly-d Nonlinear
RMSE

4 Performance Counters as Input

Mean 19% 16% 16% 12%

Worst Case 31% 29% 27% 26%

9 Performance Counters as Input

Mean 14% 15% 15% 10%

Worst Case 30% 31% 30% 23%

less information to compute a power estimate leading to worse accuracy. However, the
nonlinear transformation model shows the smallest degradation in accuracy of all power
models. Interestingly, the worst case estimation error for the polynomial models actually
decreases when only four performance counters are used as input; compared to the full
set of performance counters. This is probably due to a lower risk of overfitting when
reducing its model complexity by decreasing its inputs. Overall, this analysis shows
that the nonlinear transformations are robust in regard to reduced performance counter
sizes and that the performance counter transformation functions likely do not lead to
overfitting of the underlying data. If such overfitting had occurred, one would expect
the nonlinear transformation model to show erratic behavior with lower input sizes and
thus higher accuracy degradation.

Estimation Accuracy for the Different Benchmarks

In the following, the estimation accuracy for the different benchmarks is investigated.
For this, the relative errors for each benchmark were averaged over each benchmark’s
occurrence in the validation fold. This includes the worst case scenarios in which the
power models performed the worst. The resulting benchmark-dependent errors for the
linear power model and the nonlinear power model are shown in Figure 4.13.

Notably, the worst case scenario for both power modeling methodologies happens when
trying to estimate the core-level power consumption of PARSEC freqmine, a data mining
benchmark. The linear power model outperforms the nonlinear model for PARSEC can-
neal and for SPLASH-2 radix by small margins. Comparing the PARSEC and SPLASH-2
suites, the overall estimation errors are more variable for the PARSEC benchmarks com-
pared to the SPLASH-2 benchmarks for both linear and nonlinear power models while
estimation accuracy is more consistent for the SPLASH-2 suite for both approaches.
Also, the nonlinear power model provides consistently larger accuracy improvements
over the linear power model for the SPLASH-2 suite compared to the PARSEC suite.

97

4 Novel and Lightweight Power Estimation Models

P-bla P-bod P-can P-ded P-fac P-flu P-fre P-ray P-str P-swa
0

10

20

30

R
el

at
iv

e
E

rr
or

in
%

P-x264 S-bar S-cho S-fft S-fmm S-lu S-oce S-rao S-rax S-ray
0

10

20

30

R
el

at
iv

e
E

rr
or

in
%

Linear [36]
Nonlinear
Mean Linear Error
Mean Nonlinear Error

Figure 4.13: Relative error values for power models generated with unknown core power for each
PARSEC (P) and SPLASH-2 (S) benchmarks with benchmark names abbreviated
with first three letters except SPLASH-2 radiosity (S-rao) and radix (S-rax) [4]

Nonlinear Models at Different Operating Frequencies

The previous experiments were all done at a static frequency of 3 GHz. However, two
questions arise in regard to frequency changes when the nonlinear power models are used
in a multi-core system:

� Are the nonlinear transformations which optimize linear correlation the same at
different voltage/frequency states?

� Do the regression coefficients βi have to be adapted for different frequencies due
to the applied nonlinear transformations?

To assess the impact of changes in the operating frequencies, the benchmarks listed in
Table 3.3 are executed at 1 GHz and 2 GHz. The nonlinear transformations maximizing
the linear correlation coefficients are now again determined according to Algorithm 4.3.1.
The first observation is that the IPC, C0 and FP performance counters are not improved
through any of the nonlinear functions and further observe that the nonlinear functions
almost all stay the same as previously shown in Table 4.10 for 3 GHz. The only excep-
tion is the BPU performance counter. The detailed impact on the correlation coefficients

98

4.3 Nonlinear Transformation-based Power Model

for the nonlinear transformations is shown in Table 4.15 where |ρ| = |ρ(PCtrans, Pdyn)|
and ∆ denotes |ρ(PCtrans, Pdyn)| − |ρ(PC, Pdyn)|, i.e. the difference in correlation co-
efficients between performance counters and transformed performance counters. With

Table 4.15: Correlation coefficients after applying the nonlinear transformation at different fre-
quencies and delta to the correlation coefficients of the regular performance counters
[4]

Performance |ρ| at ∆ |ρ| at ∆ |ρ| at ∆
Counter PC 3 Ghz 2 GHz 1 GHz

L2LI 0.40 0.34 0.22 0.19 0.10 0.05

L2LM 0.31 0.27 0.13 0.10 0.12 0.07

L3LI 0.24 0.23 0.14 0.11 0.12 0.03

L3LM 0.09 0.04 0.10 0.09 0.13 0.03

L2SI 0.43 0.30 0.56 0.32 0.59 0.27

L2SM 0.42 0.26 0.54 0.26 0.57 0.31

L3SI 0.41 0.36 0.55 0.29 0.55 0.24

L3SM 0.38 0.23 0.56 0.29 0.60 0.30

BPU 0.80 0.06 0.74 -0.04 0.76 -0.05

L2CLK 0.14 0.11 0.05 0.04 0.04 0.03

L3CLK 0.29 0.15 0.38 0.14 0.40 0.15

decreasing frequencies, the linear correlation values decrease for cache load instructions
and increases for cache store instructions. In regard to the consistency of reusing the
same nonlinear transformations for the same performance counter inputs at different
operating frequencies, BPU is the sole exception for which the linear correlation values
actually decreases when applying its predetermined nonlinear transformation function at
1 GHz or 2 GHz. Although, the decrease in linear correlation is rather small, a negative
impact on the power estimation accuracy is still expected from this behavior.

However, ideally one would want to keep the same transformations over the full range
of frequencies to be able to reuse the power weights β at all operating frequencies.
Therefore, the same transformations as specified in Table 4.10 are reused for estimating
power at both 1 GHz and 2 GHz. To be able to reuse the power models which were
generated in the previous sections, the performance counter inputs are normalized to
the operating frequency according to:

PCi,norm =
PCi
fGHz

, ∀i(i 6= IPC); (4.27)

where fGHz is the current operating frequency in GHz; this avoids unnecessarily small
floating point values. The IPC performance counter is not normalized as it is already
normalized to the cycle length and thus to the operating frequency. The regression co-
efficients — aside of the coefficient(s) associated with IPC — of the power models at
3 GHz have to then be multiplied with 3 (GHz) to be frequency neutral. With this, the

99

4 Novel and Lightweight Power Estimation Models

Table 4.16: Relative RMSE at different operating frequencies and unknown core power for
power estimation model generation [4]

Total Linear [36] Poly-3 [30] Poly-d Nonlinear

Operating Frequency 3 GHz

Mean 13% 12% 10% 9.0%

Worst Case 30% 33% 28% 23%

Operating Frequency 2 GHz

Mean 13% 15% 14% 9.2%

Worst Case 29% 34% 32% 22%

Operating Frequency 1 GHz

Mean 13% 16% 16% 9.1%

Worst Case 30% 35% 36% 22%

regression coefficients β previously determined at 3 GHz can be applied on performance
counter and power data generated at 1 GHz and 2 GHz to estimate run-time core power.
Due to time limitations, the investigation on the frequency-stability of the power models
was restricted to the power models generated with unknown core power, i.e. the real
deployment scenario 5-fold cross validations is employed again while keeping the bench-
marks divisions from previous experiments, i.e. the power models do not estimate power
of benchmarks used for generating the power models.

The relative RMSE results are shown in Table 4.16 with the previously obtained
3 GHz results added as comparison. The estimation accuracies for the linear and nonlin-
ear transformation model change only marginally. The nonlinear transformation model
performs slightly worse at 1 GHz and 2 GHz compared to it operating at 3 GHz, pos-
sibly due to keeping the BPU transformation which was shown to be not optimal at
these lower operating frequencies. However, keeping the nonlinear transformations the
same over a wide frequency range allows for a simplified implementation of the run-
time nonlinear power estimation model. In contrast, both polynomial models perform
significantly worse, probably due to overfitting at 3 GHz which is only observable when
applying the polynomial model at different operating frequencies than it was generated
at. Overall, one can conclude that both linear power models and the proposed nonlinear
transformation models are well-suited for application at different operating frequencies.
Thus with all performance counter inputs normalized to the frequency, the regression
coefficients β can be kept the same over different Vf states.

Run-time Power Estimation Overhead

To determine the run-time overhead for either a software or hardware implementation,
the same approximation strategy as in Section 4.1 and Section 4.2 is used with first
calculating the necessary number of MAC operations to execute a single power estimation
for each different power model. To approximate the compute overhead for the necessary
nonlinear transformations functions, a series approximation of the nonlinear functions

100

4.3 Nonlinear Transformation-based Power Model

Table 4.17: Computational and memory overhead for a single power estimation [4]

Model Number of Memory
MAC Operations in kBit

Linear 14 0.5

Poly-3 112 1.5

Poly-d 36 0.8

Nonlinear 377 1.4

is used. An overview of the necessary MAC operations and memory — limited to the
power models with 14 performance counters as input — is given in Table 4.17. The
required MAC operations for computing a single power estimation and the memory
needed to retain the power model parameters are reported on core-level. The system-
wide overhead depends on the overall number of cores of the multi-/many-core system
for which run-time power estimations are needed and scales linearly with the number of
cores for all power models.

The pure compute overhead — in terms of needed MAC operations — of using the
nonlinear transformation model increases 27 times compared to the linear model and
3.4 times compared to the reference polynomial model. The memory overhead in kBit
is 3× larger for the nonlinear transformation model compared to the linear model and
similar to the reference polynomial model. Overall, these are significant increases in
raw compute and memory overhead. The question arises if these overheads contribute
towards a significant run-time overhead when the nonlinear transformation model is
implemented on a multi-core system; which will be discussed in the following.

Overhead Software Implementation The power models can be periodically executed
during run-time on their respective cores. Including DRAM access times and disregard-
ing context switches, the computation time for one power estimation of the linear model
is approximately 70 ns at 3 GHz on the multi-core system described in Chapter 3, i.e. this
is the total time to fetch the data from memory and to execute the necessary MAC oper-
ations. The computation time for the proposed nonlinear power model is 190 ns for one
estimation and thus 2.7 × larger than for the purely linear power model. Note, that the
memory accesses add significant computational latency for both, the linear power models
and the nonlinear power models and thus the run-time increase in run-time overhead is a
magnitude smaller than what would have been expected from the pure MAC operations
comparison. At an estimation rate of 10 kHz, the required computation times translate
to computational overheads of 0.07% and 0.19%, respectively. For such a software imple-
mentation, the expected power overhead of executing the power models during run-time
is similar to the computational overhead.

Overhead Hardware Implementation As mentioned in previous sections, some multi-
core processors have integrated micro-controllers for run-time power estimation as well

101

4 Novel and Lightweight Power Estimation Models

as for running power and thermal management algorithms [37]. Such micro-controller
implementations seem to be a good trade-off between area, power and programmability.
Therefore, a possible micro-controller implementation is investigated in the following
for run-time power estimation. An 32-bit ARM Cortex-M0 micro-controller running at
50 MHz can be integrated with a small area footprint of less than 100 k transistors [122]
and needs six cycles to compute a single MAC operation. For the 32-bit ARM Cortex-
M0, this would translate to 2.3 k cycles for a single power estimation of the nonlinear
power model and would allow a power estimation rate of approximately 21 kHz which
is double the target estimation rate in this thesis of 10 kHz. In contrast to the FFNN
neuron weights needed in the FFNN-based methodology presented in Section 4.2, there is
negligible memory overhead for using nonlinear approximations functions in addition to
the linear regression part and thus will be neglected in the following overhead analysis. In
comparison, the linear model would only require 84 cycles for a single power estimation.
However, such a power estimating micro-controller adds are overhead which has to be
considered for the viability of the different power modeling approaches.

Today’s complex out-of-order cores integrate 100s of millions of transistors, the area
overhead of 100 k transistors per core for the power estimating micro-controller would
lead to an area overhead of less than 0.1%. With the micro-controller operating at
a slow 50 MHz, one can assume that the dynamic power overhead of executing power
estimations is significantly less than 0.1% while static power overhead will be around
0.1% of overall static power consumed by the core itself. In total, the power overhead
for run-time power estimation for the nonlinear power model should still be distinctly
below 0.1% for such a proposed micro-controller implementation. In regard to both
implementations and assuming that core power has to be estimated in some form, the
incurred run-time overheads of the proposed nonlinear power model over a linear power
model are comparatively low.

