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Abstract

Context: Ultrasound imaging is a non-invasive technique, offering an inexpensive
alternative to other imaging modalities such as Magnetic Resonance Imaging (MRI) or
Computed Tomography (CT). Although typically used as a 2D modality, imaging 3D
volumes is possible with matricial transducers or through probe tracking (freehand ultra-
sound). Three-dimensional (3D) ultrasound images are useful in assessing various medi-
cal conditions and treatment planning, including Duchenne dystrophy, hyperthyroidism,
prostate cancer, spine injections, and leprosy. In the context of these conditions, 3D ultra-
sound enables, among others, to identify the borders or compute the volume of organs or
lesions, contributing with quantitative information regarding the diagnosis, disease pro-
gression, or treatment response. Manually segmenting such volumes is time-consuming
and difficult even for experts, therefore, there is a need to develop automated 3D ultra-
sound segmentation approaches, which will be the central topic of this thesis, addressed
through deep-learning methods.

Deep learning image segmentation algorithms have demonstrated fast computational
times at inference, beneficial for deployment as expert support tools. Despite their po-
tential, 3D deep learning methods for ultrasound face unique challenges. First, available
3D datasets are scarce and often contain incomplete annotations. Second, 3D ultrasound
images suffer from acquisition variability and tracking errors. Differences in probe po-
sitioning and patient anatomy can lead to significant variations in image quality and
appearance. Third, ultrasound images are characterised by speckles, shadows, noise, re-
verberation, and low contrast, which lead to annotations variability. However, accurate
annotations are essential for the success of supervised deep-learning methods. But, when
it comes to ultrasound images, annotations are prone to significant variability. All these
challenges highlight the need to develop specialised deep-learning methods for 3D ultra-
sound segmentation.

This thesis consists of three parts: the first part focuses on generating high-fidelity 3D
ultrasound image volumes and labels. The second part proposes two models to segment
3D ultrasound volumes from sparse and incomplete annotations. The third part focuses on
experimental analysis and modelling of the performance of the 3D deep-learning method
with emphasis on the quality of border predictions.

Methods: Our proposed methods for building annotated volumetric ultrasound datasets
presented in Part I can be divided into two studies. The first study assesses various la-
bel interpolation methods for generating three-dimensional (3D) annotations from two-
dimensional (2D) sparse manual annotations with tracking. The second study explores
the possibility of reconstructing ultrasound volumes from images alone (sensorless com-
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pounding) or reconstructing the volume while correcting tracking errors from a freehand
ultrasound sequence. We made two propositions that work similarly to the state-of-the-art
methods.

Two novel methods for 3D ultrasound segmentation are presented in part II. The first
approach, named UNet-S-R-CLSTM, divides the 3D images into sub-volumes processed
sequentially to handle the large input size while keeping image resolution. The method also
proposes a modification of the segmentation loss function with negative labels to handle
incomplete annotations. The second proposed approach introduces a new architecture
called "Interactive Few Shot-Siamese Network (IFSSnet)" that segments 3D ultrasound
volumes. This architecture incorporates a recurrent loop that feeds the predictions of
preceding sub-volumes as input, leading to predictions with smooth borders. Moreover,
an adaptable loss was proposed to penalise precision and recall during training while a
memory module retains information regarding key slices.

Finally, part III summarises two empirical studies that analyse the factors that af-
fect the performance of deep learning methods for ultrasound segmentation. These stud-
ies leverage an experimental validation on several architectures and datasets. The first
method provides the network with precomputed confidence maps, supplying prior infor-
mation on the variability of the annotations and potentially highlighting areas of higher
uncertainty. The second study separately evaluates the performance of different architec-
tures on complete and incomplete borders.

Keywords: 3D ultrasound, label interpolation, confidence maps, volume compound-
ing, labeling variability, negative labels, multi-task learning.
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Zusammenfassung

Kontext: Ultraschallbildgebung ist eine nicht-invasive Technik, die eine kostengün-
stige Alternative zu anderen Bildgebungsmodalitäten wie der Magnetresonanztomogra-
phie (MRT) oder der Computertomographie (CT) bietet. Obwohl üblicherweise als 2D-
Modalität eingesetzt, ist die Bildgebung von 3D-Volumen mit matrixförmigen Wandlern
oder durch Tracking der Sonde (Freihand-Ultraschall) möglich. Dreidimensionale (3D)
Ultraschallbilder sind nützlich bei der Bewertung verschiedener medizinischer Zustände,
einschließlich Duchenne-Dystrophie, Hyperthyreose, Prostatakrebs, Wirbelsäuleninjektio-
nen und Lepra. Im Kontext dieser Zustände ermöglicht der 3D-Ultraschall unter anderem
die Identifizierung der Grenzen von bestimmter Anatomien oder die Berechnung des Vol-
umens von Organen oder Läsionen, was quantitative Informationen bezüglich der Di-
agnose, Krankheitsprogression oder Behandlungsmethode liefert. Die manuelle Segmen-
tierung solcher Volumen ist zeitaufwändig und selbst für Experten schwierig, daher besteht
die Notwendigkeit, automatisierte 3D-Ultraschallsegmentierungsansätze zu entwickeln, die
das zentrale Thema dieser Thesis sein werden, adressiert durch Deep-Learning-Methoden.

Deep-Learning-Bildsegmentierungsalgorithmen haben schnelle Rechenzeiten bei der
Inferenz gezeigt, was für den Einsatz als Expertenunterstützungswerkzeuge vorteilhaft
ist. Trotz ihres Potenzials stehen 3D-Deep-Learning-Methoden für Ultraschall vor einzi-
gartigen Herausforderungen. Erstens sind verfügbare 3D-Datensätze knapp und enthal-
ten oft unvollständige Annotationen. Zweitens leiden 3D-Ultraschallbilder unter Variabil-
ität bei der Akquisition und Tracking-Fehlern. Unterschiede in der Sondenpositionierung
und der Patientenanatomie können zu signifikanten Variationen in der Bildqualität und
dem Erscheinungsbild führen. Drittens sind Ultraschallbilder durch Speckle, Schatten,
Rauschreverberation und geringen Kontrast gekennzeichnet. Schließlich ist die Variabil-
ität der Beschriftungen wichtig, wobei die Qualität der Annotationen üblicherweise die
Anisotropie der Bildqualität widerspiegelt. All diese Herausforderungen unterstreichen die
Notwendigkeit, spezialisierte Deep-Learning-Methoden für die 3D-Ultraschallsegmentierung
zu entwickeln.

Diese Thesis besteht aus drei Teilen: Der erste Teil konzentriert sich auf die Erzeu-
gung von sehr genauen 3D-Ultraschallbildvolumen und -segmentierungen. Der zweite Teil
schlägt zwei Modelle zur Segmentierung von 3D-Ultraschallvolumen aus wenigen und un-
vollständigen Annotationen vor. Der dritte Teil konzentriert sich auf die experimentelle
Analyse und Modellierung der Leistung der 3D-Deep-Learning-Methoden mit Schwer-
punkt auf den Grenzvorhersagen.

Methoden: Unsere vorgeschlagenen Methoden zum Erstellen von annotierten vol-
umetrischen Ultraschalldatensätzen, die in Teil I vorgestellt werden, können in zwei Stu-
dien unterteilt werden. Die erste Studie bewertet verschiedene Label-Interpolationsmethoden
zur Erzeugung von dreidimensionalen (3D) Annotationen aus zweidimensionalen (2D)
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spärlichen manuellen Annotationen mit Tracking. Die zweite Studie erforscht die Möglichkeit,
Ultraschallvolumen allein aus Bildern (sensorlose Compoundierung) zu rekonstruieren
oder das Volumen während der Korrektur von Tracking-Fehlern aus einer Freihand -
Ultraschallsequenz zu rekonstruieren. Wir haben zwei Vorschläge gemacht, die ähnlich
wie die State-of-the-Art-Methoden funktionieren.

Der zweite Methoden Ansatz führt eine neue Architektur ein, die als ""Interactive
Few-Shot-Siamese Network (IFSSnet)" bezeichnet wird, die 3D-Ultraschallvolumina seg-
mentiert. Diese Architektur integriert eine rekurrente Schleife, die die Vorhersagen vor-
angegangener Teilvolumen als Eingabe verwendet, was zu Vorhersagen mit glatten Gren-
zen führt. Darüber hinaus wurde eine anpassbare Verlustfunktion, um Genauigkeit und
Rückruf während des Trainings zu bestrafen, während ein Speichermodul Informationen
über Schlüsselschnitte behält. Schließlich fasst Teil III zwei empirische Studien zusam-
men, die die Faktoren analysieren, die die Leistung von Deep-Learning-Methoden für die
Ultraschallsegmentierung beeinflussen. Diese Studien nutzen Erfahrungen mit mehreren
Architekturen und Datensätzen. Die erste Methode versorgt das Netzwerk mit zusät-
zlichen Vorabinformationen über die Variabilität der Annotation in Form von vorberech-
neten "confidence maps", die potenziell bestimmte Bereiche hervorheben. Die zweite Studie
bewertet separat die Leistung verschiedener Architekturen bei vollständigen und unvoll-
ständigen Grenzen.

Schlüsselwörter: 3D-Ultraschall, Etiketteninterpolation, Vertrauenskarten, negative
Etiketten, Multi-Task-Lernen, Volumenkompoundierung, Etikettierungsvariabilität,.
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Résumé étendu

L’échographie est une modalité d’imagerie médicale largement répandue utilisée pour
le diagnostic et le suivi de pathologies, telles que les calculs biliaires, la déchirure des
tendons de la coiffe des rotateurs, les grossesses normales ou ectopiques ou les problèmes
de valves cardiaques [1]. Elle est fréquemment utilisée chez les femmes enceintes et les
patients dans les unités d’urgence des hôpitaux [2, 3] en raison de sa nature non irradi-
ante, de son coût inférieur, de son confort supérieur pour le patient, et de sa plus grande
accessibilité. Sa portabilité et sa capacité à accélérer la prise de décisions cliniques en font
un outil important dans le diagnostic, par rapport à des techniques d’imagerie telles que
l’imagerie par résonance magnétique (IRM) ou la tomographie computationel (CT). Alors
que l’IRM et le CT offrent une vue complète du champ et un contraste élevé des tissus,
l’échographie 2D ne dispose pas d’un champ de vue 3D complet.

Malgré les limitations actuelles, l’échographie 3D a montré son intérêt clinique dans le di-
agnostic et le suivi de l’hyperthyroïdie [4,5], de la dystrophie musculaire de Duchenne [6–8],
de la lèpre [9] et du cancer de la prostate [10], parmi d’autres maladies. Par exemple, la seg-
mentation 3D des muscles des membres inférieurs fournit des informations volumétriques
importantes pour le suivi des traitements tels que la dystrophie de Duchenne. Dans
cette thèse, nous nous concentrons sur le développement de méthodes d’apprentissage
profond pour aider les médecins dans l’analyse quantitative des séquences et volumes
échographiques, dans le contexte des pathologies mentionnées ci-dessus, avec un accent
particulier sur la segmentation.

Les volumes échographiques 3D peuvent être créés pour améliorer le champ de vue et
permettre l’analyse volumétrique des structures anatomiques. Pour construire de tels vol-
umes, plusieurs voies sont possibles, parmi lesquelles l’utilisation de sondes 3D [11] et
d’acquisitions 3D combinées à du compounding [12]. Bien que les sondes 3D soient coû-
teuses, le compounding 3D à partir d’images échographiques 2D nécessite simplement
de suivre la sonde pour faciliter l’alignement spatial des images dans une grille 3D qui
sera remplie avec les valeurs d’intensité des b-mode images correspondantes. Cependant,
l’attribution précise de ces valeurs dépend grandement de la précision des mécanismes de
suivi. Il reste encore des améliorations à apporter pour réduire les exigences de suivi [13–15]
(par exemple, ligne de mire) et générer des volumes échographiques 3D de haute qualité.

La création de bases de données d’images est le point de départ pour la formation des ap-
proches d’apprentissage profond. Des méthodes assistées par ordinateur IA ont été créées
pour aider les cliniciens pendant le diagnostic, la planification des traitements et même
dans la réalisation de procédures complexes avec une grande précision et efficacité. Les
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approches d’apprentissage profond ont réussi pour la localisation de plans standard fœ-
taux [16]„ la classification des lésions du sein et du foie [17,18], la segmentation des muscles
cervicaux [19], le suivi des repères dans les séquences hépatiques [8] ou le suivi du cartilage
du genou [7]. La segmentation des images et des volumes est particulièrement importante
pour l’analyse précise et l’interprétation des maladies telles que l’hyperthyroïdie, la lèpre
et le cancer de la prostate; où la taille, la forme et la distribution des structures sont des
biomarqueurs pour le diagnostic de la réponse au traitement. La tâche de segmentation
consiste à délimiter les limites des structures d’intérêt. Sur l’échographie volumétrique,
c’est une tâche difficile pour les médecins et les méthodes IA en raison des caractéristiques
intrinsèques de la modalité.

Les défis de la segmentation IA en échographie sont principalement dus à la dépendance au
patient, à l’opérateur et au scanner. Lorsqu’un échographiste tient la sonde échographique,
il/elle détermine la configuration des paramètres de la machine, positionne la sonde à un
angle/pression spécifique sur le patient, et exploite ses connaissances anatomiques pour
acquérir ce qu’ils considèrent comme une image de haute qualité de l’anatomie perti-
nente. Malgré les meilleurs efforts de l’échographiste, l’échographie reste susceptible à des
problèmes tels que les limites floues [20] et divers artefacts tels que le speckle, l’ombre,
la réverbération et la diffraction [21]. La complexité inhérente à l’interprétation des im-
ages échographiques nécessite que les médecins se forment pendant plusieurs années pour
obtenir et évaluer avec précision des images échographiques de haute qualité, détectant
des motifs et interprétant des relations sur les images qui sont difficiles à articuler ou
à expliquer de manière concise. Les méthodologies d’intelligence artificielle (IA) émulent
ce processus d’apprentissage en s’entraînant sur des ensembles de données analogues à
ceux utilisés dans la formation médicale, imitant ainsi la trajectoire de développement de
l’expertise médicale.

Comme exprimé auparavant, les annotations d’experts sur les volumes prendent beaucoup
de temps et dépendent de l’utilisateur. Elles nécessitent des ressources informatiques coû-
teuses et des entrées d’experts pour une segmentation et une analyse detaille des images,
augmentant les coûts et les efforts de compilation des images et des annotations dans ce qui
est appelé un "Jeu de données" pour la formation en apprentissage profond. De nos jours,
la disponibilité des jeux de données 3D est limitée, et ils incluent souvent des annotations
partielles effectuées sur certaines des images 2D [22,23]. La nature anisotrope inhérente de
l’échographie complique davantage l’identification précise des objets d’intérêt, créant une
grande variabilité dans les annotations changeant la position, la forme et l’apparence des
structures. Tous ces défis doivent être pris en compte lors de la construction des méthodes
de segmentation en apprentissage profond.
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Dans l’état de l’art, nous avons trouvé qu’en 2023, plus de 100 réseaux avaient mis l’accent
sur la segmentation des structures [24], que ce soit dans des images 2D, des vidéos 2.5D
ou des volumes 3D. Parmi les principales applications, nous avons trouvé : la segmen-
tation fetale [25–28], la segmentation cardiaque [29–31] et la détection du cancer du
sein [32, 33]. Une analyse complète des réseaux neuronaux de pointe actuels pour la seg-
mentation échographique révèle une tendance à atteindre des performances optimales :
augmenter la complexité architecturale [34–36], s’appuyer sur de plus grands volumes de
données [37,38], s’appuyer sur de nouveaux modules de mémoire et d’attention pour gérer
la consistence des annotations [39–41] et utiliser des processus de pointe pour gérer des
données limitées [42, 43]. Chacune des architectures contient différentes méthodes pour
aborder les tâches et surmonter les défis de la segmentation échographique.

Au lieu d’augmenter la complexité architecturale pour des volumes haute résolution, tels
que DAF3D [44] et Attetion-3DUNet [45] pour la segmentation du pancréas en 3D, nous
identifions des modules qui gèrent efficacement les données haute résolution sous forme
de sous-volumes et nous concentrons sur l’utilisation de données avec des étiquettes man-
quantes et des variations le long des bordures [46]. Similaire à PG-NET [47] pour la
propagation des étiquettes vidéo, nous nous concentrons sur la capacité à propager les
annotations intelligemment, en nous concentrant sur la formation avec des ensembles de
données limités, éventuellement par des techniques telles que l’apprentissage incrémen-
tal. Nous analysons l’influence de la variabilité des étiquettes sur les performances des
réseaux pour des architectures simples comme UNet [48], des architectures avec des mod-
ules complexes tels que Attention-UNet [45] et des architectures complexes telles que
UNet-transformer [49], nous nous concentrons sur l’étude des méthodes que les réseaux
utilisent pour la segmentation des bordures dans la modalité d’échographie difficile avec
des bordures floues [50].

Objectifs de la recherche:

Nos recherches et principaux objectifs étaient motivés par des lacunes dans la littéra-
ture et les défis de l’échographie tels que les images à faible contraste, les artefacts, la
dépendance à l’opérateur, mais aussi les erreurs de formation des volumes, la dépendance
angulaire et les annotations éparses en 3D. Nos contributions se concentrent principale-
ment sur les défis tels que les petits ensembles de données disponibles, les annotations
de données limitées, le déséquilibre des classes et les incertitudes inhérentes à l’imagerie.
Elles peuvent être résumées en trois groupes principaux liés aux trois objectifs.

But principal : Notre objectif est de développer des algorithmes d’apprentissage
automatique pour acquérir et segmenter des images échographiques afin d’améliorer les
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mesures quantitatives en 2D et 3D. Nous visons la création d’un jeu de données de vol-
umes échographiques 3D haute résolution et, de plus, le développement et la validation de
méthodes de segmentation automatique pour l’application dans diverses maladies nécessi-
tant le calcul du volume. L’objectif a été décomposé en trois objectifs décrits ci-dessous.

Motivés par les problématiques mises en évidence dans l’introduction, et cherchant
des méthodes qui permettent la création de volumes echographiques et leurs annotations
de façon automatique, le but et les objectifs suivants ont été développés pour ce travail
de thèse :

Objectif 1: Création de données echographiques 3D de haute résolution.

L’objectif implique le développement et la mise en oeuvre de techniques avancées pour la
reconstruction des volumes échographiques et leurs annotations 3D respectives. Atteindre
cet objectif est important pour plusieurs raisons. Premièrement, les données échographiques
3D haute résolution fournissent un champ de vue détaillé et complet des structures
anatomiques internes, permettant une analyse plus précise et approfondie des tissus.
Cela pourrait entraîner une réduction de la complexité de la segmentation des images
échographiques. De plus, cela fournit aux professionnels de la santé des informations plus
détaillées et fiables pour éclairer leur prise de décision. Il semble important d’évaluer la
qualité du suivi de la sonde, car elle est responsable de la qualité des volumes. L’apprentissage
de bonnes méthodes d’acquisition de données ou l’amélioration des méthodes actuelles
pourraient être étudiées. D’autre part, du côté des annotations, nous pourrions enquêter
et proposer des méthodes pour créer des annotations 3D à partir d’annotations 2D éparses
avec suivi.

Cette thèse contribue avec un jeu de données open-source haute résolution de volumes
échographiques 3D du membre inférieur avec trois muscles segmentés. Nous mettons en
open-source le jeu de données avec des modèles 3D complets des muscles : Gastrocnemius
Medialis, Gastrocnemius Lateralis, et Solius. Il contient des données de 44 participants
de l’étude de Crouzier et al [51]. Notre contribution était une méthode de segmentation
semi-automatique pour créer des annotations 3D à partir d’étiquettes 2D éparses avec
suivi optique. En termes d’erreur volumétrique moyenne, cette méthode atteint une er-
reur de performance similaire pour les annotateurs interopératoires. Notre méthode utilise
l’enregistrement d’images 3D-3D pour fusionner efficacement les étiquettes de scans de
qualité variable, améliorant la cohérence et la fluidité des annotations. Nous avons com-
paré cette approche avec des méthodes de segmentation non basées sur l’apprentissage
profond et l’interpolation linéaire. À notre connaissance, c’est le plus grand jeu de données
multi-étiquettes d’échographie 3D mis à disposition de la communauté pour la recherche
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et la comparaison de méthodes.

Duque, V. G., Alchanti, D., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus,
D. (2020, November). lower limb muscles segmentation in 3D freehand ultrasound using
non-learning methods and label transfer. In 16th International Symposium on Medical In-
formation Processing and Analysis (Vol. 11583, pp. 154-163). SPIE.

Figure 1 – 1a)3D ultrasound volume construct with tracking 1b) Cross-correlation view
1c)Sensorless positioning. 2a) Expert labels of the lower limb 2b)Grow from seeds method
for label creation 2c)Our ZOI labels.

Objective 2: Développement de méthodes de segmentation automatique pour les mus-
cles des membres inférieurs dans des volumes échographiques 3D.

Cet objectif vise à créer des algorithmes précis et efficaces pour identifier et isoler de
manière fiable des organes spécifiques (ici des muscles) dans des images échographiques
tridimensionnelles. Transcendant les limites des techniques de segmentation manuelles
ou semi-automatiques, ce travail se concentre sur l’offre de solutions plus rapides, plus
objectives et reproductibles pour l’analyse quantitative des images échographiques, en
particulier des mesures de volume musculaire. Une segmentation précise des muscles peut
améliorer la compréhension anatomique et pathologique. De plus, les biomarqueurs issus
de la segmentation peuvent informer et guider le diagnostic, le traitement et le suivi de
diverses affections musculaires, des blessures d’athlètes sportifs aux maladies neuromus-
culaires telles que la dystrophie de Duchenne ou la sarcopénie.

Nous proposons des sub-volumes pourun réseau récurrent et de nous appuyer sur une
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stratégie de pseudo-étiquetage séquentiel pour gérer les annotations éparses. En pratique,
nous proposons deux architectures, UNet-S-R-CLSTM et IFSS-Net, pour la segmentation
des muscles des membres inférieurs en échographie. UNet-S-R-CLSTM est une archi-
tecture à un encodeur et deux décodeurs, utilisant un réseau Long-short Term Mem-
ory convolutionnel (CLSTM) pour la segmentation binaire des volumes échographiques
à main levée de faible résolution. Cette approche tire parti de l’apprentissage multitâche
pour améliorer l’estimation géométrique des formes de masques et adopte une stratégie
d’apprentissage avec des étiquettes faibles en raison de l’ensemble de données comprenant
des annotations de tranches 2D éparses. D’autre part, le IFSS-Net est une architecture
à deux encodeurs-un décodeur avec un CLSTM bidirectionnel pour la segmentation des
muscles dans des volumes échographiques volumétriques haute résolution. Cette méthode
atteint une erreur volumétrique faible, comparable aux standards intra-opératoires, et in-
troduit une mise à jour décrémentale de la fonction objectif pour faciliter la convergence
du modèle avec des données annotées limitées. Pour aborder le déséquilibre des classes,
nous proposons une fonction de perte de Tversky paramétrique, pénalisant adaptivement
les faux positifs et les faux négatifs.

Gonzalez Duque, V., Al Chanti, D., Crouzier, M., Nordez, A., Lacourpaille, L.,
Mateus, D. (2020). Spatio-temporal consistency and negative label transfer for 3D free-
hand US segmentation. In Medical Image Computing and Computer Assisted Interven-
tion (MICCAI) 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020,
Proceedings, Part I 23 (pp. 710-720). Springer International Publishing.

Al Chanti, D., Duque, V. G., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus,
D. (2021). Interactive few-shot siamese network (IFSS-Net): for faster muscle segmen-
tation and propagation in volumetric ultrasound. Institute of Electrical and Electronics
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Objective 3: Contribuer à la compréhension de la variabilité des performances des
réseaux neuronaux d’apprentissage profond pour la segmentation d’échographies de pointe.

Comprendre comment les médecins et les réseaux détectent les bordures dans les images
échographiques est important pour relever les défis spécifiques à cette modalité, tels que
les bords flous et l’anisotropie dans les étiquettes. Il est alors devenu important de fournir
au réseau des informations sur la variabilité des étiquettes. La segmentation des bordures
par les experts en échographie est influencée par des caractéristiques anisotropes et des
facteurs dépendant de la position, découlant des principes physiques fondamentaux de
l’imagerie par ultrasons. Les annotations sont susceptibles de présenter des variations
substantielles le long des bords et des divergences significatives, dues aux bords flous ou
aux faibles valeurs de signal. Certaines parties des bordures sont plus faciles à segmenter
que d’autres, pour les médecins comme pour les réseaux. Par conséquent, nous cherchons
à comprendre comment les bordures sont identifiées et à fournir des informations sur la
variabilité des annotations.

Nous proposons les "Ultrasound Confidence Maps" (CM) comme outil pour l’estimation
de la variabilité des étiquettes et adaptons les cartes d’activation (par exemple, Grad-
Cam) pour soutenir l’analyse. Lorsque des méthodes d’IA sont appliquées à des images
naturelles, IRM ou CT, les bordures sont plus faciles à définir par rapport aux im-
ages échographiques, où certaines bordures peuvent être évidentes tandis que d’autres
doivent être interpolées, générant de la variabilité dans les annotations. Nous avons ex-
ploré l’utilisation de "Confidence Maps" en échographie dans les réseaux neuronaux pour
identifier les régions incertaines de l’image et améliorer la segmentation. Cette méthode
propose l’intégration novatrice de CMs comme une seconde entrée de canal ou dans la
fonction de perte, améliorant les prédictions dans les zones d’incertitude physique in-
hérente à l’imagerie par ultrasons. D’autre part, nous avons proposé de diviser l’analyse
des métriques de bordure pour l’échographie en bordures évidentes et complétées afin
d’analyser expérimentalement la variabilité des performances des architectures existantes.

Duque, V. G., Zirus, L., Velikova, Y., Navab, N., Mateus, D. (2023). Can ultra-
sound Confidence Maps predict expert labels’ variability? In ASMUS workshop at MICCAI
2023: 26th International Conference, Vancouver, Canada, October 8–14, 2023, Proceed-
ings pp. 100-120). Springer International Publishing.
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M., Lee H.J., Mateus, D., Navab N., (2023). Ultrasound Segmentation Analysis via Dis-
tinct and Completed Anatomical Borders. 15th International Conference on Information
Processing in Computer-Assisted Interventions(IPCAI). International Journal of Com-
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puter Assisted Radiology and Surgery (IJCARS).

Figure 3 – 1a)Ultrasound cross-correlation view 1b) Entropy of experts annotations
1c)Entropy of UNet with 1 channel 1d) Entropy of UNet using Confidence maps; UNet
Grad-cam of the background of the 2a) Thyroid 2b)lower limb muscles 2c)Prostate
2d)Spine bones.

Conclusion
En conclusion, cette thèse développe des algorithmes d’apprentissage automatique pour
acquérir et segmenter des images échographiques afin d’améliorer les mesures quantita-
tives en 2D et 3D. Elle abordé les défis spécifiques à l’échographie inhérent à la modalité,
tels que la gestion des annotations éparse, le faible contraste des images, les artefacts, et la
incertitude des annotations. Nous avons créé un jeu de données de volumes échographiques
3D haute résolution, nous avons développé et validé des méthodes de segmentation au-
tomatique pour l’application dans diverses maladies nécessitant le calcul du volume. Nous
avons etudie la variabilité des annotations en utilisant des techniques telles que les con-
fidence maps et Seg-grad-cam. Finalement, nous avons evalue l’addaptation des mesures
quantitatives especifiques pour l’ultrason. Cette recherche contribue à la littérature exis-
tante en offrant un ensemble de données open-source pour la segmentation musculaire en
3D, et en proposant des méthodes innovantes pour la segmentation et l’annotation au-
tomatisées. Ces contributions ouvrent des voies prometteuses pour de futures recherches.
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Introduction and context

Ultrasound is a widely spread medical imaging modality used for diagnosis and follow-
up of pathologies, such as Gallstone, Rotator Cuff Tendon Tear, Normal or Ectopic Preg-
nancy or Heart Valve Problems [1]. It is frequently used on pregnant women and patients
in hospital emergency units [2, 3] due to its non-irradiation nature, lower cost, higher
patient comfort, and greater accessibility. Its portability and ability to accelerate clinical
decision-making make it an important tool in diagnosis, compared to imaging techniques
such as magnetic resonance imaging (MRI) or computed tomography (CT). While MRI
and CT provide a full field of view and high bone contrast, 2D ultrasound does not pro-
vides a full 3D field of view.

Despite current limitations, 3D ultrasound has shown its clinical advantages in the
diagnosis and follow-up of hyperthyroidism [4, 5], Duchenne muscular dystrophy [6–8],
Leprosy [9], and Prostate Cancer [10], among other diseases. For example, 3D segmenta-
tion of lower limb leg muscles provides important volumetric information for the follow-up
of treatments such as Duchenne Dystrophy. In this thesis, we focus on the development
of deep-learning methods to assist physicians in the quantitative analysis of ultrasound
sequences and volumes, in the context of the above pathologies, with a major focus on
segmentation.

3D ultrasound volumes can be created in order to increase the field of view and allow
for the volumetric analysis of anatomical structures. In order to build such volumes, mul-
tiple avenues are possible, among which are 3D probes [11] and 3D acquisitions combined
with compounding [12]. While 3D probes are expensive, 3D compounding from 2D ultra-
sound images requires tracking the probe to facilitate spatial alignment of the images in a
3D grid that will be filled with the corresponding B-mode intensity values. However, the
accurate attribution of these values is highly dependent on the accuracy of tracking mech-
anisms. There is still room for improvement to reduce the tracking requirements [13–15]
(e.g. line of sight) and generate 3D ultrasound high-quality volumes.

The creation of image databases is the starting point for the training of deep-learning
approaches. AI computer-assisted methods have been created to help clinicians during
diagnosis, treatment planning, and even in performing complex procedures with great
accuracy and efficiency. Deep learning approaches have been successful for fetal standard
plane localisation [16], breast and liver lesion classification [17, 18], cervical muscle seg-
mentation [19], landmark tracking in liver sequences [8], or knee cartilage tracking [7].
Image and volume segmentation, in particular, are important for the precise analysis and
interpretation of diseases like hyperthyroidism, leprosy, and prostate cancer; where the
size, shape, and distribution of the structures are biomarkers for diagnosis of treatment
response. The segmentation task consists in delineating the boundaries of the structures
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of interest. On volumetric ultrasound, this is a challenging task for physicians and AI
methods due to the intrinsic characteristics of the modality.

Ultrasound AI-segmentation challenges are mainly due to patient dependency, opera-
tor dependency, and scanner dependency. When sonographer hold the ultrasound probe,
they determine the machine’s parameter configuration, position the probe at a specific
angle/pressure over the patient, and leverage anatomical knowledge to acquire what they
consider a high-quality image of the relevant anatomy. Despite the sonographers best ef-
forts, ultrasound remains susceptible to issues like blurred boundaries [20] and various
artefacts such as speckle, shadowing, reverberation, and diffraction [21]. The complexity
inherent in interpreting ultrasound imagery necessitates that physicians train for several
years to accurately obtain and evaluate high-quality ultrasound images detecting patterns
and interpreting relationships on the images that are challenging to articulate or explain
concisely. AI methodologies should emulate the learning process of medical professionals,
like sonographers, by training on diverse datasets that reflect real-world clinical scenar-
ios. This involves using a wide range of ultrasound images and expert annotations to
enable the AI to generalize effectively. The training should be iterative, incorporating
feedback from experienced practitioners to refine the model’s performance, and follow a
developmental trajectory that starts with simpler cases before advancing to more complex
situations. By emulating these aspects of human learning, AI can enhance its effectiveness
in assisting healthcare professionals and improving patient outcomes.

As expressed before, expert annotations on volumes are time-consuming and user-
dependent. They require expensive computational resources and expert input for careful
segmentation and analysis of the images, escalating the costs and efforts of compiling the
images and annotation in what is called a "Dataset" for deep-learning training. Nowa-
days, the availability of 3D datasets is limited, and they often include partial annotations
performed on some of the 2D images [22, 23]. The inherent anisotropic nature of ultra-
sound further complicates the accurate identification of objects of interest, creating high
label variability in the annotations providing imprecise position, shape, and appearance of
structures. All these challenges should be taken into account when building deep-learning
segmentation methods.

In the state of the art, we found that by 2023, more than 100 methods had fo-
cused on the segmentation of structures [24], whether in 2D images, 2.5D videos, or
3D volumes. Among the main applications we found: fetus segmentation [25–28], heart
segmentation [29–31] and breast cancer detection [32, 33]. A comprehensive analysis of
the current state-of-the-art neural networks for ultrasound segmentation reveals a trend
to achieve optimal performance: Increasing architectural complexity [34–36], relying on
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larger volumes of data [37,38], hinging on new memory and attention modules for handling
smoothness [39–41] and using cutting-edge process for handling limited data [42,43]. Each
one of the architectures contains different methods to address the tasks and overcome the
ultrasound segmentation challenges.

Instead of increasing architectural complexity for high-resolution volumes, such as
DAF3D [44] and attetion-3DUNet [45] for 3D pancreas segmentation, we identify mod-
ules that effectively handle high-resolution data as sub-volumes and focus on using data
with missing labels and variations along borders [46]. Similar to PG-NET [47] for video
label propagation, we focus on the ability to propagate annotations intelligently, focusing
on training with limited datasets, possibly through techniques like incremental learning.
We analyse the influence of label variability on networks’ performance for simple archi-
tectures like UNet [48], architectures with complex modules such as attention-UNet [45]
on 3D and complex architectures such as UNet-transformer [49], we focus the study on
understanding the methods networks use for border segmentation in ultrasound, which is
a challenging modality with blurred borders [50].

Our research and main objectives were motivated by gaps in the literature and the
ultrasound challenges such as low contrast images, artefacts, operator-dependency, train-
ing errors, angular dependency and sparse annotations in 3D. Our contributions mainly
focused on addressing challenges such as small available datasets, limited data annota-
tions, class imbalance, and inherent imaging uncertainties. They can be summarised into
three main groups correlated to the three objectives.

Our goal is to develop machine learning algorithms to acquire and segment ultrasound
images in order to enhance quantitative measurements in 2D and 3D, aiming at the cre-
ation of a dataset of high-resolution 3D ultrasound volumes and, moreover, the develop-
ment and validation of automatic segmentation methods for application in various diseases
requiring volume calculation. The goal has been broken down into three objectives described
below.

Objective 1: Creation of high-resolution 3D ultrasound datasets.

The objective involves the development and implementation of advanced techniques for
the reconstruction of ultrasound volumes and their respective 3D annotations. Achieving
this goal is important for several reasons. First, high-resolution 3D ultrasound data pro-
vides a detailed and complete field of view of internal anatomical structures, allowing for
a more accurate and thorough analysis of tissues. This could result in a reduction in the
complexity of segmenting ultrasound images. Additionally, it provides healthcare profes-
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sionals with more detailed and reliable information to inform their decision-making. It
seems important to evaluate the quality of the probe tracking, as it is directly correlated
with the quality of the volumes. Learning good data acquisition methods or improving
the present ones could be studied. On the other hand, on the annotation side, we investi-
gated and propose methods for creating 3D annotations from 2D sparse annotations with
tracking.

This thesis contributes with a high-resolution open-source dataset of 3D ultrasound
volumes of the lower limb with three muscles segmented. We open-source the dataset
with complete 3D models of the muscles: Gastrocnemius Medial (GM), Gastrocnemius
Lateral (GL), and Solius (SOL). It contains data from 44 participants from the study of
Crouzier et al. [51]. Participants were prone with the leg in a custom bath to prevent
pressure dependency of the images. 4 to 6 sweeps were recorded from the knee to the
ankle, for 15 of the participants a second recorded with a higher frequency was needed.
Such 2D sweeps data and annotations done using Stradwin software were the input of
our method. Our contribution was a semi-automatic segmentation method for creating
3D annotations from 2D sparse labels with optical tracking. In terms of mean volumetric
error, this method achieves similar performance error for inter-operative annotators. Our
method employs 3D-3D image registration to effectively merge labels from varying qual-
ity scans, enhancing annotation consistency and smoothness. We compared this approach
with non-deep-learning segmentation methods and linear interpolation. To the best of our
knowledge, this is the biggest 3D Ultrasound multi-label dataset of the leg made available
to the community for research and methods comparison.

Duque, V. G., Alchanti, D., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus,
D. (2020, November). lower limb muscles segmentation in 3D freehand ultrasound using
non-learning methods and label transfer. In 16th International Symposium on Medical In-
formation Processing and Analysis (Vol. 11583, pp. 154-163). SPIE.

Objective 2: Development of automatic segmentation methods for low limb muscles
in 3D ultrasound volumes.

This objective aims to create accurate and efficient algorithms to reliably identify and
isolate specific organs (here muscles) within three-dimensional ultrasound images. Tran-
scending the limitations of manual or semi-automatic segmentation techniques, this work
focuses on offering faster, more objective, and reproducible solutions for the quantitative
analysis of ultrasound images, in particular, muscle volume measurements. A precise seg-
mentation of muscles can improve anatomical and pathological understanding. Moreover,
biomarkers from the segmentation can inform and guide the diagnosis, treatment, and
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monitoring of various muscular conditions, from sports athlete injuries to neuromuscular
diseases like Duchenne dystrophy or sarcopenia.

We propose to leverage the processed volume with a recurrent network and rely on
a sequential pseudo-labelling strategy to deal with sparse annotations. In practice, we
propose two architectures, UNet-S-R-CLSTM and IFSS-Net architectures, for lower limb
muscle ultrasound segmentation. UNet-S-R-CLSTM is a one-encoder and two-decoder
architecture, utilising a Convolutional Long-short Term Memory (CLSTM) network for
binary segmentation of freehand low-resolution ultrasound volumes. This approach lever-
ages multitask learning to improve the geometrical estimation of mask shapes and adopts
a weak-label learning strategy due to the dataset comprising sparse 2D slice annota-
tions. On the other hand, the IFSS-Net is a two-encoders-one-decoder architecture with
a Bidirectional CLSTM for muscle segmentation in high-resolution volumetric ultrasound
volumes. This method achieves low volumetric error, comparable to intra-operative stan-
dards, and introduces a decremental update for the objective function to facilitate model
convergence with limited annotated data. To address class imbalance, we propose a para-
metric Tversky loss function, adaptively penalizing false positives and negatives.

Gonzalez Duque, V., Al Chanti, D., Crouzier, M., Nordez, A., Lacourpaille, L.,
Mateus, D. (2020). Spatio-temporal consistency and negative label transfer for 3D freehand
US segmentation. In MICCAI 2020: 23rd International Conference, Lima, Peru, October
4–8, 2020, Proceedings, Part I 23 (pp. 710-720). Springer International Publishing.

Al Chanti, D., Duque, V. G., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus,
D. (2021). IFSS-Net: for faster muscle segmentation and propagation in volumetric ultra-
sound. IEEE transactions on medical imaging, 40(10), 2615-2628.
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Abstract

In the following part, I will introduce the background concepts serving as a founda-
tion for the development presented later in this thesis. The part is composed of two

chapters. The first chapter explains the physical principles of ultrasound imaging, first in
2D, and then in 3D. Section 1.1 focuses on 2D ultrasound, presenting its advantages and
applications, the physical principles, the potential artefacts, and the challenges for image
analysis. Section 1.2 covers the medical acquisition protocols and the existing datasets
used later for the experimental validation. Section 1.3 describes the 3D ultrasound acqui-
sition process, emphasising the importance of tracking systems. methods and challenges.
Section 1.4 presents a conclusion about 2D and 3D challenges, including their limitations
and complexities.

Chapter two outlines the application of artificial intelligence to ultrasound image anal-
ysis. It covers computer-aided diagnosis application scenarios (Section 2.1) and a detailed
explanation of segmentation metrics (Section 2.2). Section 2.3 thoroughly explains seg-
mentation methods in ultrasound imaging exploring various ultrasound segmentation ar-
chitectures, for 2D ultrasound images (Section 2.3.1), 2.5D ultrasound Videos(Section
2.3.2), and 3D ultrasound volumes (Section 2.3.3), emphasizing their design and imple-
mentation challenges. This overview serves as a foundation for understanding the com-
plexities and advancements in ultrasound.
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Medical ultrasound imaging
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1.1 2D Ultrasound imaging

1.1.1 Advantages and applications

Ultrasound is a valuable medical imaging technique known for its safety, as it is non-
invasive and does not use ionizing radiation. It offers real-time imaging capabilities, which
are crucial for observing organ function and guiding procedures like biopsies. Cost-effective
and portable, it is widely used in settings ranging from hospitals to remote areas. Ultra-
sound serves multiple purposes, from monitoring pregnancies fetal health in obstetrics
to diagnosing heart conditions in cardiology; it is useful in evaluating abdominal organs,
musculoskeletal injuries, or vascular diseases, but also in emergency medicine and image-
guided interventions. Such versatility makes it a fundamental tool in diverse medical
fields [2,3]. Nowadays, ultrasound has become the standard modality for the detection and
follow-up of hyperthyroidism, prostate cancer, breast cancer, and fetal development [53].

9



Fundamentals of medical ultrasound imaging

Studies continuously propose shifting from modalities such as Computer Tomography
(CT) or Magnetic Resonance Imaging (MRI) to ultrasound for several diagnosis tasks.
For instance, Jahanshir et al.. [54] proposed the use of ultrasound for the diagnosis of
blunt chest trauma patients who suffer from ascites, pleural effusion, pericardial effusion,
and pneumothorax. Similarly, Yassa et al. [55] used Ultrasound for the diagnosis of
coronavirus disease over MRI. Also, Nordez et al.. [56] propose 3D ultrasound as a
reliable tool for measuring muscle volume compared to MRI. Reasons for proposing such
a modality shift include improving the safety for a broader range of patients, e.g. children
and elderly subjects with metal implants or pacemakers; increasing accessibility during
pandemics, as ultrasound’s portability allows for bedside exams, which can reduce virus
spread. Additionally, ultrasound is cost-effective and faster compared to MRI, importants
factor in resource-limited scenarios. After motivating the use of ultrasound in medicine, we
will describe the physical principles of the modality responsible for its low cost, portability,
real-time, and safety advantages.

1.1.2 Ultrasound acquisition principle

The discovery of ultrasound imaging in medicin is attributed to Donald et al.. in
1958 [57]. It is considered a safe modality since it does not require irradiation. Its

basic physical principle relies on a piezoelectric material, that generates and receives high-
frequency waves imperceptible to the human ear. These piezoelectric semiconductors are
housed in a probe, which is known as a transducer. The transducer first emits a pulse
wave that propagates to the observed tissues. The probe is then switched to the receiver
mode to collect the reflected sound waves during a period of time. Under the assumption
of a constant speed of sound, the conversion of reflecting sounds to B-mode images is done
by calculating their time of flight and the intensity with which the sound returns to the
probe. This process is known as beamforming. All of the datasets used in this thesis rely
on the widely-used Delay-and-Sum (DAS) beamforming method [58].

DAS performs constructive addition of signals at a particular point in the image, en-
hancing signal reception or transmission in a specified direction while suppressing noise
and signals from other directions. This process significantly improves the resolution and
quality of the received signal. The technique involves two main steps: delaying and sum-
ming the signals received by an array of sensors. Each sensor in the array receives a
signal that has travelled over a different distance, resulting in a time delay associated
with each signal. This delay is based on the geometry of the array and the direction of
the incoming signal. After applying these calculated delays to the respective signals, the
next step is to sum the time-aligned signals to obtain the output of the beamformer. The
resultant beamformed signal S(t) for any scan line can be expressed as a single equation
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that incorporates both the delay and summation steps:

S(t) =
N∑

n=1
pn

(
t − dn

c

)
(1.1)

In this equation, N represents the number of sensors in the array, pn(t − dn

c
) is the

signal received by the nth piezoelectric sensor delayed by the time τn = dn

c
, where dn is

the distance from the signal source to the nth sensor, and c is the speed of sound in the
medium. After beamforming, the signal follows envelope detection, log compression and
other post-processing steps. The process is repeated for several scan lines to build the final
B-mode image. See Figure 1.1 for a graphical explanation of the image creation process.

Figure 1.1 – Ultrasound beamforming, image taken from [59].

1.1.3 Ultrasound image artifacts

B-mode images are influenced by the interactions of sound with the traversed tis-
sues. Although ideally, sound is expected to be reflected, it can be attenuated, absorbed,
refracted, or scattered. The most common artifacts are shadowing, reverberation, diffrac-
tion, mirroring artifacts, and posterior acoustic enhancements [21].

— Shadowing occurs when the ultrasound beam is completely absorbed or reflected
by a highly attenuating structure (like bones or gallstones), resulting in a dark or
hypoechoic area on the image beyond that structure (See Figure 1.2-a).

— Mirroring artefacts occur when the ultrasound beam reflects off a strong reflector
(like the diaphragm), creating a mirror-like duplicate image of structures on the op-
posite side of the reflector, leading to the potential misinterpretation of the anatomy
(See Figure 1.2-b).

— Reverberation happens when the ultrasound waves bounce back and forth between
two highly reflective surfaces, like gas, creating multiple, equally spaced echoes that
appear as a series of parallel lines on the image (See Figure 1.2-c).

— Posterior acoustic enhancement is seen as an area of increased brightness or echogenic-
ity behind structures that are less attenuating to the ultrasound beam, such as fluid-
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filled cysts, indicating that more sound waves are passing through and reaching the
deeper tissues (See Figure 1.2-d).

— Diffraction artifacts arise when the ultrasound beam spreads out after passing
through a small aperture or around the edges of structures, potentially causing
a blurring or smearing of the image at the edges.

Figure 1.2 – Images taken from [21]. Ultrasound artifacts: a) Shadowing below a calculus
in the urinary bladder, b) Mirroring artifact on the diaphragm, c) Posterior Acoustic En-
hancement in the Renal Parenchyma, d) Reverberation artifact from Pneumoperitoneum
against the Liver edge.

Sometimes, artefacts patterns provide useful information to the sonographer about the
content in the image, nevertheless, more often, they decrease the accuracy of the content
of deeper structures and make image content less reliable.

1.1.4 2D ultrasound challenges

Beyond artefacts, 2D ultrasound image quality depends on various other factors, such
as patient variability, operator dependency, and scanner set-up. Operators’ skills and expe-
rience significantly influence the choice of various parameters, including frequency, depth,
focus, angle, and pressure, which vary depending on the patient’s body and compliance.
The visibility of specific zones of interest is highly dependent on the angle and pressure
applied when the ultrasound probe contacts the skin. As the modality is dynamic, it re-
quires physicians to use their anatomical knowledge to move the probe over the patient’s
body to find the plane of interest. Ultrasound images in 2D are view-dependent and often
contain blurry contours, noise, and artefacts or have a limited field of view, making area
measurements and structure localisation challenging. Additionally, the underlying physics
of ultrasound results in the presence of speckle noise, which tends to reduce image reso-
lution and contrast. The manual steering of the ultrasound probe to achieve the correct
perspective and appropriate settings also contributes to operator dependency, leading to
image variability and results that are not always directly comparable.

Ultrasound advantages encourage non-radiology-trained physicians to perform ultra-
sound examinations without a standardised training system or extensive quality assurance,
in contrast to conventional radiology practices [60]. This leads to a substantial difference
in image quality, further extending the operator dependency. To reduce such dependency,
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the medical community relies on manuals and protocols. These manuals define parameters
such as the orientation of the probe, the frequency ranges, the structures that must be
present in the images, and the analysis to be performed by the physician (e.g. landmark
placement or volume calculation). Kim et al. [61] recommended a utopic system, where
institutional practice guidelines set the scope of individuals who perform or interpret
ultrasound examinations. But until this happens, physicians and artificial intelligence
algorithms must deal with images with high variability. Operator, patient and scanner
variability is a major challenge for deep-learning methods, which often require building
sets of standardised images or datasets.

1.2 Datasets
Acquisition of medical ultrasound datasets is challenging compared to other types of

modalities due to several reasons. Firstly, a protocol must fix a range for the parameters
and restrict the high variation in the quality of the images. Secondly, medical image
annotations demand specialised expertise. Consequently, the annotation process is usually
expensive and sparse. Third, being medical data regulated by data protection, free, open-
source datasets are still rare, although in constant growth.

1.2.1 Acquisition protocols

Ultrasound data acquisition protocols define the standardised processes and guidelines
utilised in the gathering, processing, and transmission of data during ultrasound imaging
procedures. There are various components and considerations involved in ultrasound data
acquisition protocols [62]:

— Transducer selection and handling: Choosing the right transducer type (linear,
phased, or curvilinear) and frequency is fundamental to optimize image quality
based on depth and resolution.

— Imaging modes selection: is crucial for visualization of specific features in the
images. B-Mode for anatomical clarity, M-Mode for motion analysis, and Doppler
for blood flow assessment. All provide comprehensive diagnostic capabilities.

— Image acquisition: Tailored scanning techniques are adopted to accurately cap-
ture the targeted anatomical structures. Among the view directions, we can find
transverse, longitudinal, or oblique techniques, which provide different perspectives.

— Documentation and reporting: is essential for ensuring that the Physician’s find-
ings are well-documented and effectively communicated among healthcare providers.

— Data processing: techniques are needed for image quality enhancement for precise
diagnosis. Some existing techniques are noise filtering or contrast adjustment
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— Data Storage and transmission is essential to handling secure and efficient med-
ical data. Formats boost interoperability between diverse systems, make it easier to
share and access data across different platforms, and streamline the diagnostic and
treatment processes in healthcare settings. Different formats exist to save images and
additional data information, between which we found: Digital Imaging and Commu-
nications in Medicine (DICOM), Meta Image (MHA/MHD), Joint Photo-graphic
Experts Group (JPEG), Tag Image File Format (TIFF), Portable Network Graphic
(PNG), Bitmap Image file (BMP), raw, Neuroimaging Informatics Technology Ini-
tiative (NIFTI), Hierarchical Data Format Version 5 (HDF5).

— Safety and compliance: follow the ALARA principle (As Low As Reasonably
Achievable), which is a commitment to minimizing patient exposure time to ul-
trasound waves. Additionally, it is recommended to maintain equipment quality
through regular checks. This dual approach ensures patient safety and reliable di-
agnostic data, fostering responsible healthcare practices.

By adhering to established protocols, healthcare professionals can ensure the unifor-
mity and quality of ultrasound data acquisition, which is critical for accurate diagnostics,
patient care, and collection of datasets for neural network training.

1.2.2 2D Datasets used in this thesis

As mentioned in the introduction, we focus in this thesis on the segmentation task
in ultrasound images and volumes. In this subsection, I will describe the 2D datasets
used in this thesis, along with their purpose and acquisition protocol. 3D datasets will be
introduced in section 1.1.

Contributor Description Size of set Resolution Format Ref

2D UTP university Nerves: Median,
ulnar, ciatic & femoral 1857 images 360 × 279 png 4ch files [63]

2D Oxford university Spine bones 8 participants,
3292 images 128 × 128 PNG tracking [64]

Table 1.1 – Overview of the 2D open-source datasets used in this thesis

The first dataset was recorded by an anaesthesiologist with ultrasound experience from
the Universidad Tecnológica de Pereira (UTP) who acquired the 2D ultrasound dataset
of the nerves in 2021 at Santa Mónica Hospital in Dosquebradas-Colombia. He used a
SONOSITE Nano-Maxx device at a fixed resolution of 640 × 480 pixels, but the final
network images were cropped to the region of interest to a maximal resolution of 360
× 279 pixels. The dataset comprises 691 images of nerves: 287 images from the sciatic
nerve, 221 from the ulnar nerve, 41 from the median nerve, and 70 from the femoral nerve.
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The second dataset was performed by an experienced physician at Oxford who set
image ultrasound parameters to a depth of 90 mm for all 6 six scoliotic participants. He
used a point-of-care ultrasound machine, MicrUs EXT-1H (Telemed Medical Systems,
Milano, Italy). He recorded sagittal images with horizontal sweep movement from upper
thoracic to lower lumbar levels, recorded at 10 frames per second over 2–3 minutes. Data
annotations involved segmenting visible bone contours, employing a paintbrush-style tool
within the 3D Slicer application, with approximately one frame segmented every 0.5 sec-
onds.

Both datasets were used in this thesis for the validation and evaluation of networks
and metrics in section 2.4

1.3 3D Ultrasound acquisition

Conventional 2D ultrasound imaging, while widely used in medical diagnostics, faces a
significant limitation due to its restricted field of view. This constraint often hampers the
ability to fully visualise and understand complex big anatomical structures and dynamic
physiological processes. To solve this challenge, 3D ultrasound probes were invented to
provide volumetric imaging, which enables a more comprehensive visualisation of tissues
and organs. However, 3D probes are expensive compared to 2D probes, and they are not
as commonly found in medical settings as their 2D counterparts, primarily due to the
need for specialised training to interpret 3D images effectively.

Nevertheless, the clinical motivations for adopting 3D ultrasound are strong. The en-
hanced imaging capabilities of 3D ultrasound can lead to better patient outcomes through
more accurate diagnoses and targeted treatment plans. Due to the clear advantages of 3D
ultrasound, the limitations of 3D ultrasound probes and the high availability of 2D ul-
trasound probes, compounding methods of 3D volumes using 2D images were proposed
in 1997 by Rohling et al. [12]. They created 3D ultrasound volumes from 2D tracked B-
scans, also called "ultrasound compounding". In order to understand in detail what makes
ultrasound compounding have good quality, it is necessary to go into detail about the
tracking systems and the ultrasound compounding methods. We explain then the main
components of the ultrasound compounding system in the following sections.

1.3.1 Tracking systems

Freehand scanners consist of a conventional transducer equipped with passive or
active markers tracked from an external system. As the transducer moves following the
surface of the scanned object, the system records the six (6) degrees of freedom (DOF)
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Figure 1.3 – Schematic structure of three types of position sensor: (a) acoustic sensor; (b)
optimal positioner; (c) magnetic field sensor; (d) articulated arm positioner. Image taken
from [11]

position of the probe over time. It is important, therefore, that the tracking system does
not interfere with the trajectory and provides the freedom to scan the region of inter-
est(ROI) from any angle or position. Several types of tracking systems exist, following the
classification of Huang et al. [11](See Figure 1.3).

— Acoustic tracking [65]: In this type of system, the transducer holds three fixed
sound-emitting components, while a series of microphones are distributed in the
room. Position is calculated from the recorded time-of-flight from each sound emitter
to the microphones. To maintain a satisfactory signal-to-noise ratio (SNR) of the
sound-tracking signal, it is crucial to position the microphones near the patient and
ensure the area between the emitters and microphones is clear of obstructions.

— Optical tracking [66]: This method involves a handheld transducer with an op-
tical positioning system featuring either passive or active targets attached to the
transducer and at least two cameras tracking these targets. The positional and ori-
entation information is derived from the 2D images of targets, considering their
relative positions. Optical systems are divided into passive stereo-vision systems
(using three or more matte objects as targets) and active marker systems (using
multiple known-frequency infrared diodes as markers). While recognised for its sta-
bility and precision, this setup allows accurate scanning with a handheld transducer
and optical position, requiring a direct line of sight between the markers and the
tracking cameras.
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— Magnetic Field Sensor tracking [13,67]: In this setup, a transducer pairs with a
magnetic field sensor comprising a magnetic transmitter positioned near the patient
and a receiver with three orthogonal coils mounted on the transducer. This receiver
measures the magnetic field intensity in three perpendicular directions to ascer-
tain the transducer’s position and orientation essential for 3D reconstruction. This
compact and adaptable system does not require a clear line of sight. However, its
efficacy can be hampered by electromagnetic interference and the presence of metal
objects, which might distort readings and lessen tracking accuracy. To circumvent
these issues, it is recommended to increase the magnetic field sampling rate.

— Robotic ultrasound tracking [5]: This strategy involves attaching the transducer
to an articulated arm equipped with several movable joints, permitting clinicians to
manoeuvre the transducer into any orientation. To enhance accuracy, it is advisable
to keep the arm segments short.

— Image-Based tracking [68]: This method uses image characteristics like speckles
to determine relative positioning, eliminating the need for additional sensors. Based
on the principle of speckle decorrelation, the gap between two nearby images can
be inferred from the correlation variations. When employing this method, operators
are advised to move the transducer at a steady pace, either linearly or rotational,
to maintain proper intervals, although this method might fall in terms of accuracy.

In this work, our datasets used mainly the optical tracking system and the magnetic
tracking system. More details about the 3D datasets used in this thesis and their tracking
system can be found below.

1.3.2 3D Datasets used in this thesis

Of the 3D datasets used in this thesis, the first one was open-source, the second one
was made free in this thesis, and the third one is still private. They were used for the
validation and evaluation of networks and metrics in section 2.4.

Thyroid Dataset: Presented by Kronke et al.. [5] offer 32 3D volumes from 16 individ-
uals, capturing both the left and right neck regions. 3D Annotations include the thyroid
gland, the jugular vein, and the carotid artery. Volume’s pixel resolution is 380 × 330
× 300 and a voxel spacing of 0.12mm, acquired with a 3D curvilinear probe boasting 64
channels and a magnetic tracking system known as the "PIUR tUS tracking system."
Prostate 3D dataset: is an in-house dataset tailored specifically for the comprehensive
examination of prostate health in the context of cancer suspicion. It comprises 40 3D
volumes have a pixel resolution of 230 × 230 × 70 with a voxel spacing of 0.27mm.
Each patient underwent both ultrasound and magnetic resonance-T1 (MRI) scans. The
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ultrasound volumes were documented using a Wisonic Endokavitär Sonde EV10-4 rectal
ultrasound probe in conjunction with the Acuson Juniper Siemens ultrasound apparatus.
Prostate labels were derived from annotations on the MRI scans after the registration of
the ultrasound volumes.

Contributor Description Size of set Resolution Format Ref

3D TUM Thyroid, carotid
artery & jugular vein

16 participants:
32 volumes 380 × 330 × 300 Nifty files [5]

3D Univ-Nantes Low limb Muscles:
GM, GL, SOL

44 participants:
44 volumes 564 × 632 × 1443 mha with

tracking [51]

3D TUM Prostate 40 Participants 230 × 230 × 70 DICOM in house

Table 1.2 – Overview of the 3D open-source datasets used in this thesis

The Low-limb dataset recorded 44 participants evenly split between males and females,
who had an average age of 26±6 years, stood at a height of 173±11 cm, and weighed
around 64.3±12.4 kg. Data was recorded as a part of the research on Achilles tendinopathy
by Crouzier et al. [51] with ethical clearance from the local ethics board (Rennes Ouest
V – CPP-MIP-010), fully conforming to the ethical standards laid out in the Declaration
of Helsinki. None of these participants faced significant lower limb issues that required
medical attention in the preceding six months.

SOL

GL

GM

Tibia Fibula

(a) (b) (c)

(d) (e) (f)

Figure 1.4 – LEG-3D-US dataset: a) Single ultrasound sweep, b) 5 sweeps, c) 3D vol-
umes reconstructed, d) Sparse annotations e) Interpolations f) Cross-sectional view Solius
(SOL), Gastrocnemius Lateralis (GL), Gastrocnemius Medialis (GM).

To capture these images, each participant’s lower limb was positioned in a specially
designed water tank (as shown in Figure 1.4-a) to prevent muscle distortion from the

18



Fundamentals of medical ultrasound imaging

pressure of the ultrasound probe. A freehand ultrasound approach was used, employ-
ing a system of six optical tracking cameras (Optitrack, Natural point, USA) to gen-
erate the 3D volume scans. These images span from the knee to the ankle and were
captured in 4-6 contiguous sweeps (illustrated in Figure 1.4-b) with the help of a 50-
mm linear ultrasound probe (frequency range 4-15 MHz; Aixplorer, Supersonic Imagine,
Aix-en-Provence, France). The 3D volumes were compiled using the compound volume
algorithm within the ImFusion Suite software 1, employing a Gaussian kernel with a five-
pixel spread (refer to Figure 1.4-c). The resulting volumes formed a voxel grid measuring
564×632×1443±(49×38×207) with an average voxel spacing of 0.276993 mm3 ± 0.015
mm3.

Muscular structures were sparsely annotated on 2D B-mode high-resolution images
using Stradwin Software [22] by two separate annotators, achieving an intra-operator
precision of 4%. The gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and
soleus (SOL) muscles were the primary focus of the segmentation. Three-dimensional
muscle models were then created employing the "Zero order interpolation (ZOI) method"
[69], and for a subset of 15 participants, these models were further refined by an expert.
The LEG-3D-US dataset is now made publicly accessible for research and development
purposes. Chapter 2.4 consider this dataset as one of the main contributions of the section.

1.3.3 From probe positions to image values

A graphic representation of the positioning of the coordinate reference systems is pre-
sented in Figure 1.5a. We observe in Figure 1.5-b that accurate tracking enables preserva-
tion of the continuity of edges between overlapping images, while tracking errors generate
structure miss-alignment, as presented in Figure 1.5-c.

Formally tracking consists of finding the 6 Degrees of freedom (DOFs) position of the
transducer R with respect to a global origin coordinate system C. A calibration step is
required to relate the sensor receiver O to the global origin C and between the transducer
position and the image plane P. It should be noted that accurate pre-calibrated tracking
is required for volume reconstruction. As a result, they are two main sources of tracking
errors: calibration errors affecting the transformation between the image and the probe
and inaccuracies inherent to the tracking system relating R to O.

The 3D volume V is defined as a function assigning an intensity to every voxel v in a
volumetric grid, V : v ∈ R3 → R. V is placed in the global coordinate system C, defined
as a 3 x 3 orthonormal matrix. During the compounding reconstruction step, the volume

1. ImFusion GmbH, Munich, Germany
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Figure 1.5 – Tracking coordinate reference systems and examples of 3D volumes:
a)Reference coordinate systems, b) Correct tracking assuring smooth surface transitioning
c)Patient movement affecting tracking and smoothness of the surface transitioning.

is filled with the pixel values of the B-scans passing through each voxel v. This is achieved
by calculating the transformation of the image pixel in P to the corresponding voxel in
V using relative transformation matrices, as expressed in equation 1.2.

Transformations (T) are modelled with 4 × 4 homogeneous matrices containing the
translation, rotation, and scaling information between two coordinate systems. The ob-
jective is to express a pixel from one B-mode image in terms of the global reference frame
C at the origin of the volume. Any pixel x = {u, v, 0, 1}T in the image (with u, v its
2D coordinates), is first scaled to the metric system of the B-scan plane P Tx (i.e. going
from pixels to millimetres). A second transform RTP expresses the origin of the image
plane with respect to the coordinate system of the ultrasound probe R. The third step
corresponds to the transformation OTT going from the probe to the origin of the tracking
system O. Finally, the last calibration matrix CTO express the pixel from the origin to
the coordinate system of the volume. In summary:

Cx = CTO
OTR

RTP
P Tx (1.2)

P is the coordinate system of the B-scan plane, with an origin in the top left-hand
corner of the cropped image. The y-axis is conventionally defined in the beam direction,
and the x-axis in the lateral direction. The z-axis is in the elevational direction, orthogonal
to the B-Scan plane. Finally, to build a US volume, we need to collect and fusion the
information from a sequence of N B-mode images {I1, I2, ..., Ii, ...IN}. It is thus possible
to find the global coordinates of a point in image i using the absolute transformation CTpi

,
or compounding through multiplication the relative transformation between subsequent
images pi−1Tpi

such that:

Cxi = CTpi

Pixi

Cxi = CTp1
p1Tp2 ...pi−1Tpi

pixi
(1.3)
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Utilising relative transformations in tracking representations offers several advantages
over absolute tracking. Relative tracking enhances robustness by localising errors to spe-
cific image pairs, reducing overall error accumulation compared to absolute tracking. This
approach simplifies calculations, as it is easier to compute transformations between con-
secutive images rather than recalculating positions against a fixed global reference for
each image. Relative tracking is also more efficient for analysing local movements and
changes between frames, providing direct and relevant information for motion analysis.

1.3.4 Alternative rotation representations

As explained above, transformations are rigid homogeneous matrices and 2 character-
istics: First, the last row is filled with 3 zeros and one 1, second the translation is described
by a vector [tx, ty, tz]T and the rotation matrix R9 ∈ SO(3), has elements rij the elements
of the matrix. Combining the translations and rotations in a single matrix we have:


tx

R9 ty

tz

0 0 0 1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (1.4)

Representing the rotation with a SO(3) matrix will be called the R9 representation.
We describe in the following other common ways to represent rotation matrices, which
will be exploited in chapter 2 to define loss functions over rotations.

The R6 representation consists of using just 2 columns of the R9 matrix since the
third column can be obtained with the cross-product of the first two, eliminating the
redundancy of the R9 representation.

Then R3 representation, also called "Euler representation" [70] uses only 3 values
(α, β, γ) to represent pitch, yaw, and roll of the axes in a fixed coordinate system. Euler
representations are known to suffer from discontinuities. It is possible to convert the R9

representation into the Euler representation following equations 1.5.