4.3.3 Discussion of Nonlinear Performance Counter/Power Relationship

With the nonlinear transformation power model being transparent — in contrast to
the proposed FFNN-based power model — in regard to how it minimizes nonlinear
performance counter / power relations, it can be used to investigate these relations.
In the following, hypotheses are provided for why the model accuracy is improved by
the nonlinear modeling approach; with the underlying nonlinear performance counter /
power relations being referred to in the following as nonlinear effects. First, the basic
microarchitecture of the out-of-order processor is shown in Figure 4.14. The core front
end is responsible for instruction fetch, decoding and branch prediction (BPU). In the
execution engine, the instructions are reordered, scheduled and executed. The memory
subsystem, loads and stores instructions and data from the uncore which is not part
of the core itself but shown for easier understanding of the memory subsystem and
its interactions with the whole multi-core system. Taking into account the nonlinear
functions and the qualitative performance counter/power relationship for the generated
nonlinear power models as shown in Table 4.18, the following observations are made:

102

4.3 Nonlinear Transformation-based Power Model

Front end Uncore

Execution engine
Memory subsystem

(core-level)

L1 instr.
cache

BPU
Instr. fetch /

queue /
decode

Memory
controller

NoC
router

Shared
L3 cache

Reorder buffer
(ROB)

Scheduler

Execution units
INT | FP | AGU

Private
L2 cache

L1 data
cache

Memory order
buffer (MOB)

DRAM

Figure 4.14: Overview of the core microarchitecture composed of front end, execution engine
as well as memory subsystem including the private L1 and L2 caches as well as
the core’s connection with the processor uncore [4]

Table 4.18: Observed relationship between performance counter and core power for power mod-
eling in regard to pos./neg. correlation sgn(βi) and shape of the monotonically
increasing/decreasing transformation functions [4]

Ai BPU L2LI L2LM L2SI L2SM /

sgn(βi) - + + + + /

Slope UB SAT SAT UB UB /

Ai L3LI L3LM L3SI L3SM L2CLK L3CLK

sgn(βi) - - + + - +

Slope SAT SAT UB UB UB UB

Unbounded (UB)

Saturating (SAT)

103

4 Novel and Lightweight Power Estimation Models

Front End (BPU): Increasing number of branch instructions contribute negatively
to overall core power and this effect is nonlinear and unbounded. The core has to spend
more time refilling the front end and the rate of subsequent stalls in the execution engine,
seems to increase nonlinearly. Even adding additional BPU related performance counters
will likely not change the nonlinear relationship.

Memory Subsystem on core-level (L2LI, L2SI, L2LM, L2SI, L2CLK): An
increase of L2 load activity leads to saturating core power contributions. This is intuitive
because L2 load misses can be masked at low L2 load rates but not anymore at high L2
load rates. Note, that L2 load rate and load miss rate are correlated, thus explaining
the similar power behavior for both performance counters. The increasing L2 load rate
and load miss rate lead to execution engine stalls and decreasing execution engine power
and a saturating core power contribution. For L2 stores, the effect is still nonlinear but
unbounded and can be explained by the Gainestown’s store buffer being (only) double
the size of the load buffer in the MOB unit. Most of the benchmarks show on average
a load instruction rate which is more than twice the rate of store instructions, meaning
that execution engine stalls do not saturate due to L2 store misses. For L2CLK, the
activity of the front end and the execution engine saturates and starts to decrease while
the memory subsystem activity keeps increasing with the percentage of lost cycles due
to L2 load and store misses.

Uncore (L3LI, L3SI, L3LM, L3SI, L3CLK): Although the uncore switching
activity does not contribute to core-level power consumption in the scope of this thesis,
the uncore performance counters still correlate with core power and improve accuracy of
the core power model. The nonlinear effect stays the same for L3 loads, but the indication
for the core power contribution becomes negative as the likelihood of stalls increases
significantly with L3 load misses. Overall, this does not mean that overall package
power — including cores and the uncore — goes down with increasing L3 load misses,
however, the core power itself decreases allowing resource management algorithms to
adapt the resource mapping and scheduling. For L3 stores, the nonlinear effect is the
same as for L2 stores. For L3CLK, the nonlinear behavior is the same as with L2CLK,
however, the power response is negative as the possibility for masking the cache miss
penalty is comparatively lower.

Summary This section introduces a nonlinear modeling approach based on nonlinear
transformation functions to account for nonlinear performance counter / power relations
in a model transparent way, in contrast to the more black box FFNN models of Sec-
tion 4.2. By identifying and applying nonlinear transformations for specific performance
counters, a nonlinear model is generated which estimates run-time power more accu-
rately than the reference-based linear and polynomial approaches. Although the run-
time overhead of this approach is higher compared to other lightweight models, i.e. linear
and polynomial, it is sufficiently low to allow estimation rates of 10 kHz with relatively
low area or computational overhead similar to the proposed FFNN-based methodology.
Furthermore, the presented methodology does not rely on knowledge of microarchitec-
tural implementation details. Finally, the generated nonlinear power models are fully

104

4.3 Nonlinear Transformation-based Power Model

transparent, providing interpretability in regard to the causes of nonlinear performance
counter / dynamic power relationships.

105

4 Novel and Lightweight Power Estimation Models

4.4 Comparison and Discussion of the Power Estimation
Methodologies

This thesis proposes three different approaches for improving on fine-grained run-time
power estimation models for multi-core systems:

� an ICA-based approach in Section 4.1,

� an FFNN-based approach in Section 4.2,

� a nonlinear transformation-based approach in Section 4.3.

These three approaches have been compared — in the respective section — to linear
power models and polynomial power models which were based on state-of-the-art re-
lated works while also discussing their associated trade-offs. In this section, an overall
comparison and discussion of the three different approaches will be given in regard to
their estimation accuracy, their run-time overhead as well as other model properties,
e.g. employed workloads for model generation and model transparency.

An overview of the relative RMSE errors of the different proposed power estimation
models as well as two reference-based power models, one linear and one polynomial,
are shown in Table 4.19. As described in Section 3.4, different distributions of the
generic workloads (SPLASH-2 and PARSEC benchmarks) were used for final evaluation
of the different power estimation models. These different distributions also apply for the
reference-based power models, e.g. in Section 4.1 the synthetic workload-based linear
power model was evaluated over all workloads while in Section 4.2 it was evaluated on
the holdout data set. Therefore, there are slight deviations in the relative and absolute
error performances of the different power models. To make the accuracy comparison
as conservative as possible, the lowest relative error values of the reference-based power
models are chosen for comparison in Table 4.19. Note, that in the table only those
power model versions are added which were generated with unknown core-level power,
i.e. derived from package power, and with a full complement of performance counter
inputs as described in Section 3.2. Alos, no versions of the power models with reduced
number of performance counter are included in this comparison nor those power models
which were generated with known core-level power as model generation input. Thus the
table provides a baseline comparison of all novel power estimation models presented in
this thesis. First, one can observe that the accuracy of the ICA-based methodology to
generate linear run-time power models is not significantly (2%) better than for linear
or polynomial approaches from the related works. Also, the ICA-based methodology
has the same accuracy as the proposed polynomial approach with variable degrees per
performance counter input from Section 4.3. The aim for the ICA-based methodology
was to minimize multicollinearity in an automated methodology, without reliance on
synthetic workloads or manual performance counter transformations, while the estima-
tion accuracy was only a secondary aim, i.e. keeping it similar to other approaches was
deemed sufficient. However, the FFNN-based power estimation models were also purely
trained on generic workloads and achieve significantly higher estimation accuracy than

106

4.4 Comparison and Discussion of the Power Estimation Methodologies

Table 4.19: Average RMSE estimation errors of different run-time dynamic power models and
their run-time computational overhead per model inference, e.g. for 10 kHz estima-
tion rates every 0.1 ms, as well as the total memory to be stored on the processor
for each model

Power Model Relative MAC OPs Total Memory
Error per Execution in kBit

ICA-based (Sec. 4.1) 10% 196 6.5

Shallow FFNN (Sec. 4.2) 4.5% 827 20

Multi-1 FFNN (Sec. 4.2) 5.3% 326 10

Multi-2 FFNN (Sec. 4.2) 7.2% 290 9.3

Multi-3 FFNN (Sec. 4.2) 7.9% 268 8.6

Multi-4 FFNN (Sec. 4.2) 6.1% 308 10

Nonlinear trans. (Sec. 4.3) 9.0% 377 1.4

Reference-based

Linear (syn. workloads) [36] 12% 14 0.5

Polynomial degree-3 [30] 12% 112 1.5

Polynomial var. degree (Sec. 4.3) 10% 36 0.8

the ICA-based methodology which is in line with some coarse-grained NN works dis-
cussed in the related work which also did not use any specific methodologies to minimize
multicollinearity. Overall, in regard to difficulties from multicollinearity, these results
indicate that FFNN are a very powerful tool to inherently minimize the modeling errors
and problems due to multicollinearity without the need for any additional methodologies
like ICA transformations or synthetic workloads.

The FFNN-based approach as well as the nonlinear transformation-based approach
both aimed to increase run-time estimation accuracy by accounting for potential nonlin-
ear performance counter / power consumption relations. One can observe that the five
final FFNN power estimation models, with different neural architectures, significantly
outperform the nonlinear transformation approach in regard to the relative RMSE of
the power estimations, i.e. 1.1% - 4.5% lower relative error than the nonlinear transfor-
mation model, 4.1% - 7.5% lower relative error than a purely linear power model and
standard polynomial models of degree 3. However, the first optimized shallow neural
architecture which was determined by single-objective optimization still required more
than double the MAC operations for a single power estimation compared to the nonlinear
transformation approach and more than 14 times as much memory to encode all neuron
weights compared to encoding the nonlinear coefficients. The multi-objective optimiza-
tion, which minimized both run-time overhead and power estimation error in parallel,
of the neural architectures later yielded the multi-x FFNNs. These multi-x FFNNs all
require slightly less MAC operations than the nonlinear transformation model while still
requiring six to seven times more memory. For both approaches, memory requirements
could be reduced in future works by carefully decreasing the bit-width of the coefficients

107

4 Novel and Lightweight Power Estimation Models

while trying to keep the estimation accuracy from degrading too much. Overall, the
FFNN-based approach is likely the most suitable approach for many run-time power
estimation applications for multi-core/many-core processors with complex core archi-
tectures. The only downside compared to the nonlinear transformation approach is
the higher memory requirement as well as the non-transparency of the resulting power
model. Where the nonlinear transformation model easily allows for investigation of non-
linear performance counter / power relations, the same investigation is more difficult
for the trained FFNNs due to the multi-layered concept with sporadic activations of
contributing estimation pathways in the FFNNs power models.

Finally, one can observe clear trade-offs between model complexity and estimation
accuracy in the investigated power modeling approaches. In regard to fine-grained,
run-time power estimation, there is no ”free lunch” which allows for higher estima-
tion accuracy while keeping run-time overhead static. The proposed power estimation
models have shown that significantly higher model accuracy can be achieved for high
estimation rates of 10 kHz while still having small area/power/computational overheads
compared to large out-of-order core architectures. However, they do lead to higher run-
time overhead for the power estimations and if/when to spend such overhead during
the multi-/many-core design process is up to the processor designers and the integrated
power and thermal management algorithms, i.e. how well these algorithms perform un-
der partially incorrect run-time power information inputs. As discussed in Section 2.1.3,
many of the state-of-the-art power and thermal management algorithms which use run-
time power as an input to their decision process, assume perfectly accurate, fine-grained
power information. That assumption is likely incorrect for most processor systems and
future works could investigate the impact of power information uncertainty onto the cor-
rectness of power and thermal management decision making and thus the performance
impact of inaccurate, run-time power information.

108

5 Novel and Accurate Power Forecasting
Model based on LSTM RNNs

This section presents and evaluates the methodology for LSTM-based power forecast-
ing [5].