γ = arctan
(

r21

r11

)
,

β = arctan

 −r31√
1 − r2

31

 , α = arctan
(

r32

r33

) (1.5)

The R4 representation does not suffer from discontinuities, and it is commonly called
the "quaternions representation". It is a 4-dimensional vector that can represent 3D rota-
tions as:

q = a + b̂i + cĵ + dk̂ (1.6)
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Where a is the scalar part and î, ĵ, k̂ are unitary vectors. To convert from a rotation
matrix R9 to quaternions R4, one can use the following expressions and normalise the
resulting values by dividing each component by

√
a2 + b2 + c2 + d2 to ensure the quater-

nions has a unit form.:

a = 1
2

√
1 + r11 + r22 + r33

b = 1
2

√
1 + r11 − r22 − r33

c = 1
2

√
1 − r11 + r22 − r33

d = 1
2

√
1 − r11 − r22 + r33

(1.7)

Euler angles offer interpretability advantages but suffer from discontinuities. In con-
trast, R4, R6, R9, provide mathematical robustness, and smooth interpolation.

1.3.5 Compounding methods

From a sequence of image {I1, ..., IN} and their corresponding absolute 3D positions
{P1, ..., PN}, compounding or reconstruction step searches to fill the intensities of voxels v
in a volume V, with V ∈ R3. Each image contributes with a set of 3D points, {x1, ..., xM}.
These pixels are mapped to 3D points following Equation 1.3. Such that we obtain Ii :
{Cxi1, ..., CxiM}.

Figure 1.6 – From Sweep to volume: a) Ultrasound sweep, b)Compounded volume.

Since the location of the transformed points does not match voxel centers, compound-
ing algorithms propose different strategies to interpolate the available data. Reconstruc-
tion algorithms can be classified into 3 types based on their implementation: Voxel-based
methods (VBMs), Pixel-based methods (PBMs), and Function-based methods (FBMs).
Figure 1.7 presents an example for each method, with only 2D projections of the 3D case.
Rays represents images and circles represent pixel points {xi1, ..., xiM}.

Voxel-based methods (VBM) utilize the intensities of one or multiple image points
to assign values to empty voxels. For instance, the voxel Nearest Neighbor (VNN) method
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Figure 1.7 – Types of compounding methods, images taken from [11]: a) Voxel nearest
neighbor, b)Squared distance weighted interpolation, c) Functional interpolation.

introduced by Gee et al. [22] assigns values to voxels based on the nearest 2D image pix-
els. Voxel-based methods with Interpolation (VBMI) proposed by Trobaugh et al. [71]
determine voxel values through the interpolation of several nearby pixels. The intensity
of a voxel is computed as the weighted average of neighbouring pixels with a distance-
weight technique, with the weight being the inverse of the distance from the pixel to the
voxel. Coupé et al.. [72] introduced an enhancement of VBM by estimating the probe
trajectory, thus identifying and weighting intersecting points between the nearest B-scans
in time to allocate intensity values to voxels.

Pixel-based methods (PBMs) consist of a distribution stage and a Gap-filling
stage. The distribution stage interpolates from pixels in the images to voxels in the volume.
The Gap-filling stage interpolates from filled voxels in the volume to empty voxels as can
be represented with Figure 1.7-b.

First in the distribution stage, we find early methods like the Pixel Nearest Neighbor
Interpolation (PNN) [73] or more advanced methods such as the Pixel trilinear inter-
polation (PTL) [74], the square distance weighted [75] method, the adaptive squared-
distance-weighted [76] method, and the Gaussian distance weighted method [77] that
include kernels and median-filter strategies for noise reduction and better edge preser-
vation to enhance image quality. In the second stage, the Gap-filling, we find strategies
using bilinear interpolation between non-empty voxels or applying various shaped ker-
nels (sphere, ellipsoid [78], etc.) to either filled or empty voxels. Techniques range from
simple methods, such as filling with the nearest nonempty voxel or averaging, to more
computationally intensive methods involving the computation of weighted averages [75] or
utilising normalised convolution with adaptable kernels [79]. Deciding the optimal kernel
size remains a critical aspect to prevent over-smoothing or persisting gaps in the final
volume.

Function-Based Methods (FBMs) fill the missing voxel intensities with finer de-
tails interpolating functions, see Figure 1.7-c. The Radial Basis Function [80], for example,
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assumes data smoothness over several B-scans, giving high values to points close to the
centre and low values to points farther away. The RBF starts with a central point, and its
value decreases as one moves away from that point, following a certain mathematical pat-
tern (usually a Gaussian Bell curve). The Rayleigh interpolation technique [81] employs
a Bayesian statistical method to fill the voxels, enhancing the overall image resolution
progressively by incorporating finer details incrementally.

The volumes utilised in Chapter 2 were generated employing a pixel-based approach,
featuring trilinear interpolation complemented by a Gaussian kernel filling method with
a size parameter of 5. Among the alternatives presented above, this approach exhibited
superior quality, as assessed by expert evaluations.

1.3.6 Challenges specific to 3D ultrasound

Challenges specific to 3D ultrasound imaging arise from the nature of this technology.
In 3D ultrasound imaging, the complexity lies in handling volumetric data and accurately
localising structures within the volume. Similar to 2D ultrasound, 3D ultrasound images
can exhibit issues such as blurred boundaries, noise, and artefacts, but the challenges
are amplified in three-dimensional space. Furthermore, the presence of speckle noise in
3D ultrasound makes image interpretation and analysis more intricate. While there are
datasets with images and tracking already acquired, inherent sources of error, like track-
ing, cannot be eliminated. Ultrasound has a high reliance on operators with varying levels
of expertise resulting in substantial differences in image quality, leading to challenges in
standardisation and consistency. 3D ultrasound datasets are typically small, not open-
source, and contain few annotations, necessitating more representative and generalised
samples. Datasets are often annotated by a single expert, introducing potential bias and
favouring the selection of high-quality images, exacerbating image quality operator de-
pendency. Addressing these challenges is crucial for improving the accuracy and reliability
of 3D ultrasound datasets needed for training AI methods.

1.4 Conclusion

In conclusion, this chapter delved into various aspects of 2D ultrasound imaging
generation, highlighting its advantages, applications, acquisition principles, and poten-
tial challenges. We also explored the importance of datasets, acquisition protocols, and
open-source datasets for training and research purposes. The transition to 3D ultrasound
acquisition was discussed, covering tracking systems, methods for tracking ultrasound
probes, alternative rotation representations, and compounding techniques. Moreover, we
addressed the specific challenges associated with 3D ultrasound imaging. This comprehen-
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sive examination provides the foundation for understanding the complexities and nuances
of ultrasound imaging, setting the stage for further research and exploration in the field.
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2.1 Computer-aided ultrasound image analysis

Deep-learning techniques utilised in the field of medicine have emerged as valuable as-
sets for medical professionals. Nowadays, radiologists employ Computer-Aided-Diagnosis
(CAD) tools to enhance performance feedback [82] and/or personalise patient care [83].
Deep-learning algorithms have been developed for ultrasound to enhance image acqui-
sition, evaluate image quality, offer an objective diagnosis, and optimize clinical work-
flows [24]. Some tools focusing on decreasing the time to perform certain medical pro-
cedures [84], can be easily integrated in the routine, and some have received FDA ap-
proval [85]. However, for clinical use, the validation or correction of experts is still often
recommended, handing over the final decision and responsibility to the radiologist [82].

Deep learning methods for ultrasound image analysis have been applied to at least
six different tasks, following the classification of Liu et al. [24]: i) segmentation, ii) detec-
tion/Localisation, iii) classification, iv) registration, v) image enhancement, and vi) 3D
reconstruction. In terms of medical applications, there has been significant interest in the
detection of nodule lesions in the thyroid, breast, and prostate due to the potential of
such algorithms to assist in early and accurate diagnosis, non-invasive screening, promis-
ing improved patient outcomes and personalised medicine approaches. Anatomies under
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study include fetuses, soft tissues such as the breast, liver, heart, small structures like
nerves, veins, arteries, and even bone surfaces for needle insertion. Clinical tasks on the
above anatomies can be divided into bio-metric measurements, therapy follow-up, com-
puter diagnosis, and image-guided interventions.

More concretely, in the past years, ultrasound deep learning methods have shown
effectiveness in different clinical tasks such as the diagnosis of hepatic fibrosis [86, 87],
focal liver lesions detection [88], spine vertebra guided intervention [89], diagnosis of fatty
liver disease [90], classification of benign or malignant tumours [91], identification of plaque
obstruction in the carotid artery [92], identification of anatomical plane for abdomen [93],
and selection of a quality frame in videos [94]. During this thesis, we focused on the
segmentation methods for diseases requiring volumetric measurements, such as Duchenne
muscular dystrophy and Hyperthyroidism.

2.2 Semantic segmentation with deep-learning

Figure 2.1 – Semantic segmentation of US volumes: a) 2D ultrasound images and an-
notations, b) ultrasound volumes and labels, c) volumes represented as a stack of 2D
ultrasound slices with annotations.

Semantic segmentation involves assigning a specific label or category to each pixel in
an image, thereby partitioning the image into semantically meaningful regions, as can be
observed in Figure 2.1-a). When applied to 3D volumes, voxels get assigned values, see
Figure 2.1-b). Volumes and annotations can also be represented as a stack of 2D images
(V = {X1, ..., XN}) with 2D annotations (L = {Y1, ..., YN}) as presented in Figure 2.1-
c).

In the following, we formalise the segmentation problem for 2D images. We will then
review existing methods for 2D, 2.5D, and 3D ultrasound images. In the context of seman-
tic segmentation with deep learning, a neural network can be represented as a function
that takes as input image X and produces as output a segmentation map Ŷ. The function
F simultaneously learns to extract features from images and to perform the segmentation
task. With X ∈ RW,H,K and Ŷ ∈ RW,H,C , where K represents the number of channels of
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the input image (e.g. three for RGB) and C represents the number of channels equivalent
to the number of segmentation classes (e.g. one for binary classification). The network
function F is parameterized by a set of weights and biases Θ, which are learned during
the training process. These learned weights and biases define the network’s architecture
and its ability to map input data to the desired output.

Ŷ = F(X; Θ) (2.1)

Training involves two main steps: the forward pass and the backward pass.

The Forward Pass captures features from the input image and makes segmentation
predictions. Many segmentation networks encode the features by reducing the image size
while increasing the channel dimensionality. They decode the features and extract mean-
ingful information at different scales. The most common architecture includes encoding
and decoding blocks, each composed of convolutional or linear layers, activation functions,
residual connections, gated layers and pooling layers. Examples of such layer blocks are
presented in the well-known UNet architecture [48], with one of the variants Attention
UNet [45] presented in Figure 2.2.

Figure 2.2 – Deep-learning layers: a)UNet architecture [48], b) Attention UNet [45], image
taken from [95].

The backward pass consists of training the network to learn the optimal values for
its weights and biases (Θ) by minimising a loss function. This is typically done through
back-propagation and gradient descent optimisation algorithms, such as Adaptive Moment
Estimation (ADAM) [96], Stochastic Gradient Descent (SGD) [97], Mini-Batch Gradient
Descent [98], etc. A loss function (L) is calculated between the predicted segmentation
map (Ŷ ∈ RW,H,C) and the ground truth segmentation map (Ygt ∈ RW,H,C), with (i, j)
representing the pixel coordinates and c representing the channel. The loss is aggregated
for more than one image in the forward pass. We call the group of images a batch.
One common loss for semantic segmentation tasks is the pixel-wise cross-entropy loss,
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calculated as:

Li,j = −( 1
C

)
C∑

c=1
Ygti,j,c

· log(Ŷi,j,c) (2.2)

In a nutshell, the roles of different components in an UNet are:

— Convolutional layers perform feature extraction by applying learned filters to input
data.

— Activation functions introduce non-linearities to the neural networks, enabling them
to model intricate relationships within the data. Common activation functions like
ReLU, sigmoid, and tanh determine whether neurons activate or not based on their
input.

— Pooling layers downsample feature maps to reduce computational complexity, ex-
pand the receptive field, and enhance robustness to variations.

— Batch normalization layer are used to improve the training speed and stability by
normalizing the inputs of each layer within a mini-batch, reducing internal covariate
shift and enabling faster convergence.

— Up-convolutional layers increase the spatial resolution of feature maps effectively
expanding their size to match that of lower-resolution feature maps from earlier
layers.

— Skip connection concatenation preserves semantic information while up-sampling.

The above operations are repeated for multiple layers in the encoder and the decoder,
gradually decreasing and increasing the spatial dimensions to match the original image
size. The final layer produces the predicted segmentation map Ŷ, which is often post-
processed with thresholding or morphological operations to produce better binary masks.

2.3 Segmentation of ultrasound images architectures
The following subsections review existing deep learning models addressing the semantic

segmentation problem on 2D or 3D medical ultrasound images.

2.3.1 Early 2D Segmentation methods

We first review some early works on 2D segmention. One of the first papers on 2D
Ultrasound (US) segmentation was presented by Zhang et al. [99], focusing on the pixel-
wise detection of lymph nodes in the neck. The model consisted of two fully connected
layers trained and evaluated on 80 2D ultrasound images. Wu et al. [37] addressed the
segmentation of fetal head and liver relying on a dataset of size 900 fetal head and 688
abdominal images. In 2018, this work was extended [34] to the fetal brain using a hybrid
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of UNet and a SegNet [100], compared with three more classical pipelines of three segmen-
tation architectures: UNet [48], SegNet [100] and Pix2Pix [101]. Using only 337 images,
Kumar et al. [43] segmented breast masses with an ensemble of 10-UNets trained with
different initialisation and data orderings. Most of the early works rely on the variants of
the UNet, focus on 2D ultrasound images and use datasets of modest size for training.

Regarding the segmentation of muscles, which is one of the main focuses of this thesis,
Cunningham et al. [38] proposed segmenting cervical muscles during head motion in 2019.
It contains around 1100 hand-segmented images in 14 categories (e.g., Skin, Trapezius,
Splenius). However, datasets of this size are expensive to acquire and rarely open-sourced.
The acquisition and annotation of ultrasound datasets are major limitations for training
2D and 3D muscle segmentation architectures. This is why clinical and sports studies still
rely on manual segmentation. Given such limitations, some works address the problem of
segmenting ultrasound images with small training datasets [42], synthesising US images
from various segmentation masks with a generator or with transformers blocks on 2D
patches of the images [39]. We develop the state of the art regarding this challenge and
propose an innovative solution in chapter 2.

2.3.2 2.5D deep-learning ultrasound segmentation methods

Given the dynamic nature of ultrasound, several researchers have explored using videos
to enforce segmentation with smoother frame transitions. In 2018, Mishra et al.. [40] pro-
posed a unique training scheme and fusion layer tailored to prevent fragmented bound-
aries. The team trained the architecture on two distinct tasks: the segmentation of lumen
regions and a vessel segmentation dataset comprised of 69 US images. This approach was
further extended in 2019 [102], wherein instead of videos, the training and evaluation of
the network was performed on 144 Carotid 3D ultrasound volumes processed in a sliding
window manner. This approach facilitated the quantification of carotid plaque and en-
abled dynamic fine-tuning 1.

In a similar vein, other works have also explored viewing 3D volumes as a series of se-
quential slices. Pourtaheiran et al.. [103] enhanced needle detection on 2D patches of the
3D volume, performing classification and semantic segmentation. Yang et al. [35] intro-
duced a Direction-Fused Fully Connected Network (DF-FCN) architecture for enhanced
catheter detection in cross sections, leveraging the Quicknat [104] architecture. The net-
work extracts feature maps from three distinct directions of the volume (axial, sagittal,

1. Fine-tuning involves the process of retraining a pre-existing neural network model on the new
dataset with a relatively small learning rate, allowing the model to adapt its parameters to the specific
characteristics and patterns present in the new data while preserving the knowledge and features learned
from the original training dataset.
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and coronal) and fuses the three predictions, capitalizing on the robust capabilities of the
pre-trained 2D model, thereby achieving superior results in medical imaging tasks.

Similar to them, in this thesis, we evaluate handling high-resolution volumes as se-
quential slices, enforcing smoothness of labels with different losses, reducing computation
burden and accelerating inference. More details are presented in chapter 2.

2.3.3 3D ultrasound segmentation methods

By 2020 [2], many of the papers used pure 2D images, and architectures were normally
Fully convolutional networks or encoder-decoder architectures. However, 3D ultrasound
volumes have the potential to increase the field of view. These volumes can be obtained
with different acquisition methods explained in Chapter 1.3.5.

In 2015, Ghesu et al. [30] proposed the Marginal Space Deep Learning framework
(MSDL) to perform anatomical pose estimation and boundary delineation on 3D ultra-
sound volumes of the aortic valve. Such pipeline first classifies subvolumes as containing
or not the anatomy of interest, and second localizes with a bounding box the sought
structure to finally estimate the non-rigid object boundary with an active Deep-learning
shape model. Their extensive dataset contains 2891 volumes from 869 patients with a
3D ultrasound probe. In 2017, Yang et al. [105] segmented 17 trans-rectal ultrasound
volumes: using Recurrent neuronal networks (RNN) and shape priors to improve bound-
ary inference. The method was compared against a VGG16 2014 [106] model pre-trained
on Imagenet [107]. The same year, Yang et al.extended their work to 104 prenatal vol-
umes [108] with simultaneous semantic segmentation of the fetus, the gestational sac,
and the placenta. The approach was compared against other methods that had been
used for 3D segmentation but not for ultrasound: Auto-context: a stack of 3-fully con-
nected networks [109] and conditional Generative Adversarial Networks (GCN) [110]).
More recently, Lei et al.presented the DaF3D architecture for prostate segmentation [111].
The method is applied to a dataset containing 44 3D ultrasound volumes and compared
against V-net(2016) of Milletari et al. [112]. In 2023, Li et al. [36] presented their ATTran-
sUNet architecture for 3D thyroid segmentation. Their major contribution is the attention
module using the entropy of the probability map between the classes. The method was
compared against: UNet [48](2015), Unet++ [113](2018), Axial-Attention [114](2019),
transUnet [115] (2021), UTNet [116](2021), Swin-UNet [117] (2023).

Among the most recent 3D ultrasound segmentation works, we find models based on
transformers. Transformers blocks consist of a stack of self-attention layers, where each
layer processes input data by computing weighted combinations of all input elements,
allowing the model to capture complex relationships and dependencies in the data, both
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locally and globally. In recent years, many state-of-the-art segmentation architectures have
adopted hybrid designs that combine traditional Convolutional Neural Network (CNN)
structures, such as UNet, with Transformer blocks. While UNet primarily relies on con-
volutional layers to process spatial information hierarchically, transformer blocks excel
in modelling long-range dependencies by utilising self-attention mechanisms. This hybrid
approach marries the strengths of both architectures, enabling segmentation models to
simultaneously capture local and global context.

In this thesis, we proposed two methods in 2020 and 2021: The UNet-S-R-CLSTM and
IFSSnet. Both methods perform muscle segmentation in 3D volumes of the lower limb;
more details can be found in chapter 2. We compare our methods with 3D UNet [48](2015),
V-Net [112](2016), DAF3D [44](2019) and PG-Net [118] (2018): An architecture usually
used for label video propagation on natural images. We additionally perform some studies
of label variability and border completition in the UNET [48], attention-UNet [45], and
UNet transformer [115] architectures.

2.4 Challenges of deep-learning-based segmentation
methods on 3D ultrasound images

3D ultrasound imaging has several advantages. Firstly, 3D increases the field of view
compared to 2D ultrasound, which captures a limited plane at various angles, making it
challenging to reproduce the same plane for follow-up studies. Secondly, 3D volumes are
easier to interpret and do not require the operator’s mental integration of multiple im-
ages. Lastly, 3D allows accurate estimation of organ or tumour volume for diagnosis and
treatment decisions. Despite the advantages, it is worth noting that 3D ultrasound seg-
mentation is challenging. Compared to CT and MRI, which are standardized modalities
with well-defined edges, patient position-independent, and do not struggle to scan regions
of the body containing gas and bones, ultrasound volumes impose specific challenges to
deep-learning-based segmentation methods.

First, images suffer from operator dependency, leading to variations in image appear-
ance due to differences in scanning techniques and operator expertise. Second, Datasets
are small and normally not open-source compared to natural image datasets. Acquiring
large and diverse datasets for training deep learning models is challenging, as medical data
is limited and subject to strict privacy regulations. Nevertheless, variability is needed for
the models to be generalised. Normally, models suffer to detect outliers or images on which
they were not trained. Third, annotations are challenging, expensive, and time-consuming
because ultrasound images often exhibit lower quality compared to other modalities, with
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issues such as noise, artefacts, and blurry boundaries, making precise segmentation more
challenging. Datasets are normally annotated by one single expert, generating a high pos-
sibility of bias and potentially skewed selection of the best-quality images for the training
set, making image quality operator-dependent. Fourth, 3D segmentation architectures for
comparison are often not designed for ultrasound, or when designed, models work on spe-
cific ultrasound datasets that rarely are made public, making results difficult to replicate.

2.5 Segmentation metrics
In this thesis, mainly seven segmentation metrics were used [119]: Sørensen–Dice in-

dex (Dice), Intersection over Union (IoU), Positive Predicted Value (PPV), recall or True
Positive Rate (TPR), Miss Rate ( False Negative Rate (FNR)), Hausdorff distance (HD)
and Average surface distance (ASD). These metrics evaluate the closeness of the network
prediction to the expert’s segmentation, either in terms of area or volume or by evaluating
their contours. HD and ASD metrics are better with values closer to 0 [e.g. millimetres],
while all the other metrics present their minimum value at 0 and their best value at 1
[pixel percentage].

The Sørensen–Dice index and the Intersection over union IoU measure the
overlap between the predicted and ground truth regions. IoU is primarily used to evaluate
detection results. They quantify the similarity as the proportion of pixels in the overlapped
region with their sum (Dice) or their union (IoU). Being Y the ground truth label and Ŷ
the prediction, the scores can be measured as:

DSC = 2|Y ∩ Ŷ|
|Y| + |Ŷ|

IoU = |Y ∩ Ŷ|
|Y ∪ Ŷ|

= |Y ∩ Ŷ|
|Y| + |Ŷ| − |Y ∩ Ŷ|

(2.3)

Here, |Ygt∩Ŷ| represents the intersection between the ground truth and the prediction.
A perfect DSC score of 1 indicates that the prediction precisely matches the ground truth.

Class imbalance and small regions pose significant challenges when evaluated with
DSC and IoU. Class imbalance occurs when one class vastly outnumbers the others, mak-
ing it difficult for the metrics to accurately assess model performance. In such cases, even
if a model performs exceptionally well on the majority class, it may fail to adequately
capture the minority class, resulting in an artificially high overall score. Small regions,
on the other hand, can disproportionately influence the Dice Score and IoU to be highly
sensitive to minor spatial discrepancies. Consequently, it is crucial to be mindful of these
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challenges when interpreting these metrics.

Precision (Positive Predictive Value Precision or positive predictive value (PPV)),
Recall (True Positive Rate TPR), and Miss Rate (false negative rate FNR) are calcu-
lated using a confusion matrix [120] at a 0.5 threshold of the probabilistic predictions.
Precision evaluates the correct proportion of positive predictions; Recall the proportion of
true positives successfully detected by the model relative to the total number of positive
instances; and the Miss-rate measures the proportion of false negatives in the prediction.
Formally, these scores can be calculated as follows:

Precision = TP
TP + FP ,

Recall = TP
TP + FN ,

Miss − rate = FN
FN + TP

(2.4)

Where TP represents the sum of true positive pixels (correctly predicted positives),
TN the sum of true negatives pixels (incorrectly predicted negatives), FP the sum of
false positives pixels (incorrectly predicted positives), and FN the sum of false negatives
pixels (incorrectly predicted negative).

Hausdorff distance (HD) and Average surface distance (ASD) measures the
maximum and average distance between the contour points of the ground truth Yc and
the predicted label Ŷc, in 2D (respectively the surface in 3D).

4D provides valuable insights into the border dissimilarities and can help identify out-
liers or significant disparities. A lower HD and ASD value indicates a better segmentation
result. ASD provides an alternative to HD evaluation criteria, considering the distances
over the entire border rather than just the maximum distance HD. With δ corresponding
to the Euclidean distance between boundary pixels, formally the HD and ASD are defined
as:

HD
(
Yc, Ŷc

)
= max

 supa∈Yc δ
(
a, Ŷc

)
,

supb∈Ŷc
δ (Yc, b)

 .

ASD
(
Yc, Ŷc

)
=
∑

a∈Yc δ
(
a, Ŷc

)
+∑

b∈Ŷc
δ (Yc, b)

|Yc| +
∣∣∣Ŷc

∣∣∣
(2.5)
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2.6 Conclusion
This chapter presents the state-of-the-art 2D, 2.5D and 3D ultrasound deep-learning

segmentation networks, with a description of the architectures, the metrics used for eval-
uation and their contribution. We study the models for ultrasound medical applications,
particularly in areas like the segmentation of muscle tissues in diseases requiring volumet-
ric assessments. We observe the need for extensive datasets of high-quality and accurately
annotated data as a challenge in common for all the architectures. We used this knowledge
as a baseline for our research, which also needed to solve the training of networks with
small ultrasound datasets and sparse annotations for muscles segmentation.
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Part I

Building 3D ultrasound annotated
datasets

Abstract

This part aims to assist in creating reliable freehand annotated ultrasound
volumes suitable for training deep-learning segmentation methods, thereby

accelerating 2D and 3D quantitative ultrasound measurements such as the vol-
ume. To this end, we propose to rely on sparse annotations, which significantly
reduces annotation time. These annotations are done on the original 2D B-
mode images with higher resolutions, but despite their partial field of view,
we proceed to compound both 2D images and annotations into volumes later.

The next two chapters describe two approaches towards improving the
creation of such 3D training datasets. The first study revolves around the
exploration of interpolation methods aimed at generating smooth 3D labels
from sparse 2D annotations. This work involves various non-deep-learning-
based interpolation and seed propagation techniques, and it was published in
SIPAIM symposium in 2020 [69]. In our second study, we shifted our focus
to the enhancement of freehand ultrasound acquisitions, searching to reduce
the need for tracking systems and to improve the overall quality of ultrasound
volumes. This study involves evaluating a range of methods to learn to predict
the probe motion from a sequence of 2D US images.

Both studies are experimental. The results of the first study have helped
us to create an ultrasound volumetric dataset characterised by high-resolution
and precise ultrasound volumes with annotations, and we will be later in this
thesis in chapter 1.5. The results of the sensorless tracking approach were not
sufficiently conclusive to gather quantitative biomarkers, so for the rest of the
thesis, we will consider ultrasound volumes reconstructed with the help of a
tracking system.
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Clinical motivation

As the introduction mentions, quantitative volume measurements are important in
several clinical and sports applications [121]. Applications include diagnosis and moni-
toring of tendon swelling [4], fluid accumulation [8], and tumour growth [5, 6]. In kids
suffering from Duchenne muscular dystrophy [122], volume calculation provides a tool for
follow-up on the progress of treatment. In this part of the thesis, we focus on data from
subjects in sports, where the volume is known to be a biomarker for detecting improve-
ment of Achilles tendon treatment [51] because physicians rely on 3D freehand ultrasound
sequences to perform such volume measurements. This process still requires manual, te-
dious, and time-consuming annotations. In order to create an ultrasound dataset of the
lower limb with high-resolution images and accurate annotations. In this order, we per-
formed 2 different studies addressing specific challenges.

The first study employs sparse annotations on high-resolution 2D B-mode images,
which are then expertly compounded into 3D volumes. Unlike static 2D annotations, 3D
models provide a comprehensive view of the structure’s volume, offering quantitative in-
sights which could be exploited for treatment planning. However, generating 3D labels
from freehand ultrasound presents unique challenges. It’s important that annotations align
seamlessly with the ultrasound image, maintaining model smoothness and accuracy. Our
research focuses on methods that balance image adherence with interpolation smoothness.

The second study concentrates on enhancing ultrasound acquisition searching to re-
duce the need for tracking systems and to improve the overall quality of ultrasound
volumes. In fact, for large structures such as the lower limb muscles, the freehand se-
quences consist of several sweeps, which can accumulate tracking errors, preventing the
correct overlap of anatomical structures during compounding. Accurate probe tracking is
important for producing clear, consistent ultrasound images, capturing precise details of
anatomical structures, and defining borders accurately. Currently, optical tracking systems
require patients to be brought to specially equipped rooms, limiting one of ultrasound’s
key advantages—portability. Our goal is to restore this portability without compromising
image quality. In section 2, we investigate learning base approaches to improve acquisi-
tions or remove the need for it to restore portability.

Through these studies, we search to obtain high-quality, reliable ultrasound datasets,
ensuring higher resolution, accuracy, and patient comfort, thereby contributing signifi-
cantly to the advancement of medical diagnostics and treatment strategies.
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High-resolution lower limb
ultrasound dataset
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This chapter focuses on the creation of a 3D ultrasound high-resolution dataset from
B-mode images with optical tracking. The original data contains 2D sparse annotations of
three lower limb muscles: the gastrocnemius medialis (GM), the gastrocnemius lateralis
(GL), and the Soleus (SOL). This chapter aims to provide 3D smooth and consistent
muscle annotations. Different non-deep-learning techniques were used to propagate the
seeds of the sparse labels, and results were evaluated in terms of volumetric error, Dice
score, and Hausdorff distance. Among the evaluated methods, the "zero-order interpola-
tion (ZOI)" leads to the best results. Our ZOI method further relies on a 3D-3D image
registration approach for merging labels from distinct ultrasound scans of the same leg,
each with varying quality. Deeper details can be found next in this chapter.

1.1 Related work: label-transferring and seed inter-
polation

A first challenge with our dataset is the availability of only 2D sparse manual anno-
tations. Indeed, the muscle boundaries can be outlined on either high-resolution partial
B-mode images or 2D slices derived from a 3D image after compounding. However, metic-
ulously delineating all slices within a full sequential acquisition or even in a volume proves
to be excessively time-consuming and unfeasible, particularly when dealing with numerous
patients. Experts prefer to rely on label interpolation techniques to reduce the annotation
time. Numerous software solutions provide interactive or semi-automatic segmentation
tools that enable the propagation of initial annotations or seed points. However, despite
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these tools, the involvement of clinical experts remains necessary to initiate the seeds and
subsequently refine the segmentation post-automatic propagation. Software platforms like
Slicer [23], Imfusion [123] and Stradwin [124], include non-learning-based built-in func-
tionalities such as "Fill Between Slices," "Grow from seeds," and "Watershed" for label
propagation.

Propagation methods can be categorised into two groups. The first group involves
propagation exclusively over binary label masks, while the second group incorporates the
image content in conjunction with the label seeds. Among label-interpolation strategies,
the "Fill Between Slices" technique [125] from Slicer3D stands out as an iterative mor-
phological contour interpolator. This method employs morphological dilation operations
to create a gradual alteration of the binary object’s mask. Correspondingly, the "maximal
disc-guided interpolation" method [126] in Stradwin facilitates interpolation by establish-
ing a surface through sparse, non-parallel labels. Both of these methods [125,126] conduct
interpolation on the 3D volume post-reconstruction. In contrast, and following an experi-
mental comparison, our proposition consists of a simple zero-order interpolation between
two partial expert annotations carried out on 2D B-mode images, spanning across the
sweep to achieve masks with higher resolution.

In the second group, we encounter methods that incorporate the image content. Be-
yond ensuring a seamless transition between annotated slices, these methods search to
align the boundaries of the segmented region with the contours present in the image.
Included within this category are approaches such as watershed [127] and graph-cut [128].
The majority of these embedded techniques assume uniform areas of interest and well-
defined image contours. However, such assumptions do not hold true for muscle segmen-
tation within ultrasound (US) images, leading to issues like leakage. In the absence of
specialised adjustments, the standard built-in implementation necessitates a significant
number of labelled background and foreground seeds. In order to build an accurate 3D
fully annotated dataset for training a deep neural network for segmentation, we perform
a series of experiments comparing the above tools and methods, as we describe in the
following sections.

The second main challenge of our dataset comes from visualising the boundaries of
superficial and deeper muscles, which require different acquisition parameters, like fre-
quency, point of focus, or windowing, due to their anatomical differences. Superficial
muscles closer to the skin require high-resolution imaging with less penetration, as they
are less obscured by tissues above. In contrast, deeper muscles, buried beneath layers of
tissue and surrounded by bones or organs, need stronger penetration for effective imag-
ing. In practice, two sweeps with different frequencies are required, and only partial an-
notations (some muscles) are available for each acquisition. An additional challenge is,
therefore, to build a dataset of 3D volumes with full annotations (all muscles in all slices).
Few works have discussed the problem of annotations across different frequencies. Inhat-

39



High-resolution lower limb ultrasound dataset

senka et al. [129] evaluate the efficacy of annotating ultrasound acquisitions from differ-
ent parameters. Yoshizumi et al. [130] introduced a strategy involving multiple-frequency
ultrasonic imaging to enhance image resolution by combining and blending diverse im-
ages with varying frequencies. This approach leads to increased visibility of additional
structures, thereby aiding the segmentation task. While effective, this method alters the
content of the image itself. Instead, we choose the most suitable frequency for manual
segmentation of each individual muscle. To facilitate the transfer of annotations between
the two sequences, we rely on mono-modal image-based rigid registration [131]. Our pro-
posal entails utilising 3D image registration to transfer manual annotations conducted on
the most evident sequence to the other acquisition, where the muscle is less distinct yet
still present. Consequently, we can create a volume with full labels for each acquisition,
potentially enhancing the database variability.

1.2 Dataset of sparse annotations
The dataset employed in our study originates from the work of Crouzier et al. [51].

In this dataset, participants assume a prone position with their lower limb immersed in a
custom-designed water bath (Figure 1.3-a). During the recordings, two sets of US freehand
image sequences are captured with varying parameters. To cover the region from the knee
to the ankle, four to six parallel sweeps are executed, and the probe’s movement is tracked
using optically reflective markers. As the probe moves orthogonal to the image plane, B-
mode images (with dimensions 3.9 cm in width and 9.5 cm in depth ±1.2) are recorded
with a 5 mm displacement interval at a low speed. By utilizing the tracking matrices of
the probe, 3D ultrasound volumes were compounded, resulting in a voxel grid (Figure
1.3-b) of 564 × 632 × 1443 ± (49 × 38 × 207), with a pixel size of 0.276993 mm/pixel
± 0.015. Sparse annotations of each muscle were done in 2D images (Figure 1.3-c). From
the original pool of 44 participants, we select a subset of 15 participants, each with two
recordings denoted as x1 and x2. For this specific group, we ask an expert to perform full
3D muscle annotations (Figure 1.3-d), which we use to evaluate our methods.

1.3 Method
Here, we describe the retained processing pipeline to build our annotated dataset

from sparse and partial annotations. In the experiments subsection, we will show the
quantitative evaluations that guide our choice. An overview of the method is presented
in Figure 1.2. The initial step involves 3D-3D monomodal image-based ultrasound rigid
registration at different frequencies (Figure 1.2-a). The second step gathers partial anno-
tations on each acquisition from specific high-resolution 2D B-mode images (Figure 1.2-b).
The third step consists of a zero-order label propagation, copying the smallest mask onto
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Figure 1.1 – 3D ultrasound dataset acquisition: a) Custom bad setup with cameras for
optical tracking b) 3D ultrasound volume reconstruction using optical tracking c)Sparse
2D muscle seeds d) Full 3D expert annotations

all the images that lack labelling situated between the two masks (Figure 1.2-c). The
fourth step applies a 7x7 Gaussian smoothing filter to the compounded interpolated US
volume, culminating in a refined muscle mask (Figure 1.2-d).

By isolating the process of annotating organs situated at distinct depths and subse-
quently transferring these annotations from the more suitable acquisition to the less, we
obtain better 3D masks. The proposed approach, consisting of several simple stages, has
the advantages of being fast to implement and highly reproducible while substantially
alleviating the load for experts. Also, as we later demonstrate, the resultant datasets are
suitable for training deep learning models.

Figure 1.2 – a)3D-3D Ultrasound registration. b) Partial annotations from different ac-
quisitions. c) zero-order label propagation d) Gaussian smoothing filtering.

Image-based Rigid Registration was employed to align the two reconstructed
ultrasound (US) volumes derived from a single participant but acquired with different
frequencies. This alignment ensures that similar structures are positioned within a unified
grid in the same spatial location. The registration procedure was executed using ImFu-
sion software with rigid registration, although alternative comparable tools can also serve
this purpose, such as ITK or Slicer3D. Upon successful registration, the muscle structures
overlap alignment, allowing for segmentation to be carried out interchangeably on either
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of the registered volumes.

The Ground truth test dataset was done with full manual expert annotations,
consisting of a slice-by-slice segmentation of the cross-sectional area (CSA). Positioned
on the "sagittal" plane, the annotator scrolls through each structure in an ascending and
descending manner, aiming to comprehend how muscles evolve and establish connections
with anatomical knowledge.

To ensure consistency across masks generated by different annotators, the following
guidelines were adhered to:

— Identify the brightest structures, such as bones (fibula and tibia) and ligaments.

— Rely on the knowledge that muscles detach from the bone around two-thirds down
the low limb.

— Begin annotations on slices with a high level of certainty, employing a 3D spherical
brush.

— Whenever feasible, maintain smooth annotations on adjacent slices.

— When encountering unclear boundaries, draw upon shape cues from adjacent anatom-
ical structures for context.

— Trace these structures up to the problematic slice to minimise ambiguities.

Annotators training with the software necessitates approximately 5 hours of adaptation,
and segmenting three muscles in ten patients takes around 25 hours.

1.4 Experiments and results of non-deep-learning seeds
propagation methods

1.4.1 Qualitative analysis

The implementation of the compared semi-automatic segmentation algorithms, namely
Fill Between Slices (FBS), Grow from seeds (GFS), and Watershed (WS), was conducted
relying on the open-source software Slicer 3D. FBS complete data between adjacent slices
of a 3D volume, creating a continuous and coherent three-dimensional representation
from sparse cross-sectional images. Unlike other methods, it requires full annotations of
the object in the slides, not just seeds. GFS, on the other hand, is a segmentation tech-
nique in image processing where initial "seeds" points are iteratively expanded based on
their neighbouring pixels’ intensity or colour, effectively segmenting an image into regions
based on these starting points. At each iteration, a propagation rule determines whether
a neighbouring pixel is to be included in the segmented region or not. In our case, the
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rule is based on an intensity difference between pixels. The propagation stops when no
more pixels can be added to the area. WS treats pixel intensities as topographical fea-
tures, segmenting the image into distinct regions by simulating how water would flow and
accumulate in the landscape. It starts from the lowest intensity pixels, simulating how
water fills basins, and creates dividing lines at places where waters from different basins
meet, thus defining boundaries or ’watershed lines’. It is applied to the gradient of the
image and requires pre-processing steps in the image, like noise reduction, especially in ul-
trasound, to mitigate common challenges like over-segmentation. The outcomes obtained
from these techniques highlight experts’ recurrent difficulties when tasked with manual
or semi-automatic annotations of ultrasound images. The inherent absence of clearly de-
fined edges and the limited contrast observed between regions of interest contribute to the
challenge of accurately delineating segmentation mask boundaries, which are difficulties
faced by both experts and the employed methods. Our "ZOI" method, on the other hand,
annotates ultrasound datasets using sparse annotations. It begins with 3D-3D rigid regis-
tration of ultrasound volumes at different frequencies to align similar structures. Partial
annotations are then extended across images using zero-order label propagation, refined
using a 7x7 Gaussian smoothing filter and finished with expert corrections.

The qualitative visualization in Fig 1.3 underscores the limitations encountered by
the GFS and WS methods, notably leakage issues. These methods struggle to establish
coherent boundaries for seed propagation, given the indistinct image contours present
in ultrasound images. Meanwhile, the FBS method achieves seamless transitions, but its
utilization relies on and necessitates parallel annotations, a requirement absent in our
particular scenario for freehand ultrasound, with freedom in the rotation. Our dataset
encompasses 44 participants and 59 volumes. Our simpler ZOI method, in contrast, ef-
fectively addresses leakage concerns. However, it tends to overly smooth the outcomes,
potentially leading to the omission of finer border details.

Figure 1.3 – Qualitative results of different interpolation methods: a) Ground truth b)
Fill between slices(FBS) c) Grow from seeds (GFS) d) Watershed (WS) e)Our method
(ZOI).

1.4.2 Quantitative evaluation

After registration, we quantitatively compounded the introduced mask-based (ZOI-
FBS) and image-based (GFS, WS) label propagation techniques. We compare the inter-
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Table 1.1 – Quantitative Results averaged over 10 participants

DICE IoU Vol error
Algo Min GL GM SOL GL GM SOL GL GM SOL
ZOI 90 0.937 0.946 0.841 0.882 0.898 0.791 2.61 4.98 4.93
FBS 96 0.909 0.924 0.919 0.835 0.859 0.851 10.00 10.70 13.03
GBS 44 0.818 0.755 0.763 0.699 0.615 0.620 24.02 10.61 15.53
WS 120 0.742 0.764 0.803 0.591 0.619 0.671 7.60 7.99 10.52

polated results to those of the fully labelled datasets in terms of three scores: the Dice,
the mean Intersection over Union (mIoU), and the volumetric error. The results are re-
ported in table 1.1. The ZOI approach performs better in cases involving smaller muscles,
specifically GL and GM. For the Soleus muscle, however, the FBS method yields better
results, followed by our approach. Across all muscles, the retained method attains a Dice
of 0.908 ± 0.04 and a mIoU of 0.877 ± 0.02.

Comparatively, our semi-automatic method demonstrates a faster execution in com-
parison to both, the full slice-by-slice segmentation and the FBS method, as evident
from Table 1.1. We therefore use this streamlined process as an initialization for the
remaining 34 acquisitions with only partial and sparse annotations. The application of
the method, followed by expert refinements, requires roughly 50 minutes per muscle. In
contrast, this time frame proves significantly more efficient when weighed against the du-
ration demanded by the slice-by-slice technique. Consequently, our approach significantly
reduces the time investment required.

Regarding the volumetric accuracy, our method presents a smaller error of 4.17% on
average across all the evaluated semi-automatic segmentation methodologies applied to 3D
ultrasound volumes. Particularly concerning the deeper soleus muscle, inaccuracies along
the segmentation borders exert only a minor influence on the estimated volume. Despite
instances of leakage and inadequate muscle delimitation in some methods, the volumetric
error remains relatively low due to substantial overlap with the ground truth. However,
for reference, inter-expert variability is between 5% and 10% of volumetric error [4]. In
this context, it is prudent to consider additional assessments to evaluate the obtained
labels’ smoothness.

1.5 Conclusion and perspectives
This chapter provided a simple, cost-effective solution, primarily relying on open-

source software, for producing high-quality, fully annotated ultrasound 3D datasets. This
proposed approach significantly reduces the amount of manual intervention while yielding
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reasonably accurate outcomes for segmentation and volume computation. The resultant
dataset will help us in future chapters in the development of automated machine learning-
based segmentation techniques.
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A second important aspect in building 3D freehand ultrasound datasets is the fusion
of multiple 2D B-mode images into a geometrically unified volume. As introduced in
section 1.3.5, this process, known as compounding, relies on the 6 DOFs tracking the
probe during a sequential acquisition. Although reliable tracking systems exist today,
they can be expensive and more importantly, they reduce the portability of ultrasound
imaging. In this chapter, we explore the possibility of reconstructing 3D US volumes from
a sequence of images alone, without the need of tracking. This type of acquisition is known
as sensorless ultrasound. It offers several advantages. First, enhances cost-efficiency and
accessibility by eliminating the need for additional equipment. Secondly, the absence of
extra hardware preserves ultrasound portability and ease of use, making it suitable for
point-of-care situations, including emergency rooms and remote locations. Finally, the
ability to create 3D US images at a reduced cost, improving the probe’s original field of
view, could also improve guidance for diagnosis interventional procedures.

Before benefiting from these advantages, it is however crucial to ensure the accuracy
and reliability of the compounded volumes. Indeed, the absence of sensors can be expected
to impact the precision and quality of 3D image reconstruction. The main objective of our
work in this direction was to evaluate the possibility of using the Sensorless Freehand 3D
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ultrasound based on deep-learning approaches to i) Compound large volumes without the
need for tracking systems to improve portability, ii) Correct potential tracking errors for
predicting a more accurate tracking for the sweeps, to obtain better 3D ultrasound volumes
of the low limb. As we will see in the experimental section, our different propositions
reached a performance close to the state of the art but were not accurate enough to build
reliable datasets for quantitative volume segmentation and quantification.

2.1 Related works on sensorless freehand ultrasound
reconstruction

There are four main types of approaches for reconstructing volumetric data from
untracked sweeps. Non deep-learning methods [132–135], Deep-learning based methods
relying on image pair inputs [14,136–140] against those using temporal smoothing losses or
recurrent architectures [141–143], differential rendering methods [144] and deep-learning
methods using low-demand tracking data from an inertial measurement unit [15,145–147].
Next, we describe each type in more detail, citing relevant prior work but without being
exhaustive.

Among the non-deep learning methods, we find speckle tracking methods and
methods using computer vision algorithms. Computer vision methods rely on camera
information. Sun et al. [132] attached a small camera over the probe to perform patient-
related localisation by extracting and matching feature points from the observed skin. The
main advantage of this method is its robustness to rigid patient motion, but it needs cor-
rect camera calibration. Busam et al. [133] proposed using a camera facing the room rather
than the patient, which allows rotations to be better calculated using orb-slam [148]. Such
SLAM methods predict the camera position by reconstructing the room scene. In 2021,
Cai et al. [134] introduced a hemispherical rigid body with passive non-coplanar markers,
addressing self-occlusion issues in traditional designs. This increased the rotational range,
giving sonographers more flexibility. Figure 2.1 presents an overview of the low-cost sensor
and markers associated with the above-described computer vision approaches.

On the other hand, speckle correlation methods are imaging techniques measuring defor-
mations by analysing the change in scattering patterns of image patches. Gee et al. [135]
presented one of the first probe-position prediction methods using speckle correlation.
Proposed in 2006, the method predicts in-plane motion thanks to 2D image registration
algorithms. The more complex out-of-plane estimation relies on modelling an elevational
decorrelation curve. Such curves describe how the correlation of corresponding patches in
two images decreases as their separation grows. The curves computed during a calibration
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Figure 2.1 – SLAM-based probe position prediction set-ups: 1) Sun et al. [132] setup with
the camera pointing to the patient (a), the 3D images placed in a 3D space (b) and the
reconstruction of an artery in yellow (c), 2) Busman et al. [133] setup with a robot holding
the ultrasound probe and the camera pointing to the room 3)Cai et al. [134] method with
the sensor attached to non-coplanar markers (b) compared with co-planar markers (a).

stage are later used as lookup tables, where for a given correlation value, one can obtain
the corresponding elevational translation. The method in [135] further considers an em-
pirical adaptation scheme to adjust the curves to different tissue types, as it was shown
that elevational correlation curves are tissue-dependent (see Figure 2.2). In practice, the
calibration elevational curve is obtained by calculating the Pearson correlation coefficient
(ρ) between a pair corresponding patches P1 and P2 from two images from different values
d. Given at least three con-colinear patches with their correlation, it is possible to estimate
the 3 DOF out-of-plane motion, including the translation in the elevational direction or
tilt around the lateral axis and yaw around the axial axis. Despite the adaptation to real
tissues proposed in [135], speckle correlation methods rely on the detection of patches
with fully developed speckles and assume elevational motion is the only source of decor-
relation. Leading to biased distance estimates [13,126,135,149].

Deep learning methods analyse image sequences to predict the movements of ob-
jects within them or to estimate the probe position between frames only from the image
content. Such image-based methods have been developed since 2017. Prevost et al.. [14]
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Figure 2.2 – Speckle correlation curves: a)Correlation curve for roll motion obtained for a
patch location evaluating the correlation ρ, b)Correlation curves for a calibration phan-
tom and real tissue phantom from a beef. As it can be seen, the resultant elevational
decorrelation curves are tissue-dependent. Images taken from Gee et al. [135].

proposed the first image-based sensorless 3D freehand ultrasound method relying on a
convolutional deep neural network. The method receives as input a pair of neighbouring
frames plus the optical flow and predicts as output the relative translation and rotation
using the Euler representation in 6 values (see Figure 2.3-a). Similarly, Miura et al. [139]
(see Figure 2.3-b) and Xie et al. [136] (see Figure 2.3-c) add a second branch to process
as additional input the optical flow between images. Features from the two branches are
later fused through concatenation [139] or attention blocks [136]. The predicted output is
again the 6 DOF Euler transformation relating to the input images.

However, more complex strategies rather than fusing image and optical flow features are
needed to predict linear sweeps accurately. To improve probe predictions under more com-
plex and diverse motions, several approaches have been proposed, which focus on changing
the architectures or the loss function. Guo et al. [137] emphasise the benefits of utilising
sub-sequences of 2D frames during sweeps rather than just a pair of images. Their pro-
posed architecture integrates a speckle attention module, trained with a correlation loss
that forces the predicted motion to be similar along different regions in the sweep. For this
loss to be effective, the approach assumes linear sweeps where physicians do not speed
or tilt suddenly the ultrasound probe. In a follow-up approach, Guo et al. [138] include
a contrastive margin ranking loss for harder types of sweeps to enhance the feature sim-
ilarity between US clips with similar motion trajectories, making trajectory predictions
more sensitive to sudden changes in the probe’s speed and orientation. An improvement
of Miura et al. [140] method estimates probe motion from two US images by bifurcating
the prediction into in-plane motion and out-of-plane motion estimation sections using a
dual loss function. However, such methods based on feature analysis in adjacent frames
suffer from the integration of the error for longer sweeps.
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To reduce the error in longer sweeps, other works studied the use of memory ar-
chitecture modules in the networks tomake use of the temporal information, provided
by continuing images in sweeps. In this direction, Miura et al. [141] and Li et al. [142]
advocated for integrating recurrent neural networks (RNNs). Ning et al. [143] used a
hybrid transformer memory encoder. Luo et al. [144], include convolution long-shot-term-
memory-modules (CLSTM) and shape priors (see Figure 2.3-d). Memory-based methods
potentially extract temporal correlation in sequences but suffer from a high-computational
demand and easily overfit in the trajectory when datasets are not big enough.

While understanding redundancy and computing the optical flow between frames im-
proves the prediction of in-plane motion, out-of-plane motion remains challenging. An
alternative is the use of additional sensor information. Deep learning methods with
low cost sensors, such as Inertial Magnetic Unit (IMU), have proved to significantly
improve the tracking prediction accuracy. Prevost et al.. [145], Luo et al.. [147] and
Mikaeili et al.. [146] combined images with IMU sensor data, addressing elevational dis-
placements and large cumulative drifts. Subsequently, Luo et al.. improve the method
in [15] by adding data from multiple IMUs to enhance volume reconstruction. Their
OSCNet method focuses ondiminishing inconsistencies between reconstructions from in-
dividual IMUs and ensuring consistency across the scanning sequence.

In terms of the architectures presented in Figure 2.3, the architecture (a) from Guo et
al. [137] is a feed forward network with parallel residual blocks to account for speckle
patterns at different scales. Architecture (b) from Miura et al. [139] utilises a ResNet34
for static feature extraction and an encoder for capturing motion, focusing on analysing
dynamic content. Architecture (c) from Xie et al. [136] emphasises on feature fusion from
two branches through channel and spatial attention, using a wrapping layer and a pyra-
midal structure for multi-scale processing. Lastly, architecture (d) from Ning et al. [143]
joins a CNN backbone with a transformer encoder, indicating an approach designed to
handle long-range dependencies and complex patterns within sequences, which could be
essential for detailed temporal analysis.

Despite the advances introduced by the above-cited approaches to solve sensorless or
low-cost tracking problems, there is still no optimal solution for a dataset with multi-
ple overlapping sweeps. In addition, most of the methods were evaluated on synthetic
datasets and lacked real validation on real acquisitions. We present next the methods and
adaptations explored in this thesis to address the sensorless tracking problem, introduced
in chapter 2. We also generate synthetic motions from our real reconstructed volumes for
a controlled validation (see section 2.5).
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a) b)

c) d)

Figure 2.3 – Freehand ultrasound reconstruction methods based on deep-learning:
a)method relying on image pairs only, from Guo et al. [137], b-d)methods considering two
branches one for processing 2D US image pairs and a second one considering optical flow.
The information of the two branches is fussioned by simple concatenation in the work of
Miura et al. [139](b), while it relies on attention blocks in the case of Xie et al. [136](c)
or Ning et al. [143](d). The later also considers additional position information from an
IMU unit.

2.2 Methodology

Previous architectures focus on sweep-tracking prediction for linear movements. Guo et
al. [137] and Luo et al. [144] highlight the difficulty of predicting more complex motion
patterns like loops or sweeps with speed changes. Our dataset contains overlapped sweeps
at different speeds. In order to understand how previous methods could improve the track-
ing of our dataset, we reduced the problem to sweeps and created a control dataset with
different types of movements similar to the ones used in previous works, as we describe
in section 2.2.1. We present in detail the different studied deep-learning approaches in
section 2.2.2.

2.2.1 Dataset generation

The 3D sweep dataset contains 2D ultrasound (US) image sequences with 6DOFs
tracking for the analysis of large structures.

The dataset was acquired during the study led by Crouzier et al. [51], which scanned
the low limb of 44 individuals as described in chapter 1.3.3 section 1.1. The scanning pro-
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Figure 2.4 – Real sweeps from the low limb dataset: a)images from a single sweep with
the hole probe tracking trajectories of the 5 sweeps in green, b) images from 5 different
overlapping sweeps.

cess involved four to six sweeps from the knee to the ankle, as illustrated in Figure-2.4-b,
where each sweep consisted of a recording of ultrasound images while tracking the probe
optically 1, as shown in Figure 2.4-a, where the tracking is presented in green.

Single sweeps were extracted, sampling them from multiple sweeps per participant
for a total of 230 sweeps. After splitting the dataset into individual sweeps, we proceed
to calculate the relative transforms between adjacent frames(pi−1Tpi

) with a R9 rotation
representation, from the recorded absolute transforms (OTR), defining the position of the
probe(O) with respect to the receiver tracker(R) (see section 1.3.3). For N images, we have
N-1 relative translations. We proceed then to rewrite each 4x4 matrix in 6 values: 3 trans-
lations (tx, ty, tz), and 3 rotations in Euler angle representation (R3 = {∢x,∢y,∢z}). The
dataset’s mean and standard deviation per degree of freedom are presented in Table 2.1.
We can observe smaller variability in yaw (∢z) in comparison with ∢y and ∢x, similar in
ty in comparison with tx and tz.

tx [cm] ty [cm] tz [cm] ∢z [°] ∢y [°] ∢x [°]
Mean -0.68 -0.108 -0.853 -0.108 -0.853 -0.00935
Std 0.466 0.360 0.557 0.360 0.557 0.0172

Table 2.1 – Statistics of the real single sweep dataset: Mean and standard deviation of
the 6 DOFs representation of the relative transforms.

Simulated sweeps from real data are created from a controlled sampling of the 3D
reconstructed US volumes, following the compounding method described in chapter I in
section 1.3.5. This dataset was designed to precisely gauge the efficacy of methodologies

1. Tracking of the ultrasound probe was performed with 6 cameras, using the Optitrack system-Natural
point.
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predicting the spatial positioning of the probe as it provides access to precise and noiseless
tracking data. Drawing upon the motion paradigms introduced by Luo et al.. [144], we
curated four distinct types of sweeps: linear, fast and slow, sector, and loop, as depicted
in Figure 2.5.

Figure 2.5 – Simulated sweeps dataset: a)Linear Trajectory, b)Slow and Fast Trajectory,
c)Sector Trajectory, d) Loop Trajectory.

To define the transformation matrix, we place the tracked position on the centre of
the image, with the X-axis pointing to the right, the Y-axis to the bottom, and the Z-axis
out of the plane. For selecting the "speed" of change per axis, or better called the amount
of change per DOF in centimetres, we sample from a Gaussian distribution centred at 0
(µ = 0) and distributed in values around ±1cm (σ = 1cm). A linear sweep refers to a
constant speed probe motion in 1 DOF: the out-of-plane motion axis (the Z-axis). Fast
and slow refers to a changing speed probe motion in 1 DOF: the out-of-plane motion axis
(the Z-axis). Sector refers to a speed variant probe movement in 2 DOFs: the in-plane
motion axis (the X-axis) and the Z-axis. Loop refers to a constant speed probe motion
in 4 DOFs: 3 translation directions and a rotation around the X-axis. Once the probe
trajectory has been defined, an image sequence is "resampled" from the volume at the
selected locations and orientations.

2.2.2 Problem statement

Assume a sequential freehand acquisition P with several k overlapping sweeps P =
{S1, ..., Sk}. We further assume that the frames belonging to individual sweeps have been
isolated and subdivided into smaller batches. Hereafter, we consider a dataset of N tracked
batches Bi and their corresponding 3D tracking Ti. Let the dataset be {Bi, Ti}N

i=1, where
Bi is a 3D tensor containing the images composing a sweeps batch over time, and Ti the
corresponding sequence of 6D transformation describing the position of a sweep frame at a
given time t. The problem we address is how to train a DNN to predict the transformations
T̂new for a new unseen sweep Bnew.
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T̂new = DNN(Bnew, θ) (2.1)

To predict the position of the ultrasound probe from an US image sequence, we consider
as input to a deep neural network a sub-set of n continuous B-mode images of a sweep,
I = {i1, . . . , in}. We let the network predict n − 1 vectors m =. Where m = [r, t]T with
t = [tx, ty, tz]T and r = [∢x,∢y,∢z]T in Euler angle representation(refer to section 2.13).

2.2.3 Deep Learning sensorless tracking methods

Figure 2.6 – DCL-Net architecture with modifications points: 1. Place for the CLSTM or
the DF modules, 2. Angle representations.

Since this work was explored early in the thesis. We relied on one of the few avail-
able models at that time, the DCL-Net [137] architecture introduced by Guo et al.. We
made five main modifications to the DCL-Net architecture in order to evaluate different
hypotheses to improve predictions:

— We enforce rigid motion with an intermediate representation that reduces dimen-
sionality in a smooth manner.

— We add a memory module like those within a CLSTM to learn temporal information.

— We use data augmentation techniques to increase the variability of the dataset.

— We split the learning of translation and rotations into 2 different architectures.

— We change the angle representation to other representations that are potentially
easier to learn by the network.

Rigid motion enforcement: DCL-Net performs a large dimensionality reduction
when passing from the pooling layer of dimension 1 × 1286 to the 6 output values repre-
senting a rigid transform between images, see Figure 2.6. We, instead, propose a smoother
dimensionality reduction, mapping the poling layer first to a 7 × 7 × 3 space and then
continuing to the 6 values representation. We hypothesise, that we can force this interme-
diate space to represent the 3 channels of a rigid displacement field. A displacement field

54



Sensorless freehand ultrasound

between a pair of images is a map that describes how each point in one image has moved
or shifted to match the corresponding point in the other image, facilitating analysis of
changes or motion between them. We expect the conversion from displacement field to
6 DOFs will be more easily learned by the architecture. As we assume rigid transforms
between images, such intermediate space should have an additional rigid loss.

To address this regression problem, we evaluate loss functions for a subset of images
at two points in the architecture: at the intermediate layer representing the displacement
field, being of size 7×7×3, (Figure 2.6-position 1) and at the final output layer (Figure 2.6-
position 2), being of size 1 × 6, with 6 transforms values per relative transform.

At position 2, we used two key loss functions the mean squared error (Lmse) and
the correlation loss (Lcorr). Lmse calculates the average squared difference between es-
timated and actual values, effectively highlighting larger errors and making it suitable for
precise predictions in high-dimensional outputs like a 6-value position vector. Conversely,
Lcorr assesses how well-predicted values match the patterns of actual values, crucial
for maintaining realistic relationships among components, such as orientation angles. We
additionally propose two more losses calculated in the displacement field intermediate
representation (DF ): the mean square error of the DF (Lmse−DF ) and a rigid motion loss
(Lrigid). We rely on the mean square error of the displacement field (mseDF ) to penalise
the predictions concerning the ground truth displacement field. Second, we propose to
penalise the displacement of pixels that behave too differently from the others. Here, we
exploit the fact that a rigid transform preserves the shape and size of an object, or in other
words, the relative distances between points on the object remain unchanged. Expressed
in an equation as:

Loss = ((1 − α) × Lmse) + α × Lcorr + β × Lmse−DF + γ × Lrigid (2.2)

Learning temporal information: Inspired by Tan et al. [150], we add a 5-layer
CLSTM after the pooling layer and before the flattening layer to learn temporal informa-
tion. When evaluating, we provide batches with overlapping images for a sliding window
inference or without repeating images.

Data augmentation techniques were proposed to increase the variability of the
dataset and create architectures independent of the speed of acquisition. Inspired by
Housden et al.. [149], we first add a sub-sampling interpolation strategy, skipping frames,
in order to improve the learning of the out-of-plane motion tz. Second, we provide the
sweeps in the backward and forward order.

Rotational representation Zhou et al. [151] showed that alternative angle represen-
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tations to Euler angles are easier to predict by a position network due to the representation
continuity. In the chapter "Tracking Fundamentals: Representations" 2.13, we can find the
equations for calculating the different types of representations for the rotation matrices.
For our experiments, we proceed to train the DCL-Net architecture on predicting the R4

representation (Quaternion or 4 Values), the R6 representation with 6 Values, and the
R9 with the full complete rotation matrices (9 Values).

2.2.4 Metrics

To calculate the error between the ground truth Cti and the estimated positions C t̂i,
for i = 1, ..., n positions, we compare the predicted translations and rotations C t̂i =
[t̂x, t̂y, t̂z,∢x̂,∢ŷ,∢ẑ]T with respect to the ground truth Cti = [tx, ty, tz,∢x,∢y,∢z]T .

The drift [137, 144, 145, 152] is the most common metric for the accuracy of full
sweep predictions. It calculates the maximum linear integrated error over the sequence.
It is defined as the distance between the real absolute position (Ctn) and the estimated
absolute position (C t̂n)of the central point of the final image in in the sweep, defined with
the equation 2.3. Where C denotes the global coordinate system. Formally, the drift is
computed as follows:

Drift =
∣∣∣∣∣∣
√

(tx
2 − t̂x

2) + (ty
2 − t̂y

2) + (tz
2 − t̂z

2)√
tx

2 + ty
2 + tz

2

∣∣∣∣∣∣ (2.3)

Luo et al.. [144] introduced additional metrics related to the length of the sweep: The
final drift rate (FDR), the average drift rate (ADR), the maximum drift (MD), the
sum of drift (SD) and the bidirectional Hausdorff distance (HD). Similar to them, we
calculate these metrics in our experiments, section 2.3

The geodesic error θ [144] is a measure of the difference between two rotations
represented by unit quaternions. It specifically captures the shortest path on the unit
quaternion sphere, corresponding to the actual rotational difference.

Given two unit quaternions, Ri and R̂i, which represent rotations in the same coor-
dinate frame, the quaternion r, defined as the product RiR̂∗

i (where R̂∗
i is the conjugate

of R̂i), captures the rotation from R̂i to Ri. The angle of this difference rotation can
be extracted from r, since r has components

(
cos

(
θ
2

)
, u sin

(
θ
2

))
, where θ is the angle

of rotation and u is the axis of rotation in three-dimensional space. The first component
of r, which corresponds to cos

(
θ
2

)
, is given by the dot product of Ri and R̂i, namely

Ri1R̂i1 + Ri2R̂i2 + Ri3R̂i3 + Ri4R̂i4. The geodesic error, θ, can be calculated using the
inverse cosine function:
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θ = 2 arccos
(∣∣∣⟨Ri, R̂i⟩

∣∣∣) (2.4)

where ⟨Ri, R̂i⟩ denotes the dot product | ∗ | of Ri and R̂i, and the absolute value ensures
the principal value of the arccos function is taken, thus yielding the smallest rotation
angle between the two quaternions.

In a similar way as the drift was calculated relative to the number of images in the
sweep, we propose to calculate the integrated angular error over a sweep so we additionally
evaluate the average geodesic rate (AGR) as the mean of the cumulative angle error over
all frames divided by the expected angle. The Maximum Geodesic rate error (MGR) is
the maximum rotation angle divided by the relative rotation. Finally, the sum of geodesic
errors (SG) is the sum of the accumulated angle across all frames. During our experiments,
we will evaluate drift metrics and rotation metrics per sweep in the test dataset: ADR,
MD, SD, HD, AGR, MGR, SG.

2.3 Experiments

Next, we describe the experimental setup and several experiments performed to anal-
yse and evaluate the proposed modifications presented in section 2.3.3. While some of the
experiments will present quantitative scores, other experiments will be discussed in the
light of exemplary qualitative results.

2.3.1 Experimental setup

For all the experiments, we split our datasets patient-wise, with 29 participants for
training, 5 for validation, and 10 for testing. In terms of sweeps, this split corresponds to
[116,20,40] and [147, 27, 56] sweeps for the simulated dataset and the real sweeps dataset,
respectively. We train the evaluated architectures from scratch and apply min-max his-
togram normalisation to the images before feeding them to a network. We used Adam
optimizer with a learning rate of 0.001 and a StepLR scheduler, with a learning rate decay
frequency set at intervals of 10 epochs, coupled with a decay factor of 0.5.