Motivation and Problem Formulation As discussed in Section 2.1.4, forecasting future
power states of a multi-/many-core system can enable more effective, proactive power and
thermal management algorithms and power forecasting fundamentally belonging to the
problem class of time-series forecasting. There are many challenges involved in the time-
series forecasting of power on core-level. Although some AR-based and history table-
based power forecasting methodologies were proposed in the related work, see Section 2.3,
these have some fundamental limitations in regard to: either their capability to recognize
power-relevant application patterns to be able to forecast power phase changes or to be
sufficiently fine-grained in the time-domain.

In general, AR models — or variants thereof — are often-used simple time-dependent
linear models. However, the recognition of patterns in the performance and power data,
which enables the forecasting of power phase changes, can require both nonlinear model-
ing and the ability to dynamically discard or forget previous forecast values, e.g. one-time
shocks. Another key drawback of AR-based models is the limited history encoding that
prevents learning long-term dependencies and larger amounts of training data. The
power and thermal management policy may change the Vf-levels at any time which im-
poses another challenge for power forecasting because power and performance counter
traces may be observed at different Vf-levels. However, compared to similar problems,
not only is the past power trace available as a feature for forecasts but the observed past
performance counter data, which could allow for additional insights into the application
behavior, i.e. the application pattern over time.

There are a very wide range of works including performance forecasting on multi-core
processors where LSTM RNNs [126] have been successfully employed for time-series
forecasting. These LSTM RNNs models overcome the limitations of AR-like models
because:

� they are inherently able to learn nonlinear dependencies,

� they can learn/encode long-term dependencies with the help of an internal memory.

Therefore, this section presents a power forecasting methodology using LSTM RNNs
which allows for fine-grained — in the time-domain as well as the spatial domain —

109

5 Novel and Accurate Power Forecasting Model based on LSTM RNNs

power forecasts and has a high capacity for power-relevant pattern recognition and thus
can accurately forecast power phase changes.

The challenge of changing Vf-levels and its potential impact on model stability of
the LSTM RNNs is tackled by normalizing both inputs and outputs of the models to
the Vf-levels; allowing the use of a single model for all Vf-levels. However, there are
several remaining challenges when employing LSTM RNNs for power forecasting. To
achieve a high forecasting accuracy on untrained/unknown applications, i.e. generaliz-
ing the behavior from trained applications and their power behavior towards unknown
applications, it is crucial that a single model is created that is usable for all applications
and does not rely on prior application knowledge nor on inherent task periodicity. In
addition, the time interval of forecasts, e.g. forecasting the next 1 ms or the next 10 ms,
depends on the power or thermal management algorithm that makes use of the forecasts.
For example, Vf-scaling operates much faster than task migration which results in very
different requirements for the forecast time intervals. A forecasting technique should be
easily adaptable to different commonly used power and thermal management decision
periodicities. With 1 ms and 10 ms being common decision periodicities, these two values
are chosen for investigation as forecasting time intervals. To summarize, the following
novel contributions are made in this section:

� Forecasting future workload-dependent core-power consumption at run-time, con-
sidering large patterns of power and performance counters, with high accuracy.

� Full-compatibility with DVFS, comprising feature traces and forecasting outputs
at different Vf-levels with a single model.

� Demonstrating that the LSTM RNN model generalizes to unseen applications with
high accuracy.

In the following, a short overview of the problem formulation and notation specific
to the power forecasting contributions is given. The near-future power consumption —
which is to be forecast — is defined as the average power consumption within short
future time intervals, i.e. in this thesis time intervals of 1 ms and 10 ms. The accuracy
is measured with both the MAPE of the forecasts as well as the instantaneous Worst
Case (WC) error over all individual forecasting time steps. The complexity of the LSTM
RNN, e.g. number of layers and number of neurons per layer, is used as a proxy variable
for the run-time overhead. The inputs to the forecasting technique are as throughout
this thesis the observations of the current system state, i.e. power consumption values
and performance counter readings. These power and performance counter observations
can be obtained at a shorter period than the forecasting time intervals, i.e. observations
every 10 us while the forecasting time intervals are 1 ms and 10 ms.

110

5.1 Methodology for Generating LSTM RNN Power Model

The following summarizes the problem formulation for this section:
Target: Forecast average core-level power consumption of the future time period τ .
Optimization Goal: Find a suitable trade-off between forecasting error (MAPE,

WC error) and LSTM RNN complexity (number of layers and number of neurons per
layer).

Available Inputs:

� Core-level power consumption values at observation period τM≤τ

� Performance counter PC readings at observation period τM

� Employed Vf-levels at observation period τM

� Target Vf-level for forecasting

The remainder of this section is structured as follows. First, an overview of the
methodology to generate power forecasting LSTM RNNs is given in Section 5.1 and the
data preprocessing and hyperparameter optimization are presented in detail. Afterwards,
the results in regard to the optimized neural architecture hyperparameters, the general
forecasting accuracy compared to other state-of-the-art approaches and the accuracy in
forecasting power phase changes are presented in Section 5.2.

5.1 Methodology for Generating LSTM RNN Power Model

First, an overview of the proposed methodology for generating LSTM RNNs for multi-
core power forecasting is shown in Figure 5.1. The methodology is constituted of two
distinct phases:

1. At design time, the power and performance counter traces are aggregated for a
multitude of training benchmarks, the LSTM RNN architectures are optimized
and the final LSTM RNN for power forecasting is trained.

2. At run-time, the LSTM RNN forecasts power for periods of τ .

The multi-core system, aggregation of power and performance counter traces and the
executed benchmarks in this section are as specified in Chapter 3. In the following, all
the remaining individual steps of the methodology will be discussed in detail.

Data Preprocessing

Due to the inherently large run-time overhead in regard to memory of LSTM RNNs
of even medium complexity, it is highly desirable to obtain reusable power forecasting
LSTM RNNs, i.e. the same LSTM RNN with the same neural architecture and the same
neural weights needs to accurately forecast power at different Vf-levels. This means that
the final LSTM RNN itself needs to be invariant in regard to voltage and frequency.
Therefore, all performance counter inputs PC are — where necessary — normalized
to the operating frequency of the current training and or evaluation data trace. Some

111

5 Novel and Accurate Power Forecasting Model based on LSTM RNNs

Experimental setup
as detailed in Chapter 3

with section specific Vf-levels

Data Preprocessing

Validation
Data

Training
Data

Perf. ct.
traces PC

Power
traces P

Training

Validation

H
y
p

er
p
a
ra

m
et

er
T

u
n
in

g

LSTM RNN

Normalize

Normalize

Measured
Power P

Measured
Performance

Counters PC

Re-scale
Power

Forecast

V f

f

V f

Design-Time

Run-Time

Figure 5.1: Overview of the proposed methodology to create and optimize the LSTM RNN at
design-time and employ it at run-time [5]

performance counters like IPC are already normalized to the cycle length and thus
normalized to the operating frequency. To avoid arithmetic underflows, the frequency
normalization is done to the operating frequency in GHz and not in Hz for each discrete
point k in time as follows:

PCinv[k] =
PC[k]

fGHz[k]
. (5.1)

As discussed in Section 2.1.1, the dynamic power consumption values consist of a
workload-dependent part and the Vf-dependent part. With this forecasting methodol-
ogy aiming to forecast workload-dependent power changes, the Vf-dependent power con-
tributions have to be removed from the power traces. This is also sensible as Vf-levels
are set by power and thermal management algorithms which should use the forecasts as
input. Therefore, by keeping Vf as contributor to the power consumption traces would
train the LSTM RNNs to forecast decisions of the power and thermal management al-
gorithms, thus creating an unintended control loop. The power traces are therefore
normalized to the current operational Vf-level as

Pinv[k] =
Pdyn[k]

fGHz[k] · V 2[k]
. (5.2)

112

5.1 Methodology for Generating LSTM RNN Power Model

Note that all power values are per default core-level power values. The underlying
assumption for this is that a different, high accuracy run-time power estimation model
is available to obtain core-level power consumption information as input for this power
forecasting methodology.

In addition, the training data input for the power forecasts, i.e. the output variable
the LSTM RNNs should generate during run-time, is generated in form of average power
consumption over τ points in time as:

P̄inv[k + τ] =
1

τ

k+τ∑
i=k

Pinv[i]. (5.3)

Afterwards, PCinv, P̄inv and Pinv are scaled to the range of (0, 1) for more stable RNN
weight updates.

Finally, the data traces of the benchmarks are pseudorandomly distributed into a
training data set, a validation data set and a holdout data set. The pseudorandom
distribution is used to avoid a clustering of similar benchmarks in the holdout data set,
e.g. including both fft benchmarks from the SPLASH-2 and PARSEC benchmarks suites.
Power and performance counter traces from an individual benchmark are only used for
exactly one of the training / validation / holdout data sets, and never mixed. Thereby,
the independence between the sets is fully ensured and there is no cross-contamination
between data sets which would allow for the holdout data set to be known by the LSTM
RNN before final evaluation. The training data set and the validation data set are used
for hyperparameter tuning and for training the final power forecasting LSTM RNN. The
holdout data set is solely used to assess the forecasting performance of the parameter-
optimized and trained network in Section 5.2.

Hyperparameter Optimization

The goal of optimizing the neural hyperparameters, i.e. number of layers and number
of neurons per layer, is to find LSTM RNN architectures which achieve high forecasting
accuracy with the lowest possible model complexity. Aiming for low model complexity
has the advantage of reducing the risk of having an architecture which is inclined to
overfit the underlying training data, thus achieving lower accuracy on the holdout data.
Also, low model complexity indirectly translates to low run-time overhead which is an
added benefit of this strategy.

The input dimensionality of the LSTM RNN is the number of performance counters
while the output dimensionality is the number of neurons in the last LSTM layer. These
outputs from the last LSTM layer are fed into a dense layer with an output dimensionality
of one which corresponds to the current power forecast. During training, the LSTM
RNN is fed with batches of PCinv[k, k − 1, ..., k −m] and Pinv[k, k − 1, ..., k −m] going
back m discrete time points and with P̄inv[k + τ] as a target function. To achieve
high forecasting accuracy while reducing run-time overhead, the hyperparameters have
to be optimized through a DSE. For training the LSTM RNN, first the algorithmic
hyperparameters — see also Section 4.2.1 for an overview of such NN hyperparameters,

113

5 Novel and Accurate Power Forecasting Model based on LSTM RNNs

are empirically determined by generating a set of LSTM RNNs with identical architecture
and only varying a single algorithmic hyperparameter for training. The Adam optimizer
[127] showed the highest forecasting accuracy compared to Stochastic Gradient Descent
(SGD) and Nesterov Accelerated Gradient (NAG) optimizers. The maximum number of
epochs were set to 10 for τ=1 and 25 for τ=10 where no accuracy improvement on the
training data was observable for even very large network architectures with a hundred
layers and a hundred neurons per layer. Mean-Square Error (MSE) was chosen as loss
function due to its stability when training RNNs. In addition, early stopping is used
in combination with model checkpointing to further avoid overfitting the training data.
The stop patience is set at 5 epochs as a trade-off between potentially missing a higher
accuracy LSTM RNN and overall training time. Thus, the training is stopped if the
validation loss does not improve for 5 continuous training epochs. In such a case, the
training output is the previous training instance of the LSTM RNN model with smallest
loss. As activation function ReLU was chosen because it achieves the highest training
accuracy and a negligible overhead over a set of different activation functions (ReLU,
tanh, sigmoid).

1) Select number of layers lopt

L
ay

er
1

L
ay

er
2

. . .

L
ay

er
n

l layers (variable) n
n

eu
ro

n
s

p
er

la
ye

r

lopt
l

n
Low MAPE
High MAPE

2) Select number of neurons for each layers ni at fixed lopt

L
ay

er
1

L
ay

er
2

. . .

L
ay

er
l

lopt layers (fixed)

d
iff

.
n
u

m
b

er
of

n
eu

ro
n

s
n
i

fo
r

ea
ch

la
ye

r
i

n1

nl

Search for
LSTM RNN architecture
with lowest MAPE

Figure 5.2: Selection of the final LSTM RNN neural hyperparameter architecture in a two-
stage DSE. First the depth of the RNN (number of layers) lopt is selected under the
simplifications of having the same number of neurons per layer (in blue); then the
number of neurons for each layer ni is optimized for the selected lopt (in green) [5].