2.3.2 Speckle correlation patterns

The goal of this experiment is to calculate the decorrelation curve for different types
of movement to evaluate the possibility of predict the tracking with non-deep-learning
methods. Speckle between pairs of images within a sweep under different types of probe
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motion (sweep types) can provide useful information about the motion. We proceed to
calculate the correlation curves of sweeps using Equation 2.5.

ρ (P1, P2) = covariance (P1, P2)
std (P1) ∗ std (P2)

(2.5)

If the speckle pattern of a patch is found in patches of continuous frames (P1 and P2), we
can compute the displacement and relate it to the probe motion. In the case of an in-plane
probe motion, this relationship is simple. However, what one observes for the typical linear
sweep in the out-of-plane direction is a progressive degradation of the correlation score as
the probe moves forward. Some examples of correlation curves computed on our simulated
dataset are presented in Figure 2.7. First, as expected, the speckle correlation is higher
between nearby frames and drops as the probe moves away from the reference frame.
Ideally, for the out-of-plane motion sweep, when the correlation curve of 4 patches in the
same row of an image is calculated. According to Gee et al. [22] original paper, it is only
the case for patches on the same row; if the patches are on the same column, differences are
expected. However, as presented in Figure 2.2 and Figure 2.7, the correlation of patches
affected by the same motion can also degrade differently according to the imaged tissue,
even when belonging to the same participant.

Figure 2.7 – Speckle correlation curves from our simulated dataset: Linear, fast and slow,
sector, loop movements. Different colours stand for different patches.

Even when observing the results for the linear and fast-and-slow motion, where only
out-of-plane motion is present for all four patches, we observe no clear overlap between
the curves of the four patches. In the case of sector motion, we observed partial overlap
at the beginning of the curves but not towards the end. Thereby, we argue that speckle
correlation methods could be useful for recovering the probe motion for small angle move-
ment with no translation of the top of the image. Conversely, for the loop sweeps, the
correlation curves decrease slowly as the probe follows both out-of-plane motion and in-
plane motion, which leads to oscillations and makes it difficult to decorrelate the given
patches. Tissue dependency is illustrated by the curves in Figure 2.7. We conclude that
speckle correlation is not, in general, sufficient enough to predict the probe motion of our
data.
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2.3.3 Analysis of the rigid motion enforcement proposition

Initial experiments using the DCL-Net on our real data lead to convergence issues. In
order to understand if the problem of convergence came from tracking noise, we revert
to the simulated dataset. Different values of α, β, and γ, controlling the influence of loss
components in Equation 2.2 were evaluated to search for the best configuration enforcing
the displacement field to be rigid. Just the best three configurations for DCL-Net+DF
are presented in Table 2.2, and errors are calculated per type of sweep.

Experiment Type MSE [mm] ↓ MSE[◦] ↓ Drift[mm] Geodesic[◦]
t̂x t̂y t̂z ∢x ∢y ∢z MD MG

DCL-Net [137] Sector 0,023 0,01 0,043 0,173 0,008 0,007 2,229 0,105
α = 0.3, β = 0, γ = 0 lineal 0,051 0,015 0,286 0,122 0,0118 0,014 11,18 0,095

Loop 5,981 0,013 0,152 0,1308 0,013 0,0113 10,87 0,109
Fast&slow 0,043 0,016 0,4409 0,1343 0,014 0,014 8,101 0,048

DCL-Net+DF Sector 0,067 0,024 0,418 0,325 0,029 0,025 16,48 0,2
α = 0, β = 0, γ = 1 Lineal 0,073 0,025 1,032 0,146 0,031 0,021 47,84 0,11

Loop 5,98 0,025 0,179 0,156 0,029 0,024 13,77 0,13
Fast&slow 0,066 0,027 1,42 0,143 0,021 0,024 31,25 0,05

DCL-Net+DF loop 0,09 0,06 0,65 0,29 0,05 0,05 25,64 0,19
α = 0.2, β = 0.1, γ = 0.0 linear 0,11 0,07 0,75 0,16 0,06 0,07 35,4 0,13

zigzag 5,98 0,06 0,17 0,15 0,06 0,06 13,27 0,13
fast and slow 0,1 0,06 1,17 0,17 0,06 0,06 24,7 0,071

DCL-Net+DF Sector 0,09 0,014 0,447 0,37 0,011 0,017 17,64 0,24
α = 0, β = 0.1, γ = 1 Lineal 0,07 0,0129 1,011 0,1 0,013 0,02 46,75 0,081

Loop 5,98 0,013 0,1884 0,12 0,013 0,017 13,91 0,1
Fast&slow 0,08 0,011 1,388 0,09 0,011 0,017 30,48 0,034

Table 2.2 – Error metrics for the DCL Net architecture on the Simulated dataset, before
and after including the Displacement Field module and loss. Lower errors per sweep type
are presented in bold.

As we observe, the original DCL-Net architecture performs best overall compared to
the modifications. The rigidity loss improves results by a few points in the ty translation
and the Geodesic error in linear, loop, and fast and slow sweeps, but DCL-net continues
to outperform in ty of the sector scan and on the other metrics including the drift for
all the types of sweep. Figure 2.8 presents the qualitative best results of our rigidity
constraint for the four types of simulated sweeps where the ground truth image planes
are represented in blue with their corresponding predictions in red. We also display the
displacement field in 3D and its 2D projection onto the ZX plane. A red circle highlights
the outliers. Despite the encouraging visual results, we conclude that the intermediate dis-
placement field representation was not effective enough to improve the sweep predictions
systematically across the dataset.

2.3.4 Addition of a CLSTM module

This experiment evaluates 2 architectures, DCL-Net [137] and CNN-Prevost et al.. [14],
using the real-sweeps dataset. With the loss presented on Equation 2.6 and with α equal
to zero for the CNN architecture.
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Figure 2.8 – Results of displacement field modification of the DCL-Net architecture on
four test sweeps of the simulated dataset: α = 0, β = 0.1, γ = 1

Loss = (1 − α) × Lmse + α × Lcorr (2.6)

.
Different values of α were evaluated for DCL-Net, but only the best two results are

presented in the second and third lines of Table 2.3. When α = 0.3, the sweeps present an
average accomulated drift error of 75 millimetres and a maximum geodesic error of 0.15
degrees.

MODEL MAE[mm] Drift[mm] Geodesic[◦]
t̂x t̂y t̂z ∢x̂ ∢ŷ ∢ẑ MD SD FDR ADR MG AG AGR

CNN [14] 0.470 0.385 0.593 0.0848 0.076 0.968 132.280 27552 0.457 18295 0.283 0.146 7.49
DCL-Net (0.5) [137] 0.440 0.329 0.472 0.0762 0.067 0.0873 71.40 15271 0.232 9404.6 0.159 0.86 3.75

DCL-Net (0.3) [137] 0.439 0.3267 0.4741 0.0763 0.067 0.0858 75.45 14604 0.2384 7753.4 0.1311 0.07459 3.18
CNN+CLSTM 0.460 0.372 0.522 0.0786 0.0682 0.08673 83.7 17092 0.243 7751.5 0.152 0.0858 3.69

CNN+CLSTM (SW) 0.465 0.356 0.537 0.0818 0.0721 0.0905 1022 20337 0.315 10503 0152 0.239 566

Table 2.3 – Error metrics for CNN architectures, containing our proposed inclusion of a
CLSTM module with and without sliding window inference (SW).

However, as we can observe in the fourth and fifth lines of Table 2.3, the addition of
a CLSTM module did not significantly improve any of the metrics, probably because the
memory module should be added earlier in the architecture where the dimension reduction
is not that strong. The way of performing the inference, providing images in overlapped
instead of non-overlapped batches (i.e. with a sliding window approach (SW)), does not
have impact either.

When comparing the Table 2.3 with the graphs of the qualitative relative trans-
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Figure 2.9 – Qualitative predictions of DCL-Net method in the real lower limb dataset.
Ground truth is in blue, and predictions are in red/orange.

forms for the methods DCL-Net (Figure 2.9) and DCL-Net+CLSTM with sliding window
(SW) (Figure 2.10), we observe that the proposed modification better reflects the oscil-
lations instead of predicting the average displacement as the DCL-Net, which converges
to tx = −0.68mm and ∢x = −0.009◦, the mean values per axis across the dataset are
presented in Table 2.1.

The horizontal axis in the graphs represents the number of images in the sweep, while
the vertical axis represents the displacement between images in mm or degrees, respec-
tively. The 3D plot presents a weak overlapping of the predictions over the ground truth
image positions (Red over blue). The qualitative results without the slicing window were
omitted as they were very close to those in Figure 2.10. Although the relative predictions
and the 3D overlap of the sequence are not too far off, the final accumulated error for
both the DCL-Net and our variant with a CLSTM module is large, around 50mm in
the tx and 7◦ in ∢x. Both errors are still too important to use in position prediction for
reconstructing a 3D volume and for clinical use.

2.3.5 Data augmentation techniques

In order to add more variability to the dataset and prevent the network from converging
to the mean of the DOFs, we implemented some data augmentation techniques explained
in section 2.2.3. Figure 2.11 shows that after augmentation, the final absolute angular
error ∢y seems smaller (3◦), but it is because it converges to 0, ignoring the rotation
completely, which is not close to reality. However, the network improves the prediction
of the translations by better following the ground truth relative motion, ty, especially in
the first frames (Red circle). This result encourages us to think that learning out-of-plane
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Figure 2.10 – Qualitative predictions of DCL-Net+CLSTM with sliding window in the
real lower limb dataset. Ground truth is in blue, and predictions are in red/orange.

translation could be feasible and, in any case, easier than learning rotations.

Figure 2.11 – Qualitative predictions of DCL-Net method with data augmentation.
Ground truth is in blue, and predictions are in red/orange.

2.3.6 2 DCL-Net architectures results

Towards improving the rotation predictions, we independently train two DCL-Net
architectures: One for predicting the rotations and one for predicting the translations.
Comparing independent learning in Figure 2.12 with joint learning in Figure 2.11 sug-
gests separate learning of the translation and rotation hinders the translation predictions,
which has a larger influence on the drift error. However, for rotations, there is no major
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improvement nor degradation with this modification. Similar behavior was observed for
other test sweeps.

Figure 2.12 – 2 DCL-Net: Training independently rotations from translations

2.3.7 Angle representation results

Figure 2.13 – Rotation representation results of the DCL-Net on a test sweep when build-
ing the rotation matrix from 4,6,9 predicted values. The 3D sweep is plotted at the top
and the relative and absolute displacement of the tz axis and the ∢z angle is presented
at the bottom.

Figure 2.13 illustrates how the network struggles to learn R4-Quaternion representa-
tions and R9-complete rotation matrices. Only the R6 representation provides similar,
but not better results than the original R3-Euler representation.
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2.4 Discussion
Our primary goal was to reduce the tracking requirements for building volumes suitable

for the segmentation of ultrasound images. To analyze the feasibility of a sensorless ap-
proach, we simplified our imaging approach from five overlapping sweeps to single sweeps,
reducing volume complexity. Additionally, we compiled a control dataset featuring four
distinct movements: linear, varying speeds (fast and slow), loop, and sector. The dataset
sizes were extensive, with 314 sweeps from 44 participants for the real dataset and 176
sweeps for the simulated dataset.

In our experimental phase, we initially tested speckle correlation methods. However,
these methods proved ineffective for the types of motion characterising our sweeps. In-
tegrating a correlation loss into the DCL-Net [137] architecture, as suggested by Guo et
al.(2020), seemed to align the architecture more closely with the dataset’s average but did
not surpass its performance. We employed data augmentation techniques to render the
network’s predictions independent of the speed of acquisition, which improved transla-
tion accuracy but not rotational precision. It became evident that the prediction of both
translations and rotations needed to be learned concurrently.

A significant portion of our research concentrated on exploring different angle rep-
resentations. Beyond the traditional Euler angles (a three-value representation), we ex-
perimented with quaternions, full rotation matrix predictions, six-value predictions, and
the displacement field intermediate representation. While representations with nine and
four degrees of freedom (DOFs) overwhelmed the network, the six-value representation
did not enhance positioning accuracy beyond the original R3-Euler representation. The
displacement field intermediate representation with varied loss functions did not surpass
DCL-Net’s error metrics either. Discussions with the Prevost author of [14] made us realise
that excessive speckle filtering in our images hindered the method’s effectiveness.

Also, our data presented complexities beyond mere single sweep prediction, and the
methods we explored faced challenges even with individual sweeps. It seems that, for
the moment, the best-performing learned-based sensorless tracking methods are not yet
developed enough to handle real acquisition conditions with multiple sweeps of ultrafast
images and slowly varying anatomies. We will, therefore, continue to rely on tracking-
based compounding for the following chapters.
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Part II

Deep Neural networks for 3D
ultrasound segmentation

Abstract

This part presents the research done to automatically segment ultrasound
images with high accuracy using neural networks. We will make emphasis

on 3D ultrasound segmentation methods. Our goal is to analyze and design
a learning-based method to segment with high-accuracy 3D volumes. in par-
ticular, for our low limb dataset, our aim is to perform with high accuracy
segmentation, with similar volumetric error to the inter-operative volumetric
error of 5%. Our proposed methods exploit the advantages of memory mod-
ules, custom losses, and weakly supervised annotations. We propose 2 models
to handle the specific challenges of ultrasound datasets: First, we study the in-
fluence of negative labels to provide additional information when datasets are
partially labelled. Moreover, we consider memory modules and an additional
auxiliary classification task. Gathering these conditions, we propose the UNet-
C-S-R architecture for the segmentation of muscles in 3D ultrasound volumes.
Second, we propose the IFSS-net architecture, a network that segments with
high certainty the muscles of the lower limb in 3D ultrasounds high-quality
volumes.
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Clinical motivation and introduction

Quantifying muscle volume is crucial in monitoring neuromuscular diseases and as-
sessing sports performance [4]. This typically involves segmenting lower limb muscles

[7,8], while these measurements can be performed in Magnetic Resonance Images (MRI),
3D Ultrasound (US) offers a cost-effective and portable alternative. Nevertheless, man-
ual segmentation in both cases is time-consuming [153, 154] and depends heavily on the
operator. Additionally, 3D Ultrasound segmentation is a challenging modality for both
radiologists and neural networks. Among the challenges, we fund anatomical variability,
indistinct contrast or texture among muscles, and ultrasound-specific issues like incom-
plete boundaries or uneven intensity distribution [44]. Additional complexities arise when
propagating a sub-volume mask across the entire volume due to changes in muscle posi-
tion, shape, and appearance caused by ultrasound beam physics or probe movement [7].

Recent advancements in deep learning have significantly improved the analysis of ul-
trasound images and videos in various medical fields, including cartilage tracking segmen-
tation in knees [7], cervical muscle segmentation [19], fetal localisation [16], and lesion
classification in breast and liver [17, 18]. Nevertheless, the effectiveness of these super-
vised methods depends on the availability of extensive datasets annotated by clinical
experts. Since 2019, there has been a growing interest in learning from limited annotated
data, following, for instance, few-shot learning [155] or self-supervision [156] strategies.
Few-shot learning [157], relies on extensive training data first before addressing limited
annotated data. Self-learning methods typically use auxiliary tasks like image reconstruc-
tion [158] or context restoration [159] for learning from unlabelled data. Self-supervision
can also involve pseudo-labelling, where certain unannotated data predictions are consid-
ered as labels for further refinement. In this direction, we propose two architectures that
handle some specific challenges of ultrasound modality:

— For the low-resolution dataset, our first architecture contains an additional recon-
struction task and makes use of negative labels.

— For the high-resolution dataset, our second architecture uses label propagation meth-
ods and balances sensitivity and specificity during training.

Part II of the thesis aims to facilitate the segmentation and volume calculation of
lower limb muscles from 3D freehand ultrasound volumes, with potential applications in
other clinical areas requiring 3D ultrasound organ segmentation, as well as in other.

Chapter 1 introduces the UNet-C-S-R architecture that utilises negative labels to
handle partially labelled data. The research explores an approach to incorporate negative
information within the labels. Such additional information is anticipated to reduce false
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positives and improve overall segmentation accuracy, towards better informed clinical de-
cisions and patient outcomes in the context of ultrasound imaging of muscular structures.

Chapter 2, on the other hand, introduces the IFSS-net architecture. A network strate-
gically designed to achieve highly accurate segmentation of the muscles within the lower
limb, particularly performing when applied to 3D ultrasound volumes characterised by
high image quality and detail. This network incorporates the best of the previous studies,
handling the 3D ultrasound volume as a sequence of high-resolution images, using a loss
for true positive and true negative balance, relying on the previous segmentation masks
to ensure smoothness, and using memory modules to enforce image correlation.
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Muscle segmentation on
low-resolution US images with

negative label priors
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This chapter specifically targets binary segmentation of the lower limb’s Gastrocne-
mius Medialis (GM) muscle of the lower limb dataset in low-resolution US images.

Our proposed UNet-S-R-CLSTM automatic segmentation method for 3-D ultrasound
images aims to support Duchenne muscular dystrophy (DMD) assessment. It uses im-
age sequence patterns (3D slices) to enhance incomplete data. The network design uses
encoder-decoder structure, separable depth-wise convolutions [160], and spatio-temporal
data to improve missing annotations and boundary detection. The loss is inspired by
Petit et al. [161] that uses negative masks to constraint the area of prediction. Addi-
tionally, our network extends the information propagation across the sequence through
the integration of a Convolutional Long Short Term Memory (CLSTM) mechanism [162],
strategically positioned within the constriction point of an encoder-decoder framework.
The CLSTM adeptly captures potential muscular distortions spanning both short and
prolonged intervals, simultaneously averting the dissemination of erroneous or disorderly
data via its gated mechanism learning. In pursuit of augmented network convergence
and the prevention of excessive adaptation. Lastly, to retain the structural coherence of
boundaries, which significantly amplifies pixel-level predictions, we induce the encoding
pathway to assimilate a representation that conserves the geometric attributes of the
input sequence. This is achieved through the integration of an auxiliary reconstruction
decoder trained in an unsupervised manner. A more detailed explanation can be found in
this chapter.
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1.1 Low-resolution limb muscles dataset
As described in Section : "3D datasets used in this thesis, we use the low-resolution

compounding of the 2D ultrasound sweeps of 59 recordings from 44 volunteers. Low res-
olution is due to the compounded using the Stradwin software [22], from where only
low-resolution cross-sectional images could be extracted. Images suffer from artefacts like
intersection lines. The data for each patient consists of around 300 images of size 227×544
pixels.

Muscle annotations were done sparsely on the B-mode images, for some selected
frames, approximately every 10 slides. In each annotated 2D B-mode image, the visible
parts of the Gastronemius medialis (GM), Gastronemius lateralis (GL), and Solius (SOL)
muscles were meticulously identified. Annotations for 3D muscles were compounded from
2D labels employing surface fitting techniques. Two experts performed annotations on a
subset of volumes, ensuring 3% of volumetric error, effectively validating the accuracy of
the manual segmentation procedure.

Figure 1.1 – Low-resolution dataset description: a) B-mode image. b) manual annotation
over B-mode. c) Sparse annotations on 3D. d) 3D muscle label interpolation. e) Cross-
section ultrasound images with GM (Blue), GL(Red), and SOL(Green) annotations over-
laid.

1.2 Related work: memory modules and weakly su-
pervised training.

As a baseline, we study the work of Azad et al. [163], who in 2019 proposed a learning-
based approach suitable for segmenting retinal blood vessels, skin lesions, and lung nod-
ules. All three tasks were performed on natural and CT images. The proposes BCDU-Net
architecture, extended from the well-known UNet [48] incorporates a bi-directional Con-
volutional Long Short-Term-Memory (BI-CLSTM) for handling memory information. It
also makes use of densely connected convolutions to enhance feature propagation in the
encoding path. In other methods had integrated memory modules for segmentation, for
instance, in 2015, Stollenga et al. [164] proposed to use multi-dimensional recurrent NNs
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neural networks to segment brain structures. Focusing on arranging computations pyra-
midally to enhance GPU parallelisation. In 2016, Chen et al. [165] combined a fully convo-
lutional network (FCN) and a recurrent neural network (RNN) to exploit intra-slice and
inter-slice contexts for neural structure segmentation and fungus segmentation on natu-
ral images. In 2019, Arbelle et al. [166] proposed U-Net-CLSTM for cell segmentation in
pathology data.

All these works rely on the use of memory modules like RNNs or CLSTMs, which
enhance spatio-temporal understanding and provide discriminative features. Nevertheless,
these works are not suited for handling incomplete annotation masks. Weakly-supervised
segmentation methods aim to reduce full image annotation costs using different types of
low-cost labels, such as incomplete masks. In 2015, Dai et al. [167] explored bounding box
annotations for supervising an FCN recovering borders in a coarse-to-fine fashion. In 2016,
Kolesnikov et al. [168] proposed a deep neural network with a loss function using weak
localisation seeds expanding seeds towards the border’s objects based on class information.
In a similar direction, Li et al. [169] used region proposal networks for approximate mask
generation. However, it was not until 2016 and 2018 that Lu et al. [170] and Petit et
al. [161] proposed to use background labels to compensate for missing organ annotations.
Their idea was that background pixels belonging to other classes with incomplete masks
could provide additional information to the network, helping it to predict the structure
of interest with better accuracy.

We model the 3D segmentation problem as segmenting sub-volumes along the vol-
ume’s axial direction, which we sometimes refer to as the temporal direction. Our pro-
posed method fuses spatio-temporal feature propagation and prior weak information to
boost the network performance. The method generates a true negative mask for the back-
ground using other organ annotations. The architecture relies on a CLSTM for feature
propagation using a true positive annotated mask. More details are presented in the next
section.

1.3 UNet-S-R-CLSTM method
With the objective of aiding quantitative measurements in DMD patient follow-ups,

we tackle the challenge of segmenting muscles within sequences of 2-D images. Specifically
focusing on 3-D freehand ultrasound (US) images from healthy subjects, our aim is to
extract segmentation masks for three muscles: GM, GL, and SOL, in lower limb images.
Given the complexities of manually annotating such sequences, our approach utilises an
FCN model and training strategy that relies on incomplete 2-D annotations, allowing
only some slices to be annotated and where each slice does not necessarily encompass all
muscle masks.

To successfully train a deep learning model under these constraints, we have developed
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a training strategy capable of handling partial annotations while maximising the use of
available information. Leveraging the knowledge of the locations of other muscles, which
aids in limiting foreground predictions, our proposed approach involves a spatio-temporal
multi-task strategy encompassing two tasks: 1) segmentation and 2) image reconstruction.
The segmentation task employs a spatio-temporal U-Net featuring a CLSTM within its
bottleneck to ensure information propagation between slices. Additionally, we consider two
competing masks: a foreground mask for the muscle of interest and a background mask
containing negative evidence from other annotated muscles. The auxiliary reconstruction
task compresses and stores spatio-temporal data in a compact representation.

Encoder

Decoder 1

reconstruction task

Decoder 2

Segmentation task

4 CLSTM layers

5 down
CNN
blocks

5 up
CNN
blocks

5 up
CNN
blocks

skip connection

2D CNN

batch normalization

relu activation

2D depthwise seperable CNN

dropout with probability 0.5

max pooling

2D transpose CNN

encoder layer

1 up CNN block

1 down CNN block

ADAM Optimizer #2

ADAM Optimizer #1

reconstruction loss

soft dice loss

legend

Figure 1.2 – Schematic representation of UNet-S-R-CLSTM.

Architecture: The structure of our FCN model consists on the union of two decoders
that share an identical encoding path (as illustrated in Fig. 1.2). This encoding path ex-
tracts compact low-resolution features using convolutional blocks. The feature maps from
the final encoder layer are fed into a CLSTM module to capture the temporal correlations
between slices and effectively address the absence of complete annotations. The output of
the CLSTM module is then directed to two decoders: the first is dedicated to reconstruct-
ing the original image, while the second is focused on the segmentation task. The last
layer of the reconstruction decoder is transformed into a single channel, whereas the seg-
mentation decoder is projected into C maps, with C representing the number of classes.
Subsequently, the output feature maps of dimension C undergo a pixel-wise softmax
transformation to generate probabilities for the predicted masks. Our model comprises an
encoder featuring a configuration of 5 residual depthwise-separable convolutional blocks
interspersed with max-pooling operations. Thereby, the encoder gradually transforms the
single gray-scale channel into 16, 32, 64, 128, and 256 feature maps at each respective
layer. The bottleneck houses a CLSTM composed of 4 sequential cells, each containing
256 feature maps. The decoder structure mirrors arrangement.

Multi-task Learning: Our method jointly trains the network’s weights for ultra-
sound image reconstruction and muscle segmentation. In this way, the encoder learns
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to extract a compact representation that benefits not only the segmentation task but
also the reconstruction task. By conditioning the encoder to retain the spatio-temporal
data essential for image sequence reconstruction, it encourages a more accurate geometric
representation at the bottleneck. This refined representation subsequently contributes to
improved and smoother segmentation masks, particularly along the boundaries.
Typically, multi-task learning involves a weighted combination of two criteria. However,
finding suitable weights for different tasks can be intricate due to potential conflicts. Al-
ternatively, we adopt a multi-objective approach using as reference the work of Sener et
al. [171]. In this manner, we optimize each objective function independently through two
ADAM optimizers [96]. Given that both networks, denoted as fθ(.) and gω(.), share a
common encoder path, we alternately update the network parameters θ and ω.

Loss functions. The volumes are provided to the network as a series of 2D slices with
T frames each. Hereafter, we denote one such sequence as X = {x1, . . . , xT }.

The reconstruction loss of the network fθ(.) parameterized by θ, the weights in the
segmentation branch of the network, is the average Mean Square Error (st-MSE) between
an input sequence (X) and the corresponding output reconstructions (X̂), expressed by
equation 1.1 where xt is the t-th 2-D ultrasound slice, and fθ(xt) denotes the corresponding
output of the reconstruction branch.:

st-MSE(X, X̂, θ) =
T∑

t=1
(xt − fθ(xt)) (1.1)

We name this loss st-MSE, where st stands for spatio-temporal. The segmentation
loss of the network fω(.) parameterized by ω, the weights in the segmentation branch
of the network, is a dice modification that uses both positive and negative labels. The
conventional dice loss for segmentation can be expressed as follows :

dice(yt, gω(xt)) =
(

2∑pixels yt gω(xt)∑y2
t +∑

gω(xt)2

)
(1.2)

Our loss called the st-SDC loss (slices soft dice loss), is formally described in equation
1.3, where Yt and Ŷt correspond to the 2D ultrasound ground truth and corresponding
predicted masks for a chosen structure at time t of the input sequence X.

st-SDC(Y, Ŷ, δ) = min
δ

∑
batch

1
T

T∑
t=1

(SDC(yt, ŷt, δ)) (1.3)

The chosen mask yt is selected depending on the labels available at time t, as shown
in equation (1.4). δ are the weights for the segmentation architecture. This involves either
an annotated slice ya with its accurate positive foreground or an unannotated slice yn

with its negative prior. We define SDC as the adaptive Dice score, taking into account
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the label availability for each slice. Formally:

SDC(yt, ŷt,ω) =

1 − dice(ya
t , gδ(xt)), if ya

t is annotated

dice(yn
t , gδ(xt)) − 1, if yn

t is the negative prior
(1.4)

1.4 Experiments and results
In order to assess the advancements introduced by our novel model components in

comparison to a standard U-Net, we conducted two studies. First, a comparative study
using a fully supervised training dataset. Second, we examine the model’s capacity to
effectively learn from fewer annotations while utilising true negative insights from other
muscle masks.

1.4.1 Model Ablation Study

This comparative study uses a fully supervised training dataset focusing on soleus mus-
cle segmentation, which is recognised as one of the most challenging muscles to segment.
Initially, we evaluated the conventional U-Net model. Subsequently, we replaced the fully
convolutional operators with separable depth-wise convolutions, resulting in the U-Net-
S model. Next, we integrated a secondary decoder focused on reconstructing 2-D image
slices sequentially alongside the primary segmentation decoder, forming the U-Net-S-R
model. Finally, our comprehensive model, U-Net-S-R-CLSTM, encompassing the CLSTM
module atop the U-Net-S-R, was evaluated. Table 1.1 highlights the efficacy of employ-
ing separable depthwise convolutions within the U-Net architecture, which is particularly
interesting for datasets of moderate size as it reduces the number of weights to train.
Furthermore, our findings indicate that the inclusion of the supplementary reconstruc-
tion decoder enhances both the mean Intersection over Union (mIoU) and Dice Similarity
Coefficient (DSC) metrics. Notably, the integration of CLSTM leads to a substantial per-
formance improvement, as it capitalizes on the complete spatio-temporal structure of the
input data.

Ablation studies DSC (%) mIoU (%)
Ablation studies mean std mean std
U-Net 78 8.3 76 11.7
U-Net-S 82 7.2 79 8.9
U-Net-S-R 87 5.4 85 5.2
U-Net-S-R-CLSTM (ours) 91 5.2 89 5.0

Table 1.1 – Comparison of the baseline (U-Net) for segmenting the soleous muscle versus
our model and its different variants.

Figure 1.3 visually showcases the disparities in the predicted mask across various
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models, demonstrating that our network’s preservation of geometrical structure is notably
superior, attributed to the presence of the reconstruction decoder.

Figure 1.3 – Qualitative results of solius muscle predictions with different methods: In-
put: a) 2D US input slice at t1, b) annotated mask. Prediction: c) U-Net, d) U-Net with
separable depthwise convolution, e) U-Net with separable depthwise convolution and re-
construction decoder, f) Our proposed U-Net-S-R-CLSTM Model. g) Reconstructed slice.

1.4.2 Negative Priors’ influence

We examine the model’s capacity to effectively learn from fewer annotations while
utilising true negative insights from other muscle masks. We evaluate the GM muscle’s
performance using as metrics the DSC, the mIoU, and the HD, for a limited number of
annotated slices. The true positive masks and the true negative masks are presented in
Figure 1.4 e)-f).

a) b) c) d) f )e)

Figure 1.4 – Visualisation of negative priors: a) 2-D US image: its Manual segmentation
masks for three muscles: (b) GM, c) GL, d) SOL); e) The background of an annotated
GM muscle. f) Generated true negative background: For a slice where the GM was not
annotated, the negative prior is built using information from the available annotations,
e.g. here those of the GL and SOL muscles.

To gauge the impact of negative priors, we compare our results with a version of
the model trained with fully annotated ground truth masks for the GM muscle without
utilising prior knowledge from other muscles. The results are presented in Table 1.2. The
second column shows the dice/DSC/Dice score for a decreasing number of annotated slices
using only the available percentage of relevant muscle annotations. The third column
displays model performance with varying percentages of negative evidence. The third
column displays model performance when considering, in addition, the negative evidence
from other muscles. The fourth column measures the gain w.r.t. the fully supervised Dice
score.
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annotation percentage [%] DSC DSC mIoU HDE performance gain w.r.t DSC score
100 — 94.5 91 2.42 —

without negative prior with negative prior ratio over 100
90 91.4 90.1 88 2.85 -1.44
70 88.8 83.4 76 4.20 -6.47
50 66.2 70.8 61 4.87 +6.49
30 43.1 50.6 42 6.50 +14.82

Table 1.2 – Performance of the proposed model under different percentages of annotations
using supervised and weakly-supervised settings.

The influence of prior negative knowledge becomes apparent when the un-annotated
data is above 50%. In such cases, performance improvement gradually increases from
6.49% to 14.82%. However, with 90% and 70% of annotations available, the performance
improvement diminishes to -1.44% and -6.47%, respectively. When sufficient annotations
are accessible for a fully supervised model, negative priors can hinder generalisation per-
formance by introducing bias. Conversely, negative priors prove valuable when limited
labelled data is available, facilitating gradient flow and loss updates through negative
prior information.

1.5 Discussion & perspectives
In this work, we proposed a deep-learning approach to segment muscles in 3D freehand

low-resolution ultrasound data. Our model benefits from the spatio-temporal structure of
the data at the feature level as well as from an auxiliary reconstruction task. We also
presented a multi-objective training strategy that avoids the need to find loss weights. We
explore different means to transfer prior knowledge from complementary masks and study
the behaviour of the different components under fewer annotations. Experimental results
show that with good amounts of supervision, the spatio-temporal consistency enforced
through the CLSTM, as well as the addition of a parallel reconstruction decoder, are
effective tools to improve the segmentation results. The use of complementary negative
masks is the most useful when the amount of the annotated ground truth is relatively small
(up to 1000 images). It would be of interest to evaluate the time reduction achieved when
using the proposed method as mask initialisation. Some perspectives include training and
evaluating our model on other 3D ultrasound datasets, especially public ones.
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This chapter’s focus is on the segmentation of lower limb muscles in 3D high-resolution
ultrasound datasets. Among the contributions, we include a novel segmentation

and propagation method, a sequential pseudo-labelling strategy for weak supervision, a
bidirectional spatio-temporal model, a decremental learning strategy, and an adaptive loss
function. Deeper details can be found in the methodology section. In simple words, this
study introduces a novel deep learning method for segmenting and propagating muscle
masks in 3D US data, called IFSS-Net. The Siamese network is designed to establish
a common feature representation between ultrasound and mask sub-volumes, which is
further enhanced by a global feature-matching module. A Bidirectional Long Short-Term
Memory (Bi-CLSTM) addresses shape and structure changes across the volume. The
model weights are trained with a decremental learning strategy, reducing the reliance
on expert annotations over time. Such an approach requires a small number of expert-
annotated slices per 3D volume and leverages unannotated sub-volumes using sequential
pseudo-labelling. To handle class imbalance, a modified Tversky loss adapts weights to
penalise false positives and false negatives.