114

5.1 Methodology for Generating LSTM RNN Power Model

The remaining model hyperparameters, i.e. number of layers and number of neurons
per each layer, are determined through two successive heuristic grid-searches. A heuristic
approach is proposed as an exhaustive parameter search over all possible combinations
of layers and neurons per individual layer within normal constraint boundaries, would
be computationally infeasible. As mentioned, the model hyperparameters have not only
a significant impact on run-time overhead, but also the risk of overfitting. Therefore,
the methodology tries to find hyperparameter values which are minimal while still gen-
erating networks with acceptable MAPE≤10% and MAPE≤30% values for the 1 ms and
10 ms forecasts, respectively. The overall methodology of the two grid-searches and their
respective optimization goals are shown in Figure 5.2.

In the first-grid search, LSTM RNNs with l ∈ {1, 2, . . . , 12} number of layers and
n ∈ {1, 2, . . . , 20, 25, . . . , 100} neurons per layer are generated. The goal of this first
grid-search is to determine a minimal viable layer count and minimal viable number of
neurons per layer. To find these minimal viable neuron architecture numbers, a large
set of LSTM RNN are generated along a two-dimensional grid with number of layers in
one dimension and number of neurons in the other dimension. The resulting network
architectures are always rectangular, i.e. they have always the same number of neurons
per layer. To compare the forecasting accuracy of different networks, MAPE is used on
the de-normalized power forecasts in the following as this metric is independent of the
underlying average power levels, for example for different Vf-levels. In contrast, MSE
is chosen as the loss function because the dependence on the power level is not relevant
when training particular LSTM RNNs and MSE does not suffer from small denominators
in like a MAPE loss function. The optimal layer count lopt is chosen based on the MAPE
distributions for the different number n neurons per layer. The smallest layer count for
which an nmin exists where the MAPE values fall within the acceptable MAPE range
for n ≥ nmin is then the fixed layer count lopt for the second grid-search.

In addition, minimal viable neuron value nmin is used to constrain the minimum
number of neurons per layer in the second grid-search. An additional parameter nmax,
constraining the maximum number of neurons, is also determined based on the n values
for which further increases yield no statistically significant improvements in the MAPE.
A reasonable expectation is that different forecasting time-frames τ — in this proposed
forecasting methodology: 1 ms and 10 ms — require different LSTM RNNs architectures.
Therefore, a separate first-grid search is executed for each τ value to determine possibly
different values of lopt, nmin and nmax.

In the second grid-search, the aim is to find good neuron distributions for the fixed
number of layers lopt. Thus, the LSTM RNN architectures are not rectangular any-
more. For each individual solution of architectural hyperparameters, 10 LSTM RNNs
are generated to be able to average the error metrics and remove outliers for diverging
models which allows to have more statistically reliable results for each investigated solu-
tion of hyperparameters. The second grid-search is again separately executed for each τ
value. The median MAPE value is then computed over the generated LSTM RNN power
forecasting models and the architecture hyperparameters with lowest median MAPE is
chosen as final, optimized architecture for the run-time power forecasting LSTM RNN.

115

5 Novel and Accurate Power Forecasting Model based on LSTM RNNs

The final LSTM RNN for run-time deployment generates the dynamic power forecasts
P̂dyn as follows:

P̂dyn[k + τ] = LSTM RNN(Pinv[k, ..., k − l],
PCinv[k, ..., k − l]) · fGHz[k] · V 2[k]. (5.4)

The total core-level power forecast is obtained by adding the static / idle power which
only depends on the Vf-level and current temperature T [k] — all measurable during
regular multi-core operation; and does not depend on the executed workload:

P̂total[k + τ] = P̂dyn[k + τ] + Pstatic(V [k], f [k], T [k]). (5.5)

This concludes the power forecasting methodology and in the following the results of the
experimental evaluation of this are presented.

5.2 Experimental Evaluation

The aim of this section is to assess the accurac of the proposed LSTM-based power
forecasting model. Again, the experimental setup described in detail in Chapter 3 is
used to generate the underlying power and performance data. First, the results in regard
to the optimized neural architecture hyperparameters, i.e. lopt, nmin and nmax as well
as the final neural architecture, are shown. Afterwards, the general forecasting accuracy
of the final power forecasting LSTM RNN is compared to two approaches which were
based on the state-of-the-art. Finally, the forecasting behavior in regard to rapid power
phase changes for the different forecasting models is discussed.

Hyperparameter Optimization Results

For a forecasting time interval τ = 1 ms, the first grid-search found an optimal layer
count of lopt = 5. The forecasting accuracy showed significant improvements starting at
a number n = 10 of neurons per layer and diminishing improvements starting at around
n = 30 which leveled off at n = 60. Based on this, in the second grid-search it was decided
to investigate 5-layered architectures with number of neurons per layer ni ∈ {10, 30, 60}.
The reasoning for including n3 = 60 is that a single larger layer or multiple larger layers
might lead to overall smaller neuron numbers on the remaining layers, i.e. layers with
n = 10 neurons. With this, 35 = 243 different neural architectures are investigated in
the second grid-search and overall 2430 different LSTM RNNs are generated. Of these
243 different neural architectures, a 30-60-30-30-10 neuron distribution showed the
smallest median MAPE.

For a forecasting time-interval τ = 10 ms, an lopt = 3 was determined and a minimal
neuron per layer number of n = 10, however, the accuracy improvement for larger neuron
numbers was far less distinct compared to the τ = 1 ms time interval results. This means
that there is far lower confidence at which maximum neuron per layer number nmax the
improvements in modeling accuracy would level off and thus, were to cut the solution

116

5.2 Experimental Evaluation

space to avoid high model complexity. Therefore, a compromise was chosen were the
allowed number of neurons per layer is a set ni ∈ {10, 20, 40, 60, 80, 100} were it can
be reasonably assumed that the model complexity is sufficiently large. However, as
discussed previously this incurs the risk of overfitting and lower run-time accuracy and
simultaneously unnecessarily high run-time overhead. This approach leads to 63 = 216
different neural architectures and overall 2160 generated different LSTM RNNs. The
neural architecture with the smallest median MAPE of this solution space was 20-80-40.
Note that these are the LSTM layers, and that for all LSTM RNNs a final dense layer
is implicitly included in the neural architecture / the power forecasting model.

From these results, one can see that for the magnitude larger forecasting time interval,
the neural architecture tends towards fewer layers with more neurons per layer. This
could imply that less patterns are observable over the time-domain while encoding pat-
terns of the performance counter inputs of a single input time-frame. How this translates
into forecasting accuracy will be shown in the following section.

For the reference of the reader: the training time for one LSTM is around one minute
and overall training time for both grid-searches and the final evaluation is around 90
hours when using a Nvidia Titan RTX for accelerating the LSTM RNN training.

General Forecasting Accuracy

To assess the forecasting accuracy of the optimized LSTM RNN architectures, a 100
LSTM RNNs of the 1 ms and 10 ms architectures were trained using the training and
validation data at 3 GHz operating frequency. This repeated generation of a 100 different
models based on the same hyperparameters is the same approach as taken in Section 4.2
for the FFNN-based power estimation models. The goal is again to obtain statistically
more robust, final accuracy assessments. The forecasting accuracy is determined by
running inference on the holdout performance counter data and comparing the forecast
power values P̂dyn[k+τ] with the actual average power values P̄dyn[k+τ]. The forecasting
accuracy is then compared to the following baseline techniques:

� history table forecasting based on [79]

� ARs forecasting based on [6]

For the AR forecasting methodology, the last four average core power values were used
as input as those showed the highest forecasting accuracy when parameterizing the AR
model for 1 ms and 10 ms forecast durations. The forecasting average and instantaneous
worst-case errors for the power forecasting LSTM RNNs approach and the reference-
based power forecasting models are given in Table 5.1. The error values are computed
for all techniques on the same holdout benchmarks, i.e. data which was not used for
training the LSTM RNNs. Note that the history table-based forecasting methodology
[79] has to have observed the workloads and changing power phases at least once to be
able to make a power phase forecast. Therefore, for this comparison and the accuracy
evaluation, the history table-based model observes the holdout data once to generate
power phase patterns such that it is able to forecast power.

117

5 Novel and Accurate Power Forecasting Model based on LSTM RNNs

For a forecasting time interval τ = 1 ms, the history table-based approach has signif-
icant intra-phase errors due to its identified power phase being of longer than 1 ms
durations. The AR based approach shows lower MAPE than the proposed LSTM
RNN methodology but higher instantaneous worst-case error. This higher instanta-
neous worst-case error could indicate worse forecasting capabilities in regard to power
phase changes and will, therefore, be investigated in the next section.

For a forecasting time interval τ = 10 ms, all approaches have significant MAPE errors
with the power forecasting LSTM RNN having smaller instantaneous worst-case errors.
These worse forecasting accuracies for the longer forecasting time interval were to be
expected as the workload-dependent power behavior naturally becomes more unpre-
dictable for longer time intervals, i.e. forecasting uncertainty increases with the further
one forecasts into the future.

Table 5.1: Forecasting MAPE values and instantaneous worst case-error values for the LSTM
RNN approach and reference-based approaches [5]

Error History Autoregressive LSTM
Table [79] Model [6]

1ms Forecasting Period

MAPE 30 % 8 % 10 %

Inst. WC 5.3 W 3.5 W 2.0 W

10ms Forecasting Period

MAPE 31 % 24 % 25 %

Inst. WC 5.4 W 5.8 W 3.6 W

Overall, the history table-based approach seems to perform substantially worse than
the AR-based and the LSTM RNN-based approaches; for the latter two approaches
further in-depth investigations are needed to identify their specific advantages and dis-
advantages.

Accuracy in Forecasting Power Phase Changes

To highlight the differing forecasting capabilities of the AR-based and the LSTM RNN-
based approaches, an example of power forecasts for τ = 1 ms is given in Figure 5.3 for
the PARSEC facesim benchmark which is part of the holdout data. The history table
approach [79] is left out of the following investigation; although the approach correctly
recognizes benchmarks and their power phase, however, due to its phase definition and
core activity never reaching 0% within the benchmark, the forecast power level as an
average over the whole power phase is very coarse-grained and any comparison towards
the other two approaches rather trivial.

The first observation from Figure 5.3 is that the AR approach [6] distinctively lags
behind the actual core power consumption. This is especially visible when the power
consumption shows sudden changes, e.g. Phases I and II. However, it also effectively

118

5.2 Experimental Evaluation

5 10 15 20 25 30 35 40

4

6

8

10
I II

Time (ms)

A
ve

ra
g
e

P
ow

er
(W

)

Actual Power AR Model [6] LSTM RNN

Figure 5.3: Power forecasts over time-frames of τ = 1 ms by reference AR model [6] and the
proposed LSTM RNN for the unseen PARSEC facesim benchmark [5].

adapts to constant power levels which is the main reason for the AR approach showing
lower MAPE values compared to the proposed LSTM RNN approach.

Further investigation of the forecasting capabilities of the two different techniques
is done by calculating the cross-correlation between the power trace and the forecast
traces for the full traces of all five holdout benchmarks. Figure 5.4 shows the resulting
cross-correlation values as well as a hypothetical oracle forecasting model that perfectly
forecasts the power trace. The oracle model shows a peak at ∆t = 0 samples as is to be
expected. The correlation decreases slowly towards ∆t = ±∞ samples because most of
the time power values only change slightly. The proposed technique based on the LSTM
RNN closely follows this trend, and — most importantly — also has a peak at ∆t = 0
samples. This demonstrates that the LSTM RNN-based technique forecasts the next
(future) power value and does not simply follow the measured (past) power trace. In
contrast, the AR-based model shows a peak at ∆t = −1 samples, i.e. the forecast value
correlates most strongly with the last observed power value, and not with the actual
value. This means that the AR-based model is very accurate for delayed tracking of the
power values but limited in forecasting power phase changes.