Comparative evaluations, presented in the experiments and results sections, demon-
strate the efficacy of the proposed approach. The method shows promising results for
segmenting and quantifying muscle volumes accurately, even with limited annotations.
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Validation is conducted on the segmentation, label propagation, and volume computation
of lower limb muscles using a dataset of 44 subjects and 3D ultrasound images. These
findings advance the automation of 3D ultrasound image analysis toward improving both
clinical research and medical diagnostics.

2.1 High-resolution limb muscles dataset
The creation of this high-resolution dataset is presented in Section 1.1: "Datasets used

in this thesis". To summarize, the dataset contains 59 3D ultrasound Volumes from 44
participants of size 564x632x1443 (± 49x38x207), with an average isotropic voxel spacing
of 0.276993 mm. Volumes were reshaped to size 512x512x1400 to be given to the network
in a subset of 2D slices. Volumes were reconstructed from 5 parallel overlapping sweeps,
from the knee to the ankle, using their optical tracking. Muscles 3D segmentation was
obtained using the ZOI method [69] from sparse 2D annotations performed on B-mode
images as described in Chapter I. For this work, the network was trained 3 times, one per
muscle, using only binary masks. The split was done patient-wise, with 29 participants
for training, 10 for testing, and 5 for validation. As we provide the cross-sectional images
as input to the network, the split leads to a total of 40600 images for training, 14000 for
testing, and 7000 for validation. Figure 2.1 presents an overview of the dataset.

Figure 2.1 – High-resolution ultrasound 3D low limb dataset: a) 2D ultrasound B-mode
images with labels. b) 3D ultrasound volume. c) 3D muscle-labels. d)Cross-sectional image
given to the network e) Example of binary mask of the soleus muscle.

2.2 Sequential architectures and methods for han-
dling large datasets

Typical volumetric segmentation architectures are extensions of the UNet [48] archi-
tecture to the 3D domain. Three main CNN architecture methods of interest are the 3D
UNet, the V-net [112] and the Daf3d [2] architectures. These models are characterised
by the use of 3D convolutional layers or spatial and channel-wise attention mechanisms
to adaptively fuse information from different convolutional pathways.
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In order to handle hardware memory constraints, which is a typical challenge for
volumetric data, Hesamian et al. [172] conducted an exhaustive analysis of deep learning
methodologies for medical image segmentation. Roth et al. [173] augmented the 3D-UNet’s
skip connections by replacing concatenation layers with summation layers and harnessing
multi-GPU computation for pancreas volume segmentation. Aligning with this approach,
we embrace summation layers for parameter reduction. Despite this reduction, our volumes
are still too large for common middle-scale GPUs. Therefore, we propose to process them
sequentially in sub-volumes, thus enabling efficient large-volume segmentation with a
single GPU.

To mitigate potential discontinuities originating from sequential processing, we adopt
a bidirectional spatio-temporal module (BiCLSTM) [162]. In a similar vein, Novikov et
al. [174] approached volume segmentation via sequential 2D slice analysis utilizing a 2D
UNet and two BiCLSTMs. While our framework also embraces BiCLSTMs, our em-
phasis lies in preserving the inherent 3D characteristics by applying 3D convolutions to
sub-volumes [175], ensuring local contextual coherence. The sequential treatment of sub-
volumes leverages a BiCLSTM across the depth dimension, capturing intricate textures
and broader-scale deformations. Notably, in our BiCLSTM architecture, we introduce
weight learning for the forward CLSTM, subsequently reused for the backward CLSTM,
thereby reducing unnecessary parameter proliferation. In contrast, our approach diverges
from Wang et al.’s intricate DAF3D [44] architecture for ultrasound image segmentation,
opting for a lightweight model that conceives the challenge as a synergistic optimisation
of segmentation and propagation tasks through the prism of a Siamese Network [118],
instead of concurrent loss functions.

2.3 Interactive Few Shot-Siamese Network
Figure 2.2 provides an overview of the IFSS-Net architecture. Instead of taking the en-

tire ultrasound volume as input, IFSS-Net divides each volume into sub-volumes, which
are distinct 3-dimensional tensors, where the number of images in the sub-volume de-
termines its depth. These sub-volumes are processed sequentially through the network,
wherein the output of one sub-volume aids the prediction of the subsequent one. This
recurrent mechanism is achieved by merging the new input with the predicted mask from
the previous sub-volume. To handle this dual input scenario, the IFSS-Net incorporates
two encoders, structured using convolutional layers with an identical structure and sharing
their weights.

Post-encoding, the inputs are fused into a single tensor via the feature fusion mod-
ule. This combined output is directed to a bidirectional long-short-term memory module
(BiCLSTM). This memory module leverages dependencies across images within the same
sub-volume to refine predictions. The decoder employs skip-connections to the correspond-
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Figure 2.2 – Schematic of the IFSS-Net architecture.

ing encoder layer, akin to a UNet-style architecture [48]. The predicted mask from the
decoder serves as input for predicting the subsequent sub-volume, thereby perpetuating
the sequential coherence of the predictions.

The IFSS-Net accurate performance relies on 3 main principles: Sub-volume pro-
cessing, Mask propagation, and Pseudo-labelling.

Mask propagation is a common problem in computer vision. The objective is to track
a target’s shape and position across frames by modelling its spatio-temporal coherence.
Siamese networks in Computer Vision [118,176] aid this task by projecting images into a
shared feature space, learning similarities across frames. Such networks, used in medical
imaging, have successfully tracked landmarks in ultrasound sequences and knee cartilage
in ultrasound images [7]. Our study adopts a similar joint approach of segmentation and
propagation, avoiding manual priors towards tracking and propagating either a reference
mask or, in its absence, the network predictions from previous frames. To this end, we
process our volume data as sequential sub-volumes. Let the dataset used to train the
network be defined as D = {Vp, Yp}P

p=1 where each pair Vi, Yiis a couple of 3D ultrasound
volume and its corresponding binary segmentation mask for the muscle of interest for
a single patient, in the set of P patients. VP and YP can be expressed as an ordered
sequence of T stacked 2D gray-scale US slices and their corresponding binary masks, i.e.
VP = {x1, . . . , xt, . . . xT } ∈ RT ×512×512×1 and YYP = {y1, . . . , yt, . . . , yT } for a patient P ,
with 512 being the image size and T being variable among different patients and muscles.
Next, we denote Ŷ the prediction of the network for image xi. Instead of directly feeding
sequences or images, we split each volume VP into overlapping sub-volumes V⟩ ∈ Vp as
shown in Figure 2.3 to better model the 3D nature of our data. In order to feed back
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the current prediction of the network, we also create the corresponding prediction sub-
volumes Ŷi. For a sliding window of size w and a step size of 1, this splitting procedure
reorganises our dataset into a new set of T − w + 1 overlapped sub-volumes {Vi, Yi} given
as input to our network.

Figure 2.3 – Sequential input of sub-volumes with their corresponding previous time-step
estimated masks. This way of handling the data can be seen as a 3D+time processing.

Mask propagation is a well-known task for Siamese architectures, like the PG-Net
by Wug et.al [118] in the context of object detection in videos. While PG-Net generates
sharp masks, it lacks smooth temporal transitions, which is especially important for our
sequential ultrasound data. To enhance mask consistency over time, we establish a recur-
rence relationship that connects predictions back to the input, akin to Hu et.al. [177] and
Perazzi et.al [178]. We incorporate a Bidirectional Convolutional Long-Short-Term Mem-
ory (BiCLSTM) [179] to model muscle pixels across past and future slices, ensuring tem-
poral coherence. Furthermore, we introduce Atrous Separable Convolutions (ASC) [180]
into our model to reinforce learning local deformation patterns in image space and time
within each sub-volume. While ASC captures contextual information at different scales,
we mitigate potential boundary issues by employing a series of 3D ASC in a recurrent
manner, complemented by bidirectional contextual propagation using the BiCLSTM.

Pseudo Labelling is a semi-supervised technique to address annotation challenges
with large datasets. Typically involving two stages, pseudo-labelling first trains on la-
belled data and then utilises predictions from a deep network as pseudo-labels associated
with unlabelled data to retrain the model. This approach has been employed in various
domains, including classification, segmentation, and noisy label correction [181, 182]. In
this study, our focus lies in minimising annotation costs for segmentation training, capital-
ising on pseudo-labelling to enhance our propagation model using abundant unannotated
slices. Unlike previous methods [172–174], we introduce a novel continuous and sequen-
tial pseudo-labelling approach tailored for volumetric data, exploiting spatio-temporal
smoothness between slices. This strategy initiates with an annotated 3D US sub-volume
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extracted from the full volume and sequentially propagating annotations to unlabelled
sub-volumes. To this end, the objective function is adjusted to compare current and pre-
vious time-step predictions in the absence of annotated data. Sequential pseudo-labelling
offers a consistent gradient flow during training, relying on the assumption of high sim-
ilarity among contiguous slices. In practice, we use manual annotations whenever they
are provided, and we relabel unannotated slices from predictions obtained from the last
updated state of the network. The pseudo-labelling is done sequentially by adapting the
training loss and enforcing label propagation smoothness.

Learnable Tversky Loss Common losses for image segmentation are the cross-
entropy loss [48], the Dice score [112], or a combination of the two [34]. However, these
choices are not adapted to handle a large imbalance between the background and fore-
ground classes [172] in our case. To this end, Salehi et.al [183] proposed the Tversky loss,
which achieves a trade-off between precision and recall by manually controlling the penal-
ties for False positives (FP) and False negatives (FN) with two weights α and β. The
Tversky loss is formally expressed as follows:

Tα,β(y, ŷ) = 1 − TP

TP + αFP + βFN

Here, TP denotes the count of true positives, FP signifies the count of false positives,
and FN represents the count of false negatives. For instance, a larger β value gives more
importance to false negatives, promoting larger predicted masks. Such adjustment could
enhance recall while potentially compromising precision. Ordinarily, these parameter val-
ues would be predetermined before training, and tuning would be guided by the validation
set results. However, IFSS-Net deviates from this norm by incorporating α and β as train-
able parameters within the network architecture while imposing the constraint that the
combined sum of both α and β must equate to 1. This approach enables the network
to dynamically adjust the loss function’s behaviour during training, fostering improved
convergence and adaptability.

Decremental learning strategy is a method aimed at evaluating the impact of the
dataset size for model training accuracy. This approach has been applied especially in
medical tasks where datasets are small compared with the computer vision datasets [184].
It usually operates in two phases, the first of which involves training with a dataset fully
annotated in every single frame in the volume to establish a strong initial model. The
second phase then incrementally removes less critical data from the training process,
allowing the model to maintain its performance with a reduced dataset. In our case, han-
dling the volumes as a sequence of images, we reduce the amount of frames annotated. It
reduces the model’s reliance on extensive training datasets, providing a minimum amount
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of annotated data to achieve certain accuracy. This approach not only preserves model
performance but also enhances computational efficiency. We propose a decremental weakly
supervised training strategy to smoothly transition from a weakly-supervised training to
a few-shot setting. In this decremental training approach, we progressively add volumes
to the training set, each time requiring fewer annotations from the expert. With such
gradual decay, very few shot annotations can be utilised efficiently at the end. For our
experiments, we define two main trainings.

2.4 Experiments and results

For all the different experiments, it is worth clarifying that PGnet is the name given
to the IFSS-Net architecture without the BiCLSTM module, and SegNet is the IFSS-Net
architecture without the trainable Twersky loss. Several comparisons were also made when
all labels were used under a fully supervised scheme (FS), using 100% of the annotations,
and for a decreasing percentage of available annotated labels under a weakly supervised
training strategy(WS), using 3% of the annotations.

2.4.1 State of art architectures performance

We trained the Seg-Net-FS in a fully supervised manner and compared it to V-Net,
3D U-Net, and DAF3D, also trained under the same training protocol.

Figure 2.4 – Quantitative evaluation of state-of-the-art segmentation methods: In the left,
the average score of 6 different segmentation metrics. On the right is the Hausdorff distance
distribution over each of the test participants on 4 different supervised segmentation
methods: Unet3D, V-net, DAF3D and Seg-Net-FS (ours).

Among the assessed methods, Seg-Net-FS emerges as the top performer across all
the metrics reported. In the second position, we found 3D U-Net and the DAF3D, with
the latter providing a better balance between precision and recall. However, the V-Net’s
qualitative performance is hindered by the utilisation of striding operations that result in
the loss of boundary information. Quantitative results for this comparison are reported in

82



Muscle segmentation on High-resolution large US volumes with few annotations and mask
propagation

the table embedded in Figure 2.4, where our segment performs better than other state-of-
the-art approaches across different metrics. The violin plots also display the distribution
of HDD scores among participants in the test set, offering insights into the methods’
proficiency in representing muscle shape deformations and volume-depth variations. The
HDD score distribution for both Seg-Net-FS and 3D U-Net shows a compact pattern,
centred around mean values of 5.75 mm and 6.64 mm, respectively. In contrast, DAF3D’s
HDD scores vary among patients, with scores of certain individuals falling between the
first and third quartiles, such as "P36, P40, and P42." This indicates that some slices were
accurately segmented (first quartile), while other slices within the same patients suffered
from inadequate segmentation (third quartile). On the other hand, V-Net exhibits a higher
mean HDD of 16.65 mm and reflects higher variability across patients, particularly "P36,
P38, P42, and P44."

2.4.2 Mask-propagation and few-shot inference

After studying our Seg-Net-FS under a 3D fully supervised training scheme, we move
toward propagation methods for segmentation in fully and weakly supervised schemes.

Figure 2.5 – Quantitative results for decremental learning strategy: IFSS-Net-Weakly-
supervised(WS), IFSS-Net-Full supervised(FS), SEG-NET Full supervised (FS) and PG-
NET Full supervised (FS)

In the proposed propagation method, we provide initial guidance with a first set of
sub-volume annotations to find the target muscle in a test volume. In this sense, our
method follows a few-shot influence strategy. Then, predictions are propagated progres-
sively, covering larger parts of the volume. Quantitative results are presented at left in
Figure 2.5. As we infer from our results, our recurrent loop makes the model aware of
the muscle changes over time. Our experiments show that our propagation-based method
IFSS-Net does better than Seg-Net-FS. We tested our new model in different ways, com-
paring it under weak supervision (WS) and full supervision (FS) schemes. In the WS
case, we consider only 3% of the annotations (one mask every 10 frames), while in FS, we
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consider all frames in the volume annotated. We also compared our method with another
propagation-based approach called PG-Net (IFSS-Net without the BICLSTM memory
module). Different validation and test set metrics were computed for the 3 muscles.

The violin plots on the right of Figure 2.5 present the distribution of HDD scores across
the propagation networks and compare it to the Seg-Net-FS. It is evident that transi-
tioning from volumetric segmentation (Seg-Net-FS) to segmentation with propagation
(IFSS-Net) results in a significant reduction in HDD scores. This shift leads to smoother
predictions and enhances the accuracy of volume measurements. Examining the PG-Net
results, we notice two distinct sets of quartiles. The first set is concentrated below 4 mm,
corresponding to propagated masks that closely resemble the reference masks. The second
set lies above 8 mm, corresponding to propagated masks that differ considerably from the
reference masks. Consequently, PG-Net encounters challenges in effectively propagating
the reference mask throughout the depth.

Figure 2.6 – Qualitative results of the Hausdorff surface error: (left) Qualitative results
of different IFSS-Net configurations. (right) Color-coded surface distance error for each
of the 3 muscles.

Qualitative results can be observed in Figure 2.6. On the left is an illustration of
the predictions for one test participant. The PG-net inference resembles a zero-order
interpolation, resulting in an uneven surface prediction for the volume. This outcome can
be attributed to the architecture of PG-Net, which employs an RNN module. Indeed,
RNN modules require transforming feature maps into vectors, causing a loss of spatial
structure. At first glance, there is not much difference between the fully supervised and
weakly supervised approaches. However, the weakly supervised approach uses only 3% of
the annotations. The Figure 2.6-right on the right presents the surface error map across
the GL, GM, and SOL muscles for IFSS-Net-WS. The colour-coded surface is used to
represent the distance of the prediction from the ground truth for each muscle. As before,
the SOL muscle emerges as the most challenging to segment. The highlighted regions
in red primarily stem from sub-volumes where the US image reconstruction quality is
notably poor. In the case of GM and GL muscles, the endpoints proved more difficult to
segment, although the distance error remained within 0.52 mm. This difficulty might arise
from our model struggling to accurately propagate the masks to cover the entire muscle
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extent, particularly in regions where the US sub-volume is affected by noise.

2.4.3 Ablation studies

Five different ablation studies were performed in order to evaluate the contribution of
each module and parameter configuration.

Ablation studies 1 and 2, presented in Figure 2.7, focus on the influence of the mem-
ory modules (CLSTM, BiCLSTM) and the recurrence loop. As reflected by the ASD and
IoU scores in Figure 2.7-Left, the BiCLSTM module stands out as a critical component
of our approach .Substituting the BiCLSTM module with a CLSTM initially maintains
the smoothness, but it later deteriorates along the sequence. The absence of BiCLSTM
or CLSTM modules causes inconsistent propagation and leaking of the SOL mask pre-
dictions into neighbouring muscles (GL and GM). In the second ablation study (Figure
2.7-Right), the incorporation of current, past, and future annotations is shown to help
the network learn SOL muscle variation patterns through depth. Moreover, the absence
of a recurrent loop produces a noisy and unsmooth boundary. The recurrent loop allows
the network to be updated constantly with new reference pseudo masks. Thereby, this
module provides guidance to the network while the expert intervention is minimal.

Figure 2.7 – Memory module and recurrence ablation experiments on SOL muscle: (Left)
Performance using different temporal modules. (Top) mIoU and ASD scores over depth
(slice index) to assess the propagation for each slice. (Bottom) Resulting rendered vol-
umes for one subject. (Right) Propagation performance with and without the recurrence
relation. The recurrence relation module obtains a smoother and less noisy graph and
volume prediction.

Ablation studies 3 and 4, presented in Figure 2.8, evaluate the influence of the feature
fusion module and the Tversky loss. We contrasted a simplified approach by substituting
feature fusion (FF) with basic concatenation (C) and replacing the Global Feature Match-
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Figure 2.8 – Global feature fusion and parametric Tversky ablation experiments: (Left
Propagation performance with and without global feature matching. (Right) Influence of
the loss function in handling input and output voxel imbalance. With the Dice loss, high
recall and low precision are reported, while with the parametric Tversky loss, a trade-off
between the recall and the precision is maintained.

ing (GFM) [185] with a simple cross-correlation (CC) operator. Predictions appear noisier
with a simple cross-correlation approach. The quantitative results in Figure 2.8-Left em-
phasise the significant role of the FF-GFM module in establishing a coherent feature
space for images and guiding masks. In Figure 2.8-Right, we also compare the Tversky
loss with a Dice loss. Dice tends to bias predictions towards background pixels, causing
overfitting and giving FN pixels undue importance. The Tversky loss reduces overfitting
by achieving the desired FNs-FPs balance. Learning the Tversky loss parameters is also
vital as muscle size evolves along depth, starting with a small foreground muscle amid
numerous background voxels, moving toward more balanced middle slices and going back
to imbalance at the end of the muscle.

Figure 2.9 – Decremental learning and sub-volume window size ablation experiments:
(Left) Supervision strategy (decremental vs fixed). (Right)Exploring the temporal depth
of sub-volumes, with w = 3 and w = 10.
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Ablation studies 5 and 6, presented in Figure 2.8, evaluate the influence of the decre-
mental learning strategy and window size parameters determining sub-volume depth. We
compare our approach under different amounts of weak supervision, considering a fixed
percentage of annotated images per volume or the decremental approach. In the fixed
case, we include three annotation masks every 100, 200, and 300 slices, corresponding to
a weak supervision with 3.5%, 2%, and 1% of annotations, respectively. In the decremental
scheme, we stick to the 3.5% but we apply a decremental decay across volumes. For our
dataset with 29 training volumes, and assuming the sequence length is 1400, this means
the first volume requires 233 annotated slices, the second 116, and so on, i.e. [233; 116;
58; 56; 53; 51; ...], ensuring the total amount of annotations (3,5%) is preserved. Fixed
updates with the same 3.5% supervision yield a higher 3.2 mm ASD score (blue graph).
Further reducing the annotation percentage (2% and 1%) leads to noisier pseudo labels,
causing less smooth predictions with higher ASD scores of 6.3 mm and 13.8 mm. The
table embedded in Figure 2.9-Right reports the evaluation of the size of the sub-volume
window denoted as w. With w = 10 instead of 3, the sequential pseudo-labelling method
becomes slightly noisier. This leads to more unnecessary errors and longer computation
times.

2.5 Discussion and Perspectives
The IFSS-Net is a novel approach that combines the advantages of expert involvement

and deep learning methods for segmenting sequential or volumetric data. We integrated
various strategies, such as Siamese networks with sub-volume recurrency, Bi-CLSTM, 3D
ACS, and pseudo-labelling, to effectively leverage the spatio-temporal consistency in such
data. The resulting IFSS-Net enables the propagation of a small number of reference
annotations across the entire volume or sequence, reducing the expert effort required
during training. We conducted a comprehensive evaluation of muscle segmentation and
volume estimation tasks on ultrasound volumes.

One of the directions for future research in this field is to validate the performance
of our IFSS-Net on 3D freehand ultrasound volumes from children with Duchenne Mus-
cular Dystrophy. Given that muscles are progressively replaced by fatty tissues as the
disease advances, adaptations will be necessary. Possible solutions include fine-tuning the
model on a limited set of DMD patients or training it on synthetic fatty tissue. Another
approach could involve adapting the established zero-shot learning approach from clas-
sification to segmentation tasks. Our proposed methodology holds potential not only for
segmenting muscles with volume measurements but also for other anatomies and various
medical image analysis tasks involving sequential data. Furthermore, two additional direc-
tions for exploration include testing the scalability of IFSS-Net across multiple anatomies
simultaneously and assessing its ability to generalise across multiple imaging modalities.
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Part III

Analysis of ultrasound segmentation
architectures

Abstract

In this part, I propose two strategies to analyse the quality of the segmenta-
tions obtained with different architectures on 2D and 3D ultrasound con-

sistency. We mainly focus on the quality of borders, where annotations suffer
from variability due to the intrinsic principles of the modality. The first study
evaluates the label variability of annotators in uncertain areas of the images,
while the second study analyses the performance of ultrasound segmentation
networks by differentiating between distinct and completed borders. Our goal
is to highlight and quantitatively evaluate how specificities of ultrasound influ-
ence both human annotations and machine predictions for a better-informed
interpretation of the results. Our studies make use of the Seg-Grad-Cam strat-
egy to visualise where networks focus their attention when segmenting distinct
versus completed borders, and to quantify the accuracy of such predictions.
Finally, in order to boost the awareness of label variability in the networks, we
propose to provide additional information from ultrasound confidence-maps to
segmentation architectures, with the objective of teaching the network border
uncertainty.
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Motivation

Accurate delineation of borders on ultrasound images is challenging due to their
inherent noise, attenuation, speckle, shadows, signal dropout, and low contrast be-

tween areas of interest [186]. Different from other modalities such as computed tomog-
raphy (CT) or magnetic resonance imaging (MRI), which display homogeneous tissue
distributions across similar organ structures, ultrasound relies on the differential absorp-
tion of acoustic waves and their reflective interactions at tissue interfaces characterised by
varying acoustic impedance. Therefore, the delineation of anatomical boundaries can be
particularly challenging for both physicians and networks in regions exhibiting low signal
intensity or in the presence of artefacts.

In order to understand how ultrasound segmentation deep-neural networks behave on
such a challenging task, we perform two experimental studies towards:

— Making deep-learning segmentation models aware of the specific uncertainties un-
derlying ultrasound images, which also affect experts’ annotations.

— Understanding the features networks rely on to complete borders on low cotrast
regions.

To address the labelling variability among observers in medical image segmentation,
supervised learning methods often rely on ground truth data generated by popular fusion
techniques such as majority voting [187] or STAPLE [188]. Such techniques focus on ob-
taining a single label map given a set of annotations from different experts, but do not
model annotation variability per se. Several strategies have been developed to incorporate
uncertainty directly within deep learning segmentation methods. For instance, Baumgart-
ner et al. [189] introduced a layered probabilistic model, and Jungo et al. [190] explored the
uncertainty and calibration in segmenting brain tumours with UNet-like structures [48].
Monteiro et al. [191] proposed stochastic segmentation networks and Rousseau et al. [192]
propose post-hoc network calibration methods. All these techniques involve training with
single or multiple annotations, which is expensive. A drawback of the above methods is
their need of architectural alterations and/or additional labels. Instead, in this part, we
opt for retraining well-studied segmentation architectures and evaluate the possibility of
providing a pre-computed ultrasound Confidence Map (CM), introduced by Kalamaris et
al. [193], as an additional input channel to the network. The pre-calculated CMs have
been used in ultrasound for improving reconstruction [194], registration [195], and non-
deep-learning bone segmentation [196]. To the best of our knowledge, this is the first
study using ultrasound confidence maps in the context of deep-neural neural networks for
semantic segmentation and border variability analysis.

To improve the understanding on how segmentation networks process anatom-
ical borders in ultrasound images, one can rely on methods developed for enhanced
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model interpretation [197, 198]. Initially introduced for classification in [199], Grad-Cam
highlights regions of an input image that significantly influence a model’s prediction, pro-
viding insights into why a model made a specific decision. More recently, some works
have employed Grad-Cam to evaluate, in the context of medical images, the learned in-
formation for classification [199,200] or segmentation [201,202] tasks. The above methods
have primarily centred on MRI or CT analysis, and only few have been evaluated for
ultrasound segmentation [172] but looking at the full predictions. To the best of our
knowledge, there are no qualitative Grad-Cam evaluations specific to ultrasound borders.
Nevertheless, we argue the correct understanding of how new deep-neuronal networks
perform border segmentation is crucial to enable reliable diagnoses and effective treat-
ment planning [203], for tumour localisation [204], lesion detection [205], or quantitative
volume evaluation [206–209]. Therefore, in chapter 2.4, we propose to use Seg-Grad-CAM
to analyse the network’s activation for borders, particularly differentiating between dis-
tinct/evident and completed/interpolated edges.
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Evaluation of labelling variability
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Expert annotations on ultrasound images are influenced by several factors such as the
anisotropy and the orientation-dependency arising from the physical acquisition princi-
ples behind this imaging modality, see section Scientific Background. As a consequence,
annotations are susceptible to substantial variations along the borders and to significant
discrepancies between different operators but also for the same operator repeating the
task twice. Moreover, acoustic waves interact with surface layers, giving rise to regions of
attenuation, shadowing, or indistinct boundaries. These artefacts increase the challenge
of this time-consuming task, which is nonetheless indispensable for accurate volumetric
computations in the diagnosis and follow-up of medical conditions like hyperthyroidism
[6] or Duchenne muscular dystrophy [4].

Understanding the variability of annotations is important for clinicians and engineers
designing segmentation architectures, as awareness of where challenging regions occur has
the potential of impact their performance. Non-learning-based tools exist to estimate how
much confidence can be attributed to ech pixel in an ultrasound images. They are know
as confidence maps (CMs). In this work, we evaluate the influence of Confidence maps
(CMs) [193] given as additional information to a neural networks, and relate it to label
variability. CMs are image-based simplified approximations of wave propagation through
the imaged mediums. They were first introduced by Kalamaris et al.in 2012, where they
were used to estimate an uncertainty value for each pixel in the image. The problem is
formulated as a label propagation on a graph solved with a random walker algorithm [210].
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1.1 Related work

Various approaches have been devised to tackle the inter-observer variability in the
context of medical image segmentation. Among these methodologies are fusion techniques
such as majority voting [187] or STAPLE [188]. Fusion methods focus on aggregating
multiple annotations to create a more reliable ground truth or reference segmentation
for training or evaluation purposes. Majority voting [187] relies on annotations provided
by multiple annotators for a particular image. Each pixel or voxel in the image is as-
signed a label that the majority of annotators agree upon. In contrast, STAPLE [188]
(Simultaneous Truth and Performance Level Estimation) takes into account not only the
majority agreement but also the performance level of individual annotators. As a result,
STAPLE provides probabilistic segmentation label map, containing the likelihood of each
label assignment for every pixel or voxel within the image. This probabilistic label map is
conceived considering both concordance and discordance among annotators’. A primary
drawback of the above fusion techniques is their demand for multiple annotations for a
single image, which makes them time-consuming and expensive. Additionally, Jungo et
al. [190] examine the impact of prevalent image label fusion techniques on the process
of label uncertainty estimation. Their results highlight a negative effect when associating
of fusion methods to deep-learning methods to obtain reliable estimates of segmentation
uncertainty.

In light of these challenges, different approaches have surfaced, aiming to directly
integrate segmentation uncertainty into the model’s predictive capacity through the util-
isation of annotations from either single or multiple experts. Baumgartner et al. [189]
introduced a hierarchical probabilistic model to model segmentation across varying res-
olutions. By adopting this hierarchical paradigm, they incorporate an uncertainty rep-
resentation into the segmentation process. Following a different direction, Monteiro et
al.put forward the concept of Stochastic Segmentation Networks (SSNs) [191], modelling
aleatoric uncertainty within image segmentation. The distinguishing feature of SSNs lies
in their capability to capture probability distributions with spatial coherence from which
is then possible to sample multiple credible hypotheses. In a third direction, Rousseau et
al. [192] highlight that while neural networks are often trained to optimize segmentation
accuracy, less emphasis has been placed on calibrating the confidence scores associated
with their predictions. Well-calibrated confidence scores are crucial as they provide mean-
ingful information to users about the reliability of the network’s predictions. They explore
various post-hoc calibration methods and find a correlation between loss functions and
calibration performance. However, the above strategies necessitate alterations to architec-
tures and detailed hyper-parameter optimisation, which are costly in terms of time and
computational resources.
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Other approaches exist to studying label variability without modifying the network’s
architecture. such as label smoothing [211–213], temperature scaling [214], annotator error
disentangling [215], and non-parametric calibration [216]. Most of these techniques have
been applied on MRI or CT. We align ourselves with these ideas, applying our method to
ultrasound, a modality characterised by blurred edges, low signal-to-noise ratio, speckle
noise, and other challenges.

Confidence maps (CMs) have been used until now for improving reconstruction [194],
registration [195], and non-deep-learning bone segmentation [196] in ultrasound. To the
best of our knowledge, we are the first to study ultrasound confidence maps in the context
of neural networks for semantic segmentation and analyse its influence on border variabil-
ity. We propose to incorporate the CM either as a second channel or in the loss function.
We evaluate our approach on two volumetric datasets, and under 3 architectures and
2 different loss functions. Architectures include SOA methods such as UNet [48], UNet
transformer [49] and Attention UNet [45]. We also qualitative demonstrate that variability
of CM-based model closely reflects the variability of expert annotations.

1.2 Method: Using confidence maps in neural net-
works

Our methodology consists of two main steps computing the confidence maps, and
integrating them as an additional input channel to the network, or as part of the loss
function.

Pre-calculating the "Confidence Maps" (CM).
We follow the approach presented by Karamalis et al. [193]. The method seeks to assign
uncertainty values to individual pixels within ultrasound (US) images by introducing a
simplify model for wave propagation based on random walks on a graph. When pres-
sure waves traverse tissue during an ultrasound examination, they undergo a series of
intricate interactions, including transmission, reflection, absorption, refraction, disper-
sion, and diffraction. Consequently, the fidelity of recorded wave intensities diminishes as
they propagate through the tissue medium. In the context of this model, an ultrasound
image is graphically represented as a graph wherein the uppermost pixels serve as source
nodes, and the lowermost pixels act as sink nodes. Edges connect neighbouring pixels
and edge weights reflect the transmission likelihood according to the nodes geometrical
placement and their geometrical similarity. Thereby, a graph represents the sound flow
from the source pixels at the top towards the sink nodes (as depicted in Figure 1.1-b). The
transmission is modelled as a random walk following a path extending from the upper to
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the lower region, approximately orthogonal to the direction of the beam or scanline. Yet,
slight deviations in the horizontal and diagonal directions remain possible. More specif-
ically, graph edges are defined in accordance with an 8-neighbourhood rule, establishing
connections between adjacent pixels. The weights assigned to these edges encompass di-
verse physical properties inherent to ultrasound:

— The vertical wave propagation involves an exponential attenuation described by the
Beer-Lambert law, governed by a parameter α.