Frequency-stability of the LSTM RNNs and Run-time Inference Overhead

Finally, the forecasting ability of the previously generated LSTM RNNs is investigated
when used at 2 GHz and 1 GHz to assess how stable the LSTM RNNs are when they have
been trained at a different frequency than they are currently making power forecasts.
This is important because needing different LSTM RNNs for different operating frequen-
cies would definitely be infeasible in regard to run-time overhead. The resulting MAPE
instantaneous worst-case error values are given in Table 5.2 and show that the same
LSTM RNNs can produce accurate power forecasts over a wide range of frequencies.

119

5 Novel and Accurate Power Forecasting Model based on LSTM RNNs

−3 −2 −1 0 1 2 3

0.85

0.9

0.95

1

ForecastingDelayed
Tracking

Time Delay ∆t (Samples)

C
or

re
la

ti
on

AR Model [6] Opt. Oracle LSTM RNN

Figure 5.4: Cross-correlation of forecast and actual power trace demonstrating that the LSTM
RNN model actually forecasts future power [5]. An optimal oracle shows a peak at
time delay 0. The power forecasting LSTM RNN closely matches this, demonstrat-
ing that this model actually forecasts future power consumption. In contrast, the
AR model shows a peak at time delay −1, indicating that the AR model mostly
follows the measured power with a delay of one sample.

Table 5.2: Forecasting error for the LSTM RNNs trained at 3 GHz operating frequency and and
used to forecast power at operating frequencies of 2 GHz and 1 GHz [5]

Error 2 GHz 1 GHz 2 GHz 1 GHz

1 ms Forecasting Period 10 ms Forecasting Period

MAPE 12 % 8.9 % 28 % 20 %

Inst. WC 1.9 W 0.4 W 2.3 W 0.7 W

The actual run-time inference overhead of the two different power forecasting LSTM
RNNs architectures for time intervals of 1 ms and 10 ms was also investigated. Unfor-
tunately, the required amount of MAC operations per inference were prohibitive for a
potential micro-controller implementation at the target forecasting rates of 1 kHz. How-
ever, future solutions of dedicated NN on-chip accelerators or the trend towards far
larger core architectures might lead to the run-time overhead becoming comparatively
manageable.

Summary This section presents LSTM RNNs as a promising solution for the power
forecasting problem, which is indispensable to enable proactive power and thermal man-
agement for on-chip systems. The proposed technique is able to accurately forecast the
power consumption for unknown applications while minimizing LSTM RNN complexity,
i.e. number of layers and number of neurons per layer. The experimental evaluation
has shown the advantages of LSTM RNNs in regard to accurately forecasting power

120

5.2 Experimental Evaluation

phase changes. Nevertheless, there is still an open research question in regard to further
run-time overhead minimization to make an actual integration of the LSTM RNN-based
power forecasting approach feasible.

121

6 Conclusion and Outlook

The aims of this thesis were to propose methodologies to generate fine-grained, i.e. with
least core-level spatial resolution and high estimation rates of 10 kHz, power estimation
models with reasonable run-time estimation overhead and to investigate methodologies
to automatically reduce input multicollinearity. In addition, power forecasting method-
ologies generating forecasts of future workload-dependent power consumption values
with forecast intervals of 1 ms and 10 ms. Model outputs and evaluations of the power
estimates / forecasts were constrained to the highly variable — due to its direct rela-
tion and dependence on highly variable user workloads — dynamic power portion of
the total power consumption. As inputs to the estimation and forecasting models, a
set of performance counters were used. For reducing input multicollinearity, a power
model using ICA transformations was proposed which showed very good results in de-
creasing multicollinearity with slight improvements in estimation accuracy. To further
increase estimation accuracy, FFNN-based power models as well as a methodology us-
ing nonlinear functions for input transformation were proposed with the aim to reduce
and capture potential nonlinear relations between performance counter inputs and the
dynamic power response.

The evaluation of these nonlinear power models shows decreases in relative estimation
error between 3.0% - 7.5% compared to a purely linear reference-based power model
and with the FFNN power models showing the highest decreases in estimation error.
All generated ICA-based and nonlinear power models have sufficiently low additional
run-time overheads to be used as run-time power estimators for large core architectures
with the FFNN power models having similar computational overhead to the nonlinear
transformation model, but also significantly higher memory demands. Overall, these
results highlight an existing trade-off between power model complexity / run-time over-
head and the power model estimation accuracy for which processor designers have to
determine what level of complexity and accuracy offers the optimal solution for a given
processor architecture and its use-cases. The power forecasting LSTM RNNs showed
high accuracy for power phase changes, but lower average forecast accuracy compared
to an AR-based reference model for both time intervals and is thus more applicable for
reactive power and thermal management algorithms where high phase change accuracy
is needed, e.g. to avoid thermal emergencies.

The limitations of this thesis are the usage of a simulation framework for generation
and evaluation of the power estimating and forecasting models which could impact the
results if the simulated data is distorting the different power models in different ways,
i.e. if the simulation data unknowingly favors one type of power model over another
type of power model. Another limitation is in the power forecasting LSTM RNNs due
to the underlying complexity of the final, optimized neural architectures which still

123

6 Conclusion and Outlook

require significant run-time overheads in relation to current core architectures. Modeling
the uncore power consumption of the processor was not scope of this thesis, however,
this introduces modeling inaccuracy for the core-level power models themselves. When
generating power models with simulated core power as input, the percentage error of
the core-level power models decreased by 2% which indicates that some of the dynamic
uncore power was incorrectly attributed towards the cores. Finally, the all power models
focused on the workload-dependency, i.e. instruction flow, of the power consumption
and did not account for the processed data-content — due to data-content performance
counters not being routinely available in processors. This likely explains some of the
remaining power modeling inaccuracy.

In conclusion, the proposed power estimation models can enable more accurate de-
cision making of reactive power and thermal management algorithms in general, and
the proposed power forecasting model can enable specific proactive power and thermal
management algorithms which require high phase change accuracy.

Future Work There are open research directions which could build upon the contribu-
tions of this thesis. For one, many power and thermal management algorithms proposed
in the last decade have an implicit assumption of perfectly accurate, fine-grained run-
time power information. Defining an explicit stochastic error variance for the inputs
of such management algorithms, would enable research into the robustness of the al-
gorithms’ decision making under uncertainty. It would also allow a quantification of
the potential performance losses due to inaccurate power information inputs and would
give processor designers indications where the optimal trade-off between power model
complexity and the associated overhead, and estimation accuracy is to be found. To
further improve power modeling accuracy, an investigation into explicit uncore power
consumption modeling as well as novel data-content toggle rate performance counters
seems promising. Also, methodologies to accurately determine fine-grained, i.e. core-
level, power consumption of existing off-the-shelf multi-/many-core processors — even
through invasive instrumentation — are lacking. Any such novel methodology allow-
ing for core-level instrumentation would also allow for an accurate reevaluation of the
proposed methodologies in this thesis on physical hardware. Finally, further optimiza-
tions of the neural architectures for the power forecasting LSTM RNNs are needed to
reduce the run-time inference overhead. With the inference and training costs of NNs
becoming an ever bigger concern, new and promising methodologies like binarization
/ ternarization of neuron weights have been proposed in the wider deep-learning com-
munity which could be investigated for run-time, low-overhead neural architectures for
power forecasting on multi-/many-core processors.

124

Bibliography

[1] M. Sagi, N. A. V. Doan, T. Wild, and A. Herkersdorf. Multicore power estimation
using independent component analysis based modeling. In 2019 IEEE 13th Inter-
national Symposium on Embedded Multicore/Many-core Systems-on-Chip (MC-
SoC), pages 38–45, 2019. doi:10.1109/MCSoC.2019.00013.

[2] M. Sagi, N. A. V. Doan, N. Fasfous, T. Wild, and A. Herkersdorf. Fine-grained
power modeling of multicore processors using FFNNs. In A. Orailoglu, M. Jung,
and M. Reichenbach, editors, Embedded Computer Systems: Architectures, Mod-
eling, and Simulation - 20th International Conference, SAMOS 2020, Samos,
Greece, July 5-9, 2020, Proceedings, volume 12471 of Lecture Notes in Com-
puter Science, pages 186–199. Springer, 2020. URL: https://doi.org/10.1007/
978-3-030-60939-9_13, doi:10.1007/978-3-030-60939-9_13.

[3] M. Sagi, N. A. V. Doan, F. Nael, T. Wild, and A. Herkersdorf. Fine-grained power
modeling of multicore processors using FFNNs. International Journal of Parallel
Programming, 50(tbd):243–266, 2022. doi:10.1007/s10766-022-00730-9.

[4] M. Sagi, N. A. V. Doan, M. Rapp, T. Wild, J. Henkel, and A. Herkersdorf. A
lightweight nonlinear methodology to accurately model multicore processor power.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):3152–3164, 2020. doi:10.1109/TCAD.2020.3013062.

[5] M. Sagi, M. Rapp, H. Khdr, Y. Zhang, N. Fasfous, N. A. Vu Doan, T. Wild,
J. Henkel, and A. Herkersdorf. Long short-term memory neural network-based
power forecasting of multi-core processors. In 2021 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1685–1690, 2021. doi:10.23919/

DATE51398.2021.9474028.

[6] P. D. Saj Manoj, A. Jantsch, and M. Shafique. SmartDPM: Machine Learning-
Based Dynamic Power Management for Multi-Core Microprocessors. Jrnl. of Low
Power Electronics (JOLPE), 14(4), 2019.

[7] G. E. Moore. Cramming more components onto integrated circuits (Reprinted
from Electronics, pg 114-117, April 19, 1965). Technical Report 1, 1965. URL:
papers3://publication/uuid/8E5EB7C8-681C-447D-9361-E68D1932997D,
doi:10.1109/N-SSC.2006.4785860.

[8] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and
A. R. Leblanc. Design of Ion-Implanted MOSFET’s With Very Small Physi-

125

http://dx.doi.org/10.1109/MCSoC.2019.00013
https://doi.org/10.1007/978-3-030-60939-9_13
https://doi.org/10.1007/978-3-030-60939-9_13
http://dx.doi.org/10.1007/978-3-030-60939-9_13
http://dx.doi.org/10.1007/s10766-022-00730-9
http://dx.doi.org/10.1109/TCAD.2020.3013062
http://dx.doi.org/10.23919/DATE51398.2021.9474028
http://dx.doi.org/10.23919/DATE51398.2021.9474028
papers3://publication/uuid/8E5EB7C8-681C-447D-9361-E68D1932997D
http://dx.doi.org/10.1109/N-SSC.2006.4785860

BIBLIOGRAPHY

cal Dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974. doi:

10.1109/JSSC.1974.1050511.

[9] L. J. Flynn. Intel halts development of 2 new microproces-
sors, 2004. URL: https://www.nytimes.com/2004/05/08/business/

intel-halts-development-of-2-new-microprocessors.html.

[10] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In 2011 38th Annual International Sym-
posium on Computer Architecture (ISCA), pages 365–376, 2011.

[11] J. Henkel, H. Khdr, S. Pagani, and M. Shafique. New trends in dark silicon. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2015. doi:10.1145/2744769.2747938.

[12] M. Belwal and T. S. B. Sudarshan. A survey on design space exploration for
heterogeneous multi-core. In 2014 International Conference on Embedded Systems
(ICES), pages 80–85, 2014. doi:10.1109/EmbeddedSys.2014.6953095.

[13] C. Silvano, W. Fornaciari, G. Palermo, V. Zaccaria, F. Castro, M. Martinez,
S. Bocchio, R. Zafalon, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur,
M. Wouters, C. Kavka, L. Onesti, A. Turco, U. Bondi, G. Mariani, H. Posadas,
E. Villar, C. Wu, F. Dongrui, Z. Hao, and T. Shibin. Multicube: Multi-objective
design space exploration of multi-core architectures. In N. Voros, A. Mukherjee,
N. Sklavos, K. Masselos, and M. Huebner, editors, VLSI 2010 Annual Symposium,
pages 47–63, Dordrecht, 2011. Springer Netherlands.

[14] S. Pagani, S. M. PD, A. Jantsch, and J. Henkel. Machine Learning for Power, En-
ergy, and Thermal Management on Multi-Core Processors: A Survey. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2018. doi:10.1109/TCAD.2018.2878168.

[15] M. Rapp, H. Amrouch, M. C. Wolf, and J. Henkel. Machine Learning Techniques
to Support Many-Core Resource Management: Challenges and Opportunities. In
Workshop on Machine Learning for CAD (MLCAD). ACM/IEEE, 2019.

[16] A. K. Singh, S. Dey, K. R. Basireddy, K. McDonald-Maier, G. V. Merrett, and
B. M. Al-Hashimi. Dynamic Energy and Thermal Management of Multi-Core
Mobile Platforms: A Survey. IEEE Design & Test, 2020.

[17] P. Michaud. Exploiting thermal transients with deterministic turbo clock fre-
quency. IEEE Computer Architecture Letters, 19(1):43–46, 2020. doi:10.1109/

LCA.2020.2983920.

[18] D. Lo and C. Kozyrakis. Dynamic management of TurboMode in modern multi-
core chips. Proceedings - International Symposium on High-Performance Computer
Architecture, pages 1–11, 2014. doi:10.1109/HPCA.2014.6835969.

126

http://dx.doi.org/10.1109/JSSC.1974.1050511
http://dx.doi.org/10.1109/JSSC.1974.1050511
https://www.nytimes.com/2004/05/08/business/intel-halts-development-of-2-new-microprocessors.html
https://www.nytimes.com/2004/05/08/business/intel-halts-development-of-2-new-microprocessors.html
http://dx.doi.org/10.1145/2744769.2747938
http://dx.doi.org/10.1109/EmbeddedSys.2014.6953095
http://dx.doi.org/10.1109/TCAD.2018.2878168
http://dx.doi.org/10.1109/LCA.2020.2983920
http://dx.doi.org/10.1109/LCA.2020.2983920
http://dx.doi.org/10.1109/HPCA.2014.6835969

BIBLIOGRAPHY

[19] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan. Power-
management architecture of the intel microarchitecture code-named Sandy Bridge.
IEEE Micro, 32(2):20–27, 2012. doi:10.1109/MM.2012.12.

[20] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and J. Henkel.
TSP: Thermal Safe Power - Efficient power budgeting for Many-Core Sys-
tems in Dark Silicon. Proceedings of the 2014 International Conference on
Hardware/Software Codesign and System Synthesis - CODES ’14, (April):1–10,
2014. URL: http://dl.acm.org/citation.cfm?doid=2656075.2656103, doi:

10.1145/2656075.2656103.

[21] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. Performance optimal online dvfs
and task migration techniques for thermally constrained multi-core processors.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(11):1677–1690, 2011. doi:10.1109/TCAD.2011.2161308.

[22] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A. J. Drake, L. Pe-
santez, T. Gloekler, J. A. Tierno, P. Bose, and A. Buyuktosunoglu. Introducing the
adaptive energy management features of the power7 chip. IEEE Micro, 31(2):60–
75, 2011. doi:10.1109/MM.2011.29.

[23] A. Pathania and J. Henkel. HotSniper: Sniper-Based Toolchain for Many-Core
Thermal Simulations in Open Systems. IEEE Embedded Systems Letters (ESL),
2018. doi:10.1109/LES.2018.2866594.

[24] S. Bhagavatula and B. Jung. A power sensor with 80ns response time for power
management in microprocessors. In Proceedings of the IEEE 2013 Custom Inte-
grated Circuits Conference, pages 1–4, 2013. doi:10.1109/CICC.2013.6658487.

[25] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. An En-
ergy Efficiency Feature Survey of the Intel Haswell Processor. Proceedings - 2015
IEEE 29th International Parallel and Distributed Processing Symposium Work-
shops, IPDPSW 2015, pages 896–904, 2015. doi:10.1109/IPDPSW.2015.70.

[26] R. Schöne, T. Ilsche, M. Bielert, M. Velten, M. Schmidl, and D. Hackenberg.
Energy efficiency aspects of the amd zen 2 architecture. In 2021 IEEE International
Conference on Cluster Computing (CLUSTER), pages 562–571, 2021. doi:10.

1109/Cluster48925.2021.00087.

[27] M. Chadha, T. Ilsche, M. Bielert, and W. E. Nagel. A statistical approach to
power estimation for x86 processors. In IEEE Proc. IPDPSW, 2017. doi:10.

1109/IPDPSW.2017.98.

[28] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M. Al-Hashimi,
and G. V. Merrett. Accurate and stable run-time power modeling for mobile and
embedded CPUs. IEEE Trans. CAD, 2017. doi:10.1109/TCAD.2016.2562920.

127

http://dx.doi.org/10.1109/MM.2012.12
http://dl.acm.org/citation.cfm?doid=2656075.2656103
http://dx.doi.org/10.1145/2656075.2656103
http://dx.doi.org/10.1145/2656075.2656103
http://dx.doi.org/10.1109/TCAD.2011.2161308
http://dx.doi.org/10.1109/MM.2011.29
http://dx.doi.org/10.1109/LES.2018.2866594
http://dx.doi.org/10.1109/CICC.2013.6658487
http://dx.doi.org/10.1109/IPDPSW.2015.70
http://dx.doi.org/10.1109/Cluster48925.2021.00087
http://dx.doi.org/10.1109/Cluster48925.2021.00087
http://dx.doi.org/10.1109/IPDPSW.2017.98
http://dx.doi.org/10.1109/IPDPSW.2017.98
http://dx.doi.org/10.1109/TCAD.2016.2562920

BIBLIOGRAPHY

[29] C. Isci and M. Martonosi. Identifying program power phase behavior using power
vectors. Workload Characterization, 2003. WWC-6. 2003 IEEE International
Workshop on, pages 108–118, 2003. doi:10.1109/WWC.2003.1249062.

[30] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C. Snoeren,
and R. K. Gupta. Evaluating the effectiveness of model-based power characteriza-
tion. In Proceedings of the 2011 USENIX Conference on USENIX Annual Tech-
nical Conference, USENIXATC’11, page 12, USA, 2011. USENIX Association.

[31] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari, A. Grud-
nitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe. Invasive manycore
architectures. In 17th Asia and South Pacific Design Automation Conference,
pages 193–200, 2012. doi:10.1109/ASPDAC.2012.6164944.

[32] N. Anantharajaiah, T. Asfour, M. Bader, L. Bauer, J. Becker, S. Bischof,
M. Brand, H.-J. Bungartz, C. Eichler, K. Esper, J. Falk, N. Fasfous, F. Freil-
ing, A. Fried, M. Gerndt, M. Glaß, J. Gonzalez, F. Hannig, C. Heidorn, J. Henkel,
A. Herkersdorf, B. Herzog, J. John, T. Hönig, F. Hundhausen, H. Khdr, T. Langer,
O. Lenke, F. Lesniak, A. Lindermayr, A. Listl, S. Maier, N. Megow, M. Met-
tler, D. Müller-Gritschneder, H. Nassar, F. Paus, A. Pöppl, B. Pourmohseni,
J. Rabenstein, P. Raffeck, M. Rapp, S. N. Rivas, M. Sagi, F. Schirrmacher,
U. Schlichtmann, F. Schmaus, W. Schröder-Preikschat, T. Schwarzer, M. B. Sikal,
B. Simon, G. Snelting, J. Spieck, A. Srivatsa, W. Stechele, J. Teich, F. Turan,
I. A. C. Ureña, I. Verbauwhede, D. Walter, T. Wild, S. Wildermann, M. Wille,
M. Witterauf, and L. Zhang. Invasive Computing. FAU University Press, 2022.
doi:10.25593/978-3-96147-571-1.

[33] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel. Power- and cache-
aware task mapping with dynamic power budgeting for many-cores. IEEE Trans-
actions on Computers, 69(1):1–13, 2020. doi:10.1109/TC.2019.2935446.

[34] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power cmos digital
design. IEICE Transactions on Electronics, 75(4):371–382, 1992.

[35] C. Möbius, W. Dargie, and A. Schill. Power consumption estimation models for
processors, virtual machines, and servers. IEEE Transactions on Parallel and
Distributed Systems, 25(6):1600–1614, 2014. doi:10.1109/TPDS.2013.183.

[36] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. A sys-
tematic methodology to generate decomposable and responsive power models
for cmps. IEEE Transactions on Computers, 62(7):1289–1302, 2013. doi:

10.1109/TC.2012.97.

[37] W. Huang, C. Lefurgy, W. Kuk, A. Buyuktosunoglu, M. Floyd, K. Rajamani,
M. Allen-Ware, and B. Brock. Accurate fine-grained processor power proxies.
In 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 224–234, 2012. doi:10.1109/MICRO.2012.29.

128

http://dx.doi.org/10.1109/WWC.2003.1249062
http://dx.doi.org/10.1109/ASPDAC.2012.6164944
http://dx.doi.org/10.25593/978-3-96147-571-1
http://dx.doi.org/10.1109/TC.2019.2935446
http://dx.doi.org/10.1109/TPDS.2013.183
http://dx.doi.org/10.1109/TC.2012.97
http://dx.doi.org/10.1109/TC.2012.97
http://dx.doi.org/10.1109/MICRO.2012.29

BIBLIOGRAPHY

[38] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Raw-
son, and J. B. Carter. Architecting for power management: The IBM®
POWER7� approach. HPCA 16 2010 The Sixteenth International Symposium
on HighPerformance Computer Architecture, pages 1–11, 2010. URL: http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416627, doi:

10.1109/HPCA.2010.5416627.

[39] R. Kalla, Balaram Shnharoy, W. J. Starke, and M. Floyd. POWER 7 : IBM ’ S
Next-Generation Server Processor. IEEE Micro, 2010.

[40] S. Bhagavatula and B. Jung. A low power real-time on-chip power sensor in 45-nm
soi. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(7):1577–
1587, 2012. doi:10.1109/TCSI.2011.2177129.

[41] J. Henkel, H. Khdr, and M. Rapp. Smart Thermal Management for Heterogeneous
Multicores. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 132–137. IEEE, 2019.

[42] E. Cai and D. Marculescu. Tei-turbo: temperature effect inversion-aware turbo
boost for finfet-based multi-core systems. In 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 500–507, 2015. doi:

10.1109/ICCAD.2015.7372611.

[43] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. Int. Symp. on
Computer Architecture (ISCA), 23(2):24–36, 1995.

[44] A. Iranfar, S. N. Shahsavani, M. Kamal, and A. Afzali-Kusha. A heuristic machine
learning-based algorithm for power and thermal management of heterogeneous mp-
socs. In 2015 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pages 291–296, 2015. doi:10.1109/ISLPED.2015.7273529.

[45] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H. Jiang,
M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Sing-
hal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther,
T. Piazza, and T. Burton. Haswell: The fourth-generation intel core processor.
IEEE Micro, 34(2):6–20, 2014. doi:10.1109/MM.2014.10.

[46] Z. Chen and D. Marculescu. Distributed Reinforcement Learning for Power Lim-
ited Many-Core System Performance Optimization. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1521–1526. IEEE, 2015.

[47] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End Processors :
Methodology and Empirical Data. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, number December, 2003.

129

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416627
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416627
http://dx.doi.org/10.1109/HPCA.2010.5416627
http://dx.doi.org/10.1109/HPCA.2010.5416627
http://dx.doi.org/10.1109/TCSI.2011.2177129
http://dx.doi.org/10.1109/ICCAD.2015.7372611
http://dx.doi.org/10.1109/ICCAD.2015.7372611
http://dx.doi.org/10.1109/ISLPED.2015.7273529
http://dx.doi.org/10.1109/MM.2014.10

BIBLIOGRAPHY

[48] C. Isci and M. Martonpsi. Phase characterization for power: Evaluating control-
flow-based and event-counter-based techniques. In Proceedings - International
Symposium on High-Performance Computer Architecture, 2006. doi:10.1109/

HPCA.2006.1598119.

[49] W. Bircher and J. Law. Effective use of performance monitoring counters for run-
time prediction of power. University of Texas at . . . , Tech Repor, 2004. URL:
http://lca.ece.utexas.edu/pubs/UT{_}LCA{_}TR{_}041104-01.pdf.