— An additional penalisation factor regulated by the parameter β is introduced to
effectively capture the interplay between reflections and transmissions across tissue
boundaries, particularly when neighbouring pixels exhibit distinct intensities.

— To account for beam shape effects, a penalty mechanism is employed for horizontal
and diagonal propagation.

Figure 1.1 – From confidence maps to confidence masks. From left to right: a) US image,
b) image graph representation, c) Confidence map and label masks, d) Confidence masks
of the gastrocnemius medialis, lateralis and soleus muscles.

The computational process depends on the resolution of a linear system of equations.
Once the graph has been defined, the confidence maps seek to estimate the random
walk likelihood for all undefined pixels/nodes in the graph. These values are estimated
through the resolution of a linear system. The estimated values are then interpreted as
"confidence": values are high near the probe and progressively decrease when interfaces
are found or through the effect of attenuation. An example of estimated confidence map
values is presented in Figure 1.1-c.

Ultrasound images frequently manifest regions and islands characterised by diverse
degrees of certainty. This variability has the potential to confound the network, as it
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might erroneously interpret all pixels as uniform representations of truth. To assimilate
this information into the network’s functioning, two distinct approaches are investigated:

1. Augmenting the input to the network by adding CM as an additional channel.
Consequently, the input becomes [X|CM], where ·|· represents concatenation.

2. Combining CMs with the labels to form a "Confidence Mask" (Y · CM) (see Fig-
ure 1.1(c,d)). The CE confidence loss is then defined over the m voxels of the image
as follows

CEconf (Y, Ŷ, CM) = − 1
m

m∑
i=1

(Yi · CMi) · log
(
Ŷi

)
(1.1)

Respectively the DiceCE confidence loss is defined over the m voxels of the image
with λDice and λCE being the weights of each loss:

DiceCEconf (Y, Ŷ, CM) = λDice ∗ Dice(Y, Ŷ) + λCE ∗ CEconf (Y, Ŷ, CM) (1.2)

Guiding segmentation networks with Confidence Maps: At the core of our
approach lies the principle of incorporating pre-calculated Confidence Maps (CMs) within
the training of a segmentation deep neural network. Let X ∈ RW ×H×D denote the input
volume, while Y and Ŷ ∈ RW ×H×D×C respectively represent the labels encoded in a one-
hot manner and the network’s predictions across C classes. The initial step involves the
computation of a CM from the input image, denoted as CM : X 7→ [0, 1]W ×H×D. In our
first proposition, we advocate the utilisation of CMs as an additional input channel, such
that [X|CM], where ·|· signifies concatenation.

Our second proposition uses CMs as prior knowledge to weight the labels. To this end,
we build a "confidence mask", resulting from the product (Y ·CM), where the "·" operator
is the element-wise multiplication. The confidence mask sets the stage for formulating a
Cross-Entropy Confidence Loss over the m voxels within to the image. Formally:

CEconf (Y, Ŷ) = − 1
m

m∑
i=1

(Yi · CMi) · log
(
Ŷi

)
(1.3)

1.3 Experiments and results

1.3.1 Understanding expert and network variability

We propose to study the variations inherent to expert annotations and network predic-
tions relying on a Monte Carlo (MC) dropout approach. This process involves evaluating
100 annotation of one single expert over the same single image at different times. Then,
we activate dropout layers of our two models during inference and obtain 100 predictions
for each. Finally, we compute the pixel-wise entropy over 100 instances for each case.
Original image and entropy results are presented in Figure 1.2. The entropy of expert an-
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notations ( 1.2b) showcases anisotropy, particularly evident in challenging regions such as
the convergence of three muscles and in deeper anatomical areas. When compounding, the
entropy map of a simple UNet model (UNet-1ch-Dice) along side our model incorporat-
ing CMs as a second input channel (unet-2ch-Dice), see Figure1.2c and 1.2d, we observe
the utilisation of CMs yields results closer to the entropy of experts heightening locations
where experts face challenges. In this sense, MC visualisation of our model UNet-1ch-Dice
show a potential to raise awareness about regions associated to high expert variability.

Figure 1.2 – Labelling variability analysis: Ultrasound image with the labels of the three
lower limb muscles, b) Expert variability, c) MC dropout for a baseline UNet method. d)
MC dropout of our method with CMs as the second channel.

1.3.2 Evaluating the influence of confidence maps across multi-
ple network configurations

The following series of experiments offer a means to assess the impact of Confidence
Maps (CMs) across ten different network configurations. Employing the UNet architecture
as a baseline, CMs were either directly integrated into the network as a supplementary
channel, denoted by the designation -2ch-, or embedded within the loss function with the
structure UNet − ch − (loss)conf. Three distinct loss functions were considered: Dice,
Cross-entropy (CE), and a composite DiceCE loss. The experiments were categorised
into the following groups:

Method CM as Input Loss: Dice Loss: CE CM in Loss
unet_1ch_Dice ✓

unet_1ch_CE ✓

unet_1ch_DiceCE ✓ ✓

unet_2ch_Dice ✓ ✓

unet_2ch_CE ✓ ✓

unet_2ch_DiceCE ✓ ✓ ✓

unet_1ch_CEconf ✓ ✓

unet_1ch_DiceCEconf ✓ ✓ ✓

unet_2ch_CEconf ✓ ✓ ✓

unet_2ch_DiceCEconf ✓ ✓ ✓ ✓
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These models are then evaluated on two datasets, the thyroid 3D dataset and the
Leg-3D dataset; refer to chapter 3D datasets ( 1.1).

Figure 1.3 – Qualitative comparison of our UNet best CM configuration (unet_2ch_Dice)
and the baseline (unet_1ch_CE) in terms of performance. We show results on two
datasets (left) Thyroid, then right Low-limb. On the right is the Thyroid, and on the
left, the Lower limb. See chapter 3D datasets 1.1 for more details.

Qualitative outcomes are shown in Figure 1.3, illustrating a comparison between base-
line (unet_1ch_DiceCE) results and our best CM-based configuration (unet_2ch_Dice),
on two datasets. In the case of the thyroid, there is an observable reduction in the occur-
rence of isolated regions (as illustrated in Figure 1.3-left). Conversely, predictions exhibit
smoother transitions for the lower limb dataset (as showcased in Figure 1.3-right), sug-
gesting improved interpolation capabilities.

We quantitatively evaluate the three configuration groups on different metrics (Dice,
Intersection over union, Average surface distance, Hausdorff, miss rate, precision). Con-
sidering a trade-off between Dice score and Hausdorff score, the two most optimal con-
figurations are unet_2ch_Dice and unet_1ch_CEconf . These outcomes are detailed in
Figure 1.4, where it is marked with numbers of the most favourable tree configurations.
To ease the comparison, figure 1.4 resumes the box plots of the best configurations of each
group. To ensure the robustness of the results across different participant divisions, a 3-
fold cross-validation was executed. Our findings indicate that the inclusion of Confidence
Maps (CMs) generally reduces the standard deviation of DSC scores. Notably, while the
HD metric of CM configurations either remains similar or experiences slight increments
for the thyroid dataset, the positive impact of CMs on the muscles dataset is evident.
This observed behaviour can be attributed to the smoothness of muscle shapes.
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Figure 1.4 – Quantitative results of UNet configurations with confidence maps: First and
second columns report the thyroid and muscle metrics results, respectively. The best four
performing methods are ranked 1◦, 2◦, 3◦.
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1.3.3 Impact of confidence map hyperparameters

Confidence maps depend on two main hyperparameters, α and β, termed as the weight-
ing ratio and adaptiveness, respectively. Confidence maps resulting from multiple varia-
tions of such parameters, are illustrated in Figure 1.5.

Figure 1.5 – Qualitative results of confidence maps hyperparameters: (Left) A qualitative
view of the confidence maps with different hyperparameters α and β (resolution and
adaptiveness). (Right) A 3D view of the inference of unet_2ch_dice using the confidence
maps as the second channel, the configuration β = 100, α = 0.5 decreases the number of
islands like outliers.

The subsequent experiments study the impact of different CM hyper-parameters in the
network’s performance. Three sets of hyper-parameters were considered, each evaluating
under two schemes: one integrating the confidence map as an extra channel, and the other
embedded it within the cross-entropy loss function. Throughout all these experiments, the
foundational framework employed was the UNet architecture.

α, β Network DSC IoU Precision Miss rate ASD[mm]
100, 0.5 2ch-Dice 0,84±0,03 0,75±0,04 0,91±0,04 0,20±0,03 4,41±5,13
400, 0.2 2ch-Dice 0,84±0,03 0,75±0,05 0,88±0,06 0,14±0,03 11,87±5,31
100, 0.2 2ch-Dice 0,83±0,02 0,73±0,03 0,84±0,04 0,15±0,03 14,84±1,15
100, 0.5 1ch-CEconf 0,83±0,04 0,73±0,06 0,87±0,05 0,17±0,04 15,57±2,68
400, 0.5 1ch-CEconf 0,82±0,03 0,72±0,05 0,90±0,06 0,20±0,02 10,15±2,55
100, 0.2 1ch-CEconf 0,82±0,04 0,72±0,07 0,86±0,06 0,16±0,03 13,58±4,67

Table 1.1 – Metrics comparison of the baseline (U-Net) network for two main uses of the
confidence maps: as a second channel (2Ch) and in the loss (CEconf).

The results presented in Table 1.1 reveal that the method dependency on these pa-
rameters is relatively low. We observe that increasing adaptiveness (β) leads to a higher
likelihood of diagonal and horizontal shifts, resulting in smoother images. Additionally,
reducing resolution (α) leads to an aggregation of initial nodes at the image’s uppermost
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region, causing the appearance of narrower columns. Quantitative results also indicate
that employing a higher weighting ratio of resolution with α = 0.5 and a lower adaptive-
ness with β = 100 improves results when incorporating confidence maps as an additional
channel. This improvement can be attributed to the effective representation of layers
within the confidence maps. Conversely, when incorporating confidence maps in the loss
function, superior results are achieved with a higher weighting ratio resolution (α = 0.5)
and greater adaptiveness (β = 400). This enhancement is attributed to the fact that con-
fidence maps using these parameters assign higher values to the confidence masks, leading
to more effective penalisation of errors. For a visual representation of these findings, refer
to Figure 1.5.

1.3.4 Evaluation of CMs on different Networks comparison

We assessed three additional architectures to explore potential enhancements in net-
work architecture for the given task beyond the UNet: UNetr [49], Deep-Atlas [52] and
Attention UNet [45]. The Friedman statistical significance test was employed to evaluate
the null hypothesis that "all methods perform equally". Following this, pairwise post-hoc
cross-validation was conducted between the baseline networks and the modified networks
(2ch and DiceCEconf). Methods that reject the null hypothesis, with p < 0.05, for the
Hausdorff distance are denoted with an asterisk (∗). The results of segmentation metrics
for one of the subject of the dataset are presented in Table 1.2. We observe that the
incorporation of CM slightly improves segmentation metrics.

Network DSC ↑ precision ↑ miss rate ↓ ASD ↓

UNet 1ch Dice CE 0.84 ± 0.02 0.84 ± 0.06 0.16 ± 0.04 8.37 ± 2.19
UNet 2ch Dice∗ 0.85 ± 0.01 0.85 ± 0.01 0.16 ± 0.02 8.20 ± 1.81

UNet 1ch DiceCEconf∗ 0.81 ± 0.01 0.86 ± 0.05 0.18 ± 0.04 8.36 ± 0.78
AttUNet 1ch CE 0.57 ± 0.49 0.58 ± 0.50 0.44 ± 0.49 40.00 ± 15.01

AttUNet 2ch Dice ∗ 0.86 ± 0.00 0.85 ± 0.04 0.12 ± 0.04 7.03 ± 1.08
AttUNet 1ch DiceCEconf 0.57 ± 0.50 0.59 ± 0.51 0.44 ± 0.48 40.00 ± 14.09

DeepAtlas Dice 0.82 ± 0.02 0.84 ± 0.05 0.18 ± 0.06 11.22 ± 1.54
DeepAtlas 2ch Dice ∗ 0.84 ± 0.01 0.84 ± 0.06 0.15 ± 0.07 11.89 ± 6.00

DeepAtlas 1ch DiceCEconf ∗ 0.85 ± 0.01 0.84 ± 0.02 0.13 ± 0.02 11.74 ± 5.50
UNETR 1ch CE 0.66 ± 0.06 0.72 ± 0.12 0.37 ± 0.02 23.52 ± 8.97

UNETR 2ch Dice∗ 0.48 ± 0.12 0.77 ± 0.11 0.62 ± 0.12 23.74 ± 8.72
UNETR 1ch DiceCEconf∗ 0.56 ± 0.07 0.82 ± 0.13 0.55 ± 0.09 19.54 ± 9.65

Table 1.2 – Metrics on the muscle dataset for the baselines and the modified versions of 4
different networks: UNet3D [48], attention Unet (AttUNet) [45], DeepAtlas [52] and UNet
Transformer(UNETR) [49].

Figure 1.6 presents qualitative images from different trainings for the thyroid dataset.
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Notably, UNetr exhibits lower accuracy, potentially due to the requirement for more data.
Conversely, A-UNet achieves notably high accuracy by incorporating CM. This improve-
ment can be attributed to the attention layers effectively utilising the additional informa-
tive cues provided by the CM.

Figure 1.6 – Qualitative results of different networks with CM addition. From left to right:
Deep-atlas with and without CMs and Attention UNet with and without CMs. Evaluation
on the thyroid dataset.

1.4 Discussion & future work
In summary, this study introduced a novel strategy to enhance the label variability

awareness for deep learning ultrasound segmentation methods approximating the inherent
variability in expert annotations. We made use of pre-calculated ultrasound Confidence
Maps (CMs). The method effectively estimates uncertainties that arise due to fundamen-
tal ultrasound wave propagation principles, influencing the annotators’ decisions. The
CMs are incorporated into the network either as an extra input channel or within the loss
function, guiding the network to predict segmentation that faithfully captures expert-like
variability in borders. The variability tends to produce predictions with low entropy bor-
ders for confident regions and high entropy borders for uncertain regions, thus offering
multiple solutions for physician assessment. Notably, the CM loss method exhibits two
benefits: it does not increase the number of parameters, indicating its versatility across
architectures, even as a fine-tuning strategy post-transfer learning. Our experimental out-
comes also underscore that both proposed approaches involving CMs do not penalise
convergence during model training. Additionally, the pre-computation of CMs is simple,
achieved by solving a linear system with a sparse matrix. Finally, our evaluation spanned
two datasets—private and public—to ensure the robustness of our findings.

Moving forward, there are several promising avenues for future research that could
enhance the application of confidence maps (CMs). Also, while our study focused on Dice
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loss and cross-entropy loss, there is room to investigate the impact of alternative loss func-
tions or their combinations on the effectiveness of CMs. This exploration could further
leverage the information provided by CMs. Additionally, future research could delve into
the efficacy of CMs in scenarios with limited available data. Understanding how CMs per-
form in situations where data is scarce or imbalanced could provide valuable insights into
their robustness and generalizability across different contexts. Another intriguing direc-
tion lies in refining the confidence maps themselves. Specifically, avoiding the assumption
that fixes the bottom region with all its pixels set to zero.

In summary, the future trajectories of research involve automating the confidence maps
extraction, exploring diverse loss functions, assessing their behaviour with limited data,
and refining their design to maximise their contribution.
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Medical professionals often address ultrasound segmentation difficulties by initially
identifying key structures, then focusing on specific areas in the image, and finally differ-
entiating the structures that define tissue boundaries [69]. However, in areas with reduced
visibility a border completion is carried by the annotator relying on prior knowledge and
expertise. Moreover, since ultrasound is a dynamic imaging technique, it necessitates an
understanding of the anatomy and the relative probe position for a precise identification
of the structures present in the images. In this chapter, we argue that these additional
requirements should be considered when assessing ultrasound deep-learning segmentation
techniques. Consequently, we recommend separately examining the capability of such
methods to outline the distinct versus challenging boundary zones. To this end, we pro-
pose evaluating the performance of ultrasound segmentation networks based on attribute
maps in boundary regions on top of boundary metrics evaluating the accuracy, Dice, Haus-
dorff, etc. Notably, we differentiate the performance in evident and completed borders, as
similar to medical professionals. We distinguish between the performance of evident and
completed borders, as we anticipate that segments with clear boundaries will be simpler
for a network to identify compared to those requiring expert prior knowledge. While deep
learning methods tend to succeed on distinct borders when sufficient data is available for
training, we investigate in this paper how different architectures behave on ambiguous
boundary zones. Despite the significance of this question, the majority of neural networks
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for ultrasound segmentation have been evaluated directly against full expert labels, with
metrics such as the Dice score or the Hausdorff distance, which do not explicitly capture
the network’s behaviour on different types of boundaries. Especially for ultrasound imag-
ing, where boundaries are known to be challenging to detect, a deeper understanding of
how networks segment borders seems crucial for solving the task.

2.1 Related work

2.1.1 Evaluating learned information

In recent years, deep learning methods have become the prevailing approach for ad-
dressing image segmentation tasks [172]. However, a substantial drawback of these meth-
ods lies in their limited interpretability, which hinders the comprehension of their decision-
making processes [217]. This deficiency becomes particularly critical in medicine, where
there is a higher demand for model accuracy and explainability to ensure reliable diagnoses
and effective treatment planning [203]. Among explainability techniques for deep convolu-
tional neural networks, Gradient-weighted Class Activation Mapping (Grad-CAM) stands
out as a simple and effective technique. Initially introduced by Selvaraju et al. [199] in
2016. It offers a heat map visualisation approach to reveal layer activation.

Figure 2.1 – GradCAM of the prostate UNet network: a) Ultrasound image, b) Network
Prediction, c) Grad-CAM for target-label 0 (background) d) Grad-CAM for target-label
1 (prostate)

Several studies have adopted Grad-CAM to understand the information processed by
classification networks [199,200,218]. In the context of medical image segmentation [172],
the role of Grad-CAM is to reveal as a heat map the image regions that contribute the most
to the decision-making. Yet, to our knowledge, no qualitative assessment of ultrasound
boundary predictions using Grad-CAM has been conducted before. Some works have
used Grad-CAM to ensure accurate diagnoses and efficient treatment strategies [203],
or for pinpointing tumours [204] and identifying lesions [205] or diseases (e.g. Covid-
19 [218]). Grad-CAM has also been used for CT and MRI image segmentation [206–209]
in a qualitative fashion. This work searches instead to examine network activations relative
to boundaries, especially distinguishing between evident and completed categories, using
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Seg-Grad-CAM. Figure 2.1 presents an example of applying Seg-Grad-CAM to a prostate
segmentation network when considering the full segmentation and not just the boundaries.
In this work, we propose to detect the border regions based on a post-processing of
the ground truth labels. Then, we adapt Seg-Grad-CAM to the separation of distinct
and completed borders. Finally, we propose several border-aware metrics to compare the
performance of 3 neural network architectures of 4 public and private datasets.

2.1.2 Public Ultrasound Datasets

Table 2.1 presents an overview of the open-source and private datasets US datasets
used in this work. More details can be found in the Fundamentals chapter, Section 3D
datasets 1.1. We briefly describe again the datasets below. Example images from the
different datasets can be seen in 2.1.

Name Labels Size of set Resolution Probe Ref

2D UTP Nerves Nerves in 4 body points:
sciatic, ulnar, median & femoral 1857 images 360 × 279 Linear 4-16MHz [63]

3D Thyroid Thyroid, carotid artery & jugular vein 16 participants:
32 volumes 380 × 330 × 300 3D curvilinear probe 64 channels [5]

3D Prostate Prostate 40 Volumes 230 × 230 × 70 Rectal 4-16Mhz [H]
3D Low-limb Leg 44 Volumes 230 x 230 x 70 Linear 4-16Mhz [50]

Table 2.1 – Overview of Ultrasound Datasets used in this chapter. Reference "H" denotes
in-house data.

The thyroid dataset by Kronke et al. [5] offers 32 3D volumes from 16 individuals,
with annotations of the thyroid gland, jugular vein, and carotid artery. Images have a
resolution 380×330×300 pixels with 0.12mm of voxel spacing. The acquisition was made
using a 3D curvilinear probe with a magnetic tracking system.

The Nerve-UTP-2D dataset, presented by Jimenez et al. [63], consists of 691
2D ultrasound images sourced from a SONOSITE Nano-Max device with annotations
by a certified anesthesiologist. Covering nerve types such as sciatic, ulnar, median, and
femoral, these images of 360 × 279 pixels, aid in peripheral nerve studies and are valuable
for training models in nerve identification.

The prostate 3D dataset is an in-house dataset containing 40 3D US volumes
(230 × 230 × 70 pixels, 0.27mm voxel spacing) of the prostate for examination of cancer,
obtained using a rectal ultrasound probe. This dataset correlates ultrasound and MRI
data to ensure accurate prostate contours.

Low-limb muscles 3D dataset comprises 44 ultrasound volumes of legs, focused on
muscles such as the gastrocnemius and soleus, using a unique freehand ultrasound tracking
method. This method accommodates comprehensive imaging from knee to ankle, filling a
voxel grid (564 × 632 × 1443) with an average voxel spacing of 0.277mm3.

Our focus in this paper is on evaluating the quality of border predictions. To this end,
our experiments are based on existing and well-studied architectures, namely:
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Figure 2.2 – 4 Ultrasound datasets: The first 2 datasets contain binary segmentation of
the nerves and the prostate. While the last 2 multi-label datasets contain 3 labels each,
corresponding to the thyroid(blue)-carotid(green)-jugular(yellow) and the Solius(blue)-
gastrocnemius Medialis(green)- and gastrocnemius lateral (yellow).

— a classical UNet [48].

— an attention UNet [45], incorporating attention modules in the skip-connections.

— the recent UNeTR [49], which combines transformer blocks in the encoder with a
convolutional decoder.

For the experiment in Section 2.3, we also consider a multi-task Y-Net [219], an
encoder-decoder architecture mixing a segmentation with a classification task at the bot-
tleneck. This configuration has given promising outcomes for breast cancer tumors [219]
and Chest x-rays [220].

2.2 Proposed clinician-inspired border evaluation
The essence of our approach lies in using the Seg-Grad-Cam to assess the quality

of segmentation networks in defining completed and distinct borders. This distinction is
crucial for deciphering the nuances of expert annotations. Unlike CT or MRI scans, where
similar intensity regions are more discernible, ultrasound imaging presents non-uniform
intensity patterns due to the varying acoustic interactions within tissues. This complexity
often increases the challenge of structure delineation. Consequently, practitioners rely on
their knowledge of anatomy and previous empirical observations, with a particular em-
phasis on identifying tissue interfaces that exhibit pronounced reflections. Evident borders
are identified as the shiny areas in the ultrasound images, while the concept of completed
borders refers to a process which is common in clinical practice, physicians interpolating
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and connecting discontinuities to segment anatomically accurate and smooth structures,
often by evaluating adjacent frames for context.

Figure 2.3 – Distinct (red) and completed (blue) borders. (a) Ultrasound images, (b)
Edges on the image, (c) 2D cross-sectional view with borders, and (d) 3D-view of the
borders. e)Activations for completed Borders, f)Activation for Distinct Borders.

We propose to compute a map of the distinct borders as the Hadamard product
between the border label (B) and an edged-smoothed ultrasound image. The latter is
created by applying smoothing and gradient filters convolving with kernels Ksmooth and
Ksobel respectively to the ultrasound image. Formally:

Bdistinct = Thres(I ∗ Ksmooth ∗ Ksobel) ⊙ B, (2.1)

Completed borders are then obtained by calculating the complementary of evident
borders. Being the border label the union of evident borders and completed borders.
Figure 2.3 presents challenging ultrasound images for the lower limb in a cross-sectional
view (a) and the extracted edges (b). The obtained distinct borders are in red and the
completed in blue (c). We can observe in the 3D view (d) the high probability of getting
completed borders in deeper regions where the ultrasound signal is low. The creation of
images (e) and (f) is explained below.

Pre-evaluated Seg-Grad-Cam: The main objective of our method is to evaluate the
ability of the network to delineate the borders, as physicians do. To this end, we visualise
the Seg-Grad-Cam of the completed and distinct borders. We observe the activation areas
for specific pixels in order to understand the decisions taken by the networks. The core
of the Seg-Grad-Cam is the gradient computations. Seg-Grad-Cam heatmaps, hereafter
denoted as Lc

Seg-Grad-Cam are computed by first obtaining the gradient of the loss function
with respect to a specific pixel’s score class Y c in the output segmentation map (for
Y c ∈ {Bdistinct, Bcompleted}), then computing the global average pooling of these gradients
at a given layer, and finally combining yhe pooled gradients with the activation maps and
applying a ReLU activation. This process is represented by:

Lc
Seg-Grad-Cam = ReLU

∑
k

 1
w × h

∑
i

∑
j

∂Y c
i,j

∂Af
i,j

Af

 , (2.2)

where Af is the activation map of the f th feature map from the last convolutional layer
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L of the segmentation network when processing image X, being 1
w×h

the global average
pooling operator, and (i, j) the spatial coordinates in the feature map. Figure 2.3 presents
the Seg-Grad-Cam for the pixels of Bcompleted (e) and Bdistinct (f) borders.

2.3 Experiments and results

To assess the precision with which various networks delineate distinct and completed
borders in ultrasound images, we conducted a series of experiments involving three distinct
encoder-decoder network architectures. Each architecture was trained across four varied
datasets, undergoing three separate cross-validation iterations. In our study design, pa-
tients’ data were portioned into 70%, 20%, and 10% segments for training, validation, and
testing phases, respectively. We implemented data augmentation strategies, including im-
age flipping and normalisation. Networks were trained to the point of convergence using
a batch size of two. The optimisation was carried out using the Adam optimiser with an
initial learning rate of 0.001, and we employed a StepLR scheduler to adjust the learning
rate by a factor of 0.5 every 10 epochs. The effectiveness of the models was measured
by calculating the mean and standard deviation of the performance metrics on the test
image sets.

2.3.1 Common border segmentation metrics evaluation

Dataset LEG-3D-US Nerve-UTP-2D
Metrics Dice HD95 NSD Dice HD95 NSD
UNet 0.789 ± 0.029 5.61 ± 1.62 0.962 ± 0.023 0.739 ± 0.283 11.28 ± 15.62 0.815 ± 0.319
A-UNet 0.587 ± 0.048 8.29 ± 1.58 0.866 ± 0.036 0.73 ± 0.298 11.72 ± 11.07 0.791 ± 0.316
UNeTR 0.519 ± 0.161 14.75 ± 4.12 0.757 ± 0.107 0.661 ± 0.249 18.06 ± 18.56 0.719 ± 0.258
Dataset Thyroid Prostate
Metrics Dice HD95 NSD Dice HD95 NSD
UNet 0.888 ± 0.053 5.12 ± 2.71 0.966 ± 0.018 0.816 ± 0.075 6.84 ± 4.02 0.952 ± 0.048
A-UNet 0.892 ± 0.033 6.81 ± 1.67 0.972 ± 0.014 0.815 ± 0.092 6.71 ± 4.05 0.947 ± 0.065
UNeTR 0.636 ± 0.105 27.20 ± 8.12 0.766 ± 0.034 0.523 ± 0.179 10.66 ± 6.28 0.77 ± 0.217

Table 2.2 – Evaluated metrics with mean and standard deviation of the test datasets for
2D and 3D architectures.

Our assessment of ultrasound segmentation models focused on a range of border met-
rics. The detailed findings of this evaluation are reported in Table 2.2. Our analysis indi-
cates that the UNet Transformer architecture did not perform as well as its counterparts
in all examined datasets. This under-performance is potentially linked to the heavy data
demands of transformer architectures, resulting in a performance gap of 6% in 2D assess-
ments that widened to 27% in 3D analyses. Choosing the more effective model between
UNet and A-UNet proved challenging due to their similar performance metrics, especially
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noted in studies involving the thyroid and prostate datasets.

Figure 2.4 – Violin plots of the Dice score evaluated in the test datasets.

Figure 2.5 – Violin plots of the normalised surface Dice evaluation metric in the test
datasets.

We undertook a deeper examination of metric consistency across individual slices using
violin plots to visualise the data spread (see Figure 2.4 and Figure 2.5). This additional
scrutiny, however, did not yield a conclusive ranking of architectures.

A Grad-Cam analysis of the segmentation architectures was used in order
to determine potential differences between the UNet and A-UNet architectures, which
proved challenging due to their comparable performance metrics, particularly within the
thyroid and prostate datasets. We analysed the Seg-Grad-Cam for the background label
to discern how each network considers local and contextual information of the foreground
structures, as depicted in Figure 2.6. In exploring the gradient activation mechanisms of
the respective architectures, we observed that both networks predominantly concentrate
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their attention on high-reflection zones, such as the interfaces between tissues. The fo-
cus of the background attention varies slightly, either becoming more scattered or more
concentrated depending on the network. Nonetheless, such gradient activation maps do
not target specific anatomical landmarks, thus offering limited insights for a thorough
comparative analysis of the network architectures. Similar results were observed in maps
of the foreground (the labels).

Thyroid Leg Prostate

UNet

A-UNet

GT

UNeTR

UNet

A-UNet

GT

UNeTR

UNet

A-UNet

GT

UNeTR

Figure 2.6 – 3D Seg-Grad-Cam evaluation of the background label with predictions border
overlapped in white.

2.3.2 Evaluation of distinct and completed prediction

LEG-3D-US Thyroid
BTP BDistinct BCompleted BTP BDistinct BCompleted

ReferenceBorder[%] 100 54.8 ± 7.6 45.2 ± 4.3 100 86.7 ± 4.8 13.3 ± 4.8
UNetP redictions 82.1 ± 3.3 42.2 ± 1.9 39.9 ± 2.1 86.3 ± 1.5 80.4 ± 2.7 5.9 ± 1.4
A-UNetP redictions 75.5 ± 7.4 50.4 ± 2.4 35.1 ± 2.8 88.4 ± 2.3 83.0 ± 1.2 5.1 ± 1.3
UNetRP redictions 37.2 ± 3.6 23.6 ± 2.5 13.6 ± 1.3 72.8 ± 7.9 70.5 ± 3.3 4.3 ± 2.1

Table 2.3 – True positive percentage in the test dataset predicted with respect to the
complete border. Reference expresses the percentage of distinct and completed borders
with respect to the total border.

Next, we focus specifically on the border’s performance. Table 2.3 next, examines the
lower limb and thyroid ultrasound datasets on the true positive rate metric of the borders,
making a differentiation in evident and completed border accuracy. The methodology, de-
tailed in Section 2.2, involves isolating the evident and completed borders, both summing
100% of the border. The initial row of the table reports the percentage of the reference
border occupied by distinct and completed edges. The evaluation is done on the predic-
tions from three segmentation models: UNet, A-UNet, and UNetR, against the complete
reference border. The results indicate a notably higher prediction accuracy for distinct
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borders across all models, underscoring their enhanced performance in this specific area
and highlighting the need for methods to perform more accurate border completion.

A qualitative evaluation highlights the image areas activated using Seg-Grad-Cam for
distinct and completed borders (see Figure 2.7). The focal points of network gradient
activations vary with the architecture employed. Typically, distinct border activations
occur at interfaces that exhibit strong reflections. For instance, in segmenting lower limb
muscles, there is heightened attention on the fatty layer that demarcates the muscle’s top
boundary, enhancing the definition of the border. When it comes to completed borders,
the activation is influenced by the network’s own attention method. For example, UN-
etR’s approach of segmenting the volume into patches tends to impede the completion
of certain areas. Conversely, UNet manages multiple feature scales via its encoder, which
enables the integration of distinct borders in the prediction of completed ones. Moreover,
the inclusion of additional anatomical structures—like bones or the trachea—provides
contextual information that enhances the delineation of completed borders, mirroring the
process by which medical practitioners identify landmark points to delineate missing or
ambigous boundaries.

Figure 2.7 – Anatomical networks observations using Seg-Grad-Cam on borders: On the
thyroid, we can identify the Trachea, while on the low limb, other structures like the Fat
layer and the Fibula are also activated.

2.3.3 Y-net for multi-task learning paradigm

The training of UNet, Attention UNet, and UNet Transformer in a 2D multi-task learn-
ing setting faced similar challenges as with 3D datasets. The 2D image set includes 169
and 228 ulnar and sciatic images, respectively. Comparative analysis of their performance
on sciatic and ulnar nerves is presented in Table 2.4.