[50] W. Bircher, M. Valluri, J. Law, and L. John. Runtime identification of micropro-
cessor energy saving opportunities. ISLPED ’05. Proceedings of the 2005 Inter-
national Symposium on Low Power Electronics and Design, 2005., pages 275–280,
2005. doi:10.1109/LPE.2005.195527.

[51] W. L. Bircher and L. K. John. Complete system power estimation: A trickle-
down approach based on performance events. ISPASS 2007: IEEE International
Symposium on Performance Analysis of Systems and Software, pages 158–168,
2007. doi:10.1109/ISPASS.2007.363746.

[52] W. L. Bircher and L. K. John. Complete system power estimation using processor
performance events. IEEE Trans. Comput., 2012. doi:10.1109/TC.2011.47.

[53] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. Decom-
posable and Responsive Power Models for Multicore Processors using Perfor-
mance Counters Categories and Subject Descriptors. Proceedings of the 24th
ACM International Conference on Supercomputing, pages 147–158, 2010. doi:

10.1145/1810085.1810108.

[54] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang.
PPEP: Online performance, power, and energy prediction framework and
DVFS space exploration. IEEE/ACM Proc. MICRO, 2014. URL: http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011408, doi:

10.1109/MICRO.2014.17.

[55] B. Goel, S. A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati.
Portable, scalable, per-core power estimation for intelligent resource management.
2010 International Conference on Green Computing, Green Comp 2010, pages
135–146, 2010. doi:10.1109/GREENCOMP.2010.5598313.

[56] B. Goel and S. A. McKee. A Methodology for Modeling Dynamic and Static Power
Consumption for Multicore Processors. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 273–282, 2016.

[57] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, L. Yang,
L. Zhangt, R. P. Dickt, Z. Qiant, Z. M. Maot, R. P. Dick, Z. M. Mao, and L. Yang.
Accurate online power estimation and automatic battery behavior based power

130

http://dx.doi.org/10.1109/HPCA.2006.1598119
http://dx.doi.org/10.1109/HPCA.2006.1598119
http://lca.ece.utexas.edu/pubs/UT{_}LCA{_}TR{_}041104-01.pdf
http://dx.doi.org/10.1109/LPE.2005.195527
http://dx.doi.org/10.1109/ISPASS.2007.363746
http://dx.doi.org/10.1109/TC.2011.47
http://dx.doi.org/10.1145/1810085.1810108
http://dx.doi.org/10.1145/1810085.1810108
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011408
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011408
http://dx.doi.org/10.1109/MICRO.2014.17
http://dx.doi.org/10.1109/MICRO.2014.17
http://dx.doi.org/10.1109/GREENCOMP.2010.5598313

BIBLIOGRAPHY

model generation for smartphones. In 2010 IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 105–114, 2010. URL: http://dl.acm.org/citation.cfm?id=1878982,
doi:10.1145/1878961.1878982.

[58] S. K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar, O. Unsal, and A. C.
Kestelman. System-level power estimation tool for embedded processor based
platforms. In ACM Proc. RAPIDO, 2014. doi:10.1145/2555486.2555491.

[59] M. J. Walker, A. K. Das, G. V. Merrett, and B. M. Al-hashimi. Run-time Power
Estimation for Mobile and Embedded Asymmetric Multi-Core CPUs. In HIPEAC
Workshop on Energy Efficiency with Heterogenous Computing, Amsterdam, NL,
19 - 21 Jan 2015, 2015.

[60] S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande, and U. Y. Ogras. An energy-
aware online learning framework for resource management in heterogeneous plat-
forms. ACM Trans. TODAES, 2020.

[61] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin.
Power-performance modeling on asymmetric multi-cores. In IEEE Proc. CASES,
2013. doi:10.1109/CASES.2013.6662519.

[62] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL: Memory
power estimation and capping. Low-Power Electronics and Design (ISLPED),
2010 ACM/IEEE International Symposium on, pages 189–194, 2010. doi:10.

1145/1840845.1840883.

[63] I. Corporation. Intel® 64 and ia-32 architectures software developer’s manual.
Technical report, 2016.

[64] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy consumption for
short code paths using rapl. SIGMETRICS Perform. Eval. Rev., 40(3):13–17,
jan 2012. URL: https://doi.org/10.1145/2425248.2425252, doi:10.1145/

2425248.2425252.

[65] I. Advanced Micro Devices. Bios and kernel developer’s guide (bkdg) for amd
family 16h models 30h-3fh processors. Technical report, 2016.

[66] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E. Nagel.
Power measurement techniques on standard compute nodes: A quantitative com-
parison. In 2013 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 194–204, 2013. doi:10.1109/ISPASS.2013.

6557170.

[67] Z. Xie, X. Xu, M. Walker, J. Knebel, K. Palaniswamy, N. Hebert, J. Hu,
H. Yang, Y. Chen, and S. Das. Apollo: An automated power modeling frame-
work for runtime power introspection in high-volume commercial microproces-

131

http://dl.acm.org/citation.cfm?id=1878982
http://dx.doi.org/10.1145/1878961.1878982
http://dx.doi.org/10.1145/2555486.2555491
http://dx.doi.org/10.1109/CASES.2013.6662519
http://dx.doi.org/10.1145/1840845.1840883
http://dx.doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/2425248.2425252
http://dx.doi.org/10.1145/2425248.2425252
http://dx.doi.org/10.1145/2425248.2425252
http://dx.doi.org/10.1109/ISPASS.2013.6557170
http://dx.doi.org/10.1109/ISPASS.2013.6557170

BIBLIOGRAPHY

sors. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’21, page 1–14, New York, NY, USA, 2021. Association
for Computing Machinery. URL: https://doi.org/10.1145/3466752.3480064,
doi:10.1145/3466752.3480064.

[68] C. H. Hsu and S. W. Poole. Power signature analysis of the SPECpower-ssj2008
benchmark. In IEEE Proc. ISPASS, 2011. doi:10.1109/ISPASS.2011.5762739.

[69] G. Dhiman, K. Mihic, and T. Rosing. A system for online power prediction in
virtualized environments using Gaussian mixture models. In IEEE Proc. DAC,
2010. doi:10.1145/1837274.1837478.

[70] W. Dargie. A stochastic model for estimating the power consumption of a proces-
sor. IEEE Transactions on Computers, 64(5):1311–1322, 2015. doi:10.1109/TC.
2014.2315629.

[71] L. F. Cupertino, G. Da Costa, and J. M. Pierson. Towards a generic power esti-
mator. Computer Science - Research and Development, 2014.

[72] L. Cupertino, G. Da Costa, A. Oleksiak, W. Pia̧tek, J. M. Pierson, J. Salom,
L. Sisó, P. Stolf, H. Sun, and T. Zilio. Energy-efficient, thermal-aware modeling
and simulation of data centers: The CoolEmAll approach and evaluation results.
Ad Hoc Networks, 25(PB):535–553, 2015. doi:10.1016/j.adhoc.2014.11.002.

[73] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky. Improving the accu-
racy of energy predictive models for multicore cpus using additivity of performance
monitoring counters. In Parallel Computing Technologies, 2019.

[74] W. Lin, G. Wu, X. Wang, and K. Li. An Artificial Neural Network Approach to
Power Consumption Model Construction for Servers in Cloud Data Centers. IEEE
Transactions on Sustainable Computing, 2019.

[75] W. Wu, W. Lin, L. He, G. Wu, and C.-H. Hsu. A Power Consumption Model
for Cloud Servers Based on Elman Neural Network. IEEE Transactions on Cloud
Computing, 2019.

[76] X. Chen, C. Xu, R. P. Dick, and Z. M. Mao. Performance and power modeling
in a multi-programmed multi-core environment. In Proceedings of the 47th Design
Automation Conference, DAC ’10, page 813–818, New York, NY, USA, 2010. As-
sociation for Computing Machinery. URL: https://doi.org/10.1145/1837274.
1837479, doi:10.1145/1837274.1837479.

[77] B. Dutta, V. Adhinarayanan, and W.-c. Feng. GPU Power Prediction via Ensemble
Machine Learning for DVFS Space Exploration. In International Conference on
Computing Frontiers (CF), pages 240–243, 2018.

132

https://doi.org/10.1145/3466752.3480064
http://dx.doi.org/10.1145/3466752.3480064
http://dx.doi.org/10.1109/ISPASS.2011.5762739
http://dx.doi.org/10.1145/1837274.1837478
http://dx.doi.org/10.1109/TC.2014.2315629
http://dx.doi.org/10.1109/TC.2014.2315629
http://dx.doi.org/10.1016/j.adhoc.2014.11.002
https://doi.org/10.1145/1837274.1837479
https://doi.org/10.1145/1837274.1837479
http://dx.doi.org/10.1145/1837274.1837479

BIBLIOGRAPHY

[78] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
The McPAT Framework for Multicore and Manycore Architectures: Simultane-
ously Modeling Power, Area, and Timing. ACM Transactions on Architecture and
Code Optimization (TACO), 2013. doi:10.1145/2445572.2445577.

[79] W. L. Bircher and L. John. Predictive Power Management for Multi-Core Proces-
sors. In International Conference on Computer Architecture (ISCA), page 243–255.
ACM, 2010.

[80] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring and
prediction on real systems with application to dynamic power management. In
2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06), pages 359–370, 2006.

[81] A. Majumdar, L. Piga, I. Paul, J. L. Greathouse, W. Huang, and D. H. Albonesi.
Dynamic GPGPU Power Management using Adaptive Model Predictive Control.
In High Performance Computer Architecture (HPCA), pages 613–624. IEEE, 2017.

[82] A. K. Coskun, T. S. Rosing, and K. C. Gross. Utilizing predictors for efficient
thermal management in multiprocessor socs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28(10):1503–1516, 2009. doi:

10.1109/TCAD.2009.2026357.

[83] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. Workload Prediction
using ARIMA Model and its Impact on Cloud Applications’ QoS. Transactions
on Cloud Computing (TCC), 3(4):449–458, 2014.

[84] S. J. Tarsa, A. P. Kumar, and H. Kung. Workload Prediction for Adaptive Power
Scaling using Deep Learning. In International Conference on IC Design & Tech-
nology (ICICDT), pages 1–5. IEEE, 2014.

[85] M. G. Moghaddam, W. Guan, and C. Ababei. Investigation of LSTM based
prediction for dynamic energy management in chip multiprocessors. In 2017 Eighth
International Green and Sustainable Computing Conference (IGSC), pages 1–8,
2017. doi:10.1109/IGCC.2017.8323597.

[86] U. Gupta, M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna, S. Gumussoy, and
U. Y. Ogras. An Online Learning Methodology for Performance Modeling of
Graphics Processors. IEEE Transactions on Computers (TC), 67(12):1677–1691,
2018.

[87] M. Rapp, A. Pathania, T. Mitra, and J. Henkel. Neural Network-based Perfor-
mance Prediction for Task Migration on S-NUCA Many-Cores. IEEE Transactions
on Computers, 2020.

[88] Y. Kim, P. Mercati, A. More, E. Shriver, and T. Rosing. P4: Phase-Based Pow-
er/Performance Prediction of Heterogeneous Systems via Neural Networks. In

133

http://dx.doi.org/10.1145/2445572.2445577
http://dx.doi.org/10.1109/TCAD.2009.2026357
http://dx.doi.org/10.1109/TCAD.2009.2026357
http://dx.doi.org/10.1109/IGCC.2017.8323597

BIBLIOGRAPHY

International Conference on Computer-Aided Design (ICCAD), pages 683–690.
IEEE, 2017.

[89] C. V. Li, V. Petrucci, and D. Mossé. Predicting Thread Profiles Across Core Types
via Machine Learning on Heterogeneous Multiprocessors. In Brazilian Symposium
on Computing Systems Engineering (SBESC), pages 56–62. IEEE, 2016.

[90] C. V. Li, V. Petrucci, and D. Mossé. Exploring machine learning for thread
characterization on heterogeneous multiprocessors. SIGOPS Oper. Syst. Rev.,
51(1):113–123, sep 2017. URL: https://doi.org/10.1145/3139645.3139664,
doi:10.1145/3139645.3139664.

[91] A. Iranfar, W. S. De Souza, M. Zapater, K. Olcoz, S. X. de Souza, and D. Atienza.
A Machine Learning-Based Framework for Throughput Estimation of Time-
Varying Applications in Multi-Core Servers. In International Conference on Very
Large Scale Integration (VLSI-SoC), pages 211–216. IEEE, 2019.

[92] J. Kong, S. W. Chung, and K. Skadron. Recent thermal management techniques
for microprocessors. ACM Comput. Surv., 44(3), jun 2012. URL: https://doi.
org/10.1145/2187671.2187675, doi:10.1145/2187671.2187675.

[93] U. Gupta, M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna, and U. Y. Ogras.
STAFF: Online Learning with Stabilized Adaptive Forgetting Factor and Feature
Selection Algorithm. In Design Automation Conference (DAC), pages 1–6. IEEE,
2018.

[94] D. De Sensi. Predicting performance and power consumption of parallel applica-
tions. In 2016 24th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP), pages 200–207, 2016.

[95] C. Ababei and M. G. Moghaddam. A survey of prediction and classification tech-
niques in multicore processor systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 30(5):1184–1200, 2019. doi:10.1109/TPDS.2018.2878699.

[96] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications. In Int. Conf. on Parallel Architec-
tures and Compilation Techniques (PACT). ACM, 2008. doi:10.1145/1454115.

1454128.

[97] Y. Samei and R. Dömer. Automated estimation of power consumption for rapid
system level design. In IEEE IPCCC, 2014.

[98] A. Asad, A. Dorostkar, and F. Mohammadi. A novel power model for future
heterogeneous 3d chip-multiprocessors in the dark silicon age. EURASIP Journal
on Embedded Systems, 2018(1):1–16, 2018.

[99] F. Oboril, J. Ewert, and M. B. Tahoori. High-resolution online power monitoring
for modern microprocessors. In 2015 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), pages 265–268, 2015. doi:10.7873/DATE.2015.0208.

134

https://doi.org/10.1145/3139645.3139664
http://dx.doi.org/10.1145/3139645.3139664
https://doi.org/10.1145/2187671.2187675
https://doi.org/10.1145/2187671.2187675
http://dx.doi.org/10.1145/2187671.2187675
http://dx.doi.org/10.1109/TPDS.2018.2878699
http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.7873/DATE.2015.0208

BIBLIOGRAPHY

[100] Y. Li and P. Zhou. An outlier detection method and its application to multicore-
chip power estimation. In 2017 IEEE 12th International Conference on ASIC
(ASICON), pages 460–463, 2017. doi:10.1109/ASICON.2017.8252513.

[101] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson, D. Black-
Schaffer, E. Hagersten, and L. Eeckhout. Micro-architecture independent ana-
lytical processor performance and power modeling. In 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages
32–41, 2015. doi:10.1109/ISPASS.2015.7095782.

[102] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the Level of
Abstraction for Scalable and Accurate Parallel Multi-Core Simulation. In Int.
Conf. for High Performance Computing, Networking, Storage and Analysis (SC),
page 52. ACM, 2011. doi:10.1145/2063384.2063454.

[103] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R.
Stan. HotSpot: A Compact Thermal Modeling Methodology for Early-Stage VLSI
Design. Transactions on Very Large Scale Integration (VLSI) Systems, 14(5):501–
513, 2006. doi:10.1109/TVLSI.2006.876103.

[104] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. M. D.
Hill, D. A. D. A. Wood, B. Beckmann, G. Black, S. K. S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, A. Basil, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. M. D.
Hill, and D. A. D. A. Wood. The gem5 Simulator. Computer Architecture News,
39(2):1, 2011. URL: http://www.engineeringvillage.com/blog/document.

url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=

ins{%}5Cnhttps://www.engineeringvillage.com/blog/document.url?mid=

inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttp:

//dl.acm.org/citation.cfm?doi, doi:10.1145/2024716.2024718.

[105] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation: Raising the
level of abstraction in architectural simulation. Hpca, pages 1–12, 2010. doi:

10.1109/HPCA.2010.5416636.

[106] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An Evaluation
of High-Level Mechanistic Core Models. ACM TACO, 2014.

[107] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks. Quantifying sources of
error in mcpat and potential impacts on architectural studies. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA),
pages 577–589, 2015. doi:10.1109/HPCA.2015.7056064.

[108] J. Zhai, C. Bai, B. Zhu, Y. Cai, Q. Zhou, and B. Yu. Mcpat-calib: A microar-
chitecture power modeling framework for modern cpus. In 2021 IEEE/ACM In-
ternational Conference On Computer Aided Design (ICCAD), pages 1–9, 2021.
doi:10.1109/ICCAD51958.2021.9643508.

135

http://dx.doi.org/10.1109/ASICON.2017.8252513
http://dx.doi.org/10.1109/ISPASS.2015.7095782
http://dx.doi.org/10.1145/2063384.2063454
http://dx.doi.org/10.1109/TVLSI.2006.876103
http://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttps://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttp://dl.acm.org/citation.cfm?doi
http://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttps://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttp://dl.acm.org/citation.cfm?doi
http://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttps://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttp://dl.acm.org/citation.cfm?doi
http://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttps://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttp://dl.acm.org/citation.cfm?doi
http://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttps://www.engineeringvillage.com/blog/document.url?mid=inspec{_}ef5502133370e5bf3M6a022061377553{&}database=ins{%}5Cnhttp://dl.acm.org/citation.cfm?doi
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/HPCA.2010.5416636
http://dx.doi.org/10.1109/HPCA.2010.5416636
http://dx.doi.org/10.1109/HPCA.2015.7056064
http://dx.doi.org/10.1109/ICCAD51958.2021.9643508

BIBLIOGRAPHY

[109] M. LeBeane, J. H. Ryoo, R. Panda, and L. K. John. Watt watcher: Fine-grained
power estimation for emerging workloads. In 2015 27th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), pages
106–113, 2015. doi:10.1109/SBAC-PAD.2015.26.

[110] W. Lee, Y. Kim, J. H. Ryoo, D. Sunwoo, A. Gerstlauer, and L. K. John. Power-
train: A learning-based calibration of mcpat power models. In 2015 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED), pages
189–194, 2015. doi:10.1109/ISLPED.2015.7273512.

[111] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros. Splash-3: A properly synchro-
nized benchmark suite for contemporary research. In 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages
101–111, 2016. doi:10.1109/ISPASS.2016.7482078.

[112] A. Hyvärinen. ICA by Minimization of Mutual Information, chap-
ter 10, pages 221–227. John Wiley & Sons, Ltd, 2001. URL: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/0471221317.ch10, arXiv:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471221317.ch10,
doi:https://doi.org/10.1002/0471221317.ch10.

[113] K. Esbensen and P. Geladi. Principal Component Analysis. Chemometrics and
Intelligent Laboratory Systems, 2(Issues 1-3):37–52, 1987. arXiv:arXiv:1011.

1669v3, doi:10.1016/0169-7439(87)80084-9.

[114] D. A. Belsley. A Guide to using the collinearity diagnostics. Computer Science in
Economics and Management, 4(1):33–50, 1991. doi:10.1007/BF00426854.

[115] G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental
constructive feedforward networks with random hidden nodes. Trans. Neur. Netw.,
17(4):879–892, July 2006. URL: https://doi.org/10.1109/TNN.2006.875977,
doi:10.1109/TNN.2006.875977.

[116] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002. doi:10.1109/4235.996017.

[117] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf.
Nsga-net: Neural architecture search using multi-objective genetic algorithm. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’19, page 419–427, New York, NY, USA, 2019. Association for Computing
Machinery. URL: https://doi.org/10.1145/3321707.3321729, doi:10.1145/
3321707.3321729.

[118] X. Chu, B. Zhang, and R. Xu. Multi-objective reinforced evolution in mobile
neural architecture search. In A. Bartoli and A. Fusiello, editors, Computer Vi-
sion – ECCV 2020 Workshops, pages 99–113, Cham, 2020. Springer International
Publishing.

136

http://dx.doi.org/10.1109/SBAC-PAD.2015.26
http://dx.doi.org/10.1109/ISLPED.2015.7273512
http://dx.doi.org/10.1109/ISPASS.2016.7482078
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221317.ch10
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221317.ch10
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471221317.ch10
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471221317.ch10
http://dx.doi.org/https://doi.org/10.1002/0471221317.ch10
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1007/BF00426854
https://doi.org/10.1109/TNN.2006.875977
http://dx.doi.org/10.1109/TNN.2006.875977
http://dx.doi.org/10.1109/4235.996017
https://doi.org/10.1145/3321707.3321729
http://dx.doi.org/10.1145/3321707.3321729
http://dx.doi.org/10.1145/3321707.3321729

BIBLIOGRAPHY

[119] P. Vidnerová and R. Neruda. Multi-objective evolution for deep neural network
architecture search. In H. Yang, K. Pasupa, A. C.-S. Leung, J. T. Kwok, J. H.
Chan, and I. King, editors, Neural Information Processing, pages 270–281, Cham,
2020. Springer International Publishing.

[120] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space.
Technical report, 1994.

[121] K. Deb and S. Agrawal. A niched-penalty approach for constraint handling in
genetic algorithms. In Artificial Neural Nets and Genetic Algorithms, pages 235–
243, Vienna, 1999. Springer Vienna.

[122] ARM Limited. Cortex-M0 technical reference manual. Technical report, 2009.

[123] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers. Finn: A framework for fast, scalable binarized neural network in-
ference. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’17, pages 65–74. ACM, 2017.

[124] K. S. Narendra and P. G. Gallman. An Iterative Method for the Identification of
Nonlinear Systems Using a Hammerstein Model. IEEE Trans. Autom. Control,
1966. doi:10.1109/TAC.1966.1098387.

[125] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. IMS
Trans. Ann. Statist., 2004.

[126] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to Forget: Continual
Prediction with LSTM. 1999.

[127] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, 2014.

137

http://dx.doi.org/10.1109/TAC.1966.1098387

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 Related Work
	2.1 Background on Power, Sensors and Managment Algorithms
	2.1.1 Circuit-level and Microarchitectural-level Power Consumption
	2.1.2 On-chip Sensor Capabilities
	2.1.3 Power and Thermal Management Algorithms
	2.1.4 Applications for Run-time Power Forecasts

	2.2 Run-time Power Estimation
	2.2.1 Linear Power Models
	2.2.2 Nonlinear Power Models
	2.2.3 Neural Network-based Power Models
	2.2.4 Discussion of Methods on Minimizing Multicollinearity
	2.2.5 Discussion of Linear vs. Nonlinear Modeling Methodologies

	2.3 Forecasting and Prediction of workload-dependent Processor States
	2.3.1 Forecasting Models
	2.3.2 Prediction Models
	2.3.3 Power Forecasting Models

	3 Experimental Setup for Power Model Evaluation
	3.1 Overview Experimental System and Workflow
	3.2 (Hot)Sniper and Performance Simulation
	3.3 McPAT and Power Simulation
	3.4 PARSEC and SPLASH-II Benchmark Suites as Workloads

	4 Novel and Lightweight Power Estimation Models
	4.1 Independent Component Analysis-based Power Model
	4.1.1 Independent Component Analysis
	4.1.2 ICA-based Power Model Generation
	4.1.3 Estimating Core-level Dynamic Power
	4.1.4 Experimental Evaluation

	4.2 Feedforward Neural Network-based Power Model
	4.2.1 FFNN Architectures and Hyperparameter Solution Space
	4.2.2 Single-Objective Neural Architecture Hyperparameter Optimization
	4.2.3 Multi-Objective Neural Architecture Hyperparameter Optimization
	4.2.4 Experimental Evaluation

	4.3 Nonlinear Transformation-based Power Model
	4.3.1 Power Model Generation and Lightweight Run-time Usage
	4.3.2 Experimental Evaluation
	4.3.3 Discussion of Nonlinear Performance Counter/Power Relationship

	4.4 Comparison and Discussion of the Power Estimation Methodologies

	5 Novel and Accurate Power Forecasting Model based on LSTM RNNs
	5.1 Methodology for Generating LSTM RNN Power Model
	5.2 Experimental Evaluation

	6 Conclusion and Outlook
	Bibliography