For the first time, UnetR presents relatively better performances especially when seg-
menting ultrasound images for the sciatic nerve. For all the architectures, the Ulnar
dataset seems to be the most challenging dataset. Our observations also indicate that
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considering a classification task in a multitask setting boosts segmentation capabilities.

Sciatic Nerve Ulnar Nerve
Architecture Dice ↑ HD95 ↓ NSD ↑ Dice ↑ HD95 ↓ NSD ↑
UNet – single 0.849 ± 0.083 6.04 ± 15.62 0.918 ± 0.110 0.627 ± 0.283 11.77 ± 9.79 0.711 ± 0.319
UNet – joined 0.817 ± 0.089 13.07 ± 14.31 0.884 ± 0.119 0.632 ± 0.232 20.18 ± 17.14 0.679 ± 0.261
YNet-U 0.854 ± 0.093 6.44 ± 4.47 0.927 ± 0.122 0.676 ± 0.269 12.16 ± 11.60 0.777 ± 0.273
A-UNet – single 0.839 ± 0.075 9.97 ± 10.43 0.864 ± 0.116 0.639 ± 0.298 11.78 ± 11.07 0.717 ± 0.316
A-UNet – joined 0.846 ± 0.069 9.91 ± 12.35 0.922 ± 0.091 0.681 ± 0.211 12.90 ± 11.42 0.756 ± 0.240
YNet-A 0.859 ± 0.058 6.59 ± 4.35 0.922 ± 0.086 0.771 ± 0.175 9.34 ± 9.11 0.776 ± 0.210
UNeTR – single 0.817 ± 0.124 13.35 ± 11.91 0.843 ± 0.180 0.516 ± 0.249 23.77 ± 18.56 0.595 ± 0.258
UNeTR – joined 0.799 ± 0.118 19.27 ± 14.63 0.813 ± 0.163 0.588 ± 0.284 18.76 ± 17.19 0.678 ± 0.268
YNet-TR 0.798 ± 0.115 17.15 ± 14.26 0.824 ± 0.167 0.59 ± 0.273 25.10 ± 19.32 0.655 ± 0.260

Table 2.4 – Quantitative comparison of multiple trainings of UNet and Attention UNet.
Training on datasets encompassing one single nerve is denoted with "single", and training
on datasets encompassing both nerves is denoted with "joined". YNet training is only
performed on the joined datasets.

Figure 2.8 – Qualitative visualisation of the last and the 3rd encoder layer of the Atten-
tion UNet architecture when trained on the ulnar dataset only (first column), ulnar and
sciatic datasets simultaneously (second column) and on both datasets with an auxiliary
classification task included (third column).

We proceeded to use Seg-Grad-CAM to evaluate how the encoder behaviour changed
when the additional classification task was added. Figure 2.8 presents a better focus of
the encoder layer gradient activations around the important regions when the classifica-
tion task is included. We observe some activation in anatomical key points such as bones,
ligaments, veins or arteries. This could be due to the need for structures other than nerves
to do the classification of anatomical points. Deeper research must be done in order to
correlate them with the physician’s key points used for segmentation.
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Ablation study: Frequency of Classification-segmentation join training: Ta-
ble 2.5 presents an ablation study of the YNet-UNet when training with two common
methods to boost multi-task performance: The first three lines apply the classification
loss in epochs multiples of the frequency factor. The second, applied for the two bottom
lines, corresponds to initialising the network with pre-trained segmentation weights. In-
terestingly, variations perform worse than the initial configuration across all metrics for
both nerves. Consequently, the initial training configuration, with no adjustments to the
classification loss frequency or pretraining, stands out as the optimal choice.

2*Classification
loss frequency 2*Pretraining Sciatic nerve Ulnar nerve

Dice HD95 Dice HD95
1 – 0.854 6.44 0.676 12.16
15 – 0.860 8.72 0.707 10.41
110 – 0.851 9.15 0.693 16.68
1 14 epochs 0.858 5.97 0.724 10.25
1 29 epochs 0.846 6.50 0.672 15.65
15 14 epochs 0.849 7.77 0.685 15.62

Table 2.5 – Quantitative comparison of different YNet-UNet training processes. The first
row is equivalent to the initial YNet-U training.

2.4 Discussion and perspectives
This study concentrated on evaluating the performance of deep-learning ultrasound

segmentation techniques in segmenting borders. The task was shown to be challenging
even for human experts, given that ultrasound scans often show fluctuating intensities
within the same tissue type while actual organ borders may be absent or ambiguous. We
propose a new evaluation approach, acknowledging the fact that experts adopt different
strategies when it comes to segmenting borders that are either clearly visible or ambiguous.
Utilising the Seg-Grad-Cam, we analyse where the network concentrates its activations
when completing anatomical borders. Our research uncovers that these networks mimic
the adaptive focusing of medical experts, attending to distinct borders. They take into
account not only the sharply defined edges but also significant anatomical landmarks, all
while incorporating an inherently learned model of shape.

For a quantitative evaluation, we independently measure the network’s ability to iden-
tify evident versus completed borders. This differentiation in metrics, which could be
applied to other measures like Intersection over Union (IoU) or normalised surface dis-
tance, provides insights into how the network’s activation varies with the complexity of
the task at hand. Looking ahead, there is potential to investigate how networks internalise
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anatomical shape models and to enhance their effectiveness by directly incorporating the
difference between distinct and completed boundaries into the loss function.

Finally, we contribute a publicly available LEG-3D-US dataset to the research commu-
nity. This open-access resource is particularly valuable for enhancing medical diagnostic
processes in biomedical research. The lower limb dataset captures the complex anatomy of
the muscles, aiding in the development of better treatments, especially for muscle diseases
like Duchenne muscular dystrophy. The dataset also has applications in sports medicine,
helping to investigate the connection between athletic performance and muscle dynamics,
thus contributing to the customisation of training programs.
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The main objective of this thesis was the development and analysis of deep learning
methods for the creation and segmentation of ultrasound volumes, towards improv-

ing the volume quality itself, but also the quantitative measurements extracted from it.
This objective was to be achieved while considering certain constraints:

— A relatively challenging ultrasound dataset from 2D ultrasound images with noisy
tracking.

— The difficulty of annotating large volumes leading often to sparse and incomplete
labels.

— The physical properties of ultrasound images resulting in low contrast borders and
high labelling variability

To overcome the above challenges, we made several propositions divided into three
groups, aiming respectively to build datasets suitable for learning, designing automatic
3D ultrasound muscle segmentation, deep learning models and analysing the network’s
segmentation performance.

Part I: Building 3D ultrasound annotated datasets focused on the creation of
a high-resolution 3D ultrasound multi-label dataset of the lower limb with reliable 3D
annotations. To this end, we proposed two different studies focusing on:

1. Addressing the challenge of creating 3D labels from sparse 2D annotations with
probe tracking information.

2. Reducing the need of probe tracking towards improving the portability of ultrasound
volumes with high quality.

The contributions made in these works are as follows:

— To the best of our knowledge, the LEG-3D-Ultrasound dataset is the largest available
multi-label ultrasound database. We are preparing its open-source release in the
months to come.

— We studied different image-based and interpolation-based methods to create 3D
labels from sparse 2D annotations in ultrasound volumes acquired at different fre-
quencies. We proposed the "ZOI" semi-automatic method to create 3D annotations
in 10% of the time needed compared to full annotations done by an expert.

— We explored different learning-based methods for sensorless freehand ultrasound.
To this end, we adapted to the specificities of our data, several existing methods
that predict the DOF position of the probe from image sequences. Although ex-
perimentally inconclusive with our data, we also proposed changes in terms of the
architecture and loss towards forcing a rigid displacement field between slices or in
terms of the rational representation.
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In conclusion of this part, we provide an open-source dataset created and a simple
and cost-effective method, primarily relying on open-source software, for producing a
high-quality, fully annotated ultrasound 3D dataset. This proposed approach significantly
reduces the need for manual intervention while offering reasonably accurate data for seg-
mentation and volume computation. We are aware that a better volume compounding
could improve segmentation, especially in artifacts such as the vertical lines at image
borders. These lines caused by probe motion or stitching errors, disrupt uniformity and
degrade segmentation performance. Future works could focus on techniques like interpola-
tion, overlapping, or edge blending to reduce such artifacts and improve volume accuracy
and segmentation reliability. Regarding the fully sensorless freehand tracking approach,
we believe its limited performance can be explained by several reasons linked to our data,
as the tiny motion between parts of images in ultrafast ultrasound acquisitions such as
ours, which are hard to predict. Also, the nature of the muscle structure changes very
smoothly along the acquisition direction, making the out-of-plane estimation highly ill-
posed.

Finally, and also related to the previous remark, the speckle correlation across muscle
with similar tissue texture seems to be challenging for both speckle decorrelation and
learning-based approaches. Nevertheless, the created dataset will be used by the team in
future research on sensorless ultrasound algorithms for multiple sweeps. Perspectives for
this part are adding low-cost sensors and focusing on reducing tracking errors, similar
to [221,222]. A second direction could be the joint modelling of the volume compounding
and the segmentation tasks [223,224].

Part II: Deep neural networks for 3D ultrasound segmentation focused on the
design of two deep learning models for muscle segmentation, towards accurately delimiting
their contours muscles in 3D volumes in low and high-resolution datasets. We designed
the two models with the following objectives in mind:

1. Dealing with limited and sparse annotated data.

2. Addressing the challenge of deep neural networks with very large volumes.

3. Improving the prediction accuracy until being close to the inter-expert volumetric
segmentation error of 5%.

The main contributions from this part are:

— We proposed an automatic segmentation method called "UNet-S-R-CLSTM" that
employs an auxiliary reconstruction task alongside a multi-objective training strat-
egy with a loss that dynamically adapts to the available annotations in each part
of the sequence, making also use of negative labels from neighbouring muscles. This
approach is particularly effective when dealing with limited annotated data.
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— We proposed the "IFSSnet" architecture for high-resolution muscle segmentation
that benefits from spatio-temporal modelling of the segmentation task, where we
treat volumes as sequential data to leverage the computational burden. Apart from
performing fully automatic segmentation, our sequential modelling can also be used
in interactive mode as a label propagation strategy, alleviating the need for exten-
sive annotated datasets. We showed that providing just 3% of the annotations as
initial masks is sufficient to obtain high-quality segmentation in a few-shot set-up.
Moreover, we propose to rely on a learnable parametric Tversky loss to balance
precision and recall, and thus adapt to the high imbalance in our dataset.

In conclusion, we proposed two different deep-learning architectures and losses for
muscle volumetric segmentation with dedicated modules and training strategies to ad-
dress the challenges of sparse and incomplete annotations and the computational burden
associated with large volumes. Furthermore, both architectures represent a good com-
promise between performance and cost (computation, data annotation, etc.) compared
to fully automatic segmentation methods. However, segmentation performance depends
on evaluation metrics and ground truth label variability. Therefore, it seemed important
for us to investigate the robustness of the networks trained to segment ultrasound vol-
umes, as we did in part II. Other perspectives for this part could be incorporating priors
from statistical muscle shape models [225, 226]. A final research direction for this part
includes establishing a parallel between our sequential models, capable of learning long-
dependencies across the volumes, to those present in vision transformers [227], towards
further reducing the number of experiment inputs in the iterative case.

Part III: Analysis of ultrasound segmentation architectures focused on the ex-
perimental validation and understanding of existing segmentation methods. We designed
the studies with the following objectives in mind:

1. Evaluate how to take into account the way clinical experts annotate ultrasound
images and improve the network’s robustness to expert annotation variability.

2. Provide a new evaluation procedure specific to segmented borders in ultrasound
images.

The main contributions from this part are:

— We investigated the challenges of ultrasound image segmentation due to its inherent
characteristics, such as noise and low contrast. We studied the advantages of using
pre-computed Confidence Maps as additional information for the network. We eval-
uate the impact when CMs are added as a second channel or in the loss function.
Our experiments probe an improvement in the awareness of the networks to expert
label variability.
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— We finally evaluate different architectures (3) on different ultrasound datasets (5),
concluding that ultrasound segmentation metrics could be categorised into metrics
for evident and completed borders. This division is necessitated by the anisotropic
nature of ultrasound imaging, which results in images with no blurred borders,
different from MRI and CT images. We propose a mathematical way to extract the
evident borders and separate them from the completed ones. Additionally, we used
Seg-Grad-CAM to study the attention points for completed borders, concluding that
similar to physicians, the networks use evident borders and reference key points to
interpolate and fill the gaps.

In conclusion, part III provides valuable insights into the decision-making processes
of deep neural networks for ultrasound segmentation after a deeper understanding of
the complexities inherent in ultrasound imaging. We make use of Confidence Maps and
Seg-Grad-CAM to enhance and understand network performance. We propose a specific
evaluation of ultrasound borders, dividing the border metrics in evident and completed.
Future perspectives could focus on automating the CM extraction and exploring alter-
native loss functions to maximise the effectiveness of CMs in various training scenarios.
Additionally, research directions for future works could be oriented towards improving ar-
chitectures to explicitly take into account the border variability, for instance, with spatially
variant convolution kernels [228] or designing ultrasound-specific attribution explanation
heat-maps [229].

Finally, the most significant and impactful work that can be done lies in translating
some of our work into the context, for instance, neurological (Duchenne) or geriatrical
(Sarcopenia) applications.
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MONAI is an open-source framework that specializes in deep learning for healthcare
and medical imaging. Before MONAI, there existed different frameworks among which
we found Tethano (Before 2012), Caffe (2013), CNTK from microsoft (2014), Tensor-
flow (2015), Keras(2015), Mxnet(2015), Chainer(2015), Caffe2(2016), Gluon(2016), Py-
torch(2017).

Figure A.1 – End-to-end workflow in medical deep learning area. Taken from:
https://docs.monai.io/en/0.5.0/highlights.html

The workflow of medical image analysis using Artificial intelligence (AI) can be sum-
marized with the Figure A.6. Medical image analysis using AI begins with data acquisition,
where various medical images, such as X-rays, MRIs, or CT scans, are collected. Once ac-
quired, these images undergo pre-processing, which includes steps like image enhancement
to improve clarity and normalization to standardize image values. Subsequently, data aug-
mentation techniques might be applied to artificially expand the dataset, ensuring the AI
model is robust and generalizes well. These processed images are then fed into machine
learning or deep learning models for training, where the model learns to recognize pat-
terns, anomalies, or specific features. It use specific losses to find the best parameters of

122



the architecture. After training, the model is validated and tested on unseen data to evalu-
ate its performance. Once satisfactory accuracy is achieved, the AI model can be deployed
in a clinical setting to assist healthcare professionals in diagnosing diseases, identifying
anomalies, or planning treatments based on the insights derived from the analyzed images.

MONAI appears in 2020, as a joint effort from researchers from various institutions to
create a collection of tools and best practices to facilitate the development and validation
of deep learning models in this domain. MONAI Key features and aspects include:

1. Modularity and Flexibility: MONAI is designed to be adaptable, enabling researchers
and developers to use individual components with other libraries or frameworks if
desired.

2. Transforms: MONAI provides a comprehensive set of transformations for both image
preprocessing (like normalization, cropping, and resampling) and augmentation (like
rotation, scaling, and elastic deformation).

3. Network Architectures: The framework incorporates various state-of-the-art neural
network architectures optimized for medical imaging tasks.

4. Evaluation Metrics: MONAI includes metrics commonly used in medical imaging
challenges to assess the performance of models.

5. Interoperability: MONAI is designed to be compatible with the PyTorch ecosystem,
allowing seamless integration with other PyTorch libraries and tools.

6. Research Reproducibility: MONAI places an emphasis on reproducibility, providing
consistent implementations and environments for research.

7. Community-Driven: The development of MONAI is driven by the community, with
contributions from researchers, clinicians, and developers in the medical imaging
domain.

A.1 Ultrasound confidence maps as a MONAI trans-
form

Course: Project Management and Software Development for Medical Applications-
2023. Student: Bugra.

Supervisor: Vanessa Gonzalez

Ultrasound imaging plays a crucial role in medical diagnostics by providing immedi-
ate visualization of internal body structures. However, its effectiveness can be hindered
by artifacts such as shadow effects and reverberations. To combat these issues, the ap-
proach of attributing confidence levels to different areas of the ultrasound image has
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been introduced, aiding clinicians in distinguishing between trustworthy and less reli-
able regions. This concept was first put forward by Karamalis et al. in their pioneering
study [193], where they developed a technique for creating these confidence maps. Ad-
dressing Key feature 2, our research aimed to re-implement in python the Matlab code.
Initially, we adapted the method using the Science Python Library (SciPy) [230], result-
ing in a functional yet slower performance. By employing stochastic techniques, we were
able to markedly enhance the algorithm’s speed. A key accomplishment of our study was
the successful incorporation of this improved method into the MONAI framework [231], a
leading medical imaging platform based on PyTorch. This integration significantly extends
its accessibility to a wider range of users. Processing time is presented in Figure A.2-a).
Figure A.2-b) provide an evaluation of the error of both implementations for one image
example, several evaluations were done in order to verify whether the implementation was
correct.

Figure A.2 – Confidence maps Monai implementation: a) Running time b) Re-
implementation discrepancy.

Figure A.3 – Qualitative visualisation of confidence maps versions: a) Kalamaris et al.
[193], b) Cylic c) Bottom Zero d) Ultra-Nerf [232]

Different Confidence Maps representations can be found in the Figure A.3. Image
b) obtained with Hung et al. [233] method is calculated raw by raw in a recursive man-
ner. Thinking to provide a more reliable representation, we would like first to force the
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Confidence Maps to have similar values in overlapping images, and second obtain values
different to zero in inferior areas in the images when there is sound reaching the bottom.
In this order, we proceed to calculate to proposals. First, we set just the middle center
of the image as Zero for the Kalamaris’ method, and second, we proceed to calculate
CM using the Ultra-Nerf method of Wysocki et al. [232] The work is still in progress.
Qualitative visualizations are presented in Figure A.3

A.2 Re-implementation of Quicknat and Daf3D net-
works

Course: Clinical Application Project-2023. Student: Alexandra Manquart & Carlotta
Holze. Supervisor: Vanessa Gonzalez

Addressing the Key features 3 and 6, we proceed to re-implement in MONAI the
networks Quicknat and Daf3D.

Quicknat is a 2.5D network that match the features of 3 different 2D views QuickNAT
is a deep learning architecture tailored for the rapid and accurate segmentation of neu-
roanatomical structures in brain MRIs. Utilizing a modified U-Net structure, a type of
Fully Convolutional Neural Network (FCNN), QuickNAT captures both local and global
features of the brain. Designed with efficiency in mind, it boasts fewer parameters than
many deep learning models, ensuring faster inference times. Additionally, it employs a
multi-stage training strategy, initially leveraging a patch-based approach followed by fine-
tuning on entire MRI volumes, and can be extended to provide Bayesian segmentation,
offering uncertainty measures in its predictions

Figure A.4 – Quicknat architecture: THe multi-view aggregation step that combines seg-
mentations from models trained on 2D slices along three principal axes: coronal, sagittal,
and axial.
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DAF3D is a 3D ultrasound binary segmentation architecture for the prostate. Deep
Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound by Yi Wang
proposes a deep learning architecture tailored for the precise segmentation of the prostate
in 3D transrectal ultrasound images. Leveraging attention mechanisms, the model selec-
tively focuses on critical regions within the ultrasound data, enhancing the differentiation
between the prostate and surrounding tissues. This approach aims to address challenges
such as speckle noise, shadowing, and varying prostate appearances by harnessing the
model’s capacity to prioritize relevant features, thereby improving the accuracy and ro-
bustness of prostate segmentation in clinical ultrasound scans.

Figure A.5 – The schematic illustration of our prostate segmentation network equipped
with attention modules. FPN: feature pyramid network; SLF: single-layer features; MLF:
multi-layer features; AM: attention module; ASPP: atrous spatial pyramid pooling. Taken
from [34]

A.3 Monai-label plugin in Imfusion software
Course: Clinical Application Project-2022. Student: Maximilian Bauregger. Supervi-

sor: Vanessa Gonzalez

For addressing the Key feature 7, we create a plugin program in Imfusion software that
allow the use of MONAI-Label for training on deep-learning algorithms. MONAI-Label is
a component of the MONAI ecosystem designed to streamline the annotation of medical
images. It offers interactive tools for annotating images and employs AI models to assist
in this process by providing initial annotation suggestions, which human annotators can
refine. This fusion of human expertise and AI accelerates the creation of high-quality an-
notated datasets. Furthermore, its extensibility allows for easy integration of new models
or algorithms, and its position within the MONAI framework ensures seamless access to
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a vast array of medical image analysis tools. The platform also promotes collaboration
among researchers and clinicians, fostering a community-driven approach.

Figure A.6 – Plugin features: 1)AI Model selection, 2)Search files with file-type selected,
3)Send a Label or a Volume in the dataset folder we are segmenting, 4)Create an inference
label using the pre-trained model, 5),Retran the model with the new annotated data,
6)Calculate the accuracy of the model in one validation participant.

A.4 Conclusion
Our contributions to the MONAI framework mark significant advancements in the

field of medical imaging and education. Firstly, the development of a transformation
technique for confidence maps in ultrasound imaging greatly accelerates the process of
generating new image representations. This enhancement is crucial for rapid diagnosis and
effective patient care. Secondly, the implementation of the Quicknat and DAF3D networks,
along with an instructional tutorial, is a major step forward in educational resources. It
empowers students and professionals alike to delve into advanced neural network models
with greater ease and understanding. Lastly, the integration of the MONAI Label plugin
software with the Imfusion suite is a groundbreaking addition. It allows for the continuous
retraining of networks with new data, ensuring that the models evolve and improve over
time. This continuous learning aspect is vital in keeping pace with the ever-changing
landscape of medical imaging, making our contributions not only innovative but also
indispensable for future advancements in the field.
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Appendix B

Summary of articles contributions

B.1 Articles as first author

Gonzalez Duque, V., Al Chanti, D., Crouzier, M., Nordez, A., Lacourpaille, L.,
Mateus, D. (2020). Spatio-temporal consistency and negative label transfer for 3D freehand
US segmentation. In MICCAI 2020: 23rd International Conference, Lima, Peru, October
4–8, 2020, Proceedings, Part I 23 (pp. 710-720). Springer International Publishing.

Summary: We propose a one-encoder and two-decoder architecture with a CLSTM
in the bottleneck that performs binary segmentation and image reconstruction using the
multitask learning principle, that leads to a better geometrical estimation of the mask
shape. Our 4 label dataset was compose of sparse 2d slices annotations, reason why we
opted for a weak-label learning approach. In summary, when annotation was available, we
perform a normal dice loss. But for such slices where the label of interest was not available,
we penalize the predictions on the positions where the true negative of the other labels
were annotated.

Al Chanti, D., Duque, V. G., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus,
D. (2021). IFSS-Net: for faster muscle segmentation and propagation in volumetric ultra-
sound. IEEE transactions on medical imaging, 40(10), 2615-2628.

Summary: We present a two encoders - one decoder architecture with a Bidirectional
Convolutional long-short term memory (BICLSTM) in the bottleneck that performs bi-
nary muscle segmentation of 3D ultrasound volumes. The main contribution is the small
volumetric error of the predictions equivalent to an intra-operative error of 4%. The vol-
ume is passed sequentially in batches of 3 slices and the predictions are sent as input
to the second decoder for the next sequence, since the muscles are smooth, the network
learns to interpolate the previous annotations. We introduce a decremental update of the
objective function to guide the model convergence in the absence of large amounts of
annotated data. And to handle the class-imbalance between foreground and background
muscle pixels, we propose a parametric Tversky loss function that learns to adaptively
penalize false positives and false negatives.
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Duque, V. G., Zirus, L., Velikova, Y., Navab, N., Mateus, D. (2023). Can ultra-
sound Confidence Maps predict expert labels’ variability?

Summary: We propose, for the first time, the integration of [193] Confidence Map
(CM) in the neuronal networks, to provide important prior information about where to
find the uncertain image regions in order to boost segmentation. We propose two uses of
CM: First as second channel and second in the confidence loss (Masking the CM with
the label ground truth). Our main contributions are networks with predictions of high
uncertainty in areas where the inherent physical principles governing the acquisition can
be a source of uncertainty, particularly at farther distances from the transducer. Both
tasks imply a minimal computational overhead and no changing in the architectures.

Duque, V. G., Alchanti, D., Crouzier, M., Nordez, A., Lacourpaille, L., Mateus,
D. (2020, November). Low-limb muscles segmentation in 3D freehand ultrasound using
non-learning methods and label transfer. In 16th International Symposium on Medical In-
formation Processing and Analysis (Vol. 11583, pp. 154-163). SPIE.

Summary: This was the first approach to obtain 3D muscle labels from partial an-
notations done in B-mode images. We compared different algorithms without artificial
intelligence, all available in Slicer 3D: Fill between slices, grow from seeds and watershed.
Our proposal, the ZOI method, was a zero-order interpolation with smoothness. 15 of
the 44 volumes were manually corrected by an expert for the use of the dataset in other
projects, as they reached only a mean dice score of 0.89±0.03 and a mean volumetric
measure error of 4.18%.

B.2 Articles as co-author
L. Piecuch, V.G. Duque, A. Sarcher, A. Nordez, G. Rabita, G. Guilhem, and D. Ma-

teus. Muscle volume quantification: guiding transformers with anatomical priors. ShapeMi
2023.

The relationship with the thesis lies in the objective of automating muscle segmen-
tation for more efficient and accurate morphometric analysis. Both endeavors recognize
the limitations of manual segmentation and the potential of neural networks in transform-
ing this process. This article specifically introduces a hybrid architecture that combines
convolutional and visual transformer blocks, designed to capture the intricate details and
long-range relations of muscles on CT 3D images. This is particularly relevant to the
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thesis as the consistent anatomical configuration of leg muscles in athletes would benefit
from such an approach. Furthermore, the utilization of an adjacency matrix for muscle
neighborhood estimation resonates with the thesis’s goal of precise segmentation in 3D
US volumes. Both converge on the need for automated, advanced neural network solutions
for muscle segmentation in the realm of sports and medical imaging.

Figure B.1 – Overview of UNetr + adjacency loss method: a)Input MRI, b) Labelmap c)
Architecture

Abstract: Muscle volume is a useful quantitative biomarker in sports, but also for the
follow-up of degenerative musculo-skeletal diseases. In addition to volume, other shape
biomarkers can be extracted by segmenting the muscles of interest from medical images.
Manual segmentation is still today the gold standard for such measurements despite being
very time-consuming. We propose a method for automatic segmentation of 18 muscles of
the lower limb on 3D Magnetic Resonance Images to assist such morphometric analysis.
By their nature, the tissue of different muscles is undistinguishable when observed in
MR Images. Thus, muscle segmentation algorithms cannot rely on appearance but only
on contour cues. However, such contours are hard to detect and their thickness varies
across subjects. To cope with the above challenges, we propose a segmentation approach
based on a hybrid architecture, combining convolutional and visual transformer blocks.
We investigate for the first time the behaviour of such hybrid architectures in the context
of muscle segmentation for shape analysis. Considering the consistent anatomical muscle
configuration, we rely on transformer blocks to capture the long-range relations between
the muscles. To further exploit the anatomical priors, a second contribution of this work
consists in adding a regularisation loss based on an adjacency matrix of plausible muscle
neighbourhoods estimated from the training data. Our experimental results on a unique
database of elite athletes show it is possible to train complex hybrid models from a rela-
tively small database of large volumes, while the anatomical prior regularisation favours
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better predictions.

Velikova, Y., Azampour, M. F., Simson, W., Gonzalez Duque, V., & Navab, N.
(2023, October). LOTUS: Learning to Optimize Task-based US representations. In Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention
(pp. 435-445). Cham: Springer Nature Switzerland.

The connection with the thesis lies in the overarching theme of automating and
refining the segmentation process in ultrasound imaging. While our main goal is ultra-
sound segmentation, Lotus uses network segmentation as an evaluation task. Lotus tries
to solve the problem of small annotated datasets for networks that need a lot of data.
It focuses on the generation of simulated ultrasound training data from annotated CT
scans. Its emphasis lies on using a fully differentiable ultrasound simulator to optimize
parameters for generating ultrasound images, combined with an end-to-end training set-
ting for simultaneous image synthesis and segmentation. Both aim to harness the power
of deep learning and neural networks to alleviate the manual and expertise-dependent
nature of ultrasound image segmentation, albeit targeting different anatomical regions
and applications.

Figure B.2 – Overview of the proposed framework. During training, we render online US
simulation images from CT label maps and use them as input to a segmentation network.
Our ultrasound renderer is fully differentiable and learns to optimize the parameters
based on the downstream segmentation task. At the same time, we train an unpaired and
unsupervised image style transfer network between real and rendered images to achieve
simultaneous image synthesis as well as automatic segmentation on US images in an end-
to-end training setting

Abstract: Anatomical segmentation of organs in ultrasound images is essential to
many clinical applications, particularly for diagnosis and monitoring. Existing deep neu-
ral networks require a large amount of labelled data for training in order to achieve clin-
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ically acceptable performance. Yet, in ultrasound, due to characteristic properties such
as speckle and clutter, it is challenging to obtain accurate segmentation boundaries, and
precise pixel-wise labelling of images is highly dependent on the expertise of physicians.
In contrast, CT scans have higher resolution and improved contrast, easing organ identi-
fication. In this paper, we propose a novel approach for learning to optimize task-based
ultrasound image representations. Given annotated CT segmentation maps as a simula-
tion medium, we model acoustic propagation through tissue via ray-casting to generate
ultrasound training data. Our ultrasound simulator is fully differentiable and learns to
optimize the parameters for generating physics-based ultrasound images guided by the
downstream segmentation task. In addition, we train an image adaptation network be-
tween real and simulated images to achieve simultaneous image synthesis and automatic
segmentation on US images in an end-to-end training setting. The proposed method is
evaluated on aorta and vessel segmentation tasks and shows promising quantitative re-
sults. Furthermore, we also conduct qualitative results of optimized image representations
on other organs.
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Titre : Méthodes d'acquisition, de segmentation par apprentissage et d'analyse quantitative
des volumes échographiques.

Mots clés : Échographie 3D, interpolation des étiquettes, cartes de confiance, variabilité des
annotations, annotations négatives, Grad-Cam, paradigme multi-tâches

Résumé : 'objectif de cette thèse est de faire
progresser le domaine de la segmentation
échographique 3D et de relever les défis liés à la
variabilité des annotations, aux artefacts d'image
et aux ensembles de données incomplets pour
la délimitation des muscles de la jambe. Elle est
divisée en trois parties principales. La première
partie explore des méthodes pour générer des
volumes échographiques 3D de haute fidélité et
des annotations, notamment l'interpolation des
étiquettes à partir d'entrées 2D clairsemées et
des techniques de composition sans capteur. La
deuxième partie présente deux modèles
innovants pour la segmentation de volumes
échographiques 3D : UNet-S-R-CLSTM, qui
traite des sous-volumes tout en prenant en

compte les annotations incomplètes et IFSSnet,
qui utilise un cadre récurrent pour des
prédictions aux contours lisses. La troisième
partie se concentre sur l'analyse expérimentale
des facteurs influençant les performances de
segmentation, en mettant l'accent sur la qualité
des contours et la variabilité des annotations à
travers des cartes de confiance et des études
comparatives. Ce travail contribue au domaine
en 1) développant des méthodes pour la
reconstruction de volumes 3D et la correction
des erreurs, 2) proposant des architectures
adaptées à la segmentation échographique 3D,
et 3) réalisant des évaluations approfondies pour
comprendre les limitations des performances et
améliorer la fiabilité diagnostique.

Title : Methods for the acquisition, learning-based segmentation, and quantitative analysis of
ultrasound volumes.

Keywords : 3D ultrasound, label interpolation, confidence maps, labeling variability, negative
labels, Grad-Cam, multi-task paradigm

Abstract : The goal of this thesis is to advance
the field of 3D ultrasound segmentation and
address the challenges posed by annotation
variability, image artifacts, and incomplete
datasets for leg muscle delineation. It is divided
into three main parts. The first part explores
methods for generating high-fidelity 3D
ultrasound volumes and annotations, including
label interpolation from sparse 2D inputs and
sensorless compounding techniques. The
second part introduces two innovative models
for segmenting 3D ultrasound volumes:
UNet-S-R-CLSTM, which processes
sub-volumes while accounting for incomplete

annotations, and IFSSnet, which uses a
recurrent framework for smooth border
predictions. The third part focuses on
experimental analysis of factors affecting
segmentation performance, emphasizing border
quality and annotation variability through
confidence maps and comparative studies. This
work contributes to the field by 1) developing
methods for 3D volume reconstruction and error
correction, 2) proposing architectures tailored for
3D ultrasound segmentation, and 3) conducting
comprehensive evaluations to understand
performance limitations and improve diagnostic
reliability.
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